This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Writina Apache Modul ith Perl and C

Lincoln Stein

Doug MacEachern
Publisher: O'Reilly

First Edition March 1999
ISBN: 1-56592-567-X, 746 pages

2 View

By Pri )

This guide to Web programming teaches you how to extend the capabilities of the Apache Web server. It
explains the design of Apache, mod_perl, and the Apache API, then demonstrates how to use them to
rewrite CGl scripts, filter HTML documents on the server-side, enhance server log functionality, convert
file formats on the fly, and more.



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Writi . he Modul ith Perl | C
Copyright © 1999 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol,
CA 95472.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc.
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial
caps. The use of the white-tailed eagle image in association with Apache
modules is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

[rawus Poaxr v



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Preface

One of the minor miracles of the World Wide Web is that it makes client/server
network programming easy. With the Common Gateway Interface (CGl) anyone can
become a network programmer, creating dynamic web pages, frontends for
databases, and even complex intranet applications with ease. If you're like many web
programmers, you started out by writing CGI scripts in Perl. With its powerful text-
processing facilities, forgiving syntax, and tool-oriented design, Perl lends itself to the
small programs that CGl was designed for.

Unfortunately the Perl/CGl love affair doesn't last forever. As your scripts get larger
and your server more heavily loaded, you inevitably run into the performance wall. A
1,000-line Perl CGl script that runs fine on a lightly loaded web site becomes
unacceptably slow when it increases to 10,000 lines and the hit rate triples. You may
have tried switching to a different programming language and been disappointed.
Because the main bottleneck in the CGI protocol is the need to relaunch the script
every time it's requested, even compiled C won't give you the performance boost you
expect.

If your application needs go beyond simple dynamic pages, you may have run into
the limitations of the CGI protocol itself. Many interesting things go on in the heart of a
web server—things like the smart remapping of URLs, access control and
authentication, or the assignment of MIME types to different documents. The CGI
protocol doesn't give you access to these internals. You can neither find out what's
going on nor intervene in any meaningful way.

To go beyond simple CGl scripting, you must use an alternative protocol that doesn't
rely on launching and relaunching an external program each time a script runs.
Alternatives include NSAPI on Netscape servers, ISAPI on Windows servers, Java
servlets, server-side includes, Active Server Pages (ASP), FastCGlI, Dynamic HTML,
ActiveX, JavaScript, and Java applets.

Sadly, choosing among these technologies is a no-win situation. Some choices lock
you into a server platform for life. Others limit the browsers you can support. Many
offer proprietary solutions that aren't available in other vendors' products. Nearly all of
them require you to throw out your existing investment in Perl CGl scripts and
reimplement everything from scratch.

The Apache server offers you a way out of this trap. It is a freely distributed, full-
featured web server that runs on Unix and Windows NT systems. Derived from the
popular NCSA httpd server, Apache dominates the web, currently accounting for
more than half of the servers reachable from the Internet. Like its commercial cousins
from Microsoft and Netscape, Apache supports an application programming interface
(API), allowing you to extend the server with extension modules of your own design.
Modules can behave like CGl scripts, creating interactive pages on the fly, or they
can make much more fundamental changes in the operation of the server, such as
implementing a single sign-on security system or logging web accesses to a relational
database. Regardless of whether they're simple or complex, Apache modules provide
performance many times greater than the fastest conventional CGl scripts.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The best thing about Apache modules, however, is the existence of mod_perl.
mod_perl is a fully functional Perl interpreter embedded directly in Apache. With
mod_perl you can take your existing Perl CGl scripts and plug them in, usually
without making any source code changes whatsoever. The scripts will run exactly as
before but many times faster (nearly as fast as fetching static HTML pages in many
cases). Better yet, mod_perl offers a Perl interface to the Apache API, allowing you
full access to Apache internals. Instead of writing Perl scripts, you can write Perl
extension modules that control every aspect of the Apache server.

Move your existing Perl scripts over to mod_per/ to get the immediate performance
boost. As you need to, add new features to your scripts that take advantage of the
Apache API (or don't, if you wish to maintain portability with other servers). When you
absolutely need to drag out the last little bit of performance, you can bite the bullet
and rewrite your Perl modules as C modules. Surprisingly enough, the performance
of Apache/Perl is so good that you won't need to do this as often as you expect.

This book will show you how to write Apache modules. Because you can get so much
done with Perl modules, the focus of the book is on the Apache API through the eyes
of the Perl programmer. We cover techniques for creating dynamic HTML documents,
interfacing to databases, maintaining state across multiple user sessions,
implementing access control and authentication schemes, supporting advanced
HTTP methods such as server publish, and implementing custom logging systems. If
you are a C programmer, don't despair. Two chapters on writing C-language modules
point out the differences between the Perl and C APIs and lead you through the
process of writing, compiling, and installing C-language modules. This book includes
complete reference guides to both the Perl and C APIs and multiple appendixes
covering the more esoteric aspects of writing Apache modules.

We think you'll find developing Apache modules to be an eye-opening experience.
With any luck, you won't have to worry about switching web application development
environments for a long time to come.

T [



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

What You Need to Know to Get the Most out of This Book

This book was designed for application developers who already have some
experience with web programming. We assume that you understand CGl scripting,
know how to produce HTML pages dynamically, and can create fill-out forms and
process their contents. We also assume that you know the basics of web server
administration—if not with the Apache server itself, then with another Unix or
Microsoft Windows-based web server.

A knowledge of the Perl programming language is definitely required! We use the Perl
version of the Apache API to illustrate the central concepts of module design and
implementation, and most of our example code is written in Perl as well. We chose to
do it this way because we think there are more people who are comfortable
developing web applications in Perl than in C or C++. You don't have to be a Perl
guru to read this book, but there will be places where you'll find the going tough if you
don't understand Perl syntax. We make particularly heavy use of the current features
of Perl (Version 5.004 and higher), particularly in regard to Perl's object-oriented
syntax. If you know Perl Version 4 but haven't gotten around to reading about the
Version 5 features, now's the time to start learning about hash references, blessed
objects, and method calls.

If you're an experienced C programmer, you can probably get what you need from the
Perl chapters without necessarily understanding every line of the example code. Be
forewarned, however, that our discussion of the C-language API tends toward
terseness since it builds on the framework established by earlier chapters on the Perl
API.

Apache and mod_perl both run on Unix machines and Windows NT systems, and we
have endeavored to give equal time to both groups of programmers. However, both
authors are primarily Unix developers, and if our bias leaks through here and there,
please try to forgive us.

We've used the following books for background reading and reference information.
We hope they will be useful to you as well:

Web site administration, maintenance, and security

How to Set Up and Maintain a Web Site: The Guide for Information Providers,
2nd ed., by Lincoln Stein (Addison-Wesley Longman, 1997).

Web Security: A Step-by-Step Reference Guide, by Lincoln Stein (Addison-
Wesley Longman, 1998).

Web Security and Electronic Commerce, by Simson Garfinkel with Gene
Spafford (O'Reilly & Associates, 1997).

The Apache web server

Apache: The Definitive Guide, by Ben Laurie and Peter Laurie (O'Reilly &
Associates, 1997).


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Apache Server for Dummies, by Ken Coar (IDE, 1998).
CGl scripting
The Official Guide to CGl.pm, by Lincoln Stein (John Wiley & Sons, 1998).

CGl/Perl Cookbook, by Craig Patchett and Matthew Wright (John Wiley & Sons,
1998).

The HTTP protocol

The HTTP/1.0 and HTTP/1.1 protocols page at the WWW Consortium site:
http://www.w3.0rg/Protocols.

Web client programming

Web Client Programming with Perl, by Clinton Wong (O'Reilly & Associates,
1997).

Perl programming

Programming Perl, 2nd ed., by Tom Christiansen, Larry Wall, and Randal
Schwartz (O'Reilly & Associates, 1996).

Perl Cookbook, by Tom Christiansen and Nathan Torkington (O'Reilly &
Associates, 1998).

Advanced Perl Programming, by Sriram Srinivasan (O'Reilly & Associates,
1997).

Effective Perl Programming, by Joseph Hall (Addison-Wesley Longman, 1998).
C programming

The C Programming Language, 2nd ed., by Brian Kernighan and Dennis Ritchie
(Prentice-Hall, 1988).

