
only for RuBoard - do not distribute or recompile

Copyright
Table of Contents
Index
Full Description
About the Author
Reviews
Colophon
Reader reviews
Errata

Writing Apache Modules with Perl and C

Lincoln Stein
Doug MacEachern
Publisher: O'Reilly

First Edition March 1999
ISBN: 1-56592-567-X, 746 pages

Buy Print Version

This guide to Web programming teaches you how to extend the capabilities of the Apache Web server. It
explains the design of Apache, mod_perl, and the Apache API, then demonstrates how to use them to
rewrite CGI scripts, filter HTML documents on the server-side, enhance server log functionality, convert
file formats on the fly, and more.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

Preface
 What You Need to Know to Get the Most out of This Book
 How This Book Is Organized
 Conventions
 The Companion Web Site to This Book
 Using FTP and CPAN
 Comments and Questions
 Acknowledgments

1. Server-Side Programming with Apache
 1.1 Web Programming Then and Now
 1.2 The Apache Project
 1.3 The Apache C and Perl APIs
 1.4 Ideas and Success Stories

2. A First Module
 2.1 Preliminaries
 2.2 Directory Layout Structure
 2.3 Installing mod_perl
 2.4 "Hello World" with the Perl API
 2.5 "Hello World" with the C API
 2.6 Instant Modules with Apache::Registry
 2.7 Troubleshooting Modules

3. The Apache Module Architecture and API
 3.1 How Apache Works
 3.2 The Apache Life Cycle
 3.3 The Handler API
 3.4 Perl API Classes and Data Structures

4. Content Handlers
 4.1 Content Handlers as File Processors
 4.2 Virtual Documents
 4.3 Redirection
 4.4 Processing Input
 4.5 Apache::Registry
 4.6 Handling Errors
 4.7 Chaining Content Handlers
 4.8 Method Handlers

5. Maintaining State
 5.1 Choosing the Right Technique

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 5.2 Maintaining State in Hidden Fields
 5.3 Maintaining State with Cookies
 5.4 Protecting Client-Side Information
 5.5 Storing State at the Server Side
 5.6 Storing State Information in SQL Databases
 5.7 Other Server-Side Techniques

6. Authentication and Authorization
 6.1 Access Control, Authentication, and Authorization
 6.2 Access Control with mod_perl
 6.3 Authentication Handlers
 6.4 Authorization Handlers
 6.5 Cookie-Based Access Control
 6.6 Authentication with the Secure Sockets Layer

7. Other Request Phases
 7.1 The Child Initialization and Exit Phases
 7.2 The Post Read Request Phase
 7.3 The URI Translation Phase
 7.4 The Header Parser Phase
 7.5 Customizing the Type Checking Phase
 7.6 Customizing the Fixup Phase
 7.7 The Logging Phase
 7.8 Registered Cleanups
 7.9 Handling Proxy Requests
 7.10 Perl Server-Side Includes
 7.11 Subclassing the Apache Class

8. Customizing the Apache Configuration Process
 8.1 Simple Configuration with the PerlSetVar Directive
 8.2 The Apache Configuration Directive API
 8.3 Configuring Apache with Perl
 8.4 Documenting Configuration Files

9. Perl API Reference Guide
 9.1 The Apache Request Object
 9.2 Other Core Perl API Classes
 9.3 Configuration Classes
 9.4 The Apache::File Class
 9.5 Special Global Variables, Subroutines, and Literals

10. C API Reference Guide, Part I
 10.1 Which Header Files to Use?
 10.2 Major Data Structures
 10.3 Memory Management and Resource Pools
 10.4 The Array API
 10.5 The Table API
 10.6 Processing Requests
 10.7 Server Core Routines

11. C API Reference Guide, Part II
 11.1 Implementing Configuration Directives in C
 11.2 Customizing the Configuration Process
 11.3 String and URI Manipulation
 11.4 File and Directory Management
 11.5 Time and Date Functions
 11.6 Message Digest Algorithm Functions
 11.7 User and Group ID Information Routines
 11.8 Data Mutex Locking

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 11.9 Launching Subprocesses

A. Standard Noncore Modules
 A.1 The Apache::Registry Class
 A.2 The Apache::PerlRun Class
 A.3 The Apache::RegistryLoader Class
 A.4 The Apache::Resource Class
 A.5 The Apache::PerlSections Class
 A.6 The Apache::ReadConfig Class
 A.7 The Apache::StatINC Class
 A.8 The Apache::Include Class
 A.9 The Apache::Status Class

B. Building and Installing mod_perl
 B.1 Standard Installation
 B.2 Other Configuration Methods

C. Building Multifule C API Modules
 C.1 Statistically Linked Modules That Need External Libraries
 C.2 Dynamically Linked Modules That Need External Libraries
 C.3 Building Modules from Several Source Files

D. Apache:: Modules Available on CPAN
 D.1 Content Handling
 D.2 URI Translation
 D.3 Perl and HTML Mixing
 D.4 Authentication and Authorization
 D.5 Fixup
 D.6 Logging
 D.7 Profiling
 D.8 Persistent Database Connections
 D.9 Miscellaneous

E. Third-Party C Modules
 E.1 Content Handling
 E.2 International Language
 E.3 Security
 E.4 Access Control
 E.5 Authentication and Authorization
 E.6 Logging
 E.7 Distributed Authoring
 E.8 Miscellaneous

F. HTML::Embperl—Embedding Perl Code in HTML
 F.1 Dynamic Tables
 F.2 Handling Forms
 F.3 Storing Persistent Data
 F.4 Modularization of Embperl Pages
 F.5 Debugging
 F.6 Querying a Database
 F.7 Security
 F.8 An Extended Example

Colophon

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

Copyright © 1999 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol,
CA 95472.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc.
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial
caps. The use of the white-tailed eagle image in association with Apache
modules is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Preface
One of the minor miracles of the World Wide Web is that it makes client/server
network programming easy. With the Common Gateway Interface (CGI) anyone can
become a network programmer, creating dynamic web pages, frontends for
databases, and even complex intranet applications with ease. If you're like many web
programmers, you started out by writing CGI scripts in Perl. With its powerful text-
processing facilities, forgiving syntax, and tool-oriented design, Perl lends itself to the
small programs that CGI was designed for.

Unfortunately the Perl/CGI love affair doesn't last forever. As your scripts get larger
and your server more heavily loaded, you inevitably run into the performance wall. A
1,000-line Perl CGI script that runs fine on a lightly loaded web site becomes
unacceptably slow when it increases to 10,000 lines and the hit rate triples. You may
have tried switching to a different programming language and been disappointed.
Because the main bottleneck in the CGI protocol is the need to relaunch the script
every time it's requested, even compiled C won't give you the performance boost you
expect.

If your application needs go beyond simple dynamic pages, you may have run into
the limitations of the CGI protocol itself. Many interesting things go on in the heart of a
web server—things like the smart remapping of URLs, access control and
authentication, or the assignment of MIME types to different documents. The CGI
protocol doesn't give you access to these internals. You can neither find out what's
going on nor intervene in any meaningful way.

To go beyond simple CGI scripting, you must use an alternative protocol that doesn't
rely on launching and relaunching an external program each time a script runs.
Alternatives include NSAPI on Netscape servers, ISAPI on Windows servers, Java
servlets, server-side includes, Active Server Pages (ASP), FastCGI, Dynamic HTML,
ActiveX, JavaScript, and Java applets.

Sadly, choosing among these technologies is a no-win situation. Some choices lock
you into a server platform for life. Others limit the browsers you can support. Many
offer proprietary solutions that aren't available in other vendors' products. Nearly all of
them require you to throw out your existing investment in Perl CGI scripts and
reimplement everything from scratch.

The Apache server offers you a way out of this trap. It is a freely distributed, full-
featured web server that runs on Unix and Windows NT systems. Derived from the
popular NCSA httpd server, Apache dominates the web, currently accounting for
more than half of the servers reachable from the Internet. Like its commercial cousins
from Microsoft and Netscape, Apache supports an application programming interface
(API), allowing you to extend the server with extension modules of your own design.
Modules can behave like CGI scripts, creating interactive pages on the fly, or they
can make much more fundamental changes in the operation of the server, such as
implementing a single sign-on security system or logging web accesses to a relational
database. Regardless of whether they're simple or complex, Apache modules provide
performance many times greater than the fastest conventional CGI scripts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The best thing about Apache modules, however, is the existence of mod_perl.
mod_perl is a fully functional Perl interpreter embedded directly in Apache. With
mod_perl you can take your existing Perl CGI scripts and plug them in, usually
without making any source code changes whatsoever. The scripts will run exactly as
before but many times faster (nearly as fast as fetching static HTML pages in many
cases). Better yet, mod_perl offers a Perl interface to the Apache API, allowing you
full access to Apache internals. Instead of writing Perl scripts, you can write Perl
extension modules that control every aspect of the Apache server.

Move your existing Perl scripts over to mod_perl to get the immediate performance
boost. As you need to, add new features to your scripts that take advantage of the
Apache API (or don't, if you wish to maintain portability with other servers). When you
absolutely need to drag out the last little bit of performance, you can bite the bullet
and rewrite your Perl modules as C modules. Surprisingly enough, the performance
of Apache/Perl is so good that you won't need to do this as often as you expect.

This book will show you how to write Apache modules. Because you can get so much
done with Perl modules, the focus of the book is on the Apache API through the eyes
of the Perl programmer. We cover techniques for creating dynamic HTML documents,
interfacing to databases, maintaining state across multiple user sessions,
implementing access control and authentication schemes, supporting advanced
HTTP methods such as server publish, and implementing custom logging systems. If
you are a C programmer, don't despair. Two chapters on writing C-language modules
point out the differences between the Perl and C APIs and lead you through the
process of writing, compiling, and installing C-language modules. This book includes
complete reference guides to both the Perl and C APIs and multiple appendixes
covering the more esoteric aspects of writing Apache modules.

We think you'll find developing Apache modules to be an eye-opening experience.
With any luck, you won't have to worry about switching web application development
environments for a long time to come.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

What You Need to Know to Get the Most out of This Book

This book was designed for application developers who already have some
experience with web programming. We assume that you understand CGI scripting,
know how to produce HTML pages dynamically, and can create fill-out forms and
process their contents. We also assume that you know the basics of web server
administration—if not with the Apache server itself, then with another Unix or
Microsoft Windows-based web server.

A knowledge of the Perl programming language is definitely required! We use the Perl
version of the Apache API to illustrate the central concepts of module design and
implementation, and most of our example code is written in Perl as well. We chose to
do it this way because we think there are more people who are comfortable
developing web applications in Perl than in C or C++. You don't have to be a Perl
guru to read this book, but there will be places where you'll find the going tough if you
don't understand Perl syntax. We make particularly heavy use of the current features
of Perl (Version 5.004 and higher), particularly in regard to Perl's object-oriented
syntax. If you know Perl Version 4 but haven't gotten around to reading about the
Version 5 features, now's the time to start learning about hash references, blessed
objects, and method calls.

If you're an experienced C programmer, you can probably get what you need from the
Perl chapters without necessarily understanding every line of the example code. Be
forewarned, however, that our discussion of the C-language API tends toward
terseness since it builds on the framework established by earlier chapters on the Perl
API.

Apache and mod_perl both run on Unix machines and Windows NT systems, and we
have endeavored to give equal time to both groups of programmers. However, both
authors are primarily Unix developers, and if our bias leaks through here and there,
please try to forgive us.

We've used the following books for background reading and reference information.
We hope they will be useful to you as well:

Web site administration, maintenance, and security

How to Set Up and Maintain a Web Site: The Guide for Information Providers,
2nd ed., by Lincoln Stein (Addison-Wesley Longman, 1997).

Web Security: A Step-by-Step Reference Guide, by Lincoln Stein (Addison-
Wesley Longman, 1998).

Web Security and Electronic Commerce, by Simson Garfinkel with Gene
Spafford (O'Reilly & Associates, 1997).

The Apache web server

Apache: The Definitive Guide, by Ben Laurie and Peter Laurie (O'Reilly &
Associates, 1997).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache Server for Dummies, by Ken Coar (IDE, 1998).

CGI scripting

The Official Guide to CGI.pm, by Lincoln Stein (John Wiley & Sons, 1998).

CGI/Perl Cookbook, by Craig Patchett and Matthew Wright (John Wiley & Sons,
1998).

The HTTP protocol

The HTTP/1.0 and HTTP/1.1 protocols page at the WWW Consortium site:
http://www.w3.org/Protocols.

Web client programming

Web Client Programming with Perl, by Clinton Wong (O'Reilly & Associates,
1997).

Perl programming

Programming Perl, 2nd ed., by Tom Christiansen, Larry Wall, and Randal
Schwartz (O'Reilly & Associates, 1996).

Perl Cookbook, by Tom Christiansen and Nathan Torkington (O'Reilly &
Associates, 1998).

Advanced Perl Programming, by Sriram Srinivasan (O'Reilly & Associates,
1997).

Effective Perl Programming, by Joseph Hall (Addison-Wesley Longman, 1998).

C programming

The C Programming Language, 2nd ed., by Brian Kernighan and Dennis Ritchie
(Prentice-Hall, 1988).

C: A Reference Manual, by Samuel Harbison and Guy Steele (Prentice-Hall,
1987).

HTML

HTML: The Definitive Guide, 3rd ed., by Chuck Musciano and Bill Kennedy
(O'Reilly & Associates, 1998).

HTML 3, by Dave Raggett, Jenny Lam, and Ian Alexander (Addison-Wesley
Longman, 1996).

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

How This Book Is Organized

Chapter 1, talks about general issues of web application programming and shows
how the web server APIs in general, and the Apache server API in specific, fit into the
picture.

Chapter 2, shows you the mechanics of getting your system ready for Perl and C
module development. It describes how to lay out the directory structure, install
required files, and configure the Apache web server for maximum flexibility. It then
leads you through the steps of installing two simple modules, one written in Perl and
the other in C.

Chapter 3, paints a broad overview of the Apache API, taking you through the
various phases of the HTTP transaction and the process of server startup,
initialization, and cleanup. It shows how API modules fit into this process and how
they can intervene to customize it.

Chapter 4, is all about the request phase of the transaction, where modules create
document content to be transmitted back to the browser. This chapter, and in fact the
next three chapters, all use the Perl API to illustrate the concepts and to provide
concrete working examples.

Chapter 5, describes various techniques for maintaining state on a web server so
that a user's interaction with the server becomes a continuous session rather than a
series of unrelated transactions. The chapter starts with simple tricks and slowly
grows in sophistication as we develop an Internet-wide tournament version of the
classic "hangman" game.

Chapter 6, shows you how to intervene in Apache's authentication and authorization
phases to create custom server access control systems of arbitrary complexity.
Among other things, this chapter shows you how to implement an authentication
system based on a relational database.

Chapter 7, is a grab bag of miscellaneous techniques, covering everything from
controlling Apache's MIME-typing system to running proxy requests. Featured
examples include a 10-line anonymizing proxy server and a system that blocks
annoying banner ads.

Chapter 8, shows how to define runtime configuration directives for Perl extension
modules. It then turns the tables and shows you how Perl code can take over the
configuration process and configure Apache dynamically at startup time.

Chapter 9, is a reference guide to the Perl API, where we list every object, function,
and method in exhaustive detail.

Chapter 10, and Chapter 11, show how to apply the lessons learned from the Perl
API to the C-language API, and discuss the differences between Perl and C module
development. These chapters also provide a definitive reference-style listing of all C
API data structures and functions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This book also contains the following appendixes:

Appendix A

A reference guide to a number of useful Perl modules that come with the
standard mod_perl distribution but are not part of the official Apache API.

Appendix B

A complete guide to installing mod_perl, including all the various installation
options, bells, and whistles.

Appendix C

Help with building C API modules that use the dynamic shared object (DSO)
system.

Appendix D

A listing of third-party Perl API modules that can be found on the
Comprehensive Perl Archive Network (CPAN).

Appendix E

A guide to the third-party C API modules that can be found at
http://modules.apache.org/.

Appendix F

An introduction to HTML::Embperl, a popular HTML template-based system that
runs on top of mod_perl.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Conventions

The following typographic conventions are used in this book:

Italic

is used for filenames, directories, command names, module names, function
calls, command-line switches, and Apache file directives. It is also used for
email addresses and URLs.

Constant Width

is used for code examples. It is also used for constants and data structures.

Constant Width Bold
is used to mark user input in examples.

Constant Width Italic

is used to mark replaceables in examples.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

The Companion Web Site to This Book

This book has a companion web site at http://www.modperl.com/. Here you can
find all the source code for the code examples in this book—you don't have to blister
your fingers typing them in. Many of the code examples are also running as demos
there, letting you try them out as you read about them.

Here you'll also find announcements, errata, supplementary examples,
downloadables, and links to other sources of information about Apache, Perl, and
Apache module development.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Using FTP and CPAN

The Apache web server is available for download from the web. To obtain it via the
web, go to the Apache home page, http://www.apache.org/, and follow the links
to the most recent version.

mod_perl and all the various Perl modules and helper utilities mentioned in this book
are available via anonymous FTP from any of the sites on the Comprehensive Perl
Archive Network (CPAN). This is a list of several hundred public FTP sites that mirror
each others' contents on a regular basis.

To find a CPAN site near you, point your web browser to Tom Christiansen's CPAN
redirector services at http://www.perl.com/CPAN/. This will automatically take
you to an FTP site in your geographic region. From there, you can either browse and
download the files you want directly, or retrieve the full list of CPAN sites and select
one on your own to use with the FTP client of your choice. Most of the modules you
will be interested in obtaining will be located in the modules/by-module subdirectory.

Once you've downloaded the Perl module you want, you'll need to build and install it.
Some modules are 100 percent Perl and can just be copied to the Perl library
directory. Others contain some component written in C and need to be compiled. If
you are using a Win32 system, you may want to look for a binary version of the
module you're interested in. Most of the popular modules are available in precompiled
binary form. Look in the CPAN ports/win32 directory for the version suitable for your
Win32 Perl build. Otherwise, if you have a C compiler and the nmake program
installed, you can build many modules from source, as described in this section.

Building a Perl module and installing it is simple and usually painless. The following
shows the traditional way to download using an old-fashioned FTP command-line
client:

% ftp ftp.cis.ufl.edu
Connected to ftp.cis.ufl.edu.
220 torrent.cise.ufl.edu FTP server ready.
Name (ftp.cis.ufl.edu:lstein): anonymous
331 Guest login ok, send your complete e-mail address as password.
Password: your email address here

230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd /pub/perl/CPAN/modules/by-module
250 CWD command successful.
ftp> cd MD5
250 CWD command successful.
ftp> binary
200 Type set to I.
ftp> get Digest-MD5-2.00.tar.gz

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ftp> get Digest-MD5-2.00.tar.gz
local: Digest-MD5-2.00.tar.gz remote: Digest-MD5-2.00.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for Digest-MD5-2.00.tar.gz (58105 bytes).
226 Transfer complete.
58105 bytes received in 11.1 secs (5.1 Kbytes/sec)
ftp> quit
221 Goodbye.

Perl modules are distributed as gzipped tar archives. You can unpack them like this:

% gunzip -c Digest-MD5-2.00.tar.gz | tar xvf -
Digest-MD5-2.00/
Digest-MD5-2.00/typemap
Digest-MD5-2.00/MD2/
Digest-MD5-2.00/MD2/MD2.pm
...

Once unpacked, you'll enter the newly created directory and give the perl
Makefile.PL, make, make test, and make install commands. Together these will build,
test, and install the module (you may need to be root to perform the final step).

% cd Digest-MD5-2.00
% perl Makefile.PL
Testing alignment requirements for U32...
Checking if your kit is complete...
Looks good
Writing Makefile for Digest::MD2
Writing Makefile for Digest::MD5
% make
mkdir ./blib
mkdir ./blib/lib
mkdir ./blib/lib/Digest
...
% make test
make[1]: Entering directory `/home/lstein/Digest-MD5-2.00/MD2'
make[1]: Leaving directory `/home/lstein/Digest-MD5-2.00/MD2'
PERL_DL_NONLAZY=1 /usr/local/bin/perl -I./blib/arch -I./blib/lib...
t/digest............ok
t/files.............ok
t/md5-aaa...........ok
t/md5...............ok
t/rfc2202...........ok
t/sha1..............skipping test on this platform
All tests successful.
Files=6, Tests=291, 1 secs (1.37 cusr 0.08 csys = 1.45 cpu)
% make install
make[1]: Entering directory `/home/lstein/Digest-MD5-2.00/MD2'
make[1]: Leaving directory `/home/lstein/Digest-MD5-2.00/MD2'
Installing /usr/local/lib/perl5/site_perl/i586-linux/./auto/Digest/MD5/MD5.so
Installing /usr/local/lib/perl5/site_perl/i586-linux/./auto/Digest/MD5/MD5.bs
...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A simpler way to do the same thing is to use Andreas Koenig's wonderful CPAN shell.
With it you can download, build, and install Perl modules from a simple command-line
shell. The following illustrates a typical session:

% perl -MCPAN -e shell
cpan shell -- CPAN exploration and modules installation (v1.40)
ReadLine support enabled

cpan> install MD5
Running make for GAAS/Digest-MD5-2.00.tar.gz
Fetching with LWP:
 ftp://ftp.cis.ufl.edu/pub/perl/CPAN/authors/id/GAAS/Digest-MD5-2.00.tar.gz
CPAN: MD5 loaded ok
Fetching with LWP:
 ftp://ftp.cis.ufl.edu/pub/perl/CPAN/authors/id/GAAS/CHECKSUMS
Checksum for /home/lstein/.cpan/sources/authors/id/GAAS/Digest-MD5-2.00.tar.g
z ok
Digest-MD5-2.00/
Digest-MD5-2.00/typemap
Digest-MD5-2.00/MD2/
Digest-MD5-2.00/MD2/MD2.pm
...
Installing /usr/local/lib/perl5/site_perl/i586-linux/./auto/Digest/MD5/MD5.so
Installing /usr/local/lib/perl5/site_perl/i586-linux/./auto/Digest/MD5/MD5.bs
Installing /usr/local/lib/perl5/site_perl/i586-linux/./auto/MD5/MD5.so
Installing /usr/local/lib/perl5/man/man3/./MD5.3
...
Writing /usr/local/lib/perl5/site_perl/i586-linux/auto/MD5/.packlist
Appending installation info to /usr/local/lib/perl5.i586-linux/5.00404/perllo
cal.pod

cpan> exit

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can also send us messages electronically. To be put on our mailing list or to
request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for
future editions. You can access this page at:

http://www.oreilly.com/catalog/wrapmod/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com/

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Acknowledgments

This book was a bear to write, a pachyderm to edit, and a mule to get delivered on
time. However, our technical reviewers were angels throughout, patiently helping us
to get the details right and to transform the manuscript from a beastly beast into a
well-groomed animal. We hope the end product justifies the image that graces its
cover.

Two of our reviewers must be singled out from the crowd for their extra efforts.
Andrew Ford, for his amazingly concise mod_perl Quick Reference Card, and Gerald
Richter, for contributing the appendix on Embperl. Our other technical reviewers, in
no particular order, were Manoj Kasichainula, Jon Orwant, Mike Stok, Randal
Schwartz, Mike Fletcher, Eric Cholet, Frank Cringle, Gisle Aas, Stephen Reppucci,
Doug Bagley, Jim "Woody" Woodgate, Howard Jones, Brian W. Fitzpatrick, Andreas
Koenig, Brian Moseley, Mike Wertheim, Stas Bekman, Ask Bjoern Hansen, Jason
Riedy, Nathan Torkington, Travis Broughton, Jeff Rowe, Eugenia Harris, Ken Coar,
Ralf Engelschall, Vivek Khera, and Mark-Jason Dominus. Thank you, one and all.

Our editor, Linda Mui, was delightful to work with and should be a model for book
editors everywhere. How she could continue to radiate an aura of calm collectedness
when the book was already running three months behind schedule and showing
continuing signs of slippage is beyond our ken. Her suggestions were insightful, and
her edits were always right on the money. Kudos also to Rob Romano, the O'Reilly
illustrator whose artwork appears in Chapters Chapter 3 and Chapter 6.

Lincoln would like to thank his coauthor, Doug, whose mod_perl module brought
together two of the greatest open source projects of our time. Although it sometimes
seemed like we were in an infinite loop—Lincoln would write about some aspect of
the API, giving Doug ideas for new mod_perl features, leading Lincoln to document
the new features, and so on—in the end it was all worth it, giving us an excellent book
and a polished piece of software.

Lincoln also wishes to extend his personal gratitude to his wife, Jean, who put up with
his getting up at 5:30 every morning to write. The book might have gotten done a bit
earlier if she hadn't always been there to lure him back to bed, but it wouldn't have
been half as much fun.

Doug would like to thank his coauthor, Lincoln, for proposing the idea of this book and
making it come to life, in every aspect of the word. Lincoln's writing tools, his "scalpel"
and "magic wand" as Doug often called them, shaped this book into a form far
beyond Doug's highest expectations.

Doug would also like to thank his family, his friends, and his girlfriend for patiently
putting up with months of "Sorry, I can't, I have to work on the book." Even though the
book may have been finished sooner, Doug is glad they didn't always accept no for
an answer. Otherwise, he may have forgotten there is more to life than book writing!

Finally we'd like to thank everyone on the modperl@apache.org mailing list for their

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally we'd like to thank everyone on the modperl@apache.org mailing list for their
enthusiastic support, technical fixes, and fresh ideas throughout the process. This
book is our gift to you in return for your many gifts to us.

—Lincoln Stein and Doug MacEachern

November 12, 1998

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 1. Server-Side Programming with Apache
Before the World Wide Web appeared, client/server network programming was a
drag. Application developers had to develop the communications protocol, write the
low-level network code to reliably transmit and receive messages, create a user
interface at the client side of the connection, and write a server to listen for incoming
requests, service them properly, and transmit the results back to the client. Even
simple client/server applications were many thousand lines of code, the development
pace was slow, and programmers worked in C.

When the web appeared in the early '90s, all that changed. The web provided a
simple but versatile communications protocol standard, a universal network client,
and a set of reliable and well-written network servers. In addition, the early servers
provided developers with a server extension protocol called the Common Gateway
Interface (CGI). Using CGI, a programmer could get a simple client/server application
up and running in 10 lines of code instead of thousands. Instead of being limited to C
or another "systems language," CGI allowed programmers to use whatever
development environment they felt comfortable with, whether that be the command
shell, Perl, Python, REXX, Visual Basic, or a traditional compiled language. Suddenly
client/server programming was transformed from a chore into a breeze. The number
of client/server applications increased 100-fold over a period of months, and a new
breed of software developer, the "web programmer," appeared.

The face of network application development continues its rapid pace of change.
Open the pages of a web developer's magazine today and you'll be greeted by a
bewildering array of competing technologies. You can develop applications using
server-side include technologies such as PHP or Microsoft's Active Server Pages
(ASP). You can create client-side applications with Java, JavaScript, or Dynamic
HTML (DHTML). You can serve pages directly out of databases with products like the
Oracle web server or Lotus Domino. You can write high-performance server-side
applications using a proprietary server application programming interface (API). Or
you can combine server- and client-side programming with integrated development
environments like Netscape's LiveWire or NeXT's WebObjects. CGI scripting is still
around too, but enhancements like FastCGI and ActiveState's Perl ISAPI are there to
improve script performance.

All these choices can be overwhelming, and it isn't always clear which development
system offers the best tradeoff between power, performance, compatibility, and
longevity. This chapter puts a historical perspective on web application development
and shows you how and where the Apache C and Perl APIs fit into the picture.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

1.1 Web Programming Then and Now

In the beginning was the web server. Specifically, in the very very beginning was
CERN httpd , a C-language server developed at CERN, the European high-energy
physics lab, by Tim Berners-Lee, Ari Luotonen, and Henrik Frystyk Nielsen around
1991. CERN httpd was designed to serve static web pages. The server listened to the
network for Uniform Resource Locator (URL) requests using what would eventually
be called the HTTP/0.9 protocol, translated the URLs into file paths, and returned the
contents of the files to the waiting client. If you wanted to extend the functionality of
the web server—for example, to hook it up to a bibliographic database of scientific
papers—you had to modify the server's source code and recompile.

This was neither very flexible nor very easy to do. So early on, CERN httpd was
enhanced to launch external programs to handle certain URL requests. Special
URLs, recognized with a complex system of pattern matching and string
transformation rules, would invoke a command shell to run an external script or
program. The output of the script would then be redirected to the browser, generating
a web page on the fly. A simple scheme allowed users to pass argument lists to the
script, allowing developers to create keyword search systems and other basic
applications.

Meanwhile, Rob McCool, of the National Center for Supercomputing Applications at
the University of Illinois, was developing another web server to accompany NCSA's
browser product, Mosaic. NCSA httpd was smaller than CERN httpd, faster (or so the
common wisdom had it), had a host of nifty features, and was easier than the CERN
software to configure and install. It quickly gained ground on CERN httpd, particularly
in the United States. Like CERN httpd, the NCSA product had a facility for generating
pages on the fly with external programs but one that differed in detail from CERN
httpd 's. Scripts written to work with NCSA httpd wouldn't work with CERN httpd and
vice versa.

1.1.1 The Birth of CGI

Fortunately for the world, the CERN and the NCSA groups did not cling tenaciously to
"their" standards as certain latter-day software vendors do. Instead, the two groups
got together along with other interested parties and worked out a common standard
called the Common Gateway Interface.

CGI was intended to be the duct tape of the web—a flexible glue that could quickly
and easily bridge between the web protocols and other forms of information
technology. And it worked. By following a few easy conventions, CGI scripts can
place user-friendly web frontends on top of databases, scientific analysis tools, order
entry systems, and games. They can even provide access to older network services,
such as gopher, whois, or WAIS. As the web changed from an academic exercise into
big business, CGI came along for the ride. Every major server vendor (with a couple
of notable exceptions, such as some of the Macintosh server developers) has
incorporated the CGI standard into its product. It comes very close to the "write once,
run everywhere" development environment that application developers have been
seeking for decades.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

But CGI is not the highest-performance environment. The Achilles' heel of a CGI
script is that every time a web server needs it, the server must set up the CGI
environment, read the script into memory, and launch the script. The CGI protocol
works well with operating systems that were optimized for fast process startup and
many simultaneous processes, such as Unix dialects, provided that the server doesn't
become very heavily loaded. However, as load increases, the process creation
bottleneck eventually turns formerly snappy scripts into molasses. On operating
systems that were designed to run lightweight threads and where full processes are
rather heavyweight, such as Windows NT, CGI scripts are a performance disaster.

Another fundamental problem with CGI scripts is that they exit as soon as they finish
processing the current request. If the CGI script does some time-consuming operation
during startup, such as establishing a database connection or creating complex data
structures, the overhead of reestablishing the state each time it's needed is
considerable—and a pain to program around.

1.1.2 Server APIs

An early alternative to the CGI scripting paradigm was the invention of web server
APIs (application programming interfaces), mechanisms that the developer can use to
extend the functionality of the server itself by linking new modules directly to the
server executable. For example, to search a database from within a web page, a
developer could write a module that combines calls to web server functions with calls
to a relational database library. Add a dash or two of program logic to transform URLs
into SQL, and the web server suddenly becomes a fancy database frontend. Server
APIs typically provide extensive access to the innards of the server itself, allowing
developers to customize how it performs the various phases of the HTTP transaction.
Although this might seem like an esoteric feature, it's quite powerful.

The earliest web API that we know of was built into the Plexus web server, written by
Tony Sanders of BSDI. Plexus was a 100 percent pure Perl server that did almost
everything that web servers of the time were expected to do. Written entirely in Perl
Version 4, Plexus allowed the webmaster to extend the server by adding new source
files to be compiled and run on an as-needed basis.

APIs invented later include NSAPI, the interface for Netscape servers; ISAPI, the
interface used by Microsoft's Internet Information Server and some other Windows-
based servers; and of course the Apache web server's API, the only one of the bunch
that doesn't have a cute acronym.

Server APIs provide performance and access to the guts of the server's software,
giving them programming powers beyond those of mere mortal CGI scripts. Their
drawbacks include a steep learning curve and often a certain amount of risk and
inconvenience, not to mention limited portability. As an example of the risk, a bug in
an API module can crash the whole server. Because of the tight linkage between the
server and its API modules, it's never as easy to install and debug a new module as it
is to install and debug a new CGI script. On some platforms, you might have to bring
the server down to recompile and link it. On other platforms, you have to worry about
the details of dynamic loading. However, the biggest problem of server APIs is their
limited portability. A server module written for one API is unlikely to work with another
vendor's server without extensive revision.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1.3 Server-Side Includes

Another server-side solution uses server-side includes to embed snippets of code
inside HTML comments or special-purpose tags. NCSA httpd was the first to
implement server-side includes. More advanced members of this species include
Microsoft's Active Server Pages, Allaire Cold Fusion, and PHP, all of which turn
HTML into a miniature programming language complete with variables, looping
constructs, and database access methods.

Netscape servers recognize HTML pages that have been enhanced with scraps of
JavaScript code (this is distinct from client-side JavaScript, which we talk about later).
Embperl, a facility that runs on top of Apache's mod_perl module, marries HTML to
Perl, as does PerlScript, an ActiveState extension for Microsoft Internet Information
Server.[1]

[1] ActiveState Tool Corp., http://www.activestate.com/

The main problem with server-side includes and other HTML extensions is that
they're ad hoc. No standards exist for server-side includes, and pages written for one
vendor's web server will definitely not run unmodified on another's.

1.1.4 Embedded Interpreters

To avoid some of the problems of proprietary APIs and server-side includes, several
vendors have turned to using embedded high-level interpretive languages in their
servers. Embedded interpreters often come with CGI emulation layers, allowing script
files to be executed directly by the server without the overhead of invoking separate
processes. An embedded interpreter also eliminates the need to make dramatic
changes to the server software itself. In many cases an embedded interpreter
provides a smooth path for speeding up CGI scripts because little or no source code
modification is necessary.

Examples of embedded interpreters include mod_pyapache, which embeds a Python
interpreter. When a Python script is requested, the latency between loading the script
and running it is dramatically reduced because the interpreter is already in memory. A
similar module exists for the TCL language.

Sun Microsystems' "servlet" API provides a standard way for web servers to run small
programs written in the Java programming language. Depending on the
implementation, a portion of the Java runtime system may be embedded in the web
server or the web server itself may be written in Java. Apache's servlet system uses
co-processes rather than an embedded interpreter. These implementations all avoid
the overhead of launching a new external process for each request.

Much of this book is about mod_perl, an Apache module that embeds the Perl
interpreter in the server. However, as we shall see, mod_perl goes well beyond
providing an emulation layer for CGI scripts to give programmers complete access to
the Apache API.

1.1.5 Script Co-processing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another way to avoid the latency of CGI scripts is to keep them loaded and running all
the time as a co-process. When the server needs the script to generate a page, it
sends it a message and waits for the response.

The first system to use co-processing was the FastCGI protocol, released by Open
Market in 1996. Under this system, the web server runs FastCGI scripts as separate
processes just like ordinary CGI scripts. However, once launched, these scripts don't
immediately exit when they finish processing the initial request. Instead, they go into
an infinite loop that awaits new incoming requests, processes them, and goes back to
waiting. Things are arranged so that the FastCGI process's input and output streams
are redirected to the web server and a CGI-like environment is set up at the beginning
of each request.

Existing CGI scripts can be adapted to use FastCGI by making a few, usually
painless, changes to the script source code. Implementations of FastCGI are
available for Apache, as well as Zeus, Netscape, Microsoft IIS, and other servers.
However, FastCGI has so far failed to win wide acceptance in the web development
community, perhaps because of Open Market's retreat from the web server market.
Fortunately, a group of volunteers have picked up the Apache mod_fastcgi module
and are continuing to support and advance this freeware implementation. You can
find out more about mod_fastcgi at the http://www.fastcgi.com website.
Commercial implementations of FastCGI are also available from Fast Engines, Inc.
(http://www.fastengines.com), which provides the Netscape and Microsoft IIS
versions of FastCGI.

Another co-processing system is an Apache module called mod_jserv , which you
can find at the project homepage, http://java.apache.org/. mod_jserv allows
Apache to run Java servlets using Sun's servlet API. However, unlike most other
servlet systems, mod_jserv uses something called the "JServ Protocol" to allow the
web server to communicate with Java scripts running as separate processes. You
can also control these servlets via the Apache Perl API using the Apache::Servlet
module written by Ian Kluft.

1.1.6 Client-Side Scripting

An entirely different way to improve the performance of web-based applications is to
move some or all of the processing from the server side to the client side. It seems
silly to send a fill-out form all the way across the Internet and back again if all you
need to do is validate that the user has filled in the Zip Code field correctly. This, and
the ability to provide more dynamic interfaces, is a big part of the motivation for client-
side scripting.

In client-side systems, the browser is more than an HTML rendering engine for the
web pages you send it. Instead, it is an active participant, executing commands and
even running small programs on your behalf. JavaScript, introduced by Netscape in
early 1995, and VBScript, introduced by Microsoft soon afterward, embed a browser
scripting language in HTML documents. When you combine browser scripting
languages with cascading style sheets, document layers, and other HTML
enhancements, you get " Dynamic HTML" (DHTML). The problem with DHTML is that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enhancements, you get " Dynamic HTML" (DHTML). The problem with DHTML is that
it's a compatibility nightmare. The browsers built by Microsoft and Netscape
implement different sets of DHTML features, and features vary even between browser
version numbers. Developers must choose which browser to support, or use mind-
bogglingly awkward workarounds to support more than one type of browser. Entire
books have been written about DHTML workarounds!

Then there are Java applets. Java burst onto the web development scene in 1995
with an unprecedented level of publicity and has been going strong ever since. A full-
featured programming language from Sun Microsystems, Java can be used to write
standalone applications, server-side extensions ("servlets," which we discussed
earlier), and client-side "applet" applications. Despite the similarity in names, Java
and JavaScript share little in common except a similar syntax. Java's ability to run
both at the server side and the client side makes Java more suitable for the
implementation of complex software development projects than JavaScript or
VBScript, and the language is more stable than either of those two.

However, although Java claims to solve client-side compatibility problems, the many
slight differences in implementation of the Java runtime library in different browsers
has given it a reputation for "write once, debug everywhere." Also, because of
security concerns, Java applets are very much restricted in what they can do,
although this is expected to change once Sun and the vendors introduce a security
model based on unforgeable digital signatures.

Microsoft's ActiveX technology is a repackaging of its COM (Common Object Model)
architecture. ActiveX allows dynamic link libraries to be packed up into "controls,"
shipped across the Internet, and run on the user's computer. Because ActiveX
controls are compiled binaries, and because COM has not been adopted by other
operating systems, this technology is most suitable for uniform intranet environments
that consist of Microsoft Windows machines running a recent version of Internet
Explorer.

1.1.7 Integrated Development Environments

Integrated development environments try to give software developers the best of both
client-side and server-side worlds by providing a high-level view of the application. In
this type of environment, you don't worry much about the details of how web pages
are displayed. Instead, you concentrate on the application logic and the user
interface.

The development environment turns your program into some mixture of database
access queries, server-side procedures, and client-side scripts. Some popular
environments of this sort include Netscape's "Live" development systems (LiveWire
for client-server applications and LiveConnect for database connectivity),[2] NeXT's
object-oriented WebObjects, Allaire's ColdFusion, and the Microsoft FrontPage
publishing system. These systems, although attractive, have the same disadvantage
as embedded HTML languages: once you've committed to one of these
environments, there's no backing out. There's not the least whiff of compatibility
across different vendors' development systems.

[2] As this book was going to press, Netscape announced that it was dropping support for LiveWire, transforming it
from a "Live" product into a "dead" one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1.8 Making the Choice

Your head is probably spinning with all the possibilities. Which tool should you use for
your own application development? The choice depends on your application's
requirements and the tradeoffs you're willing to accept. Table 1.1 gives the authors'
highly subjective ranking of the different development systems' pros and cons.

Table 1.1. Comparison of Web Development Solutions
 Portability Performance Simplicity Power

CGI ++++ + +++ ++
FastCGI ++ +++ +++ ++
Server API + ++++ + ++++
Server-side includes ++ ++ ++++ ++
DHTML + +++ + ++
Client-side Java ++ +++ ++ +++
Embedded interpreter +++ +++ ++ ++++
Integrated system + +++ ++ ++++

In this table, the "Portability" column indicates how easy it is to move a web
application from one server to another in the case of server-side systems, or from one
make of web browser to another in the case of client-side solutions. By
"Performance," we mean the interactive speed of the application that the user
perceives more than raw data processing power of the system. "Simplicity" is our gut
feeling for the steepness of the system's learning curve and how convenient the
system is to develop in once you're comfortable with it. "Power" is an estimate of the
capabilities of the system: how much control it provides over the way the application
behaves and its flexibility to meet creative demands.

If your main concern is present and future portability, your best choice is vanilla CGI.
You can be confident that your CGI scripts will work properly with all browsers, and
that you'll be able to migrate scripts from one server to another with a minimum of
hardship. CGI scripts are simple to write and offer a fair amount of flexibility, but their
performance is poor.

If you want power and performance at all costs, go with a server API. The applications
that you write will work correctly with all browsers, but you'll want to think twice before
moving your programs to a different server. Chances are that a large chunk of your
application will need to be rewritten when you migrate from one vendor's API to
another's.

FastCGI offers a marked performance improvement but does require you to make
some minor modifications to CGI script source code in order to use it.

If you need a sophisticated graphical user interface at the browser side, then some
component of your application must be client-side Java or DHTML. Despite its
compatibility problems, DHTML is worth considering, particularly when you are
running an intranet and have complete control over your users' choice of browsers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Java applets improve the compatibility situation. So long as you don't try to get too
fancy, there's a good chance that an applet will run on more than one version of a
single vendor's browser, and perhaps even on browsers from different vendors.

If you're looking for ease of programming and a gentle learning curve, you should
consider a server-side include system like PHP or Active Server Pages. You don't
have to learn the whole language at once. Just start writing HTML and add new
features as you need them. The cost of this simplicity is portability once again. Pages
written for one vendor's server-side include system won't work correctly with a
different vendor's system, although the HTML framework will still display correctly.

A script interpreter embedded in the web server has much better performance than a
standalone CGI script. In many cases, CGI scripts can be moved to embedded
interpreters and back again without source code modifications, allowing for portability
among different servers. To take the most advantage of the features offered by
embedded interpreters, you must usually write server-specific code, which sacrifices
portability and adds a bit of complexity to the application code.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

1.2 The Apache Project

This book is devoted to developing applications with the Apache web server API, so
we turn our attention now to the short history of the Apache project.

The Apache project began in 1995 when a group of eight volunteers, seeing that web
software was becoming increasingly commercialized, got together to create a
supported open source web server. Apache began as an enhanced version of the
public-domain NCSA server but steadily diverged from the original. Many new
features have been added to Apache over the years: significant features include the
ability for a single server to host multiple virtual web sites, a smorgasbord of
authentication schemes, and the ability for the server to act as a caching proxy. In
some cases, Apache is way ahead of the commercial vendors in the features wars.
For example, at the time this book was written only the Apache web server had
implemented the HTTP/1.1 Digest Authentication scheme.

Internally the server has been completely redesigned to use a modular and extensible
architecture, turning it into what the authors describe as a "web server toolkit." In fact,
there's very little of the original NCSA httpd source code left within Apache. The main
NCSA legacy is the configuration files, which remain backward-compatible with NCSA
httpd.

Apache's success has been phenomenal. In less than three years, Apache has risen
from relative obscurity to the position of market leader. Netcraft, a British market
research company that monitors the growth and usage of the web, estimates that
Apache servers now run on over 50 percent of the Internet's web sites, making it by
far the most popular web server in the world. Microsoft, its nearest rival, holds a mere
22 percent of the market.[3] This is despite the fact that Apache has lacked some of
the conveniences that common wisdom holds to be essential, such as a graphical
user interface for configuration and administration.

[3] Impressive as they are, these numbers should be taken with a grain or two of salt. Netcraft's survey techniques
count only web servers connected directly to the Internet. The number of web servers running intranets is not
represented in these counts, which might inflate or deflate Apache's true market share.

Apache has been used as the code base for several commercial server products. The
most successful of these, C2Net's Stronghold, adds support for secure
communications with Secure Socket Layer (SSL) and a form-based configuration
manager. There is also WebTen by Tenon Intersystems, a Macintosh PowerPC port,
and the Red Hat Secure Server, an inexpensive SSL-supporting server from the
makers of Red Hat Linux.

Another milestone was reached in November of 1997 when the Apache Group
announced its port of Apache to the Windows NT and 95 operating systems (Win32).
A fully multithreaded implementation, the Win32 port supports all the features of the
Unix version and is designed with the same modular architecture as its brother.
Freeware ports to OS/2 and the AmigaOS are also available.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the summer of 1998, IBM announced its plans to join with the Apache volunteers to
develop a version of Apache to use as the basis of its secure Internet commerce
server system, supplanting the servers that it and Lotus Corporation had previously
developed.

Why use Apache? Many web sites run Apache by accident. The server software is
small, free, and well documented and can be downloaded without filling out pages of
licensing agreements. The person responsible for getting his organization's web site
up and running downloads and installs Apache just to get his feet wet, intending to
replace Apache with a "real" server at a later date. But that date never comes.
Apache does the job and does it well.

However, there are better reasons for using Apache. Like other successful open
source products such as Perl, the GNU tools, and the Linux operating system,
Apache has some big advantages over its commercial rivals.

It's fast and efficient

The Apache web server core consists of 25,000 lines of highly tuned C code. It
uses many tricks to eke every last drop of performance out of the HTTP protocol
and, as a result, runs faster and consumes less system resources than many
commercial servers. Its modular architecture allows you to build a server that
contains just the functionality that you need and no more.

It's portable

Apache runs on all Unix variants, including the popular freeware Linux operating
system. It also runs on Microsoft Windows systems (95, 98, and NT), OS/2, and
even the bs2000 mainframe architecture.

It's well supported

Apache is supported by a cast of thousands. Beyond the core Apache Group
developers, who respond to bug reports and answer technical questions via
email, Apache is supported by a community of webmasters with hundreds of
thousands of hours of aggregate experience behind them. Questions posted to
the Usenet newsgroup comp.infosystems.www.servers.unix are usually
answered within hours. If you need a higher level of support, you can purchase
Stronghold or another commercial version of Apache and get all the benefits of
the freeware product, plus trained professional help.

It won't go away

In the software world, a vendor's size or stock market performance is no
guarantee of its staying power. Companies that look invincible one year become
losers the next. In 1988, who would have thought the Digital Equipment whale
would be gobbled up by the Compaq minnow just 10 years later? Good
community software projects don't go away. Because the source code is
available to all, someone is always there to pick up the torch when a member of
the core developer group leaves.

It's stable and reliable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All software contains bugs. When a commercial server contains a bug there's an
irresistible institutional temptation for the vendor to cover up the problem or offer
misleading reassurances to the public. With Apache, the entire development
process is open to the public. The source code is all there for you to review, and
you can even eavesdrop on the development process by subscribing to the
developer's mailing list. As a result, bugs don't remain hidden for long, and they
are usually fixed rapidly once uncovered. If you get really desperate, you can
dig into the source code and fix the problem yourself. (If you do so, please send
the fix back to the community!)

It's got features to burn

Because of its modular architecture and many contributors, Apache has more
features than any other web server on the market. Some of its features you may
never use. Others, such as its powerful URL rewriting facility, are peerless and
powerful.

It's extensible

Apache is open and extensible. If it doesn't already have a feature you want,
you can write your own server module to implement it. In the unlikely event that
the server API doesn't support what you want to do, you can dig into the source
code for the server core itself. The entire system is open to your inspection;
there are no black boxes or precompiled libraries for you to work around.

It's easy to administer

Apache is configured with plain-text configuration files and controlled with a
simple command-line tool. This sounds like a deficiency when compared to the
fancy graphical user interfaces supplied with commercial servers, but it does
have some advantages. You can save old copies of the configuration files or
even commit them to a source code control system, allowing you to keep track
of all the configuration changes you've made and to return to an older version if
something breaks. You can easily copy the configuration files from one host
machine to another, effectively cloning the server. Lastly, the ability to control
the server from the command line lets you administer the server from anywhere
that you can telnet from—you don't even need web connectivity.

This being said, Apache does provide simple web-based interfaces for viewing
the current configuration and server status. A number of people are working on
administrative GUIs, and there is already a web interface for remotely managing
web user accounts (the user_manage tool available at
http://stein.cshl.org/~lstein/user_manage).

It makes you part of a community

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you install an Apache server you become part of a large virtual
community of Apache webmasters, authors, and developers. You will never feel
that the software is something whose use has been grudgingly granted to you
by a corporate entity. Instead, the Apache server is owned by its community. By
using the Apache server, you automatically own a bit of it too and are
contributing, if even in only a small way, to its continued health and
development. Welcome to the club!

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

1.3 The Apache C and Perl APIs

The Apache module API gives you access to nearly all of the server's internal
processing. You can inspect what it's doing at each step of the HTTP transaction
cycle and intervene at any of the steps to customize the server's behavior. You can
arrange for the server to take custom actions at startup and exit time, add your own
directives to its configuration files, customize the process of translating URLs into file
names, create custom authentication and authorization systems, and even tap into
the server's logging system. This is all done via modules—self-contained pieces of
code that can either be linked directly into the server executable, or loaded on
demand as a dynamic shared object (DSO).

The Apache module API was intended for C programmers. To write a traditional
compiled module, you prepare one or more C source files with a text editor, compile
them into object files, and either link them into the server binary or move them into a
special directory for DSOs. If the module is implemented as a DSO, you'll also need
to edit the server configuration file so that the module gets loaded at the appropriate
time. You'll then launch the server and begin the testing and debugging process.

This sounds like a drag, and it is. It's even more of a drag because you have to worry
about details of memory management and configuration file processing that are
tangential to the task at hand. A mistake in any one of these areas can crash the
server.

For this reason, the Apache server C API has generally been used only for
substantial modules which need high performance, tiny modules that execute very
frequently, or anything that needs access to server internals. For small to medium
applications, one-offs, and other quick hacks, developers have used CGI scripts,
FastCGI, or some other development system.

Things changed in 1996 when Doug MacEachern introduced mod_perl , a complete
Perl interpreter wrapped within an Apache module. This module makes almost the
entire Apache API available to Perl programmers as objects and method calls. The
parts that it doesn't export are C-specific routines that Perl programmers don't need to
worry about. Anything that you can do with the C API you can do with mod_perl with
less fuss and bother. You don't have to restart the server to add a new mod_perl
module, and a buggy module is less likely to crash the server.

We have found that for the vast majority of applications mod_perl is all you need. For
those cases when you need the raw processing power or the small memory footprint
that a compiled module gives you, the C and Perl forms of the API are close enough
so that you can prototype the application in mod_perl first and port it to C later. You
may well be surprised to find that the "prototype" is all you really need!

This book uses mod_perl to teach you the Apache API. This keeps the examples
short and easy to understand, and shows you the essentials without bogging down in
detail. Toward the end of the book we show you how to port Apache modules written
in Perl into C to get the memory and execution efficiency of a compiled language.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

1.4 Ideas and Success Stories

To give you an impression of the power and versatility of the Apache API, here are
some examples of what people have done with it. Some of the modules described
here have been incorporated into Apache and are now part of the standard
distribution. Others are third-party modules that have been developed to solve
particular mission-critical tasks.

A movie database

The Internet Movie Database (http://www.imdb.com/) uses mod_perl to
make queries against a vast database of film and television movies. The system
rewrites URLs on the fly in order to present pages in the language of the user's
choice and to quickly retrieve the results of previously cached searches. In
1998, the site won the coveted Webby award for design and service.

No more URL spelling errors

URLs are hard things to type, and many HTML links are broken because of a
single typo in a long URL. The most frequent errors are problems with
capitalization, since many HTML authors grew up in a case-insensitive MS-
DOS/Windows world before entering the case-sensitive web.

mod_speling [sic], part of the standard Apache distribution, is a C-language
module that catches and fixes typographical errors on the fly. If no immediate
match to a requested URL is found, it checks for capitalization variations and a
variety of character insertions, omissions, substitutions, and transpositions,
trying to find a matching valid document on the site. If one is found, it generates
a redirect request, transparently forwarding the browser to the correct resource.
Otherwise, it presents the user with a menu of closest guesses to choose from.

An on-campus housing renewal system

At Texas A&M University, students have to indicate each academic year
whether they plan to continue living in campus-provided housing. For the 1997-
1998 academic year, the university decided to move the process from its current
error-prone manual system to a web-based solution. The system was initially
implemented using ActiveWare's PerlScript to drive a set of Microsoft Internet
Information Server Active Server Pages, but with less than two weeks to go
before deployment it was clear that the system would be too slow to handle the
load. The system was hurriedly rewritten to use mod_perl on top of the NT
version of Apache, resulting in a measured 60-fold increase in performance.
The system went online in the nick of time and functioned without a hitch,
serving 400,000 documents generated on the fly to 10,000 people over the
course of the four-day registration period.

Scripting languages embedded in HTML

The PHP system (http://www.php.net/) is a powerful scripting language

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The PHP system (http://www.php.net/) is a powerful scripting language
that processes programs embedded within HTML documents. The language
provides support for persistent connections to ODBC and Unix databases, on-
the-fly graphics, and LDAP searches. The language is implemented both as a
CGI script that can run on top of any server and as a high-performance C-
language module for Apache.

The ePerl (http://www.engelschall.com/sw/eperl/) and Embperl
(http://perl.apache.org/embperl/) systems are like PHP, but use mod_perl
to embed snippets of Perl code directly inside HTML pages. They can do
anything that Perl can do, including opening network connections to other
Internet services, accessing databases, and generating dynamic documents
based on user input.

An advertising banner server

No web application needs higher performance than banner ad servers, which
are pummeled by millions of requests per day. One banner ad vendor, whose
conventional CGI-based system was topping out at 1.5 banners per second,
moved its system to mod_perl and experienced a greater than 10-fold
performance boost. The vendor is now serving 10 million banners a week from
a single host.

A dynamic map server

The http://www.stadtplandienst.de site uses the mod_perl API with the
ImageMagick graphics library to create dynamic searchable tourist maps for
Berlin and other German cities. The system is fast and responsive, despite the
computationally intensive nature of its job and its frequently heavy load.

A commodities trading system

Lind-Waldock & Co. (http://www.lind-waldock.com/), the world's largest
discount commodities trading firm, uses mod_perl running under the Stronghold
version of Apache to generate live and delayed quotes, dynamic charts, and
late-breaking news, as well as a frontend to their online order entry system. The
system is tightly integrated with the company's relational database system for
customer authentication and transaction processing.

Brian Fitzpatrick, a member of the consulting team that designed and
implemented the system, was pleasantly surprised at how smooth the process
was: "mod_perl allowed us to work the web server and code around our design
—not the other way around."

A document management system

The Advanced Computer Communications company maintains more than 1500
documents in various formats scattered among multiple NFS-mounted file
systems in its internal network. Their document management system
periodically indexes the scattered documents by document name, creation date,
and content, then uses the mod_perl interface to the Apache API to allow users

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and content, then uses the mod_perl interface to the Apache API to allow users
to search and retrieve documents of interest to them. The system automatically
performs document format conversion. Some are sent to the browser for
download, others are precompressed with PKZIP to reduce transmission time,
and still others are converted into formats that can be displayed directly in the
browser window.

These applications represent only a few of the possible uses for the Apache module
API. What you can do with it is limited only by your imagination. The rest of this book
shows you how to turn your ideas into reality.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 2. A First Module
This chapter covers the mechanics of developing Apache extension modules in the
Perl and C APIs. First we'll show you how to install mod_perl, which you'll need for all
Perl API modules, and how to write a simple "Hello World" script. Then we'll show you
an equivalent C module implemented both as statically linked code and as a dynamic
shared object.

We won't go into the gory details of Apache internals in this chapter—that's deferred
until Chapter 3 —but by the end you'll understand the mechanics of getting a new
Apache module up and running.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.1 Preliminaries

Before you can start hacking away at your own Apache modules, there are a number
of preliminaries to take care of. This section discusses what you need and how you
can get it if you don't have it already.

2.1.1 A Working Apache Web Server

You'll need a working version of Apache, preferably a recent release (the version we
used to prepare this book was Version 1.3.4). If you do not already have Apache, you
can download it, free of charge, from http://www.apache.org/.

Users of Windows 95 and NT systems (henceforth called "Win32") who want to write
modules using the Perl API can download precompiled binaries. You will need two
components: the server itself, available at http://www.apache.org/dist/, and
ApacheModulePerl.dll , which is mod_perl implemented as a dynamically loadable
module. ApacheModulePerl.dll has been made available by Jeffrey W. Baker. You
can find it on the Comprehensive Perl Archive Network (CPAN) in the directory
authors/Jeffrey_Baker/.[1] Win32 users with access to the Microsoft Visual C++
development environment can also compile ApacheModulePerl.dll from mod_perl
source code.

[1] See the preface for instructions on finding and using a CPAN site close to you.

This book will not try to teach you how to install and maintain an Apache-based web
site. For the full details, see the Apache server's excellent online documentation or
the reference books listed in the preface.

2.1.2 A C Compiler and make Utility

To use the C API, you'll need a working C compiler and its associated utilities. Most
Unix systems come with the necessary software development tools preinstalled, but
sometimes the bundled tools are obsolete or nonstandard (SunOS and HP-UX
systems are particularly infamous in this regard). To save yourself some headaches,
you may want to install the GNU gcc compiler and make programs. They are
available via anonymous FTP from ftp://prep.ai.mit.edu, in the directory /pub/gnu,
or via the web at http://www.gnu.org/.

Win32 users are not so lucky. To develop C API modules, you will need the Microsoft
Visual C++ 5.0 development package. No other development environment is
guaranteed to work, although you are certainly welcome to try; Borland C++ is
reported to work in some people's hands. If you are primarily interested in the Perl
API, you can use the precompiled binaries mentioned in the previous section.

2.1.3 A Complete Perl Installation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use the Perl API, you will need a full installation of Perl, Version 5.004 or higher. In
many cases, this means that you will have to download and install Perl yourself. We
have found that some systems that come with Perl preinstalled are missing some of
the essential parts of the library hierarchy needed to create and install new Perl
modules. This includes certain Linux distributions. Find the Perl source distribution at
any of the CPAN sites, download it, and install it according to the directions. This
book was prepared using Perl Version 5.004_04.

During installation Perl creates a library file containing all its core routines. On some
Unix systems, Perl will offer you the choice between building a statically linked library
(usually named libperl.a) or building a shared library (named libperl.so or libperl.o).
Unless you're going to be linking many different executables to Perl, there's no
compelling reason to create a shared library. Most sites will have only two
executables linked to Perl: the Apache server daemon and the perl program itself.
Under these circumstances the memory saved by using the shared version is
inconsequential compared to the execution overhead of using the shared library. We
recommend that you build the statically linked library unless you are going to build
multiple embedded Perl systems.

2.1.4 Recent Versions of CGI.pm and LWP

While not strictly necessary, your life will be easier if you have recent versions of the
Perl CGI.pm and LWP modules installed. CGI.pm is a collection of utilities that makes
conventional CGI scripts easier to write. It also comes in handy for modules written
with the mod_perl API. We recommend using Version 2.42 or higher.

LWP (Library for WWW access in Perl) is a collection of modules for creating web
robots, agents, and browsers in Perl. LWP is invaluable for creating web proxies, and
we make use of it in later chapters. More important, mod_perl uses LWP during
installation for regression testing. We recommend using LWP Version 5.36 or higher.

Both CGI.pm and LWP can be found on CPAN, in the subdirectories modules/by-
module/CGI and modules/by-module/LWP. Complete installation directions can be
found in the packages themselves.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.2 Directory Layout Structure

We refer to a variety of special files and directories throughout this book. Although
there is a standard Apache server layout, this standard has changed over time and
many sites have extensively customized their layout. Furthermore, some operating
systems which come with Apache preinstalled choose a nonstandard directory
structure that is more consistent with the OS's way of doing things. To avoid potential
confusion, we explain the directory structure we use in this book. If you are installing
Apache and mod_perl for the first time, you might want to follow the suggestions
given here for convenience.

Server root directory

This is the top of the Apache server tree. In a typical setup, this directory
contains a bin directory for the httpd Apache executable and the apachectl
control utility; the configuration and log directories (conf and logs); a directory
for executable CGI scripts, cgi-bin; a directory for dynamically loaded modules,
libexec; header files for building C-language modules, include; and the
document root directory, htdocs.[2]

[2] The directory layout we describe here is the default Apache layout. Other predefined layouts may be
configured with the Apache configuration option --with-layout=Type where Type can be GNU or another
user-defined layout. Consult the Apache installation documention for more details.

The default server root directory on Unix machines is /usr/local/apache, which
we'll use throughout the book. However, in order to avoid typing this long name,
we suggest creating a pseudo-user named www with /usr/local/apache as its
home directory.[3] This allows you to refer to the server root quickly as ~www.

[3] If you do set up the www pseudo-user, be sure to forbid login for this user by locking the account
password. You can make the httpd executable and its auxiliary files owned by this user if you wish, but the
server should continue to run with the permissions of the "nobody" user as recommended by the default
configuration. It's also sometimes handy to create a www group to which the webmaster and other users
authorized to work in the server root belong.

On Win32 systems, the default server root is C:\Program Files\Apache
Group\Apache. However, many people change that to simply C:\Apache, as we
do here. Readers who use this platform should mentally substitute ~www with
the path to their true server root.

Document root directory

This is the top of the web document tree, the default directory from which the
server fetches documents when the remote user requests http://your.site/. We'll
assume ~www/htdocs in our examples (C:\Apache\htdocs on Win32 systems).

Apache and mod_perl build directory

This is a directory where you can build Apache and mod_perl from their source
distributions. There's no standard place for this. Different people use /usr/src,
/usr/build, /usr/tmp, or their home directories. In order to keep the various
packages in one place, we recommend ~www/build for this purpose.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

httpd.conf, srm.conf, access.conf

These are the three important configuration files for the Apache server. There
are three separate configuration files for historical reasons (to support backward
compatibility with NCSA httpd). Any configuration directive can go into any of
these files. Many sites have forcibly desegregated their directives and placed all
their site's configuration directives into a single large httpd.conf file; in fact, this
is the default as of Version 1.3.4 of Apache. Other sites use separate files for
each virtual host and use the Include directive to load them all at configuration
time.

We use a slightly modified version of the lump-everything-into-httpd.conf
approach. All the core Apache directives are kept in httpd.conf, including virtual
hosts and per-directory configuration sections. However, we like to pull all the
Apache Perl API directives into a separate file named perl.conf and then load it
at server startup time with the following set of directives:

<IfModule mod_perl.c>
 Include conf/perl.conf
</IfModule>

The <IfModule> conditional directive allows us to use the same httpd.conf file for
servers that include the embedded Perl interpreter as well as those that do not.
Notice that the argument to <IfModule> is the name of the module source code file,
so you have to use mod_perl.c here, rather than mod_perl.

httpd.conf and its sibling configuration files all live in ~www/conf.

.htaccess

This is the file extension for the per-directory configuration files that can be
located throughout the document tree. Although the name implies a role in
access control, this is just another historical artifact. These files are more
frequently used as a way to change per-directory configuration options without
modifying the central configuration files. Some sites change the name of the
.htaccess file to something more meaningful (or more obscure). We use the
default name in our examples and, in fact, use the term ".htaccess file"
somewhat generically rather than the longer, but more accurate, "per-directory
access control and options file."

cgi-bin

This is the location of the server's executable CGI scripts, usually ~www/cgi-bin.
We assume the default.

perl

This is the location of Perl scripts running under mod_perl 's Apache::Registry
module (which we talk more about later in this chapter). Perl source files located
in this directory are executed as if they were CGI scripts but load and run much
faster because they are interpreted directly by the server. We use ~www/perl in
this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Module library tree

You need a convenient place to put any library files used by modules written
under the Perl API and any dynamically loadable modules written with the C API
(.o and .so files under Unix, .dll files on Win32). The standard location for C API
modules is ~www/libexec on Unix systems (C:\Apache\libexec on Win32
systems).

There is no standard location for Perl API modules, so we recommend creating
a directory named ~www/lib/perl for this purpose.

"Perl module" and "Apache Perl module"

Speaking of which, there is a nasty potential ambiguity in the word "module"
when referring to Apache modules written using the Perl API. Perl itself makes
extensive use of loadable library modules (.pm files) that have nothing to do
with running a web server. Making things even more confusing is the fact that
the Apache modules written in Perl are usually .pm files themselves.

We try to minimize the ambiguity by referring to "Perl module" when we mean
plain old Perl modules that are not involved in the web server and "Apache Perl
module" when we mean Perl modules written to run under the Apache Perl API.
In addition, all Apache Perl modules are named beginning with the word
"Apache::". Here are some examples:

Type of Module Examples
Apache module mod_mime, mod_rewrite
Apache Perl module Apache::AuthenDBI, Apache::Traffic
Perl module Text::ParseWords, IO::File

Perl library tree

This is the location of the Perl5 library tree, which was created when you (or
someone else) installed Perl on your system. It contains Perl modules, Plain Old
Documentation (POD) files, loadable library objects, and header files used for
compiling new Perl modules. This directory can be located in a variety of
amusing and surprising places, but on most systems it can be found in
/usr/lib/perl5, /usr/local/lib/perl5, or C:\perl5 (Win32).

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.3 Installing mod_perl

In order to use the Perl API, you'll need to download and install mod_perl if you
haven't done so already. This section will describe the simplest way to do this. If
you've already installed mod_perl you'll want to skip this section or jump directly to
Appendix B, where we give you the lowdown on mod_perl 's advanced installation
options.

If you are a Win32 user, you can skip to Section 2.3.2 and download the
precompiled ApacheModulePerl.dll loadable module. We'll show you how to activate
ApacheModulePerl.dll at the end of the section.

2.3.1 The Installation Process

mod_perl is part of the CPAN archive. FTP to a CPAN site close to you and enter the
directory modules/by-module/Apache/. Download the file mod_perl-X.XX.tar.gz,
where X.XX is the highest version number you find.

It is easiest to build mod_perl when it is located at the same level as the Apache
source tree. Change your working directory to the source directory of the server root,
and unpack the mod_perl distribution using the gunzip and tar tools:[4]

[4] If you don't have gunzip and tar, you can find the freeware GNU versions of these tools at
ftp://prep.ai.mit.edu/pub/gnu.

% cd ~www/build
 % gunzip -c mod_perl- X.XX.tar.gz | tar xvf -
 mod_perl-X.XX /t/
 mod_perl-X.XX /t/docs/
 mod_perl-X.XX /t/docs/env.iphtml
 mod_perl-X.XX /t/docs/content.shtml
 mod_perl-X.XX /t/docs/error.txt

 % cd mod_perl- X.XX
Now, peruse the README and INSTALL files located in the mod_perl directory.
These files contain late-breaking news, installation notes, and other information.

The next step is to configure, build, and install mod_perl. Several things happen
during this process. First, an installation script named Makefile.PL generates a top-
level Makefile and runs Apache's configure script to add mod_perl to the list of C
modules compiled into the server. After this, you run make to build the mod_perl
object file and link it into a new version of the Apache server executable. The final
steps of the install process are to test this new executable and, if it checks out, to
move mod_perl 's support files and documentation into the Perl library directory.

If you have other third-party modules to add to Apache, such as PHP, you can add
them during the mod_perl build process by providing arguments to the installation
script that will be passed through to Apache's configure. Alternatively, you can
separate the mod_perl build from the Apache build and run configure yourself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The outline of the whole process is as follows:

perl Makefile.PL options # run installation script
 make # make httpd executable
 make test # run tests (optional)
 make install # install mod_perl

The perl Makefile.PL line is supplemented by a series of tag=value pairs that
control a bewildering array of options. The full list of options is given in Appendix B.
Most options are concerned with activating handlers for various phases of the HTTP
transaction. For example, to enable the handlers for the authentication and log
phases (which we explain in more detail later), you would configure mod_perl with this
command:

perl Makefile.PL PERL_LOG=1 PERL_AUTHEN=1

You'll probably want to enable all the handlers in order to get access to the full
Apache API. The easiest way to do this is by issuing this command:

perl Makefile.PL EVERYTHING=1 APACHE_PREFIX=/usr/local/apache

EVERYTHING=1 enables all the handlers and activates a variety of other neat
features, including server-side includes written in Perl and support for <Perl> sections
in the Apache configuration files. Providing an APACHE_PREFIX option with the
location of the server root allows the install script to automatically copy the new
version of the Apache server and its support files into the server root. If you don't
provide this option, you can still copy the files manually after they're built. More details
on these options can be found in the mod_perl manual pages and in Appendix B.

Other configuration options are not involved in building mod_perl itself, but are
passed through to Apache's configure script to control other aspects of Apache's
configuration. The most frequently used of these is ADD_MODULE, which accepts a
comma-delimited list of additional modules to compile into Apache. Use this if there
are optional modules such as the mod_status and mod_proxy that you wish to build
Apache with.

When run, Makefile.PL will search the immediate vicinity for the Apache source tree.
When it finds it, it will print the path and ask you for confirmation. If the search fails,
Makefile.PL will prompt you to type in the path. You should type in the full path to the
Apache src directory. Next you'll be asked whether httpd should be built during the
make. You should answer "y" to this question. At this point, Makefile.PL will run
Apache's own configure script and you'll see a series of messages from configure.

After running configure, Makefile.PL will display a list of the options that are enabled.
Then it checks for the presence of the LWP and CGI.pm packages and warns you if
one or both are absent or outdated. Neither package is essential to successfully
install mod_perl, but LWP is required to run the regression tests. If you wish, you can
install mod_perl without running the tests. If at some later date you wish to run the
regression tests, just install LWP and run Makefile.PL again.

Here's an example configuration session:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% perl Makefile.PL EVERYTHING=1 APACHE_PREFIX=/usr/local/apache
 ReadLine support enabled
 Configure mod_perl with ../apache_1.3.3/src ? [y] y
 Shall I build httpd in ../apache_1.3.3/src for you? [y] y
 cp src/modules/perl/perl_PL.h ../apache_1.3.3/src/modules/perl/perl_PL.h
 ... many similar lines deleted ...

 Will run tests as User: 'johnd' Group: 'users'
 Configuring for Apache, Version 1.3.3
 + activated perl module (modules/perl/libperl.a)
 Creating Makefile
 Creating Configuration.apaci in src
 + id: mod_perl/1.16
 + id: Perl/5.00404 (linux) [perl]
 ... many similar lines deleted ...

 PerlDispatchHandler.........enabled
 PerlChildInitHandler........enabled
 PerlChildExitHandler........enabled
 PerlPostReadRequestHandler..enabled
 PerlTransHandler............enabled
 ... many similar lines deleted ...

 Writing Makefile for Apache
 Writing Makefile for Apache::Connection
 Writing Makefile for Apache::Constants
 Writing Makefile for Apache::File
 Writing Makefile for Apache::Log
 Writing Makefile for Apache::ModuleConfig
 Writing Makefile for Apache::Server
 Writing Makefile for Apache::Symbol
 Writing Makefile for Apache::Tie
 Writing Makefile for Apache::URI
 Writing Makefile for Apache::Util
 Writing Makefile for mod_perl

If something goes wrong during configuration, there should be a diagnostic warning
that will point to the problem (for example, "no Apache source directory found").
Correct the problem and try again. If you need to pass a long series of configuration
options, you will probably find it convenient to turn the configuration command into a
short shell script along these lines:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/bin/sh
 # mod_perl configuration 9/28/98
 perl Makefile.PL EVERYTHING=1 \
 ADD_MODULE=unique_id,status,proxy,info \
 APACHE_PREFIX=/usr/local/apache

This makes it easy to edit the configuration and run the command again. Plus, you'll
have a record of the configuration you used the next time you upgrade Apache or
mod_perl.

The next step is to run make . A new Apache server with an integrated mod_perl will
now be built in front of your eyes. At the end of the process you'll find a brand-new
httpd in the Apache source tree. It will look just like the old one, except significantly
larger (fourfold increases in size are not uncommon). This is because the Perl
interpreter has just been made part of httpd. It's unlikely that you'll encounter any
problems during the make if you were previously successful in compiling both Apache
and Perl, but if the make process does abort because of a fatal error, you'll have to do
some detective work to determine where things went wrong. It helps to redirect the
messages from the build process into a file for later perusal:

% make |& tee make.out
You can now run the optional tests. This step is recommended. During the tests the
newly built server will be launched and a series of scripts will barrage it with requests
to determine whether it produces the expected answers. Because the server listens to
a nonstandard port during the tests, you can run the tests on the same machine that
already hosts a web server. You do not need to be the superuser (or Administrator) in
order to run the tests; however, you do need to have the LWP library installed.
Otherwise, the tests will abort at an early stage.

To run the tests, run make test from within the mod_perl directory:

% make test
cp t/conf/mod_perl_srm.conf t/conf/srm.conf
../apache-1.3/src/httpd -f `pwd`/t/conf/httpd.conf -X -d `pwd`/t &
httpd listening on port 8529
will write error_log to: t/logs/error_log
letting apache warm up...done
/opt/perl5/bin/perl t/TEST 0
modules/actions.....ok
modules/cgi.........ok
modules/constants...ok
modules/embperl.....ok
modules/eperl.......ok
 ... many similar lines deleted ...

All tests successful.
Files=35, Tests=350, 35 secs (26.13 cusr 2.56 csys = 28.69 cpu)
kill `cat t/logs/httpd.pid`
rm -f t/logs/httpd.pid
rm -f t/logs/error_log

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rm -f t/logs/error_log

Don't worry about any tests that are skipped. This just indicates that you haven't
installed one of the optional mod_perl features. You can always install the feature and
rerun the tests later. Any messages about failed tests, however, are cause for
concern. If you see such a message, you should rerun the tests with the verbose flag
(make test TEST_VERBOSE=1). You can try to track down the problem yourself, or
post the results to the mod_perl mailing list (which we'll discuss presently).

Provided that all goes well, you can now finish the installation. You may need to have
superuser or Administrator privileges in order to do this. Run make install to move
mod_perl 's support files and documentation to the main Perl library directory. You will
see a long series of copy commands. If you specified the APACHE_PREFIX option,
then make install will also install the Apache side of things, including httpd, its
configuration files, document, and log trees. Otherwise, change to the Apache source
directory and copy the new httpd by hand to your server root directory. Make sure to
keep a copy of the old httpd binary around, just in case.

2.3.2 Win32 Installation

For Windows users, download the ApacheModulePerl binary distribution from CPAN,
in the subdirectory authors/Jeffrey_Baker/. The Win32 distribution file uses a very
long name, following the CPAN conventions for binary distribution file names.[5] Make
sure you download the one with the highest version number, and unpack it with your
favorite ZIP file extractor.

[5] The binary distribution filename conventions can be found on the CPAN:
http://www.cpan.org/modules/05bindist.convention.html.

Now copy the contents of the lib subdirectory into your Perl library tree, usually
C:\perl5\lib (be careful to copy the contents of lib, not the directory itself, or you run
the risk of clobbering your Perl library tree!). Next, move the file ApacheModulePerl.dll
to the Apache loadable modules directory, usually C:\Apache\modules. Open
httpd.conf with your favorite text editor and add the following line:

LoadModule perl_module modules/ApacheModulePerl.dll

Kill and restart the server if it's already running. mod_perl should now be installed.
Should you wish to build mod_perl from source code, consult the INSTALL.win32 file
located at the top of the mod_perl distribution directory.

2.3.3 The mod_perl Mailing List

If you have trouble running or installing mod_perl, be sure to read over the SUPPORT
document located at the top of the mod_perl distribution directory. It contains tips and
pointers to other tips for solutions to common problems.

If you cannot find a solution to your problem, you should post a message to the
mod_perl mailing list requesting help. To subscribe to the mailing list, send an email
message to majordomo@apache.org with the message "subscribe modperl" in the
mail body (not the subject line). You will receive confirmation by return mail along with
instructions for unsubscribing from the list should you ever wish to withdraw. Save this
message for future reference.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can now email your request for help to modperl@apache.org. Be sure to
include the output of the VERBOSE regression tests, along with the following details:

mod_perl version

Perl version

Apache version

Operating system and version

There's also a searchable archive of the full mailing list at
http://forum.swarthmore.edu/epigone/modperl. Before posting a question,
you might want to check the archive first to see if someone else has ever had a
similar problem. Also be sure to check the mod_perl FAQ (frequently asked questions
list) at http://perl.apache.org/faq/.

If you are just getting started with mod_perl or find yourself stuck at times, consult
Stas Bekman's mod_perl Developer's Mini Guide at
http://perl.apache.org/guide/. The guide was designed to help you overcome
possible obstacles when using mod_perl as a replacement for CGI. It is a collection of
tips and tricks from mod_perl developers around the globe, which will save any
developer a great deal of time and headache medicine. Many areas covered by the
guide are not covered in this book, so be sure to read it! If you are only interested in
receiving announcements about new versions of mod_perl and add-on modules, you
should subscribe to the modperl-announce mailing list. The subscription procedure is
the same, except that the mail body should read "subscribe modperl-announce."

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.4 "Hello World" with the Perl API

Now that you have mod_perl installed, it's time to put the Perl API through its paces.

First you'll need to create a location for your Apache Perl modules to live. If you
haven't done so already, create a directory in some convenient place. We suggest
creating a lib subdirectory within the server root, and a perl directory within that,
making the full location ~www/lib/perl (Unix), or C:\Apache\lib\perl (Win32). Within this
directory, create yet another directory for modules that live in the Apache::
namespace (which will be the vast majority of the modules we write), namely
~www/lib/perl/Apache.

You'll now have to tell Apache where to look for these modules. mod_perl uses the
same include path mechanism to find required modules that Perl does, and you can
modify the default path either by setting the environment variable PERL5LIB to a
colon-delimited list of directories to search before Apache starts up or by calling use
lib '/path/to/look/in' when the interpreter is first launched. The first
technique is most convenient to use in conjunction with the PerlSetEnv directive,
which sets an environment variable. Place this directive somewhere early in your
server configuration file:

PerlSetEnv PERL5LIB /my/lib/perl:/other/lib/perl

Unfortunately this adds a little overhead to each request. Instead, we recommend
creating a Perl startup file that runs the use lib statement. You can configure
mod_perl to invoke a startup file of common Perl commands each time the server is
launched or restarted. This is the logical place to put the use lib statement. Here's a
small startup file to get you started:

#!/usr/local/bin/perl

modify the include path before we do anything else
BEGIN {
 use Apache ();
 use lib Apache->server_root_relative('lib/perl');
}

commonly used modules
use Apache::Registry ();
use Apache::Constants();
use CGI qw(-compile :all);
use CGI::Carp ();

put any other common modules here
use Apache::DBI ();
use LWP ();
use DB_File ();
1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1;

This example startup file first modifies the include path to point to the location of the
Apache Perl module directory. It uses the Apache::server_root_relative() method to
turn the relative path into an absolute path that use lib will honor. It then loads up
some commonly used libraries, including Apache::Registry (a fast CGI-like
environment), Apache::Constants (various constants used by Apache modules), and
the CGI and CGI::Carp modules.

If most of your modules are going to use these libraries, loading them once at startup
time makes sense and assures the absolute fastest performance of your modules.
Loading less-frequently used libraries should be deferred to the time you actually
need them.

Save the startup file to some logical place. We recommend ~www/conf/startup.pl, so
that it lives alongside Apache's other configuration files. If you can you should make
this file owned and only writable by root (Administrator on Win32 systems). This is
because during the server startup phase the code in this file is executed as the
superuser, so anyone with write permissions to this file (or the directory that contains
it) effectively has superuser privileges.

We'll need to tell Apache to run the startup file at launch time. Open perl.conf
(actually, any of the configuration files will do) and add the following lines to the
bottom:

PerlRequire conf/startup.pl
PerlFreshRestart On

The first directive tells Apache to load and run the startup script when it is first
launched. Like other file paths in Apache's configuration files, partial paths are treated
as relative to the server root. The second directive tells the server to repeat this
process every time it is restarted. This allows changes to the startup script (and other
Apache Perl modules) to take effect without bringing the server completely down.

You should now start or restart the server. On Unix platforms, the easiest way to do
this is to use the apachectl script located in ~www/bin. The command apachectl
graceful will send the server a polite USR1 signal to ask it to restart when it is finished
processing all current requests, while apachectl restart will issue the server a more
imperative HUP signal to command it to cancel all pending transaction and
immediately restart. In either case, the server will be launched if it isn't already
running. Users of the Win32 port can restart the server by issuing the command
apache -k restart (Versions 1.3.3 and higher). If Apache is installed as a Windows NT
service, you may also restart it using the Services control panel or by issuing the
commands NET STOP APACHE and NET START APACHE from within a command
window.

Watch the server ErrorLog during this process. If there are any errors in the
configuration file or the Perl startup file, you'll see messages to that effect. Be
particularly alert for messages like "Invalid Command `PerlRequire'." This message
means that you haven't actually launched a mod_perl -enabled version of Apache.
Are you sure that you launched the new executable?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that everything's configured properly, you can write a module using the Apache
Perl API. Example 2.1 gives a basic one named Apache::Hello for you to try out:

Example 2.1. A First Apache Perl Module

package Apache::Hello;
File: Apache/Hello.pm

use strict;
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;
 $r->content_type('text/html');
 $r->send_http_header;
 my $host = $r->get_remote_host;
 $r->print(<<END);
<HTML>
<HEAD>
<TITLE>Hello There</TITLE>
</HEAD>
<BODY>
<H1>Hello $host</H1>
Who would take this book seriously if the first example didn't
say "hello world"?
</BODY>
</HTML>
END
 return OK;
}

1;

We'll go into the details in later chapters, but essentially, this module contains the
definition for a single subroutine named handler(). When the time comes, Apache will
invoke handler() to handle the request, passing it an Apache request object stored in
the variable $r. The request object is the primary interface between subroutine and
server.

Using methods provided by the request object, our module first sets the MIME
content type of the outgoing data to text/html and then sends the HTTP headers by
calling send_http_header() . It retrieves the DNS name of the remote host by making
another call to the request object and incorporates this value into a short HTML page
that it sends to the browser by calling the request object's print() method. At the end
of the subroutine, the module returns a value of OK (defined in the library module
Apache::Constants) to signal to Apache that execution was successful.

To install this module, save it as ~www/lib/perl/Apache/Hello.pm
(C:\Apache\lib\perl\Apache\Hello.pm on Win32 systems). This makes it accessible to
mod_perl. The next step is to associate the module with a URI by mapping it to a
portion of your document tree.[6] The simplest way to do this is by adding an Apache
<Location> directive to perl.conf (or any of the other configuration files, for that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Location> directive to perl.conf (or any of the other configuration files, for that
matter). This entry will do the trick:

[6] In the context of incoming Apache requests, we use "URI" (Uniform Resource Identifier) rather than "URL"
(Uniform Resource Locator) throughout this book. URI is the more general term, so it can refer to partial documents as
well as to fully qualified URLs. The main reason, however, is that URI is used in the Apache online documentation and
in the names of API function calls, and who are we to buck tradition?

<Location /hello/world>
 SetHandler perl-script
 PerlHandler Apache::Hello
</Location>

The first directive, SetHandler perl-script , tells Apache to invoke mod_perl to handle
the phase of the HTTP transaction that produces the content of the page. The second
directive, PerlHandler Apache::Hello , tells mod_perl to load the Apache::Hello
module and execute its handler() subroutine. Without this directive, you would get a
"File not found" error. The URI specified in <Location> can be any arbitrary path on
your system and doesn't (and probably shouldn't) refer to a real file already in the
document tree. If there already is a physical document at that location, the Perl
module will supersede it.

You will have to restart the server again in order to have the new <Location> section
take effect. Later we will discuss how to install new modules without restarting the
server. Fire up your favorite browser and fetch the URI /hello/world. You should be
greeted by the page shown in Figure 2.1.

Figure 2.1. Apache::Hello results

If you get a server error of some sort, don't despair. Look in the server error log for
helpful messages from the Perl interpreter. They may be bare messages, or if you are
loading CGI::Carp in the Perl startup file, they may be preceded by a timestamp and -
e in the filename field, indicating that the error occurred within a Perl eval() statement.
Most of what mod_perl does occurs within the context of an eval().

Most commonly you'll see messages about syntax errors. Fix the errors, restart the
server, and try again. If you get messages about not being able to find the
Apache::Hello module, most likely your include path is screwed up. Check that the
Perl startup script is setting the include path correctly, that Apache/Hello.pm is
installed in the correct subdirectory, and that the permissions of Hello.pm and all its

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

installed in the correct subdirectory, and that the permissions of Hello.pm and all its
parent directories give the Apache server user read access. Then restart the server
and try again.

These are the basic steps for creating and installing a module using the Apache Perl
API. Later chapters will give you a more in-depth understanding of what's going on
here and how you can take advantage of it to do wonderful stuff.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.5 "Hello World" with the C API

In this section we will create the same "Hello World" module using the C API. This will
show you how closely related the two APIs really are. Many of the details in this
section are specific for Unix versions of Apache. For differences relating to working in
Win32 environments, be sure to read the section Section 2.5.3.

The preparation for writing C API modules is somewhat simpler than that for the Perl
modules. You just need to create a subdirectory in the Apache source tree to hold
your site-specific source code. We recommend creating a directory named site in the
modules subdirectory. The complete path to the directory will be something like
~www/src/modules/site (C:\Apache\src\modules\site on Win32 systems).

To have this new subdirectory participate in the server build process, create a file
within it named Makefile.tmpl. For simple modules that are contained within a single
source file, Makefile.tmpl can be completely empty. The Apache configure script does
a pretty good job of creating a reasonable default makefile. Makefile.tmpl is there to
provide additional file and library dependencies that Apache doesn't know about.

The next step is to create the module itself. Example 2.2 shows the source for
mod_hello. Create a file in the site subdirectory named mod_hello.c and type in the
source code (or better yet, steal it from the source code listings in
http://www.modperl.com/book/source/).

Example 2.2. A First C-Language Module

#include "httpd.h"
#include "http_config.h"
#include "http_core.h"
#include "http_log.h"
#include "http_protocol.h"
/* file: mod_hello.c */

/* here's the content handler */
static int hello_handler(request_rec *r) {
 const char* hostname;

 r->content_type = "text/html";
 ap_send_http_header(r);
 hostname = ap_get_remote_host(r->connection,r->per_dir_config,REMOTE_NAME);

 ap_rputs("<HTML>\n" ,r);
 ap_rputs("<HEAD>\n" ,r);
 ap_rputs("<TITLE>Hello There</TITLE>\n" ,r);
 ap_rputs("</HEAD>\n" ,r);
 ap_rputs("<BODY>\n" ,r);
 ap_rprintf(r,"<H1>Hello %s</H1>\n" ,hostname);
 ap_rputs("Who would take this book seriously if the first example didn't\n",r);
 ap_rputs("say \"hello world\"?\n" ,r);
 ap_rputs("</BODY>\n" ,r);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_rputs("</BODY>\n" ,r);
 ap_rputs("</HTML>\n" ,r);

 return OK;
}

/* Make the name of the content handler known to Apache */
static handler_rec hello_handlers[] =
{
 {"hello-handler", hello_handler},
 {NULL}
};

/* Tell Apache what phases of the transaction we handle */
module MODULE_VAR_EXPORT hello_module =
{
 STANDARD_MODULE_STUFF,
 NULL, /* module initializer */
 NULL, /* per-directory config creator */
 NULL, /* dir config merger */
 NULL, /* server config creator */
 NULL, /* server config merger */
 NULL, /* command table */
 hello_handlers, /* [9] content handlers */
 NULL, /* [2] URI-to-filename translation */
 NULL, /* [5] check/validate user_id */
 NULL, /* [6] check user_id is valid *here* */
 NULL, /* [4] check access by host address */
 NULL, /* [7] MIME type checker/setter */
 NULL, /* [8] fixups */
 NULL, /* [10] logger */
 NULL, /* [3] header parser */
 NULL, /* process initialization */
 NULL, /* process exit/cleanup */
 NULL /* [1] post read_request handling */
};

We'll go into the sordid details on how this module works later. Essentially, all the real
work is done in the content handler subroutine hello_handler() which accepts an
Apache request record pointer as its argument and returns an integer result code.
The subroutine first changes the content_type field of the request record to text/html,
promising the remote browser that we will be producing an HTML document. It then
calls the Apache ap_send_http_header() subroutine to send the HTTP header off.

The hello_handler() subroutine now fetches the DNS name of the remote host by
calling the ap_get_remote_host() function. It passes various parts of the request
record to the function and specifies that our preference is to retrieve the remote host's
DNS using a single DNS lookup rather than a more secure (but slower) double
lookup.[7] We now build the HTML document using a series of calls to ap_rputs() and
ap_rprintf(). These subroutines act just like puts() and printf(), but their output is
funneled to the browser by way of the Apache server. When the document is finished,
we return a status code of OK, indicating to Apache that execution was successful.

[7] Note that if HostNameLookups is configured to be Off, the ap_get_remote_host() function will return the IP address
of the client. See Chapter 8, and Chapter 9, for more details on the ap_get_remote_host() function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The rest of this module consists of bookkeeping. First we create a handler_rec
array. As discussed in more detail later, this data structure is used to associate
certain document types with the handler subroutines that process them. A document
type can be referred to by certain magic MIME types, such as application/x-httpd-cgi,
but more frequently it is just a handler name for use in Apache's AddHandler and
SetHandler directives. In this module, we associate the subroutine hello_handler()
with the handler name hello-handler. Although in theory a single module could
declare several content handlers, in practice they usually declare only one.

After this is another data structure created using the module type definition. This data
structure is essentially a list of the various phases of the Apache HTTP transaction
(described in the next chapter), with empty slots where you can place your handlers
for those phases.

In mod_hello we're only interested in handling the content generation part of the
transaction, which happens to be the seventh slot in the structure but is the ninth
phase to run. There's no rhyme or reason in order of the slots because new
transaction phases were invented over time. The bracketed numbers in the slot
comments indicate the order in which the handlers run, although as we explain in the
next chapter, not all handlers are run for all transactions. We leave all the slots NULL
except for the content handlers field, in which we place the address of the previously
declared handler_rec array.

Now the new module needs to be configured with Apache. This can be accomplished
with little effort thanks to Apache's configure script. The — activate-module argument
is used to add third-party modules to the server, that is, modules not included with the
Apache distribution. Its value is the path to the source or object file of the module to
be included, in this case src/modules/site/mod_hello.c. Once activated, the — enable-
module argument works just as it does with standard modules, in this case, linking
mod_hello with the new server. From the top of the Apache distribution directory
(which contains the ABOUT_APACHE file) type this command:

% ./configure --activate-module=src/modules/site/mod_hello.c \
 --enable-module=hello
Configuring for Apache, Version 1.3.3
 + activated hello module (modules/site/mod_hello.c)
Creating Makefile
Creating Configuration.apaci in src
Creating Makefile in src
 + configured for Linux platform
 + setting C compiler to gcc
 + adding selected modules
 + checking for system header files
 + doing sanity check on compiler and options
Creating Makefile in src/support
Creating Makefile in src/main
Creating Makefile in src/ap
Creating Makefile in src/regex
Creating Makefile in src/os/unix
Creating Makefile in src/modules/standard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating Makefile in src/modules/standard

You can now run make and a new httpd will be built. If you watch the build process
carefully, you'll see mod_hello.c first compiled into an object file named mod_hello.o,
and then added to a library archive named libsite.a. libsite.a, in turn, is statically linked
into the httpd executable during the final link phase. If anything goes wrong during
compilation and linking, you'll need to go back to see what you might have done
wrong.

To test the module, you'll need to associate it with a URI. The simplest way to do this
is to use SetHandler to map it to a part of the document tree. Add a <Location>
directive to perl.conf (or one of the other configuration files) that looks like this:

<Location /hey/there>
 SetHandler hello-handler
</Location>

Stop the Apache server if it is already running, and launch the new httpd. Better yet,
you can keep the existing server running and just launch the new httpd with the -f flag
to specify an alternate httpd.conf file. Be sure to change the Port directive in the
alternate httpd.conf so that it listens on an unused port. Now fire up a browser and
fetch the URI http://your.site/hey/there. You should get the same page that we saw in
Figure 2.1.

When you want to make changes to the mod_hello.c source code, just edit the file
and run make again. You only need to run configure when adding a new module or
completely removing an old one. You won't break anything if you run configure when
you don't need to, but you will cause the entire server to be recompiled from scratch,
which might take a while.

2.5.1 Building a Dynamically Loadable Module

It can be a pain to relink and reinstall the server executable every time you make a
change to a custom module. As of Version 1.3, Apache offers a way to build
dynamically loadable modules. You build the module as a shared object, place it
somewhere handy, add a LoadModule directive to httpd.conf, and send the server a
restart signal. After the module is loaded, it's indistinguishable from any other module.

Dynamic loading is available on most systems, including Linux, FreeBSD, Solaris,
BSDI, AIX, and IRIX systems. To configure your server for dynamic loading,
recompile it with the mod_so module installed. mod_so is a standard Apache module,
found in src/modules/standard, but it is not compiled in by default. From within the
Apache source tree, rerun the configure script, adding mod_so to the list of modules
you wish to enable:

% ./configure --enable-module=so --enable-module=other_module ...
Now you must run a full make to rebuild the httpd. This is only for the purpose of
installing the statically linked mod_so. You won't need to rebuild httpd to add new
dynamically loadable modules. You can install and launch the new httpd now if you
wish, or wait until the dynamically loadable hello_module is ready to go.

You now have an httpd with mod_so installed, but you still need to build

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You now have an httpd with mod_so installed, but you still need to build
mod_hello.so. This can be done in one of two ways. One way is to use the configure
script to build a new dynamically loadable module. From the top of the Apache
distribution (where the ABOUT_APACHE file is located) run the configure command
again, replacing the --enable-module option with --enable-shared:

% ./configure --activate-module=src/modules/site/mod_hello.c \
 --enable-shared=hello
When the --enable-shared argument is present, this implies that mod_so should be
built with the server, so there's no need to use --enable-module=so.

Now you'll need to run make to create the file src/modules/site/mod_hello.so. When
this is done, just copy the shared object file to Apache's libexec directory:

% cp src/modules/site/mod_hello.so ~www/libexec/
Open httpd.conf and add the following line:

LoadModule hello_module libexec/mod_hello.so

The LoadModule directive, available only when so_module is installed, takes two
arguments. The first is the name of the module to load at runtime, and the second is
the path to the shared object file to load. You can use a path relative to the server
root, as shown here, or an absolute file path.

A second, and possibly easier way to build a module as a DSO is to use the apxs
program, the "APache eXtenSion" tool. With a single command, our mod_hello
module can be compiled, installed, and configured. The -c option specifies which
module to compile. The -i option tells apxs to install the module and the -a option
adds the LoadModule directive to your httpd.conf file.

% ~www/bin/apxs -c -i -a mod_hello.c
 gcc -DLINUX=2 -DHAS_BOOL -DUSE_HSREGEX -I/usr/local/apache/include
 -c mod_hello.c -o mod_hello.so mod_hello.o
 cp mod_hello.so /usr/local/apache/libexec/mod_hello.so
 chmod 644 /usr/local/apache/libexec/mod_hello.so
 [activating module 'hello' in /usr/local/apache/conf/httpd.conf]

The main advantage of apxs is that you do not need to store your C language module
source files underneath the Apache source tree but can keep them anywhere you
wish. apxs has numerous other options, the handiest of which are the -g and -n
options, which together create a dummy "template" directory that you can use as a
skeleton on which to build your own modules. The full details can be found in the
apxs manual page, located in the man subdirectory under the server root.

Regardless of whether you built mod_hello using configure or apxs, you should now
start or restart httpd and watch the error log for messages. Provided that LogLevel is
set to debug (see Chapter 4), you should see a message to this effect:

[Tue Mar 24 07:49:56 1998] [debug] mod_so.c(234): loaded module hello_module

You should now be able to fetch http://your.site/hey/there, and see the familiar page
produced by this example script.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5.2 Building Large C Modules

If your C module consists of more than a single source file, or if it requires linking with
shared libraries, see Appendix C.

2.5.3 Building C Modules in the Windows Environment

As of this writing, Apache does not provide any special support tools for building third-
party modules in the Win32 environment. We'll show you how to build an Apache
module DLL (Dynamic Link Library) using Microsoft Visual C++. The naming
convention for module source files is the same in Win32 systems as it is in Unix, but
the DLL library names generally replace the mod_ prefix with ApacheModule. In our
example, we will build an ApacheModuleHello.dll from our mod_hello.c source file.
The source file doesn't have to be changed in the slightest to compile under Win32.

To ensure that this procedure works, you'll have to compile everything on a Windows
NT system (Windows 95/98 doesn't work, although you can run the resulting binaries
on 95/98). You may also have to build Apache and Perl from source. The binary
distributions are not guaranteed to interoperate correctly with modules you build
yourself.

Here is the blow-by-blow procedure:

1. Create a new project.

Select the File ê New menu to bring up the Projects window. Select "Win32
Dynamic-Link Library" and enter "ApacheModuleHello" as the project name and
C:\build\ApacheModuleHello (or the build location of your choice) as its location.
See Figure 2.2.

Figure 2.2. Select "Win32 Dynamic-Link Library" to create a new Apache module project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Add the module source files.

From the Project menu, select Add To Project ê Files. Add mod_hello.c to the
list (Figure 2.3).

Figure 2.3. Add the module source files to the Visual C++ project.

3. Add Apache Runtime Library.

Repeat the previous step, adding the Apache core library,
C:\Apache\ApacheCore.lib (Figure 2.4).

Figure 2.4. Add the Apache runtime library to the build.

4. Add the include directory for Apache header files.

From the Tools ê Options menu, select Directories. In the dialog box, choose
Include files and add the path to the Apache include directory. This is located
underneath the Apache source tree, in the directory src\include (Figure 2.5).

Figure 2.5. The Apache include path must be added to the project directories.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Change the Active Configuration setting from Debug to Release.

From the Build ê Set Active Configuration menu, select Win32 Release. This will
enable optimizations and turn off debugging code (Figure 2.6).

Figure 2.6. Set the Active Configuration.

6. Compile.

From the Build menu, select Build ApacheModuleHello.dll. The compiler will fire
up and, if all goes well, create the DLL library. If you get any error messages
during this process, go back and fix the problems.

7. Install the DLL.

Copy ApacheModuleHello/Release/ApacheModuleHello.dll to the
C:\Apache\modules directory.

8. Configure httpd.

Add the following lines to httpd.conf :

LoadModule hello_module modules/ApacheModuleHello.dll
<Location /hi/there>
 SetHandler hello-handler
</Location>

Fire up your favorite browser and request the URI http://your.site/hi/there. With luck,
ApacheModuleHello will run and you'll see the page from Figure 2.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.6 Instant Modules with Apache::Registry

By now, although it may not be obvious, you've seen two of the problems with using
the Apache APIs. The first problem is that you can't make changes to modules
casually. When using the Perl API, you have to restart the server in order to have
your changes take effect. With the C API, you have to rebuild the module library or
completely relink the server executable. Depending on the context, this can be a
minor annoyance (when you're developing a module on a test server that gets light
usage) to a bit of a headache (when you're trying to apply bug fixes to an installed
module on a heavily used production server).

The second problem is that Apache API modules don't look anything like CGI scripts.
If you've got a lot of CGI scripts that you want to run faster, porting them to the
Apache API can be a major undertaking.

Apache::Registry, an Apache Perl module that is part of the mod_perl distribution,
solves both problems with one stroke. When it runs, it creates a pseudo-CGI
environment that so exactly mimics the real thing that Perl CGI scripts can run under
it unmodified. It also maintains a cache of the scripts under its control. When you
make a change to a script, Apache::Registry notices that the script's modification date
has been updated and recompiles the script, making the changes take effect
immediately without a server restart. Apache::Registry provides a clean upgrade path
for existing CGI scripts. Running CGI scripts under Apache::Registry gives them an
immediate satisfying performance boost without having to make any source code
changes. Later you can modify the script at your own pace to take advantage of the
nifty features offered only by the Apache API.

Be aware that Apache::Registry is intended only for Perl CGI scripts. CGI scripts
written in other languages cannot benefit from the speedup of having a Perl
interpreter embedded in the server.

To install Apache::Registry you'll need to create a directory to hold the scripts that it
manages. We recommend a perl directory within the server root, such as ~www/perl.
Now enter the following directives into perl.conf :

Alias /perl/ /usr/local/apache/perl/
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 PerlSendHeader On
 Options +ExecCGI
 </Location>

The Alias directive makes URIs beginning with /perl part of the virtual document tree
and associates it with the physical path /usr/local/apache/perl. Change this as
appropriate for your site. The meaning of the various directives inside <Location> are
explained fully in Chapter 4.

Restart the server, and give Apache::Registry a try by creating the script shown in
Example 2.3. Name it hello.pl, make it executable, and move it into ~www/perl/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2.3. Name it hello.pl, make it executable, and move it into ~www/perl/.
With your browser, fetch http://your.site/perl/hello.pl. You should see the familiar page
that we first saw in Figure 2.1.

Example 2.3. "Hello World" Using Apache::Registry

#!/usr/local/bin/perl
file: hello.pl

print "Content-Type: text/html\n\n";

print <<END;
<HTML>
<HEAD>
<TITLE>Hello There</TITLE>
</HEAD>
<BODY>
<H1>Hello $ENV{REMOTE_HOST}</H1>
Who would take this book seriously if the first example didn't
say "hello world"?
</BODY>
</HTML>
END

As you can see, hello.pl looks identical to a normal CGI script, even down to the use
of $ENV{REMOTE_HOST} to fetch the CGI environment variable that contains the
name of the remote host. If you make changes to this script, they will take effect
immediately without requiring a server restart. Plus, if you press the browser's reload
button a few times in quick succession, you may notice that it reloads much faster
than a normal Perl CGI script would. That's because the script's compiled code
remains in memory between fetches. There's none of the usual overhead for loading
and running the Perl interpreter.

If you are used to using the CGI.pm module, you'll be heartened to learn that under
Apache::Registry you can create and process fill-out forms in exactly the way you
would in standard CGI scripts. Example 2.4 shows the code for hello_there.pl,
another simple-minded example which creates and processes a short fill-out form.

Example 2.4. Processing a Fill-Out Form with Apache::Registry and CGI.pm

#!/usr/local/bin/perl

use CGI qw(:standard);
use strict;

my $name = param('name') || 'Anonymous';

print header(),
 start_html(-title=>'Yo!',-bgcolor=>'white'),
 h1("Hello $name"),
 p(
 "To change your name, enter it into the text field below and press",
 em("change name.")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 em("change name.")
),

 start_form(),
 "Name: ",textfield(-name=>'name',-value=>'Anonymous'),
 submit(-value=>'Change Name'),
 end_form(),

 hr(),
 end_html();

The script begins by importing CGI.pm's standard group of function definitions.[8] It
then fetches a CGI parameter named name and stores it in a local variable, calling
CGI.pm's param() function to do the dirty work of parsing the CGI query string. The
script now calls CGI::header() to produce the HTTP header, and builds up an HTML
document in one long print statement that makes calls to several other CGI functions.
Among these calls are ones to produce the fill-out form, a text field, and a submit
button.

[8] Although it's handy to import function definitions in this way, there's a significant memory overhead for every
symbol you import. If you have a lot of scripts that import from CGI.pm, your httpd processes will eventually become
too large. You can avoid this by precompiling and importing CGI.pm's function calls from within the Perl startup script
by using the command use CGI qw(-compile :all). Alternatively, you can use CGI.pm's object-oriented calling
syntax, which does not carry the symbol importation overhead.

Figure 2.7 shows a sample page produced by this script.

Figure 2.7. The Apache::Registry script generates a fill-out form to accept and process user
input.

You'll find that most other CGI scripts will work just fine under Apache::Registry.
Those that don't are ones that assume that the process will go away after their code
exits and don't bother to do any cleanup as a result. For example, scripts that use
global variables without initializing them first will be unpleasantly surprised when the
global contains leftover data from a previous invocation of the script's code. Scripts
that use the process ID to create unique filenames are also in for a shock when
they're run again with the same PID.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The best way to avoid such problems is by writing clean code. Avoid using global
variables and always use use strict to check for inadvertent typos. While use strict
may be painful at first, it will save you more time in the long run, along with giving you
a warm fuzzy feeling that you are practicing good code hygiene. Be sure to clean up
data structures such as open filehandles and database handles before your code
exits. The Apache::register_cleanup() method is a handy way to arrange to have a
cleanup subroutine called before control returns to the server.

In the short term, another approach is to run legacy scripts with Apache::PerlRun .
Unlike Apache::Registry, this module simply runs the script once and forgets about it,
just like a conventional CGI script. Apache::PerlRun avoids the overhead of launching
the Perl interpreter for each request but still suffers the compile-time hit from loading
each script. Therefore, it realizes some but not all of the performance increase of
Apache::Registry.

More information on Apache::Registry and Apache::PerlRun scripts can be found in
Chapter 3 and Chapter 4. We discuss register_cleanup() and other tricks in
Chapter 7.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

2.7 Troubleshooting Modules

Not every module will work the way you think it will the first time you try it. Because
the modules written with the Apache API are by definition embedded in the server,
debugging them is not as straightforward as debugging a standalone CGI script. In
this section, we cover some general module debugging techniques. You'll find more
tips later when we discuss specific issues.

2.7.1 C-Level Debugging

If you are using the C API, you can use standard debuggers to step through your
module, examine and change data structures, set watch points, and so forth. Be sure
to use a version of httpd that has been compiled with debugging symbols and to turn
compiler optimizations off. On Unix systems, you can do this by setting the CFLAGS
environment variable before running the configure script:

% CFLAGS=-g ./configure ...
Launch your favorite debugger, such as gdb, and run httpd within it. Be sure to launch
httpd with the -X flag. Ordinarily, Unix versions of httpd will prefork many independent
processes. This forking will confuse the debugger and will probably confuse you too. -
X prevents Apache from preforking and keeps the server in the foreground as well.
You will also probably want to specify an alternate configuration file with the -f switch
so that you can use a high numbered port instead of the default port 80. Be sure to
specify different ErrorLog, TransferLog, PidFile, and ScoreBoardFile directives in the
alternate configuration file to avoid conflicts with the live server.

% gdb httpd
(gdb) run -X -f ~www/conf/httpd.conf
Fetch a few pages from the server to make sure that it is running correctly under the
debugger. If there is a problem that triggers a core dump, the (gdb) prompt will
return and tell you which function caused the crash. Now that you have an idea of
where the problem is coming from, a breakpoint can be set to step through and see
exactly what is wrong. If we were debugging mod_hello within the gdb debugger, the
command to use would be this:

% gdb httpd
(gdb) b hello_handler
Breakpoint 1 at 0x809cefb: file mod_hello.c, line 82.
(gdb) run -X -f ~www/conf/httpd.conf
Now use a browser to fetch a page that will trigger the execution of the breakpointed
handler. Control will return to the debugger, allowing you to step through code looking
for the problem.

It is also possible to debug httpd without running it in -X mode. Simply start the server
as you normally would, then use the ps command to see the process IDs of the
servers. Select a PID and start gdb with the process ID as an additional argument.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

servers. Select a PID and start gdb with the process ID as an additional argument.
The debugger will attach to the process and list all the files it is reading symbols from.
It will eventually stop, providing you with a prompt and a chance to set your
breakpoints. Be sure to type in the c continue command so the child will be able to
serve requests again. This approach makes it easy to set breakpoints in dynamically
loaded modules, which are not pulled in until the parent server has started. There is a
catch though: you might have to request the page you wish to debug a number of
times before Apache hands off a request to the process you are attached to. To cut
down on the number of servers you must cycle through, simply tune the server's
configuration to start only a small number of servers.[9]

[9] There are several directives related to managing the number of servers on the farm; these include StartServers,
MaxSpareServers, MinSpareServers, and MaxClients.

% gdb httpd process id number
...
Reading symbols from /usr/local/apache/lib/mod_hello.so...done.
0x400d7a81 in flock ()
(gdb) b hello_handler
Breakpoint 1 at 0x40176c77: file mod_hello.c, line 82.
(gdb) c
Continuing.

2.7.2 Perl-Level Debugging

Ironically, debugging misbehaving Apache Perl modules is not as straightforward as
debugging C modules. This is because the current version of the Perl source-level
debugger can't work when the Perl interpreter is embedded in another program. As of
this writing, there is a pre-alpha version of a mod_perl -compatible Perl debugger in
the works; it could very well be available from the CPAN by the time you read this.

If you are using the Apache::Registry CGI emulation layer, then one way to debug
your module is to run and debug it as a standalone CGI script. Further, if you use the
CGI.pm module in your scripts, you can take advantage of its ability to run CGI scripts
from the command line and to seed the script with test parameters. You can then walk
through the script with the Perl debugger (perl -d your_script.pl), examine
variables, and execute snippets of Perl code to home in on what your program is
doing wrong.

2.7.2.1 Using Apache::FakeRequest for debugging

If you are using the full mod_perl API, or if the bug appears when running under
Apache but not when running as a standalone script, then you may be able to track
down the problem using Apache::FakeRequest , a tiny module that comes with the
mod_perl distribution. Apache::FakeRequest sets up an empty Apache request object
that your module can use in lieu of a real request object. Apache::FakeRequest
methods don't do very much: all they do is get and set internal variables of the same
name as the method. However, you can customize the fake request's methods to
return test data to your script.

Example 2.5 shows how Apache::FakeRequest can be used to debug the
Apache::Hello module. This example shows the code for a small wrapper script that
invokes Apache::Hello 's content handler, much as Apache invokes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

invokes Apache::Hello 's content handler, much as Apache invokes
Apache::Hello::handler() when a page request comes in. We begin by loading both
Apache::FakeRequest and Apache::Hello (after adjusting the library path so that Perl
can find the latter module).

Next, we create a new fake request object. Apache::FakeRequest::new() can be
called with a series of name=value pairs. Each name corresponds to a method that a
real Apache request object would respond to. When your module calls the method
without any arguments, Apache::FakeRequest just returns the value that you
specified. Your module can also call the phony method with an argument, in which
case its value will be replaced. Methods that aren't mentioned in new() will return
undef. In our case, we only care about feeding get_remote_host to Apache::Hello, so
we set that method to return foobar.com.

Now it's simply a matter of calling our module's handler with the fake request object. If
you're using the Perl debugger, you can step into the module's code and watch what
it does.

Should you want to customize Apache::FakeRequest 's behavior, you can always
subclass it and override one or more of its methods.

Example 2.5. This Apache::FakeRequest Wrapper Can Be Used to Debug Apache::Hello

#!/usr/local/bin/perl

use lib '/usr/local/apache/lib/perl';
use Apache::FakeRequest ();
use Apache::Hello ();

my $request = Apache::FakeRequest->new('get_remote_host'=>'foobar.com');
Apache::Hello::handler($request);

2.7.2.2 Using Apache::Debug

Another useful debugging tool for Apache Perl modules is Apache::Debug . This
debugging facility is only available when you use Apache::Registry. It's not of use to
modules written to use the Apache Perl API directly.

Apache::Debug defines a single subroutine named dump() . When dump() is called it
sends copious debugging information to the remote browser. Hopefully some of the
information will help you figure out what's going on.

It's very simple to use Apache::Debug. Just add the command use
Apache::Debug() to the top of your module. Then, when you encounter an
unexpected error and want to print out current status information, add a line like the
following:

Apache::Debug::dump($r, SERVER_ERROR, "Can't find configuration file!");

The three arguments to dump() are the request object, an error code to return to
Apache (usually SERVER_ERROR), and an error message to print at the top of the
debugging output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache::Debug also allows you to activate some debugging messages generated by
Apache::Registry. This can sometimes help you track down obscure problems that
relate to the way that mod_perl loads and executes your code. To increase the
debugging level, add use Apache::Debug('level' => $level) to the top of your
module, where $level is a bit mask generated by ORing together some combination
of the following values:

1

Makes a note in the error log whenever your module is recompiled

2

Calls Apache::Debug::dump() whenever your module dies or an eval fails

4

Turns on verbose tracing

2.7.2.3 Environment variables for debugging

A pair of environment variables control various aspects of the embedded Perl
interpreter's execution and can be used to help debug particularly obstinate problems.

MOD_PERL_TRACE

When mod_perl is built with the PERL_TRACE option, a special environment
variable, MOD_PERL_TRACE, can be used to enable debugging information.
This variable should be set before the server is started and should contain one
or more of the letters described below for tracing the various mod_perl features.
The trace information will be written to the server ErrorLog. For example:

% setenv MOD_PERL_TRACE dh
% ~www/bin/httpd -X
The first line sets MOD_PERL_TRACE to record trace information during mod_perl
directive handling (d) and while executing handlers (h). The second line launches
Apache in single process mode.

Here's the complete list of trace options:

c Enables tracing during configuration directive handling
d Enables tracing during mod_perl directive processing during configuration read
s Enables tracing during processing of <Perl> sections
h Enables tracing of Perl handlers during the processing of incoming requests

g Enables tracing of global variable handling, such as Perl interpreter construction and execution of
END blocks

all Enables all of the options listed above

PERL_DESTRUCT_LEVEL

With Apache Versions 1.3 and higher, mod_perl will call the perl_destruct() Perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With Apache Versions 1.3 and higher, mod_perl will call the perl_destruct() Perl
API function during the child exit phase. This will cause proper execution of
END blocks found during server startup, along with invoking the DESTROY
method on global objects that are still alive. It is possible that this operation may
take a long time to finish, causing problems during a restart. The symptom of
this is a series of messages that appear in the server log warning that certain
child processes did not exit as expected.

If you are experiencing this problem and your code does not contain any END
blocks or DESTROY methods that need to be run during child server shutdown,
you can avoid this problem by setting the PERL_DESTRUCT_LEVEL
environment variable to -1:

PerlSetEnv PERL_DESTRUCT_LEVEL -1

2.7.2.4 Common Apache Perl module problems

Certain types of problems are common in Apache Perl modules. One common
pattern is that the code will seem to fail at random. The first time you fetch a page
generated by an Apache Perl module, it will work fine. The second time you fetch it, it
won't. If you reload repeatedly, it will sometimes work and sometimes fail, seemingly
haphazardly. This pattern is usually due to Apache's preforking behavior. Multiple
instances of your module are running, each one in a separate process. In one or
more of the processes, the module has crashed because some unexpected sequence
of inputs has led it to corrupt a data structure (or something similar). In other
processes, the module is still functioning (so far). You'll never be able to figure out
what's going on under these circumstances. Kill httpd and relaunch it with the -X flag.
With only one process running, you can more easily figure out what inputs cause the
module to misbehave.

Many Apache Perl module bugs are due to a wanton use of global variables. The very
first time the module is called, globals are initialized to their undefined states in the
way that conventional Perl scripts expect. However, in subsequent calls the globals
will contain information left over from previous invocations of the script. This will
cause scripts that depend on globals being initially undefined to fail. Suspect this
problem if your pages exhibit a pattern of progressive decay in which they seem to
work at first and then fail with increasing frequency.

Also be aware that certain actions that are second nature to Perl programmers, such
as calling die() or exit() to abort a script prematurely, may not have quite the result
you expect in the context of an Apache Perl module. Under some circumstances a
call to exit() within a module has been known to make the server misbehave in
strange ways. Use Apache::exit() instead. die() should be reserved for truly
unrecoverable errors. die() generally causes the browser to display an "Internal
Error" message. It's better to replace die() with a procedure that displays a helpful
error message in the browser window and returns control to Apache. Several
techniques for doing this appear in the examples in subsequent chapters.

The next chapter takes you on a tour through the innards of the Apache module API.
You'll learn everything you ever wanted to know about request records, connection
records, and transaction handlers.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 3. The Apache Module Architecture and API
In this chapter we lay out the design of the Apache module architecture and its
application programming interface. We describe the phases in which Apache
processes each request, list the data types that are available for your use, and go
over the directives that control how extension modules can intercede in transaction
processing.

This is the broad overview of the API. For a full blow-by-blow description of each
function and data structure available to you, see Chapter 9, Chapter 10 and
Chapter 11.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.1 How Apache Works

Much of the Apache API is driven by the simple fact that Apache is a hypertext
transfer protocol (HTTP) server that runs in the background as a daemon. Because it
is a daemon, it must do all the things that background applications do, namely, read
its configuration files, go into the background, shut down when told to, and restart in
the case of a configuration change. Because it is an HTTP server, it must be able to
listen for incoming TCP/IP connections from web browsers, recognize requests for
URIs, parse the URIs and translate them into the names of files or scripts, and return
some response to the waiting browser (Figure 3.1). Extension modules play an
active role in all these aspects of the Apache server's life.

Figure 3.1. The HTTP transaction consists of a URI request from the browser to the server,
followed by a document response from the server to the browser.

Like most other servers, Apache multiplexes its operations so that it can start
processing a new request before it has finished working on the previous one. On Unix
systems, Apache uses a multiprocess model in which it launches a flock of servers: a
single parent server is responsible for supervision and one or more children are
actually responsible for serving incoming requests.[1] The Apache server takes care of
the basic process management, but some extension modules need to maintain
process-specific data for the lifetime of a process as well. They can do so cleanly and
simply via hooks that are called whenever a child is launched or terminated. (The
Win32 version of Apache uses multithreading rather than a multiprocess model, but
as of this writing modules are not given a chance to take action when a new thread is
created or destroyed.)

[1] As of this writing, plans are underway for Apache Version 2.0 which will include multithreading support on Unix
platforms.

However, what extension modules primarily do is to intercede in the HTTP protocol in
order to customize how Apache processes and responds to incoming browser
requests. For this reason, we turn now to a quick look at HTTP itself.

3.1.1 The HTTP Protocol

The HTTP protocol was designed to be so simple that anyone with basic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The HTTP protocol was designed to be so simple that anyone with basic
programming skills could write an HTTP client or server. In fact, hundreds of people
have tried their hands at this, in languages ranging from C to Perl to Lisp. In the basic
protocol a browser that wants to fetch a particular document from a server connects
to the server via a TCP connection on the port indicated by the URI, usually port 80.
The browser then sends the server a series of request lines terminated by a carriage-
return/linefeed pair.[2] At the end of the request, there is an extra blank line to tell the
server that the request is finished. The simplest request looks something like this:

[2] For various historical and political reasons, different operating systems have differing ideas of what character
constitutes the end of a line in text files. The HTTP protocol defines the end of a line to be the character pair
represented by ASCII characters 0x0D (carriage return) and 0x0A (newline). In most ASCII environments, these
characters are represented by the more familiar "\r" and "\n" escape sequences.

GET /very/important/document.html HTTP/1.1
Host: www.modperl.com

The first line of the request contains three components. The first component is the
request method, normally GET, POST, HEAD, PUT, or DELETE. GET is a request to
fetch the contents of a document and is the most common. POST is a request which
includes a body of data after the headers, normally handled by a dynamic module or
an executable of some sort to process the data. It's commonly used to send CGI
scripts the contents of fill-out forms. HEAD tells the server to return information about
the document but not the document itself. PUT and DELETE are infrequently used:
PUT is used to send a new document to the server, creating a new document at the
given URI or replacing what was previously there, and DELETE causes the indicated
document to be removed. For obvious reasons, PUT and DELETE methods are
disabled by default on most servers.

The second component of the request is the URI of the document to be retrieved. It
consists of a Unix-style path delimited by slashes. The server often translates the
path into an actual file located somewhere on the server's filesystem, but it doesn't
have to. In this book, we'll show examples of treating the path as a database query,
as a placeholder in a virtual document tree, and other interesting applications.

The third component in the request line is the protocol in use, which in this case is
Version 1.1 of the HTTP protocol. HTTP/1.1 is a big improvement over the earlier
HTTP/1.0 version because of its support for virtual hosts and its fine-grained control
of document caching. However, at the time this book was written most browsers
actually implemented a version of HTTP/1.0 with some HTTP/1.1 features grafted on.

Following the first line are a series of HTTP header fields that the browser can send
to the server in order to fine-tune the request. Each field consists of a field name, a
colon, and then the value of the field, much like an email header. In the HTTP/1.1
protocol, there is only one mandatory header field, a Host field indicating which host
the request is directed to. The value of this field allows a single server to implement
multiple virtual hosts, each with a separate home page and document tree.

Other request header fields are optional. Here's a request sent by a recent version of
Netscape Navigator:

GET /news.html HTTP/1.1
Connection: Keep-Alive
User-Agent: Mozilla/4.05 [en] (X11; I; Linux 2.0.33 i686)
Host: www.modperl.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Host: www.modperl.com
Referer: http://www.modperl.com/index.html
If-Modified-Since: Tue, 24 Feb 1998 11:19:03 GMT
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

This example shows almost all of the HTTP header fields that you'll ever need to
know. The Connection field is a suggestion to the server that it should keep the
TCP/IP connection open after finishing this request. This is an optimization that
improves performance on pages that contain multiple inline images. The User-Agent
field gives the make and model of the browser. It indicates Netscape Navigator
Version 4.05 ("Mozilla" is the code name for Netscape's browsers) running on a Linux
system. Host is the name of the host given in the URI and is used by the virtual host
system to select the right document tree and configuration file. Referer (yes, the
protocol misspells it) gives the URI of the document that referred the browser to the
current document. It's either an HTML file that links to the current page or, if the
current document is an image file, the document that contains the image. In this case,
the referrer field indicates that the user was viewing file index.html on the
www.modperl.com site before selecting a link to the current document, news.html.

If-Modified-Since is another important performance optimization. Many browsers
cache retrieved documents locally so that they don't have to go across the network
whenever the user revisits a page. However, documents change and a cached
document might be out of date. For this reason, some browsers implement a
conditional fetch using If-Modified-Since. This field indicates the date at which the
document was cached. The server is supposed to compare the date to the
document's current modification time and only return it to the browser if the document
has changed.[3]

[3] We actually cheated a bit in the preceding example. The version of Netscape that we used for the example
generates a version of the If-Modified-Since header that is not compliant with the current HTTP specification (among
other things, it uses a two-digit year that isn't Y2K-compliant). We edited the field to show the correct HTTP format.

Other fields in a typical request are Accept , Accept-Language, and Accept-Charset.
Accept is a list of Multipurpose Internet Mime Extension (MIME) types that the
browser will accept. In theory, the information in this field is supposed to be used for
content negotiation. The browser tells the server what MIME types it can handle, and
the server returns the document in the format that the browser most prefers. In
practice, this field has atrophied. In the example above, Netscape sends an anemic
list of the image types it can display without the help of plug-ins, followed by a catchall
wildcard type of */*.

Accept-Language indicates the language the user prefers, in this case "en" for
English. When a document is available in multiple languages, Apache can use the
information in this field to return the document in the appropriate language. Lastly,
Accept-Charset indicates which character sets the browser can display. The iso-
8859-1 character set, often known as "Latin-1," contains the characters used in
English and most Western European countries. "utf-8" stands for 8-bit Unicode, an
expanded alphabet that accommodates most Western and Asian character sets. In
this example, there's also a wildcard that tells the server to send the document even if
it isn't written in a character set that the browser knows about specifically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the request had been a POST or PUT rather than a GET, there would be one or two
additional fields at the bottom of the header. The Content-Length field, if present,
indicates that the browser will be sending some document data following the header.
The value of this field indicates how many bytes of data to expect. The Content-Type
field, if present, gives the MIME type of the data. The standard MIME type for the
contents of fill-out form fields is application/x-www-form-urlencoded.

The browser doesn't have to send any of these fields. Just the request line and the
Host field are sufficient, as you can see for yourself using the telnet application:

% telnet www.modperl.com 80
Trying 207.198.250.44...
Connected to modperl.com.
Escape character is '^]'.
GET /news.html HTTP/1.1
Host: www.modperl.com
HTTP/1.1 200 OK
Date: Tue, 24 Feb 1998 13:16:02 GMT
Server: Apache/1.3.0 (Unix) mod_perl/1.13
Last-Modified: Wed, 11 Feb 1998 21:05:25 GMT
ETag: "65e5a-37c-35a7d395"
Accept-Ranges: bytes
Content-Length: 892
Connection: close
Content-Type: text/html

<HTML>
<HEAD>
<TITLE>What's New</TITLE>
</HEAD>
<BODY>
 ...
Connection closed by foreign host.

The Apache server will handle the request in the manner described later and, if all
goes well, return the desired document to the client. The HTTP response is similar to
the request. It contains a status line at the top, followed by some optional HTTP
header fields, followed by the document itself. The header is separated from the
document by a blank line.

The top line of the response starts with the HTTP version number, which in this case
is 1.1. This is followed by a numeric status code, and a human-readable status
message. As the "OK" message indicates, a response code of 200 means that the
request was processed successfully and that the document follows. Other status
codes indicate a problem on the user's end, such as the need to authenticate;
problems on the server's end, such as a CGI script that has crashed; or a condition
that is not an error, such as a notice that the original document has moved to a new
location. The list of common status codes can be found later in this chapter.

After the response status line come optional HTTP header fields. Date indicates the
current time and date and Server gives the model and version number of the server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

current time and date and Server gives the model and version number of the server.
Following this is information about the document itself. Last-Modified and Content-
Length give the document's modification date and total length for use in client-side
caching. Content-Type gives the document's MIME type, text/html in this case.

ETag , or "entity tag" is an HTTP/1.1-specific field that makes document caching
more accurate. It identifies the document version uniquely and changes when the
document changes. Apache implements this behavior using a combination of the file's
last modified time, length, and inode number. Accept-Ranges is another HTTP/1.1
extension. It tells the browser that it is all right to request portions of this document.
This could be used to retrieve the remainder of a document if the user hit the stop
button partway through a long download and then tried to reload the page.

The Connection field is set to close as a polite way of warning the browser that the
TCP connection is about to be shut down. It's an optional field provided for HTTP/1.1
compliance.

There are also a number of HTTP fields that are commonly used for user
authentication and authorization. We'll introduce them in Chapter 6.

Following the header comes the document itself, partially shown in the example. The
document's length must match the length given in Content-Length, and its format
must match the MIME type given in the Content-Type field.

When you write your own Apache modules, you don't have to worry about all these
fields unless you need to customize them. Apache will fill in the fields with reasonable
values. Generally you will only need to adjust Content-Type to suit the type of
document your module creates.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.2 The Apache Life Cycle

Apache's life cycle is straightforward (Figure 3.2). It starts up, initializes, forks off
several copies of itself (on Unix systems only), and then enters a loop in which it
processes incoming requests. When it is done, Apache exits the loop and shuts itself
down. Most of the interesting stuff happens within the request loop, but both Perl and
C-language modules can intervene at other stages as well. They do so by registering
short code routines called "handlers" that Apache calls at the appropriate moment.[4]

A phase may have several handlers registered for it, a single handler, or none at all. If
multiple modules have registered their interest in handling the same phase, Apache
will call them in the reverse order in which they registered. This in turn will depend on
the order in which the modules were loaded, either at compile time or at runtime when
Apache processes its LoadModule directives. If no module handlers are registered for
a phase, it will be handled by a default routine in the Apache core.

[4] The Apache documentation sometimes refers to handlers as "hooks" or "callbacks," but don't worry, they're all the
same thing.

Figure 3.2. The Apache server life cycle

3.2.1 Server Startup and Configuration

When the server is started, Apache initializes globals and other internal resources
and parses out its command-line arguments. It then locates and parses its various
configuration files.

The configuration files may contain directives that are implemented by external

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The configuration files may contain directives that are implemented by external
modules. Apache parses each directive according to a prototype found in the
command table that is part of each module and passes the parsed information to the
module's configuration-handling routines. Apache processes the configuration
directives on a first-come, first-serve basis, so in certain cases, the order in which
directives appear is important. For example, before Apache can process a directive
that is implemented by a module configured as a dynamically shared object, that
module must be pulled in with the LoadModule directive.

The process of module configuration is actually somewhat complex because Apache
recognizes multiple levels of configuration directives, including global directives,
directives that are specific for a particular virtual host, and directives that apply only to
a particular directory or partial URI. We defer the full discussion of this topic to
Chapter 9, Chapter 10, and Chapter 11.

Once Apache has processed the configuration files, it knows the location of the
various log files. It opens each configured log file, such as ErrorLog and TransferLog .
Apache then writes its PID to the file indicated by the PidFile directive.

The file indicated by the ErrorLog directive is slightly special. After Apache opens the
ErrorLog file, it closes the existing stderr file descriptor and reopens it on the
ErrorLog descriptor. This means that the standard error stream for Apache and all its
loaded modules will be redirected to the error log file. Modules that need to launch
subprocesses, such as the standard mod_cgi module, will generally call the C API
ap_error_log2stderr() function (Chapter 11) to rehook standard error to the error log
so that the standard error of subprocesses continues to be captured in the error log.

Apache will usually be started as root (on Unix systems), so that it can open port 80.
This also allows it to open log files that are owned by root. Later, Apache will normally
fork multiple child processes which will run under an unprivileged user ID. By virtue of
having a copy of the still-open log file descriptors, child processes will have write
access to the log files, even though their privileges wouldn't ordinarily give them this
right.

3.2.2 Module Initialization

Next, Apache initializes its modules. Each module has an initialization routine that is
passed information about the server in a data structure called a server_rec . The
server_rec contains such information as the configured ServerName, the Port the
server is listening for requests on, and the email address of the ServerAdmin. C-
language modules are also handed a pointer to a "resource pool" that can be used for
memory management. The module initialization routine will do whatever module-
specific initialization needs to be done. If something goes wrong, it can log an error
message and exit() the process to abort Apache's startup entirely.

Perl module authors can step in at the module initialization phase by using the
PerlRequire and PerlModule directives.[5] These directives both cause a Perl script to
be evaluated at mod_perl initialization time and are described in more detail later.
Note that the server is still running as root during this phase, so any code that gets
executed at this point will have superuser powers. This is a good reason to ensure
that any scripts called during this period are owned and writable by root only.

[5] Older versions of the mod_perl package had a PerlScript directive, which was later renamed to PerlRequire. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[5] Older versions of the mod_perl package had a PerlScript directive, which was later renamed to PerlRequire. The
PerlScript directive has been deprecated, but you might still see references to it in old online archives.

When the server is restarted, the configuration and module initialization phases are
called again. To ensure that such restarts will be uneventful, Apache actually runs
these two phases twice during server startup just to check that all modules can
survive a restart.

3.2.3 Child Initialization

On Unix systems Apache now forks itself one or more times to create a set of child
processes that will do the actual work of accepting incoming requests. Before
accepting any connections, the child processes immediately set their user and group
IDs to those of an unprivileged user (such as "nobody" or "guest"). The original parent
process (still running as root) hangs around to monitor the status of its children and to
launch new ones should the number of child processes drop below a specified level.

Just before each child enters its request loop, each module is given another chance
at initialization. Although this would seem redundant with the module initialization
phase, it's necessary because some data structures, such as database handles, are
not stable across forks. Modules that need to (re)initialize themselves get another
chance every time a new child process is created. You might also want to use this
phase to perform some action that should be done as an unprivileged user. In the C
API, the module's child_init() function is called. In the Perl API, you can install a
handler for this phase using the PerlChildInitHandler directive.

Chapter 7, discusses the use of child init handlers in more detail.

3.2.4 Child Exit

We'll skip forward now to the child exit phase, leaving the request loop for detailed
consideration in the next section. After processing some number of requests, each
child process will eventually exit, dying either a natural death when it reaches the limit
set by MaxRequestsPerChild or because the server as a whole has received a restart
or termination request. Under ordinary circumstances, the child will call each
module's child_exit handler, giving it a chance to clean up after itself before the
process disappears. The module can commit database transactions, close files, or do
whatever else it needs to. Perl API modules can install a handler for this phase by
declaring a PerlChildExitHandler in the configuration file. Examples of putting this to
use are given in Chapter 7.

The child exit routine is not guaranteed to be called in all cases. If the child exits
because of a server crash or other untrappable errors, your routine may never be
called.

3.2.5 The Request Loop

Between the initialization/configuration phase and the exit phase is the request loop
(shown in Figure 3.3). This is where the server and its modules spend most of their
time as they wait for incoming requests. Here's where the fun begins.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3.3. The Apache request. The main transaction path is shown in black, and the path
taken when a handler returns an error is shown in gray. Phases that you are most likely to write

handlers for are shown in bold.

The Apache server core handles the most common aspects of an HTTP
conversation: listening for a request, parsing the incoming request line and headers,
and composing the outgoing HTTP response message. Each time through the
request loop, there are a variety of decisions to make about the incoming request.
External modules can define custom handlers to enhance or supersede each
decision. If no handler is defined, Apache falls back to its default behavior.

Here are the eight decisions that Apache makes for each request:

1. What is it for? (URI translation phase)

The requested URI could refer to a physical file, a virtual document produced on
the fly by an external script, or a document generated by an internal module.
The server needs to have an early idea of what the URI maps to before other
questions can be asked and answered. Apache's default translation routines
use directives including Alias, ScriptAlias, and DocumentRoot to translate the
URI into a file path. External modules, such as the optional Rewrite module, can
seize control during this phase to perform more sophisticated translations.

2. Where is it coming from? (access control phase)

3. Who is it coming from? (authentication phase)

4. Who is allowed to perform this particular request? (authorization phase)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some documents are restricted by the server's configuration so that not
everybody has the right to retrieve them. These three decisions, described in
more detail in Chapter 6, determine who can get access to the document.

5. What is the document's type? (MIME type checking phase)

This step derives a preliminary guess of the requested document's MIME type.
Because certain documents (such as CGI scripts and image map files) need to
be processed differently than run-of-the-mill static HTML files, the MIME type
checking phase must be run before Apache can figure out how to process the
document. The server's configuration file determines how it makes this decision.
The decision may be based on the document's filename, file extension, or
location in the document tree. After type-mapping is done, Apache uses this
information to select the "content handler" to generate or transmit the document
itself during the response phase.

6. Who will generate the content for this document? (response phase)

If Apache decides that an extension module should handle the content
generation, the document's URI and all the information accumulated about the
document so far are passed to the appropriate module. For historical reasons,
the handler responsible for the response phase is known as the "content
handler."

The content handler will usually begin by adjusting the HTTP response header
to suit its needs. For example, it may change the document's content type from
the default value provided by the MIME type checking step. It will then tell
Apache to send the (possibly modified) HTTP header to the client. After the
header is sent, the module will usually create the content of the document itself
and forward it to the client. This may involve reading a static file from disk or
creating the document from scratch. Sometimes content handlers will fail for
one reason or another, in which case they must return the appropriate error
code to Apache so that the server can inform the user.

7. Who's going to log this transaction? (logging phase)

Whether the content handler's response is a pretty image, a fancy HTML page,
or an error of some sort, the outcome should be logged. Apache provides a
default logging system that writes to flat files. It is also possible to install a
custom log handler to do customized logging, such as writing log entries into a
relational database.

8. Who's going to clean up? (cleanup phase)

Finally, the request is over, and there may be some tidying up left to do.
Modules may register cleanup handlers to deallocate resources they allocated
earlier, close databases, free memory, and so forth. This phase is distinct from
the child exit phase that we described earlier. Whereas the child exit phase
happens once per child process, the request cleanup phase happens after each
and every transaction.

3.2.6 Internal Requests and Subrequests

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although the majority of transactions will pass through each phase of the request
processing cycle from beginning to end, this isn't always the case. An error at any of
the phases will terminate processing, causing processing to jump immediately to the
logging and cleanup phases.

In addition, there are a variety of conditions that can trigger internal requests. An
internal request is just like an ordinary request, except that it is generated by Apache
itself. An internal request can be explicitly generated by a handler that has decided to
return a document other than the one that the browser requested. By calling the
internal_redirect() function, the handler tells Apache to stop processing the current
request and go process another one.

More commonly, internal requests are generated by Apache's ErrorDocument
system, when an error returned by a content handler triggers Apache to fetch and
display a custom HTML file or CGI script to help explain to the user what went wrong.

A special case of an internal request is a subrequest, which is commonly used by
modules to ask "what if" questions. At any stage of the transaction, a handler can
pass a file or URI to the lookup_file() or lookup_uri() functions. Each of these
functions creates a request that will appear to handlers just as if it came from a client
outside of the server. In the case of lookup_uri(), the URI translate handler is the first
to be run. The header parser phase is skipped, and then all other handlers down the
request chain are run, stopping just before the content response phase. In the case of
lookup_file(), Apache assumes the given file already exists, so URI translation is
skipped and the subrequest starts out with the access checker, continuing along the
same road as lookup_uri(). After the subrequest is finished, Apache returns the new
request record to the caller, which can check for success or failure in the status field.
The caller may manually run the subrequest's response phase if desired. In any case,
the logging phase will never be run for a subrequest, only the main request itself.

For example, the handler responsible for authorization ordinarily does not have
access to the MIME type of the requested file because the MIME type checker phase
comes after the authorization phase. In order to implement authorization based on the
MIME type of the requested document, the authorization handler could generate a
subrequest for the requested file in order to run all the phases up to, but not including,
the content generation and logging phases. It can then retrieve the file's MIME type
from the subrequest result.

3.2.7 The Environment and Subprocesses

Several of Apache's standard modules use environment variables: mod_cgi sets a
number of environment variables to hold information about the HTTP request prior to
launching CGI scripts, mod_include uses environment variables in HTML string
substitutions, mod_log_config can incorporate the values of environment variables
into custom log entries, and mod_access can base its access restriction decisions on
the value of environment variables.

Ordinarily, the environment passed to subprocesses is a strictly limited set of
variables that contain information about the server and the current request. You can
modify this default list using the PassEnv , SetEnv, and UnsetEnv directives all of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

modify this default list using the PassEnv , SetEnv, and UnsetEnv directives all of
which are implemented by the mod_env module (compiled in by default). PassEnv
passes an environment variable from the server's environment into that of the
subprocess, while SetEnv and UnsetEnv allow you to set or unset an environment
variable explicitly. Note that PassEnv and SetEnv are not set until the fixup stage, a
rarely used phase that runs just before the response phase. If you need to use such
environment variables earlier in the request, the mod_perl equivalents, PerlPassEnv
and PerlSetEnv, will set the variables as soon as possible. These work just like the
Apache equivalents, except that the two directives can be placed in <Directory> and
<Location> sections, as shown in the following examples:

PerlPassEnv ORGANIZATION
PerlSetEnv TMPDIR /usr/tmp
<Location /stage/upload>
PerlSetEnv TMPDIR /tmp/staging
</Location>

The mod_setenvif module (compiled in by default) adds the BrowserMatch and
SetEnvIf directives, allowing you to selectively set and unset variables based on
attributes of the incoming request.

Apache has a standard way of managing the process environment area. When
Apache starts up, it copies certain environment variables from its own environment
into an internal table (which variables are inherited in this way can be controlled with
the PassEnv and PerlPassEnv directives). Later, modules that need access to the
environment get their information from the table rather than reading it directly from the
environment area. Not only is this more efficient, but it gives Apache more control
over a potentially security-sensitive domain. If a module such as mod_cgi needs to
launch a subprocess, it passes the internal environment table to the process rather
than using the current system environment.

The Perl and C APIs allow you to examine and set the contents of this environment
table. There is also a mechanism for launching and communicating with
subprocesses.

We'll now look at the Perl API for installing handlers and manipulating the Apache life
cycle.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.3 The Handler API

When Apache calls a handler, it passes information about the current transaction and
the server configuration. It's the handler's responsibility to take whatever action is
appropriate for this phase and to then return an integer status code to Apache
indicating the success or failure of its operation.

3.3.1 Handler Subroutines

In the Perl API, the definition of a handler is short and sweet:

In the Perl API, the definition of a handler is short and sweet:

sub handler {
 my $r = shift;
 # do something
 return SOME_STATUS_CODE;
}

No matter which phase of the Apache life cycle the handler is responsible for, the
subroutine structure is always the same. The handler is passed a single argument
consisting of a reference to an Apache request object. The request object is an
object-oriented version of a central C record structure called the request record , and
it contains all the information that Apache has collected about the transaction. By
convention, a typical handler will store this object in a lexically scoped variable named
$r. The handler retrieves whatever information it needs from the request object, does
some processing, and possibly modifies the object to suit its needs. The handler then
returns a numeric status code as its function result, informing Apache of the outcome
of its work. We discuss the list of status codes and their significance in the next
section.

There is one special case, however. If the handler has a function prototype of ($$)
indicating that the subroutine takes two scalar arguments, the Perl API treats the
handler as an object-oriented method call. In this case, the handler will receive two
arguments. The handler's class (package) name or an object reference will be the first
argument, and the Apache request object reference will be the second. This allows
handlers to take advantage of class inheritance, polymorphism, and other useful
object-oriented features. Handlers that use this feature are called "method handlers"
and have the following structure:

sub handler ($$) {
 my $class = shift;
 my $r = shift;
 # do something
 return SOME_STATUS_CODE;
}

We give an example of using a Perl API method handler in the next chapter.

Request handlers declared in the C API are very similar:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static int handler (request_rec* r) {
 /* do something */
 return SOME_STATUS_CODE;
 }

The handler is called with a single argument consisting of a pointer to a
request_rec request record. The subroutine pulls out whatever information it needs
from the request record, modifies it if necessary, and then returns a status code.

However, unlike the Perl API, in which all handlers have the same structure
regardless of their phase, the C API handlers that are responsible for the phases of
the server life cycle outside the request loop are heterogeneous. For example, a
child_init() handler in C looks like this:

static void child_init (server_rec *s, pool *p) {
 /* do something */
 }

In this case, there is no request record because there is no request to process at this
point. Instead there is a pointer to a server record structure (a server_rec) and a
memory pool for handling memory allocation issues. We explain the differences fully
in Chapter 8.

3.3.2 Status Codes

Every handler must return a status code. There are many possible codes, each of
which is associated with a symbolic constant. The constants are defined by the
Apache::Constants module if you are using Perl and the httpd.h include file if you are
using the C language.

Table 3.1 shows the HTTP status codes, their symbolic constants, and a brief
explanation. All constants have a full name that begins with the prefix "HTTP_" as in
HTTP_FORBIDDEN. The common ones also have shorter "nicknames" as well, for
example, FORBIDDEN.

Table 3.1. Common HTTP Status Codes
Code Constant (Nickname) Description
2XX Codes—Success

200
HTTP_OK

(DOCUMENT_FOLLOWS)
The URI was found. Its contents follow.

201 HTTP_CREATED The URI was created in response to a PUT.

202 HTTP_ACCEPTED The request was accepted for processing at a later
date.

203 HTTP_NON_AUTHORITATIVE This is nonauthoritative mirrored information.

204 HTTP_NO_CONTENT The request was successful, but there's no content
to display.

206
HTTP_PARTIAL_CONTENT

(PARTIAL_CONTENT)
A portion of the document follows.

3XX Codes—Multiple Choices Available

300
HTTP_MULTIPLE_CHOICES There are multiple document choices. (Used in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

300
HTTP_MULTIPLE_CHOICES

(MULTIPLE_CHOICES)
There are multiple document choices. (Used in
content negotiation.)

301
HTTP_MOVED_PERMANENTLY

(MOVED)
The document has permanently moved to a new
URI.

302
HTTP_MOVED_TEMPORARILY

(REDIRECT)
The document has temporarily moved to a new
URI.

304
HTTP_NOT_MODIFIED

(USE_LOCAL_COPY)
The document has not been modified since it was
cached.

4XX Codes—Client-Side Errors

400
HTTP_BAD_REQUEST

(BAD_REQUEST)
The request contains a syntax error.

401
HTTP_UNAUTHORIZED

(AUTH_REQUIRED)
The client did not provide correct authorization
information.

402 HTTP_PAYMENT_REQUIRED Payment is required. (Used in charging schemes.)

403
HTTP_FORBIDDEN

(FORBIDDEN)
The client is not allowed to access the document.

404
HTTP_NOT_FOUND

(NOT_FOUND)
The requested document does not exist.

405
HTTP_METHOD_NOT_ALLOWED

(METHOD_NOT_ALLOWED)
The request method (e.g., PUT) is not allowed
here.

406 HTTP_NOT_ACCEPTABLE The request is not acceptable.
407 HTTP_PROXY_AUTHENTICATION_REQUIRED Proxy server must provide authentication.
408 HTTP_REQUEST_TIME_OUT The client waited too long to complete the request.

410 HTTP_GONE The requested document has been permanently
removed.

412
HTTP_PRECONDITION_FAILED

(PRECONDITION_FAILED)
A conditional retrieval of the document has failed.

413 HTTP_REQUEST_ENTITY_TOO_LARGE The client tried to PUT or POST data that was too
long.

414 HTTP_REQUEST_URI_TOO_LARGE The client tried to fetch a URI that was too long.

415 HTTP_UNSUPPORTED_MEDIA_TYPE The client tried to PUT or POST data using an
unsupported MIME type.

5XX Codes—Server-Side Errors

500
HTTP_INTERNAL_SERVER_ERROR

(SERVER_ERROR)
The server encountered an unexpected error
condition.

501
HTTP_NOT_IMPLEMENTED

(NOT_IMPLEMENTED)
An HTTP feature is unimplemented.

502
HTTP_BAD_GATEWAY

(BAD_GATEWAY)
An error occurred in a remote server during a proxy
request.

503 HTTP_SERVICE_UNAVAILABLE The server is temporarily down.
504 HTTP_GATEWAY_TIME_OUT A remote server timed out during a proxy request.
505 HTTP_VERSION_NOT_SUPPORTED The server doesn't support this version of HTTP.

506
HTTP_VARIANT_ALSO_VARIES

(VARIANT_ALSO_VARIES)
A negotiated document has several alternative
representations.

Apache::Constants does not export all of the formal HTTP_* names, since only a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache::Constants does not export all of the formal HTTP_* names, since only a
small handful are used by most modules. However, the constant functions are
available for all of these names, should you need them. Chapter 9 gives a complete
listing of all the HTTP_* names that are exportable by default. If your module tries to
use one of the HTTP_* names and gets an "Undefined subroutine" error, see
Chapter 9 for details on accessing it. The nicknames for the common status codes
are all exportable by Apache::Constants.

The Perl examples throughout this book use the nicknames when available, even
though their formal equivalents can be imported using the Apache::Constants :http
tag. We do this partly because of historical reasons and because the :common tag
imports a small number of functions—only those we need for the majority of modules.
As always with Perl, there's more than one way to do it; the choice is yours.

In addition to the HTTP status codes, Apache defines some return codes of its own
which handlers use to send status information to the server.

OK

This constant indicates that the handler was successful. For most phases
Apache will now pass the request on to any other module that has registered its
interest in handling the phase. However, for the URI translation, authentication,
type-mapping, and response phases, the phase terminates as soon as a
handler returns OK. The server behaves this way because it usually makes
sense for a single module to handle these phases. However, you can override
this behavior using the Perl API's "stacked handlers" mechanism, which we
discuss in the next chapter.

The internal Apache OK constant should not be confused with HTTP constant
HTTP_OK (known by Apache::Constants as DOCUMENT_FOLLOWS).

DECLINED

The handler has decided it doesn't want to handle the request. Apache will act
as if the subroutine were never called and either handle the phase internally or
pass the request on to another module that has expressed its interest. Even if
all registered modules return DECLINED for a particular phase, it will still be
handled by the Apache core, which has default handlers for each phase (even if
they do nothing).

It is possible for a module to lie when it declines a transaction. It may actually
have done some work but wishes to let another module take the ultimate
responsibility for the phase. For example, an authentication handler might
manage caching of credential lookups from a database, but not actually make
the authentication decision itself.

DONE

When DONE is returned, Apache immediately jumps out of the request loop, logs
the transaction, and closes the client connection. This is one way to halt the
transaction without generating an error status.

SERVER_ERROR , UNAUTHORIZED , REDIRECT , BAD_REQUEST ,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SERVER_ERROR , UNAUTHORIZED , REDIRECT , BAD_REQUEST ,
NOT_FOUND ...

The handler can return any of the HTTP status codes described in Table 3.1.
Apache will create the appropriate HTTP header and send it to the browser.
This is the way that handlers can signal that the requested document cannot be
found, redirect the browser to another URI, or implement novel authorization
schemes. The SERVER_ERROR code is commonly used to signal a fatal error,
and it results in the display of the ugly but familiar "internal server error" page.

Apache's response to the status codes can be intercepted and customized with
the ErrorDocument directive or the custom_response() API call. We give
examples of using this feature to advantage in Chapter 4, and Chapter 9.

3.3.3 Installing Handlers

The Perl and C APIs use different techniques for installing handlers. In the C API,
handlers are specified by placing pointers to the handler subroutines within a static
table that is compiled directly into the module code. We discuss this in more detail in
Chapter 10. In contrast, Perl API handlers are installed using a series of
configuration directives that can be placed in the server's configuration files or even in
per-directory .htaccess files.

Installing a Perl subroutine as a handler for one of the phases in the Apache life cycle
is a matter of writing a .pm (Perl module) file to implement the handler, installing it
somewhere in the Perl include path, and adding the appropriate Perl*Handler
directive to one of Apache's configuration files. The term "Perl*Handler," as we use it
throughout this book, corresponds to any one of the 15 or so Perl API directives
named PerlTransHandler, PerlAccessHandler, PerlLogHandler, and so forth.

If there is only one handler subroutine defined in the .pm file, it is convenient to name
it handler() because the Perl API looks for subroutines with this name by default.
Otherwise the subroutine can be named anything you like if you refer to it explicitly in
the Perl*Handler directive.

Apache Perl modules usually live in the Apache:: package namespace. This is just a
convention, but a good one. It generally indicates that the module is useless outside
of the Apache server. That said, the other convention to follow is keeping Apache::
modules very small, by making good use of the building blocks found on CPAN,
putting together new building blocks where appropriate, and simply gluing them
together with the Apache API. A typical Apache Perl module file will look like this:

package Apache::Foo;
use strict;
use Apache::constants qw(:common);

sub handler {
 my $r = shift;
 # do something
 return SOME_STATUS_CODE;
}

1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1;

Its declaration in the Apache configuration file will look like this:

Perl*Handler Apache::Foo

Replace Perl*Handler with a legitimate handler directive listed in the next section.
When Apache goes to process this directive, it automatically loads and compiles the
Apache::Foo module if it is not already in memory. It then calls the module's handler()
subroutine during the appropriate phase of the transaction.

If you want to register several handlers for a particular phase, you can either provide
a space-separated list of handlers to install, or repeat the Perl*Handler directive on
multiple lines. These two techniques can be mixed.

Perl*Handler Apache::Foo Apache::Bar Apache::Baz
Perl*Handler Apache::Wiz Apache::Waz

If the handler subroutine is not named handler(), then you must refer to it explicitly by
name. For example, if the handler is named do_something(), then the directive should
be changed to:

Perl*Handler Apache::Foo::do_something

Perl*Handler directives that explicitly name the handler subroutines do not cause the
module to be automatically loaded. You must do this manually beforehand, either by
placing a PerlModule directive in the configuration file or indirectly by loading the
module in the Perl startup file, if you have one. Here's an example of the first method:

PerlModule Apache::Foo
Perl*Handler Apache::Foo::do_something

If the module is not already loaded when Apache processes the Perl*Handler
directive, you will see this confusing message in your server's error log:

Undefined subroutine &Apache::Foo::do_something::handler called.

It is always a good idea to preload handler modules for better performance either by
using the PerlModule directive or by pulling in modules with a PerlRequire script. The
Perl*Handler directives offer a shortcut, where a leading + character will tell mod_perl
to load the handler module at the same time. For example, the following configuraton:

Perl*Handler +Apache::Foo

is equivalent to this configuration:

PerlModule Apache::Foo
Perl*Handler Apache::Foo

Anonymous subroutines can also be used as Perl*Handlers, for example:

PerlChildInitHandler "sub { warn qq(child $$ starting\n) }"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PerlChildInitHandler "sub { warn qq(child $$ starting\n) }"

Somewhat surprisingly, although there are 11 phases in the Apache life cycle that
affect modules (server initialization, child initialization, child shutdown, and the eight
phases of the request loop), there are a few more Perl*Handler directives, including
ones that don't correspond directly to transaction processing phases, such as
PerlInitHandler, PerlDispatchHandler, and PerlRestartHandler. These phases are
implemented within the "standard" phases but are given some special treatment by
mod_perl.

3.3.4 Perl API Configuration Directives

This section lists the configuration directives that the Perl API makes available. Most
of these directives install handlers, but there are a few that affect the Perl engine in
other ways.

PerlRequire
PerlModule

These directives are used to load Perl modules and files from disk. Both are
implemented using the Perl built-in require operator. However, there are subtle
differences between the two. A PerlModule must be a "bareword," that is, a
package name without any path information. Perl will search the @INC paths for
a .pm file that matches the name.

Example:

PerlModule Apache::Plotter

This will do the same as either of the following Perl language statements:

require Apache::Plotter;
use Apache::Plotter ();

In contrast, the PerlRequire directive expects an absolute or relative path to a
file. The Perl API will enclose the path in quotes, then pass it to the require
function. If you use a relative path, Perl will search through the @INC list for a
match.

Examples:

PerlRequire /opt/www/lib/directory_colorizer.pl
PerlRequire scripts/delete_temporary_files.pl

This will do the same as the following Perl language statement:

require '/opt/www/lib/directory_colorizer.pl';
require 'scripts/delete_temporary_files.pl';

As with modules and files pulled in directly by the require operator, PerlRequire
and PerlModule also require the modules to return a true value (usually 1) to
indicate that they were evaluated successfully. Like require, these files will be
added to the %INC hash so that it will not be evaluated more than once. The
Apache::StatINC module and the PerlFreshRestart directive can alter this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache::StatINC module and the PerlFreshRestart directive can alter this
behavior so modules can be reloaded.

Both directives will accept any number of modules and files:

PerlModule CGI LWP::Simple Apache::Plotter
PerlRequire scripts/startup.pl scripts/config.pl

All PerlModule and PerlRequire files will be loaded during server startup by
mod_perl during the module_init phase. The value of the ServerRoot directive is
added to the @INC paths by mod_perl as an added convenience.

Remember that all the code that is run at server initialization time is run with
root privileges when the server is bound to a privileged port, such as the default
80. This means that anyone who has write access to one of the server
configuration files, or who has write access to a script or module that is loaded
by PerlModule or PerlRequire, effectively has superuser access to the system.
There is a new PerlOpmask directive and PERL_OPMASK_DEFAULT compile
time option, currently in the experimental stages, for disabling possible
dangerous operators.

The PerlModule and PerlRequire directives are also permitted in .htaccess files.
They will be loaded at request time and be run as the unprivileged web user.

PerlChildInitHandler

This directive installs a handler that is called immediately after a child process is
launched. On Unix systems, it is called every time the parent process forks a
new child to add to the flock of listening daemons. The handler is called only
once in the Win32 version of Apache because that server uses a single-process
model.

In contrast to the server initialization phase, the child will be running as an
unprivileged user when this handler is called. All child_init handlers will be
called unless one aborts by logging an error message and calling exit() to
terminate the process.

Example:

PerlChildInitHandler Apache::DBLogin

This directive can appear in the main configuration files and within virtual host
sections, but not within <Directory>, <Location>, or <Files> sections or within
.htaccess files.

PerlPostReadRequestHandler

The post_read_request handler is called every time an Apache process

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The post_read_request handler is called every time an Apache process
receives an incoming request, at the point at which the server has read the
incoming request's data and parsed the HTTP header fields but before the
server has translated the URI to a filename. It is called once per transaction and
is intended to allow modules to step in and perform special processing on the
incoming data. However, because there's no way for modules to step in and
actually contribute to the parsing of the HTTP header, this phase is more often
used just as a convenient place to do processing that must occur once per
transaction. All post_read_request handlers will be called unless one aborts by
returning an error code or terminating the phase with DONE.

Example:

PerlPostReadRequestHandler Apache::StartTimer

This directive can appear in the main configuration files and within virtual host
sections but not within <Directory>, <Location>, or <Files> sections or within
.htaccess files. The reason for this restriction is simply that the request has not
yet been associated with a particular filename or directory.

PerlInitHandler

When found at the "top-level" of a configuration file, that is, outside of any
<Location>, <Directory>, or <Files> sections, this handler is an alias for
PerlPostReadRequestHandler. When found inside one of these containers, this
handler is an alias for PerlHeaderParserHandler described later. Its name
makes it easy to remember that this is the first handler invoked when serving an
HTTP request.

PerlTransHandler

The uri_translate handler is invoked after Apache has parsed out the request.
Its job is to take the request, which is in the form of a partial URI, and transform
it into a filename.

The handler can also step in to alter the URI itself, to change the request
method, or to install new handlers based on the URI. The URI translation phase
is often used to recognize and handle proxy requests; we give examples in
Chapter 7.

Example:

PerlTransHandler Apache::AdBlocker

Apache will walk through the registered uri_translate handlers until one returns
a status other than DECLINED. This is in contrast to most of the other phases,
for which Apache will continue to invoke registered handlers even after one has
returned OK.

Like PerlPostReadRequestHandler, the PerlTransHandler directive may appear
in the main configuration files and within virtual host sections but not within
<Directory>, <Location>, or <Files> sections or within .htaccess files. This is
because the request has not yet been associated with a particular file or
directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PerlHeaderParserHandler

After the URI translation phase, Apache again gives you another chance to
examine the request headers and to take special action in the header_parser
phase. Unlike the post_read_request phase, at this point the URI has been
mapped to a physical pathname. Therefore PerlHeaderParserHandler is the first
handler directive that can appear within <Directory>, <Location>, or <Files>
sections or within .htaccess files.

The header_parser phase is free to examine and change request fields in the
HTTP header, or even to abort the transaction entirely. For this reason, it's
common to use this phase to block abusive robots before they start chewing
into the resources that may be required in the phases that follow. All registered
header_parser handlers will be run unless one returns an error code or DONE.

Example:

PerlHeaderParserHandler Apache::BlockRobots

PerlAccessHandler

The access_checker handler is the first of three handlers that are involved in
authentication and authorization. We go into this topic in greater depth in
Chapter 6.

The access_checker handler is designed to do simple access control based on
the browser's IP address, hostname, phase of the moon, or other aspects of the
transaction that have nothing to do with the remote user's identity. The handler
is expected to return OK to allow the transaction to continue, FORBIDDEN to
abort the transaction with an unauthorized access error, or DECLINED to punt
the decision to the next handler. Apache will continue to step through all
registered access handlers until one returns a code other than DECLINED or OK.

Example:

PerlAccessHandler Apache::DayLimit

The PerlAccessHandler directive can occur anywhere, including <Directory>
sections and .htaccess files.

PerlAuthenHandler

The authentication handler (sometimes referred to in the Apache documentation
as check_user_id) is called whenever the requested file or directory is
password-protected. This, in turn, requires that the directory be associated with
AuthName, AuthType, and at least one require directive. The interactions
among these directives is covered more fully in Chapter 6.

It is the job of the authentication handler to check a user's identification
credentials, usually by checking the username and password against a
database. If the credentials check out, the handler should return OK. Otherwise
the handler returns AUTH_REQUIRED to indicate that the user has not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the handler returns AUTH_REQUIRED to indicate that the user has not
authenticated successfully. When Apache sends the HTTP header with this
code, the browser will normally pop up a dialog box that prompts the user for
login information.

Apache will call all registered authentication handlers, only ending the phase
after the last handler has had a chance to weigh in on the decision or when a
handler aborts the transaction by returning AUTH_REQUIRED or another error
code. As usual, handlers may also return DECLINED to defer the decision to the
next handler in line.

Example:

PerlAuthenHandler Apache::AuthAnon

PerlAuthenHandler can occur anywhere in the server configuration or in
.htaccess files.

PerlAuthzHandler

Provided that the authentication handler has successfully verified the user's
identity, the transaction passes into the authorization handler, where the server
determines whether the authenticated user is authorized to access the
requested URI. This is often used in conjunction with databases to restrict
access to a document based on the user's membership in a particular group.
However, the authorization handler can base its decision on anything that can
be derived from the user's name, such as the user's position in an
organizational chart or the user's gender.