C: A Reference Manual, by Samuel Harbison and Guy Steele (Prentice-Hall,
1987).

HTML

HTML: The Definitive Guide, 3rd ed., by Chuck Musciano and Bill Kennedy
(O'Reilly & Associates, 1998).

HTML 3, by Dave Raggett, Jenny Lam, and lan Alexander (Addison-Wesley
Longman, 1996).

[ravous Poaxr v



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

How This Book Is Organized

Chapter 1, talks about general issues of web application programming and shows
how the web server APIs in general, and the Apache server API in specific, fit into the
picture.

Chapter 2, shows you the mechanics of getting your system ready for Perl and C
module development. It describes how to lay out the directory structure, install
required files, and configure the Apache web server for maximum flexibility. It then
leads you through the steps of installing two simple modules, one written in Perl and
the other in C.

Chapter 3, paints a broad overview of the Apache API, taking you through the
various phases of the HTTP transaction and the process of server startup,
initialization, and cleanup. It shows how APl modules fit into this process and how
they can intervene to customize it.

Chapter 4, is all about the request phase of the transaction, where modules create
document content to be transmitted back to the browser. This chapter, and in fact the
next three chapters, all use the Perl API to illustrate the concepts and to provide
concrete working examples.

Chapter 5, describes various techniques for maintaining state on a web server so
that a user's interaction with the server becomes a continuous session rather than a
series of unrelated transactions. The chapter starts with simple tricks and slowly
grows in sophistication as we develop an Internet-wide tournament version of the
classic "hangman" game.

Chapter 6, shows you how to intervene in Apache's authentication and authorization
phases to create custom server access control systems of arbitrary complexity.
Among other things, this chapter shows you how to implement an authentication
system based on a relational database.

Chapter 7, is a grab bag of miscellaneous techniques, covering everything from
controlling Apache's MIME-typing system to running proxy requests. Featured
examples include a 10-line anonymizing proxy server and a system that blocks
annoying banner ads.

Chapter 8, shows how to define runtime configuration directives for Perl extension
modules. It then turns the tables and shows you how Perl code can take over the
configuration process and configure Apache dynamically at startup time.

Chapter 9, is a reference guide to the Perl API, where we list every object, function,
and method in exhaustive detail.

Chapter 10, and Chapter 11, show how to apply the lessons learned from the Perl
API to the C-language API, and discuss the differences between Perl and C module

development. These chapters also provide a definitive reference-style listing of all C
API data structures and functions.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This book also contains the following appendixes:
Appendix A

A reference guide to a number of useful Perl modules that come with the
standard mod_perl distribution but are not part of the official Apache API.

Appendix B

A complete guide to installing mod_perl, including all the various installation
options, bells, and whistles.

Appendix C

Help with building C API modules that use the dynamic shared object (DSO)
system.

Appendix D

A listing of third-party Perl APl modules that can be found on the
Comprehensive Perl Archive Network (CPAN).

Appendix E
A guide to the third-party C APl modules that can be found at
http://modules.apache.org/.

Appendix F
An introduction to HTML::Embperl, a popular HTML template-based system that
runs on top of mod_perl.

[rawu Poaxr e



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Conventions

The following typographic conventions are used in this book:
Italic

is used for filenames, directories, command names, module names, function
calls, command-line switches, and Apache file directives. It is also used for
email addresses and URLs.

Constant Width

is used for code examples. It is also used for constants and data structures.
Constant Width Bold

is used to mark user input in examples.
Constant Width Italic

is used to mark replaceables in examples.



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

The Companion Web Site to This Book
This book has a companion web site at http://www.modperl.com/. Here you can

find all the source code for the code examples in this book—you don't have to blister
your fingers typing them in. Many of the code examples are also running as demos
there, letting you try them out as you read about them.

Here you'll also find announcements, errata, supplementary examples,
downloadables, and links to other sources of information about Apache, Perl, and

Apache module development.



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Using FTP and CPAN

The Apache web server is available for download from the web. To obtain it via the

web, go to the Apache home page, http://www.apache.org/, and follow the links

to the most recent version.

mod_perl and all the various Perl modules and helper utilities mentioned in this book
are available via anonymous FTP from any of the sites on the Comprehensive Perl
Archive Network (CPAN). This is a list of several hundred public FTP sites that mirror
each others' contents on a regular basis.

To find a CPAN site near you, point your web browser to Tom Christiansen's CPAN
redirector services at http://www.perl.com/CPAN/. This will automatically take
you to an FTP site in your geographic region. From there, you can either browse and
download the files you want directly, or retrieve the full list of CPAN sites and select
one on your own to use with the FTP client of your choice. Most of the modules you
will be interested in obtaining will be located in the modules/by-module subdirectory.

Once you've downloaded the Perl module you want, you'll need to build and install it.
Some modules are 100 percent Perl and can just be copied to the Perl library
directory. Others contain some component written in C and need to be compiled. If
you are using a Win32 system, you may want to look for a binary version of the
module you're interested in. Most of the popular modules are available in precompiled
binary form. Look in the CPAN ports/win32 directory for the version suitable for your
Win32 Perl build. Otherwise, if you have a C compiler and the nmake program
installed, you can build many modules from source, as described in this section.

Building a Perl module and installing it is simple and usually painless. The following
shows the traditional way to download using an old-fashioned FTP command-line
client:

S ftp ftp.cis.ufl.edu

Connected to ftp.cis.ufl.edu.

220 torrent.cise.ufl.edu FTP server ready.

Name (ftp.cis.ufl.edu:lstein): anonymous

331 Guest login ok, send your complete e-mail address as passwor
Password: your email address here

230 Guest login ok, access restrictions apply.
Remote system type is UNIX.

Using binary mode to transfer files.

ftp> ed /pub/perl/CPAN/modules/by-module

250 CWD command successful.

ftp> cd MD5

250 CWD command successful.

ftp> binary

200 Type set to I.

ftp> get Digest-MD5-2.00.tar.gz


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

local: Digest-MD5-2.00.tar.gz remote: Digest-MD5-2.00.tar.gz

200 PORT command successful.

150 Opening BINARY mode data connection for Digest-MD5-2.00.tar.
226 Transfer complete.

58105 bytes received in 11.1 secs (5.1 Kbytes/sec)

ftp> quit

221 Goodbye.

Perl modules are distributed as gzipped far archives. You can unpack them like this:

o)

% gunzip -c Digest-MD5-2.00.tar.gz | tar xvf -
Digest-MD5-2.00/

Digest-MD5-2.00/typemap

Digest-MD5-2.00/MD2/

Digest-MD5-2.00/MD2/MD2 . pm

Once unpacked, you'll enter the newly created directory and give the per/
Makefile.PL, make, make test, and make install commands. Together these will build,
test, and install the module (you may need to be root to perform the final step).

% cd Digest-MD5-2.00

% perl Makefile.PL

Testing alignment requirements for U32...
Checking if your kit is complete...
Looks good

Writing Makefile for Digest::MD2
Writing Makefile for Digest::MD5

% make

mkdir ./blib

mkdir ./blib/1lib

mkdir ./blib/lib/Digest

% make test

make[1l]: Entering directory ~/home/lstein/Digest-MD5-2.00/MD2'
make[1l]: Leaving directory "~ /home/lstein/Digest-MD5-2.00/MD2"
PERL DL NONLAZY=1 /usr/local/bin/perl -I./blib/arch -I./blib/1lib

t/digest............ ok

t/files............. ok

t/mdS-aaa........... ok

t/md5. ... ... .. . ... ok

t/rfc2202........... ok

t/shal.............. skipping test on this platform

All tests successful.

Files=6, Tests=291, 1 secs ( 1.37 cusr 0.08 csys = 1.45 cpu)

% make install

make[1l]: Entering directory °~/home/lstein/Digest-MD5-2.00/MD2'
make[l]: Leaving directory ~/home/lstein/Digest-MD5-2.00/MD2"
Installing /usr/local/lib/perl5/site perl/i586-1linux/./auto/Dige
Installing /usr/local/lib/perl5/site perl/i586-1linux/./auto/Dige


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A simpler way to do the same thing is to use Andreas Koenig's wonderful CPAN shell.
With it you can download, build, and install Perl modules from a simple command-line
shell. The following illustrates a typical session:

% perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.40)
ReadLine support enabled

cpan> install MD5

Running make for GAAS/Digest-MD5-2.00.tar.gz

Fetching with LWP:
ftp://ftp.cis.ufl.edu/pub/perl/CPAN/authors/id/GAAS/Digest-MD5

CPAN: MD5 loaded ok

Fetching with LWP:
ftp://ftp.cis.ufl.edu/pub/perl/CPAN/authors/id/GAAS/CHECKSUMS

Checksum for /home/lstein/.cpan/sources/authors/id/GAAS/Digest-M

z ok

Digest-MD5-2.00/

Digest-MD5-2.00/typemap

Digest-MD5-2.00/MD2/

Digest-MD5-2.00/MD2/MD2.pm

Installing /usr/local/lib/perl5/site perl/i586-1linux/./auto/Dige
Installing /usr/local/lib/perl5/site perl/i586-1linux/./auto/Dige
Installing /usr/local/lib/perl5/site perl/i586-1linux/./auto/MD5/
Installing /usr/local/lib/perl5/man/man3/./MD5.3

Writing /usr/local/lib/perl5/site perl/ib86-linux/auto/MD5/.pack
Appending installation info to /usr/local/lib/perl5.i586-1inux/5
cal.pod

cpan> exit

only for RuBoard - do not distribute or recompile m



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can also send us messages electronically. To be put on our mailing list or to
request a catalog, send email to:

info@ il
To ask technical questions or comment on the book, send email to:
bool . a il

We have a web site for the book, where we'll list examples, errata, and any plans for
future editions. You can access this page at:

http://www.oreilly.com/catalog/wrapmod/
For more information about this book and others, see the O'Reilly web site:

htto:// " :

T



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Acknowledgments

This book was a bear to write, a pachyderm to edit, and a mule to get delivered on
time. However, our technical reviewers were angels throughout, patiently helping us
to get the details right and to transform the manuscript from a beastly beast into a
well-groomed animal. We hope the end product justifies the image that graces its
cover.

Two of our reviewers must be singled out from the crowd for their extra efforts.
Andrew Ford, for his amazingly concise mod_perl Quick Reference Card, and Gerald
Richter, for contributing the appendix on Embperl. Our other technical reviewers, in
no particular order, were Manoj Kasichainula, Jon Orwant, Mike Stok, Randal
Schwartz, Mike Fletcher, Eric Cholet, Frank Cringle, Gisle Aas, Stephen Reppucci,
Doug Bagley, Jim "Woody" Woodgate, Howard Jones, Brian W. Fitzpatrick, Andreas
Koenig, Brian Moseley, Mike Wertheim, Stas Bekman, Ask Bjoern Hansen, Jason
Riedy, Nathan Torkington, Travis Broughton, Jeff Rowe, Eugenia Harris, Ken Coar,
Ralf Engelschall, Vivek Khera, and Mark-Jason Dominus. Thank you, one and all.

Our editor, Linda Mui, was delightful to work with and should be a model for book
editors everywhere. How she could continue to radiate an aura of calm collectedness
when the book was already running three months behind schedule and showing
continuing signs of slippage is beyond our ken. Her suggestions were insightful, and
her edits were always right on the money. Kudos also to Rob Romano, the O'Reilly

illustrator whose artwork appears in Chapters Chapter 3 and Chapter 6.

Lincoln would like to thank his coauthor, Doug, whose mod_perl module brought
together two of the greatest open source projects of our time. Although it sometimes
seemed like we were in an infinite loop—Lincoln would write about some aspect of
the API, giving Doug ideas for new mod_perl features, leading Lincoln to document
the new features, and so on—in the end it was all worth it, giving us an excellent book
and a polished piece of software.

Lincoln also wishes to extend his personal gratitude to his wife, Jean, who put up with
his getting up at 5:30 every morning to write. The book might have gotten done a bit
earlier if she hadn't always been there to lure him back to bed, but it wouldn't have
been half as much fun.

Doug would like to thank his coauthor, Lincoln, for proposing the idea of this book and
making it come to life, in every aspect of the word. Lincoln's writing tools, his "scalpel"
and "magic wand" as Doug often called them, shaped this book into a form far
beyond Doug's highest expectations.

Doug would also like to thank his family, his friends, and his girlfriend for patiently
putting up with months of "Sorry, | can't, | have to work on the book." Even though the
book may have been finished sooner, Doug is glad they didn't always accept no for
an answer. Otherwise, he may have forgotten there is more to life than book writing!

Finally we'd like to thank everyone on the modperl@apache.org mailing list for their


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

enthusiastic support, technical fixes, and fresh ideas throughout the process. This
book is our gift to you in return for your many gifts to us.

—Lincoln Stein and Doug MacEachern

November 12, 1998



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

) ]
Chapter 1. Server-Side Programming with Apache

Before the World Wide Web appeared, client/server network programming was a
drag. Application developers had to develop the communications protocol, write the
low-level network code to reliably transmit and receive messages, create a user
interface at the client side of the connection, and write a server to listen for incoming
requests, service them properly, and transmit the results back to the client. Even
simple client/server applications were many thousand lines of code, the development
pace was slow, and programmers worked in C.

When the web appeared in the early '90s, all that changed. The web provided a
simple but versatile communications protocol standard, a universal network client,
and a set of reliable and well-written network servers. In addition, the early servers
provided developers with a server extension protocol called the Common Gateway
Interface (CGl). Using CGl, a programmer could get a simple client/server application
up and running in 10 lines of code instead of thousands. Instead of being limited to C
or another "systems language," CGI allowed programmers to use whatever
development environment they felt comfortable with, whether that be the command
shell, Perl, Python, REXX, Visual Basic, or a traditional compiled language. Suddenly
client/server programming was transformed from a chore into a breeze. The number
of client/server applications increased 100-fold over a period of months, and a new
breed of software developer, the "web programmer," appeared.

The face of network application development continues its rapid pace of change.
Open the pages of a web developer's magazine today and you'll be greeted by a
bewildering array of competing technologies. You can develop applications using
server-side include technologies such as PHP or Microsoft's Active Server Pages
(ASP). You can create client-side applications with Java, JavaScript, or Dynamic
HTML (DHTML). You can serve pages directly out of databases with products like the
Oracle web server or Lotus Domino. You can write high-performance server-side
applications using a proprietary server application programming interface (API). Or
you can combine server- and client-side programming with integrated development
environments like Netscape's LiveWire or NeXT's WebObjects. CGl scripting is still
around too, but enhancements like FastCGl and ActiveState's Perl ISAPI are there to
improve script performance.

All these choices can be overwhelming, and it isn't always clear which development
system offers the best tradeoff between power, performance, compatibility, and
longevity. This chapter puts a historical perspective on web application development
and shows you how and where the Apache C and Perl APIs fit into the picture.

T



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

1.1 Web Programming Then and Now

In the beginning was the web server. Specifically, in the very very beginning was
CERN httpd , a C-language server developed at CERN, the European high-energy
physics lab, by Tim Berners-Lee, Ari Luotonen, and Henrik Frystyk Nielsen around
1991. CERN httpd was designed to serve static web pages. The server listened to the
network for Uniform Resource Locator (URL) requests using what would eventually
be called the HTTP/0.9 protocol, translated the URLs into file paths, and returned the
contents of the files to the waiting client. If you wanted to extend the functionality of
the web server—for example, to hook it up to a bibliographic database of scientific
papers—you had to modify the server's source code and recompile.

This was neither very flexible nor very easy to do. So early on, CERN httpd was
enhanced to launch external programs to handle certain URL requests. Special
URLSs, recognized with a complex system of pattern matching and string
transformation rules, would invoke a command shell to run an external script or
program. The output of the script would then be redirected to the browser, generating
a web page on the fly. A simple scheme allowed users to pass argument lists to the
script, allowing developers to create keyword search systems and other basic
applications.