Handlers for the authorization phase are only called when the file or directory is
password-protected, using the same criteria described earlier for authentication.
The handler is expected to return DECLINED to defer the decision, OK to
indicate its acceptance of the user's authorization, or AUTH_REQUIRED to
indicate that the user is not authorized to access the requested document. Like
the authentication handler, Apache will try all the authorization handlers in turn
until one returns AUTH_REQUIRED or another error code.

The authorization handler interacts with the require directive in a way described
fully in Chapter 6.

Example:

PerlAuthzHandler Apache::AuthzGender

The PerlAuthzHandler directive can occur anywhere in the server configuration
files or in individual .htaccess files.

PerlTypeHandler

After the optional access control and authentication phases, Apache enters the
type_checker phase. It is the responsibility of the type_checker handler to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

type_checker phase. It is the responsibility of the type_checker handler to
assign a provisional MIME type to the requested document. The assigned MIME
type will be taken into consideration when Apache decides what content handler
to call to generate the body of the document. Because content handlers are free
to change the MIME types of the documents they process, the MIME type
chosen during the type checking phase is not necessarily the same MIME type
that is ultimately sent to the browser. The type checker is also used by Apache's
automatic directory indexing routines to decide what icon to display next to the
filename.

The default Apache type checker generally just looks up the filename extension
in a table of MIME types. By declaring a custom type checker, you can replace
this with something more sophisticated, such as looking up the file's MIME type
in a document management database.

Because it makes no sense to have multiple handlers trying to set the MIME
type of a file according to different sets of rules, the type checker handlers
behave like content handlers and URI translation handlers. Apache steps
through each registered handler in turn until one returns OK or aborts with an
error code. The phase finishes as soon as one module indicates that it has
successfully handled the transaction.

Example:

PerlTypeHandler Apache::MimeDBI

The PerlTypeHandler directive can occur anywhere in the server configuration
or in .htaccess files.

PerlFixupHandler

After the type_checker phase but before the content handling phase is an odd
beast called the fixup phase. This phase is a chance to make any last-minute
changes to the transaction before the response is sent. The fixup handler's job
is like that of the restaurant prep cook who gets all the ingredients cut, sorted,
and put in their proper places before the chef goes to work. As an example
alluded to earlier, mod_env defines a fixup handler to add variables to the
environment from configured SetEnv and PassEnv directives. These variables
are put to use by several different modules in the upcoming response phase,
including mod_cgi, mod_include, and mod_perl.

All fixup handlers are run during an HTTP request, stopping only when a
module aborts with an error code.

Example:

PerlFixupHandler Apache::HTTP::Equiv

The PerlFixupHandler directive can occur anywhere in the server configuration
files or in .htaccess files.

PerlHandler

The next step is the content generation, or response phase, installed by the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The next step is the content generation, or response phase, installed by the
generic-sounding PerlHandler directive. Because of its importance, probably 90
percent of the modules you'll write will handle this part of the transaction. The
content handler is the master chef of the Apache kitchen, taking all the
ingredients assembled by the previous phases—the URI, the translated
pathname, the provisional MIME type, and the parsed HTTP headers—whipping
them up into a tasty document and serving the result to the browser.

Apache chooses the content handler according to a set of rules governed by the
SetHandler, AddHandler, AddType, and ForceType directives. We go into the
details in Chapter 4. For historical reasons as much as anything else, the
idiom for installing a Perl content handler uses a combination of the SetHandler
and PerlHandler directives:

<Directory /home/http/htdocs/compressed>
 SetHandler perl-script
 PerlHandler Apache::Uncompress
</Directory>

The SetHandler directive tells Apache that the Perl interpreter will be the official
content handler for all documents in this directory. The PerlHandler directive in
turn tells Perl to hand off responsibility for the phase to the handler() subroutine
in the Apache::Uncompress package. If no PerlHandler directive is specified,
Perl will return an empty document.

It is also possible to use the <Files> and <FilesMatch> directives to assign
mod_perl content handlers selectively to individual files based on their names.
In this example, all files ending with the suffix .gz are passed through
Apache::Uncompress :

<FilesMatch "\.gz$">
 SetHandler perl-script
 PerlHandler Apache::Uncompress
</FilesMatch>

There can be only one master chef in a kitchen, and so it is with Apache content
handlers. If multiple modules have registered their desire to be the content
handler for a request, Apache will try them each in turn until one returns OK or
aborts the transaction with an error code. If a handler returns DECLINED,
Apache moves on to the next module in the list.

The Perl API relaxes this restriction somewhat, allowing several content
handlers to collaborate to build up a composite document using a technique
called " chaining." We show you how to take advantage of this feature in the
next chapter.

The PerlHandler directive can appear anywhere in Apache's configuration files,
including virtual host sections, <Location> sections, <Directory> sections, and
<Files> sections. It can also appear in .htaccess files.

PerlLogHandler

Just before entering the cleanup phase, the log handler will be called in the
logging phase. This is true regardless of whether the transaction was

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

logging phase. This is true regardless of whether the transaction was
successfully completed or was aborted somewhere along the way with an error.
Everything known about the transaction, including the original request, the
translated file name, the MIME type, the number of bytes sent and received, the
length of time the transaction took, and the status code returned by the last
handler to be called, is passed to the log handler in the request record. The
handler typically records the information in some way, either by writing the
information to a file, as the standard logging modules do, or by storing the
information into a relational database. Log handlers can of course do whatever
they like with the information, such as keeping a running total of the number of
bytes transferred and throwing out the rest. We show several practical examples
of log handlers in Chapter 7.

All registered log handlers are called in turn, even after one of them returns OK.
If a log handler returns an HTTP error status, it and all the log handlers that
ordinarily follow it, including the built-in ones, will be aborted. This should be
avoided unless you really want to prevent some transactions from being logged.

Example:

PerlLogHandler Apache::LogMail

The PerlLogHandler directive can occur anywhere in the server configuration
files or in .htaccess files.

PerlCleanupHandler

After each transaction is done, Apache cleans up. During this phase any
module that has registered a cleanup handler will be called. This gives the
module a chance to deallocate shared memory structures, close databases,
clean up temporary files, or do whatever other housekeeping tasks it needs to
perform. This phase is always invoked after logging, even if some previous
handlers aborted the request handling process by returning some error code.

Internally the cleanup phase is different from the other phases we've discussed.
In fact, there isn't really a cleanup phase per se. In the C API, modules that
need to perform post-transaction housekeeping tasks register one or more
function callbacks with the resource pool that they are passed during
initialization. Before the resource pool is deallocated, Apache calls each of the
module's callbacks in turn. For this reason, the structure of a cleanup handler
routine in the C API is somewhat different from the standard handler. It has this
function prototype:

void cleanup_handler (void* data);

We discuss how to register and use C-language cleanup handlers in Chapter
10.

The Perl API simplifies the situation by making cleanup handlers look and act
like other handlers. The PerlCleanupHandler directive installs a Perl subroutine
as a cleanup handler. Modules may also use the register_cleanup() call to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as a cleanup handler. Modules may also use the register_cleanup() call to
install cleanup handlers themselves. Like other handlers in the Perl API, the
cleanup subroutine will be called with the Apache request object as its
argument. Unlike other handlers, however, a cleanup handler doesn't have to
return a function result. If it does return a result code, Apache will ignore the
value. An important implication of this is that all registered cleanup functions are
always called, despite the status code returned by previous handlers.

Example:

PerlCleanupHandler Apache::Plotter::clean_ink_cartridges

The PerlCleanupHandler directive can occur anywhere in the server
configuration files or in .htaccess files.

PerlChildExitHandler

The last handler to be called is the child exit handler. This is called just before
the child server process dies. On Unix systems the child exit handler will be
called multiple times (but only once per process). On NT systems, the exit
handler is called just once before the server itself exits.

Example:

PerlChildExitHandler Apache::Plotter::close_driver

PerlFreshRestart

When this directive is set to On, mod_perl will reload all the modules found in
%INC whenever the server is restarted. This feature is very useful during
module development because otherwise, changes to .pm files would not take
effect until the server was completely stopped and restarted.

The standard Apache::Registry module also respects the value of
PerlFreshRestart by flushing its cache and reloading all scripts when the server
is restarted.

This directive can only appear in the main part of the configuration files or in
<VirtualHost> sections.

PerlDispatchHandler
PerlRestartHandler

These two handlers are not part of the Apache API, but pseudophases added
by mod_perl to give programmers the ability to fine-tune the Perl API. They are
rarely used but handy for certain specialized applications.

The PerlDispatchHandler callback, if defined, takes over the process of loading
and executing handler code. Instead of processing the Perl*Handler directives
directly, mod_perl will invoke the routine pointed to by PerlDispatchHandler and
pass it the Apache request object and a second argument indicating the handler
that would ordinarily be invoked to process this phase. If the handler has
already been compiled, then the second argument is a CODE reference.
Otherwise, it is the name of the handler's module or subroutine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The dispatch handler should handle the request, which it will usually do by
running the passed module's handler() method. The Apache::Safe module,
currently under development, takes advantage of PerlDispatchHandler to put
handlers into a restricted execution space using Malcom Beattie's Safe library.

Unlike other Perl*Handler directives, PerlDispatchHandler must always point to
a subroutine name, not to a module name. This means that the dispatch module
must be preloaded using PerlModule :

PerlModule Apache::Safe
<Files *.shtml>
 PerlDispatchHandler Apache::Safe::handler
</Files>

PerlRestartHandler points to a routine that is called when the server is restarted.
This gives you the chance to step in and perform any cleanup required to tweak
the Perl interpreter. For example, you could use this opportunity to trim the
global @INC path or collect statistics about the modules that have been loaded.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

3.4 Perl API Classes and Data Structures

We'll look now at what a handler subroutine sees when it is called. All interaction
between the handler and the Apache server is done through the request record. In
the Perl API, the request record is encapsulated within a request object, which for
historical reasons is blessed into the Apache:: namespace. The Apache request
object contains most of the information about the current transaction. It also contains
references to other objects that provide further information about the server and the
current transaction. The request object's server() method returns an Apache::Server
object, which contains server configuration information. The connection() method
returns an Apache::Connection object, which contains low-level information about the
TCP/IP connection between the browser and the client.

In the C API, information about the request is passed to the handler as a pointer to a
request_rec . Included among its various fields are pointers to a server_rec and
a conn_rec structure, which correspond to the Perl API's Apache::Server and
Apache::Connection objects. We have much more to say about using the
request_rec in Chapters Chapter 10 and Chapter 11 when we discuss the C-
language API in more detail.

3.4.1 The Apache Request Object

The Apache request object (the request_rec in C) is the primary conduit for the
transfer of information between modules and the server. Handlers can use the
request object to perform several types of operations:

Get and set information about the requested document

The URI of the requested document, its translated file name, its MIME type, and
other useful information are available through a set of request object methods.
For example, a method named uri() returns the requested document's URI, and
content_type() retrieves the document's MIME type. These methods can also be
used to change the values, for example, to set the MIME type of a document
generated on the fly.

Get incoming HTTP headers

All the request headers are available through a method called header_in().
From this information you can recover the make and model of the browser, the
list of MIME types that the browser can display, any HTTP cookies the server
has set, and information about any content the browser wishes to send, such as
the contents of a fill-out form.

Get and set outgoing HTTP headers

The outgoing HTTP headers, which do such things as set HTTP cookies,
control browser caching, and provide information about the requested
document, can be examined or set via a method called header_out(). Certain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

document, can be examined or set via a method called header_out(). Certain
very common outgoing headers have dedicated methods for setting their
values. For example, the outgoing Content-Type header is usually set using the
content_type() method rather than header_out(). Once the outgoing header
fields are fully set up, the handler can send them to the client with
send_http_header().

Read incoming document data

When the browser sends document information to the server, such as the
contents of POSTed forms or uploaded files, the handler can use the request
object's read() method to read in and manage the submitted information.

Create outgoing document data

Handlers that are responsible for content generation will use the request
object's print() method to send document data to the browser. There are also
methods for sending whole files in a single step.

Get common per-transaction information

Commonly needed information, such as the remote browser's hostname and the
port at which the server established the connection, is available from the
request object through methods with names like get_remote_host() and
get_server_port(). More esoteric information is available through the
Apache::Connection and Apache::Server objects returned by the connection()
and server() methods, respectively.

Log warnings and errors

The request object provides methods for writing formatted error messages and
warnings to the server error log. The simplest and most widely used method is
log_error(). There is also a fully fledged Apache::Log class which gives you
access to Apache's more advanced logging API.

Control transaction processing

By calling the request object's custom_response(), handler(), or
internal_redirect() methods, a handler can control how the transaction is to be
processed by setting what modules will handle the content generation phase of
the request in the case of success or failure. A handler can also kick off a
subrequest using the lookup_uri() or lookup_filename() methods.

Get module configuration information

The PerlSetVar configuration file directive allows you to pass runtime
configuration information to Perl API modules using a simple key/value system.
Perl API modules fetch this information with the dir_config() method. This
eliminates the need to pass runtime information to Perl API modules by making
source code modifications. In addition, mod_perl supports a more complex
configuration API that allows modules to define and use custom configuration
directives.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The bulk of this book is devoted to all the many things you can do with the request
object.

3.4.2 The Apache::Server Object

The Apache::Server class (a server_rec in the C API) contains information about
the server's configuration. From this object, handlers can recover such things as the
email address of the server administrator, the list of virtual hosts that this server
supports, and the port number(s) that this server listens to.

The Apache::Server object is also where per-server module configuration information
is stored and is an integral part of the custom configuration directive API described in
Chapter 8.

3.4.3 The Apache::Connection Object

Handlers can use this class to retrieve all sorts of low-level information about the
current connection. Among the information stored here are the TCP/IP socket
endpoints of the server/browser connection, the remote and local IP addresses, and a
flag that indicates when a connection was broken prematurely.

In addition, the Apache::Connection object provides information about user
authentication. You can recover the type of authentication in use with the auth_type()
method, and the authenticated user's name with the user() method. These features
are described in more detail in Chapter 6.

3.4.4 Other Core Classes

The Perl API also defines a number of core classes that provide interfaces to other
areas of the Apache C API. We'll describe them at length in later chapters when we
need to use them. For now, we'll just list them so that you know they're there.

Apache::URI

Methods for generating and parsing URIs

Apache::Log

Methods to generate nicely formatted log messages

Apache::File

Methods to send the contents of static files in an HTTP/1.1-compliant fashion

Apache::Util

Methods for manipulating HTTP dates and times, and for working with HTML
documents

Apache::ModuleConfig and Apache::CmdParms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Utilities for generating and processing custom configuration directives

3.4.5 Noncore Classes

mod_perl comes with a set of standalone modules that are useful in their own right.
The most important of these is Apache::Registry, which the next chapter covers in
great detail. We list them briefly here just so that you know they exist. See Appendix
A, for a full reference guide to Apache::Registry and its kin.

Apache::Registry

A persistent CGI-like environment for legacy scripts and for writing high-
performance modules without using the Apache API.

Apache::PerlRun

An object-oriented API for running Perl scripts inside of the Apache server. It
uses this API within its own handler which provides another CGI emulation
environment for running legacy scripts that do not run properly under
Apache::Registry.

Apache::RegistryLoader

Speeds up Apache::Registry even further by preloading certain CGI scripts.

Apache::Resource

Controls resource allocation to avoid poorly written scripts from hogging the
server.

Apache::PerlSections

Helper methods for configuring Apache dynamically using Perl embedded in its
configuration files.

Apache::StatINC

Reloads changed modules from disk automatically when they change, rather
than the next time the server is restarted.

Apache::Include

Simple wrappers around the subrequest API and a handler for running within
mod_include.

Apache::Status

A Perl runtime browser often helpful when tracking down problems or satisfying
curiosities.

The next chapter begins a tutorial that takes you through the API one step at a time,
beginning with the all-important response phase. For the definitive reference style
listing of classes, methods, functions, and data types, see Chapter 9 for the Perl API

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

listing of classes, methods, functions, and data types, see Chapter 9 for the Perl API
and Chapters Chapter 10 and Chapter 11 for the C API.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 4. Content Handlers
This chapter is about writing content handlers for the Apache response phase, when
the contents of the page are actually produced. In this chapter you'll learn how to
produce dynamic pages from thin air, how to modify real documents on the fly to
produce effects like server-side includes, and how Apache interacts with the MIME-
typing system to select which handler to invoke.

Starting with this chapter we shift to using the Apache Perl API exclusively for code
examples and function prototypes. The Perl API covers the majority of what C
programmers need to use the C-language API. What's missing are various memory
management functions that are essential to C programmers but irrelevant in Perl. If
you are a C programmer, just have patience and the missing pieces will be filled in
eventually. In the meantime, follow along with the Perl examples and enjoy yourself.
Maybe you'll even become a convert.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

4.1 Content Handlers as File Processors

Early web servers were designed as engines for transmitting physical files from the
host machine to the browser. Even though Apache does much more, the file-oriented
legacy still remains. Files can be sent to the browser unmodified or passed through
content handlers to transform them in various ways before sending them on to the
browser. Even though many of the documents that you produce with modules have
no corresponding physical files, some parts of Apache still behave as if they did.

When Apache receives a request, the URI is passed through any URI translation
handlers that may be installed (see Chapter 7, for information on how to roll your
own), transforming it into a file path. The mod_alias translation handler (compiled in
by default) will first process any Alias, ScriptAlias, Redirect, or other mod_alias
directives. If none applies, the http_core default translator will simply prepend the
DocumentRoot directory to the beginning of the URI.

Next, Apache attempts to divide the file path into two parts: a "filename" part which
usually (but not always) corresponds to a physical file on the host's filesystem, and an
"additional path information" part corresponding to additional stuff that follows the
filename. Apache divides the path using a very simple-minded algorithm. It steps
through the path components from left to right until it finds something that doesn't
correspond to a directory on the host machine. The part of the path up to and
including this component becomes the filename, and everything that's left over
becomes the additional path information.

Consider a site with a document root of /home/www that has just received a request
for URI /abc/def/ghi. The way Apache splits the file path into filename and path
information parts depends on what directories it finds in the document root:

Physical Directory Translated Filename Additional Path Information
/home/www /home/www/abc /def/ghi
/home/www/abc /home/www/abc/def /ghi
/home/www/abc/def /home/www/abc/def/ghi empty
/home/www/abc/def/ghi /home/www/abc/def/ghi empty

The footer on this page was generated automatically by Apache::Footer.

Physical Directory

Note that the presence of any actual files in the path is irrelevant to this process. The
division between the filename and the path information depends only on what
directories are present.

Once Apache has decided where the file is in the path, it determines what MIME type
it might be. This is again one of the places where you can intervene to alter the
process with a custom type handler. The default type handler (mod_mime) just

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

process with a custom type handler. The default type handler (mod_mime) just
compares the filename's extension to a table of MIME types. If there's a match, this
becomes the MIME type. If no match is found, then the MIME type is undefined.
Again, note that this mapping from filename to MIME type occurs even when there's
no actual file there.

There are two special cases. If the last component of the filename happens to be a
physical directory, then Apache internally assigns it a "magic" MIME type, defined by
the DIR_MAGIC_TYPE constant as httpd/unix-directory. This is used by the directory
module to generate automatic directory listings. The second special case occurs
when you have the optional mod_mime_magic module installed and the file actually
exists. In this case Apache will peek at the first few bytes of the file's contents to
determine what type of file it might be. Chapter 7 shows you how to write your own
MIME type checker handlers to implement more sophisticated MIME type
determination schemes.

After Apache has determined the name and type of the file referenced by the URI, it
decides what to do about it. One way is to use information hard-wired into the
module's static data structures. The module's handler_rec table, which we
describe in detail in Chapter 10, declares the module's willingness to handle one or
more magic MIME types and associates a content handler with each one. For
example, the mod_cgi module associates MIME type application/x-httpd-cgi with its
cgi_handler() handler subroutine. When Apache detects that a filename is of type
application/x-httpd-cgi it invokes cgi_handler() and passes it information about the file.
A module can also declare its desire to handle an ordinary MIME type, such as
video/quicktime, or even a wildcard type, such as video/*. In this case, all requests for
URIs with matching MIME types will be passed through the module's content handler
unless some other module registers a more specific type.

Newer modules use a more flexible method in which content handlers are associated
with files at runtime using explicit names. When this method is used, the module
declares one or more content handler names in its handler_rec array instead of, or
in addition to, MIME types. Some examples of content handler names you might have
seen include cgi-script, server-info, server-parsed, imap-file, and perl-script. Handler
names can be associated with files using either AddHandler or SetHandler directives.
AddHandler associates a handler with a particular file extension. For example, a
typical configuration file will contain this line to associate .shtml files with the server-
side include handler:

AddHandler server-parsed .shtml

Now, the server-parsed handler defined by mod_include will be called on to process
all files ending in ".shtml" regardless of their MIME type.

SetHandler is used within <Directory>, <Location>, and <Files> sections to associate
a particular handler with an entire section of the site's URI space. In the two examples
that follow, the <Location> section attaches the server-parsed method to all files
within the virtual directory /shtml, while the <Files> section attaches imap-file to all
files that begin with the prefix "map-":

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Location /shtml>
 SetHandler server-parsed
</Location>

<Files map-*>
 SetHandler imap-file
</Files>

Surprisingly, the AddHandler and SetHandler directives are not actually implemented
in the Apache core. They are implemented by the standard mod_actions module,
which is compiled into the server by default. In Chapter 7, we show how to
reimplement mod_actions using the Perl API.

You'll probably want to use explicitly named content handlers in your modules rather
than hardcoded MIME types. Explicit handler names make configuration files cleaner
and easier to understand. Plus, you don't have to invent a new magic MIME type
every time you add a handler.

Things are slightly different for mod_perl users because two directives are needed to
assign a content handler to a directory or file. The reason for this is that the only real
content handler defined by mod_perl is its internal perl-script handler. You use
SetHandler to assign perl-script the responsibility for a directory or partial URI, and
then use a PerlHandler directive to tell the perl-script handler which Perl module to
execute. Directories supervised by Perl API content handlers will look something like
this:

<Location /graph>
 SetHandler perl-script
 PerlHandler Apache::Graph
</Location>

Don't try to assign perl-script to a file extension using something like AddHandler
perl-script .pl ; this is generally useless because you'd need to set PerlHandler
too. If you'd like to associate a Perl content handler with an extension, you should use
the <Files> directive. Here's an example:

<Files ~ "\.graph$">
 SetHandler perl-script
 PerlHandler Apache::Graph
</Files>

There is no UnSetHandler directive to undo the effects of SetHandler. However,
should you ever need to restore a subdirectory's handler to the default, you can do it
with the directive SetHandler default-handler, as follows:

<Location /graph/tutorial>
 SetHandler default-handler
</Location>

4.1.1 Adding a Canned Footer to Pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To show you how content handlers work, we'll develop a module with the Perl API
that adds a canned footer to all pages in a particular directory. You could use this, for
example, to automatically add copyright information and a link back to the home
page. Later on, we'll turn this module into a full-featured navigation bar.

Figure 4.1. The footer on this page was generated automatically by Apache::Footer.

Example 4.1 gives the code for Apache::Footer, and Figure 4.1 shows a
screenshot of it in action. Since this is our first substantial module, we'll step through
the code section by section.

package Apache::Footer;

use strict;
use Apache::Constants qw(:common);
use Apache::File ();

The code begins by declaring its package name and loading various Perl modules
that it depends on. The use strict pragma activates Perl checks that prevent us from
using global variables before declaring them, disallows the use of function calls
without the parentheses, and prevents other unsafe practices. The
Apache::Constants module defines constants for the various Apache and HTTP result
codes; we bring in only those constants that belong to the frequently used :common
set. Apache::File defines methods that are useful for manipulating files.

sub handler {
 my $r = shift;
 return DECLINED unless $r->content_type() eq 'text/html';

The handler() subroutine does all the work of generating the content. It is roughly
divided into three parts. In the first part, it fetches information about the requested file
and decides whether it wants to handle it. In the second part, it creates the canned
footer dynamically from information that it gleans about the file. In the third part, it
rewrites the file to include the footer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the first part of the process, the handler retrieves the Apache request object and
stores it in $r. Next it calls the request's content_type() method to retrieve its MIME
type. Unless the document is of type text/html, the handler stops here and returns a
DECLINED result code to the server. This tells Apache to pass the document on to
any other handlers that have declared their willingness to handle this type of
document. In most cases, this means that the document or image will be passed
through to the browser in the usual way.

my $file = $r->filename;

 unless (-e $r->finfo) {
 $r->log_error("File does not exist: $file");
 return NOT_FOUND;
 }
 unless (-r _) {
 $r->log_error("File permissions deny access: $file");
 return FORBIDDEN;
 }

At this point we go ahead and recover the file path, by calling the request object's
filename() method. Just because Apache has assigned the document a MIME type
doesn't mean that it actually exists or, if it exists, that its permissions allow it to be
read by the current process. The next two blocks of code check for these cases.
Using the Perl -e file test, we check whether the file exists. If not, we log an error to
the server log using the request object's log_error() method and return a result code
of NOT_FOUND. This will cause the server to return a page displaying the 404 "Not
Found" error (exactly what's displayed is under the control of the ErrorDocument
directive).

There are several ways to perform file status checks in the Perl API. The simplest
way is to recover the file's pathname using the request object's filename() method,
and pass the result to the Perl -e file test:

unless (-e $r->filename) {
 $r->log_error("File does not exist: $file");
 return NOT_FOUND;
}

A more efficient way, however, is to take advantage of the fact that during its path
walking operation Apache already performed a system stat() call to collect filesystem
information on the file. The resulting status structure is stored in the request object
and can be retrieved with the object's finfo() method. So the more efficient idiom is to
use the test -e $r->finfo.

Once finfo() is called, the stat() information is stored into the magic Perl filehandle _
and can be used for subsequent file testing and stat() operations, saving even more
CPU time. Using the _ filehandle, we next test that the file is readable by the current
process and return FORBIDDEN if this isn't the case. This displays a 403 "Forbidden"
error.

my $modtime = localtime((stat _)[9]);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $modtime = localtime((stat _)[9]);

After performing these tests, we get the file modification time by calling stat(). We can
use the _ filehandle here too, avoiding the overhead of repeating the stat() system
call. The modification time is passed to the built-in Perl localtime() function to convert
it into a human-readable string.

my $fh;
 unless ($fh = Apache::File->new($file)) {
 $r->log_error("Couldn't open $file for reading: $!");
 return SERVER_ERROR;
 }

At this point, we attempt to open the file for reading using Apache::File 's new()
method. For the most part, Apache::File acts just like Perl's IO::File object-oriented
I/O package, returning a filehandle on success or undef on failure. Since we've
already handled the two failure modes that we know how to deal with, we return a
result code of SERVER_ERROR if the open is unsuccessful. This immediately aborts all
processing of the document and causes Apache to display a 500 "Internal Server
Error" message.

my $footer = <<END;
<hr>
© 1998 O'Reilly & Associates

Last Modified: $modtime
END

Having successfully opened the file, we build the footer. The footer in this example
script is entirely static, except for the document modification date that is computed on
the fly.

$r->send_http_header;

 while (<$fh>) {
 s!(</BODY>)!$footer$1!oi;
 } continue {
 $r->print($_);
 }

The last phase is to rewrite the document. First we tell Apache to send the HTTP
header. There's no need to set the content type first because it already has the
appropriate value. We then loop through the document looking for the closing
</BODY> tag. When we find it, we use a substitution statement to insert the footer in
front of it. The possibly modified line is now sent to the browser using the request
object's print() method.

return OK;
}

1;

At the end, we return an OK result code to Apache and end the handler subroutine
definition. Like any other .pm file, the module itself must end by returning a true value
(usually 1) to signal Perl that it compiled correctly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If all this checking for the existence and readability of the file before processing
seems a bit pedantic, don't worry. It's actually unnecessary for you to do this. Instead
of explicitly checking the file, we could have simply returned DECLINED if the attempt
to open the file failed. Apache would then pass the URI to the default file handler
which will perform its own checks and display the appropriate error messages.
Therefore we could have replaced the file tests with the single line:

my $fh = Apache::File->new($file) || return DECLINED;

Doing the tests inside the module this way makes the checks explicit and gives us a
chance to intervene to rescue the situation. For example, we might choose to search
for a text file of the same name and present it instead. The explicit tests also improve
module performance slightly, since the system wastes a small amount of CPU time
when it attempts to open a nonexistent file. If most of the files the module serves do
exist, however, this penalty won't be significant.

Example 4.1. Adding a Canned Footer to HTML Pages

package Apache::Footer;
file: Apache/Footer.pm

use strict;
use Apache::Constants qw(:common);
use Apache::File ();

sub handler {
 my $r = shift;
 return DECLINED unless $r->content_type() eq 'text/html';

 my $file = $r->filename;

 unless (-e $r->finfo) {
 $r->log_error("File does not exist: $file");
 return NOT_FOUND;
 }
 unless (-r _) {
 $r->log_error("File permissions deny access: $file");
 return FORBIDDEN;
 }

 my $modtime = localtime((stat _)[9]);

 my $fh;
 unless ($fh = Apache::File->new($file)) {
 $r->log_error("Couldn't open $file for reading: $!");
 return SERVER_ERROR;
 }
 my $footer = <<END;
<hr>
© 1998 http://www.ora.com/">O'Reilly & Associates

Last Modified: $modtime

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Last Modified: $modtime
END

 $r->send_http_header;

 while (<$fh>) {
 s!(</BODY>)!$footer$1!oi;
 } continue {
 $r->print($_);
 }

 return OK;
}

1;
__END__

There are several ways to install and use the Apache::Footer content handler. If all
the files that needed footers were gathered in one place in the directory tree, you
would probably want to attach Apache::Footer to that location:

<Location /footer>
 SetHandler perl-script
 PerlHandler Apache::Footer
</Location>

If the files were scattered about the document tree, it might be more convenient to
map Apache::Footer to a unique filename extension, such as .footer. To achieve this,
the following directives would suffice:

AddType text/html .footer
<Files ~ "\.footer$">
 SetHandler perl-script
 PerlHandler Apache::Footer
</Files>

Note that it's important to associate MIME type text/html with the new extension;
otherwise, Apache won't be able to determine its content type during the MIME type
checking phase.

If your server is set up to allow per-directory access control files to include file
information directives, you can place any of these handler directives inside a
.htaccess file. This allows you to change handlers without restarting the server. For
example, you could replace the <Location> section shown earlier with a .htaccess file
in the directory where you want the footer module to be active:

SetHandler perl-script
PerlHandler Apache::Footer

4.1.2 A Server-Side Include System

The obvious limitation of the Apache::Footer example is that the footer text is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The obvious limitation of the Apache::Footer example is that the footer text is
hardcoded into the code. Changing the footer becomes a nontrivial task, and using
different footers for various parts of the site becomes impractical. A much more
flexible solution is provided by Vivek Khera's Apache::Sandwich module. This module
"sandwiches" HTML pages between canned headers and footers that are determined
by runtime configuration directives. The Apache::Sandwich module also avoids the
overhead of parsing the request document; it simply uses the subrequest mechanism
to send the header, body, and footer files in sequence.

We can provide more power than Apache::Sandwich by using server-side includes.
Server-side includes are small snippets of code embedded within HTML comments.
For example, in the standard server-side includes that are implemented in Apache,
you can insert the current time and date into the page with a comment that looks like
this:

Today is <!--#echo var="DATE_LOCAL"-->.

In this section, we use mod_perl to develop our own system of server-side includes,
using a simple but extensible scheme that lets you add new types of includes at a
moment's whim. The basic idea is that HTML authors will create files that contain
comments of this form:

<!--#DIRECTIVE PARAM1 PARAM2 PARAM3 PARAM4...-->

A directive name consists of any sequence of alphanumeric characters or
underscores. This is followed by a series of optional parameters, separated by
spaces or commas. Parameters that contain whitespace must be enclosed in single
or double quotes in shell command style. Backslash escapes also work in the
expected manner.

The directives themselves are not hardcoded into the module but are instead
dynamically loaded from one or more configuration files created by the site
administrator. This allows the administrator to create a standard menu of includes that
are available to the site's HTML authors. Each directive is a short Perl subroutine. A
simple directive looks like this one:

sub HELLO { "Hello World!"; }

This defines a subroutine named HELLO() that returns the string "Hello World!" A
document can now include the string in its text with a comment formatted like this
one:

I said <!--#HELLO-->

A more complex subroutine will need access to the Apache object and the server-side
include parameters. To accommodate this, the Apache object is passed as the first
function argument, and the server-side include parameters, if any, follow. Here's a
function definition that returns any field from the incoming request's HTTP header,
using the Apache object's header_in() method:

sub HTTP_HEADER {
 my ($r,$field) = @_;
 $r->header_in($field);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

With this subroutine definition in place, HTML authors can insert the User-Agent field
into their document using a comment like this one:

You are using the browser <!-- #HTTP_HEADER User-Agent -->.

Example 4.2 shows an HTML file that uses a few of these includes, and Figure 4.2
shows what the page looks like after processing.

Figure 4.2. A page generated by Apache::ESSI

Example 4.2. An HTML File That Uses Extended Server-Side Includes

<html> <head> <title>Server-Side Includes</title></head>
<body bgcolor=white>
<h1>Server-Side Includes</h1>
This is some straight text.<p>

This is a "<!-- #HELLO -->" include.<p>

The file size is <!-- #FSIZE -->, and it was
last modified on <!-- #MODTIME %x --><p>

Today is <!-- #DATE "%A, in anno domini %Y"-->.<p>

The user agent is <!--#HTTP_HEADER User-Agent-->.<p>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The user agent is <!--#HTTP_HEADER User-Agent-->.<p>

Oops: <!--#OOPS 0--><p>

Here is an included file:
<pre>
<!--#INCLUDE /include.txt 1-->
</pre>

<!--#FOOTER-->
</body> </html>

Implementing this type of server-side include system might seem to be something of
a challenge, but in fact the code is surprisingly compact (Example 4.3). This module
is named Apache::ESSI , for "extensible server-side includes."

Again, we'll step through the code one section at a time.

package Apache::ESSI;

use strict;
use Apache::Constants qw(:common);
use Apache::File ();
use Text::ParseWords qw(quotewords);
my (%MODIFIED, %SUBSTITUTION);

We start as before by declaring the package name and loading various Perl library
modules. In addition to the modules that we loaded in the Apache::Footer example,
we import the quotewords() function from the standard Perl Text::ParseWords
module. This routine provides command shell-like parsing of strings that contain
quote marks and backslash escapes. We also define two lexical variables,
%MODIFIED and %SUBSTITUTION, which are global to the package.

sub handler {
 my $r = shift;
 $r->content_type() eq 'text/html' || return DECLINED;
 my $fh = Apache::File->new($r->filename) || return DECLINED;
 my $sub = read_definitions($r) || return SERVER_ERROR;
 $r->send_http_header;
 $r->print($sub->($r, $fh));
 return OK;
}

The handler() subroutine is quite short. As in the Apache::Footer example, handler()
starts by examining the content type of the document being requested and declines to
handle requests for non-HTML documents. The handler recovers the file's physical
path by calling the request object's filename() method and attempts to open it. If the
file open fails, the handler again returns an error code of DECLINED. This avoids
Apache::Footer 's tedious checking of the file's existence and access permissions, at
the cost of some efficiency every time a nonexistent file is requested.

Once the file is opened, we call an internal function named read_definitions(). This

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once the file is opened, we call an internal function named read_definitions(). This
function reads the server-side includes configuration file and generates an
anonymous subroutine to do the actual processing of the document. If an error occurs
while processing the configuration file, read_definitions() returns undef and we return
SERVER_ERROR in order to abort the transaction. Otherwise, we send the HTTP
header and invoke the anonymous subroutine to perform the substitutions on the
contents of the file. The result of invoking the subroutine is sent to the client using the
request object's print() method, and we return a result code of OK to indicate that
everything went smoothly.

sub read_definitions {
 my $r = shift;
 my $def = $r->dir_config('ESSIDefs');
 return unless $def;
 return unless -e ($def = $r->server_root_relative($def));

Most of the interesting work occurs in read_definitions(). The idea here is to read the
server-side include definitions, compile them, and then use them to generate an
anonymous subroutine that does the actual substitutions. In order to avoid
recompiling this subroutine unnecessarily, we cache its code reference in the
package variable %SUBSTITUTION and reuse it if we can.

The read_definitions() subroutine begins by retrieving the path to the file that contains
the server-side include definitions. This information is contained in a per-directory
configuration variable named ESSIDefs, which is set in the configuration file using
the PerlSetVar directive and retrieved within the handler with the request object's
dir_config() method (see the end of the example for a representative configuration file
entry). If, for some reason, this variable isn't present, we return undef. Like other
Apache configuration files, we allow this file to be specified as either an absolute path
or a partial path relative to the server root. We pass the path to the request object's
server_root_relative() method. This convenient function prepends the server root to
relative paths and leaves absolute paths alone. We next check that the file exists
using the -e file test operator and return undef if not.

return $SUBSTITUTION{$def} if $MODIFIED{$def} && $MODIFIED{$def} <= -M _;

Having recovered the name of the definitions file, we next check the cache to see
whether the subroutine definitions are already cached and, if so, whether the file
hasn't changed since the code was compiled and cached. We use two hashes for this
purpose. The %SUBSTITUTION array holds the compiled code and %MODIFIED
contains the modification date of the definition file the last time it was compiled. Both
hashes are indexed by the definition file's path, allowing the module to handle the
case in which several server-side include definition files are used for different parts of
the document tree. If the modification time listed in %MODIFIED is less than or equal
to the definition file's current modification date, we return the cached subroutine.

my $package = join "::", __PACKAGE__, $def;
 $package =~ tr/a-zA-Z0-9_/_/c;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $package =~ tr/a-zA-Z0-9_/_/c;

The next two lines are concerned with finding a unique namespace in which to
compile the server-side include functions. Putting the functions in their own
namespace decreases the chance that function side effects will have unwanted
effects elsewhere in the module. We take the easy way out here by using the path to
the definition file to synthesize a package name, which we store in a variable named
$package.

eval "package $package; do '$def'";
 if($@) {
 $r->log_error("Eval of $def did not return true: $@");
 return;
 }

We then invoke eval() to compile the subroutine definitions into the newly chosen
namespace. We use the package declaration to set the namespace and do to load
and run the definitions file. We use do here rather than the more common require
because do unconditionally recompiles code files even if they have been loaded
previously. If the eval was unsuccessful, we log an error and return undef.

$SUBSTITUTION{$def} = sub {
 do_substitutions($package, @_);
 };
 $MODIFIED{$def} = -M $def; # store modification date
 return $SUBSTITUTION{$def};
}

Before we exit read_definitions(), we create a new anonymous subroutine that
invokes the do_substitutions() function, store this subroutine in %SUBSTITUTION, and
update %MODIFIED with the modification date of the definitions file. We then return
the code reference to our caller. We interpose a new anonymous subroutine here so
that we can add the contents of the $package variable to the list of variables passed
to the do_substitutions() function.

sub do_substitutions {
 my $package = shift;
 my($r, $fh) = @_;
 # Make sure that eval() errors aren't trapped.
 local $SIG{__WARN__};
 local $SIG{__DIE__};
 local $/; #slurp $fh
 my $data = <$fh>;
 $data =~ s/<!--\s*\#(\w+) # start of a function name
 \s*(.*?) # optional parameters
 \s*--> # end of comment
 /call_sub($package, $1, $r, $2)/xseg;
 $data;
}

When handler() invokes the anonymous subroutine, it calls do_substitutions() to do
the replacement of the server-side include directives with the output of their
corresponding routines. We start off by localizing the $SIG{__WARN__} and $SIG{_
DIE _} handlers and setting them back to the default Perl CORE::warn() and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DIE _} handlers and setting them back to the default Perl CORE::warn() and
CORE::die() subroutines. This is a paranoid precaution against the use of CGI::Carp,
which some mod_perl users load into Apache during the startup phase in order to
produce nicely formatted server error log messages. The subroutine continues by
fetching the lines of the page to be processed and joining them in a single scalar
value named $data.

We then invoke a string substitution function to replace properly formatted comment
strings with the results of invoking the corresponding server-side include function. The
substitution uses the e flag to treat the replacement part as a Perl expression to be
evaluated and the g flag to perform the search and replace globally. The search half
of the function looks like this:

/<!--\s*\#(\w+)\s*(.*?)\s*-->/

This detects the server-side include comments while capturing the directive name in
$1 and its optional arguments in $2.

The replacement of the function looks like this:

/call_sub($package, $1, $r, $2)/

This just invokes another utility function, call_sub(), passing it the package name, the
directive name, the request object, and the list of parameters.

sub call_sub {
 my($package, $name, $r, $args) = @_;
 my $sub = \&{join '::', $package, $name};
 $r->chdir_file;
 my $res = eval { $sub->($r, quotewords('[,]',0,$args)) };
 return "[$@]" if $@;
 return $res;
}

The call_sub() routine starts off by obtaining a reference to the subroutine using its
fully qualified name. It does this by joining the package name to the subroutine name
and then using the funky Perl \&{...} syntax to turn this string into a subroutine
reference. As a convenience to the HTML author, before invoking the subroutine we
call the request object's chdir_file() method. This simply makes the current directory
the same as the requested file, which in this case is the HTML file containing the
server-side includes.

The server-side include function is now invoked, passing it the request object and the
optional arguments. We call quotewords() to split up the arguments on commas or
whitespace. In order to trap fatal runtime errors that might occur during the function's
execution, the call is done inside an eval{} block. If the call function fails, we return the
error message it died with captured within $@. Otherwise, we return the value of the
call function.

At the bottom of Example 4.3 is an example entry for perl.conf (or httpd.conf if you
prefer). The idea here is to make Apache::ESSI the content handler for all files ending
with the extension .ehtml. We do this with a <Files> configuration section that
contains the appropriate SetHandler and PerlHandler directives. We use the
PerlSetVar directive to point the module to the server-relative definitions file,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PerlSetVar directive to point the module to the server-relative definitions file,
conf/essi.defs.

In addition to the <Files> section, we need to ensure that Apache knows that .ehtml
files are just a special type of HTML file. We use AddType to tell Apache to treat
.ehtml files as MIME type text/html.

You could also use <Location> or <Directory> to assign the Apache::ESSI content
handler to a section of the document tree, or a different <Files> directive to make
Apache::ESSI the content handler for all HTML files.

Example 4.3. An Extensible Server-Side Include System

package Apache::ESSI;
file: Apache/ESSI.pm

use strict;
use Apache::Constants qw(:common);
use Apache::File ();
use Text::ParseWords qw(quotewords);
my (%MODIFIED, %SUBSTITUTION);

sub handler {
 my $r = shift;
 $r->content_type() eq 'text/html' || return DECLINED;
 my $fh = Apache::File->new($r->filename) || return DECLINED;
 my $sub = read_definitions($r) || return SERVER_ERROR;
 $r->send_http_header;
 $r->print($sub->($r, $fh));
 return OK;
}

sub read_definitions {
 my $r = shift;
 my $def = $r->dir_config('ESSIDefs');
 return unless $def;
 return unless -e ($def = $r->server_root_relative($def));
 return $SUBSTITUTION{$def} if $MODIFIED{$def} && $MODIFIED{$def} <= -M _;

 my $package = join "::", __PACKAGE__, $def;
 $package =~ tr/a-zA-Z0-9_/_/c;

 eval "package $package; do '$def'";

 if($@) {
 $r->log_error("Eval of $def did not return true: $@");
 return;
 }

 $SUBSTITUTION{$def} = sub {
 do_substitutions($package, @_);
 };

 $MODIFIED{$def} = -M $def; # store modification date
 return $SUBSTITUTION{$def};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return $SUBSTITUTION{$def};
}

sub do_substitutions {
 my $package = shift;
 my($r, $fh) = @_;
 # Make sure that eval() errors aren't trapped.
 local $SIG{__WARN__};
 local $SIG{__DIE__};
 local $/; #slurp $fh
 my $data = <$fh>;
 $data =~ s/<!--\s*\#(\w+) # start of a function name
 \s*(.*?) # optional parameters
 \s*--> # end of comment
 /call_sub($package, $1, $r, $2)/xseg;
 $data;
}

sub call_sub {
 my($package, $name, $r, $args) = @_;
 my $sub = \&{join '::', $package, $name};
 $r->chdir_file;
 my $res = eval { $sub->($r, quotewords('[,]',0,$args)) };
 return "[$@]" if $@;
 return $res;
}

1;
__END__

Here are some perl.conf directives to go with Apache::ESSI :

<Files ~ "\.ehtml$">
 SetHandler perl-script
 PerlHandler Apache::ESSI
 PerlSetVar ESSIDefs conf/essi.defs
</Files>
AddType text/html .ehtml

At this point you'd probably like a complete server-side include definitions file to go
with the module. Example 4.4 gives a short file that defines a core set of functions
that you can build on top of. Among the functions defined here are ones for inserting
the size and modification date of the current file, the date, fields from the browser's
HTTP request header, and a function that acts like the C preprocessor #include
macro to insert the contents of a file into the current document. There's also an
include called OOPS which divides the number 10 by the argument you provide. Pass
it an argument of zero to see how runtime errors are handled.

The INCLUDE() function inserts whole files into the current document. It accepts
either a physical pathname or a "virtual" path in URI space. A physical path is only
allowed if it lives in or below the current directory. This is to avoid exposing sensitive
files such as /etc/passwd.

If the $virtual flag is passed, the function translates from URI space to a physical

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the $virtual flag is passed, the function translates from URI space to a physical
path name using the lookup_uri() and filename() methods:

$file = $r->lookup_uri($path)->filename;

The request object's lookup_uri() method creates an Apache subrequest for the
specified URI. During the subrequest, Apache does all the processing that it ordinarily
would on a real incoming request up to, but not including, activating the content
handler. lookup_uri() returns an Apache::SubRequest object, which inherits all its
behavior from the Apache request class. We then call this object's filename() method
in order to retrieve its translated physical file name.

Example 4.4. If you're a fan of server-side includes, you should also check out the Apache
Embperl and ePerl packages. Both packages, along with several others available from the
CPAN, build on mod_perl to create a Perl-like programming language embedded entirely within
server-side includes.

Definitions for server-side includes.
This file is require'd, and therefore must end with
a true value.

use Apache::File ();
use Apache::Util qw(ht_time size_string);

insert the string "Hello World!"
sub HELLO {
 my $r = shift;
 "Hello World!";
}

insert today's date possibly modified by a strftime() format
string
sub DATE {
 my ($r,$format) = @_;
 return scalar(localtime) unless $format;
 return ht_time(time, $format, 0);
}

insert the modification time of the document, possibly modified
by a strftime() format string.
sub MODTIME {
 my ($r,$format) = @_;
 my $mtime = (stat $r->finfo)[9];
 return localtime($mtime) unless $format;
 return ht_time($mtime, $format, 0);
}

insert the size of the current document
sub FSIZE {
 my $r = shift;
 return size_string -s $r->finfo;
}

divide 10 by the argument (used to test runtime error trapping)
sub OOPS { 10/$_[1]; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

insert a canned footer
sub FOOTER {
 my $r = shift;
 my $modtime = MODTIME($r);
 return <<END;
<hr>
© 1998 O'Reilly & Associates

Last Modified: $modtime
END
}

insert the named field from the incoming request
sub HTTP_HEADER {
 my ($r,$h) = @_;
 $r->header_in($h);
}

#ensure that path is relative, and does not contain ".."
sub is_below_only { $_[0] !~ m:(^/|(^|/)\.\.(/|$)): }

Insert the contents of a file. If the $virtual flag is set
does a document-root lookup, otherwise treats filename as a
physical path.
sub INCLUDE {
 my ($r,$path,$virtual) = @_;
 my $file;
 if($virtual) {
 $file = $r->lookup_uri($path)->filename;
 }
 else {
 unless(is_below_only($path)) {
 die "Can't include $path\n";
 }
 $file = $path;
 }
 my $fh = Apache::File->new($file) || die "Couldn't open $file: $!\n";
 local $/;
 return <$fh>;
}

1;

If you're a fan of server-side includes, you should also check out the Apache Embperl
and ePerl packages. Both packages, along with several others available from the
CPAN, build on mod_perl to create a Perl-like programming language embedded
entirely within server-side includes.

4.1.3 Converting Image Formats

Another useful application of Apache content handlers is converting file formats on
the fly. For example, with a little help from the Aladdin Ghostscript interpreter, you can
dynamically convert Adobe Acrobat (PDF) files into GIF images when dealing with a
browser that doesn't have the Acrobat plug-in installed.[1]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[1] At least in theory, you can divine what MIME types a browser prefers by examining the contents of the Accept
header with $r->header_in('Accept'). According to the HTTP protocol, this should return a list of MIME types
that the browser can handle along with a numeric preference score. The CGI.pm module even has an accept()
function that leverages this information to choose the best format for a given document type. Unfortunately, this part of
the HTTP protocol has atrophied, and neither Netscape's nor Microsoft's browsers give enough information in the
Accept header to make it useful for content negotiation.

In this section, we show a content handler that converts image files on the fly. It takes
advantage of Kyle Shorter's Image::Magick package, the Perl interface to John
Cristy's ImageMagick library. Image::Magick interconverts a large number of image
formats, including JPEG, PNG, TIFF, GIF, MPEG, PPM, and even PostScript. It can
also transform images in various ways, such as cropping, rotating, solarizing,
sharpening, sampling, and blurring.

The Apache::Magick content handler accepts URIs in this form:

/path/to/image.ext/Filter1/Filter2?arg=value&arg=value...

In its simplest form, the handler can be used to perform image format conversions on
the fly. For example, if the actual file is named bluebird.gif and you request
bluebird.jpg, the content handler automatically converts the GIF into a JPEG file and
returns it. You can also pass arguments to the converter in the query string. For
example, to specify a progressive JPEG image (interlace = "Line") with a quality
of 50 percent, you can fetch the file by requesting a URI like this one:

/images/bluebird.jpg?interlace=Line&quality=50

You can also run one or more filters on the image prior to the conversion. For
example, to apply the "Charcoal" filter (which makes the image look like a charcoal
sketch) and then put a decorative border around it (the "Frame" filter), you can
request the image like this:

/images/bluebird.jpg/Charcoal/Frame?quality=75

Any named arguments that need to be passed to the filter can be appended to the
query string, along with the conversion arguments. In the last example, we can
specify a gold-colored frame this way:

/images/bluebird.jpg/Charcoal/Frame?quality=75&color=gold

This API doesn't allow you to direct arguments to specific filters. Fortunately, most of
the filters that you might want to apply together don't have overlapping argument
names, and filters ignore any arguments that don't apply to them. The full list of filters
and conversion operations can be found at the PerlMagick web site, located at
http://www.wizards.dupont.com/cristy/www/perl.html. You'll find pointers to
the latest ImageMagick code library there as well.

One warning before you use this Apache module on your system: some of the
operations can be very CPU-intensive, particularly when converting an image with
many colors, such as JPEG, to one that has few colors, such as GIF. You should also
be prepared for Image::Magick 's memory consumption, which is nothing short of
voracious.

Example 4.5 shows the code for Apache::Magick.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package Apache::Magick;

use strict;
use Apache::Constants qw(:common);
use Image::Magick ();
use Apache::File ();
use File::Basename qw(fileparse);
use DirHandle ();

We begin as usual by bringing in the modules we need. We bring in
Apache::Constants, File::Basename for its file path parsing utilities, DirHandle() for
object-oriented interface to directory reading functions, and the Image::Magick
module itself.

my %LegalArguments = map { $_ => 1 }
qw (adjoin background bordercolor colormap colorspace
 colors compress density dispose delay dither
 display font format iterations interlace
 loop magick mattecolor monochrome page pointsize
 preview_type quality scene subimage subrange
 size tile texture treedepth undercolor);

my %LegalFilters = map { $_ => 1 }
qw(AddNoise Blur Border Charcoal Chop
 Contrast Crop Colorize Comment CycleColormap
 Despeckle Draw Edge Emboss Enhance Equalize Flip Flop
 Frame Gamma Implode Label Layer Magnify Map Minify
 Modulate Negate Normalize OilPaint Opaque Quantize
 Raise ReduceNoise Rotate Sample Scale Segment Shade
 Sharpen Shear Solarize Spread Swirl Texture Transparent
 Threshold Trim Wave Zoom);

We then define two hashes, one for all the filter and conversion arguments
recognized by Image::Magick and the other for the various filter operations that are
available. These lists were cut and pasted from the Image::Magick documentation.
We tried to exclude the ones that were not relevant to this module, such as ones that
create multiframe animations, but a few may have slipped through.

sub handler {
 my $r = shift;

 # get the name of the requested file
 my $file = $r->filename;

 # If the file exists and there are no transformation arguments
 # just decline the transaction. It will be handled as usual.
 return DECLINED unless $r->args || $r->path_info || !-r $r->finfo;

The handler() routine begins as usual by fetching the name of the requested file. We
decline to handle the transaction if the file exists, the query string is empty, and the
additional path information is empty as well. This is just the common case of the
browser trying to fetch an unmodified existing file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $source;
 my ($base, $directory, $extension) = fileparse($file, '\.\w+');
 if (-r $r->finfo) { # file exists, so it becomes the source
 $source = $file;
 }
 else { # file doesn't exist, so we search for it
 return DECLINED unless -r $directory;
 $source = find_image($r, $directory, $base);
 }

 unless ($source) {
 $r->log_error("Couldn't find a replacement for $file");
 return NOT_FOUND;
 }

We now use File::Basename 's fileparse() function to parse the requested file into its
basename (the filename without the extension), the directory name, and the
extension. We check again whether we can read the file, and if so it becomes the
source for the conversion. Otherwise, we search the directory for another image file to
convert into the format of the requested file. For example, if the URI requested is
bluebird.jpeg and we find a file named bluebird.gif, we invoke Image::Magick to do the
conversion. The search is done by an internal subroutine named find_image(), which
we'll examine later. If successful, the name of the source image is stored in $source.
If unsuccessful, we log the error with the log_error() function and return a NOT_FOUND
result code.

$r->send_http_header;
 return OK if $r->header_only;

At this point, we send the HTTP header using send_http_header() . The next line
represents an optimization that we haven't seen before. It may be that the client isn't
interested in the content of the image file, but just in its meta-information, such as its
length and MIME type. In this case, the browser sends an HTTP HEAD request rather
than the usual GET. When Apache receives a HEAD request, it sets header_only() to
true. If we see that this has happened, we return from the handler immediately with an
OK status code. Although it wouldn't hurt to send the document body anyway,
respecting the HEAD request results in a slight savings in processing efficiency and
makes the module compliant with the HTTP protocol.

my $q = Image::Magick->new;
 my $err = $q->Read($source);

Otherwise, it's time to read the source image into memory. We create a new
Image::Magick object, store it in a variable named $q, and then load the source
image file by calling its Read() method. Any error message returned by Read() is
stored into a variable called $err.

my %arguments = $r->args;

 # Run the filters
 for (split '/', $r->path_info) {
 my $filter = ucfirst $_;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $filter = ucfirst $_;
 next unless $LegalFilters{$filter};
 $err ||= $q->$filter(%arguments);
 }

 # Remove invalid arguments before the conversion
 for (keys %arguments) {
 delete $arguments{$_} unless $LegalArguments{$_};
 }

The next phase of the process is to prepare for the image manipulation. The first thing
we do is tidy up the input parameters. We retrieve the query string parameters by
calling the request object's args() method and store them in a hash named
%arguments.

We then call the request object's path_info() method to retrieve the additional path
information. We split the path info into a series of filter names and canonicalize them
by capitalizing their initial letters using the Perl built-in operator ucfirst() . Each of the
filters is applied in turn, skipping over any that aren't on the list of filters that
Image::Magick accepts. We do an OR assignment into $err, so that we maintain the
first non-null error message, if any. Having run the files, we remove from the
%arguments array any arguments that aren't valid in Image::Magick 's file format
conversion calls.

Create a temporary file name to use for conversion
 my($tmpnam, $fh) = Apache::File->tmpfile;

Image::Magick needs to write the image to a temporary file. We call the Apache::File
tmpfile() method to create a suitable temporary file name. If successful, tmpfile()
returns the name of the temporary file, which we store in the variable $tmpnam, and a
filehandle open for writing into the file, which we store in the variable $fh. The
tmpfile() method is specially written to avoid a "race condition" in which the temporary
file name appears to be unused when the module first checks for it but is created by
someone else before it can be opened.

Write out the modified image
 open(STDOUT, ">&=" . fileno($fh));

The next task is to have Image::Magick perform the requested conversion and write it
to the temporary file. The safest way to do this would be to pass it the temporary file's
already opened filehandle. Unfortunately, Image::Magick doesn't accept filehandles;
its Write() method expects a filename, or the special filename - to write to standard
output. However, we can trick it into writing to the filehandle by reopening standard
output on the filehandle, which we do by passing the filehandle's numeric file
descriptor to open() using the rarely seen >&= notation. See the open() entry in the
perlfunc manual page for complete details.

Since STDOUT gets reset before every Perl API transaction, there's no need to save
and restore its original value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$extension =~ s/^\.//;
 $err ||= $q->Write('filename' => "\U$extension\L:-", %arguments);
 if ($err) {
 unlink $tmpnam;
 $r->log_error($err);
 return SERVER_ERROR;
 }
 close $fh;

We now call Image::Magick 's Write() method with the argument
'filename'=>EXTENSION:- where EXTENSION is the uppercased extension of
the document that the remote user requested. We also tack on any conversion
arguments that were requested. For example, if the remote user requested
bluebird.jpg?quality=75, the call to Write() ends up looking like this:

$q->Write('filename'=>'JPG:-','quality'=>75);

If any errors occurred during this step or the previous ones, we delete the temporary
file, log the errors, and return a SERVER_ERROR status code.

At this point the conversion is all done!
 # reopen for reading
 $fh = Apache::File->new($tmpnam);
 unless ($fh) {
 $r->log_error("Couldn't open $tmpnam: $!");
 return SERVER_ERROR;
 }

 # send the file
 $r->send_fd($fh);

 # clean up and go
 unlink $tmpnam;
 return OK;
}

If the call to Write() was successful, we need to send the contents of the temporary
file to the waiting browser. We could open the file, read its contents, and send it off
using a series of print() calls, as we've done previously, but in this case there's a
slightly easier way. After reopening the file with Apache::File 's new() method, we call
the request object's send_fd() method to transmit the contents of the filehandle in
one step. The send_fd() method accepts all the same filehandle data types as the
Perl built-in I/O operators. After sending off the file, we clean up by unlinking the
temporary file and returning an OK status.

We'll now turn our attention to the find_image() subroutine, which is responsible for
searching the directory for a suitable file to use as the image source if the requested
file can't be found:

sub find_image {
 my ($r, $directory, $base) = @_;
 my $dh = DirHandle->new($directory) or return;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $dh = DirHandle->new($directory) or return;

The find_image() utility subroutine is straightforward. It takes the request object, the
parsed directory name, and the basename of the requested file and attempts to
search this directory for an image file that shares the same basename. The routine
opens a directory handle with DirHandle->new() and iterates over its entries.

my $source;
 for my $entry ($dh->read) {
 my $candidate = fileparse($entry, '\.\w+');
 if ($base eq $candidate) {
 # determine whether this is an image file
 $source = join '', $directory, $entry;
 my $subr = $r->lookup_file($source);
 last if $subr->content_type =~ m:^image/:;
 undef $source;
 }
 }

For each entry in the directory listing, we parse out the basename using fileparse(). If
the basename is identical to the one we're searching for, we call the request object's
lookup_file() method to activate an Apache subrequest. lookup_file() is similar to
lookup_uri(), which we saw earlier in the context of server-side includes, except that
it accepts a physical pathname rather than a URI. Because of this, lookup_file() will
skip the URI translation phase, but it will still cause Apache to trigger all the various
handlers up to, but not including, the content handler.

In this case, we're using the subrequest for the sole purpose of getting at the MIME
type of the file. If the file is indeed an image of one sort or another, then we save the
request in a lexical variable and exit the loop. Otherwise, we keep searching.

$dh->close;
 return $source;
}

At the end of the loop, $source will be undefined if no suitable image file was found,
or it will contain the full pathname to the image file if we were successful. We close
the directory handle, and return $source.

Example 4.5. Apache::Magick Converts Image Formats on the Fly

package Apache::Magick;
file: Apache/Magick.pm

use strict;
use Apache::Constants qw(:common);
use Image::Magick ();
use Apache::File ();
use File::Basename qw(fileparse);
use DirHandle ();

my %LegalArguments = map { $_ => 1 }
qw (adjoin background bordercolor colormap colorspace
 colors compress density dispose delay dither

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 colors compress density dispose delay dither
 display font format iterations interlace
 loop magick mattecolor monochrome page pointsize
 preview_type quality scene subimage subrange
 size tile texture treedepth undercolor);

my %LegalFilters = map { $_ => 1 }
qw(AddNoise Blur Border Charcoal Chop
 Contrast Crop Colorize Comment CycleColormap
 Despeckle Draw Edge Emboss Enhance Equalize Flip Flop
 Frame Gamma Implode Label Layer Magnify Map Minify
 Modulate Negate Normalize OilPaint Opaque Quantize
 Raise ReduceNoise Rotate Sample Scale Segment Shade
 Sharpen Shear Solarize Spread Swirl Texture Transparent
 Threshold Trim Wave Zoom);

sub handler {
 my $r = shift;

 # get the name of the requested file
 my $file = $r->filename;

 # If the file exists and there are no transformation arguments
 # just decline the transaction. It will be handled as usual.
 return DECLINED unless $r->args || $r->path_info || !-r $r->finfo;

 my $source;
 my ($base, $directory, $extension) = fileparse($file, '\.\w+');
 if (-r $r->finfo) { # file exists, so it becomes the source
 $source = $file;
 }
 else { # file doesn't exist, so we search for it
 return DECLINED unless -r $directory;
 $source = find_image($r, $directory, $base);
 }

 unless ($source) {
 $r->log_error("Couldn't find a replacement for $file");
 return NOT_FOUND;
 }

 $r->send_http_header;
 return OK if $r->header_only;

 # Read the image
 my $q = Image::Magick->new;
 my $err = $q->Read($source);

 # Conversion arguments are kept in the query string, and the
 # image filter operations are kept in the path info
 my %arguments = $r->args;

 # Run the filters
 for (split '/', $r->path_info) {
 my $filter = ucfirst $_;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $filter = ucfirst $_;
 next unless $LegalFilters{$filter};
 $err ||= $q->$filter(%arguments);
 }

 # Remove invalid arguments before the conversion
 for (keys %arguments) {
 delete $arguments{$_} unless $LegalArguments{$_};
 }

 # Create a temporary file name to use for conversion
 my($tmpnam, $fh) = Apache::File->tmpfile;

 # Write out the modified image
 open(STDOUT, ">&=" . fileno($fh));
 $extension =~ s/^\.//;
 $err ||= $q->Write('filename' => "\U$extension\L:-", %arguments);
 if ($err) {
 unlink $tmpnam;
 $r->log_error($err);
 return SERVER_ERROR;
 }
 close $fh;

 # At this point the conversion is all done!
 # reopen for reading
 $fh = Apache::File->new($tmpnam);
 unless ($fh) {
 $r->log_error("Couldn't open $tmpnam: $!");
 return SERVER_ERROR;
 }

 # send the file
 $r->send_fd($fh);

 # clean up and go
 unlink $tmpnam;
 return OK;
}

sub find_image {
 my ($r, $directory, $base) = @_;
 my $dh = DirHandle->new($directory) or return;

 my $source;
 for my $entry ($dh->read) {
 my $candidate = fileparse($entry, '\.\w+');
 if ($base eq $candidate) {
 # determine whether this is an image file
 $source = join '', $directory, $entry;
 my $subr = $r->lookup_file($source);
 last if $subr->content_type =~ m:^image/:;
 undef $source;
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 $dh->close;
 return $source;
}

1;
__END__

Here is a perl.conf entry to go with Apache::Magick :

<Location /images>
 SetHandler perl-script
 PerlHandler Apache::Magick
</Location>

4.1.4 A Dynamic Navigation Bar

Many large web sites use a navigation bar to help users find their way around the
main subdivisions of the site. Simple navigation bars are composed entirely of link
text, while fancier ones use inline images to create the illusion of a series of buttons.
Some sites use client-side Java, JavaScript, or frames to achieve special effects like
button "rollover," in which the button image changes when the mouse passes over it.
Regardless of the technology used to display the navigation bar, they can be
troublesome to maintain. Every time you add a new page to the site, you have to
remember to insert the correct HTML into the page to display the correct version of
the navigation bar. If the structure of the site changes, you might have to manually
update dozens or hundreds of HTML files.

Apache content handlers to the rescue. In this section, we develop a navigation bar
module called Apache::NavBar. When activated, this module automatically adds a
navigation bar to the tops and bottoms of all HTML pages on the site. Each major
content area of the site is displayed as a hypertext link. When an area is "active" (the
user is viewing one of the pages contained within it), its link is replaced with
highlighted text (see Figure 4.3).

Figure 4.3. The navigation bar at the top of this page was generated dynamically by
Apache::NavBar.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this design, the navigation bar is built dynamically from a configuration file. Here's
the one that Lincoln uses at his laboratory's site at http://stein.cshl.org:

Configuration file for the navigation bar
/index.html Home
/jade/ Jade
/AcePerl/ AcePerl
/software/boulder/ BoulderIO
/software/WWW/ WWW
/linux/ Linux

The right column of this configuration file defines six areas named "Home," "Jade,"
"AcePerl," "BoulderIO," "WWW," and "Linux" (the odd names correspond to various
software packages). The left column defines the URI that each link corresponds to.
For example, selecting the "Home" link takes the user to /index.html. These URIs are
also used by the navigation bar generation code to decide when to display an area as
active. In the example above, any page that starts with /linux/ is considered to be part
of the "Linux" area and its label will be appropriately highlighted. In contrast, since
/index.html refers to a file rather than a partial path, only the home page itself is
considered to be contained within the "Home" area.

Example 4.6 gives the complete code for Apache::NavBar. At the end of the
example is a sample entry for perl.conf (or httpd.conf if you prefer) which activates the
navigation bar for the entire site.

package Apache::NavBar;
file Apache/NavBar.pm

use strict;
use Apache::Constants qw(:common);
use Apache::File ();

my %BARS = ();
my $TABLEATTS = 'WIDTH="100%" BORDER=1';
my $TABLECOLOR = '#C8FFFF';
my $ACTIVECOLOR = '#FF0000';

The preamble brings in the usual modules and defines some constants that will be
used later in the code. Among the constants are ones that control the color and size
of the navigation bar.

sub handler {
 my $r = shift;
 my $bar = read_configuration($r) || return DECLINED;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $bar = read_configuration($r) || return DECLINED;

The handler() function starts by calling an internal function named
read_configuration() , which, as its name implies, parses the navigation bar
configuration file. If successful, the function returns a custom-designed NavBar object
that implements the methods we need to build the navigation bar on the fly. As in the
server-side includes example, we cache NavBar objects in the package global %BARS
and only re-create them when the configuration file changes. The cache logic is all
handled internally by read_configuration().

If, for some reason, read_configuration() returns an undefined value, we decline the
transaction by returning DECLINED. Apache will display the page, but the navigation
bar will be missing.

$r->content_type eq 'text/html' || return DECLINED;
 my $fh = Apache::File->new($r->filename) || return DECLINED;

As in the server-side include example, we check the MIME type of the requested file.
If it isn't of type text/html, then we can't add a navigation bar to it and we return
DECLINED to let Apache take its default actions. Otherwise, we attempt to open the
file by calling Apache::File 's new() method. If this fails, we again return DECLINED to
let Apache generate the appropriate error message.

my $navbar = make_bar($r, $bar);

Having successfully processed the configuration file and opened the requested file,
we call an internal subroutine named make_bar() to create the HTML text for the
navigation bar. We'll look at this subroutine momentarily. This fragment of HTML is
stored in a variable named $navbar.

$r->send_http_header;
 return OK if $r->header_only;

 local $/ = "";
 while (<$fh>) {
 s:(</BODY>):$navbar$1:i;
 s:(<BODY.*?>):1navbar:si;
 } continue {
 $r->print($_);
 }

 return OK;
}

The remaining code should look familiar. We send the HTTP header and loop through
the text in paragraph-style chunks looking for all instances of the <BODY> and
</BODY> tags. When we find either tag we insert the navigation bar just below or
above it. We use paragraph mode (by setting $/ to the empty string) in order to catch
documents that have spread the initial <BODY> tag among multiple lines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub make_bar {
 my($r, $bar) = @_;
 # create the navigation bar
 my $current_url = $r->uri;
 my @cells;

The make_bar() function is responsible for generating the navigation bar HTML code.
First, it recovers the current document's URI by calling the Apache request object's
uri() method. Next, it calls $bar->urls() to fetch the list of partial URIs for the site's
major areas and iterates over the areas in a for() loop:

for my $url ($bar->urls) {
 my $label = $bar->label($url);
 my $is_current = $current_url =~ /^$url/;
 my $cell = $is_current ?
 qq($label)
 : qq($label);
 push @cells,
 qq(<TD CLASS="navbar" ALIGN=CENTER BGCOLOR="$TABLECOLOR">$cell</TD>\n);
 }

For each URI, the code fetches its human-readable label by calling $bar->label() and
determines whether the current document is part of the area using a pattern match.
What happens next depends on whether the current document is part of the area or
not. In the former case, the code generates a label enclosed within a tag
with the COLOR attribute set to red. In the latter case, the code generates a hypertext
link. The label or link is then pushed onto a growing array of HTML table cells.

return qq(<TABLE $TABLEATTS><TR>@cells</TR></TABLE>\n);
}

At the end of the loop, the code incorporates the table cells into a one-row table and
returns the HTML to the caller.

We next look at the read_configuration() function:

sub read_configuration {
 my $r = shift;
 my $conf_file;
 return unless $conf_file = $r->dir_config('NavConf');
 return unless -e ($conf_file = $r->server_root_relative($conf_file));

Potentially there can be several configuration files, each one for a different part of the
site. The path to the configuration file is specified by a per-directory Perl configuration
variable named NavConf. We retrieve the path to the configuration file with
dir_config(), convert it into an absolute path name with server_root_relative(), and test
that the file exists with the -e operator.

my $mod_time = (stat _)[9];
 return $BARS{$conf_file} if $BARS{$conf_file}
 && $BARS{$conf_file}->modified >= $mod_time;
 return $BARS{$conf_file} = NavBar->new($conf_file);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Because we don't want to reparse the configuration each time we need it, we cache
the NavBar object in much the same way we did with the server-side include
example. Each NavBar object has a modified() method that returns the time that its
configuration file was modified. The NavBar objects are held in a global cache named
%BARS and indexed by the name of the configuration files. The next bit of code calls
stat() to return the configuration file's modification time—notice that we can stat() the
_ filehandle because the foregoing -e operation will have cached its results. We then
check whether there is already a ready-made NavBar object in the cache, and if so,
whether its modification date is not older than the configuration file. If both tests are
true, we return the cached object; otherwise, we create a new one by calling the
NavBar new() method.

You'll notice that we use a different technique for finding the modification date here
than we did in Apache::ESSI (Example 4.3). In the previous example, we used the
-M file test flag, which returns the relative age of the file in days since the Perl
interpreter was launched. In this example, we use stat() to determine the absolute age
of the file from the filesystem timestamp. The reason for this will become clear later,
when we modify the module to handle If-Modified-Since caching.

Toward the bottom of the example is the definition for the NavBar class. It defines
three methods named new(), urls(), and label() :

package NavBar;

create a new NavBar object
sub new {
 my ($class,$conf_file) = @_;
 my (@c,%c);
 my $fh = Apache::File->new($conf_file) || return;
 while (<$fh>) {
 chomp;
 s/^\s+//; s/\s+$//; # fold leading and trailing whitespace
 next if /^#/ || /^$/; # skip comments and empty lines
 next unless my($url, $label) = /^(\S+)\s+(.+)/;
 push @c, $url; # keep the url in an ordered array
 $c{$url} = $label; # keep its label in a hash
 }
 return bless {'urls' => \@c,
 'labels' => \%c,
 'modified' => (stat $conf_file)[9]}, $class;
}

The new() method is called to parse a configuration file and return a new NavBar
object. It opens up the indicated configuration file, splits each row into the URI and
label parts, and stores the two parts into a hash. Since the order in which the various
areas appear in the navigation bar is significant, this method also saves the URIs to
an ordered array.

return ordered list of all the URIs in the navigation bar
sub urls { return @{shift->{'urls'}}; }

return the label for a particular URI in the navigation bar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

return the label for a particular URI in the navigation bar
sub label { return $_[0]->{'labels'}->{$_[1]} || $_[1]; }

return the modification date of the configuration file
sub modified { return $_[0]->{'modified'}; }

1;

The urls() method returns the ordered list of areas, and the label() method uses the
NavBar object's hash to return the human-readable label for the given URI. If none is
defined, it just returns the URL. modified() returns the modification time of the
configuration file.

Example 4.6. A Dynamic Navigation Bar

package Apache::NavBar;
file Apache/NavBar.pm

use strict;
use Apache::Constants qw(:common);
use Apache::File ();

my %BARS = ();
my $TABLEATTS = 'WIDTH="100%" BORDER=1';
my $TABLECOLOR = '#C8FFFF';
my $ACTIVECOLOR = '#FF0000';

sub handler {
 my $r = shift;
 my $bar = read_configuration($r) || return DECLINED;
 $r->content_type eq 'text/html' || return DECLINED;
 my $fh = Apache::File->new($r->filename) || return DECLINED;
 my $navbar = make_bar($r, $bar);

 $r->send_http_header;
 return OK if $r->header_only;

 local $/ = "";
 while (<$fh>) {
 s:(</BODY>):$navbar$1:oi;
 s:(<BODY.*?>):1navbar:osi;
 } continue {
 $r->print($_);
 }

 return OK;
}

sub make_bar {
 my($r, $bar) = @_;
 # create the navigation bar
 my $current_url = $r->uri;
 my @cells;
 for my $url ($bar->urls) {
 my $label = $bar->label($url);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $label = $bar->label($url);
 my $is_current = $current_url =~ /^$url/;
 my $cell = $is_current ?
 qq($label)
 : qq($label);
 push @cells,
 qq(<TD CLASS="navbar" ALIGN=CENTER BGCOLOR="$TABLECOLOR">$cell</TD>\n);
 }
 return qq(<TABLE $TABLEATTS><TR>@cells</TR></TABLE>\n);
}

read the navigation bar configuration file and return it as a hash.
sub read_configuration {
 my $r = shift;
 my $conf_file;
 return unless $conf_file = $r->dir_config('NavConf');
 return unless -e ($conf_file = $r->server_root_relative($conf_file));
 my $mod_time = (stat _)[9];
 return $BARS{$conf_file} if $BARS{$conf_file}
 && $BARS{$conf_file}->modified >= $mod_time;
 return $BARS{$conf_file} = NavBar->new($conf_file);
}

package NavBar;

create a new NavBar object
sub new {
 my ($class,$conf_file) = @_;
 my (@c,%c);
 my $fh = Apache::File->new($conf_file) || return;
 while (<$fh>) {
 chomp;
 s/^\s+//; s/\s+$//; # fold leading and trailing whitespace
 next if /^#/ || /^$/; # skip comments and empty lines
 next unless my($url, $label) = /^(\S+)\s+(.+)/;
 push @c, $url; # keep the url in an ordered array
 $c{$url} = $label; # keep its label in a hash
 }
 return bless {'urls' => \@c,
 'labels' => \%c,
 'modified' => (stat $conf_file)[9]}, $class;
}

return ordered list of all the URIs in the navigation bar
sub urls { return @{shift->{'urls'}}; }

return the label for a particular URI in the navigation bar
sub label { return $_[0]->{'labels'}->{$_[1]} || $_[1]; }

return the modification date of the configuration file
sub modified { return $_[0]->{'modified'}; }

1;
__END__

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__END__

A configuration file section to go with Apache::NavBar might read:

<Location />
 SetHandler perl-script
 PerlHandler Apache::NavBar
 PerlSetVar NavConf conf/navigation.conf
</Location>

Because so much of what Apache::NavBar and Apache:ESSI do is similar, you might
want to merge the navigation bar and server-side include examples. This is just a
matter of cutting and pasting the navigation bar code into the server-side function
definitions file and then writing a small stub function named NAVBAR(). This stub
function will call the subroutines that read the configuration file and generate the
navigation bar table. You can then incorporate the appropriate navigation bar into
your pages anywhere you like with an include like this one:

<!--#NAVBAR-->

4.1.5 Handling If-Modified-Since

One of us (Lincoln) thought the virtual navigation bar was so neat that he immediately
ran out and used it for all documents on his site. Unfortunately, he had some pretty
large (>400 MB) files there, and he soon noticed something interesting. Before
installing the navigation bar handler, browsers would cache the large HTML files
locally and only download them again when they had changed. After installing the
handler, however, the files were always downloaded. What happened?

When a browser is asked to display a document that it has cached locally, it sends
the remote server a GET request with an additional header field named If-Modified-
Since. The request looks something like this:

GET /index.html HTTP/1.0
If-Modified-Since: Tue, 24 Feb 1998 11:19:03 GMT
User-Agent:

(etc. etc. etc.)

The server will compare the document's current modification date to the time given in
the request. If the document is more recent than that, it will return the whole
document. Otherwise, the server will respond with a 304 "not modified" message and
the browser will display its cached copy. This reduces network bandwidth usage
dramatically.

When you install a custom content handler, the If-Modified-Since mechanism no
longer works unless you implement it. In fact, you can generally ignore If-Modified-
Since because content handlers usually generate dynamic documents that change

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since because content handlers usually generate dynamic documents that change
from access to access. However, in some cases the content you provide is sufficiently
static that it pays to cache the documents. The navigation bar is one such case
because even though the bar is generated dynamically, it rarely changes from day to
day.

In order to handle If-Modified-Since caching, you have to settle on a definition for the
document's most recent modification date. In the case of a static document, this is
simply the modification time of the file. In the case of composite documents that
consist equally of static file content and a dynamically generated navigation bar, the
modification date is either the time that the HTML file was last changed or the time
that the navigation bar configuration file was changed, whichever happens to be more
recent. Fortunately for us, we're already storing the configuration file's modification
date in the NavBar object, so finding this aggregate modification time is relatively
simple.

To use these routines, simply add the following just before the call to $r-
>send_http_header in the handler() subroutine:

$r->update_mtime($bar->modified);
$r-.set_last_modified;
my $rc = $r-> meets_conditions
return $rc unless $rc == OK;

We first call the update_mtime() function with the navigation bar's modification date.
This function will compare the specified date with the modification date of the request
document and update the request's internal mtime field to the most recent of the two.
We then call set_last_modified() to copy the mtime field into the outgoing Last-
Modified header. If a synthesized document depends on several configuration files,
you should call update_mtime() once for each configuration file, followed by
set_last_modified() at the very end.

The complete code for the new and improved Apache::NavBar, with the If-Modified-
Since improvements, can be found at this book's companion web site.

If you think carefully about this module, you'll see that it still isn't strictly correct.
There's a third modification date that we should take into account, that of the module
source code itself. Changes to the source code may affect the appearance of the
document without changing the modification date of either the configuration file or the
HTML file. We could add a new update_mtime() with the modification time of the
Apache::NavBar module, but then we'd have to worry about modification times of
libraries that Apache::NavBar depends on, such as Apache::File. This gets hairy very
quickly, which is why caching becomes a moot issue for any dynamic document much
more complicated than this one. See Section 9.4 in Chapter 9, for a complete
rundown of the methods that are available to you for controlling HTTP/1.1 caching.

4.1.6 Sending Static Files

If you want your content handler to send a file through without modifying it, the easiest
way is to let Apache do all the work for you. Simply return DECLINED from your

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

way is to let Apache do all the work for you. Simply return DECLINED from your
handler (before you send the HTTP header or the body) and the request will fall
through to Apache's default handler. This is a lot easier, not to mention faster, than
opening up the file, reading it line by line, and transmitting it unchanged. In addition,
Apache will automatically handle a lot of the details for you, first and foremost of
which is handling the If-Modified-Since header and other aspects of client-side
caching.

If you have a compelling reason to send static files manually, see Using Apache::File
to Send Static Files in Chapter 9 for a full description of the technique. Also see
Section 4.3 later in this chapter, for details on how to direct the browser to request a
different URI or to make Apache send the browser a different document from the one
that was specifically requested.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

4.2 Virtual Documents

The previous sections of this chapter have been concerned with transforming existing
files. Now we turn our attention to spinning documents out of thin air. Despite the fact
that these two operations seem very different, Apache content handlers are
responsible for them both. A content handler is free to ignore the translation of the
URI that is passed to it. Apache neither knows nor cares that the document produced
by the content handler has no correspondence to a physical file.

We've already seen an Apache content handler that produces a virtual document.
Chapter 2, gave the code for Apache::Hello, an Apache Perl module that produces a
short HTML document. For convenience, we show it again in Example 4.7. This
content handler is essentially identical to the previous content handlers we've seen.
The main difference is that the content handler sets the MIME content type itself,
calling the request object's content_type() method to set the MIME type to type
text/html. This is in contrast to the idiom we used earlier, where the handler allowed
Apache to choose the content type for it. After this, the process of emitting the HTTP
header and the document itself is the same as we've seen before.

After setting the content type, the handler calls send_http_header() to send the HTTP
header to the browser, and immediately exits with an OK status code if header_only()
returns true (this is a slight improvement over the original Chapter 2 version of the
program). We call get_remote_host() to get the DNS name of the remote host
machine, and incorporate the name into a short HTML document that we transmit
using the request object's print() method. At the end of the handler, we return OK.

There's no reason to be limited to producing virtual HTML documents. You can just
as easily produce images, sounds, and other types of multimedia, provided of course
that you know how to produce the file format that goes along with the MIME type.

Example 4.7. "Hello World" Redux

package Apache::Hello;
file: Apache/Hello.pm

use strict;
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;
 $r->content_type('text/html');
 $r->send_http_header;
 return OK unless $r->header_only;
 my $host = $r->get_remote_host;
 $r->print(<<END);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $r->print(<<END);
<HTML>
<HEAD>
<TITLE>Hello There</TITLE>
</HEAD>
<BODY>
<H1>Hello $host</H1>
"Hello world" is a terribly overused phrase in programming books,
don't you think?
</BODY>
</HTML>
END
 return OK;
}

1;

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

4.3 Redirection

Instead of synthesizing a document, a content handler has the option of redirecting
the browser to fetch a different URI using the HTTP redirect mechanism. You can use
this facility to randomly select a page or picture to display in response to a URI
request (many banner ad generators work this way) or to implement a custom
navigation system.

Redirection is extremely simple with the Apache API. You need only add a Location
field to the HTTP header containing the full or partial URI of the desired destination,
and return a REDIRECT result code. A complete functional example using mod_perl is
only a few lines (Example 4.8). This module, named Apache::GoHome , redirects
users to the hardcoded URI http://www.ora.com/. When the user selects a document
or a portion of the document tree that this content handler has been attached to, the
browser will immediately jump to that URI.

The module begins by importing the REDIRECT error code from Apache::Constants
(REDIRECT isn't among the standard set of result codes imported with :common). The
handler() method then adds the desired location to the outgoing headers by calling
Apache::header_out(). header_out() can take one or two arguments. Called with one
argument, it returns the current value of the indicated HTTP header field. Called with
two arguments, it sets the field indicated by the first argument to the value indicated
by the second argument. In this case, we use the two-argument form to set the HTTP
Location field to the desired URI.

The final step is to return the REDIRECT result code. There's no need to generate an
HTML body, since most HTTP-compliant browsers will take you directly to the
Location URI. However, Apache adds an appropriate body automatically in order to
be HTTP-compliant. You can see the header and body message using telnet:

% telnet localhost 80
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
GET /gohome HTTP/1.0
HTTP/1.1 302 Moved Temporarily
Date: Mon, 05 Oct 1998 22:15:17 GMT
Server: Apache/1.3.3-dev (Unix) mod_perl/1.16
Location: http://www.ora.com/
Connection: close
Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>302 Moved Temporarily</TITLE>
</HEAD><BODY>
<H1>Moved Temporarily</H1>
The document has moved here.<P>
</BODY></HTML>
Connection closed by foreign host.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Connection closed by foreign host.

You'll notice from this example that the REDIRECT status causes a "Moved
Temporarily" message to be issued. This is appropriate in most cases because it
makes no warrants to the browser that it will be redirected to the same location the
next time it tries to fetch the desired URI. If you wish to redirect permanently, you
should use the MOVED status code instead, which results in a " 301 Moved
Permanently" message. A smart browser might remember the redirected URI and
fetch it directly from its new location the next time it's needed.

Example 4.8. Generating a Redirect from a Content Handler

package Apache::GoHome;
file: Apache/GoHome.pm

use strict;
use Apache::Constants qw(REDIRECT);

sub handler {
 my $r = shift;
 $r->content_type('text/html');
 $r->header_out(Location => 'http://www.ora.com/');
 return REDIRECT;
}

1;
__END__

As a more substantial example of redirection in action, consider Apache::RandPicture
(Example 4.9) which randomly selects a different image file to display each time it's
called. It works by selecting an image file from among the contents of a designated
directory, then redirecting the browser to that file's URI. In addition to demonstrating a
useful application of redirection, it again shows off the idiom for interconverting
physical file names and URIs.

The handler begins by fetching the name of a directory to fetch the images from,
which is specified in the server configuration file by the Perl variable PictureDir.
Because the selected image has to be directly fetchable by the browser, the image
directory must be given as a URI rather than as a physical path.

The next task is to convert the directory URI into a physical directory path. The
subroutine adds a / to the end of the URI if there isn't one there already (ensuring
that Apache treats the URI as a directory), then calls the request object's lookup_uri()
and filename() methods in order to perform the URI translation steps. The code looks
like this:

my $subr = $r->lookup_uri($dir_uri);
 my $dir = $subr->filename;

Now we need to obtain a listing of image files in the directory. The simple way to do
this would be to use the Perl glob operator, for instance:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chdir $dir;
@files = <*.{jpg,gif}>;

However, this technique is flawed. First off, on many systems the glob operation
launches a C subshell, which sends performance plummeting and won't even work on
systems without the C shell (like Win32 platforms). Second, it makes assumptions
about the extension types of image files. Your site may have defined an alternate
extension for image files (or may be using a completely different system for keeping
track of image types, such as the Apache MIME magic module), in which case this
operation will miss some images.

Instead, we create a DirHandle object using Perl's directory handle object wrapper.
We call the directory handle's read() method repeatedly to iterate through the
contents of the directory. For each item we ask Apache what it thinks the file's MIME
type should be, by calling the lookup_uri() method to turn the filename into a
subrequest and content_type() to fetch the MIME type information from the
subrequest. We perform a pattern match on the returned type and, if the file is one of
the MIME image types, add it to a growing list of image URIs. The subrequest object's
uri() method is called to return the absolute URI for the image. The whole process
looks like this:

my @files;
 for my $entry ($dh->read) {
 # get the file's MIME type
 my $rr = $subr->lookup_uri($entry);
 my $type = $rr->content_type;
 next unless $type =~ m:^image/:;
 push @files, $rr->uri;
 }

Note that we look up the directory entry's filename by calling the subrequest object's
lookup_uri() method rather than using the main request object stored in $r. This
takes advantage of the fact that subrequests will look up relative paths relative to their
own URI.

The next step is to select a member of this list randomly, which we do using this time-
tested Perl idiom:

my $lucky_one = $files[rand @files];

The last step is to set the Location header to point at this file (being sure to express
the location as a URI) and to return a REDIRECT result code. If you install the module
using the sample configuration file and tag shown at the bottom of the listing,
a different picture will be displayed every time you load the page.

Example 4.9. Redirecting the Browser to a Randomly Chosen Picture

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package Apache::RandPicture;
file: Apache/RandPicture.pm

use strict;
use Apache::Constants qw(:common REDIRECT);
use DirHandle ();

sub handler {
 my $r = shift;
 my $dir_uri = $r->dir_config('PictureDir');
 unless ($dir_uri) {
 $r->log_reason("No PictureDir configured");
 return SERVER_ERROR;
 }
 $dir_uri .= "/" unless $dir_uri =~ m:/$:;

 my $subr = $r->lookup_uri($dir_uri);
 my $dir = $subr->filename;
 # Get list of images in the directory.
 my $dh = DirHandle->new($dir);
 unless ($dh) {
 $r->log_error("Can't read directory $dir: $!");
 return SERVER_ERROR;
 }

 my @files;
 for my $entry ($dh->read) {
 # get the file's MIME type
 my $rr = $subr->lookup_uri($entry);
 my $type = $rr->content_type;
 next unless $type =~ m:^image/:;
 push @files, $rr->uri;
 }
 $dh->close;
 unless (@files) {
 $r->log_error("No image files in directory");
 return SERVER_ERROR;
 }

 my $lucky_one = $files[rand @files];
 $r->header_out(Location => $lucky_one);
 return REDIRECT;
}

1;
__END__

A configuration section to go with Apache::RandPicture might be:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Location /random/picture>
 SetHandler perl-script
 PerlHandler Apache::RandPicture
 PerlSetVar PictureDir /banners
</Location>

And you'd use it in an HTML document like this:

<image src="/random/picture" alt="[Our Sponsor]">

Although elegant, this technique for selecting a random image file suffers from a bad
performance bottleneck. Instead of requiring only a single network operation to get
the picture from the server to the browser, it needs two round-trips across the
network: one for the browser's initial request and redirect and one to fetch the image
itself.

You can eliminate this overhead in several different ways. The more obvious
technique is to get rid of the redirection entirely and simply send the image file
directly. After selecting the random image and placing it in the variable $lucky_one,
we replace the last two lines of the handler() subroutine with code like this:

$subr = $r->lookup_uri($lucky_one);
 $r->content_type($subr->content_type);
 $r->send_http_header;
 return OK unless $r->header_only;
 my $fh = Apache::File->new($subr->filename) || return FORBIDDEN;
 $r->send_fd($fh);

We create yet another subrequest, this one for the selected image file, then use
information from the subrequest to set the outgoing content type. We then open up
the file and send it with the send_fd() method.

However, this is still a little wasteful because it requires you to open up the file
yourself. A more subtle solution would be to let Apache do the work of sending the file
by invoking the subrequest's run() method. run() invokes the subrequest's content
handler to send the body of the document, just as if the browser had made the
request itself. The code now looks like this:

my $subr = $r->lookup_uri($lucky_one);
 unless ($subr->status == DOCUMENT_FOLLOWS) {
 $r->log_error("Can't lookup file $lucky_one}: $!");
 return SERVER_ERROR;
 }
 $r->content_type($subr->content_type);
 $r->send_http_header;
 return OK if $r->header_only;
 $subr->run;
 return OK;

We call lookup_uri() and check the value returned by its status() method in order to
make sure that it is DOCUMENT_FOLLOWS (status code 200, the same as HTTP_OK).
This constant is not exported by Apache::Constants by default but has to be imported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This constant is not exported by Apache::Constants by default but has to be imported
explicitly. We then set the main request's content type to the same as that of the
subrequest, and send off the appropriate HTTP header. Finally, we call the
subrequest's run() method to invoke its content handler and send the contents of the
image to the browser.

4.3.1 Internal Redirection

The two Apache::RandPicture optimizations that we showed in the previous section
involve a lot of typing, and the resulting code is a bit obscure. A far more elegant
solution is to let Apache do all the work for you with its internal redirection
mechanism. In this scheme, Apache handles the entire redirection internally. It
pretends that the web browser made the request for the new URI and sends the
contents of the file, without letting the browser in on the secret. It is functionally
equivalent to the solution that we showed at the end of the preceding section.

To invoke the Apache internal redirection system, modify the last two lines of
Apache::RandPicture 's handler() subroutine to read like this:

$r->internal_redirect($lucky_one);
 return OK;

The request object's internal_redirect() method takes a single argument consisting of
an absolute local URI (one starting with a /). The method does all the work of
translating the URI, invoking its content handler, and returning the file contents, if any.
Unfortunately internal_redirect() returns no result code, so there's no way of knowing
whether the redirect was successful (you can't do this from a conventional redirect
either). However, the call will return in any case, allowing you to do whatever cleanup
is needed. You should exit the handler with a result code of OK.

In informal benchmarks, replacing the basic Apache::RandPicture with a version that
uses internal redirection increased the throughput by a factor of two, exactly what
we'd expect from halving the number of trips through the network. In contrast,
replacing all the MIME type lookups with a simpler direct grep for image file
extensions had negligible effect on the speed of the module. Apache's subrequest
mechanism is very efficient.

If you have very many images in the random pictures directory (more than a few
hundred), iterating through the directory listing each time you need to fetch an image
will result in a noticeable performance hit. In this case, you'll want to cache the
directory listing in a package variable the first time you generate it and only rebuild
the listing when the directory's modification time changes (or just wait for a server
restart, if the directory doesn't change often). You could adapt the Apache::ESSI
caching system for this purpose.

Internal redirection is a win for most cases when you want to redirect the browser to a
different URI on your own site. Be careful not to use it for external URIs, however. For
these, you must either use standard redirection or invoke Apache's proxy API
(Chapter 7).

When you use internal redirection to pass control from one module to another, the
second module in the chain can retrieve the original query string, the document URI,
and other information about the original request by calling the request object's prev()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and other information about the original request by calling the request object's prev()
method or, in Apache::Registry scripts only, by examining certain environment
variables. There is also a way, using Apache::err_header_out() for the original
module to set various HTTP header fields, such as cookies, that will be transferred to
the second across the internal redirect. Because internal redirects are most
commonly used in error handlers, these techniques are discussed in the section
Section 4.6" later in this chapter.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

4.4 Processing Input

You can make the virtual documents generated by the Apache API interactive in
exactly the way that you would documents generated by CGI scripts. Your module will
generate an HTML form for the user to fill out. When the user completes and submits
the form, your module will process the parameters and generate a new document,
which may contain another fill-out form that prompts the user for additional
information. In addition, you can store information inside the URI itself by placing it in
the additional path information part.

4.4.1 CGI Parameters

When a fill-out form is submitted, the contents of its fields are turned into a series of
name=value parameter pairs that are available for your module's use. Unfortunately,
correctly processing these parameter pairs is annoying because, for a number of
historical reasons, there are a variety of formats that you must know about and deal
with. The first complication is that the form may be submitted using either the HTTP
GET or POST method. If the GET method is used, the URI encoded parameter pairs
can be found separated by ampersands in the "query string," the part of the URI that
follows the ? character:

http://your.site/uri/path?name1=val1&name2=val2&name3=val3...

To recover the parameters from a GET request, mod_perl users should use the
request object's args() method. In a scalar context this method returns the entire
query string, ampersands and all. In an array context, this method returns the parsed
name=value pairs; however, you will still have to do further processing in order to
correctly handle multivalued parameters. This feature is only found in the Perl API.
Programmers who use the C API must recover the query string from the request
object's args field and do all the parsing manually.

If the client uses the POST method to submit the fill-out form, the parameter pairs can
be found in something called the "client block." C API users must call three functions
named setup_client_block(), should_client_block(), and get_client_block() in order
to retrieve the information.

While these methods are also available in the Perl API, mod_perl users have an
easier way: they need only call the request object's content() method to retrieve the
preparsed list of name=value pairs. However, there's a catch: this only works for the
older application/x-www-form-urlencoded style of parameter encoding. If the browser
uses the newer multipart/form-data encoding (which is used for file uploads, among
other things), then mod_perl users will have to read and parse the content information
themselves. read() will fetch the unparsed content information by looping until the
requested number of bytes have been read (or a predetermined timeout has
occurred). Fortunately, there are a number of helpful modules that allow mod_perl
programmers to accept file uploads without parsing the data themselves, including
CGI.pm and Apache::Request, both of which we describe later.

To show you the general technique for prompting and processing user input,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To show you the general technique for prompting and processing user input,
Example 4.10 gives a new version of Apache::Hello. It looks for a parameter named
user_name and displays a customized welcome page, if present. Otherwise, it
creates a more generic message. In both cases, it also displays a fill-out form that
prompts the user to enter a new value for user_name. When the user presses the
submission button labeled "Set Name," the information is POSTed to the module and
the page is redisplayed (Figure 4.4).

Figure 4.4. The Apache::Hello2 module can process user input.

The code is very simple. On entry to handler() the module calls the request object's
method() method to determine whether the handler was invoked using a POST
request, or by some other means (usually GET). If the POST method was used, the
handler calls the request object's content() method to retrieve the posted parameters.
Otherwise, it attempts to retrieve the information from the query string by calling args(
) . The parsed name=value pairs are now stuffed into a hash named %params for
convenient access.

Having processed the user input, if any, the handler retrieves the value of the
user_name parameter from the hash and stores it in a variable. If the parameter is
empty, we default to "Unknown User."

The next step is to generate the document. We set the content type to text/html as
before and emit the HTTP header. We again call the request object's header_only() to
determine whether the client has requested the entire document or just the HTTP
header information.

This is followed by a single long Apache::print() statement. We create the HTML
header and body, along with a suitable fill-out form. Notice that we use the current
value of the user name variable to initialize the appropriate text field. This is a frill that
we have always thought was kind of neat.

Example 4.10. Processing User Input with the Apache Perl API

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package Apache::Hello2;
file: Apache/Hello2.pm
use strict;
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;
 my %params = $r->method eq 'POST' ? $r->content : $r->args;
 my $user_name = $params{'user_name'} || 'Unknown User';

 $r->content_type('text/html');
 $r->send_http_header;
 return OK if $r->header_only;

 $r->print(<<END);
<HTML>
<HEAD>
<TITLE>Hello There</TITLE>
</HEAD>
<BODY>
<H1>Hello $user_name</H1>
Who would take this book seriously if the first example didn\'t
say "hello $user_name"?
<HR>
<FORM METHOD="POST">
Enter your name: <INPUT TYPE="text" NAME="user_name" VALUE="$user_name">
<INPUT TYPE="submit" VALUE="Set Name">
</FORM>
</BODY>
</HTML>
END

 return OK;
}

1;
__END__

A perl.conf entry to go with it might read:

<Location /hello/friend>
 SetHandler perl-script
 PerlHandler Apache::Hello2
</Location>

This method of processing user input is only one of several equally valid alternatives.
For example, you might want to work with query string and POSTed parameters
simultaneously, to accommodate this type of fill-out form:

<FORM ACTION="/hello/friend?day=saturday" METHOD="POST">
 <INPUT TYPE="text" NAME="user_name">
 <INPUT TYPE="submit">
</FORM>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</FORM>

In this case, you could recover the values of both the day and user_name parameters
using a code fragment like this one:

my %params = ($r->args, $r->content);

If the same parameter is present in both the query string and the POSTed values,
then the latter will override the former. Depending on your application's logic, you
might like this behavior. Alternatively, you could store the two types of parameter in
different places or take different actions depending on whether the parameters were
submitted via GET or POST. For example, you might want to use query string
parameters to initialize the default values of the fill-out form and enter the information
into a database when a POST request is received.

When you store the parsed parameters into a hash, you lose information about
parameters that are present more than once. This can be bad if you are expecting
multivalued parameters, such as those generated by a selection list or a series of
checkboxes linked by the same name. To keep multivalued information, you need to
do something like this:

my %params;
my @args = ($r->args, $r->content);
while (my($name,$value) = splice @args,0,2) {
 push @{$params{$name}}, $value;
}

This bit of code aggregates the GET and POST parameters into a single array named
@args. It then loops through each name=value pair, building up a hash in which the
key is the parameter name and the value is an array reference containing all the
values for that parameter. This way, if you have a selection list that generates query
strings of the form:

vegetable=kale&vegetable=broccoli&vegetable=carrots

you can recover the complete vegetable list in this manner:

@vegetables = @{$params{'vegetable'}};

An alternative is to use a module that was still in development at the time this chapter
was written. This module, named Apache::Request , uses the CGI.pm-style method
calls to process user input but does so efficiently by going directly to the request
object. With this module, the user input parameters are retrieved by calling param().
Call param() without any arguments to retrieve a list of all the parameter names. Call
param() with a parameter name to return a list of the values for that parameter in an
array context, and the first member of the list in a scalar context. Unlike the vanilla
request object, input of type multipart/form-data is handled correctly, and uploaded
files can be recovered too (using the same API as CGI.pm).

To take advantage of Apache::Request in our "Hello World" module, we modify the
top part of the module to read as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package Apache::Hello3;
file: Apache/Hello3.pm

use strict;
use Apache::Constants qw(:common);
use Apache::Request;

sub handler {
 my $r = Apache::Request->new(shift);
 my $user_name = $r->param('user_name') || 'Unknown User';
 $r->content_type('text/html');
 $r->print(<<END);
Who cares if every single example
says "Hello World"???!
END
;
...

The main detail here is that instead of retrieving the request object directly, we wrap it
inside an Apache::Request object. Apache::Request adds param() and a few other
useful methods and inherits all other method calls from the Apache class. More
information will be found in the Apache::Request manual page when that package is
officially released.

Like CGI.pm, Apache::Request allows you to handle browser file uploading, although
it is somewhat different in detail from the interface provided in CGI.pm versions 2.46
and lower (the two libraries have been brought into harnony in Version 2.47). As in
ordinary CGI, you create a file upload field by defining an <INPUT> element of type
"file" within a <FORM> section of type "multipart/form-data". After the form is
POSTed, you retrieve the file contents by reading from a filehandle returned by the
Apache::Request upload() method. This code fragment illustrates the technique:

my $r = Apache::Request->new(shift);
my $moose = 0;
my $uploaded_file = $r->upload('uploaded-file');
my $uploaded_name = $r->param('uploaded-file');
while (<$uploaded_file>) {
 $moose++ if /moose/;
}
print "$moose moose(s) found in $uploaded_name\n";

4.4.2 Additional Path Information

Recall that after Apache parses an incoming URI to figure out what module to invoke,
there may be some extra bits left over. This extra stuff becomes the "additional path
information" and is available for your module to use in any way it wishes. Because it
is hierarchical, the additional path information part of the URI follows all the same
relative path rules as the rest of the URI. For example, .. means to move up one

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

relative path rules as the rest of the URI. For example, .. means to move up one
level. For this reason, additional path information is often used to navigate through a
virtual document tree that is dynamically created and maintained by a CGI script or
module. However, you don't have to take advantage of the hierarchical nature of path
information. You can just use it as a handy place to store variables. In the next
chapter, we'll use additional path information to stash a session identifier for a long-
running web application.

Apache modules fetch additional path information by calling the request object's
path_info() method. If desired, they can then turn the path information into a physical
filename by calling lookup_uri() .

An example of how additional path information can be used as a virtual document
tree is shown in Example 4.11, which contains the code for Apache::TreeBrowser .
This module generates a series of documents that are organized in a browseable tree
hierarchy that is indistinguishable to the user from a conventional HTML file hierarchy.
However, there are no physical files. Instead, the documents are generated from a
large treelike Perl data structure that specifies how each "document" should be
displayed. Here is an excerpt:

'bark'=>{
 -title=>'The Wrong Tree',
 -contents=>'His bark was worse than his bite.',
 'smooth'=>{
 -title=>'Like Butter',
 -contents=>'As smooth as silk.'
 },
 'rough'=>{
 -title=>'Ruffled',
 -contents=>"Don't get rough with me."
 },
 }...

In this bit of the tree, a document named "bark" has the title "The Wrong Tree" and
the contents "His bark was worse than his bite." Beneath this document are two
subdocuments named "smooth" and "rough." The "smooth" document has the title
"Like Butter" and the contents "As smooth as silk." The "rough" document is similarly
silly. These subdocuments can be addressed with the additional path information
/bark/smooth and /bark/rough, respectively. The parent document, naturally enough,
is addressed by /bark. Within the module, we call each chunk of this data structure a
"node."

Using the information contained in the data structure, Apache::TreeBrowser
constructs the document and displays its information along with a browseable set of
links organized in hierarchical fashion (see Figure 4.5). As the user moves from
document to document, the currently displayed document is highlighted—sort of a
hierarchical navigation bar!

Figure 4.5. Apache::TreeBrowser creates a hierarchical navigation tree.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The source code listing is long, so we'll run through it a chunk at a time:

package Apache::TreeBrowser;

use strict;
use Apache::Constants qw(:common REDIRECT);

my $TREE = make_tree();

sub handler {
 my $r = shift;

The module starts by importing the usual Apache constants and the REDIRECT result
code. It then creates the browseable tree by calling an internal subroutine named
make_tree() and stores the information in a package global named $TREE. In a real-
life application, this data structure would be created in some interesting way, for
example, using a query on a database, but in this case make_tree() just returns the
hardcoded data structure that follows the __DATA__ token at the end of the code.

my $path_info = $r->path_info;
 my $path_translated = $r->lookup_uri($path_info)->filename;
 my $current_uri = $r->uri;

Now's the time to process the additional path information. The handler fetches the
path information by calling the request object's path_info() method and fetches the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

path information by calling the request object's path_info() method and fetches the
module's base URI by calling uri(). Even though we won't be using it, we transform
the additional path information into a physical pathname by calling lookup_uri() and
filename(). This is useful for seeing how Apache does URI translation.

unless ($path_info) {
 $r->header_out(Location => "$current_uri/");
 return REDIRECT;
 }

For this module to work correctly, some additional path information has to be
provided, even if it's only a / character. If we find that the additional path information
is empty, we rectify the situation by redirecting the browser to our URI with an
additional / appended to the end. This is similar to the way that Apache redirects
browsers to directories when the terminal slash is omitted.

$r->content_type('text/html');
 $r->send_http_header;
 return OK if $r->header_only;
 my($junk, @components) = split "/", $path_info;

 # follow the components down
 my($node, $name) = ($TREE, '');
 foreach (@components) {
 last unless $node->{$_};
 $name = $_;
 $node = $node->{$_};
 }

At this point we begin to construct the document. We set the content type to text/html,
send out the HTTP header, and exit if header_only() returns true. Otherwise, we split
the path information into its components and then traverse the tree, following each
component name until we either reach the last component on the list or come to a
component that doesn't have a corresponding entry in the tree (which sometimes
happens when users type in the URI themselves). By the time we reach the end of
the tree traversal, the variable $node points to the part of the tree that is referred to
by the additional path information or, if the path information wasn't entirely correct, to
the part of the tree corresponding to the last valid path component.

$r->print(<<END);
<HTML>
<HEAD>
<TITLE>$node->{-title}</TITLE>
</HEAD>
<BODY BGCOLOR="white">
<H1>$node->{-title}</H1>

Contents = $node->{-contents}

<H2>Navigation Tree</H2>
END
 my $prefix = "http://http://../" x @components;
 print $prefix ?
 qq(<H3>Tree Root</H3>\n) :

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 qq(<H3>Tree Root</H3>\n) :
 qq(<H3>Tree Root</H3>);

We now call print() to print out the HTML document. We first display the current
document's title and contents. We then print a hyperlink that points back to the "root"
(really the top level) of the tree. Notice how we construct this link by creating a
relative URI based on the number of components in the additional path information. If
the additional path information is currently /bark/rough/cork, we construct a link
whose HREF is
http://http://../http://http://../http://http://../. Through the
magic of relative addressing, this will take us back to the root / document.

print_node('', $TREE, $node, $prefix);
 print qq(Go up one level<P>) if $name;

The next task is to construct the hierarchical navigation system shown in Figure 4.5.
We do this by calling print_node() , an internal function. This is followed by a link to
the next-higher document, which is simply the relative path http://http://../.

$r->print(<<END);
Node = $name

URI = $current_uri

Path information =$path_info

Translated path = $path_translated
</BODY>
</HTML>
END

 return OK;
}

Last, we print out some more information about the current document, including the
internal name of the document, the current URI, the additional path information, and
the translated path information.

Let's now look at the print_node() subroutine:

sub print_node {
 my ($name, $node, $current, $prefix) = @_;
 my (@branches) = grep !/^-/, sort keys %$node;
 if ($name) {
 # print the node itself
 print $node != $current ?
 qq($name\n) :
 qq($name\n);
 # print branches underneath it
 $prefix .= "$name/";
 }
 return unless @branches;
 print "\n";
 foreach (@branches) {
 print_node($_, $node->{$_}, $current, $prefix);
 }
 print "\n";
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This subroutine is responsible for displaying a tree node as a nested list. It starts by
finding all the branches beneath the requested node, which just happens to be all the
hash keys that don't begin with a hyphen. It then prints out the name of the node. If
the node being displayed corresponds to the current document, the name is
surrounded by tags to display it in red. Otherwise, the node name is turned
into a hyperlink that points to the appropriate document. Then, for each subdocument
beneath the current node, it invokes itself recursively to display the subdocument.
The most obscure part of this subroutine is the need to append a $prefix variable
to each URI the routine generates. $prefix contains just the right number of
http://http://../ sequences to make the URIs point to the root of the virtual
document tree. This simplifies the program logic.

The last function in this module is make_tree(). It simply reads in the text following the
_ _DATA_ _ token and eval()s it, turning it into a Perl data structure:

sub make_tree {
 local $/;
 my $data = <DATA>;
 eval $data;
}

1;
 __DATA__

Example 4.11. Using Path Information to Browse a Tree

package Apache::TreeBrowser;
file: Apache/TreeBrowser.pm

use strict;
use Apache::Constants qw(:common REDIRECT);

my $TREE = make_tree();

sub handler {
 my $r = shift;
 my $path_info = $r->path_info;
 my $path_translated = $r->lookup_uri($path_info)->filename;
 my $current_uri = $r->uri;
 unless ($path_info) {
 $r->header_out(Location => "$current_uri/");
 return REDIRECT;
 }

 $r->content_type('text/html');
 $r->send_http_header;
 return OK if $r->header_only;
 my($junk, @components) = split "/", $path_info;

 # follow the components down
 my($node, $name) = ($TREE, '');
 foreach (@components) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 foreach (@components) {
 last unless $node->{$_};
 $name = $_;
 $node = $node->{$_};
 }

 $r->print(<<END);
<HTML>
<HEAD>
<TITLE>$node->{-title}</TITLE>
</HEAD>
<BODY BGCOLOR="white">
<H1>$node->{-title}</H1>

Contents = $node->{-contents}

<H2>Navigation Tree</H2>
END

 my $prefix = "http://http://../" x @components;
 print $prefix ?
 qq(<H3>Tree Root</H3>\n) :
 qq(<H3>Tree Root</H3>);

 print_node('', $TREE, $node, $prefix);
 print qq(Go up one level<P>) if $name;

 $r->print(<<END);
Node = $name

URI = $current_uri

Path information =$path_info

Translated path = $path_translated
</BODY>
</HTML>
END

 return OK;
}

sub print_node {
 my ($name, $node, $current, $prefix) = @_;
 my (@branches) = grep !/^-/, sort keys %$node;
 if ($name) {
 # print the node itself
 print $node != $current ?
 qq($name\n) :
 qq($name\n);
 # print branches underneath it
 $prefix .= "$name/";
 }
 return unless @branches;
 print "\n";
 foreach (@branches) {
 print_node($_, $node->{$_}, $current, $prefix);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print_node($_, $node->{$_}, $current, $prefix);
 }
 print "\n";
}

create a sample tree to browse
sub make_tree {
 local $/;
 my $data = <DATA>;
 eval $data;
}

__DATA__
return {
 -title => 'The Root of All Evil',
 -contents => 'And so it begins...',
 'bark' => {
 -title => 'The Wrong Tree',
 -contents => 'His bark was worse than his bite.',
 'smooth' => {
 -title => 'Like Butter',
 -contents => 'As smooth as silk.',
 },
 'rough' => {
 -title => 'Ruffled',
 -contents => "Don't get rough with me.",
 'cork' => {
 -title => 'Corked',
 -contents => "Corks don't grow on trees...or do they?",
 },
 'cinnamon' => {
 -title => 'The Cinnamon Tree',
 -contents => 'Little bird, little bird in the cinnamon tree...',
 },
 }
 },
 'bough' => {
 -title => 'Stealing a Bough',
 -contents => "I've taken a bough of silence.",
 'forked' => {
 -title => 'Forked Boughs',
 -contents => 'What lightning and snakes\' tongues have in common.',
 },
 'straight' => {
 -title => 'Single Boughs',
 -contents => 'Straight, but not narrow.',
 },
 'extra' => {
 -title => 'Take a Bough',
 -contents => 'Nothing beats that special feeling,
 when you are stealing that extra bough!',
 },
 },
 'branch' => {
 -title => 'The Branch Not Taken',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -title => 'The Branch Not Taken',
 -contents => 'Branch or be branched.',
 'twig' => {
 -title => 'Twiggy',
 -contents => 'Anorexia returns!',
 'twiglet' => {
 -title => 'The Leastest Node',
 -contents => 'Winnie the Pooh, Eeyore, and Twiglet.',
 },
 },
 'leaf' => {
 -title => 'Leaf me Alone!',
 -contents => 'Look back, Leaf Ericksonn.',
 }
 },
}

Here is a sample configuration file entry to go with Apache::TreeBrowser :

<Location /virtual>
SetHandler perl-script
PerlHandler Apache::TreeBrowser

</Location>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

4.5 Apache::Registry

If you are using mod_perl to write Apache modules, then you probably want to take
advantage of Apache::Registry. Apache::Registry is a prewritten Apache Perl module
that is a content handler for files containing Perl code. In addition to making it
unnecessary to restart the server every time you revise a source file,
Apache::Registry sets up a simulated CGI environment, so that programs that expect
to get information about the transaction from environment variables can continue to
do so. This allows legacy CGI applications to run under the Apache Perl API, and lets
you use server-side code libraries (such as the original CGI.pm) that assume the
script is running in a CGI environment.

Apache::Registry is similar in concept to the content filters we created earlier in this
chapter, but instead of performing simple string substitutions on the contents of the
requested file, Apache::Registry compiles and executes the code contained within it.
In order to avoid recompiling the script each time it's requested, Apache::Registry
caches the compiled code and checks the file modification time each time it's
requested in order to determine whether it can safely use the cached code or whether
it must recompile the file. Should you ever wish to look at its source code,
Apache::Registry is a good example of a well-written Apache content handler that
exercises much of the Perl API.

We created a typical configuration file entry for Apache::Registry in Chapter 2. Let's
examine it in more detail now.

Alias /perl/ /usr/local/apache/perl/
<Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 PerlSendHeader On
 Options +ExecCGI
</Location>

The Alias directive simply maps the physical directory /usr/local/apache/perl/ to a
virtual directory named /perl. The <Location> section is more interesting. It uses
SetHandler to make perl-script the content handler for this directory and sets
Apache::Registry to be the module to handle requests for files within this part of the
document tree.

The PerlSendHeader On line tells mod_perl to intercept anything that looks like a
header line (such as Content-Type: text/html) and to automatically turn it into
a correctly formatted HTTP/1.0 header the way that Apache does with CGI scripts.
This allows you to write scripts without bothering to call the request object's
send_http_header() method. Like other Apache::Registry features, this option makes
it easier to port CGI scripts to the Apache API. If you use CGI.pm's header() function
to generate HTTP headers, you do not need to activate this directive because
CGI.pm detects mod_perl and calls send_http_header() for you. However, it does not
hurt to use this directive anyway.

Option +ExecCGI ordinarily tells Apache that it's all right for the directory to contain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Option +ExecCGI ordinarily tells Apache that it's all right for the directory to contain
CGI scripts. In this case the flag is required by Apache::Registry to confirm that you
really know what you're doing. In addition, all scripts located in directories handled by
Apache::Registry must be executable—another check against accidentally leaving
wayward nonscript files in the directory.

When you use Apache::Registry, you can program in either of two distinct styles. You
can choose to ignore the Apache Perl API entirely and act as if your script were
executed within a CGI environment, or you can ignore the CGI compatibility features
and make Apache API calls. You can also combine both programming styles in a
single script, although you run the risk of confusing yourself and anyone else who
needs to maintain your code!

A typical example of the first style is the hello.pl script (Example 4.12), which you
also saw in Chapter 2. The interesting thing about this script is that there's nothing
Apache-specific about it. The same script will run as a standard CGI script under
Apache or any other web server. Any library modules that rely on the CGI
environment will work as well.

Example 4.12. An Apache::Registry Script That Uses CGI-Compatibility Mode

#!/usr/local/bin/perl
file: hello.pl

print "Content-Type: text/html\n\n";

print <<END;
<HTML>
<HEAD>
<TITLE>Hello There</TITLE>
</HEAD>
<BODY>
<H1>Hello $ENV{REMOTE_HOST}</H1>
Who would take this book seriously if the examples
didn't say "hello world" in at least four different ways?
</BODY>
</HTML>
END

Example 4.13 shows the same script rewritten more compactly by taking advantage
of the various shortcuts provided by the CGI.pm module.

Example 4.13. An Apache::Registry Script That Uses CGI.pm

#!/usr/local/bin/perl
file: hello2.pl

use CGI qw(:standard);
print header,
 start_html('Hello There'),
 h1('Hello',remote_host()),
 'Who would take this book seriously if the examples',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'Who would take this book seriously if the examples',
 'didn\'t say "hello world" in at least four different ways?',
 end_html;

In contrast, Example 4.14 shows the script written in the Apache Perl API style. If
you compare the script to Example 4.7, which used the vanilla API to define its own
content handler, you'll see that the contents of this script (with the exception of the #!
line at the top) are almost identical to the body of the handler() subroutine defined
there. The main difference is that instead of retrieving the Apache request object from
the subroutine argument list, we get it by calling Apache->request(). request() is a
static (class) method in the Apache package where the current request object can
always be found.

There are also some subtle differences between Apache::Registry scripts that make
Apache API calls and plain content handlers. One thing to notice is that there is no
return value from Apache::Registry scripts. Apache::Registry normally assumes an
HTTP status code of 200 (OK). However, you can change the status code manually by
calling the request object's status() method to change the status code before sending
out the header:

$r->status(404); # forbidden

Strictly speaking, it isn't necessary to call send_http_header() if you have
PerlSendHeader On. However, it is good practice to do so, and it won't lead to
redundant headers being printed.

Alternatively, you can use the CGI compatibility mode to set the status by printing out
an HTTP header that contains a Status: field:

print "Status: 404 Forbidden\n\n";

Another subtle difference is that at least one of the command-line switches that may
be found on the topmost #! line is significant. The -w switch, if present, will signal
Apache::Registry to turn on Perl warnings by setting the $^W global to a true value.
Another common switch used with CGI scripts is -T, which turns on taint checking.
Currently, taint checking can be activated for the Perl interpreter as a whole only at
server startup time by setting the configuration directive PerlTaintCheck On .
However, if Apache::Registry notices -T on the #! line and taint checks are not
activated, it will print a warning in the server error log.

Since Apache::Registry scripts can do double duty as normal CGI scripts and as
mod_perl scripts, it's sometimes useful for them to check the environment and
behave differently in the two situations. They can do this by checking for the
existence of the environment variable MOD_PERL or for the value of
GATEWAY_INTERFACE. When running under mod_perl, GATEWAY_INTERFACE will
be equal to CGI-Perl/1.1. Under the normal CGI interface, it will be CGI/1.1.

Example 4.14. An Apache::Registry Script That Uses the Apache API

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/usr/local/bin/perl
file: hello3.pl

use strict;

my $r = Apache->request;
$r->content_type('text/html');
$r->send_http_header;
return OK if $r->header_only;

my $host = $r->get_remote_host;
$r->print(<<END);
<HTML>
<HEAD>
<TITLE>Hello There</TITLE>
</HEAD>
<BODY>
<H1>Hello $host</H1>
Enough with the "Hello worlds" already!
</BODY>
</HTML>
END

4.5.1 A Useful Apache::Registry Application

All the Apache::Registry examples that we've seen so far have been short and,
frankly, silly. Now let's look at an example of a real-world script that actually does
something useful. The guestbook script (Example 4.15), as its name implies,
manages a typical site guestbook, where visitors can enter their names, email
addresses, and comments. It works well as both a standalone CGI script and a
mod_perl Apache::Registry script, automatically detecting when it is running under
the Apache Perl API in order to take advantage of mod_perl 's features. In addition to
showing you how to generate a series of fill-out forms to handle a moderately
complex user interaction, this script demonstrates how to read and update a file
without the risk of several instances of the script trying to do so simultaneously.

Unlike some other guestbook programs, this one doesn't append users' names to a
growing HTML document. Instead, it maintains a flat file in which each user's entry is
represented as a single line in the file. Tabs separate the five fields, which are the
date of the entry, the user's name, the user's email address, the user's location (e.g.,
city of residence), and comments. Nonalphanumeric characters are URL-escaped to
prevent the format from getting messed up if the user enters newlines or tabs in the
fields, giving records that look like:

05/07/98 JR jr_ewing%40dallas.com Dallas,%20TX Like%20the%20hat

When the script is first called, it presents the user with the option of signing the
guestbook file or looking at previous entries (Figure 4.6).

Figure 4.6. The Apache::Registry guestbook script generates its own fill-out form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the user presses the button labeled "Sign Guestbook," a confirmation page
appears, which echoes the entry and prompts the user to edit or confirm it (Figure
4.7).

Figure 4.7. The confirmation page generated by guestbook

Pressing the "Change Entry" button takes the user back to the previous page with the
fields filled in and waiting for the user's changes. Pressing "Confirm Entry" appends
the user's entry to the guestbook file and displays the whole file (Figure 4.8).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.8. The listing of previous guestbook entries generated by guestbook

Turning to the source code, the script begins by importing functions from a variety of
modules, including CGI.pm, IO::File, Fcntl, and POSIX :

use strict;
use CGI qw(:standard :html3 escape unescape escapeHTML);
use IO::File ();
use Fcntl qw(:flock);
use POSIX qw(strftime);
use vars qw(@FIELDS %REQUIRED %BIG $GUESTBOOKFILE);

@FIELDS = qw(name e-mail location comments);
%REQUIRED = ('name' => 1, 'e-mail' => 1);
%BIG = ('comments' => 1);

The script then defines some constants. @FIELDS is an array of all the fields known
to the guestbook. By changing the contents of this array you can generate different
fill-out forms. %REQUIRED is a hash that designates certain fields as required, in this
case name and e-mail. The script will refuse to add an entry to the guestbook until
these fields are filled out (however, no error checking on the contents of the fields is
done). %BIG is a hash containing the names of fields that are displayed as large text
areas, in this case comments. Other fields are displayed as one-line text entries.

if ($ENV{MOD_PERL}) {
 $GUESTBOOKFILE = Apache->request->dir_config('GuestbookFile');
}
$GUESTBOOKFILE ||= "/usr/tmp/guestbookfile.txt";

Next the script checks if it is running under mod_perl by checking for the MOD_PERL
environment variable. If the script finds that it is running under mod_perl, it fetches the
Apache request object and queries the object for a per-directory configuration
variable named GuestbookFile. This contains the physical pathname of the file where

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

variable named GuestbookFile. This contains the physical pathname of the file where
the guestbook entries are stored. If the script is a standalone CGI script, or if no
GuestbookFile configuration variable is defined, the script defaults to a hardcoded file
path. In the case of Apache::Registry scripts, the PerlSetVar directive used to set per-
directory configuration variables must be located in a .htaccess file in the same
directory as the script.

print header,
 start_html(-title => 'Guestbook', -bgcolor => 'silver'),
 h1("Guestbook");

The script now begins to generate the document by calling shortcut functions defined
in the CGI module to generate the HTTP header, the HTML header and title, and a
level 1 heading of "Guestbook."

CASE: {
 $_ = param('action');
 /^sign/i and do { sign_guestbook(); last CASE; };
 /^confirm/i and do { write_guestbook() and view_guestbook(); last CASE; };
 /^view/i and do { view_guestbook(1); last CASE; };
 generate_form();
 }

We now enter the variable part of the script. Depending on what phase of the
transaction the user is in, we either want to prompt the user to fill out the guestbook
form, confirm an entered entry, or view the entire guestbook. We distinguish between
the phases by looking at the contents of a script parameter named action. If action
equals sign, we know that the user has just completed the fill-out form and pressed
the "Sign Guestbook" button, so we jump to the routine responsible for this part of the
transaction. Similarly, we look for action values of confirm and view, and jump to the
appropriate routines for these actions. If action is missing, or if it has some value we
don't expect, we take the default action of generating the fill-out form.

print end_html;
exit 0;

Having done its work, the script prints out the </HTML> tag and exits.

sub generate_form {
 my @rows;
 for my $field (@FIELDS) {
 my $title = "Your $field";
 $title .= " (optional)" if !$REQUIRED{$field};
 my $element = $BIG{$field} ?
 textarea(-name => $field,
 -rows => 4,
 -columns => 50,
 -wrap => 1)
 : textfield(-name => $field, -size => 50);
 push @rows, th($title) . td($element);
 }
 print start_form,
 table(TR{-align => 'LEFT'}, \@rows),
 br,
 submit(-name => 'action', -value => 'View Guestbook'),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 submit(-name => 'action', -value => 'View Guestbook'),
 submit(-name => 'action', -value => 'Sign Guestbook'),
 end_form;
}

The subroutine responsible for generating the form is named, appropriately enough,
generate_form(). It iterates over @FIELDS and dynamically generates a text label and
a form element for each field, modifying the format somewhat based on whether the
field is marked optional or big. Each label/field pair is pushed onto a list named
@rows. When the loop is finished, @rows is turned into a nicely formatted table using
CGI.pm's table-generation shortcuts. The "View Guestbook" and "Sign Guestbook"
buttons are added to the form, and the routine finishes.

sub sign_guestbook {
 my @missing = check_missing(@FIELDS);
 if (@missing) {
 print_warning(@missing);
 generate_form();
 return;
 }

sign_guestbook() has a slightly more complex job. Its first task is to check the
submitted form for missing required fields by calling the internal subroutine
check_missing(). If any are missing, it displays the missing fields by calling another
internal subroutine, print_warning(), and then invokes generate_form() to redisplay
the form with its current values. No particular hocus-pocus is required to display the
partially completed form correctly; this is just one of the beneficial side effects of
CGI.pm's "sticky forms" feature.

my @rows;
 foreach (@FIELDS) {
 push @rows, TR(th({-align=>'LEFT'},$_),
 td(escapeHTML(param($_))));
 }
 print "Here is your guestbook entry. Press ",
 em('Confirm')," to save it, or ",em('Change'),
 " to change it.",
 hr,
 table(@rows),
 hr;

If all the required fields are filled in, sign_guestbook() generates an HTML table to
display the user's entries. The technique for generating the form is similar to that used
in the previous subroutine, except that no special cases are needed for different types
of fields. We do, however, have to be careful to call escapeHTML() (a function
imported from CGI.pm) in order to prevent HTML entities and other funny characters
that the user might have entered from messing up the page.

print start_form;
 foreach (@FIELDS) {
 print hidden(-name => $_);
 }
 print submit(-name => 'action',
 -value => 'Change Entry'),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -value => 'Change Entry'),
 submit(-name => 'action',
 -value => 'Confirm Entry'),
 end_form;
}

We end the routine by creating a short fill-out form. This form contains the contents of
the user's guestbook entry stashed into a series of hidden fields, and push buttons
labeled "Change Entry" and "Confirm Entry." We hide the guestbook entry information
in this way in order to carry the information forward to the next set of pages.

sub check_missing {
 my %p;
 for (@_) { ++$p{$_} if param($_) }
 return grep !$p{$_}, keys %REQUIRED;
}

sub print_warning {
 print font({-color => 'red'},
 'Please fill in the following fields: ',
 em(join ', ', @_),
 '.');
}

The check_missing() and print_warning() subroutines are short and sweet. The first
routine uses the Perl grep() function to check the list of provided fields against the list
of required fields and returns a list of the truants, if any. The second routine accepts a
list of missing fields and turns it into a warning of the form, "Please fill in the following
fields: e-mail." For emphasis, the message is rendered in a red font (under browsers
that understand the extension).

The write_guestbook() and view_guestbook() subroutines are the most complex of
the bunch. The main complication is that, on an active site, there's a pretty good
chance that a second instance of the script may be invoked by another user before
the first instance has completed opening and updating the guestbook file. If the writes
overlap, the file could be corrupted and a guestbook entry lost or scrambled. For this
reason, it's important for the script to lock the file before working with it.

POSIX-compliant systems (which include both Unix and Windows systems) offer a
simple form of advisory file locking through the flock() system call. When a process
opens a file and flock() s it, no other process can flock() it until the first process
either closes the file or manually relinquishes the lock. There are actually two types of
lock. A "shared" lock can be held by many processes simultaneously. An "exclusive"
lock can only be held by one process at a time and prevents any other program from
locking the file. Typically, a program that wants to read from a file will obtain a shared
lock, while a program that wants to write to the file asks the system for an exclusive
lock. A shared lock allows multiple programs to read from a file without worrying that
some other process will change the file while they are still reading it. A program that
wants to write to a file will call flock() to obtain an exclusive lock; the call will then
block until all other processes have released their locks. After an exclusive lock is
granted, no other program can lock the file until the writing process has finished its
work and released the lock.

It's important to realize that the flock() locking mechanism is advisory. Nothing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It's important to realize that the flock() locking mechanism is advisory. Nothing
prevents a program from ignoring the flock() call and reading from or writing to a file
without seeking to obtain a lock first. However, as long as only the programs you've
written yourself attempt to access the file and you're always careful to call flock()
before working with it, the system works just fine.

sub lock {
 my $path = shift;
 my $for_writing = shift;

 my ($lock_type, $path_name, $description);
 if ($for_writing) {
 $lock_type = LOCK_EX;
 $path_name = ">>$path";
 $description = 'writing';
 }
 else {
 $lock_type = LOCK_SH;
 $path_name = $path;
 $description = 'reading';
 }

 my $fh = IO::File->new($path_name) or
 warn "Couldn't open $path for $description: $!", return;

now try to lock it
 my $success;
 my $tries = 0;
 while ($tries++ < 10) {
 last if $success = flock($fh, $lock_type|LOCK_NB);
 print p("Waiting for $description lock on guestbook file...");
 sleep(1); # wait a second
 }
 unless ($success) {
 warn("Couldn't get lock for $description");
 return;
 }
 return $fh;
}

To make life a little simpler, the guestbook script defines a utility function named
lock() that takes care of opening and locking the guestbook file (you'll find the
definition at the bottom of the source listing). lock() takes two arguments: the name of
the file to open and a flag indicating whether the file should be opened for writing. If
the write flag is true, the function opens the file in append mode and then attempts to
obtain an exclusive lock. Otherwise, it opens the file read only and tries to obtain a
shared lock. If successful, the opened filehandle is returned to the caller.

The flock() function is used to obtain both types of lock. The first argument is the
opened filehandle; the second is a constant indicating the type of lock to obtain. The
constants for exclusive and shared locks are LOCK_EX and LOCK_SH, respectively.
Both constants are imported from the Fcntl module using the :flock tag. We combine
these constants with the LOCK_NB (nonblocking) constant, also obtained from Fcntl,
in order to tell flock() to return if a lock cannot be obtained immediately. Otherwise,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in order to tell flock() to return if a lock cannot be obtained immediately. Otherwise,
flock() will block indefinitely until the file is available. In order to avoid a long wait in
which the script appears to be hung, we call flock() in a polling loop. If a lock cannot
immediately be obtained, we print a warning message to the browser screen and
sleep for 1 second. After 10 consecutive failed tries, we give up and exit the script. If
the lock is successful, we return the filehandle.

sub write_guestbook {
 my $fh = lock($GUESTBOOKFILE, 1);
 unless ($fh) {
 print strong('An error occurred: unable to open guestbook file.'),p();
 Delete('action');
 print a({-href => self_url}, 'Try again');
 return;
 }
 seek ($fh,0,2); # paranoia: seek to end of file
 my $date = strftime('%D',localtime);
 print $fh join("\t", $date, map {escape(param($_))} (@FIELDS)),"\n";
 print "Thank you, ", param('name'),", for signing the guestbook.\n";
 $fh->close;
 1;
}

To write a new entry into the guestbook, the write_guestbook() function calls lock()
with the path to the guestbook file and a flag indicating we want write access. If the
call fails, we display an appropriate error message and return. Otherwise, we seek to
the end of the file, just in case someone else wrote to the file while we were waiting
for the lock. We then join together the current date (obtained from the POSIX
strftime() function) with the current values of the guestbook fields and write them out
to the guestbook filehandle. To avoid the possibility of the user messing up our tab-
delimited field scheme by entering tabs or newlines in the fill-out form, we're careful to
escape the fields before writing them to the file. To do this, we use the map operator
to pass the fields through CGI.pm's escape() function. This function is ordinarily used
to make text safe for use in URIs, but it works just as well here.

After writing to the file, we're careful to close the filehandle. This releases the lock on
the file and gives other processes access to it.

sub view_guestbook {
 my $show_sign_button = shift;
 print start_form,
 submit(-name => 'Sign Guestbook'),
 end_form
 if $show_sign_button;
 my $fh = lock($GUESTBOOKFILE, 0);

 my @rows;
 unless ($fh) {
 print strong('An error occurred: unable to open guestbook file.'),br;
 Delete('action');
 print a({-href => self_url},'Try again');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print a({-href => self_url},'Try again');
 return;
 }

The view_guestbook() subroutine looks a lot like the one we just looked at but in
reverse. It starts by creating a tiny fill-out form containing a single button labeled
"Sign Guestbook." This button is only displayed when someone views the guestbook
without signing it first and is controlled by the $show_sign_button flag. Next we
obtain a read-only filehandle on the guestbook file by calling lock() with a false
second argument. If lock() returns an undefined result, we print an error message and
exit. Otherwise, we read the contents of the guestbook file line by line and split out the
fields.

while (<$fh>) {
 chomp;
 my @data = map {escapeHTML($_)} map {unescape($_)} split("\t");
 unshift @rows, td(\@data);
 }
 unshift @rows, th(['Date',@FIELDS]);
 print p(
 table({-border => ''},
 caption(strong('Previous Guests')),
 TR(\@rows)));
 $fh->close;
 print a({-href => '/'}, 'Home');
 1;
}

The fields are then processed through map() twice: once to unescape the URL
escape characters using the CGI.pm unescape() function and once again to make
them safe to display on an HTML page using CGI.pm's escapeHTML() function. The
second round of escaping is to avoid problems with values that contain the <, >, and
& symbols. The processed lines are turned into HTML table cells, and unshifted onto
a list named @rows. The purpose of the unshift is to reverse the order of the lines, so
that more recent guestbook entries appear at the top of the list. We add the headings
for the table and turn the whole thing into an HTML table using the appropriate
CGI.pm shortcuts. We close the filehandle and exit.

If we were not interested in running this script under standard CGI, we could increase
performance slightly and reduce memory consumption substantially by replacing a
few functions with their Apache:: equivalents:

IO::File --> Apache::File
CGI::escape --> Apache::Util::escape_uri
CGI::unescape --> Apache::Util::unescape_uri
CGI::escapeHTML --> Apache::Util::escape_html
POSIX::strftime --> Apache::Util::ht_time

See the reference listings in Chapter 9 for the proper syntax for these replacements.
You'll also find a version of the guestbook script that uses these lightweight
replacements on this book's companion web site, http://www.modperl.com.

Example 4.15. A Guestbook Script

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/usr/local/bin/perl
guestbook.cgi
use strict;
use CGI qw(:standard :html3 escape unescape escapeHTML);
use IO::File ();
use Fcntl qw(:flock);
use POSIX qw(strftime);
use vars qw(@FIELDS %REQUIRED %BIG $GUESTBOOKFILE);

@FIELDS = qw(name e-mail location comments);
%REQUIRED = ('name' => 1, 'e-mail' => 1);
%BIG = ('comments' => 1);

if ($ENV{MOD_PERL}) {
 $GUESTBOOKFILE = Apache->request->dir_config('GuestbookFile');
}
$GUESTBOOKFILE ||= "/usr/tmp/guestbookfile.txt";

print header,
 start_html(-title => 'Guestbook', -bgcolor => 'silver'),
 h1("Guestbook");

 CASE: {
 $_ = param('action');
 /^sign/i and do { sign_guestbook(); last CASE; };
 /^confirm/i and do { write_guestbook() and view_guestbook(); last CASE; };
 /^view/i and do { view_guestbook(1); last CASE; };
 generate_form();
 }

print end_html;
exit 0;

sub generate_form {
 my @rows;
 for my $field (@FIELDS) {
 my $title = "Your $field";
 $title .= " (optional)" if !$REQUIRED{$field};
 my $element = $BIG{$field} ?
 textarea(-name => $field,
 -rows => 4,
 -columns => 50,
 -wrap => 1)
 : textfield(-name => $field, -size => 50);
 push @rows, th($title) . td($element);
 }
 print start_form,
 table(TR{-align => 'LEFT'}, \@rows),
 br,
 submit(-name => 'action', -value => 'View Guestbook'),
 submit(-name => 'action', -value => 'Sign Guestbook'),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 submit(-name => 'action', -value => 'Sign Guestbook'),
 end_form;
}

sub sign_guestbook {
 my @missing = check_missing(@FIELDS);
 if (@missing) {
 print_warning(@missing);
 generate_form();
 return;
 }
 my @rows;
 foreach (@FIELDS) {
 push @rows, TR(th({-align=>'LEFT'},$_),
 td(escapeHTML(param($_))));
 }
 print "Here is your guestbook entry. Press ",
 em('Confirm')," to save it, or ",em('Change'),
 " to change it.",
 hr,
 table(@rows),
 hr;

 print start_form;
 foreach (@FIELDS) {
 print hidden(-name => $_);
 }
 print submit(-name => 'action',
 -value => 'Change Entry'),
 submit(-name => 'action',
 -value => 'Confirm Entry'),
 end_form;
}

sub check_missing {
 my %p;
 for (@_) { ++$p{$_} if param($_) }
 return grep !$p{$_}, keys %REQUIRED;
}

sub print_warning {
 print font({-color => 'red'},
 'Please fill in the following fields: ',
 em(join ', ', @_),
 '.');
}

sub write_guestbook {
 my $fh = lock($GUESTBOOKFILE, 1);
 unless ($fh) {
 print strong('An error occurred: unable to open guestbook file.'),p();
 Delete('action');
 print a({-href => self_url}, 'Try again');
 return;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 seek ($fh,0,2); # paranoia: seek to end of file
 my $date = strftime('%D',localtime);
 print $fh join("\t", $date, map {escape(param($_))} (@FIELDS)),"\n";
 print "Thank you, ", param('name'),", for signing the guestbook.\n";
 $fh->close;
 1;
}

sub view_guestbook {
 my $show_sign_button = shift;
 print start_form,
 submit(-name => 'Sign Guestbook'),
 end_form
 if $show_sign_button;
 my $fh = lock($GUESTBOOKFILE, 0);

 my @rows;
 unless ($fh) {
 print strong('An error occurred: unable to open guestbook file.'),br;
 Delete('action');
 print a({-href => self_url},'Try again');
 return;
 }
 while (<$fh>) {
 chomp;
 my @data = map {escapeHTML($_)} map {unescape($_)} split("\t");
 unshift @rows, td(\@data);
 }
 unshift @rows, th(['Date',@FIELDS]);
 print p(
 table({-border => ''},
 caption(strong('Previous Guests')),
 TR(\@rows)));
 $fh->close;
 print a({-href => '/'}, 'Home');
 1;
}

sub lock {
 my $path = shift;
 my $for_writing = shift;

 my ($lock_type, $path_name, $description);
 if ($for_writing) {
 $lock_type = LOCK_EX;
 $path_name = ">>$path";
 $description = 'writing';
 }
 else {
 $lock_type = LOCK_SH;
 $path_name = $path;
 $description = 'reading';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $description = 'reading';
 }

 my $fh = IO::File->new($path_name) or
 warn "Couldn't open $path for $description: $!", return;

now try to lock it
 my $success;
 my $tries = 0;
 while ($tries++ < 10) {
 last if $success = flock($fh, $lock_type|LOCK_NB);
 print p("Waiting for $description lock on guestbook file...");
 sleep(1); # wait a second
 }
 unless ($success) {
 warn("Couldn't get lock for $description");
 return;
 }
 return $fh;
}

A .htaccess file to go with the guestbook script might be:

PerlSetVar GuestbookFile /home/www/etc/guests.txt

4.5.2 Apache::Registry Traps

There are a number of traps and pitfalls that you can fall into when using
Apache::Registry. This section warns you about them.

It helps to know how Apache::Registry works in order to understand why the traps are
there. When the server is asked to return a file that is handled by the
Apache::Registry content handler (in other words, a script!), Apache::Registry first
looks in an internal cache of compiled subroutines that it maintains. If it doesn't find a
subroutine that corresponds to the script file, it reads the contents of the file and
repackages it into a block of code that looks something like this:

package $mangled_package_name;
 use Apache qw(exit);
 sub handler {
 #line 1 $original_filename
 contents of the file
 }

$mangled_package_name is a version of the script's URI which has been modified
in such a way as to turn it into a legal Perl package name while keeping it distinct
from all other compiled Apache::Registry scripts. For example, the guestbook.cgi
script shown in the last section would be turned into a cached subroutine in the
package Apache::ROOT::perl::guestbook_2ecgi. The compiled code is then cached
for later use.

Before Apache::Registry even comes into play, mod_perl fiddles with the environment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before Apache::Registry even comes into play, mod_perl fiddles with the environment
to make it appear as if the script were being called under the CGI protocol. For
example, the $ENV{QUERY_STRING} environment variable is initialized with the
contents of Apache::args(), and $ENV{SERVER_NAME} is filled in from the value
returned by Apache::server_hostname(). This behavior is controlled by the
PerlSetupEnv directive, which is On by default. If your scripts do not need to use CGI
%ENV variables, turning this directive Off will reduce memory overhead slightly.

In addition to caching the compiled script, Apache::Registry also stores the script's
last modification time. It checks the stored time against the current modification time
before executing the cached code. If it detects that the script has been modified more
recently than the last time it was compiled, it discards the cached code and
recompiles the script.

The first and most common pitfall when using Apache::Registry is to forget that the
code will be persistent across many sessions. Perl CGI programmers commonly
make profligate use of globals, allocate mammoth memory structures without
disposing of them, and open filehandles and never close them. They get away with
this because CGI scripts are short-lived. When the CGI transaction is done, the script
exits, and everything is cleaned up automatically.

Not so with Apache::Registry scripts (or any other Apache Perl module, for that
matter). Globals persist from invocation to invocation, big data structures will remain
in memory, and open files will remain open until the Apache child process has exited
or the server itself it shut down.

Therefore, it is vital to code cleanly. You should never depend on a global variable
being uninitialized in order to determine when a subroutine is being called for the first
time. In fact, you should reduce your dependency on globals in general. Close
filehandles when you are finished with them, and make sure to kill (or at least wait on)
any child processes you may have launched.

Perl provides two useful tools for writing clean code. use strict turns on checks that
make it harder to use global variables unintentionally. Variables must either be
lexically scoped (with my) or qualified with their complete package names. The only
way around these restrictions is to declare variables you intend to use as globals at
the top of the script with use vars . This code snippet shows how:

use strict;
use vars qw{$INIT $DEBUG @NAMES %HANDLES};

We have used strict in many of the examples in the preceding sections, and we
strongly recommend it for any Perl script you write.

The other tool is Perl runtime warnings, which can be turned on in Apache::Registry
scripts by including a -w switch on the #! line, or within other modules by setting the
magic $^W variable to true. You can even enable warnings globally by setting $^W to
true inside the server's Perl startup script, if there is one (see Chapter 2).

-w will catch a variety of errors, dubious programming constructs, typos, and other

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-w will catch a variety of errors, dubious programming constructs, typos, and other
sins. Among other things, it will warn when a bareword (a string without surrounding
quotation marks) conflicts with a subroutine name, when a variable is used only once,
and when a lexical variable is inappropriately shared between an outer and an inner
scope (a horrible problem which we expose in all its gory details a few paragraphs
later).

-w may also generate hundreds of "Use of uninitialized value" messages at runtime,
which will fill up your server error log. Many of these warnings can be hard to track
down. If there is no line number reported with the warning, or if the reported line
number is incorrect,[2] try using Perl's #line token described in the perlsyn manual
page and in Chapter 9 under Section 9.5."

[2] Certain uses of the eval operator and "here" documents are known to throw off Perl's line numbering.

It may also be helpful to see a full stack trace of the code which triggered the warning.
The cluck() function found in the standard Carp module will give you this
functionality. Here is an example:

use Carp ();
local $SIG{__WARN__} = \&Carp::cluck;

Note that -w checks are done at runtime, which may slow down script execution time.
In production mode, you may wish to turn warnings off altogether or localize warnings
using the $^W global variable described in the perlvar manpage.

Another subtle mod_perl trap that lies in wait for even experienced programmers
involves the sharing of lexical variables between outer and inner named subroutines.
To understand this problem, consider the following innocent-looking code:

#!/usr/local/bin/perl -w

for (0..3) {
 bump_and_print();
}

sub bump_and_print {
 my $a = 1;
 sub bump {
 $a++;
 print "In the inner scope, \$a is $a\n";
 }
 print "In the outer scope, \$a is $a\n";
 bump();
}

When you run this script, it generates the following inexplicable output:

Variable "$a" will not stay shared at ./test.pl line 12.
In the outer scope, $a is 1
In the inner scope, $a is 2
In the outer scope, $a is 1
In the inner scope, $a is 3
In the outer scope, $a is 1
In the inner scope, $a is 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the inner scope, $a is 4
In the outer scope, $a is 1
In the inner scope, $a is 5

For some reason the variable $a has become "unstuck" from its my() declaration in
bump_and_print() and has taken on a life of its own in the inner subroutine bump().
Because of the -w switch, Perl complains about this problem during the compilation
phase, with the terse warning that the variable "will not stay shared." This behavior
does not happen if the inner subroutine is made into an anonymous subroutine. It
only affects named inner subroutines.

The rationale for the peculiar behavior of lexical variables and ways to avoid it in
conventional scripts are explained in the perldiag manual page. When using
Apache::Registry this bug can bite you when you least expect it. Because
Apache::Registry works by wrapping the contents of a script inside a handler()
function, inner named subroutines are created whether you want them or not. Hence,
this piece of code will not do what you expect:

#!/usr/local/bin/perl
 use CGI qw/param header/;

 my $name = param('name');
 print header('text/plain');
 print_body();
 exit 0;

 sub print_body {
 print "The contents of \$name is $name.\n";
 }

The first time you run it, it will run correctly, printing the value of the name CGI
parameter. However, on subsequent invocations the script will appear to get "stuck"
and remember the values of previous invocations. This is because the lexically
scoped $name variable is being referenced from within print_body(), which, when
running under Apache::Registry, is a named inner subroutine. Because multiple
Apache processes are running, each process will remember a different value of
$name, resulting in bizarre and arbitrary behavior.

Perl may be fixed someday to do the right thing with inner subroutines. In the
meantime, there are several ways to avoid this problem. Instead of making the outer
variable lexically scoped, you can declare it to be a package global, as this snippet
shows:

use strict;
use vars '$name';
$name = param('name');

Because globals are global, they aren't subject to weird scoping rules.

Alternatively, you can pass the variable to the subroutine as an argument and avoid
sharing variables between scopes altogether. This example shows that variant:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $name = param('name');
print_body($name);

sub print_body {
 my $name = shift;
 print "The contents of \$name is $name.\n";
}

Finally, you can put the guts of your application into a library and use or require it.
The Apache::Registry then becomes only a hook that invokes the library:

#!/usr/local/bin/perl
require "my_application_guts";
do_everything();

The shared lexical variable problem is a good reason to use the -w switch during
Apache::Registry script development and debugging. If you see warnings about a
variable not remaining shared, you have a problem, even if the ill effects don't
immediately manifest themselves.

Another problem that you will certainly run into involves the use of custom libraries by
Apache::Registry scripts. When you make an editing change to a script, the
Apache::Registry notices the recent modification time and reloads the script.
However, the same isn't true of any library file that you load into the script with use or
require. If you make a change to a require d file, the script will continue to run the old
version of the file until the script itself is recompiled for some reason. This can lead to
confusion and much hair-tearing during development!

You can avoid going bald by using Apache::StatINC , a standard part of the mod_perl
distribution. It watches over the contents of the internal Perl %INC array and reloads
any files that have changed since the last time it was invoked. Installing
Apache::StatINC is easy. Simply install it as the PerlInitHandler for any directory that
is managed by Apache::Registry. For example, here is an access.conf entry that
installs both Apache::Registry and Apache::StatINC :

Alias /perl/ /usr/local/apache/perl/
<Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 PerlInitHandler Apache::StatINC
 PerlSendHeader On
 Options +ExecCGI
</Location>

Because Apache::StatINC operates at a level above the level of individual scripts,
any nonstandard library locations added by the script with use lib or by directly
manipulating the contents of @INC will be ignored. If you want these locations to be
monitored by Apache::StatINC, you should make sure that they are added to the
library search path before invoking the script. You can do this either by setting the
PERL5LIB environment variable before starting up the Apache server (for instance, in
the server startup script), or by placing a use lib line in your Perl startup file, as
described in Chapter 2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you use Apache::StatINC, there is a slight overhead for performing a stat on
each included file every time a script is run. This overhead is usually immeasurable,
but it will become noticeable on a heavily loaded server. In this case, you may want to
forego it and instead manually force the embedded Perl interpreter to reload all its
compiled scripts by restarting the server with apachectl. In order for this to work, the
PerlFreshRestart directive must be turned on in the Apache configuration file. If you
haven't done so already, add this line to perl.conf or one of the other configuration
files:

PerlFreshRestart On

You can try reloading compiled scripts in this way whenever things seem to have
gotten themselves into a weird state. This will reset all scripts to known initial settings
and allow you to investigate problems systematically. You might also want to stop the
server completely and restart it using the -X switch. This forces the server to run as a
single process in the foreground. Interacting with a single process rather than multiple
ones makes it easier to debug misbehaving scripts. In a production environment,
you'll want to do this on a test server in order to avoid disrupting web services.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

4.6 Handling Errors

Errors in Apache modules do occur, and tracking them down is significantly trickier
than in standalone Perl or C programs. Some errors are due to bugs in your code,
while others are due to the unavoidable hazards of running in a networked
environment. The remote user might cancel a form submission before it is entirely
done, the connection might drop while you're updating a database, or a file that you're
trying to access might not exist.

A virtuous Apache module must let at least two people know when a problem has
occurred: you, the module's author, and the remote user. You can communicate
errors and other exception conditions to yourself by writing out entries to the server
log. For alerting the user when a problem has occurred, you can take advantage of
the simple but flexible Apache ErrorDocument system, use CGI::Carp, or roll your
own error handler.

4.6.1 Error Logging

We talked about tracking down code bugs in Chapter 2 and will talk more about C-
language specific debugging in Chapter 10. This section focuses on defensive
coding techniques for intercepting and handling other types of runtime errors.

The most important rule is to log everything. Log anything unexpected, whether it is a
fatal error or a condition that you can work around. Log expected but unusual
conditions too, and generate routine logging messages that can help you trace the
execution of your module under normal conditions.

Apache versions 1.3 and higher offer syslog-like log levels ranging in severity from
debug, for low-priority messages, through warn, for noncritical errors, to emerg, for
fatal errors that make the module unusable. By setting the LogLevel directive in the
server configuration file, you can adjust the level of messages that are written to the
server error log. For example, by setting LogLevel to warn, messages with a priority
level of warn and higher are displayed in the log; lower-priority messages are ignored.

To use this adjustable logging API, you must load the standard Apache::Log module.
This adds a log() method to the Apache request object, which will return an
Apache::Log object. You can then invoke this object's methods in order to write nicely
formatted log entries to the server's error log at the priority level you desire. Here's a
short example:

use Apache::Log ();

my $log = $r->log;
$log->debug("Trying to lock guestbook file now");
unless (lock($GUESTBOOKFILE,1)) {
 $log->emerg("Can't get lock!");
 return SERVER_ERROR;
}
$log->debug("Got lock");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$log->debug("Got lock");

In this example, we first obtain a log object by calling the request object's log()
method. We call the log object's debug() method to send a debug message to the
error log and then try to perform a locking operation. If the operation fails, we log an
error message at the emerg priority level using the log object's emerg() method and
exit. Otherwise, we log another debugging message.

You'll find the full list of method calls made available by Apache::Log in Chapter 9, in
Section 9.1.6 under Section 9.1." In addition, the Apache Perl API offers three
simpler methods for entering messages into the log file. You don't have to import the
Apache::Log module to use these methods, and they're appropriate for smaller
projects (such as most of the examples in this book).

$r->log_error($message)

log_error() writes out a time-stamped message into the server error log using a
facility of error. Use it for critical errors that make further normal execution of the
module impossible. This method predates the 1.3 LogLevel API but still exists
for backward compatibility and as a shortcut to $r->log->error.

$r->warn($message)

warn() will log an error message with a severity level of warn. You can use this
for noncritical errors or unexpected conditions that you can work around. This
method predates the 1.3 LogLevel API but still exists for backward compatibility
and as a shortcut to $r->log->warn.

$r->log_reason($message,$file)

This is a special-purpose log message used for errors that occur when a
content handler tries to process a file. It results in a message that looks
something like this:

access to /usr/local/apache/htdocs/index.html failed for ppp12.yahoo.com,
 reason: user phyllis not authorized

You might also choose to include a $DEBUG global in your modules, either hard-
coding it directly into the source, or by pulling its value out of the configuration file with
Apache::dir_config(). Your module can then check this global every time it does
something significant. If set to a true value, your script should send verbose
informational messages to the Apache error log (or to an alternative log file of your
choice).

4.6.2 The ErrorDocument System

Apache provides a handy ErrorDocument directive that can be used to display a
custom page when a handler returns a non-OK status code. The custom page can be
any URI, including a remote web page, a local static page, a local server-side include
document, or a CGI script or module. In the last three cases, the server generates an
internal redirect, making the redirection very efficient.

For example, the configuration file for Lincoln's laboratory site contains this directive:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ErrorDocument 404 /perl/missing.cgi

When the server encounters a 404 "Not Found" status code, whether generated by a
custom module or by the default content handler, it will generate an internal redirect
to a mod_perl script named missing.cgi . Before calling the script, Apache sets some
useful environment variables including the following:

REDIRECT_URL

The URL of the document that the user was originally trying to fetch.

REDIRECT_STATUS

The status code that caused the redirection to occur.

REDIRECT_REQUEST_METHOD

The method (GET or POST) that caused the redirection.

REDIRECT_QUERY_STRING

The original query string, if any.

REDIRECT_ERROR_NOTES

The logged error message, if any.

A slightly simplified version of missing.cgi that works with Apache::Registry (as well
as a standalone CGI script) is shown in Example 4.16. For a screenshot of what the
user gets when requesting a nonexistent URI, see Figure 4.9.

Figure 4.9. The missing.cgi script generates a custom page to display when a URI is not found.

Example 4.16. A Simple Apache::Registry ErrorDocument Handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/usr/local/bin/perl
file: missing.cgi
use CGI qw(:standard);
use strict;

print header,
 start_html(-title => 'Missing Document', -bgcolor => 'white'),
 h1(img({-src => '/icons/unknown.gif'}),
 'Document Not Found'),
 p("I'm sorry, but the document you requested,",
 strong($ENV{REDIRECT_URL}),
 "is not available. Please try the",
 a({-href => "/search.html"}, "search page"),
 "for help locating the document."),
 hr,
 address(a({-href => "mailto:$ENV{SERVER_ADMIN}"}, 'webmaster')),
 end_html;

If you want to implement the ErrorDocument handler as a vanilla Apache Perl API
script, the various REDIRECT_ environment variables will not be available to you.
However, you can get the same information by calling the request object's prev()
method. This returns the request object from the original request. You can then query
this object to recover the requested URI, the request method, and so forth.

Example 4.17 shows a rewritten version of missing.cgi that uses prev() to recover
the URI of the missing document. The feature to note in this code is the call to $r-
>prev on the fifth line of the handler() subroutine. If the handler was invoked as the
result of an internal redirection, this call will return the original request object, which
we then query for the requested document by calling its uri() method. If the handler
was invoked directly (perhaps by the user requesting its URI), the original request will
be undefined and we use an empty string for the document URI.

Example 4.17. An ErrorDocument Handler Using the Vanilla Apache API

package Apache::Missing;
File: Apache/Missing.pm

use strict;
use Apache::Constants qw(:common);
use CGI qw(:html);

sub handler {
 my $r = shift;
 $r->content_type('text/html');
 $r->send_http_header;
 return OK if $r->header_only;

 my $original_request = $r->prev;
 my $original_uri = $original_request ? $original_request->uri : '';
 my $admin = $r->server->server_admin;

 $r->print(

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $r->print(
 start_html(-title => 'Missing Document',
 -bgcolor => 'white'),
 h1(img({-src => '/icons/unknown.gif'}),
 'Document Not Found'),
 p(
 "I'm sorry, but the document you requested,",
 strong($original_uri),
 ", is not available. Please try the",
 a({-href => "/search.html"}, "search page"),
 "for help locating the document."
),
 hr,
 address(a({-href => "mailto:$admin"}, 'webmaster')),
 end_html
);

 return OK;
}

1;
__END__

Here's an example using Apache::Missing in the configuration file:

<Location /Missing>
 SetHandler perl-script
 PerlHandler Apache::Missing
</Location>

If the static nature of the Apache ErrorDocument directive is inadequate for your
needs, you can set the error document dynamically from within a handler by calling
the request object's custom_response() method. This method takes two arguments:
the status code of the response you want to handle and the URI of the document or
module that you want to pass control to. This error document setting will persist for
the lifetime of the current request only. After the handler exits, the setting returns to its
default.

For example, the following code snippet sets up a custom error handler for the
SERVER_ERROR error code (a generic error that covers a variety of sins). If the
things_are_ok() subroutine (not implemented here) returns a true value, we do our
work and return an OK status. Otherwise, we set the error document to point to a URI
named /Carp and return a SERVER_ERROR status.

package Apache::GoFish;
file: Apache/GoFish.pm

use strict;
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;
 if (things_are_ok($r)) {
 do_something();
 return OK;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 $r->custom_response(SERVER_ERROR, "/Carp");
 return SERVER_ERROR;
}

1;
_ _END_ _

4.6.3 HTTP Headers and Error Handling

You already know about using header_out() to set HTTP header fields. A properly
formatted HTTP header is sent to the browser when your module explicitly calls
send_http_header() , or it is sent for you automatically if you are using
Apache::Registry, the PerlSendHeader directive is set to On, and your script prints
some text that looks like an HTTP header.

You have to be careful, however, if your module ever returns non-OK status codes.
Apache wants to assume control over the header generation process in the case of
errors; if your module has already sent the header, then Apache will send a
redundant set of headers with unattractive results. This applies both to real HTTP
errors, like BAD_REQUEST and NOT_FOUND, as well as to nonfatal conditions like
REDIRECT and AUTH_REQUIRED.

Consider the following fishy example:

package Apache::Crash;
File: Apache/Crash.pm

use strict;
use Apache::Constants qw(:common);
use constant CRASH => 1;

sub handler {
 my $r = shift;
 $r->content_type('text/plain');
 $r->send_http_header;
 return OK if $r->header_only;
 return SERVER_ERROR if CRASH;
 $r->print('Half a haddock is better than none.');
 return OK;
}

1;
__END__

After setting the document MIME type, this module sends off the HTTP header. It
then checks a constant named CRASH and if true, which it always is, returns a status
code of SERVER_ERROR. Apache would ordinarily send a custom HTTP header in
response to this status code, but because the module has already emitted a header,
it's too late. Confusion results. If we map this module to the URI /Crash, we can telnet
directly to the server to demonstrate the problem:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% telnet www.modperl.com 80
Trying 192.168.2.5...
Connected to modperl.com.
Escape character is '^]'.
GET /Crash HTTP/1.0
HTTP/1.1 200 OK
Date: Thu, 21 May 1998 11:31:40 GMT
Server: Apache/1.3b6
Connection: close
Content-Type: text/plain

HTTP/1.1 200 OK
Date: Thu, 21 May 1998 11:31:40 GMT
Server: Apache/1.3b6
Connection: close
Content-Type: text/html

<HTML><HEAD>
<TITLE>500 Internal Server Error</TITLE>
</HEAD><BODY>
<H1>Internal Server Error</H1>
The server encountered an internal error or
misconfiguration and was unable to complete
your request.<P>
</BODY></HTML>
Connection closed by foreign host.