Meanwhile, Rob McCool, of the National Center for Supercomputing Applications at
the University of lllinois, was developing another web server to accompany NCSA's
browser product, Mosaic. NCSA httpd was smaller than CERN httpd, faster (or so the
common wisdom had it), had a host of nifty features, and was easier than the CERN
software to configure and install. It quickly gained ground on CERN httpd, particularly
in the United States. Like CERN httpd, the NCSA product had a facility for generating
pages on the fly with external programs but one that differed in detail from CERN
httpd 's. Scripts written to work with NCSA httpd wouldn't work with CERN httpd and
vice versa.

1.1.1 The Birth of CGI

Fortunately for the world, the CERN and the NCSA groups did not cling tenaciously to
"their" standards as certain latter-day software vendors do. Instead, the two groups
got together along with other interested parties and worked out a common standard
called the Common Gateway Interface.

CGl was intended to be the duct tape of the web—a flexible glue that could quickly
and easily bridge between the web protocols and other forms of information
technology. And it worked. By following a few easy conventions, CGI scripts can
place user-friendly web frontends on top of databases, scientific analysis tools, order
entry systems, and games. They can even provide access to older network services,
such as gopher, whois, or WAIS. As the web changed from an academic exercise into
big business, CGI came along for the ride. Every major server vendor (with a couple
of notable exceptions, such as some of the Macintosh server developers) has
incorporated the CGl standard into its product. It comes very close to the "write once,
run everywhere" development environment that application developers have been
seeking for decades.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

But CGl is not the highest-performance environment. The Achilles' heel of a CGlI
script is that every time a web server needs it, the server must set up the CGI
environment, read the script into memory, and launch the script. The CGl protocol
works well with operating systems that were optimized for fast process startup and
many simultaneous processes, such as Unix dialects, provided that the server doesn't
become very heavily loaded. However, as load increases, the process creation
bottleneck eventually turns formerly snappy scripts into molasses. On operating
systems that were designed to run lightweight threads and where full processes are
rather heavyweight, such as Windows NT, CGl scripts are a performance disaster.

Another fundamental problem with CGl scripts is that they exit as soon as they finish
processing the current request. If the CGI script does some time-consuming operation
during startup, such as establishing a database connection or creating complex data
structures, the overhead of reestablishing the state each time it's needed is
considerable—and a pain to program around.

1.1.2 Server APIs

An early alternative to the CGI scripting paradigm was the invention of web server
APIs (application programming interfaces), mechanisms that the developer can use to
extend the functionality of the server itself by linking new modules directly to the
server executable. For example, to search a database from within a web page, a
developer could write a module that combines calls to web server functions with calls
to a relational database library. Add a dash or two of program logic to transform URLs
into SQL, and the web server suddenly becomes a fancy database frontend. Server
APIs typically provide extensive access to the innards of the server itself, allowing
developers to customize how it performs the various phases of the HTTP transaction.
Although this might seem like an esoteric feature, it's quite powerful.

The earliest web API that we know of was built into the Plexus web server, written by
Tony Sanders of BSDI. Plexus was a 100 percent pure Perl server that did almost
everything that web servers of the time were expected to do. Written entirely in Perl
Version 4, Plexus allowed the webmaster to extend the server by adding new source
files to be compiled and run on an as-needed basis.

APIs invented later include NSAPI, the interface for Netscape servers; ISAPI, the
interface used by Microsoft's Internet Information Server and some other Windows-
based servers; and of course the Apache web server's API, the only one of the bunch
that doesn't have a cute acronym.

Server APIs provide performance and access to the guts of the server's software,
giving them programming powers beyond those of mere mortal CGl scripts. Their
drawbacks include a steep learning curve and often a certain amount of risk and
inconvenience, not to mention limited portability. As an example of the risk, a bug in
an APl module can crash the whole server. Because of the tight linkage between the
server and its APl modules, it's never as easy to install and debug a new module as it
is to install and debug a new CGl script. On some platforms, you might have to bring
the server down to recompile and link it. On other platforms, you have to worry about
the details of dynamic loading. However, the biggest problem of server APIs is their
limited portability. A server module written for one APl is unlikely to work with another
vendor's server without extensive revision.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1.1.3 Server-Side Includes

Another server-side solution uses server-side includes to embed snippets of code
inside HTML comments or special-purpose tags. NCSA httpd was the first to
implement server-side includes. More advanced members of this species include
Microsoft's Active Server Pages, Allaire Cold Fusion, and PHP, all of which turn
HTML into a miniature programming language complete with variables, looping
constructs, and database access methods.

Netscape servers recognize HTML pages that have been enhanced with scraps of
JavaScript code (this is distinct from client-side JavaScript, which we talk about later).
Embperl, a facility that runs on top of Apache's mod_perl module, marries HTML to
Perl, as does PerlScript, an ActiveState extension for Microsoft Internet Information
Server.iu

[1] ActiveState Tool Corp., http://www.activestate.com/

The main problem with server-side includes and other HTML extensions is that
they're ad hoc. No standards exist for server-side includes, and pages written for one
vendor's web server will definitely not run unmodified on another's.

1.1.4 Embedded Interpreters

To avoid some of the problems of proprietary APIs and server-side includes, several
vendors have turned to using embedded high-level interpretive languages in their
servers. Embedded interpreters often come with CGl emulation layers, allowing script
files to be executed directly by the server without the overhead of invoking separate
processes. An embedded interpreter also eliminates the need to make dramatic
changes to the server software itself. In many cases an embedded interpreter
provides a smooth path for speeding up CGI scripts because little or no source code
modification is necessary.

Examples of embedded interpreters include mod_pyapache, which embeds a Python
interpreter. When a Python script is requested, the latency between loading the script
and running it is dramatically reduced because the interpreter is already in memory. A
similar module exists for the TCL language.

Sun Microsystems' "servlet" API provides a standard way for web servers to run small
programs written in the Java programming language. Depending on the
implementation, a portion of the Java runtime system may be embedded in the web
server or the web server itself may be written in Java. Apache's servlet system uses
co-processes rather than an embedded interpreter. These implementations all avoid
the overhead of launching a new external process for each request.

Much of this book is about mod_perl, an Apache module that embeds the Perl
interpreter in the server. However, as we shall see, mod_perl goes well beyond
providing an emulation layer for CGI scripts to give programmers complete access to
the Apache API.

1.1.5 Script Co-processing


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

Another way to avoid the latency of CGl scripts is to keep them loaded and running all
the time as a co-process. When the server needs the script to generate a page, it
sends it a message and waits for the response.

The first system to use co-processing was the FastCGl protocol, released by Open
Market in 1996. Under this system, the web server runs FastCGl scripts as separate
processes just like ordinary CGI scripts. However, once launched, these scripts don't
immediately exit when they finish processing the initial request. Instead, they go into
an infinite loop that awaits new incoming requests, processes them, and goes back to
waiting. Things are arranged so that the FastCGI process's input and output streams
are redirected to the web server and a CGl-like environment is set up at the beginning
of each request.

Existing CGl scripts can be adapted to use FastCGIl by making a few, usually
painless, changes to the script source code. Implementations of FastCGl are
available for Apache, as well as Zeus, Netscape, Microsoft IIS, and other servers.
However, FastCGl has so far failed to win wide acceptance in the web development
community, perhaps because of Open Market's retreat from the web server market.
Fortunately, a group of volunteers have picked up the Apache mod_fastcgi module
and are continuing to support and advance this freeware implementation. You can

find out more about mod_fastcgi at the http://www.fastcgi.com website.

Commercial implementations of FastCGl are also available from Fast Engines, Inc.

(http://www.fastengines.com), which provides the Netscape and Microsoft IS

versions of FastCGl.

Another co-processing system is an Apache module called mod_jserv , which you
can find at the project homepage, http://java.apache.org/. mod_jserv allows
Apache to run Java servlets using Sun's servlet APIl. However, unlike most other
servlet systems, mod_jserv uses something called the "JServ Protocol" to allow the
web server to communicate with Java scripts running as separate processes. You
can also control these servlets via the Apache Perl API using the Apache::Serviet
module written by lan Kluft.

1.1.6 Client-Side Scripting

An entirely different way to improve the performance of web-based applications is to
move some or all of the processing from the server side to the client side. It seems
silly to send a fill-out form all the way across the Internet and back again if all you
need to do is validate that the user has filled in the Zip Code field correctly. This, and
the ability to provide more dynamic interfaces, is a big part of the motivation for client-
side scripting.