Not only are there two HTTP headers here, but both of them indicate a status code of
200 OK, which is definitely not right. When displayed in the browser, the page will be
marred by extraneous header lines at the top of the screen.

The cardinal rule is that you should never call Apache::send_http_header() until your
module has completed all its error checking and has decided to return an OK status
code. Here's a better version of Apache::Crash that avoids the problem:

package Apache::Crash;
File: Apache/Crash.pm

use strict;
use Apache::Constants qw(:common);
use constant CRASH => 1;

sub handler {
 my $r = shift;
 return SERVER_ERROR if CRASH;
 $r->content_type('text/plain');
 $r->send_http_header;
 return OK if $r->header_only;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return OK if $r->header_only;
 $r->print('Half a haddock is better than none.');
 return OK;
}

1;
__END__

Now when we telnet to the server, the server response looks the way it should:

(~) 103% telnet www.modperl.com 80
Trying 192.168.2.5...
Connected to modperl.com.
Escape character is '^]'.
GET /Crash HTTP/1.0
HTTP/1.1 500 Internal Server Error
Date: Thu, 21 May 1998 11:40:56 GMT
Server: Apache/1.3b6
Connection: close
Content-Type: text/html

<HTML><HEAD>
<TITLE>500 Internal Server Error</TITLE>
</HEAD><BODY>
<H1>Internal Server Error</H1>
The server encountered an internal error or
misconfiguration and was unable to complete
your request.<P>
</BODY></HTML>

Another important detail about error handling is that Apache ignores the fields that
you set with header_out() when your module generates an error status or invokes an
internal redirect. This is usually not a problem, but there are some cases in which this
restriction can be problematic. The most typical case is the one in which you want a
module to give the browser a cookie and immediately redirect to a different URI. Or
you might want to assign an error document to the UNAUTHORIZED status code so
that a custom login screen appears when the user tries to access a restricted page. In
both cases you need to manipulate the HTTP header fields prior to the redirect.

For these cases, call the request object's err_header_out() method. It has identical
syntax to header_out(), but the fields that you set with it are sent to the browser only
when an error has occurred. Unlike ordinary headers, the fields set with
err_header_out() persist across internal redirections, and so they are passed to
Apache ErrorDocument handlers and other local URIs.

This provides you with a simple way to pass information between modules across
internal redirects. Combining the example from this section with the example from the
previous section gives the modules shown in Example 4.18. Apache::GoFish
generates a SERVER_ERROR, which is intercepted and handled by the custom
ErrorDocument handler named Apache::Carp (Example 4.19). Before relinquishing
control, however, Apache::GoFish creates a custom HTTP field named X-Odor which
gives the error handler something substantial to complain about. The end result is
shown in Figure 4.10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4.10. When Apache::GoFish generates a custom error document, it displays the contents
of the custom X-Odor header.

The code should be fairly self-explanatory. The main point to notice is
Apache::GoFish 's use of err_header_out() to set the value of the X-Odor field, and
Apache::Carp 's use of the same function to retrieve it. Like header_out(), when you
call err_header_out() with a single argument, it returns the current value of the field
and does not otherwise alter the header. When you call it with two arguments, it sets
the indicated field.

An interesting side effect of this technique is that the X-Odor field is also returned to
the browser in the HTTP header. This could be construed as a feature. If you wished
to pass information between the content handler and the error handler without leaving
tracks in the HTTP header, you could instead use the request object's "notes" table to
pass messages from one module to another. Chapter 9 covers how to use this
facility (see the description of the notes() method under Section 9.1.4").

Example 4.18. Invoking a Custom Error Handler Document

package Apache::GoFish;
File: Apache/GoFish.pm

use Apache::Constants qw(:common :response);
use constant CRASH=>1;

sub handler {
 my $r = shift;
 $r->err_header_out('X-Odor'=>"something's rotten in Denmark");
 $r->custom_response(SERVER_ERROR, "/Carp");
 return SERVER_ERROR if CRASH;
 $r->content_type('text/plain');
 $r->send_http_header;
 return OK if $r->header_only;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return OK if $r->header_only;
 $r->print('Half a haddock is better than none.');
 return OK;
}
1;
__END__

Here is a sample configuration entry:

<Location /GoFish>
 SetHandler perl-script
 PerlHandler Apache::GoFish
</Location>

Example 4.19. An Error Handler to Complement the Previous Example

package Apache::Carp;
File: Apache/Carp.pm
use strict;
use Apache::Constants qw(:common);
use CGI qw(:html);

sub handler {
 my $r = shift;
 my $odor = $r->err_header_out('X-Odor');
 $odor ||= 'unspecified odor';
 $r->content_type('text/html');
 $r->send_http_header;
 return OK if $r->header_only;

 my $original_request = $r->prev;
 my $original_uri = $original_request ? $original_request->uri : '';
 my $admin = $r->server->server_admin;

 $r->print(
 start_html(-title => 'Phew!!', -bgcolor => 'white'),
 h1('Phew!!'),
 p("Something fishy happened while processing this request."),
 p("The odor was ", strong($odor), '.'),
 hr,
 address(a({-href => "mailto:$admin"}, 'webmaster')),
 end_html
);

 return OK;
}

1;
__END__

Here is a sample configuration entry:

<Location /Carp>
 SetHandler perl-script

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SetHandler perl-script

 PerlHandler Apache::Carp

</Location>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

4.7 Chaining Content Handlers

The C-language Apache API only allows a single content handler to completely
process a request. Several handlers may be given a shot at it, but the first one to
return an OK status will terminate the content handling phase of the transaction.

There are times when it would be nice to chain handlers into a pipeline. For example,
one handler could add canned headers and footers to the page, another could correct
spelling errors, while a third could add trademark symbols to all proprietary names.
Although the native C API can't do this yet,[3] the Perl API can, using a technique
called "stacked handlers."

[3] At the time this was written, the Apache developers were discussing a layered I/O system which will be part of the
Apache 2.0 API.

It is actually quite simple to stack handlers. Instead of declaring a single module or
subroutine in the PerlHandler directive, you declare several. Each handler will be
called in turn in the order in which it was declared. The exception to this rule is if one
of the handlers in the series returns an error code (anything other than OK,
DECLINED, or DONE). Handlers can adjust the stacking order themselves, or even
arrange to process each other's output.

4.7.1 Simple Case of Stacked Handlers

Example 4.20 gives a very simple example of a stack of three content handlers. It's
adapted slightly from the mod_perl manual page. For simplicity, all three handlers are
defined in the same file, and are subroutines named header(), body(), and footer(). As
the names imply, the first handler is responsible for the top of the page (including the
HTTP header), the second is responsible for the middle, and the third for the bottom.

A suitable configuration section looks like this:

PerlModule My
<Location /My>
 SetHandler perl-script
 PerlHandler My::header My::body My::footer
</Location>

We first load the whole module into memory using the PerlModule directive. We then
declare a URI location /My and assign the perl-script handler to it. Perl in turn is
configured to run the My::header, My::body, and My::footer subroutines by passing
them as arguments to a PerlHandler directive. In this case, the /My location has no
corresponding physical directory, but there's no reason that it couldn't.

After bringing in the OK constant from Apache::Constants, we define the subroutines
header(), body(), and footer(). header() sets the document's content type to plain text,
sends the HTTP header, and prints out a line at the top of the document. body() and
footer() both print out a line of text to identify themselves. The resulting page looks
like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

header text
body text
footer text

Example 4.20. A Simple Stacked Handler

package My;

use strict;
use Apache::Constants 'OK';

sub header {
 my $r = shift;
 $r->content_type('text/plain');
 $r->send_http_header;
 $r->print("header text\n");
 OK;
}
sub body {
 my $r = shift;
 $r->print("body text\n");
 OK;
}
sub footer {
 my $r = shift;
 $r->print("footer text\n");
 OK;
}
1;

4.7.2 Coordinating Stacked Handlers

Stacked handlers often have to coordinate their activities. In the example of the
previous section, the header() handler must be run before either of the other two in
order for the HTTP header to come out correctly. Sometimes it's useful to make the
first handler responsible for coordinating the other routines rather than relying on the
configuration file. The request object's push_handlers() method will help you do this.

push_handlers() takes two arguments: a string representing the phase to handle, and
a reference to a subroutine to handle that phase. For example, this code fragment will
arrange for the footer() subroutine to be the next content handler invoked:

$r->push_handlers(PerlHandler => \&footer);

With this technique, we can rewrite the previous example along the lines shown in
Example 4.21. In the revised module, we declare a subroutine named handler() that
calls push_handlers() three times, once each for the header, body, and footer of the
document. It then exits. The other routines are unchanged.

The revised configuration file entry looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Location /MyChain>
 SetHandler perl-script
 PerlHandler My::Chain
</Location>

Because we followed the mod_perl convention of naming the first handler subroutine
handler(), there's now no need for a PerlModule statement to load the module into
memory.

Example 4.21. Coordinated Stacked Handlers

package My::Chain;

use strict;
use Apache::Constants 'OK';

sub handler {
 my $r = shift;
 for my $cv (\&header, \&body, \&footer) {
 $r->push_handlers(PerlHandler => $cv);
 }
 OK;
}

sub header {
 my $r = shift;
 $r->content_type('text/plain');
 $r->send_http_header;
 $r->print("header text\n");
 OK;
}

sub body {
 my $r = shift;
 $r->print("body text\n");
 OK;
}

sub footer {
 my $r = shift;
 $r->print("footer text\n");
 OK;
}

1;
__END__

4.7.3 Stacked Handler Pipelining

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The stacked handlers we looked at in the previous example didn't interact. When one
was finished processing, the next took over. A more sophisticated set of handlers
might want to pipeline their results in such a way that the output of one handler
becomes the input to the next. This would allow the handlers to modify each other's
output in classic Unix filter fashion. This sounds difficult, but in fact it's pretty simple.
This section will show you how to set up a filter pipeline. As an aside, it will also
introduce you to the concept of Apache Perl API method handlers.

The trick to achieving a handler pipeline is to use "tied" filehandles to connect the
neighbors together. In the event that you've never worked with a tied filehandle
before, it's a way of giving a filehandle seemingly magic behavior. When you print()
to a tied filehandle, the data is redirected to a method in a user-defined class rather
than going through the usual filesystem routines. To create a tied filehandle, you
simply declare a class that defines a method named TIEHANDLE() and various
methods to handle the sorts of things one does with a filehandle, such as PRINT()
and READ().

Here's a concrete example of a tied filehandle class that interfaces to an antique
daisywheel printer of some sort:

package DaisyWheel;

sub TIEHANDLE {
 my($class, $printer_name) = @_;
 open_daisywheel($printer_name);
 bless { 'printer' => $printer_name }, $class;
}

sub PRINT {
 my $self = shift;
 send_to_daisywheel($self->{'printer'}, @_);
}

sub DESTROY {
 my $self = shift;
 close_daisywheel($self->{'printer'});
}

1;
__END__

The TIEHANDLE() method gets called first. It is responsible for opening the
daisywheel printer driver (routine not shown here!) and returning a blessed object
containing its instance variables. The PRINT() method is called whenever the main
program prints to the tied filehandle. Its arguments are the blessed object and a list
containing the arguments to print(). It recovers the printer name from its instance
variables and then passes it, and the items to print, to an internal routine that does
the actual work. DESTROY() is called when the filehandle is untie() d or closed. It
calls an internal routine that closes the printer driver.

To use this class, a program just has to call tie() with the name of an appropriate
printer:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use DaisyWheel ();
tie *DAISY, 'DaisyWheel', 'dwj002';
print DAISY "Daisy... Daisy... Daisy the Kangaroo.\n";
print DAISY "She wanted to live in a private home,\n";
print DAISY "So she ran away from the zoo!\n";
close DAISY;

A more complete tied filehandle class might include a PRINTF() method, a READ()
method, a READLINE() method, and a GETC() method, but for output-only
filehandles PRINT() is usually enough.

Now back to Apache. The strategy will be for each filter in the pipeline, including the
very first and last ones, to print to STDOUT, rather than directly invoking the
Apache::print() method via the request object. We will arrange for STDOUT to be
tied() in each case to a PRINT() method defined in the next filter down the chain. The
whole scheme looks something like this:

filter1 -> filter2::PRINT() [STDOUT tied to filter2]
filter2 -> filter3::PRINT() [STDOUT tied to filter3]
filter3 -> filter4::PRINT() [STDOUT tied to filter4]
 .
 .
 .
filterN -> Apache::PRINT() [STDOUT tied to Apache]

Interestingly enough, the last filter in the chain doesn't have to get special treatment.
Internally, the Apache request ties STDOUT to Apache::PRINT(), which in turn calls
Apache::print(). This is why handlers can use $r->print('something') and
print('something') interchangeably.

To simplify setting up these pipelines, we'll define a utility class called
Apache::Forward.[4] Apache::Forward is a null filter that passes its input through to
the next filter in the chain unmodified. Modules that inherit from this class override its
PRINT() method to do something interesting with the data.

[4] The more obvious name, Apache::Filter, is already taken by a third-party module that does output chaining in a
slightly different manner.

Example 4.22 gives the source code for Apache::Forward. We'll discuss the code
one section at a time.

package Apache::Forward;

use strict;
use Apache::Constants qw(OK SERVER_ERROR);
use vars qw($VERSION);
$VERSION = '1.00';

sub handler ($$) {
 my($class, $r) = @_;
 my $next = tied *STDOUT || return SERVER_ERROR;
 tie *STDOUT, $class, $r, $next or return SERVER_ERROR;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 tie *STDOUT, $class, $r, $next or return SERVER_ERROR;
 $r->register_cleanup(sub { untie *STDOUT });
 OK;
}

Most of the work is done in the handler() subroutine, which is responsible for correctly
tying the STDOUT filehandle. Notice that the function prototype for handler() is ($$),
or two scalar arguments. This is a special signal to Apache to activate its method
handler behavior. Instead of calling handler() like an ordinary subroutine, Apache
calls handler() like this:

Apache::Forward->handler($r);

The result is that the handler() receives the class name as its first argument, and the
request object as the second argument. This object-oriented calling style allows
Apache::Forward to be subclassed.

The handler() subroutine begins by recovering the identity of the next handler in the
pipeline. It does this by calling tied() on the STDOUT filehandle. tied() returns a
reference to whatever object a filehandle is tied to. It will always return a valid object,
even when the current package is the last filter in the pipeline. This is because
Apache ties STDOUT to itself, so the last filter will get a reference to the Apache
object. Nevertheless, we do check that tied() returns an object and error out if not—
just in case.

Next the subroutine reties STDOUT to itself, passing tie() the request object and the
reference to the next filter in the pipeline. This call shouldn't fail, but if it does, we
return a server error at this point.

Before finishing up, the handler() method needs to ensure that the filehandle will be
untied before the transaction terminates. We do this by registering a handler for the
cleanup phase. This is the last handler to be called before a transaction terminates
and is traditionally reserved for this kind of garbage collection. We use
register_cleanup() to push an anonymous subroutine that unties STDOUT. When the
time comes, the filehandle will be untied, automatically invoking the class's
DESTROY() method. This gives the object a chance to clean up, if it needs to. Note
that the client connection will be closed before registered cleanups are run, so class
DESTROY() methods should not attempt to send any data to the client.

sub TIEHANDLE {
 my($class, $r, $next) = @_;
 bless { 'r' => $r, # request object
 'next' => $next # next in the chain
 }, $class;
}

The next routine to consider is TIEHANDLE() , whose job is to return a new blessed
object. It creates a blessed hash containing the keys r and next. r points to the
request object, and next points to the next filter in the pipeline. Both of these
arguments were passed to us by handler().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub PRINT {
 my $self = shift;
 # Subclasses should do something interesting here
 $self->forward(@_);
}

The PRINT() method is invoked whenever the caller wants to print something to the
tied filehandle. The arguments consist of the blessed object and a list of data items to
be processed. Subclasses will want to modify the data items in some way, but we just
forward them unmodified to the next filter in line by calling an internal routine named
forward().

#sub DESTROY {
my $self = shift;
maybe clean up here
#}

DESTROY() is normally responsible for cleaning up. There's nothing to do in the
general case, so we comment out the definition to avoid being called, saving a bit of
overhead.

sub forward {
 shift()->{'next'}->PRINT(@_);
}

forward() is called by PRINT() to forward the modified data items to the next filter in
line. We shift the blessed object off the argument stack, find the next filter in line, and
invoke its PRINT() method.

Example 4.22. A Chained Content Handler

package Apache::Forward;

use strict;
use Apache::Constants qw(OK SERVER_ERROR);
use vars qw($VERSION);
$VERSION = '1.00';

sub handler ($$) {
 my($class, $r) = @_;
 my $next = tied *STDOUT || return SERVER_ERROR;
 tie *STDOUT, $class, $r, $next or return SERVER_ERROR;
 $r->register_cleanup(sub { untie *STDOUT });
 OK;
}

sub TIEHANDLE {
 my($class, $r, $next) = @_;
 bless { 'r' => $r, # request object
 'next' => $next # next in the chain
 }, $class;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }, $class;
}

sub PRINT {
 my $self = shift;
 # Subclasses should do something interesting here
 $self->forward(@_);
}

#sub DESTROY {
my $self = shift;
maybe clean up here
#}

sub forward {
 shift()->{'next'}->PRINT(@_);
}

1;
__END__

Having defined the filter base class, we can now define filters that actually do
something. We'll show a couple of simple ones to give you the idea first, then create a
larger module that does something useful.

Apache::Upcase (Example 4.23) transforms everything it receives into uppercase
letters. It inherits from Apache::Forward and then overrides the PRINT() method.
PRINT() loops through the list of data items, calling uc() on each. It then forwards the
modified data to the next filter in line by calling its forward() method (which we do not
need to override).

Example 4.23. Apache::Upcase Transforms Its Input into Uppercase

package Apache::Upcase;

use strict;
use Apache::Forward ();
use vars qw(@ISA $VERSION);
@ISA = qw(Apache::Forward);
$VERSION = '1.00';

sub PRINT {
 my $self = shift;
 $self->forward(map { uc $_ } @_);
}

1;
__END__

Along the same lines, Apache::Censor (Example 4.24) filters its input data to
replace four-letter words with starred versions. It takes the definition of "four-letter
word" a little liberally, transforming "sent" into "s**t." It is identical in every way to
Apache::Upcase, except that PRINT() performs a global regular expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache::Upcase, except that PRINT() performs a global regular expression
substitution on the input data. The transformed data is then forwarded to the next filter
as before.

Example 4.24. A Handler that Removes Four-Letter Words

package Apache::Censor;

use strict;
use Apache::Forward ();
use vars qw(@ISA $VERSION);
@ISA = qw(Apache::Forward);
$VERSION = '1.00';

sub PRINT {
 my($self, @data) = @_;
 foreach (@data) { s/\b(\w)\w{2}(\w)\b/$1**$2/g; }
 $self->forward(@data);
}

1;
__END__

To watch these filters in action, we need a data source. Here's a very simple content
handler that emits a constant string. It is very important that the content be sent with a
regular print() statement rather than the specialized $r->print() method. If you call
Apache::print() directly, rather than through the tied STDOUT filehandle, you short-
circuit the whole chain!

package Apache::TestFilter;

use strict;
use Apache::Constants 'OK';

sub handler {
 my $r = shift;
 $r->content_type('text/plain');
 $r->send_http_header;
 print(<<END);
This is some text that is being sent out with a print()
statement to STDOUT. We do not know whether STDOUT is tied
to Apache or to some other source, and in fact it does not
really matter. We are just the content source. The filters
come later.
END
 OK;
}

1;
__END__

The last step is to provide a suitable entry in the configuration file. The PerlHandler
directive should declare the components of the pipeline in reverse order. As Apache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directive should declare the components of the pipeline in reverse order. As Apache
works its way forward from the last handler in the pipeline to the first, each of the
handlers unties and reties STDOUT. The last handler in the series is the one that
creates the actual content. It emits its data using print() and the chained handlers do
all the rest. Here's a sample entry:

<Location /Filter>
 SetHandler perl-script
 PerlHandler Apache::Upcase Apache::Censor Apache::TestFilter
</Location>

Figure 4.11 shows the page that appears when the pipeline runs.

Figure 4.11. The final output from three chained content handlers

The last filter we'll show you is actually useful in its own right. When inserted into a
filter pipeline, it compresses the data stream using the GZip protocol, and flags the
browser that the data has been GZip-encoded by adding a Content-Encoding field to
the HTTP header. Browsers that support on-the-fly decompression of GZip data will
display the original document without any user intervention.[5]

[5] For historical reasons this facility is limited to Unix versions of Netscape Navigator, to PowerPC versions of
Navigator on the Macintosh, and to some other Unix-based browsers such as W3-Emacs. However, now that
Navigator's source code has been released to the developer community, we hope to see a more widespread
implementation of this useful feature.

This filter requires the zlib compression library and its Perl interface, Paul Marquess'
Compress::Zlib . zlib, along with instructions on installing it, can be found at
ftp://ftp.uu.net/pub/archiving/zip/zlib*. As usual, you can find Compress::Zlib at CPAN.
Together these libraries provide both stream-based and in-memory
compression/decompression services, as well as a high-level interface for creating
and reading gzip files.

The filter is a little more complicated than the previous ones because GZip works best
when the entire document is compressed in a single large segment. However, the
filter will be processing a series of print() statements on data that is often as short as
a single line. Although we could compress each line as a single segment,
compression efficiency suffers dramatically. So instead we buffer the output, using
zlib 's stream-oriented compression routines to emit the encoded data whenever zlib
thinks enough data has been received to compress efficiently. We also have to take
care of the details of creating a valid GZip header and footer. The header consists of
the current date, information about the operating system, and some flags. The footer
contains a CRC redundancy check and the size of the uncompressed file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 4.25 gives the complete code for Apache::GZip. Although it inherits its
core functionality from Apache::Forward, each subroutine has to be tweaked a bit to
support the unique requirements of GZip compression.

package Apache::GZip;

use strict;
use Apache::Constants qw(:common);
use Compress::Zlib qw(deflateInit crc32 MAX_WBITS Z_DEFLATED);
use Apache::Forward ();
use vars qw($VERSION @ISA);

use constant GZIP_MAGIC => 0x1f8b;
use constant OS_MAGIC => 0x03;

$VERSION = '1.00';
@ISA = qw(Apache::Forward);

After the usual preamble, we import the compression routines from Compress::Zlib,
and bring in the Apache::Forward class. We then define a couple of constants needed
for the GZip header (in case you're wondering, we got these constants by looking at
the zlib C code).

sub handler ($$) {
 my($class, $r) = @_;
 #return DECLINED unless $r->header_in("Accept-Encoding") =~ /gzip/;
 $r->content_encoding('gzip');
 $class->SUPER::handler($r);
}

In order for the browser to automatically decompress the data, it needs to see a
Content-Encoding field with the value gzip in the HTTP header. In order to insert this
field, we override the parent class's handler() subroutine and set the field using the
request object's content_encoding() method. We then call our superclass's handler()
method to do the rest of the work.

The commented line that comes before the call to content_encoding() is an attempt to
"do the right thing." Browsers are supposed to send a header named Accept-
Encoding if they can accept compressed or otherwise encoded data formats. This line
tests whether the browser can accept the GZip format and declines the transaction if
it can't. Unfortunately, it turns out that many Netscape browsers don't transmit this
essential header, so we skip the test.[6]

[6] Andreas Koenig's Apache::GzipChain module, which does much the same thing as this one, contains a hardcoded
pattern match for the browser type contained in the User-Agent field. You can add this sort of test yourself if you wish,
or wait for the browser developers to implement Accept-Encoding correctly.

sub TIEHANDLE {
 my $class = shift;
 my $r = shift;
 my $self = $class->SUPER::TIEHANDLE($r, @_);
 my $d = deflateInit(-WindowBits => -MAX_WBITS()) || return;
 @{$self}{'crc','d','l','h'} = (crc32(undef),$d,0,0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 @{$self}{'crc','d','l','h'} = (crc32(undef),$d,0,0);
 $r->push_handlers(PerlHandler => sub { $self->flush });
 return $self;
}

All the compression work is done in TIEHANDLE(), PRINT(), and flush().
TIEHANDLE() begins by invoking the superclass's handler() method to create an
object blessed into the current class. The method then creates a new Compress::Zlib
deflation object by calling deflateInit(), using an argument of -WindowBits that is
appropriate for GZip files (again, we got this by reading the zlib C source code).
Finally we add a few new instance variables to the object and return it to the caller.
The instance variables include crc, for the cyclic redundancy check, d for the deflation
object, l for the total length of the uncompressed data, and h for a flag that indicates
whether the header has been printed.[7] Finally, TIEHANDLE() will call the
push_handlers() method, installing our flush() method at the end of the output chain.

[7] At the time this chapter was being prepared, the author of Compress::Zlib, Paul Marquess, was enhancing his
library to make this manual manipulation of the compressed output stream unnecessary.

sub gzheader {
 pack("nccVcc", GZIP_MAGIC, Z_DEFLATED, 0,time,0, OS_MAGIC)
}

sub PRINT {
 my $self = shift;
 $self->forward(gzheader()) unless $self->{'h'}++;
 foreach (@_) {
 my $data = $self->{d}->deflate($_);
 $self->{l} += length($_);
 $self->{crc} = crc32($_, $self->{crc});
 $self->forward($data);
 }
}

The PRINT() method is called once each time the previous filter in the pipeline calls
print(). It first checks whether the GZip header has already been sent, and sends it if
not. The GZip header is created by the gzheader() routine and consists of a number
of constants packed into a 10-byte string. It then passes each of its arguments to the
deflation object's deflate() method to compress the information, then forwards
whatever compressed data is returned to the next filter in the chain (or Apache, if this
is the last filter). The subroutine also updates the running total of bytes compressed
and calculates the CRC, using Compress::Zlib 's crc32() subroutine.

sub flush {
 my $self = shift;
 my $data = $self->{d}->flush;
 return unless $self->{'h'};
 $self->forward($data);
 $self->forward(pack("V V", $self->{'crc'}, $self->{'l'}));
}

The flush() routine is called when the last of our chained handlers is run. Because zlib
buffers its compressed data, there is usually some data left in its internal buffers that
hasn't yet been printed. We call the deflation object's flush() method to obtain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hasn't yet been printed. We call the deflation object's flush() method to obtain
whatever is left and forward it onward. Lastly we forward the CRC and the total length
of the uncompressed file, creating the obligatory GZip footer.

Apache::GZip will usually go last in the filter chain, like this:

<Location /Compressed>
 SetHandler perl-script
 PerlHandler Apache::GZip OneFilter AnotherFilter
</Location>

You can use Apache::GZip with any content handler that prints directly to STDOUT.
Most of the modules given in this chapter send data via $r->print(). Simply delete the
$r-> part to make them compatible with Apache::GZip and other chained content
handlers.

Example 4.25. A Handler That Compresses Its Input Before Forwarding It

package Apache::GZip;

use strict;
use Apache::Constants qw(:common);
use Compress::Zlib qw(deflateInit crc32 MAX_WBITS Z_DEFLATED);
use Apache::Forward ();
use vars qw($VERSION @ISA);

use constant GZIP_MAGIC => 0x1f8b;
use constant OS_MAGIC => 0x03;

$VERSION = '1.00';
@ISA = qw(Apache::Forward);

sub handler ($$) {
 my($class, $r) = @_;
 #return DECLINED unless $r->header_in("Accept-Encoding") =~ /gzip/;
 $r->content_encoding('gzip');
 $class->SUPER::handler($r);
}

sub TIEHANDLE {
 my $class = shift;
 my $r = shift;
 my $self = $class->SUPER::TIEHANDLE($r, @_);
 my $d = deflateInit(-WindowBits => -MAX_WBITS()) || return;
 @{$self}{'crc','d','l','h'} = (crc32(undef),$d,0,0);
 $r->push_handlers(PerlHandler => sub { $self->flush });
 return $self;
}

sub gzheader {
 pack("nccVcc", GZIP_MAGIC, Z_DEFLATED, 0,time,0, OS_MAGIC)
}

sub PRINT {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub PRINT {
 my $self = shift;
 $self->forward(gzheader()) unless $self->{'h'}++;
 foreach (@_) {
 my $data = $self->{d}->deflate($_);
 $self->{l} += length($_);
 $self->{crc} = crc32($_, $self->{crc});
 $self->forward($data);
 }
}

sub flush {
 my $self = shift;
 my $data = $self->{d}->flush;
 return unless $self->{'h'};
 $self->forward($data);
 $self->forward(pack("V V", $self->{'crc'}, $self->{'l'}));
}

1;
__END__

Readers who are interested in content handler pipelines should be aware of Jan
Pazdziora's Apache::OutputChain module. It accomplishes the same thing as
Apache::Forward but uses an object model that is less transparent than this one
(among other things, the Apache::OutputChain module must always appear first on
the PerlHandler list). You should also have a look at Andreas Koenig's
Apache::PassFile and Apache::GZipChain modules. The former injects a file into an
OutputChain and is an excellent way of providing the input to a set of filters. The latter
implements compression just as Apache::GZip does but doesn't buffer the
compression stream, losing efficiency when print() is called for multiple small data
segments.

Just as this book was going to press, Ken Williams announced Apache::Filter , a
chained content handler system that uses a more devious scheme than that
described here. Among the advantages of this system is that you do not have to list
the components of the pipeline in reverse order.

4.7.4 Other Types of Stacked Handlers

Content handlers aren't the only type of Apache Perl API handler that can be stacked.
Translation handlers, type handlers, authorization handlers, and in fact all types of
handlers can be chained using exactly the same techniques we used for the content
phase.

A particularly useful phase for stacking is the cleanup handler. Your code can use this
to register any subroutines that should be called at the very end of the transaction.
You can deallocate resources, unlock files, decrement reference counts, or clear
globals. For example, the CGI.pm module maintains a number of package globals
controlling various programmer preferences. In order to continue to work correctly in
the persistent environment of mod_perl, CGI.pm has to clear these globals after each
transaction. It does this by arranging for an internal routine named _reset_globals() to
be called at the end of each transaction using this line of code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$r->push_handlers('PerlCleanupHandler',\&CGI::_reset_globals);

Your program can push as many handlers as it likes, but you should remember that
despite its name, the handler stack doesn't act like the classic LIFO (last-in/first-out)
stack. Instead it acts like a FIFO (first-in/first-out) queue. Also remember that if the
same handler is pushed twice, it will be invoked twice.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

4.8 Method Handlers

It should come as no surprise that between the Apache distribution and third-party
modules, there exist dozens of authentication modules, several directory indexing
modules, and a couple of extended server-side include modules. All of these modules
contain code that was copied and pasted from each other. In some cases all but a
minuscule portion of the module consists of duplicated code.

Code duplication is not bad in and of itself, but it is wasteful of memory resources
and, more important, of developers' time. It would be much better if code could be
reused rather than duplicated, by using a form of object-oriented subclassing. For the
C-language API there's not much hope of this. Vanilla C doesn't provide object-
oriented features, while C++ would require both the Apache core and every extension
module to adopt the same class hierarchy—and it's a little late in the game for this to
happen.

Fortunately, the Perl language does support a simple object-oriented model that
doesn't require that everyone buy into the same class hierarchy. This section
describes how these object-oriented features can be used by Perl API modules to
reuse code instead of duplicating it.

We've already looked at piecing together documents in various ways. Here we will
explore an implementation using method handlers. There are two classes involved
with this example: My::PageBase and My::Page.

Example 4.26 shows the My::PageBase class, which provides the base functionality
for the family of documents derived from this class. My::PageBase stitches together a
document by calling four methods: the header() method sends the HTTP headers, the
top() method emits the beginning of an HTML document, including the title, the body()
method emits the main contents of the page, and the bottom() method adds a
common footer. My::PageBase includes generic definitions for header(), top(), body(),
and bottom(), each of which can be overridden by its subclasses. These are all very
simple methods. See Example 4.26 for the definitions.

The My::PageBase handler() method looks like this:

sub handler ($$) {
 my($self, $r) = @_;
 unless (ref($self)) {
 $self = $self->new;
 }
 for my $meth (qw(header top body bottom)) {
 $self->$meth($r);
 }
 return OK;
}

The key to using My::PageBase in an object-oriented way is the handler()
subroutine's use of the ($$) function prototype. This tells mod_perl that the handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subroutine's use of the ($$) function prototype. This tells mod_perl that the handler
wants two arguments: the static class name or object, followed by the Apache request
object that is normally passed to handlers. When the handler is called, it retrieves its
class name or object reference and stores it in the lexical variable $self. It checks
whether $self is an object reference, and if not, it calls its own new() method to
create a new object. It then invokes the header(), top(), body(), and bottom() methods
in turn.

The My::PageBase new() method turn the arguments passed to it into a blessed hash
in the My::PageBase package. Each key in the hash is an attribute that can be used
to construct the page. We do not define any default attributes:

sub new {
 my $class = shift;
 bless {@_}, $class;
}

We will see later why this method is useful.

As we saw in the section on the Apache::Forward module, method handlers are
configured just like any other:

<Location /my>
 PerlHandler My::PageBase
 SetHandler perl-script
</Location>

However, for clarity's sake, or if you use a handler method named something other
than handler(), you can use Perl's standard -> method-calling notation. You will have
to load the module first with the PerlModule directive:

PerlModule My::PageBase
<Location /my>
 PerlHandler My::PageBase->handler
 SetHandler perl-script
</Location>

When My::PageBase is installed in this way and you request URI /my, you will see the
exciting screen shown in Figure 4.12.

Figure 4.12. The generic document produced by My::PageBase

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Naturally, we'll want to add a bit more spice to this page. Because the page is
modularized, we can do so one step at a time by subclassing Apache::PageBase 's
methods. The My::Page class does so by inheriting from the My::PageBase class and
simply overriding the body() method.

package My::Page;
file: My/Page.pm

use strict;
use vars qw(@ISA);
use My::PageBase ();
@ISA = qw(My::PageBase);

sub body {
 my($self, $r) = @_;
 $r->print(<<END);
<p>
This is My homepage</p>
<br clear=all>
END
}

1;
__END__

Then change the configuration to invoke the handler() method via My::Page rather
than My::PageBase :

PerlModule My::Page
<Location /my>
 PerlHandler My::Page->handler
 SetHandler perl-script
</Location>

Things look almost the same, but the body text has changed (Figure 4.13).

Figure 4.13. My::Page overrides the body() method of My::PageBase, creating a more
interesting document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now we need a better title for our document. We could override the top() method as
we did for body(), but that would involve cutting and pasting a significant amount of
HTML (see Example 4.26). Instead, we can make use of the object's title attribute,
which is used by the top() method in this way:

my $title = $self->{title} || "untitled document";

So how do we set the title attribute? This is where the My::PageBase new() method
comes in. When it is called with a set of attribute=value pairs, it blesses them into a
hash reference and returns the new object. To set the title attribute, we just have to
call the new() method like this:

use My::Page ();
$My::Homepage = My::Page->new(title => 'My Homepage');

This will create a global scalar variable in the My namespace named
$My::Homepage. It's most convenient to do this during server startup—for instance,
in the Perl startup file.

Now we just change the configuration section to use the object as the handler rather
than the class name:

<Location /my>
 PerlHandler $My::Homepage->handler
 SetHandler perl-script
</Location>

The object will be retrieved by mod_perl and used to invoke the handler, which will
lead to the creation of the page shown in Figure 4.14.

Figure 4.14. After creating a My::Page object with a title attribute defined, the page displays a
custom title and level 1 header.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 4.26. Using a Method Handler for Object-Oriented Programming Techniques

package My::PageBase;
file: My/PageBase.pm

use strict;
use Apache::Constants qw(:common);

sub new {
 my $class = shift;
 bless {@_}, $class;
}

sub handler ($$) {
 my($self, $r) = @_;
 unless (ref($self)) {
 $self = $self->new;
 }
 for my $meth (qw(header top body bottom)) {
 $self->$meth($r);
 }
 return OK;
}

sub header {
 my($self, $r) = @_;
 $r->content_type($self->{type} || "text/html");
 $r->send_http_header;
}

sub top {
 my($self, $r) = @_;
 my $title = $self->{title} || "untitled document";
 $r->print(<<EOF);
<html>
<head>
<title>$title</title>
</head>
<body>
<h1>$title</h1>
<hr>
EOF
}

sub bottom {
 my($self, $r) = @_;
 my $admin = $r->server->server_admin;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $admin = $r->server->server_admin;
 $r->print(<<EOF);
<hr>
<i>$admin</i>
</body>
</html>
EOF
}

sub body {
 my($self, $r) = @_;
 $r->print("<p>This is the document body<p>");
}

1;
__END__

This wraps up our discussion of the basic techniques for generating page content,
filtering files, and processing user input. The next chapter ventures into the perilous
domain of imposing state on the stateless HTTP protocol. You'll learn techniques for
setting up user sessions, interacting with databases, and managing long-term
relationships with users.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 5. Maintaining State
If you've ever written a complicated CGI script, you know that the main inconvenience
of the HTTP architecture is its stateless nature. Once an HTTP transaction is finished,
the server forgets all about it. Even if the same remote user connects a few seconds
later, from the server's point of view it's a completely new interaction and the script
has to reconstruct the previous interaction's state. This makes even simple
applications like shopping carts and multipage questionnaires a challenge to write.

CGI script developers have come up with a standard bag of tricks for overcoming this
restriction. You can save state information inside the fields of fill-out forms, stuff it into
the URI as additional path information, save it in a cookie, ferret it away in a server-
side database, or rewrite the URI to include a session ID. In addition to these
techniques, the Apache API allows you to maintain state by taking advantage of the
persistence of the Apache process itself.

This chapter takes you on a tour of various techniques for maintaining state with the
Apache API. In the process, it also shows you how to hook your pages up to relational
databases using the Perl DBI library.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

5.1 Choosing the Right Technique

The main issue in preserving state information is where to store it. Six frequently used
places are shown in the following list. They can be broadly broken down into client-
side techniques (items 1 through 3) and server-side techniques (items 4 through 6).

1. Store state in hidden fields

2. Store state in cookies

3. Store state in the URI

4. Store state in web server process memory

5. Store state in a file

6. Store state in a database

In client-side techniques the bulk of the state information is saved on the browser's
side of the connection. Client-side techniques include those that store information in
HTTP cookies and those that put state information in the hidden fields of a fill-out
form. In contrast, server-side techniques keep all the state information on the web
server host. Server-side techniques include any method for tracking a user session
with a session ID.

Each technique for maintaining state has unique advantages and disadvantages. You
need to choose the one that best fits your application. The main advantage of the
client-side techniques is that they require very little overhead for the web server: no
data structures to maintain in memory, no database lookups, and no complex
computations. The disadvantage is that client-side techniques require the cooperation
of remote users and their browser software. If you store state information in the
hidden fields of an HTML form, users are free to peek at the information (using the
browser's "View Source" command) or even to try to trick your application by sending
a modified version of the form back to you.[1] If you use HTTP cookies to store state
information, you have to worry about older browsers that don't support the HTTP
cookie protocol and the large number of users (estimated at up to 20 percent) who
disable cookies out of privacy concerns. If the amount of state information you need
to save is large, you may also run into bandwidth problems when transmitting the
information back and forth.

[1] Some sites that use the hidden fields technique in their shopping carts script report upward of 30 attempts per
month by users to submit fraudulently modified forms in an attempt to obtain merchandise they didn't pay for.

Server-side techniques solve some of the problems of client-side methods but
introduce their own issues. Typically you'll create a "session object" somewhere on
the web server system. This object contains all the state information associated with
the user session. For example, if the user has completed several pages of a
multipage questionnaire, the session will hold the current page number and the
responses to previous pages' questions. If the amount of state information is small,
and you don't need to hold onto it for an extended period of time, you can keep it in
the web server's process memory. Otherwise, you'll have to stash it in some long-
term storage, such as a file or database. Because the information is maintained on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

term storage, such as a file or database. Because the information is maintained on
the server's side of the connection, you don't have to worry about the user peeking or
modifying it inappropriately.

However, server-side techniques are more complex than client-side ones. First,
because these techniques must manage the information from multiple sessions
simultaneously, you must worry about such things as database and file locking.
Otherwise, you face the possibility of leaving the session storage in an inconsistent
state when two HTTP processes try to update it simultaneously. Second, you have to
decide when to expire old sessions that are no longer needed. Finally, you need a
way to associate a particular session object with a particular browser. Nothing about a
browser is guaranteed to be unique: not its software version number, nor its IP
address, nor its DNS name. The browser has to be coerced into identifying itself with
a unique session ID, either with one of the client-side techniques or by requiring users
to authenticate themselves with usernames and passwords.

A last important consideration is the length of time you need to remember state. If you
only need to save state across a single user session and don't mind losing the state
information when the user quits the browser or leaves your site, then hidden fields
and URI-based storage will work well. If you need state storage that will survive the
remote user quitting the browser but don't mind if state is lost when you reboot the
web server, then storing state in web server process memory is appropriate.
However, for long-term storage, such as saving a user's preferences over a period of
months, you'll need to use persistent cookies on the client side or store the state
information in a file or database on the server side.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

5.2 Maintaining State in Hidden Fields

Figure 5.1 shows the main example used in this chapter, an online hangman game.
When the user first accesses the program, it chooses a random word from a
dictionary of words and displays a series of underscores for each of the word's letters.
The game prompts the user to type in a single letter guess or, if he thinks he knows it,
the whole word. Each time the user presses return (or the "Guess" button), the game
adds the guess to the list of letters already guessed and updates the display. Each
time the user makes a wrong guess, the program updates the image to show a little
bit more of the stick figure, up to six wrong guesses total. When the game is over, the
user is prompted to start a new game. A status area at the top of the screen keeps
track of the number of words the user has tried, the number of games he's won, and
the current and overall averages (number of letters guessed per session).[2]

[2] Lincoln was very gratified when he tested the first working version of the game on his wife. She took over the
computer and refused to give it back for hours!

This hangman game is a classic case of a web application that needs to maintain
state across an extended period of time. It has to keep track of several pieces of
information, including the unknown word, the letters that the user has already
guessed, the number of wins, and a running average of guesses. In this section, we
implement the game using hidden fields to record the persistent information. In later
sections, we'll reimplement it using other techniques to maintain state.

Figure 5.1. The script described in this chapter generates an online hangman game.

The complete code for the first version of the hangman game is given in Example
5.1. It is an Apache::Registry script and therefore runs equally well as a vanilla CGI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1. It is an Apache::Registry script and therefore runs equally well as a vanilla CGI
script as under mod_perl (except for being much faster under mod_perl, of course).
Much of the code is devoted to the program logic of choosing a new word from a
random list of words, processing the user's guesses, generating the HTML to display
the status information, and creating the fill-out form that prompts the user for input.

This is a long script, so we'll step through the parts that are relevant to saving and
retrieving state a section at a time:

file: hangman1.cgi
hangman game using hidden form fields to maintain state

use IO::File ();
use CGI qw(:standard);

use strict;
use constant WORDS => '/usr/games/lib/hangman-words';
use constant ICONS => '/icons/hangman';
use constant TRIES => 6;

In order to compartmentalize the persistent information, we keep all the state
information in a hash reference called $state. This hash contains six keys: WORD for
the unknown word, GUESSED for the list of letters the user has already guessed,
GUESSES_LEFT for the number of tries the user has left in this game, GAMENO for the
number of games the user has played (the current one included), WON for the number
of games the user has won, and TOTAL for the total number of incorrect guesses the
user has made since he started playing.

We're now ready to start playing the game:

retrieve the state
my $state = get_state();

reinitialize if we need to
$state = initialize($state) if !$state or param('restart');

process the current guess, if any
my($message, $status) = process_guess(param('guess') || '', $state);

We first attempt to retrieve the state information by calling the subroutine get_state().
If this subroutine returns an undefined value or if the user presses the "restart" button,
which appears when the game is over, we call the initialize() subroutine to pick a new
unknown word and set the state variables to their defaults. Next we handle the user's
guess, if any, by calling the subroutine process_guess(). This implements the game
logic, updates the state information, and returns a two-item list consisting of a
message to display to the user (something along the lines of "Good guess!") and a
status code consisting of one of the words "won", "lost", "continue", or "error."

The main task now is to generate the HTML page:

start the page
print header,
 start_html(-Title => 'Hangman 1',
 -bgcolor => 'white',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 -bgcolor => 'white',
 -onLoad => 'if (document.gf) document.gf.guess.focus()'),
 h1('Hangman 1: Fill-Out Forms');

draw the picture
picture($state);

draw the statistics
status($message, $state);

Prompt the user to restart or to enter the next guess.
if ($status =~ /^(won|lost)$/) {
 show_restart_form($state);
}
else {
 show_guess_form($state);
}
print hr,
 a({-href => '/'}, "Home"),
 p(cite({-style => "fontsize: 10pt"}, 'graphics courtesy Andy Wardley')),
 end_html();

Using CGI.pm functions, we generate the HTTP header and the beginning of the
HTML code. We then generate an tag using the state information to select
which "hanged man" picture to show and display the status bar. If the status code
returned by process_guess() indicates that the user has completed the game, we
display the fill-out form that prompts the user to start a new game. Otherwise, we
generate the form that prompts the user for a new guess. Finally we end the HTML
page and exit.

Let's look at the relevant subroutines now, starting with the initialize() function:

sub initialize {
 my $state = shift;
 $state = {} unless $state;
 $state->{WORD} = pick_random_word();
 $state->{GUESSES_LEFT} = TRIES;
 $state->{GUESSED} = '';
 $state->{GAMENO} += 1;
 $state->{WON} += 0;
 $state->{TOTAL} += 0;
 return $state;
}

All the state maintenance is performed in the subroutines initialize(), get_state(), and
set_state(). initialize() creates a new empty state variable if one doesn't already
exist, or resets just the per-game fields if one does. The per-game fields that always
get reset are WORD, GUESSES_LEFT, and GUESSED. The first field is set to a new
randomly chosen word, the second to the total number of tries that the user is
allowed, and the third to an empty hash reference. GAMENO and TOTAL need to
persist across user games. GAMENO is bumped up by one each time initialize() is
called. TOTAL is set to zero only if it is not already defined. The (re)initialized state
variable is now returned to the caller.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub save_state {
 my $state = shift;
 foreach (qw(WORD GAMENO GUESSES_LEFT WON TOTAL GUESSED)) {
 print hidden(-name => $_, -value => $state->{$_}, -override => 1);
 }
}

The save_state() routine is where we store the state information. Because it stashes
the information in hidden fields, this subroutine must be called within a <FORM>
section. Using CGI.pm 's hidden() HTML shortcut, we produce a series of hidden tags
whose names correspond to each of the fields in the state hash. For the variables
WORD, GAMENO, GUESSES_LEFT, and so on, we just call hidden() with the name and
current value of the variable. The output of this subroutine looks something like the
following HTML:

<INPUT TYPE="hidden" NAME="WORD" VALUE="tourists">
<INPUT TYPE="hidden" NAME="GAMENO" VALUE="2">
<INPUT TYPE="hidden" NAME="GUESSES_LEFT" VALUE="5">
<INPUT TYPE="hidden" NAME="WON" VALUE="0">
<INPUT TYPE="hidden" NAME="TOTAL" VALUE="7">
<INPUT TYPE="hidden" NAME="GUESSED" VALUE="eiotu">

get_state() reverses this process, reconstructing the hash of state information from
the hidden form fields:

sub get_state {
 return undef unless param();
 my $state = {};
 foreach (qw(WORD GAMENO GUESSES_LEFT WON TOTAL GUESSED)) {
 $state->{$_} = param($_);
 }
 return $state;
}

This subroutine loops through each of the scalar variables, calls param() to retrieve its
value from the query string, and assigns the value to the appropriate field of the state
variable.

The rest of the script is equally straightforward. The process_guess() subroutine (too
long to reproduce inline here; see Example 5.1) first maps the unknown word and
the previously guessed letters into hashes for easier comparison later. Then it does a
check to see if the user has already won the game but hasn't moved on to a new
game (which can happen if the user reloads the page).

The subroutine now begins to process the guess. It does some error checking on the
user's guess to make sure that it is a valid series of lowercase letters and that the
user hasn't already guessed it. The routine then checks to see whether the user has
guessed a whole word or a single letter. In the latter case, the program fails the user
immediately if the guess isn't an identical match to the unknown word. Otherwise, the
program adds the letter to the list of guesses and checks to see whether the word has
been entirely filled in. If so, the user wins. If the user has guessed incorrectly, we

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

been entirely filled in. If so, the user wins. If the user has guessed incorrectly, we
decrement the number of turns left. If the user is out of turns, he loses. Otherwise, we
continue.

The picture() routine generates an tag pointing to an appropriate picture.
There are six static pictures named h0.gif through h5.gif. This routine generates the
right filename by subtracting the total number of tries the user is allowed from the
number of turns he has left.

The status() subroutine is responsible for printing out the game statistics and the word
itself. The most interesting part of the routine is toward the end, where it uses map()
to replace the not-yet-guessed letters of the unknown word with underscores.

pick_random_word() is the routine that chooses a random word from a file of words.
Many Linux systems happen to have a convenient list of about 38,000 words located
in /usr/games/lib (it is used by the Berkeley ASCII terminal hangman game). (If you
don't have such a file on your system, check for /usr/dict/words, /usr/share/words,
/usr/words/dictionary, and other variants.) Each word appears on a separate line. We
work our way through each line, using a clever algorithm that gives each word an
equal chance of being chosen without knowing the length of the list in advance. For a
full explanation of how and why this algorithm works, see Chapter 8 of Perl
Cookbook, by Tom Christiansen and Nathan Torkington (O'Reilly & Associates,
1998).

Because the state information is saved in the document body, the save_state()
function has to be called from the part of the code that generates the fill-out forms.
The two places where this happens are the routines show_guess_form() and
show_restart_form() :

sub show_guess_form {
 my $state = shift;
 print start_form(-name => 'gf'),
 "Your guess: ",
 textfield(-name => 'guess', -value => '', -override => 1),
 submit(-value => 'Guess');
 save_state($state);
 print end_form;
}

show_guess_form() produces the fill-out form that prompts the user for his guess. It
calls save_state() after opening a <FORM> section and before closing it.

sub show_restart_form {
 my $state = shift;
 print start_form,
 "Do you want to play again?",
 submit(-name => 'restart', -value => 'Another game');
 delete $state->{WORD};
 save_state($state);
 print end_form;
}

show_restart_form() is called after the user has either won or lost a game. It creates a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

show_restart_form() is called after the user has either won or lost a game. It creates a
single button that prompts the user to restart. Because the game statistics have to be
saved across games, we call save_state() here too. The only difference from
show_guess_form() is that we explicitly delete the WORD field from the state variable.
This signals the script to generate a new unknown word on its next invocation.

Astute readers may wonder at the -onLoad argument that gets passed to the
start_html() function toward the beginning of the code. This argument points to a
fragment of JavaScript code to be executed when the page is first displayed. In this
case, we're asking the keyboard focus to be placed in the text field that's used for the
player's guess, avoiding the annoyance of having to click in the text field before typing
into it. We promise we won't use JavaScript anywhere else in this book!

Example 5.1. A Hangman Game Using Fill-out Forms to Save State

file: hangman1.cgi
hangman game using hidden form fields to maintain state

use IO::File ();
use CGI qw(:standard);

use strict;
use constant WORDS => '/usr/games/lib/hangman-words';
use constant ICONS => '/icons/hangman';
use constant TRIES => 6;

retrieve the state
my $state = get_state();

reinitialize if we need to
$state = initialize($state) if !$state or param('restart');

process the current guess, if any
my($message, $status) = process_guess(param('guess') || '', $state);

start the page
print header,
 start_html(-Title => 'Hangman 1',
 -bgcolor => 'white',
 -onLoad => 'if (document.gf) document.gf.guess.focus()'),
 h1('Hangman 1: Fill-Out Forms');

draw the picture
picture($state);

draw the statistics
status($message, $state);

Prompt the user to restart or for his next guess.
if ($status =~ /^(won|lost)$/) {
 show_restart_form($state);
}
else {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

else {
 show_guess_form($state);
}
print hr,
 a({-href => '/'}, "Home"),
 p(cite({-style => "fontsize: 10pt"}, 'graphics courtesy Andy Wardley')),
 end_html();

########### subroutines ##############
This is called to process the user's guess
sub process_guess {
 my($guess, $state) = @_;

 # lose immediately if user has no more guesses left
 return ('', 'lost') unless $state->{GUESSES_LEFT} > 0;

 my %guessed = map { $_ => 1 } $state->{GUESSED} =~ /(.)/g;
 my %letters = map { $_ => 1 } $state->{WORD} =~ /(.)/g;

 # return immediately if user has already guessed the word
 return ('', 'won') unless grep(!$guessed{$_}, keys %letters);

 # do nothing more if no guess
 return ('', 'continue') unless $guess;

 # This section processes individual letter guesses
 $guess = lc $guess;
 return ("Not a valid letter or word!", 'error')
 unless $guess =~ /^[a-z]+$/;
 return ("You already guessed that letter!", 'error')
 if $guessed{$guess};

 # This section is called when the user guesses the whole word
 if (length($guess) > 1 and $guess ne $state->{WORD}) {
 $state->{TOTAL} += $state->{GUESSES_LEFT};
 return (qq{You lose. The word was "$state->{WORD}."}, 'lost')
 }

 # update the list of guesses
 foreach ($guess =~ /(.)/g) { $guessed{$_}++; }
 $state->{GUESSED} = join '', sort keys %guessed;

 # correct guess -- word completely filled in
 unless (grep(!$guessed{$_}, keys %letters)) {
 $state->{WON}++;
 return (qq{You got it! The word was "$state->{WORD}."}, 'won');
 }

 # incorrect guess
 if (!$letters{$guess}) {
 $state->{TOTAL}++;
 $state->{GUESSES_LEFT}--;
 # user out of turns
 return (qq{The jig is up. The word was "$state->{WORD}".}, 'lost')
 if $state->{GUESSES_LEFT} <= 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if $state->{GUESSES_LEFT} <= 0;
 # user still has some turns
 return ('Wrong guess!', 'continue');
 }

 # correct guess but word still incomplete
 return (qq{Good guess!}, 'continue');
}

create the cute hangman picture
sub picture {
 my $tries_left = shift->{GUESSES_LEFT};
 my $picture = sprintf("%s/h%d.gif", ICONS, TRIES-$tries_left);
 print img({-src => $picture,
 -align => 'LEFT',
 -alt => "[$tries_left tries left]"});
}

print the status
sub status {
 my($message, $state) = @_;
 # print the word with underscores replacing unguessed letters
 print table({-width => '100%'},
 TR(
 td(b('Word #:'), $state->{GAMENO}),
 td(b('Guessed:'), $state->{GUESSED})
),
 TR(
 td(b('Won:'), $state->{WON}),
 td(b('Current average:'),
 sprintf("%2.3f", $state->{TOTAL}/$state->{GAMENO})),
 td(b('Overall average:'),
 $state->{GAMENO} > 1 ?
 sprintf("%2.3f",
 ($state->{TOTAL}-(TRIES-$state->{GUESSES_LEFT}))/
 : '0.000')
)
);
 my %guessed = map { $_ => 1 } $state->{GUESSED} =~ /(.)/g;
 print h2("Word:",
 map {$guessed{$_} ? $_ : '_'}
 $state->{WORD} =~ /(.)/g);
 print h2(font({-color => 'red'}, $message)) if $message;
}

print the fill-out form for requesting input
sub show_guess_form {
 my $state = shift;
 print start_form(-name => 'gf'),
 "Your guess: ",
 textfield(-name => 'guess', -value => '', -override => 1),
 submit(-value => 'Guess');
 save_state($state);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 save_state($state);
 print end_form;
}

ask the user if he wants to start over
sub show_restart_form {
 my $state = shift;
 print start_form,
 "Do you want to play again?",
 submit(-name => 'restart', -value => 'Another game');
 delete $state->{WORD};
 save_state($state);
 print end_form;
}

pick a word, any word
sub pick_random_word {
 my $list = IO::File->new(WORDS)
 || die "Couldn't open ${\WORDS}: $!\n";
 my $word;
 rand($.) < 1 && ($word = $_) while <$list>;
 chomp $word;
 $word;
}

################### state maintenance ###############
This is called to initialize a whole new state object
or to create a new game.
sub initialize {
 my $state = shift;
 $state = {} unless $state;
 $state->{WORD} = pick_random_word();
 $state->{GUESSES_LEFT} = TRIES;
 $state->{GUESSED} = '';
 $state->{GAMENO} += 1;
 $state->{WON} += 0;
 $state->{TOTAL} += 0;
 return $state;
}

Retrieve an existing state
sub get_state {
 return undef unless param();
 my $state = {};
 foreach (qw(WORD GAMENO GUESSES_LEFT WON TOTAL GUESSED)) {
 $state->{$_} = param($_);
 }
 return $state;
}

Save the current state
sub save_state {
 my $state = shift;
 foreach (qw(WORD GAMENO GUESSES_LEFT WON TOTAL GUESSED)) {
 print hidden(-name => $_, -value => $state->{$_}, -override => 1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print hidden(-name => $_, -value => $state->{$_}, -override => 1);
 }
}

Although this method of maintaining the hangman game's state works great, it has
certain obvious limitations. The most severe of these is that it's easy for the user to
cheat. All he has to do is to choose the "View Source" command from his browser's
menu bar and there's the secret word in full view, along with all other state
information. The user can use his knowledge of the word to win the game, or he can
save the form to disk, change the values of the fields that keep track of his wins and
losses, and resubmit the doctored form in order to artificially inflate his statistics.

These considerations are not too important for the hangman game, but they become
real issues in applications in which money is at stake. Even with the hangman game
we might worry about the user tampering with the state information if we were
contemplating turning the game into an Internet tournament. Techniques for
preventing user tampering are discussed later in this chapter.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

5.3 Maintaining State with Cookies

The other main client-side technique we'll consider uses HTTP cookies to store state
information. HTTP cookies are named bits of information that are transmitted between
the server and browser within the HTTP header. Ordinarily the server creates a
cookie by including a Set-Cookie field in the HTTP header. The browser then stashes
away the cookie information in a small in-memory or on-disk database. The next time
the browser makes a request from that particular server, it returns that cookie in a
Cookie field.

Cookies are relatively flexible. You can create cookies that will be returned to only
one specific server or to any server in your domain. You can set them up so that
they're returned only when users access a particular part of the document tree or any
URI in the document hierarchy. They can be set to expire immediately when the user
exits the browser, or they can be made to persist on the user's disk database for an
extended period of time. You can also create secure cookies that are only returned to
the server when a secure protocol, such as SSL, is in effect. This prevents cookies
from being intercepted in transit by network eavesdroppers.

The exact format of HTTP cookies is somewhat involved and is described in the
HTTP specification at http://www.w3.org/Protocols. Fortunately it's easy to make
cookies in the right format using the CGI::Cookie module. To create a cookie with the
name Hangman, a value equal to the hangman state variable $state, and an
expiration time one month from now, you would call CGI::Cookie::new() in this way:

$cookie = CGI::Cookie->new(-name => 'Hangman',
 -value => {WORD => 'terpitude',
 GAMENO => 1},
 -expires => '+1M');

You can now send the cookie to the browser among the HTTP header fields using the
-cookie argument to CGI.pm 's header() method as shown here:

print header(-cookie => $cookie);

On subsequent invocations of the program you can retrieve named cookies sent by
the browser with CGI.pm's cookie() method:

%cookie = cookie('Hangman');

Note that CGI.pm allows you to set and retrieve cookies that consist of entire hashes.

If you want to bypass CGI.pm and do the cookie management yourself within the Perl
Apache API, you can use CGI::Cookie to create and parse the cookie format and then
get the cookies in and out of the HTTP header using the Apache header_in() and
header_out() methods. The experimental Apache::Request module also has cookie-
handling functions.

Using the Perl Apache API, here's how to add a cookie to the HTTP header:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$r->header_out('Set-Cookie' => $cookie);

Here's how to retrieve and parse the cookies from the HTTP header and then find the
one named Hangman:

%cookies = CGI::Cookie->parse($r->header_in('Cookie'));
$cookie = $cookies{'Hangman'};

Because we already require it for the hangman game, we'll use the CGI.pm shortcuts
for cookie management. We only need to make a few changes to reimplement the
hangman game to use cookies for state maintenance. The updated subroutines are
shown in Example 5.2.

use CGI::Cookie ();
retrieve the state
my $state = get_state() unless param('clear');

At the top of the file, in addition to importing functions from CGI.pm, we bring in the
CGI::Cookie module. This isn't strictly necessary, since CGI.pm will do it for us, but it
makes the code clearer. We retrieve the state as before by calling get_state(), but
now we do it only if the CGI parameter clear is not defined. We'll see why we made
this change later.

$state = initialize($state) if !$state or param('restart');
my($message, $status) = process_guess(param('guess') || '', $state);
print header(-cookie => save_state($state)),
 start_html(-Title => 'Hangman 2',
 -bgcolor => 'white',
 -onLoad => 'if (document.gf) document.gf.guess.focus()'),
 h1('Hangman 2');

Next, having retrieved the state, we (re)initialize it if necessary in order to choose a
fresh word at the beginning of a new game. We process the user's guess by calling
process_guess() and then print out the HTTP header. Here's where we find the first
big difference. Instead of sending the state information to the browser within the
HTML body, we need to save it in the HTTP header. We call save_state() in order to
create a correctly formatted cookie, then send it down the wire to the browser by
passing it to CGI.pm 's header() method as the value of the -cookie argument.

sub get_state {
 my %cookie = cookie(COOKIE_NAME);
 return undef unless %cookie;
 return \%cookie;
}

sub save_state {
 my $state = shift;
 return CGI::Cookie->new(-name => COOKIE_NAME,
 -value => $state,
 -expires => '+1M');
}

Turning our attention to the pivotal get_state() and save_state() functions, we see

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Turning our attention to the pivotal get_state() and save_state() functions, we see
that get_state() calls CGI.pm 's cookie() method to retrieve the value of the cookie
named Hangman (stored in the constant COOKIE_NAME). cookie() takes care of
flattening and expanding arrays and hashes for us (but not more complex structures,
unfortunately), so we don't need to copy any fields to a separate $state variable, we
just return a reference to the cookie hash itself! Similarly, in save_state(), we just turn
the entire state structure into a cookie by passing it to CGI::Cookie::new(). We specify
an expiration time of one month in the future (+1M). This allows the cookie to persist
between browser sessions.

Because we don't have to mess around with hidden fields in this example, the
show_guess_form() subroutine doesn't need to call save_state(). Likewise, we can
remove the call to save_state() from show_restart_form(). The latter subroutine has
an additional modification, the addition of a checkbox labeled "Clear scores" (see
Figure 5.2). If the user selects this checkbox before pressing the new game button,
the program clears out the state entirely, treating get_state() as if it returned an
undefined value.

Figure 5.2. The improved version of the hangman game allows users to clear their aggregate
scores and start over.

The rationale for this feature is to capitalize on a bonus that you get when you use
persistent cookies. Because the cookie is stored on the user's disk until it expires, the
user can quit the browser completely and come back to the game some days later to
find it in exactly the state he left it. It's eerie and wonderful at the same time. Of
course, the user might want to start out fresh, particularly if he hasn't been doing so
well. The "Clear scores" checkbox lets him wipe the slate clean.

Example 5.2. The Hangman Game Using Cookies for State Maintenance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

file: hangman2.cgi
hangman game using cookies to save state

use IO::File ();
use CGI qw(:standard);
use CGI::Cookie ();

use strict;
use constant WORDS => '/usr/games/lib/hangman-words';
use constant ICONS => '/icons/hangman';
use constant COOKIE_NAME => 'Hangman';
use constant TRIES => 6;

retrieve the state
my $state = get_state() unless param('clear');

reinitialize if we need to
$state = initialize($state) if !$state or param('restart');

process the current guess, if any
my($message, $status) = process_guess(param('guess') || '', $state);

start the page
print header(-cookie => save_state($state)),
 start_html(-Title => 'Hangman 2',
 -bgcolor => 'white',
 -onLoad => 'if (document.gf) document.gf.guess.focus()'),
 h1('Hangman 2: Cookies');

. . . nothing in the middle is different . . .

print the fill-out form for requesting input
sub show_guess_form {
 my $state = shift;
 print start_form(-name => 'gf'),
 "Your guess: ",
 textfield(-name => 'guess', -value => '', -override => 1),
 submit(-value => 'Guess');
 print end_form;
}

ask the user if he wants to start over
sub show_restart_form {
 my $state = shift;
 print start_form,
 "Do you want to play again?",
 submit(-name => 'restart', -value => 'Another game'),
 checkbox(-name => 'clear', -label => 'Clear scores');
 delete $state->{WORD};
 print end_form;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Retrieve an existing state
sub get_state {
 my %cookie = cookie(COOKIE_NAME);
 return undef unless %cookie;
 return \%cookie;
}

Save the current state
sub save_state {
 my $state = shift;
 return CGI::Cookie->new(-name => COOKIE_NAME,
 -value => $state,
 -expires => '+1M');
}

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

5.4 Protecting Client-Side Information

The cookie-based implementation of the hangman game is a lot classier than the first
implementation. Not only does it have the advantage of maintaining state across
browser sessions, but the game is also somewhat harder to cheat. While the user is
actively playing the game, the cookie is kept in memory where it is difficult to read
without the benefit of a debugger. However, after the user quits the browsing session,
the cookie is written out to disk; determined cheaters could still find and edit the
cookie database file if they wanted to make their statistics look better.

When you store information on the client side of the connection, peeking and
tampering is a general problem. Fortunately, the cure is relatively simple. To prevent
tampering, you can use a message authentication check (MAC)—a form of checksum
that will detect if the user has altered the information in any way. To prevent peeking,
you can encrypt the information using an encryption key that is known to you but not
to the user.

5.4.1 Message Authentication Checks

Let's add a MAC to the cookie used in the last section's example. There are many
ways to compute a checksum, but the most reliable use a class of algorithms known
as message digests. A message digest algorithm takes a large amount of data
(usually called the "message") and crunches it through a complex series of bit shifts,
rotates, and other bitwise operations until it has been reduced to a smallish number
known as a hash. The widely used MD5 message digest algorithm produces a 128-bit
hash.

Because information is lost during the message digest operation, it is a one-way
affair: given a hash, you can't reconstruct the original message. Because of the
complexity of the digest operation, it is extremely difficult to deliberately create a
message that will digest to a particular hash. Changing just one bit anywhere in a
message will result in a hash that is utterly unlike the previous one. However, you can
confirm that a particular message was likely to have produced a particular hash
simply by running the message through the digest algorithm again and comparing the
result to the hash.

To create a MAC, follow this general recipe:

1. Choose a secret key. The key can be any combination of characters of any
length. Long keys that don't spell out words or phrases are preferred. Keep the
secret key well guarded.

2. Select the fields that will be used for the MAC. You should include any field that
you don't want the user to alter. You can also add consistency-checking fields
such as the remote browser's IP address and an expiration date. This helps
protect against the information being intercepted en route by some
unscrupulous eavesdropper and used later to impersonate the user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Compute the MAC by concatenating the fields and the secret key and running
them through the digest algorithm. You actually need to concatenate the key
and run the digest algorithm twice. Otherwise a technically savvy user could
take advantage of one of the mathematical properties of the algorithm to
append his own data to the end of the fields. Assuming you're using the MD5
algorithm, the formula looks like this:[3]

[3] As this book was going to press, Gisle Aas had released a Digest::HMAC module which implements a
more sophisticated version of this algorithm. You should consider using it for highly sensitive applications.

$MAC = MD5->hexhash($secret .
 MD5->hexhash(join '', $secret, @fields));

The MAC is now sent to the user along with the other state information.

1. When the state information is returned by the user, retrieve the various fields
and the MAC. Repeat the digest process and compare it to the retrieved MAC. If
they match, you know that the user hasn't modified or deleted any of the fields.

Example 5.3 shows the changes needed to add a MAC to the cookie-based
hangman system.

use MD5 ();
use constant COOKIE_NAME => 'Hangman3';
use constant SECRET => '0mn1um ex 0vum';

At the top of the script, we add a line to bring in functions from the MD5 package. This
module isn't a standard part of Perl, but you can easily obtain it at CPAN. You'll find it
easy to compile and install. The only other change we need to make to the top of the
script is to add a new constant: the secret key (an obscure Latin phrase with some of
the letters replaced with numbers). In this case we hardcode the secret key. You
might prefer to read it from a file, caching the information in memory until the file
modification date changes.

We now define a function named MAC() whose job is to generate a MAC from the
state information and, optionally, to compare the new MAC to the MAC already stored
in the state information:

Check or generate the MAC authentication information
sub MAC {
 my($state, $action) = @_;
 return undef unless ref($state);
 my(@fields) = @{$state}{qw(WORD GUESSES_LEFT GUESSED GAMENO WON TOTAL)};
 my $newmac = MD5->hexhash(SECRET .
 MD5->hexhash(join '', SECRET, @fields));
 return $state->{MAC} = $newmac if $action eq 'generate';
 return $newmac eq $state->{MAC} if $action eq 'check';
 return undef;
}

MAC() takes two arguments: the $state hash reference and an $action variable
that indicates whether we want to generate a new MAC or check an old one. As
described in the MAC recipe, we fetch the various fields from $state, concatenate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

described in the MAC recipe, we fetch the various fields from $state, concatenate
them with the secret key, and then take the MD5 digest. If $action indicates that we
are to generate the MAC, we now save the digest into a new state variable field called
MAC. If, on the other hand, $action indicates that we are to check the MAC, we
compare the new MAC against the contents of this field and return a true value if the
old field both exists and is identical to the newly calculated digest. Otherwise we
return false.

We now modify get_state() and save_state() to take advantage of the MAC
information:

Retrieve an existing state
sub get_state {
 my %cookie = cookie(COOKIE_NAME);
 return undef unless %cookie;
 authentication_error() unless MAC(\%cookie, 'check');
 return \%cookie;
}

get_state() retrieves the cookie as before, but before returning it to the main part of
the program, it passes the cookie to MAC() with an action code of check. If MAC()
returns a true result, we return the cookie to the caller. Otherwise, we call a new
function, authentication_error(), which displays an error message and exits
immediately.

Save the current state
sub save_state {
 my $state = shift;
 MAC($state, 'generate'); # add MAC to the state
 return CGI::Cookie->new(-name => COOKIE_NAME,
 -value => $state,
 -expires => '+1M');
}

Before save_state() turns the state variable into a cookie, it calls MAC() with an action
code of generate to add the MAC stamp to the state information. It then calls
CGI::Cookie::new() as before in order to create a cookie that contains both the state
information and the MAC code. You may notice that we've changed the cookie name
from Hangman to Hangman3. This is in order to allow both versions of this script to
coexist peacefully on the same server.

The authentication_error() subroutine is called if the MAC check fails:

Authentication error page
sub authentication_error {
 my $cookie = CGI::Cookie->new(-name => COOKIE_NAME, -expires => '-1d');
 print header(-cookie => $cookie),
 start_html(-title => 'Authentication Error',
 -bgcolor =>'white'),
 img({-src => sprintf("%s/h%d.gif",ICONS,TRIES),
 -align => 'LEFT'}),
 h1(font({-color => 'red'}, 'Authentication Error')),
 p('This application was unable to confirm the integrity of the',
 'cookie that holds your current score.',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'cookie that holds your current score.',
 'Please reload the page to start a fresh session.'),
 p('If the problem persists, contact the webmaster.');
 exit 0;
}

This routine displays a little HTML page advising the user of the problem (Figure
5.3) and exits. Before it does so, however, it sends the user a new empty cookie
named Hangman3 with the expiration time set to a negative number. This causes the
browser to discard the cookie and effectively clears the session. This is necessary in
order to allow the user to continue to play. Otherwise the browser would continue to
display this error whenever the user tried to access the page.

Figure 5.3. If the cookie fails to verify, the hangman3 script generates this error page.

If you are following along with the working demo at www.modperl.com, you might
want to try quitting your browser, opening up the cookie database file with a text
editor, and making some changes to the cookie (try increasing your number of wins
by a few notches). When you try to open the hangman script again, the program
should bring you up short.

With minor changes, you can easily adapt this technique for use with the hidden field
version of the hangman script.

There are a number of ways of calculating MACs; some are more suitable than others
for particular applications. For a very good review of MAC functions, see Applied
Cryptography, by Bruce Schneir (John Wiley & Sons, 1996). In addition, the
Cryptobytes newsletter has published several excellent articles on MAC functions.
Back issues are available online at
http://www.rsa.com/rsalabs/pubs/cryptobytes/.

Example 5.3. Check

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

file: hangman3.cgi
hangman game using cookies and a MAC to save state

use IO::File ();
use CGI qw(:standard);
use CGI::Cookie ();
use MD5 ();

use strict;
use constant WORDS => '/usr/games/lib/hangman-words';
use constant ICONS => '/icons/hangman';
use constant TRIES => 6;
use constant COOKIE_NAME => 'Hangman3';
use constant SECRET => '0mn1um ex 0vum';

. . . everything in the middle remains the same . . .

Check or generate the MAC authentication information
sub MAC {
 my($state, $action) = @_;
 return undef unless ref($state);
 my(@fields) = @{$state}{qw(WORD GUESSES_LEFT GUESSED GAMENO WON TOTAL)};
 my($newmac) = MD5->hexhash(SECRET .
 MD5->hexhash(join '', SECRET, @fields));
 return $newmac eq $state->{MAC} if $action eq 'check';
 return $state->{MAC} = $newmac if $action eq 'generate';
 undef;
}

Retrieve an existing state
sub get_state {
 my %cookie = cookie(COOKIE_NAME);
 return undef unless %cookie;
 authentication_error() unless MAC(\%cookie, 'check');
 return \%cookie;
}

Save the current state
sub save_state {
 my $state = shift;
 MAC($state, 'generate'); # add MAC to the state
 return CGI::Cookie->new(-name => COOKIE_NAME,
 -value => $state,
 -expires => '+1M');
}

Authentication error page
sub authentication_error {
 my $cookie = CGI::Cookie->new(-name => COOKIE_NAME, -expires => '-1d');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $cookie = CGI::Cookie->new(-name => COOKIE_NAME, -expires => '-1d');
 print header(-cookie => $cookie),
 start_html(-title => 'Authentication Error',
 -bgcolor =>'#f5deb3'),
 img({-src => sprintf("%s/h%d.gif", ICONS, TRIES),
 -align => 'LEFT'}),
 h1(font({-color => 'red'}, 'Authentication Error')),
 p('This application was unable to confirm the integrity of the',
 'cookie that holds your current score.',
 'Please reload the page to start a fresh session.'),
 p('If the problem persists, contact the webmaster.');
 exit 0;
}

5.4.2 Encrypting Client-Side State Information

Message authentication checks implement a "look but don't touch" policy. Users can't
modify the state information, but they can still see what's there. In many web
applications, there's no harm in this, but with the hangman game it has the unwanted
consequence that the user can peek at the unknown word, either by viewing the page
source in the fill-out form version or by quitting the browser and viewing the cookie
database file.

To prevent this from happening without abandoning client-side storage entirely, you
can encrypt the state information. Your application will have the secret key necessary
to decrypt the information, but without launching an expensive cryptanalysis project
(and maybe not even then) the user won't be able to get at the data. Encryption can
be combined with a MAC in order to obtain truly bulletproof client-side authentication.

Example 5.4 shows the hangman game code modified to save its state using
encrypted cookies. It takes advantage of a recently introduced Perl module called
Crypt::CBC . This implements the Cipher Block Chaining encryption mode and allows
the encryption of messages of arbitrary length (previously only block-mode ciphers
were available for Perl, which force you to encrypt the message in rigid 8-byte units).
Crypt::CBC must be used in conjunction with a block-mode cipher, either Crypt::DES
or Crypt::IDEA. The former implements the popular U.S. Data Encryption Standard
encryption algorithm, while the latter implements the newer and stronger International
Data Encryption Algorithm. You can download these modules from CPAN.[4]

[4] Be aware that some countries regulate the use of cryptography. For example, cryptography is illegal in France,
while the United States forbids the export of cryptographic software beyond its territorial borders. If you are living
outside the U.S., don't download Crypt::DES or Crypt::IDEA from an American CPAN site. Use one of the European or
Asian mirrors instead ;-). At the time this was written, the Crypt::DES and Crypt::IDEA modules required the gcc
compiler to build correctly. Hopefully, this will have changed by the time you read this.

To save space, we again show just the changes to the basic hangman script that are
needed to encrypted state information.

use MD5 ();
use Crypt::CBC ();

retrieve the state
$CIPHER ||= Crypt::CBC->new(SECRET, 'IDEA');
my $state = get_state() unless param('clear');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $state = get_state() unless param('clear');

At the top of the script we now bring in the Crypt::CBC module, as well as MD5. We
then create a Crypt::CBC object and store it in a new global variable called $CIPHER.
The Crypt::CBC::new() method takes two arguments: our secret key and the name of
the block algorithm to use for encryption. We use the IDEA algorithm here because it
is much harder to crack than the older DES. When we initialize the $CIPHER variable
we take advantage of the persistence of Apache API scripts. The ||= assignment
guarantees that a new Crypt::CBC object will be created only if $CIPHER does not
previously exist. This reduces the amount of computation the script has to do at
startup time.

The actual encryption and decryption is performed in save_state() and get_state().

Save the current state
sub save_state {
 my $state = shift;
 MAC($state, 'generate'); # add MAC to the state
 # encrypt the cookie
 my $encrypted = $CIPHER->encrypt_hex(join ':', %{$state});
 return CGI::Cookie->new(-name => COOKIE_NAME,
 -value => $encrypted,
 -expires => '+1M');
}

In save_state(), we generate the MAC as before but add an additional step. We first
serialize the state hash reference by joining its keys and values with the : character
(we chose this character because we know that it never occurs in the state
information). We next call the $CIPHER object's encrypt_hex() method to encrypt the
serialized information and store it in a variable named $encrypted. encrypt_hex()
first performs the encryption and then converts the encrypted information into a
printable hexadecimal string. This encrypted string is then turned into an HTTP cookie
named Hangman4.

Retrieve an existing state
sub get_state {
 my $cookie = cookie(COOKIE_NAME);
 return undef unless $cookie;
 # decrypt the cookie
 my %state = split ':', $CIPHER->decrypt_hex($cookie);
 authentication_error() unless MAC(\%state, 'check');
 return \%state;
}

The get_state() subroutine performs the corresponding decryption of the data. It
retrieves the cookie, decrypts it by calling the $CIPHER object's decrypt_hex()
method, and turns it back into a hash by splitting on the : character. We then check
the MAC as before and return the state information to the caller.

If the user were to peek at his cookies file, he'd see something like this (some of the
fields have been removed for the sake of simplicity):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

www.modperl.com /perl/state/ Hangman4 5e650600dc0fac462d0d86adf3c
5d7e5fc46a5b2991b10093b548fafacc7d50c48923cdcb375a703f1e3224dfa98455
360f2423a0e6a95ccf791731e2946faef347c0b1f4ef6e5893cab190a2b0772c40bf
ce32d7a5ce8a74e2fc65cdc7d5b5a

The long hexadecimal string following the cookie's name is the encrypted information.
The user cannot access the data contained in this string, nor can he make any
changes to it. Any change to the string will cause a section of the data to decrypt
incorrectly, making the MAC check fail.

Note that you can use this technique to encrypt the contents of fill-out fields as well,
allowing you to store client-side information securely even when the user has set the
browser to refuse cookies.

The amount of state information stored by the hangman script is relatively modest.
Therefore, there isn't significant overhead either from the encryption/decryption
process or from the transmission of the encrypted information across the network.
The Hangman4 script has the same subjective response rate as the unencrypted
scripts. If the amount of state information were to grow quite large, however, the
encryption overhead might become noticeable. Another thing to watch out for is the
size of the cookie; the maximum size a browser can store is about 4 KB. With large
amounts of state information, you might consider compressing the state data before
encrypting it. The Compress::Zlib module, which we used in the previous chapter,
makes this convenient. Be sure to compress the data before you encrypt it. Encrypted
data is notoriously uncompressable.

Example 5.4. The Hangman Game with Encryption of Client-Side Data

#!/usr/local/bin/perl

file: hangman4.pl
hangman game using encrypted cookies to save state

use IO::File ();
use CGI qw(:standard);
use CGI::Cookie ();
use MD5 ();
use Crypt::CBC ();

use strict;
use vars '$CIPHER';
use constant WORDS => '/usr/games/lib/hangman-words';
use constant ICONS => '/icons/hangman';
use constant TRIES => 6;
use constant COOKIE_NAME => 'Hangman4';
use constant SECRET => '0mn1um ex 0vum';

retrieve the state
$CIPHER ||= CBC->new(SECRET,'IDEA');
my $state = get_state() unless param('clear');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

. . . everything in the middle remains the same . . .

Save the current state
sub save_state {
 my $state = shift;
 MAC($state,'generate'); # add MAC to the state
 # encrypt the cookie
 my $encrypted = $CIPHER->encrypt_hex(join(':',%{$state}));
 return CGI::Cookie->new(-name=>COOKIE_NAME,
 -value=>$encrypted,
 -expires=>'+1M');
}

Retrieve an existing state
sub get_state {
 my $cookie = cookie(COOKIE_NAME);
 return undef unless $cookie;
 # decrypt the cookie
 my %state = split ':', $CIPHER->decrypt_hex($cookie);
 authentication_error() unless MAC(\%state, 'check');

 return \%state;
}

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

5.5 Storing State at the Server Side

Client-side storage of state information works well when each of the user sessions is
independent of the others. But what if we wanted to combine the information from
users, for example, to display a list of the top-scoring players in an Internet-wide
tournament?

This is where server-side state storage comes in. When you store the user
information at the server side rather than the client side, you have full access to the
list of all users and to the record of what they've done and what they're doing. You
can crunch, tally, tabulate, and cross-reference this information to your heart's
content. Server-side storage also has the advantage of being more secure, since the
information never leaves the server, and it is more resilient to failure. If the user's
browser crashes in the midst of accepting or updating a cookie, that information isn't
lost because it's stored safely on the server. The downside is scalability and
performance. Each user session that you store on the server side consumes some
amount of memory, disk, and CPU cycles. When you store state information on the
server side, you have to be careful to conserve these resources, for example, by
deleting user sessions that are no longer in use.

We will consider two types of server-side techniques in this section: storing the
information transiently in main memory and storing it in a SQL database.

5.5.1 Storing State Information in Main Memory

Because Apache server processes are persistent across multiple accesses, you can
store small amounts of state information in main memory. When the user first runs
your application, it generates a random unique session identifier (session ID) and
stores the state information in a data structure, for instance, a hash table keyed by
the session ID. The application then sends the session ID back to the user in the form
of a cookie, a hidden field, or a component of the URI. When the same user connects
again, your application recovers the session ID and retrieves the state information
from its data structure.

Sounds simple, but there are some catches. On Win32 systems this scheme works
flawlessly because there is only one server process and one single-threaded Perl
interpreter. However, on Unix systems there are multiple Apache processes running
simultaneously, each with its own memory space. When a user fetches a page,
there's no guarantee that he will connect to the same server process as before.
What's more, server processes do die from time to time when they reach the limit
specified by Apache's MaxRequestsPerChild directive.

If you are using mod_perl on a Unix system, you can work around these problems by
using Benjamin Sugars' IPC::Shareable module. It ties Perl data structures (scalars
and hashes, but not arrays) to shared memory segments, allowing multiple processes
to access the same data structures. The tying process invokes shared memory calls
whenever you store data to or fetch values from the tied variable, causing the
information to be maintained in a shared memory segment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As a bonus, the shared data structures persist even when the processes using it go
away, so the state information will survive even a complete server shutdown and
restart (but not a system reboot). The downside is that working with the shared data
structures is not entirely transparent. You have to lock the tied variables prior to
updating them and use them in a way that doesn't cause excessive consumption of
system resources.

IPC::Shareable is available on CPAN. It requires Raphael Manfredi's Storable module
as well.

Here's the idiom for placing a hash in shared memory:

tie %H, 'IPC::Shareable', 'Test', {create => 1, mode => 0666};

The first argument gives the name of the variable to tie, in this case %H. The second
is the name of the IPC::Shareable module. The third argument is a "glue" ID that will
be used to identify this variable to the processes that will be sharing it. It can be an
integer or any string of up to four letters. In the example above we use a glue of
Test. The last argument is a hash reference containing the options to pass to
IPC::Shareable. There are a variety of options, but the ones you will be using most
frequently are create, which if true causes the shared memory segment to spring into
existence if it doesn't exist already, and mode, which specifies an octal access mode
for the segment. The default mode of 0666 makes the memory segment world-
readable and writable. This is useful during debugging so that you can spy on what
your module is doing. For production, you will want to make the mode more
restrictive, such as 0600 to restrict access to the Apache server only.[5]

[5] The octal modes used in IPC::Shareable are similar to file modes and have the same effect on other processes'
ability to access the data. Do not confuse them with umask, which has no effect on shared memory.

If successful, tie() will tie %H to the shared memory segment and return a reference to
the tied object (which you can ignore). Other processes can now attach to this
segment by calling tie() with the same glue ID. When one process gets or sets a key
in %H, all the other processes see the change. When a process is finished with the
tied variable, it should untie() it. Scalar variables can be tied in a similar way.

Shared hashes work a lot like ordinary hashes. You can store scalar variables or
complex data structures into its keys. Any of these code fragments is legal:

$H{'fee'} = 'I smell the blood';
$H{'fie'} = ['of', 'an', 'englishman'];
$H{'foe'} = {'and' => 'it', 'makes' => 'me', 'very' => 'hungry'};
$H{'fum'}{'later'} = 'Do you have any after dinner mints?';

You can also store blessed objects into shared variables but not into filehandles or
globs.

It's important to realize what is and what is not tied when you use IPC::Shareable. In
the first example we copy a simple scalar value into shared memory space. Any
changes that we make to the value, such as a string substitution, are immediately
visible to all processes that share the variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the second example, we construct an anonymous array and copy it into the shared
variable. Internally IPC::Shareable uses the Storable freeze() function to serialize the
structure into a binary representation and then place it in shared memory. As a
consequence, changing an individual array element will not propagate correctly to
other processes:

$H{'fie'}[2] = 'frenchman'; # this change will NOT propagate

Instead, you must copy the array into ordinary memory, make the changes, and copy
it back:

my $temp = $H{'fie'};
$temp->[2] = 'frenchman';
$H{'fie'} = $temp;

For similar reasons we must also use this workaround to change elements in the third
example, where the value is an anonymous hash.

Oddly enough, the fourth example behaves differently. In this case, we assign a value
to an "automatic" anonymous hash. The hash is automatic because before the
assignment, the key fum didn't even exist. After the assignment, not only does fum
exist, but it points to an anonymous hash with the single key later. Behind the
scenes, IPC::Shareable creates a new tied hash and stores it at $H{'fum'}. We can
now read and write to this tied hash directly and the changes will be visible to all
processes. The same thing will happen if you first assign an empty hash reference to
a key and then start filling in the hash values one by one:

$H{'fum'} = {};
$H{'fum'}{'later'} = 'Do you have any after dinner mints?';

Although this sounds like a neat feature, it can be a programming trap. Each tied
hash that is created by this method occupies its own shared memory segment. If you
use this feature too liberally, you'll end up exhausting your system's shared memory
segments and subsequent attempts to tie variables will fail.

Another trap involves updating shared variables. Many update operations aren't
atomic, even simple ones like $a++. If multiple processes try to update the same
shared variable simultaneously, the results can be unpredictable. If you need to
perform a nonatomic operation, or if you need a variable to be in a known state
across several statements, you should lock before updating it and unlock it when
you're through. The shlock() and shunlock() methods allow you to do this. You'll
need to call tied() on the variable in order to obtain the underlying tied
IPC::Shareable object and then invoke the object's shlock() or shunlock() method:

tied(%H)->shlock;
$H{'englishmen eaten'}++;
tied(%H)->shunlock;

Example 5.5 shows the code for Hangman5. The top of the file now loads the
IPC::Shareable module and defines a shared global named %SESSIONS:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IPC::Shareable module and defines a shared global named %SESSIONS:

use IPC::Shareable ();
use constant SIGNATURE => 'HANG';
use constant COOKIE_NAME => 'SessionID5';
use constant MAX_SESSIONS => 100;
use vars qw(%SESSIONS);

%SESSIONS will be tied to shared memory, and it will contain multiple session keys,
each one identified by a unique eight-digit numeric session ID. The value of each
session will be the familiar $state anonymous hash reference.

bind session structure to shared memory
bind_sessions() unless defined(%SESSIONS) && tied(%SESSIONS);

fetch or generate the session id
my $session_id = get_session_id();

The first step in the revised script is to call a new subroutine named bind_sessions()
to tie the %SESSIONS global to shared memory. It does this only if %SESSIONS hasn't
previously been tied, which will be the case whenever this script is called for the first
time in a new child process. After this we call another new subroutine named
get_session_id() either to retrieve the old session ID for this user or to generate a
new one if this is a new user.

get rid of old sessions to avoid consuming resources
expire_old_sessions($session_id);

Next comes a call to expire_old_sessions() with the current session ID as the
argument. Because we're keeping the session information in a limited resource, we
must be careful to remove old sessions when they're no longer in use. We accomplish
this by maintaining a rolling list of active sessions. The current session is moved to
the top of the list while older sessions drift downward to the bottom. When the list
exceeds a preset limit of simultaneous sessions (MAX_SESSIONS => 100 in this
example), the oldest session is deleted.

The remainder of the body of the script should look very familiar. It's modified only
very slightly from the examples we've seen before:

retrieve the state
my $state = get_state($session_id) unless param('clear');

reinitialize if we need to
$state = initialize($state) if !$state or param('restart');

process the current guess, if any
my($message, $status) = process_guess(param('guess') || '', $state);

save the modified state
save_state($state, $session_id);

The get_state() function now takes the session ID as its argument. It retrieves the
state from the %SESSIONS variable and copies it into $state, which we process as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

state from the %SESSIONS variable and copies it into $state, which we process as
before. We then write the modified state information back into shared memory by
calling save_state() with the state variable and the session ID.

start the page
print header(-Cookie => => cookie(-name => COOKIE_NAME,
 -value => $session_id,
 -expires => '+1h'));

The last task is to associate the session ID with the user. We do this by handing the
remote browser a cookie containing the ID. Unlike the previous example, this cookie
is set to expire after an hour of idle time. We expect the sessions to turn over rapidly,
so it doesn't make sense to save the session ID for any longer than that. Although this
might seem similar to the previous cookie examples, the big difference is that the
cookie doesn't hold any state information itself. It's just a tag for the information stored
at the server side.

Let's now turn to the new subroutines:

Bind the session variables to shared memory using IPC::Shareable
sub bind_sessions {
 die "Couldn't bind shared memory"
 unless tie %SESSIONS, 'IPC::Shareable', SIGNATURE,
 {create => 1, mode => 0644};
}

The bind_sessions() function calls tie() to bind %SESSIONS to shared memory. The
signature is defined in a constant, and we call IPC::Shareable with options that cause
the shared memory segment to be created with mode 0644 (world readable) if it
doesn't already exist. This will allow you to peak at (but not modify) the variable while
the server is running.

The get_session_id() method is responsible for choosing a unique ID for new
sessions, or recovering the old ID from ongoing sessions:

sub get_session_id {
 my $id = cookie(COOKIE_NAME);
 return $id if defined($id) and exists $SESSIONS{$id};
 # Otherwise we have to generate an id.
 # Use the random number generator to find an unused key.
 tied(%SESSIONS)->shlock;
 do {
 $id = sprintf("%8d", 1E8*rand());
 } until !exists($SESSIONS{$id});
 # must avoid assigning an empty hash to IPC::Shareable
 $SESSIONS{$id} = {WORD => ''};
 tied(%SESSIONS)->shunlock;
 $id;
}

get_session_id() first attempts to recover a previously assigned session ID from the
browser cookie. If the cookie does exist, and the session ID is still valid (it's a valid
key for %SESSIONS), we return it. Otherwise we need to generate a new key that is
not already in use. To do this we lock %SESSIONS so that it doesn't change

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

not already in use. To do this we lock %SESSIONS so that it doesn't change
underneath us, then enter a small loop that calls the random number generator
repeatedly to generate eight-digit session IDs.[6] For each ID, we check whether it
exists in %SESSIONS and exit the loop when we find one that doesn't. Having found a
good ID, we reserve a slot for it by assigning a small anonymous hash to
%SESSIONS. Notice that we do not use an empty hash for this purpose, as this would
cause IPC::Shareable to create a new unwanted tied variable. We unlock the variable
and return the ID.

[6] Using rand() is not the best way to create unique IDs, because it makes them easy to guess. However, it's simple
and fast. The section on DBI databases presents a way to generate hard-to-guess IDs using the MD5 digest function.

The expire_old_sessions() subroutine is responsible for garbage-collecting old
session information that is no longer in use:

sub expire_old_sessions {
 my $id = shift;
 tied(%SESSIONS)->shlock;
 my @sessions = grep($id ne $_, @{$SESSIONS{'QUEUE'}});
 unshift @sessions, $id;
 if (@sessions > MAX_SESSIONS) {
 my $to_delete = pop @sessions;
 delete $SESSIONS{$to_delete};
 }
 $SESSIONS{'QUEUE'} = \@sessions;
 tied(%SESSIONS)->shunlock;
}

This subroutine works by maintaining a sorted list of sessions in an anonymous array
located at the special key $SESSIONS{'QUEUE'}. The subroutine begins by locking
%SESSIONS so that it doesn't change during the update process. It recovers the
sorted list, removes the current session for the list using the grep() operator, and
unshift() s the current session ID to the top of the list. It then looks at the size of the
list, and if there are more sessions than allowed by MAX_SESSIONS, it pop() s a
session ID from the bottom of the list and deletes that session from the %SESSIONS
array. The modified list is copied back into %SESSIONS, which is then unlocked.

sub get_state {
 my $id = shift;
 return undef unless $SESSIONS{$id} and $SESSIONS{$id}{'WORD'};
 $SESSIONS{$id};
}

sub save_state {
 my($state, $id) = @_;
 $SESSIONS{$id} = $state;
}

get_state() and save_state() are trivial in this implementation. get_state() looks up the
state information in %SESSIONS using the session ID as its key. save_state() saves
the state into %SESSIONS at the indicated ID. Since the assignment is atomic, we
don't need to lock the hash for either operation.

Example 5.5. The Hangman Game with Server-Side State in Shared Memory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

file: hangman5.cgi
hangman game using IPC::Shareable and cookies

use IO::File ();
use CGI qw(:standard);
use CGI::Cookie ();
use IPC::Shareable ();

use strict;
use constant WORDS => '/usr/games/lib/hangman-words';
use constant ICONS => '/icons/hangman';
use constant TRIES => 6;
use constant SIGNATURE => 'HANG';
use constant COOKIE_NAME => 'SessionID5';
use constant MAX_SESSIONS => 100;
use vars qw(%SESSIONS);

bind session structure to shared memory
bind_sessions() unless defined(%SESSIONS) && tied(%SESSIONS);

fetch or generate the session id
my $session_id = get_session_id();

get rid of old sessions to avoid consuming resources
expire_old_sessions($session_id);

retrieve the state
my $state = get_state($session_id) unless param('clear');

reinitialize if we need to
$state = initialize($state) if !$state or param('restart');

process the current guess, if any
my($message, $status) = process_guess(param('guess') || '', $state);

save the modified state
save_state($state, $session_id);

start the page
print header(-Cookie => cookie(-name => COOKIE_NAME,
 -value => $session_id,
 -expires => '+5d')),

. . . everything in the middle remains the same . . .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

. . . everything in the middle remains the same . . .

Bind the session variables to shared memory using IPC::Shareable
sub bind_sessions {
 die "Couldn't bind shared memory"
 unless tie %SESSIONS, 'IPC::Shareable', SIGNATURE,
 {create => 1, mode => 0666};
}

Fetch or generate the session ID.
It's simply a key into the %SESSIONS variable
sub get_session_id {
 my $id = cookie(COOKIE_NAME);
 return $id if defined($id) and exists $SESSIONS{$id};
 # Otherwise we have to generate an id.
 # Use the random number generator to find an unused key.
 tied(%SESSIONS)->shlock;
 do {
 $id = sprintf("%8d", 1E8*rand());
 } until !exists($SESSIONS{$id});
 # must avoid assigning an empty hash to IPC::Shareable's tied arrays
 $SESSIONS{$id} = {WORD => ''};
 tied(%SESSIONS)->shunlock;
 $id;
}

bring the current session to the front and
get rid of any that haven't been used recently
sub expire_old_sessions {
 my $id = shift;
 tied(%SESSIONS)->shlock;
 my @sessions = grep($id ne $_, @{$SESSIONS{'QUEUE'}});
 unshift @sessions, $id;
 if (@sessions > MAX_SESSIONS) {
 my $to_delete = pop @sessions;
 delete $SESSIONS{$to_delete};
 }
 $SESSIONS{'QUEUE'} = [@sessions];
 tied(%SESSIONS)->shunlock;
}

Retrieve an existing state
sub get_state {
 my $id = shift;
 my $s = $SESSIONS{$id};
 return undef unless $s and $s->{WORD};
 return $SESSIONS{$id};
}

Save the current state
sub save_state {
 my($state, $id) = @_;
 $SESSIONS{$id} = $state;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The main problem with this technique is that the amount of state information that you
can store in shared memory is very limited, making it unsuitable for high-volume or
high-reliability applications. A better server-side solution involves using database
management systems, which we turn to in the next section.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

5.6 Storing State Information in SQL Databases

Persistent memory is only suitable for storing small amounts of state information for
relatively short periods of time. If you need to reliably store lots of information for a
long time, you need a server-side database.

The DBI library, designed by Tim Bunce and others, is a generic Perl interface to
relational database management systems (DBMSs) that speak SQL (Standard Query
Language). The DBI library speaks to specific databases by way of DBD (Database
Driver) modules. You can make queries on any database that has a DBD module
available for it. These modules are sometimes provided by the database vendor and
sometimes by third parties. DBD modules for Oracle, Sybase, Illustra, mSQL,
MySQL, and others can be found at CPAN.

Full information on using DBI can be found in its manual pages and in Advanced Perl
Programming by Sriram Srinivasan (O'Reilly & Associates, 1997). We'll summarize
just enough here so that you can follow the examples if you're not already familiar
with DBI.

Before you can work with the DBI interface, you must select and install a relational
database. If you have access to a Unix system and do not already have such a
database installed, a good one to start with is MySQL, a popular database
management system that you can freely download from http://www.tcx.se/.[7]

[7] MySQL can be used freely for some purposes but must be licensed (for a reasonable price) for others. Please see
the licensing terms for full details.

In relational databases, all information is organized in tables. Each row of the table is
a data record, and each column is a field of the record. For example, here is one way
to represent the hangman data:

table: hangman
+----------+--------+-------+------+---+------------+-----+--------------+
|session_id| WORD |GUESSED|GAMENO|WON|GUESSES_LEFT|TOTAL| modified|
+----------+--------+-------+------+---+------------+-----+--------------+
|fd2c95dd1 |entice |e | 10| 6| 6| 34|19980623195601|
|97aff0de2 |bifocals|aeilort| 4| 2| 3| 20|19980623221335|
+----------+--------+-------+------+---+------------+-----+--------------+

Most of the columns in the table above directly correspond to the fields in the now-
familiar hangman state object. In addition to these fields we add two more columns.
session_id is a string that uniquely identifies each user session and is used as a key
into the table for fast record lookup. For reasons that will become apparent soon, we
use a short hexadecimal string as the session ID. We also add a timestamp field
named modified which holds the date and time at which the record was last changed.
If you look carefully, you'll see that the column consists of the four-digit year and two
digits each for the month, day, hour, minute, and second. This timestamp will come in
handy for detecting old unused sessions and clearing them out periodically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In SQL databases, each table column has a defined data type and a maximum field
length. Available data types include integers, floating point numbers, character
strings, date/time types, and sometimes more esoteric types. Unfortunately the data
types supported by database management systems vary considerably, limiting the
portability of applications among different vendors' products. In this and the next
chapter, our examples use MySQL data types and functions. You may have to make
some modifications in order to support another database system.

The most basic way to communicate with a SQL database is via a text monitor—a
small terminal-like application in which you type SQL queries to the database and
view the results. To create the definition for the table shown above, you could issue
the SQL CREATE command:

mysql> CREATE TABLE hangman (
 session_id char(8) primary key,
 WORD char(30),
 GUESSED char(26),
 GAMENO int,
 WON int,
 GUESSES_LEFT int,
 TOTAL int,
 modified timestamp
);
This declares a table named hangman using the MySQL syntax. The session_id
column is declared to be a string of at most eight characters, and it is also declared to
be the primary key for the table. This ensures that a given session ID is unique, and
speeds up table lookups considerably. The WORD and GUESSED columns are
declared to be strings of at most 30 and 26 characters, respectively, and GAMENO,
WON, GUESSES_LEFT, and TOTAL are declared to be integers (using the default
length). We declare the column named modified to be a timestamp, taking advantage
of a MySQL-specific feature that updates the field automatically whenever the record
that contains it is changed.

You can then load some sample data into the database using a SQL INSERT
statement:

mysql> INSERT INTO hangman (session_id,WORD,GUESSED,GAMENO,WON,
 GUESSES_LEFT,TOTAL)
 VALUES ('a0000001', 'spruce', '',1,0,6,0);
This inserts the indicated values for the columns session_id through TOTAL. We
don't explicitly set the value of the modified column because MySQL takes care of
that for us.

We can now perform some queries over the database using the SQL SELECT
statement.

To see everything in the hangman table:

mysql> SELECT * FROM hangman;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql> SELECT * FROM hangman;
+----------+--------+-------+------+---+------------+-----+--------------+
|session_id| WORD |GUESSED|GAMENO|WON|GUESSES_LEFT|TOTAL| modified|
+----------+--------+-------+------+---+------------+-----+--------------+
fd2c95dd1	entice	e	10	6	6	34	19980623195601
a0000001	spruce		1	0	6	0	19980625101526
97aff0de2	bifocals	aeilort	4	2	3	20	19980623221335
+----------+--------+-------+------+---+------------+-----+--------------+

The part of the query following the SELECT command chooses which columns to
display. In this case we use * to indicate all columns. The FROM keyword names the
table to select the data from.

If we wished to look at just the session_id, WORD, and GAMENO fields from the
table, we could use this query:

mysql> SELECT session_id,WORD,GAMENO FROM hangman;
+------------+----------+--------+
| session_id | WORD | GAMENO |
+------------+----------+--------+
fd2c95dd	entice	10
a0000001	spruce	1
97aff0de	bifocals	4
+------------+----------+--------+

An optional WHERE clause allows us to filter the records so that only records
matching a set of criteria are displayed. For example, this query shows only session
records from players who have played five games or more:

mysql> SELECT session_id,WORD,GAMENO FROM hangman WHERE GAMENO >= 5;
+------------+--------+--------+
| session_id | WORD | GAMENO |
+------------+--------+--------+
| fd2c95dd | entice | 10 |
+------------+--------+--------+

This query retrieves the session with the ID a0000001:

mysql> SELECT session_id,WORD,GAMENO FROM hangman WHERE session_id='a0000001';
+------------+--------+--------+
| session_id | WORD | GAMENO |
+------------+--------+--------+
| a0000001 | spruce | 1 |
+------------+--------+--------+

Finally, this query retrieves all sessions that were modified within the past 24 hours:

mysql> SELECT session_id,WORD,GAMENO FROM hangman
 WHERE unix_timestamp()-unix_timestamp(modified) < 60*60*24;
+------------+--------+--------+
| session_id | WORD | GAMENO |
+------------+--------+--------+
| a0000001 | spruce | 1 |
+------------+--------+--------+

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

+------------+--------+--------+

The last example shows the use of the MySQL-specific unix_timestamp() function.
Called without arguments, unix_timestamp() returns the current time and date as the
number of seconds since the start of the Unix epoch. The function can also be called
with a timestamp field as the argument, in which case it operates on the timestamp
rather than the current time. The effect of the query above is to subtract the modified
field from the current time and compare the difference to one day. The SQL language
allows you to form queries that are substantially more complex than these, including
ones that combine the results of multiple tables. We won't delve into the full SQL
syntax, but you'll find the definitive reference in A Guide to the SQL Standard by C. J.
Date with Hugh Darwen (Addison-Wesley, 1997), and plenty of practical examples in
Advanced Perl Programming by Sriram Srinivasan.

The INSERT statement can only be used to create a new record (or row) of the table.
If we were to try to execute the insertion statement shown earlier a second time, the
attempt would fail because any given session ID can only occur once in the table.
This feature guarantees the uniqueness of session IDs. To change the values in an
existing record, we would use an UPDATE statement instead. A typical UPDATE
statement looks like this:

mysql> UPDATE hangman SET GAMENO=GAMENO+1
 WHERE session_id='a0000001';
Query OK, 1 row affected (0.09 sec)

Like the SELECT statement, UPDATE can have a WHERE clause which limits what
records it affects. For each selected record, columns are updated according to one or
more column=newvalue pairs. In the example shown above, we're incrementing the
GAMENO column by one. A SELECT statement shows that the update worked.

mysql> SELECT session_id,WORD,GAMENO FROM hangman
 WHERE session_id='a0000001';
+------------+--------+--------+
| session_id | WORD | GAMENO |
+------------+--------+--------+
| a0000001 | spruce | 2 |
+------------+--------+--------+

Lastly, the DELETE statement can be used to delete all records that satisfy the
criteria set out in the WHERE clause. This query deletes all sessions older than a
day:

mysql> DELETE FROM hangman
 WHERE unix_timestamp()-unix_timestamp(modified)>60*60*24;
Query OK, 2 rows affected (0.00 sec)

If you forget to include a WHERE clause in the UPDATE and DELETE statements,
every record in the database will be affected by the operation. This is generally to be
avoided.

5.6.1 Using DBI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The DBI interface provides methods for opening SQL databases, sending queries to
the opened database, and reading the answers returned by those queries.

To open a database, you call DBI->connect() with the "data source name," a string
that tells the database driver where the database is located. If the database requires
a username and password for access, you can pass that information in the connect()
call as well. The format of the data source name is DBMS-specific. For a MySQL
database, it looks like this:

"dbi:mysql:$database:$hostname:$port"

All MySQL data sources begin with "dbi:mysql". They are followed by the name of the
database, and, optionally, by the name and port of the remote host on which the
DBMS is running. If the hostname and port are omitted, the driver defaults to using a
standard port on the local host. To connect to a database named www on the local
host using the username games and the password grok, you'd make this call:

$dbh = DBI->connect('dbi:mysql:www', 'games', 'grok');

If successful, connect() returns a database handle, $dbh, which is used for
subsequent communication with the database. The connect() method also accepts an
optional fourth argument which consists of a hash reference of parameter
name=value pairs. These control a variety of database options, such as whether to
automatically commit all changes made to the database. The only option that we'll
use in the examples that follow is PrintError, which when set to false, suppresses the
printing of unwanted database warnings to the server error log.

The database handle has several methods, the most important of which are do(),
prepare(), and errstr(). do() is used to execute SQL statements which do not return
a list of records, such as INSERT, DELETE, UPDATE, or CREATE. If the operation is
successful, do() returns a count of the number of rows modified. For example, the
following query sets the GAMENO field of all sessions to 1 and returns the number of
rows affected:

$count = $dbh->do('UPDATE hangman SET GAMENO=1');
die $dbh->errstr unless defined $count;

If the database encountered an error while processing the statement (for example, the
SQL contained a syntax error), it will return undef. The errstr() method can be used to
retrieve an informative error message from the driver.

SELECT queries can return a potentially large number of records, often more than will
fit into memory at once. For this reason, the results from SELECT queries are
returned in the form of statement handle objects. You then call the statement handle's
fetch() method repeatedly to retrieve each row of the result.

Here's an example of retrieving the session_id and WORD fields from each session in
the hangman database:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$sth = $dbh->prepare('SELECT session_id,WORD FROM hangman')
 || die $dbh->errstr;
$sth->execute() || die $sth->errstr;
while (my $row = $sth->fetch) {
 my($session, $word) = @$row;
 print "session => $session, word => $word\n";
}
$sth->finish;

The example starts with a call to the database handle's prepare() method with the
text of the SQL SELECT statement. prepare() parses the SQL and checks it for
syntactic correctness but does not actually execute it. The query is returned as a
statement handler which we store into the variable $sth. If some error occurred while
preparing the statement, prepare() returns undef, in which case we return the errstr()
error text.

Next we call the statement handler's execute() method. This performs the query and
returns either the number of rows retrieved or undef if an error occurred. In the case
of a syntactically correct query that happens to return no rows (because the table is
empty or because no records satisfied the criteria in the WHERE clause), execute()
returns the value 0E0 which Perl regards as true in a logical context, but as zero in a
numeric one.

Now we enter a loop in which we call the statement handler's fetch() method. Each
time it's called, fetch() returns the requested columns in the form of an array
reference. To retrieve the values themselves, we just dereference the value into a list.
Because we requested the columns session_id and WORD, we get a reference to a
two-item array back from fetch(). When there are no more rows left, fetch() returns
undef.

DBI actually offers a family of fetch functions. fetchrow_array() is like fetch(), but it
dereferences the row first and returns an array corresponding to the list of requested
columns. Another function, fetchrow_hashref(), turns the current row into a hash of
the column names and their values and returns the hash's reference to the caller.
This allows us to make the example above more readable at the cost of making it
somewhat less efficient:

$sth = $dbh->prepare('SELECT session_id,WORD FROM hangman')
 || die $dbh->errstr;
$sth->execute || die $sth->errstr;
while (my $row = $sth->fetchrow_hashref) {
 print "session => $row->{session_id}, word => $row->{WORD}\n";
}
$sth->finish;

DBI also provides a fetchrow_arrayref() method for fetching the row as an array
reference. It is identical in every respect to fetch().

When you are finished with a statement handler, you should call its finish() method in
order to free up the resources it uses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last thing you need to know about statement handlers is that many DBI drivers
allow you to put placeholders, indicated by the ? character, inside SQL statements.
prepare() compiles the statement and returns a statement handler as before, but
when you later call execute() you pass in the values to be substituted into the
placeholders. This allows you to treat statement handlers much as you would a
subroutine by calling it repeatedly with different runtime arguments. For example, we
can create a statement handler for returning the entire row of a given session with this
bit of code:

$sth = $dbh->prepare('SELECT * FROM hangman WHERE session_id=?');

Now we can fetch information on session fd2c95dd, by calling the statement
handler's execute() method this way:

$sth->execute('fd2c95dd');

The same statement handler can later be used to fetch information from other named
sessions. You should still call finish() at the end of each series of fetches, even
though you are going to reuse the statement handler. Failure to do so can lead to
memory leaks.

When you are completely finished with a database handle, you should call its
disconnect() method in order to sever the connection and clean up.

5.6.2 Apache::DBI and mod_perl

One of the problems with using DBI databases from conventional CGI scripts is that
there's often a significant amount of overhead associated with opening a database
connection. When you run a mod_perl-enabled version of Apache, you can take
advantage of persistent database connections. Instead of creating a new database
handle each time your Apache Perl module or Apache::Registry script runs, you
check a global variable for a previously opened handle. If the global is empty, you
open a new database connection. Otherwise, you use the contents of the global. A
concise way of expressing this logic is with this snippet of code:

$DBH ||= DBI->connect($data_source, $user, $password);

Apache::DBI, a module written by Edmund Mergl, makes handling persistent
database connections even easier. It replaces DBI's connect() and disconnect()
methods with versions that handle persistent connections behind the scenes.
connect() maintains a cache of database handles and returns one of them in
response to attempts to open the same database multiple times. It also checks that
the database handle is still "live" (some databases have a nasty habit of timing out
inactive sessions) and reconnects if necessary. disconnect() is replaced by a no-op
so that database handles are not inadvertently closed.

To activate Apache::DBI, you need only use it some time before loading the module
or modules that need DBI services. One convenient place to load Apache::DBI is in
the Perl startup file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

perl startup file
use Apache::DBI ();
use Apache::Registry ();
use CGI::Cookie ();

. . . etc.

If you don't have a Perl startup file, you can also load the module at server startup
time by adding this directive to one of the server configuration files:

PerlModule Apache::DBI

You will now have persistent database connections when using mod_perl, and
conventional use-once-and-throw-away connections when using standard CGI.

5.6.3 A DBI Backend for Hangman

Like the persistent memory version of the hangman game, the DBI implementation
has to have code to open the database, to set and fetch session records from the
database, to generate unique session IDs for each incoming connection, and to
expire old sessions that we're no longer interested in. Example 5.6 shows what's
new and different on the server side. There are no visible changes in the user
interface.

This script assumes a database has already been set up that contains a table named
hangman with this structure:[8]

[8] The modified field is a MySQL-specific data type, and later we will take advantage of other MySQL features
involving the handling of dates. SQL databases vary widely in their handling of dates and times, and we prefer to show
you an efficient implementation of the application on a specific database than an inefficient implementation that might
work more generically. To port this code to the database of your choice, you will need to change the data type of the
modified column to a date/time type that your database understands and modify the expires() subroutine to work with
this changed type.

CREATE TABLE hangman (
 session_id char(8) primary key,
 WORD char(30),
 GUESSED char(26),
 GAMENO int,
 WON int,
 GUESSES_LEFT int,
 TOTAL int,
 modified timestamp,
 KEY(modified)
)

Before stepping through the script, let's first look at get_state() and save_state() :

sub get_state {
 my $id = shift;
 my $sth = $DBH->prepare(<<END) || die "Prepare: ", $DBH->errstr;
SELECT * FROM $DB_TABLE WHERE session_id='$id'
END
 $sth->execute || die "Execute: ", $sth->errstr;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $sth->execute || die "Execute: ", $sth->errstr;
 my $state = $sth->fetchrow_hashref;
 $sth->finish;
 return $state;
}

get_state() is responsible for recovering the state information as a hash reference,
given the ID of an existing session. At its core is this SQL statement:

SELECT * FROM hangman WHERE session_id='$id'

This selects all columns from the record named by the session ID. We then call DBI's
fetchrow_hashref() to retrieve the record in the form as a hash reference in which the
keys (WORD, GUESSED, GAMENO, and so on) correspond to the columns of the
selected record. As it happens, this hashref is identical to the state variable that the
higher levels of the script operate on, so all we have to do is to return it.

The save_state() subroutine is almost as simple:

sub save_state {
 my($state, $id) = @_;
 my $sth = $DBH->prepare(<<END) || die "prepare: ", $DBH->errstr;
UPDATE $DB_TABLE
 SET WORD=?,GUESSED=?,GAMENO=?,WON=?,TOTAL=?,GUESSES_LEFT=?
 WHERE session_id='$id'
END
 $sth->execute(@{$state}{qw(WORD GUESSED GAMENO WON TOTAL GUESSES_LEFT)})
 || die "execute: ", $DBH->errstr;
 $sth->finish;
}

This subroutine constructs a DBI statement handler containing placeholders for the
six keys in $state. It then calls the statement handler's execute() statement to write
the values from $state into the database.

The remainder of the code is concerned with the generation and maintenance of
session IDs. Although most of the state information is stored on the server's side of
the connection, there's more to the story. There will always have to be some
information stored by the client because otherwise, there would be no way for the
server to distinguish one client from another and, hence, no way to retrieve the
correct session record. Some of the obvious ways of distinguishing one client from
another, such as recording their IP addresses, do not work well in practice (a dial-in
user may have several IP addresses, and conversely, all America Online users share
the IP address of a few large proxy servers). The general technique for identifying
clients is to generate a session ID for them when they first connect to your application
and then arrange for them to return the session ID to you on subsequent requests. A
session ID can be anything you like. In the hangman game we use an eight-digit
hexadecimal number, which is sufficient for about four billion active sessions.

We've already seen two techniques that can be adapted to this purpose: HTTP
cookies and fill-out forms. Because the session ID is a relatively small amount of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cookies and fill-out forms. Because the session ID is a relatively small amount of
information, there's also a third option available to us. We can store the session ID in
the URI itself as additional path information. When a connection comes in from a new
client we assign it a randomly generated ID, append it to our URI as additional path
information, and send the client an HTTP redirect() directive to make it fetch this new
URI. On subsequent requests, we recover the session ID from the additional path
information. This technique has an advantage over cookies in that it is compatible
with all browsers, including those for which the user has disabled cookies. It has the
disadvantage that the session ID is visible to the user. The URI displayed by the
browser will look something like this:

http://www.modperl.com/perl/hangman5.cgi/fd2c95dd

A side benefit of this technique is that the user can bookmark this URI, session ID
and all, and come back to a game later.

Beginning our walkthrough of the script, we bring in the DBI library and define a few
new constants:

use DBI ();

use strict;
use vars qw($DBH $DB_TABLE $ID_LENGTH);
use constant EXPIRE => 60*60*24*30; # allow 30 days before expiration
use constant DB => 'dbi:mysql:www';
use constant DBAUTH => 'nobody:';
use constant SECRET => 'modperl reigns';
use constant MAX_TRIES => 10;
$DB_TABLE = "hangman6";
$ID_LENGTH = 8; # length of the session ID

EXPIRE is the length of time to keep sessions around before expiring them from the
database. Unlike the shared-memory version of the script, the session data is stored
on disk. This means that we can be less draconian in our expiration policy. An unused
session is allowed 30 days before being recycled. DB is the DBI data source name for
the database, and DBAUTH is the database authentication information, in the format
username:password. SECRET and MAX_TRIES are used in the generation of new
session keys. $DB_TABLE is the database table name to use and $ID_LENGTH is the
length of the session key in characters.

$DBH = DBI->connect(DB, split(':', DBAUTH, 2), {PrintError => 0})
 || die "Couldn't open database: ", $DBI::errstr;
my($session_id, $note) = get_session_id();

The script begins by opening the database and saving its database handle in a global
named $DBH. Next, we retrieve the session ID (or generate a new one) by calling a
subroutine named get_session_id(). get_session_id() returns a two-element list: the
session ID and a note that can be used to alert the user to exceptional conditions. In
this script, the only exceptional condition that occurs is when the user tries to use a
session ID that has expired.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $state = get_state($session_id) unless param('clear');
$state = initialize($state) if !$state or param('restart');
my($message, $status) = process_guess(param('guess') || '', $state);
save_state($state, $session_id);

With the session ID in hand, we retrieve the state by calling the get_state() subroutine
that we looked at earlier. We then (re)initialize the state variable as before if need be,
process the user's guess if any, and call save_state() to write the modified session
back to the database. The remainder of the script is unchanged from previous
versions, except that we display the note returned by get_session_id() at the top of
the page if it's nonempty.

We'll look at the get_session_id() subroutine now, which is responsible for retrieving
an existing session ID or generating a new one:

sub get_session_id {
 my(@result);
 expire_old_sessions();
 my($id) = path_info() =~ m:^/([a-h0-9]{$ID_LENGTH}):o;
 return @result if $id and @result = check_id($id);

 # If we get here, there's not already an ID in the path info.
 my $session_id = generate_id();
 die "Couldn't make a new session id" unless $session_id;
 print redirect(script_name() . "/$session_id");
 exit 0;
}

This subroutine first expires all out-of-date sessions by calling
expire_old_sessions().[9] Next, it calls CGI.pm 's path_info() function to return the
additional path information and attempt to match it against the expected session ID
pattern. If a likely looking session ID is found, we call check_id() to ensure that the
session ID actually corresponds to a database record. Otherwise, we call
generate_id() to create a new session ID. We append the ID to our URI (using
CGI.pm 's script_name() function), incorporate it into a call to redirect(), and exit. In
this case the subroutine never returns to the caller, but the redirected browser
immediately generates a second call to the script, this time with the session ID
appended to the URI.

[9] If there are many session records, expire_old_sessions() will rapidly become a performance drain on the script. In
high-volume applications, you will want to move session expiration into a separate standalone process that runs at
regular intervals under the Unix cron or NT at utilities. For the hangman application, a nightly expiration is more than
sufficient.

The expire_old_sessions() subroutine is simple:

sub expire_old_sessions {
 $DBH->do(<<END);
DELETE FROM $DB_TABLE
 WHERE (unix_timestamp()-unix_timestamp(modified))>${\EXPIRE}
END
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The subroutine consists of a single DBI call that sends a SQL DELETE statement to
the database. The effect of the call is to delete all session records that are older than
the time limit set by the EXPIRE constant.

generate_id(), which chooses new session IDs, is slightly more complex:

sub generate_id {
 # Create a new session id
 my $tries = 0;
 my $id = hash(SECRET . rand());
 while ($tries++ < MAX_TRIES) {
 last if $DBH->do("INSERT INTO $DB_TABLE (session_id) VALUES ('$id')");
 $id = hash(SECRET . $id);
 }
 return undef if $tries >= MAX_TRIES; # we failed
 return $id;
}

The reason for this complexity is that it is important to generate a unique session ID in
such a way that valid session IDs cannot be trivially guessed. Otherwise it would be
possible for a malicious person to hijack another user's session by misappropriating
that user's session ID. This is not important in the hangman game, but becomes an
issue in transactions in which things of value (money, merchandise, confidential
information) are changing hands. A simple sequence of session IDs, such as
choosing one higher than the previous highest, is too obvious. IDs generated from the
rand() call are unreliable as well because once you know where you are in the series,
you can generate all the subsequent values.

Instead, we use a combination of rand() and the MD5 message digest algorithm. We
begin by computing the MD5 hash of the value of rand() concatenated with a secret
phrase. This extra concatenation step makes it impossible to derive the value of the
next session ID from the previous one. Instead of calling MD5 directly, we call a small
internal subroutine, hash(), to compute the MD5 hash and then truncate it to eight
characters. This reduces the size of the session ID at the cost of making the ID
somewhat easier to guess.[10] We then enter a loop in which we repeatedly attempt to
insert the current session ID into the database. If a record with that session ID does
not already exist in the database, the insertion statement returns a true result code
and we immediately return the ID. Otherwise we generate a new trial ID by hashing
the current ID concatenated with the secret, and try again. We do this up to
MAX_TRIES times, at which point we give up. This allows us to fill up the space of
possible session IDs to approximately 90 percent, or around 3 billion.

[10] The size of the session ID determines the number of guesses a would-be hijacker has to make before getting a
correct one. There are about 4.3 billion eight-digit session IDs. If you have 10,000 active sessions, this means that the
hijacker has to guess (and try) 430,000 IDs before getting lucky. You'll probably notice this number of hits on your
server long before anything untoward happens. If you have 100,000 active sessions, however, only 43,000 guesses
are required, and you might want to use a longer session ID. In practice, it's almost always easier for a hijacker to
recover a session ID by some other method (such as packet-sniffing) than by guessing.

The check_id() subroutine is called by get_session_id() when the browser provides a
previous session ID. Its job is to check that the session ID still corresponds to a
database record. If not, it attempts to insert a record with that session ID into the
database and delivers a warning to the user that his game session may have expired.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub check_id {
 my $id = shift;
 return ($id, '')
 if $DBH->do("SELECT 1 FROM $DB_TABLE WHERE session_id='$id'") > 0;
 return ($id, 'The record of your game may have expired. Restarting.')
 if $DBH->do("INSERT INTO $DB_TABLE (session_id) VALUES ('$id')");
 return ();
}

The reason we try to reuse old session IDs is that the user may have bookmarked the
URI of the game, session ID and all. We honor the bookmark so that the user doesn't
have to discard it and enter a new one after his session has expired. check_id()
consists of two DBI calls. In the first, it makes a SQL SELECT query looking for a
record matching the provided session ID. Since we're only interested in whether the
query succeeds or fails, we select a constant 1 instead of a named set of columns. If
the query fails, then the database does not already contain the session ID. We call
DBI again to insert the session ID into the database. If this fails (which it might in the
unusual case of another instance of this script picking the same session ID from
within generate_id()) we return an empty list. Otherwise we return the ID and the
warning message. Although the user has lost the record of his old set of games, his
bookmarked URI will still be valid and can now be used to return to the new set.

The last new routine defined in this version of the game is hash(), which simply
computes the MD5 digest of the value passed to it, then truncates it to $ID_LENGTH
characters:

sub hash {
 my $value = shift;
 return substr(MD5->hexhash($value), 0, $ID_LENGTH);
}

Example 5.6. The Hangman Game with a DBI Backend

#!/usr/local/bin/perl

file: hangman6.pl
hangman game using DBI

use IO::File ();
use CGI qw(:standard);
use DBI ();
use MD5 ();

use strict;
use vars qw($DBH $ID_LENGTH);
use constant WORDS => '/usr/games/lib/hangman-words';
use constant ICONS => '/icons/hangman';
use constant TRIES => 6;

session settings
use constant EXPIRE => 60*60*24*30; # allow 30 days before expiration
use constant DB => 'dbi:mysql:www';
use constant DBAUTH => 'nobody:';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use constant DBAUTH => 'nobody:';
use constant SECRET => 'modperl reigns';
use constant MAX_TRIES => 10;
$ID_LENGTH = 8; # length of the session ID

Open the database
$DBH = DBI->connect(DB,split(':',DBAUTH,2),{PrintError=>0})
 || die "Couldn't open database: ",$DBI::errstr;

get the current session ID, or make one
my ($session_id,$note) = get_session_id();

retrieve the state
my $state = get_state($session_id) unless param('clear');

reinitialize if we need to
$state = initialize($state) if !$state or param('restart');

process the current guess, if any
my ($message,$status) = process_guess(param('guess') || '',$state);

save the modified state
save_state($state,$session_id);

start the page
print header(),
 start_html(-Title => 'Hangman 5',
 -bgcolor => 'white',
 -onLoad => 'if (document.gf) document.gf.guess.focus()'),
 h1('Hangman 5: Database Sessions with URL rewriting');

print p(font({-color=>'red'},$note)) if $note;

 . . . everything in the middle is the same . . .

Retrieve the session ID from the path info. If it's not
already there, add it to the path info with a redirect.
sub get_session_id {
 my(@result);
 expire_old_sessions();
 my($id) = path_info() =~ m:^/([a-h0-9]{$ID_LENGTH}):o;
 return @result if $id and @result = check_id($id);

 # If we get here, there's not already an ID in the path info.
 my $session_id = generate_id();
 die "Couldn't make a new session id" unless $session_id;
 print redirect(script_name() . "/$session_id");
 exit 0;
}

Find a new unique ID and insert it into the database

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Find a new unique ID and insert it into the database
sub generate_id {
 # Create a new session id
 my $tries = 0;
 my $id = hash(SECRET . rand());
 while ($tries++ < MAX_TRIES) {
 last if $DBH->do("INSERT INTO $DB_TABLE (session_id) VALUES ('$id')");
 $id = hash(SECRET . $id);
 }
 return undef if $tries >= MAX_TRIES; # we failed
 return $id;
}

check to see that an old ID is valid
sub check_id {
 my $id = shift;
 return ($id, '')
 if $DBH->do("SELECT 1 FROM $DB_TABLE WHERE session_id='$id'") > 0;
 return ($id, 'The record of your game may have expired. Restarting.')
 if $DBH->do("INSERT INTO $DB_TABLE (session_id) VALUES ('$id')");
 return ();
}

generate a hash value
sub hash {
 my $value = shift;
 return substr(MD5->hexhash($value), 0, $ID_LENGTH);
}

sub expire_old_sessions {
 $DBH->do(<<END);
DELETE FROM $DB_TABLE
 WHERE (unix_timestamp()-unix_timestamp(modified))>${\EXPIRE}
END
}

get the state from the database
sub get_state {
 my $id = shift;
 my $sth = $DBH->prepare("SELECT * FROM $DB_TABLE WHERE session_id='$id'
 AND WORD<>NULL")
 || die "Prepare: ", $DBH->errstr;
 $sth->execute || die "Execute: ", $sth->errstr;
 my $state = $sth->fetchrow_hashref;
 $sth->finish;
 return $state;
}

save the state in the database
sub save_state {
 my($state, $id) = @_;
 my $sth = $DBH->prepare(<<END) || die "prepare: ", $DBH->errstr;
UPDATE $DB_TABLE
 SET WORD=?,GUESSED=?,GAMENO=?,WON=?,TOTAL=?,GUESSES_LEFT=?
 WHERE session_id='$id'
END

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

END
 $sth->execute(@{$state}{qw(WORD GUESSED GAMENO WON TOTAL GUESSES_LEFT)})
 || die "execute: ", $DBH->errstr;
 $sth->finish;
}

5.6.4 URI-Based Session ID Problems and Solutions

There are a couple of problems with URI-based session IDs. One is that because the
session ID is tacked onto the end of the URI, relative URIs will no longer work
correctly. For example, a reference to another Apache::Registry script named
high_scores.pl located in the same directory will be resolved by the browser to
something like this:

http://your.site/perl/hangman.pl/high_scores.pl

This is obviously not what you want, because the session ID has been replaced by
the name of the script you want to run! Fortunately, the Apache API provides a simple
fix for this. Store the session ID to the left of the script name rather than the right, like
this:

http://your.site/fd2c95dd/perl/hangman6.cgi

To handle URIs like this, you can write a custom URI translation handler to modify the
URI before it gets to the script. The full details of writing translation handlers are
discussed in Chapter 7, but a simple module to accomplish this named
Apache::StripSession is shown in Example 5.7. Briefly, the module checks whether
the requested URI begins with something that looks like a session ID (eight
hexadecimal digits). If it does, the handler strips out the session ID and uses
subprocess_env() to place the ID in an environment variable named SESSION_ID.
The handler replaces the request's original URI with the altered one and then returns
DECLINED, telling Apache to pass the request onward to the standard translation
handlers that will do the work of turning the new URI into a physical file path.

Example 5.7. A Translation Handler for Stripping Session IDs from URIs

package Apache::StripSession;
file: Apache/StripSession.pm
use strict;
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;
 my($junk, $session, @rest) = split '/', $r->uri;
 return DECLINED unless $session =~ /^[0-9a-h]{8}$/;
 $r->subprocess_env('SESSION_ID' => $session);
 my $new_uri = join "/", "", @rest;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $new_uri = join "/", "", @rest;
 $r->uri($new_uri);
 return DECLINED;
}

1;
__END__

Add this directive to srm.conf to activate Apache::StripSession:

PerlTransHandler Apache::StripSession

With this translation handler in place, the get_session_id() no longer has to play
games with the additional path information in order to recover the session ID. It can
just read it from the environment. The other change to the subroutine is that the call to
redirect() now places the session ID in front of the script name rather than after it:

sub get_session_id {
 expire_old_sessions();
 return check_id($ENV{SESSION_ID}) if $ENV{SESSION_ID};

 my $session_id = generate_id();
 die "Couldn't make a new session id" unless $session_id;
 print redirect("/$session_id" . script_name());
 exit 0;
}

A more serious potential problem with URI-based session IDs is that under some
circumstances it is possible for the session ID to "leak" to other sites via the HTTP
referrer header (which, for historical reasons, is spelled "Referer"). If a page that has
a session ID in its URI contains a hypertext link to another site, or even an image
whose source is at another site, the page's URI, session ID included, will show up in
the remote site's referrer log. Therefore, you must be careful not to include pointers to
other sites in pages that use this method for storing session IDs. To get around this
problem, you can put the session ID in a cookie, as the next section demonstrates.

5.6.5 Using DBI to Its Full Advantage

Once you keep session information stored in a database, there are all sorts of
interesting things you can do with it. For example, you can easily compute statistics,
such as the average number of games that users have played or how many guesses
they have to make on average to arrive at the correct answer.

In this section we take advantage of this ability to create a "top winners" list.
Whenever the user finishes a game, or any time he presses the "Show High Scores"
button, he is presented with a list of the 15 top-scoring players. If the user is one of
the winners, his entry is boldfaced. At the end of each game, the top winners list is
displayed again, and the user is given a chance to add his name to the database. The
new screen is shown in Figure 5.4.

Figure 5.4. When the user wins this version of the hangman game, he's allowed to enter his
name. The top 15 winners are displayed in a hall of fame list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For variety, this version of hangman stores its session ID in a client-side cookie rather
than in the URI.

Because this is the final and most feature-rich version of hangman, we give the code
in its entirety in Example 5.8. A variety of things have changed. Let's start with the
table definition:

CREATE TABLE hangman (
 session_id char(8) primary key,
 username char(40) default 'anonymous',
 WORD char(30),
 GUESSED char(26),
 GAMENO int,
 WON int,
 GUESSES_LEFT int,
 TOTAL int,
 modified timestamp,
 KEY(modified)
)

In addition to the state variables that we've used before, we've added a new column
named username with a default value of anonymous. When a new user starts playing
the game, he is initially anonymous. Whenever he wins a game, he gets the right to
enter his name or handle into the database. Subsequently, his name is displayed on
the hangman page in nice bold red letters, and it also appears on the top winners list,
provided the user can score high enough to get there. Even though the table
definition has changed, the get_state() and set_state() subroutines used in the
previous version of the game are sufficiently generic that they don't need alteration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The other change is that the session ID is now stored in a cookie, rather than in a
URI. The code required to store the session ID in a cookie is similar to what we used
earlier for the shared memory example (Example 5.5):

sub get_session_id {
 my(@result);
 expire_old_sessions();
 my $id = cookie('sessionID');
 return @result if defined($id) and
 $id =~ m/^([a-h0-9]{$ID_LENGTH})$/o and
 @result = check_id($id);
 # If we get here, there's not already a valid cookie
 my $session_id = generate_id();
 die "Couldn't make a new session id" unless $session_id;
 return $session_id;
}

get_session_id() attempts to retrieve a cookie named sessionID. If it finds such a
cookie, it first checks that the session ID looks right and then passes it to check_id()
to confirm that the session is in the database. If there's no session cookie, it calls
generate_id() to create a new ID and return it. Later when we generate the HTTP
header we will incorporate this session ID into a cookie that is sent to the client.

The biggest change relative to the previous version of the script is the addition of a
new subroutine called show_scores(), which displays an HTML table of the top 15
winners, the number of games they've won and lost, the average number of letters
guessed per word, and an aggregate score. This subroutine is called at the end of
each game by show_restart_form(), and is also called whenever the user presses the
new "Show High Scores" button (CGI parameter show_scores).

The top of the show_scores() routine looks like this:

sub show_scores {
 my($current_session, $count) = @_;
 my $tries = TRIES;
 my $sth = $DBH->prepare(<<END) || die "prepare: ", $DBH->errstr;
SELECT session_id,username,
 GAMENO,WON,(TOTAL+GUESSES_LEFT-$tries)/(GAMENO-1) as AVG,
 round(100*WON/(GAMENO*(TOTAL+GUESSES_LEFT-$tries)/(GAMENO-1)))
 as SCORE
FROM $DB_TABLE
WHERE GAMENO > 1 and TOTAL+GUESSES_LEFT > $tries and WON > 0
ORDER BY SCORE DESC
LIMIT $count
END

The core of show_scores() is a big SQL SELECT statement that retrieves the top-
scoring players based on a formula that divides the percentage of games won by the
average number of guesses per game. The SQL statement sorts the returned list in
descending order by score, then skims off the top records and returns them. The
remainder of the routine calls execute() followed by a fetchrow_array() loop. Each

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

remainder of the routine calls execute() followed by a fetchrow_array() loop. Each
retrieved record is turned into a row of an HTML table and printed out. The code is
straightforward; see the listing for the details.

Another significant change is in the show_guess_form() routine:

sub show_guess_form {
 my $state = shift;
 print start_form(-name => 'gf'),
 "Your guess: ",
 textfield(-name => 'guess', -value => '', -override => 1),
 submit(-value => 'Guess'),
 br({-clear => 'ALL'}),
 submit(-name => 'show_scores', -value => 'Show High Scores'),
 submit(-Style => 'color: red', -name => 'abort', -value => 'Give Up');
 print end_form;
}

This version of show_guess_form() adds a new button labeled "Give Up," which
allows the user to give up and move on to the next word. process_guess() is modified
to recognize this condition and treat it as an incorrect attempt to guess the whole
word.

Other changes to the hangman script allow the user to enter and edit his name.
show_restart_form() has been modified to include an HTML text field that prompts the
user to type in his name. The routine now looks like this:

sub show_restart_form {
 my($state, $status, $session_id) = @_;
 print start_form;
 print p("Enter your name for posterity: ",
 textfield(-name => 'change_name', -value => $state->{'username'}))
 if $status eq 'won';
 print
 p("Do you want to play again?",
 submit(-name => 'restart', -value => 'Another game'),
 checkbox(-name => 'clear', -label => 'Clear my score'));
 print end_form;
 show_scores($session_id, TOP_COUNT);
}

When the restart form is submitted, the script checks for the change_name parameter
and calls a new subroutine named set_username() if present:

set_username($session_id, param('change_name')) if param('change_name');

set_username(), in turn, issues the appropriate SQL UPDATE command to insert the
user's name into the database:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub set_username {
 my($session, $newname) = @_;
 $newname = $DBH->quote($newname);
 $DBH->do("UPDATE $DB_TABLE SET username=$newname
 WHERE session_id='$session'")
 || die "update: ", $DBH->errstr;
}

This subroutine uses a trick that we haven't seen before. Because the username is
typed in by the user, there's no guarantee that it doesn't contain funny characters,
such as quotation marks, which will throw off the SQL parser. To avoid this, we pass
the username through the DBI quote() function. This escapes funny characters and
puts quotes around the string, making it safe to use in SQL.

The final frill on this script is an odd little subroutine defined at the bottom of the code
named Apache::DBI:db::ping() :

sub Apache::DBI::db::ping {
 my $dbh = shift;
 return $dbh->do('select 1');
}

MySQL, like some other networked databases, will time out if a client has been idle
for some period of time. If this happens, the hangman script will fail with a fatal
database error the next time it tries to make a query. To avoid this eventuality, the
Apache::DBI module attempts to reconnect to the database if it notices that the
database has gone silent. However, Apache::DBI does this checking by calling the
database driver's ping() method, and the MySQL DBI driver doesn't implement ping()
(at least, not at the time that this was written). To avoid the embarrassment of having
our hangman game get hung, we define our own version of ping(). It simply calls a
SQL SELECT statement that's guaranteed to be true. If the database is still up, the
call succeeds. If the database has timed out, the subroutine returns false and
Apache::DBI reestablishes the connection behind the scenes.

Example 5.8. Hangman with All the Trimmings

file: hangman7.cgi
hangman game with all the trimmings

use IO::File ();
use CGI qw(:standard);
use DBI ();
use MD5 ();

use strict;
use vars qw($DBH $DB_TABLE $ID_LENGTH);
use constant WORDS => '/usr/games/lib/hangman-words';
use constant ICONS => '/icons/hangman';
use constant TRIES => 6;
use constant TOP_COUNT => 15; # how many top scores to show

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use constant TOP_COUNT => 15; # how many top scores to show

session settings
use constant EXPIRE => 60*60*24*30; # allow 30 days before expiration
use constant DB => 'dbi:mysql:www';
use constant DBAUTH => 'nobody:';
use constant SECRET => "something obscure";
use constant COOKIE_NAME => 'hangman7';
use constant MAX_TRIES => 10;
$DB_TABLE = "hangman7";
$ID_LENGTH = 8;

Open the database
$DBH = DBI->connect(DB, split(':', DBAUTH, 2), {PrintError => 0})
 || die "Couldn't open database: ", $DBI::errstr;

get the current session ID, or make one
my($session_id, $note) = get_session_id();

retrieve the state
my $state = get_state($session_id) unless param('clear');

reinitialize if we need to -- we need to check for "change_name"
because it's possible for the user to hit return in the change name field!
$state = initialize($state) if !$state or param('restart')
 or param('change_name');

process the current guess, if any
set_username($session_id, param('change_name')) if param('change_name');

my($message, $status) = process_guess(param('guess') || '', $state)
 unless param('show_scores');

start the page
print header(-Cookie => cookie(-name => COOKIE_NAME,
 -value => $session_id,
 -expires => '+' . EXPIRE . 'd')
),
 start_html(-Title => 'Hangman 7',
 -bgcolor => 'white',
 -onLoad => 'if (document.gf) document.gf.guess.focus()'),
 h1('Hangman 7: DBI Sessions in Cookies');

if (param() and !cookie(COOKIE_NAME)) {
 print h2(font({-color => 'red'},
 footer();
 exit 0;
}
print h2(font({-color => 'red'}, "Player: $state->{username}")) if
 $state->{username} and $state->{username} ne 'anonymous';

print p(font({-color => 'red'}, $note)) if $note;

save the modified state

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

save the modified state
save_state($state, $session_id);

draw the statistics
show_status($state);

Prompt the user to restart or for his next guess.
if (param('show_scores')) {
 show_scores($session_id, TOP_COUNT);
 print start_form, submit(-name => 'play', -value => 'Play'), end_form;
}
else {
 # draw the picture
 show_picture($state);
 show_word($state);
 print h2(font({-color => 'red'}, $message)) if $message;
 if ($status =~ /^(won|lost)$/) {
 show_restart_form($state, $status, $session_id);
 }
 else {
 show_guess_form($state);
 }
}

footer();

$DBH->disconnect;

########### subroutines ##############
This is called to process the user's guess
sub process_guess {
 my($guess, $state) = @_;

 # lose immediately if user has no more guesses left
 return ('', 'lost') unless $state->{GUESSES_LEFT} > 0;

 # lose immediately if user aborted
 if (param('abort')) {
 $state->{TOTAL} += $state->{GUESSES_LEFT};
 $state->{GUESSES_LEFT} = 0;
 return (qq{Chicken! The word was "$state->{WORD}."}, 'lost') ;
 }

 # break the word and guess into individual letters
 my %guessed = map { $_ => 1 } $state->{GUESSED} =~ /(.)/g;
 my %letters = map { $_ => 1 } $state->{WORD} =~ /(.)/g;

 # return immediately if user has already guessed the word
 return ('', 'won') unless grep(!$guessed{$_}, keys %letters);

 # do nothing more if no guess
 return ('', 'continue') unless $guess;

 # This section processes individual letter guesses
 $guess = lc $guess;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $guess = lc $guess;
 return ("Not a valid letter or word!", 'error')
 unless $guess =~ /^[a-z]+$/;
 return ("You already guessed that letter!", 'error')
 if $guessed{$guess};

 # This section is called when the user guesses the whole word
 if (length($guess) > 1 and $guess ne $state->{WORD}) {
 $state->{TOTAL} += $state->{GUESSES_LEFT};
 $state->{GUESSES_LEFT} = 0;
 return (qq{You lose. The word was "$state->{WORD}."}, 'lost')
 }

 # update the list of guesses
 foreach ($guess =~ /(.)/g) { $guessed{$_}++; }
 $state->{GUESSED} = join '', sort keys %guessed;

 # correct guess -- word completely filled in
 unless (grep(!$guessed{$_}, keys %letters)) {
 $state->{WON}++;
 return (qq{You got it! The word was "$state->{WORD}."}, 'won');
 }

 # incorrect guess
 if (!$letters{$guess}) {
 $state->{TOTAL}++;
 $state->{GUESSES_LEFT}--;
 # user out of turns
 return (qq{The jig is up. The word was "$state->{WORD}".}, 'lost')
 if $state->{GUESSES_LEFT} <= 0;
 # user still has some turns
 return ('Wrong guess!', 'continue');
 }

 # correct guess but word still incomplete
 return (qq{Good guess!}, 'continue');
}

create the cute hangman picture
sub show_picture {
 my $tries_left = shift->{GUESSES_LEFT};
 my $picture = sprintf("%s/h%d.gif", ICONS, TRIES-$tries_left);
 print img({-src => $picture,
 -align => 'LEFT',
 -alt => "[$tries_left tries left]"});
}

print the status
sub show_status {
 my $state = shift;
 my $current_average = $state->{TOTAL}/$state->{GAMENO};
 my $overall_average = $state->{GAMENO}>1 ?
 ($state->{TOTAL}-(TRIES-$state->{GUESSES_LEFT}))/($state->{GAMENO}-1)
 my $score = $overall_average > 0 ?
 (100*$state->{WON}/($state->{GAMENO}*$overall_average)) : 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (100*$state->{WON}/($state->{GAMENO}*$overall_average)) : 0;

 # print the word with underscores replacing unguessed letters
 print table(TR({-width => '90%'},
 td(b('Word #:'), $state->{GAMENO}),
 td(b('Won:'), $state->{WON}),
 td(b('Guessed:'), $state->{GUESSED}),
),
 TR(
 td(b('Current average:'), sprintf("%2.3f", $current_average)),
 td(b('Overall average:'), sprintf("%2.3f", $overall_average)),
 td(b('Score:'), sprintf("%3.0f", $score))
)
);
}

sub show_word {
 my $state = shift;
 my %guessed = map { $_ => 1 } $state->{GUESSED} =~ /(.)/g;
 print h2("Word:",
 map {$guessed{$_} ? $_ : '_'}
 $state->{WORD} =~ /(.)/g);
}

print the fill-out form for requesting input
sub show_guess_form {
 my $state = shift;
 print start_form(-name => 'gf'),
 "Your guess: ",
 textfield(-name => 'guess', -value => '', -override => 1),
 submit(-value => 'Guess'),
 br({-clear => 'ALL'}),
 submit(-name => 'show_scores', -value => 'Show High Scores'),
 submit(-Style => 'color: red', -name => 'abort', -value => 'Give Up');
 print end_form;
}

ask the user if he wants to start over
sub show_restart_form {
 my($state, $status, $session_id) = @_;
 print start_form;
 print p("Enter your name for posterity: ",
 textfield(-name => 'change_name', -value => $state->{'username'}))
 if $status eq 'won';
 print
 p("Do you want to play again?",
 submit(-name => 'restart', -value => 'Another game'),
 checkbox(-name => 'clear', -label => 'Clear my score'));
 print end_form;
 show_scores($session_id, TOP_COUNT);
}

pick a word, any word
sub pick_random_word {
 my $list = IO::File->new(WORDS)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $list = IO::File->new(WORDS)
 || die "Couldn't open ${\WORDS}: $!\n";
 my $word;
 rand($.) < 1 && ($word = $_) while <$list>;
 chomp $word;
 $word;
}

################### state maintenance ###############
This is called to initialize a whole new state object
or to create a new game.
sub initialize {
 my $state = shift;
 $state = {} unless $state;
 $state->{WORD} = pick_random_word();
 $state->{GUESSES_LEFT} = TRIES;
 $state->{TOTAL} += 0;
 $state->{GUESSED} = '';
 $state->{GAMENO} += 1;
 $state->{WON} += 0;
 $state->{username} = param('change_name') if param('change_name');
 return $state;
}

Retrieve the session ID from the path info. If it's not
already there, add it to the path info with a redirect.
sub get_session_id {
 my(@result);
 expire_old_sessions();
 my $id = cookie(COOKIE_NAME);
 return @result if defined($id) and
 $id =~ m/^([a-h0-9]{$ID_LENGTH})$/o and
 @result = check_id($id);
 # If we get here, there's not already a valid cookie
 my $session_id = generate_id();
 die "Couldn't make a new session id" unless $session_id;
 return $session_id;
}

Find a new unique ID and insert it into the database
sub generate_id {
 # Create a new session id
 my $tries = 0;
 my $id = hash(SECRET . rand());
 while ($tries++ < MAX_TRIES) {
 last if $DBH->do("INSERT INTO $DB_TABLE (session_id) VALUES
 $id = hash($id);
 }
 return undef if $tries >= MAX_TRIES; # we failed
 return $id;
}

check to see that an old ID is valid
sub check_id {
 my $id = shift;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $id = shift;
 return ($id, '')
 if $DBH->do("SELECT 1 FROM $DB_TABLE WHERE session_id='$id'") >
 return ($id, 'The record of your game may have expired. Restarting.')
 if $DBH->do("INSERT INTO $DB_TABLE (session_id) VALUES ('$id')");
 return ();
}

generate a hash value
sub hash {
 my $value = shift;
 return substr(MD5->hexhash($value), 0, $ID_LENGTH);
}

sub expire_old_sessions {
 $DBH->do(<<END);
DELETE FROM $DB_TABLE
 WHERE (unix_timestamp()-unix_timestamp(modified))>${\EXPIRE}
END
}

get the state from the database
sub get_state {
 my $id = shift;
 my $sth = $DBH->prepare("SELECT * FROM $DB_TABLE WHERE session_id='$id'
 AND WORD<>NULL")
 || die "Prepare: ", $DBH->errstr;
 $sth->execute || die "Execute: ", $sth->errstr;
 my $state = $sth->fetchrow_hashref;
 $sth->finish;
 return $state;
}

save the state in the database
sub save_state {
 my($state, $id) = @_;
 my $sth = $DBH->prepare(<<END) || die "prepare: ", $DBH->errstr;
UPDATE $DB_TABLE
 SET WORD=?,GUESSED=?,GAMENO=?,WON=?,TOTAL=?,GUESSES_LEFT=?
 WHERE session_id='$id'
END
 $sth->execute(@{$state}{qw(WORD GUESSED GAMENO WON TOTAL GUESSES_LEFT)})
 || die "execute: ", $DBH->errstr;
 $sth->finish;
}

Return true if the current session is one of the top ten
Overall score is the percentage of games won weighted by the average
number of guesses taken.
sub show_scores {
 my($current_session, $count) = @_;
 my $tries = TRIES;
 my $sth = $DBH->prepare(<<END) || die "prepare: ", $DBH->errstr;
SELECT session_id,username,
 GAMENO,WON,(TOTAL+GUESSES_LEFT-$tries)/(GAMENO-1) as AVG,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 GAMENO,WON,(TOTAL+GUESSES_LEFT-$tries)/(GAMENO-1) as AVG,
 round(100*WON/(GAMENO*(TOTAL+GUESSES_LEFT-$tries)/(GAMENO-1))) as SCORE
FROM $DB_TABLE
WHERE GAMENO > 1 and TOTAL+GUESSES_LEFT > $tries and WON > 0
ORDER BY SCORE DESC
LIMIT $count
END
 ;
 $sth->execute || die "execute: ", $sth->errstr;
 my @rows = th([qw(Name Games Won Average Score)]);
 while (my(@rec) = $sth->fetchrow_array) {
 my $id = shift @rec;
 push @rows, $id eq $current_session ?
 th({-align => 'LEFT'}, \@rec) : td(\@rec);
 }
 print br({-clear => 'ALL'}),
 table({-border => 'undef', -width => '75%'},
 caption(b("Top $count Winners")),
 TR(\@rows));
 $sth->finish;
}

change the username in the database
sub set_username {
 my($session, $newname) = @_;
 $newname = $DBH->quote($newname);
 $DBH->do("UPDATE $DB_TABLE SET username=$newname
 WHERE session_id='$session'")
 || die "update: ", $DBH->errstr;
}

fix the absence of ping() in the mysql interface.
sub Apache::DBI::db::ping {
 my $dbh = shift;
 return $dbh->do('select 1');
}

print bottom of page
sub footer {
 print hr,
 a({-href => '/'}, "Home"),
 p(cite({-Style => "fontsize: 10pt"}, 'graphics courtesy Andy Wardley')),
 end_html();
}

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

5.7 Other Server-Side Techniques

Before we finish up this chapter, we touch on a couple of other techniques for storing
state information on the server side of the connection.

5.7.1 Non-DBI Databases

Because of its portability, the DBI database interface is probably the right choice for
most server-side database applications. However, any database system that was
designed to support multiple write access will work for this application. For example,
the object-oriented ACEDB system that Lincoln works with is well suited to
applications that require complex, richly interlinked information to be stored. The
database is freeware; you can find out more about it at
http://stein.cshl.org/AcePerl/.

You might be tempted to try to store session information using a Unix NDBM, GDBM,
or DB_FILE database. If you try this, you may be in for an unpleasant surprise. These
databases were designed for good multiuser read performance but not for
transactions in which several processes are reading and writing simultaneously. They
keep an in-memory cache of a portion of the database and don't immediately know
when another process has updated a portion that's cached. As a result, the database
can easily become corrupt if multiple Apache daemons open it for writing.

You can work around this problem by carefully locking the files, flushing after each
write, and closing and reopening the file at strategic points, but believe us, it isn't
worth it. Version 2 of the Berkeley DB library does support transactions, however, and
Paul Marquess's experimental Berkeley_DB module provides an interface to it. We
have not experimented with this database yet, but it looks like it might provide a
lightweight solution for storing web session information in situations where a DBI
database would be overkill.

5.7.2 Using Authentication to Provide Session IDs

Because the techniques for storing state information on the server side all require
some sort of session ID to be maintained by the browser, they share a drawback.
Regardless of whether the session ID is stored in a cookie or inside the URI, it sticks
to the browser, not to the user. When the reigning hangman champ moves from his
home computer to his office computer, he loses access to his current score
information. Of course you could instruct users to write down their session IDs and
type them back into the URI or cookie file when they move to a new machine, but this
is awkward and inconvenient. You could try to recover session IDs from usernames,
but this makes it too easy for people to steal each other's sessions.

In some applications, it makes sense to give each user a unique username/password
pair and ask users to log in to your application. You can then use the username as
the session key and be guaranteed that no sessions will conflict. Users can't steal
each others' sessions without guessing the password, which is sufficient security for
most applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The simplest way to do this is to use Apache's built-in authentication modules for
password-protecting your script's URI. When the user tries to access the script, he is
presented with a dialog box prompting him for his username and password. Apache
verifies the information he provides against a file of stored usernames and passwords
and allows access to the script if the information checks out. Before calling your
script, Apache places the username into the request object. If you are using
Apache::Registry, this information can be recovered from the CGI environment
variable $ENV{REMOTE_USER}. From within an Apache Perl module, you can
recover the username from the connection object in this way:

$username = $r->connection->user;

With this technique we can write a concise replacement for the get_session_id()
subroutine in the server-side hangman scripts:

sub get_session_id {
 return $ENV{REMOTE_USER};
}

The Apache distribution comes with a variety of authentication modules that use text
files or Unix DBM files as their password databases. These may be adequate for your
needs, or you might want to integrate the database of usernames and passwords with
the database you use to store session information. The next chapter shows you how
to do this and much more.

5.7.3 Apache::Session

After this chapter was written, Jeffrey Baker released an Apache::Session module
that implements many of the techniques described in this chapter. This module had
undergone several revisions, including contributions from many mod_perl developers
that have stabilized and enhanced Apache::Session, making it fit for a production
environment across all platforms. We strongly recommend taking a look at this
module when considering application state management implementation.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 6. Authentication and Authorization
In previous chapters we've seen how to create dynamic pages, interact with the
remote user, and maintain state across sessions. We haven't worried much about
issues of user authorization: the web server and all its modules were assumed to be
accessible by all.

In the real world, access to the web server is not always unrestricted. The module
you're working on may provide access to a database of proprietary information, may
tunnel through a firewall system, or may control a hardware device that can be
damaged if used improperly. Under circumstances like these you'll need to take care
that the module can be run only by authorized users.

In this chapter, we step back to an earlier phase of the HTTP transaction, one in
which Apache attempts to determine the identity of the person at the other end of the
connection and whether he or she is authorized to access the resource. Apache's
APIs for authentication and authorization are straightforward yet powerful. You can
implement simple password-based checking in just a few lines of code. With
somewhat more effort, you can implement more sophisticated authentication
systems, such as ones based on hardware tokens.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

6.1 Access Control, Authentication, and Authorization

When a remote user comes knocking at Apache's door to request a document,
Apache acts like the bouncer standing at the entrance to a bar. It asks three
questions:

Is the bar open for business?

If the bar's closed, no one can come in. The patron is brusquely turned away,
regardless of who he or she may be.

Is the patron who he or she claims to be?

The bouncer demands to see some identification and scrutinizes it for
authenticity. If the ID is forged, the bouncer hustles the patron away.

Is this patron authorized to enter?

Based on the patron's confirmed identity, the bouncer decides whether this
person is allowed in. The patron must be of legal drinking age and, in the case
of a private club, must be listed in the membership roster. Or there may be
arbitrary restrictions, such as "Ladies' Night."

In the context of the HTTP protocol, the first decision is known as "access control,"
the second as "authentication," and the third as "authorization." Each is the
responsibility of a separate Apache handler which decides who can access the site
and what they are allowed to see when they enter. Unlike the case of the bouncer at
the bar, Apache access control and authentication can be as fine-grained as you
need it to be. In addition to controlling who is allowed to enter the bar (web site), you
can control what parts of the bar (partial URI paths) they're allowed to sit in, and even
what drinks (individual URIs) they can order. You can control access to real files and
directories as easily as virtual ones created on the fly.

6.1.1 How Access Control Works

Access control is any type of restriction that doesn't require you to determine the
identity of the remote user. Common examples of access control are those based on
the IP address of the remote user's computer, on the time of day of the request, or on
certain attributes of the requested document (for example, the remote user tries to
fetch a directory listing when automatic directory indexing has been disabled).

Access control uses the HTTP FORBIDDEN status code (403). When a user attempts
to fetch a URI that is restricted in this way, the server returns this status code to tell
the user's browser that access is forbidden and no amount of authentication will
change that fact. The easiest way to understand this interaction is to see it in action. If
you have access to a command-line telnet program, you can talk directly to a server
to see its responses. Try this (the URI is live):

% telnet www.modperl.com 80

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% telnet www.modperl.com 80
Connected to www.modperl.com.
Escape character is '^]'.
GET /articles/ HTTP/1.0
HTTP/1.1 403 Forbidden
Date: Mon, 10 Nov 1998 12:43:08 GMT
Server: Apache/1.3.3 mod_perl/1.16
Connection: close
Content-Type: text/html

<HTML><HEAD>
<TITLE>403 Forbidden</TITLE>
</HEAD><BODY>
<H1>Forbidden</H1>
You don't have permission to access /articles/
on this server.<P>
</BODY></HTML>
Connection closed by foreign host.

In this example, after connecting to the web server's port, we typed in a GET request
to fetch the URI /articles/. However, access to this URI has been turned off at the
server side using the following configuration file directives:

<Location /articles>
 deny from all
</Location>

Because access is denied to everyone, the server returns an HTTP header indicating
the 403 status code. This is followed by a short explanatory HTML message for the
browser to display. Since there's nothing more that the user can do to gain access to
this document, the browser displays this message and takes no further action.

Apache's standard modules allow you to restrict access to a file or directory by the IP
address or domain name of the remote host. By writing your own access control
handler, you can take complete control of this process to grant or deny access based
on any arbitrary criteria you choose. The examples given later in this chapter show
you how to limit access based on the day of the week and on the user agent, but you
can base the check on anything that doesn't require user interaction. For example,
you might insist that the remote host has a reverse domain name system mapping or
limit access to hosts that make too many requests over a short period of time.

6.1.2 How Authentication and Authorization Work

In contrast to access control, the process of authenticating a remote user is more
involved. The question "is the user who he or she claims to be?" sounds simple, but
the steps for verifying the answer can be simple or complex, depending on the level
of assurance you desire. The HTTP protocol does not provide a way to answer the
question of authenticity, only a method of asking it. It's up to the web server itself to
decide when a user is or is not authenticated.

When a web server needs to know who a user is, it issues a challenge using the
HTTP 401 "Authorization Required" code (Figure 6.1). In addition to this code, the
HTTP header includes one or more fields called WWW-Authenticate, indicating the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTTP header includes one or more fields called WWW-Authenticate, indicating the
type (or types) of authentication that the server considers acceptable. WWW-
Authenticate may also provide other information, such as a challenge string to use in
cryptographic authentication protocols.

When a client sees the 401 response code, it studies the WWW-Authenticate header
and fetches the requested authentication information if it can. If need be, the client
requests some information from the user, such as prompting for an account name
and password or requiring the user to insert a smart token containing a cryptographic
signature.

Figure 6.1. During web authentication, the server challenges the browser to provide
authentication information, and the browser reissues the request with an Authorization header.

Armed with this information, the browser now issues a second request for the URI,
but this time it adds an Authorization field containing the information necessary to
establish the user's credentials. (Notice that this field is misnamed since it provides
authentication information, not authorization information.) The server checks the
contents of Authorization, and if it passes muster, the request is passed on to the
authorization phase of the transaction, where the server will decide whether the
authenticated user has access to the requested URI.

On subsequent requests to this URI, the browser remembers the user's
authentication information and automatically provides it in the Authorization field. This
way the user doesn't have to provide his credentials each time he fetches a page.
The browser also provides the same information for URIs at the same level or
beneath the current one, anticipating the common situation in which an entire
directory tree is placed under access control. If the authentication information
becomes invalid (for example, in a scheme in which authentication expires after a
period of time), the server can again issue a 401 response, forcing the browser to
request the user's credentials all over again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The contents of WWW-Authenticate and Authorization are specific to the particular
authentication scheme. Fortunately, only three authentication schemes are in general
use, and just one dominates the current generation of browsers and servers.[1] This is
the Basic authentication scheme, the first authentication scheme defined in the HTTP
protocol. Basic authentication is, well, basic! It is the standard account
name/password scheme that we all know and love.

[1] The three authentication schemes in general use are Basic, Digest, and Microsoft's proprietary NTLM protocol
used by its MSIE and IIS products.

Here's what an unauthorized response looks like. Feel free to try it for yourself.

% telnet www.modperl.com 80
Connected to www.modperl.com.
Escape character is '^]'.
GET /private/ HTTP/1.0
HTTP/1.1 401 Authorization Required
Date: Mon, 10 Nov 1998 1:01:17 GMT
Server: Apache/1.3.3 mod_perl/1.16
WWW-Authenticate: Basic realm="Test"
Connection: close
Content-Type: text/html

<HTML><HEAD>
<TITLE>Authorization Required</TITLE>
</HEAD><BODY>
<H1>Authorization Required</H1>
This server could not verify that you
are authorized to access the document you
requested. Either you supplied the wrong
credentials (e.g., bad password), or your
browser doesn't understand how to supply
the credentials required.<P>
</BODY></HTML>
Connection closed by foreign host.

In this example, we requested the URI /private/, which has been placed under Basic
authentication. The returned HTTP 401 status code indicates that some sort of
authentication is required, and the WWW-Authenticate field tells the browser to use
Basic authentication. The WWW-Authenticate field also contains scheme-specific
information following the name of the scheme. In the case of Basic authentication,
this information consists of the authorization "realm," a short label that the browser
will display in the password prompt box. One purpose of the realm is to hint to the
user which password he should provide on systems that maintain more than one set
of accounts. Another purpose is to allow the browser to automatically provide the
same authentication information if it later encounters a discontiguous part of the site
that uses the same realm name. However, we have found that not all browsers
implement this feature.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Following the HTTP header is some HTML for the browser to display. Unlike the
situation with the 403 status, however, the browser doesn't immediately display this
page. Instead it pops up a dialog box to request the user's account name and
password. The HTML is only displayed if the user presses "Cancel", or in the rare
case of browsers that don't understand Basic authentication.

After the user enters his credentials, the browser attempts to fetch the URI once
again, this time providing the credential information in the Authorization field. The
request (which you can try yourself) will look something like this:

% telnet www.modperl.com 80
Connected to www.modperl.com.
Escape character is '^]'.
GET /private/ HTTP/1.0
Authorization: Basic Z2FuZGFsZjp0aGUtd2l6YXJk
HTTP/1.1 200 OK
Date: Mon, 10 Nov 1998 1:43:56 GMT
Server: Apache/1.3.3 mod_perl/1.16
Last-Modified: Thu, 29 Jan 1998 11:44:21 GMT
ETag: "1612a-18-34d06b95"
Content-Length: 24
Accept-Ranges: bytes
Connection: close
Content-Type: text/plain

Hi there.

How are you?
Connection closed by foreign host.

The contents of the Authorization field are the security scheme, "Basic" in this case,
and scheme-specific information. For Basic authentication, this consists of the user's
name and password, concatenated together and encoded with base64. Although the
example makes it look like the password is encrypted in some clever way, it's not—a
fact that you can readily prove to yourself if you have the MIME::Base64 module
installed:[2]

[2] MIME::Base64 is available from CPAN.

% perl -MMIME::Base64 -le 'print decode_base64 "Z2FuZGFsZjp0aGUtd2l6YXJk"'
gandalf:the-wizard

Standard Apache offers two types of authentication: the Basic authentication shown
above, and a more secure method known as Digest. Digest authentication, which
became standard with HTTP/1.1, is safer than Basic because passwords are never
transmitted in the clear. In Digest authentication, the server generates a random
"challenge" string and sends it to the browser. The browser encrypts the challenge
with the user's password and returns it to the server. The server also encrypts the
challenge with the user's stored password and compares its result to the one returned
by the browser.[3] If the two match, the server knows that the user knows the correct

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

by the browser.[3] If the two match, the server knows that the user knows the correct
password. Unfortunately, the commercial browser vendors haven't been as quick to
innovate as Apache, so Digest authentication isn't widely implemented on the browser
side. At the same time, some might argue that using Basic authentication over the
encrypted Secure Sockets Layer (SSL) protocol is simpler, provided that the browser
and server both implement SSL. We discuss SSL authentication techniques at the
end of this chapter.

[3] Actually, the user's plain-text password is not stored on the server side. Instead, the server stores an MD5 hash of
the user's password and the hash, not the password itself, are used on the server and browser side to encrypt the
challenge. Because users tend to use the same password for multiple services, this prevents the compromise of
passwords by unscrupulous webmasters.

Because authentication requires the cooperation of the browser, your options for
customizing how authentication works are somewhat limited. You are essentially
limited to authenticating based on information that the user provides in the standard
password dialog box. However, even within these bounds, there are some interesting
things you can do. For example, you can implement an anonymous login system that
gives the user a chance to provide contact information without requiring vigorous
authentication.

After successfully authenticating a user, Apache enters its authorization phase. Just
because a user can prove that he is who he claims to be doesn't mean he has
unrestricted access to the site! During this phase Apache applies any number of
arbitrary tests to the authenticated username. Apache's default handlers allow you to
grant access to users based on their account names or their membership in named
groups, using a variety of flat file and hashed lookup table formats.

By writing custom authorization handlers, you can do much more than this. You can
perform a SQL query on an enterprise database, consult the company's current
organizational chart to implement role-based authorization, or apply ad hoc rules like
allowing users named "Fred" access on alternate Tuesdays. Or how about something
completely different from the usual web access model, such as a system in which the
user purchases a certain number of "pay per view" accesses in advance? Each time
he accesses a page, the system decrements a counter in a database. When the
user's access count hits zero, the server denies him access.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

6.2 Access Control with mod_perl

This section shows you how to write a simple access control handler in mod_perl.

6.2.1 A Simple Access Control Module

To create an access control module, you'll install a handler for the access control
phase by adding a PerlAccessHandler directive to one of Apache's configuration files
or to a per-directory .htaccess file. The access control handler has the job of giving
thumbs up or down for each attempted access to the URI. The handler indicates its
decision in the result code it returns to the server. OK will allow the user in,
FORBIDDEN will forbid access by issuing a 403 status code, and DECLINED will defer
the decision to any other access control handlers that may be installed.

We begin with the simplest type of access control, a stern module called
Apache::GateKeeper (Example 6.1). Apache::GateKeeper recognizes a single
configuration variable named Gate. If the value of Gate is open, the module allows
access to the URI under its control. If the value of Gate is closed, the module forbids
access. Any other value results in an "internal server error" message.

The code is straightforward. It begins in the usual way by importing the common
Apache and HTTP constants from Apache::Constants :

package Apache::GateKeeper;
file: Apache/GateKeeper.pm
use strict;
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;
 my $gate = $r->dir_config("Gate");
 return DECLINED unless defined $gate;
 return OK if lc($gate) eq 'open';

When the handler is executed, it fetches the value of the Gate configuration variable.
If the variable is absent, the handler declines to handle the transaction, deferring the
decision to other handlers that may be installed. If the variable is present, the handler
checks its value, and returns a value of OK if Gate is open.

if (lc $gate eq 'closed') {
 $r->log_reason("Access forbidden unless the gate is open",
 $r->filename);
 return FORBIDDEN;
 }

 $r->log_error($r->uri, ": Invalid value for Gate ($gate)");
 return SERVER_ERROR;
}

On the other hand, if the value of Gate is "closed" the handler returns a FORBIDDEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On the other hand, if the value of Gate is "closed" the handler returns a FORBIDDEN
error code. In the latter case, the subroutine also writes a message to the log file
using the log_reason() logging method (see Section 4.6.1). Any other value for
Gate is a configuration error, which we check for, log, and handle by returning
SERVER_ERROR.

Example 6.1. Simple Access Control

package Apache::GateKeeper;
file: Apache/GateKeeper.pm
use strict;
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;
 my $gate = $r->dir_config("Gate");
 return DECLINED unless defined $gate;
 return OK if lc $gate eq 'open';

 if (lc $gate eq 'closed') {
 $r->log_reason("Access forbidden unless the gate is open", $r->filename);
 return FORBIDDEN;
 }

 $r->log_error($r->uri, ": Invalid value for Gate ($gate)");
 return SERVER_ERROR;
}

1;
__END__

.htaccess file entry
PerlAccessHandler Apache::GateKeeper
PerlSetVar Gate closed

The bottom of the listing shows the two-line .htaccess entry required to turn on
Apache::GateKeeper for a particular directory (you could also use a <Location> or
<Directory> entry for this purpose). It uses the PerlAccessHandler directive to install
Apache::GateKeeper as the access handler for this directory, then calls PerlSetVar to
set the Perl configuration variable Gate to closed.

How does the GateKeeper access control handler interact with other aspects of
Apache access control, authentication, and authorization? If an authentication handler
is also installed—for example, by including a require valid-user directive in the
.htaccess file—then Apache::GateKeeper is called as only the first step in the
process. If Apache::GateKeeper returns OK, then Apache will go on to the
authentication phase and the user will be asked to provide his name and password.

However, this behavior can be modified by placing the line Satisfy any in the
.htaccess file or directory configuration section. When this directive is in effect,
Apache will try access control first and then try authentication/authorization. If either
returns OK, then the request will be satisfied. This lets certain privileged users get into
the directory even when Gate is closed. (The bouncer steps aside when he
recognizes his boss!)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now consider a .htaccess file like this one:

PerlAccessHandler Apache::GateKeeper
PerlSetVar Gate open

order deny,allow
deny from all
allow from 192.168.2

This configuration installs two access control handlers: one implemented by the
standard mod_access module (which defines the order, allow, and deny directives)
and Apache::GateKeeper. The two handlers are potentially in conflict. The IP-based
restrictions implemented by mod_access forbid access from any address but those in
a privileged 192.168.2 subnet. Apache::GateKeeper, in contrast, is set to allow
access to the subdirectory from anyone. Who wins?

The Apache server's method for resolving these situations is to call each handler in
turn in the reverse order of installation. If the handler returns FORBIDDEN, then
Apache immediately refuses access. If the handler returns OK or DECLINED,
however, Apache passes the request to the next handler in the chain. In the example
given above, Apache::GateKeeper gets first shot at approving the request because it
was installed last (mod_access is usually installed at compile time). If
Apache::GateKeeper approves or declines the request, then the request will be
passed on to mod_access. However, if Apache::GateKeeper returns FORBIDDEN,
then the request is immediately refused and mod_access isn't even invoked at all.
The system is not unlike the UN Security Council: for a resolution to pass, all
members must either vote "yes" or abstain. Any single "no" (or "nyet") acts as a veto.

The Satisfy any directive has no effect on this situation.

6.2.2 Time-Based Access Control

For a slightly more interesting access handler, consider Example 6.2, which
implements access control based on the day of the week. URIs protected by this
handler will only be accessible on the days listed in a variable named ReqDay. This
could be useful for a web site that observes the Sabbath, or, more plausibly, it might
form the basis for a generic module that implements time-based access control. Many
sites perform routine maintenance at scheduled times of the day, and it's often helpful
to keep visitors out of directories while they're being updated.

The handler, Apache::DayLimit, begins by fetching the ReqDay configuration variable.
If not present, it declines the transaction and gives some other handler a chance to
consider it. Otherwise, the handler splits out the day names, which are assumed to be
contained in a space- or comma-delimited list, and compares them to the current day
obtained from the localtime() function. If there's a match, the handler allows the
access by returning OK. Otherwise, it returns the FORBIDDEN HTTP error code as
before, and access is denied.

Example 6.2. Access Control by the Day of Week

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package Apache::DayLimit;

use strict;
use Apache::Constants qw(:common);
use Time::localtime;

my @wday = qw(sunday monday tuesday wednesday thursday friday saturday);

sub handler {
 my $r = shift;
 my $requires = $r->dir_config("ReqDay");
 return DECLINED unless $requires;

 my $day = $wday[localtime->wday];
 return OK if $requires =~ /$day([,\s]+|$)/i;

 $r->log_reason(qq{Access forbidden on weekday "$day"}, $r->uri);
 return FORBIDDEN;
}

1;
__END__

A <Location> section to go with Apache::DayLimit:

<Location /weekends_only>
 PerlSetVar ReqDay saturday,sunday
 PerlAccessHandler Apache::DayLimit
</Location>

6.2.3 Browser-Based Access Control

Web-crawling robots are an increasing problem for webmasters. Robots are
supposed to abide by an informal agreement known as the robot exclusion standard
(RES), in which the robot checks a file named robots.txt that tells it what parts of the
site it is allowed to crawl through. Many rude robots, however, ignore the RES or,
worse, exploit robots.txt to guide them to the "interesting" parts. The next example
(Example 6.3) gives the outline of a robot exclusion module called
Apache::BlockAgent. With it you can block the access of certain web clients based on
their User-Agent field (which frequently, although not invariably, identifies robots).

The module is configured with a "bad agents" text file. This file contains a series of
pattern matches, one per line. The incoming request's User-Agent field will be
compared to each of these patterns in a case-insensitive manner. If any of the
patterns hit, the request will be refused. Here's a small sample file that contains
pattern matches for a few robots that have been reported to behave rudely:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

^teleport pro\/1\.28
^nicerspro
^mozilla\/3\.0 \(http engine\)
^netattache
^crescent internet toolpak http ole control v\.1\.0
^go-ahead-got-it
^wget
^devsoft's http component v1\.0
^www\.pl
^digout4uagent

Rather than hardcode the location of the bad agents file, we set its path using a
configuration variable named BlockAgentFile. A directory configuration section like
this sample perl.conf entry will apply the Apache::BlockAgent handler to the entire
site:

<Location />
 PerlAccessHandler Apache::BlockAgent
 PerlSetVar BlockAgentFile conf/bad_agents.txt
</Location>

Apache::BlockAgent is a long module, so we'll step through the code a section at a
time.

package Apache::BlockAgent;

use strict;
use Apache::Constants qw(:common);
use Apache::File ();
use Apache::Log ();
use Safe ();

my $Safe = Safe->new;
my %MATCH_CACHE;

The module brings in the common Apache constants and loads file-handling code
from Apache::File. It also brings in the Apache::Log module, which makes the logging
API available. The standard Safe module is pulled in next, and a new compartment is
created where code will be compiled. We'll see later how the %MATCH_CACHE
package variable is used to cache the code routines that detect undesirable user
agents. Most of Apache::BlockAgent 's logic is contained in the short handler()
subroutine:

sub handler {
 my $r = shift;
 my($patfile, $agent, $sub);
 return DECLINED unless $patfile = $r->dir_config('BlockAgentFile');
 return FORBIDDEN unless $agent = $r->header_in('User-Agent');
 return SERVER_ERROR unless $sub = get_match_sub($r, $patfile);
 return OK if $sub->($agent);
 $r->log_reason("Access forbidden to agent $agent", $r->filename);
 return FORBIDDEN;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The code first checks that the BlockAgentFile configuration variable is present. If not,
it declines to handle the transaction. It then attempts to fetch the User-Agent field
from the HTTP header, by calling the request object's header_in() method. If no value
is returned by this call (which might happen if a sneaky robot declines to identify
itself), we return FORBIDDEN from the subroutine, blocking access.

Otherwise, we call an internal function named get_match_sub() with the request
object and the path to the bad agent file. get_match_sub() uses the information
contained within the file to compile an anonymous subroutine which, when called with
the user agent identification, returns a true value if the client is accepted, or false if it
matches one of the forbidden patterns. If get_match_sub() returns an undefined
value, it indicates that one or more of the patterns didn't compile correctly and we
return a server error. Otherwise, we call the returned subroutine with the agent name
and return OK or FORBIDDEN, depending on the outcome.

The remainder of the module is taken up by the definition of get_match_sub(). This
subroutine is interesting because it illustrates the advantage of a persistent module
over a transient CGI script:

sub get_match_sub {
 my($r, $filename) = @_;
 $filename = $r->server_root_relative($filename);
 my $mtime = (stat $filename)[9];

 # try to return the sub from cache
 return $MATCH_CACHE{$filename}->{'sub'} if
 $MATCH_CACHE{$filename} &&
 $MATCH_CACHE{$filename}->{'mod'} >= $mtime;

Rather than tediously read in the bad agents file each time we're called, compile each
of the patterns, and test them, we compile the pattern match tests into an anonymous
subroutine and store it in the %MATCH_CACHE package variable, along with the name
of the pattern file and its modification date. Each time the subroutine is called, the
subroutine checks %MATCH_CACHE to see whether this particular pattern file has been
processed before. If the file has been seen before, the routine then compares the
file's modification time against the date stored in the cache. If the file is not more
recent than the cached version, then we return the cached subroutine. Otherwise, we
compile it again.

Next we open up the bad agents file, fetch the patterns, and build up a subroutine line
by line using a series of string concatenations:

my($fh, @pats);
 return undef unless $fh = Apache::File->new($filename);
 chomp(@pats = <$fh>); # get the patterns into an array
 my $code = "sub { local \$_ = shift;\n";
 foreach (@pats) {
 next if /^#/;
 $code .= "return if /$_/i;\n";
 }
 $code .= "1; }\n";
 $r->server->log->debug("compiled $filename into:\n $code");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $r->server->log->debug("compiled $filename into:\n $code");

Note the use of $r->server->log->debug() to send a debugging message to the server
log file. This message will only appear in the error log if the LogLevel is set to debug.
If all goes well, the synthesized subroutine stored in $code will end up looking
something like this:

sub {
 $_ = shift;
 return if /^teleport pro\/1\.28/i;
 return if /^nicerspro/i;
 return if /^mozilla\/3\.0 \(http engine\)/i;
 ...
 1;
}

After building up the subroutine, we run a match-all regular expression over the code
in order to untaint what was read from disk. In most cases, blindly untainting data is a
bad idea, rendering the taint check mechanism useless. To mitigate this we use a
Safe compartment and the reval() method, disabling potentially dangerous operations
such as system().

create the sub, cache and return it
 ($code) = $code =~ /^(.*)$/s; #untaint
 my $sub = $Safe->reval($code);
 unless ($sub) {
 $r->log_error($r->uri, ": ", $@);
 return;
 }

The untainting step is required only if taint checks are turned on with the
PerlTaintCheck on directive (see Appendix A). The result of reval() ing the string is a
CODE reference to an anonymous subroutine or undef if something went wrong during
the compilation. In the latter case, we log the error and return.

The final step is to store the compiled subroutine and the bad agent file's modification
time into %MATCH_CACHE:

@{ $MATCH_CACHE{$filename} }{'sub','mod'} = ($sub, $mtime);
 return $MATCH_CACHE{$filename}->{'sub'};
}

Because there may be several pattern files applicable to different parts of the site, we
key %MATCH_CACHE by the path to the file. We then return the compiled subroutine to
the caller.

As we saw in Chapter 4, this technique of compiling and caching a dynamically
evaluated subroutine is a powerful optimization that allows Apache::BlockAgent to
keep up with even very busy sites. Going one step further, the Apache::BlockAgent
module could avoid parsing the pattern file entirely by defining its own custom
configuration directives. The technique for doing this is described in Chapter 7.[4]

[4] The mod_rewrite module may also be worth perusing. Its rewrite rules can be based on the User-Agent field, time
of day, and other variables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 6.3. Blocking Rude Robots with Apache::BlockAgent

package Apache::BlockAgent;

use strict;
use Apache::Constants qw(:common);
use Apache::File ();
use Apache::Log ();
use Safe ();

my $Safe = Safe->new;
my %MATCH_CACHE;

sub handler {
 my $r = shift;
 my($patfile, $agent, $sub);
 return DECLINED unless $patfile = $r->dir_config('BlockAgentFile');
 return FORBIDDEN unless $agent = $r->header_in('User-Agent');
 return SERVER_ERROR unless $sub = get_match_sub($r, $patfile);
 return OK if $sub->($agent);
 $r->log_reason("Access forbidden to agent $agent", $r->filename);
 return FORBIDDEN;
}

This routine creates a pattern matching subroutine from a
list of pattern matches stored in a file.
sub get_match_sub {
 my($r, $filename) = @_;
 $filename = $r->server_root_relative($filename);
 my $mtime = (stat $filename)[9];

 # try to return the sub from cache
 return $MATCH_CACHE{$filename}->{'sub'} if
 $MATCH_CACHE{$filename} &&
 $MATCH_CACHE{$filename}->{'mod'} >= $mtime;

 # if we get here, then we need to create the sub
 my($fh, @pats);
 return unless $fh = Apache::File->new($filename);
 chomp(@pats = <$fh>); # get the patterns into an array
 my $code = "sub { local \$_ = shift;\n";
 foreach (@pats) {
 next if /^#/;
 $code .= "return if /$_/i;\n";
 }
 $code .= "1; }\n";
 $r->server->log->debug("compiled $filename into:\n $code");

 # create the sub, cache and return it
 ($code) = $code =~ /^(.*)$/s; #untaint
 my $sub = $Safe->reval($code);
 unless ($sub) {
 $r->log_error($r->uri, ": ", $@);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $r->log_error($r->uri, ": ", $@);
 return;
 }
 @{ $MATCH_CACHE{$filename} }{'sub','mod'} = ($sub, $mtime);
 return $MATCH_CACHE{$filename}->{'sub'};
}

1;
__END__

6.2.4 Blocking Greedy Clients

A limitation of using pattern matching to identify robots is that it only catches the
robots that you know about and that identify themselves by name. A few devious
robots masquerade as users by using user agent strings that identify themselves as
conventional browsers. To catch such robots, you'll have to be more sophisticated.

A trick that some mod_perl developers have used to catch devious robots is to block
access to things that act like robots by requesting URIs at a rate faster than even the
twitchiest of humans can click a mouse. The strategy is to record the time of the initial
access by the remote agent and to count the number of requests it makes over a
period of time. If it exceeds the speed limit, it gets locked out. Apache::SpeedLimit
(Example 6.4) shows one way to write such a module.

The module starts out much like the previous examples:

package Apache::SpeedLimit;

use strict;
use Apache::Constants qw(:common);
use Apache::Log ();
use IPC::Shareable ();
use vars qw(%DB);

Because it needs to track the number of hits each client makes on the site,
Apache::SpeedLimit faces the problem of maintaining a persistent variable across
multiple processes. Here, because performance is an issue in a script that will be
called for every URI on the site, we solve the problem by tying a hash to shared
memory using IPC::Shareable. The tied variable, %DB, is keyed to the name of the
remote client. Each entry in the hash holds four values: the time of the client's first
access to the site, the time of the most recent access, the number of hits the client
has made on the site, and whether the client has been locked out for exceeding the
speed limit.[5]

[5] On systems that don't have IPC::Shareable available, a tied DBM file might also work, but you'd have to open and
close it each time the module is called. This would have performance implications. A better solution would be to store
the information in a DBI database, as described in Chapter 5. Windows systems use a single-process server, and
don't have to worry about this issue.

sub handler {
 my $r = shift;
 return DECLINED unless $r->is_main; # don't handle sub-requests

 my $speed_limit = $r->dir_config('SpeedLimit') || 10;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $speed_limit = $r->dir_config('SpeedLimit') || 10;
 # Accesses per minute
 my $samples = $r->dir_config('SpeedSamples') || 10;
 # Sampling threshold (hits)
 my $forgive = $r->dir_config('SpeedForgive') || 20;
 # Forgive after this period

The handler() subroutine first fetches some configuration variables. The recognized
directives include SpeedLimit, the number of accesses per minute that any client is
allowed to make; SpeedSamples, the number of hits that the client must make before
the module starts calculating statistics, and SpeedForgive, a "statute of limitations" on
breaking the speed limit. If the client pauses for SpeedForgive minutes before trying
again, the module will forgive it and treat the access as if it were the very first one.

A small but important detail is the second line in the handler, where the subroutine
declines the transaction unless is_main() returns true. It is possible for this handler to
be invoked as the result of an internal subrequest, for example, when Apache is
rapidly iterating through the contents of an automatically indexed directory to
determine the MIME types of each of the directory's files. We do not want such
subrequests to count against the user's speed limit totals, so we ignore any request
that isn't the main one. is_main() returns true for the main request, false for
subrequests.

In addition to this, there's an even better reason for the is_main() check because the
very next thing the handler routine does is to call lookup_uri() to look up the
requested file's content type and to ignore requests for image files. Without the check,
the handler would recurse infinitely:

my $content_type = $r->lookup_uri($r->uri)->content_type;
 return OK if $content_type =~ m:^image/:i; # ignore images

The rationale for the check for image files is that when a browser renders a graphics-
intensive page, it generates a flurry of requests for inline images that can easily
exceed the speed limit. We don't want to penalize users for this, so we ignore
requests for inline images. It's necessary to make a subrequest to fetch the requested
file's MIME type because access control handlers ordinarily run before the MIME type
checker phase.

If we are dealing with a nonimage document, then it should be counted against the
client's total. In the next section of the module, we tie a hash named %DB to shared
memory using the IPC::Shareable module. We're careful only to tie the variable the
first time the handler is called. If %DB is already defined, we don't tie it again:[6]

[6] An alternative approach would be to use a PerlChildInitHandler to tie the %DB. This technique is described in more
detail in Chapter 7.

tie %DB, 'IPC::Shareable', 'SPLM', {create => 1, mode => 0644}
 unless defined %DB;

The next task is to create a unique ID for the client to use as a key into the hash:

my($ip, $agent) = ($r->connection->remote_ip,
 $r->header_in ('User-Agent'));
 my $id = "$ip:$agent";
 my $now = time()/60; # minutes since the epoch

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $now = time()/60; # minutes since the epoch

The client's IP address alone would be adequate in a world of one desktop PC per
user, but the existence of multiuser systems, firewalls, and web proxies complicates
the issue, making it possible for multiple users to appear to originate at the same IP
address. This module's solution is to create an ID that consists of the IP address
concatenated with the User-Agent field. As long as Microsoft and Netscape release
new browsers every few weeks, this combination will spread clients out sufficiently for
this to be a practical solution. A more robust solution could make use of the optional
cookie generated by Apache's mod_usertrack module, but we didn't want to make this
example overly complex. A final preparatory task is to fetch the current time and scale
it to minute units.

tied(%DB)->shlock;
 my($first, $last, $hits, $locked) = split ' ', $DB{$id};

Now we update the user's statistics and calculate his current fetch speed. In
preparation for working with the shared data we call the tied hash's shlock() method,
locking the data structure for writing. Next, we look up the user's statistics and split
them into individual fields.

At this point in the code, we enter a block named CASE in which we take a variety of
actions depending on the current field values:

my $result = OK;
 my $l = $r->server->log;
 CASE:
 {

Just before entering the block, we set a variable named $result to a default of OK.
We also retrieve an Apache::Log object to use for logging debugging messages.

The first case we consider is when the $first access time is blank:

unless ($first) { # we're seeing this client for the first time
 $l->debug("First request from $ip. Initializing speed counter.");
 $first = $last = $now;
 $hits = $locked = 0;
 last CASE;
 }

In this case, we can safely assume that this is the first time we're seeing this client.
Our action is to initialize the fields and exit the block.

The second case occurs when the interval between the client's current and last
accesses is longer than the grace period:

if ($now - $last > $forgive) {
 # beyond the grace period. Treat like first
 $l->debug("$ip beyond grace period.Reinitializing speed counter.");
 $last = $first = $now;
 $hits = $locked = 0;
 last CASE;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

In this case, we treat this access as a whole new session and reinitialize all the fields
to their starting values. This "forgives" the client, even if it previously was locked out.

At this point, we can bump up the number of hits and update the last access time. If
the number of hits is too small to make decent statistics, we just exit the block at this
point:

$last = $now; $hits++;
 if ($hits < $samples) {
 $l->debug("$ip not enough samples to calculate speed.");
 last CASE;
 }

Otherwise, if the user is already locked out, we set the result code to FORBIDDEN and
immediately exit the block. Once a client is locked out of the site, we don't unlock it
until the grace period has passed:

if ($locked) { # already locked out, so forbid access
 $l->debug("$ip locked");
 $result = FORBIDDEN;
 last CASE;
 }

If the client isn't yet locked out, then we calculate its average fetch speed by dividing
the number of accesses it has made by the time interval between now and its first
access. If this value exceeds the speed limit, we set the $locked variable to true and
set the result code to FORBIDDEN:

my $interval = $now - $first;
 $l->debug("$ip speed = ", $hits/$interval);
 if ($hits/$interval > $speed_limit) {
 $l->debug("$ip exceeded speed limit. Blocking.");
 $locked = 1;
 $result = FORBIDDEN;
 last CASE;
 }
 }

At the end of the module, we check the result code. If it's FORBIDDEN we emit a log
entry to explain the situation. We now update %DB with new values for the access
times, number of hits, and lock status and unlock the shared memory. Lastly, we
return the result code to Apache:

$r->log_reason("Client exceeded speed limit.", $r->filename)
 if $result == FORBIDDEN;
 $DB{$id} = join " ", $first, $now, $hits, $locked;
 tied(%DB)->shunlock;

 return $result;
}

To apply the Apache::SpeedLimit module to your entire site, you would create a
configuration file entry like the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Location />
 PerlAccessHandler Apache::SpeedLimit
 PerlSetVar SpeedLimit 20 # max 20 accesses/minute
 PerlSetVar SpeedSamples 5 # 5 hits before doing statistics
 PerlSetVar SpeedForgive 30 # amnesty after 30 minutes
</Location>

Example 6.4. Blocking Greedy Clients

package Apache::SpeedLimit;
file: Apache/SpeedLimit.pm

use strict;
use Apache::Constants qw(:common);
use Apache::Log ();
use IPC::Shareable ();
use vars qw(%DB);

sub handler {
 my $r = shift;
 return DECLINED unless $r->is_main; # don't handle sub-requests

 my $speed_limit = $r->dir_config('SpeedLimit') || 10;
 # Accesses per minute
 my $samples = $r->dir_config('SpeedSamples') || 10;(hits)
 # Sampling threshold (hits)
 my $forgive = $r->dir_config('SpeedForgive') || 20;
 # Forgive after this period (minutes)

 my $content_type = $r->lookup_uri($r->uri)->content_type;
 return OK if $content_type =~ m:^image/:i; # ignore images
 tie %DB, 'IPC::Shareable', 'SPLM', {create => 1, mode => 0644}
 unless defined %DB;

 my($ip, $agent) = ($r->connection->remote_ip,
 $r->header_in('User-Agent'));
 my $id = "$ip:$agent";
 my $now = time()/60; # minutes since the epoch

 # lock the shared memory while we work with it
 tied(%DB)->shlock;
 my($first, $last, $hits, $locked) = split ' ', $DB{$id};
 my $result = OK;
 my $l = $r->server->log;
 CASE:
 {
 unless ($first) { # we're seeing this client for the first time
 $l->debug("First request from $ip. Initializing speed counter.");
 $first = $last = $now;
 $hits = $locked = 0;
 last CASE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 last CASE;
 }

 if ($now - $last > $forgive) {
 # beyond the grace period. Treat like first
 $l->debug("$ip beyond grace period.Reinitializing speed counter.");
 $last = $first = $now;
 $hits = $locked = 0;
 last CASE;
 }

 # update the values now
 $last = $now; $hits++;
 if ($hits < $samples) {
 $l->debug("$ip not enough samples to calculate speed.");
 last CASE;
 }

 if ($locked) { # already locked out, so forbid access
 $l->debug("$ip locked");
 $result = FORBIDDEN;
 last CASE;
 }

 my $interval = $now - $first;
 $l->debug("$ip speed = ", $hits/$interval);
 if ($hits/$interval > $speed_limit) {
 $l->debug("$ip exceeded speed limit. Blocking.");
 $locked = 1;
 $result = FORBIDDEN;
 last CASE;
 }
 }

 $r->log_reason("Client exceeded speed limit.", $r->filename)
 if $result == FORBIDDEN;
 $DB{$id} = join " ", $first, $now, $hits, $locked;
 tied(%DB)->shunlock;

 return $result;
}

1;
__END__

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

6.3 Authentication Handlers

Let's look at authentication handlers now. The authentication handler's job is to
determine whether the user is who he or she claims to be, using whatever standards
of proof your module chooses to apply. There are many exotic authentication
technologies lurking in the wings, including smart cards, digital certificates, one-time
passwords, and challenge/response authentication, but at the moment the types of
authentication available to modules are limited at the browser side. Most browsers
only know about the username and password system used by Basic authentication.
You can design any authentication system you like, but it must ultimately rely on the
user typing some information into the password dialog box. Fortunately there's a lot
you can do within this restriction, as this section will show.

6.3.1 A Simple Authentication Handler

Example 6.5 implements Apache::AuthAny, a module that allows users to
authenticate with any username and password at all. The purpose of this module is
just to show the API for a Basic authentication handler.

Example 6.5. A Skeleton Authentication Handler

package Apache::AuthAny;
file: Apache/AuthAny.pm

use strict;
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;

 my($res, $sent_pw) = $r->get_basic_auth_pw;
 return $res if $res != OK;

 my $user = $r->connection->user;
 unless($user and $sent_pw) {
 $r->note_basic_auth_failure;
 $r->log_reason("Both a username and password must be provided",
 $r->filename);
 return AUTH_REQUIRED;
 }

 return OK;
}

1;
__END__

The configuration file entry that goes with it might be:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Location /protected>
 AuthName Test
 AuthType Basic
 PerlAuthenHandler Apache::AuthAny
 require valid-user
</Location>

For Basic authentication to work, protected locations must define a realm name with
AuthName and specify an AuthType of Basic. In addition, in order to trigger Apache's
authentication system, at least one require directive must be present. In this example,
we specify a requirement of valid-user, which is usually used to indicate that any
registered user is allowed access. Last but not least, the PerlAuthenHandler directive
tells mod_perl which handler to call during the authentication phase, in this case
Apache::AuthAny.

By the time the handler is called, Apache will have done most of the work in
negotiating the HTTP Basic authentication protocol. It will have alerted the browser
that authentication is required to access the page, and the browser will have
prompted the user to enter his name and password. The handler needs only to
recover these values and validate them.

It won't take long to walk through this short module:

package Apache::AuthAny;
file: Apache/AuthAny.pm

use strict;
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;
 my($res, $sent_pw) = $r->get_basic_auth_pw;

Apache::AuthAny starts off by importing the common result code constants. Upon
entry its handler() subroutine immediately calls the Apache method
get_basic_auth_pw(). This method returns two values: a result code and the
password sent by the client. The result code will be one of the following:

OK

The browser agreed to authenticate using Basic authentication.

DECLINED

The requested URI is protected by a scheme other than Basic authentication, as
defined by the AuthType configuration directive. In this case, the password field
is invalid.

SERVER_ERROR

No realm is defined for the protected URI by the AuthName configuration
directive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AUTH_REQUIRED

The browser did not send any Authorization header at all, or the browser sent
an Authorization header with a scheme other than Basic. In either of these
cases, the get_basic_auth_pw() method will also invoke the
note_basic_auth_failure() method described later in this section.

The password returned by get_basic_auth_pw() is only valid when the result code is
OK. Under all other circumstances you should ignore it. If the result code is anything
other than OK the appropriate action is to exit, passing the result code back to
Apache:

return $res if $res != OK;

If get_basic_auth_pw() returns OK, we continue our work. Now we need to find the
username to complement the password. Because the username may be needed by
later handlers, such as the authorization and logging modules, it's stored in a stable
location inside the request object's connection record. The username can be retrieved
by calling the request object's connection() method to return the current
Apache::Connection object and then calling the connection object's user() method:

my $user = $r->connection->user;

The values we retrieve contain exactly what the user typed into the name and
password fields of the dialog box. If the user has not yet authenticated, or pressed the
submit button without filling out the dialog completely, one or both of these fields may
be empty. In this case, we have to force the user to (re)authenticate:

unless($user and $sent_pw) {
 $r->note_basic_auth_failure;
 $r->log_reason("Both a username and password must be provided",
 $r->filename);
 return AUTH_REQUIRED;
 }

To do this, we call the request object's note_basic_auth_failure() method to add the
WWW-Authenticate field to the outgoing HTTP headers. Without this call, the browser
would know it had to authenticate but would not know what authentication method
and realm to use. We then log a message to the server error log using the
log_reason() method and return an AUTH_REQUIRED result code to Apache.

The resulting log entry will look something like this:

[Sun Jan 11 16:36:31 1998] [error] access to /protected/index.html
 failed for wallace.telebusiness.co.nz, reason: Both a username and
 password must be provided

If, on the other hand, both a username and password are present, then the user has
authenticated properly. In this case we can return a result code of OK and end the
handler:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

return OK;
}

The username will now be available to other handlers and CGI scripts. In particular,
the username will be available to any authorization handler further down the handler
chain. Other handlers can simply retrieve the username from the connection object
just as we did.

Notice that the Apache::AuthAny module never actually checks what is inside the
username and password. Most authentication modules will compare the username
and password to a pair looked up in a database of some sort. However, the
Apache::AuthAny module is handy for developing and testing applications that require
user authentication before the real authentication module has been implemented.

6.3.2 An Anonymous Authentication Handler

Now we'll look at a slightly more sophisticated authentication module,
Apache::AuthAnon. This module takes the basics of Apache::AuthAny and adds logic
to perform some consistency checks on the username and password. This module
implements anonymous authentication according to FTP conventions. The username
must be "anonymous" or "anybody," and the password must look like a valid email
address.

Example 6.6 gives the source code for the module. Here is a typical configuration
file entry:

<Location /protected>
 AuthName Anonymous
 AuthType Basic
 PerlAuthenHandler Apache::AuthAnon
 require valid-user

 PerlSetVar Anonymous anonymous|anybody
</Location>

Notice that the <Location> section has been changed to make Apache::AuthAnon the
PerlAuthenHandler for the /protected subdirectory and that the realm name has been
changed to Anonymous. The AuthType and require directives have not changed.
Even though we're not performing real username checking, the require directive still
needs to be there in order to trigger Apache's authentication handling. A new
PerlSetVar directive sets the configuration directive Anonymous to a case-insensitive
pattern match to perform on the provided username. In this case, we're accepting
either of the usernames anonymous or anybody.

Turning to the code listing, you'll see that we use the same basic outline of
Apache::AuthAny. We fetch the provided password by calling the request object's
get_basic_auth_pw() method and the username by calling the connection object's
user() method. We now perform our consistency checks on the return values. First,
we check for the presence of a pattern match string in the Anonymous configuration
variable. If not present, we use a hardcoded default of anonymous. Next, we attempt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

variable. If not present, we use a hardcoded default of anonymous. Next, we attempt
to match the password against an email address pattern. While not RFC-compliant,
the $email_pat pattern given here will work in most cases. If either of these tests
fails, we log the reason why and reissue a Basic authentication challenge by calling
note_basic_auth_failure(). If we succeed, we store the provided email password in the
request notes table for use by modules further down the request chain.

While this example is not much more complicated than Apache::AuthAny and
certainly no more secure, it does pretty much everything that a real authentication
module will do.

A useful enhancement to this module would be to check that the email address
provided by the user corresponds to a real Internet host. One way to do this is by
making a call to the Perl Net::DNS module to look up the host's IP address and its
mail exchanger (an MX record). If neither one nor the other is found, then it is unlikely
that the email address is correct.

Example 6.6. Anonymous Authentication

package Apache::AuthAnon;
file: Apathe/AuthAnon.pm

use strict;
use Apache::Constants qw(:common);

my $email_pat = '[.\w-]+\@\w+\.[.\w]*[^.]';
my $anon_id = "anonymous";

sub handler {
 my $r = shift;

 my($res, $sent_pwd) = $r->get_basic_auth_pw;
 return $res if $res != OK;

 my $user = lc $r->connection->user;
 my $reason = "";

 my $check_id = $r->dir_config("Anonymous") || $anon_id;

 $reason = "user did not enter a valid anonymous username "
 unless $user =~ /^$check_id$/i;

 $reason .= "user did not enter an email address password "
 unless $sent_pwd =~ /^$email_pat$/o;

 if($reason) {
 $r->note_basic_auth_failure;
 $r->log_reason($reason,$r->filename);
 return AUTH_REQUIRED;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 $r->notes(AuthAnonPassword => $sent_pwd);

 return OK;
}

1;
__END__

6.3.3 Authenticating Against a Database

Let's turn to systems that check the user's identity against a database. We debated a
bit about what type of authentication database to use for these examples. Candidates
included the Unix password file, the Network Information System (NIS), and Bellcore's
S/Key one-time password system, but we decided that these were all too Unix-
specific. So we turned back to the DBI abstract database interface, which at least is
portable across Windows and Unix systems.

Chapter 5, talked about how the DBI interface works, and showed how to use
Apache::DBI to avoid opening and closing database sessions with each connection.
For a little variety, we'll use Tie::DBI in this chapter. It's a simple interface to DBI
database tables that makes them look like hashes. For example, here's how to tie
variable %h to a MySQL database named test_www :

tie %h, 'Tie::DBI', {
 db => 'mysql:test_www',
 table => 'user_info',
 key => 'user_name',
 };

The options that can be passed to tie() include db for the database source string or a
previously opened database handle, table for the name of the table to bind to (in this
case, user_info), and key for the field to use as the hash key (in this case,
user_name). Other options include authentication information for logging into the
database. After successfully tying the hash, you can now access the entire row keyed
by username fred like this:

$record = $h{'fred'}

and the passwd column of the row like this:

$password = $h{'fred'}{'passwd'};

Because %h is tied to the Tie::DBI class, all stores and retrievals are passed to
Tie::DBI methods which are responsible for translating the requested operations into
the appropriate SQL queries.

In our examples we will be using a MySQL database named test_www. It contains a
table named user_info with the following structure:

+-----------+---------------+-------+---------------------+
| user_name | passwd | level | groups |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

| user_name | passwd | level | groups |
+-----------+---------------+-------+---------------------+
fred	8uUnFnRlW18qQ	2	users,devel
andrew	No9eULpnXZAjY	2	users
george	V8R6zaQuOAWQU	3	users
winnie	L1PKv.rN0UmsQ	3	users,authors,devel
root	UOY3rvTFXJAh2	5	users,authors,admin
morgana	93EhPjGSTjjqY	1	users
+-----------+---------------+-------+---------------------+

The password field is encrypted with the Unix crypt() call, which conveniently enough
is available to Perl scripts as a built-in function call. The level column indicates the
user's level of access to the site (higher levels indicate more access). The groups
field provides a comma-delimited list of groups that the user belongs to, providing
another axis along which we can perform authorization. These will be used in later
examples.

Tie::DBI is not a standard part of Perl. If you don't have it, you can find it at CPAN in
the modules subdirectory. You'll also need the DBI (database interface) module and a
DBD (Database Driver) module for the database of your choice.

For the curious, the script used to create this table and its test data are given in
Example 6.7. We won't discuss it further here.

Example 6.7. Creating the Test DBI Table

#!/usr/local/bin/perl

use strict;
use Tie::DBI ();

my $DB_NAME = 'test_www';
my $DB_HOST = 'localhost';

my %test_users = (
 #user_name groups level passwd
 'root' => [qw(users,authors,admin 5 superman)],
 'george' => [qw(users 3 jetson)],
 'winnie' => [qw(users,authors,devel 3 thepooh)],
 'andrew' => [qw(users 2 llama23)],
 'fred' => [qw(users,devel 2 bisquet)],
 'morgana' => [qw(users 1 lafey)]
);

Sometimes it's easier to invoke a subshell for simple things
than to use the DBI interface.
open MYSQL, "|mysql -h $DB_HOST -f $DB_NAME" or die $!;
print MYSQL <<END;
 DROP TABLE user_info;
CREATE TABLE user_info (
 user_name CHAR(20) primary key,
 passwd CHAR(13) not null,
 level TINYINT not null,
 groups CHAR(100)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 groups CHAR(100)
);
END

close MYSQL;

tie my %db, 'Tie::DBI', {
 db => "mysql:$DB_NAME:$DB_HOST",
 table => 'user_info',
 key => 'user_name',
 CLOBBER=>1,
} or die "Couldn't tie to $DB_NAME:$DB_HOST";

my $updated = 0;
for my $id (keys %test_users) {
 my($groups, $level, $passwd) = @{$test_users{$id}};
 $db{$id} = {
 passwd => crypt($passwd, salt()),
 level => $level,
 groups => $groups,
 };
 $updated++;
}
untie %db;
print STDERR "$updated records entered.\n";

Possible BUG: Assume that this system uses two character
salts for its crypt().
sub salt {
 my @saltset = (0..9, 'A'..'Z', 'a'..'z', '.', '/');
 return join '', @saltset[rand @saltset, rand @saltset];
}

To use the database for user authentication, we take the skeleton from
Apache::AuthAny and flesh it out so that it checks the provided username and
password against the corresponding fields in the database. The complete code for
Apache::AuthTieDBI and a typical configuration file entry are given in Example 6.8.

The handler() subroutine is succinct:

sub handler {
 my $r = shift;

 # get user's authentication credentials
 my($res, $sent_pw) = $r->get_basic_auth_pw;
 return $res if $res != OK;
 my $user = $r->connection->user;

 my $reason = authenticate($r, $user, $sent_pw);

 if($reason) {
 $r->note_basic_auth_failure;
 $r->log_reason($reason, $r->filename);
 return AUTH_REQUIRED;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return AUTH_REQUIRED;
 }
 return OK;
}

The routine begins like the previous authentication modules by fetching the user's
password from get_basic_auth_pw() and username from $r->connection->user. If
successful, it calls an internal subroutine named authenticate() with the request
object, username, and password. authenticate() returns undef on success or an error
message on failure. If an error message is returned, we log the error and return
AUTH_REQUIRED. Otherwise, we return OK.

Most of the interesting stuff happens in the authenticate() subroutine:

sub authenticate {
 my($r, $user, $sent_pw) = @_;

 # get configuration information
 my $dsn = $r->dir_config('TieDatabase') || 'mysql:test_www';
 my $table_data = $r->dir_config('TieTable') || 'users:user:passwd';
 my($table, $userfield, $passfield) = split ':', $table_data;

 $user && $sent_pw or return 'empty user names and passwords disallowed';

Apache::AuthTieDBI relies on two configuration variables to tell it where to look for
authentication information: TieDatabase indicates what database to use in standard
DBI Data Source Notation. TieTable indicates what database table and fields to use,
in the form table:username_column:password_column. If these configuration
variables aren't present, the module uses various hardcoded defaults. At this point
the routine tries to establish contact with the database by calling tie() :

tie my %DB, 'Tie::DBI', {
 db => $dsn, table => $table, key => $userfield,
 } or return "couldn't open database";

Provided that the Apache::DBI module was previously loaded (see Section 5.6 in
Chapter 5), the database handle will be cached behind the scenes and there will be
no significant overhead for calling tie() once per transaction. Otherwise it would be a
good idea to cache the tied %DB variable and reuse it as we've done in other modules.
We've assumed in this example that the database itself doesn't require
authentication. If this isn't the case on your system, modify the call to tie() to include
the user and password options:

tie my %DB, 'Tie::DBI', {
 db => $dsn, table => $table, key => $userfield,
 user => 'aladdin', password => 'opensesame'
} or return "couldn't open database";

Replace the username and password shown here with values that are valid for your
database.

The final steps are to check whether the provided user and password are valid:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$DB{$user} or return "invalid account";
 my $saved_pw = $DB{$user}{$passfield};
 $saved_pw eq crypt($sent_pw, $saved_pw) or return "password mismatch";

 # if we get here, all is well
 return "";
}

The first line of this chunk checks whether $user is listed in the database at all. The
second line recovers the password from the tied hash, and the third line calls crypt()
to compare the current password to the stored one.

In case you haven't used crypt() before, it takes two arguments, the plain text
password and a two- or four-character "salt" used to seed the encryption algorithm.
Different salts yield different encrypted passwords.[7] The returned value is the
encrypted password with the salt appended at the beginning. When checking a plain-
text password for correctness, it's easiest to use the encrypted password itself as the
salt. crypt() will use the first few characters as the salt and ignore the rest. If the newly
encrypted value matches the stored one, then the user provided the correct plain-text
password.

[7] The salt is designed to make life a bit harder for password-cracking programs that use a dictionary to guess the
original plain-text password from the encrypted password. Because there are 4,096 different two-character salts, this
increases the amount of disk storage the cracking program needs to store its dictionary by three orders of magnitude.
Unfortunately, now that high-capacity disk drives are cheap, this is no longer as much an obstacle as it used to be.

If the encrypted password matches the saved password, we return an empty string to
indicate that the checks passed. Otherwise, we return an error message.

Example 6.8. Apache::AuthTieDBI authenticates against a DBI database

package Apache::AuthTieDBI;

use strict;
use Apache::Constants qw(:common);
use Tie::DBI ();

sub handler {
 my $r = shift;

 # get user's authentication credentials
 my($res, $sent_pw) = $r->get_basic_auth_pw;
 return $res if $res != OK;
 my $user = $r->connection->user;

 my $reason = authenticate($r, $user, $sent_pw);

 if($reason) {
 $r->note_basic_auth_failure;
 $r->log_reason($reason, $r->filename);
 return AUTH_REQUIRED;
 }
 return OK;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return OK;
}

sub authenticate {
 my($r, $user, $sent_pw) = @_;

 # get configuration information
 my $dsn = $r->dir_config('TieDatabase') || 'mysql:test_www';
 my $table_data = $r->dir_config('TieTable') || 'users:user:passwd';
 my($table, $userfield, $passfield) = split ':', $table_data;

 $user && $sent_pw or return 'empty user names and passwords disallowed';

 tie my %DB, 'Tie::DBI', {
 db => $dsn, table => $table, key => $userfield,
 } or return "couldn't open database";

 $DB{$user} or return "invalid account";

 my $saved_pw = $DB{$user}{$passfield};
 $saved_pw eq crypt($sent_pw, $saved_pw) or return "password mismatch";

 # if we get here, all is well
 return "";
}

1;
__END__

A configuration file entry to go along with Apache::AuthTieDBI :

<Location /registered_users>
 AuthName "Registered Users"
 AuthType Basic
 PerlAuthenHandler Apache::AuthTieDBI

 PerlSetVar TieDatabase mysql:test_www
 PerlSetVar TieTable user_info:user_name:passwd

 require valid-user
</Location>

The next section builds on this example to show how the other fields in the tied
database can be used to implement a customizable authorization scheme.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

6.4 Authorization Handlers

Sometimes it's sufficient to know that a user can prove his or her identity, but more
often that's just the beginning of the story. After authentication comes the optional
authorization phase of the transaction, in which your handler gets a chance to
determine whether this user can fetch that URI.

If you felt constrained by HTTP's obsession with conventional password checking,
you can now breathe a sigh of relief. Authorization schemes, as opposed to
authentication, form no part of the HTTP standard. You are free to implement any
scheme you can dream up. In practice, most authentication schemes are based on
the user's account name, since this is the piece of information that you've just gone to
some effort to confirm. What you do with that datum, however, is entirely up to you.
You may look up the user in a database to determine his or her access privileges, or
you may grant or deny access based on the name itself. We'll show a useful example
of this in the next section.

6.4.1 A Gender-Based Authorization Module

Remember the bar that lets only women through the door on Ladies' Night? Here's a
little module that enforces that restriction. Apache::AuthzGender enforces gender-
based restrictions using Jon Orwant's Text::GenderFromName, a port of an awk
script originally published by Scott Pakin in the December 1991 issue of Computer
Language Monthly. Text::GenderFromName uses a set of pattern-matching rules to
guess people's genders from their first names, returning "m", "f ", or undef for male
names, female names, and names that it can't guess.

Example 6.9 gives the code and a configuration file section to go with it. In order to
have a username to operate on, authentication has to be active. This means there
must be AuthName and AuthType directives, as well as a require statement. You can
use any authentication method you choose, including the standard text, DBM, and DB
modules. In this case, we use Apache::AuthAny from the example earlier in this
chapter because it provides a way of passing in arbitrary usernames.

In addition to the standard directives, Apache::AuthzGender accepts a configuration
variable named Gender. Gender can be either of the characters M or F, to allow
access by people of the male and female persuasions, respectively.

Turning to the code (Example 6.9), the handler() subroutine begins by retrieving the
username by calling the connection object's user() method. We know this value is
defined because it was set during authentication. Next we recover the value of the
Gender configuration variable.

We now apply the Text::GenderFromName module's gender() function to the
username and compare the result to the desired value. There are a couple of details
to worry about. First, gender() is case-sensitive. Unless presented with a name that
begins with an initial capital, it doesn't work right. Second, the original awk script

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

begins with an initial capital, it doesn't work right. Second, the original awk script
defaulted to male when it hadn't a clue, but Jon removed this default in order to
"contribute to the destruction of the oppressive Patriarchy." A brief test convinced us
that the module misses male names far more often than female ones, so the original
male default was restored (during our test, the module recognized neither of the
author's first names as male!). A few lines are devoted to normalizing the
capitalization of usernames, changing the default gender to male, and to uppercasing
gender() 's return value so that it can be compared to the Gender configuration
variable.

If there's a mismatch, authorization has failed. We indicate this in exactly the way we
do in authorization modules, by calling the request object's note_basic_auth_failure()
method, writing a line to the log, and returning a status code of AUTH_REQUIRED. If
the test succeeds, we return OK.

Example 6.9. Apache::AuthzGender Implements Gender-Based Authorization

package Apache::AuthzGender;

use strict;
use Text::GenderFromName qw(gender);
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;

 my $user = ucfirst lc $r->connection->user;

 my $gender = uc($r->dir_config('Gender')) || 'F';

 my $guessed_gender = uc(gender($user)) || 'M';

 unless ($guessed_gender eq $gender) {
 $r->note_basic_auth_failure;
 $r->log_reason("$user is of wrong apparent gender", $r->filename);
 return AUTH_REQUIRED;
 }

 return OK;
}

1;
__END__

Example access.conf:

<Location /ladies_only>
 AuthName Restricted
 AuthType Basic
 PerlAuthenHandler Apache::AuthAny
 PerlAuthzHandler Apache::AuthzGender
 PerlSetVar Gender F
 require valid-user
</Location>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Location>

6.4.2 Advanced Gender-Based Authorization

A dissatisfying feature of Apache::AuthzGender is that when an unauthorized user
finally gives up and presses the cancel button, Apache displays the generic
"Unauthorized" error page without providing any indication of why the user was
refused access. Fortunately this is easy to fix with a custom error response. We can
call the request object's custom_response() method to display a custom error
message, an HTML page, or the output of a CGI script when the AUTH_REQUIRED
error occurs.

Another problem with Apache::AuthzGender is that it uses a nonstandard way to
configure the authorization scheme. The standard authorization schemes use a
require directive as in:

require group authors

At the cost of making our module slightly more complicated, we can accommodate
this too, allowing access to the protected directory to be adjusted by any of the
following directives:

require gender F # allow females
require user Webmaster Jeff # allow Webmaster or Jeff
require valid-user # allow any valid user

Example 6.10 shows an improved Apache::AuthzGender that implements these
changes. The big task is to recover and process the list of require directives. To
retrieve the directives, we call the request object's requires() method. This method
returns an array reference corresponding to all of the require directives in the current
directory and its parents. Rather than being a simple string, however, each member
of this array is actually a hash reference containing two keys: method_mask and
requirement. The requirement key is easy to understand. It's simply all the text to the
right of the require directive (excluding comments). You'll process this text according
to your own rules. There's nothing magical about the keywords user, group, or valid-
user.

The method_mask key is harder to explain. It consists of a bit mask indicating what
methods the require statement should be applied to. This mask is set when there are
one or more <LIMIT> sections in the directory's configuration. The GET, PUT, POST,
and DELETE methods correspond to the first through fourth bits of the mask
(counting from the right). For example, a require directive contained within a <LIMIT
GET POST> section will have a method mask equal to binary 0101, or decimal 5. If
no <LIMIT> section is present, the method mask will be -1 (all bits set, all methods
restricted). You can test for particular bits using the method number constants defined
in the :methods section of Apache::Constants. For example, to test whether the
current mask applies to POST requests, you could write a piece of code like this one
(assuming that the current requires() is in $_):

if ($_->{method_mask} & (1 << M_POST)) {
 warn "Current requirements apply to POST";
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

In practice, you rarely have to worry about the method mask within your own
authorization modules because mod_perl automatically filters out any require
statement that wouldn't apply to the current transaction.

In the example given earlier, the array reference returned by requires() would look like
this:

[
 {
 requirement => 'gender F',
 method_mask => -1
 },
 {
 requirement => 'user Webmaster Jeff',
 method_mask => -1
 },
 {
 requirement => 'valid-user',
 method_mask => -1
 }
]

The revised module begins by calling the request object's requires() method and
storing it in a lexical variable $requires:

my $r = shift;
 my $requires = $r->requires;
 return DECLINED unless $requires;

If requires() returns undef, it means that no require statements were present, so we
decline to handle the transaction. (This shouldn't actually happen, but it doesn't hurt
to make sure.) The script then recovers the user's name and guesses his or her
gender, as before.

Next we begin our custom error message:

my $explanation = <<END;
<TITLE>Unauthorized</TITLE>
<H1>You Are Not Authorized to Access This Page</H1>
Access to this page is limited to:

END

The message will be in a text/html page, so we're free to use HTML formatting. The
error warns that the user is unauthorized, followed by a numbered list of the
requirements that the user must meet in order to gain access to the page (Figure
6.2). This will help us confirm that the requirement processing is working correctly.

Figure 6.2. The custom error message generated by Apache::AuthzGender specifically lists the
requirements that the user has failed to satisfy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now we process the requirements one by one by looping over the array contained in
$requires:

for my $entry (@$requires) {
 my($requirement, @rest) = split /\s+/, $entry->{requirement};

For each requirement, we extract the text of the require directive and split it on
whitespace into the requirement type and its arguments. For example, the line
require gender M would result in a requirement type of gender and an argument of
M. We act on any of three different requirement types. If the requirement equals user,
we loop through its arguments seeing if the current user matches any of the indicated
usernames. If a match is found, we exit with an OK result code:

if (lc $requirement eq 'user') {
 foreach (@rest) { return OK if $user eq $_; }
 $explanation .= "Users @rest.\n";
 }

If the requirement equals gender, we loop through its arguments looking to see
whether the user's gender is correct and again return OK if a match is found:[8]

[8] Because there are only two genders, looping through all the require directive's arguments is overkill, but we do it
anyway to guard against radical future changes in biology.

elsif (lc $requirement eq 'gender') {
 foreach (@rest) { return OK if $guessed_gender eq uc $_; }
 $explanation .= "People of the @G{@rest} persuasion.\n";
 }

Otherwise, if the requirement equals valid-user, then we simply return OK because the
authentication module has already made sure of this for us:

elsif (lc $requirement eq 'valid-user') {
 return OK;
 }
 }
 $explanation .= "";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $explanation .= "";

As we process each require directive, we add a line of explanation to the custom error
string. We never use this error string if any of the requirements are satisfied, but if we
fall through to the end of the loop, we complete the ordered list and set the
explanation as the response for AUTH_REQUIRED errors by passing the explanation
string to the request object's custom_response() method:

$r->custom_response(AUTH_REQUIRED, $explanation);

The module ends by noting and logging the failure, and returning an
AUTH_REQUIRED status code as before:

$r->note_basic_auth_failure;
 $r->log_reason("user $user: not authorized", $r->filename);
 return AUTH_REQUIRED;
}

The logic of this module places a logical OR between the requirements. The user is
allowed access to the site if any of the require statements is satisfied, which is
consistent with the way Apache handles authorization in its standard modules.
However, you can easily modify the logic so that all requirements must be met in
order to allow the user access.

Example 6.10. An Improved Apache::AuthzGender

package Apache::AuthzGender2;

use strict;
use Text::GenderFromName qw(gender);
use Apache::Constants qw(:common);

my %G = ('M' => "male", 'F' => "female");

sub handler {
 my $r = shift;
 my $requires = $r->requires;
 return DECLINED unless $requires;
 my $user = ucfirst lc $r->connection->user;
 my $guessed_gender = uc(gender($user)) || 'M';

 my $explanation = <<END;
<TITLE>Unauthorized</TITLE>
<H1>You Are Not Authorized to Access This Page</H1>
Access to this page is limited to:

END

 for my $entry (@$requires) {
 my($requirement, @rest) = split /\s+/, $entry->{requirement};
 if (lc $requirement eq 'user') {
 foreach (@rest) { return OK if $user eq $_; }
 $explanation .= "Users @rest.\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $explanation .= "Users @rest.\n";
 }
 elsif (lc $requirement eq 'gender') {
 foreach (@rest) { return OK if $guessed_gender eq uc $_;
 $explanation .= "People of the @G{@rest} persuasion.\n";
 }
 elsif (lc $requirement eq 'valid-user') {
 return OK;
 }
 }

 $explanation .= "";

 $r->custom_response(AUTH_REQUIRED, $explanation);
 $r->note_basic_auth_failure;
 $r->log_reason("user $user: not authorized", $r->filename);
 return AUTH_REQUIRED;
}

1;
__END__

6.4.3 Authorizing Against a Database

In most real applications you'll be authorizing users against a database of some sort.
This section will show you a simple scheme for doing this that works hand-in-glove
with the Apache::AuthTieDBI database authentication system that we set up in
Section 6.3.3 earlier in this chapter. To avoid making you page backward, we
repeat the contents of the test database here:

+-----------+---------------+-------+---------------------+
| user_name | passwd | level | groups |
+-----------+---------------+-------+---------------------+
fred	8uUnFnRlW18qQ	2	users,devel
andrew	No9eULpnXZAjY	2	users
george	V8R6zaQuOAWQU	3	users
winnie	L1PKv.rN0UmsQ	3	users,authors,devel
root	UOY3rvTFXJAh2	5	users,authors,admin
morgana	93EhPjGSTjjqY	1	users
+-----------+---------------+-------+---------------------+

The module is called Apache::AuthzTieDBI, and the idea is to allow for require
statements like these:

require $user_name eq 'fred'
require $level >=2 && $groups =~ /\bauthors\b/;
require $groups =~/\b(users|admin)\b/

Each require directive consists of an arbitrary Perl expression. During evaluation,
variable names are replaced by the name of the corresponding column in the
database. In the first example above, we require the username to be exactly fred. In
the second case, we allow access by any user whose level is greater than or equal to
2 and who belongs to the authors group. In the third case, anyone whose groups field
contains either of the strings users or admin is allowed in. As in the previous

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

contains either of the strings users or admin is allowed in. As in the previous
examples, the require statements are ORed with each other. If multiple require
statements are present, the user has to satisfy only one of them in order to be granted
access. The directive require valid-user is treated as a special case and not
evaluated as a Perl expression.

Example 6.11 shows the code to accomplish this. Much of it is stolen directly out of
Apache::AuthTieDBI, so we won't review how the database is opened and tied to the
%DB hash. The interesting part begins about midway down the handler() method:

if ($DB{$user}) { # evaluate each requirement
 for my $entry (@$requires) {
 my $op = $entry->{requirement};
 return OK if $op eq 'valid-user';
 $op =~ s/\$\{?(\w+)\}?/\$DB{'$user'}{$1}/g;
 return OK if eval $op;
 $r->log_error($@) if $@;
 }
 }

After making sure that the user actually exists in the database, we loop through each
of the require statements and recover its raw text. We then construct a short string to
evaluate, replacing anything that looks like a variable with the appropriate reference
to the tied database hash. We next call eval() and return OK if a true value is returned.
If none of the require statements evaluates to true, we log the problem, note the
authentication failure, and return AUTH_REQUIRED. That's all there is to it!

Although this scheme works well and is actually quite flexible in practice, you should
be aware of one small problem before you rush off and implement it on your server.
Because the module is calling eval() on Perl code read in from the configuration file,
anyone who has write access to the file or to any of the per-directory .htaccess files
can make this module execute Perl instructions with the server's privileges. If you
have any authors at your site whom you don't fully trust, you might think twice about
making this facility available to them.

A good precaution would be to modify this module to use the Safe module. Add the
following to the top of the module:

use Safe ();

sub safe_eval {
 package main;
 my($db, $code) = @_;
 my $cpt = Safe->new;
 local *DB = $db;
 $cpt->share('%DB', '%Tie::DBI::', '%DBI::', '%DBD::');
 return $cpt->reval($code);
}

The safe_eval() subroutine creates a safe compartment and shares the %DB,
%Tie::DBI::, %DBI::, and %DBD:: namespaces with it (the list of namespaces to
share was identified by trial and error). It then evaluates the require code in the safe
compartment using Safe::reval().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use this routine, modify the call to eval() in the inner loop to call save_eval():

return OK if safe_eval(\%DB, $op);

The code will now be executed in a compartment in which dangerous calls like
system() and unlink() have been disabled. With suitable modifications to the shared
namespaces, this routine can also be used in other places where you might be
tempted to run eval().

Example 6.11. Authorization Against a Database with Apache::AuthzTieDBI

package Apache::AuthzTieDBI;
file: Apache/AuthTieDBI.pm

use strict;
use Apache::Constants qw(:common);
use Tie::DBI ();

sub handler {
 my $r = shift;
 my $requires = $r->requires;

 return DECLINED unless $requires;
 my $user = $r->connection->user;

 # get configuration information
 my $dsn = $r->dir_config('TieDatabase') || 'mysql:test_www';
 my $table_data = $r->dir_config('TieTable') || 'users:user:passwd';
 my($table, $userfield, $passfield) = split ':', $table_data;

 tie my %DB, 'Tie::DBI', {
 db => $dsn, table => $table, key => $userfield,
 } or die "couldn't open database";

 if ($DB{$user}) { # evaluate each requirement
 for my $entry (@$requires) {
 my $op = $entry->{requirement};
 return OK if $op eq 'valid-user';
 $op =~ s/\$\{?(\w+)\}?/\$DB{'$user'}{$1}/g;
 return OK if eval $op;
 $r->log_error($@) if $@;
 }
 }

 $r->note_basic_auth_failure;
 $r->log_reason("user $user: not authorized", $r->filename);
 return AUTH_REQUIRED;
}

1;
__END__

An access.conf entry to go along with this module might look like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Location /registered_users>
 AuthName Enlightenment
 AuthType Basic
 PerlAuthenHandler Apache::AuthTieDBI
 PerlSetVar TieDatabase mysql:test_www
 PerlSetVar TieTable user_info:user_name:passwd

 PerlAuthzHandler Apache::AuthzTieDBI
 require $user_name eq 'fred'
 require $level >=2 && $groups =~ /authors/;
</Location>

Before going off and building a 500,000 member authentication database around this
module, please realize that it was developed to show the flexibility of using Perl
expressions for authentication rather than as an example of the best way to design
group membership databases. If you are going to use group membership as your
primary authorization criterion, you would want to normalize the schema so that the
user's groups occupied their own table:

+-----------+------------+
| user_name | user_group |
+-----------+------------+
fred	users
fred	devel
andrew	users
george	users
winnie	users
winnie	authors
winnie	devel
+-----------+------------+

You could then test for group membership using a SQL query and the full DBI API.

6.4.4 Authentication and Authorization's Relationship with Subrequests

If you have been trying out the examples so far, you may notice that the
authentication and authorization handlers are called more than once for certain
requests. Chances are, these requests have been for a / directory, where the actual
file sent back is one configured with the DirectoryIndex directive, such as index.html
or index.cgi. For each file listed in the DirectoryIndex configuration, Apache will run a
subrequest to determine if the file exists and has sufficent permissions to use in the
response. As we learned in Chapter 3, a subrequest will trigger the various request
phase handlers, including authentication and authorization. Depending on the
resources required to provide these services, it may not be desirable for the handlers
to run more than once for a given HTTP request. Auth handlers can avoid being
called more than once by using the is_initial_req() method, for example:

sub handler {
 my $r = shift;
 return OK unless $r->is_initial_req;
 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

With this test in place, the main body of the handler will only be run once per HTTP
request, during the very first internal request. Note that this approach should be used
with caution, taking your server access configuration into consideration.

6.4.5 Binding Authentication to Authorization

Authorization and authentication work together. Often, as we saw in the previous
example, you find PerlAuthenHandler and PerlAuthzHandlers side by side in the
same access control section. If you have a pair of handlers that were designed to
work together, and only together, you simplify the directory configuration somewhat
by binding the two together so that you need only specify the authentication handler.

To accomplish this trick, have the authentication handler call push_handlers() with a
reference to the authorization handler code before it exits. Because the authentication
handler is always called before the authorization handler, this will temporarily place
your code on the handler list. After processing the transaction, the authorization
handler is set back to its default.

In the case of Apache::AuthTieDBI and Apache::AuthzTieDBI, the only change we
need to make is to place the following line of code in Apache::AuthTieDBI somewhere
toward the top of the handler subroutine:

$r->push_handlers(PerlAuthzHandler => \&Apache::AuthzTieDBI::handler);

We now need to bring in Apache::AuthTieDBI only. The authorization handler will
automatically come along for the ride:

<Location /registered_users>
 AuthName Enlightenment
 AuthType Basic
 PerlAuthenHandler Apache::AuthTieDBI
 PerlSetVar TieDatabase mysql:test_www
 PerlSetVar TieTable user_info:user_name:passwd
 require $user_name eq 'fred'
 require $level >=2 && $groups =~ /authors/;
</Location>

Since the authentication and authorization modules usually share common code, it
might make sense to merge the authorization and authentication handlers into the
same .pm file. This scheme allows you to do that. Just rename the authorization
subroutine to something like authorize() and keep handler() as the entry point for the
authentication code. Then at the top of handler() include a line like this:

$r->push_handlers(PerlAuthzHandler => \&authorize);

We can now remove redundant code from the two handlers. For example, in the
Apache::AuthTieDBI modules, there is common code that retrieves the per-directory
configuration variables and opens the database. This can now be merged into a
single initialization subroutine.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

6.5 Cookie-Based Access Control

The next example is a long one. To understand its motivation, consider a large site
that runs not one but multiple web servers. Perhaps each server mirrors the others in
order to spread out and reduce the load, or maybe each server is responsible for a
different part of the site.

Such a site might very well want to have each of the servers perform authentication
and access control against a shared database, but if it does so in the obvious way, it
faces some potential problems. In order for each of the servers to authenticate
against a common database, they will have to connect to it via the network. But this is
less than ideal because connecting to a network database is not nearly so fast as
connecting to a local one. Furthermore, the database network connections generate a
lot of network overhead and compete with the web server for a limited pool of
operating-system file descriptors. The performance problem is aggravated if
authentication requires the evaluation of a complex SQL statement rather than a
simple record lookup.

There are also security issues to consider when using a common authentication
database. If the database holds confidential information, such as customer account
information, it wouldn't do to give all the web servers free access to the database. A
break-in on any of the web servers could compromise the confidentiality of the
information.

Apache::TicketAccess was designed to handle these and other situations in which
user authentication is expensive. Instead of performing a full authentication each time
the user requests a page, the module only authenticates against a relational database
the very first time the user connects (see Figure 6.3). After successfully validating
the user's identity, the module issues the user a "ticket" to use for subsequent
accesses. This ticket, which is no more than an HTTP cookie, carries the user's
name, IP address, an expiration date, and a cryptographic signature. Until it expires,
the ticket can be used to gain entry to any of the servers at the site. Once a ticket is
issued, validating it is fast; the servers merely check the signature against the other
information on the ticket to make sure that it hasn't been tampered with. No further
database accesses are necessary. In fact, only the machine that actually issues the
tickets, the so-called ticket master, requires database connectivity.

Figure 6.3. In Apache::TicketAccess, the "ticket master" gives browsers an access ticket in the
form of a cookie. The ticket is then used for access to other web servers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The scheme is reasonably secure because the cryptographic signature and the
incorporation of the user's IP address make the cookies difficult to forge and intercept,
and even if they are intercepted, they are only valid for a short period of time,
preventing replay attacks. The scheme is more secure than plain Basic authentication
because it greatly reduces the number of times the clear text password passes over
the network. In fact, you can move the database authentication functions off the
individual web servers entirely and onto a central server whose only job is to check
users' credentials and issue tickets. This reduces the exposure of sensitive database
information to one machine only.

Another use for a system like this is to implement nonstandard authentication
schemes, such as a one-time password or a challenge-response system. The server
that issues tickets doesn't need to use Basic authentication. Instead, it can verify the
identity of the user in any way that it sees fit. It can ask the user for his mother's
maiden name, or enter the value that appears on a SecureID card. Once the ticket is
issued, no further user interaction is required.

The key to the ticket system is the MD5 hash algorithm, which we previously used in
Chapter 5 to create message authentication checks (MACs). As in that chapter, we
will use MD5 here to create authenticated cookies that cannot be tampered with or
forged. If you don't already have it, MD5 can be found in CPAN under the modules
directory.

The tickets used in this system have a structure that looks something like this:

IP=$IP time=$time expires=$expires user=$user_name hash=$hash

The hash is an MD5 digest that is calculated according to this formula:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $hash=MD5->hexhash($secret .
 MD5->hexhash(join ":", $secret, $IP, $time, $expires, $user_name)
);

The other fields are explained below:

$secret

This is a secret key known only to the servers. The key is any arbitrary string
containing ASCII and 8-bit characters. A long set of random characters is best.
This key is shared among all the servers in some secure way and updated
frequently (once a day or more). It is the only part of the ticket that doesn't
appear as plain text.

$IP

The user's IP address. This makes it harder for the ticket to be intercepted and
used by outside parties because they would also have to commandeer the
user's IP address at the same time.[9]

[9] The incorporation of the IP address into the ticket can be problematic if many of your users are connected
to the web through a proxy server (America Online for instance!). Proxy servers make multiple browsers all
seem to be coming from the same IP address, defeating this check. Worse, some networks are configured to
use multiple proxy servers on a round-robin basis, so the same user may not keep the same apparent IP
address within a single session! If this presents a problem for you, you can do one of three things: (1) remove
the IP address from the ticket entirely; (2) use just the first three numbers in the IP address (the network part
of a class C address); or (3) detect and replace the IP address with one of the fields that proxy servers
sometimes use to identify the browser, such as X-Forwarded-For (see the description of remote_ip() in
Section 9.2.4.

$time

This is the time and date that the ticket was issued, for use in expiring old
tickets.

$expires

This is the number of minutes for which a ticket is valid. After this period of time,
the user will be forced to reauthenticate. The longer a ticket is valid, the more
convenient it is for the user, but the easier it is for an interloper to intercept the
ticket. Shorter expiration times are more secure.

$user_name

This is the user's name, saved from the authentication process. It can be used
by the web servers for authorization purposes.

By recovering the individual fields of the ticket, recalculating the hash, and comparing
the new hash to the transmitted one, the receiving server can verify that the ticket
hasn't been tampered with in transit. The scheme can easily be extended to encode
the user's access privileges, the range of URIs he has access to, or any other
information that the servers need to share without going back to a database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We use two rounds of MD5 digestion to compute the hash rather than one. This
prevents a malicious user from appending extra information to the end of the ticket by
exploiting one of the mathematical properties of the MD5 algorithm. Although it is
unlikely that this would present a problem here, it is always a good idea to plug this
known vulnerability.

The secret key is the linchpin of the whole scheme. Because the secret key is known
only to the servers and not to the rest of the world, only a trusted web server can
issue and validate the ticket. However, there is the technical problem of sharing the
secret key among the servers in a secure manner. If the key were intercepted, the
interloper could write his own tickets. In this module, we use either of two methods for
sharing the secret key. The secret key may be stored in a file located on the
filesystem, in which case it is the responsibility of the system administrator to
distribute it among the various servers that use it (NFS is one option, rdist, FTP, or
secure shell are others). Alternatively, the module also allows the secret key to be
fetched from a central web server via a URI. The system administrator must configure
the configuration files so that only internal hosts are allowed to access it.

We'll take a top-down approach to the module starting with the access control handler
implemented by the machines that accept tickets. Example 6.12 gives the code for
Apache::TicketAccess and a typical entry in the configuration file. The relevant
configuration directives look like this:

<Location /protected>
 PerlAccessHandler Apache::TicketAccess
 PerlSetVar TicketDomain .capricorn.org
 PerlSetVar TicketSecret http://master.capricorn.org/secrets/key.txt
 ErrorDocument 403 http://master.capricorn.org/ticketLogin
</Location>

These directives set the access control handler to use Apache::TicketAccess, and set
two per-directory configuration variables using PerlSetVar. TicketDomain is the DNS
domain over which issued tickets are valid. If not specified, the module will attempt to
guess it from the server hostname, but it's best to specify that information explicitly.
TicketSecret is the URI where the shared secret key can be found. It can be on the
same server or a different one. Instead of giving a URI, you may specify a physical
path to a file on the local system. The contents of the file will be used as the secret.

The last line is an ErrorDocument directive that redirects 403 ("Forbidden") errors to a
URI on the ticket master machine. If a client fails to produce a valid ticket—or has no
ticket at all—the web server it tried to access will reject the request, causing Apache
to redirect the client to the ticket master URI. The ticket master will handle the details
of authentication and authorization, give the client a ticket, and then redirect it back to
the original server.

Turning to the code for Apache::TicketAccess, you'll find that it's extremely short
because all the dirty work is done in a common utility library named
Apache::TicketTool. The handler fetches the request object and uses it to create a
new TicketTool object. The TicketTool is responsible for fetching the per-directory
configuration options, recovering the ticket from the HTTP headers, and fetching the
secret key. Next we call the TicketTool 's verify_ticket() method to return a result code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

secret key. Next we call the TicketTool 's verify_ticket() method to return a result code
and an error message. If the result code is true, we return OK.

If verify_ticket() returns false, we do something a bit more interesting. We're going to
set in motion a chain of events that leads to the client being redirected to the server
responsible for issuing tickets. However, after it issues the ticket, we want the ticket
master to redirect the browser back to the original page it tried to access. If the ticket
issuer happens to be the same as the current server, we can (and do) recover this
information from the Apache subrequest record. However, in the general case the
server that issues the ticket is not the same as the current one, so we have to cajole
the browser into transmitting the URI of the current request to the issuer.

To do this, we invoke the TicketTool object's make_return_address() method to
create a temporary cookie that contains the current request's URI. We then add this
cookie to the error headers by calling the request object's err_header_out() method.
Lastly, we return a FORBIDDEN status code, triggering the ErrorDocument directive
and causing Apache to redirect the request to the ticket master.

Example 6.12. Ticket-Based Access Control

package Apache::TicketAccess;

use strict;
use Apache::Constants qw(:common);
use Apache::TicketTool ();

sub handler {
 my $r = shift;
 my $ticketTool = Apache::TicketTool->new($r);
 my($result, $msg) = $ticketTool->verify_ticket($r);
 unless ($result) {
 $r->log_reason($msg, $r->filename);
 my $cookie = $ticketTool->make_return_address($r);
 $r->err_headers_out->add('Set-Cookie' => $cookie);
 return FORBIDDEN;
 }
 return OK;
}

1;
__END__

Now let's have a look at the code to authenticate users and issue tickets. Example
6.13 shows Apache::TicketMaster, the module that runs on the central authentication
server, along with a sample configuration file entry.

For the ticket issuer, the configuration is somewhat longer than the previous one,
reflecting its more complex role:

<Location /ticketLogin>
 SetHandler perl-script
 PerlHandler Apache::TicketMaster
 PerlSetVar TicketDomain .capricorn.org
 PerlSetVar TicketSecret http://master.capricorn.org/secrets/key.txt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PerlSetVar TicketSecret http://master.capricorn.org/secrets/key.txt
 PerlSetVar TicketDatabase mysql:test_www
 PerlSetVar TicketTable user_info:user_name:passwd
 PerlSetVar TicketExpires 10
</Location>

We define a URI called /ticketLogin. The name of this URI is arbitrary, but it must
match the URI given in protected directories' ErrorDocument directive. This module is
a standard content handler rather than an authentication handler. Not only does this
design allow us to create a custom login screen (Figure 6.4), but we can design our
own authentication system, such as one based on answering a series of questions
correctly. Therefore, we set the Apache handler to perl-script and use a PerlHandler
directive to set the content handler to Apache::TicketMaster.

Figure 6.4. The custom login screen shown by the ticket master server prompts the user for a
username and password.

Five PerlSetVar directives set some per-directory configuration variables. Two of
them we've already seen. TicketDomain and TicketSecret are the same as the
corresponding variables on the servers that use Apache::TicketAccess, and should
be set to the same values throughout the site.

The last three per-directory configuration variables are specific to the ticket issuer.
TicketDatabase indicates the relational database to use for authentication. It consists
of the DBI driver and the database name separated by colons. TicketTable tells the
module where it can find usernames and passwords within the database. It consists
of the table name, the username column and the password column, all separated by
colons. The last configuration variable, TicketExpires, contains the time (expressed in
minutes) for which the issued ticket is valid. After this period of time the ticket expires
and the user has to reauthenticate. In this system we measure the ticket expiration
time from the time that it was issued. If you wish, you could modify the logic so that
the ticket expires only after a certain period of inactivity.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The code is a little longer than Apache::TicketAccess. We'll walk through the relevant
parts.

package Apache::TicketMaster;

use strict;
use Apache::Constants qw(:common);
use Apache::TicketTool ();
use CGI qw(:standard);

Apache::TicketMaster loads Apache::Constants, the Apache::TicketTool module, and
CGI.pm, which will be used for its HTML shortcuts.

sub handler {
 my $r = shift;
 my($user, $pass) = map { param($_) } qw(user password);

Using the reverse logic typical of CGI scripts, the handler() subroutine first checks to
see whether script parameters named user and password are already defined,
indicating that the user has submitted the fill-out form.

my $request_uri = param('request_uri') ||
 ($r->prev ? $r->prev->uri : cookie('request_uri'));

 unless ($request_uri) {
 no_cookie_error();
 return OK;
 }

The subroutine then attempts to recover the URI of the page that the user attempted
to fetch before being bumped here. The logic is only a bit twisted. First, we look for a
hidden CGI parameter named request_uri. This might be present if the user failed to
authenticate the first time and resubmits the form. If this parameter isn't present, we
check the request object to see whether this request is the result of an internal
redirect, which will happen when the same server both accepts and issues tickets. If
there is a previous request, we recover its URI. Otherwise, the client may have been
referred to us via an external redirect. Using CGI.pm's cookie() method, we check the
request for a cookie named request_uri and recover its value. If we've looked in all
these diverse locations and still don't have a location, something's wrong. The most
probable explanation is that the user's browser doesn't accept cookies or the user has
turned cookies off. Since the whole security scheme depends on cookies being
active, we call an error routine named no_cookie_error() that gripes at the user for
failing to configure his browser correctly.

my $ticketTool = Apache::TicketTool->new($r);
 my($result, $msg);
 if ($user and $pass) {
 ($result, $msg) = $ticketTool->authenticate($user, $pass);
 if ($result) {
 my $ticket = $ticketTool->make_ticket($r, $user);
 unless ($ticket) {
 $r->log_error("Couldn't make ticket -- missing secret?");
 return SERVER_ERROR;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return SERVER_ERROR;
 }
 go_to_uri($r, $request_uri, $ticket);
 return OK;
 }
 }
 make_login_screen($msg, $request_uri);
 return OK;
}

We now go on to authenticate the user. We create a new TicketTool from the request
object. If both the username and password fields are filled in, we call on TicketTool 's
authenticate() method to confirm the user's ID against the database. If this is
successful, we call make_ticket() to create a cookie containing the ticket information
and invoke our go_to_uri() subroutine to redirect the user back to the original URI.

If authentication fails, we display an error message and prompt the user to try the
login again. If the authentication succeeds, but TicketTool fails to return a ticket for
some reason, we exit with a server error. This scenario only happens if the secret key
cannot be read. Finally, if either the username or the password are missing, or if the
authentication attempt failed, we call make_login_screen() to display the sign-in page.

The make_login_screen() and no_cookie_error() subroutines are straightforward, so
we won't go over them. However, go_to_uri() is more interesting:

sub go_to_uri {
 my($r, $requested_uri, $ticket) = @_;
 print header(-refresh => "1; URL=$requested_uri", -cookie => $ticket),
 start_html(-title => 'Successfully Authenticated', -bgcolor =>
 h1('Congratulations'),
 h2('You have successfully authenticated'),
 h3("Please stand by..."),
 end_html();
}

This subroutine uses CGI.pm methods to create an HTML page that briefly displays a
message that the user has successfully authenticated, and then automatically loads
the page that the user tried to access in the first place. This magic is accomplished by
adding a Refresh field to the HTTP header, with a refresh time of one second and a
refresh URI of the original page. At the same time, we issue an HTTP cookie
containing the ticket created during the authentication process.

Example 6.13. The Ticket Master

package Apache::TicketMaster;

use strict;
use Apache::Constants qw(:common);
use Apache::TicketTool ();
use CGI qw(:standard);

This is the log-in screen that provides authentication cookies.
There should already be a cookie named "request_uri" that tells
the login screen where the original request came from.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the login screen where the original request came from.
sub handler {
 my $r = shift;
 my($user, $pass) = map { param($_) } qw(user password);
 my $request_uri = param('request_uri') ||
 ($r->prev ? $r->prev->uri : cookie('request_uri'));

 unless ($request_uri) {
 no_cookie_error();
 return OK;
 }

 my $ticketTool = Apache::TicketTool->new($r);
 my($result, $msg);
 if ($user and $pass) {
 ($result, $msg) = $ticketTool->authenticate($user, $pass);
 if ($result) {
 my $ticket = $ticketTool->make_ticket($r, $user);
 unless ($ticket) {
 $r->log_error("Couldn't make ticket -- missing secret?");
 return SERVER_ERROR;
 }
 go_to_uri($r, $request_uri, $ticket);
 return OK;
 }
 }
 make_login_screen($msg, $request_uri);
 return OK;
}

sub go_to_uri {
 my($r, $requested_uri, $ticket) = @_;
 print header(-refresh => "1; URL=$requested_uri", -cookie => $ticket),
 start_html(-title => 'Successfully Authenticated', -bgcolor => 'white'),
 h1('Congratulations'),
 h2('You have successfully authenticated'),
 h3("Please stand by..."),
 end_html();
}

sub make_login_screen {
 my($msg, $request_uri) = @_;
 print header(),
 start_html(-title => 'Log In', -bgcolor => 'white'),
 h1('Please Log In');
 print h2(font({color => 'red'}, "Error: $msg")) if $msg;
 print start_form(-action => script_name()),
 table(
 Tr(td(['Name', textfield(-name => 'user')])),
 Tr(td(['Password', password_field(-name => 'password')]))
),
 hidden(-name => 'request_uri', -value => $request_uri),
 submit('Log In'), p(),
 end_form(),
 em('Note: '),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 em('Note: '),
 "Set your browser to accept cookies in order for login to succeed.",
 "You will be asked to log in again after some period of time.";
}

called when the user tries to log in without a cookie
sub no_cookie_error {
 print header(),
 start_html(-title => 'Unable to Log In', -bgcolor => 'white'),
 h1('Unable to Log In'),
 "This site uses cookies for its own security. Your browser must be capable ",
 "of processing cookies ", em('and'), " cookies must be activated. ",
 "Please set your browser to accept cookies, then press the ",
 strong('reload'), " button.", hr();
}

1;
__END__

By now you're probably curious to see how Apache::TicketTool works, so let's have a
look at it (Example 6.14).

package Apache::TicketTool;

use strict;
use Tie::DBI ();
use CGI::Cookie ();
use MD5 ();
use LWP::Simple ();
use Apache::File ();
use Apache::URI ();

We start by importing the modules we need, including Tie::DBI, CGI::Cookie, and the
MD5 module.

my $ServerName = Apache->server->server_hostname;

my %DEFAULTS = (
 'TicketDatabase' => 'mysql:test_www',
 'TicketTable' => 'user_info:user_name:passwd',
 'TicketExpires' => 30,
 'TicketSecret' => 'http://$ServerName/secret_key.txt',
 'TicketDomain' => undef,
);

my %CACHE; # cache objects by their parameters to minimize time-consuming operations

Next we define some default variables that were used during testing and development
of the code and an object cache named %CACHE. %CACHE holds a pool of TicketTool
objects and was designed to increase the performance of the module. Rather than
reading the secret key each time the module is used, the key is cached in memory.
This cache is flushed every time there is a ticket mismatch, allowing the key to be
changed frequently without causing widespread problems. Similarly, we cache the
name of the name of the server, by calling Apache->server->server_hostname (see
Section 9.2.3 in Chapter 9 for information on retrieving other server configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Section 9.2.3 in Chapter 9 for information on retrieving other server configuration
values).

sub new {
 my($class, $r) = @_;
 my %self = ();
 foreach (keys %DEFAULTS) {
 $self{$_} = $r->dir_config($_) || $DEFAULTS{$_};
 }
 # post-process TicketDatabase and TicketDomain
 ($self{TicketDomain} = $ServerName) =~ s/^[^.]+//
 unless $self{TicketDomain};

 # try to return from cache
 my $id = join '', sort values %self;
 return $CACHE{$id} if $CACHE{$id};

 # otherwise create new object
 return $CACHE{$id} = bless \%self, $class;
}

The TicketTool new() method is responsible for initializing a new TicketTool object or
fetching an appropriate old one from the cache. It reads the per-directory
configuration variables from the passed request object and merges them with the
defaults. If no TicketDomain variable is present, it attempts to guess one from the
server hostname. The code that manages the cache indexes the cache array with the
values of the per-directory variables so that several different configurations can
coexist peacefully.

sub authenticate {
 my($self, $user, $passwd) = @_;
 my($table, $userfield, $passwdfield) = split ':', $self->{TicketTable};

 tie my %DB, 'Tie::DBI', {
 'db' => $self->{TicketDatabase},
 'table' => $table, 'key' => $userfield,
 } or return (undef, "couldn't open database");

 return (undef, "invalid account")
 unless $DB{$user};

 my $saved_passwd = $DB{$user}->{$passwdfield};
 return (undef, "password mismatch")
 unless $saved_passwd eq crypt($passwd, $saved_passwd);

 return (1, '');
}

The authenticate() method is called by the ticket issuer to authenticate a username
and password against a relational database. This method is just a rehash of the
Tie::DBI database authentication code that we have seen in previous sections.

sub fetch_secret {
 my $self = shift;
 unless ($self->{SECRET_KEY}) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 unless ($self->{SECRET_KEY}) {
 if ($self->{TicketSecret} =~ /^http:/) {
 $self->{SECRET_KEY} = LWP::Simple::get($self->{TicketSecret});
 } else {
 my $fh = Apache::File->new($self->{TicketSecret}) || return undef;
 $self->{SECRET_KEY} = <$fh>;
 }
 }
 $self->{SECRET_KEY};
}

The fetch_secret() method is responsible for fetching the secret key from disk or via
the web. The subroutine first checks to see whether there is already a secret key
cached in memory and returns that if present. Otherwise it examines the value of the
TicketSecret variable. If it looks like a URI, we load the LWP Simple module and use
it to fetch the contents of the URI.[10] If TicketSecret doesn't look like a URI, we
attempt to open it as a physical pathname using Apache::File methods and read its
contents. We cache the result and return it.

[10] The LWP library (Library for Web Access in Perl) is available at any CPAN site and is highly recommended for
web client programming. We use it again in Chapter 7 when we develop a banner-ad blocking proxy.

sub invalidate_secret { undef shift->{SECRET_KEY}; }

The invalidate_secret() method is called whenever there seems to be a mismatch
between the current secret and the cached one. This method deletes the cached
secret, forcing the secret to be reloaded the next time it's needed.

The make_ticket() and verify_ticket() methods are responsible for issuing and
checking tickets:

sub make_ticket {
 my($self, $r, $user_name) = @_;
 my $ip_address = $r->connection->remote_ip;
 my $expires = $self->{TicketExpires};
 my $now = time;
 my $secret = $self->fetch_secret() or return undef;
 my $hash = MD5->hexhash($secret .
 MD5->hexhash(join ':', $secret, $ip_address, $now,
 $expires, $user_name)
);
 return CGI::Cookie->new(-name => 'Ticket',
 -path => '/',
 -domain => $self->{TicketDomain},
 -value => {
 'ip' => $ip_address,
 'time' => $now,
 'user' => $user_name,
 'hash' => $hash,
 'expires' => $expires,
 });
}

make_ticket() gets the user's name from the caller, the browser's IP address from the
request object, the expiration time from the value of the TicketExpires configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

request object, the expiration time from the value of the TicketExpires configuration
variable, and the secret key from the fetch_secret() method. It then concatenates
these values along with the current system time and calls MD5's hexhash() method to
turn them into an MD5 digest.

The routine now incorporates this digest into an HTTP cookie named Ticket by calling
CGI::Cookie->new(). The cookie contains the hashed information, along with plain
text versions of everything except for the secret key. A cute feature of CGI::Cookie is
that it serializes simple data structures, allowing you to turn hashes into cookies and
later recover them. The cookie's domain is set to the value of TicketDomain, ensuring
that the cookie will be sent to all servers in the indicated domain. Note that the cookie
itself has no expiration date. This tells the browser to keep the cookie in memory only
until the user quits the application. The cookie is never written to disk.

sub verify_ticket {
 my($self, $r) = @_;
 my %cookies = CGI::Cookie->parse($r->header_in('Cookie'));
 return (0, 'user has no cookies') unless %cookies;
 return (0, 'user has no ticket') unless $cookies{'Ticket'};
 my %ticket = $cookies{'Ticket'}->value;
 return (0, 'malformed ticket')
 unless $ticket{'hash'} && $ticket{'user'} &&
 $ticket{'time'} && $ticket{'expires'};
 return (0, 'IP address mismatch in ticket')
 unless $ticket{'ip'} eq $r->connection->remote_ip;
 return (0, 'ticket has expired')
 unless (time - $ticket{'time'})/60 < $ticket{'expires'};
 my $secret;
 return (0, "can't retrieve secret")
 unless $secret = $self->fetch_secret;
 my $newhash = MD5->hexhash($secret .
 MD5->hexhash(join ':', $secret,
 @ticket{qw(ip time expires user)})
);
 unless ($newhash eq $ticket{'hash'}) {
 $self->invalidate_secret; #maybe it's changed?
 return (0, 'ticket mismatch');
 }
 $r->connection->user($ticket{'user'});
 return (1, 'ok');
}

verify_ticket() does the same thing but in reverse. It calls CGI::Cookie->parse() to
parse all cookies passed in the HTTP header and stow them into a hash. The method
then looks for a cookie named Ticket. If one is found, it recovers each of the ticket's
fields and does some consistency checks. The method returns an error if any of the
ticket fields are missing, if the request's IP address doesn't match the ticket's IP
address, or if the ticket has expired.

verify_ticket() then calls secret_key() to get the current value of the secret key and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

verify_ticket() then calls secret_key() to get the current value of the secret key and
recomputes the hash. If the new hash doesn't match the old one, then either the
secret key has changed since the ticket was issued or the ticket is a forgery. In either
case, we invalidate the cached secret and return false, forcing the user to repeat the
formal authentication process with the central server. Otherwise the function saves
the username in the connection object by calling $r->connection-
>user($ticket{'user'}) and returns true result code. The username is saved
into the connection object at this point so that authorization and logging handlers will
have access to it. It also makes the username available to CGI scripts via the
REMOTE_USER environment variable.

sub make_return_address {
 my($self, $r) = @_;
 my $uri = Apache::URI->parse($r, $r->uri);
 $uri->scheme("http");
 $uri->hostname($r->get_server_name);
 $uri->port($r->get_server_port);
 $uri->query(scalar $r->args);

 return CGI::Cookie->new(-name => 'request_uri',
 -value => $uri->unparse,
 -domain => $self->{TicketDomain},
 -path => '/');
}

The last method, make_return_address(), is responsible for creating a cookie to
transmit the URI of the current request to the central authentication server. It recovers
the server hostname, port, path, and CGI variables from the request object and turns
it into a full URI. It then calls CGI::Cookie->new() to incorporate this URI into a cookie
named request_uri, which it returns to the caller. scheme(), hostname(), and the other
URI processing calls are explained in detail in Chapter 9, under Section 9.2.6.

Example 6.14. The Ticket Issuer

package Apache::TicketTool;

use strict;
use Tie::DBI ();
use CGI::Cookie ();
use MD5 ();
use LWP::Simple ();
use Apache::File ();
use Apache::URI ();

my $ServerName = Apache->server->server_hostname;

my %DEFAULTS = (
 'TicketDatabase' => 'mysql:test_www',
 'TicketTable' => 'user_info:user_name:passwd',
 'TicketExpires' => 30,
 'TicketSecret' => 'http://$ServerName/secret_key.txt',
 'TicketDomain' => undef,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 'TicketDomain' => undef,
);

my %CACHE; # cache objects by their parameters to minimize time-consuming operations

Set up default parameters by passing in a request object
sub new {
 my($class, $r) = @_;
 my %self = ();
 foreach (keys %DEFAULTS) {
 $self{$_} = $r->dir_config($_) || $DEFAULTS{$_};
 }
 # post-process TicketDatabase and TicketDomain
 ($self{TicketDomain} = $ServerName) =~ s/^[^.]+//
 unless $self{TicketDomain};

 # try to return from cache
 my $id = join '', sort values %self;
 return $CACHE{$id} if $CACHE{$id};

 # otherwise create new object
 return $CACHE{$id} = bless \%self, $class;
}

TicketTool::authenticate()
Call as:
($result,$explanation) = $ticketTool->authenticate($user,$passwd)
sub authenticate {
 my($self, $user, $passwd) = @_;
 my($table, $userfield, $passwdfield) = split ':', $self->{TicketTable};

 tie my %DB, 'Tie::DBI', {
 'db' => $self->{TicketDatabase},
 'table' => $table, 'key' => $userfield,
 } or return (undef, "couldn't open database");

 return (undef, "invalid account")
 unless $DB{$user};

 my $saved_passwd = $DB{$user}->{$passwdfield};
 return (undef, "password mismatch")
 unless $saved_passwd eq crypt($passwd, $saved_passwd);

 return (1, '');
}

TicketTool::fetch_secret()
Call as:
$ticketTool->fetch_secret();
sub fetch_secret {
 my $self = shift;
 unless ($self->{SECRET_KEY}) {
 if ($self->{TicketSecret} =~ /^http:/) {
 $self->{SECRET_KEY} = LWP::Simple::get($self->{TicketSecret});
 } else {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } else {
 my $fh = Apache::File->new($self->{TicketSecret}) || return undef;
 $self->{SECRET_KEY} = <$fh>;
 }
 }
 $self->{SECRET_KEY};
}

invalidate the cached secret
sub invalidate_secret { undef shift->{SECRET_KEY}; }

TicketTool::make_ticket()
Call as:
$cookie = $ticketTool->make_ticket($r,$username);
#
sub make_ticket {
 my($self, $r, $user_name) = @_;
 my $ip_address = $r->connection->remote_ip;
 my $expires = $self->{TicketExpires};
 my $now = time;
 my $secret = $self->fetch_secret() or return undef;
 my $hash = MD5->hexhash($secret .
 MD5->hexhash(join ':', $secret, $ip_address, $now,
 $expires, $user_name)
);
 return CGI::Cookie->new(-name => 'Ticket',
 -path => '/',
 -domain => $self->{TicketDomain},
 -value => {
 'ip' => $ip_address,
 'time' => $now,
 'user' => $user_name,
 'hash' => $hash,
 'expires' => $expires,
 });
}

TicketTool::verify_ticket()
Call as:
($result,$msg) = $ticketTool->verify_ticket($r)
sub verify_ticket {
 my($self, $r) = @_;
 my %cookies = CGI::Cookie->parse($r->header_in('Cookie'));
 return (0, 'user has no cookies') unless %cookies;
 return (0, 'user has no ticket') unless $cookies{'Ticket'};
 my %ticket = $cookies{'Ticket'}->value;
 return (0, 'malformed ticket')
 unless $ticket{'hash'} && $ticket{'user'} &&
 $ticket{'time'} && $ticket{'expires'};
 return (0, 'IP address mismatch in ticket')
 unless $ticket{'ip'} eq $r->connection->remote_ip;
 return (0, 'ticket has expired')
 unless (time - $ticket{'time'})/60 < $ticket{'expires'};
 my $secret;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my $secret;
 return (0, "can't retrieve secret")
 unless $secret = $self->fetch_secret;
 my $newhash = MD5->hexhash($secret .
 MD5->hexhash(join ':', $secret,
 @ticket{qw(ip time expires user)})
);
 unless ($newhash eq $ticket{'hash'}) {
 $self->invalidate_secret; #maybe it's changed?
 return (0, 'ticket mismatch');
 }
 $r->connection->user($ticket{'user'});
 return (1, 'ok');
}

Call as:
$cookie = $ticketTool->make_return_address($r)
sub make_return_address {
 my($self, $r) = @_;
 my $uri = Apache::URI->parse($r, $r->uri);
 $uri->scheme("http");
 $uri->hostname($r->get_server_name);
 $uri->port($r->get_server_port);
 $uri->query(scalar $r->args);

 return CGI::Cookie->new(-name => 'request_uri',
 -value => $uri->unparse,
 -domain => $self->{TicketDomain},
 -path => '/');
}

1;
__END__

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

6.6 Authentication with the Secure Sockets Layer

The Secure Sockets Layer (SSL) is a widely used protocol for encrypting Internet
transmissions. It was originally introduced by Netscape for use with its browser and
server products and has been adapted by the Internet Engineering Task Force (IETF)
for use in its standard Transport Layer Security (TLS) protocol.

When an SSL-enabled browser talks to an SSL-enabled server, they exchange
cryptographic certificates and authenticate each other using secure credentials known
as digital certificates. They then set up an encrypted channel with which to exchange
information. Everything that the browser sends to the server is encrypted, including
the requested URI, cookies, and the contents of fill-out forms, and everything that the
server returns to the browser is encrypted as well.

For the purposes of authentication and authorization, SSL can be used in two ways.
One option is to combine SSL encryption with Basic authentication. The Basic
authentication protocol continues to work exactly as described in the previous section,
but now the user's password is protected from interception because it is part of the
encrypted data stream. This option is simple and doesn't require any code changes.

The other option is to use the browser's digital certificate for authorization. The server
automatically attempts to authenticate the browser's digital certificate when it first sets
up the SSL connection. If it can't, the SSL connection is refused. If you wish, you can
use the information provided in the browser's certificate to decide whether this user is
authorized to access the requested URI. In addition to the user's name, digital
certificates contain a variety of standard fields and any number of optional ones; your
code is free to use any of these fields to decide whether the user is authorized.

The main advantage of the digital certificate solution is that it eliminates the problems
associated with passwords—users forgetting them or, conversely, choosing ones that
are too easy to guess. The main disadvantage is that most users don't use digital
certificates. On most of the public Web, authentication is one-way only. The server
authenticates itself to the browser, but not vice-versa. Therefore, authentication by
digital certificate is only suitable in intranet environments where the company issues
certificates to its employees as a condition of their accessing internal web servers.

There are several SSL-enabled versions of Apache, and there will probably be more
in the future. Each offers a different combination of price, features, and support. The
current list follows:

Open-source (free) versions:

Ben Laurie's Apache SSL at http://www.apache-ssl.org/

Ralf S. Engelschall's mod_ssl at
http://www.engelschall.com/sw/mod_ssl/

Commercial versions:

C2Net Stronghold at http://www.c2.net/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Covalent Raven SSL Module at http://raven.covalent.net/

Red Hat Secure Server at http://www.redhat.com/products/

6.6.1 Using Digital Certificates for Authorization

The SSL protocol does most of its work at a level beneath the workings of the HTTP
protocol. The exchange and verificaton of digital certificates and the establishment of
the encrypted channel all occur before any of Apache's handlers run. For this reason,
authorization based on the contents of a digital certificate looks quite different from
the other examples we've seen in this chapter. Furthermore, the details of
authorization vary slightly among the different implementations of ApacheSSL. This
section describes the way it works in Ralf S. Engelschall's mod_ssl. If you are using a
different version of ApacheSSL, you should check your vendor's documentation for
differences.

The text representation of a typical client certificate is shown in Example 6.15. It
consists of a "Subject" section, which gives information on the person to whom the
certificate is issued, and a "Certificate" section, which gives information about the
certificate itself. Within the Subject section are a series of tag=value pairs. There can
be an arbitrary number of such pairs, but several are standard and can be found in
any certificate:

CN User's common name
EMail User's email address
O User's organization (employer)
OU Organizational unit (e.g., department)
L User's locality, usually a city or town
SP User's state or province
C User's country code

The user's distinguished name (DN) is a long string consisting of the concatenation of
each of these fields in the following format:

/C=US/SP=MA/L=Boston/O=Capricorn Organization/OU=Sales/CN=Wanda/Email=wanda@capricorn.com

European users will recognize the footprints of the OSI standards committee here.
The DN is guaranteed to be unique among all the certificates issued by a particular
certificate-granting authority.

The Certificate section contains the certificate's unique serial number and other data,
followed by more tag=value pairs giving information about the organization issuing
the certificate. The standard fields are the same as those described for the Subject.
This is followed by a Validity period, which gives the span of time that the certificate
should be considered valid.

You are free to use any of these fields for authorization. You can authorize based on
the user's CN field, on the certificate's serial number, on the Validity period, on the
DN, or on any of the Subject or Issuer tags.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The certificate information is actually stored in a compact binary form rather than the
text form shown here. When the connection is established, the SSL library parses out
the certificate fields and stores them in a private data structure. During the fixup
phase, these fields are turned into various environment variables with names like
SSL_CLIENT_S_DN_CN (to be read as "the common name subfield of the
distinguished name of the subject section of the client's certificate"). However, the
mappings between certificate field and environment variable differ from version to
version of ApacheSSL, and you will have to check your vendor's documentation for
the details.

Example 6.15. An Example Client Certificate

Subject:
 C=US
 SP=MA
 L=Boston
 O=Capricorn Organization
 OU=Sales
 CN=Wanda
 Email=wanda@capricorn.com

Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number: 866229881 (0x33a19e79)
 Signature Algorithm: md5WithRSAEncryption
 Issuer:
 C=US
 SP=MA
 L=Boston
 O=Capricorn Consulting
 OU=Security Services
 CN=Capricorn Signing Services Root CA
 Email=lstein@capricorn.com
 Validity:
 Not Before: Jun 13 19:24:41 1998 GMT
 Not After : Jun 13 19:24:41 1999 GMT

The most straightforward way to authenticate based on certificate information is to
take advantage of the SSLRequire access control directive. In mod_ssl, such a
directive might look like this:

<Location /certified>
 SSLRequire %{SSL_CLIENT_S_DN_CN} in ("Wanda Henderson","Joe Bloe") \
 and %{REMOTE_ADDR} =~ m/^192\.128\.3\.[0-9]+$/
</Location>

This requires that the CN tag of the DN field of the Subject section of the certificate
match either "Wanda Henderson" or "Joe Bloe", and that the browser's IP address
satisfy a pattern match placing it within the 192.128.3 subnetwork. mod_ssl has a rich

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

satisfy a pattern match placing it within the 192.128.3 subnetwork. mod_ssl has a rich
language for querying the contents of the client certificate. See its documentation for
the details. Other ApacheSSL implementations also support operations similar to
SSLRequire, but they differ somewhat in detail.

Note that to Apache, SSLRequire is an access control operation rather than an
authentication/authorization operation. This is because no action on the part of the
user is needed to gain access—his browser either has the right certificate, or it
doesn't.

A slightly more involved technique for combining certificate information with user
authorization is to take advantage of the FakeBasicAuth option of the SSLOptions
directive. When this option is enabled, mod_ssl installs an authentication handler that
retrieves the DN from the certificate. The handler base64-encodes the DN and a
hardcoded password (consisting of the string "password"), stuffs them into the
incoming Authorization header field, and returns DECLINED. In effect, this fakes the
ordinary Basic authentication process by making it seem as if the user provided a
username and password pair. The DN is now available for use by downstream
authentication and authorization modules, where it appears as the username.

However, using FakeBasicAuth means that mod_ssl must be the first authentication
handler run for the request and that an authentication handler further down the chain
must be able to authenticate using the client's DN. It is much simpler to bypass all
authentication handlers and obtain of the DN by using a subrequest. This takes
advantage of the fact that during the fixup phase, mod_ssl places parsed copies of
the certificate fields into the subprocess environment table, preparatory to copying
them into a CGI script's environment.

As an example, we'll show a simple authorization module named Apache::AuthzSSL
which checks that a named field of the DN name matches that given in one or more
require directives. A typical configuration section will look like this:

SSLVerifyClient require
SSLVerifyDepth 2
SSLCACertificateFile conf/ssl.crt/ca-bundle.crt
<Directory /usr/local/apache/htdocs/ID/please>
 SSLRequireSSL
 AuthName SSL
 AuthType Basic
 PerlAuthenHandler Apache::OK
 PerlAuthzHandler Apache::AuthzSSL
 require C US
 require O "Capricorn Organization"
 require OU Sales Marketing
</Directory>

The SSLVerifyClient directive, which must be present in the main part of the
configuration file, requires that browsers present client certificates. The
SSLVerifyDepth and SSLCACertificateFile directives are used to configure how
deeply mod_ssl should verify client certificates (see the mod_ssl documentation for
details). The SSLRequireSSL directive requires that SSL be active in order to access
the contents of this directory.

AuthName and AuthType are not required, since we are not performing Basic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AuthName and AuthType are not required, since we are not performing Basic
authentication, but we put them in place just in case some module downstream is
expecting them. Since the password is invariant when client certificate verification is
in use, we bypass password checking by installing Apache::OK as the authentication
handler for this directory.[11] Apache::OK is a ring module that exits with an OK result
code. We then install Apache::AuthzSSL as the authorization handler and give it three
different require statements to satisfy. We require that the country field equal "US,"
the organization field equal "Capricorn Organization," and the organizational unit be
one of "Sales" or "Marketing."

[11] Apache::OK is always available, along with Apache::DECLINED, since they are imported from Apache::Constants
by Apache.pm at server startup time.

Example 6.16 gives the code for Apache::AuthzSSL. It brings in Apache::Constants
and the quotewords() text parsing function from the standard Text::ParseWords
module. It recovers the request object and calls its requires() method to retrieve the
list of authorization requirements that are in effect.

The handler then issues a subrequest and retrieves the value of SSL_CLIENT_DN
from the subrequest's environment table. The subrequest is necessary because the
parsed certificate fields aren't placed into the table until the fixup stage, which
ordinarily occurs after the authorization phase. Notice that the handler returns OK if
is_main() returns false, avoiding infinite recursion during the subrequest. Once the
DN is recovered, it is split into its individual fields using a pattern match operation.

Now the routine loops through each of the requirements, breaking them into a DN
field name and a list of possible values, each of which it checks in turn. If none of the
specified values matches the DN, we log an error and return a FORBIDDEN (not an
AUTH_REQUIRED) status code. If we satisfy all the requirements and fall through to
the bottom of the loop, we return an OK result code.

Example 6.16. Authorizing Clients Based On Their Digital Certificate's DN

package Apache::AuthzSSL;

use strict;
use Apache::Constants qw(:common);
use Text::ParseWords qw(quotewords);

sub handler {
 my $r = shift;
 return OK unless $r->is_main;

 my $requires = $r->requires;
 return DECLINED unless $requires;

 my $subr = $r->lookup_uri($r->uri);
 my $dn = $subr->subprocess_env('SSL_CLIENT_S_DN');
 return DECLINED unless $dn;
 my(%dn) = $dn =~ m{/([^=]+)=([^/]+)}g;

 REQUIRES:
 for my $entry (@$requires) {
 my($field, @values) = quotewords('\s+', 0, $entry->{requirement});

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 my($field, @values) = quotewords('\s+', 0, $entry->{requirement});
 foreach (@values) {
 next REQUIRES if $dn{$field} eq $_;
 }
 $r->log_reason("user $dn{CN}: not authorized", $r->filename);
 return FORBIDDEN;
 }
 # if we get here, then we passed all the requirements
 return OK;
}

1;
__END__

The only subtlety in this module is the rationale for returning FORBIDDEN in an
authorization module rather than in the more typical note_basic_auth_failure() call
followed by AUTH_REQUIRED. The reason for this is that returning AUTH_REQUIRED
will set in motion a chain of events that will ultimately result in the user being
prompted for a username and password. But there's nothing the user can type in to
satisfy this module's requirements, so this is just a tease. Returning FORBIDDEN, in
contrast, will display a more accurate message denying the user permission to view
the page.

A more advanced certificate authorization module would probably go to a database to
determine whether the incoming certificate satisfied the requirements.

As another example, Example 6.17 shows a small access handler that rejects all
certificates issued by out-of-state issuers. It does so by looking at the value of the
subprocess variable SSL_CLIENT_I_DN_SP, which returns the issuer's state or
province code. This handler can be installed with a configuration section like this one:

SSLVerifyClient require
 <Location /government/local>
 SSLRequireSSL
 PerlAccessHandler Apache::CheckCertState
 PerlSetVar IssuerState Maryland
 </Location>

The code simply retrieves the contents of the IssuerState configuration variable and
the SSL_CLIENT_I_DN_SP subprocess environment variable. If either is undefined,
the handler returns DECLINED. Next the handler checks whether the two variables
are equal, and if so, returns OK. Otherwise the routine returns FORBIDDEN, displaying
the "access denied" message on the user's browser.

Example 6.17. Apache::CheckCertState Checks the SP (State/Province) Field of the Certificate
Issuer

package Apache::CheckCertState;
file: Apache/CheckCertState.pm
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;
 return DECLINED unless $r->is_main;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return DECLINED unless $r->is_main;
 my $state = $r->dir_config('IssuerState');
 return DECLINED unless defined $state;
 my $subr = $r->lookup_uri($r->uri);
 my $client_state = $subr->subprocess_env('SSL_CLIENT_I_DN_SP')
 return OK if $client_state eq $state;
 return FORBIDDEN;
}

1;
__END__

We hope this chapter has given you some idea of the range and versatility of Apache
modules for controlling who can gain access to your site and what they do once
they've connected. With the tools and examples presented in this chapter as a
starting point, you should be able to implement almost any access control system you
can imagine.

The next chapter turns to some of the more esoteric handlers and module
functionality, showing you a variety of techniques for simplifying Apache
administration and customizing the server's behavior.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 7. Other Request Phases
The previous chapters have taken you on a wide-ranging tour of the most popular and
useful areas of the Apache API. But we're not done yet! The Apache API allows you
to customize URI translation, logging, the handling of proxy transactions, and the
manner in which HTTP headers are parsed. There's even a way to incorporate
snippets of Perl code directly into HTML pages that use server-side includes.

We've already shown you how to customize the response, authentication,
authorization, and access control phases of the Apache request cycle. Now we'll fill in
the cracks. At the end of the chapter, we show you the Perl server-side include
system, and demonstrate a technique for extending the Apache Perl API by
subclassing the Apache request object itself.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.1 The Child Initialization and Exit Phases

Apache provides hooks into the child process initialization and exit handling. The
child process initialization handler, installed with PerlChildInitHandler, is called just
after the main server forks off a child but before the child has processed any incoming
requests. The child exit handler, installed with PerlChildExitHandler, is called just
before the child process is destroyed.

You might need to install handlers for these phases in order to perform some sort of
module initialization that won't survive a fork. For example, the Apache::DBI module
has a child init handler that initializes a cache of per-child database connections, and
the Apache::Resource module steps in during this phase to set up resource limits on
the child processes. The latter is configured in this way:

PerlChildInitHandler Apache::Resource

Like other handlers, you can install a child init handler programmatically using
Apache::push_handlers() . However, because the child init phase comes so early,
the only practical place to do this is from within the parent process, in either a Perl
startup file configured with a PerlModule or PerlRequire directive. For example, here's
how to install an anonymous subroutine that will execute during child initialization to
choose a truly random seed value for Perl's random number generator (using the
Math::TrulyRandom module):

use Math::TrulyRandom ();
Apache->push_handlers(PerlChildInitHandler => sub {
 srand Math::TrulyRandom::truly_random_value();
});

Install this piece of code in the Perl startup file. By changing the value of the random
number seed on a per-child basis, it ensures that each child process produces a
different sequence of random numbers when the built-in rand() function is called.

The child exit phase complements the child initialization phase. Child processes may
exit for various reasons: the MaxRequestsPerChild limit may have been reached, the
parent server was shut down, or a fatal error occurred. This phase gives modules a
chance to tidy up after themselves before the process exits.

The most straightforward way to install a child exit handler is with the explicit
PerlChildExitHandler directive, as in:

PerlChildExitHandler Apache::Guillotine

During the child exit phase, mod_perl invokes the Perl API function perl_destruct() to
run the contents of END blocks and to invoke the DESTROY method for any global
objects that have not gone out of scope already.[1] Refer to the section "Special
Global Variables, Subroutines, and Literals" in Chapter 9, for details.

[1] perl_destruct() is an internal Perl subroutine that is normally called just once by the Perl executable after a script is
run.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that neither child initialization nor exit hooks are available on Win32 platforms
since the Win32 port of Apache uses a single process.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.2 The Post Read Request Phase

When a listening server receives an incoming request, it reads the HTTP request line
and parses any HTTP headers sent along with it. Provided that what's been read is
valid HTTP, Apache gives modules an early chance to step in during the
post_read_request phase, known to the Perl API world as the
PerlPostReadRequestHandler. This is the very first callback that Apache makes when
serving an HTTP request, and it happens even before URI translation turns the
requested URI into a physical pathname.

The post_read_request phase is a handy place to initialize per-request data that will
be available to other handlers in the request chain. Because of its usefulness as an
initialization routine, mod_perl provides the directive PerlInitHandler as a more
readable alias to PerlPostReadRequestHandler.

Since the post_read_request phase happens before URI translation,
PerlPostReadRequestHandler cannot appear in <Location>, <Directory>, or <Files>
sections. However, the PerlInitHandler directive is actually a bit special. When it
appears outside a <Directory> section, it acts as an alias for
PerlPostReadRequestHandler as just described. However, when it appears within a
<Directory> section, it acts as an alias for PerlHeaderParserHandler (discussed later
in this chapter), allowing for per-directory initialization. In other words, wherever you
put PerlInitHandler, it will act the way you expect.

Several optional Apache modules install handlers for the post_read_request phase.
For example, the mod_unique_id module steps in here to create the UNIQUE_ID
environment variable. When the module is activated, this variable is unique to each
request over an extended period of time and so is useful for logging and the
generation of session IDs (see Chapter 5). Perl scripts can get at the value of this
variable by reading $ENV{UNIQUE_ID} or by calling $r-
>subprocess_env('UNIQUE_ID').

mod_setenvif also steps in during this phase to allow you to set environment
variables based on the incoming client headers. For example, this directive will set
the environment variable LOCAL_REFERRAL to true if the Referer header matches a
certain regular expression:

SetEnvIf Referer \.acme\.com LOCAL_REFERRAL

mod_perl itself uses the post_read_request phase to process the PerlPassEnv and
PerlSetEnv directives, allowing environment variables to be passed to modules that
execute early in the request cycle. The built-in Apache equivalents, PassEnv and
SetEnv, don't get processed until the fixup phase, which may be too late. The
Apache::StatINC module, which watches .pm files for changes and reloads them if
necessary, is also usually installed into this phase:

PerlPostReadRequestHandler Apache::StatINC
PerlInitHandler Apache::StatINC # same thing, but easier to type

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.3 The URI Translation Phase

One of the web's virtues is its Uniform Resource Identifier (URI) and Uniform
Resource Locator (URL) standards. End users never know for sure what is sitting
behind a URI. It could be a static file, a dynamic script, a proxied request, or
something even more esoteric. The file or program behind a URI may change over
time, but this too is transparent to the end user.

Much of Apache's power and flexibility comes from its highly configurable URI
translation phase, which comes relatively early in the request cycle, after the
post_read_request and before the header_parser phases. During this phase, the URI
requested by the remote browser is translated into a physical filename, which may in
turn be returned directly to the browser as a static document or passed on to a CGI
script or Apache API module for processing. During URI translation, each module that
has declared its interest in handling this phase is given a chance to modify the URI.
The first module to handle the phase (i.e., return something other than a status of
DECLINED) terminates the phase. This prevents several URI translators from
interfering with one another by trying to map the same URI onto several different file
paths.

By default, two URI translation handlers are installed in stock Apache distributions.
The mod_alias module looks for the existence of several directives that may apply to
the current URI. These include Alias , ScriptAlias, Redirect, AliasMatch, and other
directives. If it finds one, it uses the directive's value to map the URI to a file or
directory somewhere on the server's physical filesystem. Otherwise, the request falls
through to the default URI translation handler, which simply appends the URI to the
value of the DocumentRoot configuration directive, forming a file path relative to the
document root.

The optional mod_rewrite module implements a much more comprehensive URI
translator that allows you to slice and dice URIs in various interesting ways. It is
extremely powerful but uses a series of pattern matching conditions and substitution
rules that can be difficult to get right.

Once a translation handler has done its work, Apache walks along the returned
filename path in the manner described in Chapter 4, finding where the path part of
the URI ends and the additional path information begins. This phase of processing is
performed internally and cannot be modified by the module API.

In addition to their intended role in transforming URIs, translation handlers are
sometimes used to associate certain types of URIs with specific upstream handlers.
We'll see examples of this later in the chapter when we discuss creating custom proxy
services in the section Section 7.9."

7.3.1 A Very Simple Translation Handler

Let's look at an example. Many of the documents browsed on a web site are files that
are located under the configured DocumentRoot. That is, the requested URI is a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are located under the configured DocumentRoot. That is, the requested URI is a
filename relative to a directory on the hard disk. Just so you can see how simple a
translation handler's job can be, we present a Perl version of Apache's default
translation handler found in the http_core module.

package Apache::DefaultTrans;

use Apache::Constants qw(:common BAD_REQUEST);
use Apache::Log ();

sub handler {
 my $r = shift;
 my $uri = $r->uri;

 if($uri !~ m:^/: or index($uri, '*')) {
 $r->log->error("Invalid URI in request ", $r->the_request);
 return BAD_REQUEST;
 }

 $r->filename($r->document_root . $r->uri);

 return OK;
}

1;
__END__

The handler begins by subjecting the requested URI to a few sanity checks, making
sure that it begins with a slash and doesn't contain any * characters. If the URI fails
these tests, we log an error message and return BAD_REQUEST. Otherwise, all is well
and we join together the value of the DocumentRoot directive (retrieved by calling the
request object's document_root() method) and the URI to create the complete file
path. The file path is now written into the request object by passing it to the filename()
method.

We don't check at this point whether the file exists or can be opened. This is the job of
handlers further down the request chain.

To install this handler, just add the following directive to the main part of your
perl.conf configuration file (or any other Apache configuration file, if you prefer) :

PerlTransHandler Apache::DefaultTrans

Beware. You probably won't want to keep this handler installed for long. Because it
overrides other translation handlers, you'll lose the use of Alias, ScriptAlias, and other
standard directives.

7.3.2 A Practical Translation Handler

Here's a slightly more complex example. Consider a web-based system for archiving
software binaries and source code. On a nightly basis an automated system will copy
changed and new files from a master repository to multiple mirror sites. Because of
the vagaries of the Internet, it's important to confirm that the entire file, and not just a
fragment of it, is copied from one mirror site to the other.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One technique for solving this problem would be to create an MD5 checksum for each
file and store the information on the repository. After the mirror site copies the file, it
checksums the file and compares it against the master checksum retrieved from the
repository. If the two values match, then the integrity of the copied file is confirmed.

In this section, we'll begin a simple system to retrieve precomputed MD5 checksums
from an archive of files. To retrieve the checksum for a file, you simply append the
extension .cksm to the end of its URI. For example, if the archived file you wish to
retrieve is:

/archive/software/cookie_cutter.tar.gz

then you can retrieve a text file containing its MD5 checksum by fetching this URI:

/archive/software/cookie_cutter.tar.gz.cksm

The checksum files will be precomputed and stored in a physical directory tree that
parallels the document hierarchy. For example, if the document itself is physically
stored in:

/home/httpd/htdocs/archive/software/cookie_cutter.tar.gz

then its checksum will be stored in a parallel tree in this file:

/home/httpd/checksums/archive/software/cookie_cutter.tar.gz

The job of the URI translation handler is to map requests for /file/path/filename.cksm
files into the physical file /home/httpd/checksums/file/path/filename. When called from
a browser, the results look something like the screenshot in Figure 7.1.

Figure 7.1. A checksum file retrieved by Apache::Checksum1

As often happens with Perl programs, the problem takes longer to state than to solve.
Example 7.1 shows a translation handler, Apache::Checksum1 , that accomplishes
this task. The structure is similar to other Apache Perl modules. After the usual
preamble, the handler() subroutine shifts the Apache request object off the call stack
and uses it to recover the URI of the current request, which is stashed in the local
variable $uri. The subroutine next looks for a configuration directive named
ChecksumDir which defines the top of the tree where the checksums are to be found.
If defined, handler() stores the value in a local variable named $cksumdir.
Otherwise, it assumes a default value defined in DEFAULT_CHECKSUM_DIR.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Otherwise, it assumes a default value defined in DEFAULT_CHECKSUM_DIR.

Now the subroutine checks whether this URI needs special handling. It does this by
attempting a string substitution which will replace the .cksm URI with a physical path
to the corresponding file in the checksums directory tree. If the substitution returns a
false value, then the requested URI does not end with the .cksm extension and we
return DECLINED. This leaves the requested URI unchanged and allows Apache's
other translation handlers to work on it. If, on the other hand, the substitution returns a
true result, then $uri holds the correct physical pathname to the checksum file. We
call the request object's filename() method to set the physical path returned to
Apache and return OK. This tells Apache that the URI was successfully translated and
prevents any other translation handlers from being called.

Example 7.1. A URI Translator for Checksum Files

package Apache::Checksum1;
file: Apache/Checksum1.pm
use strict;
use Apache::Constants qw(:common);
use constant DEFAULT_CHECKSUM_DIR => '/usr/tmp/checksums';

sub handler {
 my $r = shift;
 my $uri = $r->uri;
 my $cksumdir = $r->dir_config('ChecksumDir') || DEFAULT_CHECKSUM_DIR;
 $cksumdir = $r->server_root_relative($cksumdir);
 return DECLINED unless $uri =~ s!^(.+)\.cksm$!$cksumdir$1!;
 $r->filename($uri);
 return OK;
}

1;
__END__

The configuration for this translation handler should look something like this:

checksum translation handler directives
PerlTransHandler Apache::Checksum1
PerlSetVar ChecksumDir /home/httpd/checksums
<Directory /home/httpd/checksums>
 ForceType text/plain
</Directory>

This configuration declares a URI translation handler with the PerlTransHandler
directive and sets the Perl configuration variable ChecksumDir to
/home/httpd/checksums, the top of the checksum tree. We also need a <Directory>
section to force all files in the checksums directory to be of type text/plain. Otherwise,
the default MIME type checker will try to use each checksum file's extension to
determine its MIME type.

There are a couple of important points about this configuration section. First, the
PerlTransHandler and PerlSetVar directives are located in the main section of the
configuration file, not in a <Directory>, <Location>, or <Files> section. This is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

configuration file, not in a <Directory>, <Location>, or <Files> section. This is
because the URI translation phase runs very early in the request processing cycle,
before Apache has a definite URI or file path to use in selecting an appropriate
<Directory>, <Location>, or <Files> section to take its configuration from. For the
same reason, PerlTransHandler is not allowed in .htaccess files, although you can
use it in virtual host sections.

The second point is that the ForceType directive is located in a <Directory> section
rather than in a <Location> block. The reason for this is that the <Location> section
refers to the requested URI, which is not changed by this particular translation
handler. To apply access control rules and other options to the physical file path
returned by the translation handler, you must use <Directory> or <Files>.

To set up the checksum tree, you'll have to write a script that will recurse through the
web document hierarchy (or a portion of it) and create a mirror directory of checksum
files. In case you're interested in implementing a system like this one, Example 7.2
gives a short script named checksum.pl that does this. It uses the File::Find module to
walk the tree of source files, the MD5 module to generate MD5 checksums, and
File::Path and File::Basename for filename manipulations. New checksum files are
only created if the checksum file doesn't exist or the modification time of the source
file is more recent than that of an existing checksum file.

You call the script like this:

% checksum.pl -source ~www/htdocs -dest ~www/checksums
Replace ~www/htdocs and ~www/checksums with the paths to the web document
tree and the checksums directory on your system.

Example 7.2. checksum.pl Creates a Parallel Tree of Checksum Files

#!/usr/local/bin/perl

use File::Find;
use File::Path;
use File::Basename;
use IO::File;
use MD5;
use Getopt::Long;
use strict;
use vars qw($SOURCE $DESTINATION $MD5);

GetOptions('source=s' => \$SOURCE,
 'destination=s' => \$DESTINATION) || die <<USAGE;
Usage: $0
 Create a checksum tree.
Options:
 -source <path> File tree to traverse [.]
 -destination <path> Destination for checksum tree [TMPDIR]
Option names may be abbreviated.
USAGE

$SOURCE ||= '.';
$DESTINATION ||= $ENV{TMPDIR} || '/tmp';
die "Must specify absolute destination directory" unless $DESTINATION=~m!^/!;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

die "Must specify absolute destination directory" unless $DESTINATION=~m!^/!;
$MD5 = new MD5;

find(\&wanted,$SOURCE);

This routine is called for each node (directory or file) in the
source tree. On entry, $_ contains the filename,
and $File::Find::name contains its full path.
sub wanted {
 return unless -f $_ && -r _;
 my $modtime = (stat _)[9];
 my ($source,$dest,$url);
 $source = $File::Find::name;
 ($dest = $source)=~s/^$SOURCE/$DESTINATION/o;
 return if -e $dest && $modtime <= (stat $dest)[9];
 ($url = $source) =~s/^$SOURCE//o;
 make_checksum($_,$dest,$url);
}

This routine is called with the source file, the destination in which
to write the checksum, and a URL to attach as a comment to the checksum.
sub make_checksum {
 my ($source,$dest,$url) = @_;
 my $sfile = IO::File->new($source) || die "Couldn't open $source: $!\n";
 mkpath dirname($dest); # create the intermediate directories
 my $dfile = IO::File->new(">$dest") || die "Couldn't open $dest: $!\n";
 $MD5->reset;
 $MD5->addfile($sfile);
 print $dfile $MD5->hexdigest(),"\t$url\n"; # write the checksum
}

_ _END_ _

7.3.3 Using a Translation Handler to Change the URI

Instead of completely translating a URI into a filename, a translation handler can
modify the URI itself and let other handlers do the work of completing the translation
into a physical path. This is very useful because it allows the handler to interoperate
with other URI translation directives such as Alias and UserDir.

To change the URI, your translation handler should set it with the Apache request
object's uri() method instead of (or in addition to) the filename() method $r-
>uri($new_uri);.

After changing the URI, your handler should then return DECLINED, not OK. This may
seem counter-intuitive. However, by returning DECLINED, your translation handler is
telling Apache that it has declined to do the actual work of matching the URI to a
filename and is asking Apache to pass the modified request on to other registered
translation handlers.

Example 7.3 shows a reworked version of the checksum translation handler that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7.3 shows a reworked version of the checksum translation handler that
alters the URI rather than sets the filename directly. The code is nearly identical to the
first version of this module, but instead of retrieving a physical directory path from a
PerlSetVar configuration variable named ChecksumDir, the handler looks for a
variable named ChecksumPath which is expected to contain the virtual (URI space)
directory in which the checksums can be found. If the variable isn't defined, then
/checksums is assumed. We perform the string substitution on the requested URI as
before. If the substitution succeeds, we write the modified URI back into the request
record by calling the request object's uri() method. We then return DECLINED so that
Apache will pass the altered request on to other translation handlers.

Example 7.3. A Translation Handler That Changes the URI

package Apache::Checksum2;
file: Apache/Checksum2.pm
use strict;
use Apache::Constants qw(:common);
use constant DEFAULT_CHECKSUM_PATH => '/checksums';

sub handler {
 my $r = shift;
 my $uri = $r->uri;
 my $cksumpath = $r->dir_config('ChecksumPath') || DEFAULT_CHECKSUM_PATH;
 return DECLINED unless $uri =~ s!^(.+)\.cksm$!$cksumpath$1!;
 $r->uri($uri);
 return DECLINED;
}

1;
__END__

The configuration file entries needed to work with Apache::Checksum2 are shown
below. Instead of passing the translation handler a physical path in the ChecksumDir
variable, we use ChecksumPath to pass a virtual URI path. The actual translation
from a URI to a physical path is done by the standard mod_alias module from
information provided by an Alias directive. Another point to notice is that because the
translation handler changed the URI, we can now use a <Location> section to force
the type of the checksum files to text/plain.

PerlTransHandler Apache::Checksum2
PerlSetVar ChecksumPath /checksums
Alias /checksums/ /home/www/checksums/
<Location /checksums>
 ForceType text/plain
</Location>

In addition to interoperating well with other translation directives, this version of the
checksum translation handler deals correctly with the implicit retrieval of index.html
files when the URI ends in a directory name. For example, retrieving the partial URI
/archive/software/.cksm will be correctly transformed into a request for
/home/httpd/checksums/archive/software/index.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On the downside, this version of the translation module may issue potentially
confusing error messages if a checksum file is missing. For example, if the user
requests URI /archive/software/index.html.cksm and the checksum file is not present,
Apache's default "Not Found" error message will read, "The requested URL
/checksums/archive/software/index.html was not found on this server." The user may
be confused to see an error message that refers to a URI other than the one he
requested.

Another example of altering the URI on the fly can be found in Chapter 5, where we
used a translation handler to manage session IDs embedded in URIs. This handler
copies the session ID from the URI into an environment variable for later use by the
content handler, then strips the session ID from the URI and writes it back into the
request record.

7.3.4 Installing a Custom Response Handler in the URI Translation Phase

In addition to its official use as the place to modify the URI and filename of the
requested document, the translation phase is also a convenient place to set up
custom content handlers for particular URIs. To continue with our checksum example,
let's generate the checksum from the requested file on the fly rather than using a
precomputed value. This eliminates the need to maintain a parallel directory of
checksum files but adds the cost of additional CPU cycles every time a checksum is
requested.

Example 7.4 shows Apache::Checksum3. It's a little longer than the previous
examples, so we'll step through it a chunk at a time.

package Apache::Checksum3;
file: Apache/Checksum3.pm
use strict;
use Apache::Constants qw(:common);
use Apache::File ();
use MD5 ();

my $MD5 = MD5->new;

Because this module is going to produce the MD5 checksum itself, we bring in the
Apache::File and MD5 modules. We then create a file-scoped lexical MD5 object that
will be used within the package to generate the MD5 checksums of requested files.

sub handler {
 my $r = shift;
 my $uri = $r->uri;
 return DECLINED unless $uri =~ s/\.cksm$//;
 $r->uri($uri);

We define two subroutines. The first, named handler(), is responsible for the
translation phase of the request. Like its predecessors, this subroutine recovers the
URI from the request object and looks for the telltale .cksm extension. However,
instead of constructing a new path that points into the checksums directory, we simply
strip off the extension and write the modified path back into the request record.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$r->handler("perl-script");
 $r->push_handlers(PerlHandler => \&checksum_handler);
 return DECLINED;
}

Now the interesting part begins. We set the request's content handler to point to the
second subroutine in the module, checksum_handler(). This is done in two phases.
First we call $r->handler("perl-script") to tell Apache to invoke the Perl
interpreter for the content phase of the request. Next we call push_handlers() to tell
Perl to call our checksum_handler() method when the time comes. Together, these
routines have the same effect as the configuration directives SetHandler and
PerlHandler. Our work done, we return a result code of DECLINED in order to let the
other translation handlers do their job.

Apache will now proceed as usual through the authorization, authentication, MIME
type checking, and fixup phases until it gets to the content phase, at which point
Apache::Checksum3 will be reentered through the checksum_handler() routine:

sub checksum_handler {
 my $r = shift;
 my $file = $r->filename;
 my $sfile = Apache::File->new($file) || return DECLINED;
 $r->content_type('text/plain');
 $r->send_http_header;
 return OK if $r->header_only;
 $MD5->reset;
 $MD5->addfile($sfile);
 $r->print($MD5->hexdigest(),"\t",$r->uri,"\n");
 return OK;
}

Like the various content handlers we saw in Chapter 4, checksum_handler() calls
the request object's filename() method to retrieve the physical filename and attempts
to open it, returning DECLINED in case of an error. The subroutine sets the content
type to text/plain and sends the HTTP header. If this is a HEAD request, we return.
Otherwise, we invoke the MD5 module's reset() method to clear the checksum
algorithm, call addfile() to process the contents of the file, and then hexdigest() to emit
the checksum.

Because this module is entirely self-contained, it has the simplest configuration of
them all:

PerlTransHandler Apache::Checksum3

Like other PerlTransHandler directives, this one must be located in the main part of
the configuration file or in a virtual host section.

Example 7.4. Calculating Checksums on the Fly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package Apache::Checksum3;
file: Apache/Checksum3.pm
use strict;
use Apache::Constants qw(:common);
use Apache::File ();
use MD5 ();

my $MD5 = MD5->new;

sub handler {
 my $r = shift;
 my $uri = $r->uri;
 return DECLINED unless $uri =~ s/\.cksm$//;
 $r->uri($uri);
 $r->handler("perl-script");
 $r->push_handlers(PerlHandler => \&checksum_handler);
 return DECLINED;
}

sub checksum_handler {
 my $r = shift;
 my $file = $r->filename;
 my $sfile = Apache::File->new($file) || return DECLINED;
 $r->content_type('text/plain');
 $r->send_http_header;
 return OK if $r->header_only;
 $MD5->reset;
 $MD5->addfile($sfile);
 $r->print($MD5->hexdigest(),"\t",$r->uri,"\n");
 return OK;
}

1;
__END__

Don't think that you must always write a custom translation handler in order to gain
control over the URI translation phase. The powerful mod_rewrite module gives you
great power to customize this phase. For example, by adding a mod_rewrite
RewriteRule directive, you can define a substitution rule that transforms requests for
.cksm URIs into requests for files in the checksum directory, doing in a single line
what our first example of a translation handler did in 17.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.4 The Header Parser Phase

After Apache has translated the URI into a filename, it enters the header parser
phase. This phase gives handlers a chance to examine the incoming request header
and to take special action, perhaps altering the headers on the fly (as we will do
below to create an anonymous proxy server) or blocking unwanted transactions at an
early stage. For example, the header parser phase is commonly used to block
unwanted robots before they consume the server resources during the later phases.
You could use the Apache::BlockAgent module, implemented as an access handler in
the last chapter, to block robots during this earlier phase.

Header parser handlers are installed with the PerlHeaderParserHandler. Because the
URI has been mapped to a filename at this point, the directive is allowed in .htaccess
files and directory configuration sections, as well as in the main body of the
configuration files. All registered header parser handlers will be run unless one
returns an error code or DONE.

When PerlInitHandler is used within a directory section or a .htaccess file, it acts as
an alias for PerlHeaderParserHeader.

7.4.1 Implementing an Unsupported HTTP Method

One nontrivial use for the header parser phase is to implement an unsupported HTTP
request method. The Apache server handles the most common HTTP methods, such
as GET, HEAD, and POST. Apache also provides hooks for managing the less
commonly used PUT and DELETE methods, but the work of processing the method
is left to third-party modules to implement. In addition to these methods, there are
certain methods that are part of the HTTP/1.1 draft that are not supported by Apache
at this time. One such method is PATCH, which is used to change the contents of a
document on the server side by applying a "diff" file provided by the client.[2]

[2] Just two weeks prior to the production stage of this book, Script support for the PATCH method was added in
Apache 1.3.4-dev.

This section will show how to extend the Apache server to support the PATCH
method. The same techniques can be used to experiment with other parts of HTTP
drafts or customize the HTTP protocol for special applications.

If you've never worked with patch files, you'll be surprised at how insanely useful they
are. Say you have two versions of a large file, an older version named file.1.html and
a newer version named file.2.html. You can use the Unix diff command to compute
the difference between the two, like this:

% diff file.1.html file.2.html > file.diff
When diff is finished, the output file, file.diff, will contain only the lines that have
changed between the two files, along with information indicating the positions of the
changed lines in the files. You can examine a diff file in a text editor to see how the
two files differ. More interestingly, however, you can use Larry Wall's patch program
to apply the diff to file.1.html, transforming it into a new file identical to file.2.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to apply the diff to file.1.html, transforming it into a new file identical to file.2.html.
patch is simple to use:

% patch file.1.html < file.diff
Because two versions of the same file tend to be more similar than they are different,
diff files are usually short, making it much more efficient to send the diff file around
than the entire new version. This is the rationale for the HTTP/1.1 PATCH method. It
complements PUT, which is used to transmit a whole new document to the server, by
sending what should be changed between an existing document and a new one.
When a client requests a document with the PATCH method, the URI it provides
corresponds to the file to be patched, and the request's content is the diff file to be
applied.

Example 7.5 gives the code for the PATCH handler, appropriately named
Apache::PATCH . It defines both the server-side routines for accepting PATCH
documents, and a small client-side program to use for submitting patch files to the
server.

package Apache::PATCH;
file: Apache/PATCH.pm

use strict;
use vars qw($VERSION @EXPORT @ISA);
use Apache::Constants qw(:common BAD_REQUEST);
use Apache::File ();
use File::Basename 'dirname';

@ISA = qw(Exporter);
@EXPORT = qw(PATCH);
$VERSION = '1.00';

use constant PATCH_TYPE => 'application/diff';
my $PATCH_CMD = "/usr/local/bin/patch";

We begin by pulling in required modules, including Apache::File and File::Basename.
We also bring in the Exporter module. This is not used by the server-side routines but
is needed by the client-side library to export the PATCH() subroutine. We now declare
some constants, including a MIME type for the submitted patch files, the location of
the patch program on our system, and two constants that will be used to create
temporary scratch files.

The main entry point to server-side routines is through a header parsing phase
handler named handler(). It detects whether the request uses the PATCH method
and, if so, installs a custom response handler to deal with it. This means we install the
patch routines with this configuration directive:

PerlHeaderParserHandler Apache::PATCH

The rationale for installing the patch handler with the PerlHeaderParserHandler
directive rather than PerlTransHandler is that we can use the former directive within
directory sections and .htaccess files, allowing us to make the PATCH method active
only for certain parts of the document tree.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The definition of handler() is simple:

sub handler {
 my $r = shift;
 return DECLINED unless $r->method eq 'PATCH';
 unless ($r->some_auth_required) {
 $r->log_reason("Apache::PATCH requires access control");
 return FORBIDDEN;
 }
 $r->handler("perl-script");
 $r->push_handlers(PerlHandler => \&patch_handler);
 return OK;
}

We recover the request object and call method() to determine whether the request
method equals PATCH. If not, we decline the transaction. Next we perform a simple
but important security check. We call some_auth_required() to determine whether the
requested URI is under password protection. If the document is not protected, we log
an error and return a result code of FORBIDDEN. This is a hardwired insurance that
the file to be patched is protected in some way using any of the many authentication
modules available to Apache (see Chapter 6, for a few).

If the request passes the checks, we adjust the content handler to be the
patch_handler() subroutine by calling the request object's handler() and
push_handlers() methods. This done, we return OK, allowing other installed header
parsers to process the request.

The true work of the module is done in the patch_handler() subroutine, which is called
during the response phase:

sub patch_handler {
 my $r = shift;

 return BAD_REQUEST
 unless lc($r->header_in("Content-type")) eq PATCH_TYPE;

This subroutine recovers the request object and immediately checks the content type
of the submitted data. Unless the submitted data has MIME type application/diff,
indicating a diff file, we return a result code of BAD_REQUEST.

get file to patch
 my $filename = $r->filename;
 my $dirname = dirname($filename);
 my $reason;
 do {
 -e $r->finfo or $reason = "$filename does not exist", last;
 -w _ or $reason = "$filename is not writable", last;
 -w $dirname or $reason = "$filename directory is not writable", last;
 };
 if ($reason) {
 $r->log_reason($reason);
 return FORBIDDEN;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

Next we check whether the patch operation is likely to succeed. In order for the patch
program to work properly, both the file to be patched and the directory that contains it
must be writable by the current process.[3] This is because patch creates a temporary
file while processing the diff and renames it when it has successfully completed its
task. We recover the filename corresponding to the request and the name of the
directory that contains it. We then subject the two to a series of file tests. If any of the
tests fails, we log the error and return FORBIDDEN.

[3] In order for the PATCH method to work you will have to make the files and directories to be patched writable by the
web server process. You can do this either by making the directories world-writable, or by changing their user or group
ownerships so that the web server has write permission. This has security implications, as it allows buggy CGI scripts
and other web server security holes to alter the document tree. A more secure solution would be to implement PATCH
using a conventional CGI script running under the standard Apache suexec extension, or the sbox CGI wrapper
(http://stein.cshl.org/WWW/software/sbox).

get patch data
 my $patch;
 $r->read($patch, $r->header_in("Content-length"));

 # new temporary file to hold output of patch command
 my($tmpname, $patch_out) = Apache::File->tmpfile;
 unless($patch_out) {
 $r->log_reason("can't create temporary output file: $!");
 return FORBIDDEN;
 }

The next job is to retrieve the patch data from the request. We do this using the
request object's read() method to copy Content-length bytes of patch data from the
request to a local variable named $patch. We are about to call the patch command,
but before we do so we must arrange for its output (both standard output and
standard error) to be saved to a temporary file so that we can relay the output to the
user. We call the Apache::File method tmpfile() to return a unique temporary
filename. We store the temporary file's name and handle into variables named
$tmpname and $patch_out, respectively. If for some reason tmpfile() is unable to
open a temporary file, it will return an empty list. We log the error and return
FORBIDDEN.

redirect child processes stdout and stderr to temporary file
 open STDOUT, ">&=" . fileno($patch_out);

We want the output from patch to go to the temporary file rather than to standard
output (which was closed by the parent server long, long ago). So we reopen
STDOUT, using the >&= notation to open it on the same file descriptor as
$patch_out.[4] See the description of open() in the perlfunc manual page for a more
detailed description of this facility.

[4] Why not just redirect the output of patch to the temporary file by invoking patch with the >$tmpname notation?
Because this leaves us exposed to a race condition in which some other process replaces the temporary file with a link
to a more important file. When patch writes to this file, it inadvertently clobbers it. Arranging for patch to write directly to
the filehandle returned by tmpfile() avoids this trap.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

open a pipe to the patch command
 local $ENV{PATH}; #keep -T happy
 my $patch_in = Apache::File->new("| $PATCH_CMD $filename 2>&1");
 unless ($patch_in) {
 $r->log_reason("can't open pipe to $PATCH_CMD: $!");
 return FORBIDDEN;
 }

At this point we open up a pipe to the patch command and store the pipe in a new
filehandle named $patch_in. We call patch with a single command-line argument,
the name of the file to change stored in $filename. The piped open command also
uses the 2>&1 notation, which is the Bourne shell's arcane way of indicating that
standard error should be redirected to the same place that standard output is
directed, which in this case is to the temporary file. If we can't open the pipe for some
reason, we log the error and exit.

write data to the patch command
 print $patch_in $patch;
 close $patch_in;
 close $patch_out;

We now print the diff file to the patch pipe. patch will process the diff file and write its
output to the temporary file. After printing, we close the command pipe and the
temporary filehandle.

$patch_out = Apache::File->new($tmpname);

 # send the result to the user
 $r->send_http_header("text/plain");
 $r->send_fd($patch_out);
 close $patch_out;

 return OK;
}

The last task is to send the patch output back to the client. We send the HTTP
header, using the convenient form that allows us to set the MIME type in a single
step. We now send the contents of the temporary file using the request method's
send_fd() method. Our work done, we close the temporary filehandle and return OK.[5]

[5] Users interested in the HTTP PATCH method should also be aware of the IETF WebDAV (Distributed Authoring
and Versioning) standard at http://www.ics.uci.edu/pub/ietf/webdav/ and Greg Stein's Apache module
implementation of these protocol extensions at http://www.lyra.org/greg/mod_dav/.

Example 7.5. Implementing the PATCH Method

package Apache::PATCH;
file: Apache/PATCH.pm

use strict;
use vars qw($VERSION @EXPORT @ISA);
use Apache::Constants qw(:common BAD_REQUEST);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use Apache::Constants qw(:common BAD_REQUEST);
use Apache::File ();
use File::Basename 'dirname';

@ISA = qw(Exporter);
@EXPORT = qw(PATCH);
$VERSION = '1.00';

use constant PATCH_TYPE => 'application/diff';
my $PATCH_CMD = "/usr/local/bin/patch";

sub handler {
 my $r = shift;
 return DECLINED unless $r->method eq 'PATCH';
 unless ($r->some_auth_required) {
 $r->log_reason("Apache::PATCH requires access control");
 return FORBIDDEN;
 }
 $r->handler("perl-script");
 $r->push_handlers(PerlHandler => \&patch_handler);
 return OK;
}

sub patch_handler {
 my $r = shift;

 return BAD_REQUEST
 unless lc($r->header_in("Content-type")) eq PATCH_TYPE;

 # get file to patch
 my $filename = $r->filename;
 my $dirname = dirname($filename);
 my $reason;
 do {
 -e $r->finfo or $reason = "$filename does not exist", last;
 -w _ or $reason = "$filename is not writable", last;
 -w $dirname or $reason = "$filename directory is not writable", last;
 };
 if ($reason) {
 $r->log_reason($reason);
 return FORBIDDEN;
 }

 # get patch data
 my $patch;
 $r->read($patch, $r->header_in("Content-length"));

 # new temporary file to hold output of patch command
 my($tmpname, $patch_out) = Apache::File->tmpfile;
 unless($patch_out) {
 $r->log_reason("can't create temporary output file: $!");
 return FORBIDDEN;
 }

 # redirect child processes stdout and stderr to temporary file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # redirect child processes stdout and stderr to temporary file
 open STDOUT, ">&=" . fileno($patch_out);

 # open a pipe to the patch command
 local $ENV{PATH}; #keep -T happy
 my $patch_in = Apache::File->new("| $PATCH_CMD $filename 2>&1");
 unless ($patch_in) {
 $r->log_reason("can't open pipe to $PATCH_CMD: $!");
 return FORBIDDEN;
 }
 # write data to the patch command
 print $patch_in $patch;
 close $patch_in;
 close $patch_out;

 $patch_out = Apache::File->new($tmpname);

 # send the result to the user
 $r->send_http_header("text/plain");
 $r->send_fd($patch_out);
 close $patch_out;

 return OK;
}

This part is for command-line invocation only.
my $opt_C;

sub PATCH {
 require LWP::UserAgent;
 @Apache::PATCH::ISA = qw(LWP::UserAgent);

 my $ua = __PACKAGE__->new;
 my $url;
 my $args = @_ ? \@_ : \@ARGV;

 while (my $arg = shift @$args) {
 $opt_C = shift @$args, next if $arg eq "-C";
 $url = $arg;
 }

 my $req = HTTP::Request->new('PATCH' => $url);

 my $patch = join '', <STDIN>;
 $req->content(\$patch);
 $req->header('Content-length' => length $patch);
 $req->header('Content-type' => PATCH_TYPE);
 my $res = $ua->request($req);

 if($res->is_success) {
 print $res->content;
 }
 else {
 print $res->as_string;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print $res->as_string;
 }
}

sub get_basic_credentials {
 my($self, $realm, $uri) = @_;
 return split ':', $opt_C, 2;
}

1;
__END__

At the time this chapter was written, no web browser or publishing system had
actually implemented the PATCH method. The remainder of the listing contains code
for implementing a PATCH client. You can use this code from the command line to
send patch files to servers that have the PATCH handler installed and watch the
documents change in front of your eyes.

The PATCH client is simple, thanks to the LWP library. Its main entry point is an
exported subroutine named PATCH() :

sub PATCH {
 require LWP::UserAgent;
 @Apache::PATCH::ISA = qw(LWP::UserAgent);

 my $ua = __PACKAGE__->new;
 my $url;
 my $args = @_ ? \@_ : \@ARGV;

 while (my $arg = shift @$args) {
 $opt_C = shift @$args, next if $arg eq "-C";
 $url = $arg;
 }

PATCH() starts by creating a new LWP user agent using the subclassing technique
discussed later in the Apache::AdBlocker module (see Section 7.9" in this chapter).
It recovers the authentication username and password from the command line by
looking for a -C (credentials) switch, which is then stored into a package lexical
named $opt_C. The subroutine shifts the URL of the document to patch off the
command line and store it in $url.

my $req = HTTP::Request->new('PATCH' => $url);

 my $patch = join '', <STDIN>;
 $req->content(\$patch);
 $req->header('Content-length' => length $patch);
 $req->header('Content-type' => PATCH_TYPE);
 my $res = $ua->request($req);

The subroutine now creates a new HTTP::Request object that specifies PATCH as its
request method and sets its content to the diff file read in from STDIN. It also sets the
Content-length and Content-type HTTP headers to the length of the diff file and
application/diff, respectively. Having set up the request, the subroutine sends the
request to the remote server by calling the user agent's request() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if($res->is_success) {
 print $res->content;
 }
 else {
 print $res->as_string;
 }
}

If the response indicates success (is_success() returns true) then we print out the text
of the server's response. Otherwise, the routine prints the error message contained in
the response object's as_string() method.

sub get_basic_credentials {
 my($self, $realm, $uri) = @_;
 return split ':', $opt_C, 2;
}

The get_basic_credentials() method, defined at the bottom of the source listing, is
actually an override of an LWP::UserAgent method. When LWP::UserAgent tries to
access a document that is password-protected, it invokes this method to return the
username and password required to fetch the resource. By subclassing
LWP::UserAgent into our own package and then defining a get_basic_credentials()
method, we're able to provide our parent class with the contents of the $opt_C
command-line switch.

To run the client from the command line, invoke it like this:

% perl -MApache::PATCH -e PATCH -- -C username : password \
 http://www.modperl.com/index.html < index.html.diff
Hmm... Looks like a new-style context diff to me...
The text leading up to this was:

|*** index.html.new Mon Aug 24 21:52:29 1998
--- index.html Mon Aug 24 21:51:06 1998
Patching file /home/httpd/htdocs/index.html using Plan A...
Hunk #1 succeeded at 8.
done

A tiny script named PATCH that uses the module can save some typing:

#!/usr/local/bin/perl

use Apache::PATCH;
PATCH;

__END__

Now the command looks like this:

% PATCH -C username:password \
 http://www.modperl.com/index.html < index.html.diff

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 http://www.modperl.com/index.html < index.html.diff
only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.5 Customizing the Type Checking Phase

Following the successful completion of the access control and authentication steps (if
configured), Apache tries to determine the MIME type (e.g., image/gif) and encoding
type (e.g., x-gzip) of the requested document. The types and encodings are usually
determined by filename extensions. (The term "suffix" is used interchangeably with
"extension" in the Apache source code and documentation.) Table 7.1 lists a few
common examples.

Table 7.1. MIME Types and Encodings for Common File Extensions
MIME types
extension type

.txt text/plain

.html, .htm text/html

.gif image/gif

.jpg, .jpeg image/jpeg

.mpeg, .mpg video/mpeg
pdf application/pdf
Encodings
extension encoding
.gz x-gzip
.Z x-compress

By default, Apache's type checking phase is handled by the standard mod_mime
module, which combines the information stored in the server's conf/mime.types file
with AddType and AddEncoding directives to map file extensions onto MIME types
and encodings.

The contents of the request record's content_type field are used to set the default
outgoing Content-Type header, which the client uses to decide how to render the
document. However, as we've seen, content handlers can, and often do, change the
content type during the later response phase.

In addition to its responsibility for choosing MIME and encoding types for the
requested document, the type checking phase handler also performs the crucial task
of selecting the content handler for the document. mod_mime looks first for a
SetHandler directive in the current directory or location. If one is set, it uses that
handler for the requested document. Otherwise, it dispatches the request based on
the MIME type of the document. This process was described in more detail at the
beginning of Chapter 4. Also see Section 8.2.7, where we reproduce all of
mod_mime 's functionality with a Perl module.

7.5.1 A DBI-Based Type Checker

In this section, we'll show you a simple type checking handler that determines the
MIME type of the document on the basis of a DBI database lookup. Each record ofthe
database table will contain the name of the file, its MIME type, and its encoding.[6] If
no type is registered in the database, we fall through to the default mod_mime

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

no type is registered in the database, we fall through to the default mod_mime
handler.

[6] An obvious limitation of this module is that it can't distinguish between similarly named files in different directories.

This module, Apache::MimeDBI, makes use of the simple Tie::DBI class that was
introduced in the previous chapter. Briefly, this class lets you tie a hash to a relational
database table. The tied variable appears as a hash of hashes in which the outer
hash is a list of table records indexed by the table's primary key and the inner hash
contains the columns of that record, indexed by column name. To give a concrete
example, for the purposes of this module we'll set up a database table named
doc_types having this structure:

+----------+------------+------------+
| filename | mime_type | encoding |
+----------+------------+------------+
test1	text/plain	NULL
test2	text/html	NULL
test3	text/html	x-compress
test4	text/html	x-gzip
test5	image/gif	NULL
+----------+------------+------------+

Assuming that a hash named %DB is tied to this table, we'll be able to access its
columns in this way:

$type = $DB{'test2'}{'mime_type'};
$encoding = $DB{'test2'}{'encoding'};

Example 7.6 gives the source for Apache::MimeDBI.

package Apache::MimeDBI;
file Apache/MimeDBI.pm

use strict;
use Apache::Constants qw(:common);
use Tie::DBI ();
use File::Basename qw(basename);

use constant DEFAULT_DSN => 'mysql:test_www';
use constant DEFAULT_LOGIN => ':';
use constant DEFAULT_TABLE => 'doc_types';
use constant DEFAULT_FIELDS => 'filename:mime_type:encoding';

The module starts by pulling in necessary Perl libraries, including Tie::DBI and the
File::Basename filename parser. It also defines a series of default configuration
constants. DEFAULT_DSN is the default DBI data source to use, in the format
driver:database:host:port. DEFAULT_LOGIN is the username and password
for the web server to use to log into the database, separated by a : character. Both
fields are blank by default, indicating no password needs to be provided.
DEFAULT_TABLE is the name of the table in which to look for the MIME type and
encoding information. DEFAULT_FIELDS are the names of the filename, MIME type,
and encoding columns, again separated by the : character. These default values can
be overridden with the per-directory Perl configuration variables MIMEDatabase,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

be overridden with the per-directory Perl configuration variables MIMEDatabase,
MIME-Login, MIMETable, and MIMEFields.

sub handler {
 my $r = shift;

 # get filename
 my $file = basename $r->filename;

 # get configuration information
 my $dsn = $r->dir_config('MIMEDatabase') || DEFAULT_DSN;
 my $table = $r->dir_config('MIMETable') || DEFAULT_TABLE;
 my($filefield, $mimefield, $encodingfield) =
 split ':',$r->dir_config('MIMEFields') || DEFAULT_FIELDS;
 my($user, $pass) =
 split ':', $r->dir_config('MIMELogin') || DEFAULT_LOGIN;

The handler() subroutine begins by shifting the request object off the subroutine call
stack and using it to recover the requested document's filename. The directory part of
the filename is then stripped away using the basename() routine imported from
File::Basename. Next, we fetch the values of our four configuration variables. If any
are undefined, we default to the values defined by the previously declared constants.

tie my %DB, 'Tie::DBI', {
 'db' => $dsn, 'table' => $table, 'key' => $filefield,
 'user' => $user, 'password' => $pass,
 };
 my $record;

We now tie a hash named %DB to the indicated database by calling the tie() operator.
If the hash is successfully tied to the database, this routine will return a true value
(actually, an object reference to the underlying Tie::DBI object itself). Otherwise, we
return a value of DECLINED and allow other modules their chance at the MIME
checking phase.

return DECLINED unless tied %DB and $record = $DB{$file};

The next step is to check the tied hash to see if there is a record corresponding to the
current filename. If there is, we store the record in a variable named $record.
Otherwise, we again return DECLINED. This allows files that are not specifically
named in the database to fall through to the standard file extension-based MIME type
determination.