In client-side systems, the browser is more than an HTML rendering engine for the
web pages you send it. Instead, it is an active participant, executing commands and
even running small programs on your behalf. JavaScript, introduced by Netscape in
early 1995, and VBScript, introduced by Microsoft soon afterward, embed a browser
scripting language in HTML documents. When you combine browser scripting
languages with cascading style sheets, document layers, and other HTML
enhancements, you get " Dynamic HTML" (DHTML). The problem with DHTML is that


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

it's a compatibility nightmare. The browsers built by Microsoft and Netscape
implement different sets of DHTML features, and features vary even between browser
version numbers. Developers must choose which browser to support, or use mind-
bogglingly awkward workarounds to support more than one type of browser. Entire
books have been written about DHTML workarounds!

Then there are Java applets. Java burst onto the web development scene in 1995
with an unprecedented level of publicity and has been going strong ever since. A full-
featured programming language from Sun Microsystems, Java can be used to write
standalone applications, server-side extensions ("servlets," which we discussed
earlier), and client-side "applet" applications. Despite the similarity in names, Java
and JavaScript share little in common except a similar syntax. Java's ability to run
both at the server side and the client side makes Java more suitable for the
implementation of complex software development projects than JavaScript or
VBScript, and the language is more stable than either of those two.

However, although Java claims to solve client-side compatibility problems, the many
slight differences in implementation of the Java runtime library in different browsers
has given it a reputation for "write once, debug everywhere." Also, because of
security concerns, Java applets are very much restricted in what they can do,
although this is expected to change once Sun and the vendors introduce a security
model based on unforgeable digital signatures.

Microsoft's ActiveX technology is a repackaging of its COM (Common Object Model)
architecture. ActiveX allows dynamic link libraries to be packed up into "controls,"
shipped across the Internet, and run on the user's computer. Because ActiveX
controls are compiled binaries, and because COM has not been adopted by other
operating systems, this technology is most suitable for uniform intranet environments
that consist of Microsoft Windows machines running a recent version of Internet
Explorer.

1.1.7 Integrated Development Environments

Integrated development environments try to give software developers the best of both
client-side and server-side worlds by providing a high-level view of the application. In
this type of environment, you don't worry much about the details of how web pages
are displayed. Instead, you concentrate on the application logic and the user
interface.

The development environment turns your program into some mixture of database
access queries, server-side procedures, and client-side scripts. Some popular
environments of this sort include Netscape's "Live" development systems (LiveWire
for client-server applications and LiveConnect for database connectivity),2 NeXT's
object-oriented WebObjects, Allaire's ColdFusion, and the Microsoft FrontPage
publishing system. These systems, although attractive, have the same disadvantage
as embedded HTML languages: once you've committed to one of these
environments, there's no backing out. There's not the least whiff of compatibility
across different vendors' development systems.

[2] As this book was going to press, Netscape announced that it was dropping support for LiveWire, transforming it
from a "Live" product into a "dead" one.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1.1.8 Making the Choice

Your head is probably spinning with all the possibilities. Which tool should you use for
your own application development? The choice depends on your application's
requirements and the tradeoffs you're willing to accept. Table 1.1 gives the authors'
highly subjective ranking of the different development systems' pros and cons.

Table 1.1. Comparison of Web Development Solutions

Portability Performance Simplicity Power

CGl ++++ + +++ ++
FastCGlI ++ +++ +++ ++
Server API + ++++ + P
Server-side includes ++ ++ 4+ T+
DHTML + +++ + ++
Client-side Java ++ +++ ++ +4++
Embedded interpreter +++ +++ ++ FH++
Integrated system + +++ ++ 4+

In this table, the "Portability" column indicates how easy it is to move a web
application from one server to another in the case of server-side systems, or from one
make of web browser to another in the case of client-side solutions. By
"Performance," we mean the interactive speed of the application that the user
perceives more than raw data processing power of the system. "Simplicity" is our gut
feeling for the steepness of the system's learning curve and how convenient the
system is to develop in once you're comfortable with it. "Power" is an estimate of the
capabilities of the system: how much control it provides over the way the application
behaves and its flexibility to meet creative demands.

If your main concern is present and future portability, your best choice is vanilla CGI.
You can be confident that your CGl scripts will work properly with all browsers, and
that you'll be able to migrate scripts from one server to another with a minimum of
hardship. CGl scripts are simple to write and offer a fair amount of flexibility, but their
performance is poor.

If you want power and performance at all costs, go with a server API. The applications
that you write will work correctly with all browsers, but you'll want to think twice before
moving your programs to a different server. Chances are that a large chunk of your
application will need to be rewritten when you migrate from one vendor's API to
another's.

FastCGl offers a marked performance improvement but does require you to make
some minor modifications to CGl script source code in order to use it.

If you need a sophisticated graphical user interface at the browser side, then some
component of your application must be client-side Java or DHTML. Despite its
compatibility problems, DHTML is worth considering, particularly when you are
running an intranet and have complete control over your users' choice of browsers.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Java applets improve the compatibility situation. So long as you don't try to get too
fancy, there's a good chance that an applet will run on more than one version of a
single vendor's browser, and perhaps even on browsers from different vendors.

If you're looking for ease of programming and a gentle learning curve, you should
consider a server-side include system like PHP or Active Server Pages. You don't
have to learn the whole language at once. Just start writing HTML and add new
features as you need them. The cost of this simplicity is portability once again. Pages
written for one vendor's server-side include system won't work correctly with a
different vendor's system, although the HTML framework will still display correctly.

A script interpreter embedded in the web server has much better performance than a
standalone CGI script. In many cases, CGl scripts can be moved to embedded
interpreters and back again without source code modifications, allowing for portability
among different servers. To take the most advantage of the features offered by
embedded interpreters, you must usually write server-specific code, which sacrifices
portability and adds a bit of complexity to the application code.

[Crevnous Poaxr v



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

1.2 The Apache Project

This book is devoted to developing applications with the Apache web server API, so
we turn our attention now to the short history of the Apache project.

The Apache project began in 1995 when a group of eight volunteers, seeing that web
software was becoming increasingly commercialized, got together to create a
supported open source web server. Apache began as an enhanced version of the
public-domain NCSA server but steadily diverged from the original. Many new
features have been added to Apache over the years: significant features include the
ability for a single server to host multiple virtual web sites, a smorgasbord of
authentication schemes, and the ability for the server to act as a caching proxy. In
some cases, Apache is way ahead of the commercial vendors in the features wars.
For example, at the time this book was written only the Apache web server had
implemented the HTTP/1.1 Digest Authentication scheme.

Internally the server has been completely redesigned to use a modular and extensible
architecture, turning it into what the authors describe as a "web server toolkit." In fact,

there's very little of the original NCSA httpd source code left within Apache. The main

NCSA legacy is the configuration files, which remain backward-compatible with NCSA
httpd.

Apache's success has been phenomenal. In less than three years, Apache has risen
from relative obscurity to the position of market leader. Netcraft, a British market
research company that monitors the growth and usage of the web, estimates that
Apache servers now run on over 50 percent of the Internet's web sites, making it by
far the most popular web server in the world. Microsoft, its nearest rival, holds a mere
22 percent of the market.t21 This is despite the fact that Apache has lacked some of
the conveniences that common wisdom holds to be essential, such as a graphical
user interface for configuration and administration.

(31 Impressive as they are, these numbers should be taken with a grain or two of salt. Netcraft's survey techniques
count only web servers connected directly to the Internet. The number of web servers running intranets is not
represented in these counts, which might inflate or deflate Apache's true market share.

Apache has been used as the code base for several commercial server products. The
most successful of these, C2Net's Stronghold, adds support for secure
communications with Secure Socket Layer (SSL) and a form-based configuration
manager. There is also WebTen by Tenon Intersystems, a Macintosh PowerPC port,
and the Red Hat Secure Server, an inexpensive SSL-supporting server from the
makers of Red Hat Linux.

Another milestone was reached in November of 1997 when the Apache Group
announced its port of Apache to the Windows NT and 95 operating systems (Win32).
A fully multithreaded implementation, the Win32 port supports all the features of the
Unix version and is designed with the same modular architecture as its brother.
Freeware ports to OS/2 and the AmigaOS are also available.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In the summer of 1998, IBM announced its plans to join with the Apache volunteers to
develop a version of Apache to use as the basis of its secure Internet commerce
server system, supplanting the servers that it and Lotus Corporation had previously
developed.

Why use Apache? Many web sites run Apache by accident. The server software is
small, free, and well documented and can be downloaded without filling out pages of
licensing agreements. The person responsible for getting his organization's web site
up and running downloads and installs Apache just to get his feet wet, intending to
replace Apache with a "real" server at a later date. But that date never comes.
Apache does the job and does it well.

However, there are better reasons for using Apache. Like other successful open
source products such as Perl, the GNU tools, and the Linux operating system,
Apache has some big advantages over its commercial rivals.

It's fast and efficient

The Apache web server core consists of 25,000 lines of highly tuned C code. It
uses many tricks to eke every last drop of performance out of the HTTP protocol
and, as a result, runs faster and consumes less system resources than many
commercial servers. Its modular architecture allows you to build a server that
contains just the functionality that you need and no more.

It's portable

Apache runs on all Unix variants, including the popular freeware Linux operating
system. It also runs on Microsoft Windows systems (95, 98, and NT), OS/2, and
even the bs2000 mainframe architecture.

It's well supported

Apache is supported by a cast of thousands. Beyond the core Apache Group
developers, who respond to bug reports and answer technical questions via
email, Apache is supported by a community of webmasters with hundreds of
thousands of hours of aggregate experience behind them. Questions posted to
the Usenet newsgroup comp.infosystems.www.servers.unix are usually
answered within hours. If you need a higher level of support, you can purchase
Stronghold or another commercial version of Apache and get all the benefits of
the freeware product, plus trained professional help.

It won't go away

In the software world, a vendor's size or stock market performance is no
guarantee of its staying power. Companies that look invincible one year become
losers the next. In 1988, who would have thought the Digital Equipment whale
would be gobbled up by the Compaq minnow just 10 years later? Good
community software projects don't go away. Because the source code is
available to all, someone is always there to pick up the torch when a member of
the core developer group leaves.

It's stable and reliable


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

All software contains bugs. When a commercial server contains a bug there's an
irresistible institutional temptation for the vendor to cover up the problem or offer
misleading reassurances to the public. With Apache, the entire development
process is open to the public. The source code is all there for you to review, and
you can even eavesdrop on the development process by subscribing to the
developer's mailing list. As a result, bugs don't remain hidden for long, and they
are usually fixed rapidly once uncovered. If you get really desperate, you can
dig into the source code and fix the problem yourself. (If you do so, please send
the fix back to the community!)

It's got features to burn

Because of its modular architecture and many contributors, Apache has more
features than any other web server on the market. Some of its features you may
never use. Others, such as its powerful URL rewriting facility, are peerless and
powerful.

It's extensible

Apache is open and extensible. If it doesn't already have a feature you want,
you can write your own server module to implement it. In the unlikely event that
the server API doesn't support what you want to do, you can dig into the source
code for the server core itself. The entire system is open to your inspection;
there are no black boxes or precompiled libraries for you to work around.

It's easy to administer

Apache is configured with plain-text configuration files and controlled with a
simple command-line tool. This sounds like a deficiency when compared to the
fancy graphical user interfaces supplied with commercial servers, but it does
have some advantages. You can save old copies of the configuration files or
even commit them to a source code control system, allowing you to keep track
of all the configuration changes you've made and to return to an older version if
something breaks. You can easily copy the configuration files from one host
machine to another, effectively cloning the server. Lastly, the ability to control
the server from the command line lets you administer the server from anywhere
that you can telnet from—you don't even need web connectivity.

This being said, Apache does provide simple web-based interfaces for viewing
the current configuration and server status. A number of people are working on
administrative GUIs, and there is already a web interface for remotely managing
web user accounts (the user_manage tool available at

http://stein.cshl.org/~Istein/user_manage).

It makes you part of a community


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When you install an Apache server you become part of a large virtual
community of Apache webmasters, authors, and developers. You will never feel
that the software is something whose use has been grudgingly granted to you
by a corporate entity. Instead, the Apache server is owned by its community. By
using the Apache server, you automatically own a bit of it too and are
contributing, if even in only a small way, to its continued health and
development. Welcome to the club!

T



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

1.3 The Apache C and Perl APIs

The Apache module API gives you access to nearly all of the server's internal
processing. You can inspect what it's doing at each step of the HTTP transaction
cycle and intervene at any of the steps to customize the server's behavior. You can
arrange for the server to take custom actions at startup and exit time, add your own
directives to its configuration files, customize the process of translating URLs into file
names, create custom authentication and authorization systems, and even tap into
the server's logging system. This is all done via modules—self-contained pieces of
code that can either be linked directly into the server executable, or loaded on
demand as a dynamic shared object (DSO).

The Apache module API was intended for C programmers. To write a traditional
compiled module, you prepare one or more C source files with a text editor, compile
them into object files, and either link them into the server binary or move them into a
special directory for DSOs. If the module is implemented as a DSO, you'll also need
to edit the server configuration file so that the module gets loaded at the appropriate
time. You'll then launch the server and begin the testing and debugging process.

This sounds like a drag, and it is. It's even more of a drag because you have to worry
about details of memory management and configuration file processing that are
tangential to the task at hand. A mistake in any one of these areas can crash the
server.

For this reason, the Apache server C API has generally been used only for
substantial modules which need high performance, tiny modules that execute very
frequently, or anything that needs access to server internals. For small to medium
applications, one-offs, and other quick hacks, developers have used CGl scripts,
FastCGl, or some other development system.

Things changed in 1996 when Doug MacEachern introduced mod_per! , a complete
Perl interpreter wrapped within an Apache module. This module makes almost the
entire Apache API available to Perl programmers as objects and method calls. The
parts that it doesn't export are C-specific routines that Perl programmers don't need to
worry about. Anything that you can do with the C API you can do with mod_per! with
less fuss and bother. You don't have to restart the server to add a new mod_per!
module, and a buggy module is less likely to crash the server.

We have found that for the vast majority of applications mod_perl is all you need. For
those cases when you need the raw processing power or the small memory footprint
that a compiled module gives you, the C and Perl forms of the API are close enough
so that you can prototype the application in mod_perl first and port it to C later. You
may well be surprised to find that the "prototype" is all you really need!

This book uses mod_perl to teach you the Apache API. This keeps the examples
short and easy to understand, and shows you the essentials without bogging down in
detail. Toward the end of the book we show you how to port Apache modules written
in Perl into C to get the memory and execution efficiency of a compiled language.

I I T e



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

[rawus Poaxr v

1.4 Ideas and Success Stories

To give you an impression of the power and versatility of the Apache API, here are
some examples of what people have done with it. Some of the modules described
here have been incorporated into Apache and are now part of the standard
distribution. Others are third-party modules that have been developed to solve
particular mission-critical tasks.

A movie database

The Internet Movie Database (http://www.imdb.com/) uses mod_perl to

make queries against a vast database of film and television movies. The system
rewrites URLs on the fly in order to present pages in the language of the user's
choice and to quickly retrieve the results of previously cached searches. In
1998, the site won the coveted Webby award for design and service.

No more URL spelling errors

URLs are hard things to type, and many HTML links are broken because of a
single typo in a long URL. The most frequent errors are problems with
capitalization, since many HTML authors grew up in a case-insensitive MS-
DOS/Windows world before entering the case-sensitive web.

mod_speling [sic ], part of the standard Apache distribution, is a C-language
module that catches and fixes typographical errors on the fly. If no immediate
match to a requested URL is found, it checks for capitalization variations and a
variety of character insertions, omissions, substitutions, and transpositions,
trying to find a matching valid document on the site. If one is found, it generates
a redirect request, transparently forwarding the browser to the correct resource.
Otherwise, it presents the user with a menu of closest guesses to choose from.