$r->content_type($record->{$mimefield});
 $r->content_encoding($record->{$encodingfield})
 if $record->{$encodingfield};

Since the file is listed in the database, we fetch the values of the MIME type and
encoding columns and write them into the request record by calling the request
object's content_type() and content_encoding(), respectively. Since most documents
do not have an encoding type, we only call content_encoding() if the column is
defined.

return OK;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

Our work is done, so we exit the handler subroutine with an OK status code.

At the end of the code listing is a short shell script which you can use to initialize a
test database named test_www. It will create the table shown in this example.

To install this module, add a PerlTypeHandler directive like this one to one of the
configuration files or a .htaccess file :

<Location /mimedbi>
 PerlTypeHandler Apache::MimeDBI
</Location>

If you need to change the name of the database, the login information, or the table
structure, be sure to include the appropriate PerlSetVar directives as well.

Figure 7.2 shows the automatic listing of a directory under the control of
Apache::MimeDBI. The directory contains several files. test1 through test5 are listed
in the database with the MIME types and encodings shown in the previous table.
Their icons reflect the MIME types and encodings returned by the handler subroutine.
This MIME type will also be passed to the browser when it loads and renders the
document. test6.html doesn't have an entry in the database, so it falls through to the
standard MIME checking module, which figures out its type through its file extension.
test7 has neither an entry in the database nor a recognized file extension, so it is
displayed with the "unknown document" icon. Without help from Apache::MimeDBI, all
the files without extensions would end up as unknown MIME types.

Figure 7.2. An automatic listing of a directory controlled by Apache::MimeDBI

If you use this module, you should be sure to install and load Apache::DBI during the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you use this module, you should be sure to install and load Apache::DBI during the
server startup phase, as described in Chapter 5. This will make the underlying
database connections persistent, dramatically decreasing the time necessary for the
handler to do its work.

Example 7.6. A DBI-Based MIME Type Checker

package Apache::MimeDBI;
file Apache/MimeDBI.pm

use strict;
use Apache::Constants qw(:common);
use Tie::DBI ();
use File::Basename qw(basename);

use constant DEFAULT_DSN => 'mysql:test_www';
use constant DEFAULT_LOGIN => ':';
use constant DEFAULT_TABLE => 'doc_types';
use constant DEFAULT_FIELDS => 'filename:mime_type:encoding';

sub handler {
 my $r = shift;

 # get filename
 my $file = basename $r->filename;

 # get configuration information
 my $dsn = $r->dir_config('MIMEDatabase') || DEFAULT_DSN;
 my $table = $r->dir_config('MIMETable') || DEFAULT_TABLE;
 my($filefield, $mimefield, $encodingfield) =
 split ':', $r->dir_config('MIMEFields') || DEFAULT_FIELDS;
 my($user, $pass) =
 split ':', $r->dir_config('MIMELogin') || DEFAULT_LOGIN;

 # pull information out of the database
 tie my %DB, 'Tie::DBI', {
 'db' => $dsn, 'table' => $table, 'key' => $filefield,
 'user' => $user, 'password' => $pass,
 };
 my $record;
 return DECLINED unless tied %DB and $record = $DB{$file};

 # set the content type and encoding
 $r->content_type($record->{$mimefield});
 $r->content_encoding($record->{$encodingfield})
 if $record->{$encodingfield};

 return OK;
}

1;
__END__

Here's a shell script to add the test data:
#!/bin/sh

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql test_www <<END
DROP TABLE doc_types;
CREATE TABLE doc_types (
 filename char(127) primary key,
 mime_type char(30) not null,
 encoding char(30)
);
INSERT into doc_types values ('test1','text/plain',null);
INSERT into doc_types values ('test2','text/html',null);
INSERT into doc_types values ('test3','text/html','x-compress');
INSERT into doc_types values ('test4','text/html','x-gzip');
INSERT into doc_types values ('test5','image/gif',null);

END

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.6 Customizing the Fixup Phase

The fixup phase is sandwiched between the type checking phase and the response
phase. It gives modules a last-minute chance to add information to the environment
or to modify the request record before the content handler is invoked. For instance,
the standard mod_usertrack module implements the CookieTracking directive in this
phase, adding a user-tracking cookie to the outgoing HTTP headers and recording a
copy of the incoming cookie to the notes table for logging purposes.

As an example of a useful Perl-based fixup handler, we'll look at Apache::HttpEquiv, a
module written by Rob Hartill and used here with his permission. The idea of
Apache::HttpEquiv is simple. The module scans the requested HTML file for any
<META> tags containing the HTTP-EQUIV and CONTENT attributes. The information
is then added to the outgoing HTTP headers.

For example, if the requested file contains this HTML:

<HTML>
<HEAD><TITLE>My Page</TITLE>
<META HTTP-EQUIV="Expires" CONTENT="Wed, 31 Jul 1998 16:40:00 GMT">
<META HTTP-EQUIV="Set-Cookie" CONTENT="open=sesame">

the handler will convert the <META> tags into these response headers:

Expires: Wed, 31 Jul 1998 16:40:00 GMT
Set-Cookie: open=sesame

Example 7.7 gives the succinct code for Apache::HttpEquiv. The handler() routine
begins by testing the current request for suitability. It returns with a status code of
DECLINED if any of the following are true:

The request is a subrequest.

The requested document's MIME type is something other than text/html.

The requested file cannot be opened.

The second item is the main reason that this module has to be run as a fixup handler.
Prior to this phase, the MIME type of the document is not known because the MIME
type checker hasn't yet run.

Next the handler scans through the requested file, line by line, looking for suitable
<META> tags. If any are found, the request object's header_out() method is called to
set the indicated header. To gain a little bit of efficiency, the subroutine aborts the
search early when a <BODY> or </HEAD> tag is encountered.

Once the file is completely scanned, the subroutine closes and return an OK status
code.

To configure Apache::HttpEquiv, add the following line to your configuration file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Location /httpequiv>
 PerlFixupHandler Apache::HttpEquiv
</Location>

Example 7.7. Apache::HttpEquiv Turns <META> Tags into HTTP Headers

package Apache::HttpEquiv;
file: Apache/HttpEquiv.pm
use strict;
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;
 local(*FILE);

 return DECLINED if # don't scan the file if..
 !$r->is_main # a subrequest
 || $r->content_type ne "text/html" # it isn't HTML
 || !open(FILE, $r->filename); # we can't open it

 while(<FILE>) {
 last if m!<BODY>|</HEAD>!i; # exit early if in BODY
 if (m/META HTTP-EQUIV="([^"]+)"\s+CONTENT="([^"]+)"/i) {
 $r->header_out($1 => $2);
 }
 }
 close(FILE);
 return OK;
}

1;

_ _END_ _

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.7 The Logging Phase

The very last phase of the transaction before the cleanup at the end is the logging
phase. At this point, the request record contains everything there is to know about the
transaction, including the content handler's final status code and the number of bytes
transferred from the server to the client.

Apache's built-in logging module mod_log_config ordinarily handles this phase by
writing a line of summary information to the transfer log. As its name implies, this
module is highly configurable. You can give it printf() -like format strings to customize
the appearance of the transfer log to your requirements, have it open multiple log
files, or even have it pipe the log information to an external process for special
processing.

By handling the logging phase yourself, you can perform special processing at the
end of each transaction. For example, you can update a database of cumulative hits,
bump up a set of hit count files, or notify the owner of a document that his page has
been viewed. There are a number of log handlers on CPAN, including
Apache::DBILogger , which sends log information to a relational database, and
Apache::Traffic, which keeps summaries of bytes transferred on a per-user basis.

7.7.1 Sending Email When a Page Is Hit

The first example of a log handler that we'll show is Apache::LogMail. It sends email
to a designated address whenever a particular page is hit and can be used in low-
volume applications, such as the vanity home pages of ISP customers. A typical
configuration directive would look like this:

<Location /~kryan>
 PerlLogHandler Apache::LogMail
 PerlSetVar LogMailto kryan@public.com
 PerlSetVar LogPattern \.(html|txt)$
</Location>

With this configuration in place, hits on pages in the /~kryan directory will generate
email messages. The LogMailto Perl configuration variable specifies
kryan@public.com as the lucky recipient of these messages, and LogPattern
specifies that only files ending with .html or .txt will generate messages (thus
eliminating noise caused by hits on inline images).

Example 7.8 shows the code. After the usual preliminaries, we define the logging
phase's handler() routine:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub handler {
 my $r = shift;

 my $mailto = $r->dir_config('LogMailto');
 return DECLINED unless $mailto;
 my $filepattern = $r->dir_config('LogPattern');
 return DECLINED if $filepattern
 && $r->filename !~ /$filepattern/;

The subroutine begins by fetching the contents of the LogMailto configuration
variable. If none is defined, it declines the transaction. Next it fetches the contents of
LogPattern. If it finds a pattern, it compares it to the requested document's filename
and again declines the transaction if no match is found.

my $request = $r->the_request;
 my $uri = $r->uri;
 my $agent = $r->header_in("User-agent");
 my $bytes = $r->bytes_sent;
 my $remote = $r->get_remote_host;
 my $status = $r->status_line;
 my $date = localtime;

Now the subroutine gathers up various fields of interest from the request object,
including the requested URI, the User-Agent header, the name of the remote host,
and the number of bytes sent (method bytes_sent()).

local $ENV{PATH}; #keep -T happy
 unless (open MAIL, "|/usr/lib/sendmail -oi -t") {
 $r->log_error("Couldn't open mail: $!");
 return DECLINED;
 }

We open a pipe to the sendmail program and use it to send a message to the
designated user with the information we've gathered.[7] The flags used to open up the
sendmail pipe instruct it to take the recipient's address from the header rather than
the command line and prevent it from terminating prematurely if it sees a line
consisting of a dot.

[7] sendmail is only available on Unix systems. If you are using Windows or Windows NT, you would be best served
by replacing the piped open with the appropriate calls to the Perl Net::SMTP module. You can find this module on
CPAN.

print MAIL <<END;
To: $mailto
From: mod_perl httpd <$from>
Subject: Somebody looked at $uri

At $date, a user at $remote looked at
$uri using the $agent browser.

The request was $request,
which resulted returned a code of $status.

$bytes bytes were transferred.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$bytes bytes were transferred.
END
 close MAIL;
 return OK;
}

All text that we print to the MAIL pipe is transferred to sendmail 's standard input. The
only trick here is to start the message with a properly formatted mail header with the
To:, From:, and Subject: fields followed by a blank line. When we close the pipe, the
mail is bundled up and sent off for delivery.

The final email message will look something like this:

From: Mod Perl <webmaster@public.com>
To: kryan@public.com
Subject: Somebody looked at /~kryan/guestbook.txt
Date: Thu, 27 Aug 1998 08:14:23 -0400

At Thu Aug 27 08:14:23 1998, a user at 192.168.2.1 looked at
/~kryan/guestbook.txt using the Mozilla/4.04 [en] (X11; I; Linux
2.0.33 i686) browser.

The request was GET /~kryan/guestbook.txt HTTP/1.0,
which resulted returned a code of 200 OK.

462 bytes were transferred.

Example 7.8. A Logging Module to Notify of Hits via Email

package Apache::LogMail;
File: Apache/LogMail.pm

use strict;
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;

 my $mailto = $r->dir_config('LogMailto');
 return DECLINED unless $mailto;

 my $filepattern = $r->dir_config('LogPattern');
 return DECLINED if $filepattern
 && $r->filename !~ /$filepattern/;

 my $request = $r->the_request;
 my $uri = $r->uri;
 my $agent = $r->header_in("User-agent");
 my $bytes = $r->bytes_sent;
 my $remote = $r->get_remote_host;
 my $status = $r->status_line;
 my $date = localtime;

 my $from = $r->server->server_admin || "webmaster";
 local $ENV{PATH}; #keep -T happy
 unless (open MAIL, "|/usr/lib/sendmail -oi -t") {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 unless (open MAIL, "|/usr/lib/sendmail -oi -t") {
 $r->log_error("Couldn't open mail: $!");
 return DECLINED;
 }

 print MAIL <<END;
To: $mailto
From: mod_perl httpd <$from>
Subject: Somebody looked at $uri

At $date, a user at $remote looked at
$uri using the $agent browser.

The request was $request,
which resulted returned a code of $status.

$bytes bytes were transferred.
END

 close MAIL;
 return OK;
}

1;
__END__

7.7.2 A DBI Database Logger

The second example of a log phase handler is a DBI database logger. The
information from the transaction is sent to a relational database using the DBI
interface. The record of each transaction is appended to the end of a relational table,
which can be queried and summarized in a myriad of ways using SQL.

This is a skeletal version of the much more complete Apache::DBILog and
Apache::DBILogConfig modules, which you should consult before rolling your own.

In preparation to use this module you'll need to set up a database with the appropriate
table definition. A suitable MySQL table named access_log is shown here:

+---------+--------------+------+-----+---------------------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+--------------+------+-----+---------------------+-------+
when	datetime			0000-00-00 00:00:00	
host	char(255)				
method	char(4)				
url	char(255)				
auth	char(50)	YES		NULL	
browser	char(50)	YES		NULL	
referer	char(255)	YES		NULL	
status	int(3)			0	
bytes	int(8)	YES		0	
+---------+--------------+------+-----+---------------------+-------+

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

+---------+--------------+------+-----+---------------------+-------+

This table can be created with the following script:

#!/bin/sh

mysql -B test_www <<END
create table access_log (
 when datetime not null,
 host varchar(255) not null,
 method varchar(4) not null,
 url varchar(255) not null,
 auth varchar(50),
 browser varchar(50),
 referer varchar(255),
 status smallint(3) default 0,
 bytes int(8)
);
END

The database must be writable by the web server, which should be provided with the
appropriate username and password to log in.

The code (Example 7.9) is short and very similar to the previous example, so we
won't reproduce it inline.

We begin by bringing in modules that we need, including DBI and the ht_time()
function from Apache::Util. Next we declare some constants defining the database,
table, and database login information. Since this is just a skeleton of a module, we
have hardcoded these values instead of taking them from PerlSetVar configuration
directives. You can follow the model of Apache::MimeDBI if you wish to make this
module more configurable.

The handler() subroutine recovers the request object and uses it to fetch all the
information we're interested in recording, which we store in locals. We also call
ht_time() to produce a nicely formatted representation of the request_time() in a
format that SQL accepts. We connect to the database and create a statement handle
containing a SQL INSERT statement. We invoke the statement handler's execute()
statement to write the information into the database, and return with a status code of
OK.

The only trick to this handler, which we left out of Apache::LogMail, is the use of the
last() to recover the request object. last() returns the final request object in a chain of
internal redirects and other subrequests. Usually there are no subrequests, and last()
just returns the main (first) request object, in which case the $orig and $r objects in
Apache::LogDBI would point to the same request record. In the event that a
subrequest did occur, for example, if a request for / was resolved to /index.html, we
want to log the request_time, uri, and status from the ultimate request.

Example 7.9. A DBI Database Log Handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

package Apache::LogDBI;
file: Apache/LogDBI.pm
use Apache::Constants qw(:common);

use strict;
use DBI ();
use Apache::Util qw(ht_time);

use constant DSN => 'dbi:mysql:test_www';
use constant DB_TABLE => 'access_log';
use constant DB_AUTH => ':';

sub handler {
 my $orig = shift;
 my $r = $orig->last;
 my $date = ht_time($orig->request_time, '%Y-%m-%d %H:%M:%S', 0);
 my $host = $r->get_remote_host;
 my $method = $r->method;
 my $url = $orig->uri;
 my $user = $r->connection->user;
 my $referer = $r->header_in('Referer');
 my $browser = $r->header_in('User-agent');
 my $status = $orig->status;
 my $bytes = $r->bytes_sent;

 my $dbh = DBI->connect(DSN, split ':', DB_AUTH) || die $DBI::errstr;
 my $sth = $dbh->prepare("INSERT INTO ${\DB_TABLE} VALUES(?,?,?,?,?,?,?,?,?)")
 || die $dbh->errstr;

 $sth->execute($date,$host,$method,$url,$user,
 $browser,$referer,$status,$bytes) || die $dbh->errstr;
 $sth->finish;
 return OK;
}

1;
__END__

This handler can be installed with the following configuration file directive:

PerlLogHandler Apache::LogDBI

You can place this directive in the main part of the configuration file in order to log all
accesses, or place it in a directory section if you're interested in logging a particular
section of the site only. An alternative is to install Apache::LogDBI as a cleanup
handler, as described in the next section.

Having web transactions logged to a relational database gives you the ability to pose
questions of great complexity. Just to give you a taste of what's possible, here are a
few useful SQL queries to try:

How many hits have I had to date, and how many total bytes transferred?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT count(*),sum(bytes) FROM access_log;

How many hits did I have the day before yesterday?

SELECT count(*) FROM access_log
 WHERE to_days(when)=to_days(now())-2;

How many hits have I had, grouped by hour of access?

SELECT date_format(when,'H') as hour,count(*) FROM access_log
 GROUP BY hour;

What URLs may be broken, and who is pointing at them?

SELECT url,referer,count(url) FROM access_log
 WHERE status=404
 GROUP BY url;

What are the top 10 most popular URLs on my site?

SELECT url,count(*) as count FROM access_log
 GROUP BY url
 ORDER BY count desc
 LIMIT 10;

What is my site's transfer rate, sorted by the hour of day?

SELECT date_format(when,'H') as hour,
 sum(bytes)/(60*60) as bytes_per_min
 FROM access_log

 GROUP BY hour;

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.8 Registered Cleanups

Although the logging phase is the last official phase of the request cycle, there is one
last place where modules can do work. This is the cleanup phase, during which any
code registered as a cleanup handler is called to perform any per-transaction tidying
up that the module may need to do.

Cleanup handlers can be installed in either of two ways. They can be installed by
calling the request object's register_cleanup() method with a reference to a
subroutine or method to invoke, or by using the PerlCleanupHandler directive to
register a subroutine from within the server configuration file. Here are some
examples:

within a module file
 $r->register_cleanup(sub { warn "server $$ done serving request\n" });

 # within a configuration file
 PerlModule Apache::Guillotine # make sure it's loaded
 PerlCleanupHandler Apache::Guillotine::mopup()

There is not actually a cleanup phase per se. Instead, the C API provides a callback
mechanism for functions that are invoked just before their memory pool is destroyed.
A handful of Apache API methods use this mechanism underneath for simple but
important tasks, such as ensuring that files, directory handles, and sockets are
closed. In Chapter 10, you will see that the C version expects a few more
arguments, including a pool pointer.

There are actually two register_cleanup() methods: one associated with the Apache
request object and the other associated with the Apache::Server object. The
difference between the two is that handlers installed with the request object's method
will be run when the request is done, while handlers installed with the server object's
method will be run only when the server shuts down or restarts:

$r->register_cleanup(sub { "child $$ served another request" })
Apache->server->register_cleanup(sub { warn "server $$ restarting\n" });

We've already been using register_cleanup() indirectly with the Apache::File tmpfile()
method, where it is used to unlink a temporary file at the end of the transaction even if
the handler aborts prematurely. Another example can be found in CGI.pm, where a
cleanup handler resets that module's package globals to a known state after each
transaction. Here's the relevant code fragment:

Apache->request->register_cleanup(\&CGI::_reset_globals);

A more subtle use of registered cleanups is to perform delayed processing on
requests. For example, certain contributed mod_perl logging modules, like
Apache::DBILogger and Apache::Traffic, take a bit more time to do their work than the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache::DBILogger and Apache::Traffic, take a bit more time to do their work than the
standard logging modules do. Although the overhead is small, it does lengthen the
amount of time the user has to wait before the browser's progress monitor indicates
that the page is fully loaded. In order to squeeze out the last ounce of performance,
these modules defer the real work to the cleanup phase. Because cleanups occur
after the response is finished, the user will not have to wait for the logging module to
complete its work.[8]

[8] Of course, moving the work out of the transaction and into the cleanup phase just means that the child server or
thread cannot serve another request until this work is done. This only becomes a problem if the number of concurrent
requests exceeds the level that your server can handle. In this case, the next incoming request may have to wait a little
longer for the connection to be established. You can decide if the subjective tradeoff is worth it.

To take advantage of delayed processing, we can run the previous section's
Apache::LogDBI module during the cleanup phase rather than the log phase. The
change is simple. Just replace the PerlLogHandler directive with PerlCleanupHandler
:

PerlCleanupHandler Apache::LogDBI

Because the cleanup handler can be used for post-transactional processing, the Perl
API provides post_connection() as an alias for register_cleanup(). This can improve
code readability somewhat:

sub handler {
 shift->post_connection(\&logger);
}

Cleanup handlers follow the same calling conventions as other handlers. On entry,
they receive a reference to an Apache object containing all the accumulated request
and response information. They can return a status code if they wish to, but Apache
will ignore it.

We've finally run out of transaction phases to talk about, so we turn our attention to a
more esoteric aspect of Apache, the proxy server API.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.9 Handling Proxy Requests

The HTTP proxy protocol was originally designed to allow users unfortunate enough
to be stuck behind a firewall to access external web sites. Instead of connecting to the
remote server directly, an action forbidden by the firewall, users point their browsers
at a proxy server located on the firewall machine itself. The proxy goes out and
fetches the requested document from the remote site and forwards the retrieved
document to the user.

Nowadays most firewall systems have a web proxy built right in so there's no need for
dedicated proxying servers. However, proxy servers are still useful for a variety of
purposes. For example, a caching proxy (of which Apache is one example) will store
frequently requested remote documents in a disk directory and return the cached
documents directly to the browser instead of fetching them anew. Anonymizing
proxies take the outgoing request and strip out all the headers that can be used to
identify the user or his browser. By writing Apache API modules that participate in the
proxy process, you can achieve your own special processing of proxy requests.

The proxy request/response protocol is nearly the same as vanilla HTTP. The major
difference is that instead of requesting a server-relative URI in the request line, the
client asks for a full URL, complete with scheme and host. In addition, a few optional
HTTP headers beginning with Proxy- may be added to the request. For example, a
normal (nonproxy) HTTP request sent by a browser might look like this:

GET /foo/index.html HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Pragma: no-cache
Connection: Keep-Alive
User-Agent: Mozilla/2.01 (WinNT; I)
Host: www.modperl.com:80

In contrast, the corresponding HTTP proxy request will look like this:

GET http://www.modperl.com/foo/index.html HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Pragma: no-cache
User-Agent: Mozilla/2.01 (WinNT; I)
Host: www.modperl.com:80
Proxy-Connection: Keep-Alive

Notice that the URL in the request line of an HTTP proxy request includes the
scheme and hostname. This information enables the proxy server to initiate a
connection to the distant server. To generate this type of request, the user must
configure his browser so that HTTP and, optionally, FTP requests are proxied to the
server. This usually involves setting values in the browser's preference screens. An
Apache server will be able to respond to this type of request if it has been compiled
with the mod_proxy module. This module is part of the core Apache distribution but is
not compiled in by default.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can interact with Apache's proxy mechanism at the translation handler phase.
There are two types of interventions you can make. You can take an ordinary
(nonproxy) request and change it into one so that it will be handled by Apache's
standard proxy module, or you can take an incoming proxy request and install your
own content handler for it so that you can examine and possibly modify the response
from the remote server.

7.9.1 Invoking mod_proxy for Nonproxy Requests

We'll look first at Apache::PassThru, an example of how to turn an ordinary request
into a proxy request.[9] Because this technique uses Apache's mod_proxy module,
this module will have to be compiled and installed in order for this example to run on
your system.

[9] There are several third-party Perl API modules on CPAN that handle proxy requests, including one named
Apache::ProxyPass and another named Apache::ProxyPassThru. If you are looking for the functionality of
Apache::PassThru, you should examine one of these more finished products before using this one as the basis for
your own module.

The idea behind the example is simple. Requests for URIs beginning with a certain
path will be dynamically transformed into a proxy request. For example, we might
transform requests for URLs beginning with /CPAN/ into a request for
http://www.perl.com/CPAN/. The request to www.perl.com will be done completely
behind the scenes; nothing will reveal to the user that the directory hierarchy is being
served from a third-party server rather than our own. This functionality is the same as
the ProxyPass directive provided by mod_proxy itself. You can also achieve the same
effect by providing an appropriate rewrite rule to mod_rewrite.

The configuration for this example uses a PerlSetVar to set a variable named
PerlPassThru. A typical entry in the configuration directive will look like this:

PerlTransHandler Apache::PassThru
PerlSetVar PerlPassThru '/CPAN/ => http://www.perl.com/,\
 /search/ => http://www.altavista.digital.com/'

The PerlPassThru variable contains a string representing a series of URI=>proxy
pairs, separated by commas. A backslash at the end of a line can be used to split the
string over several lines, improving readability (the ability to use backslash as a
continuation character is actually an Apache configuration file feature but not a well-
publicized one). In this example, we map the URI /CPAN/ to http://www.perl.com/ and
/search/ to http://www.altavista.digital.com/. For the mapping to work correctly, local
directory names should end with a slash in the manner shown in the example.

The code for Apache::PassThru is given in Example 7.10. The handler() subroutine
begins by retrieving the request object and calling its proxyreq() method to determine
whether the current request is a proxy request:

sub handler {
 my $r = shift;
 return DECLINED if $r->proxyreq;

If this is already a proxy request, we don't want to alter it in any way, so we decline
the transaction. Otherwise, we retrieve the value of PerlPassThru, split it into its

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the transaction. Otherwise, we retrieve the value of PerlPassThru, split it into its
key/value components with a pattern match, and store the result in a hash named
%mappings:

my $uri = $r->uri;
 my %mappings = split /\s*(?:,|=>)\s*/, $r->dir_config('PerlPassThru');

We now loop through each of the local paths, looking for a match with the current
request's URI. If a match is found, we perform a string substitution to replace the local
path with the corresponding proxy URI. Otherwise, we continue to loop:

for my $src (keys %mappings) {
 next unless $uri =~ s/^$src/$mappings{$src}/;
 $r->proxyreq(1);
 $r->uri($uri);
 $r->filename("proxy:$uri");
 $r->handler('proxy-server');
 return OK;
 }
 return DECLINED;
}

If the URI substitution succeeds, there are four steps we need to take to transform
this request into something that mod_proxy will handle. The first two are obvious, but
the others are less so. First, we need to set the proxy request flag to a true value by
calling $r->proxyreq(1). Next, we change the requested URI to the proxied URI
by calling the request object's uri() method. In the third step, we set the request
filename to the string proxy: followed by the URI, as in
proxy:http://www.perl.com/CPAN/. This is a special filename format recognized by
mod_proxy, and as such is somewhat arbitrary. The last step is to set the content
handler to proxy-server, so that the request is passed to mod_proxy to handle the
response phase.

If we turned the local path into a proxy request, we return OK from the translation
handler. Otherwise, we return DECLINED.

Example 7.10. Invoking Apache's Proxy Request Mechanism from Within a Translation Handler

package Apache::PassThru;
file: Apache/PassThru.pm;
use strict;
use Apache::Constants qw(:common);

sub handler {
 my $r = shift;
 return DECLINED if $r->proxyreq;
 my $uri = $r->uri;
 my %mappings = split /\s*(?:,|=>)\s*/, $r->dir_config('PerlPassThru');
 for my $src (keys %mappings) {
 next unless $uri =~ s/^$src/$mappings{$src}/;
 $r->proxyreq(1);
 $r->uri($uri);
 $r->filename("proxy:$uri");
 $r->handler('proxy-server');
 return OK;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return OK;
 }
 return DECLINED;
}
1;
_ _END_ _

7.9.2 An Anonymizing Proxy

As public concern about the ability of web servers to track people's surfing sessions
grows, anonymizing proxies are becoming more popular. An anonymizing proxy is
similar to an ordinary web proxy, except that certain HTTP headers that provide
identifying information such as the Referer , Cookie, User-Agent, and From fields are
quietly stripped from the request before forwarding it on to the remote server. Not only
is this identifying information removed, but the identity of the requesting host is
obscured. The remote server knows only the hostname and IP address of the proxy
machine, not the identity of the machine the user is browsing from.

You can write a simple anonymizing proxy in the Apache Perl API in all of 18 lines
(including comments). The source code listing is shown in Example 7.11. Like the
previous example, it uses Apache's mod_proxy, so that module must be installed
before this example will run correctly.

The module defines a package global named @Remove containing the names of all
the request headers to be stripped from the request. In this example, we remove
User-Agent, Cookie, Referer, and the infrequently used From field. The handler()
subroutine begins by fetching the Apache request object and checking whether the
current request uses the proxy protocol. However, unlike the previous example where
we wanted the existence of the proxy to be secret, here we expect the user to
explicitly configure his browser to use our anonymizing proxy. So here we return
DECLINED if proxyreq() returns false.

If proxyreq() returns true, we know that we are in the midst of a proxy request. We
loop through each of the fields to be stripped and delete them from the incoming
headers table by using the request object's header_in() method to set the field to
undef. We then return OK to signal Apache to continue processing the request. That's
all there is to it.

To activate the anonymizing proxy, install it as a URI translation handler as before:

PerlTransHandler Apache::AnonProxy

An alternative that works just as well is to call the module during the header parsing
phase (see the discussion of this phase earlier). In some ways, this makes more
sense because we aren't doing any actual URI translation, but we are modifying the
HTTP header. Here is the appropriate directive:

PerlHeaderParserHandler Apache::AnonProxy

The drawback to using PerlHeaderParserHandler like this is that, unlike
PerlTransHandler, the directive is allowed in directory configuration sections and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PerlTransHandler, the directive is allowed in directory configuration sections and
.htaccess files. But directory configuration sections are irrelevant in proxy requests,
so the directive will silently fail if placed in one of these sections. The directive should
go in the main part of one of the configuration files or in a virtual host section.

Example 7.11. A Simple Anonymizing Proxy

package Apache::AnonProxy;
file: Apache/AnonProxy.pm
use strict;
use Apache::Constants qw(:common);

my @Remove = qw(user-agent cookie from referer);

sub handler {
 my $r = shift;
 return DECLINED unless $r->proxyreq;
 foreach (@Remove) {
 $r->header_in($_ => undef);
 }
 return OK;
}

1;
__END__

In order to test that this handler was actually working, we set up a test Apache server
as the target of the proxy requests and added the following entry to its configuration
file:

CustomLog logs/nosy_log "%h %{Referer}i %{User-Agent}i %{Cookie}i %U"

This created a "nosy" log that contains entries for the Referer, User-Agent, and
Cookie fields. Before installing the anonymous proxy module, entries in this log
looked like this (the lines have been wrapped to fit on the page):

192.168.2.5 http://prego/ Mozilla/4.04 [en] (X11; I; Linux 2.0.33 i686)
 - /tkdocs/tk_toc.ht
192.168.2.5 http://prego/ Mozilla/4.04 [en] (X11; I; Linux 2.0.33 i686)
 POMIS=10074 /perl/hangman1.pl

In contrast, after installing the anonymizing proxy module, all the identifying
information was stripped out, leaving only the IP address of the proxy machine:

192.168.2.5 - - - /perl/hangman1.pl
192.168.2.5 - - - /icons/hangman/h0.gif
192.168.2.5 - - - /cgi-bin/info2www

7.9.3 Handling the Proxy Process on Your Own

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As long as you only need to monitor or modify the request half of a proxy transaction,
you can use Apache's mod_proxy module directly as we did in the previous two
examples. However, if you also want to intercept the response so as to modify the
information returned from the remote server, then you'll need to handle the proxy
request on your own.

In this section, we present Apache::AdBlocker. This module replaces Apache's
mod_proxy with a specialized proxy that filters the content of certain URLs.
Specifically, it looks for URLs that are likely to be banner advertisements and
replaces their content with a transparent GIF image that says "Blocked Ad." This can
be used to "lower the volume" of commercial sites by removing distracting animated
GIFs and brightly colored banners. Figure 7.3 shows what the AltaVista search site
looks like when fetched through the Apache::AdBlocker proxy.

Figure 7.3. The AltaVista search engine after filtering by Apache::AdBlocker

The code for Apache::AdBlocker is given in Example 7.12. It is a bit more
complicated than the other modules we've worked with in this chapter but not much
more. The basic strategy is to install two handlers. The first handler is activated
during the URI translation phase. It doesn't actually alter the URI or filename in any
way, but it does inspect the transaction to see if it is a proxy request. If this is the
case, the handler installs a custom content handler to actually go out and do the
request. In this respect, the translation handler is similar to Apache::Checksum3,
which also installs a custom content handler for certain URIs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Later on, when its content handler is called, the module uses the Perl LWP library to
fetch the remote document. If the document does not appear to be a banner ad, the
content handler forwards it on to the waiting client. Otherwise, the handler does a little
switcheroo, replacing the advertisement with a custom GIF image of exactly the same
size and shape as the ad. This bit of legerdemain is completely invisible to the
browser, which goes ahead and renders the image as if it were the original banner ad.

In addition to the LWP library, this module requires the GD and Image::Size libraries
for creating and manipulating images. They are available on CPAN if you do not
already have them installed.

Turning to the code, after the familiar preamble we create a new LWP::UserAgent
object that we will use to make all our requests for documents from remote servers:

@ISA = qw(LWP::UserAgent);
$VERSION = '1.00';

my $UA = __PACKAGE__->new;
$UA->agent(join "/", __PACKAGE__, $VERSION);

We actually subclass LWP::UserAgent, using the @ISA global to create an
inheritance relationship between LWP::UserAgent and our own package. Although we
don't override any of LWP::UserAgent 's methods, making our module a subclass of
LWP::UserAgent allows us to cleanly customize these methods at a later date should
we need to.

We now create a new instance of the LWP::UserAgent subclass, using the special
token _ _PACKAGE_ _ which evaluates at compile time to the name of the current
package. In this case, _ _PACKAGE_ _->new is equivalent to
Apache::AdBlocker->new (or new Apache::AdBlocker if you prefer Smalltalk
syntax). Immediately afterward we call the object's agent() method with a string
composed of the package name and version number. This is the calling card that
LWP sends to the remote hosts' web servers as the HTTP User-Agent field. The
method we use for constructing the User-Agent field creates the string
Apache::AdBlocker/1.00.

my $Ad = join "|", qw{ads? advertisements? banners? adv promotions?};

The last initialization step is to define a package global named $Ad that defines a
pattern match that picks up many (but certainly not all) banner advertisement URIs.
Most ads contain variants on the words "ad," "advertisement," "banner," or
"promotion" somewhere in the URI, although this may have changed by the time you
read this!

sub handler {
 my $r = shift;
 return DECLINED unless $r->proxyreq;
 $r->handler("perl-script"); #ok, let's do it
 $r->push_handlers(PerlHandler => \&proxy_handler);
 return OK;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The next part of the module is the definition of the handler() subroutine, which in this
case will be run during the URI translation phase. It simply checks whether the current
transaction is a proxy request and declines the transaction if not. Otherwise, it calls
the request object's handler() method to set the content handler to perl-script and
calls push_handlers() to make the module's proxy_handler() subroutine the callback
for the response phase of the transaction. handler() then returns OK to flag that it has
handled the URI translation phase.

Most of the work is done in proxy_handler(). Its job is to use LWP 's object-oriented
methods to create an HTTP::Request object. The HTTP::Request is then forwarded
to the remote host by the LWP::UserAgent, returning an HTTP::Response. The
response must then be returned to the waiting browser, possibly after replacing the
content. The only subtlety here is the need to copy the request headers from the
incoming Apache request's headers_in() table to the HTTP::Request and, in turn, to
copy the response headers from the HTTP::Response into the Apache request
headers_out() table. If this copying back and forth isn't performed, then documents
that rely on the exact values of certain HTTP fields, such as CGI scripts, will fail to
work correctly across the proxy.

sub proxy_handler {
 my $r = shift;

 my $request = HTTP::Request->new($r->method, $r->uri);

proxy_handler() starts by recovering the Apache request object. It then uses the
request object's method() and uri() methods to fetch the request method and the URI.
These are used to create and initialize a new HTTP::Request. We now feed the
incoming header fields from the Apache request object into the corresponding fields
in the outgoing HTTP::Request :

$r->headers_in->do(sub {
 $request->header(@_);
 });

We use a little trick to accomplish the copy. The headers_in() method (as opposed to
the header_in() method that we have seen before) returns an instance of the
Apache::Table class. This class, described in more detail in Section 9.1 (see
Section 9.2.5"), implements methods for manipulating Apache's various table-like
structures, including the incoming and outgoing HTTP header fields. One of these
methods is do(), which when passed a CODE reference invokes the code once for
each header field, passing to the routine the header's name and value each time. In
this case, we call do() with an anonymous subroutine that passes the header keys
and values on to the HTTP::Request object's header() method. It is important to use
headers->do() here rather than copying the headers into a hash because certain
headers, particularly Cookie, can be multivalued.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

copy POST data, if any
 if($r->method eq 'POST') {
 my $len = $r->header_in('Content-length');
 my $buf;
 $r->read($buf, $len);
 $request->content($buf);
 }

The next block of code checks whether the request method is POST. If so, we must
copy the POSTed data from the incoming request to the HTTP::Request object. We
do this by calling the request object's read() method to read the POST data into a
temporary buffer. The data is then copied into the HTTP::Request by calling its
content() method. Request methods other than POST may include a request body,
but this example does not cope with these rare cases.

The HTTP::Request object is now complete, so we can actually issue the request:

my $response = $UA->request($request);

We pass the HTTP::Request object to the user agent's request() method. After a
delay for the network fetch, the call returns an HTTP::Response object, which we
copy into a variable named $response.

$r->content_type($response->header('Content-type'));
 $r->status($response->code);
 $r->status_line(join " ", $response->code, $response->message);

Now the process of copying the headers is reversed. Every header in the LWP
HTTP::Response object must be copied to the Apache request object. First, we
handle a few special cases. We call the HTTP::Response object's header() method to
fetch the content type of the returned document and immediately pass the result to
the Apache request object's content_type() method. Next, we set the numeric HTTP
status code and the human-readable HTTP status line. We call the HTTP::Response
object's code() and message() methods to return the numeric code and human-
readable messages, respectively, and copy them to the Apache request object, using
the status() and status_line() methods to set the values.

When the special case headers are done, we copy all the other header fields, using
the HTTP::Response object's scan() method:

$response->scan(sub {
 $r->header_out(@_);
 });

scan() is similar to the Apache::Table do() method: it loops through each of the
header fields, invoking an anonymous callback routine for each one. The callback
sets the corresponding field in the Apache request object using the header_out()
method.

if ($r->header_only) {
 $r->send_http_header();
 return OK;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

The outgoing header is complete at this point, so we check whether the current
transaction is a HEAD request. If so, we emit the HTTP header and exit with an OK
status code.

my $content = \$response->content;
 if($r->content_type =~ /^image/ and $r->uri =~ /\b($Ad)\b/i) {
 block_ad($content);
 $r->content_type("image/gif");
 }

Otherwise, the time has come to deal with potential banner ads. To identify likely ads,
we require that the document be an image and that its URI satisfy the regular
expression match defined at the top of the module. We retrieve the document
contents by calling the HTTP::Response object's content() method, and store a
reference to the contents in a local variable named $content.[10] We now check
whether the document's MIME type is one of the image variants and that the URI
satisfies the advertisement pattern match. If both of these are true, we call block_ad()
to replace the content with a customized image. We also set the document's content
type to image/gif, since this is what block_ad() produces.

[10] In this example, we call the response object's content() method to slurp the document content into a scalar.
However, it can be more efficient to use the three-argument form of LWP::UserAgent 's response() method to read the
content in fixed-size chunks. See the LWP::UserAgent manual page for details.

$r->content_type('text/html') unless $$content;
 $r->send_http_header;
 $r->print($$content || $response->error_as_HTML);

We send the HTTP header, then print the document contents. Notice that the
document content may be empty, which can happen when LWP connects to a server
that is down or busy. In this case, instead of printing an empty document, we return
the nicely formatted error message returned by the HTTP::Response object's
error_as_HTML() method.

return OK;
}

Our work is done, so we return an OK status code.

The block_ad() subroutine is short and sweet. Its job is to take an image in any of
several possible formats and replace it with a custom GIF of exactly the same
dimensions. The GIF will be transparent, allowing the page background color to show
through, and will have the words "Blocked Ad" printed in large friendly letters in the
upper lefthand corner.

sub block_ad {
 my $data = shift;
 my($x, $y) = imgsize($data);

 my $im = GD::Image->new($x,$y);

To get the width and height of the image, we call imgsize() , a function imported from
the Image::Size module. imgsize() recognizes most web image formats, including

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Image::Size module. imgsize() recognizes most web image formats, including
GIF, JPEG, XBM, and PNG. Using these values, we create a new blank GD::Image
object and store it in a variable named $im.

my $white = $im->colorAllocate(255,255,255);
 my $black = $im->colorAllocate(0,0,0);
 my $red = $im->colorAllocate(255,0,0);

We call the image object's colorAllocate() method three times to allocate color table
entries for white, black, and red. Then we declare that the white color is transparent,
using the transparent() method:

$im->transparent($white);
 $im->string(GD::gdLargeFont(),5,5,"Blocked Ad",$red);
 $im->rectangle(0,0,$x-1,$y-1,$black);

 $$data = $im->gif;
}

The routine calls the string() method to draw the message starting at coordinates (5,5)
and finally frames the whole image with a black rectangle. The custom image is now
converted into GIF format with the gif() method and copied into $$data, overwriting
whatever was there before.

sub redirect_ok {return undef;}

The last detail is to define a redirect_ok() method to override the default
LWP::UserAgent method. By returning undef this method tells LWP not to handle
redirects internally but to pass them on to the browser to handle. This is the correct
behavior for a proxy server.

Activating this module is just a matter of adding the following line to one of the
configuration files:

PerlTransHandler Apache::AdBlocker

Users who wish to make use of this filtering service should configure their browsers to
proxy their requests through your server.

Example 7.12. A Banner Ad Blocking Proxy

package Apache::AdBlocker;
file: Apache/AdBlocker.pm

use strict;
use vars qw(@ISA $VERSION);
use Apache::Constants qw(:common);
use GD ();
use Image::Size qw(imgsize);
use LWP::UserAgent ();

@ISA = qw(LWP::UserAgent);
$VERSION = '1.00';

my $UA = __PACKAGE__->new;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $UA = __PACKAGE__->new;
$UA->agent(join "/", __PACKAGE__, $VERSION);

my $Ad = join "|", qw{ads? advertisements? banners? adv promotions?};

sub handler {
 my $r = shift;
 return DECLINED unless $r->proxyreq;
 $r->handler("perl-script"); #ok, let's do it
 $r->push_handlers(PerlHandler => \&proxy_handler);
 return OK;
}

sub proxy_handler {
 my $r = shift;

 my $request = HTTP::Request->new($r->method, $r->uri);

 $r->headers_in->do(sub {
 $request->header(@_);
 });

 # copy POST data, if any
 if($r->method eq 'POST') {
 my $len = $r->header_in('Content-length');
 my $buf;
 $r->read($buf, $len);
 $request->content($buf);
 }

 my $response = $UA->request($request);
 $r->content_type($response->header('Content-type'));

 #feed response back into our request_rec*
 $r->status($response->code);
 $r->status_line(join " ", $response->code, $response->message);
 $response->scan(sub {
 $r->header_out(@_);
 });

 if ($r->header_only) {
 $r->send_http_header();
 return OK;
 }

 my $content = \$response->content;
 if($r->content_type =~ /^image/ and $r->uri =~ /\b($Ad)\b/i) {
 block_ad($content);
 $r->content_type("image/gif");
 }

 $r->content_type('text/html') unless $$content;
 $r->send_http_header;
 $r->print($$content || $response->error_as_HTML);

 return OK;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return OK;
}

sub block_ad {
 my $data = shift;
 my($x, $y) = imgsize($data);

 my $im = GD::Image->new($x,$y);

 my $white = $im->colorAllocate(255,255,255);
 my $black = $im->colorAllocate(0,0,0);
 my $red = $im->colorAllocate(255,0,0);

 $im->transparent($white);
 $im->string(GD::gdLargeFont(),5,5,"Blocked Ad",$red);
 $im->rectangle(0,0,$x-1,$y-1,$black);

 $$data = $im->gif;
}

sub redirect_ok {return undef;}

1;

_ _END_ _

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.10 Perl Server-Side Includes

Another feature of mod_perl is that it integrates with the Apache mod_include server-
side include (SSI) system. Provided that mod_perl was built with the PERL_SSI
option (or with the recommended setting of EVERYTHING=1), the Perl API adds a
new #perl element to the standard mod_include server-side include system, allowing
server-side includes to call Perl subroutines directly.

The syntax for calling Perl from SSI documents looks like this:

<!--#perl sub="subroutine" args="arguments"-->

The tag looks like other server-side include tags but contains the embedded element
#perl. The #perl element recognizes two attributes, sub and args. The required sub
attribute specifies the subroutine to be invoked. This attribute must occur only once in
the tag. It can be the name of any subroutine already loaded into the server (with a
PerlModule directive, for instance) or an anonymous subroutine created on the fly.
When this subroutine is invoked, it is passed a blessed Apache request object just as
if it were a handler for the response phase. Any text that the subroutine prints will
appear on the HTML page.

The optional args attribute can occur once or several times in the tag. If present, args
attributes specify additional arguments to be passed to the subroutine. They will be
presented to the subroutine in the same order in which they occur in the tag.

Example 7.13 shows a simple server-side include page that uses #perl elements. It
has two Perl includes. The simpler of the two is just a call to a routine named
MySSI::remote_host(). When executed, it calls the request object's get_remote_host()
method to fetch the DNS name of the remote host machine:

<!--#perl sub="MySSI::remote_host" -->

MySSI::remote_host() must be preloaded in order for this include to succeed. One
way to do this is inside the Perl startup file. Alternatively, it could be defined in a
module named MySSI.pm and loaded with the directive PerlModule MySSI. In either
case, the definition of remote_host() looks like this:

package MySSI;
sub remote_host {
 my $r = shift;
 print $r->get_remote_host;
}

You could also define the routine to call the request object's print() method, as in $r-
>print($r->get_remote_host). It's your call.

The more complex of the two includes defined in this example calls a Perl subroutine
that it creates on the fly. It looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!--#perl arg="Hello" arg="SSI" arg="World"
 sub="sub {
 my($r, @args) = @_;
 print qq(@args);
 }"
-->

In this case the sub attribute points to an anonymous subroutine defined using the
sub { } notation. This subroutine retrieves the request object and a list of
arguments, which it simply prints out. Because double quotes are already used to
surround the attribute, we use Perl's qq operator to surround the arguments. An
equally valid alternative would be to backslash the quotes, as in print \"@args\".

This tag also has three arg attributes, which are passed, in order of appearance, to
the subroutine. The effect is to print the string "Hello SSI World".

In order to try this example out, you'll have to have server-side includes activated.
This can be done by uncommenting the following two lines in the standard srm.conf
server configuration file:

AddType text/html .shtml
AddHandler server-parsed .shtml

You'll also have to activate the Includes option in the directory in which the document
is located. The final result is shown in Figure 7.4.

Figure 7.4. The page displayed by the example server-side include document

Example 7.13. A Server-Side Include Document Using #perl Elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<html>
<!-- file: perl_include.shtml -->
<head>
<title> mod_include #perl example </title>
</head>
<body>
<h1>mod_include #perl example</h1>

This document uses the <i>mod_include</i> perl command to
invoke Perl subroutines.

<h3>Here is an Anonymous Subroutine</h3>

Message =

<!--#perl arg="Hello" arg="SSI" arg="World"
 sub="sub {
 my($r, @args) = @_;
 print qq(@args);
 }"
-->

<h3>Here is a Predefined Subroutine</h3>

Remote host = <!--#perl sub="MySSI::remote_host" -->

<hr>
</body>
</html>

That's all there is to it. You can mix and match any of the standard mod_include
commands in your document along with any Perl code that you see fit. There's also
an Apache::Include module included with the mod_perl distribution that allows you to
invoke Apache::Registry scripts directly from within server-side includes. See
Appendix A, for details.

While this approach is simple, it is not particularly powerful. If you wish to produce
complex server-side include documents with conditional sections and content derived
from databases, we recommend that you explore HTML::Embperl, Apache::ePerl,
HTML::Mason, and other template-based systems that can be found on CPAN. Also
see Appendix F, which contains an abbreviated version of the HTML::Embperl
manual page, courtesy of Gerald Richter.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

7.11 Subclassing the Apache Class

It's appropriate that the last topic we discuss in this chapter is the technique for
extending the Apache class itself with Perl's subclassing mechanism. Because the
Perl API is object-oriented, you are free to subclass the Apache class should you
wish to override its behavior in any way.

To be successful, the new subclass must add Apache (or another Apache subclass)
to its @ISA array. In addition, the subclass's new() method must return a blessed
hash reference which contains either an r or _r key. This key must point to a bona
fide Apache object.

Example 7.14 subclasses Apache, overriding the print() and rflush() methods. The
Apache::MyRequest::print method does not send data directly to the client. Instead, it
pushes all data into an array reference inside the Apache::MyRequest object. When
the rflush() method is called, the SUPER class methods, print and rflush, are called to
actually send the data to the client.

Example 7.14. Apache::MyRequest Is a Subclass of Apache

package Apache::MyRequest;
use strict;

use Apache ();
use vars qw(@ISA);
@ISA = qw(Apache);

sub new {
 my($class, $r) = @_;
 $r ||= Apache->request;
 return bless {
 '_r' => $r,
 'data' => [],
 }, $class;
}

sub print {
 my $self = shift;
 push @{$self->{data}}, @_;
}

sub rflush {
 my $self = shift;
 $self->SUPER::print("MyDATA:\n", join "\n", @{$self->{data}});
 $self->SUPER::rflush;
 @{$self->{data}} = ();
}

1;
__END__

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__END__

Here is an example of an Apache::Registry script that uses Apache::MyRequest. The
send_http_header() method is inherited from the Apache class, while the print() and
rflush() methods invoke those in the Apache::MyRequest class:

use Apache::MyRequest ();
sub handler {
 my $r = Apache::MyRequest->new(shift);
 $r->send_http_header('text/plain');
 $r->print(qw(one two three));
 $r->rflush;
 ...
 }

The next chapter covers another important topic in the Apache Perl API: how to
control and customize the Apache configuration process so that modules can
implement first-class configuration directives of their own.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 8. Customizing the Apache Configuration
Process
This chapter covers an important but complex aspect of the Apache Perl API—the
process of controlling and customizing the Apache configuration process itself. Using
the techniques shown in this chapter, you will be able to define new configuration file
directives that provide runtime configuration information to your modules. You will
also be able to take over all or part of the Apache configuration process and write Perl
code to dynamically configure the server at startup time.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

8.1 Simple Configuration with the PerlSetVar Directive

The Apache Perl API provides a simple mechanism for passing information from
configuration files to Perl modules using the PerlSetVar directive. As we've seen, the
directive takes two arguments, the name of a variable and its value:

PerlSetVar FoodForThought apples

Because Perl is such a whiz at parsing text, it's trivial to pass an array or even a hash
in this way. For example, here's one way (out of a great many) to pass an array:

in configuration file
PerlSetVar FoodForThought apples:oranges:kiwis:mangos

in Perl module
@foodForThought = split ":", $r->dir_config('FoodForThought');

And here's a way to pass a hash:

in configuration file
PerlSetVar FoodForThought apples=>23,kiwis=>12

in Perl module
%foodForThought = split /\s*(?:=>|,)\s*/, $r->dir_config('FoodForThought);

Notice that the pattern match allows whitespace to come before or after the comma or
arrow operators, just as Perl does.

By modifying the pattern match appropriately, you can pass more complex
configuration information. The only trick is to remember to put double quotes around
the configuration value if it contains whitespace and not to allow your text editor to
wrap it to another line. You can use backslash as a continuation character if you find
long lines a pain to read:

PerlSetVar FoodForThought "apples => 23,\
 kiwis => 12,\
 rutabagas => 0"

If you have a really complex configuration, then you are probably better off using a
separate configuration file and pointing to it using a single PerlSetVar directive. The
server_root_relative() method is useful for specifying configuration files that are
relative to the server root:

in server configuration file
PerlSetVar FoodConfig conf/food.conf

in Perl module
$conf_file = $r->server_root_relative($r->dir_config('FoodConfig'));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$conf_file = $r->server_root_relative($r->dir_config('FoodConfig'));

Despite the simplicity of this approach, there are times when you may prefer to create
your own "first-class" configuration directives. This becomes particularly desirable
when you have many different directives, when the exact syntax of the directives is
important and you want Apache to check the syntax at startup time, or when you are
planning to distribute your module and want it to appear polished. There is also a
performance penalty associated with parsing PerlSetVar configuration at request
time, which you avoid using first-class configuration directives because they are
parsed once at server startup time.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

8.2 The Apache Configuration Directive API

Apache provides an API for defining configuration directives. You provide the
directive's name, syntax, and a string briefly summarizing the directive's intended
usage. You may also limit the applicability of the directive to certain parts of the
configuration files. Apache parses the directive and passes the parsed structure to
your module for processing. Your module will then use this information to set up
global variables or initialize whatever it needs.

The process of defining new configuration directives is not as simple as other parts of
the Perl API. This is because configuration directives are defined in a compiled C
structure that cannot be built dynamically at runtime. In order to work with this
restriction, mod_perl requires you to take the following roundabout route:

1. Create an empty module directory with h2xs.

2. Modify the newly created Makefile.PL file to declare an array containing the
definitions for the new configuration directives and to invoke the
command_table() function from a helper module named Apache::ExtUtils.

3. Write a .pm file containing Perl handlers for each of the configuration directives
you define.

4. Run perl Makefile.PL to autogenerate a .xs file.

5. Run make and make install to create the loadable module and move it into
place.

6. Add a PerlModule directive to the server configuration file to load the module at
server startup time.

We'll take you through a short example first to show you the whole process and then
get into the details later. Our candidate for adding configuration directives is the
Apache::PassThru module (Example 7.10), which transparently maps portions of
the server's document tree onto remote servers using Apache's proxy mechanism.

As you may recall, Apache::PassThru used a single PerlSetVar variable named
PerlPassThru, which contained a series of URI=>proxy pairs stored in one long string.
Although this strategy is adequate, it's not particularly elegant. Our goal here is to
create a new first-class configuration directive named PerlPassThru. PerlPassThru
will take two arguments: a local URI and a remote URI to map it to. You'll be able to
repeat the directive to map several local URIs to remote servers. Because it makes
no sense for the directory to appear in directory sections or .htaccess files,
PerlPassThru will be limited to the main parts of the httpd.conf, srm.conf, and
access.conf files, as well as to <VirtualHost> sections.

First we'll need something to start with, so we use h2xs to create a skeletal module
directory:

% h2xs -Af -n Apache::PassThru

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% h2xs -Af -n Apache::PassThru
Writing Apache/PassThru/PassThru.pm
Writing Apache/PassThru/PassThru.xs
Writing Apache/PassThru/Makefile.PL
Writing Apache/PassThru/test.pl
Writing Apache/PassThru/Changes
Writing Apache/PassThru/MANIFEST

The -A and -f command-line switches turn off the generation of autoloader stubs and
the C header file conversion steps, respectively. -n gives the module a name. We'll be
editing the files Makefile.PL and PassThru.pm. PassThru.xs will be overwritten when
we go to make the module, so there's no need to worry about it.

The next step is to edit the Makefile.PL script to add the declaration of the
PerlPassThru directive and to arrange for Apache::ExtUtils ' command_table()
function to be executed at the appropriate moment. Example 8.1 shows a suitable
version of the file.

Example 8.1. Makefile.PL for the Improved Apache::PassThru

package Apache::PassThru;
File: Apache/PassThru/Makefile.PL

use ExtUtils::MakeMaker;

use Apache::ExtUtils qw(command_table);
use Apache::src ();

my @directives = (
 { name => 'PerlPassThru',
 errmsg => 'a local path and a remote URI to pass through to',
 args_how => 'TAKE2',
 req_override => 'RSRC_CONF'
 }
);

command_table(\@directives);

WriteMakefile(
 'NAME' => __PACKAGE__,
 'VERSION_FROM' => 'PassThru.pm',
 'INC' => Apache::src->new->inc,
 'INSTALLSITEARCH' => '/usr/local/apache/lib/perl',
 'INSTALLSITELIB' => '/usr/local/apache/lib/perl',
);
__END__

We've made multiple modifications to the Makefile.PL originally produced by h2xs.
First, we've placed a package declaration at the top, putting the whole script in the
Apache::PassThru namespace. Then, after the original use
ExtUtils::MakeMaker line, we load two mod_perl-specific modules:
Apache::ExtUtils, which defines the command_table() function, and Apache::src, a
small utility class that can be used to find the location of the Apache header files.
These will be needed during the make.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next, we define the new configuration directives themselves. We create a list named
@directives, each element of which corresponds to a different directive. In this
case, we only have one directive to declare, so @directives is one element long.

Each element of the list is an anonymous hash containing one or more of the keys
name, errmsg, args_how, and req_override (we'll see later how to implement
the most common type of directive using a succinct anonymous array form). name
corresponds to the name of the directive, PerlPassThru in this case, and errmsg
corresponds to a short message that will be displayed in the event of a configuration
syntax error. args_how tells Apache how to parse the directive's arguments. In this
case we specify TAKE2, which tells Apache that the directive takes two (and only two)
arguments. We'll go over the complete list of parsing options later and also show you
a shortcut for specifying parsing options using Perl prototypes.

The last key, req_override, tells Apache what configuration file contexts the
directive is allowed in. In this case we specify the most restrictive context,
RSRC_CONF, which limits the directive to appearing in the main part of the
configuration files or in virtual host sections. Notice that RSRC_CONF is an ordinary
string, not a bareword function call!

Having defined our configuration directive array, we pass a reference to it to the
command_table() function. When run, this routine writes out a file named PassThru.xs
to the current directory. command_table() uses the package information returned by
the Perl caller() function to figure out the name of the file to write. This is why it was
important to include a package declaration at the top of the script.

The last part of Makefile.PL is the call WriteMakefile(), a routine provided by
ExtUtils::MakeMaker and automatically placed in Makefile.PL by h2xs. However,
we've modified the autogenerated call in three small but important ways. The INC
key, which MakeMaker uses to generate include file switches, has been modified to
use the value returned by Apache::src->new->inc (a shorthand way of creating a
new Apache::src object and immediately calling its inc() method). This call will return
a list of directories that contain various header files needed to build Apache C-
language modules. We've also added the keys INSTALLSITEARCH and
INSTALLSITELIB to the parameters passed to WriteMakeFile(), in each case
specifying the path we use for Apache Perl API modules on our system (you'll have to
modify this for your setup). This ensures that when we run make install the module file
and its loadable object will be moved to the location of Apache-specific modules
rather than the default Perl library directory.

The next step is to modify PassThru.pm to accommodate the new configuration
directive. We start with the file from Example 7.10 and add the following lines to the
top:

use Apache::ModuleConfig ();
use DynaLoader ();
use vars qw($VERSION);

$VERSION = '1.00';

if($ENV{MOD_PERL}) {
 no strict;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 no strict;
 @ISA = qw(DynaLoader);
 __PACKAGE__->bootstrap($VERSION);
}

This brings in code for fetching and modifying the current configuration settings and
loads the DynaLoader module, which provides the bootstrap() routine for loading
shared library code. We test the MOD_PERL environment variable to find out if we are
running inside httpd and, if so, invoke bootstrap() to load the object file that contains
the compiled directory configuration record.

Next, we add the following configuration processing callback routine to the file:

sub PerlPassThru ($$$$) {
 my($cfg, $parms, $local, $remote) = @_;
 $cfg->{PassThru}{$local} = $remote;
}

The callback (also known as the "directive handler") is a subroutine that will be called
each time Apache processes a PerlPassThru directive. It is responsible for stashing
the information into a configuration record where it can be retrieved later by the
handler() subroutine. The name of the subroutine must exactly match the name of the
configuration directive, capitalization included. It should also have a prototype that
correctly matches the syntax of the configuration directive. All configuration callbacks
are called with at least two scalar arguments, indicated by the function prototype
($$). The first argument, $cfg, is the per-directory or per-server object where the
configuration data will be stashed. As we will explain shortly, your handlers will
recover this object and retrieve the values of the configuration directives it needs. The
second argument, $parms, is an Apache::CmdParms object from which you can
retrieve various other information about the configuration.

Callbacks may be passed other parameters as well, corresponding to the arguments
of the configuration directive that the callback is responsible for. Because
PerlPassThru is a TAKE2 directive, we expect two additional arguments, so the
complete function prototype is ($$$$).

The body of the subroutine is trivial. For all intents and purposes, the configuration
object is a hash reference in which you can store arbitrary key/value pairs. The
convention is to choose a key with the same name as the configuration directive. In
this case, we use an anonymous hash to store the current local and remote URIs into
the configuration object at a key named PassThru. This allows us to have multiple
mappings while guaranteeing that each local URI is unique.

The Apache::PassThru handler() subroutine needs a slight modification as well. We
remove this line:

my %mappings = split /\s*(?:,|=>)\s*/, $r->dir_config('PerlPassThru');

and substitute the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my %mappings = ();
if(my $cfg = Apache::ModuleConfig->get($r)) {
 %mappings = %{ $cfg->{PassThru} } if $cfg->{PassThru};
}

We call the Apache::ModuleConfig class method get(), passing it the request object.
This retrieves the same configuration object that was previously processed by
PerlPassThru(). We then fetch the value of the configuration object's PassThru key. If
the key is present, we dereference it and store it into %mappings. We then proceed
as before. Example 8.2 gives the complete code for the modified module.

The last step is to arrange for Apache::PassThru to be loaded at server startup time.
The easiest way to do this is to load the module with a PerlModule directive:

PerlModule Apache::PassThru

The only trick to this is that you must be careful that the PerlModule directive is called
before any PerlPassThru directives appear. Otherwise, Apache won't recognize the
new directive and will abort with a configuration file syntax error. The other caveat is
that PerlModule only works to bootstrap configuration directives in mod_perl Versions
1.17 and higher. If you are using an earlier version, use this configuration section
instead:

<Perl>
 use Apache::PassThru ();
</Perl>

<Perl> sections are described in detail toward the end of this chapter.

Now change the old Apache::PassThru configuration to use the first-class
PerlPassThru directive:

PerlModule Apache::PassThru
PerlTransHandler Apache::PassThru

PerlPassThru /CPAN http://www.perl.com/CPAN
PerlPassThru /search http://www.altavista.com

After restarting the server, you should now be able to test the Apache::PassThru
handler to confirm that it correctly proxies the /CPAN and /search URIs.

If your server has the mod_info module configured, you should be able to view the
entry for the Apache::PassThru module. It will look something like this:

Module Name: Apache::PassThru

Content handlers: none

Configuration Phase Participation: Create Directory Config, Create
 Server Config

Request Phase Participation: none

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Request Phase Participation: none

Module Directives:
 PerlPassThru - a local path and a remote URI to pass through
 to

Current Configuration:
httpd.conf
 PerlPassThru /CPAN http://www.perl.com/CPAN
 PerlPassThru /search http://www.altavista.com

Now try changing the syntax of the PerlPassThru directive. Create a directive that has
too many arguments or one that has too few. Try putting the directive inside a
<Directory> section or .htaccess file. Any attempt to violate the syntax restrictions we
specified in Makefile.PL with the args_how and req_override keys should cause a
syntax error at server startup time.

Example 8.2. Apache::PassThru with a Custom Configuration Directive

package Apache::PassThru;
file: Apache/PassThru.pm;
use strict;
use vars qw($VERSION);
use Apache::Constants qw(:common);
use Apache::ModuleConfig ();
use DynaLoader ();

$VERSION = '1.00';

if($ENV{MOD_PERL}) {
 no strict;
 @ISA = qw(DynaLoader);
 __PACKAGE__->bootstrap($VERSION);
}

sub handler {
 my $r = shift;
 return DECLINED if $r->proxyreq;
 my $uri = $r->uri;
 my %mappings = ();

 if(my $cfg = Apache::ModuleConfig->get($r)) {
 %mappings = %{ $cfg->{PassThru} } if $cfg->{PassThru};
 }

 foreach my $src (keys %mappings) {
 next unless $uri =~ s/^$src/$mappings{$src}/;
 $r->proxyreq(1);
 $r->uri($uri);
 $r->filename("proxy:$uri");
 $r->handler('proxy-server');
 return OK;
 }
 return DECLINED;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub PerlPassThru ($$$$) {
 my($cfg, $parms, $local, $remote) = @_;
 unless ($remote =~ /^http:/) {
 die "Argument '$remote' is not a URL\n";
 }
 $cfg->{PassThru}{$local} = $remote;
}

1;
__END__

8.2.1 Designing Configuration Directives

We'll now look in more detail at how you can precisely control the behavior of
configuration directives.

As you recall, a module's configuration directives are declared in an array of hashes
passed to the command_table() function. Each hash contains the required keys,
name and errmsg. In addition, there may be any of four optional keys: func,
args_how, req_override, and cmd_data.

For example, this code fragment defines two configuration directives named
TrafficCopSpeedLimit and TrafficCopRightOfWay :

@directives = (
 {
 name => 'TrafficCopSpeedLimit',
 errmsg => 'an integer specifying the maximum allowable
 kilobytes per second',
 func => 'right_of_way',
 args_how => 'TAKE1',
 req_override => 'OR_ALL',
 },
 {
 name => 'TrafficCopRightOfWay',
 errmsg => 'list of domains that can go as fast as they
 want',
 args_how => 'ITERATE',
 req_override => 'OR_ALL',
 cmd_data => '[A-Z_]+',
 },
);
command_table(\@directives);

The required name key points to the name of the directive. It should have exactly the
same spelling and capitalization as the directive you want to implement (Apache
doesn't actually care about the capitalization of directives, but Perl does when it goes
to call your configuration processing callbacks). Alternatively, you can use the
optional func key to specify a subroutine with a different name than the configuration
directive.

The mandatory errmsg key should be a short but succinct usage statement that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The mandatory errmsg key should be a short but succinct usage statement that
summarizes the arguments that the directive takes.

The optional args_how key tells Apache how to parse the directive. There are 11 (!)
possibilities corresponding to different numbers of mandatory and optional
arguments. Because the number of arguments passed to the Perl callback function
for processing depends on the value of args_how, the callback function must know
in advance how many arguments to expect. The various args_how options are
described in the next section.

The optional cmd_data key is used to pass arbitrary information to the directive
handler. The handler can retrieve this information by calling the info() method of the
Apache::CmdParms object that is passed to the directive callback. In our example, we
use this information to pass a pattern match expression to the callback. This is how it
might be used:

sub TrafficCopRightOfWay ($$@) {
 my($cfg, $parms, $domain) = @_;
 my $pat = $parms->info;
 unless ($domain =~ /^$pat$/i) {
 die "Invalid domain: $domain\n";
 }
 $cfg->{RightOfWay}{$domain}++;
}

req_override , another optional key, is used to restrict the directive so that it can
only legally appear in certain sections of the configuration files.

8.2.2 Specifying Configuration Directive Syntax

Most configuration-processing callbacks will declare function prototypes that describe
how they are intended to be called. Although in the current implementation Perl does
not check callbacks' prototypes at runtime, they serve a very useful function
nevertheless. The command_table() function can use callback prototypes to choose
the correct syntax for the directive on its own. If no args_how key is present in the
definition of the directive, command_table() will pull in the .pm file containing the
callback definitions and attempt to autogenerate the args_how field on its own, using
the Perl prototype() built-in function. By specifying the correct prototype, you can
forget about args_how entirely and let command_table() take care of choosing the
correct directive parsing method for you.

If both an args_how and a function prototype are provided, command_table() will use
the value of args_how in case of a disagreement. If neither an args_how nor a
function prototype is present, command_table() will choose a value of TAKE123,
which is a relatively permissive parsing rule.

Apache supports a total of 11 different directive parsing methods. This section lists
their symbolic constants and the Perl prototypes to use if you wish to take advantage
of configuration definition shortcuts.

NO_ARGS ($$) or no prototype at all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The directive takes no arguments. The callback will be invoked once each time
the directive is encountered.

sub TrafficCopOn ($$) {
 shift->{On}++;
}

TAKE1 ($$$)

The directive takes a single argument. The callback will be invoked once each
time the directive is encountered, and the argument of the directive will be
passed to the callback as the third argument.

sub TrafficCopActiveSergeant ($$$) {
 my($cfg, $parms, $arg) = @_;
 $cfg->{Sergeant} = $arg;
}

TAKE2 ($$$$)

The directive takes two arguments. They are passed to the callback as the third
and fourth arguments.

sub TrafficCopLimits ($$$$) {
 my($cfg, $parms, $minspeed, $maxspeed) = @_;
 $cfg->{Min} = $minspeed;
 $cfg->{Max} = $maxspeed;
}

TAKE3 ($$$$$)

This is like TAKE1 and TAKE2, but the directive takes three mandatory
arguments.

TAKE12 ($$$;$)

In this interesting variant, the directive takes one mandatory argument and a
second optional one. This can be used when the second argument has a default
value that the user may want to override.

sub TrafficCopWarningLevel ($$$;$) {
 my($cfg, $parms, $severity_level, $msg) = @_;
 $cfg->{severity} = $severity_level;
 $cfg->{msg} = $msg || "You have exceeded the speed limit. Your
 license please?"
}

TAKE23 ($$$$;$)

TAKE23 is just like TAKE12, except now there are two mandatory arguments
and an optional third one.

TAKE123 ($$$;$$)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the TAKE123 variant, the first argument is mandatory and the other two are
optional. This is useful for providing defaults for two arguments.

ITERATE ($$@)

ITERATE is used when a directive can take an unlimited number of arguments.
For example, the mod_autoindex IndexIgnore directive specifies a list of one or
more file extensions to ignore in directory listings:

IndexIgnore .bak .sav .hide .conf

Although the function prototype suggests that the callback's third argument will
be a list, this is not the case. In fact, the callback is invoked repeatedly with a
single argument, once for each argument in the list. It's done this way for
interoperability with the C API.

The callback should be prepared to be called once for each argument in the
directive argument list, and to be called again each time the directive is
repeated. For example:

sub TrafficCopRightOfWay ($$@) {
 my($cfg, $parms, $domain) = @_;
 $cfg->{RightOfWay}{$domain}++;
}

ITERATE2 ($$@;@)

ITERATE2 is an interesting twist on the ITERATE theme. It is used for directives
that take a mandatory first argument followed by a list of arguments to be
applied to the first. A familiar example is the AddType directive, in which a
series of file extensions are applied to a single MIME type:

AddType image/jpeg JPG JPEG JFIF jfif

As with ITERATE, the callback function prototype for ITERATE2 is there
primarily to provide a unique signature that can be recognized by
command_table(). Apache will invoke your callback once for each item in the
list. Each time Apache runs your callback, it passes the routine the constant first
argument (image/jpeg in the example) and the current item in the list (JPG the
first time around, JPEG the second time, and so on). In the example above, the
configuration processing routine will be run a total of four times.

Let's say Apache::TrafficCop needs to ticket cars parked on only the days when
it is illegal, such as street sweeping day:

TrafficCopTicket street_sweeping monday wednesday friday

The ITERATE2 callback to handle this directive would look like:

sub TrafficCopTicket ($$@;@) {
 my($cfg, $parms, $violation, $day) = @_;
 push @{ $cfg->{Ticket}{$violation} }, $day;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

RAW_ARGS ($$$;*)

An args_how of RAW_ARGS instructs Apache to turn off parsing altogether.
Instead, it simply passes your callback function the line of text following the
directive. Leading and trailing whitespace is stripped from the text, but it is not
otherwise processed. Your callback can then do whatever processing it wishes
to perform.

This callback receives four arguments, the third of which is a string-valued
scalar containing the text following the directive. The last argument is a
filehandle tied to the configuration file. This filehandle can be used to read data
from the configuration file starting on the line following the configuration
directive. It is most common to use a RAW_ARGS prototype when processing a
"container" directive. For example, let's say our TrafficCop needs to build a
table of speed limits for a given district:

<TrafficCopSpeedLimits charlestown>
 Elm St. 20
 Payson Ave. 15
 Main St. 25
</TrafficCopSpeedLimits>

By using the RAW_ARGS prototype, the third argument passed in will be
charlestown>; it's up to the handler to strip the trailing >. Now the handler
can use the tied filehandle to read the following configuration lines, until it hits
the container end token, </TrafficCopSpeedLimits>. For each
configuration line that is read in, leading and trailing whitespace is stripped, as
is the trailing newline. The handler can then apply any parsing rules it wishes to
the line of data:

my $EndToken = "</TrafficCopSpeedLimits>";

sub TrafficCopSpeedLimits ($$$;*) {
 my($cfg, $parms, $district, $cfg_fh) = @_;
 $district =~ s/>$//;
 while((my $line = <$cfg_fh>) !~ m:^$EndToken:o) {
 my($road, $limit) = ($line =~ /(.*)\s+(\S+)$/);
 $cfg->{SpeedLimits}{$district}{$road} = $limit;
 }
}

There is a trick to making configuration containers work. In order to be
recognized as a valid directive, the name entry passed to command_table()
must contain the leading <. This token will be stripped by Apache::ExtUtils when
it maps the directive to the corresponding subroutine callback.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my @directives = (
 { name => '<TrafficCopSpeedLimits',
 errmsg => 'a district speed limit container',
 args_how => 'RAW_ARGS',
 req_override => 'OR_ALL'
 },
);

One other trick, which is not required but can provide some more user
friendliness, is to provide a handler for the container end token. In our example,
the Apache configuration gears will never see the
</TrafficCopSpeedLimits> token, as our RAW_ARGS handler will read in
that line and stop reading when it is seen. However, in order to catch cases in
which the </TrafficCopSpeedLimits> text appears without a preceding
<TrafficCopSpeedLimits> opening section, we need to turn the end token
into a directive that simply reports an error and exits.

command_table() includes special tests for directives whose names begin with
</. When it encounters a directive like this, it strips the leading </ and trailing >
characters from the name and tacks _END onto the end. This allows us to
declare an end token callback like this one:

my $EndToken = "</TrafficCopSpeedLimits>";
sub TrafficCopSpeedLimits_END () {
 die "$EndToken outside a <TrafficCopSpeedLimits> container\n";
}

which corresponds to a directive definition like this one:

my @directives = (
 ...
 { name => '</TrafficCopSpeedLimits>',
 errmsg => 'end of speed limit container',
 args_how => 'NO_ARGS',
 req_override => 'OR_ALL',
 },
);

Now, should the server admin misplace the container end token, the server will
not start, complaining with this error message:

Syntax error on line 89 of httpd.conf:
</TrafficCopSpeedLimits> outside a <TrafficCopSpeedLimits> container

FLAG ($$$)

When the FLAG prototype is used, Apache will only allow the argument to be
one of two values, On or Off. This string value will be converted into an integer:
1 if the flag is On, if it is Off. If the configuration argument is anything other than
On or Off, Apache will complain:

Syntax error on line 90 of httpd.conf:
TrafficCopRoadBlock must be On or Off

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TrafficCopRoadBlock must be On or Off

Here's an example:

Makefile.PL
my @directives = (
 ...
 { name => 'TrafficCopRoadBlock',
 errmsg => 'On or Off',
 args_how => 'FLAG',
 req_override => 'OR_ALL',
 },

TrafficCop.pm
sub TrafficCopRoadBlock ($$$) {
 my($cfg, $parms, $arg) = @_;
 $cfg->{RoadBlock} = $arg;
}

On successfully processing a directive, its handler should simply return. If an error
occurs while processing the directive, the routine should die() with a string describing
the source of the error. There is also a third possibility. The configuration directive
handler can return DECLINE_CMD, a constant that must be explicitly imported from
Apache::Constants. This is used in the rare circumstance in which a module
redeclares another module's directive in order to override it. The directive handler can
then return DECLINE_CMD when it wishes the directive to fall through to the original
module's handler.

8.2.3 Restricting Configuration Directive Usage

In addition to specifying the syntax of your custom configuration directives, you can
establish limits on how they can be used by specifying the req_override key in the
data passed to command_table() . This option controls which parts of the
configuration files the directives can appear in, called the directive's "context" in the
Apache manual pages. This key should point to a bitmap formed by combining the
values of several C-language constants:

RSRC_CONF

The directive can appear in any .conf file outside a directory section
(<Directory>, <Location>, or <Files>; also <FilesMatch> and kin). The directive
is not allowed in .htaccess files.

ACCESS_CONF

The directive can appear within directory sections. The directive is not allowed
in .htaccess files.

OR_AUTHCFG

The directive can appear within directory sections but not outside them. It is also
allowed within .htaccess files, provided that the directive AllowOverride
AuthConfig is set for the current directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OR_LIMIT

The directive can appear within directory sections but not outside them. It is also
allowed within .htaccess files, provided that the directive AllowOverride Limit is
set for the current directory.

OR_OPTIONS

The directive can appear anywhere within the .conf files as well as within
.htaccess files provided that AllowOverride Options is set for the current
directory.

OR_FILEINFO

The directive can appear anywhere within the .conf files as well as within
.htaccess files provided that AllowOverride FileInfo is set for the current
directory.

OR_INDEXES

The directive can appear anywhere within the .conf files as well as within
.htaccess files provided that AllowOverride Indexes is set for the current
directory.

OR_ALL

The directive can appear anywhere. It is not limited in any way.

OR_NONE

The directive cannot be overridden by any of the AllowOverride options.

The value of req_override is actually a bit mask. Apache derives the directive
context by taking the union of all the set bits. This allows you to combine contexts by
combining them with logical ORs and ANDs. For example, the following combination
of constants will allow the directive to appear anywhere in a .conf file but forbid it from
ever being used in a .htaccess file:

'req_override' => 'RSRC_CONF | ACCESS_CONF'

As in the case of args_how, the value of the req_override key is not evaluated by
Perl. It is simply a string that is written into the .xs file and eventually passed to the C
compiler. This means that any errors in the string you provide for req_override will
not be caught until the compilation phase.

8.2.4 Directive Definition Shortcuts

We've already seen how to simplify your configuration directives by allowing
command_table() to deduce the correct args_how from the callback's function
prototype. One other shortcut is available to you as well.

If you pass command_table() a list of array references rather than hash references,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you pass command_table() a list of array references rather than hash references,
then it will take the first item in each array ref to be the name of the configuration
directive, and the second item to be the error/usage message. req_override will
default to OR_ALL (allowing the directive to appear anywhere), and args_how will be
derived from the callback prototype, if present, or TAKE123 if not.

By taking advantage of this shortcut, we can rewrite the list of configuration directives
at the beginning of this section more succinctly:

@directives = (
 [
 'TrafficCopSpeedLimit',
 'an integer specifying the maximum allowable bytes per second',
],
 [
 'TrafficCopRightOfWay',
 'list of domains that can go as fast as they want',
],
);
 command_table(\@directives);

You can also mix and match the two configuration styles. The @directives list can
contain a mixture of array refs and hash refs. command_table() will do the right thing.

8.2.5 Configuration Creation and Merging

Digging deeper, the process of module configuration is more complex than you'd
expect because Apache recognizes multiple levels of configuration directives. There
are global directives contained within the main httpd.conf file, per-server directives
specific to virtual hosts contained within <VirtualHost> sections, and per-directory
configuration directives contained within <Directory> sections and .htaccess files.

To understand why this issue is important, consider this series of directives:

TrafficCopSpeedLimit 55

<Location /I-95>
 TrafficCopRightOfWay .mil .gov
 TrafficCopSpeedLimit 65
</Location>

<Location /I-95/exit-13>
 TrafficCopSpeedLimit 30
</Location>

When processing URLs in /I-95/exit13, there's a potential source of conflict because
the TrafficCopSpeedLimit directive appears in several places. Intuitively, the more
specific directive should take precedence over the one in its parent directory, but what
about TrafficCopRightOfWay ? Should /I-95/exit13 inherit the value of
TrafficCopRightOfWay or ignore it?

On top of this, there is the issue of per-server and per-directory configuration
information. Some directives, such as HostName, clearly apply to the server as a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

information. Some directives, such as HostName, clearly apply to the server as a
whole and have no reason to change on a per-directory basis. Other directives, such
as Options, apply to individual directories or URIs. Per-server and per-directory
configuration information should be handled separately from each other.

To handle these issues, modules may declare as many as four subroutines to set
configuration policy: SERVER_CREATE(), DIR_CREATE(), SERVER_MERGE(), and
DIR_MERGE().

The SERVER_CREATE() and DIR_CREATE() routines are responsible for creating
per-server and per-directory configuration objects. If present, they are invoked before
Apache has processed any of the module's configuration directives in order to create
a default per-server or per-directory configuration. Provided that at least one of the
module's configuration directives appears in the main part of the configuration file,
SERVER_CREATE() will be called once for the main server host and once for each
virtual host. Similarly, DIR_CREATE() will be called once for each directory section
(including <Location> and .htaccess files) in which at least one of the module's
configuration directives appears.

As Apache parses and processes the module's custom directives, it invokes the
directive callbacks to add information to the per-server and per-directory configuration
records. Since the vast majority of modules act at a per-directory level, Apache
passes the per-directory configuration object to the callbacks as the first argument.
This is the $cfg argument that we saw in the previous examples. A callback that is
concerned with processing per-server directives will simply ignore this argument and
use the Apache::ModuleConfig class to retrieve the per-server configuration record
manually. We'll see how to do this later.

Later in the configuration process, one or both of the SERVER_MERGE() and
DIR_MERGE() subroutines may be called. These routines are responsible for
merging a parent per-server or per-directory configuration record with a configuration
that is lower in the hierarchy. For example, merging will be required when one or
more of a module's configuration directives appear in both a <Location /images>
section and a <Location /images/PNG> section. In this case, DIR_CREATE() will be
called to create default configuration records for each of the /images and
/images/PNG directories, and the configuration directives' callbacks will be called to
set up the appropriate fields in these newly created configurations. After this, the
DIR_MERGE() subroutine is called once to merge the two configuration objects
together. The merged configuration now becomes the per-directory configuration for
/images/PNG.

This merging process is repeated as many times as needed. If a directory or virtual
host section contains none of a particular module's configuration directives, then the
configuration handlers are skipped and the configuration for the closest ancestor of
the directory is used instead.

In addition to being called at server startup time, the DIR_CREATE() function may be
invoked again at request time, for example, whenever Apache processes a .htaccess
file. The DIR_MERGE() functions are always invoked at request time in order to
merge the current directory's configuration with its parents.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When C modules implement configuration directive handlers they must, at the very
least, define a per-directory or per-server constructor for their configuration data.
However, if a Perl module does not implement a constructor, mod_perl uses a default
per-directory constructor that creates a hash reference blessed into the current
package's class. Later Apache calls your module's directive callbacks to fill in this
empty hash, which is, as usual, passed in as the $cfg argument. No per-server
configuration object is created by default.

Neither C nor Perl modules are required to implement merging routines. If they do
not, merging simply does not happen and Apache uses the most specific
configuration record. In the example at the top of this section, the configuration record
for the URI location /I-95/exit-13 would contain the current value of
TrafficCopSpeedLimit but no specific value for TrafficCopRightOfWay.

Depending on your module's configuration system, you may wish to implement one or
more of the configuration creation and merging methods described in the following
list. The method names use the all-uppercase naming convention because they are
never called by any other user code.

DIR_CREATE()

If the directive handler's class defines or inherits a DIR_CREATE() method, it
will be invoked to create per-directory configuration objects. This object is the
second argument passed to all directive handlers, which is normally used to
store the configuration arguments. When no DIR_CREATE() method is found,
mod_perl will construct the configuration object for you like this:

bless {}, $Class;

You might use a DIR_CREATE() method to define various defaults or to use
something other than a hash reference to store the configuration values. This
example uses a blessed hash reference and sets the value of TopLimit to a
default value:

package Apache::TrafficCop;

sub new {
 return bless {}, shift;
}

sub DIR_CREATE {
 my $class = shift;
 my $self = $class->new;
 $self->{TopLimit} ||= 65;
 return $self;
}

DIR_MERGE()

When the <Directory> or <Location> hierarchy contains configuration entries at
multiple levels, the directory merger routine will be called on to merge all the
directives into the current, bottom-most level.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When defining a DIR_MERGE() method, the parent configuration object is
passed as the first argument, and the current object as the second. In the
example DIR_MERGE() routine shown below, the keys of the current
configuration will override any like-named keys in the parent. The return value
should be a merged configuration object blessed into the module's class:

sub DIR_MERGE {
 my($parent, $current) = @_;
 my %new = (%$parent, %$current);
 return bless \%new, ref($parent);
}

SERVER_CREATE()
SERVER_MERGE()

The SERVER_CREATE() and SERVER_MERGE() methods work just like
DIR_CREATE() and DIR_MERGE(). The difference is simply in the scope and
timing in which they are created and merged. The SERVER_CREATE() method
is only called once per configured virtual server. The SERVER_MERGE()
method is invoked during server startup time, rather than at request time like
DIR_MERGE().

8.2.6 The Apache::CmdParms and Apache::ModuleConfig Classes

The configuration mechanism uses two auxiliary classes, Apache::CmdParms and
Apache::ModuleConfig, to pass information between Apache and your module.

Apache::ModuleConfig is the simpler of the two. It provides just a single method,
get(), which retrieves a module's current configuration information. The return value is
the object created by the DIR_CREATE() or SERVER_CREATE() methods.

The get() method is called with the current request object or server object and an
optional additional argument indicating which module to retrieve the configuration
from. In the typical case, you'll omit this additional argument to indicate that you want
to fetch the configuration information for the current module. For example, we saw
this in the Apache::PassThru handler() routine:

my $cfg = Apache::ModuleConfig->get($r);

This call returns the per-directory configuration object because the argument to get()
is the current request. To obtain the per-server configuration object, provided that you
defined a SERVER_CREATE() routine, pass the request's server object instead:

my $cfg = Apache::ModuleConfig->get($r->server);

As a convenience, the per-directory configuration object for the current module is
always the first argument passed to any configuration processing callback routine.
Directives processing callbacks that need to operate on server-specific configuration
data should ignore this hash and fetch the configuration data themselves using a
technique we will discuss shortly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is also possible for one module to peek at another module's configuration data by
naming its package as the second argument to get() :

my $friends_cfg = Apache::ModuleConfig->get($r, 'Apache::TrafficCop');

You can now read and write the other module's configuration information!

Apache::CmdParms is a helpful class that Apache uses to pass a variety of
configuration information to modules. An Apache::CmdParms object is the second
argument passed to directive handler routines.

The various methods available from Apache::CmdParms are listed fully in Chapter
9. The two you are most likely to use in your modules are server() and path().
server() returns the Apache::Server object corresponding to the current configuration.
From this object you can retrieve the virtual host's name, its configured port, the
document root, and other core configuration information. For example, this code
retrieves the administrator's name from within a configuration callback and adds it to
the module's configuration table:

sub TrafficCopActiveSergeant ($$$) {
 my($cfg, $parms, $arg) = @_;
 $cfg->{Sergeant} = $arg;
 my $chief_of_police = $parms->server->server_admin;
 $cfg->{ChiefOfPolice} = $chief_of_police;
}

The server() method is also vital when directive processing callbacks need to set
server-specific configuration information. In this case, the per-directory configuration
passed as the first callback argument must be ignored, and the per-server
configuration must be fetched by calling the Apache::ModuleConfig get() with the
server object as its argument.

Here's an example:

sub TrafficCopDispatcher ($$$) {
 my($cfg, $parms, $arg) = @_;
 my $scfg = Apache::ModuleConfig->get($parms->server)
 $scfg->{Dispatcher} = $arg;
}

If the configuration-processing routine is being called to process a container directive
such as <Location> or <Directory>, the Apache::CmdParms path() method will return
the directive's argument. Depending on the context this might be a URI, a directory
path, a virtual host address, or a filename pattern.

See Chapter 9 for details on other methods that Apache::ModuleConfig and
Apache::CmdParms makes available.

8.2.7 Reimplementing mod_mime in Perl

As a full example of creating custom configuration directives, we're going to
reimplement the standard mod_mime module in Perl. It has a total of seven different

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reimplement the standard mod_mime module in Perl. It has a total of seven different
directives, each with a different argument syntax. In addition to showing you how to
handle a complex configuration setup, this example will show you in detail what goes
on behind the scenes as mod_mime associates a content handler with each URI
request.

This module replaces the standard mod_mime module. You do not have to remove
mod_mime from the standard compiled-in modules in order to test this module.
However, if you wish to remove mod_mime anyway in order to convince yourself that
the replacement actually works, the easiest way to do this is to compile mod_mime as
a dynamically loaded module and then comment out the lines in httpd.conf that load
it. In either case, install Apache::MIME as the default MIME-checking phase handler
by putting this line in perl.conf or one of the other configuration files:

PerlTypeHandler Apache::MIME

Like the previous example, the configuration information is contained in two files.
Makefile.PL (Example 8.3) describes the directives, and Apache/MIME.pm
(Example 8.4) defines the callbacks for processing the directives at runtime. In order
to reimplement mod_mime, we need to reimplement a total of seven directives,
including SetHandler, AddHandler, AddType, and AddEncoding.

Makefile.PL defines the seven directives using the anonymous hash method. All but
one of the directives is set to use the OR_FILEINFO context, which allows the
directives to appear anywhere in the main configuration files, as well as in .htaccess
files, provided that Override FileInfo is also set. The exception, TypesConfig, is the
directive that indicates where the default table of MIME types is to be found. It only
makes sense to process this directive during server startup, so its context is given as
RSRC_CONF, limiting the directive to the body of any of the .conf files. We don't
specify the args_how key for the directives; instead, we allow command_table() to
figure out the syntax for us by looking at the function prototypes in MIME.pm.

Running perl Makefile.PL will now create a .xs file, which will be compiled into a
loadable object file during make.

Example 8.3. Makefile.PL for Apache::MIME

package Apache::MIME;
File: Makefile.PL

use ExtUtils::MakeMaker;
See lib/ExtUtils/MakeMaker.pm for details of how to influence
the contents of the Makefile that is written.
use Apache::src ();
use Apache::ExtUtils qw(command_table);

my @directives = (
 { name => 'SetHandler',
 errmsg => 'a handler name',
 req_override => 'OR_FILEINFO' },
 { name => 'AddHandler',
 errmsg => 'a handler name followed by one or more file extensions',
 req_override => 'OR_FILEINFO' },

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 req_override => 'OR_FILEINFO' },
 { name => 'ForceType',
 errmsg => 'a handler name',
 req_override => 'OR_FILEINFO' },
 { name => 'AddType',
 errmsg => 'a mime type followed by one or more file extensions',
 req_override => 'OR_FILEINFO' },
 { name => 'AddLanguage',
 errmsg => 'a language (e.g., fr), followed by one or more file extensions',
 req_override => 'OR_FILEINFO' },
 { name => 'AddEncoding',
 errmsg => 'an encoding (e.g., gzip), followed by one or more file extensions',
 req_override => 'OR_FILEINFO' },
 { name => 'TypesConfig',
 errmsg => 'the MIME types config file',
 req_override => 'RSRC_CONF'
 },
);

command_table \@directives;

WriteMakefile(
 'NAME' => __PACKAGE__,
 'VERSION_FROM' => 'MIME.pm',
 'INC' => Apache::src->new->inc,
);
__END__

Turning to Example 8.4, we start by bringing in the DynaLoader and
Apache::ModuleConfig modules as we did in the overview example at the beginning
of this section:

package Apache::MIME;
File: Apache/MIME.pm

use strict;
use vars qw($VERSION @ISA);
use LWP::MediaTypes qw(read_media_types guess_media_type add_type add_encoding);
use DynaLoader ();
use Apache ();
use Apache::ModuleConfig ();
use Apache::Constants qw(:common DIR_MAGIC_TYPE DECLINE_CMD);

@ISA = qw(DynaLoader);

$VERSION = '0.01';

if($ENV{MOD_PERL}) {
 no strict;
 @ISA = qw(DynaLoader);
 __PACKAGE__->bootstrap($VERSION);
}

We also bring in Apache, Apache::Constants, and an LWP library called
LWP::MediaTypes. The Apache and Apache::Constants libraries will be used within

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LWP::MediaTypes. The Apache and Apache::Constants libraries will be used within
the handler() subroutine, while the LWP library provides utilities for guessing MIME
types, languages, and encodings from file extensions. As before, Apache::MIME
needs to call bootstrap() immediately after loading other modules in order to bring in
its compiled .xs half. Notice that we have to explicitly import the DIR_MAGIC_TYPE
and DECLINE_CMD constants from Apache::Constants, as these are not exported by
default.

Let's skip over handler() for the moment and look at the seven configuration
callbacks: TypesConfig(), AddType(), AddEncoding(), and so on.

sub TypesConfig ($$$) {
 my($cfg, $parms, $file) = @_;
 my $types_config = Apache->server_root_relative($file);
 read_media_types($types_config);
 #to co-exist with mod_mime.c
 return DECLINE_CMD if Apache->module("mod_mime.c");
}

TypesConfig() has a function prototype of ($$$), indicating a directive syntax of
TAKE1. It will be called with the name of the file holding the MIME types table as its
third argument. The callback retrieves the filename, turns it into a server-relative path,
and stores the path into a lexical variable. The callback then calls the LWP function
read_media_types() to parse the file and add the MIME types found there to an
internal table maintained by LWP::MediaTypes. When the LWP::MediaTypes function
guess_media_type() is called subsequently, this table will be consulted. Note that
there is no need, in this case, to store the configuration information into the $cfg
hash reference because the information is only needed at the time the configuration
directive is processed.

Another important detail is that the TypesConfig handler will return DECLINE_CMD if
the mod_mime module is installed. This gives mod_mime a chance to also read the
TypesConfig file. If mod_mime isn't given this opportunity, it will complain bitterly and
abort server startup. However, we don't allow any of the other directive handlers to fall
through to mod_mime in this way, effectively cutting mod_mime out of the loop.

sub AddType ($$@;@) {
 my($cfg, $parms, $type, $ext) = @_;
 add_type($type, $ext);
}

The AddType() directive callback is even shorter. Its function prototype is ($$@;@),
indicating an ITERATE2 syntax. This means that if the AddType directive looks like
this:

AddType application/x-chicken-feed .corn .barley .oats

the function will be called three times. Each time the callback is invoked its third
argument will be application/x-chicken-feed and the fourth argument will be
successively set to .corn, .barley, and .oats. The function recovers the third and fourth
parameters and passes them to the LWP::MediaTypes function add_type(). This
simply adds the file type and extension to LWP's internal table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sub AddEncoding ($$@;@) {
 my($cfg, $parms, $enc, $ext) = @_;
 add_encoding($enc, $ext);
}

AddEncoding() is similar to AddType() but uses the LWP::MediaTypes
add_encoding() function to associate a series of file extensions with a MIME
encoding.

More interesting are the SetHandler() and AddHandler() callbacks:

sub SetHandler ($$$) {
 my($cfg, $parms, $handler) = @_;
 $cfg->{'handler'} = $handler;
}

sub AddHandler ($$@;@) {
 my($cfg, $parms, $handler, $ext) = @_;
 $cfg->{'handlers'}->{$ext} = $handler;
}

The job of the SetHandler directive is to force requests for the specified path to be
passed to the indicated content handler, no questions asked. AddHandler(), in
contrast, adds a series of file extensions to the table consulted by the MIME type
checker when it attempts to choose the proper content handler for the request. In both
cases, the configuration information is needed again at request time, so we have to
keep it in long-term storage within the $cfg hash.

SetHandler() is again a TAKE1 type of callback. It recovers the content handler name
from its third argument and stores it in the $cfg data structure under the key
handler. AddHandler() is an ITERATE2 callback which receives the name of a
content handler and a file extension as its third and fourth arguments. The callback
stuffs this information into an anonymous hash maintained in $cfg under the
handlers key.

sub ForceType ($$$) {
 my($cfg, $parms, $type) = @_;
 $cfg->{'type'} = $type;
}

The ForceType directive is used to force all documents in a path to be a particular
MIME type, regardless of their file extensions. It's often used within a <Directory>
section to force the type of all documents contained within and is helpful for dealing
with legacy documents that don't have informative file extensions. The ForceType()
callback uses a TAKE1 syntax in which the required argument is a MIME type. The
callback recovers the MIME type and stores it in the $cfg hash reference under the
key type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

key type.

sub AddLanguage ($$@;@) {
 my($cfg, $parms, $language, $ext) = @_;
 $ext =~ s/^\.//;
 $cfg->{'language_types'}->{$ext} = lc $language;
}

The last directive handler, AddLanguage(), implements the AddLanguage directive, in
which a series of file extensions are associated with a language code (e.g., "fr" for
French, "en" for English). It is an ITERATE2 callback and works just like
AddHandler(), except that the dot is stripped off the file extension before storing it into
the $cfg hash. This is because of an old inconsistency in the way that mod_mime
works, in which the AddLanguage directive expects dots in front of the file extensions,
while the AddType and AddHandler directives do not.

Now we turn our attention to the handler() subroutine itself. This code will be called at
request time during the MIME type checking phase. It has five responsibilities:

1. Guess the MIME content type for the requested document.

2. Guess the content encoding for the requested document.

3. Guess the content language for the requested document.

4. Set the content handler for the request.

5. If the requested document is a directory, initiate special directory processing.

Items 1 through 3 are important but not critical. The content type, encoding, and
language may well be changed during the response phase by the content handler. In
particular, the MIME type is very frequently changed (e.g., by CGI scripts). Item 4,
however, is crucial since it determines what code will be invoked to respond to the
request. It is also necessary to detect and treat requests for directory names
specially, using a pseudo-MIME type to initiate Apache's directory handling.

sub handler {
 my $r = shift;

 if(-d $r->finfo) {
 $r->content_type(DIR_MAGIC_TYPE);
 return OK;
 }

handler() begins by shifting the Apache request object off the subroutine stack. The
subroutine now does a series of checks on the requested document. First, it checks
whether $r->finfo() refers to a directory. If so, then handler() sets the request content
type to a pseudo-MIME type defined by the constant DIR_MAGIC_TYPE and exits.
Returning DIR_MAGIC_TYPE signals Apache that the user requested a directory,
causing the server to pass control to any content handlers that list this constant
among the MIME types they handle. mod_dir and mod_autoindex are two of the
standard modules that are capable of generating directory listings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my($type, @encoding) = guess_media_type($r->filename);
 $r->content_type($type) if $type;
 unshift @encoding, $r->content_encoding if $r->content_encoding;
 $r->content_encoding(join ", ", @encoding) if @encoding;

If the file is not a directory, then we try to guess its MIME type and encoding. We call
on the LWP::MediaTypes function guess_media_type() to do the work, passing it the
filename and receiving a MIME type and list of encodings in return. Although unusual,
it is theoretically possible for a file to have multiple encodings, and LWP::MediaTypes
allows this. The returned type is immediately used to set the MIME type of the
requested document by calling the request object's content_type() method. Likewise,
the list of encodings is added to the request using content_encoding() after joining
them together into a comma-delimited string. The only subtlety here is that we honor
any previously defined encoding for the requested document by adding it to the list of
encodings returned by guess_media_type(). This is in case the handler for a previous
phase happened to add some content encoding.

Now comes some processing that depends on the values in the configuration hash,
so we recover the $cfg variable by calling Apache::ModuleConfig 's get() method:

my $cfg = Apache::ModuleConfig->get($r);

The next task is to parse out the requested file's extensions and use them to set the
file's MIME type and/or language.

for my $ext (LWP::MediaTypes::file_exts($r->filename)) {
 if(my $type = $cfg->{'language_types'}->{$ext}) {
 my $ltypes = $r->content_languages;
 push @$ltypes, $type;
 $r->content_languages($ltypes);
 }

Using the LWP::MediaTypes function file_exts() , we split out all the extensions in the
requested document's filename and loop through them. This allows a file named
travel.html.fr to be recognized and dealt with appropriately.

We first check whether the extension matches one of the extensions in the
configuration object's language_types key. If so, we use the extension to set the
language code for the document. Although it is somewhat unusual, the HTTP
specification allows a document to specify multiple languages in its Content-
Language field, so we go to some lengths to merge multiple language codes into one
long list which we then set with the request object's content_languages() method.

if(my $type = $cfg->{'handlers'}->{$ext} and !$r->proxyreq) {
 $r->handler($type);
 }

 }

While still in the loop, we deal with the content handler for the request. We check
whether the extension is among the ones defined in the configuration variable's
handlers hash. If so, we call the request object's handler() method to set the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

handlers hash. If so, we call the request object's handler() method to set the
content handler to the indicated value. The only catch is that if the current transaction
is a proxy request, we do not want to alter the content handler because another
module may have set the content handler during the URI translation phase.

$r->content_type($cfg->{'type'}) if $cfg->{'type'};
 $r->handler($cfg->{'handler'}) if $cfg->{'handler'};

After looping through the file extensions, we handle the ForceType and SetHandler
directives, which have the effect of overriding file extensions. If the configuration key
type is nonempty, we use it to force the MIME type to the specified value. Likewise, if
handler is nonempty, we again call handler(), replacing whatever content handler was
there before.

return OK;
}

At the end of handler(), we return OK to tell Apache that the MIME type checking
phase has been handled successfully.

Although this module was presented mainly as an exercise, with minimal work it can
be used to improve on mod_mime. For example, you might have noticed that the
standard mod_mime has no ForceEncoding or ForceLanguage directives that allow
you to override the file extension mappings in the way that you can with ForceType.
This is easy enough to fix in Apache::MIME by adding the appropriate directive
definitions and callbacks.

Example 8.4. Apache::MIME Reimplements the Standard mod_mime Module

package Apache::MIME;
File: Apache/MIME.pm

use strict;
use vars qw($VERSION @ISA);
use LWP::MediaTypes qw(read_media_types guess_media_type add_type add_encoding);
use DynaLoader ();
use Apache ();
use Apache::ModuleConfig ();
use Apache::Constants qw(:common DIR_MAGIC_TYPE DECLINE_CMD);

@ISA = qw(DynaLoader);

$VERSION = '0.01';

if($ENV{MOD_PERL}) {
 no strict;
 @ISA = qw(DynaLoader);
 __PACKAGE__->bootstrap($VERSION);
}

sub handler {
 my $r = shift;

 if(-d $r->finfo) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(-d $r->finfo) {
 $r->content_type(DIR_MAGIC_TYPE);
 return OK;
 }

 my($type, @encoding) = guess_media_type($r->filename);
 $r->content_type($type) if $type;
 unshift @encoding, $r->content_encoding if $r->content_encoding;
 $r->content_encoding(join ", ", @encoding) if @encoding;

 my $cfg = Apache::ModuleConfig->get($r);

 for my $ext (LWP::MediaTypes::file_exts($r->filename)) {
 if(my $type = $cfg->{'language_types'}->{$ext}) {
 my $ltypes = $r->content_languages;
 push @$ltypes, $type;
 $r->content_languages($ltypes);
 }

 if(my $type = $cfg->{'handlers'}->{$ext} and !$r->proxyreq) {
 $r->handler($type);
 }

 }

 $r->content_type($cfg->{'type'}) if $cfg->{'type'};
 $r->handler($cfg->{'handler'}) if $cfg->{'handler'};

 return OK;
}

sub TypesConfig ($$$) {
 my($cfg, $parms, $file) = @_;
 my $types_config = Apache->server_root_relative($file);
 read_media_types($types_config);
 #to co-exist with mod_mime.c
 return DECLINE_CMD if Apache->module("mod_mime.c");
}

sub AddType ($$@;@) {
 my($cfg, $parms, $type, $ext) = @_;
 add_type($type, $ext);
}

sub AddEncoding ($$@;@) {
 my($cfg, $parms, $enc, $ext) = @_;
 add_encoding($enc, $ext);
}

sub SetHandler ($$$) {
 my($cfg, $parms, $handler) = @_;
 $cfg->{'handler'} = $handler;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $cfg->{'handler'} = $handler;
}

sub AddHandler ($$@;@) {
 my($cfg, $parms, $handler, $ext) = @_;
 $cfg->{'handlers'}->{$ext} = $handler;
}

sub ForceType ($$$) {
 my($cfg, $parms, $type) = @_;
 $cfg->{'type'} = $type;
}

sub AddLanguage ($$@;@) {
 my($cfg, $parms, $language, $ext) = @_;
 $ext =~ s/^\.//;
 $cfg->{'language_types'}->{$ext} = lc $language;
}

1;
__END__

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

8.3 Configuring Apache with Perl

We've just seen how you can configure Perl modules using the Apache configuration
mechanism. Now we turn it around to show you how to configure Apache from within
Perl. Instead of configuring Apache by hand (editing a set of configuration files), the
Perl API allows you to write a set of Perl statements to dynamically configure Apache
at runtime. This gives you limitless flexibility. For example, you can create complex
configurations involving hundreds of virtual hosts without manually typing hundreds of
<VirtualHost> sections into httpd.conf. Or you can write a master configuration file
that will work without modification on any machine in a "server farm." You could even
look up configuration information at runtime from a relational database.

The key to Perl-based server configuration is the <Perl> directive. Unlike the other
directives defined by mod_perl, this directive is paired to a corresponding </Perl>
directive, forming a Perl section.

When Apache hits a Perl section during startup time, it passes everything within the
section to mod_perl. mod_perl, in turn, compiles the contents of the section by
evaluating it inside the Apache::ReadConfig package. After compilation is finished,
mod_perl walks the Apache::ReadConfig symbol table looking for global variables
with the same names as Apache's configuration directives. The values of those
globals are then fed into Apache's normal configuration mechanism as if they'd been
typed directly into the configuration file. The upshot of all this is that instead of setting
the account under which the server runs with the User directive:

User www

you can write this:

<Perl>
 $User = 'www';
</Perl>

This doesn't look like much of a win until you consider that you can set this global
using any arbitrary Perl expression, for example:

<Perl>
 my $hostname = `hostname`;
 $User = 'www' if $hostname =~ /^papa-bear/;
 $User = 'httpd' if $hostname =~ /^momma-bear/;
 $User = 'nobody' if $hostname =~ /^goldilocks/;
</Perl>

The Perl global that you set must match the spelling of the corresponding Apache
directive. Globals that do not match known Apache directives are silently ignored.
Capitalization is not currently significant.

In addition to single-valued directives such as User, Group, and ServerRoot, you can
use <Perl> sections to set multivalued directives such as DirectoryIndex and
AddType. You can also configure multipart sections such as <Directory> and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AddType. You can also configure multipart sections such as <Directory> and
<VirtualHost>. Depending on the directive, the Perl global you need to set may be a
scalar, an array, or a hash. To figure out what type of Perl variable to use, follow
these rules:

Directive takes no arguments

There are few examples of configuration directives that take no arguments. The
only one that occurs in the standard Apache modules is CacheNegotiatedDocs,
which is part of mod_negotiation. To create a nonargument directive, set the
corresponding scalar variable to the empty string '':

$CacheNegotiatedDocs = '';

Directive takes one argument

This is probably the most common case. Set the corresponding global to the
value of your choice.

$Port = 8080;

Directive takes multiple arguments

These include directives such as DirectoryIndex and AddType. Create a global
array with the name of the directive and set it to the list of desired arguments.

@DirectoryIndex = map { "index.$_" } qw(html htm shtml cgi);

An alternative to this is to create a scalar variable containing the usual value of
the directive as a string, for example:

$DirectoryIndex = "index.html index.htm index.shtml index.cgi";

Directive is repeated multiple times

If a directive is repeated multiple times with different arguments each time, you
can represent it as an array of arrays. This example using the AddIcon directive
shows how:

@AddIcon = (
 ['/icons/compressed.gif' => qw(.Z .z .gz .tgz .zip)],
 ['/icons/layout.gif' => qw(.html .shtml .htm .pdf)],
);

Directive is a block section with begin and end tags

Configuration sections like <VirtualHost> and <Directory> are mapped onto Perl
hashes. Use the directive's argument (the hostname, directory, or URI) as the
hash key, and make the value stored at this key an anonymous hash containing
the desired directive/value pairs. This is easier to see than to describe.
Consider the following virtual host section:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<VirtualHost 192.168.2.5:80>
 ServerName www.fishfries.org
 DocumentRoot /home/httpd/fishfries/htdocs
 ErrorLog /home/httpd/fishfries/logs/error.log
 TransferLog /home/httpd/fishfries/logs/access.log
 ServerAdmin webmaster@fishfries.org
</Virtual>

You can represent this in a <Perl> section by the following code:

$VirtualHost{'192.168.2.5:80'} = {
 ServerName => 'www.fishfries.org',
 DocumentRoot => '/home/httpd/fishfries/htdocs',
 ErrorLog => '/home/httpd/fishfries/logs/error.log',
 TransferLog => '/home/httpd/fishfries/logs/access.log',
 ServerAdmin => 'webmaster@fishfries.org',
};

There is no special Perl variable which maps to the <IfModule> directive
container; however, the Apache module method will provide you with this
functionality.

if(Apache->module("mod_ssl.c")) {
 push @Include, "ssl.conf";
}

The Apache define() method can be used to implement an <IfDefine> container,
as follows:

if(Apache->define("MOD_SSL")) {
 push @Include, "ssl.conf";
}

Certain configuration blocks may require directives to be in a particular order.
As you probably know, Perl does not maintain hash values in any predictable
order. Should you need to preserve order with hashes inside <Perl> sections,
simply install Gurusamy Sarathy's Tie::IxHash module from CPAN. Once
installed, mod_perl will tie %VirtualHost, %Directory, %Location, and
%Files hashes to this class, preserving their order when the Apache
configuration is generated.

Directive is a block section with multiple same-value keys

The Apache named virtual host mechanism provides a way to configure virtual
hosts using the same IP address.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NameVirtualHost 192.168.2.5

<VirtualHost 192.168.2.5>
 ServerName one.fish.net
 ServerAdmin webmaster@one.fish.net
</VirtualHost>

<VirtualHost 192.168.2.5>
 ServerName red.fish.net
 ServerAdmin webmaster@red.fish.net
</VirtualHost>

In this case, the %VirtualHost syntax from the previous section would not
work, since assigning a hash reference for the given IP address will overwrite
the original entry. The solution is to use an array reference whose values are
hash references, one for each virtual host entry. Example:

$VirtualHost{'192.168.2.5'} = [
 {
 ServerName => 'one.fish.net',
 ...
 ServerAdmin => 'webmaster@one.fish.net',
 },
 {
 ServerName => 'red.fish.net',
 ...
 ServerAdmin => 'webmaster@red.fish.net',
 },
];

Directive is a nested block

Nested block sections are mapped onto anonymous hashes, much like main
sections. For example, to put two <Directory> sections inside the virtual host of
the previous example, you can use this code:

<Perl>
my $root = '/home/httpd/fishfries';
$VirtualHost{'192.168.2.5:80'} = {
 ServerName => 'www.fishfries.org',
 DocumentRoot => "$root/htdocs",
 ErrorLog => "$root/logs/error.log",
 TransferLog => "$root/logs/access.log",
 ServerAdmin => 'webmaster@fishfries.org',
 Directory => {
 "$root/htdocs" => {
 Options => 'Indexes FollowSymlinks',
 AllowOverride => 'Options Indexes Limit FileInfo',
 Order => 'deny,allow',
 Deny => 'from all',
 Allow => 'from fishfries.org',
 },
 "$root/cgi-bin" => {
 AllowOverride => 'None',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AllowOverride => 'None',
 Options => 'ExecCGI',
 SetHandler => 'cgi-script',
 },
 },
};
</Perl>

Notice that all the usual Perlisms, such as interpolation of the $root variable
into the double-quoted strings, still work here. Another thing to see in this
example is that in this case we've chosen to write the multivalued Options
directive as a single string:

Options => 'Indexes FollowSymlinks',

The alternative would be to use an anonymous array for the directive's
arguments, as in:

Options => ['Indexes','FollowSymlinks'],

Both methods work. The only gotcha is that you must always be sure of what is
an argument list and what isn't. In the Options directive, "Indexes" and
"FollowSymlinks" are distinct arguments and can be represented as an
anonymous array. In the Order directive, the string deny,allow is a single
argument, and representing it as the array ['deny','allow'] will not work,
even though it looks like it should (use the string deny,allow instead).

<Perl> sections are available if you built and installed mod_perl with the
PERL_SECTIONS configuration variable set (Appendix B). They are evaluated in the
order in which they appear in httpd.conf, srm.conf, and access.conf. This allows you
to use later <Perl> sections to override values declared in earlier parts of the
configuration files.

8.3.1 Debugging <Perl> Sections

If there is a syntax error in the Perl code causing it to fail during compilation, Apache
will report the problem and the server will not start.

One way to catch Perl syntax errors ahead of time is to structure your <Perl> sections
like this:

<Perl>
#!perl

... code here ...

__END__
</Perl>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Perl>

You can now directly syntax-check the configuration file using the Perl interpreter's -
cx switches. -c makes Perl perform a syntax check, and -x tells the interpreter to
ignore all junk prior to the #!perl line:

% perl -cx httpd.conf
httpd.conf syntax OK

If the Perl code is syntactically correct, but the Apache configuration generated from it
contains an error, an error message will be sent to the server error log, but the server
will still start. In general, it is always a good to look at the error log after starting the
server to make sure startup went smoothly. If you have not picked up this good habit
already, we strongly recommend you do so when working with <Perl> configuration
sections.

Another helpful trick is to build mod_perl with the PERL_TRACE configuration option
set to true. Then, when the environment variable MOD_PERL_TRACE is set to s, httpd
will output diagnostics showing how the <Perl> section globals are converted into
directive string values.

Another tool that is occasionally useful is the Apache::PerlSections module. It defines
two public routines named dump() and store(). dump() dumps out the current contents
of the <Perl> section as a pretty-printed string. store() does the same but writes the
contents to the file of your choice. Both methods are useful for making sure that the
configuration you are getting is what you expect.

Apache::PerlSections requires the Perl Devel::SymDump and Data::Dumper
modules, both available on CPAN. Here is a simple example of its use:

<Perl>
#!perl
use Apache::PerlSections();
$User = 'nobody';
$VirtualHost{'192.168.2.5:80'} = {
 ServerName => 'www.fishfries.org',
 DocumentRoot => '/home/httpd/fishfries/htdocs',
 ErrorLog => '/home/httpd/fishfries/logs/error.log',
 TransferLog => '/home/httpd/fishfries/logs/access.log',
 ServerAdmin => 'webmaster@fishfries.org',
};
print STDERR Apache::PerlSections->dump();
__END__
</Perl>

This will cause the following to appear on the command line at server startup time:

package Apache::ReadConfig;
#scalars:

$User = 'nobody';

#arrays:

#hashes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

%VirtualHost = (
 '192.168.2.5:80' => {
 'ServerAdmin' => 'webmaster@fishfries.org',
 'ServerName' => 'www.fishfries.org',
 'DocumentRoot' => '/home/httpd/fishfries/htdocs',
 'ErrorLog' => '/home/httpd/fishfries/logs/error.log',
 'TransferLog' => '/home/httpd/fishfries/logs/access.log'
 }
);

1;
__END__

The output from dump() and store() can be stored to a file and reloaded with a require
statement. This allows you to create your configuration in a modular fashion:

<Perl>
 require "standard_configuration.pl";
 require "virtual_hosts.pl";
 require "access_control.pl";
</Perl>

More information about Apache::PerlSections can be found in Appendix A.

8.3.2 Simple Dynamic Configuration

If the Perl configuration syntax seems a bit complex for your needs, there is a simple
alternative. The special variables $PerlConfig and @PerlConfig are treated as
raw Apache configuration data. Their values are fed directly to the Apache
configuration engine and treated just as if they were lines of text from a conventional
file:

<Perl>
$PerlConfig = "User $ENV{USER}\n";
$PerlConfig .= "ServerAdmin $ENV{USER}\@$hostname\n";
</Perl>

<Perl>
for my $host (qw(one red two blue)) {
 $host = "$host.fish.net";
 push @PerlConfig, <<EOF;

 Listen $host

 <VirtualHost $host>

 ServerAdmin webmaster\@$host
 ServerName $host

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ServerName $host
 # ... more config here ...
 </VirtualHost>

EOF
}
</Perl>

One more utility method is available: Apache->httpd_conf, which simply pushes each
argument into the @PerlConfig array and tacks a newline onto the end of each.

Apache->httpd_conf(
 "User $ENV{USER}",
 "ServerAdmin $ENV{USER}\@$hostname",
);

8.3.3 A Real-Life Example

For a complete example of an Apache configuration constructed with <Perl> sections,
we'll look at Doug's setup. As a freelance contractor, Doug must often configure his
development server in a brand-new environment. Rather than creating a customized
server configuration file each time, Doug uses a generic configuration that can be
brought up anywhere, simply by running:

% httpd -f $HOME/httpd.conf
This one step automatically creates the server and document roots if they don't exist,
as well as the log and configuration directories. It also detects the user that it is being
run as, and configures the User and Group directives to match.

Example 8.5 shows a slightly simplified version of Doug's httpd.conf. It contains only
two hard-coded Apache directives:

file: httpd.conf
PerlPassEnv HOME
Port 9008

There's a PerlPassEnv directive with the value of HOME, required in order to make the
value of this environment variable visible to the code contained within the <Perl>
section, and there's a Port directive set to Doug's favorite port number.

The rest of the configuration file is written entirely in Perl:

<Perl>
#!perl

$ServerRoot = "$ENV{HOME}/www";

The <Perl> section begins by choosing a path for the server root. Doug likes to have
his test environment set up under his home directory in ~/www, so the variable
$ServerRoot is set to $ENV{HOME}/www. The server root will now be correctly
configured regardless of whether users' directories are stored under /home, /users, or
/var/users.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unless (-d "$ServerRoot/logs") {
 for my $dir ("", qw(logs conf htdocs perl)) {
 mkdir "$ServerRoot/$dir", 0755;
 }
 require File::Copy;
 File::Copy::cp($0, "$ServerRoot/conf");
}

Next, the code detects whether the server root has been properly initialized and, if
not, creates the requisite directories and subdirectories. It looks to see whether
$ServerRoot/logs exists and is a directory. If not, the code proceeds to create the
directories, calling mkdir() repeatedly to create first the server root and subsequently
logs, conf, htdocs, and perl subdirectories beneath it. The code then copies the
generic httpd.conf file that is currently running into the newly created conf
subdirectory, using the File::Copy module's cp() routine. Somewhat magically,
mod_perl arranges for the Perl global variable $0 to hold the path of the .conf file that
is currently being processed.

if(-e "$ServerRoot/startup.pl") {
 $PerlRequire = "startup.pl";
}

Next, the code checks whether there is a startup.pl present in the configuration
directory. If this is the first time the server is being run, the file won't be present, but
there may well be one there later. If the file exists, the code sets the $PerlRequire
global to load it.

$User = getpwuid($>) || $>;
$Group = getgrgid($)) || $);

$ServerAdmin = $User;

The code sets the User, Group, and ServerAdmin directives next. The user and group
are taken from the Perl magic variables $> and $), corresponding to the user and
group IDs of the person who launched the server. Since this is the default when
Apache is run from a nonroot shell, this has no effect now but will be of use if the
server is run as root at a later date. Likewise, $ServerAdmin is set to the name of
the current user.

$ServerName = `hostname`;
$DocumentRoot = "$ServerRoot/htdocs";

my $types = "$ServerRoot/conf/mime.types";
$TypesConfig = -e $types ? $types : "/dev/null";

The server name is set to the current host's name by setting the $ServerName
global, and the document root is set to $ServerRoot/htdocs. We look to see whether
the configuration file mime.types is present and, if so, use it to set $TypesConfig to
this value. Otherwise, we use /dev/null.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

push @Alias,
 ["/perl" => "$ServerRoot/perl"],
 ["/icons" => "$ServerRoot/icons"];

Next, the <Perl> section declares some directory aliases. The URI /perl is aliased to
$ServerRoot/perl, and /icons is aliased to $ServerRoot/icons. Notice how the @Alias
global is set to an array of arrays in order to express that it contains multiple Alias
directives.

my $servers = 3;

for my $s (qw(MinSpareServers MaxSpareServers StartServers MaxClients)) {
 $$s = $servers;
}

Following this, the code sets the various parameters controlling Apache's preforking.
The server doesn't need to handle much load, since it's just Doug's development
server, so MaxSpareServers and friends are all set to a low value of three. We use
"symbolic" or "soft" references here to set the globals indirectly. We loop through a
set of strings containing the names of the globals we wish to set, and assign values to
them as if they were scalar references rather than plain strings. Perl automatically
updates the symbol table for us, avoiding the much more convoluted code that would
be required to create the global using globs or by accessing the symbol table directly.
Note that this technique will be blocked if strict reference checking is turned on with
use strict 'refs'.

for my $l (qw(LockFile ErrorLog TransferLog PidFile ScoreBoardFile)) {
 $$l = "logs/$l";

 #clean out the logs
 local *FH;
 open FH, ">$ServerRoot/$$l";
 close FH;
}

We use a similar trick to configure the LockFile, ErrorLog, TransferLog, and other log
file-related directives. A few additional lines of code truncate the various log files to
zero length if they already exist. Doug likes to start with a clean slate every time he
reconfigures and restarts a server.

my @mod_perl_cfg = qw{
 SetHandler perl-script
 Options +ExecCGI
};

$Location{"/perl-status"} = {
 @mod_perl_cfg,
 PerlHandler => "Apache::Status",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PerlHandler => "Apache::Status",
};

$Location{"/perl"} = {
 @mod_perl_cfg,
 PerlHandler => "Apache::Registry",
};

The remainder of the configuration file sets up some directories for running and
debugging Perl API modules. We create a lexical variable named @mod_perl_cfg
that contains some common options, and then use it to configure the /perl-status and
/perl <Location> sections. The /perl-status URI is set up so that it runs Apache::Status
when retrieved, and /perl is put under the control of Apache::Registry for use with
registry scripts.

use Apache::PerlSections ();
Apache::PerlSections->store("$ServerRoot/ServerConfig.pm");

The very last thing that the <Perl> section does is to write out the current
configuration into the file $ServerRoot/ServerConfig.pm. This snapshots the current
configuration in a form that Doug can review and edit, if necessary. Just the
configuration variables set within the <Perl> section are snapshot. The PerlPassEnv
and Port directives, which are outside the section, are not captured and will have to
be added manually.

This technique makes possible the following interesting trick:

% httpd -C "PerlModule ServerConfig"
The -C switch tells httpd to process the directive PerlModule, which in turn loads the
module file ServerConfig.pm. Provided that Perl's PERL5LIB environment variable is
set up in such a way that Perl will be able to find the module, this has the effect of
reloading the previously saved configuration and setting Apache to exactly the same
state it had before.

Example 8.5. Doug's Generic httpd.conf

file: httpd.conf
PerlPassEnv HOME
Port 9008

<Perl>
#!perl

$ServerRoot = "$ENV{HOME}/www";

unless (-d "$ServerRoot/logs") {
 for my $dir ("", qw(logs conf htdocs perl)) {
 mkdir "$ServerRoot/$dir", 0755;
 }
 require File::Copy;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 require File::Copy;
 File::Copy::cp($0, "$ServerRoot/conf");
}

if(-e "$ServerRoot/startup.pl") {
 $PerlRequire = "startup.pl";
}

$User = getpwuid($>) || $>;
$Group = getgrgid($)) || $);

$ServerAdmin = $User;

$ServerName = `hostname`;
$DocumentRoot = "$ServerRoot/htdocs";

my $types = "$ServerRoot/conf/mime.types";
$TypesConfig = -e $types ? $types : "/dev/null";

push @Alias,
 ["/perl" => "$ServerRoot/perl"],
 ["/icons" => "$ServerRoot/icons"];

my $servers = 3;

for my $s (qw(MinSpareServers MaxSpareServers StartServers MaxClients)) {
 $$s = $servers;
}

for my $l (qw(LockFile ErrorLog TransferLog PidFile ScoreBoardFile)) {
 $$l = "logs/$l";

 #clean out the logs
 local *FH;
 open FH, ">$ServerRoot/$$l";
 close FH;
}

my @mod_perl_cfg = qw{
 SetHandler perl-script
 Options +ExecCGI
};

$Location{"/perl-status"} = {
 @mod_perl_cfg,
 PerlHandler => "Apache::Status",
};

$Location{"/perl"} = {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$Location{"/perl"} = {
 @mod_perl_cfg,
 PerlHandler => "Apache::Registry",
};

use Apache::PerlSections ();
Apache::PerlSections->store("$ServerRoot/ServerConfig.pm");

__END__
</Perl>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

8.4 Documenting Configuration Files

When mod_perl is configured with the server, configuration files can be documented
with POD (Perl's "plain old documentation" system). There are only a handful of POD
directives that mod_perl recognizes but enough to mix POD with an actual server
configuration. The recognized directives are as follows:

=pod

When a =pod token is found in the configuration file, mod_perl will soak up the
file line-by-line, until a =cut token or a special =over token is reached.

=cut

When a =cut token is found, mod_perl will turn the configuration processing
back over to Apache.

=over

The =over directive can be used in conjunction with the =back directive to
hand sections back to Apache for processing. This allows the pod2* converters
to include the actual configuration sections in its output. In order to allow for
=over to be used elsewhere, mod_perl will hand these sections back to
Apache only if the line contains the string apache.

=over to apache

=back

When mod_perl is inside a special =over section as described above, it will go
back to POD-soaking mode once it sees a =back directive.

=back to pod

__END__

Although _ _END_ _ is not a POD directive, mod_perl recognizes this token
when present in a server configuration file. It will simply read in the rest of the
configuration file, ignoring each line until there is nothing left to read.

Here is a complete example:

=pod

=head1 NAME

httpd.conf - The main server configuration file

=head2 Standard Module Configuration

=over 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

=over 4

=item mod_status

=over to apache

 #Apache will process directives in this section
 <Location /server-status>
 SetHandler server-status
 ...
 </Location>

=back to pod

=item ...

...

=back

=cut

__END__
The server will not try to process anything here

We've now covered the entire Apache module API, at least as far as Perl is
concerned. The next chapter presents a complete reference guide to the Perl API,
organized by topic. This is followed in Chapters Chapter 10 and Chapter 11, C API
Reference Guide, by a reference guide to the C-language API, which fills in the
details that C programmers need to know about.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 9. Perl API Reference Guide
This chapter gives the definitive list of all the Perl API classes and method calls. They
are organized functionally by class, starting with the Apache request object and
moving onward through Apache::SubRequest, Apache::Server, Apache::Connection,
Apache::URI, Apache::Util, Apache::Log, and other classes.

At the end of this chapter we discuss the Apache::File class, which provides
advanced functionality for HTTP/1.1 requests, and a discussion of the various magic
globals, subroutines, and literals that mod_perl recognizes.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

9.1 The Apache Request Object

The Apache request object implements a huge number of methods. To help you find
the method you're looking for, we've broken them down into eight broad categories:

Client request methods

Methods that have to do with retrieving information about the current request,
such as fetching the requested URI, learning the request document's filename,
or reading incoming HTTP headers.

Server response methods

Methods that are concerned with setting outgoing information, such as setting
outgoing headers and controlling the document language and compression.

Sending data to the client

Methods for sending document content data to the client.

Server core functions

Methods that control key aspects of transaction processing but are not directly
related to processing browser data input or output. For example, the subrequest
API is covered in this section.

Server configuration methods

Methods for retrieving configuration information about the server.

Logging

Methods for logging error messages and warnings to the server error log.

Access control methods

Methods for controlling access to restricted documents and for authenticating
remote users.

mod_perl-specific methods

Methods that use special features of mod_perl which have no counterpart in the
C API. They include such things as the gensym() method for generating
anonymous filehandles and set_handlers() for altering the list of subroutines
that will handle the current request.

Should you wish to subclass the Apache object in order to add application-specific
features, you'll be pleased to find that it's easy to do so. Please see Section 7.11,
for instructions.

9.1.1 Client Request Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This section covers the request object methods that are used to query or modify the
incoming client request. These methods allow you to retrieve such information as the
URI the client has requested, the request method in use, the content of any submitted
HTML forms, and various items of information about the remote host.

args()

The args() method returns the contents of the URI query string (that part of the
request URI that follows the ? character, if any). When called in a scalar
context, args() returns the entire string. When called in a list context, the
method returns a list of parsed key/value pairs:

my $query = $r->args;
my %in = $r->args;

One trap to be wary of: if the same argument name is present several times (as can
happen with a selection list in a fill-out form), assignment of args() to a hash will
discard all but the last argument. To avoid this, you'll need to use the more complex
argument processing scheme described in Chapter 4.

connection()

This method returns an object blessed into the Apache::Connection class. See
Section 9.2.4" later in this chapter for information on what you can do with this
object once you get it.

my $c = $r->connection;

content()

When the client request method is POST, which generally occurs when the
remote client is submitting the contents of a fill-out form, the $r->content method
returns the submitted information but only if the request content type is
application/x-www-form-urlencoded. When called in a scalar context, the entire
string is returned. When called in a list context, a list of parsed name=value
pairs is returned.

To handle other types of PUT or POSTed content, you'll need to use a module
such as CGI.pm or Apache::Request or use the read() method and parse the
data yourself.

Note that you can only call content() once. If you call the method more than
once, it will return undef (or an empty list) after the first try.

filename()

The filename() method sets or returns the result of the URI translation phase.
During the URI translation phase, your handler will call this method with the
physical path to a file in order to set the filename. During later phases of the
transaction, calling this method with no arguments returns its current value.

Examples:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $fname = $r->filename;
unless (open(FH, $fname)) {
 die "can't open $fname $!";
}

my $fname = do_translation($r->uri);
$r->filename($fname);

finfo()

Immediately following the translation phase, Apache walks along the
components of the requested URI trying to determine where the physical file
path ends and the additional path information begins (this is described at
greater length at the beginning of Chapter 4). In the course of this walk,
Apache makes the system stat() call one or more times to read the directory
information along the path. When the walk is finished, the stat() information for
the translated filename is cached in the request record, where it can be
recovered using the finfo() method. If you need to stat() the file, you can take
advantage of this cached stat structure rather than repeating the system call.

When finfo() is called, it moves the cached stat information into the special
filehandle _ that Perl uses to cache its own stat operations. You can then
perform file test operations directly on this filehandle rather than on the file itself,
which would incur the penalty of another stat() system call. For convenience,
finfo() returns a reference to the _ filehandle, so file tests can be done directly
on the return value of finfo().

The following three examples all result with the same value for $size.
However, the first two avoid the overhead of the implicit stat() performed by the
last.

my $size = -s $r->finfo;

$r->finfo;
my $size = -s _;

my $size = -s $r->filename; # slower

It is possible for a module to be called upon to process a URL that does not
correspond to a physical file. In this case, the stat() structure will contain the result of
testing for a nonexistent file, and Perl's various file test operations will all return false.

The Apache::Util package contains a number of routines that are useful for
manipulating the contents of the stat structure. For example, the ht_time() routine
turns Unix timestamps into HTTP-compatible human readable strings. See the
Apache::Util manpage and the section Section 9.2.6" later in this chapter for more
details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use Apache::Util qw(ht_time);

if(-d $r->finfo) {
 printf "%s is a directory\n", $r->filename;
}
else {
 printf "Last Modified: %s\n", ht_time((stat _)[9]);
}

get_client_block()
setup_client_block()
should_client_block()

The get_, setup_, and should_client_block methods are lower-level ways to
read the data sent by the client in POST and PUT requests. This protocol
exactly mirrors the C-language API described in Chapter 10, and provides for
timeouts and other niceties. Although the Perl API supports them, Perl
programmers should generally use the simpler read() method instead.

get_remote_host()

This method can be used to look up the remote client's DNS hostname or
simply return its IP address. When a DNS lookup is successful, its result is
cached and returned on subsequent calls to get_remote_host() to avoid costly
multiple lookups. This cached value can also be retrieved with the
Apache::Connection object's remote_host() method.

This method takes an optional argument. The type of lookup performed by this
method is affected by this argument, as well as the value of the
HostNameLookups directive. Possible arguments to this method, whose
symbolic names can be imported from the Apache::Constants module using the
:remotehost import tag, are the following:

REMOTE_HOST

If this argument is specified, Apache will try to look up the DNS name of
the remote host. This lookup will fail if the Apache configuration directive
HostNameLookups is set to Off or if the hostname cannot be determined
by a DNS lookup, in which case the function will return undef.

REMOTE_NAME

When called with this argument, the method will return the DNS name of
the remote host if possible, or the dotted decimal representation of the
client's IP address otherwise. This is the default lookup type when no
argument is specified.

REMOTE_NOLOOKUP

When this argument is specified, get_remote_host() will not perform a new
DNS lookup (even if the HostNameLookups directive says so). If a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DNS lookup (even if the HostNameLookups directive says so). If a
successful lookup was done earlier in the request, the cached hostname
will be returned. Otherwise, the method returns the dotted decimal
representation of the client's IP address.

REMOTE_DOUBLE_REV

This argument will trigger a double-reverse DNS lookup regardless of the
setting of the HostNameLookups directive. Apache will first call the DNS to
return the hostname that maps to the IP number of the remote host. It will
then make another call to map the returned hostname back to an IP
address. If the returned IP address matches the original one, then the
method returns the hostname. Otherwise, it returns undef. The reason for
this baroque procedure is that standard DNS lookups are susceptible to
DNS spoofing in which a remote machine temporarily assumes the
apparent identity of a trusted host. Double-reverse DNS lookups make
spoofing much harder and are recommended if you are using the
hostname to distinguish between trusted clients and untrusted ones.
However, double reverse DNS lookups are also twice as expensive.

In recent versions of Apache, double-reverse name lookups are always
performed for the name-based access checking implemented by
mod_access.

Here are some examples:

my $remote_host = $r->get_remote_host;
same as above
use Apache::Constants qw(:remotehost);
my $remote_host = $r->get_remote_host(REMOTE_NAME);

double-reverse DNS lookup
use Apache::Constants qw(:remotehost);
my $remote_host = $r->get_remote_host(REMOTE_DOUBLE_REV) || "nohost";

get_remote_logname()

This method returns the login name of the remote user or undef if the user's
login could not be determined. Generally, this only works if the remote user is
logged into a Unix or VMS host and that machine is running the identd daemon
(which implements a protocol known as RFC 1413).

The success of the call also depends on the IdentityCheck configuration
directive being turned on. Since identity checks can adversely impact Apache's
performance, this directive is off by default.

my $remote_logname = $r->get_remote_logname;

headers_in()

When called in a list context, the headers_in() method returns a list of key/value
pairs corresponding to the client request headers. When called in a scalar
context, it returns a hash reference tied to the Apache::Table class. This class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

context, it returns a hash reference tied to the Apache::Table class. This class
provides methods for manipulating several of Apache's internal key/value table
structures and, for all intents and purposes, acts just like an ordinary hash table.
However, it also provides object methods for dealing correctly with multivalued
entries. See Section 9.2.5" later in this chapter for details.

my %headers_in = $r->headers_in;
my $headers_in = $r->headers_in;

Once you have copied the headers to a hash, you can refer to them by name.
See Table 9.1 for a list of incoming headers that you may need to use. For
example, you can view the length of the data that the client is sending by
retrieving the key Content-length:

%headers_in = $r->headers_in;
my $cl = $headers_in{'Content-length'};

You'll need to be aware that browsers are not required to be consistent in their
capitalization of header field names. For example, some may refer to Content-
Type and others to Content-type. The Perl API copies the field names into the
hash as is, and like any other Perl hash, the keys are case-sensitive. This is a
potential trap.

For these reasons it's better to call headers_in() in a scalar context and use the
returned tied hash. Since Apache::Table sits on top of the C table API, lookup
comparisons are performed in a case-insensitive manner. The tied interface
also allows you to add or change the value of a header field, in case you want to
modify the request headers seen by handlers downstream. This code fragment
shows the tied hash being used to get and set fields:

my $headers_in = $r->headers_in;
my $ct = $headers_in->{'Content-Length'};
$headers_in->{'User-Agent'} = 'Block this robot';

It is often convenient to refer to header fields without creating an intermediate
hash or assigning a variable to the Apache::Table reference. This is the usual
idiom:

my $cl = $r->headers_in->{'Content-Length'};

Certain request header fields such as Accept, Cookie, and several other request
fields are multivalued. When you retrieve their values, they will be packed
together into one long string separated by commas. You will need to parse the
individual values out yourself. Individual values can include parameters which
will be separated by semicolons. Cookies are common examples of this:

Set-Cookie: SESSION=1A91933A; domain=acme.com; expires=Wed, 21-Oct-1998 20:46:07 GMT

A few clients send headers with the same key on multiple lines. In this case, you
can use the Apache::Table::get() method to retrieve all of the values at once.

For full details on the various incoming headers, see the documents at
http://www.w3.org/Protocols. Nonstandard headers, such as those

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.w3.org/Protocols. Nonstandard headers, such as those
transmitted by experimental browsers, can also be retrieved with this method
call.

Table 9.1. Incoming HTTP Request Headers
Field Description

Accept MIME types that the client accepts
Accept-encoding Compression methods that the client accepts
Accept-language Languages that the client accepts
Authorization Used by various authorization/authentication schemes
Connection Connection options, such as Keep-alive
Content-length Length, in bytes, of data to follow
Content-type MIME type of data to follow
Cookie Client-side data
From Email address of the requesting user (deprecated)
Host Virtual host to retrieve data from
If-modified-since Return document only if modified since the date specified
If-none-match Return document if it has changed
Referer URL of document that linked to the requested one
User-agent Name and version of the client software

header_in()

The header_in() method (singular, not plural) is used to get or set the value of a
client incoming request field. If the given value is undef, the header will be
removed from the list of header fields:

my $cl = $r->header_in('Content-length');
$r->header_in($key, $val); #set the value of header '$key'
$r->header_in('Content-length' => undef); #remove the header

The key lookup is done in a case-insensitive manner. The header_in() method
predates the Apache::Table class but remains for backward compatibility and as
a bit of a shortcut to using the headers_in() method.

header_only()

If the client issues a HEAD request, it wants to receive the HTTP response
headers only. Content handlers should check for this by calling header_only()
before generating the document body. The method will return true in the case of
a HEAD request and false in the case of other requests. Alternatively, you could
examine the string value returned by method() directly, although this would be
less portable if the HTTP protocol were some day expanded to support more
than one header-only request method.

generate the header & send it
$r->send_http_header;
return OK if $r->header_only;

now generate the document...

Do not try to check numeric value returned by method_number() to identify a
header request. Internally, Apache uses the M_GET number for both HEAD and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

header request. Internally, Apache uses the M_GET number for both HEAD and
GET methods.

method()

This method will return the string version of the request method, such as GET,
HEAD, or POST. Passing an argument will change the method, which is
occasionally useful for internal redirects (Chapter 4) and for testing
authorization restriction masks (Chapter 6).

my $method = $r->method;
$r->method('GET');

If you update the method, you probably want to update the method number
accordingly as well.

method_number()

This method will return the request method number, which refers to internal
constants defined by the Apache API. The method numbers are available to
Perl programmers from the Apache::Constants module by importing the
:methods set. The relevant constants include M_GET, M_POST, M_PUT, and
M_DELETE. Passing an argument will set this value, mainly used for internal
redirects and for testing authorization restriction masks. If you update the
method number, you probably want to update the method accordingly as well.

Note that there isn't an M_HEAD constant. This is because when Apache
receives a HEAD request, it sets the method number to M_GET and sets
header_only() to return true.

use Apache::Constants qw(:methods);

if ($r->method_number == M_POST) {
 # change the request method
 $r->method_number(M_GET);
 $r->method("GET");
 $r->internal_redirect('/new/place');
}

There is no particular advantage of using method_number() over method() for
Perl programmers, other than being only slightly more efficient.

parsed_uri()

When Apache parses the incoming request, it will turn the request URI into a
predigested uri_components structure. The parsed_uri() method will return
an object blessed into the Apache::URI class, which provides methods for
fetching and setting various parts of the URI. See Section 9.2.7" later in this
chapter for details.

use Apache::URI ();
my $uri = $r->parsed_uri;
my $host = $uri->hostname;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $host = $uri->hostname;

path_info()

The path_info() method will return what is left in the path after the URI
translation phase. Apache's default translation method, described at the
beginning of Chapter 4, uses a simple directory-walking algorithm to decide
what part of the URI is the file and what part is the additional path information.

You can provide an argument to path_info() in order to change its value:

my $path_info = $r->path_info;
$r->path_info("/some/additional/information");

Note that in most cases, changing the path_info() requires you to sync the uri()
with the update. In the following example, we calculate the original URI minus
any path info, change the existing path info, then properly update the URI:

my $path_info = $r->path_info;
my $uri = $r->uri;
my $orig_uri = substr $uri, 0, length($uri) - length($path_info);
$r->path_info($new_path_info);
$r->uri($orig_uri . $r->path_info);

protocol

The $r->protocol method will return a string identifying the protocol that the
client speaks. Typical values will be HTTP/1.0 or HTTP/1.1.

my $protocol = $r->protocol;

This method is read-only.

proxyreq()

The proxyreq() method returns true if the current HTTP request is for a proxy
URI—that is, if the actual document resides on a foreign server somewhere and
the client wishes Apache to fetch the document on its behalf. This method is
mainly intended for use during the filename translation phase of the request.

sub handler {
 my $r = shift;
 return DECLINED unless $r->proxyreq;
 # do something interesting...
}

See Chapter 7 for examples.

read()

The read() method provides Perl API programmers with a simple way to get at
the data submitted by the browser in POST and PUT requests. It should be
used when the information submitted by the browser is not in the application/x-
www-form-urlencoded format that the content() method knows how to handle.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Call read() with a scalar variable to hold the read data and the length of the data
to read. Generally, you will want to ask for the entire data sent by the client,
which can be recovered from the incoming Content-length field:[1]

[1] As of this writing, HTTP/1.1 requests that do not have a Content-length header, such as those that use
chunked encoding, are not properly handled by this API.

my $buff;
$r->read($buff, $r->header_in('Content-length'));

Internally, Perl sets up a timeout in case the client breaks the connection
prematurely. The exact value of the timeout is set by the Timeout directive in the
server configuration file. If a timeout does occur, the script will be aborted.

Within a handler you may also recover client data by simply reading from STDIN
using Perl's read(), getc(), and readline (<>) functions. This works because the
Perl API ties STDIN to Apache::read() before entering handlers.

server()

This method returns a reference to an Apache::Server object, from which you
can retrieve all sorts of information about low-level aspects of the server's
configuration. See Section 9.2.3" for details.

my $s = $r->server;

the_request()

This method returns the unparsed request line sent by the client. the_request()
is primarily used by log handlers, since other handlers will find it more
convenient to use methods that return the information in preparsed form. This
method is read-only.

my $request_line = $r->the_request;
print LOGFILE $request_line;

Note that the_request() is functionally equivalent to this code fragment:

my $request_line = join ' ', $r->method, $r->uri, $r->protocol;

uri()

The uri() method returns the URI requested by the browser. You may also pass
this method a string argument in order to set the URI seen by handlers further
down the line, which is something that a translation handler might want to do.

my $uri = $r->uri;
$r->uri("/something/else");

9.1.2 Server Response Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This section covers the API methods used to build and query the outgoing server
response message. These methods allow you to set the type and length of the
outgoing document, set HTTP cookies, assign the document a language or
compression method, and set up authorization and authentication schemes.

Most of the methods in this section are concerned with setting the values of the
outgoing HTTP response header fields. We give a list of all of the fields you are likely
to use in Table 9.2. For a comprehensive list, see the HTTP/1.0 and HTTP/1.1
specifications found at http://www.w3.org/Protocols.

Table 9.2. Response Header Fields
Field Description

Allowed The methods allowed by this URI, such as POST
Content-encoding The compression method of this data
Content-language The language in which this document is written
Content-length Length, in bytes, of data to follow
Content-type MIME type of this data
Date The current date in GMT (Greenwich Mean Time)
Expires The date the document expires
Last-modified The date the document was last modified
Link The URL of this document's "parent," if any
Location The location of the document in redirection responses
ETag The opaque ID for this version of the document
Message-id The ID of this document, if any
MIME-version The version of MIME used (currently 1.0)
Pragma Hints to the browser, such as "no-cache"
Public The requests that this URL responds to (rarely used)
Server The name and version of the server software
Set-cookie The client-side cookie to give to a browser
WWW-authenticate Used in the various authorization schemes
Vary Criteria that can be used to select this document

bytes_sent()

This method will retrieve the number of bytes of information sent by the server
to the client, excluding the length of the HTTP headers. It is only useful after the
send_http_header() method (described later) has been called. This method is
normally used by log handlers to record and summarize network usage. See
Chapter 7 for examples.

my $bytes_sent = $r->bytes_sent;

cgi_header_out()

This method is similar to the header_out() function. Given a key/value pair, it
sets the corresponding outgoing HTTP response header field to the indicated
value, replacing whatever was there before. However, unlike header_out(),
which blindly sets the field to whatever you tell it, cgi_header_out() recognizes
certain special keys and takes the appropriate action. This is used to emulate
the magic fields recognized by Apache's own mod_cgi CGI-handling routines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 9.3 lists the headers that trigger special actions by cgi_header_out().

Table 9.3. Special Actions Triggered by cgi_header_out()
Header Actions

Content-type Sets $r->content_type to the given value

Status
Sets $r->status to the integer value in the string

Sets $r->status_line to the given value

Location Sets Location in the headers_out table to the given value and performs an internal
redirect if URI is relative

Content-length Sets Content-length in the headers_out table to the given value
Transfer-
encoding Sets Transfer-encoding in the headers_out table to the given value

Last-modified Parses the string date, feeding the time value to ap_update_mtime() and invoking
ap_set_last_modified()

Set-cookie Calls ap_table_add() to support multiple Set-cookie headers
Other Calls ap_table_merge() with given key and value

You generally can use the Apache::Table or header_out() methods to achieve the
results you want. cgi_header_out() is provided for those who wish to create a CGI
emulation layer, such as Apache::Registry. Those who are designing such a system
should also look at send_cgi_header(), described in Section 9.1.3" later in this
chapter.

content_encoding()

This method gets or sets the document encoding. Content encoding fields are
strings like gzip or compress, and indicate that the document has been
compressed or otherwise encoded. Browsers that handle the particular
encoding scheme can decode or decompress the document on the fly.

Getting or setting content_encoding() is equivalent to using headers_out() or
header_out() to change the value of the Content-encoding header. Chapters
Chapter 4 and Chapter 7 give examples of querying and manipulating the
content encoding field.

my $enc = $r->content_encoding;
if($r->filename =~ /\.gz$/) {
 $r->content_encoding("gzip");
}

content_languages()

The content_languages() method gets or sets the Content-language HTTP
header field. Called without arguments, it returns an array reference consisting
of two-letter language identifiers, for example, "en" for English and "no" for
Norwegian. You can also pass it an array reference to set the list of languages
to a new value. This method can be used to implement support for
multilanguage documents. See the Apache::MIME module in Chapter 7 for an
example.

content_languages() is a convenient interface to the lower-level header_out()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

content_languages() is a convenient interface to the lower-level header_out()
and headers_out() methods.

my $languages = $r->content_languages;
$r->content_languages(['en']);

content_type()

This method corresponds to the Content-type header field, which tells the
browser the MIME type of the returned document. Common MIME types
include text/plain, text/html, and image/gif. content_type() can be used
either to get or set the current value of this field. It is important to use
content_type() to set the content type rather than calling headers_out() or
header_out() to change the outgoing HTTP header directly. This is
because a copy of the content type is kept in the request record, and other
modules and core protocol components will consult this value rather than
the outgoing headers table.

my $ct = $r->content_type;
$r->content_type('text/plain');

custom_response()

When a handler returns a code other than OK, DECLINED, or DONE,
Apache aborts processing and throws an error. When an error is thrown,
application programs can catch it and replace Apache's default processing
with their own custom error handling routines by using the ErrorDocument
configuration directive. The arguments to ErrorDocument are the status
code to catch and a custom string, static document, or CGI script to invoke
when the error occurs.

The module-level interface to Apache's error handling system is
custom_response(). Like the directive, the method call takes two
arguments. The first argument is a valid response code from Table 3.1.
The second is either a string to return in response to the error, or a URI to
invoke to handle the request. This URI can be a static document, a CGI
script, or even a content handler in an Apache module. Chapters Chapter
4 and Chapter 6 have more extensive coverage of the error handling
system.

use Apache::Constants qw(:common);
$r->custom_response(AUTH_REQUIRED, "sorry, I don't know you.");
$r->custom_response(SERVER_ERROR, "/perl/server_error_handler.pl");

err_headers_out()

Apache actually keeps two sets of outgoing response headers: one set to
use when the transaction is successful and another to use in the case of a
module returning an error code. Although maintaining a dual set of
headers may seem redundant, it makes custom error handlers much
easier to write, as we saw in Chapter 4. err_headers_out() is equivalent
to headers_out(), but it gets and sets values in the table of HTTP header
response fields that are sent in the case of an error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike ordinary header fields, error fields are sent to the browser even
when the module aborts or returns an error status code. This allows
modules to do such things as set cookies when errors occur or implement
custom authorization schemes. Error fields also persist across internal
redirects when one content handler passes the buck to another. This
feature is necessary to support the ErrorDocument mechanism.

my %err_headers_out = $r->err_headers_out;
my $err_headers_out = $r->err_headers_out;
$r->err_headers_out->{'X-Odor'} = "Something's rotten in Denmark";

err_header_out()

Like the header_in() and header_out() methods, err_header_out()
predates the Apache::Table class. It can be used to get or set a single
field in the error headers table. As with the other header methods, the key
lookups are done in a case-insensitive manner. Its syntax is identical to
header_out() :

my $loc = $r->err_header_out('Location');
$r->err_header_out(Location => 'http://www.modperl.com/');
$r->err_header_out(Location => undef);

headers_out()

headers_out() provides modules with the ability to get or set any of the
outgoing HTTP response header fields. When called in a list context,
headers_out() returns a list of key/value pairs corresponding to the
current server response headers. The capitalization of the field names is
not canonicalized prior to copying them into the list.

When called in a scalar context, this method returns a hash reference tied
to the Apache::Table class. This class provides an interface to the
underlying headers_out data structure. Fetching a key from the tied
hash will retrieve the corresponding HTTP field in a case-insensitive
fashion, and assigning to the hash will change the value of the header so
that it is seen by other handlers further down the line, ultimately affecting
the header that is sent to the browser.

The headers that are set with headers_out() are cleared when an error
occurs, and do not persist across internal redirects. To create headers that
persist across errors and internal redirects, use err_headers_out(),
described earlier.

my %headers_out = $r->headers_out;
my $headers_out = $r->headers_out;
$headers_out->{Set-cookie} = 'SESSION_ID=3918823';

The Content-type, Content-encoding, and Content-language response fields
have special meaning to the Apache server and its modules. These fields
occupy their own slots of the request record itself and should always be
accessed using their dedicated methods rather than the generic headers_out()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

accessed using their dedicated methods rather than the generic headers_out()
method. If you forget and use headers_out() instead, Apache and other
modules may not recognize your changes, leading to confusing results. In
addition, the Pragma: no-cache idiom, used to tell browsers not to cache the
document, should be set indirectly using the no_cache() method.

The many features of the Apache::Table class are described in more detail in its
own section.

header_out()

Before the Apache::Table class was written, header_out() was used to get
or set the value of an individual HTTP field. Like the header_in() method,
header_out() predates the Apache::Table class but remains for
backwards compatibility and as a bit of a shortcut to using the headers_in
method.

If passed a single argument, header_out() returns the value of the
corresponding field from the outgoing HTTP response header. If passed a
key/value pair, header_out() stably changes the value of the
corresponding header field. A field can be removed entirely by passing
undef as its value. The key lookups are done in a case-insensitive
manner.

my $loc = $r->header_out('Location');
$r->header_out(Location => 'http://www.modperl.com/');
$r->header_out(Location => undef);

handler()

The handler method gets or sets the name of the module that is
responsible for the content generation phase of the current request. For
example, for requests to run CGI scripts, this will be the value cgi-
script. Ordinarily this value is set in the configuration file using the
SetHandler or AddHandler directives. However, your handlers can set this
value during earlier phases of the transaction, typically the MIME type
checking or fixup phases.

Chapter 7 gives examples of how to use handler() to create a handler
that dispatches to other modules based on the document's type.

my $handler = $r->handler;
if($handler eq "cgi-script") {
 warn "shame on you. Fixing.\n"
 $r->handler('perl-script');
}

handler() cannot be used to set handlers for anything but the response phase.
Use set_handlers() or push_handlers() to change the handlers for other phases
(see Section 9.1.8" later in this chapter).

no_cache()

The no_cache() method gets or sets a boolean flag that indicates that the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The no_cache() method gets or sets a boolean flag that indicates that the
data being returned is volatile. Browsers that respect this flag will avoid
writing the document out to the client-side cache. Setting this flag to true
will cause Apache to emit an Expires field with the same date and time as
the original request.

$current_flag = $r->no_cache();
$r->no_cache(1); # set no-cache to true

request_time()

This method returns the time at which the request started, expressed as a
Unix timestamp in seconds since the start of an arbitrary period called the
"epoch."[2] You can pass this to Perl's localtime() function to get a human-
readable string or to any of the available time- and date-handling Perl
modules to manipulate it in various ways. Unlike most of the other
methods, this one is read-only.

[2] In case you were wondering, the epoch began at 00:00:00 GMT on January 1, 1970, and is due
to end in 2038. There's probably a good explanation for this choice.

my $date = scalar localtime $r->request_time;
warn "request started at $date";

status()

The status() method allows you to get or set the status code of the
outgoing HTTP response. Usually you will set this value indirectly by
returning the status code as the handler's function result. However, there
are rare instances when you want to trick Apache into thinking that the
module returned an OK status code but actually send the browser a
non-OK status.

Call the method with no arguments to retrieve the current status code. Call
it with a numeric value to set the status. Constants for all the standard
status codes can be found in Apache::Constants.

use Apache::Constants qw(:common);

my $rc = $r->status;
$r->status(SERVER_ERROR);

status_line()

status_line() is used to get or set the error code and the human-readable
status message that gets sent to the browser. Ordinarily you should use
status() to set the numeric code and let Apache worry about translating
this into a human readable string. However, if you want to generate an
unusual response line, you can use this method to set the line. To be
successful, the response line must begin with one of the valid HTTP status
codes.

status_line()

status_line() is used to get or set the error code and the human-readable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

status_line() is used to get or set the error code and the human-readable
status message that gets sent to the browser. Ordinarily you should use
status() to set the numeric code and let Apache worry about translating
this into a human readable string. However, if you want to generate an
unusual response line, you can use this method to set the line. To be
successful, the response line must begin with one of the valid HTTP status
codes.

my $status_line = $r->status_line;
$r->status_line("200 Bottles of Beer on the Wall");

If you update the status line, you probably want to update status()
accordingly as well.

9.1.3 Sending Data to the Client

The methods in this section are invoked by content handlers to send header and
document body data to the waiting browser. Noncontent handlers should not call
these methods.

print()

The Apache C API provides several functions for sending formatted data to the
client. However, Perl is more flexible in its string handling functions, so only one
method, print(), is needed.

The print() method is similar to Perl's built-in print() function, except that all the
data you print eventually winds up being displayed on the user's browser. Like
the built-in print(), this method will accept a variable number of strings to print
out. However, the Apache print() method does not accept a filehandle argument
for obvious reasons.

Like the read() method, print() sets a timeout so that if the client connection is
broken, the handler won't hang around indefinitely trying to send data. If a
timeout does occur, the script will be aborted.

The method also checks the Perl autoflush global $|. If the variable is nonzero,
print() will flush the buffer after every command, rather than after every line.
This is consistent with the way the built-in print() works.

$r->print("hello" , " ", "world!");

An interesting feature of the Apache Perl API is that the STDOUT filehandle is tied to
Apache so that if you use the built-in print() to print to standard output, the data will be
redirected to the request object's print() method. This allows CGI scripts to run
unmodified under Apache::Registry, and also allows one content handler's output to
be transparently chained to another handler's input. Section 9.2.1 later in this
chapter goes into more detail on tying filehandles to the Perl API, and Chapter 4 has
more to say about chained handlers.

print "hello world!"; # automatically invokes Apache::print()

There is also an optimization built into print(). If any of the arguments to the method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There is also an optimization built into print(). If any of the arguments to the method
are scalar references to strings, they are automatically dereferenced for you. This
avoids needless copying of large strings when passing them to subroutines.

$a_large_string = join '', <GETTYSBURG_ADDRESS>;
$r->print(\$a_large_string);

printf()

The printf() method works just like the built-in function of the same name, except
that the data is sent to the client. Calling the built-in printf() on STDOUT will
indirectly invoke this method because STDOUT is tied.

printf()

The printf() method works just like the built-in function of the same name,
except that the data is sent to the client. Calling the built-in printf() on STDOUT
will indirectly invoke this method because STDOUT is tied.

$r->printf("Hello %s", $r->connection->user);

rflush()

For efficiency's sake, Apache usually buffers the data printed by the
handler and sends it to the client only when its internal buffers fill (or the
handler is done). The rflush() method causes Apache to flush and send
its buffered outgoing data immediately. You may wish to do this if you
have a long-running content handler and you wish the client to begin to
see the data sooner.

Don't call rflush() if you don't need to, because it causes a performance
hit.[3] This method is also called automatically after each print() if the Perl
global variable $| is nonzero.

[3] If you are wondering why this method has an r prefix, it is carried over from the C API I/O
methods (described in Chapter 10), all of which have an ap_r prefix. This is the only I/O method
from the group for which there is a direct Perl interface. If you find that the r prefix is not pleasing to
the eye, this is no accident. It is intended to discourage the use of rflush() due to the performance
implications.

$r->rflush;

send_cgi_header()

As we mentioned in the section on cgi_header_out(), the mod_cgi module
scans for and takes special action on certain header fields emitted by CGI
scripts. Developers who wish to develop a CGI emulation layer can take
advantage of send_cgi_header(). It accepts a single string argument
formatted like a CGI header, parses it into fields, and passes the parsed
fields to cgi_header_out(). cgi_header_out() then calls
send_http_header() to send the completed header to the browser.

Don't forget to put a blank line at the end of the headers, just as a CGI
script would:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$r->send_cgi_header(<<EOF);
Status: 200 Just Fine
Content-type: text/html
Set-cookie: open=sesame

EOF

You're welcome to use this method even if you aren't emulating the CGI
environment, since it provides a convenient one-shot way to set and send the
entire HTTP header; however, there is a performance hit associated with
parsing the header string.

As an aside, this method is used to implement the behavior of the
PerlSendHeader directive. When this directive is set to On, mod_perl scans the
first lines of text printed by the content handler until it finds a blank line.
Everything above the blank line is then sent to send_cgi_header().

send_fd()

Given an open filehandle, filehandle glob, or glob reference as argument,
this method sends the contents of the file to the client. Internally, the Perl
interface extracts the file descriptor from the filehandle and uses that
directly, which is generally faster than calling the higher-level Perl
methods. The confusing naming of this method (it takes a filehandle, not a
file descriptor) is for consistency with the naming of the corresponding C
API function call.

This method is generally used by content handlers that wish to send the
browser the unmodified contents of a file.

my $fh = Apache::gensym(); # generate a new filehandle name
open($fh, $r->filename) || return NOT_FOUND;
$r->send_fd($fh);
close($fh);

send_http_header()

This method formats the outgoing response data into a proper HTTP response
and sends it to the client. The header is constructed from values previously set
by calls to content_type(), content_encoding(), content_language(),
status_line(), and headers_out(). Naturally, this method should be called
before any other methods for sending data to the client.