An on-campus housing renewal system

At Texas A&M University, students have to indicate each academic year
whether they plan to continue living in campus-provided housing. For the 1997-
1998 academic year, the university decided to move the process from its current
error-prone manual system to a web-based solution. The system was initially
implemented using ActiveWare's PerlScript to drive a set of Microsoft Internet
Information Server Active Server Pages, but with less than two weeks to go
before deployment it was clear that the system would be too slow to handle the
load. The system was hurriedly rewritten to use mod_per!/ on top of the NT
version of Apache, resulting in a measured 60-fold increase in performance.
The system went online in the nick of time and functioned without a hitch,
serving 400,000 documents generated on the fly to 10,000 people over the
course of the four-day registration period.

Scripting languages embedded in HTML

The PHP system (http://www.php.net/ ) is a powerful scripting language


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

that processes programs embedded within HTML documents. The language
provides support for persistent connections to ODBC and Unix databases, on-
the-fly graphics, and LDAP searches. The language is implemented both as a
CGil script that can run on top of any server and as a high-performance C-
language module for Apache.

The ePerl (http://www.engelschall.com/sw/eperl/) and Embperl

(http://perl.apache.org/embperl/) systems are like PHP, but use mod_per!
to embed snippets of Perl code directly inside HTML pages. They can do

anything that Perl can do, including opening network connections to other
Internet services, accessing databases, and generating dynamic documents
based on user input.

An advertising banner server

No web application needs higher performance than banner ad servers, which
are pummeled by millions of requests per day. One banner ad vendor, whose
conventional CGl-based system was topping out at 1.5 banners per second,
moved its system to mod_per/ and experienced a greater than 10-fold
performance boost. The vendor is now serving 10 million banners a week from
a single host.

A dynamic map server

The http://www.stadtplandienst.de site uses the mod_perl API with the

ImageMagick graphics library to create dynamic searchable tourist maps for
Berlin and other German cities. The system is fast and responsive, despite the
computationally intensive nature of its job and its frequently heavy load.

A commodities trading system

Lind-Waldock & Co. (http://www.lind-waldock.com/ ), the world's largest

discount commodities trading firm, uses mod_per/ running under the Stronghold
version of Apache to generate live and delayed quotes, dynamic charts, and
late-breaking news, as well as a frontend to their online order entry system. The
system is tightly integrated with the company's relational database system for
customer authentication and transaction processing.

Brian Fitzpatrick, a member of the consulting team that designed and
implemented the system, was pleasantly surprised at how smooth the process
was: "mod_perl allowed us to work the web server and code around our design
—not the other way around."

A document management system

The Advanced Computer Communications company maintains more than 1500
documents in various formats scattered among multiple NFS-mounted file
systems in its internal network. Their document management system
periodically indexes the scattered documents by document name, creation date,
and content, then uses the mod_perl interface to the Apache API to allow users


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

to search and retrieve documents of interest to them. The system automatically
performs document format conversion. Some are sent to the browser for
download, others are precompressed with PKZIP to reduce transmission time,
and still others are converted into formats that can be displayed directly in the
browser window.

These applications represent only a few of the possible uses for the Apache module
API. What you can do with it is limited only by your imagination. The rest of this book
shows you how to turn your ideas into reality.

| [ ravaisun [t v |



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Chapter 2. A First Module

This chapter covers the mechanics of developing Apache extension modules in the
Perl and C APIs. First we'll show you how to install mod_per/, which you'll need for all
Perl APl modules, and how to write a simple "Hello World" script. Then we'll show you
an equivalent C module implemented both as statically linked code and as a dynamic
shared object.

We won't go into the gory details of Apache internals in this chapter—that's deferred
until Chapter 3 —but by the end you'll understand the mechanics of getting a new

Apache module up and running.
[Crssvious st v |



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[rawus Poaxr v

2.1 Preliminaries

Before you can start hacking away at your own Apache modules, there are a number
of preliminaries to take care of. This section discusses what you need and how you
can get it if you don't have it already.

2.1.1 A Working Apache Web Server

You'll need a working version of Apache, preferably a recent release (the version we
used to prepare this book was Version 1.3.4). If you do not already have Apache, you

can download it, free of charge, from http://www.apache.org/.

Users of Windows 95 and NT systems (henceforth called "Win32") who want to write
modules using the Perl APl can download precompiled binaries. You will need two
components: the server itself, available at http://www.apache.org/dist/, and
ApacheModulePerl.dll , which is mod_perl implemented as a dynamically loadable
module. ApacheModulePerl.dll has been made available by Jeffrey W. Baker. You
can find it on the Comprehensive Perl Archive Network (CPAN) in the directory
authors/Jeffrey Baker/..1 Win32 users with access to the Microsoft Visual C++
development environment can also compile ApacheModulePerl.dll from mod_perl
source code.

(1] see the preface for instructions on finding and using a CPAN site close to you.

This book will not try to teach you how to install and maintain an Apache-based web
site. For the full details, see the Apache server's excellent online documentation or
the reference books listed in the preface.

2.1.2 A C Compiler and make Utility

To use the C API, you'll need a working C compiler and its associated utilities. Most
Unix systems come with the necessary software development tools preinstalled, but
sometimes the bundled tools are obsolete or nonstandard (SunOS and HP-UX
systems are particularly infamous in this regard). To save yourself some headaches,
you may want to install the GNU gcc compiler and make programs. They are

available via anonymous FTP from ftp://prep.ai.mit.edu, in the directory /pub/gnu,
or via the web at http://www.gnu.org/.

Win32 users are not so lucky. To develop C API modules, you will need the Microsoft
Visual C++ 5.0 development package. No other development environment is
guaranteed to work, although you are certainly welcome to try; Borland C++ is
reported to work in some people's hands. If you are primarily interested in the Perl
API, you can use the precompiled binaries mentioned in the previous section.

2.1.3 A Complete Perl Installation


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To use the Perl API, you will need a full installation of Perl, Version 5.004 or higher. In
many cases, this means that you will have to download and install Perl yourself. We
have found that some systems that come with Perl preinstalled are missing some of
the essential parts of the library hierarchy needed to create and install new Perl
modules. This includes certain Linux distributions. Find the Perl source distribution at
any of the CPAN sites, download it, and install it according to the directions. This
book was prepared using Perl Version 5.004_04.

During installation Perl creates a library file containing all its core routines. On some
Unix systems, Perl will offer you the choice between building a statically linked library
(usually named libperl.a ) or building a shared library (named libperl.so or libperl.o ).
Unless you're going to be linking many different executables to Perl, there's no
compelling reason to create a shared library. Most sites will have only two
executables linked to Perl: the Apache server daemon and the per/ program itself.
Under these circumstances the memory saved by using the shared version is
inconsequential compared to the execution overhead of using the shared library. We
recommend that you build the statically linked library unless you are going to build
multiple embedded Perl systems.

2.1.4 Recent Versions of CGl.pm and LWP

While not strictly necessary, your life will be easier if you have recent versions of the
Perl CGl.pm and LWP modules installed. CGl.pm is a collection of utilities that makes
conventional CGI scripts easier to write. It also comes in handy for modules written
with the mod_perl APl. We recommend using Version 2.42 or higher.

LWP (Library for WWW access in Perl) is a collection of modules for creating web
robots, agents, and browsers in Perl. LWP is invaluable for creating web proxies, and
we make use of it in later chapters. More important, mod_perl uses LWP during
installation for regression testing. We recommend using LWP Version 5.36 or higher.

Both CGIl.pm and LWP can be found on CPAN, in the subdirectories modules/by-
module/CGl and modules/by-module/L WP. Complete installation directions can be
found in the packages themselves.

[Crevnous Poaxr v



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[rawus Poaxr v

2.2 Directory Layout Structure

We refer to a variety of special files and directories throughout this book. Although
there is a standard Apache server layout, this standard has changed over time and
many sites have extensively customized their layout. Furthermore, some operating
systems which come with Apache preinstalled choose a nonstandard directory
structure that is more consistent with the OS's way of doing things. To avoid potential
confusion, we explain the directory structure we use in this book. If you are installing
Apache and mod_perl for the first time, you might want to follow the suggestions
given here for convenience.