Because setting the document's MIME type is such a common operation, the
Perl version of this API call allows you to save a few keystrokes by specifying
the content type as an optional argument to send_http_header(). This is exactly
equivalent to calling content_type() followed by send_http_header().

$r->send_http_header;
$r->send_http_header('text/plain');

A content type passed to send_http_header() will override any previous calls to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A content type passed to send_http_header() will override any previous calls to
content_type().

9.1.4 Server Core Functions

This section covers the API methods that are available for your use during the
processing of a request but are not directly related to incoming or outgoing data.

chdir_file()

Given a filename as argument, change from the current directory to the
directory in which the file is contained. This is a convenience routine for
modules that implement scripting engines, since it is common to run the script
from the directory in which it lives. The current directory will remain here, unless
your module changes back to the previous directory. As there is significant
overhead associated with determining the current directory, we suggest using
the $Apache::Server::CWD variable or the server_root_relative() method if
you wish to return to the previous directory afterward.

$r->chdir_file($r->filename);

child_terminate()

Calling this method will cause the current child process to shutdown gracefully
after the current transaction is completed and the logging and cleanup phases
are done. This method is not available on Win32 systems.

$r->child_terminate;

hard_timeout()
kill_timeout()
reset_timeout()
soft_timeout()

The timeout API governs the interaction of Apache with the client. At various
points during the request/response cycle, a browser that is no longer
responding can be timed out so that it doesn't continue to hold the connection
open. Timeouts are primarily of concern to C API programmers, as mod_perl
handles the details of timeouts internally for read and write methods. However,
these calls are included in the Perl API for completeness.

The hard_timeout() method initiates a "hard" timeout. If the client read or write
operation takes longer than the time specified by Apache's Timeout directive,
then the current handler will be aborted immediately and Apache will
immediately enter the logging phase. hard_timeout() takes a single string
argument which should contain the name of your module or some other
identification. This identification will be incorporated into the error message that
is written to the server error log when the timeout occurs.

soft_timeout(), in contrast, does not immediately abort the current handler.
Instead, when a timeout occurs control returns to the handler, but all read and
write operations are replaced with no-ops so that no further data can be sent or
received to the client. In addition, the Apache::Connection object's aborted()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

received to the client. In addition, the Apache::Connection object's aborted()
method will return true. Like hard_timeout(), you should pass this method the
name of your module in order to be able to identify the source of the timeout in
the error log.

The reset_timeout() method can be called to set a previously initiated timer back
to zero. It is usually used between a series of read or write operations in order to
restart the timer.

Finally, the kill_timeout() method is called to cancel a previously initiated
timeout. It is generally called when a series of I/O operations are completely
done.

The following examples will give you the general idea of how these four
methods are used. Remember, however, that in the Perl API these methods are
not really necessary because they are called internally by the read() and print()
methods.

typical hard_timeout() usage
$r->hard_timeout("Apache::Example while reading data");
while (... read data loop ...) {
 ...
 $r->reset_timeout;
}
$r->kill_timeout;

typical soft_timeout() usage
$r->soft_timeout("Apache::Example while reading data");
while (... read data loop ...) {
 ...
 $r->reset_timeout;
}
$r->kill_timeout;

internal_redirect()

Unlike a full HTTP redirect in which the server tells the browser to look
somewhere else for the requested document, the internal_redirect() method
tells Apache to return a different URI without telling the client. This is a lot faster
than a full redirect.

The required argument is an absolute URI path on the current server. The
server will process the URI as if it were a whole new request, running the URI
translation, MIME type checking, and other phases before invoking the
appropriate content handler for the new URI. The content handler that
eventually runs is not necessarily the same as the one that invoked
internal_redirect(). This method should only be called within a content handler.

Do not use internal_redirect() to redirect to a different server. You'll need to do a
full redirect for that. Both redirection techniques are described in more detail in
Chapter 4.

$r->internal_redirect("/new/place");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$r->internal_redirect("/new/place");

Apache implements its ErrorDocument feature as an internal redirect, so many of the
techniques that apply to internal redirects also apply to custom error handling.

internal_redirect_handler()

This method does the same thing as internal_redirect() but arranges for the
content handler used to process the redirected URI to be the same as the
current content handler.

$r->internal_redirect_handler("/new/place");

is_initial_req()

There are several instances in which an incoming URI request can trigger one
or more secondary internal requests. An internal request is triggered when
internal_redirect() is called explicitly, and it also happens behind the scenes
when lookup_file() and lookup_uri() are called.

With the exception of the logging phase, which is run just once for the primary
request, secondary requests are run through each of the transaction processing
phases, and the appropriate handlers are called each time. There may be times
when you don't want a particular handler running on a subrequest or internal
redirect, either to avoid performance overhead or to avoid infinite recursion. The
is_initial_req() method will return a true value if the current request is the
primary one and false if the request is the result of a subrequest or an internal
redirect.

return DECLINED unless $r->is_initial_req;

is_main()

This method can be used to distinguish between subrequests triggered by
handlers and the "main" request triggered by a browser's request for a URI or
an internal redirect. is_main() returns a true value for the primary request and
for internal redirects and false for subrequests. Notice that this is slightly
different from is_initial_req(), which returns false for internal redirects as well as
subrequests.

is_main() is commonly used to prevent infinite recursion when a handler gets
reinvoked after it has made a subrequest.

return DECLINED unless $r->is_main;

Like is_initial_req(), this is a read-only method.

last()
main()
next()
prev()

When a handler is called in response to a series of internal redirects,
ErrorDocuments, or subrequests, it is passed an ordinary-looking request object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ErrorDocuments, or subrequests, it is passed an ordinary-looking request object
and can usually proceed as if it were processing a normal request. However, if a
module has special needs, it can use these methods to walk the chain to
examine the request objects passed to other requests in the series.

main() will return the request object of the parent request, the top of the chain.
last() will return the last request in the chain. prev() and next() will return the
previous and next requests in the chain, respectively. Each of these methods
will return a reference to an object belonging to the Apache class or undef if the
request doesn't exist.

The prev() method is handy inside an ErrorDocument handler to get at the
information from the request that triggered the error. For example, this code
fragment will find the URI of the failed request:

my $failed_uri = $r->prev->uri;

The last() method is mainly used by logging modules. Since Apache may have
performed several subrequests while attempting to resolve the request, the last object
will always point to the final result.

my $bytes_sent = $r->last->bytes_sent;

Should your module wish to log all internal requests, the next() method will come in
handy.

sub My::logger {
 my $r = shift;

 my $first = $r->uri;
 my $last = $r->last->uri;
 warn "first: $first, last: $last\n";

 for (my $rr = $r; $rr; $rr = $rr->next) {
 my $uri = $rr->uri;
 my $status = $rr->status;
 warn "request: $uri, status: $status\n";
 }

 return OK;
}

Assuming the requested URI was /, which was mapped to /index.html by the
DirectoryIndex configuration, the example above would output these messages to the
ErrorLog:

first: /, last: /index.html
request: /, status: 200
request: /index.html, status: 200

The next() and main() methods are rarely used, but they are included for
completeness. Handlers that need to determine whether they are in the main request
should call $r->is_main() rather than !$r->main(), as the former is marginally
more efficient.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

location()

If the current handler was triggered by a Perl*Handler directive within a
<Location> section, this method will return the path indicated by the <Location>
directive.

For example, given this <Location> section:

<Location /images/dynamic_icons>
 SetHandler perl-script
 PerlHandler Apache::Icon
</Location>

location() will return /images/dynamic_icons.

This method is handy for converting the current document's URI into a relative path.

my $base = $r->location;
(my $relative = $r->uri) =~ s/^$base//;

lookup_file()
lookup_uri()

lookup_file() and lookup_uri() invoke Apache subrequests. A subrequest is
treated exactly like an ordinary request, except that the post read request,
header parser, response generation, and logging phases are not run. This
allows modules to pose "what-if" questions to the server. Subrequests can be
used to learn the MIME type mapping of an arbitrary file, map a URI to a
filename, or find out whether a file is under access control. After a successful
lookup, the response phase of the request can optionally be invoked.

Both methods take a single argument corresponding to an absolute filename or
a URI path, respectively. lookup_uri() performs the URI translation on the
provided URI, passing the request to the access control and authorization
handlers, if any, and then proceeds to the MIME type checking phase.
lookup_file() behaves similarly but bypasses the initial URI translation phase
and treats its argument as a physical file path.

Both methods return an Apache::SubRequest object, which is identical for all
intents and purposes to a plain old Apache request object, as it inherits all
methods from the Apache class. You can call the returned object's
content_type(), filename(), and other methods to retrieve the information left
there during subrequest processing.

The subrequest mechanism is extremely useful, and there are many practical
examples of using it in Chapters Chapter 4, Chapter 5, and Chapter 6. The
following code snippets show how to use subrequests to look up first the MIME
type of a file and then a URI:

my $subr = $r->lookup_file('/home/http/htdocs/images/logo.tif');
my $ct = $subr->content_type;

my $ct = $r->lookup_uri('/images/logo.tif')->content_type;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $ct = $r->lookup_uri('/images/logo.tif')->content_type;

In the lookup_uri() example, /images/logo.tif will be passed through the same series
of Alias, ServerRoot, and URI rewriting translations that the URI would be subjected
to if it were requested by a browser.

If you need to pass certain HTTP header fields to the subrequest, such as a particular
value of Accept, you can do so by calling headers_in() before invoking lookup_uri() or
lookup_file().

It is often a good idea to check the status of a subrequest in case something went
wrong. If the subrequest was successful, the status value will be that of HTTP_OK.

use Apache::Constants qw(:common HTTP_OK);
my $subr = $r->lookup_uri("/path/file.html");
my $status = $subr->status;

unless ($status == HTTP_OK) {
 die "subrequest failed with status: $status";
}

notes()

There are times when handlers need to communicate among themselves in a
way that goes beyond setting the values of HTTP header fields. To
accommodate this, Apache maintains a "notes" table in the request record. This
table is simply a list of key/value pairs. One handler can add its own key/value
entry to the notes table, and later the handler for a subsequent phase can
retrieve the note. Notes are maintained for the life of the current request and are
deleted when the transaction is finished.

When called with two arguments, this method sets a note. When called with a
single argument, it retrieves the value of that note. Both the keys and the values
must be simple strings.

$r->notes('CALENDAR' => 'Julian');
my $cal = $r->notes('CALENDAR');

When called in a scalar context with no arguments, a hash reference tied to the
Apache::Table class will be returned.

my $notes = $r->notes;
my $cal = $notes->{CALENDAR};

This method comes in handy for communication between a module written in Perl and
one written in C. For example, the logging API saves error messages under a key
named error-notes, which could be used by ErrorDocuments to provide a more
informative error message.

The LogFormat directive, part of the standard mod_log_config module, can
incorporate notes into log messages using the formatting character %n. See the
Apache documentation for details.

subprocess_env()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The subprocess_env() method is used to examine and change the Apache
environment table. Like other table-manipulation functions, this method has a
variety of behaviors depending on the number of arguments it is called with and
the context in which it is called. Call the method with no arguments in a scalar
context to return a hash reference tied to the Apache::Table class:

my $env = $r->subprocess_env;
my $docroot = $env->{'DOCUMENT_ROOT'};

Call the method with a single argument to retrieve the current value of the
corresponding entry in the environment table, or undef if no entry by that name
exists:

my $doc_root = $r->subprocess_env("DOCUMENT_ROOT");

You may also call the method with a key/value pair to set the value of an entry
in the table:

$r->subprocess_env(DOOR => "open");

Finally, if you call subprocess_env() in a void context with no arguments, it will
reinitialize the table to contain the standard variables that Apache adds to the
environment before invoking CGI scripts and server-side include files:

$r->subprocess_env;

Changes made to the environment table only persist for the length of the
request. The table is cleared out and reinitialized at the beginning of every new
transaction.

In the Perl API, the primary use for this method is to set environment variables
for other modules to see and use. For example, a fixup handler could use this
call to set up environment variables that are later recognized by mod_include
and incorporated into server-side include pages. You do not ordinarily need to
call subprocess_env() to read environment variables because mod_perl
automatically copies the environment table into the Perl %ENV array before
entering the response handler phase.

A potential confusion arises when a Perl API handler needs to launch a
subprocess itself using system(), backticks, or a piped open. If you need to pass
environment variables to the subprocess, set the appropriate keys in %ENV just
as you would in an ordinary Perl script. subprocess_env() is only required if you
need to change the environment in a subprocess launched by a different
handler or module.

register_cleanup()

The register_cleanup() method registers a subroutine that will be called after
the logging stage of a request. This is much the same as installing a cleanup
handler with the PerlCleanupHandler directive. See Chapter 7 for some
practical examples of using register_cleanup().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The method expects a code reference argument:

sub callback {
 my $r = shift;
 my $uri = $r->uri;
 warn "process $$ all done with $uri\n";
}
$r->register_cleanup(\&callback);

9.1.5 Server Configuration Methods

Several methods give you access to the Apache server's configuration settings. You
can inspect the configuration and, in many cases, change it dynamically. The most
commonly needed configuration information can be obtained directly from the
methods given in this section. More esoteric information can be obtained via the
Apache::Server object returned by the request object's server() method. See the
section Section 9.2.3" for details.

dir_config()

The dir_config() method and the PerlSetVar configuration directive together
form the primary way of passing configuration information to Apache Perl
modules.

The PerlSetVar directive can occur in the main part of a configuration file, in a
<VirtualHost>, <Directory>, <Location>, or <Files> section, or in a .htaccess file.
It takes a key/value pair separated by whitespace.

In the following two examples, the first directive sets a key named Gate to a
value of open. The second sets the same key to a value of wide open and
beckoning. Notice how quotes are used to protect arguments that contain
whitespace:

PerlSetVar Gate open
PerlSetVar Gate "wide open and beckoning"

Configuration files can contain any number of PerlSetVar directives. If multiple
directives try to set the same key, the usual rules of directive precedence apply.
A key defined in a .htaccess file has precedence over a key defined in a
<Directory>, <Location>, or <Files> section, which in turn has precedence over
a key defined in a <VirtualHost> section. Keys defined in the main body of the
configuration file have the lowest precedence of all.

Configuration keys set with PerlSetVar can be recovered within Perl handlers
using dir_config(). The interface is simple. Called with the name of a key,
dir_config() looks up the key and returns its value if found or undef otherwise.

my $value = $r->dir_config('Gate');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $value = $r->dir_config('Gate');

If called in a scalar context with no arguments, dir_config() returns a hash
reference tied to the Apache::Table class. See Section 9.2.5" for details.

my $dir_config = $r->dir_config;
my $value = $dir_config->{'Gate'};

Only scalar values are allowed in configuration variables set by PerlSetVar. If
you want to pass an array or hash, separate the items by a character that
doesn't appear elsewhere in the string and call split() to break the retrieved
variable into its components.

document_root()

The document_root() method returns the value of the document root directory.
The value of the document root is set by the server configuration directive
DocumentRoot and usually varies between different virtual hosts. Apache uses
the document root to translate the URI into a physical pathname unless a more
specific translation rule, such as Alias, applies.

my $doc_root = $r->document_root;

If you are used to using the environment variable DOCUMENT_ROOT within your
CGI scripts in order to resolve URIs into physical pathnames, be aware that
there's a much better way to do this in the Apache API. Perform a subrequest
with the URI you want to resolve, and then call the returned object's filename()
method. This works correctly even when the URI is affected by Alias directives
or refers to user-maintained virtual directories:

my $image = $r->lookup_uri('/~fred/images/cookbook.gif')->filename;

If you're interested in fetching the physical file corresponding to the current
request, call the current request object's filename() method:

my $file = $r->filename;

get_server_port()

This method returns the port number on which the server is listening.

my $port = $r->get_server_port;

If UseCanonicalName is configured to be On (the default), this method will
return the value of the Port configuration directive. If no Port directive is present,
the default port 80 is returned. If UseCanonicalName is Off and the client sent a
Host header, then the method returns the actual port specified here, regardless
of the value of the Port directive.

get_server_name()

This read-only method returns the name of the server handling the request.

my $name = $r->get_server_name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $name = $r->get_server_name;

This method is sensitive to the value of the UseCanonicalName configuration
directive. If UseCanonicalName is On (the default), the method will always
return the value of the current ServerName configuration directive. If
UseCanonicalName is Off, then this method will return the value of the incoming
request's Host header if present, or the value of the ServerName directive
otherwise. These values can be different if the server has several different DNS
names.

The lower-level server_name() method in the Apache::Server class always acts
as if UseCanonicalName were on.

server_root_relative()

Called without any arguments, the server_root_relative() method returns the
currently configured ServerRoot directory (in which Apache's binaries,
configuration files, and logs commonly reside). If you pass this method a relative
pathname, it will resolve the relative pathname to an absolute one based on the
value of the server root. This is the preferred way to locate configuration and log
files that are stored beneath the server root.

return ServerRoot
my $ServerRoot = $r->server_root_relative;

return $ServerRoot/logs/my.log
my $log = $r->server_root_relative("logs/my.log");

The server_root_relative method can also be invoked without a request object
by calling it directly from the Apache class. The following example, which might
be found at the beginning of a Perl startup file, first imports the Apache module
and then uses server_root_relative() to add a site-specific library directory to the
search path. It does this in a BEGIN { } block to ensure that this code is
evaluated first. It then loads a local module named My::App, which presumably
will be found in the site-specific directory.

#!/usr/bin/perl
modify the search path
BEGIN {
 use Apache():
 use lib Apache->server_root_relative("lib/my_app");
}
use My::App ();

9.1.6 Logging Methods

This section covers request object methods that generate entries in the server error
log. They are handy for debugging and error reporting. Prior to Apache 1.3, the error-
logging API was a very simple one that didn't distinguish between different levels of
severity. Apache now has a more versatile logging API similar to the Unix syslog
system.[4] Each entry is associated with a severity level from low (debug) to high
(critical). By adjusting the value of the LogLevel directive, the webmaster can control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(critical). By adjusting the value of the LogLevel directive, the webmaster can control
which error messages are recorded to the error log file.

[4] In fact, the log-level API now provides direct syslog support. See the Apache documentation for the ErrorLog
directive, which explains how to enable logging via syslog.

First we cover the interface to the earlier API. Then we discuss the Apache::Log
class, which implements the 1.3 interface.

9.1.6.1 Pre-1.3 API methods

log_error()

The log_error() method writes a nicely timestamped error message to the
server error log. It takes one or more string arguments, concatenates them into
a line, and writes out the result. This method logs at the "error" log level
according to the newer API.

For example, this code:

$r->log_error("Can't open index.html $!");

results in the following ErrorLog entry:

[Tue Jul 21 16:28:51 1998] [error] Can't open index.html No such file or directory

log_reason()

The log_reason() method behaves like log_error() but generates additional
information about the request that can help with the postmortem. Here is the
format of the entries produced by this method:

[$DATE] [error] access to $URI failed for $HOST, reason: $MESSAGE

where $DATE is the time and date of the request, $URI is the requested URI,
$HOST is the remote host, and $MESSAGE is a message that you provide. For
example, this code fragment:

$r->log_reason("Can't open index.html $!");

might generate the following entry in the error log:

[Tue Jul 21 16:30:47 1998] [error] access to /perl/index.pl
 failed for w15.yahoo.com, reason: Can't open index.html No such file
 or directory

The argument to log_reason() is the message you wish to display in the error
log. If you provide an additional second argument, it will be displayed rather
than the URI of the request. This is usually used to display the physical path of
the requested file:

$r->log_reason("Can't open file $!", $r->filename);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$r->log_reason("Can't open file $!", $r->filename);

This type of log message is most often used by content handlers that need to
open and process the requested file before transmitting it to the browser, such
as server-side include systems.

warn()

warn() is similar to log_error(), but on post-1.3.0 versions of Apache it will
result in the logging of a message only when LogLevel is set to warn or higher.

Example:

$r->warn("Attempting to open index.html");

as_string()

The as_string() method is a handy debugging aid for working out obscure
problems with HTTP headers. It formats the current client request and server
response fields into an HTTP header and returns it as a multiline string. The
request headers will come first, followed by a blank line, followed by the
response. Here is an example of using as_string() within a call to warn() and the
output it might produce:

$r->warn("HTTP dump:\n", $r->as_string);

[Tue Jul 21 16:51:51 1998] [warn] HTTP dump:
GET /perl/index.pl HTTP/1.0
User-Agent: lwp-request/1.32
Host: localhost:9008

200 OK
Connection: close
Content-Type: text/plain

9.1.6.2 The Apache::Log class

Apache version 1.3 introduced the notion of a log level. There are eight log levels,
ranging in severity from emerg to debug. When modules call the new API logging
routines, they provide the severity level of the message. You can control which
messages appear in the server error logging by adjusting a new LogLevel directive.
Messages greater than or equal to the severity level given by LogLevel appear in the
error log. Messages below the cutoff are discarded.

The Apache::Log API provides eight methods named for each of the severity levels.
Each acts like the request object's error_log() method, except that it logs the provided
message using the corresponding severity level.

In order to use the new logging methods, you must use Apache::Log in the Perl
startup file or within your module. You must then fetch an Apache::Log object by
calling the log() method of either an Apache ($r->log()) or an Apache::Server
object ($r->server->log()). Both objects have access to the same methods
described below. However, the object returned from the $r->log() provides some

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

described below. However, the object returned from the $r->log() provides some
additional functionality. It will include the client IP address, in dotted decimal form,
with the log message. In addition, the message will be saved in the request's notes
table, under a key named error-notes. It is the equivalent of the C-language API's
ap_log_rerror() function (Chapter 10).

The methods described in this section can be called with one or more string
arguments or a subroutine reference. If a subroutine reference is used, it is expected
to return a string which will be used in the log message. The subroutine will only be
invoked if the LogLevel is set to the given level or higher. This is most useful to
provide verbose debugging information during development while saving CPU cycles
during production.

log()

The log() method returns an object blessed into the Apache::Log class. log() is
implemented both for the Apache class and for the Apache::Server class.

use Apache::Log ();
my $log = $r->log; # messages will include client ip address
my $log = $r->server->log; # message will not include client ip address

emerg()

This logs the provided message at the emergency log level, a level ordinarily
reserved for problems that render the server unusable.

$log->emerg("Cannot open lock file!");

alert()

This logs the message using the alert level, which is intended for problems that
require immediate attention.

$log->alert("getpwuid: couldn't determine user name from uid");

crit()

This logs the message at the critical level, intended for severe conditions.

$log->crit("Cannot open configuration database!");

error()

This logs the message at the error level, a catchall for noncritical error
conditions.

$log->error("Parse of script failed: $@");

warn()

The warn level is intended for warnings that may or may not require someone's
attention.

$log->warn("No database host specified, using default");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$log->warn("No database host specified, using default");

notice()

notice() is used for normal but significant conditions.

$log->notice("Cannot connect to master database, trying slave $host");

info()

This method is used for informational messages.

$log->info("CGI.pm version is old, consider upgrading") if
 $CGI::VERSION < 2.42;

debug()

This logs messages at the debug level, the lowest of them all. It is used for
messages you wish to print during development and debugging. The debug
level will also include the filename and line number of the caller in the log
message.

$log->debug("Reading configuration from file $fname");

$log->debug(sub {
 "The request: " . $r->as_string;

});

9.1.7 Access Control Methods

The Apache API provides several methods that are used for access control,
authentication, and authorization. We gave complete examples of using these
methods in Chapter 6.

allow_options()

The allow_options() method gives module writers access to the per-directory
Options configuration. It returns a bitmap in which a bit is set to 1 if the
corresponding option is enabled. The Apache::Constants module provides
symbolic constants for the various options when you import the tab :options.
You will typically perform a bitwise AND (&) on the options bitmap to check
which ones are enabled.

For example, a script engine such as Apache::Registry or Apache::SSI might
want to check if it's allowed to execute a script in the current location using this
code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use Apache::Constants qw(:common :options);

unless($r->allow_options & OPT_EXECCGI) {
 $r->log_reason("Options ExecCGI is off in this directory",
 $r->filename);
 return FORBIDDEN;
}

A full list of option constants can be found in the Apache::Constants manual
page.

auth_name()

This method will return the current value of the per-directory configuration
directive AuthName, which is used in conjunction with password-protected
directories. AuthName declares an authorization "realm," which is intended as a
high-level grouping of an authentication scheme and a URI tree to which it
applies.

If the requested file or directory is password-protected, auth_name() will return
the realm name. An authentication module can then use this realm name to
determine which database to authenticate the user against. This method can
also be used to set the value of the realm for use by later handlers.

my $auth_name = $r->auth_name();
$r->auth_name("Protected Area");

auth_type()

Password-protected files and directories will also have an authorization type,
which is usually one of "Basic" or "Digest." The authorization type is set with the
configuration directive AuthType and retrieved with the API method auth_type(
). Here's an example from a hypothetical authentication handler that can only
authenticate using the Basic method:

my $auth_type = $r->auth_type;
unless (lc($auth_type) eq "basic") {
 $r->warn(_ _PACKAGE_ _, " can't handle AuthType $auth_type");
 return DECLINED;
}

The differences between Basic and Digest authentication are discussed in
Chapter 6.

get_basic_auth_pw()

The get_basic_auth_pw() method returns a two-element list. If the current
request is protected with Basic authentication, the first element of the returned
list will be OK and the second will be the plaintext password entered by the user.
Other possible return codes include DECLINED, SERVER_ERROR, and
AUTH_REQUIRED, which are described in Chapter 6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AUTH_REQUIRED, which are described in Chapter 6.

my($ret, $sent_pw) = $r->get_basic_auth_pw;

You can get the username part of the pair by calling $r->connection->user
as described in Section 9.2.4.

note_basic_auth_failure()

If a URI is protected by Basic authentication and the browser fails to provide a
valid username/password combination (or none at all), authentication handlers
are expected to call the note_basic_auth_failure() method. This sets up the
outgoing HTTP headers in such a way that users will be (re)challenged to
provide their usernames and passwords for the current security realm.

my($ret, $sent_pw) = $r->get_basic_auth_pw;
unless($r->connection->user and $sent_pw) {
 $r->note_basic_auth_failure;
 $r->log_reason("Both a username and password must be provided");
 return AUTH_REQUIRED;
}

Although it would make sense for note_basic_auth_failure() to return a status
code of AUTH_REQUIRED, it actually returns no value.

requires()

This method returns information about each of the require directives currently in
force for the requested URI. Since there may be many require directives, this
method returns an array reference. Each item in the array is a hash that
contains information about a different require directive. The format of this data
structure is described in detail in Chapter 6, under Section 6.4.1."

satisfies()

Documents can be under access control (e.g., access limited by hostname or
password) and authentication/authorization control (password protection)
simultaneously. The Satisfy directive determines how Apache combines the two
types of restriction. If Satisfy All is specified, Apache will not grant access to the
requested document unless both the access control and
authentication/authorization rules are satisfied. If Satisfy Any is specified,
remote users are allowed to retrieve the document if they meet the
requirements of either one of the restrictions.

Authorization and access control modules gain access to this configuration
variable through the satisfies() method. It will return one of the three constants
SATISFY_ALL, SATISFY_ANY, or SATISFY_NOSPEC. The latter is returned
when there is no applicable satisfy directive at all. These constants can be
imported by requesting the :satisfy tag from Apache::Constants.

The following code fragment illustrates an access control handler that checks
the status of the satisfy directive. If the current document is forbidden by access
control rules, the code checks whether SATISFY_ANY is in effect and, if so,
whether authentication is also required (using the some_auth_required()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

whether authentication is also required (using the some_auth_required()
method call described next). Unless both of these conditions are true, the
handler logs an error message. Otherwise, it just returns the result code,
knowing that any error logging will be performed by the authentication handler.

use Apache::Constants qw(:common :satisfy);

 if ($ret == FORBIDDEN) {
 $r->log_reason("Client access denied by server configuration")
 unless $r->satisfies == SATISFY_ANY && $r->some_auth_required;
 return $ret;
 }

some_auth_required()

If the configuration for the current request requires some form of authentication
or authorization, this method returns true. Otherwise, it returns an undef value.

unless ($r->some_auth_required) {
 $r->log_reason("I won't go further unless the user is authenticated");
 return FORBIDDEN;
}

9.1.8 mod_perl-Specific Methods

There are a handful of Perl API methods for which there is no C-language
counterpart. Those who are only interested in learning the C API can skip this section.

There are a handful of Perl API methods for which there is no C-language
counterpart. Those who are only interested in learning the C API can skip this section.

exit()

It is common to come across Perl CGI scripts that use the Perl built-in exit()
function to leave the script prematurely. Calling exit() from within a CGI script,
which owns its process, is harmless, but calling exit() from within mod_perl
would have the unfortunate effect of making the entire child process exit
unceremoniously, in most cases before completing the request or logging the
transaction. On Win32 systems, calling exit() will make the whole server quit.
Oops!

For this reason mod_perl 's version of this function call, Apache::exit(), does not
cause the process to exit. Instead, it calls Perl's croak() function to halt script
execution but does not log a message to the ErrorLog. If you really want the
child server process to exit, call Apache::exit() with an optional status argument
of DONE (available in Apache::Constants). The child process will be shut down
but only after it has had a chance to properly finish handling the current
requests.

In scripts running under Apache::Registry, Perl's built-in exit() is overridden by
Apache::exit() so that legacy CGI scripts don't inadvertently shoot themselves in
the foot. In Perl Versions 5.005 and higher, exit() is overridden everywhere,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the foot. In Perl Versions 5.005 and higher, exit() is overridden everywhere,
including within handlers. In versions of mod_perl built with Perl 5.004, however,
handlers can still inadvertently invoke the built-in exit(), so you should be on the
watch for this mistake. One way to avoid it is to explicitly import the exit
symbol when you load the Apache module.

Here are various examples of exit() :

$r->exit;
Apache->exit;
$r->exit(0);
$r->exit(DONE);

use Apache 'exit'; #this override's Perl's builtin
exit;

If a handler needs direct access to the Perl built-in version of exit() after it has
imported Apache's version, it should call CORE::exit().

gensym()

This function creates an anonymous glob and returns a reference to it for use as
a safe file or directory handle. Ordinary bareword filehandles are prone to
namespace clashes. The IO::File class avoids this, but some users have found
that the IO::File carries too much overhead. Apache::gensym avoids this
overhead and still avoids namespace clashes.

my $fh = Apache->gensym;
open $fh, $r->filename or die $!;
$r->send_fd($fh);
close $fh;

Because of its cleanliness, most of the examples in this book use the
Apache::File interface for reading and writing files (see Section 9.4"). If you
wish to squeeze out a bit of overhead, you may wish to use Apache::gensym()
with Perl's built-in open() function instead.

current_callback()

If a module wishes to know what handler is currently being run, it can find out
with the current_callback() method. This method is most useful to
PerlDispatchHandlers who wish to only take action for certain phases.

if($r->current_callback eq "PerlLogHandler") {
 $r->warn("Logging request");
}

get_handlers()

The get_handlers() method will return an array reference containing the list of
all handlers that are configured to handle the current request. This method
takes a single argument specifying which handlers to return.

my $handlers = $r->get_handlers('PerlAuthenHandler');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $handlers = $r->get_handlers('PerlAuthenHandler');

set_handlers()

If you would like to change the list of Perl handlers configured for the current
request, you can change it with set_handlers(). This method takes two
arguments; the name of the handler you wish to change and an array reference
pointing to one or more references to the handler subroutines you want to run
for that phase. If any handlers were previously defined, such as with a
Perl*Handler directive, they are replaced by this call. Provide a second
argument of undef to remove all handlers for that phase.

$r->set_handlers(PerlAuthenHandler => [\&auth_one, \&auth_two]);
$r->set_handlers(PerlAuthenHandler => undef);

push_handlers()

The push_handlers() method is used to add a new Perl handler routine to the
current request's handler "stack". Instead of replacing the list of handlers, it just
appends a new handler to the list. Each handler is run in turn until one returns
an error code. You'll find more information about using stacked handlers and
examples in Chapters Chapter 4, Chapter 6, and Chapter 7.

This method takes two arguments: the name of the phase you want to
manipulate and a reference to the subroutine you want to handle that phase.

Example:

$r->push_handlers(PerlLogHandler => \&my_logger);

module()

If you need to find out if a Perl module has already been loaded, the module()
method will tell you. Pass it the package name of the module you're interested
in. It will return a true value if the module is loaded.

do { #something } if Apache->module('My::Module');

This method can also be used to test if a C module is loaded. In this case, pass
it the filename of the module, just as you would use with the IfModule directive.
It will return a true value if the module is loaded.

do { #something } if Apache->module('mod_proxy.c');

define()

Apache Version 1.3.1 added a -D command-line switch that can be used to
pass the server parameter names for conditional configuration with the IfDefine
directive. These names exist for the lifetime of the server and can be accessed
at any time by Perl modules using the define() method.

if(Apache->define("SSL")) {
 #the server was started with -DSSL
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

post_connection()

This method is simply an alias for the register_cleanup() method described in
the Section 9.1.4" section.

request()

The Apache->request() class method returns a reference to the current request
object, if any. Handlers that use the vanilla Perl API will not need to call this
method because the request object is passed to them in their argument list.
However, Apache ::Registry scripts and plain Perl modules do not have a
subroutine entry point and therefore need a way to gain access to the request
object. For example, CGI.pm uses this method to provide proper mod_perl
support.

Called with no arguments, request() returns the stored Apache request object. It
may also be called with a single argument to set the stored request object. This
is what Apache::Registry does before invoking a script.

my $r = Apache->request; # get the request
Apache->request($r); # set the request

Actually, it's a little known fact that Apache::Registry scripts can access the
request object directly via @_. This is slightly faster than using Apache-
>request() but has the disadvantage of being obscure. This technique is
demonstrated in Section 7.11.

httpd_conf()

The httpd_conf() method allows you to pass new directives to Apache at startup
time. Pass it a multiline string containing the configuration directives that you
wish Apache to process. Using string interpolation, you can use this method to
dynamically configure Apache according to arbitrarily complex rules.

httpd_conf() can only be called during server startup, usually from within a Perl
startup file. Because there is no request method at this time, you must invoke
httpd_conf() directly through the Apache class.

my $ServerRoot = '/local/web';
Apache->httpd_conf(<<EOF);
Alias /perl $ServerRoot/perl
Alias /cgi-bin $ServerRoot/cgi-bin
EOF

Should a syntax error occur, Apache will log an error and the server will exit, just
as it would if the error was present in the httpd.conf configuration file. A more
sophisticated way of configuring Apache at startup time via <Perl> sections is
discussed in Section 8.1.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

9.2 Other Core Perl API Classes

The vast bulk of the functionality of the Perl API is contained in the Apache object.
However, a number of auxiliary classes, including Apache::Table,
Apache::Connection, and Apache::Server, provide additional methods for accessing
and manipulating the state of the server. This section discusses these classes.

9.2.1 The Apache TIEHANDLE Interface

In the CGI environment, the standard input and standard output file descriptors are
redirected so that data read and written is passed through Apache for processing. In
the Apache module API, handlers ordinarily use the Apache read() and print()
methods to communicate with the client. However, as a convenience, mod_perl ties
the STDIN and STDOUT filehandles to the Apache class prior to invoking Perl API
modules. This allows handlers to read from standard input and write to standard
output exactly as if they were in the CGI environment.

The Apache class supports the full TIEHANDLE interface, as described in perltie(1).
STDIN and STDOUT are already tied to Apache by the time your handler is called. If
you wish to tie your own input or output filehandle, you may do so by calling tie() with
the request object as the function's third parameter:

tie *BROWSER, 'Apache', $r;
print BROWSER 'Come out, come out, wherever you are!';

Of course, it is better not to hardcode the Apache class name, as $r might be
blessed into a subclass:

tie *BROWSER, ref $r, $r;

9.2.2 The Apache::SubRequest Class

The Apache methods lookup_uri() and lookup_file() return a request record object
blessed into the Apache::SubRequest class. The Apache::SubRequest class is a
subclass of Apache and inherits most of its methods from there. Here are two
examples of fetching subrequest objects:

my $subr = $r->lookup_file($filename);
my $subr = $r->lookup_uri($uri);

The Apache::SubRequest class adds a single new method, run().

run()

When a subrequest is created, the URI translation, access checks, and MIME
checking phases are run, but unlike a real request, the content handler for the
response phase is not actually run. If you would like to invoke the content
handler, the run() method will do it:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $status = $subr->run;

When you invoke the subrequest's response handler in this way, it will do
everything a response handler is supposed to, including sending the HTTP
headers and the document body. run() returns the content handler's status
code as its function result. If you are invoking the subrequest run() method from
within your own content handler, you must not send the HTTP header and
document body yourself, as this would be appended to the bottom of the
information that has already been sent. Most handlers that invoke run() will
immediately return its status code, pretending to Apache that they handled the
request themselves:

my $status = $subr->run;
return $status;

9.2.3 The Apache::Server Class

The Apache::Server class provides the Perl interface to the C API server_rec data
structure, which contains lots of low-level information about the server configuration.
Within a handler, the current Apache::Server object can be obtained by calling the
Apache request object's server() method. At Perl startup time (such as within a
startup script or a module loaded with PerlModule), you can fetch the server object by
invoking Apache->server directly. By convention, we use the variable $s for server
objects.

#at request time
sub handler {
 my $r = shift;
 my $s = $r->server;

}

#at server startup time, e.g., PerlModule or PerlRequire
my $s = Apache->server;

This section discusses the various methods that are available to you via the server
object. They correspond closely to the fields of the server_rec structure, which we
revisit in Chapter 10.

is_virtual()

This method returns true if the current request is being applied to a virtual
server. This is a read-only method.

my $is_virtual = $s->is_virtual;

log()

The log() method retrieves an object blessed into the Apache::Log class. You
can then use this object to access the full-featured logging API. See Section
9.1.6.2" for details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use Apache::Log ();
my $log = $s->log;

The Apache::Server::log() method is identical in most respects to the
Apache::log() method discussed earlier. The difference is that messages logged
with Apache::log() will include the IP address of the browser and add the
messages to the notes table under a key named error-notes. See the
description of notes() under Section 9.1.4."

port()

This method returns the port on which this (virtual) server is listening. If no port
is explicitly listed in the server configuration file (that is, the server is listening on
the default port 80), this method will return 0. Use the higher-level
Apache::get_server_port() method if you wish to avoid this pitfall.

my $port = $r->server->port || 80;

This method is read-only.

server_admin()

This method returns the email address of the person responsible for this server
as configured by the ServerAdmin directive.

my $admin = $s->server_admin;

This method is read-only.

server_hostname()

This method returns the (virtual) hostname used by this server, as set by the
ServerName directive.

my $hostname = $s->server_hostname;

This method is read-only.

names()

If this server is configured to use virtual hosts, the names() method will return
the names by which the current virtual host is recognized as specified by the
ServerAlias directives (including wildcarded names). The function result is an
array reference containing the hostnames. If no alias names are present or the
server is not using virtual hosts, this will return a reference to an empty list.

my $s = $r->server;
my $names = $s->names;
print "Names = @$names\n";

next()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache maintains a linked list of all configured virtual servers, which can be
accessed with the next() method.

for(my $s = Apache->server; $s; $s = $s->next) {
 printf "Contact %s regarding problems with the %s site\n",
 $s->server_admin, $s->server_hostname;
}

log_error()

This method is the same as the Apache::log_error() method, except that it's
available through the Apache::Server object. This allows you to use it in Perl
startup files and other places where the request object isn't available.

my $s = Apache->server;
$s->log_error("Can't open config file $!");

warn()

This method is the same as the Apache::warn() method, but it's available
through the Apache::Server object. This allows you to use it in Perl startup files
and other places where the request object isn't available.

my $s = Apache->server;
$s->warn("Can't preload script $file $!");

9.2.4 The Apache::Connection Class

The Apache::Connection class provides a Perl interface to the C-language conn_rec
data structure, which provides various low-level details about the network connection
back to the client. Within a handler, the connection object can be obtained by calling
the Apache request object's connection() method. The connection object is not
available outside of handlers for the various request phases because there is no
connection established in those cases. By convention, we use the variable $c for
connection objects.

sub handler {
 my $r = shift;
 my $c = $r->connection;
 ...
}

In this section we discuss the various methods made available by the connection
object. They correspond closely to the fields of the C API conn_rec structure
discussed in Chapter 10.

aborted()

This method returns true if the client has broken the connection prematurely.
This can happen if the remote user's computer has crashed, a network error has
occurred, or, more trivially, the user pressed the stop button before the request
or response was fully transmitted. However, this value is only set if a soft
timeout occurred.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if($c->aborted) {
 warn "uh,oh, the client has gone away!";
}

See the description of soft_timeout() earlier.

auth_type()

If authentication was used to access a password protected document, this
method returns the type of authentication that was used, currently either Basic
or Digest. This method is different from the request object's auth_type()
method, which we discussed earlier, because the request object's method
returns the value of the AuthType configuration directive; in other words, the
type of authentication the server would like to use. The connection object's
auth_type() method returns a value only when authentication was successfully
completed and returns undef otherwise.

if($c->auth_type ne 'Basic') {
 warn "phew, I feel a bit better";
}

This method is read-only.

local_addr()

This method returns a packed SOCKADDR_IN structure in the same format as
returned by the Perl Socket module's pack_sockaddr_in() function. This packed
structure contains the port and IP address at the server's side of the connection.
This is set by the server when the connection record is created, so it is always
defined.

use Socket ();

sub handler {
 my $r = shift;
 my $local_add = $r->connection->local_addr;
 my($port, $ip) = Socket::unpack_sockaddr_in($local_add);
 ...
}

For obvious reasons, this method is read-only.

remote_addr()

This method returns a packed SOCKADDR_IN structure for the port and IP
address at the client's side of the connection. This is set by the server when the
connection record is created, so it is always defined.

Among other things, the information returned by this method and local_addr()
can be used to perform RFC 1413 ident lookups on the remote client, even
when the configuration directive IdentityCheck is turned off. Here is an example
using Jan-Pieter Cornet's Net::Ident module:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use Net::Ident qw(lookupFromInAddr);

my $remoteuser = lookupFromInAddr ($c->local_addr,
 $c->remote_addr, 2);

remote_host()

This method returns the hostname of the remote client. It only returns the name
if the HostNameLookups directive is set to On and the DNS lookup was
successful—that is, the DNS contains a reverse name entry for the remote host.
If hostname-based access control is in use for the given request, a double-
reverse lookup will occur regardless of the HostNameLookups setting, in which
case, the cached hostname will be returned. If unsuccessful, the method returns
undef.

It is almost always better to use the high-level get_remote_host() method
available from the Apache request object (discussed earlier). The high-level
method returns the dotted IP address of the remote host if its DNS name isn't
available, and it caches the results of previous lookups, avoiding overhead
when you call the method multiple times.

my $remote_host = $c->remote_host || "nohost";
my $remote_host = $r->get_remote_host(REMOTE_HOST); # better

This method is read-only.

remote_ip()

This method returns the dotted decimal representation of the remote client's IP
address. It is set by the server when the connection record is created and is
always defined.

my $remote_ip = $c->remote_ip;

The remote_ip() can also be changed, which is helpful if your server is behind a
proxy such as the squid accelerator. By using the X-Forwarded-For header sent
by the proxy, the remote_ip can be set to this value so logging modules include
the address of the real client. The only subtle point is that X-Forwarded-For may
be multivalued in the case of a single request that has been forwarded across
multiple proxies. It's safest to choose the last IP address in the list since this
corresponds to the original client.

my $header = $r->headers_in->{'X-Forwarded-For'};
if(my $ip = (split /,\s*/, $header)[-1]) {
 $r->connection->remote_ip($ip);
}

remote_logname()

This method returns the login name of the remote user, provided that the
configuration directive IdentityCheck is set to On and the remote user's machine
is running an identd daemon. If one or both of these conditions is false, the
method returns undef.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method returns undef.

It is better to use the high-level get_remote_logname() method which is
provided by the request object. When the high-level method is called, the result
is cached and reused if called again. This is not true of remote_logname().

my $remote_logname = $c->remote_logname || "nobody";
my $remote_logname = $r->get_remote_logname; # better

user()

When Basic authentication is in effect, user() returns the name that the remote
user provided when prompted for his username and password. The password
itself can be recovered from the request object by calling get_basic_auth_pw().

my $username = $c->user;

9.2.5 The Apache::Table Class

The HTTP message protocol is simple largely because of its consistent use of the
key/value paradigm in its request and response header fields. Because much of an
external module's work is getting and setting these header fields, Apache provides a
simple yet powerful interface called the table structure. Apache tables are keyed
case-insensitive lookup tables. API function calls allow you to obtain the list of defined
keys, iterate through them, get the value of a key, and set key values. Since many
HTTP header fields are potentially multivalued, Apache also provides functionality for
getting, setting, and merging the contents of multivalued fields.

The following five C data structures are implemented as tables. This list is likely to
grow in the future.

headers_in

headers_out

err_headers_out

notes

subprocess_env

As discussed in Section 9.1," the Perl API provides five method calls, named
headers_in(), headers_out(), err_headers_out(), notes(), and subprocess_env(), that
retrieve these tables. The Perl manifestation of the Apache table API is the
Apache::Table class. It provides a TIEHASH interface that allows transparent access
to its methods via a tied hash reference, as well as API methods that can be called
directly.

The TIEHASH interface is easy to use. Simply call one of the methods listed earlier in
a scalar context to return a tied hash reference. For example:

my $table = $r->headers_in;

The returned object can now be used to get and set values in the headers_in table by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The returned object can now be used to get and set values in the headers_in table by
treating it as an ordinary hash reference, but the keys are looked up case-
insensitively. Examples:

my $type = $table->{'Content-type'};
my $type = $table->{'CONTENT-TYPE'}; # same thing
$table->{'Expires'} = 'Sat, 08 Aug 1998 01:39:20 GMT';

If the field you are trying to access is multivalued, then the tied hash interface suffers
the limitation that fetching the key will only return the first defined value of the field.
You can get around this by using the object-oriented interface to access the table (we
show an example of this later) or by using the each operator to access each key and
value sequentially. The following code snippet shows one way to fetch all the Set-
cookie fields in the outgoing HTTP header:

while (my($key, $value) = each %{$r->headers_out}) {
 push @cookies, $value if lc($key) eq 'set-cookie';
}

When you treat an Apache::Table object as a hash reference, you are accessing its
internal get() and set() methods (among others) indirectly. To gain access to the full
power of the table API, you can invoke these methods directly by using the method
call syntax.

Here is the list of publicly available methods in Apache::Table, along with brief
examples of usage:

add()

The add() method will add a key/value pair to the table. Because Apache tables
can contain multiple instances of a key, you may call add() multiple times with
different values for the same key. Instead of the new value of the key replacing
the previous one, it will simply be appended to the list. This is useful for
multivalued HTTP header fields such as Set-Cookie. The outgoing HTTP
header will contain multiple instances of the field.

my $out = $r->headers_out;
for my $cookie (@cookies) {
 $out->add("Set-cookie" => $cookie);
}

Another way to add multiple values is to pass an array reference as the second
argument. This code has the same effect as the previous example:

my $out = $r->headers_out;
$out->add("Set-cookie" => \@cookies);

clear()

This method wipes the current table clean, discarding its current contents. It's
unlikely that you would want to perform this on a public table, but here's an
example that clears the notes table:

$r->notes->clear;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$r->notes->clear;

do()

This method provides a way to iterate through an entire table item by item. Pass
it a reference to a code subroutine to be called once for each table entry. The
subroutine should accept two arguments corresponding to the key and value,
respectively, and should return a true value. The routine can return a false value
to terminate the iteration prematurely.

This example dumps the contents of the headers_in field to the browser:

$r->headers_in->do(sub {
 my($key, $value) = @_;
 $r->print("$key => $value\n");
 1;
 });

For another example of do(), see Chapter 7, where we use it to transfer the
incoming headers from the incoming Apache request to an outgoing LWP
HTTP::Request object.

get()

Probably the most frequently called method, the get() function returns the table
value at the given key. For multivalued keys, get() implements a little syntactic
sugar. Called in a scalar context, it returns the first value in the list. Called in an
array context, it returns all values of the multivalued key.

my $ua = $r->headers_in->get('User-agent');
my @cookies = $r->headers_in->get('Cookie');

get() is the underlying method that is called when you use the tied hash
interface to retrieve a key. However, the ability to fetch a multivalued key as an
array is only available when you call get() directly using the object-oriented
interface.

merge()

merge() behaves like add(), except that each time it is called the new value is
merged into the previous one, creating a single HTTP header field containing
multiple comma-delimited values.

In the HTTP protocol, a comma-separated list of header values is equivalent to
the same values specified by repeated header lines. Some buggy clients may
not accept merged headers, however. In this case, it is worthwhile to control the
merging explicitly and avoid merging headers that cause trouble (like Set-
cookie).

merge() works like add(). You can either merge a series of entries one at a time:

my @languages = qw(en fr de);
foreach (@languages) {
 $r->headers_out->merge("Content-language" => $_);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

or merge a bunch of entries in a single step by passing an array reference:

$r->headers_out->merge("Content-language" => \@languages);

new()

The new() method is available to create an Apache::Table object from scratch.
It requires an Apache object to allocate the table and, optionally, the number of
entries to initially allocate. Note that just like the other Apache::Table objects
returned by API methods, references cannot be used as values, only strings.

my $tab = Apache::Table->new($r); #default, allocates 10 entries

my $tab = Apache::Table->new($r, 20); #allocate 20 entries

set()

set() takes a key/value pair and updates the table with it, creating the key if it
didn't exist before, or replacing its previous value(s) if it did. The resulting
header field will be single-valued. Internally this method is called when you
assign a value to a key using the tied hash interface.

Here's an example of using set() to implement an HTTP redirect:

$r->headers_out->set(Location => 'http://www.modperl.com/');

unset()

This method can be used to remove a key and its contents. If there are multiple
entries with the same key, they will all be removed.

$r->headers_in->unset('Referer');

9.2.6 The Apache::URI Class

Apache Version 1.3 introduced a utility module for parsing URIs, manipulating their
contents, and unparsing them back into string form. Since this functionality is part of
the server C API, Apache::URI offers a lightweight alternative to the URI::URL module
that ships with the libwww-perl package.[5]

[5] At the time of this writing, URI::URL was scheduled to be replaced by URI.pm, which will be distributed separately
from the libwww-perl package.

An Apache::URI object is returned when you call the request object's parsed_uri()
method. You may also call the Apache::URI parse() constructor to parse an arbitrary
string and return a new Apache::URI object, for example:

use Apache::URI ();
my $parsed_uri = $r->parsed_uri;

fragment()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This method returns or sets the fragment component of the URI. You know this
as the part that follows the hash mark (#) in links. The fragment component is
generally used only by clients and some web proxies.

my $fragment = $uri->fragment;
$uri->fragment('section_1');

hostinfo()

This method gets or sets the remote host information, which usually consists of
a hostname and port number in the format hostname:port. Some rare URIs,
such as those used for nonanonymous FTP, attach a username and password
to this information, for use in accessing private resources. In this case, the
information returned is in the format username:password@hostname:port.

This method returns the host information when called without arguments, or sets
the information when called with a single string argument.

my $hostinfo = $uri->hostinfo;
$uri->hostinfo('www.modperl.com:8000');

hostname()

This method returns or sets the hostname component of the URI object.

my $hostname = $uri->hostname;
$uri->hostname('www.modperl.com');

parse()

The parse() method is a constructor used to create a new Apache::URI object
from a URI string. Its first argument is an Apache request object, and the
second is a string containing an absolute or relative URI. In the case of a
relative URI, the parse() method uses the request object to determine the
location of the current request and resolve the relative URI.

my $uri = Apache::URI->parse($r, 'http://www.modperl.com/');

If the URI argument is omitted, the parse() method will construct a fully qualified
URI from $r, including the scheme, hostname, port, path, and query string.

my $self_uri = Apache::URI->parse($r);

password()

This method gets or sets the password part of the hostinfo component.

my $password = $uri->password;
$uri->password('rubble');

path()

This method returns or sets the path component of the URI object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $path = $uri->path;
$uri->path('/perl/hangman.pl');

path_info()

After the "real path" part of the URI comes the "additional path information."
This component of the URI is not defined by the official URI RFC, because it is
an internal concept from web servers that need to do something with the part of
the path information that is left over from translating the path into a valid
filename.

path_info() gets or sets the additional path information portion of the URI, using
the current request object to determine what part of the path is real and what
part is additional.

$uri->path_info('/foo/bar');

port()

This method returns or sets the port component of the URI object.

my $port = $uri->port;
$uri->port(80);

query()

This method gets or sets the query string component of the URI; in other words,
the part after the ?.

my $query = $uri->query;
$uri->query('one+two+three');

rpath()

This method returns the "real path;" that is, the path() minus the path_info().

my $path = $uri->rpath();

scheme()

This method returns or sets the scheme component of the URI. This is the part
that identifies the URI's protocol, such as http or ftp. Called without arguments,
the current scheme is retrieved. Called with a single string argument, the current
scheme is set.

my $scheme = $uri->scheme;
$uri->scheme('http');

unparse()

This method returns the string representation of the URI. Relative URIs are
resolved into absolute ones.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $string = $uri->unparse;

Beware that the unparse() method does not take the additional path information
into account. It returns the URI minus the additional information.

user()

This method gets or sets the username part of the hostinfo component.

my $user = $uri->user;
$uri->user('barney');

9.2.7 The Apache::Util Class

The Apache API provides several utility functions that are used by various standard
modules. The Perl API makes these available as function calls in the Apache::Util
package.

Although there is nothing here that doesn't already exist in some existing Perl
module, these C versions are considerably faster than their corresponding Perl
functions and avoid the memory bloat of pulling in yet another Perl package.

To make these functions available to your handlers, import the Apache::Util module
with an import tag of :all :

use Apache::Util qw(:all);

escape_uri()

This function encodes all unsafe characters in a URI into %XX hex escape
sequences. This is equivalent to the URI::Escape::uri_escape() function from
the LWP package.

use Apache::Util qw(escape_uri);
my $escaped = escape_uri($url);

escape_html()

This function replaces unsafe HTML character sequences (<, >, and &) with
their entity representations. This is equivalent to the HTML::Entities::encode()
function.

use Apache::Util qw(escape_html);
my $display_html = escape_html("<h1>Header Level 1 Example</h1>");

ht_time()

This function produces dates in the format required by the HTTP protocol. You
will usually call it with a single argument, the number of seconds since the
epoch. The current time expressed in these units is returned by the Perl built-in
time() function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You may also call ht_time() with optional second and third arguments. The
second argument, if present, is a format string that follows the same
conventions as the strftime() function in the POSIX library. The default format is
%a, %d %b %Y %H:%M:%S %Z, where %Z is an Apache extension that always
expands to GMT. The optional third argument is a flag that selects whether to
express the returned time in GMT (Greenwich Mean Time) or the local time
zone. A true value (the default) selects GMT, which is what you will want in
nearly all cases.

Unless you have a good reason to use a nonstandard time format, you should
content yourself with the one-argument form of this function. The function is
equivalent to the LWP package's HTTP::Date::time2str() function when passed
a single argument.

use Apache::Util qw(ht_time);
my $str = ht_time(time);
my $str = ht_time(time, "%d %b %Y %H:%M %Z"); # 06 Nov 1994 08:49 GMT
my $str = ht_time(time, "%d %b %Y %H:%M %Z",0); # 06 Nov 1994 13:49 EST

parsedate()

This function is the inverse of ht_time(), parsing HTTP dates and returning the
number of seconds since the epoch. You can then pass this value to
Time::localtime (or another of Perl's date-handling modules) and extract the
date fields that you want.

The parsedate() recognizes and handles date strings in any of three standard
formats:

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, the modern HTTP format
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, the old obsolete HTTP format
Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

Here is an example:

use Apache::Util qw(parsedate);
my $secs;
if (my $if_modified = $r->headers_in->{'If-modified-since'}) {
 $secs = parsedate $if_modified;
}

size_string()

This function converts the given file size into a formatted string. The size given
in the string will be in units of bytes, kilobytes, or megabytes, depending on the
size of the file. This function formats the string just as the C ap_send_size() API
function does but returns the string rather than sending it directly to the client.
The ap_send_size() function is used in mod_autoindex to display the size of
files in automatic directory listings and by mod_include to implement the fsize
directive.

This example uses size_string() to get the formatted size of the currently

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This example uses size_string() to get the formatted size of the currently
requested file:

use Apache::Util qw(size_string);
my $size = size_string -s $r->finfo;

unescape_uri()

This function decodes all %XX hex escape sequences in the given URI. It is
equivalent to the URI::Escape::uri_unescape() function from the LWP package.

use Apache::Util qw(unescape_uri);
my $unescaped = unescape_uri($safe_url);

unescape_uri_info()

This function is similar to unescape_uri() but is specialized to remove escape
sequences from the query string portion of the URI. The main difference is that
it translates the + character into spaces as well as recognizes and translates the
hex escapes.

use Apache::Util qw(unescape_info);
$string = $r->uri->query;
my %data = map { unescape_uri_info($_) } split /[=&]/, $string, -1;

This would correctly translate the query string
name=Fred+Flintstone&town=Bedrock into the following hash:

data => 'Fred Flintstone',
town => 'Bedrock'

9.2.8 The mod_perl Class

Among the packages installed by the Perl API is a tiny one named, simply enough,
mod_perl. You can query this class to determine what version of mod_perl is installed
and what features it makes available.

import()

If your Apache Perl API modules depend on version-specific features of
mod_perl, you can use the import() method to require that a certain version of
mod_perl be installed. The syntax is simple:

use mod_perl 1.16; # require version 1.16 or higher

When mod_perl is built, you can control which handlers and other features are
enabled. At runtime, import() can be used to check for the presence of individual
features.

require Authen and Authz handlers to be enabled
use mod_perl qw(PerlAuthenHandler PerlAuthzHandler);

If any of these features are not active, the use operator will fail. Here is the list of
features that you can check for:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PerlDispatchHandler PerlFixupHandler
PerlChildInitHandler PerlHandler
PerlChildExitHandler PerlLogHandler
PerlPostReadRequestHandler PerlInitHandler
PerlTransHandler PerlCleanupHandler
PerlHeaderParserHandler PerlStackedHandlers
PerlAccessHandler PerlMethodHandlers
PerlAuthenHandler PerlDirectiveHandlers
PerlAuthzHandler PerlSections
PerlTypeHandler PerlSSI

hook()

The hook() function can be used at runtime to determine whether the current
mod_perl installation provides support for a certain feature. This is the internal
function that import() uses to check for configured features. This function is not
exported, so you have to refer to it using its fully qualified name,
mod_perl::hook(). hook() recognizes the same list of features that import() does.

use mod_perl ();
unless(mod_perl::hook('PerlAuthenHandler')) {
 die "PerlAuthenHandler is not enabled!";
}

9.2.9 The Apache::Constants Class

All of the HTTP status codes are defined in the httpd.h file, along with server-specific
status codes such as OK, DECLINED, and DONE. The Apache::Constants class
provides access to these codes as constant subroutines. As there are many of these
constants, they are not all exported by default. By default, only those listed in the
:common export tag are exported. A variety of export tags are defined, allowing you to
bring in various sets of constants to suit your needs. You are also free to bring in
individual constants, just as you can with any other Perl module.

Here are the status codes listed by export tag group:

:common

This tag imports the most commonly used constants:

OK FORBIDDEN
DECLINED AUTH_REQUIRED
DONE SERVER_ERROR
NOT_FOUND

:response

This tag imports the :common response codes, plus these response codes:

DOCUMENT_FOLLOWS BAD_GATEWAY
MOVED RESPONSE_CODES

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REDIRECT NOT_IMPLEMENTED
USE_LOCAL_COPY CONTINUE
BAD_REQUEST NOT_AUTHORITATIVE

CONTINUE and NOT_AUTHORITATIVE are aliases for DECLINED.

:methods

These are the method numbers, commonly used with the Apache
method_number() method:

METHODS M_PROPFIND
M_GET M_PROPPATCH
M_PUT M_MKCOL
M_POST M_COPY
M_DELETE M_MOVE
M_CONNECT M_LOCK
M_OPTIONS M_UNLOCK
M_TRACE M_INVALID
M_PATCH

Each of the M_ constants corresponds to an integer value, where
M_GET..M_UNLOCK is 0..14. The METHODS constant is the number of M_
constants, 15 at the time of this writing. This is designed to accommodate
support for other request methods.

for (my $i = 0; $i < METHODS; $i++) {
 ...
}

:options

These constants are most commonly used with the Apache allow_options()
method:

OPT_NONE OPT_UNSET
OPT_INDEXES OPT_INCNOEXEC
OPT_INCLUDES OPT_SYM_OWNER
OPT_SYM_LINKS OPT_MULTI
OPT_EXECCGI OPT_ALL

:satisfy

These constants are most commonly used with the Apache satisfy() method:

SATISFY_ALL
SATISFY_ANY
SATISFY_NOSPEC

:remotehost

These constants are most commonly used with the Apache get_remote_host
method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REMOTE_HOST
REMOTE_NAME
REMOTE_NOLOOKUP
REMOTE_DOUBLE_REV

:http

This is a set of common HTTP response codes:

HTTP_OK HTTP_BAD_REQUEST
HTTP_MOVED_TEMPORARILY HTTP_INTERNAL_SERVER_ERROR
HTTP_MOVED_PERMANENTLY HTTP_NOT_ACCEPTABLE
HTTP_METHOD_NOT_ALLOWED HTTP_NO_CONTENT
HTTP_NOT_MODIFIED HTTP_PRECONDITION_FAILED
HTTP_UNAUTHORIZED HTTP_SERVICE_UNAVAILABLE
HTTP_FORBIDDEN HTTP_VARIANT_ALSO_VARIES
HTTP_NOT_FOUND

Note that this list is not definitive. See the Apache source code for the most up-
to-date listing.

:server

These are constants related to the version of the Apache server software:

MODULE_MAGIC_NUMBER
SERVER_VERSION
SERVER_BUILT

:config

These are constants most commonly used with configuration directive handlers:

DECLINE_CMD

:types

These are constants which define internal request types:

DIR_MAGIC_TYPE

:override

These constants are used to control and test the context of configuration
directives:

OR_NONE OR_INDEXES
OR_LIMIT OR_UNSET
OR_OPTIONS OR_ALL
OR_FILEINFO ACCESS_CONF
OR_AUTHCFG RSRC_CONF

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

:args_how

These are the constants which define configuration directive prototypes:

RAW_ARGS TAKE123
TAKE1 ITERATE
TAKE2 ITERATE2
TAKE12 FLAG
TAKE3 NO_ARGS
TAKE23

As you may notice, this list is shorter than the list defined in Apache's include/httpd.h
header file. The missing constants are available as subroutines via
Apache::Constants, they are just not exportable by default. The less frequently used
constants were left out of this list to keep memory consumption at a reasonable level.

There are two options if you need to access a constant that is not exportable by
default. One is simply to use the fully qualified subroutine name, for example:

return Apache::Constants::HTTP_MULTIPLE_CHOICES();

Or use the export method in a server startup file to add exportable names. The name
will now become available to the use operator.

#startup script
Apache::Constants->export(qw(HTTP_MULTIPLE_CHOICES));

#runtime module
use Apache::Constants qw(:common HTTP_MULTIPLE_CHOICES);

...
return HTTP_MULTIPLE_CHOICES;

While the HTTP constants generally use a return code from handler subroutines, it is
also possible to use the built-in die() function to jump out of a handler with a status
code that will be propagated back to Apache:

unless (-r _) {
 die FORBIDDEN;

}

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

9.3 Configuration Classes

Two classes, Apache::ModuleConfig and Apache::CmdParms, provide access to the
custom configuration directive API.

9.3.1 The Apache::ModuleConfig Class

Most Apache Perl API modules use the simple PerlSetVar directive to declare per-
directory configuration variables. However, with a little more effort, you can create
entirely new configuration directives. This process is discussed in detail in Chapter
8.

Once the configuration directives have been created, they can be retrieved from
within handlers using the Apache::ModuleConfig->get() class method. get() returns
the current command configuration table as an Apache table blessed into the
Apache::Table class. get() takes one or two arguments. The first argument can be
the current request object to retrieve per-directory data or an Apache::Server object to
retrieve per-server data. The second, optional, argument is the name of the module
whose configuration table you are interested in. If not specified, this argument
defaults to the current package, which is usually what you want.

Here's an example:

use Apache::ModuleConfig ();
...
sub handler {
 my $r = shift;
 my $cfg = Apache::ModuleConfig->get($r);
 my $printer = $cfg->{'printer-address'};
 ...
}

9.3.2 The Apache::CmdParms Class

The Apache::CmdParms class provides a Perl interface to the Apache cmd_parms
data structure. When Apache encounters a directive, it invokes a command handler
that is responsible for processing the directive's arguments. The Apache::CmdParms
object is passed to the responsible handler and contains information that may be
useful when processing these arguments.

An example of writing a directive handler is given in Chapter 8. In this section, we
just summarize the methods that Apache::CmdParms makes available.

path()

If the configuration directive applies to a certain <Location>, <Directory>, or
<Files> section, the path() method returns the path or filename pattern to which
the section applies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

my $path = $parms->path;

server()

This method returns an object blessed into the Apache::Server class. This is the
same Apache::Server object which is retrieved at request time via the Apache
method named server(). See above.

my $s = $parms->server;

cmd()

This method returns an object blessed into the Apache::Command class. The
Apache::Module package from CPAN must be installed to access
Apache::Command methods.

use Apache::Module ();
...
my $name = $parms->cmd->name;

info()

If the directive handler has stashed any info in the cmd_data slot, this method
will return that data. This is generally somewhat static information, normally
used to reuse a common configuration function. For example, the fancy
directory indexer, mod_autoindex and its family of AddIcon* directives, uses
this technique quite effectively to manipulate the directive arguments.

my $info = $parms->info;

limited()

The methods present in the current Limit configuration are converted into a bit
mask, which is returned by this method.

httpd.conf
<Limit GET POST>
SomeDirective argument_1 argument_2
</Limit>

Perl module
use Apache::Constants qw(:methods);

sub SomeDirective ($$$$) {
 my($parms, $cfg, @args) = @_;
 my $method_mask = $parms->limited;
 if($method_mask & (1 << M_POST)) {
 ...
 }
}

override()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This method converts the current value of the AllowOverride directive into a bit
mask and returns it. You can then import the Apache::Constants :override tag to
retrieve the values of individual bits in the mask. Modules don't generally need
to check this value. The internal configuration functions take care of the required
context checking.

use Apache::Constants qw(:override);

my $override_mask = $parms->override;
if($override_mask & OR_ALL) {
 #this directive is allowed anywhere in the configuration files
}

getline()

If the directive handler needs to read from the configuration file directly, it may
do so with the getline() method. The first line returned in the following example
is the line immediately following the line on which the directive appeared. It's up
to your handler to decide when to stop reading lines; in the example below we
use pattern matching.

Reading from the configuration file directly is normally done when a directive is
declared with a prototype of RAW_ARGS. With this prototype, arguments are not
parsed by Apache, that job is left up to the directive handler. Let's say you need
to implement a configuration container, in the same format as the standard
<Directory> and <Location> directives:

<Container argument>

</Container>

Here is a directive handler to parse it:

sub Container ($$$*) {
 my($parms, $cfg, $arg, $fh) = @_;
 $arg =~ s/>//;

 while($parms->getline($line)) {
 last if $line =~ m:</Container>:i;
 ...
 }
}

There is an alternative to using the getline() method. As described in Chapter
8, when the RAW_ARGS prototype is used, a tied filehandle is passed to the
directive handler as its last argument. Perl's built-in read() and getc() functions
may be used on this filehandle, along with the <> readline operator:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

may be used on this filehandle, along with the <> readline operator:

sub Container ($$$*) {
 my($parms, $cfg, $arg, $fh) = @_;
 $arg =~ s/>//;

 while(defined(my $line = <$fh>)) {
 last if $line =~ m:</Container>:i;
 ...
 }
}

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

9.4 The Apache::File Class

The Perl API includes a class named Apache::File which, when loaded, provides
advanced functions for opening and manipulating files at the server side.

Apache::File does two things. First, it provides an object-oriented interface to
filehandles similar to Perl's standard IO::File class. While the Apache::File module
does not provide all the functionality of IO::File, its methods are approximately twice
as fast as the equivalent IO::File methods. Second, when you use Apache::File, it
adds several new methods to the Apache class which provide support for handling
files under the HTTP/1.1 protocol.

Like IO::File, the main advantage of accessing filehandles through Apache::File 's
object-oriented interface is the ability to create new anonymous filehandles without
worrying about namespace collision. Furthermore, you don't have to close the
filehandle explicitly before exiting the subroutine that uses it; this is done
automatically when the filehandle object goes out of scope:

{
 use Apache::File;
 my $fh = Apache::File->new($config);
 # no need to close
}

However, Apache::File is still not as fast as Perl's native open() and close()
functions. If you wish to get the highest performance possible, you should use open()
and close() in conjunction with the standard Symbol::gensym or Apache::gensym
functions:

{ # using standard Symbol module
 use Symbol 'gensym';
 my $fh = gensym;
 open $fh, $config;
 close $fh;
}

{ # Using Apache::gensym() method
 my $fh = Apache->gensym;
 open $fh, $config;
 close $fh;
}

A little known feature of Perl is that when lexically defined variables go out of scope,
any indirect filehandle stored in them is automatically closed. So, in fact, there's really
no reason to perform an explicit close() on the filehandles in the two preceding
examples unless you want to test the close operation's return value. As always with
Perl, there's more than one way to do it.

9.4.1 Apache::File Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These are methods associated directly with Apache::File objects. They form a subset
of what's available from the Perl IO::File and FileHandle classes.

new()

This method creates a new filehandle, returning the filehandle object on
success and undef on failure. If an additional argument is given, it will be
passed to the open() method automatically.

use Apache::File ();
my $fh = Apache::File->new;

my $fh = Apache::File->new($filename) or die "Can't open $filename $!";

open()

Given an Apache::File object previously created with new(), this method opens
a file and associates it with the object. The open() method accepts the same
types of arguments as the standard Perl open() function, including support for
file modes.

$fh->open($filename);

$fh->open(">$out_file");

$fh->open("|$program");

close()

The close() method is equivalent to the Perl built-in close() function, returning
true upon success and false upon failure.

$fh->close or die "Can't close $filename $!";

tmpfile()

The tmpfile() method is responsible for opening up a unique temporary file. It is
similar to the tmpnam() function in the POSIX module but doesn't come with all
the memory overhead that loading POSIX does. It will choose a suitable
temporary directory (which must be writable by the web server process). It then
generates a series of filenames using the current process ID and the $TMPNAM
package global. Once a unique name is found, it is opened for writing, using
flags that will cause the file to be created only if it does not already exist. This
prevents race conditions in which the function finds what seems to be an
unused name, but someone else claims the same name before it can be
created.

As an added bonus, tmpfile() calls the register_cleanup() method behind the
scenes to make sure the file is unlinked after the transaction is finished.

Called in a list context, tmpfile() returns the temporary file name and a filehandle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Called in a list context, tmpfile() returns the temporary file name and a filehandle
opened for reading and writing. In a scalar context, only the filehandle is
returned.

my($tmpnam, $fh) = Apache::File->tmpfile;

my $fh = Apache::File->tmpfile;

9.4.2 Apache Methods Added by Apache::File

When a handler pulls in Apache::File, the module adds a number of new methods to
the Apache request object. These methods are generally of interest to handlers that
wish to serve static files from disk or memory using the features of the HTTP/1.1
protocol that provide increased performance through client-side document caching.

To take full advantage of the HTTP/1.1 protocol, your content handler will test the
meets_conditions() method before sending the body of a static document. This
avoids sending a document that is already cached and up-to-date on the browser's
side of the connection. You will then want to call set_content_length() and
update_mtime() in order to make the outgoing HTTP headers correctly reflect the
size and modification time of the requested file. Finally, you may want to call
set_etag() in order to set the file's entity tag when communicating with HTTP/1.1-
compliant browsers.

In the section following this one, we demonstrate these methods fully by writing a
pure Perl replacement for the http_core module's default document retrieval handler.

discard_request_body()

The majority of GET method handlers do not deal with incoming client data,
unlike POST and PUT handlers. However, according to the HTTP/1.1
specification, any method, including GET, can include a request body. The
discard_request_body() method tests for the existence of a request body and, if
present, simply throws away the data. This discarding is especially important
when persistent connections are being used, so that the request body will not
be attached to the next request. If the request is malformed, an error code will
be returned, which the module handler should propagate back to Apache.

if ((my $rc = $r->discard_request_body) != OK) {
 return $rc;
}

meets_conditions()

In the interest of HTTP/1.1 compliance, the meets_conditions() method is used
to implement conditional GET rules. These rules include inspection of client
headers, including If-Modified-Since, If-Unmodified-Since, If-Match, and If-
None-Match. Consult RFC 2068 section 9.3 (which you can find at
http://www.w3.org/Protocols) if you are interested in the nitty-gritty details.

As far as Apache modules are concerned, they need only check the return
value of this method before sending a request body. If the return value is
anything other than OK, the module should return from the handler with that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

anything other than OK, the module should return from the handler with that
value. A common return value is HTTP_NOT_MODIFIED, which is sent when the
document is already cached on the client side and has not changed since it was
cached.

if((my $rc = $r->meets_conditions) != OK) {
 return $rc;
}
else ... go and send the response body ...

mtime()

This method returns the last modified time of the requested file, expressed as
seconds since the epoch. The last modified time may also be changed using
this method, although the update_mtime() method is better suited to this
purpose.

my $date_string = localtime $r->mtime;

set_content_length()

This method sets the outgoing Content-length header based on its argument,
which should be expressed in byte units. If no argument is specified, the method
will use the size returned by $r->filename. This method is a bit faster and more
concise than setting Content-length in the headers_out table yourself.

$r->set_content_length;
$r->set_content_length(-s $r->finfo); #same as above
$r->set_content_length(-s $filename);

set_etag()

This method is used to set the outgoing ETag header corresponding to the
requested file. ETag is an opaque string that identifies the current version of the
file and changes whenever the file is modified. This string is tested by the
meets_conditions() method if the client provides an If-Match or If-None-Match
header.

$r->set_etag;

set_last_modified()

This method is used to set the outgoing Last-Modified header from the value
returned by $r->mtime. The method checks that the specified time is not in the
future. In addition, using set_last_modified() is faster and more concise than
setting Last-Modified in the headers_out table yourself.

You may provide an optional time argument, in which case the method will first
call the update_mtime() to set the file's last modification date. It will then set the
outgoing Last-Modified header as before.

$r->update_mtime((stat $r->finfo)[9]);
$r->set_last_modified;

$r->set_last_modified((stat $r->finfo)[9]); # same as the two lines above

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$r->set_last_modified((stat $r->finfo)[9]); # same as the two lines above

update_mtime()

Rather than setting the request record mtime field directly, you should use the
update_mtime() method to change the value of this field. It will only be updated
if the new time is more recent than the current mtime. If no time argument is
present, the default is the last modified time of $r->filename.

$r->update_mtime;
$r->update_mtime((stat $r->finfo)[9]); #same as above
$r->update_mtime(time);

9.4.3 Using Apache::File to Send Static Files

Apache's http_core module already has a default handler to send files straight from
disk to the client. Such files include static HTML, plain text, compressed archives, and
image files in a number of different formats. A bare-bones handler in Perl only
requires a few lines of code, as Example 9.1 shows. After the standard preamble,
the handler() function attempts to open $r->filename. If the file cannot be opened,
the handler simply assumes file permission problems and returns FORBIDDEN.
Otherwise, the entire contents of the file are passed down the HTTP stream using the
request object's send_fd() method. It then does a little tidying up by calling close() on
the filehandle and returns OK so that Apache knows the response has been sent.

Example 9.1. A Simple but Flawed Way to Send Static Files

package Apache::EchoFile;

use strict;
use Apache::Constants qw(:common);
use Apache::File ();

sub handler {
 my $r = shift;
 my $fh = Apache::File->new($r->filename) or return FORBIDDEN;
 $r->send_fd($fh);
 close $fh;
 return OK;
}

1;
__END__

While this works well in most cases, there is more involved in sending a file over
HTTP than you might think. To fully support the HTTP/1.1 protocol, one has to handle
the PUT and OPTIONS methods, handle GET requests that contain a request body,
and provide support for If-modified-since requests.

Example 9.2 is the Apache::SendFile module, a Perl version of the http_core
module default handler. It starts off as before by loading the Apache::Constants
module. However, it brings in more constants than usual. The :response group pulls
in the constants we normally see using the :common tag, plus a few more including

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the constants we normally see using the :common tag, plus a few more including
the NOT_IMPLEMENTED constant. The :methods group brings in the method number
constants including M_INVALID, M_OPTIONS, M_PUT, and M_GET. The :http tag
imports a few of the less commonly used status codes, including
HTTP_METHOD_NOT_ALLOWED.

We next bring in the Apache::File module in order to open and read the contents of
the file to be sent and to load the HTTP/1.1-specific file-handling methods.

The first step we take upon entering the handler() function is to call the
discard_request_body() method. Unlike HTTP/1.0, where only POST and PUT
requests may contain a request body, in HTTP/1.1 any method may include a body.
We have no use for it, so we throw it away to avoid potential problems.

We now check the request method by calling the request object's method_number()
method. Like the http_core handler, we only handle GET requests (method numbers
M_GET). For any other type of request we return an error, but in each case the error is
slightly different. For the method M_INVALID, which is set when the client specifies a
request that Apache doesn't understand, we return an error code of
NOT_IMPLEMENTED. For M_OPTIONS, which is sent by an HTTP/1.1 client that is
seeking information about the capabilities of the server, we return DECLINED in order
to allow Apache's core to handle the request (it sends a list of allowed methods).

The PUT method is applicable even if the resource doesn't exist, but we don't support
it, so we return HTTP_METHOD_NOT_ALLOWED in this case. At this point we test for
existence of the requested file by applying the -e file test to the cached stat()
information returned by the request object's finfo() method. If the file does not exist,
we log an error message and return NOT_FOUND. Finally, we specifically check for a
request method of M_GET and again return HTTP_METHOD_NOT_ALLOWED if this is
not the case.

Provided the request has passed all these checks, we attempt to open the requested
file with Apache::File. If the file cannot be opened, the handler logs an error message
and returns FORBIDDEN.

At this point, we know that the request method is valid and the file exists and is
accessible. But this doesn't mean we should actually send the file because the client
may have cached it previously and has asked us to transmit it only if it has changed.
The update_mtime(), set_last_modified(), and set_etag() methods together set up the
HTTP/1.1 headers that indicate when the file was changed and assign it a unique
entity tag that changes when the file changes.

We then call the meets_conditions() method to find out if the file has already been
cached by the client. If this is the case, or some other condition set by the client fails,
meets_conditions() returns a response code other than OK, which we propagate back
to Apache. Apache then does whatever is appropriate.

Otherwise we call the set_content_length() method to set the outgoing Content-length
header to the length of the file, then call send_http_header() to send the client the full
set of HTTP headers. The return value of header_only() is tested to determine
whether the client has requested the header only; if the method returns false, then the
client has requested the body of the file as well as the headers, and we send the file
contents using the send_fd() method. Lastly, we tidy up by closing the filehandle and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

contents using the send_fd() method. Lastly, we tidy up by closing the filehandle and
returning OK.

The real default handler found in http_core.c actually does a bit more work than this.
It includes logic for sending files from memory via mmap() if USE_MMAP_FILES is
defined, along with support for HTTP/1.1 byte ranges and Content-MD5.

After reading through this you'll probably be completely happy to return DECLINED
when the appropriate action for your module is just to return the unmodified contents
of the requested file!

Example 9.2. A 100-Percent Pure Perl Implementation of the Default http_core Content Handler

package Apache::SendFile;

use strict;
use Apache::Constants qw(:response :methods :http);
use Apache::File ();
use Apache::Log ();

sub handler {
 my $r = shift;
 if ((my $rc = $r->discard_request_body) != OK) {
 return $rc;
 }

 if ($r->method_number == M_INVALID) {
 $r->log->error("Invalid method in request ", $r->the_request);
 return NOT_IMPLEMENTED;
 }

 if ($r->method_number == M_OPTIONS) {
 return DECLINED; #http_core.c:default_handler() will pick this up
 }

 if ($r->method_number == M_PUT) {
 return HTTP_METHOD_NOT_ALLOWED;
 }

 unless (-e $r->finfo) {
 $r->log->error("File does not exist: ", $r->filename);
 return NOT_FOUND;
 }

 if ($r->method_number != M_GET) {
 return HTTP_METHOD_NOT_ALLOWED;
 }

 my $fh = Apache::File->new($r->filename);
 unless ($fh) {
 $r->log->error("file permissions deny server access: ",
 $r->filename);
 return FORBIDDEN;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $r->update_mtime(-s $r->finfo);
 $r->set_last_modified;
 $r->set_etag;

 if((my $rc = $r->meets_conditions) != OK) {
 return $rc;
 }

 $r->set_content_length;
 $r->send_http_header;

 unless ($r->header_only) {
 $r->send_fd($fh);
 }

 close $fh;
 return OK;
}

1;

__END__

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

9.5 Special Global Variables, Subroutines, and Literals

As you know, Perl has several magic global variables, subroutines, and literals that
have the same meaning no matter what package they are called from. A handful of
these variables have special meaning when running under mod_perl. Here we will
describe these and other global variables maintained by mod_perl. Don't forget that
Perl code has a much longer lifetime and lives among many more namespaces in the
mod_perl environment than it does in a conventional CGI environment. When
modifying a Perl global variable, we recommend that you always localize the variable
so modifications do not trip up other Perl code running in the server.

9.5.1 Global Variables

We begin with the list of magic global variables that have special significance to
mod_perl.

$0

When running under Apache::Registry or Apache::PerlRun, this variable is set
to that of the filename field of the request_rec.

When running inside of a <Perl> section, the value of $0 is the path to the
configuration file in which the Perl section is located, such as httpd.conf or
srm.conf.

$^X

Normally, this variable holds the path to the Perl program that was executed
from the shell. Under mod_perl, there is no Perl program, just the Perl library
linked with Apache. Thus, this variable is set to that of the Apache binary in
which Perl is currently running, such as /usr/local/apache/bin/httpd or
C:\Apache\apache.exe.

$|

As the perlvar(1) manpage explains, if this variable is set to nonzero, it forces a
flush right away and after every write or print on the currently selected output
channel. Under mod_perl, setting $| when the STDOUT filehandle is selected
will cause the rflush() method to be invoked after each print(). Because of the
overhead associated with rflush(), you should avoid making this a general
practice.

$/

The perlvar manpage describes this global variable as the input record
separator, newline by default. The same is true under mod_perl ; however,
mod_perl ensures it is reset back to the newline default after each request.

%@

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You are most likely familiar with Perl's $@ variable, which holds the Perl error
message or exception value from the last eval() command, if any. There is also
an undocumented %@ hash global, which is used internally for certain eval
bookkeeping. This variable is put to good use by mod_perl. When an eval()
error occurs, the contents of $@ are stored into the %@ hash using the current
URI as the key. This allows an ErrorDocument to provide some more clues as
to what went wrong.

my $previous_uri = $r->prev->uri;
my $errmsg = $@{$previous_uri};

This looks a bit weird, but it's just a hash key lookup on an array named %@.
Mentally substitute %SAVED_ERRORS for %@ and you'll see what's going on here.

%ENV

As with the Perl binary, this global hash contains the current environment. When
the Perl interpreter is first created by mod_perl, this hash is emptied, with the
exception of those variables passed and set via PerlPassEnv and PerlSetEnv
configuration directives.

The usual configuration scoping rules apply. A PerlSetEnv directive located in
the main part of the configuration file will influence all Perl handlers, while those
located in <Directory>, <Location>, and <Files> sections will only affect
handlers in those areas that they apply to.

The Apache SetEnv and PassEnv directives also influence %ENV, but they don't
take effect until the fixup phase. If you need to influence %ENV via server
configuration for an earlier phase, such as authentication, be sure to use
PerlSetEnv and PerlPassEnv instead because these directives take effect as
soon as possible.

There are also a number of standard variables that Apache adds to the
environment prior to invoking the content handler. These include
DOCUMENT_ROOT and SERVER_SOFTWARE. By default, the complete %ENV hash
is not set up until the content response phase. Only variables set by
PerlPassEnv, PerlSetEnv, and by mod_perl itself will be visible. Should you
need the complete set of variables to be available sooner, your handler code
can do so with the subprocess_env method.

my $r = shift;
my $env = $r->subprocess_env;
%ENV = %$env;

Unless you plan to spawn subprocesses, however, it will usually be more
efficient to access the subprocess variables directly:

my $tmp = $r->subprocess_env->{'TMPDIR'};

If you need to get at the environment variables that are set automatically by
Apache before spawning CGI scripts and you want to do this outside of a
content handler, remember to call subprocess_env() once in a void context in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

content handler, remember to call subprocess_env() once in a void context in
order to initialize the environment table with the standard CGI and server-side
include variables:

$r->subprocess_env;
my $port = $r->subprocess_env('SERVER_SOFTWARE');

There's rarely a legitimate reason to do this, however, because all the
information you need can be fetched directly from the request object.

Filling in the %ENV hash before the response phase introduces a little overhead
into each mod_perl content handler. If you don't want the %ENV hash to be filled
at all by mod_perl, add this to your server configuration file:

PerlSetupEnv Off

Regardless of the setting of PerlSetupEnv, or whether subprocess_env() has
been called, mod_perl always adds a few special keys of its own to %ENV.

MOD_PERL

The value of this key will be set to a true value for code to test if it is running in
the mod_perl environment or not.

if(exists $ENV{MOD_PERL}) {

. . . do something . . .

}
else {

. . . do something else . . .

}

GATEWAY_INTERFACE

When running under the mod_cgi CGI environment, this value is CGI/1.1.
However, when running under the mod_perl CGI environment,
GATEWAY_INTERFACE will be set to CGI-Perl/1.1. This can also be used by
code to test if it is running under mod_perl ; however, testing for the presence of
the MOD_PERL key is faster than using a regular expression or substr to test
GATEWAY_INTERFACE.

PERL_SEND_HEADER

If the PerlSendHeader directive is set to On, this environment variable will also
be set to On; otherwise, the variable will not exist. This is intended for scripts
which do not use the CGI.pm header() method, which always sends proper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which do not use the CGI.pm header() method, which always sends proper
HTTP headers no matter what the settings.

if($ENV{PERL_SEND_HEADER}) {
 print "Content-type: text/html\n\n";
}
else {
 my $r = Apache->request;
 $r->content_type('text/html');
 $r->send_http_header;
}

%SIG

The Perl %SIG global variable is used to set signal handlers for various signals.

There is always one handler set by mod_perl for catching the PIPE signal. This
signal is sent by Apache when a timeout occurs, triggered when the client drops
the connection prematurely (e.g., by hitting the stop button). The internal
Apache::SIG class catches this signal to ensure the Perl interpreter state is
properly reset after a timeout.

The Apache::SIG handler does have one side effect that you might want to take
advantage of. If a transaction is aborted prematurely because of a PIPE signal,
Apache::SIG will set the environment variable SIGPIPE to the number 1 before
it exits. You can pick this variable up with a custom log handler statement and
record it if you are interested in compiling statistics on the number of remote
users who abort their requests prematurely.

The following is a LogFormat directive that will capture the SIGPIPE
environment variable. If the transaction was terminated prematurely, the last
field in the log file line will be 1, otherwise -.

LogFormat "%h %l %u %t \"%r\" %s %b %{SIGPIPE}e"

As for all other signals, you should be most careful not to stomp on Apache's
own signal handlers, such as that for ALRM. It is best to localize the handler
inside of a block so it can be restored as soon as possible:

{
 local $SIG{ARLM} = sub { ... };
 ...
}

At the end of each request, mod_perl will restore the %SIG hash to the same
state it was in at server startup time.

@INC

As the perlvar manpage explains, the array @INC contains the list of places to
look for Perl scripts to be evaluated by the do EXPR, require, or use constructs.

The same is true under mod_perl. However, two additional paths are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The same is true under mod_perl. However, two additional paths are
automatically added to the end of the array. These are the value of the
configured ServerRoot and $ServerRoot/lib/perl.

At the end of each request, mod_perl will restore the value of @INC to the same
value it was during server startup time. This includes any modifications made by
code pulled in via PerlRequire and PerlModule. So, be warned: if a script
compiled by Apache::Registry contains a use lib or other @INC modification
statement, this modification will not "stick." That is, once the script is cached, the
modification is undone until the script has changed on disk and is recompiled. If
one script relies on another to modify the @INC path, that modification should be
moved to a script or module pulled in at server startup time, such as the perl
startup script.

%INC

As the perlvar manpage explains, the %INC hash contains entries for each
filename that has been included via do or require. The key is the filename
you specified, and the value is the location of the file actually found. The
require command uses this array to determine whether a given file has
already been included.

The same is true in the mod_perl environment. However, this Perl feature may
seem like a mod_perl bug at times. One such case is when .pm modules that
are modified are not automatically recompiled the way that Apache::Registry
script files are. The reason this behavior hasn't been changed is that calling the
stat function to test the last modified time for each file in %INC requires
considerable overhead and would affect Perl API module performance
noticeably. If you need it, the Apache::StatINC module provides the "recompile
when modified" functionality, which the authors only recommend using during
development. On a production server, it's best to set the PerlFreshRestart
directive to On and to restart the server whenever you change a .pm file and
want to see the changes take effect immediately.

Another problem area is pulling in library files which do not declare a package
namespace. As all Apache::Registry and Apache::PerlRun script files are
compiled inside their own unique namespace, pulling in such a file via require
causes it to be compiled within this unique namespace. Since the library file will
only be pulled in once per request, only the first script to require it will be able to
see the subroutines it declares. Other scripts that try to call routines in the
library will trigger a server error along these lines:

[Thu Sep 11 11:03:06 1998] Undefined subroutine
&Apache::ROOT::perl::test_2epl::some_function called at
/opt/www/apache/perl/test.pl line 79.

The mod_perl_traps manual page describes this problem in more detail, along
with providing solutions.

9.5.2 Subroutines

Subroutines with capitalized names have special meaning to Perl. Familiar examples
may include DESTROY and BEGIN. mod_perl also recognizes these subroutines and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

may include DESTROY and BEGIN. mod_perl also recognizes these subroutines and
treats them specially.

BEGIN

Perl executes BEGIN blocks during the compile time of code as soon as
possible. The same is true under mod_perl. However, since mod_perl normally
only compiles scripts and modules once in the parent server or once per child,
BEGIN blocks in that code will only be run once.

Once a BEGIN block has run, it is immediately undefined by removing it from
the symbol table. In the mod_perl environment, this means BEGIN blocks will
not be run during each incoming request unless that request happens to be the
one that is compiling the code. When a .pm module or other Perl code file is
pulled in via require or use, its BEGIN blocks will be executed as follows:

Once at startup time if pulled in by the parent process by a PerlModule
directive or in the Perl startup script.

Once per child process if not pulled in by the parent process.

An additional time in each child process if Apache::StatINC is loaded and
the module is modified.

An additional time in the parent process on each restart if
PerlFreshRestart is On.

At unpredictable times if you fiddle with %INC yourself. Don't do this
unless you know what you are doing.

Apache::Registry scripts can contain BEGIN blocks as well. In this case, they
will be executed as follows:

Once at startup time if pulled in by the parent process via
Apache::RegistryLoader.

Once per child process if not pulled in by the parent process.

An additional time in each child process if the script file is modified.

An additional time in the parent process on each restart if the script was
pulled in by the parent process with Apache::RegistryLoader and
PerlFreshRestart is On.

END

In Perl, an END subroutine defined in a module or script is executed as late as
possible, that is, when the interpreter is being exited. In the mod_perl
environment, the interpreter does not exit until the server is shutdown. However,
mod_perl does make a special case for Apache::Registry scripts.

Normally, END blocks are executed by Perl during its perl_run() function, which
is called once each time the Perl program is executed, e.g., once per CGI
(mod_cgi) script. However, mod_perl only calls perl_run() once during server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(mod_cgi) script. However, mod_perl only calls perl_run() once during server
startup. Any END blocks that are encountered during main server startup, such
as those pulled in by PerlRequire or PerlModule, are suspended and run at
server shutdown time during the child_exit phase.

Any END blocks that are encountered during compilation of Apache::Registry
scripts are called after the script has completed the response, including
subsequent invocations when the script is cached in memory. All other END
blocks encountered during other Perl*Handler callbacks (e.g.,
PerlChildInitHandler) will be suspended while the process is running and called
only during child_exit when the process is shutting down.

Module authors may wish to use $r->register_cleanup as an alternative to
END blocks if this behavior is not desirable.

9.5.3 Magic Literals

Perl recognizes a few magic literals during script compilation. By and large, they act
exactly like their counterparts in the standalone Perl interpreter.

__END__

This token works just as it does with the standalone Perl interpreter, causing
compilation to terminate. However, this causes a problem for Apache::Registry
scripts. Since the scripts are compiled inside of a subroutine, using __END__
will cut off the enclosing brace, causing script compilation to fail. If your
Apache::Registry scripts use this literal, they will not run.

In partial compensation for this deficiency, mod_perl lets you use the __END__
token anywhere in your server configuration files to cut out experimental
configuration or to make a notepad space that doesn't require you to use the #
comment token on each line. Everything below the __END__ token will be
ignored.

9.5.4 Special Package Globals

There are a number of useful globals located in the Apache::Server namespace that
you are free to use in your own modules. Unless otherwise specified, treat them as
read-only. Changing their values will lead to unpredictable results.

$Apache::Server::CWD

This variable is set to the directory from which the server was started.

$Apache::Server::Starting

If the code is running in the parent server when the server is first started, the
value is set to 1; otherwise, it is set to 0.

$Apache::Server::ReStarting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the code is running in the parent server when the server is restarted, this
variable will be true; otherwise, it will be false. The value is incremented each
time the server is restarted.

$Apache::Server::SaveConfig

As described in Chapter 8, <Perl> configuration sections are compiled inside
the Apache::ReadConfig namespace. This namespace is normally flushed after
mod_perl has finished processing the section. However, if the
$Apache::Server::SaveConfig variable is set to a true value, the
namespace will not be flushed, making configuration data available to Perl
modules at request time.

<Perl>
$Apache::Server::SaveConfig = 1;

$DocumentRoot = ...
...
</Perl>

At request time, the value of $DocumentRoot can be accessed with the fully
qualified name $Apache::ReadConfig::DocumentRoot.

The next chapters show the Apache API from the perspective of the C-language
programmer, telling you everything you need to know to squeeze the last drop of
performance out of Apache by writing extension modules in a fast compiled language.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 10. C API Reference Guide, Part I
The last two chapters of this book, Chapters Chapter 10 and Chapter 11, focus on
aspects of the Apache module API that C-language programmers need to know. The
majority of the API has already been covered in previous chapters, where we looked
at it from the perspective of its Perl incarnation. We will briefly revisit each of the
topics that we've already discussed in order to show you how the API appears in C.
Topics that are specific to the C API, such as memory management, are covered in
more detail.

Because the C API is so much of a recapitulation of the Perl API,[1] we won't show
you as many complete examples in this chapter as we have in the previous ones,
although there are still plenty of code snippets. For a complete C module skeleton,
have a look at mod_example.c, which can be found in the Apache distribution in the
directory src/modules/example. It implements handlers for each of the phases and
writes out a log entry when each phase has been activated. For "how did they do
that?" questions, peruse the source code for the standard modules in
src/modules/standard. You'll also find a number of complete C API example modules
at this book's companion web site, http://www.modperl.com.

[1] Technically, it's the other way around.

This chapter covers the most common parts of the API, including the data types that
all handlers must know about, functions for manipulating arrays, tables, and resource
pools, and techniques for getting and setting information about the request. The next
chapter describes how to define and manage configuration directives and covers the
less essential parts of the C API, such as string manipulation functions, and esoterica
such as opening pipes to subprocesses.

We do our best to follow the Apache coding style guide throughout. You'll find this
guide along with other developer resources at the Apache Project Development site,
http://dev.apache.org/.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

10.1 Which Header Files to Use?

Like other C programs, Apache modules must #include a variety of header files
declaring the various data types and functions used by the API. The include files are
found in the src/include directory beneath the top of the Apache distribution. Almost
every module will want to include the following files:

#include "httpd.h"
#include "http_config.h"
#include "http_core.h"
#include "http_log.h"
#include "http_main.h"
#include "http_protocol.h"
#include "http_request.h"

In addition, modules wishing to launch subprocesses will need to include the script
utility definitions:

#include "util_script.h"

More rarely used are header files required for the MD5 digest function, URI parsing,
and regular expression matching. We explain which header files to include in the
sections that deal with those parts of the Apache API.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

10.2 Major Data Structures

Our Perl examples throughout the book have plugged into the Perl API via an object-
oriented interface that blurs the distinction between data structures and function calls.
For better or for worse, there is no such blurring in the C API. Data is maintained in
data structures. To work with these structures, you either access their fields directly or
pass them to function calls to do the work for you. In this section, we work our way
through the four central data structures in the Apache C API: the module, the
request_rec, the conn_rec, and the server_rec.

10.2.1 The module Record

Our Perl examples have plugged into the various phases of the request cycle via the
various Perl*Handler directives. There are no such directives for C modules. Instead,
all C modules contain a compiled data structure of type module. At runtime, all
loaded modules are linked together via a linked list rooted at the Apache global
top_module. Apache then consults each module table in turn to determine what
phases of the transaction the module wishes to handle.

The module structure is usually defined at the bottom of the module's C source code
file. Most module writers begin by cutting and pasting this definition from another
source code file, filling in the slots that they need and NULLing out those that they
don't want. In this tradition, let's revisit the mod_hello module introduced in Chapter
2 :

module MODULE_VAR_EXPORT hello_module =
{
 STANDARD_MODULE_STUFF,
 NULL, /* module initializer */
 NULL, /* per-directory config creator */
 NULL, /* dir config merger */
 NULL, /* server config creator */
 NULL, /* server config merger */
 NULL, /* config directive table */
 hello_handlers, /* [9] content handlers */
 NULL, /* [2] URI-to-filename translation */
 NULL, /* [5] check/validate user_id */
 NULL, /* [6] check user_id is valid *here* */
 NULL, /* [4] check access by host address */
 NULL, /* [7] MIME type checker/setter */
 NULL, /* [8] fixups */
 NULL, /* [10] logger */
 NULL, /* [3] header parser */
 NULL, /* process initialization */
 NULL, /* process exit/cleanup */
 NULL /* [1] post read_request handling */
};

module is a typedef, which you will find defined in the Apache source tree under
include/http_config.h. MODULE_VAR_EXPORT is a define that can be found in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

include/http_config.h. MODULE_VAR_EXPORT is a define that can be found in the
platform-specific os.h header files. Its purpose is to export the module data structure
from the module's DLL under Win32 systems so the server core library is able to see
it. On other systems, MODULE_VAR_EXPORT is simply a define which does nothing,
as you can see in the file include/ap_config.h.

While you can name the module record and its source file anything you like, you are
encouraged to follow the Apache convention of naming the module
something_module and its source file mod_something. This will make it easier for you
and others to remember the module name and avoids conflict with apxs and the DSO
loading system, which sometimes depend on this convention.

10.2.1.1 STANDARD_MODULE_STUFF

The first few bits of module structure consist of boilerplate code that is filled in by the
STANDARD_MODULE_STUFF preprocessor macro. Although you'll probably never
have to access these fields yourself, here is a list of what's there in case you're
wondering:

int version

The server API version the module was compiled with and is used to make sure
that the module is binary-compatible with the version of the server. This is
defined by the macro MODULE_MAGIC_NUMBER_MAJOR found in the header file
ap_mmn.h. The ap_mmn.h header file also includes a list of the changes which
call for a "bump" of the MODULE_MAGIC_NUMBER_MAJOR version. This value
can be used by modules to provide compatibility between Apache versions.

int minor_version

The server API minor version the module was compiled with. This value is
defined by the macro MODULE_MAGIC_NUMBER_MINOR, found in the header file
ap_mmn.h. This value is not checked by the server, as minor API changes do
not break binary compatibility.

int module_index

Holds a unique index number assigned to the module at runtime and is used for
lookups by the internal configuration system.

const char *name

The name of the module, derived from the file in which the structure was
declared. This is determined at compile time by taking the basename of the C
compiler's _ _FILE_ _ token.

void *dynamic_load_handle

A void * slot which can be used to hold a handle to the module if it was
compiled as a dynamic shared object (DSO) and loaded with LoadModule.

struct module_struct *next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A pointer to the next module in the internal linked list.

You should never have to worry about these fields. Just include the
STANDARD_MODULE_STUFF macro at the top of your module structure and forget
about it.

10.2.1.2 Handler and callback slots

The rest of the module structure is mostly function pointers. Each field holds the
address of a routine to invoke during the server's various initialization, transaction,
and cleanup phases, or NULL if there is no routine to call. Because the Apache API
was developed over time, the order of handlers in the module table does not
correspond to the order in which they are called during the request cycle. We will
describe them in the order in which they appear in the data structure. See Chapter
3, for the correct chronological perspective.

Module initialization handler

void module_init(server_rec *s, pool *p);

This handler is called during the module initialization phase immediately after
the server is started. This is where modules initialize data, consult configuration
files, or do other preparatory work in the parent server before any children are
forked off or threads spawned.

Under Unix and other process forking systems, each child process will inherit its
own copy of any data structures created during this phase. Under threading
systems, module authors will need to take care of maintaining per-thread
instances of such data if needed.

The initialization function will be called with two arguments: a pointer to the
current server_rec structure (described in detail below) and a pointer to a
resource pool whose lifetime ends only when the server is finally shut down.

For an example of a module that steps in during this phase, see mod_mime,
which builds its MIME types hash table from the mime.types file once during
initialization.

Configuration creation and merging routines (four of them!)

void *create_dir_config (pool *p, char *dir)
void *merge_dir_config (pool *p, void *base_conf, void *new_conf)
void *create_server_config (pool *p, server_rec *s)
void *merge_server_config (pool *p, void *base_conf, void *new_conf)

Modules may add their own configuration directives to the server, which will
then act just like built-in configuration directives. However, the server core
knows nothing about what to do with these directives, and instead passes back
the preparsed directives to the module for processing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These four slots contain pointers to optional routines for handling module-
specific configuration data blocks. You are not obliged to fill in all of them, or
indeed any at all. See Section 11.1 in Chapter 11, for details.

Configuration directive (command) table

command_rec *cmds

The command_table field holds a pointer to a command_rec structure, which
describes each of the module's configuration directives in detail and points back
to configuration callbacks to process the directives.

The command_rec structure is described in detail in Chapter 11 under
Section 11.1.

Response handlers table

handler_rec *handlers

The next field contains the module dispatch table for the response phase of the
request. It can be used to map one or more MIME content types to content
handlers defined within the module or to map symbolic handler names to
handler functions.

Here is a slightly expanded version of our Chapter 2 mod_hello example:

static handler_rec hello_handlers[] =
{
 {"hello-handler", hello_handler},
 {"application/x-hello", hello_handler},
 {NULL}
};

The handler table is an array of handler_rec structures. The last entry in the
array must be a NULL record. Each handler_rec entry in the array has the
following simple structure:

char *content_type

The first element is the content type or the symbolic handler name. As
described in the introduction to Chapter 4, Apache will dispatch on the
handler name or the MIME type, depending on the current directory's
configuration. In this example, the hello_handler() content-handling
subroutine is associated both with the symbolic handler name hello-
handler and a magic MIME type of application/x-hello. This means that
you can arrange for the content handler to be invoked either by setting the
handler explicitly in a <Directory> or <Location> block with SetHandler
hello-handler, or by setting the handler implicitly by requesting a
document of MIME type application/x-hello (since there is no default MIME
file extension mapping for this type of document, you'll have to make one
up using AddType).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is perfectly valid for several modules to register their interest in handling
the same MIME type. Apache will call them from most recent to least
recent until one returns a status code other than DECLINED. It is also
possible to use wildcards in the MIME type. For example, the http_core
default handler registers */*, indicating that it will handle a request of any
type that is not handled by a more specific module.

int handler(request_rec *r)

This is a pointer to the content handler subroutine that will be invoked to
process the request at response time. As with the other HTTP request
time callbacks, the function is passed a request_rec * structure and is
expected to return an integer status value. The list of symbolic status code
constants can be found in the header file httpd.h. The constants are
identical to the list given in Table 3.1.

The content handler is something of an oddball among the various handlers
because it is registered indirectly through the handler_rec. This structure
allows modules to register multiple handlers for the response phase, leaving
Apache to select one of them based on the content_type for a given request. As
we are about to see, handlers for the other phases are plugged directly into the
module record.

URI translation handler

int translate_handler(request_rec *r)

This is the slot where a pointer to the URI translation handler, if any, is plugged
in. It receives an argument consisting of a request_rec pointer and is
expected to return an integer status code. Unless explicitly stated otherwise, the
other phase handlers have similar calling conventions.

Authentication handler

int
check_user_id(request_rec *r)

This is the slot where a pointer to the authentication handler, if any, is
registered.

Authorization handler

int auth_checker(request_rec *r)

This is the slot where the authorization handler subroutine, if any, is registered.

Access handler

int access_checker(request_rec *r)

This is the slot where the access control handler subroutine, if any, is
registered.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MIME type handler

int type_checker(request_rec *r)

This is the slot where the MIME type checker subroutine, if any, is registered.

Fixup handler

int fixer_upper(request_rec *r)

This is the slot where the fixup handler, if any, is registered.

Logging handler

int logger(request_rec *r)

This is the slot where the logging handler, if any, is registered.

Header parser handler

int header_parser(request_rec *r)

This is the slot where the header parser handler subroutine, if any, is registered.

Child initialization handler

void child_init(server_rec *s, pool *p)

This is where the child initialization subroutine is registered. Unlike other
handlers, this subroutine is not called with a request record (there is no request
at this stage). Instead, it is called with two arguments consisting of a
server_rec pointer and a resource pool. It can do any processing or
initialization it needs. If the routine needs to allocate some private storage, it can
allocate memory from the resource pool and store a pointer to the returned
structure in a static variable. The memory contained in the pool will not be
released until the child process exits.

The child_init function should return no result.

Child exit handler

void child_exit(server_rec *r, pool *p)

This is the slot where the child exit handler is called. The exit handler should
undo everything that the child init handler did. The handler is called with a
server_rec pointer and a resource pool and should return no function result.

Post read request handler

int post_read_request(request_rec *r)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is the slot where the post read request handler subroutine, if any, is
registered.

10.2.2 The request_rec Structure

The request_rec request record is the heart and soul of the Apache API. It
contains everything you could ever want to know about the current request and then
some. You should already be intimately familiar with the request record from the Perl
API. This section will show you what the request_rec looks like from within C.

The full definition of the request_rec is long and gnarly, combining public
information that modules routinely use with private information that is only of interest
to the core server (this includes such things as whether the request is using the
"chunked" transfer mode implemented by HTTP/1.1). Example 10.1 gives the full
definition of the request_rec, copied right out of include/httpd.h. We give detailed
explanations for those fields that module writers need to worry about and silently
ignore the rest.

ap_pool *pool

This is a resource pool that is valid for the lifetime of the request (ap_pool is
merely a typedef alias for pool). Your request-time handlers should allocate
memory from this pool.

conn_rec *connection

This is a pointer to the connection record for the current request, from which you
can derive information about the local and remote host addresses, as well as
the username used during authentication. for details, see Section 10.2.4" later
in this chapter.

server_rec *server

This is a pointer to a server record server_rec structure, from which you can
gather information about the current server. This is described in more detail in
the next section, Section 10.2.3."

request_rec *next
request_rec *prev
request_rec *main

Under various circumstances, including subrequests and internal redirects,
Apache will generate one or more subrequests that are identical in all respects
to an ordinary request. When this happens, these fields are used to chain the
subrequests into a linked list. The next field points to the more recent request
(or NULL, if there is none), and the prev field points to the immediate ancestor
of the request. main points back to the top-level request. See Chapter 3 and
Chapter 8, for a more detailed discussion of the subrequest mechanism.

char *the_request

This contains the first line of the request, for logging purposes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int proxyreq

If the current request is a proxy request, then this field will be set to a true
(nonzero) value. Note that mod_proxy or mod_perl must be configured with the
server for automatic proxy request detection. You can also set it yourself in
order to activate Apache's proxy mechanism in the manner described in
Chapter 7.

int header_only

This field will be true if the remote client made a head-only request (i.e., HEAD).
You should not change the value of this field.

char *protocol

This field contains the name and version number of the protocol requested by
the browser, for example HTTP/1.0.

time_t request_time

This is the time that the request started as a C time_t structure. See the
manual page for gmtime for details on the time_t structure.

const char *hostname

This contains the name of the host requested by the client, either within the URI
(during proxy requests) or in the Host header. The value of this field may not
correspond to the canonical name of your server or the current virtual host but
can be any of its DNS aliases. For this reason, it is better to use the
ap_get_server_name() API function call described under Section 10.6."

char *status_line

This field holds the full text of the status line returned from Apache to the remote
browser, for example 200 OK. Ordinarily you will not want to change this directly
but will allow Apache to set it based on the return value from your handler.
However, you can change it directly in the rare instance that you want your
handler to lie to Apache about its intentions (e.g., tell Apache that the handler
processed the transaction OK, but send an error message to the browser).

int status

This field holds the numeric value of the transaction status code. Again you will
usually not want to set this directly but allow Apache to do it for you.

char *method

This field contains the request method as a string, e.g., GET.

int method_number

This field contains the request method as an integer, e.g., M_GET. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This field contains the request method as an integer, e.g., M_GET. The
appropriate symbolic constants are defined in include/httpd.h.

int allowed

This is a bit vector of request methods that your handler can accommodate.
Ordinarily a content handler can just look at the value of method and return
DECLINED if it doesn't want to handle it. However, to be fully friendly with the
HTTP/1.1 protocol, handlers may also set allowed to the list of methods they
accept. Apache will then generate an Allow: header which it transmits to any
browser that's interested.

Here's a code fragment from a handler that accepts the GET and HEAD
methods but not POST (or any of the more esoteric ones):

r->allowed = M_GET | M_HEAD;

long bytes_sent

This field contains the number of bytes that have been sent during the response
phase and is used for logging. This count includes the document body but not
the HTTP header fields.

time_t mtime

This field contains the modification time of the requested file, if any. The value
may or may not be the same as the last modified time in the finfo stat buffer.
The server core does not set this field; the task is left for modules to take care
of. In general, this field should only be updated using the ap_update_mtime()
function, described later in the section Section 10.6.4."

long length

This field holds the value of the outgoing Content-length header. You can read
this value but should only change it using the ap_set_content_length() function,
described later in the section Section 10.6.4."

long remaining

This field holds the value of the incoming Content-length header, if any. It is only
set after a call to the ap_setup_client_block() function. After each call to
ap_get_client_block(), the number of bytes read are subtracted from the
remaining field.

table *headers_in
table *headers_out
table *err_headers_out
table *subprocess_env
table *notes

These are pointers to Apache table records which maintain information
between the phases of a request and are disposed of once the request is
finished. The tables are dynamic lists of name/value pairs whose contents can
be accessed with the routines described later under Section 10.5."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These five tables correspond to the like-named methods in the Perl API.
headers_in and headers_out contain the incoming and outgoing HTTP
headers. err_headers_out contains outgoing headers to be used in case of
an error or a subrequest. subprocess_env contains name=value pairs to be
copied into the environment prior to invoking subprocesses (such as CGI
scripts). notes is a general table that can be used by modules to send "notes"
from one phase to another.

const char *content_type
const char *content_encoding

These fields contain the MIME content type and content encoding of the
outgoing document. You can read this field to discover the MIME checking
phase's best guess as to the document type or set it yourself within a content or
MIME checking handler in order to change the type. The two fields frequently
point to inline strings, so don't try to use strcpy() to modify them in place.

const char *handler

This is the symbolic name of the content handler that will service the request
during the response phase. Handlers for earlier phases are free to modify this
field in order to change the default behavior.

array_header *content_languages

This field holds an array_header pointer to the list of the language codes
associated with this document. You can read and manipulate this list using the
Apache array API (see Section 10.4"). This array is usually set up during the
MIME checking phase; however, the content handler is free to modify it.

The request_rec also contains a char * field named content_language.
The header file indicates that this is for backward compatibility only and should
not be used.

no_cache

If set to a true value, this field causes Apache to add an Expires field to the
outgoing HTTP header with the same date and time as the incoming request.
Browsers that honor this instruction will not cache the document locally.

char *unparsed_uri
char *uri
char *filename
char *path_info
char *args

These five fields all hold the requested URI after various processing steps have
been performed. unparsed_uri is a character string holding the raw URI
before any parsing has been performed. uri holds the path part of the URI, and
is the one you will usually work with. filename contains the translated physical

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is the one you will usually work with. filename contains the translated physical
pathname of the requested document, as determined during the URI translation
phase. path_info holds the additional path information that remains after the
URI has been translated into a file path. Finally, args contains the query string
for CGI GET requests, and corresponds to the portion of the URI following the
?. Unlike the Perl API, you will have to parse out the components of the query
string yourself.

You can turn path_info into a physical path akin to the CGI scripts'
PATH_TRANSLATED environment variable by passing path_info to a
subrequest and examining the filename field of the returned request record.
See Section 10.7.1" later in this chapter.

uri_components parsed_uri

For finer access to the requested URI, Apache provides a uri_components
data structure that contains the preparsed URI. This structure can be examined
and manipulated with a special API. See Section 11.3.4 for details.

struct stat finfo

This field is a stat struct containing the result of Apache's most recent stat()
on the currently requested file (whose path you will find in filename). You can
avoid an unnecessary system call by using the contents of this field directly
rather than calling stat() again. If the requested file does not exist,
finfo.st_mode will be set to zero.

In this example, we use the S_ISDIR macro defined in stat.h to detect whether
the requested URI corresponds to a directory. Otherwise, we print out the file's
modification time, using the ap_ht_time() function (described later) to format the
time in standard HTTP format.

if(S_ISDIR(r->finfo.st_mode)) {
 ap_rprintf(r, "%s is a directory\n", r->filename);
}
else {
 ap_rprintf(r, "Last Modified: %s\n"
 ap_ht_time(r->pool, r->finfo.st_mtime, timefmt, 0));
}

void *per_dir_config
void *request_config

These fields are the entry points to lists of per-directory and per-request
configuration data set up by your module's configuration routines. You should
not try to manipulate these fields directly, but instead pass them to the
configuration API routine ap_get_module_config() described in the section
Section 11.1.7. Of the two, per_dir_config is the one you will use most
often. request_config is used only rarely for passing custom configuration
information to subrequests.

Example 10.1. The request_rec Structure (from include/httpd.h)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

struct request_rec {

 ap_pool *pool;
 conn_rec *connection;
 server_rec *server;

 request_rec *next; /* If we wind up getting redirected,
 * pointer to the request we redirected to.
 */
 request_rec *prev; /* If this is an internal redirect,
 * pointer to where we redirected *from*.
 */

 request_rec *main; /* If this is a sub_request (see request.h)
 * pointer back to the main request.
 */

 /* Info about the request itself... we begin with stuff that only
 * protocol.c should ever touch...
 */

 char *the_request; /* First line of request, so we can log
 int assbackwards; /* HTTP/0.9, "simple" request */
 int proxyreq; /* A proxy request (calculated during
 * post_read_request or translate_name)
 int header_only; /* HEAD request, as opposed to GET */
 char *protocol; /* Protocol, as given to us, or HTTP/0.9 */
 int proto_num; /* Number version of protocol; 1.1 = 1001 */
 const char *hostname; /* Host, as set by full URI or Host: */

 time_t request_time; /* When the request started */

 char *status_line; /* Status line, if set by script */
 int status; /* In any case */

 /* Request method, two ways; also, protocol, etc. Outside of protocol.c,
 * look, but don't touch.
 */

 char *method; /* GET, HEAD, POST, etc. */
 int method_number; /* M_GET, M_POST, etc. */

 /*
 allowed is a bitvector of the allowed methods.

 A handler must ensure that the request method is one that
 it is capable of handling. Generally modules should DECLINE
 any request methods they do not handle. Prior to aborting the
 handler like this the handler should set r->allowed to the list
 of methods that it is willing to handle. This bitvector is used
 to construct the "Allow:" header required for OPTIONS requests,
 and METHOD_NOT_ALLOWED and NOT_IMPLEMENTED status codes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 and METHOD_NOT_ALLOWED and NOT_IMPLEMENTED status codes.

 Since the default_handler deals with OPTIONS, all modules can
 usually decline to deal with OPTIONS. TRACE is always allowed,
 modules don't need to set it explicitly.

 Since the default_handler will always handle a GET, a
 module which does *not* implement GET should probably return
 METHOD_NOT_ALLOWED. Unfortunately this means that a script GET
 handler can't be installed by mod_actions.
 */
 int allowed; /* Allowed methods - for 405, OPTIONS, etc */

 int sent_bodyct; /* byte count in stream is for body */
 long bytes_sent; /* body byte count, for easy access */
 time_t mtime; /* Time the resource was last modified */

 /* HTTP/1.1 connection-level features */

 int chunked; /* sending chunked transfer-coding
 int byterange; /* number of byte ranges */
 char *boundary; /* multipart/byteranges boundary */
 const char *range; /* The Range: header */
 long clength; /* The "real" content length */

 long remaining; /* bytes left to read */
 long read_length; /* bytes that have been read */
 int read_body; /* how the request body should be read */
 int read_chunked; /* reading chunked transfer-coding */

 /* MIME header environments, in and out. Also, an array containing
 * environment variables to be passed to subprocesses, so people can
 * write modules to add to that environment.
 *
 * The difference between headers_out and err_headers_out is that the
 * latter are printed even on error and persist across internal redirects
 * (so the headers printed for ErrorDocument handlers will have them).
 *
 * The 'notes' table is for notes from one module to another, with no
 * other set purpose in mind...
 */

 table *headers_in;
 table *headers_out;
 table *err_headers_out;
 table *subprocess_env;
 table *notes;

 /* content_type, handler, content_encoding, content_language, and all
 * content_languages MUST be lowercased strings. They may be pointers
 * to static strings; they should not be modified in place.
 */
 const char *content_type; /* Break these out --- we dispatch on
 const char *handler; /* What we *really* dispatch on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 const char *handler; /* What we *really* dispatch on

 const char *content_encoding;
 const char *content_language; /* for back-compat. only -- do not use */
 array_header *content_languages; /* array of (char*) */

 int no_cache;
 int no_local_copy;

 /* What object is being requested (either directly, or via include
 * or content-negotiation mapping).
 */

 char *unparsed_uri; /* the uri without any parsing performed */
 char *uri; /* the path portion of the URI */
 char *filename;
 char *path_info;
 char *args; /* QUERY_ARGS, if any */
 struct stat finfo; /* ST_MODE set to zero if no such file */
 uri_components parsed_uri; /* components of uri, dismantled */

 /* Various other config info which may change with .htaccess files
 * These are config vectors, with one void* pointer for each module
 * (the thing pointed to being the module's business).
 */

 void *per_dir_config; /* Options set in config files, etc.
 void *request_config; /* Notes on *this* request */

/*
 * a linked list of the configuration directives in the .htaccess files
 * accessed by this request.
 * N.B. always add to the head of the list, _never_ to the end.
 * that way, a sub request's list can (temporarily) point to a parent's list
 */
 const struct htaccess_result *htaccess;

/* Things placed at the end of the record to avoid breaking binary
 * compatibility. It would be nice to remember to reorder the entire
 * record to improve 64-bit alignment the next time we need to break
 * binary compatibility for some other reason.
 */
 unsigned expecting_100; /* is client waiting for a 100 response? */
};

10.2.3 The server_rec Structure

The server record contains various bits of information about the server and its
operations. There are different server records for each virtual host; your handlers will
be passed the correct server record at runtime, either directly in the argument list (for
example, for the child_init handler) or indirectly in the request_rec, where the
record can be recovered from the server field.

Example 10.2 gives the definition of server_rec as it appears in include/httpd.h.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 10.2 gives the definition of server_rec as it appears in include/httpd.h.
As was the case in the request_rec, the server_rec contains information that is
useful to module writers intermixed with information that only core server routines
care about. In the descriptions that follow, we skip over the fields that serve internal
functions only.

In general, the fields contained within the server_rec are intended for reading only.
Do not change them directly.

server_rec *next

Apache maintains a linked list of all configured virtual servers, which can be
accessed with the next field. For example, a module initializer may want to
open a different log file for each virtual server:

void my_module_init(server_rec *main_server, pool *p)
{
 server_rec *s;
 for(s = main_server; s; s = s->next) {
 my_open_log(s, p);
 }
}

char *srm_confname
char *access_confname

These two fields contain the locations of the resource and access control
configuration files, usually named srm.conf and access.conf. The paths
contained in these fields may be absolute or may be relative to the server root.
You should call ap_server_root_relative() (described later) to convert them into
absolute paths. The path to the main server configuration file, httpd.conf, is
stored elsewhere in a global variable named ap_server_confname.

char *server_admin

This field contains the email address of the server administrator as configured
with the ServerAdmin directive.

char *server_hostname

This field contains the (virtual) name of the server host. It is better to use the
ap_get_server_name() function (described later) during a request since it takes
into account the status of the UseCanonicalName configuration directive.

unsigned short port

This field contains the port number that the (virtual) server is listening on. If the
host is listening on multiple ports, this field won't reflect that fact; however, it will
always contain the canonical port number to use for redirects to the host. If you
just wish to recover the port that the current request was directed to, it is easier
to use ap_get_server_port() instead. See Section 10.6

char *error_ fname
FILE *error_log

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int loglevel

These three fields provide information about the server error log. The pathname
of the log file, either absolute or server-root relative, can be found in
error_fname, while the error_log field contains a FILE* open on this file.
You can write to this FILE* indirectly via the error-logging API described later
under Section 10.7.4" in Section 10.7. It is not a good idea to write directly
to this field, as it will be NULL if syslog support is enabled.

The loglevel field holds an integer between 1 and 8 which describes the
severity level of messages that should be logged. It is used internally by the
error-logging API to decide which messages should be logged based on the
configured LogLevel.

In general, you should use the error-logging API rather than access these fields
directly, but there are a few exceptions. One case occurs when your application
needs to know if the server configuration has enabled logging via syslog(). This
can be accomplished with the following code fragment:

int is_using_syslog = !strncasecmp(s->error_fname, "syslog", 6);

Also, you might legitimately need to check the loglevel field if the operation that
generates the log message introduces some overhead. It makes no sense to initiate a
time-consuming operation to generate an error message that is never seen!

int is_virtual

The is_virtual field is a flag that is set to a nonzero value if the server
record applies to a virtual host.

void *module_config

This field is a list of module per-server configuration records. You should not try
to manipulate this field directly but instead gain access to it via the configuration
API described in the Section 11.1.7.

void *lookup_defaults

This is an opaque data block which contains information that the Apache core
uses during its configuration process. It is actually the master copy of the
per_dir_config vector found in each request record, and contains the list of
per-directory configuration information used by each module that implements its
own directives. See the section Section 11.2 for an example of using this field.

int timeout
int keep_alive_timeout
int keep_alive_max
int keep_alive

These fields hold the integer values corresponding to the Timeout,
KeepAliveTimeout, MaxKeepAliveRequests, and KeepAlive configuration
directives, respectively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array_header *names
array_header *wild_names

These fields contain the entry points into lists of alternative names for the
current (virtual) server. They correspond to the canonical name of the server
plus any aliases added with the ServerAlias directive. names holds only normal
names, while wild_names lists the alternative names that contain wildcard
characters, if any. You can access the contents of these lists with the Apache
array API described later.

uid_t server_uid
gid_t server_gid

These two fields contain the user and group IDs under which the server's
children run.

Example 10.2. The server_rec Structure (from include/httpd.h)

struct server_rec {

 server_rec *next;

 /* description of where the definition came from */
 const char *defn_name;
 unsigned defn_line_number;

 /* Full locations of server config info */

 char *srm_confname;
 char *access_confname;

 /* Contact information */

 char *server_admin;
 char *server_hostname;
 unsigned short port; /* for redirects, etc. */

 /* Log files -- note that transfer log is now in the modules... */

 char *error_fname;
 FILE *error_log;
 int loglevel;

 /* Module-specific configuration for server, and defaults... */

 int is_virtual; /* true if this is the virtual server */
 void *module_config; /* Config vector containing pointers to
 * modules' per-server config structures.
 */
 void *lookup_defaults; /* MIME type info, etc., before we start
 * checking per-directory info.
 */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 */
 /* Transaction handling */

 server_addr_rec *addrs;
 int timeout; /* Timeout, in seconds, before we give
 int keep_alive_timeout; /* Seconds we'll wait for another request */
 int keep_alive_max; /* Maximum requests per connection */
 int keep_alive; /* Use persistent connections? */
 int send_buffer_size; /* size of TCP send buffer (in bytes) */

 char *path; /* Pathname for ServerPath */
 int pathlen; /* Length of path */

 array_header *names; /* Normal names for ServerAlias servers */
 array_header *wild_names; /* Wildcarded names for ServerAlias servers */

 uid_t server_uid; /* effective user id when calling exec wrapper */
 gid_t server_gid; /* effective group id when calling exec

 int limit_req_line; /* limit on size of the HTTP request line */
 int limit_req_fieldsize; /* limit on size of any request header field */
 int limit_req_fields; /* limit on number of request header fields */
};

10.2.4 The conn_rec Structure

The connection record structure, conn_rec, contains information that is specific to
each client/server connection but not necessarily to each request (remember that
recent versions of the HTTP protocol allow browsers to make multiple requests within
the same TCP/IP session by issuing a Keepalive header). Within handlers, the
current conn_rec is available inside the request record's connection field. The
same server child will process all requests that are piggybacked on the same
connection.

Most of the fields in the connection record are used internally by the server. Its most
common use in modules is to retrieve the user's login name during authentication and
to recover the client's IP address. The definition of conn_rec is given in Example
10.3. As before, we skip over those fields that module writers shouldn't worry about.

ap_pool *pool

This is a resource pool that module writers can use to allocate resources that
should persist for the lifetime of the connection. This is rarely necessary, and it
is usually better to use the pool located in the request record for this purpose.

server_rec *server
server_rec *base_server

These fields contain pointers to the server records for the current and base
servers. If the current connection is being served by the main server, then these
two pointers will be the same. Otherwise, server will point to the record for the
current virtual host. The current host's server record is more conveniently
obtained from the request record's server field.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

obtained from the request record's server field.

BUFF *client

The client field contains a BUFF*, which is Apache's equivalent of the familiar
standard I/O FILE*. This field is used internally to read and write data to the
client and may be implemented as a plain TCP socket, an SSL channel, or
some other protocol such as DCE RPC. You will never use this field directly but
go through Apache's I/O routines instead. These are described in detail later in
this section.

struct sockaddr_in local_addr
struct sockaddr_in remote_addr

These fields contain the endpoints of the active TCP/IP socket. You might use
this information to request identd identification from the remote host.

char *remote_ip

The remote_ip field contains the dotted Internet address of the client.

char *remote_host

This field may contain the DNS name of the client. The various caveats
described in Chapter 9, for the remote_host() method of the
Apache::Connection class also apply here. It is almost always a better idea to
use the high-level API call ap_get_remote_host() than to access this field
directly.

char *remote_logname

This field may contain the login name of the remote user, provided that
IdentityCheck is turned on and that the identd daemon is running on the user's
machine (and a host of other considerations, such as the presence of firewalls
between the client and host). All the caveats listed in Chapter 9 under the
remote_logname() method of the Apache::Connection class apply here as well.
You are strongly encouraged to take advantage of the high-level call
ap_get_remote_logname() rather than accessing this field directly.

char *user

If an authentication method is in use for the current connection, the user field
holds the login name provided by the user. The password cannot be recovered
from this connection record, however. To get this information, you must call the
high-level routine ap_get_basic_auth_pw().

char *ap_auth_type

If authentication is in use for the current connection, this field will hold the name
of the authentication method. At the time of this writing, the possibilities were
Basic and Digest.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Basic and Digest.

if(strcasecmp(c->ap_auth_type, "Basic")) {
 ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARN, r->server,
 "phew, I feel better now");
}

unsigned aborted

The aborted field is set to a true value if a timeout set by ap_soft_timeout()
occurs while reading or writing to the client (see Section 10.6.7" later in this
chapter). This can happen, for example, when the remote user presses the
browser stop button before the document is fully transmitted.

if(r->connection->aborted) {
 ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARN, r->server,
 "uh,oh, the client has gone away!");
}

signed int double_reverse

This field contains a flag indicating whether a double-reverse hostname lookup
has been performed. indicates that a double-reverse lookup has not been done
(yet), and 1 indicates that the lookup was performed and was successful. If the
field is set to -1, it means that the lookup was tried but failed. Double-reverse
lookups are only performed if the configuration variable HostnameLookups is
On or if an allow directive is configured to limit hostnames rather than IP
addresses. See also the description of ap_get_remote_host().

Example 10.3. The conn_rec Definition

struct conn_rec {

 ap_pool *pool;
 server_rec *server;
 server_rec *base_server; /* Physical vhost this conn come in on */
 void *vhost_lookup_data; /* used by http_vhost.c */

 /* Information about the connection itself */

 int child_num; /* The number of the child handling conn_rec */
 BUFF *client; /* Connection to the guy */

 /* Who is the client? */

 struct sockaddr_in local_addr; /* local address */
 struct sockaddr_in remote_addr; /* remote address */
 char *remote_ip; /* Client's IP address */
 char *remote_host; /* Client's DNS name, if known.
 * NULL if DNS hasn't been checked,
 * "" if it has and no address was found.
 * N.B. Only access this though
 * get_remote_host() */
 char *remote_logname; /* Only ever set if doing rfc1413 lookups.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 char *remote_logname; /* Only ever set if doing rfc1413 lookups.
 * N.B. Only access this through
 * get_remote_logname() */
 char *user; /* If an authentication check was made,
 * this gets set to the user name.
 * that there's only one user per connection(!)
 */
 char *ap_auth_type; /* Ditto. */

 unsigned aborted:1; /* Are we still talking? */
 signed int keepalive:2; /* Are we using HTTP Keep-Alive?
 * -1 fatal error, 0 undecided, 1 yes */
 unsigned keptalive:1; /* Did we use HTTP Keep-Alive? */
 signed int double_reverse:2;/* have we done double-reverse DNS?
 * -1 yes/failure, 0 not yet, 1 yes/success */
 int keepalives; /* How many times have we used it? */
};

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

10.3 Memory Management and Resource Pools

If you've ever developed a moderately complex C-language program, you've
struggled with memory management. It's not easy to manage memory in C: failing to
deallocate a data structure when you're through with it gives rise to memory leaks,
and conversely, disposing of the same data structure twice is likely to lead to a crash.
It's one thing to have a small memory leak in your own program. Unless the leak is
very severe, the program will probably finish execution and exit normally before
memory becomes tight. However, it's quite another issue to have memory
management problems in a network server, which is expected to run for weeks or
months at a time. Even small leaks can add up over time, and a dangling pointer or a
doubly deallocated block can make the whole server crash.

The Apache server developers were aware of the challenge of memory management,
and so they devised a system to make life easier both for themselves and for module
writers. Instead of managing memory directly, Apache module developers take the
memory they need from one or more resource pools. An Apache pool structure
keeps track of all module memory allocations and releases all allocated blocks
automatically when the lifetime of the pool has ended.

Different pools have different lifetimes: one lasts for the lifetime of a child, one for the
lifetime of a request, another for the module configuration phase, and so forth.
However, the nicest feature about pools is that the programmer generally doesn't
need to know a pool's lifetime. Apache passes the appropriate pool pointer to your
callback functions during the various startup, configuration, and request phases.
Depending on the context, sometimes the pool is passed directly to your subroutine
as an argument, and sometimes it is tucked away inside one of the other data
structures needed by the subroutine, such as the request_rec or conn_rec
structures.

Most memory management is performed within the various request phase handlers.
In this case, the resource pool to draw from will be found inside the request_rec.
Any resources associated with this pool will not be released until the very end of a
request (after logging). This arrangement may not be suited to certain very
specialized modules. For example, the mod_autoindex module needs to make many
short-lived memory allocations while it is generating directory listings. In this case,
modules can create subpools, which are private resource pools allocated from within
the main resource pool. The module can allocate blocks from within its subpool and
destroy the subpool when it's no longer needed. If a module screws up and forgets to
deallocate its subpool, no permanent harm is done. The subpool is deleted when its
parent resource pool is cleaned up at the end of the request.

Once a memory block is allocated from a pool, there is no easy way to deallocate it.
Normally you will wait for the pool to expire naturally. However, if you have created a
subpool to work with, you can delete the whole subpool (and all its contained memory
blocks) in one fell swoop.

10.3.1 Memory and String Allocation Routines

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All memory-handling API routines are defined in the include file include/alloc.h, which
is brought in automatically when you include include/httpd.h. The routines for
allocating and freeing blocks of pool memory are all named after the familiar C library
functions with the prefix ap_p tacked onto the front.

void *ap_palloc (struct pool *p, int nbytes)

This function works just like using malloc(), but you don't have to worry about
calling free() (in fact, you should not). The memory will be cleaned up for you
when the pool reaches the end of its lifetime. You must pass the ap_palloc()
function a pointer to a preallocated pool, such as the one recovered from the
request record. In this example, we create a C string large enough to
accommodate len characters (plus terminating byte):

char *string = (char*)ap_palloc(r->pool, len + 1);

If there is insufficient memory to satisfy your request, ap_palloc() will return null.
You should check for this condition and take appropriate action.

void *ap_pcalloc (struct pool *p, int nbytes)

This works just like the standard calloc() function; it calls memset() to initialize
the memory to a block of '\0' bytes. In this example, we create a
hello_dir_config structure (defined elsewhere) that is initially cleared out:

hello_dir_config *cfg =
 (hello_dir_config*)ap_pcalloc(p, sizeof(hello_dir_config));

char *ap_pstrdup (struct pool *p, const char *s)

This function works like the standard strdup() function to duplicate a string, but
the new string is allocated from the indicated pool:

char *copy = ap_pstrdup(r->pool, string);

char *ap_pstrndup (struct pool *p, const char *s, int n)

This is a version of ap_pstrdup(), but it only allocates and copies n bytes.

char *copy = ap_pstrndup(r->pool, string, len);

char *ap_pstrcat (struct pool *p,...)

This function is similar to the standard strcat() function, but it accepts a variable
list of string arguments to join together, returning the result as a newly allocated
character string. The list of strings must be NULL-terminated:

char *string = ap_pstrcat(r->pool, "<", html_tag, ">", NULL);

char *ap_psprintf (struct pool *p, const char *fmt, ...)

This function works like the standard sprintf(), but it is much safer than the
standard version because it allocates the requested memory from the pool,
rather than writing the string into a static buffer. (Standard sprintf() has recently

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rather than writing the string into a static buffer. (Standard sprintf() has recently
triggered a number of CERT advisories for some popular pieces of Internet
software.) Here is an example of the function's usage:

char *string = ap_psprintf(r->pool, "<%s>", html_tag);

char *ap_cpystrn (char *dest, const char *source, size_t maxlen)

While this function is not tied to a pool, we list it here with the other string
manipulation functions. In this version of the standard strncpy() function, the
destination string is always guaranteed to be NULL-terminated, even if the entire
source string was not copied. Furthermore, the return value points to the
terminating '\0' byte rather than to the beginning of the string, allowing you to
check more easily for truncation. Another difference from the standard function
call is that ap_cpystrn() does not null-fill the string, although this will be rarely
noticed in practice.

result = ap_cpystrn(to, from, len);
if ((result - to) == len) {
 ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING,
 server_rec, "truncation during ap_cpystrn()");
}

int ap_snprintf (char *dest, size_t len, const char *fmt, ...)

We again list this string manipulation function here, although it is not directly tied
to a pool. This is a version of the snprintf() function, which comes with some
versions of the standard C library. Because snprintf() isn't available on all
platforms, the Apache version provides portability.

char string[MAX_STR_LEN];
ap_snprintf(string, sizeof(string), "<%s>", html_tag);

10.3.2 Subpool Management

You will probably never need to manage your own subpools, since there should
always be a pool available during the various phases that will be cleaned up when the
time is right. However, if your module is allocating a considerable amount of memory,
you may need tighter management over when pools are released. This you can do by
allocating and destroying private subpools.

struct pool *ap_make_sub_pool (struct pool *p)

Given an existing pool, this call returns a subpool. You can then allocate blocks
of memory from within the subpool using the routines described above. When
the parent pool is released, your subpool will be destroyed along with it, or you
can destroy the pool yourself using the routine described next. A new pool can
also be created without a parent pool by passing in a NULL argument. In this
case, such code will be completely responsible for destroying the new pool.

void ap_destroy_pool (pool *p)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function destroys the pool or subpool along with all its contents. Once a
pool has been destroyed, be careful not to use any pointers to memory blocks
that were allocated from within it!

void ap_clear_pool (struct pool *p)

ap_clear_pool() destroys the contents of the pool but leaves the pool itself
intact. The pool is returned to its initial, empty state and can be used to allocate
new blocks.

10.3.3 Getting Information About Pools

Although these functions are hardly ever needed, they are included here for the sake
of completeness.

pool *ap_ find_pool(const void *block)

Given a memory block, this function will return a pointer to the resource pool
that it belongs to. The function will return unpredictable results if you pass it a
pointer that was not allocated with the pool API.

int ap_pool_is_ancestor (pool *a, pool *b);

This function returns a true value if pool b is a subpool that was originally
allocated from pool a.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

10.4 The Array API

The HTTP protocol is filled with lists: lists of language codes, HTTP header fields,
MIME types, and so forth. In general, it's not possible to predict the size of the lists in
advance, and some of them can be quite large. In order to deal with this, Apache
provides an array API that allows you to create lists of arbitrary type and length, much
like the dynamic arrays provided by Perl. More complex data structures, such as the
table type (described later in this chapter), are built on top of Apache arrays.

10.4.1 The array_header Type

The core of the array API is the array_header structure, whose definition you can
find in include/alloc.h:

typedef struct {
 ap_pool *pool;
 int elt_size;
 int nelts;
 int nalloc;
 char *elts;
} array_header;

The fields you'll use are the nelts field, which holds the current number of elements
in the array, and the elts field, which contains a pointer to the data in the array.
elts is declared as a char* for the convenience of internal routines. You will need
to cast it to a pointer of the correct type before you can access elements safely. You
should not need to worry about the other fields, but note that the array_header
contains a pointer back to the resource pool from which it was allocated. This means
that both the array header and its contents will be freed automatically when the pool
reaches the end of its lifetime.

10.4.2 Creating and Manipulating Arrays

Here are the API calls for working with arrays. Although array elements can be of any
arbitrary type, we use char* strings in our examples for the sake of simplicity.

array_header *ap_make_array (pool* p, int nelts, int elt_size)

This function allocates a new array from resource pool p with elements elt_size
bytes in length and enough initial space to hold nelts elements. If successful,
the call will return a pointer to a new array_header.

If the array needs to grow beyond its initial length, the array API will resize it
automatically. This means that you can safely allocate an array with zero
elements.

Here is an example of creating a new array with an initial length of 5 elements.
Each element is large enough to hold a char* string pointer:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each element is large enough to hold a char* string pointer:

array_header *arr = ap_make_array(p, 5, sizeof(char*));

void *ap_push_array (array_header *arr)

The ap_push_array() function is used to add a new element to the end of the
list. It works a little differently than you would expect. Instead of allocating the
new element first and then pushing it onto the end of the list, you call
ap_push_array() to allocate the element for you. It will create a new element of
the correct size within the array's pool and return a pointer to the new element.
You cast the returned void* to the data type of your choice and copy your data
in.

Here's an example in which we add a new element containing the string
text/html to the end of the array. The call to ap_push_array() allocates room for
a new char* pointer, while the subsequent call to ap_pstrdup() allocates room
for the string itself and copies its address into the element. This example
assumes that the array was created with ap_make_array() using an elt_size
determined by sizeof(char *).

char **new;
new = (char **)ap_push_array(arr);
*new = ap_pstrdup(r->pool, "text/html");

/* or in a single line */

*(char **)ap_push_array(arr) = ap_pstrdup(r->pool, "text/html");

void ap_array_cat (array_header *dst, const array_header *src)

If you wish to add the elements of one array to another, the ap_array_cat()
function will handle the job. It takes two array_header pointers as arguments
and concatenates the second onto the end of the first. The first will grow as
necessary. Note that the elt_size used to create each array should be the same;
otherwise, unpredictable results may occur.

ap_array_cat(arr, other_arr);

array_header *ap_append_arrays (pool *p, const array_header *a1, const
array_header *a2)

This function is similar to ap_array_cat() but creates a brand new array in the
indicated pool. The resulting array will be the concatenation of a1 and a2.

array_header *new = ap_append_arrays(p, one_array, another_array);

char *ap_array_pstrcat (pool *p, const array_header *arr, const char sep)

This function builds a new string using the elements of the given array. If sep is
non-NULL, it will be inserted as a delimiter between the substrings.

char *table_cells = ap_array_pstrcat(r->pool, cells, ' ');

array_header *ap_copy_array (pool *p, const array_header *src)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ap_copy_array() function creates a new array in the indicated pool, then
copies into it all the elements in src.

array_header *new = ap_copy_array(p, arr);

array_header *ap_copy_array_hdr (pool *p, const array_header *src)

This function is similar to ap_copy_array() but implements a deferred copy.
Initially only a new header is created which points back to the data of the
original array. Only if the new copy is extended with an ap_push_array() or
ap_array_cat() is the old data copied. If the array is never extended, it avoids
the overhead of a full copy.

array_header *new = ap_copy_array_hdr(p, arr);

10.4.3 Accessing Array Elements

There are no functions in the API to fetch specific elements or to iterate over the list.
However, it is simple enough to pull the array out of the elts field and typecast it into
a C array of the proper type. You can use the nelts field to keep track of the number
of elements inside the array. In this example, we iterate over the entire array, printing
out its contents (using the ap_rprintf() function, which we will discuss later):

char **list = (char**)arr->elts;
for(i = 0; i < arr->nelts; i++) {
 ap_rprintf(r, "item %d -> %s\n", i, list[i]);
}

Changing an item in the array is done in a similar way:

((char **)arr->elts)[2] = "transmission aborted"

If you wish to clear the array, simply set nelts to zero:

arr->nelts = 0;

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

10.5 The Table API

Apache provides a general API for creating and maintaining lookup tables. Apache
tables are ubiquitous, used for everything from storing the current request's outgoing
HTTP headers to maintaining the list of environment variables passed to
subprocesses.

Tables are similar to Perl hashes in that they are lists of key/value pairs. However,
unlike a Perl hash, keys are case-insensitive, and a single key may correspond to a
list of several values.[2] In addition, Apache table keys and values are always strings;
arbitrary data types cannot be used.

[2] Despite the differences between Perl hashes and Apache tables, the Perl API allows programmers to access
tables via tied Perl hashes. See Section 9.2.5.

10.5.1 The table and table_entry Data Types

Currently, a table is an Apache array containing array elements of the table_entry
data type (defined in include/alloc.h):

typedef struct {
 char *key; /* the key */
 char *val; /* the value */
} table_entry;

When fetching or setting the value of a key, Apache searches for the key using a
simple linear search. Since most tables are short, this usually doesn't impose a
significant overhead. You will usually not want to access the table_entry directly,
but use API function calls to manipulate the keys and values for you. If you do read
directly from the table_entry, a note in the include file indicates that you should
check the key for null. This is because the table_entry may be made part of a
more sophisticated hash table in the future.

The table structure itself is a private data type intended to be accessed via an
opaque table *. If you want to peek at its definition, you can find it in include/alloc.c.
It is equally straightforward:

struct table {
 array_header a;
#ifdef MAKE_TABLE_PROFILE
 void *creator;
#endif
};

The MAKE_TABLE_PROFILE define is part of Apache's debugging code and is
usually undefined, so table is really just an array header.

10.5.2 Creating and Copying Tables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you need a table of key/value pairs that is private to your own module, you can use
these API routines to create it. You can either create a new empty table or start with
one that is already defined and make a copy of it. These functions are defined in the
include/alloc.h file, which is automatically included when you bring in include/httpd.h.

table *ap_make_table (pool *p, int nelts)

ap_make_table() creates a new empty table, given a resource pool pointer and
an estimate of the number of elements you expect to add. If the nelts argument
is nonzero, that number of table_entry tables will be pre-allocated for
efficiency. Regardless of its initial size, the table grows as necessary to
accommodate new entries and table merging operations.

Accessitable *my_table = ap_make_table(p, 25);

table * ap_copy_table (pool *p, const table *t)

This function takes a resource pool and an existing table and makes a replica of
the table, returning a pointer to the copy. You can then change the contents of
the copy without modifying the original. In this example, we make a copy of the
headers_in table:

table *my_headers = ap_copy_table(r->pool, r->headers_in);

10.5.3 Getting and Setting Table Values

These routines allow you to add new entries to the table, to change existing ones, and
to retrieve entries.

const char *ap_table_get (const table *t, const char *key)

Given a table pointer and a key, ap_table_get() returns the value of the entry at
that key as a char *. If there are multiple values for that particular key, the
function will only return the first one it finds, which will be the first entry added.

In this example, we recover the string value of the incoming User-agent header:

const char *ua = ap_table_get(r->headers_in, "User-agent");

To iterate through the multiple values for the same key, use the ap_table_do()
function described later in this section.

void ap_table_set (table *t, const char *key, const char *val)

ap_table_set() sets the entry named by key to the character string in val. If an
entry with the same key already exists, its value is replaced. Otherwise, a new
entry is created. If more than one entry has the same key, the extraneous ones
are deleted, making the key single-valued.

Internally, Apache calls ap_pstrdup() on the key and the value and stores
copies of them in the table. This means that you are able to change or dispose
of the original variables without worrying about disrupting the table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's an example of using this function to set the outgoing headers field
Location to the string http://www.modperl.com/. Because Location is a single-
valued field, ap_table_set() is the correct call to use:

ap_table_set(r->headers_out, "Location", "http://www.modperl.com/");

void ap_table_setn (table *t, const char *key, const char *val)

This function behaves the same as ap_table_set(), but the character strings for
key and val are not copied with ap_pstrdup(). You must ensure that the strings
remain valid for the lifetime of the table. The previous example is a good
candidate for ap_table_setn(), as it uses static strings for both the key and
value.

void ap_table_add (table *t, const char *key, const char *val)

This function is similar to ap_table_set(), but existing entries with the same key
are not replaced. Instead, the new entry is added to the end of the list, making
the key multivalued.

Internally, Apache calls ap_pstrdup() on the key and the value, allowing you to
change or dispose of the original variables without worrying about disrupting the
table.

This example adds several Set-cookie fields to the outgoing HTTP headers
table:

for(i=0; cookies[i]; i++) {
 ap_table_add(r->headers_out, "Set-cookie", cookies[i]);
}

void ap_table_addn (table *t, const char *key, const char *val)

This function behaves like ap_table_add(), but key and val are not duplicated
before storing them into the table. This function saves a little time and memory if
you are working with static strings.

void ap_table_merge (table *t, const char *key, const char *val)

ap_table_merge() merges a new key value into the existing entry by appending
it to what's already there. This is used for comma-delimited header fields such
as Content-language. For example, this series of calls will result in a value of
en, fr, sp in the Content-language field:

ap_table_merge(r->headers_out, "Content-language", "en");
ap_table_merge(r->headers_out, "Content-language", "fr");
ap_table_merge(r->headers_out, "Content-language", "sp");

Like ap_table_set(), the key and value are copied using ap_pstrdup() before
moving them into the table.

void ap_table_mergen (table *t, const char *key, const char *val)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function is the same as ap_table_merge, but the key and val arguments
are not copied with ap_pstrdup() before entering them into the table.

void ap_table_unset (table *t, const char *key)

ap_table_unset() deletes all entries having the indicated key. This example
removes the Referer field from the incoming headers, possibly in preparation for
making an anonymous proxy request (see Chapter 7):

ap_table_unset(r->headers_in, "Referer");

void ap_table_do (int (*comp)(void *, const char *, const char *), void *rec, const table
*t,...);

ap_table_get() and ap_table_getn() work well for single-valued keys, but there
are a few instances in which keys are not unique. To access all the values of
these keys, you will have to use ap_table_do() to iterate over the table.

As its prototype indicates, this function is more complicated than the ones we've
seen before. The function's first argument is a pointer to a callback function that
will be called during the iteration process. The second argument is a void *
that can be used to pass some arbitrary information to the callback. The third
argument is the table * itself. This is followed by a variable number of char *
key arguments, terminated by a null. ap_table_do() will iterate over the table,
invoking the callback routine only when a table entries' key matches a key in the
given list. If no keys are given, the function will invoke the callback routine for all
of the table entries.

The callback function should have this function prototype:

int callback(void *rec, const char *key, const char *value);

The first argument corresponds to the void * argument passed to
ap_table_do(), and the second and third arguments are the key and value of the
current table entry. The callback should do whatever work it needs to do (for
example, copying the value into an Apache array), and return a true value. The
callback can return in order to abort ap_table_do() prematurely.

Here's a callback that simply prints out the key name and value without
performing further processing:

static int header_trace(void *data, const char *key, const char *val)
{
 request_rec *r = (request_rec *)data;
 ap_rprintf(r, "Header Field `%s' == `%s'\n", key, val);
 return TRUE;
}

Here's how the callback can be used to print out the contents of the outgoing
headers table:

ap_table_do(header_trace, r, r->headers_out, NULL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ap_table_do(header_trace, r, r->headers_out, NULL);

And in this example, the callback is only invoked for the Content-type and
Content-length fields:

ap_table_do(header_trace, (void*)r, r->headers_out,
 "Content-type", "Content-length", NULL);

10.5.4 Other Table Functions

Here are a few miscellaneous table functions that don't fit into the previous
categories:

table *ap_overlay_tables (pool *p, const table *overlay, const table *base)

This function takes the contents of the table at overlay and adds it to the table
at base. Entries in overlay that don't exist in base are added to base. Entries
that already exist in base are overwritten. You can use ap_overlay_tables() to
perform a bulk update of a table. This example overlays the fields listed in
my_headers onto the table of outgoing headers:

table *new_table = _ap_overlay_tables(r->pool, my_headers, r->headers_out);

array_header *ap_table_elts (table *t)

If you wish to access the contents of the table directly, you can call the
ap_table_elts() function (it's a preprocessor macro, actually). It will return an
array_header*, which you can then iterate through, casting each element to
a table_entry.

array_header *arr = ap_table_elts(my_table);

int ap_is_empty_table (table *t)

This function (it's a preprocessor macro, actually) returns true if there are no
entries in the given table, or false otherwise.

if(!ap_is_empty_table(my_table)) {
 /* this table has one or more elements */
}

void ap_clear_table (table *t)

The ap_clear_table() function clears all entries from the table. Example:

ap_clear_table(my_table);

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

10.6 Processing Requests

Now that we've covered Apache's major data types and the API for manipulating
them, we turn to the functions you'll use routinely within your handlers to process the
incoming request and produce a response.

10.6.1 Getting Information About the Transaction

You can get most of the information about the incoming request by reading it from the
request record, server record, or connection record. The exception to this rule are a
handful of routines that require active participation on the part of Apache to recover
information about the remote host and user.

These calls are declared in the header file http_core.h unless specified otherwise:

const char *ap_get_remote_host(conn_rec *conn, void *dir_config, int type)

This routine returns the DNS name or dotted IP address of the remote host. The
first argument is a pointer to the connection record, usually recovered from the
request record. The second argument points to the per-directory configuration
record, which can also be retrieved from the request record.
ap_get_remote_host() uses the directory configuration pointer to examine the
value of the HostnameLookups directive. If you pass NULL for this argument,
ap_get_remote_host() will assume a value of Off for HostnameLookups,
returning the dotted IP address of the remote host.

The third argument passed to ap_get_remote_host() is an integer constant
indicating the type of lookup you wish to perform. There are four possibilities:

REMOTE_HOST

If this argument is specified, Apache will try to look up the DNS name of the
remote host. This lookup may fail if the Apache configuration directive
HostNameLookups is set to Off or the hostname cannot be determined by a
DNS lookup, in which case the function will return null.

REMOTE_NAME

When called with this argument, the function will return the DNS name of the
remote host if possible, or the dotted decimal representation of the client's IP
address otherwise. The function will also return the IP address if
HostNameLookups is set to Off. This is the most frequently used lookup type
and the default in the Perl API.

REMOTE_NOLOOKUP

When this argument is specified, ap_get_remote_host() will not perform a new
DNS lookup. If a successful lookup was done earlier in the request, the
hostname cached in the connection record will be returned. Otherwise, the
function returns the dotted decimal representation of the client's IP address.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REMOTE_DOUBLE_REV

This argument will trigger a double-reverse DNS lookup. Apache will first call
DNS to return the hostname that maps to the IP number of the remote host. It
will then make another call to map the returned hostname back to a set of IP
addresses. If any of the new IP addresses that are returned match the original
one, then the function returns the hostname. Otherwise, it returns NULL. The
reason for this baroque procedure is that standard DNS lookups are susceptible
to DNS spoofing in which a remote machine temporarily assumes the apparent
identity of a trusted host. Double-reverse DNS lookups make spoofing much
harder, and are recommended if you are using the hostname to distinguish
between trusted clients and untrusted ones. For this very reason,
REMOTE_DOUBLE_REV is always used for access checking when hostnames
are used, rather than IP addresses. Unfortunately, double-reverse DNS lookups
are also more expensive.

Unlike the other lookup types, REMOTE_DOUBLE_REV overrides the value of
HostNameLookups and forces the lookup to occur if the result is not already
cached.

Here is a typical example of using ap_get_remote_host() to return either the
DNS name of the remote host or its dotted IP address:

char *remote_host = ap_get_remote_host(r->connection,
 r->per_dir_config, REMOTE_NAME);

const char *ap_get_remote_logname (request_rec *r)

This function returns the login name of the remote user or null if that information
could not be determined. This generally works only if the remote user is logged
into a Unix or VMS host and that machine is running the identd daemon (which
implements a protocol known as RFC 1413). Its single argument is the current
request record, from which it derives both the connection record and the per-
directory configuration information (unlike ap_get_remote_host(), which requires
you to split out that information yourself).

The success of the call also depends on the status of the IdentityCheck
configuration directive. Since identity checks can adversely impact Apache's
performance, this directive is off by default and the routine will return null.

const char *remote_logname = ap_get_remote_logname(r);

const char *ap_get_server_name(const request_rec *r)

The ap_get_server_name() function will return the server's name as a character
string. The name returned is the server's "public" name suitable for
incorporation into self-referencing URLs. If the request was directed to a virtual
host, it will be this host's name that is returned. Otherwise, the function result
will be the main host's name, as given by the ServerName directive. If there is
no ServerName directive, then the value returned will be the same as that
returned by the system's hostname command.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unsigned int ap_get_server_port(const request_rec *r)

This function returns the port number that the request was directed to, taking
into account the default port and the virtual host. The port number returned by
this function can be incorporated into self-referencing URLs.

int ap_method_number_of(const char *method)

(Declared in the header file http_protocol.h.) This function returns the integer
method number corresponding to the given method string.

int methnum = ap_method_number_of(method);
if (methnum == M_INVALID) {
 return "Unknown method!";
}

10.6.2 Getting Information About the Server

Several API routines provide you with information about the server's current
configuration. This information tends to remain the same from request to request. For
historical reasons, these routines are distributed among http_config.h, http_core.h,
and httpd.h.

char *ap_server_root_relative (pool *p, char *fname)

(Declared in the header file http_config.h.) Given a resource pool p and a
relative file path fname, this routine prepends the path configured by ServerRoot
to the file path and returns it as a new string. If an absolute file path is passed
in, that value is returned, untouched. You can use ap_server_root_relative() to
resolve relative pathnames to absolute paths beneath the server root directory
or pass it an empty string to return the server root itself.

/* simply returns ServerRoot */
char *ServerRoot = ap_server_root_relative(r->pool, "");

/* returns $ServerRoot/logs/my.log */
char *log = ap_server_root_relative(r->pool, "logs/my.log");

/* returns /tmp/file.tmp */
char *tmpfile = ap_server_root_relative(r->pool, "/tmp/file.tmp");

const char *ap_default_type (request_rec *r)

(Declared in the header file http_core.h.) This function returns the value of the
DefaultType directive or text/plain if not configured.

const char *type = ap_default_type(r);

const char *ap_get_server_version ()

(Declared in the header file httpd.h.) This function returns the server version
string. This is the same string that appears in the outgoing HTTP Server header.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const char *server_version = ap_get_server_version();

const char * ap_get_server_built (void)

(Declared in the header file httpd.h.) This function returns a date stamp
indicating when the main server image was compiled.

void ap_add_version_component (const char *component)

(Declared in the header file httpd.h.) When a module is considered a major
component of the server, this function can be used to add the module name and
version number to the server version string. It should be called from within a
module init handler.

ap_add_version_component("mod_perl/2.20");

This will append a space followed by the string mod_perl/2.20 to the end of
the server version string that Apache returns to clients.

10.6.3 Sending Data to the Client

Content handlers are responsible for sending the HTTP headers to the client followed
by the contents of the document itself (if any). The functions listed in this section
provide the interface for sending data to the client. In addition to handling the details
of writing the information to the outgoing TCP connection, Apache keeps track of the
number of bytes sent, updating the bytes_sent field of the request record each time
one of these calls is made. In general, the calls return the number of bytes
successfully sent to the client or EOF (-1) if the client unexpectedly closed the
connection.

Because it's possible for the client to hang while accepting data from the server, you
should bracket your writes with calls to ap_hard_timeout() or ap_soft_timeout() to time
out broken connections or extraordinarily slow connections. See Section 10.6.7"
later in this chapter for more details.

The declarations for these functions can all be found in the include file
http_protocol.h. They all begin with the prefix ap_r, where the "r" stands for
"request_rec," a required argument for each call.

void ap_send_http_header (request_rec *r)

This function sends the status line and all HTTP headers, building them up from
the contents of the request record's headers_out and err_headers_out
tables, along with various fields including content_type and
content_encoding. Certain headers are generated by
ap_send_http_header() that are not related to the request record, such as
Server and Date.

int ap_rwrite (const void *buf, int nbyte, request_rec *r)

This function will send nbyte bytes of the contents of the data buffer buf to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function will send nbyte bytes of the contents of the data buffer buf to the
client. The function result is the number of bytes actually sent or -1 if an error
occurred before any bytes could be sent.

if ((sent = ap_rwrite(buffer, len, r)) < 0) {
 ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING,
 r->server, "error during ap_rwrite()");
 }

int ap_rputs (const char *str, request_rec *r)

This function will send a string of arbitrary length to the client, returning the
number of bytes actually sent.

ap_rputs(html_tag, r);

int ap_rvputs (request_rec *r,...)

The ap_rvputs() function works just like ap_rputs(), but it accepts a variable list
of string arguments, which must be NULL-terminated.

ap_rvputs(r, "<", html_tag, ">", NULL);

int ap_rputc (int c, request_rec *r)

This function is used to send a single character to the client, similar to the
standard I/O library function putc(). The function returns the character on
success, EOF (-1) on failure.

ap_rputc('<', r);
ap_rputs(html_tag, r);
ap_rputc('>', r);

int ap_rprintf (request_rec *r, const char *fmt,...)

This function works like the standard printf() function, but the formatted string is
sent to the client. In this example, the username used for authentication is
incorporated into the document sent down the wire. The function returns the
number of characters sent.

ap_rprintf(r, "Hello %s", r->connection->user);

void ap_send_size (size_t size, request_rec *r)

This function converts the file size given in size into a formatted string and
sends the string to the client. The size given in the string will be in units of bytes,
kilobytes, or megabytes, depending on the size of the file. This function is used
in mod_autoindex to display the size of files in automatic directory listings, and
by mod_include to implement the fsize directive.

ap_rputs("File size: ");
ap_send_size(r->finfo.st_size, r);

int ap_rflush (request_rec *r)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This call causes Apache to flush the outgoing socket connection, sending any
buffered data down the wire to the client. You can use this function to display a
partial page or, in a server push application, to display a new page of a multipart
document. Don't use it more often than you need to, however, or overall
performance will degrade.

10.6.4 Sending Files to the Client

As we learned in Chapter 4, sending a plain file over HTTP requires a few more
considerations than one might think. Here we list the C API functions upon which the
Apache::File module is built:

int ap_set_content_length (request_rec *r, long length)

This method sets the outgoing Content-length header based on the length
argument. By using this method, you avoid the hassle of converting the long
value to a string, along with saving a few keystrokes. The return value is always
zero and can be safely ignored.

(void)ap_set_content_length(r, r->finfo.st_size);

void ap_set_etag (request_rec *r)

This method is used to set the outgoing ETag header, described in Chapter 3
in Section 3.1.1. Use this if your content handler is serving static files.
Sending the entity tag allows HTTP/1.1-compliant clients to intelligently cache
documents locally and only update them when they change on the server.

ap_set_etag(r);

time_t ap_update_mtime (request_rec *r, time_t dependency_mtime)

(Declared in the header file http_request.h.) Browsers will cache static
documents locally and update them only when the server indicates they have
changed. They do this by comparing the current document's HTTP Last-
modified field to the value of this field when the document was last cached.
Apache derives the Last-modified field from the request record's mtime field,
which by default is set to the filesystem modification time of the requested file.
This default is appropriate for a document that is a simple static file but not a
document that is created dynamically, for example, a server-side include file
that depends on one or more configuration files.

In such cases, you can use this function to set the mtime field to reflect the
appropriate modification time, taking into account any of the document's
dependencies on configuration files and other resources. Its two arguments are
the request record and dependency_mtime. The mtime field will be updated if
and only if the current mtime is older than the dependency_mtime. Therefore,
if the final document depends on several configuration files, it is safe to call
ap_update_mtime() once with the modification times of each configuration file.
At the end of this series of calls the mtime field will be set to the most recent
date, allowing the Last-modified field to accurately reflect the modification time

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

date, allowing the Last-modified field to accurately reflect the modification time
of the requested document. Of course, the true modification time of the
requested file as reported by the filesystem is unaffected by this maneuver.

This function's return value is the value of the updated mtime. If your handler is
serving static files without modifying them en route, you will not need to call this
function because Apache will already have set mtime appropriately. Before
sending the headers, you should also be sure to call ap_set_last_modified()
(discussed next) in order to use the value of mtime to create the Last-modified
field in the outgoing headers table.

In the following example, we update the file's modification time from a
dependency on a configuration file named templates.conf :

struct stat conf_info;
char* conf_file = server_root_relative(r->pool, "conf/templates.conf");
if (stat(conf_file, &conf_info) == 0) {
 ap_update_mtime(r, conf_info.st_mtime);
}
ap_set_last_modified(r);

void ap_set_last_modified (request_rec *r)

This method is used to set the Last-modified header using the value of r-
>mtime. If mtime is in the future, the header field will not be modified. This
function should be called whenever you are serving static files or server-side
include files and want the client to be able to cache the document contents
locally. You might also want to use this function, in conjunction with
ap_update_mtime(), if you are creating documents from database records and
have some sort of timestamp in the records that enables you to determine when
the data was last changed.

ap_set_last_modified(r);

See also ap_update_mtime().

int ap_meets_conditions (request_rec *r)

As described in Chapter 9 in Section 9.4," the ap_meets_conditions()
function is used to implement "conditional GET" semantics.

if((rc = ap_meets_conditions(r) != OK) {
 return rc;
}

int ap_discard_request_body (request_rec *r)

Also described in Chapter 9, this utility function is used to throw away the
request body.

if((rc = ap_discard_request_body(r) != OK) {
 return rc;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

long ap_send_ fd (FILE *f, request_rec *r)

The ap_send_ fd() function sends the contents of the file pointed to by FILE* to
the client and returns the number of bytes transmitted. This is a useful way to
return a file to the client if you don't need to modify it on the fly. In this example,
we open the file requested by the URI using the ap_pfopen() call. If successful,
we send its contents, then close the file.

FILE *f = ap_pfopen(r->pool, r->filename, "r");
if (f == NULL) {
 return NOT_FOUND;
}
ap_send_fd(f, r);
ap_pfclose(r->pool, f);

long ap_send_ fd_length (FILE *f, request_rec *r, long length)

This function works like ap_send_ fd(), but only length bytes of data are sent. If
you pass a negative value for length, the entire file will be sent, which, in fact, is
what ap_send_ fd() does internally. The function result is the number of bytes
sent, or -1 if an error occurred before any bytes could be sent.

10.6.5 Reading the Request Body

Apache automatically reads all the incoming request header fields, stopping at the
carriage-return/linefeed pair that terminates the HTTP header. This information is
used to set up the request_rec, server_rec, and connection_rec structures.
The server will not automatically read the request body, the optional portion of the
request which may contain fill-out form fields or uploaded documents.

Many custom handlers will be able to do their work directly from the information
stored in the request_rec and server_rec. The exception is content handlers,
which frequently need to process the incoming request body submitted by the POST,
PUT, and possibly other methods.

There are two complications when reading the request body. The first is the possibility
that the remote client will break the connection before it has sent all the data it has
declared it is sending. For this reason you have to set a timeout during the read so
that the handler does not hang indefinitely. The timeout API is discussed later in this
chapter. The second is the existence of the HTTP/1.1 "chunked" data type, in which
the data is transmitted in smallish chunks, each preceded by a byte count. Sending
chunked content data is different from submitting the request body normally because
there is no Content-length header in the request to tell you in advance how many
bytes to expect. In general, modules should request a client read policy of
REQUEST_CHUNKED_ERROR to force the browser to use non-chunked (standard) data
transfer mode.

You should set a hard timeout prior to making the first client data read by calling the
ap_hard_timeout() function described later. To deal properly with chunked data, you
will establish a "read policy" chosen from among the following constants defined in
include/httpd.conf :

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REQUEST_NO_BODY

This is the simplest policy of all. It causes the request body API functions to
return a 413 "HTTP request entity too large" error if the submitted request has
any content data at all!

REQUEST_CHUNKED_ERROR

This is the next simplest policy. The request body API functions will allow the
browser to submit ordinary content data but will reject attempts to send chunked
data, with a 411 "HTTP length required" error. If the client follows the
recommendations of the HTTP/1.1 protocol, it will resubmit the content using
the nonchunked method. This read policy is the recommended method and
guarantees that you will always get a Content-length header if there is a request
body.

REQUEST_CHUNKED_DECHUNK

If this read policy is specified, Apache will accept both chunked and
nonchunked data. If the request is chunked, it will buffer it and return to you the
number of bytes you request in ap_get_client_block() (described later in this
section).

REQUEST_CHUNKED_PASS

Under this read policy, Apache will accept both chunked and nonchunked data.
If the data is chunked, no attempt is made to buffer it. Your calls to
ap_get_client_block() must be prepared to receive a buffer-load of data exactly
as long as the chunk length.

The Apache request body API consists of three functions:

int ap_setup_client_block (request_rec *r, int read_policy)

Before reading any data from the client, you must call ap_setup_client_block().
This tells Apache you are ready to read from the client and sets up its internal
state (in the request record) to keep track of where you are in the read process.
The function has two arguments: the current request_rec and the read policy
selected from the constants in the preceding list. This function will return OK if
Apache was successful in setting up for the read or an HTTP status code if an
error was encountered. If an error result code is returned, you should use it as
the status value that is returned from your handler.

The error codes that can be generated depend on the read policy you specify. If
REQUEST_CHUNKED_ERROR was specified, then this call will return
HTTP_LENGTH_REQUIRED if the client tries to submit a chunked request body.
If REQUEST_NO_BODY was specified, then this function will return
HTTP_REQUEST_ENTITY_TOO_LARGE if any request body is present.
HTTP_BAD_REQUEST will be returned for a variety of client errors, such as
sending a non-numeric Content-length field.

A side effect of ap_setup_client_block() is to convert the value of Content-length

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A side effect of ap_setup_client_block() is to convert the value of Content-length
into an integer and store it in the remaining field of the request_rec.

int ap_should_client_block (request_rec *r)

Just before beginning to read from the client, you must call
ap_should_client_block(). It will return a Boolean value indicating whether you
should go ahead and read, or abort. Despite its name, this function is more
useful for the information it provides to the browser than for the status
information it returns to you. When the HTTP/1.1 protocol is in use,
ap_should_client_block() transmits a 100 "Continue" message to the waiting
browser, telling it that the time has come to transmit its content.

long ap_get_client_block (request_rec *r, char *buffer, int bufsiz)

This is the function that actually reads data from the client. You provide the
current request record, a buffer of the appropriate size, and a count of the
maximum number of bytes you wish to receive. ap_get_client_block() will read
up to the specified number of bytes and return the count received. If you are
handling nonchunked data, do not try to read more than the number of bytes
declared in Content-length because this may cause the attempted read to block
indefinitely.

In the code example shown in Example 10.4, we begin by calling
ap_setup_client_block() to convert the Content-length header to an integer and store
the value in the remaining field of the request_rec. We then use the value of
remaining to allocate a buffer, rbuf, large enough to hold the entire contents. We
next set up a hard timeout and then enter a loop in which we call
ap_get_client_block() repeatedly, transferring the read data to the buffer piece by
piece. The length of each piece we read is at most the value of HUGE_STRING_LEN,
a constant defined in httpd.h. The timeout alarm is reset with ap_reset_timeout() after
each successful read. When the data has been read completely, we call
ap_kill_timeout() to turn off the timeout alarm, and return.

Notice that we call ap_setup_client_block() with a read policy of
REQUEST_CHUNKED_ERROR. This makes the program logic simpler because it forces
the client to use the nonchunked transfer method.

Example 10.4. Chunked Client Input

static int util_read(request_rec *r, const char **rbuf)
{
 int rc;

 if ((rc = ap_setup_client_block(r, REQUEST_CHUNKED_ERROR)) !=
 return rc;
 }

 if (ap_should_client_block(r)) {
 char argsbuffer[HUGE_STRING_LEN];
 int rsize, len_read, rpos=0;
 long length = r->remaining;
 *rbuf = ap_pcalloc(r->pool, length + 1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 *rbuf = ap_pcalloc(r->pool, length + 1);

 ap_hard_timeout("util_read", r);

 while ((len_read =
 ap_get_client_block(r, argsbuffer, sizeof(argsbuffer))) > 0) {
 ap_reset_timeout(r);
 if ((rpos + len_read) > length) {
 rsize = length - rpos;
 }
 else {
 rsize = len_read;
 }
 memcpy((char*)*rbuf + rpos, argsbuffer, rsize);
 rpos += rsize;
 }

 ap_kill_timeout(r);
 }

 return rc;
}

No mainstream web client currently uses the chunked data transfer method, so we
have not yet had the occasion to write code to handle it. Should chunked data
transfer become more widely adopted, check the www.modperl.com site for code
examples illustrating this aspect of the API.

Because POST requests are used almost exclusively to submit the contents of fill-out
forms, you'd think that there would be an API specially designed for recovering and
parsing this information. Unfortunately there isn't, so you'll have to roll your own.[3]

Example 10.5 defines a function called read_post() that shows you the basic way to
do this. You pass read_post() the request record and an empty table pointer. The
function reads in the request body, parses the URL-encoded form data, and fills the
table up with the recovered key/value pairs. It returns one of the error codes OK or
DECLINED, although this is just for our convenience and not something required by
the Apache API.

[3] Before you do roll your own, be sure to have a look at http://www.modperl.com/libapreq/ for a C library that
provides routines for manipulating client request data via the Apache API. This library was released after this book's
final manuscript submission.

The example begins by defining a constant named DEFAULT_ENCTYPE that contains
the standard MIME type for POSTed fill-out forms. Next we define the read_post()
function. read_post() examines the request record's method_number field to ensure
that this is a POST request. If not, it just returns OK without modifying the passed
table. read_post() then examines the incoming request's Content-type field, using
ap_table_get() to fetch the information from the request record's headers_in field. If
the content type doesn't match the expected POST type, the function exits with a
DECLINED error code.

We now read the data into a buffer using the util_read() function from Example 10.4,
passing on the result code to the caller in case of error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last task is to parse out the key=value pairs from the query string. We begin by
clearing the passed table, deleting its previous contents, if any. If a NULL pointer was
passed in, we allocate a new one with ap_make_table(). We then enter a loop in
which we split the buffer into segments delimited by the & character, using the handy
ap_getword() function for this purpose (described in the next chapter). We then call
ap_getword() again to split each segment at the = character into key/value pairs. We
pass both the key and value through ap_unescape_url() to remove the URL escapes,
and enter them into the table with ap_table_merge(). We use ap_table_merge() rather
than ap_table_add() here in order to spare the caller the inconvenience of using
ap_table_do() to recover the multiple values. The disadvantage of this choice is that
values that contain commas will not be correctly handled, since ap_table_merge()
uses commas to separate multiple values.

Example 10.5. Reading POSTed Form Data

#define DEFAULT_ENCTYPE "application/x-www-form-urlencoded"

static int read_post(request_rec *r, table **tab)
{
 const char *data;
 const char *key, *val, *type;
 int rc = OK;

 if(r->method_number != M_POST) {
 return rc;
 }

 type = ap_table_get(r->headers_in, "Content-Type");
 if(strcasecmp(type, DEFAULT_ENCTYPE) != 0) {
 return DECLINED;
 }

 if((rc = util_read(r, &data)) != OK) {
 return rc;
 }

 if(*tab) {
 ap_clear_table(*tab);
 }
 else {
 *tab = ap_make_table(r->pool, 8);
 }

 while(*data && (val = ap_getword(r->pool, &data, '&'))) {
 key = ap_getword(r->pool, &val, '=');

 ap_unescape_url((char*)key);
 ap_unescape_url((char*)val);

 ap_table_merge(*tab, key, val);
 }

 while(*data && (val = ap_getword(r->pool, &data, '&'))) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 while(*data && (val = ap_getword(r->pool, &data, '&'))) {
 key = ap_getword(r->pool, &val, '=');

 ap_unescape_url((char*)key);
 ap_unescape_url((char*)val);

 ap_table_merge(*tab, key, val);
 }

 return OK;
}

10.6.6 The BUFF API

All the I/O functions that were described in the previous two sections took the request
record as an argument. Internally, these functions make calls to a lower-level I/O API
that operates on the BUFF* stored in the connection record in the client field.
There is a close parallelism between the request-oriented I/O functions and the
connection-oriented ones. They have almost identical names, but the prefix ap_r is
replaced by ap_b, and instead of taking a request record as their argument, they take
a BUFF pointer. So, for instance, instead of calling:

ap_rputs("<H1>In the Beginning</H1>", r);

you could call:

ap_bputs("<H1>In the Beginning</H1>", r->connection->client);

You will probably never have to use the BUFF API in the ordinary course of events.
The only exception is if your module needs to open a pipe to another process. In this
case, the ap_bspawn_child() routine returns a BUFF stream connected to the
external process.

In most cases, the function prototypes for the BUFF functions are similar to the
prototypes of their corresponding request-oriented calls, except that the
request_rec* is replaced by a BUFF*. But be wary: in several cases the arguments
are swapped so that the BUFF* comes first in the argument list rather than last.

The buffer functions are defined in the header file include/buff.h:

int ap_bwrite (BUFF *fb, const void *buf, int nbyte)
int ap_bputs (const char *x, BUFF *fb)
int ap_bvputs (BUFF *fb,...)
int ap_bputc (int c, BUFF *fb)
int ap_bprintf (BUFF *fb, const char *fmt,...)
long ap_send_ fb (BUFF *fb, request_rec *r)
long ap_send_ fb_length (BUFF *fb, request_rec *r, long length)
int ap_bflush (BUFF *fb)

These output functions are identical to their ap_r counterparts but take a BUFF*
as their argument. Usually, this argument will be retrieved from the connection
record by calling r->connection->client, assuming that r is the current request
record.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that ap_send_fb() and ap_send_fb_length() correspond to ap_send_fd()
and ap_send_fd_length() and are responsible for sending the contents of the file
or process pointed to by the first argument.

int ap_bread (BUFF *fb, void *buf, int nbyte)

ap_bread() is a low-level input function that is used beneath the *_client_block()
routines described in the previous section. It acts like the standard C library
fread() function to read nbyte bytes from the BUFF pointed to by fb. If
successful, the data is placed in buf and the byte count is returned as the
function result. In case of an error, the function will return EOF (-1).

This function should never be used by a handler to read the incoming request
body because it will not deal correctly with chunked data. However, it is useful
when reading from a pipe created with the ap_bspawn_child() function.

int n = ap_bread(fb, buffer, len);

int ap_bgets (char *buf, int n, BUFF *fb)

The ap_bgets can be used like the C standard library function gets() to read a
line of data into a string. It will read data into the char* buf until an EOF occurs,
a newline is encountered, a carriage return/linefeed sequence occurs, or n -1
bytes have been read. The string is always NULL-terminated.

If successful, the function returns the number of bytes read, or on an EOF
condition. If an error occurs, the function returns -1.

char buffer[MAX_STRING_LEN];
while(ap_bgets(buffer, sizeof(buffer), fb) > 0) {
 ...
}

10.6.7 The Timeout API

The timeout API allows you to set an alarm that will be triggered after the time
configured by the Timeout configuration directive. You should do this before starting
any series of read or write operations in order to handle any of the myriad things that
can go wrong during network I/O: the client hangs or crashes, the network goes
down, or the user hits the stop button before the page is completely downloaded.

There are two types of timeout. A "hard" timeout causes the transaction to be aborted
immediately. The currently executing handler is exited, and Apache immediately
enters the logging phase. A "soft" timeout does not abort the transaction but does
mark the connection record as being in an aborted state (by setting the aborted field
to true). The current handler continues to run, but all calls to client input or output
routines are ignored. This allows the handler to do any additional processing or
cleanup that it requires. In either case, a message will be sent to the ErrorLog,
labeled with the name of the handler along these lines:

[Tue Jul 28 17:02:36 1998] [info] mod_hello timed out for 127.0.0.1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Tue Jul 28 17:02:36 1998] [info] mod_hello timed out for 127.0.0.1

or:

[Tue Jul 28 17:02:36 1998] [info] 127.0.0.1 client stopped connection before mod_hello completed

Many content handlers will do a series of I/O, do some processing, then do some
more I/O. Every time a series of read or write operations is completed, the timeout
should be reset by calling ap_reset_timeout() . This sets the internal timer back to
zero. When your handler has finished all I/O operations successfully, it should call
ap_kill_timeout() in order to cancel the timeout for good:

ap_soft_timeout("mod_hello", r);
while(...) {
 ... do I/O ...
 ap_reset_timeout(r);
}
ap_kill_timeout(r);

The various resource pools are deallocated correctly when a timeout occurs, so you
should not have to worry about memory leaks so long as you have been careful to
allocate all your data structures from resource pools. Should you have non-pool
resources that you need to deallocate after a timeout, you can install a cleanup
handler. See Section 10.7.2 later in this chapter for details. You may also protect
critical sections of your code with ap_block_alarms() and ap_unblock_alarms() to
prevent a timeout from occurring at an inconvenient time.

void ap_hard_timeout (char *name, request_rec *r)

ap_hard_timeout() starts a timeout. The first argument contains an arbitrary
string used to identify the current handler when the abort message is printed to
the error log. If the alarm times out, the current handler will be exited, the
transaction will be aborted, and Apache will immediately enter the logging
phase of the request cycle.

ap_hard_timeout("mod_hello", r);

void ap_soft_timeout (char *name, request_rec *r)

ap_soft_timeout() works in the same way as ap_hard_timeout(), except that
when the timeout occurs the transaction is placed into an aborted state in which
all requested I/O operations are silently ignored. This allows the current handler
to continue to its normal conclusion.

void ap_reset_timeout (request_rec *r)

This function resets the timeout to its initial state. You should call this function
after any series of I/O operations.

void ap_kill_timeout (request_rec *r)

ap_kill_timeout() cancels the pending timeout. You should be sure to call this
function before your handler exits to avoid the risk of the alarm going off during
a subsequent part of the transaction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void ap_block_alarms (void)
void ap_unblock_alarms (void)

These two functions are used to block off sections of code where you do not
want an alarm to occur. After a call to ap_block_alarms(), the pending timeout is
blocked until ap_unblock_alarms() is called.

ap_block_alarms();

... critical section ...

ap_unblock_alarms();

10.6.8 Status Code Constants

The various status codes that handlers might want to return are defined in httpd.h. In
addition to the Apache-specific status codes OK, DECLINED, and DONE, there are
several dozen HTTP status codes to choose from.

In addition to the constants, Apache provides some handy macros for testing the
range of a status code. Among other things, these macros can be used to check the
status code returned by a subrequest (as described in the next section).

int ap_is_HTTP_INFO (int status_code)

Returns true if the status code is greater than or equal to 100 and less than
200. These codes are used to flag events in the HTTP protocol that are neither
error codes nor success codes.

int ap_is_HTTP_SUCCESS (int status_code)

Returns true if the status code is greater than or equal to 200 and less than
300. This range is used for HTTP success codes, such as HTTP_OK.

int ap_is_HTTP_REDIRECT (int status_code)

Returns true if the status code is greater than or equal to 300 and less than
400. This range is used for redirects of various sorts, as well as the
HTTP_NOT_MODIFIED result code.

int ap_is_HTTP_ERROR (int status_code)

Returns true for any of the HTTP error codes, which occupy the range greater
than or equal to 400.

int ap_is_HTTP_CLIENT_ERROR (int status_code)

Returns true if the status code is greater than or equal to 400 and less than
500, which is the range reserved for client errors such as HTTP_NOT_FOUND.

int ap_is_HTTP_SERVER_ERROR (int status_code)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns true if the status code is greater than or equal to 500 and less than
600, which are used for server errors such as
HTTP_INTERNAL_SERVER_ERROR.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

10.7 Server Core Routines

We now turn to less frequently used calls that are part of the Apache C-language API.
These calls allow you to create custom error handlers, to create and manipulate
subrequests, and to write formatted error messages to the log file.

10.7.1 The Subrequest API and Internal Redirects

The subrequest API can be used to ask Apache "what if" questions. A subrequest
acts just like an ordinary request, except that the response phase is never actually
run. The earlier phases, including the URI translation handler and the MIME type
checker, are run as usual, and you can use their output to do such things as
translating URIs into filenames.

A special case of a subrequest is an internal redirect, in which the current content
handler discontinues processing the currently requested URI and tells Apache to
return a different local URI instead. The content handler that eventually gets run is not
necessarily the same as the one that invoked the internal redirect, although you can
arrange for this to happen with ap_internal_redirect_handler().

These routines are declared in the header file http_request.h.

int ap_is_initial_req (request_rec *r)

This function returns a true value if the current request is the initial one. It will
return false for handlers invoked as the result of subrequests or internal
redirects.

if(!ap_is_initial_req(r)) {
 return DECLINED;
}

The Perl API provides a method called is_main() which returns true for initial
requests and for requests triggered by internal redirects but not for subrequests.
Although there is no direct equivalent in the C API, you can get the same
information by examining the main field of the request record. If it is NULL, then
the current request is the main one.

if (r->main != NULL) {
 return DECLINED; /* don't handle subrequests */
}

You might wish to declare a macro like the following:

#define is_main(r) (r->main == NULL)

The Perl API also defines a method called last() which returns the last request
in a subrequest chain. This can be useful in logging handlers for recovering the
status code of the last subrequest. A corresponding call is not defined in the C
API but can be easily reproduced by the following function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static request_rec *last(request_rec *r)
{
 request_rec *last;
 for(last=r; last->next != NULL; last=last->next) {
 continue;
 }
 return last;
}

request_rec *ap_sub_req_lookup_uri (const char *uri, const request_rec *r)

The ap_sub_req_lookup_uri() function creates a subrequest from the given URI,
returning the resulting request record as the function result. You can then
examine the request record to retrieve the URI's filename, MIME type, or other
information. The following example shows how you can use a subrequest to
translate a URI into a physical pathname:

request_rec *subr = ap_sub_req_lookup_uri(uri, r);
char *filename = subr->filename;

request_rec *ap_sub_req_lookup_ file (const char *file, const request_rec *r)

This call behaves similarly to ap_sub_req_lookup_uri(), except that the first
argument is a filename rather than a URI and that Apache skips the URI
translation phase while processing the subrequest. This example uses a
subrequest to fetch the MIME type of the file given in filename:

request_rec *subr = ap_sub_req_lookup_file(filename, r);
char *mime_type = subr->content_type;

It isn't necessary that the specified file actually exist in order to get useful
information with ap_sub_req_lookup_ file(). For example, the default MIME type
lookup operation depends only on the filename suffix, not on the contents of the
file.

void ap_destroy_sub_req (request_rec *r)

When you are through with a subrequest, you should release the memory
occupied by its data structures by passing the subrequest record to
ap_destroy_sub_req(). If you forget to do this, the subrequest will be
deallocated anyway when the main transaction is complete.

ap_destroy_sub_req(subr);

int ap_run_sub_req (request_rec *r)

If you have already created a subrequest using ap_sub_req_lookup_uri() or
ap_sub_req_lookup_ file(), you can run its content handler by calling
ap_run_sub_req(). This is sometimes used by modules that implement server-
side include systems in order to incorporate a CGI script's output into the HTML
page. The function will return the status code of the subrequest's content
handler.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's the definition of a utility function called include_virtual(), which creates a
subrequest, runs it, then destroys it:

static int include_virtual(request_rec *r, char *uri)
{
 int status = OK;
 request_rec *subr = ap_sub_req_lookup_uri(uri, r);
 status = ap_run_sub_req(subr);
 ap_destroy_sub_req(subr);
 return status;
}

And here's how include_virtual() might be used:

int status = include_virtual("/footers/standard_footer.html", r);

void ap_internal_redirect (const char *new_uri, request_rec *r)

The ap_internal_redirect() method will cause Apache to create a new request
from the indicated URI and then run it. The effect is for Apache to send the
client a different URI than the one originally requested. Unlike a formal redirect
(in which Apache sends the browser a 301 or 302 redirect status code), the
browser is not informed that this substitution has taken place.

The content handler for the new URI is not necessarily the same as the content
handler that generated the redirect. Apache will determine which content
handler to run by examining the new URI's MIME type and applicable
configuration directives, just as if the browser had requested the URI directly.

ap_internal_redirect("/new/place", r);

After recalling this function, your handler should return without further
processing the request.

void ap_internal_redirect_handler (const char *new_uri, request_rec *r)

If you wish to redirect to a new URI but continue to use the current content
handler, call ap_internal_redirect_handler() instead of the previous function.

ap_internal_redirect_handler("/new/place", r);

10.7.2 The Cleanup API

As explained in Chapter 3, cleanup handlers are code subroutines that Apache
invokes after the transaction is finished. These are usually used by modules to clean
up data structures that could not be allocated from resource pools, such as device
drivers and database handles, but can also be used for other tasks, such as deferring
logging until after the transaction is completed (see Chapter 7 for a discussion of this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

logging until after the transaction is completed (see Chapter 7 for a discussion of this
technique).

Cleanup handlers use a different calling convention than that used by phase
handlers. A cleanup handler takes a single void* argument and returns no function
result. Its function prototype looks like this:

void cleanup_handler (void *data)

The data argument is provided for your convenience as a way to pass runtime
information to the cleanup handler. It can be a pointer to any data structure of your
choosing, or NULL if you don't care to pass any information. As we discuss later, the
data argument is specified when you install the cleanup handler using
ap_register_cleanup().

One common trick is to pass a pointer to the current request record so that the
cleanup handler has access to information about the transaction. In the examples that
follow, we use a cleanup handler that simply prints a message to standard error
indicating that it's been called:

static void my_cleanup(void *data)
{
 request_rec *r = (request_rec *)data;
 fprintf(stderr, "process %d all done with %s\n", (int)getpid(), r->uri);
}

Apache can accommodate an unlimited number of cleanup handlers, although few
modules will need more than one. All cleanup functions are declared in the header file
alloc.h.

void ap_register_cleanup (pool *p, void *data, void (*plain_cleanup) (void *), void
(*child_cleanup) (void *))

To install a cleanup handler, call ap_register_cleanup(). It takes four arguments:
a pool pointer (usually the one stored in the request record), a block of module-
specific data to pass to the routine, and two function pointers to cleanup
handlers. The first function pointer is the one you will usually use. It points to the
cleanup handler to be called when the transaction is terminated. The second
function pointer is only used when your module forks a child process and you
need a routine to perform cleanup before the child terminates, for example,
closing an open file inherited from the parent process. Since it is highly unusual
for a module to fork, you will ordinarily pass the "do nothing" routine
ap_null_cleanup for this argument. Always be sure to use ap_null_cleanup
rather than NULL.

In the following example, we install my_cleanup() as the cleanup handler and
arrange for it to be passed a copy of the current request record when it runs:

ap_register_cleanup(r->pool, (void *)r, my_cleanup, ap_null_cleanup);

void ap_kill_cleanup (pool *p, void *data, void (*cleanup)(void *))

Should you need to unregister a cleanup function before it runs, pass the
address of the routine and its data block to ap_kill_cleanup(). Both the routine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

address of the routine and its data block to ap_kill_cleanup(). Both the routine
and the data block must match the values passed to ap_register_cleanup() in
order for the removal to take effect.

ap_kill_cleanup(r->pool, (void *)r, my_cleanup);

void ap_run_cleanup (pool *p, void *data, void (*cleanup)(void *))

If you need to run a cleanup immediately, you can do so by calling this routine.
The cleanup will be unregistered after it is run so that it is not run again during
the ordinary cleanup period. It is unlikely that you will need to use this function,
since it is easy enough to invoke the cleanup function directly.

10.7.3 Custom Response Handlers

As described in Chapters Chapter 3 and Chapter 4 and Chapter 6, Apache
provides an API for creating custom error handlers. Modules can arrange for Apache
to take special action when a handler returns a particular status code. Possible
actions include displaying a static string, invoking a local URI, or redirecting to a
remote URI. This is the mechanism that underlies the ErrorDocument directive.

As of Version 1.3.2, the Apache C-language API allows you to install a custom
response handler from within a handler by calling the ap_custom_response()
function, which is defined in the http_core.h header file. Here is the function's
prototype:

void ap_custom_response (request_rec *r, int status, char *string);

r is, as usual, the current request record. status contains the status code that you
wish to intercept, selected from among the symbolic constants defined in httpd.h. The
last argument, string, can be a simple text message for Apache to display when the
indicated error occurs, a remote URI, in which case Apache generates an external
redirect, or a local URI, for which Apache generates a transparent internal redirect.

Apache distinguishes between these three possibilities by looking at the first few
characters of the string. If it begins with a double quote mark, it is assumed to be a
simple message string (the quote is stripped from the message before displaying it).
Otherwise, if the string looks like a full URL (determined by calling ap_is_url()),
Apache takes it to be an external URL. Finally, if the string begins with a forward
slash, Apache assumes the string to be a local URI. If the string doesn't satisfy any of
these criteria, then it is again treated as a simple text message.

Here is an example of using ap_custom_response() to set a text message to be
displayed when authentication fails:

ap_custom_response(r, HTTP_UNAUTHORIZED, "sorry, I don't know you.");

And here is an example that will generate an internal redirect to the Perl script
server_error_handler.pl when any sort of internal server error occurs:

ap_custom_response(r, HTTP_INTERNAL_SERVER_ERROR,
 "/perl/server_error_handler.pl");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "/perl/server_error_handler.pl");

The next example will redirect the client to another site if an
HTTP_METHOD_NOT_ALLOWED error is raised:

ap_custom_response(r, HTTP_METHOD_NOT_ALLOWED,
 "http://www.w3.org/pub/WWW/Protocols/rfc2068/rfc2068");

If you wish to use custom response handlers to pass information from the original
request onward to the new request, there are a number of techniques that you can
use to preserve headers, cookies, and other information. See Section 4.6.2 and
Section 6.5 for a discussion of these techniques and their practical application. The
main point to recall is that outgoing HTTP headers stored in the request record's
headers_out field are not sent to the browser on an error, nor are they preserved
across internal redirects. The contents of the err_headers_out table, however,
have both characteristics.

10.7.4 Error Logging

At server startup time, Apache reopens the standard error file descriptor to the
ErrorLog file.[4] If configured, each virtual server can also have its own error log.
Modules can write messages to the error log in a simple way just by writing directly to
standard error.

[4] When native syslog support is enabled, the stderr stream will be redirected to /dev/null !

However, the simple way is less than desirable because it leaves a bare string in the
error log, with no indication of the time or date that the error occurred or which module
left the message. Apache's error-logging API avoids these problems by providing
module writers with two functions, ap_log_rerror() and ap_log_error(), both of which
write nicely formatted error messages to the error log. In addition to a timestamp and
a message, optional flags allow modules to include the name and line number of the
C source code file where the error occurred as well as the contents of the system
errno variable.

As of Version 1.3, Apache supports the notion of a message severity level. In this
scheme, which should be familiar to users of the Unix syslog system,[5] each
message is assigned one of eight severities that range from high (APLOG_EMERG) to
low (APLOG_DEBUG). A log level setting, set by the webmaster with the configuration
directive LogLevel , controls which messages actually get sent to the log file. For
example, if LogLevel is set to warn, only messages with severity APLOG_WARN or
higher will be written to the log file. Messages at a lower priority will be ignored. This
facility allows your module to write lots and lots of debugging messages at a low
severity level. During module development, you can set LogLevel to a low level in
order to see the debugging messages. Later you can raise the log level so that the
debugging messages are suppressed on the production server.

[5] In fact, the error log API maps directly to syslog when native syslog support is enabled. See the Apache
documentation on the ErrorLog directive for details on enabling native syslog support.

All logging constants and routines are declared in http_log.h:

void ap_log_error (const char *file, int line, int level, const server_rec *s, const char
*fmt, ...)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void ap_log_rerror (const char *file, int line, int level, const request_rec *r, const char
*fmt, ...)

ap_log_rerror() and ap_log_error() are the two main entry points for the Apache
error log API. These calls have many arguments, and C programmers might
want to define some macros in order to save keystrokes. A couple of examples
of this technique are given at the end of this section.

The first two arguments are the filename and line number where the error
occurred. Most modules will want to use the APLOG_MARK macro here. It uses
the C compiler __FILE__ and __LINE__ tokens to automatically pass this
information. The third argument, level, is the severity level at which to record the
message. level should be selected from the list of symbolic constants given
later. The severity level is actually a bit mask; by setting other bits in the mask,
you can adjust other logging options, as we describe later. The fourth argument
is different for the two calls. For ap_log_error(), it is the server_rec, ordinarily
obtained from r->server. For ap_log_rerror(), it is the request record itself, r.
Internally, the logging API uses the server record to find the error log's FILE*
for writing, or it passes messages to the syslog() function if native syslog
support is enabled. The fifth argument, fmt, is a sprintf()-style format string. It,
and the variable number of arguments that follow it, are passed to sprintf() to
generate the message written to the log file.

if (!(fh = ap_pfopen(r->pool, cfg->config_file, "r"))) {
 ap_log_error(APLOG_MARK, APLOG_EMERG, r->server,
 "Cannot open configuration file %s.", cfg->config_file);
 return HTTP_INTERNAL_SERVER_ERROR;
}

One difference between ap_log_error() and ap_log_rerror() is that the latter
function can optionally write the error message to the notes table under a key
named error-notes. This message can then be retrieved and displayed by
ErrorDocument handlers and other error processors. The message is only
written to the notes table if the message severity level is warn or higher, and
there is not already an error-notes entry in the notes table. Another
difference is that ap_log_error() includes the client's dotted IP address in the
formatted error message.

void ap_log_reason (const char *reason, const char *fname, request_rec *r)

It is so common to encounter a system error while opening a file or performing
I/O on the system that a special routine is provided in the API. ap_log_reason()
takes a character string describing the problem, the name of the file that was
involved in the error, and the current request record. It is also common to use
this function to log unsuccessful attempts to access protected documents, since
the remote hos t's name is incorporated into the error message as well.

Here's a typical example of using ap_log_reason() and the line that it writes to
the log file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ap_log_reason("Can't open index.html", r->uri, r);

[Tue Jul 21 16:30:47 1998] [error] access to /
failed for w15.yahoo.com, reason: Can't open index.html No such file
or directory

Internally, ap_log_reason() is just a frontend to the following call:

ap_log_error(APLOG_MARK, APLOG_ERR, r->server,
 "access to %s failed for %s, reason: %s",
 file,
 ap_get_remote_host(r->connection, r->per_dir_config, REMOTE_NAME),
 reason);

The level flag passed to ap_log_error() and ap_log_rerror() should be one of the
severity level constants listed below, possibly logically ORed with either of the
constants APLOG_NOERRNO or APLOG_WIN32ERROR.

APLOG_NOERRNO

By default, the logging API will include the contents of the system errno
variable in the message. This feature is sometimes useful, as when you log an
error that results from a failed system call, and sometimes not useful at all (and
may in fact lead to misleading messages since errno is not reset by successful
calls). Combine the severity level with APLOG_NOERRNO to suppress the
automatic inclusion of errno.

ap_log_rerror(APLOG_MARK, APLOG_NOERRNO|APLOG_DEBUG, r,
 "The requested URI was %s", r->uri);

APLOG_WIN32ERROR

This constant, available on Win32 platforms only, will make Apache log the
value returned by the GetLastError() system call in addition to the value of
errno from the standard C library.

APLOG_EMERG

This severity level indicates that an emergency condition has occurred. It should
be reserved for problems that render the server unusable.

ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, r->server,
 "Cannot find lock file. Aborting.");

APLOG_ALERT

This level is intended for problems that require immediate attention.

APLOG_CRIT

This logs messages at a level intended for severe problems that require
immediate attention.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

APLOG_ERR

This logs the message at the error severity level, intended for use with
noncritical errors that nevertheless require someone's attention.

ap_log_error(APLOG_MARK, APLOG_ERR, r->server,
 "Could not open file", r->filename);

APLOG_WARN

The warn level is one step less severe than error and is intended for warnings
that may or may not require attention.

APLOG_NOTICE

notice messages are used for normal but significant conditions.

ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, r->server,
 "Cannot connect to master database, using backup.");

APLOG_INFO

The info severity level is used for informational messages issued for nonerror
conditions.

APLOG_DEBUG

The lowest severity of all is debug, used for issuing messages during the
development and debugging of a module.

ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_DEBUG, r->server,
 "Filename=%s,uri=%s,mtime=%d,",
 r->filename, r->uri, r->finfo.mtime);

If the ap_log_rerror() and ap_log_error() calls are too verbose for your tastes, we
recommend that you create a few preprocessor macros for frequently used
combinations. For example:

#define my_error(mess) ap_log_error(APLOG_MARK,\
 APLOG_NOERRNO|APLOG_ERROR,\
 r->server, mess)

#define my_debug(mess) ap_log_error(APLOG_MARK,\
 APLOG_NOERRNO|APLOG_DEBUG,\
 r->server, mess)

Now you can log simple error messages this way:

my_error("Can't find lock file. Aborting.");

10.7.5 The Piped Log API

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache Version 1.3.0 introduced reliable piped log support, which allows your module
to send log data to a running program.[6] If the program happens to die, it will be
automatically restarted. Internally, this API is used when processing log file directives
that begin with the | (pipe character). Everything following the pipe character is
treated as a program to be run. After the program is launched, log entries are sent to
the program on its standard input.

[6] Reliable piped log support was not available on Win32 platforms at the time this was written.

You will probably not need to use the piped log routines because this functionality is
already handled in a generic way by Apache's mod_log_config module. However, if
you wish to support this feature in a custom logging module of your own, these calls
are available for your use.

The main data structure used by the piped log API is the piped_log record, defined
in http_log.h. This data structure should be treated as an opaque data structure. Use
ap_open_piped_log() to open a pipe to a new process, ap_piped_log_read_fd() and
ap_piped_log_write_fd() to obtain file descriptors that you can use to read and write
from the process, and ap_close_piped_log() to close the pipe when you're through.

piped_log *ap_open_piped_log (pool *p, const char *program)

Given a resource pool p and the path to an executable program,
ap_open_piped_log() will launch the program, open a bidirectional pipe to it,
and return a piped_log pointer if successful or NULL if not.

You should make this call during the module or child initialization phases. This
will avoid the overhead of opening and closing the pipe for each request. If you
open the pipe at module initialization time, the subprocess will be run as root,
but there will be only one copy running. If you open the pipe during child
initialization, it will run as the httpd user, but there will be one copy of the
subprocess running for each child. It's your call which to use.

Here's an example of opening a log file specified by the module-specific
configuration record cfg. If the initial character of the filename is the pipe
symbol, the code opens it as a piped command. Otherwise, it opens it as a
normal file. For simplicity, we've omitted error checking from this example.

if(*cfg->log_file == '|') {
 /* open as a command pipe */
 piped_log *pl = ap_open_piped_log(p, cfg->log_file + 1);
 cfg->log_fd = ap_piped_log_write_fd(pl);
}

else {
 /* open as normal file */
 cls->log_fd = ap_popenf(p, cfg->log_file, flags, mode);
}
if (!cls->log_fd) {
 ... raise some sort of error...

Some of the routines in this example are described in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void ap_close_piped_log (piped_log *pl)

This function closes a previously opened piped log. Conveniently, this function
will be called at pool destruction time if you don't call it yourself.

int ap_piped_log_write_ fd (piped_log *pl)

ap_piped_log_write_ fd() returns a file descriptor that you can use to write to the
logging process using the standard write() library call. Typically, you will write
some form of accounting or status information, but the contents of the
information you send are entirely up to you. Because all writing is done through
a file descriptor, the same code routines that write to plain text files can be used
to write to the pipe.

int ap_piped_log_read_ fd (piped_log *pl)

ap_piped_log_read() returns a file descriptor that you can use to read from the
logging process with the standard read() library call. It is far more usual to write
to a logging process than to read from one, but you can do this if the process
provides status information, for instance. If you both read and write from the
process, beware of deadlock situations in which both your module and the
logging process are waiting for the other.

10.7.6 Authorization and Authentication Routines

The last core routines we'll consider are those used for access control, authentication,
and authorization. If you are familiar with the Perl API from Chapter 6, you'll find no
surprises here.

These routines are declared in http_core.h unless otherwise specified:

int ap_allow_options (request_rec *r)

The ap_allow_options() call returns a bit mask containing the contents of the
Perl-directory Options directive. You can logically AND this bit mask with a set
of symbolic constants in order to determine which options are set. For example,
the following code fragment checks whether ExecCGI is active for the directory
containing the currently requested document:

if(!(ap_allow_options(r) & OPT_EXECCGI)) {
 ap_log_reason("Options ExecCGI is off in this directory",
 $r->filename, r);
 return HTTP_FORBIDDEN;
}

The options constants are as follows:

Constant Meaning
OPT_INDEXES The Indexes option is set.
OPT_INCLUDES The Includes option is set.
OPT_SYM_LINKS The SymLinks option is set.

The ExecCGI option is set.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OPT_EXECCGI The ExecCGI option is set.
OPT_UNSET (See the description that follows.)
OPT_INCNOEXEC The IncludeNoExec option is set.
OPT_SYM_OWNER The SymLinksIfOwnerMatch option is set.
OPT_MULTI The MultiViews option is set.

Also available are the constants OPT_NONE, for no options set (this is defined
as zero), and OPT_ALL, for all but the MultiViews option set.

OPT_UNSET corresponds to a bit that is initially set to 1 in the options flag but is
not otherwise used. If no absolute assignment to the Options directive has been
made, then this bit will remain set; otherwise, it will be unset. In other words, you
can test this bit to determine whether only additive and subtractive assignments
to Options have been made. In a directory with this Options directive, the
OPT_UNSET bit will be true:

Options +ExecCGI -Indexes

However, in a directory with this directive, the bit will be false:

Options ExecCGI

As Commander Spock would say, "Fascinating."

const char *ap_auth_name (request_rec *r)

If authentication is configured for the currently requested document or directory,
ap_auth_name() will return the name of the current authentication realm, as
defined by the AuthName directive. If no realm is currently defined, this function
will return NULL.

Note that it is quite possible for the current request to have an authentication
realm without authentication actually being active. For example, there may be
no requires directive in the directory configuration.

const char *auth_name = ap_auth_name(r);

const char *ap_auth_type (request_rec *r)

This call returns the type of authentication configured for the current file or
directory or NULL if none. The current possibilities are Basic and Digest.

const char *auth_type = ap_auth_type(r);

if(strcasecmp(auth_type, "basic")) {
 ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARN, r->server,
 "%s can't handle AuthType %s", __FILE__, auth_type);
 return DECLINED;
}

Although the information returned by ap_auth_type() seems redundant with the
contents of the connection record's ap_auth_type field, there is an important
difference. ap_auth_type() returns the authentication scheme configured for the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

difference. ap_auth_type() returns the authentication scheme configured for the
current directory, whereas the connection record's ap_auth_type field returns
the authentication scheme only if authentication is actually in use. To determine
whether authentication is active, you should only trust the connection record's
field.

int ap_get_basic_auth_pw (request_rec *r, const char **pw)

If the browser provided password authentication in making its request, the
ap_get_basic_auth_pw() call will return the password. You pass the function the
request record in r and the address of a character pointer in pw. If successful,
the function will return a result code of OK and place a copy of the password in
pw. Otherwise, the function will return one of the result codes DECLINED,
HTTP_INTERNAL_SERVER_ERROR, or HTTP_UNAUTHORIZED. DECLINED is
returned when the current request isn't for a directory that is protected by Basic
authentication. HTTP_INTERNAL_SERVER_ERROR can occur when the
authorization realm directive is missing. Finally, HTTP_UNAUTHORIZED is
returned if the browser fails to provide a password or attempts to use the wrong
authentication scheme.

This call is typically used by authentication handlers to recover the user's
password. The username can be retrieved from the connection record's user
field. You should then do something with the two values to validate them.

const char *sent_pw = NULL;
char *user;
int ret = ap_get_basic_auth_pw(r, &sent_pw);
if(ret != OK) {
 return ret;
}

user = r->connection->user;
...

void ap_note_basic_auth_ failure (request_rec *r)
void ap_note_digest_auth_ failure (request_rec *r)
void ap_note_auth_ failure (request_rec *r)

(Declared in the header file http_protocol.h.) If authentication is required for the
current directory, but the browser did not provide the required information, these
three variants set the HTTP authentication gears in motion by sending an
"Authentication Required" message to the browser.

ap_note_basic_auth_failure() and ap_note_digest_auth_failure() are used for
Basic and Digest authentication schemes, respectively. The generic
ap_note_auth_failure() call will dispatch to one of those two routines based on
which type of authentication the current directory is configured to use.

We can now write the skeleton for username/password authentication. In this
example, check_auth() is some routine that you provide to check that the login
name and password are valid. Replace this routine with a function that always
returns 1, and you have our Apache::AuthAny module from Chapter 6!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const char *sent_pw = NULL;
char *user = r->connection->user;
int ret = ap_get_basic_auth_pw(r, &sent_pw);
if (ret != OK) {
 return ret;
}
if(!(user && sent_pwd && check_auth(user, sent_pw)) {
 ap_note_basic_auth_failure(r);
 ap_log_reason("User did not authenticate", r->uri, r);
 return HTTP_UNAUTHORIZED;
}

const array_header *ap_requires (request_rec *r)

As we described in Chapter 6, after a successful authentication, Apache calls
the authorization handler to determine whether the authenticated user is
allowed access to the requested document. To do this, the authorization handler
needs to process any and all requires directives in the current directory
configuration. The ap_requires() call returns the contents of these directives in
predigested form.

The function result of ap_requires() is an array_header* containing a list of
require_line structs. The definition of this data type, as found in http_core.h,
is as follows:

typedef struct {
 int method_mask;
 char *requirement;
} require_line;

method_mask is an integer bitmask constructed from the request methods
listed in the current <Limit> directive, or -1 if no <Limit> section applies. The set
bit numbers correspond to the method numbers M_GET, M_POST, and so on.
For example, you could determine whether the first requirement applies to
POST requests with the following code fragment:

int isPost = 0 != (requirement[0].method_mask & (1 << M_POST));

requirement is a character string containing the exact text of the requires
directive. You will need to parse this text in order to determine what type of
requirement to apply.

Example 10.6 gives a short example of iterating over the ap_requires() array
and printing out the information it contains. You should be able to use this code
in a real authorization module by replacing the various print statements with
code that performs the actual authorization checks. For real-life examples, see
mod_auth, mod_auth_dbm, and the other standard authorization modules.

Example 10.6. Processing requires Directives

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static char *request_methods[] = {
 "GET","PUT","POST","DELETE","CONNECT","OPTIONS","TRACE",NULL
};

#define comma_or_newline(value) \
if(value) fprintf(stderr, ", "); \
else fprintf(stderr, "\n");

static void hello_util_requires_dump(request_rec *r)
{
 const array_header *requires = ap_requires(r);
 require_line *rq;
 int x;

 if (!requires) {
 fprintf(stderr,
 "requires: there are no requirements for this request\n");
 return;
 }

 rq = (require_line *) requires->elts;

 for (x = 0; x < requires->nelts; x++) {
 const char *line, *requirement;
 int i;

 fprintf(stderr, "requires: limited to request methods: ");
 for(i=0; request_methods[i]; i++) {
 if (rq[x].method_mask & (1 << i))
 fprintf(stderr, "%s ", request_methods[i]);
 }
 fprintf(stderr, "\n");

 line = rq[x].requirement;
 requirement = ap_getword(r->pool, &line, ' ');

 if (!strcmp(requirement, "valid-user")) {
 fprintf(stderr, "requires: any valid-user allowed here.\n");
 return;
 }

 if (!strcmp(requirement, "user")) {
 fprintf(stderr, "requires: allowed users: ");
 while (line[0]) {
 requirement = ap_getword_conf(r->pool, &line);
 fprintf(stderr, "`%s'", requirement);
 comma_or_newline(line[0]);
 }
 }

 else if (!strcmp(requirement, "group")) {
 fprintf(stderr, "requires: allowed groups: ");
 while (line[0]) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 while (line[0]) {
 requirement = ap_getword_conf(r->pool, &line);
 fprintf(stderr, "`%s'", requirement);
 comma_or_newline(line[0]);
 }
 }
 }
}

int ap_satisfies (request_rec *r)

The Satisfy directive determines whether a request for a URI that is protected
by both access control and authentication must pass through both phases
successfully or either one or the other. If Satisfy is set to all, all access control
and authentication tests must be passed successfully. In contrast, if the
directive is set to any, then the request will be allowed if any of the checks
returns OK.

Handlers involved with access control can gain access to this configuration
directive using the ap_satisfies() function. It returns one of the constants
SATISFY_ANY, SATISFY_ALL, or SATISFY_NOSPEC. The last constant
indicates that the directive wasn't present at all. Each of these constants, and
the declaration of ap_satisfies() itself, is found in http_core.h.

As an example, consider an access control handler that wants to write an error
log message when a user is denied access, but not when SATISFY_ANY is set,
because the user might still be allowed in during the authentication phase. It can
do the following:

if (return_value == HTTP_FORBIDDEN) {
 if (!(r->satisfies == SATISFY_ANY && ap_some_auth_required(r)))
 ap_log_reason("Client denied by server configuration", r->uri, r);
}
return return_value;

int ap_some_auth_required (request_rec *r)

The ap_some_auth_required() function can be used within any handler to
determine whether authentication is required for the requested document. If you
are writing a module that must always run with authentication enabled (such as
a password changing program), you can use this call to make sure that the
module is never inadvertently run without protection. For example:

if(!ap_some_auth_required(r)) {
 ap_log_reason("I won't go further unless the user is authenticated",
 r->uri, r);
 return HTTP_FORBIDDEN;
}

The next chapter shows you how to create configuration directives with the C API and
covers less frequently used parts of the C-language API.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Chapter 11. C API Reference Guide, Part II
The previous chapter covered the common parts of the C API, including the core
routines for handling requests, manipulating tables, and managing memory. This
chapter begins with a comprehensive guide to implementing configuration directives
in C. It then turns to less essential parts of the API, including utility routines for
parsing, routines for handling files, and functions for constructing and parsing URIs.

This chapter also covers several of the more esoteric aspects of the C API, such as
the interface to the MD5 digest function and techniques for opening pipes to
subprocesses.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

11.1 Implementing Configuration Directives in C

The C-language API allows modules to install their own configuration directives. The
directives' syntax and usage information are defined in a command_rec data
structure and processed by directive handler callback routines defined within the
module.

Whereas the configuration API is optional in Perl modules due to the catchall
PerlSetVar directive, C-language programmers don't have this luxury. You'll have to
create custom configuration directives in order to write any module that requires
runtime configuration information.

11.1.1 Overview

Modules are responsible for managing their own configuration data. There are two
general types of configuration data: data that apply to a particular server or virtual
host and data that apply to a directory or URI. A module can maintain both server-
specific and directory-specific configuration information or just one or the other,
depending on its needs. Because there may be dozens of virtual hosts and hundreds
of directories, the Apache API allows modules to juggle thousands of configuration
records. During configuration file processing, Apache will call your module's
configuration allocation and processing routines at the right time and in the right order
to create the configuration data. Then, at request time, Apache will choose the correct
configuration record to return to your handler when the handler requests it.

The work of creating and maintaining configuration records is done in several steps.
In the first step, the module is given an opportunity to allocate storage for its private
configuration settings and to create a reasonable set of defaults, if it chooses. The
content of the configuration data is entirely private to your module. Apache sees it
only as an opaque void*.

During the second step, which occurs during configuration file processing, the
module's directives are parsed and passed back to your code for processing, along
with the initialized configuration settings from the previous phase. There is one
directive handler for each custom directive that your module declares. The directive
handler will alter the configuration block in some way to record the meaning of the
directive. Typically the handler will change the contents of a field or add an entry to a
table.

The third step is the mysterious-sounding "merging" process. The idea is that
configuration information is often nested. For example, a particular directive could
appear in the main part of the configuration file, in a <VirtualHost> section, in a
<Directory> section, and in a .htaccess file. When the directive appears in a nested

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Directory> section, and in a .htaccess file. When the directive appears in a nested
scope, your module needs to handle the potential contradiction in some way, either
by letting the nested directive take precedence over the parent directive or by
merging the contents of the two somehow. Apache handles this process by calling
your merge routines. These routines take the base configuration (the configuration
that belongs to the parent scope) and the new configuration (the configuration that
belongs to the nested section) and merge them into a new configuration block that
combines them both.

The last step actually occurs during the transaction. Handlers that need access to
their module's per-server or per-directory configuration settings request it from
Apache. The ap_get_module_config() API function is able to perform a quick, one-
step lookup of your module's configuration data relevant to the current transaction, no
matter how many configuration blocks were constructed during server startup.

11.1.2 Creating and Merging Configuration Data Blocks

Your module declares its intent to maintain configuration information by filling in one
or more of the slots in the module record labeled config creator or config merger.
There are four such slots: one each for functions to create per-directory and per-
server configuration settings and one each for merging per-directory and per-server
data. The four functions have the following prototypes:

void *create_dir_config(pool *p, char *dir)
void *merge_dir_config(pool *p, void *base_conf, void *new_conf)
void *create_server_config(pool *p, server_rec *s)
void *merge_server_config(pool *p, void *base_conf, void *new_conf)

The create_server_config() function is an opportunity for the module to allocate per-
server configuration data. It is passed a resource pool and a server_rec server
structure. It may, if it chooses, allocate a data structure from within the resource pool,
initialize it, and return it to Apache as a void*.

create_dir_config() is similar, except that it is called to create per-directory
configuration information (directives contained within <Directory>, <Location>, or
.htaccess files). In this case, the subroutine is called with a resource pool and the
name of the current directory or URI. The routine may, if it chooses, allocate a data
structure for the per-directory information and return it to Apache as a void*.

As a concrete example, consider a "traffic cop" module that regulates the flow of
traffic on a server. It has two configuration settings: one which sets the maximum
speed limit on the server (in bits per second, say) and one which contains a list of
domains that have "right-of-way" through the server and can fetch documents at a
higher maximum speed. This module could store the information in the following per-
server configuration record:

typedef struct {
 int speed_limit;
 table *right_of_way;
} traffic_server_config;

The following definition of traffic_create_server_config() allocates the storage for the
per-server configuration information and sets up appropriate defaults. speed_limit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

per-server configuration information and sets up appropriate defaults. speed_limit
is set to 55 (whatever that means in this context!) and the right_of_way field is
initialized to point to a new empty table.

static void *traffic_create_server_config (pool *p, server_rec *s) {
 traffic_server_config *cfg =
 (traffic_server_config *)ap_pcalloc(p, sizeof(traffic_server_config));
 cfg->speed_limit = 55;
 cfg->right_of_way = ap_make_table(p, 0);
 return (void *)cfg;
}

This initial data block will be passed back to your module's directive handlers as a
void* when the time comes to process a directive. The handler should typecast the
pointer back to the correct data type, then make the appropriate change to the
affected field.

A create_dir_config() routine will look almost identical to this, but instead of receiving
a server_rec in the second argument, it receives a string containing the path to the
relevant directory or URI.

Later on in the process, Apache may be called upon to process a directive that needs
to be merged into the parent configuration. You can define up to two such merge
routines. The merge_server_config() routine is called at server startup time to merge
directives in <VirtualHost> blocks with the configuration for the parent server. It
receives a pointer to a resource pool, a pointer to the parent server configuration, and
a pointer to the child server configuration. The merge routine's job is to create a new
configuration structure that combines the two and to return it to Apache as a void*.

merge_dir_config() is similar, but it happens at request time and operates on two per-
directory structures: the parent directory's configuration and the current directory's
configuration. It is expected to merge the two and return a new per-directory
configuration structure that combines the configurations in some sensible way.

For example, here is a plausible server merge routine for the traffic cop configuration.
We want to overwrite the speed_limit field so that the current virtual host's setting
supersedes that of the base host. However, instead of allowing the virtual host's
right_of_way settings to supersede those of the parent server, we merge the two
using ap_overlay_tables() :

static void *traffic_merge_server_config (pool *p, void* base, void* new) {
 traffic_server_config *merged =
 (traffic_server_config*)ap_pcalloc(p, sizeof(traffic_server_config));
 traffic_server_config *parent = (traffic_server_config*)base;
 traffic_server_config *child = (traffic_server_config*)new;

 merged->speed_limit = child->speed_limit ?
 child->speed_limit : parent->speed_limit;
 merged->right_of_way = ap_overlay_tables(p, parent->right_of_way,
 child->right_of_way);
 return (void*)merged;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

If your module does not define any merge routines, then Apache will use the
configuration of the most recent server or directory configuration, ignoring any
directives which previously have been defined for a block's ancestors. If your module
defines no create_server_config() or create_dir_config() routine, then it will have no
runtime configuration blocks. However, this doesn't mean that the module can't
maintain any configuration information at all; it can still maintain some state in static
variables. However, this information will be global to the module, rather than server-
specific or directory-specific. This rarely works out the way you want it, nor is it
thread-safe.

Rather than having the create_server_config() and create_dir_config() fill in the
configuration records' fields with default values, it is often useful to have the two
routines fill in the configuration fields with explicit UNSET values. This allows you to
distinguish between fields that are unset and fields that just happen to have been set
to the default value. It also simplifies merging because the assignment logic now
becomes the following:

merged->attr = base->attr == UNSET ? base->attr : new->attr;

There is one major trap in the current Apache configuration API. If your module
depends on per-server records and <VirtualHost> sections are in use, then at least
one of your module's configuration directives must be present in the <VirtualHost>
section or your module's create_server_config() routine will never be called. As a
result, your module will have no chance to create its per-server configuration before
its handlers are called at transaction time. There are two ways around this problem.
You can simply DECLINE to handle the transaction if the per-server configuration
block is NULL, or you can try to fill in the values of the configuration block on the fly.

11.1.3 The command_rec Structure

A module defines custom configuration directives using the config directive table slot
of its module structure. This table is a pointer to an array of command_rec records
having the structure shown in Example 11.1. Usually this array of command_rec
data is created as a static data structure in the module source code. The last element
of the array must be NULL. As a concrete example, here's a short command_rec
definition borrowed from mod_actions.c :

static const command_rec action_cmds[] =
{
 {"Action", add_action, NULL, OR_FILEINFO, TAKE2,
 "a media type followed by a script name"},
 {"Script", set_script, NULL, ACCESS_CONF | RSRC_CONF, TAKE2,
 "a method followed by a script name"},
 {NULL}
};

The action_cmds array declares two directives: Action, which is processed by a
handler routine named add_action(), and Script, processed by set_script().

Example 11.1. The command_rec Struct (from http_config.h)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef struct command_struct {
 const char *name; /* Name of this command */
 const char *(*func) (); /* Function invoked */
 void *cmd_data; /* Extra data, for functions which
 * implement multiple commands...*/
 int req_override; /* What overrides need to be allowed to
 * enable this command.*/
 enum cmd_how args_how; /* What the command expects as arguments */
 const char *errmsg; /* 'usage' message, in case of syntax errors */
} command_rec;

The various fields of the command_rec should look familiar to the Perl API covered in
Chapter 8:

char *name

This is the configuration directive's name, used within httpd.conf and the other
configuration files. The name may not contain whitespace but is otherwise
unrestricted in its contents. However, for consistency, you should stick to the
Apache convention of making directives short phrases with the initial letter of
each word capitalized. Apache processes directives in a case-insensitive
manner.

While processing configuration files, Apache employs a general parsing
algorithm. Whenever it hits what appears to be a configuration directive, it
searches through the internal module list and peeks into each module's
command table until it finds the definition it's looking for. At this point, the server
parses the directive's arguments and passes the information to the module's
designated configuration processing routine.

const char *(*func) ()

This is a pointer to a directive handler that Apache will call at runtime to process
the directive. The prototype for the callback is determined by the args_how
field described later in this section. Usually the callback simply sets a value in a
module-specific data structure.

void *cmd_data

If the module needs to share common information among multiple directive
handlers, the cmd_data field allows you to pass this information around as a
void* block. If non-NULL, Apache will pass the contents of cmd_data to the
directive handler at runtime in the cmd_parms argument. One use for this would
be a situation in which a single directive handler is responsible for processing
multiple directives. In order for the handler to determine which directive it's
responsible for, the module can leave the address of a distinguishing flag in the
cmd_data slot.

For an example of this technique, see how mod_autoindex implements the
various AddIcon* and AddAlt* directives.

int override

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This field indicates the scope of a directive. The scope is used by Apache to
determine what parts of the various configuration files and .htaccess files the
directive is allowed to appear in. override is a bit mask constructed from the
bitwise OR of a set of constants which we list presently.

enum cmd_how args_how

This field tells the server how it should parse the directive's arguments. It is any
of 12 constants that specify the number of mandatory and optional arguments
the directive takes. We explain the possibilities later in this section.

char *errmsg

This field contains a short usage message that is displayed when the
configuration parser encounters a syntax error in the directive. The usage
message is also put to good use by mod_info to display modules' current
configurations.

11.1.4 Constants for the override Field

Directives vary in their scope. Some affect low-level processes such as URI
translation or the proxy mechanism and therefore belong outside of <Directory> and
<Location> sections. Others control access to particular files and directories and only
make sense when located within a <Directory> or <Location> section. In other cases,
you might want the directive to be available to the webmaster but not allow it to
appear in .htaccess files where it would be available to HTML authors.

The override field of the command_rec controls the scope. It is the bitwise
combination of the following constants defined in http_config.h:

RSRC_CONF

The directive can only be present in the server .conf files, outside of
<Directory>, <Location>, and <Files> containers. Not allowed in any .htaccess
files or other files defined by the AccessFileName directive.

ACCESS_CONF

The directive can only be present in the server .conf files, inside <Directory>,
<Location>, and <Files> sections. It is not allowed in .htaccess files.

OR_AUTHCFG

The directive has the same scope as ACCESS_CONF, but it is also allowed in
.htaccess if AllowOverride AuthConfig is configured for the current directory.

OR_LIMIT

The directive has the same scope as ACCESS_CONF, but it is also allowed in
.htaccess if AllowOverride Limit is configured for the current directory.

OR_OPTIONS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The directive is allowed anywhere in the .conf files, and it is also allowed in
.htaccess if AllowOverride Options is configured for the current directory.

OR_FILEINFO

The directive is allowed anywhere in the .conf files, and it is also allowed in
.htaccess if AllowOverride FileInfo is configured for the current directory.

OR_INDEXES

The directive is allowed anywhere in the .conf files, and it is also allowed in
.htaccess if AllowOverride Indexes is configured for the current directory.

OR_ALL

The directive can be just about anywhere it wants to be.

OR_NONE

The directive cannot be overridden by any of the AllowOverride options.

11.1.5 Constants for the args_how Field

Directives differ in their syntax: the number of arguments they take, the number of
variable arguments, and the relationship of one argument to another. Apache can
handle the common syntaxes, preparsing the directive and its arguments, then
presenting the results to a directive handler of your own devising.

Eleven constants, all defined in http_config.h, specify various syntax parsing
strategies. If none of these satisfies your needs, a twelfth constant, RAW_ARGS, gives
you direct access to the text of the configuration file.

In the list that follows, we give the constant and the recommended function prototype
for the directive handler callback. All callbacks take at least two arguments. parms is
a pointer to a cmd_parms structure, from which various information about the server
and the status of the configuration process can be extracted. More details on the
cmd_parms structure are given in the next section.

mconfig is a generic pointer to the module-specific per-directory configuration data
that your module created earlier with its create_dir_config() routine. Since most
directive handlers work with pre-directory configuration records, this parameter is
provided as a convenience. Your handler will typecast this to its specific type, and
then set the appropriate fields. Directive handlers that operate on per-server
configuration data must manually retrieve the record using ap_get_module_config()
as described later.

On successful processing of the directive, the handler should return NULL. If an error
occurred while processing the directive, the routine should return a string describing
the source of the error. There is also a third possibility. The configuration directive
handler can return DECLINE_CMD, a constant defined in http_config.h as the string
\a\b. This is useful in the rare circumstance in which a module redeclares another

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\a\b. This is useful in the rare circumstance in which a module redeclares another
module's directive in order to override it. The directive handler can then return
DECLINE_CMD when it wishes the directive to fall through to the original module.

NO_ARGS

The directive takes no arguments at all, for example ClearModuleList.

Function prototype:

static const char *cmd_no_args
 (cmd_parms *parms, void *mconfig)

FLAG

The directive takes one of the string arguments On or Off. The parser converts
this argument to an integer Boolean, which it passes to the directive handler.
UseCanonicalName is one example of this type of directive.

Function prototype:

static const char *cmd_flag
 (cmd_parms *parms, void *mconfig, int flag)

TAKE1

The directive takes one argument only, e.g., Port.

Function prototype:

static const char *cmd_take1
 (cmd_parms *parms, void *mconfig, const char *arg)

Here is an example of a handler for a TrafficCopSpeedLimit directive that takes a
single argument indicating the maximum speed at which clients are allowed to fetch
documents:

static const char *traffic_speed_limit_cmd (cmd_parms *parms,
 void *mconfig, const char *arg)
{
 traffic_dir_config *cfg = (traffic_dir_config *)mconfig;
 traffic_server_config *scfg = (traffic_server_config *)
 ap_get_module_config(parms->server->module_config, &traffic_module);

 long int speed = strtol(arg, (char**)NULL, 10);

 if (speed < 0) {
 return "Speed must be a positive number";
 }
 if (speed == LONG_MAX) {
 return "Integer overflow or invalid number";
 }
 scfg->speed_limit = speed;
 return NULL;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

TAKE2

The directive takes exactly two arguments, e.g., SetEnv.

Function prototype:

static const char *cmd_take2
 (cmd_parms *parms, void *mconfig, const char *one, const char *two)

ITERATE

The directive takes a list of arguments, each of which has the same meaning,
as in IndexIgnore. The callback is invoked repeatedly to process each
argument.

Function prototype:

static const char *cmd_iterate
 (cmd_parms *parms, void *mconfig, const char *arg)

For example, a TrafficCopRightOfWay directive for the imaginary traffic cop module
might take a list of domains and hostnames that are allowed to retrieve documents as
fast as they wish. Assuming that the list of privileged hosts is maintained as the set of
keys in an Apache table, here's one way to record the configuration information:

static const char *traffic_rt_of_way_cmd(cmd_parms *parms,
 void *mconfig, const char *arg)
{
 traffic_dir_config *cfg = (traffic_dir_config *)mconfig;
 traffic_server_config *scfg = (traffic_server_config *)
 ap_get_module_config(parms->server->module_config, &traffic_module);

 ap_table_set(scfg->right_of_way, arg, "t");
 return NULL;
}

ITERATE2

The directive takes a mandatory first argument followed by a variable list of
arguments to be applied to the first. A familiar example is the AddIcon directive.
Apache will call the directive handler once for each member of the list, passing
the handler the mandatory argument and the current list item.

Function prototype:

static const char *cmd_iterate2
 (cmd_parms *parms, void *mconfig, const char *one, const char *two)

TAKE12

The directive will accept one or two arguments, as in the AuthUserFile directive.
If the optional second argument is absent, it will be passed as NULL to your
handler.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function prototype:

static const char *cmd_take12
 (cmd_parms *parms, void *mconfig, const char *one, const char *two)

TAKE3

The directive takes exactly three arguments.

Function prototype:

static const char *cmd_take3
 (cmd_parms *parms, void *mconfig,
 const char *one, const char *two, const char *three)

TAKE23

The directive takes two or three arguments, as in Redirect. Missing arguments
are passed to the directive handler as NULL.

Function prototype:

static const char *cmd_take23
 (cmd_parms *parms, void *mconfig,
 const char *one, const char *two, const char *three)

TAKE123

The directive takes one, two, or three arguments. Missing arguments are
passed to the directive handler as NULL.

Function prototype:

static const char *cmd_take123
 (cmd_parms *parms, void *mconfig,
 const char *one, const char *two, const char *three)

TAKE13

Continuing in the same vein, directives with this syntax take either one or three
arguments, but not two. Any missing arguments are passed as NULL.

Function prototype:

static const char *cmd_take13
 (cmd_parms *parms, void *mconfig,
 const char *one, const char *two, const char *three)

RAW_ARGS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This last constant is used for complex directives that the server won't be able to
parse on its own. Your module must implement the parsing itself. The
corresponding directive handler will be passed everything to the right of the
directive name as an unparsed string. It can then use ap_getword() to process
the string a word at a time.

The function prototype for RAW_ARGS directive handlers looks like this:

const char *cmd_raw_args
 (cmd_parms *parms, void *mconfig, const char *args)

RAW_ARGS can also be used to implement new container-style directives like <Limit>
and <Location> by reading directly from the configuration file using the
config_file field of the parms argument. See Section 11.2" later in this chapter
for details on reading from this field.

11.1.6 The cmd_parms Structure

A cmd_parms structure is the first argument passed to all directive handlers. It
contains a miscellaneous collection of information about the server configuration
process. You may never actually need to use this argument, but it is available for
certain advanced configuration tasks, such as implementing new container directives.

Example 11.2 gives the cmd_parms typedef, copied from http_config.h. The
extensive (and sometimes wry) comments have been condensed to save some
space.

Example 11.2. The cmd_parms Structure (from http_config.h)

typedef struct {
 void *info; /* argument to command from cmd table */
 int override; /* same as req_override */
 int limited; /* which methods are <Limit>ed */
 configfile_t *config_file; /* filehandle for reading from config stream */
 pool *pool; /* long-term resource pool */
 pool *temp_pool; /* short-term resource pool */
 server_rec *server; /* server record */
 char *path; /* directive path information */
 const command_rec *cmd; /* copy of command_rec entry */
 const char *end_token; /* end token for container directives */
} cmd_parms;

Here is a brief description of each of the fields in this structure:

void *info

This field contains a copy of the cmd_data field in the current directive's
command record. It is typically used for passing static information to the
directive handler.

int override

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The override field contains a copy of the args_how field in the current
directive's command record.

int limited

If the directive is contained within a <Limit> section, this field contains a bit
mask representing the method numbers that the section applies to. This bit
mask is constructed from the method numbers in the same way as described in
Section 10.7.6.

configfile_t *config_ file

This is a filehandle-like data type from which you can read raw text from the
current configuration file. See Section 11.2" later in this chapter for details on
using this field.

pool *pool

This is a resource pool that persists for the lifetime of the server. It is only
destroyed when the server is restarted or shutdown. If you wish to allocate truly
long-term configuration information, this is the pool to use.

pool *temp_pool

In contrast, this pool pointer is available only within the configuration phase
during server startup. It is destroyed before the first request is served. It is
handy for allocating space for scratch data that your module won't need after
configuration is completed.

server_rec *server

This field contains a pointer to the server_rec for the current (virtual) host.
You will need to use it when processing server-specific configuration directives
in order to retrieve the server-specific configuration record.

char *path

When the handler is called to process a directory-specific directive, the path will
contain whatever is the argument of the enclosing <Directory>, <Location>, or
<Files> section. For <Directory> and <Location>, this will be the path of the
current directory. For <Files>, it will be the text of the regular expression or glob
match. If the handler is being called to process a directive located in an access
control file, path will contain the path to the directory containing the .htaccess
file.

If the directive is called in a server context (either in the main part of a
configuration file or a <VirtualHost> section), path will be an empty string.

The path field is used by two frequent idioms. One idiom is used when you
want a directive to be available only in a per-directory context, such as a
.htaccess file. This effect is achieved by the following fragment of a directive-
processing routine:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static const char *foo_cmd(cmd_parms *parms, void *mconfig, ...)
{
 foo_dir_config *cfg = (foo_dir_config *)mconfig;
 if (parms->path == NULL || cfg == NULL) {
 return "foo: only valid in per-directory context";
 }
 ...

The other idiom is used when you want a directive to be valid for processing
directives located both inside and outside of <Directory> sections and to
operate on the per-server configuration record when outside a directory context
but on the per-directory record when inside a directory context:

static const char *foo_cmd(cmd_parms *parms, void *mconfig, ...)
{
 foo_dir_conf *dconf = (foo_dir_conf *)mconfig;
 foo_srv_conf *sconf = (foo_srv_conf *)
 ap_get_module_config(parms->server->module_config, &foo_module);

 if (parms->path == NULL) {
 ...configure sconf...
 }
 else {
 ...configure dconf...
 }
}

const command_rec *cmd

This field points back to the command_rec entry that describes the directive
that the current handler is responsible for.

const char *end_token

When Apache is processing the contents of a container section such as
<Directory>, end_token contains the character string that will terminate the
section, e.g., </Directory>. end_token is used internally by Apache's
ap_srm_command_loop() function (described later in this chapter) but is rarely,
if ever, needed by modules.

11.1.7 Accessing Module Configuration Data

The last piece in the puzzle is a way for modules to get access to their configuration
data at request time, from within a transaction phase handler. This need is satisfied
by the ap_get_module_config() call, and its rarely used sibling,
ap_set_module_config().

void * ap_get_module_config (void *conf_vector, module *m)

Modules can use ap_get_module_config() to fetch both per-directory and per-
server configuration data. To fetch per-directory data, pass the function the
contents of the request record's per_dir_config field as the first argument,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

contents of the request record's per_dir_config field as the first argument,
and the address of the module's own module structure as the second:

hello_dir_config *cfg = (hello_dir_config *)
 ap_get_module_config(r->per_dir_config, &hello_module);

The function result is a void*. For clarity you should cast it to correct type in
order to access the configuration data structure's fields, although technically
many C compilers allow you to assign void pointers to typed variables without
complaining. You'll see examples of both styles in the standard Apache
modules.

Do not make the mistake of using the request record's request_config field
here. The request_config is a spare (and usually empty) field that a module
can use to pass configuration information to subrequests. We'll touch on this
shortly.

To fetch per-server data, use the configuration vector stored in the server
record's module_config field as the first argument:

traffic_server_config *cfg = (traffic_server_config *)
 ap_get_module_config(r->server->module_config, &traffic_module);

In case you're wondering, and module_config fields are actually pointers to a
private Apache type known as the "configuration vector." However, this data
type doesn't contain any user-serviceable parts and so is presented to the
visible part of the API as an opaque void pointer.

void ap_set_module_config (void *conf_vector, module *m, void *val)

Modules don't often call this function directly, as it is called for them by the
internal configuration mechanism. When a new per-directory or per-server
module configuration is created, Apache saves a pointer to it in a vector of
configuration records, indexed by the address of your module. A copy of this
vector eventually appears in the server record's module_config field or in the
request record's per_dir_config field. Given a configuration vector, a
module pointer, and the configuration data block, ap_set_module_config()
appends the configuration information to the vector for later retrieval by
ap_get_module_config().

Some modules, such as mod_negotiation, don't bother with a per-server config
creator because their entire configuration consists of an "on" or "off" Boolean.
Instead, the directive handlers for these modules simply call
ap_set_module_config() to set their configuration block to NULL when their state
is off or non-NULL when their state is on. This is not a recommended practice!

Another use for ap_set_module_config() is to pass per-request configuration
data to subrequests via the request record's request_config field. This field
usually points to an empty configuration vector, but handlers are free to append
their own configuration data to the vector. The information is then available for
use by subrequests and by handlers for later phases of the transaction. Any
information stored in request_config is cleared out at the end of the current
transaction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example:

ap_set_module_config(r->request_config, &my_module, cfg_ptr);

To see some practical examples of the request_config field, examine the
source code for mod_include and mod_mime_magic, where the
request_config vector is used to stash information passed to subrequests.

To pass simple string messages between different phases and between
requests and subrequests, you might consider using the notes table instead.

11.1.8 "Hello World" with All the Bells and Whistles

To show you how custom configuration directives work in practice, let's go ahead and
add a directive handler table to the mod_hello example that we introduced long, long
ago in Chapter 2.

We start simply by adding the ability for users to configure mod_hello to say hello to
something other than "world," which you are surely tired of by now. Once we are done
making the required modifications to mod_hello.c, the message "Hello world" can be
changed to "Hello Dolly" by adding this line to any configuration file:

HelloTo Dolly

The complete source code for the modified mod_hello.c is shown in Example 11.3.

The first change over the original version is to declare the module structure at the top
of the source file. This is to allow the C compiler to handle forward references to the
structure within the calls to ap_get_module_config(). The new line immediately
follows the #include lines :

module hello_module;

Next, we declare a new data type to hold our per-directory configuration data,
hello_dir_config. Its definition has a single field only, a char* named to, which
will hold the argument of the HelloTo directive:

typedef struct {
 char *to;
} hello_dir_config;

Now we need to add a function to create a new per-directory structure. This will be
called each time Apache notices one of the module's directives in a directory or
location configuration section. Our function simply allocates a new
hello_dir_config structure and initializes the to field to contain the default string
world:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

world:

static void *hello_create_dir_config(pool *p, char *path)
{
 hello_dir_config *cfg =
 (hello_dir_config *)ap_pcalloc(p, sizeof(hello_dir_config));
 cfg->to = "world";
 return (void *)cfg;
}

Now we must modify the module structure so that the per-directory config creator slot
is occupied by our new per-directory config creator function:

hello_create_dir_config, /* per-directory config creator */

In this case, our configuration data is so simple that there's no need to write a
directory config merge function. In the absence of a merge function, Apache will use
the most specific configuration record, giving us the most recent value of HelloTo.
This is exactly what we want.

What's next? We need a function to actually handle the directive. Once Apache hits
the HelloTo directive, it will call this function, passing it a cmd_parms pointer, a
pointer to our newly initialized hello_dir_config structure, and the directive
argument. The hello_cmd_to() directive handling function is nice and simple. It makes
a copy of the argument and stores it into the configuration structure. We return NULL
to indicate that all went well:

static const char *hello_cmd_to(cmd_parms *parms,
 void *mconfig, char *to)
{
 hello_dir_config *cfg = (hello_dir_config *)mconfig;
 cfg->to = (char*)ap_pstrdup(parms->pool, to);
 return NULL;
}

In order for Apache to know about our new directive, we need to create a
command_rec table to register it with the module structure. The table declares a
single directive named HelloTo whose command handler is hello_cmd_to(). The
directive will be available anywhere in the configuration files and will take a single
argument. There's no static information to pass to the handler, so this field is NULL:

static command_rec hello_cmds[] =
{
 {
 "HelloTo", /* directive name */
 hello_cmd_to, /* config action routine */
 NULL, /* argument to include in call */
 OR_ALL, /* where available */
 TAKE1, /* arguments */
 "Who we say hello to, default is 'world'" /* description */
 },
 {NULL}
};

Notice that the command_rec table is terminated by a NULL record.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that the command_rec table is terminated by a NULL record.

We can now add the hello_cmds array to the command table slot of the module
structure. The complete module structure looks like this:

module MODULE_VAR_EXPORT hello_module =
{
 STANDARD_MODULE_STUFF,
 NULL, /* module initializer */
 hello_create_dir_config, /* per-directory config creator
 NULL, /* dir config merger */
 NULL, /* server config creator */
 NULL, /* server config merger */
 hello_cmds, /* command table */
 hello_handlers, /* [9] content handlers */
 NULL, /* [2] URI-to-filename translation */
 NULL, /* [5] check/validate user_id */
 NULL, /* [6] check user_id is valid *here* */
 NULL, /* [4] check access by host address */
 NULL, /* [7] MIME type checker/setter */
 NULL, /* [8] fixups */
 NULL, /* [10] logger */
 NULL, /* [3] header parser */
 NULL, /* process initialization */
 NULL, /* process exit/cleanup */
 NULL /* [1] post read_request handling */
};

The last thing we need to do is to actually put the configuration data to use. In the
content handler function hello_handler(), we add the following line to retrieve the
configuration structure:

hello_dir_config *cfg = (hello_dir_config *)
 ap_get_module_config(r->per_dir_config, &hello_module);

Now we change the call to rputs(), where we used to print out "Hello world", into a call
to rprintf() that uses the configuration information to print out a customized message:

rprintf(r, "say \"hello %s\"?\n", cfg->to);

Recompile the module, restart the server, and start saying "Hello" to whomever you
choose!

Example 11.3. mod_hello with a Custom Configuration Directive

/* file: mod_hello.c */

#include "httpd.h"
#include "http_config.h"
#include "http_core.h"
#include "http_log.h"
#include "http_protocol.h"

/* Forward declaration so that ap_get_module_config() can find us. */
module hello_module;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* Here's our per-directory configuration data */
typedef struct {
 char *to;
} hello_dir_config;

/* This function is called to create the default per-directory
 configuration */
static void *hello_create_dir_config(pool *p, char *path)
{
 hello_dir_config *cfg =
 (hello_dir_config *)ap_pcalloc(p, sizeof(hello_dir_config));
 cfg->to = "world";
 return (void *)cfg;
}

/* This is the handler for the HelloTo directive */
static const char *hello_cmd_to(cmd_parms *parms, void *mconfig, char *to)
{
 hello_dir_config *cfg = (hello_dir_config *)mconfig;
 cfg->to = (char *)ap_pstrdup(parms->pool, to);
 return NULL;
}

/* Make the name of the content handler known to Apache */
static command_rec hello_cmds[] =
{
 {
 "HelloTo", /* directive name */
 hello_cmd_to, /* config action routine */
 NULL, /* argument to include in call */
 OR_ALL, /* where available */
 TAKE1, /* arguments */
 "Who we say hello to, default is 'world'" /* description */
 },
 {NULL}
};

/* here's the content handler */
static int hello_handler(request_rec *r) {
 const char* hostname;
 hello_dir_config *cfg;

 r->content_type = "text/html";
 ap_send_http_header(r);
 hostname = ap_get_remote_host(r->connection,
 r->per_dir_config, REMOTE_NAME);
 cfg = (hello_dir_config *)
 ap_get_module_config(r->per_dir_config, &hello_module);

 ap_rputs("<HTML>\n", r);
 ap_rputs("<HEAD>\n", r);
 ap_rputs("<TITLE>Hello There</TITLE>\n", r);
 ap_rputs("</HEAD>\n", r);
 ap_rputs("<BODY>\n", r);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_rputs("<BODY>\n", r);
 ap_rprintf(r, "<H1>Hello %s</H1>\n", hostname);
 ap_rputs("Here we go again...", r);
 ap_rprintf(r, "\"Hello %s\"!\n", cfg->to);
 ap_rputs("</BODY>\n", r);
 ap_rputs("</HTML>\n", r);

 return OK;
}

/* Make the name of the content handler known to Apache */
static handler_rec hello_handlers[] =
{
 {"hello-handler", hello_handler},
 {NULL}
};

/* Tell Apache what phases of the transaction we handle */
module MODULE_VAR_EXPORT hello_module =
{
 STANDARD_MODULE_STUFF,
 NULL, /* module initializer */
 hello_create_dir_config, /* per-directory config creator */
 NULL, /* dir config merger */
 NULL, /* server config creator */
 NULL, /* server config merger */
 hello_cmds, /* command table */
 hello_handlers, /* [9] content handlers */
 NULL, /* [2] URI-to-filename translation */
 NULL, /* [5] check/validate user_id */
 NULL, /* [6] check user_id is valid *here* */
 NULL, /* [4] check access by host address */
 NULL, /* [7] MIME type checker/setter */
 NULL, /* [8] fixups */
 NULL, /* [10] logger */
 NULL, /* [3] header parser */
 NULL, /* process initialization */
 NULL, /* process exit/cleanup */
 NULL /* [1] post read_request handling */
};

11.1.9 Handy Built-in Directive Handlers

It is often the case that a configuration directive will end up simply setting the value of
a structure field without doing any additional work. There are a few directive handlers
built into the Apache API to handle such common cases.

Since it isn't possible for a built-in function to know anything about the structure of a
module-specific data type, these functions work by writing directly into the module's
configuration data using pointer arithmetic. You calculate the correct offset into the
structure using the XtOffsetOf() macro[1] and place this offset into the command
table's cmd_data field.

[1] The name XtOffsetOf() betrays this macro's origins. It was cut and pasted from the X Windows source code!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, in Example 11.3 the HelloTo directive simply sets a string pointer in
the to field of the hello_dir_config struct. Instead of writing our own handler to
accomplish this task, we can use the generic ap_set_string_slot() call, providing the
handler with the offset of the field:

static command_rec hello_cmds[] =
{
 {
 "HelloTo",
 ap_set_string_slot,
 (void *)XtOffsetOf(hello_dir_config, to),
 OR_ALL,
 TAKE1,
 "Who we say hello to, default is 'world'"
 },
 {NULL}
};

The generic directive handlers and the XtOffsetOf() macro are declared in
ap_config.h. The following generic directive handlers are available:

const char *ap_set_string_slot (cmd_parms *parms, char *ptr, char *arg)

This handler is used with the TAKE1 prototype to set a string in a configuration
structure. The provided offset must point to a char* field. See the previous
code snippet for an example of its usage.

const char *ap_set_string_slot_lower (cmd_parms *parms, char *ptr, char *arg)

This function works just the same as ap_set_string_slot() but changes the value
of the directive's argument to lowercase before setting the configuration field.

const char *ap_set_ flag_slot (cmd_parms *parms, char *ptr, int flag)

This function is intended to be used with a FLAG prototype. The structure offset
should point to an integer field. For example, if we wanted the ability to turn off
our "Hello world" message entirely, we could add a new int helloOn field to
the hello_dir_config struct and toggle it on and off with a SayHello
directive. An appropriate slot in the command table would then look like this:

{
 "SayHello",
 ap_set_flag_slot,
 (void *)XtOffsetOf(hello_dir_config, helloOn),
 OR_ALL,
 FLAG,
 "Should we say Hello, On or Off",
 },

The content handler could now test cfg->helloOn to determine whether to print out
that annoyingly repetitive message or not.

const char *ap_set_ file_slot (cmd_parms *parms, char *ptr, char *file)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last goodie is a built-in handler that works much like ap_set_string_slot()
but assumes the argument is a filename. If the filename is not absolute, it is first
resolved relative to the configured ServerRoot directory.

For example, let's say we wanted to read our "Hello" message from a file stored
on disk. We could add a char* to_file field to the configuration struct and
set it using a HelloToFile directive described by this table entry:

{
 "HelloToFile",
 ap_set_file_slot,
 (void *)XtOffsetOf(hello_dir_config, to_file),
 OR_ALL,
 TAKE1,
 "File containing hello message, absolute or server root relative."
 },

With this setup, both HelloToFile /etc/motd and HelloToFile conf/hello.conf would
work in a manner consistent with other Apache directives.

11.1.10 Accessing Other Modules' Configuration Information

Although it violates the principles of code encapsulation, there's no reason that one
module can't access another module's configuration information. The module simply
calls ap_get_module_config() with the address of the other module's module table in
order to obtain the desired configuration information. You'll need to know the correct
data type for the configuration data in order to do anything useful with it, of course.

If you happen to have a C module that needs to tap into the PerlSetVar configuration,
you can do so by following this example:

#include "modules/perl/mod_perl.h"

perl_dir_config *c = (perl_dir_config *)
 ap_get_module_config(r->per_dir_config, &perl_module);
table *perl_vars = c->vars;

mod_perl's per-directory configuration data is simply an Apache table. You can
access the PerlSetVar keys and values with ap_table_get() :

char *value = ap_table_get(perl_vars, "GuestbookFile");

Before interacting with another module, it is wise to determine if the module has been
configured with the server. There are a few functions that can be used to find out if a
module is accessible:

module *ap_ find_linked_module (const char *name)

This function will walk the internal list of loaded modules, comparing name with
the name field of each module structure. If a match is found, a pointer to the
module structure is returned, NULL otherwise. The IfModule configuration
directive is implemented using this function. Example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if(ap_find_linked_module("mod_proxy.c")) {
 /* mod_proxy is loaded */
}

int ap_exists_config_define (char *name)

Apache Version 1.3.1 added a -D command line switch that can be used to
pass the server parameter names for conditional configuration with the IfDefine
directive. These names exist for the lifetime of the server and can be accessed
at any time using the ap_exists_config_define() function. For example, both
Stronghold and mod_ssl 's module structures are defined in a file named
mod_ssl.c, so ap_ find_linked_module() cannot be used to differentiate between
the two. However, mod_ssl passes a -DSSL parameter to the server which can
be tested instead:

if(ap_exists_config_define("SSL")) {
 /* mod_ssl started the server with -DSSL */
}
else {
 ...
}

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

11.2 Customizing the Configuration Process

If Apache's standard configuration mechanism isn't sufficient for you, or you want to
do something wild like generating dynamic configuration files on the fly (as mod_perl
does in its <Perl> sections), you can reach into the internals of Apache's configuration
machinery and make it do what you want. This section covers the more obscure parts
of Apache's configuration system and shows you how to achieve advanced effects
such as redirecting the configuration process from your own data source.

11.2.1 The configfile_t Structure

Apache uses a clever abstraction for its configuration process. Instead of reading the
text of the configuration file directly from a FILE* or file descriptor, Apache
interposes the concept of an abstract "configuration stream," the configfile_t
pointer. Configuration streams are much like ordinary files, allowing your programs to
read from them character by character or line by line, and they are often attached to
real files. However, a configfile_t pointer may just as easily be attached to
another process or even to a set of internal subroutines that read configuration
information from a database. By creating a custom configfile_t pointer, your
module can dynamically generate configuration text to feed directly into the Apache
configuration machinery.

The configfile_t struct is defined in httpd.h. Its definition is reproduced in
Example 11.4. The most important fields are the first three, which are pointers to
callback functions that act like the getc(), fgets(), and close() standard I/O library
functions. These three functions are used to implement the routines that fetch data
from whatever file, process, or internal routine is attached to the data stream. The
fourth field, param, is a void* that holds stream-specific data. In a configuration
stream attached to a file, this might be the FILE*. In a stream attached to routines
that read data from a database, this might be the database handle. This field is
passed to the callback functions at runtime. The last two fields, name and
line_number, contain a description of the data source and the number of the last-
read line. These fields are used for reporting configuration syntax errors.

Example 11.4. The configfile_t Struct (from httpd.h)

typedef struct {
 int (*getch) (void *param); /* a getc()-like function */
 /* an fgets()-like function */
 void *(*getstr) (void *buf, size_t bufsiz, void *param);
 int (*close) (void *param); /* a close() function */
 void *param; /* the argument passed to getch/getstr/close */
 const char *name; /* the filename / description */
 unsigned line_number; /* current line number, starting at 1 */
} configfile_t;

Directive processing handlers can find a pointer to the currently active
configfile_t stream by examining the config_file field of the passed parms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

configfile_t stream by examining the config_file field of the passed parms
argument.

11.2.2 Using Configuration Streams

The API calls listed in this section allow you to open configfile_t pointers on files,
to read configuration data from them, and to create custom configfile_t streams
that fetch their data from arbitrary sources. For the most part, you should access the
configfile_t fields via the appropriate API functions listed in this section. Do not
attempt to modify any of the fields directly.

The following short code fragment shows the basic outline for opening a configuration
file, reading it line by line, then closing it:

char line[MAX_STRING_LEN];
configfile_t *cfg = ap_pcfg_openfile(p, file);

if(!cfg) {
 ap_log_error(APLOG_MARK, APLOG_CRIT, s,
 "unable to open config file %s", file);
 exit(1);
}

while (!(ap_cfg_getline(line, sizeof(line), cfg))) {
 if(*line == '#' || !*line) {
 continue; /* skip comments and empty lines */
 }
 /* ... do something with the line ... */
}

ap_pcfg_closefile(cfg);

configfile_t *ap_pcfg_openfile (pool *p, const char *name)

The most common type of configfile_t is one that is opened on an ordinary
text file. Examples include Apache's httpd.conf, srm.conf, and access.conf
configuration files.

The ap_pcfg_openfile() function takes a resource pool pointer and the path of
the configuration file to open. If successful, the function fills in the stream's
param field with a FILE* opened on the requested file and sets up the first
three fields so as to call back to functions that read data from the FILE*.[2]

[2] Actually, the FILE* is not stored directly into the param field. Instead, it is stored into an intermediate
data type called a poolfile_t that contains both the FILE* and a resource pool pointer. It is this
poolfile_t that gets stored into the param field.

If an error occurs while opening the file, the function logs an error message and
returns NULL.

int ap_cfg_getline (char *buf, size_t bufsize, configfile_t *cfp)

The ap_cfg_getline() function reads a line of data from the given
configfile_t pointer. The arguments consist of a character buffer, (buf), the
maximum size of the buffer (bufsize), and the configfile_t pointer itself. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

maximum size of the buffer (bufsize), and the configfile_t pointer itself. The
function fills the buffer with a line of configuration file data up to the maximum
specified in bufsize, and returns the number of characters read as the function
result. The function returns if no more data is left to read or if an error occurred.

The definition of a configuration file "line" is different from the usual one. The
returned line is stripped of leading and trailing whitespace, and runs of space
characters and other whitespace are replaced with single spaces, unless they
are enclosed within quotes. The ap_cfg_getline() function also correctly handles
continuation lines. Lines ending with the backslash character (\) are merged
into single lines, and the newlines replaced with single spaces. For each line
read, the configfile_t's line_number field is incremented by one.

int ap_cfg_getc (configfile_t *cfp)

The ap_cfg_getc() function acts like getc() to return a single character from the
configfile_t stream. The character is returned as the function result, or
EOF is returned when there is no more data to be read. The line_number field
is incremented when a linefeed character is seen, but continuation characters
do not receive special treatment.

int ap_cfg_closefile (configfile_t *cfp)

Once you are done reading from a configfile_t, call ap_cfg_closefile() to
close the file or release other resources.

configfile_t *ap_pcfg_open_custom (pool *p, const char *descr, void *param,
int(*getc_ func)(void*), void *(*gets_ func) (void*, size_t, void*), int(*close_ func)
(void*))

The ap_pcfg_open_custom() function can be used to open and initialize a new
configuration stream. The long prototype for this function may seem
intimidating, but it's actually straightforward. The first argument is a resource
pool pointer, typically the pool pointer located in the server_rec passed to
your module initialization handler. The second argument is a char* containing
a description of the stream for use in error reporting. The third argument,
param, is a generic pointer to any data you want to pass to the three callbacks.
The fourth, fifth, and sixth arguments are function pointers to the callbacks
themselves, corresponding to the routines that implement getc_ func(), fgets_
func(), and close_ func() behavior.

The prototypes for these three callbacks are as follows:

int getc_func (void *param);
int gets_func (void *buffer, size_t bufsize, void *param);
int close_func (void *param);

The getc_ func() should return a single character from the data stream. gets_
func() should return a whole line or the number of characters specified in
bufsize, whichever is smaller. close_ func() should do whatever is necessary
to close and deallocate the stream. Apache's core configuration routines only
use ap_cfg_getline() to read from configuration streams, so it is possible in
some circumstances to pass NULL for the getc_ func() pointer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

some circumstances to pass NULL for the getc_ func() pointer.

The only example of using ap_pcfg_open_custom() in the standard distribution
is in http_config.c, where it is used to process the Apache -C and -c command
line arguments. mod_perl also uses this function during processing of <Perl>
sections. You'll see an example of using this function shortly.

const char *ap_srm_command_loop (cmd_parms *parms, void *cfgvector)

The ap_srm_command_loop() function is the core of Apache's internal
configuration process. The function operates on the configuration stream
contained within the passed cmd_parms pointer and the vector of per-directory
module-specific configuration pointers contained within the server record's
lookup_defaults field. The return value is NULL if the entire configuration
stream was parsed correctly or a character string indicating the error if the loop
terminated prematurely because of a syntax error.

Within the function, Apache reads one line of configuration data after another
with ap_cfg_getline(). It parses each line into directive name and arguments,
searches through the modules' command tables for the handler for this
directive, then locates the correct per-directory configuration pointer within the
configuration vector. The command parameters, configuration pointer, and
directive arguments are then passed to the handler for processing.

If your module wishes to take over Apache's configuration process and configure
everything from information stored within, say, a database, it can do so. For instance,
your module might declare a ConfigFromDatabase directive that takes a single
argument, the data source from which to read the configuration information:

ConfigFromDatabase ODBC:ApacheConfig

Then, to implement this directive, the directive handler can be written like this:

static const char *cfg_from_db_cmd(cmd_parms *parms, db_cfg *cfg,
 char *dsn)
{
 db *dbhandle = db_open(dsn);
 configfile_t old_cfg = parms->config_file; /*save old config stream */

 parms->config_file =
 ap_pcfg_open_custom(p,
 "Database config",
 (void *)dbhandle,
 NULL,
 db_getline,
 db_close);

 char *errmsg = ap_srm_command_loop(parms,
 parms->server->lookup_defaults);
 if (errmsg) {
 ap_log_error(APLOG_MARK, APLOG_CRIT, s,
 "unable to config from database %s");
 return errmsg;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return errmsg;
 }
 ap_cfg_closefile(parms->config_file);

 parms->config_file = old_cfg; /* restore configuration stream */
 return NULL;
}

Your code has to supply the db_open() and db_close() routines to open and close the
database handle, as well as the db_getline() routine. This last routine must return
directive strings in exactly the same way they would appear in an ordinary
configuration file, such as:

Group apache

11.2.3 Writing Container Directives

cmd_parms->config_file is also useful for implementing your own container-
style directives. The logic is the same as described in Chapter 7. In the command
table, declare the start-section directive as a RAW_ARGS style directive and omit the
trailing > from the directive name. You should also declare the end-section directive
as a NO_ARGS command:

static command_rec traffic_cmds[] =
{
 {"<TrafficCopSpeedLimits", spdlimit_container_cmd, NULL,
 RSRC_CONF, RAW_ARGS, "a district speed limit container"},
 {"</TrafficCopSpeedLimits>", spdlimit_container_cmd_end, NULL,
 RSRC_CONF, NO_ARGS, "end of speed limit container"},
 { NULL },
};

The command handler for the start-section directive uses a three-argument prototype
similar to this one:

const char *spdlimit_container_cmd(cmd_parms *parms,
 void *mconfig, const char *args)

Everything to the right of the directive name will be passed in args as an
unprocessed string. This string will include the terminal > symbol, so the command
handler should be careful to strip off the character. Something like this will do the
trick:

char *endp = strrchr(args, '>');
if (!endp) {
 return "Syntax error: no terminal \">\" sign";
}
*endp = '\0';

The routine should then call ap_getword_conf() (or one of the other ap_getword_
variants) in order to parse out the arguments and take the appropriate actions:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const char *pos = args;
char *nextword;
while (*pos && (nextword = ap_getword_conf(parms->pool, &pos))) {
 /* do something */
}

Now the directive handler will process the contents of the container. It does this by
reading directly from parms->config_file until it finds the string that terminates
the container. For each line it reads, it parses out the line and takes whatever action
is appropriate:

char line[MAX_STRING_LEN];
while (!ap_cfg_getline(line, sizeof(line), parms->config_file)) {
 if (!strcasecmp(line, "</TrafficCopSpeedLimits>")) {
 break;
 }
 /* otherwise parse the line and do something with it */
}

(MAX_STRING_LEN, defined in httpd.h, is used for static string buffers in various parts
of the Apache core.)

Because this loop swallows the container terminator, Apache will normally never even
see it. The reason for including the end-section directive in the module's command
table is to catch configuration errors in which the end-section directive appears
without being preceded by a matching start-section directive. The handler for this
directive returns an error string:

static const char *spdlimit_container_cmd_end(cmd_parms *parms,
 void *mconfig)
{
 return "</TrafficCopSpeedLimits> without matching
 <TrafficCopSpeedLimits> section";
}

You can also write a completely generic end-section directive handler by taking
advantage of the information stored in parms:

static const char *end_section(cmd_parms *parms, void *mconfig) {
 return ap_pstrcat(parms->pool, parms->cmd->name,
 " without matching <", parms->cmd->name + 2, " section", NULL);
}

We now turn to utility functions for manipulating strings, URIs, dates, and files.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

11.3 String and URI Manipulation

The Apache API provides an extensive set of functions for parsing and manipulating
strings and URIs. Some of these routines are functionally identical to standard C
library functions but provide either a performance boost or enhanced safety. Other
routines provide completely new functionality.

11.3.1 String Parsing Functions

While Apache's library for parsing and manipulating character strings is not nearly as
rich as Perl's text processing abilities, it is a vast improvement over what's available in
the impoverished standard C library.

Most of the string parsing routines belong to the ap_getword* family, which together
provide functionality similar to the Perl split() function. Each member of this family is
able to extract a word from a string, splitting the text on delimiters such as whitespace
or commas. Unlike Perl split(), in which the entire string is split at once and the pieces
are returned in a list, the ap_getword* functions operate on one word at a time. The
function returns the next word each time it's called and keeps track of where it's been
by bumping up a pointer.

All of the ap_getword* routines are declared in httpd.h. The original declarations in
httpd.h refer to the second argument as char **line. In the function prototypes that
follow, we've changed the name of this argument to char **string in order to avoid
the implication that the argument must always correspond to a single line of text.

char *ap_getword (pool *p, const char **string, char stop)

ap_getword() is the most frequently used member of this family. It takes a
pointer to a char* and splits it into words at the delimiter given by the stop
character. Each time the function is called it returns the next word, allocating a
new string from the resource pool pointer p to hold the word. The char** is
updated after each call so that it points to the place where the previous call left
off.

Here is an example of using ap_getword() to split a URL query string into its
component key/value pairs. ap_getword() is called in two different contexts.
First it's called repeatedly to split the query string into words delimited by the &
character. Then, each time through the loop, the function is called once again to
split the word into its key/value components at the = delimiter. The names and
values are then placed into a table to return to the caller:

while(*data && (val = ap_getword(r->pool, &data, '&'))) {
 key = ap_getword(r->pool, &val, '=');

 ap_unescape_url((char *)key);
 ap_unescape_url((char *)val);
 ap_table_merge(tab, key, val);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

This API also makes parsing HTTP cookies a breeze. In the following code
fragment, util_parse_cookie() fetches the incoming HTTP cookies and parses
them into a table. The incoming HTTP Cookie field, if present, contains one or
more cookies separated by semicolons. Each cookie has the format
name=value1&value2&value3, where the cookie's name is separated from a
list of values by the = sign, and each value is, in turn, delimited by the &
character. The values are escaped using the URI escaping rules in much the
same way that CGI parameters are.

The code begins by retrieving the value of Cookie. It then splits it into individual
name=value pairs using the ap_get_word() function. After trimming whitespace,
ap_getword() is called once more to split each cookie into its name and value
parts and again a third time to split out the individual values. The values are
unescaped with ap_unescape_url(), and the parsed name and values are then
added to a growing table:

table *util_parse_cookie(request_rec *r)
{
 const char *data = ap_table_get(r->headers_in, "Cookie");
 table *cookies;
 const char *pair;
 if(!data) return NULL;

 cookies = ap_make_table(r->pool, 4);
 while(*data && (pair = ap_getword(r->pool, &data, ';'))) {
 const char *name, *value;
 if(*data == ' ') ++data;
 name = ap_getword(r->pool, &pair, '=');
 while(*pair && (value = ap_getword(r->pool, &pair, '&'))) {
 ap_unescape_url((char *)value);
 ap_table_add(cookies, name, value);
 }
 }

 return cookies;
}

char *ap_getword_nc (pool *p, char **string, char stop)

This function is exactly the same as ap_getword(), but it accepts a non-const
string pointer. Internally this routine shares all its code with ap_getword() and is
simply provided as a convenience for avoiding a typecast.

char *ap_getword_nulls (pool *p, const char **string, char stop)

Unlike ap_getword(), which will skip multiple occurrences of the stop delimiter,
ap_getword_nulls() preserves empty entries; that is, if the delimiter is a comma
and the string looks like this:

larry,,curly

Then ap_getword() ignores the empty entry between the first and last words,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then ap_getword() ignores the empty entry between the first and last words,
while ap_getword_nulls() will return an empty string the second time it is called.

char *ap_getword_nulls_nc (pool *p, char **string, char stop)

This function is the same as ap_getword_nulls(), except that it accepts a
nonconstant string pointer.

char *ap_getword_white (pool *p, const char **string)

Because it is so common for a string of words to be delimited by variable
amounts of whitespace, the ap_getword_white() function is provided for your
use. In this case the delimiter is any number of space characters, form-feeds,
newlines, carriage returns, or vertical tabs. This function is particularly useful for
processing whitespace-delimited configuration directives.

while(*data && (val = ap_getword_white(r->pool, &data))) {
 ...
}

char * ap_getword_white_nc (pool *p, char **string)

This function is exactly the same as ap_getword_white(), but it accepts a
nonconstant string pointer.

char *ap_getword_conf (pool *p, const char **string)

This function is much like ap_getword_white(), but it takes single- and double-
quoted strings into account as well as whitespace escaped with backslashes.
This is the routine used internally to process Apache's configuration files.

During processing, the quotes and backslashes are stripped from the word. For
example, given the following string, ap_getword_conf() will return Hello World
on the first pass and Example on the second:

"Hello World" Example

If a backslash were present before the space preceding Example, the entire
string would be treated as a single word and returned on the first call to
ap_getword_conf().

char *ap_getword_conf_nc (pool *p, char **string)

This function is exactly the same as ap_getword_conf(), but it accepts a
nonconstant string pointer.

char *ap_get_token (pool *p, const char **string, int accept_white)

This function is generally used to parse multivalued HTTP headers, which are
delimited by commas or semicolons. If the accept_white parameter is nonzero,
then whitespace will also be treated as a delimiter. Substrings enclosed in
quotes are treated as single words, and, like ap_getword_conf(), the quotes are
stripped from the return value. However, unlike ap_getword_conf(), backslashes
are not honored. Regardless of the setting of accept_white, leading and trailing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are not honored. Regardless of the setting of accept_white, leading and trailing
spaces are always stripped from the return value.

The mod_negotiation module makes heavy use of this function to parse Accept
and Accept-language headers.

Here is a typical example of using this function to extract all the words in the
string stored in data:

while(*data && (val = ap_get_token(r->pool, &data, 0))) {
 ...
}

int ap_ find_token (pool *p, const char *string, const char *tok)
int ap_ find_last_token (pool *p, const char *string, const char *tok)

These two functions are used for searching for particular tokens within HTTP
header fields. A token is defined by RFC 2068 as a case-insensitive word
delimited by the following separators:

separators = "(" | ")" | "<" | ">" | "@"
 | "," | ";" | ":" | "\" | <">
 | "/" | "[" | "]" | "?" | "="
 | "{" | "}" | SP | HT

ap_ find_token() will return true if any token in the specified string matches the
third argument, tok. ap_ find_last_token() will return true if the last token in the
string matches tok. Both functions match the token substring in a case-
insensitive manner. This is useful if you want to search HTTP headers that
contain multiple values, without having to parse through the whitespace,
quotation marks, and other delimiter characters on your own. For example, this
code fragment shows one way to detect the presence of a gzip token in the
HTTP header Accept-encoding :

if(ap_find_token(p, ap_table_get(r->headers_in, "Accept-encoding"), "gzip")) {
 /* we could do some on-the-fly compression */
}

11.3.2 String Comparison, Pattern Matching, and Transformation

The following group of functions provides string pattern matching, substitution, and
transformation operations similar to (but more limited than) Perl's built-in operators.

Most of these functions are declared in httpd.h. The few exceptions are listed
separately.

int ap_ fnmatch (const char *pattern, const char *string, int flags)

(Declared in the header file fnmatch.h.) The ap_ fnmatch() function is based on
the POSIX.2 fnmatch() function. You provide a search pattern, a string to
search, and a bit mask of option flags. The function will return if a match is
found, or the nonzero constant FNM_NOMATCH otherwise. Note that the function
result is the reverse of what you would expect. It is done this way in order to be
compatible with strcasecmp(). It may be less confusing to compare the function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

compatible with strcasecmp(). It may be less confusing to compare the function
result to the constant FNM_NOMATCH than to test for zero.

The pattern you provide is not a regular expression, but a shell-style glob
pattern. In addition to the wildcard characters * and ?, patterns containing both
string sets like foo.{h,c,cc} and character ranges like .[a-zA-Z]* are
allowed. The flags argument is the bitwise combination of zero or more of the
following constants (defined in fnmatch.h):

FNM_NOESCAPE

If set, treat the backslash character as an ordinary character instead of as
an escape.

FNM_PATHNAME

If set, allow a slash in string to match only a slash in pattern and never a
wildcard character or character range.

FNM_PERIOD

If this flag is set, a leading period in string must match exactly with a
period in pattern. A period is considered to be leading if it is the first
character in string or if FNM_PATHNAME is set and the period immediately
follows a slash.

FNM_CASE_BLIND

If this flag is set, then a case-insensitive comparison is performed. This is
an Apache extension and not part of the POSIX.2 standard.

Typically you will use ap_ fnmatch() to match filename patterns. In fact, this
function is used internally for matching glob-style patterns in configuration
sections such as FilesMatch and LocationMatch. Example:

if(ap_fnmatch("*.html", filename, FNM_PATHNAME|FNM_CASE_BLIND)
 != FNM_NOMATCH) {
 ...
}

int ap_is_ fnmatch (const char *pattern)

(Declared in the header file fnmatch.h.) This function returns true if pattern
contains glob characters, false otherwise. It is useful in deciding whether to
perform an ap_ fnmatch() pattern search or an ordinary string comparison.

if (ap_is_fnmatch(target)) {
 file_matches = !ap_fnmatch(filename, target, FNM_PATHNAME);
}
else {
 file_matches = !strcmp(filename, target);
}

int ap_strcmp_match (const char *string, const char *pattern)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Just to add to the confusion, ap_strcmp_match() provides functionality similar to
ap_ fnmatch() but only recognizes the * and ? wildcards. The function returns if
a match is found, nonzero otherwise. This is an older function, and there is no
particular reason to prefer it. However, you'll see it used in some standard
modules, including in mod_autoindex where it is called on to determine what
icon applies to a filename.

if(!ap_strcmp_match(filename, "*.html")) {
 ...
}

int ap_strcasecmp_match (const char *str, const char *exp)

ap_strcasecmp_match is the same as ap_strcmp_match but case-insensitive.

int ap_is_matchexp (const char *string)

This function returns true if the string contains either of the wildcard characters
* and ?, false otherwise. It is useful for testing whether a user-provided
configuration string should be treated as a pattern to be passed to
ap_strcmp_match() or as an ordinary string. Example:

if (ap_is_matchexp(target)) {
 file_matches = !ap_strcmp_match(filename, target);
}
else {
 file_matches = !strcmp(filename, target);
}

int ap_checkmask (const char *string, const char *mask)

(Declared in the header file util_date.h.) The ap_checkmask() function will
attempt to match the given string against the character mask. Unlike the
previous string matching functions, ap_checkmask() will return true (nonzero)
for a successful match, false (zero) if the match fails.

The mask is constructed from the following characters:

@

uppercase letter

$

lowercase letter

&

hex digit

#

digit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

~

digit or space

*

swallow remaining characters

x

exact match for any other character

For example, ap_parseHTTPdate() uses this function to determine the date
format, such as RFC 1123:

if (ap_checkmask(date, "## @$$ #### ##:##:## *")) {
 ...
}

Because it was originally written to support date and time parsing routines, this
function is declared in util_date.h.

int ap_ind (const char *s, char c)

This function is equivalent to the standard C library index() function. It will scan
the character string s from left to right until it finds the character c, returning the
location of the first occurrence of c, or -1 if the character is not found. Note that
the function result is the integer index of the located character, not a string
pointer as in the standard C function.

int ap_rind (const char *s, char c)

ap_rind() behaves like ap_ind(), except that it scans the string from right to left,
returning the index of the rightmost occurrence of character c. This function is
particularly useful for Hebrew and Arabic texts.

regex_t *ap_pregcomp (pool *p, const char *pattern, int cflags);
void ap_pregfree (pool *p, regex_t *reg);

Apache supports regular expression matching using the system library's regular
expression routines regcomp(), regexec(), regerror(), and regfree(). If these
functions are not available, then Apache uses its own package of regular
expression routines. Documentation for the regular expression routines can be
found in your system manual pages. If your system does not support these
routines, the documentation for Apache's regular expression package can be
found in the regex/ subdirectory of the Apache source tree.

We won't try to document the complexities of regular expression matching here,
except to remind you that regular expression matching occurs in two phases. In
the first phase, you call regcomp() to compile a regular expression pattern string
into a compiled form. In the second phase, you pass the compiled pattern to
regexec() to match the search pattern against a source string. In the course of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

regexec() to match the search pattern against a source string. In the course of
performing its regular expression match, regexec() writes the offsets of each
matched parenthesized subexpression into an array named pmatch[]. The
significance of this array will become evident in the next section when we
discuss ap_pregsub().

For your convenience, Apache provides wrapper routines around regcomp()
and regfree() that make working with regular expressions somewhat simpler.
ap_pregcomp() works like regcomp() to compile a regular expression string,
except that it automatically allocates memory for the compiled expression from
the provided resource pool pointer. pattern contains the string to compile, and
cflags is a bit mask of flags that control the type of regular expression to
perform. The full list of flags can be found in the regcomp() manual page.

In addition to allocating the regular expression, ap_pregcomp() automatically
installs a cleanup handler that calls regfree() to release the memory used by the
compiled regular expression when the transaction is finished. This relieves you
of the responsibility of doing this bit of cleanup yourself.

Speaking of which, the cleanup handler installed by ap_pregcomp() is
ap_pregfree(). It frees the regular expression by calling regfree() and then
removes itself from the cleanup handler list to ensure that it won't be called
twice. You may call ap_pregfree() yourself if, for some unlikely reason, you
need to free up the memory used by the regular expression before the cleanup
would have been performed normally.

char *ap_pregsub (pool *p, const char *input, const char *source, size_t nmatch,
regmatch_t pmatch[])

After performing a regular expression match with regexec(), you may use
ap_pregsub() to perform a series of string substitutions based on
subexpressions that were matched during the operation. The function is broadly
similar in concept to what happens in the right half of a Perl s/// operation.

This function uses the pmatch[] array, which regexec() populates with the
start and end positions of all the parenthesized subexpressions matched by the
regular expression. You provide ap_pregsub() with p, a resource pool pointer,
input, a character string describing the substitutions to perform, source, the
source string used for the regular expression match, nmatch, the size of the
pmatch array, and pmatch itself.

input is any arbitrary string containing the expressions $1 through $9.
ap_pregsub() replaces these expressions with the corresponding matched
subexpressions from the source string. $0 is also available for your use: it
corresponds to the entire matched string.

The return value will be a newly allocated string formed from the substituted
input string.

The following example shows ap_pregsub() being used to replace the .htm and
.HTM filename extensions with .html. We begin by calling ap_pregcomp() to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.HTM filename extensions with .html. We begin by calling ap_pregcomp() to
compile the desired regular expression and return the compiled pattern in
memory allocated from the resource pool. We specify flags that cause the
match to be case-insensitive and to use the modern regular expression syntax.
We proceed to initialize the pmatch[] array to hold two regmatch_t
elements. Two elements are needed: the first which corresponds to $0 and the
second for the single parenthesized subexpression in the pattern. Next we call
regexec() with the compiled pattern, the requested filename, the pmatch[]
array, and its length. The last argument to regexec(), which is used for passing
various additional option flags, is set to zero. If regexec() returns zero, we go on
to call ap_pregsub() to interpolate the matched subexpression (the filename
minus its extension) into the string $1.html, effectively replacing the extension.

regmatch_t pmatch[2];
regex_t *cpat = ap_pregcomp(r->pool, "(.+)\\.htm$", REG_EXTENDED|REG_ICASE);

if (regexec(cpat, r->filename, cpat->re_nsub+1, pmatch, 0) == 0) {
 r->filename = ap_pregsub(r->pool, "$1.html",
 r->filename, cpat->re_nsub+1, pmatch);
}

char *ap_escape_shell_cmd (pool *p, const char *string)

If you must pass a user-provided string to a shell command, you should first use
ap_escape_shell_cmd() to escape characters that might otherwise be
interpreted as shell metacharacters. The function inserts backslashes in front of
the potentially unsafe characters and returns the result as a new string.

Unsafe characters include the following:

& ; ` ' " | * ? ~ < > ^ () [] { } $ \n

Example:

char *escaped_cmd = ap_escape_shell_cmd(r->pool, command);

Do not rely only on this function to make your shell commands safe. The
commands themselves may behave unpredictably if presented with
unreasonable input, even if the shell behaves well. The best policy is to use a
regular expression match to sanity-check the contents of all user-provided data
before passing it on to external programs.

char *ap_escape_quotes (pool *p, const char *string)

This function behaves similarly to the previous one but only escapes double
quotes.

char *escaped_string = ap_escape_quotes(r->pool, string);

void ap_str_tolower (char *string)

This function converts all uppercase characters in the given string to lowercase
characters, modifying the new string in place.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ap_str_tolower(string);

char *ap_escape_html (pool *p, const char *string)

The ap_escape_html() function takes a character string and returns a modified
copy in which all special characters (such as > and <) are replaced with their
HTML entities. This makes the string safe to use inside an HTML page. For
example, after the following example is run, the resulting string will read
<h1>Header Level 1 Example</h1>:

char *display_html = ap_escape_html(p, "<h1>Header Level 1 Example</h1>");

char * ap_uuencode (pool *p, const char *string)

This function takes a string, base64-encodes it, and returns the encoded
version in a new string allocated from the provided resource pool. Base64 is the
algorithm used by the uuencode program (hence the function name) and is
widely used by the MIME system for packaging binary email enclosures.

char *encoded = ap_uuencode(p, encoded);

char *ap_uudecode (pool *p, char *string)

ap_uudecode() reverses the effect of the previous function, transforming a
base64-encoded string into its original representation.

char *decoded = ap_uudecode(p, encoded);

11.3.3 Type Checking Macros

Apache provides a set of wrappers around the standard character class macros found
in the ctype.h header file. The reason for these wrappers is to provide correct
behavior on systems that support 8-bit characters. Unfortunately, not all C libraries
are fully internationalized.

Even if you don't care about 8-bit support, it is a good idea to use the ap_ character
class macros instead of the standard equivalents because they guarantee
compatibility should locale support be added to Apache in the future.

These functions can be found in header file ap_ctype.h:

int ap_isalnum (int character)

Returns true if character is alphanumeric.

int ap_isalpha (int character)

Returns true if character is alphabetic.

int ap_iscntrl (int character)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns true if character is a control character.

int ap_isdigit (int character)

Returns true if character is a numeric digit.

int ap_isgraph (int character)

Returns true if character is any printable character except the space.

int ap_islower (int character)

Returns true for lowercase characters.

int ap_isprint (int character)

Returns true if character is printable.

int ap_ispunct (int character)

Returns true for a punctuation character (neither a space nor alphanumeric).

int ap_isspace (int character)

Returns true for whitespace characters.

int ap_isupper (int character)

Returns true for uppercase characters.

int ap_tolower (int character)

Returns the lowercase version of character.

int ap_toupper (int character)

Returns the uppercase version of character.

11.3.4 URI Parsing and Manipulation

In addition to the general string manipulation routines described above, Apache
provides specific routines for manipulating URIs. With these routines you can break a
URI into its components and put it back together again.

The main data structure used by these routines is the uri_components struct. The
typedef for uri_components is found in the util_uri.h header file and reproduced in
Example 11.5. For your convenience, a preparsed uri_components struct is
contained in every incoming request, in the field parsed_uri. The various fields of
the parsed URI are as follows:

char *scheme

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This field contains the URI's scheme. Possible values include http, https,
ftp, and file.

char *hostinfo

This field contains the part of the URI between the pair of initial slashes and the
beginning of the document path. It is often just the hostname for the request, but
its full form includes the port and the username/password combination needed
to gain access under certain protocols (such as nonanonymous FTP). Here's an
example hostinfo string that shows all the optional parts:

doug:xyzzy@ftp.modperl.com:23

char *user

The field contains the username part of the hostinfo field or an empty string if
absent.

char *password

This field contains the password part of the hostinfo field or an empty string if
absent.

char *port_str

This field contains the string representation of the port. You can fetch the
numeric representation from the port field.

char *path

This field corresponds to the path portion of the URI, namely everything after
the hostinfo. Neither the query string (the optional text that follows the ?
symbol) nor the optional #anchor names that appear at the ends of many
HTTP URLs are part of the path. It is equivalent to r->uri.

char *query

The query field holds the query string, that is, everything after the ? in the path
but not including the #anchor fragment, if any. It is equivalent to r->args.

char *fragment

This field contains the #anchor fragment, if any. The # symbol itself is omitted.

unsigned short port

port holds the port number of the URI, in integer form. For the same
information in text form, see port_str.

The other fields in the uri_components record are for internal use only and are not
to be relied on.

Example 11.5. The uri_components Data Type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef struct {
 char *scheme; /* scheme ("http"/"ftp"/...) */
 char *hostinfo; /* combined [user[:password]@]host[:port] */
 char *user; /* user name, as in http://user:passwd@host:port/ */
 char *password; /* password, as in http://user:passwd@host:port/ */
 char *hostname; /* hostname from URI (or from Host: header) */
 char *port_str; /* port string (integer representation is in "port") */
 char *path; /* the request path
 (or "/" if only scheme://host was given) */
 char *query; /* Everything after a '?' in the path, if present */
 char *fragment; /* Trailing "#fragment" string, if present */

 struct hostent *hostent;

 unsigned short port; /* The port number, numeric, NULL */
 valid only if port_str != NULL */

 unsigned is_initialized:1;

 unsigned dns_looked_up:1;
 unsigned dns_resolved:1;

} uri_components;

In addition to the uri_components record located in the request record's
parsed_uri field, you can access Apache's URI parsing and manipulation package
using a series of routines variously declared in httpd.h and util_uri.h:

int ap_unescape_url (char *url)

(Declared in the header file httpd.h.) This routine will unescape URI hex
escapes. The escapes are performed in place, replacing the original string.
During the unescaping process, Apache performs some basic consistency
checking on the URI and returns the result of this check as the function result
code. The function will return HTTP_BAD_REQUEST if it encounters an invalid
hex escape (for example, %1g), and HTTP_NOT_FOUND if replacing a hex
escape with its text equivalent results in either the character / or \0. If the URI
passes these checks, the function returns OK.

if (ap_unescape_url(url) != OK) {
 ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING,
 r->server, "bad URI during unescaping");
}

char *ap_os_escape_path (pool *p, const char *path, int partial)

(Declared in the header file httpd.h.) ap_os_escape_path() takes a filesystem
pathname in path and converts it into a properly escaped URI in an operating
system-dependent way, returning the new string as its function result. If the
partial flag is false, then the function will add a / to the beginning of the URI if
the path does not already begin with one. If the partial flag is true, the function
will not add the slash.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

char *escaped = ap_os_escape_path(p, url, 1);

int ap_is_url (const char *string)

(Declared in the header file httpd.h.) This function returns true if string is a fully
qualified URI (including scheme and hostname), false otherwise. Among other
things it is handy when processing configuration directives that are expected to
accept URIs.

if(ap_is_url(string)) {
 ...
}

char *ap_construct_url (pool *p, const char *uri, const request_rec *r)

This function builds a fully qualified URI string from the path specified by uri,
using the information stored in the request record r to determine the server
name and port. The port number is not included in the string if it is the same as
the default port 80.

For example, imagine that the current request is directed to the virtual server
www.modperl.com at port 80. Then the following call will return the string
http://www.modperl.com/index.html :

char *url = ap_construct_url(r->pool, "/index.html", r);

char *ap_construct_server (pool *p, const char *hostname, unsigned port, const
request_rec *r)

(Declared in the header file httpd.h.) The ap_construct_server() function builds
the hostname:port part of a URI and returns it as a new string. The port will not
be included in the string if it is the same as the default. You provide a resource
pool in p, the name of the host in hostname, the port number in port, and the
current request record in r. The request record is used to determine the default
port number only and is not otherwise involved in constructing the string.

For example, the following code will return www.modperl.com:8001:

char *server = ap_construct_server(r->pool, hostname, 8001, r);

unsigned short ap_default_port_ for_scheme (const char *scheme)

(Declared in the header file util_uri.h.) This handy routine returns the default
port number for the given URL scheme. The scheme you provide is compared
in a case-insensitive manner to an internal list maintained by Apache. For
example, here's how to determine the default port for the secure HTTPS
scheme:

unsigned short port = ap_default_port_for_scheme("https");

unsigned short ap_default_port_ for_request (const request_rec *r)

(Declared in the header file util_uri.h.) The ap_default_port_ for_request()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Declared in the header file util_uri.h.) The ap_default_port_ for_request()
function looks up the scheme from the request record argument, then calls
ap_default_port() to return the default port for that scheme. It is almost exactly
equivalent to calling ap_default_port_for_scheme(r-
>parsed_uri.scheme).

unsigned short port = ap_default_port_for_request(r);

struct hostent * ap_pgethostbyname (pool *p, const char *hostname)

(Declared in the header file util_uri.h.) This function is a wrapper around the
standard gethostbyname() function. The struct hostent pointer normally
returned by the standard function lives in static storage space, so
ap_pgethostbyname() makes a copy of this structure from memory allocated in
the passed resource pool in order to avoid any trouble this might cause. This
allows the call to be thread-safe.

int ap_parse_uri_components (pool *p, const char *uri, uri_components *uptr)

(Declared in the header file util_uri.h.) Given a pool pointer p, a URI uri, and a
uri_components structure pointer uptr, this routine will parse the URI and
place the extracted components in the appropriate fields of uptr. The return
value is either HTTP_OK (integer 200, not to be confused with the usual OK
which is integer 0) to indicate parsing success or HTTP_BAD_REQUEST to
indicate that the string did not look like a valid URI.

uri_components uri;
int rc = ap_parse_uri_components(p, "http://www.modperl.com/index.html", &uri);

char *ap_unparse_uri_components (pool *p, const uri_components *uptr, unsigned
flags);

(Declared in the header file util_uri.h.) The interesting
ap_unparse_uri_components() routine reverses the effect of the previous call,
using a populated uri_components record to create a URI string, which is
returned as the function result. The flags argument is a bit mask of options
that modify the constructed URI string. Possible values for flags include:

UNP_OMITSITEPART

Suppress the scheme and hostinfo parts from the constructed URI.

UNP_OMITUSER

Suppress the username from the hostinfo part of the URI.

UNP_OMITPASSWORD

Suppress the password from the hostinfo part of the URI.

UNP_REVEALPASSWORD

For security reasons, unless the UNP_REVEALPASSWORD bit is explicitly
set, the password part of the URI will be replaced with a series of X

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

set, the password part of the URI will be replaced with a series of X
characters.

UNP_OMITPATHINFO

If this bit is set, completely suppress the path part of the URI, including the
query string.

UNP_OMITQUERY

Suppress the query string and the fragment, if any. The following example
will re-create the URI without the username and password parts.

Suppress the query string and the fragment, if any. The following example
will re-create the URI without the username and password parts.

char *string = ap_unparse_uri_components(p, &uri,
 UNP_OMITPASSWORD|UNP_OMITUSER);

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

11.4 File and Directory Management

Apache provides routines for opening files, reading and writing to them, and closing
them. Some of these routines are wrappers around the standard operating system
calls in order to provide a compatibility layer for the Unix, Win32, and other ports.
Other functions are an improvement over their operating system equivalents because
they take advantage of Apache's memory management system.

11.4.1 Pathname Manipulation

These routines are handy for parsing strings that contain filenames and paths. See
the next section, Section 11.4.2," for functions that operate on files and directories
themselves.

These functions are all declared in httpd.h:

void ap_chdir_ file (const char *file)

Given a pathname in file, this peculiar little function identifies the directory part
and invokes chdir() to make it the current working directory. Here's an example
of calling the function on the request record's filename field in order to chdir()
to the directory that contains the requested file:

ap_chdir_file(r->filename);

int ap_os_is_path_absolute (const char *filename)

This function provides a portable test as to whether a filename is absolute or
not. On Unix systems, an absolute filename begins with a /, whereas under
Win32 systems, an absolute filename may begin with a drive letter, a colon
delimiter, and a / or \.

if(!ap_os_is_path_absolute(filename)) {
 ... must resolve the relative filename somehow ...

char *ap_make_ full_path (pool *p, const char *directory, const char *filename)

ap_make_ full_path() will concatenate directory and filename and return the
result. The function is smart about checking the directory string for a terminating
slash and automatically inserting one if needed.

int ap_is_directory (const char *path)

This function returns true if path exists and is a directory, false otherwise.

int ap_count_dirs (const char *path)

Given a pathname path, ap_count_dirs() counts the number of directories

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Given a pathname path, ap_count_dirs() counts the number of directories
contained in the path. This function merely counts the number of occurrences of
the slash character in the path. It doesn't actually check that any of the
directories exist.

void ap_no2slash (char *path)

It is easy to inadvertently introduce multiple slashes into pathnames when
concatenating directories and filenames. Although both the filesystem and URIs
are resistant to repeated slashes, you can use this function to make constructed
paths more aesthetic by folding multiple slashes into a single one. It changes
the provided pathname in place and does not return a function result.

The following example will remove the double-slash from the path
/home/httpd/docs//oops.html.

char *oops = ap_pstrdup(r->pool, "home/httpd/docs//oops.html");
ap_no2slash(oops);

char *ap_make_dirstr_prefix (char *prefix, const char *path, int n)

This highly specialized function will copy, at most, n leading directories found in
path into the character array at prefix, ensuring that prefix will terminate in a
slash. You must ensure that prefix is large enough to hold the resulting data—
potentially the length of path plus one extra byte for the string terminator. The
function returns a pointer to the end of prefix, in anticipation of your appending
more data (typically a filename) onto the end of the string.

The following example shows one way to make a copy of the path to the parent
directory of the currently requested file:

char* path = r->filename;
char* prefix = (char*)ap_palloc(r->pool, strlen(path)+1);
ap_make_dirstr_prefix(prefix, path, ap_count_dirs(path)-1);

In case this was less than crystal clear, here is an example input/output table:

path n prefix
/a/b/c 1 /
/a/b/c 2 /a/
/a/b/c 3 /a/b/
/a/b/c 4 /a/b/c
/a/b/c 5 /a/b/c

char *ap_make_dirstr_parent (pool *p, const char *filename)

This function returns a new string containing the parent directory in which
filename lives. This is a much easier way to accomplish the same thing as
the example given in the previous section, and probably a little faster as
well. ap_make_dirstr_parent() operates entirely on the string level. It
doesn't actually check that any of the directories exist.

char *dirname = ap_make_dirstr_parent(r->pool, r->filename);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

char *dirname = ap_make_dirstr_parent(r->pool, r->filename);

void ap_getparents (char *filename)

Passed a file path in filename, the ap_getparents() function strips out any
relative path components by removing references to the .. and .
directories. The stripping method follows the four parsing phases
described in RFC 1808. The operation is performed in place just like
ap_no2slash().

You should perform this operation before opening files based on user-
provided input. Otherwise, it might be possible for a malicious user to trick
your module into opening a file in a directory outside the document root.
(Microsoft Internet Information Server has been bitten by this bug several
times.)

By the time your handler finds the requested URI in the request record,
Apache has already passed it through ap_getparents(), so there is no
need to call the function a second time. However, you will still need to run
the function on any paths passed in fill-out forms and possibly on paths
entered in configuration variables as well.

11.4.2 Working with Files and Directories

Apache provides a series of wrappers around the C library routines that open and
close files and directories. The main purpose of these routines is to take advantage of
the resource pool API. Any files and directories that you open using the API calls will
be automatically closed and their data structures deallocated when the current
resource pool is destroyed.

These routines all live in alloc.h :

FILE *ap_pfopen (pool *p, const char *name, const char *fmode)

ap_pfopen() is a wrapper around the standard fopen() call. In addition to
ensuring that the FILE* is closed when the pool is destroyed, it provides some
internal compatibility code that ensures that the append (a) mode works the
same on all platforms.

In this example, the file indicated in r->filename is opened for reading:

FILE *fh = ap_pfopen(r->pool, r->filename, "r");

int ap_pfclose (pool *p, FILE *fh)

Although files opened with ap_pfopen() will be closed automatically for you
when the transaction is finished, you may close them sooner using ap_pfclose().
Be sure to use this call rather than the standard fclose() so that Apache will
know to cancel the scheduled cleanup.

ap_pfclose(r->pool, fh);

FILE *ap_pfdopen (pool *p, int fd, const char *fmode)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function works like the standard fdopen() call to create a new FILE*
attached to the indicated file descriptor. Like ap_pfopen(), the file is
automatically closed when the pool is cleaned up.

FILE *fh = ap_pfdopen(r->pool, fd, "r");

int ap_popenf (pool *p, const char *name, int flags, int mode)
int ap_pclosef (struct pool *p, int fd)

These calls are equivalent to the standard open() and close() calls. ap_popenf()
opens the indicated file and returns a file descriptor, or -1 if the file could not be
opened. ap_pclosef() closes the file and cancels the scheduled cleanup before
pool destruction.

int fd = ap_popenf(r->pool, r->filename, O_RDONLY, 0600);
read(fd, buffer, 1024);
ap_pclosef(fd);

void ap_note_cleanups_ for_ file (pool *p, FILE *fp)

If a module has opened a FILE* stream with a function other than ap_pfopen(),
it can use this function to ensure the file will be closed when the given pool is
destroyed.

FILE *fp = tmpfile();
ap_note_cleanups_for_file(r->pool, fp);

void ap_note_cleanups_ for_ fd (pool *p, int fd)

If a module has opened a file descriptor with a function other than ap_pfdopen(),
it can use this function to ensure the descriptor will be closed when the given
pool is destroyed.

int fd = open(tempfile, O_WRONLY|O_CREAT|O_EXCL|O_BINARY, 0622);
if (fd == -1) {
 ap_log_rerror(APLOG_MARK, APLOG_ERR, r,
 "error creating temporary file %s", tempfile);
 return HTTP_INTERNAL_SERVER_ERROR;
}
ap_note_cleanups_for_fd(r->pool, fd);

void ap_kill_cleanups_ for_ fd (pool *p, int fd)

If a file descriptor has been registered to be closed with ap_note_cleanups_ for_
fd(), this function can be used to unregister the cleanup.

ap_kill_cleanups_for_fd(r->pool, fd);

DIR *ap_popendir (pool *p, const char *name)
void ap_pclosedir (pool *p, DIR *d)

These functions correspond to the opendir() and closedir() calls. Like the other
functions in this section, directory handles allocated with ap_popendir() are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

functions in this section, directory handles allocated with ap_popendir() are
automatically closed and cleaned up for you when the pool is destroyed. You
can close the directory earlier with ap_pclosedir().

In this example, we check to see whether the requested filename is a directory.
If so, we open it as a directory rather than as a file.

if(S_ISDIR(r->finfo.st_mode)) {
 DIR *dh = ap_popendir(r->pool, r->filename);
 ...
 ap_pclosedir(r->pool, dh);
}

int ap_psocket (pool *p, int domain, int type, int protocol)
int ap_pclosesocket (pool *p, int sock)

ap_psocket() is a wrapper around the socket() system call. The socket is closed
when the pool is destroyed. The ap_pclosesocket() function closes a socket
previously opened with ap_psocket(), canceling the scheduled cleanup.

int sock = ap_psocket(p, PF_INET, SOCK_STREAM, IPPROTO_TCP);
...
ap_pclosesocket(p, sock);

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

11.5 Time and Date Functions

Several API calls give you access to Apache's routines for formatting and parsing
HTTP-compliant date strings. Also see the descriptions for ap_update_mtime() and
ap_set_last_modified() in Section 10.6.4, under Section 10.6.4."

The declarations for these functions are scattered among several header files,
including httpd.h, util_date.h, and http_request.h. In the following list we indicate
where the function can be found:

char *ap_ht_time (pool *p, time_t t, const char *fmt, int gmt)

(Declared in the header file httpd.h.) Given a resource pool, a time_t
timestamp, a character format, and a flag indicating whether or not to use GMT
(Greenwich Mean Time, also known as Universal Standard Time), this function
returns a character string containing the date. The character format uses the
same code as the standard C library strftime() function, with the addition of two
common extensions. The code %Z is substituted with the string GMT, and the
code %z is substituted with +0000. See the manual page for strftime() for other
codes you can use.

This example returns a string in the format Tue, 15 Sep 1998 14:36:31 GMT,
which happens to be the HTTP date format recommended by RFCs 822 and
1123.

char *str = ap_ht_time(p, time(NULL), "%a %d %b %Y %T %Z", 0);

time_t ap_parseHTTPdate (const char *date)

(Declared in the header file util_date.c.) Given a char* containing a date in
HTTP format, this routine parses the date and returns a time_t Unix
timestamp. This routine is flexible enough to correctly handle minor variations in
the date format, such as omitting the time zone and day of the week. Any text
that follows the time string is ignored.

Here's an example of converting the incoming If-modified-since header into a
timestamp. We then compare this timestamp to the requested file's last
modification date and return HTTP_NOT_MODIFIED if the file is not newer than
the browser's cached copy.

char *if_modified_since = ap_table_get(r->headers_in, "If-modified-since");
if (if_modified_since) {
 time_t secs = ap_parseHTTPdate(if_modified_since);
 if (secs <= r->mtime) {
 return HTTP_NOT_MODIFIED;
 }
}

See also ap_meets_conditions().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

struct tm *ap_get_gmtoff (int *tz)

(Declared in the header file httpd.h.) The ap_get_gmtoff() function calculates the
current local time and returns it as a tm* function result. The offset from GMT,
in minutes, is returned in the tz argument.

Here's an example borrowed from mod_rewrite, which it uses to write logging
timestamps in the format [14/Sep/1998:11:01:23 -0500].

static char *current_logtime(request_rec *r)
{
 int timz;
 struct tm *t;
 char tstr[80];
 char sign;

 t = ap_get_gmtoff(&timz);
 sign = (timz < 0 ? '-' : '+');
 if (timz < 0) {
 timz = -timz;
 }

 strftime(tstr, 80, "[%d/%b/%Y:%H:%M:%S ", t);
 ap_snprintf(tstr + strlen(tstr), 80-strlen(tstr), "%c%.2d%.2d]",
 sign, timz/60, timz%60);
 return ap_pstrdup(r->pool, tstr);
}

char *ap_get_time (void)

(Declared in the header file httpd.h.) This function returns a date/time string in
the format returned by the standard ctime() library call. Although this format is
not compliant with the recommended HTTP header format, it is somewhat more
concise and, for historical reasons, is used by the logging API for error log
timestamps. Do not use it for the Expires header field or other HTTP headers
that use dates. Use ap_gm_timestr_822() instead.

char *ctime_string = ap_get_time();

char *ap_gm_timestr_822 (pool *p, time_t sec)

(Declared in the header file httpd.h.) The unfortunately named function
ap_gm_timestr_822() returns a date/time string that is formatted according to
the RFC 822 SMTP specification. You can use this to create the outgoing
Expires or Date fields. The sec argument contains the timestamp you wish to
format.

In this example, we arrange for the outgoing document to expire 1 hour (3600
seconds) from the current time:

now = time(NULL);
ap_table_set(r->headers_out, "Expires", ap_gm_timestr_822(r->pool, now+3600))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ap_table_set(r->headers_out, "Expires", ap_gm_timestr_822(r->pool, now+3600))

time_t ap_tm2sec (const struct tm *t)

(Declared in the header file util_date.h.) The ap_tm2sec() function converts a
GMT tm structure into a timestamp, the number of seconds since the start of the
epoch. It is much faster than the standard equivalent mktime() function, and
unlike mktime(), ap_tm2sec() will always return a valid time_t() value, which
may be should an error occur.

time_t secs = ap_t2sec(&tm);

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

11.6 Message Digest Algorithm Functions

Apache includes a version of the MD5 Message Digest algorithm distributed as
freeware by RSA Data Security Inc. These routines provide the functionality of the
Perl MD5 module used in Chapters Chapter 5 through Chapter 7. In fact, both the
Apache and Perl MD5 implementations are derived from the same source code.

Although MD5 was originally incorporated into Apache to support Digest
Authentication, you can use it for whatever purpose you desire. As we've seen in
earlier chapters, MD5 turns out to be handy anywhere you need to quickly check the
authenticity of a file or message.

You will find all the data types and routines described in this section in header file
ap_md5.h.

void ap_MD5Init (AP_MD5_CTX *context)

To compute an MD5 checksum, you will initialize the algorithm with
ap_MD5Init(), add one or more rounds of data to it with ap_MD5Update(), and
retrieve the checksum with ap_MD5Final(). A "context" record, the
AP_MD5_CTX struct, keeps track of the state of the algorithm throughout this
process.

ap_MD5Init() takes a new, uninitialized context variable and initializes it so that
the algorithm is ready to use. You do not have to worry about what's in the
context struct. You can create it on the stack or allocate it from a resource pool:

AP_MD5_CTX context;
ap_MD5Init(&context);

void ap_MD5Update (AP_MD5_CTX *context, const unsigned char *input, unsigned
int inputLen)

Once the context is initialized, call ap_MD5Update() as many times as you need
to add data to the digest function. In addition to the context record, you provide
a character buffer in input and the length of the buffer in inputLen.

ap_MD5Update(&context, string, strlen(string));

void ap_MD5Final (unsigned char digest[16], AP_MD5_CTX *context)

When you are done adding data to the checksum, call ap_MD5Final(). This
signals the algorithm to flush its buffers and calculate the final digest. The digest
data (in binary form) will be returned in the 16 bytes of digest.

Here's one way to compute the checksum of the requested file. After retrieving
the digest in binary form, we transform it into a human-readable hexadecimal
string and return it:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AP_MD5_CTX context;
unsigned char buffer[1024];
unsigned char hash[16];
unsigned int len;
char *ptr, result[33];
int i;

FILE *fh = ap_pfopen(r->pool, r->filename, "r");
if (!fh) {
 return NULL;
}
ap_MD5Init(&context);
while ((len = fread(buffer, sizeof(unsigned char), 1024, fh)) >
 ap_MD5Update(&context, buffer, len);
}
ap_MD5Final(hash, &context);
for (i=0, ptr=result; i<16; i++, ptr+=2) {
 ap_snprintf(ptr, sizeof(result), "%02x", hash[i]);
}
*ptr = '\0';
return ap_pstrdup(r->pool, result);

The following functions are handy Apache extensions to the RSA routines. They
are found in util_md5.h.

char *ap_md5 (pool *p, unsigned char *string)

ap_md5() is equivalent to the hexhash() method of the Perl MD5 module.
It takes a resource pool p plus an arbitrary character string, string, and
returns the hexadecimal representation of its MD5 digest. For example,
should you wish to implement a message authentication check (MAC) as
we did in the hangman example of Chapter 5, this will do the trick
(assuming that WORD, LEFT, and so on are character strings):

char *fields = ap_pstrcat(p, SECRET, WORD, LEFT, GUESSED, GAMENO, WON, TOTAL,
 NULL);
char *mac = ap_md5(p, ap_pstrcat(p, SECRET, ap_md5(p,fields), NULL));

char *ap_md5_binary (pool *p, const unsigned char *buf, int len)

The ap_md5_binary() function does exactly the same work as ap_md5()
but accepts a len parameter for data whose length cannot be determined
using strlen(). In fact, ap_md5_binary() does all the real work when
ap_md5() is called.

char *ap_md5digest (pool *p, FILE *infile)

Given a resource pool pointer and a FILE* infile, this function computes
the MD5 digest from the contents of the file and then base64-encodes it.
The resulting character string is human-readable but is not the same as
the hexadecimal representation more commonly used for MD5 digests.
ap_md5digest() was designed for use with MIME MACs, which use
base64 encoding.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

char *digested_file = ap_md5digest(r->pool, infile);

char *ap_md5contextTo64 (pool *p, AP_MD5_CTX * context)

Given an MD5 context, this routine calls ap_MD5Final() and returns the
digest as a base64-encoded string. Example:

char *encoded_context = ap_md5contextTo64(r->pool, &context);

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

11.7 User and Group ID Information Routines

These are a handful of routines that act as frontends to the standard Unix getpwnam(
) and getgrnam() functions. In addition to their role as easy-to-use wrappers, they
provide portability with operating systems that don't provide these calls, such as
Win32 systems.

These routines are declared in httpd.h:

uid_t ap_uname2id (const char *uname)

Used internally to process the User configuration directive, this function will use
getpwnam() to look up the given user login name and return the user's UID. If
the name is prefixed with the # symbol, as in #501, the string is converted into
integer format and simply returned. Under Win32 systems, this function always
returns 1.

uid_t id = ap_uname2id(uname);

gid_t ap_gname2id (const char *gname)

This function behaves identically to ap_uname2id(), except that it operates on
group names and group IDs, using the Unix getgrnam() for its lookups. Under
Win32 systems, this function will always return 1.

gid_t id = ap_gname2id(gname);

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

11.8 Data Mutex Locking

Apache provides a cross-platform API for implementing data mutex locking. This is a
mechanism implemented on most platforms to provide serialization when multiple
concurrent threads need access to global data. The API was introduced with the
Win32 port of Apache and will be adapted to future multithreaded versions of Apache
for other platforms. While there is no need to implement data access serialization
under multiprocess versions of Apache, this API will still work in such environments
and is recommended for portability.[3]

[3] Under multiprocess versions of Apache, such as 1.3.x under Unix, using the mutex API does not introduce any
overhead, as each function is simply defined as a no-op macro.

mutex *ap_create_mutex (char *name)

This function is used to allocate a mutex structure, which is required to
implement runtime locking. This structure is normally a global variable, which is
created during the module initialization phase.

static mutex *my_mutex = NULL;

static void my_module_init(server_rec *s, pool *p)
{
 if (!my_mutex) {
 my_mutex = ap_create_mutex(NULL);
 }
}

int ap_acquire_mutex (mutex *mutex_id)

The ap_acquire_mutex() function will acquire a lock. If a lock has already been
acquired by another thread, it will block until it is released by the other thread.

int ap_release_mutex (mutex *mutex_id)

After locked data access is complete, the ap_release_mutex() function must be
called so other threads are able to acquire locks.

static int my_handler(request_rec *r)
{
 ...
 (void)ap_acquire_mutex(my_mutex);
 /* read or modify some global data */
 (void)ap_release_mutex(my_mutex);
}

void ap_destroy_mutex (mutex *mutex_id)

This function will release any resources associated with a mutex structure that
was created with ap_create_mutex().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ap_destroy_mutex(my_mutex);
my_mutex = NULL;

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

11.9 Launching Subprocesses

The last topic we discuss is the API for launching subprocesses. While we don't like
to encourage the creation of subprocesses because of the load they impose on a
server, there are certain modules that need to do so. In fact, for certain modules, such
as mod_cgi, launching subprocesses is their entire raison d'être.

Because Apache is a complex beast, calling fork() to spawn a new process within a
server process is not something to be done lightly. There are a variety of issues to
contend with, including, but not limited to, signal handlers, alarms, pending I/O, and
listening sockets. For this reason, you should use Apache's published API to
implement fork and exec, rather than trying to roll your own with the standard C
functions.

In addition to discussing the subprocess API, this section covers a number of function
calls that help in launching CGI scripts and setting up the environment for
subprocesses.

void ap_add_cgi_vars (request_rec *r)
void ap_add_common_vars (request_rec *r)

(Declared in the header file util_script.h.) By convention, modules that need to
launch subprocesses copy the contents of the current request record's
subprocess_env table into the child process's environment first. This table
starts out empty, but modules are free to add to it. For example, mod_env
responds to the PassEnv, SetEnv, and UnsetEnv directives by setting or
unsetting variables in an internal table. Then, during the request fixup phase, it
copies these values into subprocess_env so that the variables are exposed
to the environment by any content handler that launches a subprocess.

These two routines are called by mod_cgi to fill up the subprocess_env table
with the standard CGI environment variables in preparation for launching a CGI
script. You may want to use one or both yourself in order to initialize the
environment to a standard state.

add_cgi_vars() sets up the environment variables that are specifically called for
by the CGI/1.1 protocol. This includes GATEWAY_INTERFACE, QUERY_STRING,
REQUEST_METHOD, PATH_INFO, and PATH_TRANSLATED, among others.

ap_add_common_vars() adds other common CGI environment variables to
subprocess_env. This includes various HTTP_ variables that hold incoming
HTTP headers from the request such as HTTP_USER_AGENT and
HTTP_REFERER, as well as such useful variables as PATH, SERVER_NAME,
SERVER_PORT, SERVER_ROOT, and SCRIPT_FILENAME.

char **ap_create_environment (pool *p, table *t)

(Declared in the header file util_script.h.) Among the arguments you need when
exec ing a program with the ap_call_exec() command is an environment array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exec ing a program with the ap_call_exec() command is an environment array.
This function will take the key/value pairs contained in an Apache table and turn
it into a suitable array. Usually you'll want to use the subprocess_env table
for this purpose in order to be compatible with mod_cgi and mod_env.

char **env = ap_create_environment(r->pool, r->subprocess_env);

int ap_can_exec (const struct stat*)

(Declared in the header file httpd.h.) This utility routinely checks whether a file is
executable by the current process user and/or group ID. You pass it the pointer
to a stat structure, often the info field of the current request record. It returns
a true value if the file is executable, false otherwise:

if(!ap_can_exec(&r->info)) {

. . . log nasty error message . . .

 return HTTP_FORBIDDEN;
}

int ap_bspawn_child (pool *p, int (*)(void *, child_info *), void *data, enum
kill_conditions, BUFF **pipe_in, BUFF **pipe_out, BUFF **pipe_err)

(Declared in the header file buff.h.) The ap_bspawn_child() function is a mixture
of the Unix fork() and popen() calls. It can be used to open up a pipe to a child
process or just to fork off a child process to execute in the background.

This function has many arguments. The first argument, p, is a pool pointer. The
current request's resource pool is the usual choice. The second argument is a
function pointer with the following prototype:

int child_routine (void *data, child_info *pinfo);

After forking, Apache will immediately call child_routine() with a generic data
pointer (copied from the third argument to ap_bspawn_child(), which we discuss
next) and a child_info pointer, a data type needed for the Win32 port. For all
intents and purposes, the child_info argument is an opaque pointer that you
pass to ap_call_exec(). It has no other use at present. The child routine should
return a nonzero value on success or a zero value on failure.

The third argument to ap_bspawn_child() is data, a generic void pointer.
Whatever you use for this argument will be passed to the child routine, and it is
a simple way to pass information from the parent process to the child process.
Since the child process usually requires access to the current request, it is
common to pass a copy of the request_rec in this field.

The fourth argument is kill_conditions, an enumerated data type that affects
what Apache does with the spawned child when the server is terminating or
restarting. The possibilities, which are defined in alloc.h, are kill_never, to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

restarting. The possibilities, which are defined in alloc.h, are kill_never, to
never send a signal to the child; kill_always, to send the child a SIGKILL
signal; kill_after_timeout, to send the child a SIGTERM, wait 3 seconds,
and then send a SIGKILL; justwait, to wait forever for the child to complete;
and kill_only_once, to send a SIGTERM and wait for the child to complete.
The usual value is kill_after_timeout, which is the same scheme that
Apache uses for the listening servers it spawns.

The last three arguments are pipe_in, pipe_out, and pipe_err. If they are
non-NULL, ap_bspawn_child() fills them in with BUFF pointers attached to the
standard input, output, and error of the spawned child process. By writing to
pipe_in, the parent process will be able to send data to the standard input of the
spawned process. By reading from pipe_out and pipe_err, you can retrieve data
that the child has written to its standard output and error. Pass NULL for any or
all of these arguments if you are not interested in talking to the child.

int ap_spawn_child (pool *p, int (*)(void *, child_info *), void *data, enum
kill_conditions, FILE **pipe_in, FILE **pipe_out, FILE **pipe_err)

(Declared in the header file alloc.h.) This function works exactly like
ap_bspawn_child() but uses more familiar FILE streams rather than BUFF
streams for the I/O connection between the parent and the child. This function is
rarely a good choice, however, because it is not compatible with the Win32 port,
whereas ap_bspawn_child() is.

void ap_error_log2stderr (server_rec *s)

Once inside a spawned child, this function will rehook the standard error file
descriptor back to the server's error log. You may want to do this after calling
ap_bspawn_child() and before calling ap_call_exec() so that any error
messages produced by the subprocess show up in the server error log:

ap_error_log2stderr(r->server);

void ap_cleanup_ for_exec (void)

(Declared in the header file alloc.h.) You should call this function just before
invoking ap_call_exec(). Its main duty is to run all the cleanup handlers for all
the main resource pools and all subpools.

int ap_call_exec (request_rec *r, child_info *pinfo, char *argv0, char **env, int
shellcmd)

(Declared in the header file util_script.h.) After calling ap_bspawn_child() or
ap_spawn_child(), your program will most probably call ap_call_exec() to
replace the current process with a new one. The name of the command to run is
specified in the request record's filename field, and its command-line
arguments, if any, are specified in args. If successful, the new command is run
and the call never returns. If preceded by an ap_spawn_child(), the new
process's standard input, output, and error will be attached to the BUFF*s
created by that call.

This function takes five arguments. The first, r, is the current request record. It

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function takes five arguments. The first, r, is the current request record. It
is used to set up the argument list for the command. The second, pinfo, is the
child_info pointer passed to the function specified by ap_bspawn_child().

argv0 is the command name that will appear as the first item in the launched
command's argv[] array. Although this argument is usually the same as the
path of the command to run, this is not a necessary condition. It is sometimes
useful to lie to a command about its name, particularly when dealing with
oddball programs that behave differently depending on how they're invoked.

The fourth argument, env, is a pointer to an environment array. This is typically
the pointer returned by ap_create_environment(). The last argument, shellcmd,
is a flag indicating whether Apache should pass any arguments to the
command. If shellcmd is true, then Apache will not pass any arguments to the
command (this is counterintuitive). If shellcmd is false, then Apache will use the
value of r->args to set up the arguments passed to the command. The
contents of r->args must be in the old-fashioned CGI argument form in which
individual arguments are separated by the + symbol and other funny characters
are escaped as %XX hex escape sequences. args may not contain the
unescaped = or & symbols. If it does, Apache will interpret it as a new-style CGI
query string and refuse to pass it to the command. We'll see a concrete
example of setting up the arguments for an external command shortly.

There are a few other precautionary steps ap_call_exec() will take. If SUEXEC
is enabled, the program will be run through the setuid wrapper. If any of the
RLimitCPU, RLimitMEM, or RLimitNPROC directives are enabled, setrlimit will
be called underneath to limit the given resource to the configured value.

Finally, for convenience, under OS/2 and Win32 systems ap_call_exec() will
implement the "shebang" Unix shell-ism. That is, if the first line of the requested
file contains the #! sequence, the remainder of the string is assumed to be the
program interpreter which will execute the script.

On Unix platforms, successful calls to ap_call_exec() will not return because the
current process has been terminated and replaced by the command. On failure,
ap_call_exec() will return -1 and errno will be set.[4] On Win32 platforms,
successful calls to ap_call_exec() will return the process ID of the launched
process and not terminate the current code. The upcoming example shows how
to deal with this.

[4] Note that the source code for ap_call_exec() refers to the return value as the "pid." This is misleading.

void ap_child_terminate (request_rec *r)

If for some reason you need to terminate the current child (perhaps because an
attempt to exec a new program has failed), this function causes the child server
process to terminate cleanly after the current request. It does this by setting the
child's MaxRequests configuration variable to 1 and clearing the keepalive
flag so that the current connection is broken after the request is serviced.

ap_child_terminate(r);

int ap_scan_script_header_err_buff (request_rec *r, BUFF *fb, char *buffer)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function is useful when launching CGI scripts. It will scan the BUFF*
stream fb for HTTP headers. Typically the BUFF* is the pipe_out pointer
returned from a previous call to ap_bspawn_child(). Provided that the launched
script outputs a valid header format, the headers will be added to the request
record's headers_out table.

The same special actions are taken on certain headers as were discussed in
Chapter 9, when we covered the Perl cgi_header_out() method (see Section
9.1.2" in Section 9.1"). If the headers were properly formatted and parsed, the
return value will be OK. Otherwise, HTTP_INTERNAL_SERVER_ERROR or some
other error code will be returned. In addition, the function will log errors to the
error log.

The buffer argument should be an empty character array allocated to
MAX_STRING_LENGTH or longer. If an error occurs during processing, this
buffer will be set to contain the portion of the incoming data that generated the
error. This may be useful for logging.

char buffer[MAX_STRING_LEN];
if(ap_scan_script_header_err(r, fb, buffer) != OK) {
 ... log nasty error message ...

int ap_scan_script_header_err (request_rec *r, FILE *f, char *buffer)

This function does exactly the same as ap_scan_script_header_err_buff(),
except that it reads from a FILE* stream rather than a BUFF* stream. You
would use this with the pipe_out FILE* returned by ap_spawn_child().

int ap_scan_script_header_err_core (request_rec *r, char *buffer, int (*getsfunc) (char
*, int, void *), void *getsfunc_data)

The tongue-twisting ap_scan_script_header_err_core() function is the
underlying routine which implements ap_scan_script_header_err() and
ap_scan_script_header_err_buff(). The key component here is the function
pointer, getsfunc(), which is called upon to return a line of data in the same way
that the standard fgets() function does. For example, here's how
ap_scan_script_header_err() works, using the standard fgets() function:

static int getsfunc_FILE(char *buf, int len, void *f)
{
 return fgets(buf, len, (FILE *) f) != NULL;
}

API_EXPORT(int) ap_scan_script_header_err(request_rec *r, FILE
 char *buffer)
{
 return scan_script_header_err_core(r, buffer, getsfunc_FILE, f);
}

Your module could replace getsfunc_FILE() with an implementation to read from
a string or other resource.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.9.1 A Practical Example

We are going to say "Goodbye World" now but this time in a very big way. We will add
a "goodbye-banner" handler to mod_hello. This handler will run the Unix banner
command to print out a large, vertically oriented "Goodbye World" message. Although
this is a very simple example compared to what happens inside mod_cgi, it does
show you everything you need to write basic fork/exec code. For advanced tricks and
subtleties, we recommend you peruse the source code for mod_cgi and mod_include.

The additions to mod_hello.c are shown in Example 11.6. At the top, we add
util_script.h to the list of included files and hardcode the absolute path to the banner
program in the #define BANNER_PGM.

Example 11.6. Additions to mod_hello.c to Launch a Child Process

#include "util_script.h"
#define BANNER_PGM "/usr/bin/banner"

/* Forward declaration so that ap_get_module_config() can find us. */
module hello_module;

static int banner_child(void *rp, child_info *pinfo)
{
 char **env;
 int child_pid;
 request_rec *r = (request_rec *)rp;

 env = ap_create_environment(r->pool, r->subprocess_env);
 ap_error_log2stderr(r->server);
 r->filename = BANNER_PGM;
 r->args = "-w80+Goodbye%20World";
 ap_cleanup_for_exec();
 child_pid = ap_call_exec(r, pinfo, r->filename, env, 0);
 #ifdef WIN32
 return(child_pid);
 #else
 ap_log_error(APLOG_MARK, APLOG_ERR, NULL, "exec of %s failed", r->filename);
 exit(0);
 /*NOT REACHED*/
 return(0);
 #endif
}

static int goodbye_banner_handler(request_rec *r)
{
 BUFF *pipe_output;
 if (!ap_bspawn_child(r->pool, banner_child,
 (void *) r, kill_after_timeout,
 NULL, &pipe_output, NULL)) {
 ap_log_error(APLOG_MARK, APLOG_ERR, r->server,
 "couldn't spawn child process: %s", BANNER_PGM);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "couldn't spawn child process: %s", BANNER_PGM);
 return HTTP_INTERNAL_SERVER_ERROR;
 }
 r->content_type = "text/plain";
 ap_send_http_header(r);
 ap_send_fb(pipe_output, r);
 ap_bclose(pipe_output);
 return OK;
}

static handler_rec hello_handlers[] =
{
 {"hello-handler", hello_handler},
 {"goodbye-banner-handler", goodbye_banner_handler},
 {NULL}
};

Skipping over the definition of banner_child() for now, look at
goodbye_banner_handler(). This is the content handler for the request. We are going
to access the output of the banner command, so we declare a BUFF pointer for its
standard output. Now we attempt to fork by calling ap_bspawn_child(). We pass the
request record's resource pool as the first argument and the address of the
banner_child() subroutine as the second. For the third argument, we use a copy of
the request_rec, cast to a void*. We use kill_after_timeout for the kill
conditions argument, which is the usual choice. We don't care about the banner
program's standard input or standard error, so we pass NULL for the fifth and seventh
arguments, but we do want to recover the program's output, so we pass the address
of the pipe_output BUFF* for the sixth argument.

If ap_bspawn_child() succeeds, there will now be two processes. In the child process,
ap_bspawn_child() immediately invokes the banner_child() function, which we will
examine momentarily. In the parent process, ap_bspawn_child() returns the process
ID of the child. If it encounters an error it will return 0, and the parent logs an error and
returns HTTP_INTERNAL_SERVER_ERROR.

The remainder of what we have to do in the handler is simple. We set the outgoing
response's content type to text/plain and send the HTTP header with
ap_send_http_header(). Next we forward the child process's output to the browser by
calling ap_send_ fb(), which reads from the child and sends to the client in a single
step. When this is done, we clean up by closing pipe_output and return OK.

The banner_child() function is called within the child spawned by ap_bspawn_child().
We're going to set up the environment, do a little cleanup, and then replace the
process with the banner program. We begin by recovering the request record and
passings its pool and subprocess_env fields to ap_create_environment(),
obtaining an environment pointer. We then open the child's standard error stream to
the error log by invoking ap_error_log2stderr().

We want to call banner as if it had been invoked by this command at the shell:

% banner -w80 "Goodbye World"
This specifies a banner 80 characters wide with a message of "Goodbye World". To
do this, we place the command's full path in the request record's filename field, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

do this, we place the command's full path in the request record's filename field, and
set the args field to contain the string -w80+Goodbye%20World. Individual
command arguments are separated by + symbols, and any character that would have
special meaning to the shell, such as the space character, is replaced with a URL hex
escape.

Before we launch banner we should invoke any cleanup handlers that have been
registered for the current request. We do so by calling ap_cleanup_ for_exec(). Now
we call ap_call_exec() to run banner, passing the routine the request record, the
pinfo pointer passed to the routine by Apache, the name of the banner program,
and the environment array created by ap_create_environment(). We want Apache to
pass arguments to banner, so we specify a shellcmd argument of false.

If all goes well, the next line is never reached on Unix platforms. But if for some
reason Apache couldn't exec the banner program, we log an error and immediately
exit. The return statement at the end of the routine is never reached but is there to
keep the C compiler from generating a warning. As noted above, ap_call_exec()
behaves differently on Win32 platforms because the function launches a new process
rather than overlaying the current one. We handle this difference with conditional
compilation. If the Win32 define is present, banner_child() returns the process ID
generated by ap_call_exec(). We do this even though it isn't likely that the banner
program will ever be ported to Windows platforms!

There's only one thing more to do to make the goodbye_banner_handler() available
for use, which is to add it and a symbolic handler name to the hello_handlers[]
array. We chose "goodbye-banner-handler" for this purpose. Now, by creating a
<Location> section like this one, you can give the handler a whirl:

<Location /goodbye>
 SetHandler goodbye-banner-handler
</Location>

Figure 11.1 shows our handler in action, and this seems to be a good place to say
goodbye as well.

Figure 11.1. "goodbye-banner-handler" re-creates a burst page from a circa-1960 line printer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Appendix A. Standard Noncore Modules
The mod_perl distribution comes with a number of helper classes that add specialized
functionality to the package. None of them are essential to write Apache modules in
the Perl API or have any equivalent in the C-language API, but they can be very
handy at times.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.1 The Apache::Registry Class

The Apache::Registry class is essentially a CGI environment emulator that allows
many CGI scripts to run without modification under mod_perl.

Because there are many differences between CGI and the Apache API,
Apache::Registry has to do a great deal of work to accomplish this sleight of hand. It
loads the scripts in its designated directory, compiles them, and stores them
persistently in a memory structure. Before Apache::Registry runs a script, mod_perl
will set up the various CGI environment variables, provided PerlSetupEnv is
configured to On, which is the default. When the PerlSendHeader directive is On,
mod_perl monitors the text printed by the script, intercepts the HTTP header, and
passes it through send_cgi_header(). It also arranges for STDIN to be read from the
request object when the script attempts to process POST data. Apache::Registry also
monitors the modification dates of the script files it is responsible for and reloads them
if their timestamp indicates they have been changed more recently than when they
were last compiled.

Despite its complexity, Apache::Registry is easy to set up. The standard configuration
consists of an Alias directive and a <Location> section:

Alias /perl/ /home/www/perl
<Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options +ExecCGI
 # optional
 PerlSendHeader On
</Location>

After restarting the server, you can place any (well, almost any) Perl CGI script into
/home/www/perl (or the location of your choice) and make it executable. It runs just
like an ordinary CGI script but will load much faster.

The behavior of Apache::Registry can be tuned with the following directives:

PerlTaintCheck

When set to On, mod_perl will activate Perl taint checks on all the scripts under
its control. Taint checks cause Perl to die with a fatal error if unchecked user-
provided data (such as the values of CGI variables) is passed to a potentially
dangerous function, such as exec(), eval(), or system().

PerlSendHeader

When set to On, mod_perl will scan for script output that looks like an HTTP
header and automatically call send_http_header(). Scripts that send header
information using CGI.pm's header() function do not need to activate
PerlSendHeader. While scripts that use CGI.pm's header() will still function
properly with PerlSendHeader On, turning it Off will save a few CPU cycles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PerlFreshRestart

If PerlFreshRestart is set to On, mod_perl will flush its cache and reload all
scripts when the server is restarted. This is very useful during module
development to immediately see the changes to the source code take effect.

PerlWarn

If the script mentions the -w switch on its #! line, Apache::Registry will turn Perl
warnings on by setting the $^W global to a nonzero value. The PerlWarn
directive can be configured to On to turn on warnings for all code inside the
server.

Apache::Registry has several debug levels which write various informational
messages to the server error log. Apache::Registry scripts can change the debug
level by importing Apache::Debug with its level pragma:

use Apache::Debug level => $level;

The debug level is a bit mask generated by ORing together some combination of the
following values:

1

Make a note in the error log whenever the module is recompiled

2

Call Apache::Debug::dump() on errors

4

Turn on verbose tracing

The current value of the debug level can be found in the package global
$Apache::Registry::Debug. You should not set this value directly, however. See
Chapter 2, for more hints on debugging Apache::Registry scripts.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.2 The Apache::PerlRun Class

The Apache::PerlRun handler is intended for Perl CGI scripts that depend strongly on
the traditional one-process-per-execution CGI model and cannot deal with being
invoked repeatedly in the same process. For example, a script that depends on a lot
of global variables being uninitialized when it starts up is unlikely to work properly
under Apache::Registry.

Like Apache::Registry, Apache::PerlRun manages a directory of CGI scripts,
launching them when they are requested. However, unlike Apache::Registry, this
module does not cache compiled scripts between runs. A script is loaded and
compiled freshly each time it is requested. However, Apache::PerlRun still avoids the
overhead of starting a new Perl interpreter for each CGI script, so it's faster than
traditional Perl CGI scripting but slower than Apache::Registry or vanilla Apache API
modules. It offers a possible upgrade path for CGI scripts: move the script to
Apache::PerlRun initially to get a modest performance bump. This gives you time to
rework the script to make it globally clean so that it can run under Apache::Registry
for the full performance benefit.

The configuration section for running Apache::PerlRun is similar to Apache::Registry :

Alias /perl-run/ /home/www/perl-run/
<Location /perl>
 SetHandler perl-script
 PerlHandler Apache::PerlRun
 Options +ExecCGI
 # optional
 PerlSendHeader On
</Location>

The Apache::PerlRun handler is only a small part of the picture. The rest of the
Apache::PerlRun class provides subclassable methods that implement the
functionality of Apache::Registry. The Apache::PerlRun handler simply uses a subset
of these methods; other modules may override certain methods to implement the
Apache::Registry enviroment with a few twists. However, these Apache::PerlRun
class methods were not fully defined when this book was going to press.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.3 The Apache::RegistryLoader Class

Ordinarily, Apache::Registry scripts are not compiled until they are needed. This
means that the very first time one of these scripts is required by a child process, there
will be a delay while the script is loaded and compiled.

Apache::RegistryLoader was designed to avoid this delay by precompiling
Apache::Registry scripts during the server startup phase. In addition to minimizing
loading time, it also reduces memory consumption because the Registry scripts are
compiled into the single server parent process before it forks off the flock of child
servers. The memory occupied by this precompiled code is then shared among the
children, and although there doesn't appear to be a difference in child process size
when you invoke ps (on Unix systems), overall memory consumption is reduced. See
the mod_perl_tuning document in the mod_perl distribution for more details.

Typically, you will invoke Apache::RegistryLoader from a Perl startup script. A typical
entry looks like this:

#!/usr/local/bin/perl

use MyFavoriteModule1 ();
use MyFavoriteModule2 ();
...
use Apache::RegistryLoader ();
my $rl = Apache::RegistryLoader->new;
$rl->handler('/perl/test.pl'=> '/home/www/perl/test.pl');
$rl->handler('/perl/test2.pl'=> '/home/www/perl/test2.pl');
...

This code creates a new Apache::RegistryLoader object by invoking the class's new()
method and then calls this object's handler() method for each script you want to load.
Apache::RegistryLoader is actually a subclass of Apache::Registry which overrides
certain methods such that the Apache::RegistryLoader handler() method only invokes
the script compliation and caching methods of Apache::Registry.

Notice that handler() requires two arguments: the URI of the script to compile and its
physical pathname. The reason you can't just provide one or the other is that the task
of translating from a URI to a filename is usually done at request time by a translation
handler. However, at server startup time there's no request to process, and therefore
no way of getting at the translation handler.

If you specify a URI only, Apache::RegistryLoader will try to interpret it relative to the
server root. This will work only if the Apache::Registry directory URI is aliased to an
identically named physical directory beneath the server root.

Here's an example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in httpd.conf
ServerRoot /home/www
Alias /perl/ /home/www/perl/

in Perl startup script
use Apache::RegistryLoader ();
Apache::RegistryLoader->new->handler("/perl/test.pl");

Another solution is to provide a URI translation routine to the new() method at the
time you create the Apache::RegistryLoader object. The Apache translation handlers
can only be run during request time, so we must roll our own during startup. The
translation handler will take an argument consisting of the script URI and return the
translated physical pathname to the file as its function result. The following code
fragment illustrates how to precompile all .pl files in the directory ~www/perl/ :

in perl.conf (or any other configuration file)
PerlRequire conf/preload_scripts.pl

in conf/preload_scripts.pl
#!/usr/local/bin/perl
use Apache::RegistryLoader ();
use DirHandle ();
use strict;

sub do_translate {
 my $uri = shift;
 return Apache->server_root_relative($uri);
};

my $rl = Apache::RegistryLoader->new(trans => \&do_translate);
my $dir = Apache->server_root_relative("perl/");

my $dh = DirHandle->new($dir) or die $!;

foreach my $file ($dh->read) {
 next unless $file =~ /\.pl$/;
 $rl->handler("/perl/$file");
}

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.4 The Apache::Resource Class

Apache::Resource allows you to set resource limitations on the Apache server
process. You can limit the amount of CPU time a child process will use, the amount of
memory it allocates, the number of files it can have open simultaneously, the number
of processes it can spawn, and other low-level resources. This allows you to limit the
overall impact of a runaway process or to degrade processing gracefully if the server
is overloaded by too many requests.

In order to use Apache::Resource, you must have the Perl BSD::Resource module
installed. This module does not come installed in Perl by default. As the name
implies, BSD::Resource will only compile on BSD-derived versions of Unix and a few
close approximations. It will not run correctly on Win32 systems.

To use Apache::Resource, place the following declarations in one of your server
configuration files:

PerlSetEnv PERL_RLIMIT_DEFAULTS
PerlModule Apache::Resource
PerlChildInitHandler Apache::Resource

This chooses reasonable defaults for the resource limits, loads the Apache::Resource
module, and sets it to run whenever a child process is initialized.

You can further customize the module by using PerlSetEnv to declare more specific
resource limits for CPU usage, memory, and so on. There are actually two limits you
can set for each of these resources: a hard limit that can't be changed and a soft limit
that can be increased by modules if they choose to do so (up to the hard limit). You
can use a single number for each resource variable, in which case it will be used for
both the hard and soft limits, or you can specify a pair of numbers delimited by a
colon in S:H format. The first number is the soft limit, and the second is the hard.

The following variables are available for your use:

PERL_RLIMIT_DATA

Child memory limit in megabytes.

PERL_RLIMIT_CPU

Child CPU units in seconds.

PERL_RLIMIT_FSIZE

Maximum file size in megabytes.

PERL_RLIMIT_RSS

Maximum process size in megabytes.

PERL_RLIMIT_STACK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Child stack limit in megabytes.

PERL_RLIMIT_CORE

Maximum core file size in megabytes.

Within a handler, modules can examine the limits and change them (up to the ceiling
specified by the hard limits) by calling the getrlimit() and setrlimit() methods of
BSD::Resource.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.5 The Apache::PerlSections Class

As described in Chapter 7, it's possible to configure the Apache server entirely via
Perl scripts embedded in <Perl> sections. The Apache::PerlSections module is a
helper class that provides convenient functions for this process. It provides two public
functions, dump() and store().

dump()

Called from within a <Perl> configuration section, dump() returns a pretty-
printed string containing the current configuration variables. The string can be
written out to a file and later brought back in via a require.

Example:

<Perl>
 use Apache::PerlSections ();
 $Port = 8529;
 @DocumentIndex = qw(index.htm index.html);

 print Apache::PerlSections->dump();
</Perl>

This will print out something like this:

package Apache::ReadConfig;
#scalars:

$Port = 8529;

 #arrays:

@DocumentIndex = (
 'index.htm',
 'index.html'
);

hashes

1;
__END__

Notice that the variables are declared in the Apache::ReadConfig package. We give
the reason for this in the next section.

store()

This is identical to dump(), except that the formatted string is written directly to
the file path you specify.

Example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Perl>

 print Apache::PerlSections->store('httpd_config.pl');
</Perl>

If a relative path is given to store(), it will be taken as relative to the current
configuration file.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.6 The Apache::ReadConfig Class

Apache::ReadConfig is a namespace used by the <Perl> configuration section
mechanism to store its global variables. All global variables defined in this
namespace are processed as if they were configuration directives during server
startup time. See Chapter 8 for detailed examples on configuring httpd with Perl.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.7 The Apache::StatINC Class

When you write a script using the Apache::Registry mechanism, Apache::Registry
watches the script file's modification date and reloads the script if it is more recent
than the compiled version in memory. This lets you edit the script file and see the
changes immediately.

However, this is not the case with Apache Perl API modules or any Perl library files
that they depend on. Changing the .pm file does not cause the module to be reloaded
automatically. You ordinarily have to restart the whole server with apachectl restart or
apache -k restart to see any changes take effect.

You can use the Apache::StatINC to alter this behavior. Each time it runs,
Apache::StatINC checks the contents of the Perl global %INC hash of loaded
modules. Apache::StatINC keeps track of each module's modification time. When it
notes that a module has been modified since it was last loaded, it removes the
module from %INC, forcing Perl to reload and compile it.

To install Apache::StatINC, add the following configuration directive to perl.conf (or
any of the configuration files):

PerlInitHandler Apache::StatINC

This directive arranges for Apache::StatINC 's handler() method to be invoked every
time Apache handles an HTTP request, before any other Perl*Handlers are run.

Note that Apache::StatINC only sees the directories that were present in the @INC
include path at the time the server was started. During a request, a script or module
may modify the @INC path, but those changes are lost when mod_perl restores @INC
to the same value it had at server startup time. If you wish to monitor custom
directories, you should install them at Perl startup time, either by putting the requisite
use lib lines in the Perl startup script or by defining the PERL5LIB environment
variable before starting the server.

We do not recommend Apache::StatINC for use on a production server. It introduces
significant overhead on every transaction.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.8 The Apache::Include Class

This class provides methods to support integration between mod_include and
mod_perl. It makes it possible for parsed HTML files (.shtml) to include
Apache::Registry scripts with directives like this one:

<!--#perl sub="Apache::Include" arg="/perl/ssi.pl" -->

When this directive is processed by Apache's standard mod_include module, the
Apache::Registry script ssi.pl is run and its output incorporated into the page.

Apache::Include provides a method named virtual() for those who wish to include the
contents of another document in the output of their Apache::Registry scripts. It is
called with two arguments: the URI you wish to incorporate and the current request
object. Only local URIs can be included in this way.

Here's an example:

#!/usr/local/bin/perl
use Apache ();
use Apache::Include ();

my $r = Apache->request;
print "Content-type: text/plain\n\n";
print "I am including a document now:\n";
Apache::Include->virtual('/contents.txt', $r);
print "I am done.\n";

See Chapter 7, Perl Server-Side Includes, for more details on using the #perl
element with server-side includes.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

A.9 The Apache::Status Class

The Apache::Status class provides dynamic status and debug information about the
mod_perl interpreter. When installed, it will display symbol table dumps, inheritance
trees, lists of global variables, and other displays that may be of interest to Perl
module developers (Figure A.1).

Figure A.1. The Apache::Status module produces detailed reports on the state of mod_perl.

A URI to run Apache::Status must be installed before the module can be used. To do
this, create an entry like the following in one of the Apache configuration files:

<Location /perl-status>
 SetHandler perl-script
 PerlHandler Apache::Status
</Location>

After restarting the server, requests for the URI /perl-status will display a series of
pages showing the status of various Apache modules, including your own.

Apache::Status requires the Devel::Symdump module to run at all. This is not a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache::Status requires the Devel::Symdump module to run at all. This is not a
standard part of the Perl distribution and will need to be downloaded from CPAN and
installed. Certain other features of the module are not activated unless you also install
a few third party pieces. With the Data::Dumper module installed and StatusDumper
set to On, it is possible to view the contents of global variables. Installing
Apache::Peek and setting StatusPeek to On enables inspection of symbols the same
way Perl views them internally. If mod_perl was compiled with Perl 5.005 or higher
and the B::Graph module was installed, along with the dot program, setting
StatusGraph to On enables Apache::Status to render GIF graphs of OP trees. The
three modules can be found on CPAN. dot is part of AT&T's graph visualization toolkit
available at http://www.research.att.com/sw/tools/graphviz/. Here is a
sample configuration that enables all of these features:

<Location /perl-status>
 SetHandler perl-script
 PerlHandler Apache::Status
 PerlSetVar StatusDumper On
 PerlSetVar StatusPeek On
 PerlSetVar StatusGraph On
</Location>

Your module can add one or more custom menu items to the Apache::Status main
page. When you click on this link, Apache::Status runs a subroutine defined in your
module and displays the subroutine's output, usually some HTML. To install this type
of custom menu item, include a code snippet like this at the bottom of the module:

if (Apache->module("Apache::Status")) {
 Apache::Status->menu_item('MyApp' => "MyApp Menu Item",
 \&myapp_debug_menu);
}
sub myapp_debug_menu {
 my ($r,$q) = @_;
 push(@s,'<h2>some html</h2>');
 push(@s,'some more html');
 return \@s;
}

In this example, we first check with Apache to see if the Apache::Status module is
present. If so, we call its menu_item() method. The first two arguments to
menu_item() are the name of the current module and the descriptive title to use for its
custom menu item. The third argument is a CODE reference to a subroutine to run
when the menu item is selected.

In this example, the subroutine is named myapp_debug_menu(). On entry to this
subroutine, Apache::Status passes it the Apache request object and a CGI object
(from the CGI.pm module). The subroutine is free to do whatever it likes with these
objects or ignore them entirely. The subroutine builds up an array containing the
HTML it wants to display. Its function result is a reference to that array.

Good examples of creating custom menu items can be found by inspecting the
source code of the Apache::Resource and the Apache::DBI modules.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Appendix B. Building and Installing mod_perl
This appendix contains instructions for building and installing mod_perl using a
variety of techniques. It also provides a full listing of mod_perl 's many configuration
options.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

B.1 Standard Installation

As described in the walk-through in Chapter 2, the standard way to build and install
mod_perl is to run Makefile.PL with the following sequence of commands:

% perl Makefile.PL configuration options
% make
% make test
% make install
This will automatically build a mod_perl-embedded version of Apache and install it in
the standard location. The configuration options you specify give you extensive
control over the building and installation process.

B.1.1 Makefile.PL Options for mod_perl

There are several reasons for mod_perl 's bewildering number of configuration
options. Many of the options came to be during the early days of mod_perl, when new
options were frequently added in an "experimental" state. As these features matured
and stabilized, their activation switches remained for those site administrators who do
not want to expose certain areas of the API to programmers. By turning off unwanted
features, sites can also reduce the size of the Apache executable somewhat,
although this overhead is small compared to the size of the Perl runtime itself.

Most first-time users of the Perl API will want to configure mod_perl with the
EVERYTHING=1 option in order to turn on all features. Later, when you've
experimented with the API, you may decide to dispense with some features, and you
can reconfigure the server with a more select set of options. Other recommended
options are USE_APACI=1, to use the Apache AutoConf-style Interface (APACI), and
APACHE_PREFIX=/server/root, to specify the location of the server root in which
to install the mod_perl-enabled server and support files.

B.1.1.1 Options for controlling the build process

These options control the configuration and build process. Among other things, these
options allow you to specify parameters that are passed through to Apache's
configuration system.

USE_APACI=1

Tells mod_perl to configure Apache using the flexible Apache AutoConf-style
Interface (APACI), rather than the older system, which required a file named
src/Configuration to be edited. This option is recommended.

APACHE_PREFIX=/usr/local/apache

When USE_APACI is enabled, this attribute will specify the —prefix option for
Apache's configure script, specifying the installation path for Apache. When this
option is used, mod_perl 's make install will also make install on the Apache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

option is used, mod_perl 's make install will also make install on the Apache
side, installing the httpd binary and support tools, along with the configuration,
log, and document trees.

APACI_ARGS="--option=val,--other-option=val"

Passes additional arguments to Apache's configure script. The argument list
should be contained within single or double quotes and delimited by commas.
Example:

% set runpath=/var/run/apache
% set logpath=/var/logs/apache
% perl Makefile.PL APACI_ARGS="--runtimedir=$runpath,--logfiledir=$logpath"

WITH_APXS=~www/bin/apxs

Tells mod_perl the location of the APache eXtenSion tool (apxs); see Chapter
2 under Section 2.5.1" and Appendix C . This is necessary if the binary
cannot be found in the command path or in the location specified by
APACHE_PREFIX.

USE_APXS=1

Tells mod_perl to build itself using the APache eXtenSion (apxs) tool. As
described in Chapter 2, this tool is used to build C API modules in a way that is
independent of the Apache source tree. mod_perl will look for apxs in the
location specified by USE_APXS. If USE_APXS is not specified, mod_perl will
check the bin and sbin directories relative to APACHE_PREFIX.

USE_DSO=1

Tells mod_perl to build itself as a dynamic shared object (DSO). Although this
reduces the apparent size of the httpd executable on disk, it doesn't actually
reduce its memory consumption. This is recommended only if you are going to
be using the Perl API occasionally or if you wish to experiment with its features
before you start using it in a production environment.

This feature was considered experimental at the time this book was written.
Consult the mod_perl INSTALL.apaci file for details on using this option.

APACHE_SRC=/ path/ to/apache_ x.x.x/src

Tells mod_perl where the Apache source tree is located. You may need this if
the Apache source tree is not in the immediate vicinity of the mod_perl
directory.

SSL_BASE=/ path/ to/ssl

When building against a mod_ssl enabled server, this option tells Apache where
to look for SSL include and lib subdirectories.

DO_HTTPD=1

Tells mod_perl to build the Apache server for you, skipping the interactive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells mod_perl to build the Apache server for you, skipping the interactive
prompt. If APACHE_SRC is also specified, mod_perl will use its value.
Otherwise, it will search the immediate vicinity of the mod_perl directory and use
the first Apache source tree it finds.

ADD_MODULE=info,status,proxy

Specifies a list of optional Apache modules to configure into the server,
delimited by a comma. For example, this command will enable the mod_info,
mod_status, and mod_proxy modules:

% perl Makefile.PL ADD_MODULE=info,status,proxy
PREP_HTTPD=1

Tells mod_perl only to prepare Apache for building. Running the make
command after this option is used will only build the Perl side of mod_perl. You
will have to build httpd manually.

DYNAMIC=1

Tells mod_perl to build the Apache::* API extensions as shared libraries. The
default action is to link these modules statically with the httpd executable. This
can save some memory if you only occasionally use these API features. They
are described briefly in this appendix and in more detail in Chapter 9.

PERL_TRACE=1

This option enables runtime diagnostics for mod_perl. You will also need to set
the MOD_PERL_TRACE environment variable at runtime in order to see the
diagnostics.

PERL_DESTRUCT_LEVEL={1,2}

When the Perl interpreter is shutting down during server shutdown, this level
enables additional checks to make sure the interpreter has done proper
bookkeeping. The default is 0. A value of 1 enables full destruction, and 2
enables full destruction with checks. This value can also be changed at runtime
by setting the environment variable PERL_DESTRUCT_LEVEL.

PERL_DEBUG=1

This options builds mod_perl and the Apache server with C source code
debugging enabled (the -g switch). It also enables PERL_TRACE, sets
PERL_DESTRUCT_LEVEL to 2, and links against the debuggable libperld Perl
interpreter if one has been installed. You will be able to debug the Apache
executable and each of its modules with a source level debugger, such as the
GNU debugger gdb.

B.1.1.2 Options for activating phase callback hooks

The following Makefile.PL options enable handling of the various phases of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following Makefile.PL options enable handling of the various phases of the
Apache request cycle. The significance of these phases is explained in previous
chapters. Unless specified otherwise, these options are all disabled by default.
Specifying EVERYTHING=1 will enable them en masse.

PERL_DISPATCH=1

Enables the PerlDispatchHandler directive.

PERL_CHILD_INIT=1

Enables the PerlChildInitHandler directive.

PERL_CHILD_EXIT=1

Enables the PerlChildExitHandler directive.

PERL_INIT=1

Enables the PerlInitHandler directive.

PERL_POST_READ_REQUEST=1

Enables the PerlPostReadRequestHandler directive.

PERL_TRANS=1

Enables the PerlTransHandler directive.

PERL_HEADER_PARSER=1

Enables the PerlHeaderParserHandler directive.

PERL_ACCESS=1

Enables the PerlAccessHandler directive.

PERL_AUTHEN=1

Enables the PerlAuthenHandler directive.

PERL_AUTHZ=1

Enables the PerlAuthzHandler directive.

PERL_TYPE=1

Enables the PerlTypeHandler directive.

PERL_FIXUP=1

Enables the PerlFixupHandler directive.

PERL_HANDLER=1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enables the PerlHandler directive. (This directive is enabled by default.)

PERL_LOG=1

Enables the PerlLogHandler directive.

PERL_CLEANUP=1

Enables the PerlCleanupHandler directive.

B.1.1.3 Options for activating standard API features

These options enable various standard features of the API, which are described in
Chapter 9. While not absolutely needed, they're very handy and there's little penalty
for including them. Unless specified otherwise, these options are all disabled by
default. The EVERYTHING=1 or DYNAMIC=1 options will enable them all.

PERL_FILE_API=1

Enables the Apache::File class.

PERL_TABLE_API=1

Enables the Apache::Table class.

PERL_LOG_API=1

Enables the Apache::Log class.

PERL_URI_API=1

Enables the Apache::URI class.

PERL_UTIL_API=1

Enables the Apache::Util class.

PERL_CONNECTION_API=1

Enables the Apache::Connection class. This class is enabled by default. Set the
option to 0 to disable it.

PERL_SERVER_API=1

Enables the Apache::Server class. This class is enabled by default. Set the
option to to disable it.

APACHE_HEADER_INSTALL=1

Disables the installation of Apache header files. This option is enabled by
default. Set the option to to disable it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.1.1.4 Options for activating miscellaneous features

These options enable or disable a variety of features that you may or may not need.
They are disabled by default unless EVERYTHING=1 is specified.

PERL_SECTIONS=1

Enables <Perl> configuration sections.

PERL_SSI=1

Enables the perl directive in the mod_include module.

PERL_DIRECTIVE_HANDLERS=1

Enables the Perl configuration directive API, including the
Apache::ModuleConfig and Apache::CmdParms classes. This API is described
in Chapter 8.

PERL_STACKED_HANDLERS=1

Enables the "Stacked Handlers" feature.

PERL_METHOD_HANDLERS=1

Enables the "Method Handlers" feature.

EVERYTHING=1

This attribute enables all phase callback handlers, all API modules, and all
miscellaneous features.

EXPERIMENTAL=1

This attribute enables all "experimental" features, which are usually under
development and discussion on the modperl mailing list.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

B.2 Other Configuration Methods

As with everything having to do with Perl, there are many ways to build and install
mod_perl. This section covers several of the alternatives.

B.2.1 Using the .makepl_args.mod_perl File

The various Makefile.PL options can be overwhelming, difficult to remember, and
cumbersome to type. One way to save your preferences for posterity is to wrap the
Makefile.PL command into a shell script.

Another way to save your preferences is to create a file named
.makepl_args.mod_perl , located either in the current directory (.), the parent directory
(..), or your home directory. When Makefile.PL runs, it scans these directories for the
file, reads it in, and strips out blank lines and comments. Everything else is treated as
a command line option. For example:

File: .makepl_args.mod_perl
enable all phase callbacks, API modules and misc features
EVERYTHING=1

#tell Makefile.PL where the Apache source tree is
APACHE_SRC=/usr/local/apache/src

#tell Makefile.PL to use the first source found, which will be the
#path specified above by APACHE_SRC
DO_HTTPD=1

#tell Makefile.PL to configure Apache using the apaci interface
USE_APACI=1

#specify the --prefix to give Apache's configure script
APACHE_PREFIX=/usr/local/apache

#add mod_info, mod_status and mod_proxy
ADD_MODULE=info,status,proxy

#additional arguments to give Apache's configure script
#arguments can be delimited by a comma and/or specified with multiple
#APACI_ARGS lines
APACI_ARGS=--enable-shared=mime,--enable-shared=alias
APACI_ARGS=--logfiledir=/usr/local/apache/logs
APACI_ARGS=--runtimedir=/usr/local/apache/logs

Now you can type the command perl Makefile.PL without giving any explicit options
and they will be read in from the file. Any options you do supply on the command line
will override those in the file.

B.2.2 Installing via CPAN.pm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you are familiar with installing mod_perl manually, you might want to install
future updates using Andreas Koenig's awesome CPAN shell. This interactive
program automatically determines the latest version of mod_perl, downloads it from a
CPAN site, and runs the configuration, make, and install steps.

To enter the CPAN shell, type:

% perl -MCPAN -e shell
If this is the first time you're running the shell, you'll be lead through a series of one-
time configuration questions. The only question you need to be prepared for is the
one that prompts you to type in the name of your favorite CPAN site. Refer back to
the preface for instructions on finding a convenient site.

After CPAN is initialized, type:

cpan> install mod_perl
and watch it fly!

B.2.3 Building mod_perl and Apache Separately

If you use a lot of third-party Apache modules, you may want to decouple the process
of building mod_perl from the process of building Apache. This is only a little bit
harder than the full automatic method described above.

You will first need to configure mod_perl using Makefile.PL in the manner described
in the previous sections. However, answer "no" when prompted for whether to build
httpd in the Apache source tree. Alternatively, you can disable the prompt completely
by providing a configuration option of PREP_HTTPD=1 on the command line.

You will make and make install in the mod_perl source directory as before. This
process will build a libperl.a library within the Apache source tree but will not build the
server itself. Now go ahead and build any third-party modules you wish to add to
Apache. When you are ready to configure and install the server, enter the Apache
directory tree and run the configure script with the following option:

--activate-module=src/modules/perl/libperl.a

This option must be in addition to any other options you wish to pass to the configure
script; again, it's a good idea to run the configure command from within a shell script
that you can edit and run again. The —activate-module option links the precompiled
libperl.a library to the Apache server executable but does not otherwise interact with
the mod_perl build process.

B.2.4 Building mod_perl as a DSO

If an Apache server installation is already installed, mod_perl can be built as a DSO
without the Apache source tree handy. Example:

perl Makefile.PL USE_APXS=1 APACHE_PREFIX=/usr/local/apache EVERYTHING=1 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

perl Makefile.PL USE_APXS=1 APACHE_PREFIX=/usr/local/apache EVERYTHING=1 ...

The USE_APXS option tells mod_perl to build itself using the Apache apxs tool. The
Makefile.PL will look for apxs under the bin/ and sbin/ directories relative to
APACHE_PREFIX. If apxs happens to be installed elsewhere, simply use the full
pathname for the value of the USE_APXS attribute:

perl Makefile.PL USE_APXS=/usr/bin/apxs EVERYTHING=1 ...

Provided an APACHE_PREFIX attribute was passed to the Makefile.PL script,
running make install will install and configure the mod_perl DSO library along with
installing the Perl libraries. If no APACHE_PREFIX attribute was specified, simply
copy the new apaci/libperl.so library to anywhere you choose.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Appendix C. Building Multifule C API Modules
If you need to build a C module from several object files, or if the module requires
functions defined in external library files, then you need to go beyond the simple build
mechanism described in Chapter 2. This appendix describes how to do so.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

C.1 Statistically Linked Modules That Need External Libraries

If you have a module that requires one or more external library files and you wish to
link it into the httpd binary statically, then you have to arrange for the library to be
added to the LIBS variable that the httpd makefile uses for the link phase. The most
straightforward way to achieve this is to provide a "hint" to Apache's configuration
system. You can embed configuration hints directly in the module source file, or you
can place them in separate files located in the same directory as the source file.

For the purposes of this example, we'll assume we're implementing a module named
mod_compress which requires some of the data compression/decompression
functions located in the system libz library. We need to arrange for -lz to be added to
the LIBS makefile variable. One way to do this is to add the following comment
somewhere toward the top of the source file mod_compress.c:

/* Module configuration hints
MODULE-DEFINITION-START
Name: compress_module
ConfigStart
 LIBS="$LIBS -lz"
 echo " + using -lz for compression support"
ConfigEnd
MODULE-DEFINITION-END
*/

When the configure script runs, it scans through a module looking for lines containing
the MODULE-DEFINITION-START and MODULE-DEFINITION-END keywords and
passes everything between the two lines to the configuration system. Within the
configuration section, the Name: keyword specifies the name of the module, which
should be the same as the name given in the module declaration. This is followed by
a section bracketed by the keywords ConfigStart and ConfigEnd. Everything between
these two keywords is treated as a shell script and passed to /bin/sh for evaluation.
You are free to do anything in this section that you wish, including calling other shell
scripts. In this case, we simply augment the LIBS variable by appending -lz to it; we
then call echo to display a message indicating that we've done so.

An alternate way to achieve the same thing is to place the configuration information in
a separate file named module_name.module located in the same directory as the
module's source code. In this example, we would want to create a file named
mod_compress.module containing the following text:

Name: compress_module
ConfigStart
 LIBS="$LIBS -lz"
 echo " + using -lz for compression support"
ConfigEnd

The contents of the file is identical to the text between the MODULE-DEFINITION-
START and MODULE-DEFINITION-END lines. In either case, running configure with
the option --enable-module=modules/site/mod_compress.c should now give output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the option --enable-module=modules/site/mod_compress.c should now give output
similar to the following:

Configuring for Apache, Version 1.3.3
 + activated compress module (modules/site/mod_compress.c)
Creating Makefile
Creating Configuration.apaci in src
 + enabling mod_so for DSO support
Creating Makefile in src
 + configured for Linux platform
 + setting C compiler to gcc
 + setting C pre-processor to gcc -E
 + checking for system header files
 + adding selected modules
 o rewrite_module uses ConfigStart/End
 + using -ldbm for DBM support
 enabling DBM support for mod_rewrite
 o compress_module uses ConfigStart/End
 + using -lz for compression support
 + using -ldl for vendor DSO support
 + doing sanity check on compiler and options
Creating Makefile in src/support
Creating Makefile in src/main
Creating Makefile in src/ap
Creating Makefile in src/regex
Creating Makefile in src/os/unix
Creating Makefile in src/modules/standard
Creating Makefile in src/modules/proxy
Creating Makefile in src/modules/extra

The relevant lines here are compress_module uses ConfigStart/End and use
-lz for compression support. Together they show that the configuration hints
have been correctly recognized and processed by the configuration system. If we
were to go on to build httpd, we would see -lz included among the list of libraries
brought in during the link phase.

Other makefile variables that you can adjust in this way are INCLUDES, the list of
directory paths to search for header files, CFLAGS, the list of flags to pass to the
compiler during compile phase, and LDFLAGS, the list of flags to pass to the linker
during link phase.

This same technique can be used to create DSO modules, but there's a catch, as we
explain in the next section.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

C.2 Dynamically Linked Modules That Need External Libraries

Things get slightly more complicated when you want to build your module as a
dynamic shared object (DSO) for loading at runtime. This is because not all Unix
architectures allow you to link one shared object to another. Because both the module
and the external library are shareable, this restriction causes LoadModule to fail at
runtime with "symbol not found" errors.

Most Unix architectures don't suffer this problem, including all ELF-based systems.
However, older systems that use the a.out binary architecture, including most BSD-
derived systems, do suffer from this limitation. If this is the case with your system, you
have the choice of statically linking the module with the httpd binary, as described in
the previous section, or statically linking the whole external library into the DSO
module.

Regardless of whether your system allows linking of DSOs to each other, its easiest
to create modules that depend on external libraries using the APache eXtenSion
(apxs) tool. Start out by running apxs with the -g and -n switches in order to create a
skeleton build directory for your module:

% apxs -g -n compress
 Creating [DIR] compress
 Creating [FILE] compress/Makefile
 Creating [FILE] compress/mod_compress.c

Now edit the stub .c file to contain the handlers you need. In the case of
mod_compress.c, we would add code to invoke libz 's file compression and
decompression routines. To get the DSO module to link correctly, you must now edit
Makefile so that the LIBS definition refers to -lz. For platforms that allow DSOs to be
linked together, uncomment the LIBS line and edit it to read like this:

LIBS = -lz

If your platform doesn't support linking between DSOs, you have a few options. One
option is to compile the library statically. The easiest way to do this is to locate the
archive version of the library, for example, libz.a, and add the full path of the library
file to the LIBS definition:

LIBS = /usr/local/lib/libz.a

This will cause the contents of libz.a to be linked in statically, just like an ordinary
object file. However, there is one very large caveat! This will only work if the library
archive was originally compiled with position-independent code, using the -fpic
compiler flag or equivalent. If this was not the case, then the DSO module will fail,
either when it is first built or when you first attempt to load it. If you really want to
pursue this option, you can attempt to obtain the source code for the library and
recompile it with the correct compiler flags.

Another option is to load the necessary shared libraries manually using mod_so 's
LoadFile directive. This instructs Apache to load the symbols of any shared object file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LoadFile directive. This instructs Apache to load the symbols of any shared object file
on the system, including shared libraries. You should call this directive before you
attempt to load any DSO modules that require shared libraries that aren't linked into
httpd itself. For example, to make mod_compress work on a system that doesn't allow
shared libraries to be linked to DSOs, you could modify httpd.conf as follows
(changing the paths as appropriate for your system):

LoadFile /usr/lib/libz.so
LoadModule compress_module libexec/mod_compress.so

The last variant we will consider is when you are using a system that allows DSOs to
be linked to shared libraries and you wish to build a DSO module in the Apache
source tree with the Apache configuration system rather than with apxs. You can do
so using the configuration techniques described in the previous section. However, the
configuration system ordinarily won't allow a DSO module to be linked to a shared
library because it is forbidden on some systems. In order to allow this to happen, you
must recompile Apache with the SHARED_CHAIN compilation rule. This makes the
way that Apache compiles and links DSO modules a little bit smarter. At configure
time, the Apache configuration system examines the contents of the LIBS makefile
definition. Any shared libraries in LIBS are remembered and used later when linking
against DSO-based modules. To enable this feature, reconfigure Apache with the --
enable-rule=SHARED_CHAIN option, as follows:

% ./configure --enable-rule=SHARED_CHAIN \
 ...other options....

This feature is only useful when creating DSO modules within the Apache source
tree. It has no effect on modules created with apxs.

Shared library support is quite variable between different flavors of Unix. Be prepared
to experiment a bit with loadable modules, and be aware that some combinations of
loadable modules and shared libraries may just not work on certain platforms. A
lengthier discussion can be found in the Apache documentation under
manual/dso.html.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

C.3 Building Modules from Several Source Files

The Apache build system is easiest to use when each C API module fits into a single
source file. However, if the design of your module requires it to be spread out among
a series of source files, Apache can accommodate this, albeit with a little more
preparation on your part.

If you are building within the Apache source tree, the easiest way to structure the
module is to place all the source files in their own subdirectory of src/modules/. The
build scheme will be to create a library file named "libyour_module.a" first, and then to
link this with httpd.

In addition to the source code files, the subdirectory will contain a file named
Makefile.tmpl containing instructions for building the module, and, optionally, a file
named "libyour_module.module" containing configuration hints for the module. You
will also create a dummy file named Makefile.libdir which has no other purpose than
to tell the configuration system that you have provided your own build targets in
Makefile.tmpl and to suppress the automatic target generation that the configuration
process usually performs.

As a concrete illustration, we will take the mod_compress example from the previous
section and split it up into two source code files. compress.c will contain the module
definition and the handler code, while compress_util.c will contain various utilities for
compressing and decompressing files. The module will be compiled into a library
archive named libcompress.a, and the whole set of source files and makefiles will live
in the subdirectory src/modules/compress. It is important for the name of the library to
match the name of the subdirectory in which it lives, or Apache's automatic
configuration process may not work correctly.

We begin by creating the src/modules/compress directory and moving the appropriate
.c and .h files into it. We next create the dummy file Makefile.libdir. It may be empty,
or it can contain the following text copied from the like-named file in mod_proxy:

This is a place-holder which indicates to Configure that it shouldn't
 provide the default targets when building the Makefile in this directory.
 Instead it'll just prepend all the important variable definitions, and
 copy the Makefile.tmpl onto the end.

We now create a Makefile.tmpl file containing the appropriate build rules and targets.
The easiest way to create one is to copy an existing one from an existing multifile
module (such as mod_proxy) and modify it. Example C.1 shows the file we created
for mod_compress. Almost all of this was copied verbatim from the mod_proxy. The
only things that changed were the LIB definition, which was altered to refer to
libcompress, the OBJS and OBJS_PIC definitions, which were altered to contain the
list of object files to link, and the libcompress.a and libcompress.so build targets,
which were modified to refer to libcompress rather than to libproxy. In addition, the list
of header file dependencies that followed the # DO NOT REMOVE line were deleted. If
you are using the gcc compiler, you can rebuild the appropriate dependencies by
issuing the make depend command within the subdirectory once the configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

issuing the make depend command within the subdirectory once the configuration
script has been run.

Lastly, we create the file libcompress.module containing the configuration hints for the
module. Its contents are identical to the mod_compress.module file discussed in the
first section of this chapter:

Name: compress_module
ConfigStart
 LIBS="$LIBS -lz"
 echo " + using -lz for compression support"
ConfigEnd

To compile, link, and activate the multisource version of mod_compress, issue the
following command at the top level of the Apache distribution:

% ./configure --activate-module=src/modules/compress/libcompress.a
libcompress.a will now be built and then linked statically to the httpd executable.

As an added bonus, you can request for libcompress to be a shared module, and it
will be built correctly as a DSO. The configuration command is the same as you
would normally use for other shared modules:

% ./configure --activate-module=src/modules/compress/libcompress.a \
 --enable-shared=compress

Example C.1. Makefile.tmpl for the Multifile Version of the mod_compress Example Module

LIB=libcompress.$(LIBEXT)

OBJS=compress.o compress_util.o
OBJS_PIC=compress.lo compress_util.lo

all: lib

lib: $(LIB)

libcompress.a: $(OBJS)
 rm -f $@
 ar cr $@ $(OBJS)
 $(RANLIB) $@

libcompress.so: $(OBJS_PIC)
 rm -f $@
 $(LD_SHLIB) $(LDFLAGS_SHLIB) -o $@ $(OBJS_PIC) $(LIBS_SHLIB)

.SUFFIXES: .o .lo

.c.o:
 $(CC) -c $(INCLUDES) $(CFLAGS) $<

.c.lo:
 $(CC) -c $(INCLUDES) $(CFLAGS) $(CFLAGS_SHLIB) $< && mv $*.o $*.lo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $(CC) -c $(INCLUDES) $(CFLAGS) $(CFLAGS_SHLIB) $< && mv $*.o $*.lo

clean:
 rm -f $(OBJS) $(OBJS_PIC) $(LIB)

distclean: clean
 -rm -f Makefile

We really don't expect end users to use this rule. It works only with
gcc, and rebuilds Makefile.tmpl. You have to re-run Configure after
using it.
depend:
 cp Makefile.tmpl Makefile.tmpl.bak \
 && sed -ne '1,/^# DO NOT REMOVE/p' Makefile.tmpl > Makefile.new \
 && gcc -MM $(INCLUDES) $(CFLAGS) *.c >> Makefile.new \
 && sed -e '1,$$s: $(INCDIR)/: $$(INCDIR)/:g' \
 -e '1,$$s: $(OSDIR)/: $$(OSDIR)/:g' Makefile.new \
 > Makefile.tmpl \
 && rm Makefile.new

#Dependencies

$(OBJS) $(OBJS_PIC): Makefile

DO NOT REMOVE

C.3.1 Building Modules from Several Source Files with apxs

You may also use the apxs system to create a DSO module from several source files.
Once again, it's easiest to start with the dummy project created by apxs when you use
the -g and -n options. After apxs creates the directory tree, create the .c and .h files
you need, and edit the automatically created Makefile. We recommend that you add a
new definition named SRC to the Makefile with a value equal to all the source files in
your module. For the mod_compress example, SRC would look like this:

SRC = compress.c compress_util.c

Now find the build target that corresponds to the shared module object file,
mod_compress.so in the current example, and change it according to this model:

compile the shared object file
mod_compress.so: $(SRC) Makefile
 $(APXS) -o $@ -c $(DEF) $(INC) $(LIB) $(SRC)

This makes the shared object depend on the source code files and on Makefile itself.
The build rule invokes apxs with the -c (compile) option and the appropriate library
files and sources to create the DSO module.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Appendix D. Apache:: Modules Available on CPAN
There are many modules available from CPAN for use with Apache and mod_perl.
Some are "drop-in" modules which you simply install, configure, and run with the
server. Others are modules that are used by other Apache modules. In this section
we will list the modules which are currently available, along with a brief description.
You will find all of these modules from your local CPAN mirror at
http://www.perl.com/CPAN/modules/by-module/Apache/.

Other modules which might not be available yet are listed in the Apache/Perl module
list, which is at http://www.perl.com/CPAN/modules/by-
module/Apache/apache-modlist.html.

In this appendix we only give terse descriptions of each module just to give you an
idea of what the many generous and talented authors have decided to share with us.
Please consult each module's documentation for more details.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

D.1 Content Handling

Apache::Album

Apache::Album sets up a virtual set of photo albums, creating thumbnail images on
the fly using Image::Magick. The dynamic layout of the album allows you to configure
captions, background, table borders, footers, and more.

Author

Jim Woodgate, woody@bga.com

Apache::Gateway

Apache::Gateway implements a gateway based on the HTTP 1.1 draft definition of a
gateway:

Besides the standard gateway features, Apache::Gateway also implements the
following:

Automatic failover with mirrored instances

Multiplexing

Pattern-dependent gatewaying

FTP directory gatewaying

Timestamp correction

Author

Charles C. Fu, ccwf@bacchus.com

Apache::GzipChain

Apache::GzipChain compresses the output from other Perl handlers on the fly. This is
done only if the browser understands gzip encoding. To determine this,
Apache::GzipChain will check both the browser's Accept-Encoding header and User-
Agent header

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Author

Andreas Koenig, koenig@kulturbox.de

Apache::Layer

Apache::Layer provides a handler to layer multiple content trees on top of each other.
It is most useful for web sites where a high proportion of the site content is common.

Author

Simon Matthews, sam@peritas.com

Apache::Filter

Apache::Filter has similar goals as Apache::OutputChain, allowing modules to filter
the output of each other.

Author

Ken Williams, ken@forum.swarthmore.edu

Apache::OutputChain

Apache::OutputChain provides a mechanism for chaining Perl content response
handlers. This allows you to make filter modules that take output from previous
handlers, make some modifications, and pass the output to the next handler or to a
browser.

Author

Jan Pazdziora, adelton@fi.muni.cz

Apache::PrettyText

Apache::PrettyText will dynamically format files of type text/plain, so output always
looks "pretty" by the time it reaches the browser window.

Author

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chris Thorman, chris@thorman.com

Apache::ProxyPass

Apache::ProxyPass implements mod_proxy ProxyPass functionality that is
configurable on a per-directory basis, rather than a per-server basis.

Author

Michael Smith, mjs@iii.co.uk

Apache::RandomLocation

Apache::RandomLocation can be configured to serve a random URI selected from a
list for the given location. This can come in quite handy for slinging advertising
banners and multiplexing requests.

Authors

Matthew Darwin, matthew@davin.ottawa.on.ca

Randy Kobes, randy@theory.uwinnipeg.ca

Apache::RedirectDBI

Apache::RedirectDBI redirects requests to different directories based on the
existence of a user in one or more database tables.

Author

Michael Smith, mjs@iii.co.uk

Apache::Sandwich

Apache::Sandwich provides a mechanism for adding headers and footers to
documents on the fly, creating a document "sandwich." It does so using the
subrequest mechanism, so there is no document parsing overhead involved, as there
is with SSI documents.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Authors

Doug MacEachern, dougm@pobox.com

Vivek Khera, vivek@khera.org

Apache::Stage

A staging area is a place where an author of an HTML document can check the look
and feel of a document before it is "published." Apache::Stage provides such a place
that requires a minimum amount of space. It doesn't require separate servers, a
mirror of the "real" tree, or even a tree of symbolic links, just a sparse directory to hold
the documents being modified.

Author

Andreas Koenig, koenig@kulturbox.de

Apache::AutoIndex

This module is a subclassable Perl version of the mod_dir and mod_autoindex
directory indexer modules.

Author

Philippe M. Chiasson, gozer@ectoplasm.dyndns.com

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

D.2 URI Translation

Apache::TimedRedirect

Apache::TimedRedirect will redirect configured URIs to another URI if the request
happens within a given time period. It is intended to politely redirect visitors from a
site that is undergoing some form of maintenance, such as database-driven areas of
a site when the databases are being refreshed.

Author

Peter G. Marshall, mitd@mitd.com

Apache::TransLDAP

Apache::TransLDAP can be configured to translate requests for user directories by
mapping to an LDAP database entry.

Author

Clayton Donley, donley@wwa.com

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

D.3 Perl and HTML Mixing

Apache::ASP

Apache::ASP provides an Active Server Pages port to Apache. Active Server Pages
is a web application platform that originated with Microsoft's IIS server. Under Apache
for both Win32 and Unix, it allows a developer to create web applications with session
management and Perl embedded in static HTML files.

Author

Joshua Chamas, chamas@alumni.stanford.org

Apache::Embperl

See Appendix F.

Apache::EmbperlChain

Apache::EmbperlChain hooks with the Apache::OutputChain module to process the
output of modules as HTML::Embperl documents.

Author

Eric Cholet, cholet@logilune.com

Apache::EP

HTML::EP is a system for embedding Perl into HTML and ships with an Apache::EP
module which provides a handler for mod_perl. It includes session support, database
handling, basic localization, and some examples such as Unix user administration
and a web shop.

Author

Jochen Wiedmann, joe@ispsoft.de

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache::ePerl

ePerl interprets HTML files interspersed with Perl code—one of the very first of its
kind.

Author

Ralf S. Engelschall, rse@engelschall.com

Apache::Mason

HTML::Mason allows web pages and sites to be constructed from shared, reusable
building blocks called components. Components contain a mix of Perl and HTML and
can call each other and pass values back and forth like subroutines. Common design
elements (headers, footers, etc.) need be changed only once to affect the whole site.
Mason has component/data caching facilities, as well as several debugging features:
requests can be replayed from the command line and the Perl debugger, and a web-
based previewer shows how each piece of a page is generated.

Author

Jonathan Swartz, swartz@transbay.net

Apache::SSI

Apache::SSI implements the functionality of mod_include in Perl. Apache::SSI can be
subclassed to implement new SSI directives or to modify the behavior of existing
ones. In addition, the output of Apache::SSI can be hooked into Apache::Filter or
Apache::OutputChain for further processing.

Author

Ken Williams, ken@forum.swarthmore.edu

Apache::Taco

Apache::Taco provides a template-driven system for generating web pages with
dynamic content. The package comes complete with an Apache::Taco module for use
with mod_perl.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Author

Ken Williams, ken@forum.swarthmore.edu

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

D.4 Authentication and Authorization

Apache::AuthenDBI

Apache::AuthenDBI authenticates users against a database using Perl's DBI.
Supported DBI drivers include Mysql, Oracle, Sybase, and many more listed at
http://www.hermetica.com/technologia/DBI/.

Author

Edmund Mergl, E.Mergl@bawue.de

Apache::AuthzDBI

Apache::AuthzDBI provides authorization against a database using Perl's DBI.

Author

Edmund Mergl, E.Mergl@bawue.de

Apache::AuthCookie

Apache::AuthCookie provides authentication via HTTP cookies. It is a base class
module whose subclasses implement the methods for verifying the user's credentials
and session key.

Author

Eric Bartley, bartley@purdue.edu

Apache::AuthenCache

Apache::AuthenCache is used to cut down on expensive authentication database
lookups by caching the results in memory. It was designed with Apache::AuthenDBI
in mind but works just as well with any authentication module.

Author

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Jason Bodnar, jbodnar@tivoli.com

Apache::AuthLDAP

Apache::AuthLDAP implements authentication and authorization against an LDAP
database. In addition to LDAP groups, authorization may be based on arbitrary LDAP
attributes.

Author

Clayton Donley, donley@wwa.com

Apache::AuthenNIS

Apache::AuthenNIS authenticates users against an NIS database using the Net::NIS
module.

Author

Demetrios E. Paneras, dep@media.mit.edu

Apache::AuthenNISPlus

Apache::AuthenNISPlus authenticates users against an NIS+ database.

Author

Valerie Delane, valerie@savina.com

Apache::AuthzNIS

Apache::AuthzNIS authorizes users based on NIS group membership using the
Net::NIS module.

Author

Demetrios E. Paneras, dep@media.mit.edu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache::AuthenPasswd

Apache::AuthenPasswd authenticates users against the system /etc/passwd file.

Author

Demetrios E. Paneras, dep@media.mit.edu

Apache::AuthzPasswd

Apache::AuthzPasswd authorizes users based on group membership in the system
/etc/passwd file.

Author

Demetrios E. Paneras, dep@media.mit.edu

Apache::AuthenPasswdSrv

Apache::AuthenPasswdSrv authenticates users against a Unix domain socket server.
It includes a sample server which checks a username and password against an NIS
database using Net::NIS and ypmatch.

Author

Jeffrey Hulten, jeffh@premier1.net

Apache::AuthenRadius

Apache::AuthenRadius provides authentication against a RADIUS server using the
Authen::Radius module.

Author

Daniel, daniel-authenradius@electricrain.com

Apache::AuthenSMB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache::AuthenSMB uses Authen::SMB to authenticate users against an SMB
password database. Generally it is used in Unix environments to allow interaction with
Windows NT domain controllers.

Author

Michael Parker, parker@austx.tandem.com

Apache::AuthenURL

Apache::AuthenURL implements authentication against an external server that
supports Basic authentication. The server is contacted via a configured URL, and the
user's credentials are passed downstream for authentication. This module is most
useful when a particular authentication client doesn't run on the same platform as the
main webserver.

Author

John Groenveld, groenveld@acm.org

Apache::AuthenIMAP

Apache::AuthenIMAP implements Basic authentication against an IMAP server.

Author

Malcolm Beattie, mbeattie@sable.ox.ac.uk

Apache::DBILogin

Not to be confused with Apache::AuthenDBI, the Apache::DBILogin module
authenticates against a DBI connection itself, not against a table in the database.

Author

John Groenveld, groenveld@acm.org

Apache::PHLogin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache::PHLogin authenticates against a PH database using the Net::PH module.

Author

John Groenveld, groenveld@acm.org

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

D.5 Fixup

Apache::RefererBlock

Apache::RefererBlock will examine the MIME type of each request. If the type is one
of those listed in the configured CheckMimeTypes, it will check the referrer header. If
the referrer doesn't start with one of the strings configured in AllowedReferers, a
"Forbidden" error will be returned.

Author

Eric Cholet, cholet@logilune.com

Apache::Usertrack

Apache::UserTrack implements mod_usertrack in Perl and provides high-resolution
timing by using the Time::HiRes module.

Author

Ask Bjoern Hansen, ask@netcetera.dk

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

D.6 Logging

Apache::DBILogger

Apache::DBILogger logs the same data normally sent to the TransferLog but writes it
to a DBI database rather than a file on disk.

Author

Ask Bjoern Hansen, ask@netcetera.dk

Apache::DBILogConfig

Apache::DBILogConfig replicates the functionality of the standard Apache module,
mod_log_config, but logs information in a DBI-compliant database instead of a file.

Author

Jason Bodnar, jbodnar@tivoli.com

Apache::Traffic

Apache::Traffic tracks the total number of hits and bytes transferred per day by the
Apache web server, on a per-user basis. This allows for real-time statistics without
having to parse the log files. The statistics are made available through the traffic
script, which queries the shared memory segment or DBM file where log data is
stored.

Author

Maurice Aubrey, maurice@hevanet.com

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

D.7 Profiling

Apache::DProf

Apache::DProf is a wrapper for running the Devel::DProf profiler in the mod_perl
environment.

Author

Doug MacEachern, dougm@pobox.com

Apache::SmallProf

Apache::SmallProf is a wrapper for running the Devel::SmallProf profiler in the
mod_perl environment.

Author

Doug MacEachern, dougm@pobox.com

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

D.8 Persistent Database Connections

Apache::DBI

Apache::DBI provides transparent persistent database connections via DBI.

Author

Edmund Mergl, E.Mergl@bawue.de

Apache::Mysql

Apache::Mysql provides transparent persistent database connections for the Mysql
module.

Author

Neil Jensen, njensen@habaneros.com

Apache::Sybase::CTlib

Apache::Sybase::CTlib provides transparent persistent database connections for the
Sybase::CTlib module.

Author

Mark A. Downing, mdowning@rdatasys.com

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

D.9 Miscellaneous

Apache::Language

Apache::Language provides transparent multiple language support for mod_perl
scripts and Apache Perl modules.

Author

Philippe M. Chiasson, gozer@ectoplasm.dyndns.com

Apache::LogFile

Apache::LogFile provides a PerlLogFile directive that will open a Perl filehandle at
server startup time. The filehandle can be connected to a program via Apache's
reliable piped log API or simply to a file on disk.

Author

Doug MacEachern, dougm@pobox.com

Apache::Mmap

Apache::Mmap provides a facility for using the mmap() system call to have the OS
map a file or Perl scalar variable into a process's address space.

Author

Mike Fletcher, lemur1@mindspring.com

Apache::Module

Apache::Module provides interfaces to the Apache C data structures and API that are
related to a module structure, the module, handler_rec, and command_rec
structures. The package includes two modules which use these interfaces.
Apache::ModuleDoc generates on-the-fly documentation of C modules, including Perl
directive syntax. Apache::ShowRequest takes a URI and walks you through each of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directive syntax. Apache::ShowRequest takes a URI and walks you through each of
the request phases, showing which modules participate in each and what return code
they produce for the given URI.

Author

Doug MacEachern, dougm@pobox.com

Apache::Peek

Apache::Peek is a modified version of the Devel::Peek module which sends peek
output to the client rather than STDERR.

Author

Doug MacEachern, dougm@pobox.com

Apache::Request

Apache::Request , Apache::Cookie, and Apache::Upload provide a Perl interface to
the libapreq C library (see Appendix E).

Author

Doug MacEachern, dougm@pobox.com

Apache::Roaming

This module is a Perl version of mod_roaming (see Appendix E), which provides the
same functionality while adding the ability to subclass handling of user profile data.

Author

Jochen Wiedmann, joe@ispsoft.de

Apache::Session

Apache::Session provides data persistence for mod_perl applications. The data store
may be disk, shared memory, a DBI database, or resident memory for Win32
systems.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Author

Jeffrey Baker, jeff@godzilla.tamu.edu

Apache::TempFile

Apache::TempFile generates names for temporary files which are automatically
removed when the current request has been completed.

Author

Tom Hughes, tom@compton.demon.co.uk

Apache::Throttle

Apache::Throttle implements content negotiation based on the speed of the
connection. It's primary purpose is to transparently send smaller (lower-resolution,
lower-quality) images to users with slow Internet connections.

Author

Don Schwarz, dons@xnet.com

Apache::UploadSvr

Apache::UploadSvr implements a small publishing system for a web server with
authentication, simple security, preview, directory viewer, and an interface to delete
files.

Author

Andreas Koenig, koenig@kulturbox.de

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Appendix E. Third-Party C Modules
In this appendix you will find a listing of all the C-language Apache modules that are
not part of the Apache distribution but are available and listed in the Apache Module
Registry at http://modules.apache.org/.

As with Appendix D, we only give terse descriptions of each module just to give you
an idea of what the many generous and talented authors have decided to share with
us. Please consult each module's documentation for more details.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

E.1 Content Handling

mod_blob_pg95

This module implements URI to Postgres95 Large Object mapping.

Author

Adam Sussman, asussman@vidya.com

mod_CommProc

The Communications Processor (CommProc) is a set of APIs and preconstructed
frameworks that build the components (clients and resources) of a message-based
distributed computing system.

Author

Mike Anderson, mka@redes.int.com.mx

mod_fastcgi

FastCGI keeps CGI processes alive to avoid per-hit forks.

Maintainer

Jonathan Roy, roy@idle.com

mod_conv

This module enables you to view FTP archives using WWW conversions.

Author

Jakub Jelinek, jj@sunsite.mff.cuni.cz

mod_js

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mod_js

This JavaScript module is based on the Mozilla js interpreter.

Authors

Hypankin, hankin@apache.org

Magnus, magnus@apache.org

Jeremie Miller, jeremie@netins.net

The Mozilla team, http://www.mozilla.org/

mod_jserv

mod_jserv is an Apache module and Java class for running Java servlets with
Apache.

Author

The Java Apache Project Team, http://java.apache.org/

mod_ecgi

mod_ecgi turns a CGI program into a dynamically loaded library and runs it without
forking. This approach provides the simplicity and portability of CGI without the
overhead of both a fork and exec.

Author

Nick Kew, nick@webthing.com

mod_fjord

Provides a Java backend processor that uses the Kaffe JVM.

Author

David Young, dwy@ace.net

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mod_neoinclude

NeoWebScript provides a Tcl scripting extension.

Authors

Karl Lehenbauer

Randy Kunkee

OpenASP

OpenASP is an Open Source implementation of Active Server Pages (ASP).

Author

Nathan Woods

PHP

PHP provides a server-side scripting language and extensive database support.

Author

PHP Development Team, http://www.php.net/

mod_pyapache

This module embeds a Python language interpreter to avoid the overhead of CGI
fork/exec.

Author

Lele Gaifax, lele@integra.it

mod_owa

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This module is an Apache implementation of the Oracle Web Server PL/SQL
cartridge.

Authors

Alvydas Gelzinis, alvydas@kada.lt

Oksana Kulikova, oksana@kada.lt

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

E.2 International Language

mod_a4c

The All4Chinese module provides online Chinese Code Translation BIG5 <->
GB2312.

Author

Brian Lin, foxman@okstation.com

mod_beza

mod_beza is a module and patch for converting national characters.

Author

Krzysztof Marek Matyskiel, K.Matyskiel@ia.pw.edu.pl

mod_charset

This module implements smart Russian code page translations.

Authors

Dmitriy Krukov, dvk@stack.net

Alex Tutubalin, lexa@lexa.ru

mod_fontxlate

This module is a configurable national character set translator.

Author

Warwick Heath, warwick@rcc-irc.si

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MultiWeb

MultiWeb is a multilingual extension with charset conversion support.

Author

Konstantin Chuguev, joy@urc.ac.ru

SSI for ISO-2022-JP

SSI handling ISO-2022-JP encoding document.

Authors

Takuya Asada

Mitsunobu Shimada

Takatsugu Nokubi, knok@daionet.gr.jp

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

E.3 Security

mod_ssl

This module is a free Apache Interface to SSLeay.

Author

Ralf S. Engelschall, rse@engelschall.com

Apache-SSL

This module provides SSL extensions for Apache.

Author

Ben Laurie, ben@algroup.co.uk

Raven SSL

An SSL security module for the Apache web server.

Author

Covalent Technologies, Inc., http://raven.covalent.net/

mod_cgi_sugid

Sets user and group ID for CERN-like CGI execution.

Author

Philippe Vanhaesendonck, pvanhaes@be.oracle.com

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

E.4 Access Control

mod_allowdev

This module can be configured to prohibit serving files that are not on a listed device.

Author

Dean Gaudet, dgaudet@arctic.org

mod_bandwidth

This module implements bandwidth usage limitation either on the whole server or on
a per-connection basis, based on the size of files, directory location, or remote
domain or IP.

Author

Yann Stettler, stettler@cohprog.com

mod_disallow_id

This module can be configured to limit access based on UID and GID.

Author

Lou Langholtz, ldl@chpc.utah.edu

mod_lock.c

This small module allows you to conditionally lock a part of a web site by just creating
a file in a predefined location. This feature is useful for system maintenance on multi-
VirtualHosted systems.

Author

Lyonel Vincent, vincent@hpwww.ec-lyon.fr

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mod_throttle

This module throttles the usage of individual users to reduce server load.

Author

Mark Lovell, mlovell@bigrock.com

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

E.5 Authentication and Authorization

mod_ auth_nis

This module authenticates against an NIS database.

Author

Dirk-Willem van Gulik, Dirk.vanGulik@jrc.it

mod_auth_cookie

This module translates an HTTP cookie into a Basic authentication header for use
with any Basic authentication handler.

Author

Vivek Khera, vivek@khera.org

mod_auth_cookie_mysql

This module authenticates users based on a cookie value, which is matched against
the contents of a MySQL database.

Author

Mark-Jason Dominus, mjd-mac_mysql@plover.com

mod_auth_cookie_file

This module implements HTTP cookie-based authentication against a .htpasswd-like
file.

Author

Dirk-Willem van Gulik, Dirk.vanGulik@jrc.it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mod_auth_cookie_msql

This module implements HTTP cookie-based authentication against an mSQL
database.

Author

Dirk-Willem van Gulik, Dirk.vanGulik@jrc.it

mod_auth_dce

This module implements authentication against a DCE (Distributed Computing
Environment) registry and provides DFS (Distributed File System) based access
control.

Author

Paul Henson, henson@acm.org

mod_auth_external

This module authenticates against a user-provided function or external program.

Authors

Nathan Neulinger, nneul@umr.edu

Tyler Allison, allison@mail.arc.nasa.gov

mod_auth_inst

This module provides instant password authentication for "dummy" users.

Author

Clifford Wolf, apache@clifford.at

mod_auth_kerb

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This module implements Kerberos authentication via Basic authentication or
Kerberos mutual authentication when using a kerberized client.

Author

James E. Robinson III, james@ncstate.net

mod_auth_ldap

This module implements Basic authentication by mapping names and passwords
onto attributes in entries in preselected portions of LDAP DSA. The UMich LDAP
client libraries are required to use this module.

Author

Norman Richards, orb@cs.utexas.edu

mod_auth_ldap

This module implements Basic authentication against entries in an LDAP directory.
The Netscape LDAPv3 SDK is required to use this module.

Author

Dave Carrigan, Dave.Carrigan@cnpl.enbridge.com

mod_ldap

This module implements authentication and authorization against an LDAP directory.
The UMich LDAP client libraries are required to use this module.

Author

Lyonel Vincent, vincent@hpwww.ec-lyon.fr

mod_auth_msql

This module implements Basic authentication against an mSQL database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Author

Dirk-Willem van Gulik, Dirk.vanGulik@jrc.it

mod_auth_mysql

This module implements Basic authentication against a Mysql database.

Author

Vivek Khera, vivek@khera.org

mod_auth_pam

This module implements authentication against Pluggable Auth modules.

Author

Ingo Lutkebohle, ingo@blank.pages.de

mod_auth_pg

This module authenticates users against a PostgreSQL database. The module gets
the username and password pair in the standard way or from a cookie, and you can
choose your preferred method.

Author

Min S. Kim, minskim@usa.net

mod_auth_pgsql

This module implements Basic authentication against a PostgreSQL database.

Authors

Adam Sussman, asussman@vidya.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Giuseppe Tanzilli, g.tanzilli@eurolink.it

mod_auth_pg95

This module implements authentication against a Postgres95 database.

Author

Adam Sussman, asussman@vidya.com

mod_auth_radius

This module implements Basic authentication against a RADIUS server, including full
RADIUS challenge-response using HTTP cookies.

Authors

Alan DeKok, alan@cryptocard.com

CRYPTOCard Inc., http://www.cryptocard.com/

mod_auth_rdbm

This module provides a lightweight but highly scalable and efficient mechanism for
HTTP Basic authentication over a network. RDBM authentication is similar to DBM or
DB authentication, with these added benefits:

Multiple web servers can share a user database, without the penalties of NFS.

Database locking is not an issue. So, for example, allowing write access to the
database from CGI programs is much simplified.

Author

Nick Kew, nick@webthing.com

mod_auth_samba

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This module implements authentication and authorization against a Samba
LanManager.

Author

Juha Ylitalo, juha.o.ylitalo@ntc.nokia.com

mod_auth_smb

This module implements authentication against a Samba LanManager.

Author

Jason L. Wright, jason@thought.net

mod_auth_sys

This module implements authentication and authorization against Unix user accounts,
including /etc/passwd, /etc/group, NIS, NIS+, and Shadow.

Author

Franz Vinzenz, vinzenz@ntb.ch

mod_auth_sys

This module implements authentication and authorization against system /etc/passwd
and /etc/group files.

Author

Howard Fear, hsf@pageplus.com

mod_auth_yard

This module implements authentication and authorization against a YARD database.

Author

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Uwe C. Schroeder, uwe@cht.de

mod_auth_notes

This module implements authentication against a Lotus Notes database.

Author

Guillermo Payet, gpayet@oceangroup.com

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

E.6 Logging

mod_log_dir

This module implements per-directory logging to pre-existing, server-writable logfiles
using the config log module formatting syntax. Subdirectory logging configurations
override any logging the parent directories may have configured.

Author

Lou Langholtz, ldl@chpc.utah.edu

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

E.7 Distributed Authoring

mod_ cvs

This module automatically updates files in a CVS-based web tree.

Author

Martin Insulander, martin@insulander.com

mod_dav

This module enables Apache to understand the DAV protocol extensions to HTTP.
DAV stands for "Distributed Authoring and Versioning" and is currently an Internet
draft nearing completion. DAV is intended to replace proprietary authoring protocols,
such as those used by FrontPage or NetFusion, but is also a complete set of
protocols for manipulating a web server's files and directories and their properties. For
more information, see http://www.lyra.org/greg/mod_dav/.

Author

Greg Stein, gstein@lyra.org

mod_put

This module implements the HTTP/1.1 PUT and DELETE methods.

Author

Lyonel Vincent, vincent@hpwww.ec-lyon.fr

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

E.8 Miscellaneous

mod_session

This module implements advanced session management and tracking.

Author

Adam Sussman, asussman@vidya.com

mod_cntr

This module dynamically counts and displays web page access.

Author

Dan Kogai, dankogai@dan.co.jp

mod_macro

This module implements a mechanism for defining and using macros with the Apache
configuration files.

Author

Fabien Coelho, coelho@cri.ensmp.fr

mod_roaming

This module enables Apache to act as a Netscape Roaming Access server. When
Netscape Communicator Version 4.5 or higher is configured against a Roaming
Access server, your preferences, bookmarks, address books, cookies, and other user
specific data is stored on the server so that the same settings can be used from any
Netscape Communicator client that can access the server.

Author

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Vincent Partington, vincentp@xs4all.nl

libapreq

This library provides routines for manipulating client request data via the Apache API.
Functionality includes parsing of application/x-www-form-urlencoded and
multipart/form-data content types, along with parsing and generation of HTTP
cookies.

Author

Doug MacEachern, dougm@pobox.com

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Appendix F. HTML::Embperl—Embedding Perl Code
in HTML

—Adapted and condensed from the HTML::Embperl manual pages by
Gerald Richter

HTML::Embperl is a text processor module which takes your ASCII text, extracts
embedded Perl code, executes the code, and, as far as necessary, inserts the result
in your text. While Embperl can also be used with non-HTML documents, it has
several features that are specifically for HTML.

This appendix gives you an overview of what you can do with Embperl. It is not a
complete description of Embperl. For detailed information, please look at the
documentation provided with Embperl or at the Embperl website
(http://perl.apache.org/embperl/).

Embperl is not the only processor for embedded Perl code. ASP used with the
ActiveState Perl port provides this for Microsoft IIS, and ePerl does this job very well
for all sorts of ASCII files. There are other Perl solutions around as well. PHP is a
well-known solution for easily building web pages with embedded code and database
connections, but it uses its own language instead of Perl.

The main advantage of Embperl is its built-in HTML awareness. It provides features
for handling form data and HTML tables, along with converting log files and error
pages to HTML and linking them together. It also allows for escaping and unescaping.

Embperl can be used offline (as a normal CGI script or as a module from other Perl
code), but its real power comes when running under mod_perl and Apache. It's
directly integrated with Apache and mod_perl to achieve the best performance by
directly using Apache functions and precompiling your code to avoid a recompile on
every request.

Embperl was designed to be used with a high-level HTML editor. The Perl code can
be entered as normal text (the editor need not know any special HTML tags, nor is it
necessary to enter special HTML tags via uncomfortable dialogs); just enter your
code as if it were normal text. Embperl takes care of unescaping the HTML entities
and eliminates unwanted HTML tags that are entered into your Perl code by the editor
(for example,
 to break lines for better readability). If you prefer to use an ASCII
editor for writing your HTML code, don't worry. You can configure everything that you
want Embperl to do—and everything that you don't want it to do, too. Also, on the
output side, Embperl correctly escapes your HTML/URL output (as long as you don't
disable it).

How can you embed Perl code in your HTML documents? There are three ways:

[- ... -] to execute code

[- $a = 5 -] [- $b = 6 if ($a == 5) -]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[- $a = 5 -] [- $b = 6 if ($a == 5) -]

The code between [- and -] is executed. No output will be generated. This is
mainly for assignments, function calls, database queries, etc.

[+ ... +] to output the result

[+ $a +] [+ $array[$b] +] [+ "A is $a" +]

The code between [+ and +] is executed and the return value (the value of the
last expression evaluated) is output (sent to the browser).

[! ... !] to execute code once

[! sub foo { my ($a, $b) = @_ ; $a * $b + 7 } !]

This is the same as [- ... -], except that the code is only executed for the first
request. This is mainly for function definitions and one-time initialization.

Comments can be entered by bracketing them between [# and #]. In contrast to
normal HTML comments, Embperl comments are removed before they are sent to the
browser.

Embperl supports some metacommands to control the program flow within the
Embperl document. This can be compared to preprocessor commands in C. The
meta commands take the following form:

[$ cmdarg$]

if, elsif, else, endif

The if command in Embperl is just the same as it is in Perl. It is used to
conditionally output or process parts of the document. For example:

[$ if $ENV{REQUEST_METHOD} eq 'GET' $]
 This is a GET request
[$ elsif $ENV{REQUEST_METHOD} eq 'POST' $]
 This is a POST request
[$ else $]
 This is not GET and not POST
[$ endif $]

This will output one of the three lines depending on the setting of
$ENV{REQUEST_METHOD}.

while, endwhile

The while command can be used to create a loop in the HTML document. For
example:

[$ while ($k, $v) = each (%ENV) $]
 [+ $k +] = [+ $v +]

[$ endwhile $]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[$ endwhile $]

This example will display all environment variables, each terminated with a line
break.

do, until

The do and until commands also create a loop but with a condition at the end.
For example:

[- @arr = (3, 5, 7); $i = 0 -]
[$ do $]
 [+ $arr[$i++] +]
[$ until $i > $#arr $]

foreach, endforeach

The foreach and endforeach commands create a loop iterating over every
element of an array/list. For example:

[$ foreach $v (1..10) $]
 [+ $v +]
[$ endforeach $]

var <var1> <var2> ...

By default, you do not need to declare any variables you use within an Embperl
page. Embperl takes care of deleting them at the end of each request.
Sometimes, though, you want to declare them explicitly. You can do this by
using var :

[$ var $a @b %c $]

Has the same effect as the Perl code:

use strict ;use vars qw {$a @b %c} ;

hidden

The hidden command is used for creating hidden form fields and is described in
the form field section later in this appendix.

While the Embperl metacommands give your document a more readable way of
nesting control structures and give Embperl a better chance to control and log what's
happening (as we will discuss in more detail later), you can also use Perl control
structures inside your Embperl documents. (See the Embperl documentation for more
details.)

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

F.1 Dynamic Tables

One very powerful feature of Embperl is its ability to process dynamic tables. This
feature was designed mainly to display Perl arrays (one- or two-dimensional, regular
and irregular), but it can also be used in other ways.

Here is an example that displays a Perl array:

[- @a = ('A', 'B', 'C') ; -]
<TABLE BORDER=1>
 <TR>
 <TD> [+ $a[$row] +] </TD>
 </TR>
</TABLE>

This example simply displays a table with three rows containing A, B, and C. The trick
is done by using the magical variable $row which contains the row count and is
incremented for every row. The table ends if the expression that contains $row
returns undef. The same can be done with $col for columns. You can also use $cnt
to create a table that wraps after a certain number of elements. This works with
TABLE, SELECT, MENU, OL, DL, and DIR.

Here is a simple DBI example that displays the result of a query as a two-dimensional
table with field names as headings in the first row:

[-
connect to database
 $dbh = DBI->connect($DSN) ;

prepare the sql select
$sth = $dbh -> prepare ("SELECT * from $table") ;

excute the query
$sth -> execute ;

get the fieldnames for the heading in $head
$head = $sth -> {NAME} ;

get the result in $dat
$dat = $sth -> fetchall_arrayref ;
-]

<table>
 <tr><th>[+ $head->[$col] +]</th></tr>
 <tr><td>[+ $dat -> [$row][$col] +]</td></tr>
</table>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

F.2 Handling Forms

Another feature of Embperl is the way it helps you to handle forms. Posted form data
is available in %fdat and @ffld. The hash %fdat contains the values of all form
fields. The array @ffld contains the names in the order in which they were
submitted.

Moreover, the HTML tags Input, Textarea, and Select take values from %fdat. If you
do not specify a default value for an input tag, but a value for that input tag is
available in %fdat, Embperl will automatically insert the value from %fdat and send
it to the browser. This is similar to the behavior of CGI.pm. This means that if you post
a form to itself, the browser will display the values you just entered.

Sometimes it's necessary to pass values between consecutive forms. One way to do
this is to pass them via hidden form fields. The hidden metacommand creates hidden
form fields for all fields not in another input field. This can be used to transport data
through confirmation forms, for example, a wizard.

Example F.1 shows many of the possibilities of Embperl. It's a simple form where
you can enter your name, your email address, and a message. If you hit the send
button, you see the data you just entered and can confirm the information by hitting
the "send via mail" button, or you can go back to the input form to change the data. If
you confirm your input, the data will be sent to a predefined email address. The
example also shows how you can implement error checking—if you omit your name
or your email address, you will get a corresponding error message and the input form
is shown again.

The first part is the error checking; the second part is the confirmation form; the third
part sends the mail if the input was acceptable and is confirmed; the last part is the
input form itself.

Depending on the values of $fdat{check}, $fdat{send}, $fdat{name}, and
$fdat{email}, the document decides which part to show.

Example F.1. Input and Confirmation Form

[- $MailTo = 'richter\@ecos.de' ;

 @errors = () ;
 if (defined($fdat{check}) || defined($fdat{send}))
 {
 push @errors, "**Please enter your name" if (!$fdat{name}) ;
 push @errors, "**Please enter your e-mail address" if (!$fdat{email}) ;
 }
-]

[$if (defined($fdat{check}) and $#errors == -1)$]
[-
 delete $fdat{input} ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 delete $fdat{input} ;
 delete $fdat{check} ;
 delete $fdat{send}
-]

<hr><h3> You have entered the following data:</h3>
<table>
 <tr><td>Name</td><td>[+$fdat{name}+]</td></tr>
 <tr><td>E-Mail</td><td>[+$fdat{email}+]</td></tr>
 <tr><td>Message</td><td>[+$fdat{msg}+]</td></tr>
 <tr><td align="center" colspan="2">
 <form action="input.htm" method="GET">
 <input type="submit" name="send"
 value="Send to [+ $MailTo +]">
 <input type="submit" name="input" value="Change your data">
 [$hidden$]
 </form>
 </td></tr>
</table>

[$elsif defined($fdat{send}) and $#errors == -1$]

[- MailFormTo ($MailTo,'Formdata','email') -]
<hr><h3>Your input has been sent</h3>

[$else$]

<hr><h3>Please enter your data</h3>

<form action="input.htm" method="GET">
 <table>
 [$if $#errors != -1 $]
 <tr><td colspan="2">
 <table>
 <tr><td>[+$errors[$row]+]</td></tr>
 </table>
 </td></tr>
 [$endif$]
 <tr><td>Name</td> <td><input type="text"
 name="name"></td></tr>
 <tr><td>E-Mail</td> <td><input type="text"
 name="email"></td></tr>
 <tr><td>Message</td> <td><input type="text"
 name="msg"></td></tr>
 <tr><td colspan=2><input type="submit"
 name="check" value="Send"></td></tr> </table>
</form>

[$endif$]

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

F.3 Storing Persistent Data

While hidden fields are useful when working with forms, it's often necessary to store
persistent data in a more general way. Embperl utilizes Apache::Session to do this
job. Apache::Session is capable of storing persistent data in memory, in a text file, or
in a database. More storage methods may be supported in the future. Although you
can simply call Apache::Session from an Embperl page, Embperl can call it for you.
All you need to do is to put user data in the hash %udat. The next time the same user
requests any Embperl page, %udat will contain the same data. You can use this
approach to keep state information for the user, and depending on your expire
settings, you can also keep state between multiple sessions. A second hash, %mdat,
can be used to keep state for one page for multiple users. A simple example would be
a page hit counter:

The page is requested [+ $mdat{counter}++ +] times
since [+ $mdat{date} ||= localtime +]

This example counts the page hits and shows the date when the page is first
requested. (See the hangman game at the end of this appendix for more examples of
%udat and %mdat.) You don't need to worry about performance—as long as you
don't touch %udat or %mdat, no action is taken.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

F.4 Modularization of Embperl Pages

If you are working on a complete site and not just a few pages, there are always
elements which occur in every page or in many pages. Instead of copying the source
code to every page, you can include Embperl modules in your pages, so you'll have
to write the source only once. Such a module could be a header, a footer, a
navigation bar, etc. Embperl is capable of not only including such partial pages but
also passing arguments. Here is an example that tells the navigation bar which
element to highlight:

[- @buttons = ('Index', 'Infos', 'Search') -]
<table><tr><td>
[$if $buttons[$col] eq $param[0]$] <bold> [$endif$]
 [+ $buttons[$col] +]
[$if $buttons[$col] eq $param[0]$] </bold> [$endif$]
</td></tr></table>
<hr>

Now if you are on the "Infos" page, you can include the navigation bar as follows:

[- Execute ('navbar.html', 'Infos') -]

This will include the navigation bar, which is stored in the file navbar.html, and pass
as its first parameter the string Infos. The navigation bar module itself uses a
dynamic table to display one column, which contains the text and a link, for every item
in the array @buttons. Also, the text that is equal to text passed as a first parameter
is displayed in bold. There is also a long form of the Execute call, which allows you to
control all aspects of executing the module.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

F.5 Debugging

Debugging of CGI scripts is always a difficult task because the execution is controlled
by the web server and, for the most part, you can't use a debugger. Embperl helps
you debug your Embperl pages by creating a detailed log file. The log file shows you
what Embperl does as it processes your page. Depending on the debug flag settings,
Embperl logs the following:

Source

Environment

Form data

Evals (source and result)

Table processing

Input tag processing

HTTP headers

To make debugging even easier, you can tell Embperl to display a link at the top of
each page to your log file while you are debugging a page. If you follow the link,
Embperl will show the portion of the log file that corresponds to that request. The log
file lines are displayed in different colors to give you a better overview. With these
links to the log file enabled, every error displayed in an error page is also a link to the
corresponding position in the log file, so you can easily locate where things are going
wrong.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

F.6 Querying a Database

Often it's necessary to query a database when generating a dynamic page. We have
already seen in our discussion of dynamic tables how this can be done using the DBI
database interface. Since the tasks needed in a web page are often the same, there
is a module called DBIx::Recordset, which simplifies commonly needed tasks:

[-*set = DBIx::Recordset -> Search ({%fdat,
 ('!DataSource' => $DSN,
 '!Table' => $table,
 '$max' => 5,)}) ; -]
<table>
 <tr><th>ID</th><th>NAME</th></tr>
 <tr>
 <td>[+ $set[$row]{id} +]</td>
 <td>[+ $set[$row]{name} +]</td>
 </tr>
</table>
[+ $set -> PrevNextForm ('Previous Records',
 'Next Records',
 \%fdat) +]

The Search() method in this example will take the values from %fdat and use them
to build a SQL WHERE expression. This way, what you search for depends on what
is posted to the document. For example, if you request the document with
http://host/mydoc.html?id=5, the above example will display all database
records where the field id contains the value 5. The result of the query can be
accessed as an array (this does not mean that the whole array is actually fetched
from the database). Alternatively, you can directly access the current record just by
accessing the fields, as shown here:

set[5]{id} access the field 'id' of the sixth found record
set{id} access the field 'id' of the current record

While normal DBI lets you access your data by column numbers, DBIx::Recordset
uses the field names. This makes your program easier to write, more verbose, and
independent of database changes.

The PrevNextButtons function can be used to generate a button for showing the
previous record or the next record. PrevNextButtons generates a small form and
includes all necessary data as hidden fields. To get it to work, simply feed this data to
the next Search request.

There are also methods for Insert, Update, and Delete. For example, if %fdat
contains the data for the new record, the following code will insert a new record into
the database:

[-*set = DBIx::Recordset -> Insert ({%fdat,
 ('!DataSource' => $DSN,
 '!Table' => $table)}) ; -]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 '!Table' => $table)}) ; -]

DBIx::Recordset can also tie a database table to a hash. You need to specify a
primary key for the table, which is used as a key in the hash:

$set{5}{name} access the name with the id=5
 (id is primary key)

There are more features of DBIx::Recordset, such as handling linked tables, which
makes it useful even in pages that do not use Embperl.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

F.7 Security

Another topic of interest in web environments is security. When running under
mod_perl, all Perl code shares the same interpreter. This means that every
application can access data from every other application. Embperl maintains a
separate namespace for every document, which prevents accidentally overwriting
other applications' data but provides no real security. You can still access anything
you like if you explicitly specify a package name.

Therefore, Embperl incorporates Safe.pm, which makes it impossible to access any
packages other than your own. This can be used, for example, to calculate something
in a Perl module and then pass the results to an Embperl document. If the Embperl
document runs in a safe namespace, it can access the data it has received from the
browser, but it can't access data outside itself. Therefore, you can safely let different
people create the layouts for Embperl pages.

Safe.pm also permits the administrator to disable any set of Perl opcodes. This gives
you the power to decide which Perl opcodes are permitted for use by the page
creators.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

F.8 An Extended Example

Hopefully, you now have a general overview of the main features of Embperl. For
more information—for example, to learn more about the many options you have in
configuring Embperl or for instructions on how to configure Apache or mod_perl —
please take a look at the Embperl web site at http://perl.apache.org/embperl/.
Embperl is actively supported and development is going on all of the time. The web
site will always contain information on the newest features.

Example F.2 shows one last example of how you can use Embperl. It's a rewritten
version of the hangman game of Chapter 5. Instead of creating its own session
management, as in Chapter 5, this hangman game uses the Embperl built-in
capabilities.

Example F.2. Hangman with Embperl

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<HTML><HEAD><TITLE>Hangman with Embperl</TITLE></HEAD>
<BODY BGCOLOR="white" ONLOAD="if (document.gf) document.gf.guess.focus()">

<H1>Hangman with Embperl</H1>

<P> This is an Embperl version of the Hangman game from
Writing Apache Modules with Perl and C<A>
 Chapter 5 </P>

<HR>

[!

use constant WORDS => 'hangman-words';
use constant ICONS => '../images';
use constant TRIES => 6;
use constant TOP_COUNT => 15; # how many top scores to show

########### subroutines ##############
This subroutines are just the same as in the hangman6.pl from chapter 5

This is called to process the user's guess

sub process_guess {
 my ($guess,$state) = @_;

 # lose immediately if user has no more guesses left
 return ('','lost') unless $state->{LEFT} > 0;

 # lose immediately if user aborted
 if ($fdat{'abort'}) {
 $state->{TOTAL} += $state->{LEFT};
 $state->{LEFT} = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 $state->{LEFT} = 0;
 return (qq{Chicken! The word was "$state->{WORD}."},'lost') ;
 }

 # break the word and guess into individual letters
 my %guessed = map { $_ => 1 } split('',$state->{GUESSED});
 my %letters = map { $_ => 1 } split('',$state->{WORD});

 # return immediately if user has already guessed the word
 return ('','won') unless grep(!$guessed{$_},keys %letters);

 # do nothing more if no guess
 return ('','continue') unless $guess;

 return (qq{You\'ve lost. The word was "$state->{WORD}".},'lost')
 if $state->{LEFT} <= 0;

 # This section processes individual letter guesses
 $guess = lc($guess);
 return ("Not a valid letter or word!",'error') unless $guess=~/^[a-z]+$/;
 return ("You already guessed that letter!",'error') if $guessed{$guess};

 # This section is called when the user guesses the whole word
 if (length($guess) > 1 && $guess ne $state->{WORD}) {
 $state->{TOTAL} += $state->{LEFT};
 $state->{LEFT} = 0;
 return (qq{You lose. The word was "$state->{WORD}."},'lost')
 }

 # update the list of guesses
 foreach (split('',$guess)) { $guessed{$_}++; }
 $state->{GUESSED} = join('',sort keys %guessed);

 # correct guess -- word completely filled in
 unless (grep (!$guessed{$_},keys %letters)) {
 $state->{WON}++;
 return (qq{You got it! The word was "$state->{WORD}."},'won');
 }

 # incorrect guess
 if (!$letters{$guess}) {
 $state->{TOTAL}++;
 $state->{LEFT}--;
 # user out of turns
 return (qq{The jig is up. The word was "$state->{WORD}".},'lost')
 if $state->{LEFT} <= 0;
 # user still has some turns
 return ('Wrong guess!','continue');
 }

 # correct guess but word still incomplete

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # correct guess but word still incomplete
 return (qq{Good guess!},'continue');
}

############################
pick a word, any word
sub pick_random_word {
 open (LIST, WORDS)
 || die "Couldn't open ${\WORDS}: $!\n";
 my $word;
 rand($.) < 1 && ($word = $_) while <LIST>;
 chomp($word);
 close LIST ;
 $word;
}

End of subroutines
###

!]

[-
change username if requested
$udat{username} = $fdat{change_name} if ($fdat{change_name}) ;

store the score of the last game if we start a new one
NOTE: %mdat stores data for that page across multiple requests
$mdat{$udat{username}} = {GAMENO => $udat{GAMENO},
 WON => $udat{WON},
 AVERAGE => $udat{AVERAGE},
 SCORE => $udat{SCORE}}
 if ($udat{username} && $fdat{newgame}) ;

initialize user data if necessary
NOTE: %udat stores data for that user across multiple requests
%udat = {} if ($fdat{clear}) ;
if ($fdat{restart} || !$udat{WORD})
 {
 $udat{WORD} = pick_random_word() ;
 $udat{LEFT} = TRIES;
 $udat{TOTAL} += 0;
 $udat{GUESSED} = '';
 $udat{GAMENO} += 1;
 $udat{WON} += 0;
 }

check what the user has guessed
($message,$status) = process_guess($fdat{'guess'} || '',\%udat)
 unless $fdat{'show_scores'};

setup score values
$current_average = int($udat{TOTAL}/$udat{GAMENO} * 100) / 100 ;
$udat{AVERAGE} = $udat{GAMENO}>1 ?
 int(($udat{TOTAL}-(TRIES-$udat{LEFT}))/($udat{GAMENO}-1) * 100)/100

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int(($udat{TOTAL}-(TRIES-$udat{LEFT}))/($udat{GAMENO}-1) * 100)/100
$udat{SCORE} = $udat{AVERAGE} > 0 ?
 int(100*$udat{WON}/($udat{GAMENO}*$udat{AVERAGE})) : 0;

convert strings to hashs
%guessed = map { $_ => 1 } split ('', $udat{GUESSED});
%letters = map { $_ => 1 } split ('', $udat->{WORD});
$word = join (' ', map {$guessed{$_} ? $_ : '_'} split ('', $udat{WORD})) ;

delete the the values posted as guess, so the input field will be empty
delete $fdat{guess} ;
-]

[#### show the current status ####]

[$ if $udat{username} $]
 <H2>Player: [+ $udat{username} +]</H2>
[$ endif $]

<TABLE>
 <TR WIDTH="90%">
 <TD>Word #: [+ $udat{GAMENO} +] </TD>
 <TD>Won: [+ $udat{WON} +] </TD>
 <TD>Guessed: [+ $udat{GUESSED} +] </TD>
 </TR>
 <TR>
 <TD>Current average: [+ $current_average +] </TD>
 <TD>Overall average: [+ $udat{AVERAGE} +] </TD>
 <TD>Score: [+ $udat{SCORE} +]
 </TR>
</TABLE>

[$if !$fdat{show_scores} $]

 [#### show the images, the word and the message form process_guess ####]

 <IMG ALIGN="LEFT" SRC="[+ ICONS +]/h[+ TRIES-$udat{LEFT} +].gif"
 ALT="[[+ $udat{LEFT} +] tries left]">

 <H2>Word: [+ $word +] </H2>
 <H2>[+ $message +]</H2>

 <FORM METHOD="POST" ENCTYPE="application/x-www-form-urlencoded">

 [$if $status =~ /won|lost/ $]

 [#### game over, if won let the user enter his name and
 ask if he like to play again ####]

 [$if $status eq 'won' $]
 <P>Enter your name for posterity:
 <INPUT TYPE="text" NAME="change_name" VALUE="[+ $udat{username} +]">
 [$ endif $]
 <P>Do you want to play again?
 <INPUT TYPE="submit" NAME="restart" VALUE="Another game">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <INPUT TYPE="submit" NAME="restart" VALUE="Another game">
 <INPUT TYPE="submit" NAME="show_scores" VALUE="Show High Scores">
 <INPUT TYPE="checkbox" NAME="clear" VALUE="on">Clear my score</P>
 <INPUT TYPE="hidden" NAME="newgame" VALUE="on">

 [$else$]

 [#### let the user enter a guess or give up ####]

 Your guess: <INPUT TYPE="text" NAME="guess" VALUE="">
 <INPUT TYPE="submit" NAME=".submit" VALUE="Guess">
 <BR CLEAR="ALL">
 <INPUT TYPE="submit" NAME="show_scores" VALUE="Show High Scores">
 <INPUT TYPE="submit" NAME="abort" VALUE="Give Up" STYLE="color:

 [$endif$]

 </FORM><BR CLEAR="ALL">

[$ else $]

 [#### show a sorted table of the best players ####]

 [-
 $maxrow = TOP_COUNT ;
 @name = sort { $mdat{$a}{SCORE} <=> $mdat{$b}{SCORE} }
 grep (/^[^_]/, keys (%mdat))
 -]

 <TABLE BORDER="undef" WIDTH="75%">
 <CAPTION>Top 15 Winners</CAPTION>
 <TR>
 <TH>Name</TH>
 <TH>Games</TH>
 <TH>Won</TH>
 <TH>Average</TH>
 <TH>Score</TH>
 </TR>
 <TR>
 <TD>[+ $n = $name[$row] +]</TD>
 <TD>[+ $mdat{$n}{GAMENO} +]</TD>
 <TD>[+ $mdat{$n}{WON} +]</TD>
 <TD>[+ $mdat{$n}{AVERAGE} +]</TD>
 <TD>[+ $mdat{$n}{SCORE} +]</TD>
 </TR>
 </TABLE>

 [$ if $#name == -1 $]
 <H2>No scores available, nobody won the game so far</H2>
 [$endif$]

 <FORM METHOD="POST" ENCTYPE="application/x-www-form-urlencoded">
 <INPUT TYPE="submit" NAME="play" VALUE="Play">
 </FORM>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </FORM>

[$endif$]

<p><hr>

<small>Hangman for HTML::Embperl
 (c) 1998 G.Richter, Lincoln Stein, graphics courtesy Andy Wardley</small>

</body>
</html>

Here is a sample srm.conf entry to go with it:

PerlSetEnv SESSION_FILE_DIRECTORY /tmp/sessions
PerlSetEnv EMBPERL_SESSION_CLASS File
PerlModule Apache::Session::File
PerlModule HTML::Embperl
<Location /hangman>
 SetHandler perl-script
 PerlHandler HTML::Embperl
 Options ExecCGI
</Location>

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal featured on the cover of Writing Apache Modules with Perl and C is a
white-tailed eagle. These large sea eagles have a very large range and are therefore
highly adaptable. They are mostly found in coastal areas, but can also be found in the
tundra and steppes, forests, and mountains. They build huge nests in trees, bushes,
cliffs, or on the ground, depending on what their environment offers.

Eagles fall into the category of bird known as "raptors," a category that also includes
falcons and hawks. Like other sea eagles, white-tailed eagles have toes adapted to
grasping smooth prey such as fish. Their excellent vision enables all eagles to spot
prey from the air or a high perch. They frequently hunt in pairs for their favorite meal
of diving birds. Keeping a sharp eye on the bird as it dives, the white-tailed eagle
grabs it as soon as it resurfaces. Fish is another staple of the white-tailed eagle's diet.
In fact, their diet is as adaptable as everything else about these birds. They will
frequently eat fish in summer and waterfowl and carrion in winter, when fish are less
plentiful.

Eagles often eat their victims while still flying, breaking them apart and discarding the
nonedible parts to lighten their load. Eagles, like most raptors, often dine on sick or
wounded animals.

There are more than 50 species of eagle spread throughout the world, with the
exception of New Zealand and Antarctica. A pair of eagles will use the same nest
year after year, lining it with green leaves and grass, fur, turf, or other soft materials
and adding to it each year. The largest eagle nest ever found was 20 feet deep and
10 feet across.

White-tailed eagles are highly regarded, even revered, by many native populations of
Siberia and Scandinavian fishermen. However, in other areas overhunting has almost
led to their extinction. Increased awareness and limits on hunting have helped this
majestic bird rebuild its population, and it is now considered to be safe.

Melanie Wang was the production editor and copy editor for this book, and Sheryl
Avruch was the production manager. Sarah Jane Shangraw, Nicole Arigo, and Mary
Anne Weeks Mayo provided quality control reviews. Betty Hugh and Sebastian
Banker provided production support. Robert Romano created the illustrations using
Adobe Photoshop 4 and Macromedia FreeHand 7. Mike Sierra provided FrameMaker
technical support. Seth Maislin wrote the index.

Edie Freedman designed the cover of this book, using a 19th-century engraving from
the Dover Pictorial Archive. The cover layout was produced by Kathleen Wilson with
QuarkXPress 3.32 using the ITC Garamond font. The quick reference card was
designed and produced by Kathleen Wilson.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The inside layout was designed by Alicia Cech and implemented in FrameMaker 5.5
by Mike Sierra. The text and heading fonts are ITC Garamond Light and Garamond
Book. This colophon was written by Clairemarie Fisher O'Leary.

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

 $0 variable (Perl)

 301 "Moved Permanently" message

 302 "Moved Temporarily" message

 304 "not modified" message

 404 "Not Found" error

 500 "Internal Server Error" error

A

 aborted() (Apache::Connection)

 aborted field (conn_rec)

 Accept header (HTTP)

 Accept-Ranges header (HTTP)

 Accept-Charset header (HTTP)

 Accept-Language header (HTTP)

 access_checker() , 2nd

 access_confname field (server_rec)

 ACCESS_CONF constant , 2nd

access control

 C API handler

 CPAN Apache:: modules for

 methods for

 third-party modules for

 access control phase (Apache server) , 2nd

 access.conf file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 --activate-module argument (configure)

 Active Server Pages (ASP)

 ActiveX technology

 add() (Apache::Table)

 AddHandler directive

 AddType directive

 advertisements, blocking (example)

 alert() (Apache::Log)

 Alias directive , 2nd

 AliasMatch directive

 allocation routines (C API)

 allow_options()

 constants for

 allowed field (request_rec)

 anonymizing proxy requests

 ap_bflush()

 ap_bprintf()

 ap_bvputs()

 ap_bwrite()

 ap_custom_response()

 ap_error_log2stderr()

 ap_get_remote_host()

 ap_log_error()

 ap_overlay_tables()

 ap_palloc()

 ap_pstrdup()

 ap_rputs()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_send_fb_length()

 ap_send_http_header()

 ap_acquire_mutex()

 ap_add_cgi_vars()

 ap_add_common_vars()

 ap_add_version_component()

 ap_append_arrays()

 ap_array_cat()

 ap_array_pstrcat()

 ap_auth_name()

 ap_auth_type field (conn_rec) , 2nd

 ap_bgets()

 ap_block_alarms()

 ap_bputc()

 ap_bputs()

 ap_bread()

 ap_bspawn_child()

 ap_call_exec()

 ap_can_exec()

 ap_cfg_closefile()

 ap_cfg_getc()

 ap_cfg_getline()

 ap_chdir_file()

 ap_checkmask()

 ap_child_terminate()

 ap_cleanup_for_exec()

 ap_clear_pool()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_clear_table()

 ap_close_piped_log()

 ap_construct_server()

 ap_construct_url()

 ap_copy_array()

 ap_copy_array_hdr()

 ap_copy_table()

 ap_count_dirs()

 ap_cpystrn()

 ap_create_environment()

 ap_create_mutex()

 ap_default_port_for_request()

 ap_default_port_for_scheme()

 ap_default_type()

 ap_destroy_mutex()

 ap_destroy_pool()

 ap_destroy_sub_req()

 ap_discard_request_body()

 ap_error_log2stderr()

 ap_escape_html()

 ap_escape_quotes()

 ap_escape_shell_cmd()

 ap_exists_config_define()

 ap_find_last_token()

 ap_find_linked_module()

 ap_find_token()

 ap_fnmatch()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_get_basic_auth_pw()

 ap_get_client_block()

 ap_get_gmtoff()

 ap_get_module_config()

 ap_get_remote_host()

 ap_get_remote_logname()

 ap_get_server_built()

 ap_get_server_name()

 ap_get_server_port()

 ap_get_server_version()

 ap_get_time()

 ap_get_token()

 ap_getparents()

 ap_getword()

 ap_getword_conf()

 ap_getword_conf_nc()

 ap_getword_nc()

 ap_getword_nulls()

 ap_getword_nulls_nc()

 ap_getword_white()

 ap_getword_white_nc()

 ap_gm_timestr_822()

 ap_gname2id()

 ap_hard_timeout()

 ap_ht_time()

 ap_ind()

 ap_internal_redirect()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_internal_redirect_handler()

 ap_is_directory()

 ap_is_empty_table()

 ap_is_fnmatch()

 ap_is_HTTP_ macros (C API)

 ap_is_initial_req()

 ap_is_matchexp()

 ap_is_url()

 ap_isalnum()

 ap_isalpha()

 ap_iscntrl()

 ap_isdigit()

 ap_isgraph()

 ap_islower()

 ap_isprint()

 ap_ispunct()

 ap_isspace()

 ap_isupper()

 ap_kill_cleanup()

 ap_kill_cleanups_for_fd()

 ap_kill_timeout()

 ap_allow_options()

 ap_log_error()

 ap_log_reason()

 ap_log_rerror()

 ap_make_array()

 ap_make_dirstr_parent()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_make_dirstr_prefix()

 ap_make_full_path()

 ap_make_sub_pool()

 ap_make_table()

 ap_md5()

 ap_md5_binary()

 ap_md5contextTo64()

 ap_md5digest()

 ap_MD5Final()

 ap_MD5Init()

 ap_MD5Update()

 ap_meets_conditions()

 ap_method_number_of()

 ap_no2slash()

 ap_note_auth_failure()

 ap_note_basic_auth_failure()

 ap_note_cleanups_for_fd()

 ap_note_cleanups_for_file()

 ap_note_digest_auth_failure()

 ap_open_piped_log()

 ap_os_escape_path()

 ap_os_is_path_absolute()

 ap_overlay_tables()

 ap_parse_uri_components()

 ap_parseHTTPdate()

 ap_pcfg_open_custom()

 ap_pcfg_openfile()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_pclosedir()

 ap_pclosef()

 ap_pclosesocket()

 ap_pfclose()

 ap_pfdopen()

 ap_pfopen()

 ap_pgethostbyname()

 ap_piped_log_read_fd()

 ap_piped_log_write_fd()

 ap_pool_is_ancestor()

 ap_popendir()

 ap_popenf()

 ap_pregcomp()

 ap_pregfree()

 ap_pregsub()

 ap_psocket()

 ap_psprintf()

 ap_pstrcat()

 ap_push_array()

 ap_register_cleanup()

 ap_release_mutex()

 ap_reset_timeout() , 2nd

 ap_rflush()

 ap_rind()

 ap_rprintf()

 ap_rputc()

 ap_rputs()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_run_cleanup()

 ap_run_sub_req()

 ap_rvputs()

 ap_rwrite()

 ap_satisfies()

 ap_scan_script_header_err()

 ap_scan_script_header_err_buff()

 ap_scan_script_header_err_core()

 ap_send_fb()

 ap_send_fd()

 ap_send_fd_length()

 ap_send_http_header()

 ap_send_size()

 ap_server_root_relative()

 ap_set_content_length()

 ap_set_etag()

 ap_set_flag_slot()

 ap_set_last_modified()

 ap_set_module_config()

 ap_set_string_slot()

 ap_set_string_slot_lower()

 ap_setup_client_block()

 ap_should_client_block()

 ap_snprintf()

 ap_soft_timeout()

 ap_some_auth_required()

 ap_spawn_child()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_srm_command_loop()

 ap_str_tolower()

 ap_strcasecmp_match()

 ap_strcmp_match()

 ap_sub_req_lookup_file()

 ap_sub_req_lookup_uri()

 ap_table_add()

 ap_table_addn()

 ap_table_do()

 ap_table_elts()

 ap_table_get()

 ap_table_merge()

 ap_table_mergen()

 ap_table_set()

 ap_table_setn()

 ap_table_unset()

 ap_tm2sec()

 ap_tolower()

 ap_toupper()

 ap_uname2id()

 ap_unblock_alarms()

 ap_unescape_url()

 ap_unparse_uri_components()

 ap_update_mtime()

 ap_uudecode()

 ap_uuencode()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache

 building mod_perl separate from

 configuring with Perl

 customizing configuration of

 request object

 apache -k restart command (Win32)

 Apache build directory

Apache C modules

 accessing configuration information

 building

 building in Win32 environment

 customizing configuration directives

 dynamically loadable

 header files for

 "Hello World" program (example)

 initialization

 instant, with Apache::Registry

 troubleshooting

 Apache class, subclassing

 Apache module API

 C version

 downloading from web

 examples of using

 how it works

 life cycle of

 Perl version

 reasons to use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache Perl modules

"Hello World" program (example)

 user input with

 "Hello World" program (example)

 dynamically loadable

 initialization

 instant, with Apache::Registry

 namespace for

 storing

 troubleshooting

 Apache request objects

Apache web server

 Apache::Server class (Perl API)

 configuration files , 2nd

 restarting

 server_rec

 startup and configuration

 Apache::AdBlocker (example)

 Apache::Album module

 Apache::AnonProxy (example)

 Apache::ASP module

 Apache::AuthCookie module

 Apache::AuthenDBI module

 Apache::AuthenIMAP module

 Apache::AuthenNIS module

 Apache::AuthenNISPlus module

 Apache::AuthenPasswd module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache::AuthenPasswdSrv module

 Apache::AuthenRadius module

 Apache::AuthenSMB module

 Apache::AuthenURL module

 Apache::AuthLDAP module

 Apache::AuthzDBImodule

 Apache::AuthzNIS module

 Apache::AuthzPasswd module

 Apache::AutoIndex module

 Apache::BlockAgent module

 Apache::Censor (example)

 Apache::Checksum1 (example)

 Apache::Checksum2 (example)

 Apache::Checksum3 (example)

 Apache::CmdParms class , 2nd , 3rd

 Apache::Connection class , 2nd

 Apache::Constants class

 Apache::Constants module , 2nd

 Apache::Crash (example)

 Apache::DBI module , 2nd

 Apache::DBILogConfig module

 Apache::DBILogger module , 2nd , 3rd

 Apache::DBILogin module

 Apache::Debug module

 Apache::DefaultTrans (example)

 Apache::DProf module

 Apache::EmbperlChain module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache::ESSI (example)

 Apache::FakeRequest module

 Apache::File

 Apache::File class , 2nd

 sending static files

 Apache::Filter module , 2nd

 Apache::Footer (example)

 Apache::Forward (example)

 Apache::Gateway module

 Apache::GoFish (example)

 Apache::GoHome (example)

 Apache::GZip (example)

 Apache::GZipChain module

 Apache::GzipChain module

 Apache::Hello (example)

 user input with

 Apache::HttpEquiv module

 Apache::Include class , 2nd

 Apache::Include module

 Apache::Language module

 Apache::Layer module

 Apache::Log class , 2nd

 Apache::Log module

 Apache::LogDBI (example)

 Apache::LogFile module

 Apache::LogMail (example)

 Apache::Magick (example)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache::MimeDBI (example)

 Apache::Missing (example)

 Apache::Mmap module

 Apache::Module module

 Apache::ModuleConfig class , 2nd , 3rd

 Apache::MyRequest subclass (example)

 Apache::Mysql module

 Apache::NavBar (example)

 If-Modified-Since handling

 Apache::OutputChain module , 2nd

 Apache::PassFile module

 Apache::PassThru (example)

 adding configuration directives

 Apache::PATCH (example)

 Apache::Peek module

 Apache::PerlRun class , 2nd

 Apache::PerlRun module

 Apache::PerlSections class , 2nd

 Apache::PerlSections module

 Apache::PHLogin module

 Apache::PrettyText module

 Apache::ProxyPass module

 Apache::RandomLocation module

 Apache::RandPicture (example)

 Apache::ReadConfig class

 Apache::RedirectDBI module

 Apache::RefererBlock module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache::Registry class

 Apache::Registry module , 2nd , 3rd

 configuration file entry for

 debugging modules as scripts

 guestbook script (example)

 pitfalls to using

 Apache::RegistryLoader class , 2nd

 Apache::Request module , 2nd

 Apache::Resource class , 2nd

 Apache::Roaming module , 2nd

 Apache::Sandwich module , 2nd

 Apache::SendFile module

 Apache::Server class , 2nd

 global variables in

 Apache::Session module , 2nd

 Apache::SmallProf module

 Apache::SSI module

 Apache::Stage module

 Apache::StatINC class , 2nd

 Apache::StatINC module , 2nd

 Apache::Status class , 2nd

 Apache::StripSession module

 Apache::SubRequest class

 Apache::Sybase::CTlib module

 Apache::Table class , 2nd

 Apache::Taco module

 Apache::TempFile module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache::Throttle module

 Apache::TimedRedirect module

 Apache::Traffic module , 2nd , 3rd

 Apache::TransLDAP module

 Apache::TreeBrowser (example)

 Apache::Upcase (example)

 Apache::UploadSvr module

 Apache::URI class , 2nd

 Apache::UserTrack module

 Apache::Util class

 apachectl command (Unix)

 ApacheModulePerl.dll , 2nd

 See : server APIs APIs

 APLOG_ severity levels

 applets (Java)

 apxs program , 2nd

 args() (request object) , 2nd , 3rd

 args attribute (#perl)

 args field (request_rec)

 args_how field (command_rec) , 2nd

 args_how key (@directives element) , 2nd

 array_header structure

 array API (C API)

 array_header()

 arrays, working with (C API)

 as_string()

 ASP (Active Server Pages)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 auth_name()

 auth_checker()

 auth_type() (Apache::Connection)

 auth_type() (request object)

authentication

 C API core routines

 C API handler

 CPAN Apache:: modules for

 MAC (message authentication check)

 methods for

 for session IDs

 third-party modules for

 authentication phase (Apache server) , 2nd

authorization

 C API core routines

 C API handler

 CPAN Apache:: modules for

 methods for

 third-party modules for

 authorization phase (Apache server) , 2nd

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

 $0 variable (Perl)

 301 "Moved Permanently" message

 302 "Moved Temporarily" message

 304 "not modified" message

 404 "Not Found" error

 500 "Internal Server Error" error

A

 aborted() (Apache::Connection)

 aborted field (conn_rec)

 Accept header (HTTP)

 Accept-Ranges header (HTTP)

 Accept-Charset header (HTTP)

 Accept-Language header (HTTP)

 access_checker() , 2nd

 access_confname field (server_rec)

 ACCESS_CONF constant , 2nd

access control

 C API handler

 CPAN Apache:: modules for

 methods for

 third-party modules for

 access control phase (Apache server) , 2nd

 access.conf file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 --activate-module argument (configure)

 Active Server Pages (ASP)

 ActiveX technology

 add() (Apache::Table)

 AddHandler directive

 AddType directive

 advertisements, blocking (example)

 alert() (Apache::Log)

 Alias directive , 2nd

 AliasMatch directive

 allocation routines (C API)

 allow_options()

 constants for

 allowed field (request_rec)

 anonymizing proxy requests

 ap_bflush()

 ap_bprintf()

 ap_bvputs()

 ap_bwrite()

 ap_custom_response()

 ap_error_log2stderr()

 ap_get_remote_host()

 ap_log_error()

 ap_overlay_tables()

 ap_palloc()

 ap_pstrdup()

 ap_rputs()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_send_fb_length()

 ap_send_http_header()

 ap_acquire_mutex()

 ap_add_cgi_vars()

 ap_add_common_vars()

 ap_add_version_component()

 ap_append_arrays()

 ap_array_cat()

 ap_array_pstrcat()

 ap_auth_name()

 ap_auth_type field (conn_rec) , 2nd

 ap_bgets()

 ap_block_alarms()

 ap_bputc()

 ap_bputs()

 ap_bread()

 ap_bspawn_child()

 ap_call_exec()

 ap_can_exec()

 ap_cfg_closefile()

 ap_cfg_getc()

 ap_cfg_getline()

 ap_chdir_file()

 ap_checkmask()

 ap_child_terminate()

 ap_cleanup_for_exec()

 ap_clear_pool()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_clear_table()

 ap_close_piped_log()

 ap_construct_server()

 ap_construct_url()

 ap_copy_array()

 ap_copy_array_hdr()

 ap_copy_table()

 ap_count_dirs()

 ap_cpystrn()

 ap_create_environment()

 ap_create_mutex()

 ap_default_port_for_request()

 ap_default_port_for_scheme()

 ap_default_type()

 ap_destroy_mutex()

 ap_destroy_pool()

 ap_destroy_sub_req()

 ap_discard_request_body()

 ap_error_log2stderr()

 ap_escape_html()

 ap_escape_quotes()

 ap_escape_shell_cmd()

 ap_exists_config_define()

 ap_find_last_token()

 ap_find_linked_module()

 ap_find_token()

 ap_fnmatch()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_get_basic_auth_pw()

 ap_get_client_block()

 ap_get_gmtoff()

 ap_get_module_config()

 ap_get_remote_host()

 ap_get_remote_logname()

 ap_get_server_built()

 ap_get_server_name()

 ap_get_server_port()

 ap_get_server_version()

 ap_get_time()

 ap_get_token()

 ap_getparents()

 ap_getword()

 ap_getword_conf()

 ap_getword_conf_nc()

 ap_getword_nc()

 ap_getword_nulls()

 ap_getword_nulls_nc()

 ap_getword_white()

 ap_getword_white_nc()

 ap_gm_timestr_822()

 ap_gname2id()

 ap_hard_timeout()

 ap_ht_time()

 ap_ind()

 ap_internal_redirect()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_internal_redirect_handler()

 ap_is_directory()

 ap_is_empty_table()

 ap_is_fnmatch()

 ap_is_HTTP_ macros (C API)

 ap_is_initial_req()

 ap_is_matchexp()

 ap_is_url()

 ap_isalnum()

 ap_isalpha()

 ap_iscntrl()

 ap_isdigit()

 ap_isgraph()

 ap_islower()

 ap_isprint()

 ap_ispunct()

 ap_isspace()

 ap_isupper()

 ap_kill_cleanup()

 ap_kill_cleanups_for_fd()

 ap_kill_timeout()

 ap_allow_options()

 ap_log_error()

 ap_log_reason()

 ap_log_rerror()

 ap_make_array()

 ap_make_dirstr_parent()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_make_dirstr_prefix()

 ap_make_full_path()

 ap_make_sub_pool()

 ap_make_table()

 ap_md5()

 ap_md5_binary()

 ap_md5contextTo64()

 ap_md5digest()

 ap_MD5Final()

 ap_MD5Init()

 ap_MD5Update()

 ap_meets_conditions()

 ap_method_number_of()

 ap_no2slash()

 ap_note_auth_failure()

 ap_note_basic_auth_failure()

 ap_note_cleanups_for_fd()

 ap_note_cleanups_for_file()

 ap_note_digest_auth_failure()

 ap_open_piped_log()

 ap_os_escape_path()

 ap_os_is_path_absolute()

 ap_overlay_tables()

 ap_parse_uri_components()

 ap_parseHTTPdate()

 ap_pcfg_open_custom()

 ap_pcfg_openfile()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_pclosedir()

 ap_pclosef()

 ap_pclosesocket()

 ap_pfclose()

 ap_pfdopen()

 ap_pfopen()

 ap_pgethostbyname()

 ap_piped_log_read_fd()

 ap_piped_log_write_fd()

 ap_pool_is_ancestor()

 ap_popendir()

 ap_popenf()

 ap_pregcomp()

 ap_pregfree()

 ap_pregsub()

 ap_psocket()

 ap_psprintf()

 ap_pstrcat()

 ap_push_array()

 ap_register_cleanup()

 ap_release_mutex()

 ap_reset_timeout() , 2nd

 ap_rflush()

 ap_rind()

 ap_rprintf()

 ap_rputc()

 ap_rputs()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_run_cleanup()

 ap_run_sub_req()

 ap_rvputs()

 ap_rwrite()

 ap_satisfies()

 ap_scan_script_header_err()

 ap_scan_script_header_err_buff()

 ap_scan_script_header_err_core()

 ap_send_fb()

 ap_send_fd()

 ap_send_fd_length()

 ap_send_http_header()

 ap_send_size()

 ap_server_root_relative()

 ap_set_content_length()

 ap_set_etag()

 ap_set_flag_slot()

 ap_set_last_modified()

 ap_set_module_config()

 ap_set_string_slot()

 ap_set_string_slot_lower()

 ap_setup_client_block()

 ap_should_client_block()

 ap_snprintf()

 ap_soft_timeout()

 ap_some_auth_required()

 ap_spawn_child()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ap_srm_command_loop()

 ap_str_tolower()

 ap_strcasecmp_match()

 ap_strcmp_match()

 ap_sub_req_lookup_file()

 ap_sub_req_lookup_uri()

 ap_table_add()

 ap_table_addn()

 ap_table_do()

 ap_table_elts()

 ap_table_get()

 ap_table_merge()

 ap_table_mergen()

 ap_table_set()

 ap_table_setn()

 ap_table_unset()

 ap_tm2sec()

 ap_tolower()

 ap_toupper()

 ap_uname2id()

 ap_unblock_alarms()

 ap_unescape_url()

 ap_unparse_uri_components()

 ap_update_mtime()

 ap_uudecode()

 ap_uuencode()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache

 building mod_perl separate from

 configuring with Perl

 customizing configuration of

 request object

 apache -k restart command (Win32)

 Apache build directory

Apache C modules

 accessing configuration information

 building

 building in Win32 environment

 customizing configuration directives

 dynamically loadable

 header files for

 "Hello World" program (example)

 initialization

 instant, with Apache::Registry

 troubleshooting

 Apache class, subclassing

 Apache module API

 C version

 downloading from web

 examples of using

 how it works

 life cycle of

 Perl version

 reasons to use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apache Perl modules

"Hello World" program (example)

 user input with

 "Hello World" program (example)

 dynamically loadable

 initialization

 instant, with Apache::Registry

 namespace for

 storing

 troubleshooting

 Apache request objects

Apache web server

 Apache::Server class (Perl API)

 configuration files , 2nd

 restarting

 server_rec

 startup and configuration

 Apache::AdBlocker (example)

 Apache::Album module

 Apache::AnonProxy (example)

 Apache::ASP module

 Apache::AuthCookie module

 Apache::AuthenDBI module

 Apache::AuthenIMAP module

 Apache::AuthenNIS module

 Apache::AuthenNISPlus module

 Apache::AuthenPasswd module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache::AuthenPasswdSrv module

 Apache::AuthenRadius module

 Apache::AuthenSMB module

 Apache::AuthenURL module

 Apache::AuthLDAP module

 Apache::AuthzDBImodule

 Apache::AuthzNIS module

 Apache::AuthzPasswd module

 Apache::AutoIndex module

 Apache::BlockAgent module

 Apache::Censor (example)

 Apache::Checksum1 (example)

 Apache::Checksum2 (example)

 Apache::Checksum3 (example)

 Apache::CmdParms class , 2nd , 3rd

 Apache::Connection class , 2nd

 Apache::Constants class

 Apache::Constants module , 2nd

 Apache::Crash (example)

 Apache::DBI module , 2nd

 Apache::DBILogConfig module

 Apache::DBILogger module , 2nd , 3rd

 Apache::DBILogin module

 Apache::Debug module

 Apache::DefaultTrans (example)

 Apache::DProf module

 Apache::EmbperlChain module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache::ESSI (example)

 Apache::FakeRequest module

 Apache::File

 Apache::File class , 2nd

 sending static files

 Apache::Filter module , 2nd

 Apache::Footer (example)

 Apache::Forward (example)

 Apache::Gateway module

 Apache::GoFish (example)

 Apache::GoHome (example)

 Apache::GZip (example)

 Apache::GZipChain module

 Apache::GzipChain module

 Apache::Hello (example)

 user input with

 Apache::HttpEquiv module

 Apache::Include class , 2nd

 Apache::Include module

 Apache::Language module

 Apache::Layer module

 Apache::Log class , 2nd

 Apache::Log module

 Apache::LogDBI (example)

 Apache::LogFile module

 Apache::LogMail (example)

 Apache::Magick (example)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache::MimeDBI (example)

 Apache::Missing (example)

 Apache::Mmap module

 Apache::Module module

 Apache::ModuleConfig class , 2nd , 3rd

 Apache::MyRequest subclass (example)

 Apache::Mysql module

 Apache::NavBar (example)

 If-Modified-Since handling

 Apache::OutputChain module , 2nd

 Apache::PassFile module

 Apache::PassThru (example)

 adding configuration directives

 Apache::PATCH (example)

 Apache::Peek module

 Apache::PerlRun class , 2nd

 Apache::PerlRun module

 Apache::PerlSections class , 2nd

 Apache::PerlSections module

 Apache::PHLogin module

 Apache::PrettyText module

 Apache::ProxyPass module

 Apache::RandomLocation module

 Apache::RandPicture (example)

 Apache::ReadConfig class

 Apache::RedirectDBI module

 Apache::RefererBlock module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache::Registry class

 Apache::Registry module , 2nd , 3rd

 configuration file entry for

 debugging modules as scripts

 guestbook script (example)

 pitfalls to using

 Apache::RegistryLoader class , 2nd

 Apache::Request module , 2nd

 Apache::Resource class , 2nd

 Apache::Roaming module , 2nd

 Apache::Sandwich module , 2nd

 Apache::SendFile module

 Apache::Server class , 2nd

 global variables in

 Apache::Session module , 2nd

 Apache::SmallProf module

 Apache::SSI module

 Apache::Stage module

 Apache::StatINC class , 2nd

 Apache::StatINC module , 2nd

 Apache::Status class , 2nd

 Apache::StripSession module

 Apache::SubRequest class

 Apache::Sybase::CTlib module

 Apache::Table class , 2nd

 Apache::Taco module

 Apache::TempFile module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache::Throttle module

 Apache::TimedRedirect module

 Apache::Traffic module , 2nd , 3rd

 Apache::TransLDAP module

 Apache::TreeBrowser (example)

 Apache::Upcase (example)

 Apache::UploadSvr module

 Apache::URI class , 2nd

 Apache::UserTrack module

 Apache::Util class

 apachectl command (Unix)

 ApacheModulePerl.dll , 2nd

 See : server APIs APIs

 APLOG_ severity levels

 applets (Java)

 apxs program , 2nd

 args() (request object) , 2nd , 3rd

 args attribute (#perl)

 args field (request_rec)

 args_how field (command_rec) , 2nd

 args_how key (@directives element) , 2nd

 array_header structure

 array API (C API)

 array_header()

 arrays, working with (C API)

 as_string()

 ASP (Active Server Pages)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 auth_name()

 auth_checker()

 auth_type() (Apache::Connection)

 auth_type() (request object)

authentication

 C API core routines

 C API handler

 CPAN Apache:: modules for

 MAC (message authentication check)

 methods for

 for session IDs

 third-party modules for

 authentication phase (Apache server) , 2nd

authorization

 C API core routines

 C API handler

 CPAN Apache:: modules for

 methods for

 third-party modules for

 authorization phase (Apache server) , 2nd

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

B

 =back directive (POD)

 banner advertisements, blocking (example)

 banner command (Unix)

 base_server field (conn_rec)

 BEGIN subroutine (Perl)

 bin directory

blocking

 banner advertisements (example)

 bootstrap() (DynaLoader)

 BrowserMatch directive

 BUFF API (C API)

 buffer functions (C API)

building

 Apache C modules, Win32

 dynamically loadable modules

mod_perl

 separately from Apache

 multifile C API modules

 Perl modules

 built-in directive handlers (C API)

 bytes_sent()

 bytes_sent field (request_rec)

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

C

 C API , 2nd

 array API

 cleanup handler , 2nd

 custom configuration

 customizing Apache configuration

 data mutex locking

 data structures

 debugging Apache modules

 development requirements

 file and directory management

 handler declarations

 handler installation

 launching subprocesses

 memory management

 message digest algorithm functions

 processing requests

 server core routines

 string and URI manipulation

 table API

 time and date functions

 user and group ID infomation

C API

 "Hello World" program (example)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 caching documents locally

 callbacks

 case conversion utility (example)

 CERN httpd server

 CFLAGS environment variable

 cgi_header_out()

 CGI (Common Gateway Interface) , 2nd

 Apache::Registry

 debugging Apache modules as scripts

 parameters in URIs

 pseudo-CGI environment with Apache::Registry

 script co-processing

 cgi-bin directory

 CGI::Cookie module

 CGI.pm module, Apache::Registry with

 chaining content handlers , 2nd

 coordinating stacked handlers

 pipelining stacked handlers

 character set preferences

 chdir_file() , 2nd

 check_user_id()

 check_user_id()

 child_exit() , 2nd

 child_init() , 2nd , 3rd

 child exit phase , 2nd , 3rd

 C API handler

 child initialization phase , 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 child initialization phase , 2nd

 C API handler

 child_terminate()

 classes, Perl API

 cleanup API (C API)

 cleanup phase (Apache server) , 2nd , 3rd , 4th

 clear() (Apache::Table)

 client field (conn_rec)

 client request methods

 client-side scripting

 client-side state information, maintaining

 hidden fields

 HTTP cookies

 security concerns

 close() (Apache::File)

 close() (Perl)

 cluck() (Carp module)

 cmd_data field (command_rec)

 cmd field (cmd_parms)

 cmd_parms structure

 cmd() (Apache::CmdParms)

 cmd_data key (@directives element)

 co-processing

 code reuse

 colorAllocate()

 COM (Common Object Model)

 command_rec structure

 args_how field constants

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 override field constants

 command_table() (Apache::ExtUtils) , 2nd

 command_table field (module structure)

 \:common export tag

 See : CGI Common Gateway Interface

 comparing strings (C API)

 compiling Perl modules

 Compress::Zlib module

 compressing data stream (example)

 config directive table (C API) , 2nd

 config_file field (cmd_parms)

 configfile_t structure

configuration

 accessing information on

 Apache web server

 Apache, customizing process of

 creation routines (module structure)

 mod_perl

 Perl API

 Perl modules, with PerlSetVar

 server configuration methods

 server, getting information on

 See : configuration directives, custom configuration API

configuration directives, custom

C API

 specifying syntax for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 merging

Perl API

 specifying directive syntax

 configuration files (Apache) , 2nd

 documentating

 configuration streams

 configure script , 2nd

 configuring Apache with Perl

 conn_rec structure

 conn_rec structure

 connect() (DBI) , 2nd

 connection()

 connection field (request_rec)

 Connection header (HTTP) , 2nd

 connection information

 constants

 container directives, writing

 content_encoding()

 content_type()

 Content-Type header (HTTP)

 content() (request object) , 2nd , 3rd

 CONTENT attribute, scanning for (example)

 content_encoding field (request_rec)

 content handlers , 2nd , 3rd

 Apache::Registry

 associating with files , 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chaining

 pipelining stacked handlers

 CPAN Apache:: modules for

error handling

 HTTP headers and

file processors

 static files, sending , 2nd

input processing

 CGI parameters

 method handlers

redirection

 random

 third-party modules for

 virtual documents

 content_languages field (request_rec)

 content_languages()

 Content-Length header (HTTP) , 2nd

 Content-Type header (HTTP)

 content_type field (request_rec)

 Content-Type header

 context of configuration directives

 converting image formats (example)

 cookie() (CGI.pm)

 Cookie header, stripping field for

 cookies, HTTP , 2nd

 CookieTracking directive

 coordinating stacked handlers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 copying tables (table API)

core functions (server)

 C API

 Perl API

 CPAN modules for Apache

 CPAN shell , 2nd

 CPAN, obtaining Apache from

 CREATE command (SQL)

 create_dir_config() , 2nd

 create_server_config()

 crit() (Apache::Log)

 Crypt::CBC module

 Crypt::DES module

 Crypt::IDEA module

 current_callback()

 custom_response() (request object)

 See : configuration directives, custom custom directives

 custom response handler API

 custom_response()

 customizing Apache configuration process

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

D

 data mutex locking

 data structures (C API)

databases

 CPAN Apache:: modules for

 DBI-based type checking

 for server-side state information

 date functions (C API)

 Date header (HTTP)

 DBI interface

 Apache::DBI

 CPAN Apache:: modules for

 database logger (example)

 hangman game (example)

 type checking

 URI-based session IDs

 debug() (Apache::Log)

debugging

 C-level

 environment variables for

 directive

 Perl-level modules

 declaring handlers

 DECLINED return code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 define()

 delayed request processing

 DELETE method (HTTP)

 DELETE statement (SQL)

 DHMTL (Dynamic HTML)

 die()

 DIR_MERGE() subroutine

 dir_config()

 DIR_CREATE() subroutine , 2nd

 DIR_MERGE() subroutine

 directive handlers

directives, configuration (custom)

 Apache::CmdParms and Apache::ModuleConfig , 2nd

 mod_mime in Perl (example)

 See : configuration directives, custom directives, custom

 directive, directive for

 directory management (C API)

 directory structure in this book

 discard_request_body() (Apache::File)

 disconnect() (DBI)

 dispatch handler

 distributed authoring modules , 2nd

 do() (Apache::Table)

 do() (DBI)

 document root directory

 document_root()

 documenting configuration files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DONE return code

 double_reverse field (conn_rec)

 downloading Apache from web

DSO modules

 building from several source files

 building mod_perl as

 dump() (Apache::Debug)

 dump() (Apache::PerlSections)

 Dynamic HTML (DHTML)

 dynamic navigation bar (example)

 If-Modified-Since handling

 dynamic_load_handle field (module structure)

 dynamically linked C API modules

 dynamically loadable modules

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

E

 "e file test (Perl)

 elts field (array_header)

 email, sending when page is hit (example)

 embedded interpreters

 Embperl package

 emerg() (Apache::Log)

 --enable-module argument (configure)

 encypting state information (client side)

 END subroutine (Perl)

 _ _END_ _ token , 2nd

 end_token field (cmd_parms)

 %ENV hash (Perl)

 environment variables

 Apache::Registry and

 debugging-related

 ePerl package , 2nd , 3rd

 err_header_out() (request object) , 2nd

 err_headers_out() (request object)

 err_headers_out field (request_rec)

 errmsg field (command_rec)

 errmsg key (@directives element) , 2nd

 error_fname field (server_rec)

 error_log field (server_rec)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 error() (Apache::Log)

 ErrorDocument directive , 2nd

 ErrorLog directive

 errors

 Apache return codes for

 custom error pages

 "File not found" error

 HTTP headers and

 HTTP status codes for

 logging , 2nd

 syntax errors

 errstr() (DBI)

 escape_html() (Apache::Util)

 escape_url() (Apache::Util)

 ETag header (HTTP)

 exclusive file locks

 execute() (DBI) , 2nd

 existence checks for files

 exit() , 2nd

 expiring state information

 extensible server-side includes (example)

 external libraries for C API modules

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

F

 FastCGI protocol

 fetch() (DBI)

 fetchrow_array() (DBI)

 fetchrow_arrayref() (DBI)

 fetchrow_hashref() (DBI) , 2nd

 file extensions, MIME types for

 "File not found" error

 File::Find module

 file_exts() (LWP::MediaTypes)

 filename field (request_rec)

 filename() , 2nd

filenames

MIME type checking

 C API macros for

translating URIs to

 example handlers

 fileparse() (File::Basename)

directive

 content handler assignment

files

 Apache::File class , 2nd

 content handler associations , 2nd

 existence checking

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 locking

 management functions (C API)

processing with content handlers

 static files, sending , 2nd

redirection

 random

 sending to client

 virtual documents

directive

 content handler assignment

directive

 content handler assignment

 filesystem structure in this book

 filtering images

 find_pool()

 finfo field (request_rec)

 finfo() , 2nd

 See : HTTP proxy requests firewalls

 fixer_upper()

 fixup phase , 2nd

 C API handler

 CPAN Apache:: modules for

 FLAG syntax method , 2nd

 flock() system call

 FNM_ constants (ap_fgnmatch)

 footers, adding to pages (example)

 ForceType directive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fork()

forms

input processing

 CGI parameters

 fragment field (uri_components)

 fragment() (Apache::URI)

 freeze() (Storable module)

 fresh restart handler

From header

 stripping field for

 FTP, obtaining Apache via

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

G

 GATEWAY_INTERFACE variable

 gcc compiler

 gensym()

 get_basic_auth_pw()

 get_client_block() , 2nd

 get_handlers()

 get_remote_host()

get_remote_host()

 constants for

 get_remote_logname()

 get_server_name()

 get_server_root()

GET method

 CGI parameters with

 GET method (HTTP)

 get_remote_host()

 get() (Apache::ModuleConfig) , 2nd

 get() (Apache::Table)

 getgrnam() (Unix)

 getline() (Apache::CmdParms)

 getpwnam() (Unix)

 global variables

 in Apache::Server class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache::Registry and

 global variables, overusing

 "Goodbye World" (example)

 group information routine (C API)

 guestbook script (example)

 GZip protocol

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

H

 h2xs command

 handler()

 handler field (request_rec)

 handler_rec field (module structure)

 handler_rec structure

 handlers , 2nd

 content

 installing

hangman game (example)

 description

 final version

 hidden fields

HTTP cookies

 MAC with

 SQL databases

 state information in main memory

 hard_timeout()

 hard timeouts

 HEAD method (HTTP) , 2nd

 header_in()

 header_only() , 2nd

 header_out() , 2nd , 3rd , 4th

 header_parser()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 header() (CGI.pm)

 header files for Apache C modules

 header_in()

 header parser phase , 2nd

 C API module structure

 header_only field (request_rec)]header only field]

 headers_in()

 headers_in()

 headers_in field (request_rec)

 headers_out()

 headers_out field (request_rec)

 headers, HTTP

 error handling and

 inserting, function for (example)

 parsing

"Hello World" program (example)

 C API version

"Hello World" program (example)

 user input with

"Hello World" program (example)

C API version

 custom configuration directives with

 Perl API version

 hidden fields for maintaining state

 hook() (mod_perl)

 Host header (HTTP)

 hostinfo field (uri_components)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 hostinfo() (Apache::URI)

 hostname() (Apache::URI)

 hostname field (request_rec)

 ht_time() (Apache::Util)

 ht_time() (Apache::Util)

 .htaccess filename extension

 HTML::EP module

 HTML::Mason module

 http_core module

 HTTP-EQUIV attribute, scanning for (example)

 HTTP headers, sending , 2nd

 HTTP protocol

 cookies , 2nd

header fields

 parsing

 implementing unsupported methods

 inserting headers (example)

proxy requests

 nonproxy requests as

 redirection mechanism

 response codes

 status codes , 2nd

 httpd_conf()

 httpd server

 -X flag

 httpd.conf file

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

I

 If-Modified-Since header , 2nd

 directive

 image format converstion (example)

 Image::Magick package

 imgsize() (Image::Size)

 import() (mod_perl)

 @INC array (Perl)

 %INC hash (Perl)

 #include directive

 info field (cmd_parms)

 info() (Apache::CmdParms) , 2nd

 info() (Apache::Log)

initialization

child processes

 C API handler

 modules

 modules, C API handler for

 input processing

 additional path information

 CGI parameters

 INSERT statement (SQL) , 2nd

installing

 Apache::Registry module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 handlers

 mod_perl

 Perl API

 Perl language

 instant Apache modules

 integrated development environments

 internal_redirect() (request object) , 2nd

 internal_redirect_handler()

 internal_redirect() (request object)

 internal redirection , 2nd

 internal requests

 Internal Server Error error

 internationalization modules , 2nd

 IPC::Shareable module

 is_main()

 is_virtual() (Apache::Server)

 is_initial_req()

 is_virtual field (server_rec)

 ISO-2022-JP encoding

 ITERATE syntax method , 2nd

 ITERATE2 syntax method

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

J

 Java applets

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

K

 keep_alive field (server_rec)

 keep_alive_max field (server_rec)

 keep_alive_timeout field (server_rec)

 kill_timeout()

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

L

 language preferences

 last() , 2nd

 Last-Modified header (HTTP) , 2nd

 length field (request_rec)

 lexical variables, sharing

 libapreq library , 2nd

 libperl library

libraries

 custom, Apache::Registry

 loading at startup

 Perl, linked vs. shared

 storing library files

 life cycle of Apache

 limited() (Apache::CmdParms)

 limited field (cmd_parms)

 linked Perl library

 LoadModule directive

 local_addr() (Apache::Connection)

 local_addr field (conn_rec)

 location()

 directive

 Location header (HTTP)

 locking files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 log_error() (request object) , 2nd

 log() (request object) , 2nd , 3rd

 log_error() (request object)

 log_reason()

 logger()

logging

 Apache startup and

 Apache::Log class , 2nd

 C API handler

 CPAN Apache:: modules for

 DBI databases (example)

 documenting configuration files

 errors , 2nd

 methods for

 piped log API

 logging phase (Apache server) , 2nd , 3rd

 LogLevel directive , 2nd

 loglevel field (server_rec)

 lookup_defaults field (server_rec)

 lookup_file() (request object) , 2nd , 3rd

 lookup_uri() (request object) , 2nd , 3rd , 4th , 5th

 LWP module

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

M

 MacEachern, Doug

 MACs (message authentication checks)

 mail, sending when page is hit (example)

 mailing list for mod_perl

 main field (request_rec)

 main()

 make program , 2nd

 Makefile.PL script , 2nd

 .makepl_args.mod_perl file

 MaxRequestsPerChild directive

 MaxRequestsPerChild limit

 McCool, Rob

 MD5 message digest algorithm

 C API functions for

 translation handler example

 meets_conditions() (Apache::File) , 2nd

 memory management (C API)

 memory, state information in

 merge() (Apache::Table)

 merge_dir_config() , 2nd

 merge_server_config()

 merging configuration directives

 C API , 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Perl API

 message authentication checks (MACs)

 message digest algorithm

 C API functions for

 tags, scannng (example)

 method_number()

 method() (request object) , 2nd

 method field (request_rec)

 method handlers

method_number()

 constants for

 method_number field (request_rec)

 method numbers

 \:methods group

 methods, HTTP

 implementing unsupported

 MIME type checking phase (Apache server) , 2nd , 3rd , 4th

 C API handler

 C API macros for

 minor_version field (module structure)

 missing.cgi script (example)

 M_ constants

 mod_a4c module , 2nd

 mod_actions module

 mod_alias module

 translation handler

 mod_auth_cookie_file module , 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mod_auth_cookie_msql module

 mod_auth_cookie_mysql module

 mod_auth_dce module

 mod_auth_external module

 mod_auth_inst module

 mod_auth_kerb module

 mod_auth_ldap module

 mod_auth_msql module

 mod_auth_mysql module

 mod_auth_nis module

 mod_auth_notes module

 mod_auth_pam module

 mod_auth_pg module

 mod_auth_pg95 module

 mod_auth_pgsql module

 mod_auth_radius module

 mod_auth_rdbm module

 mod_auth_samba module

 mod_auth_smb module

 mod_auth_sys module

 mod_auth_yard module

 mod_bandwidth module , 2nd

 mod_beza module , 2nd

 mod_blob module

 mod_charset module

 mod_cntr module , 2nd

 mod_commProc module , 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mod_conv module

 mod_cvs module , 2nd

 mod_dav module

 mod_disallow_id module , 2nd

 mod_ecgi module , 2nd

 mod_fastcgi module

 mod_fjord module

 mod_fontxlate module , 2nd

 mod_hello (example)

 custom configuration directives with

 mod_include module

 mod_js module , 2nd

 mod_jserv module

 mod_ldap module , 2nd

 mod_lock.c module , 2nd

 mod_log_config module

 mod_log_dir module , 2nd

 mod_macro module , 2nd

 mod_mime module

 reimplementing in Perl (example)

 mod_mime_magic module

 mod_neoinclude module , 2nd

 mod_owa module

 mod_perl (Perl API) , 2nd , 3rd

building

 separately from Apache

 building and installing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 classes

 custom configuration

 DBI interface and

 debugging Apache modules

 development requirements

 documenting configuration files

 handler declarations

 handler installation

"Hello World" program (example)

 user input with

 installing

reference guide

 methods without C counterpart

 server core functions

 startup file

 mod_perl build directory

 mod_perl class

 mod_perl mailing list

 MOD_PERL variable

 MOD_PERL_TRACE environment variable

 mod_proxy module

 handling proxies without

 mod_put module , 2nd

 mod_pyapache module , 2nd

 mod_rewrite module

 mod_roaming module , 2nd

 mod_session module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mod_setenvif module

 mod_so module

 mod_unique_id module

 mod_usertrack module

 mod_throttle module , 2nd

 modification date/time , 2nd

 If-Modified-Since, handling

 module_init()

 module()

 module_config field (server_rec)

 module_index field (module structure)

 module initialization handler

 module library tree

 module_struct field (module structure)

 module structure , 2nd

 See : Apache C modules Apache Perl modules modules, Apache

 modules, initializing

 See : Perl modules modules, Perl

 Mosaic web browser

 Moved Permanently message

 MOVED status code

 Moved Temporarily message

 mtime field (request_rec)

 mtime() (Apache::File)

 multifile C API modules, building

 MultiWeb module , 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

N

 name field (command_rec)

 name field (module structure)

 name key (@directives element) , 2nd

 named setup_client_block()

 names field (server_rec)

 names() (Apache::Server)

 NameVirtualHost directive

 navigation bar (example)

 If-Modified-Since handling

 NCSA httpd server , 2nd

 nelts field (array_header)

 NET START APACHE command (WinNT)

 NET STOP APACHE command (WinNT)

 new() (Apache::File)

 new() (Apache::Table)

 next() (request object) , 2nd

 next field (request_rec)

 next field (server_rec)

 NO_ARGS syntax method , 2nd

 no_cache()

 no_cache field (request_rec)

 Not Found error

 NOT_FOUND result code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Not Modified message

 note_basic_auth_failure() (request object)

 notes()

 notes field (request_rec)

 notice() (Apache::Log)

 %@ hash (Perl)

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

O

 OWD variable (Apache::Server)

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

P

 _ _PACKAGE_ _ token

 parse() (Apache::URI)

 parsed_uri()

 parsed_uri field (request_rec)

 parsedate() (Apache::Util)

 parsing strings (C API)

 parsing URIs (C API)

 PassEnv directive

 password() (Apache::URI)

 password field (uri_components)

 PATCH client (example)

 PATCH method (HTTP), implementing

 path() (Apache::CmdParms) , 2nd , 3rd

 path field (cmd_parms)

 path field (uri_components)

 path_info() (Apache::URI)

 path_info() (request object) , 2nd , 3rd

 path_info field (request_rec)

 pathname manipulation (C API)

 pattern matching (C API)

 per_request_config field (request_rec)

performance

 Apache::Magick content handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Apache::StatINC module

 internal redirection

 preloading handler modules

 profiling-related modules

 perl_destruct() , 2nd

 directive

 debugging

 PERL_TRACE option

Perl

 configuring Apache with

 global variables

 server-side includes

 Perl API (mod_perl) , 2nd

building

 separately from Apache

 building and installing

 classes

 custom configuration

 DBI interface and

 debugging Apache modules

 development requirements

 documenting configuration files

 handler declarations

 handler installation

"Hello World" program (example)

 user input with

 installing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mailing list for

reference guide

 methods without C counterpart

 runtime Apache configuration

 server core functions

 startup file

 Perl CGI.pm module

 PERL_DESTRUCT_LEVEL environment variable

 perl directory

 Perl language, installing

 Perl library tree

Perl modules

 building and compiling

 custom configuration

 obtaining via FTP

 PERL_OPMASK_DEFAULT option

 PERL_RLIMIT_ variables

 Perl runtime warnings

 PERL_SEND_HEADER variable

 PERL_TRACE option

 Perl*Handler directives , 2nd

 PerlAccessHandler

 PerlAuthenHandler

 PerlAuthzHandler

 PerlChildExitHandler , 2nd

 PerlChildInitHandler , 2nd , 3rd

 PerlCleanupHandler , 2nd , 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PerlDispatchHandler

 PerlFixupHandler , 2nd

 PerlFreshRestart

 PerlHandler directive

 PerlHeaderParserHandler , 2nd

 PerlInitHandler , 2nd

 PerlLogHandler , 2nd

 PerlPostReadRequestHandler , 2nd

 PerlRestartHandler

 PerlTransHandler , 2nd

 PerlTypeHandler , 2nd

 perl-script handler

 perl.conf file

 PERL5LIB environment variable

 PerlChildExitHandler directive

 $PerlConfig variable

 @PerlConfig variable

 PerlFreshRestart directive , 2nd

 PerlHandler directive

 PerlModule directive , 2nd , 3rd

 PerlOpmask directive

 PerlPassEnv directive , 2nd

 PerlRequire directive , 2nd , 3rd , 4th

 PerlSendHeader directive , 2nd

 PerlSetEnv directive , 2nd , 3rd

 PerlSetVar directive , 2nd

 PerlTaintCheck directive , 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PerlWarn directive

 PHP module , 2nd

 piped log API (C API)

 pipelining stacked handlers

 Plexus web server

 =pod directive (POD)

 POD documentation

 pool field (cmd_parms)

 pool field (conn_rec)

 pool field (request_rec)

 pools, resource (C API)

 port() (Apache::URI)

 port field (server_rec)

 port field (uri_components)

 port_str field (uri_components)

 portability of web development systems

 post_connection() , 2nd

 POST method (HTTP)

 CGI parameters with

 post_read_request()

 post read request phase , 2nd

 C API handler

 power of web development systems

 preforking behavior, Apache

 preloading handler modules

 prepare() (DBI)

 prev field (request_rec)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 prev()

 prev() (request object)

 print() , 2nd

 print_node()

 printf()

 profiling, CPAN Apache:: modules for , 2nd

 protocol field (request_rec)

 protocol()

 proxy requests (HTTP)

 anonymizing proxies

 handling without mod_proxy

 nonproxy requests as

 proxyreq()

 push_handlers() (request object) , 2nd , 3rd

 PUT method (HTTP)

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

Q

 query field (uri_components)

 query() (Apache::URI)

 quotewords() (Text::ParseWords)

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

R

 random redirection

 RAW_ARGS syntax method , 2nd

 read() (request object) , 2nd

 read_configuration()

 Redirect directive

 REDIRECT_ environment variables

 REDIRECT result code

 redirection

 internal , 2nd

 random

 Referer header

 stripping field for

 register_cleanup() (request object) , 2nd , 3rd

 remaining field (request_rec)

 remote_addr() (Apache::Connection)

 remote_host() (Apache::Connection)

 remote_ip() (Apache::Connection)

 remote_logname() (Apache::Connection)

 remote_addr field (conn_rec)

 remote_host field (conn_rec)

 remote_ip field (conn_rec)

 remote_logname field (conn_rec)

 REMOTE_ arguments (get_request_host)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 req_override key (@directives element) , 2nd

 request_time()

 request()

 request body API (C API)

 request_config field (request_rec)

 request loop

 request object

 access control methods

 client request methods

 logging methods

 mod_perl-specific methods

 sending data to clients , 2nd

 server configuration methods

server core functions

 Perl API

 server response methods

 request objects

 REQUEST_ constants

 request_rec structure

 request_rec structure , 2nd

 request record

 request_time field (request_rec)

 requests, HTTP

 require operator

 requires() (request object)

 reset_timeout()

 resource pools (C API)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 response codes, HTTP , 2nd , 3rd

 \:response group

 response handlers table (module structure)

 response phase (Apache server) , 2nd

 restart handler

 restarting server

 reusing code

 rflush()

 root directory

 rpath() (Apache::URI)

 RSRC_CONF constant , 2nd

 run() (Apache::SubRequest)

 run() (request object)

 runtime Apache configuration

 runtime warnings (Perl)

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

S

 Sanders, Tony

 satisfies()

 Satisfy directive

 satisfy(), constants for

 See : state information, maintaining saving state information

 scan()

 scheme() (Apache::URI)

 scheme field (uri_components)

 script co-processing

 ScriptAlias directive

security

HTTP proxy requests

 nonproxy requests as

 message digests

 protecting client-side information

 proxy requests, handling without mod_proxy

 SELECT command (SQL)

 send_cgi_header()

 send_fd() (request object) , 2nd

 send_http_header() , 2nd , 3rd , 4th

 warning about using

 serialization

 server_admin() (Apache::Server)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 server_admin() (Apache::Server)

 SERVER_ERROR result code

 server_gid field (server_rec)

 server_hostname() (Apache::Server)

 SERVER_MERGE() subroutine

 server_rec structure

 server() (Apache::CmdParms) , 2nd , 3rd

 server_admin field (server_rec)

 server APIs

 Apache

 server configuration information

 server configuration methods

server core functions

 C API

 Perl API

 SERVER_CREATE() subroutine , 2nd

 server field (cmd_parms)

 server field (conn_rec)

 server field (request_rec)

 Server header (HTTP)

 server_hostname field (server_rec)

 SERVER_MERGE() subroutine

 server_rec structure

 server_rec structure , 2nd

 server response methods

 server_root_relative() , 2nd , 3rd

 server root directory

 server_uid field (server_rec)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 server-side includes (SSIs) , 2nd , 3rd

 definitions file for

 server-side state information, maintaining , 2nd

 main memory for

 non-DBI databases for

 SQL databases for

 servlet API

 session IDs , 2nd

 authentication for

 stored in URIs

 See : state information, maintaining session information

 set_etag() (Apache::File)

 set_handlers()

 set_content_length() (Apache::File)

 set_content_length() (Apache::File)

 set_etag() (Apache::File)

 set_last_modified() (Apache::File)

 set_last_modified()

 set() (Apache::Table)

 SetEnv directive

 SetEnvIf directive , 2nd

 SetHandler directive , 2nd , 3rd , 4th , 5th

 setup_client_block()

 severity log levels , 2nd

 shared file locks

 shared Perl library

 sharing lexical variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 shlock()

 should_client_block() , 2nd

 shunlock()

 %SIG variable (Perl)

 simplicity of web development systems

 size_string() (Apache::Util)

 soft_timeout()

 soft timeouts

 some_auth_required()

 SQL databases for state information

 srm.conf file

 srm_confname field (server_rec)

 SSI for ISO-2022-JP

 SSIs (server-side includes) , 2nd

 definitions file for

 stacked handlers

 coordinating

 pipelining

 STANDARD_MODULE_STUFF macro

 startup file, mod_perl

 startup up Apache server

 stat()

 stat()

 state information, maintaining

 Apache::Session module

 authentication for session IDs

 client-side vs. server-side

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 expiring state

 hidden fields

 HTTP cookies

 in main memory (server-side)

 non-DBI databases for

 protecting client-side information

 SQL databases for

 static files, sending , 2nd

 statically linked C API modules

 statically linked Perl library

 status codes, HTTP , 2nd

 C API macros for returning

 status field (request_rec)

 status_line field (request_rec)

 status()

 status_line()

 Storable module

 store() (Apache::PerlSections)

 string allocation routines (C API)

strings

 manipulation functions (C API)

 parsing functions (C API)

 sub attribute (#perl)

 subclassing the Apache class

 subpool management

 subprocess_env field (request_rec)

 subprocess_env()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 subprocesses, C API

 subprocesses, environment variables and

 subrequest API (C API)

 subrequests

 subroutines, Perl

 success codes, HTTP

 syntax errors

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

T

 table API (C API)

 table structure , 2nd

 table_entry structure

 tables, working with (C API)

 TAKE1 syntax method , 2nd

 TAKE12 syntax method

 TAKE123 syntax method

 TAKE13 syntax method

 TAKE2 syntax method

 TAKE23 syntax method

 TAKE3 syntax method

 temp_pool field (cmd_parms)

 the_request()

 the_request field (request_rec)

 third-party modules

 tie()

 tied filehandles

 TIEHANDLE() , 2nd

 TIEHANDLE interface

 TIEHASH interface

 time functions (C API)

 timeout API (C API)

 timeout field (server_rec)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 tmpfile() (Apache::File) , 2nd , 3rd

 transaction information, getting (C API)

 TransferLog directive

 transformation strings (C API)

 translate_handler()

 translation handler , 2nd

 C API module structure

 custom response handler in

 examples

 transparent()

 troubleshooting

 Apache C modules

 Apache Perl modules

 Apache::Registry use

 directive

 send_http_header()

 syntax errors

 URI-based session IDs

 type_checker()

 type checking phase (Apache server) , 2nd , 3rd , 4th

 C API handler

 C API macros for

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

U

 ucfirst()

 unescape_uri() (Apache::Util)

 unescape_uri_info() (Apache::Util)

Unix systems

 C API development requirements

 C-level debugging

 restarting server

 server root directory

 session IDs

 unix_timestamp() (MySQL)

 UNP_ flags (ap_unparse_uri_components)

 unparse() (Apache::URI)

 unparsed_uri field (request_rec)

 Unset directive

 unset() (Apache::Table)

 UnSetHandler directive (nonexistent)

 UPDATE statement (SQL)

 update_mtime()

 update_mtime() (Apache::File) , 2nd

 uppercase, converting to (example)

 uri_components structure

 uri field (request_rec)

 URI translation phase , 2nd , 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 URI translation phase , 2nd , 3rd

 CPAN Apache:: modules for

 custom response handler in

 example handlers

 uri() (request object) , 2nd

URIs (uniform resource identifiers)

 additional path information

 Apache::URI class

 CGI parameters in

 modifying with translation handlers

 parsing and manipulating (C API)

redirection

 random

 session IDs in

translating to filenames

 example handlers

 URLs (uniform resource locators)

 use lib statement

 "Use of uninitialized value" message

 use strict pragma , 2nd

 use vars pragma

 User-Agent header

 user() (Apache::Connection) , 2nd

User-Agent header

 stripping field for

 user field (conn_rec)

 user field (uri_components)

 user information routine (C API)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 uuencoding

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

V

variables

global variables

 overusing

 lexical, sharing

 version field (module structure)

 versions of CGI.pm and LWP modules

 virtual documents

directive

 directive for

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

W

 -w switch (Perl)

 warn() (Apache::Log)

 warn() (Apache::Server)

 warn() (request object) , 2nd

 WHERE clause (SQL) , 2nd

 wild_names field (server_rec)

Win32 systems

 building Apache C modules

 C API development requirements

 mod_perl installation

 Perl API development requirements

 restarting server

 server root directory

 session IDs

 Write() (Image::Magick)

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

X

 -X flag (httpd)

 $^X variable (Perl)

 XtOffsetOf()

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only for RuBoard - do not distribute or recompile

Writing Apache Modules with Perl and C

[Symbol][A][B][C][D][E][F][G][H][I][J][K][L][M][N][Symbol][O][Symbol][O]
[Symbol][O][Symbol][O][P][Q][R][S][T][U][V][W][X][Z]

Z

 zlib compression library

only for RuBoard - do not distribute or recompile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