Server root directory

This is the top of the Apache server tree. In a typical setup, this directory
contains a bin directory for the httpd Apache executable and the apachect!
control utility; the configuration and log directories (conf and logs ); a directory
for executable CGl scripts, cgi-bin; a directory for dynamically loaded modules,
libexec; header files for building C-language modules, include; and the
document root directory, htdocs.21

(2] The directory layout we describe here is the default Apache Iayout Other predefined layouts may be
configured with the Apache configuration option - -with- 1t=Type where Type can be cnU or another
user-defined layout. Consult the Apache |nsta|lat|on documentlon for more details.

The default server root directory on Unix machines is /usr/local/apache, which
we'll use throughout the book. However, in order to avoid typing this long name,
we suggest creating a pseudo-user named www with /usr/local/apache as its
home directory.z! This allows you to refer to the server root quickly as ~www.

[3] If you do set up the www pseudo-user, be sure to forbid login for this user by locking the account
password. You can make the htfpd executable and its auxiliary files owned by this user if you wish, but the
server should continue to run with the permissions of the "nobody" user as recommended by the default
configuration. It's also sometimes handy to create a www group to which the webmaster and other users
authorized to work in the server root belong.

On Win32 systems, the default server root is C:\Program Files\Apache
Group\Apache. However, many people change that to simply C:\Apache, as we
do here. Readers who use this platform should mentally substitute ~www with
the path to their true server root.

Document root directory

This is the top of the web document tree, the default directory from which the
server fetches documents when the remote user requests http.//your.site/. We'll
assume ~www/htdocs in our examples (C:\Apache\htdocs on Win32 systems).

Apache and mod_perl build directory

This is a directory where you can build Apache and mod_per! from their source
distributions. There's no standard place for this. Different people use /usr/src,
/usr/build, /usr/tmp, or their home directories. In order to keep the various
packages in one place, we recommend ~www/build for this purpose.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

httpd.conf, srm.conf, access.conf

These are the three important configuration files for the Apache server. There
are three separate configuration files for historical reasons (to support backward
compatibility with NCSA httpd ). Any configuration directive can go into any of
these files. Many sites have forcibly desegregated their directives and placed all
their site's configuration directives into a single large httpd.conf file; in fact, this
is the default as of Version 1.3.4 of Apache. Other sites use separate files for
each virtual host and use the Include directive to load them all at configuration
time.

We use a slightly modified version of the lump-everything-into-httpd.conf
approach. All the core Apache directives are kept in httpd.conf, including virtual
hosts and per-directory configuration sections. However, we like to pull all the
Apache Perl API directives into a separate file named perl.conf and then load it
at server startup time with the following set of directives:

<IfModule mod perl.c>
Include conf/perl.conf
</IfModule>

The <IfModule> conditional directive allows us to use the same httpd.conf file for
servers that include the embedded Perl interpreter as well as those that do not.
Notice that the argument to <IfModule> is the name of the module source code file,
so you have to use mod_perl.c here, rather than mod_perl.

httpd.conf and its sibling configuration files all live in ~www/conf.

.htaccess

This is the file extension for the per-directory configuration files that can be
located throughout the document tree. Although the name implies a role in
access control, this is just another historical artifact. These files are more
frequently used as a way to change per-directory configuration options without
modifying the central configuration files. Some sites change the name of the
.htaccess file to something more meaningful (or more obscure). We use the
default name in our examples and, in fact, use the term ".htaccess file"
somewhat generically rather than the longer, but more accurate, "per-directory
access control and options file."

cgi-bin

perl

This is the location of the server's executable CGI scripts, usually ~www/cgi-bin.
We assume the default.

This is the location of Perl scripts running under mod_perl's Apache::Registry
module (which we talk more about later in this chapter). Perl source files located
in this directory are executed as if they were CGl scripts but load and run much
faster because they are interpreted directly by the server. We use ~www/perl in
this book.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Module library tree

You need a convenient place to put any library files used by modules written
under the Perl APl and any dynamically loadable modules written with the C API
(.0 and .so files under Unix, .dll files on Win32). The standard location for C API
modules is ~www/libexec on Unix systems (C:\Apache\libexec on Win32
systems).

There is no standard location for Perl APl modules, so we recommend creating
a directory named ~www/lib/perl for this purpose.

"Perl module"” and "Apache Perl module”

Speaking of which, there is a nasty potential ambiguity in the word "module"
when referring to Apache modules written using the Perl API. Perl itself makes
extensive use of loadable library modules (.pm files) that have nothing to do
with running a web server. Making things even more confusing is the fact that
the Apache modules written in Perl are usually .pm files themselves.

We try to minimize the ambiguity by referring to "Perl module" when we mean
plain old Perl modules that are not involved in the web server and "Apache Perl
module" when we mean Perl modules written to run under the Apache Perl API.
In addition, all Apache Perl modules are named beginning with the word
"Apache::". Here are some examples:

Type of Module Examples
Apache module mod_mime, mod_rewrite
Apache Perl module Apache::AuthenDBI, Apache:: Traffic
Perl module Text::ParseWords, 10::File

Perl library tree

This is the location of the Perl5 library tree, which was created when you (or
someone else) installed Perl on your system. It contains Perl modules, Plain Old
Documentation (POD) files, loadable library objects, and header files used for
compiling new Perl modules. This directory can be located in a variety of
amusing and surprising places, but on most systems it can be found in
/ust/lib/perls, /usr/local/lib/perls, or C:\perl5 (Win32).

[Crevnous Poaxr v



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.3 Installing mod_perl

In order to use the Perl API, you'll need to download and install mod_perl if you
haven't done so already. This section will describe the simplest way to do this. If
you've already installed mod_per! you'll want to skip this section or jump directly to
Appendix B, where we give you the lowdown on mod_perl's advanced installation
options.

If you are a Win32 user, you can skip to Section 2.3.2 and download the
precompiled ApacheModulePerl.dll loadable module. We'll show you how to activate
ApacheModulePerl.dll at the end of the section.

2.3.1 The Installation Process

mod_perl is part of the CPAN archive. FTP to a CPAN site close to you and enter the
directory modules/by-module/Apache/. Download the file mod_perl-X. XX tar.gz,
where X. XX is the highest version number you find.

It is easiest to build mod_perl when it is located at the same level as the Apache
source tree. Change your working directory to the source directory of the server root,
and unpack the mod_perl distribution using the gunzip and tar tools:4!

[4] If you don't have gunzip and tar, you can find the freeware GNU versions of these tools at

$ ed ~www/build
% gunzip -c mod perl- X.XX.tar.gz | tar xvf -
mod perl-X.XX /t/
mod perl-X.XX /t/docs/
mod perl-X.XX /t/docs/env.iphtml
mod perl-X.XX /t/docs/content.shtml
mod perl-X.XX /t/docs/error.txt

% cd mod perl- X.XX

Now, peruse the README and INSTALL files located in the mod_perl! directory.
These files contain late-breaking news, installation notes, and other information.

The next step is to configure, build, and install mod_perl. Several things happen
during this process. First, an installation script named Makefile.PL generates a top-
level Makefile and runs Apache's configure script to add mod_perl to the list of C
modules compiled into the server. After this, you run make to build the mod_per!
object file and link it into a new version of the Apache server executable. The final
steps of the install process are to test this new executable and, if it checks out, to
move mod_perl's support files and documentation into the Perl library directory.

If you have other third-party modules to add to Apache, such as PHP, you can add
them during the mod_perl build process by providing arguments to the installation
script that will be passed through to Apache's configure. Alternatively, you can
separate the mod_perl build from the Apache build and run configure yourself.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

The outline of the whole process is as follows:

perl Makefile.PL options # run installation scrip
make # make httpd executable
make test # run tests (optional)
make install # install mod perl

The per1 Makefile.PL lineis supplemented by a series of tag=value pairs that
control a bewildering array of options. The full list of options is given in Appendix B.
Most options are concerned with activating handlers for various phases of the HTTP
transaction. For example, to enable the handlers for the authentication and log
phases (which we explain in more detail later), you would configure mod_per! with this
command:

perl Makefile.PL PERL LOG=1 PERL AUTHEN=1

You'll probably want to enable all the handlers in order to get access to the full
Apache API. The easiest way to do this is by issuing this command:

perl Makefile.PL EVERYTHING=1 APACHE PREFIX=/usr/local/apache

EVERYTHING=1 enables all the handlers and activates a variety of other neat
features, including server-side includes written in Perl and support for <Perl> sections
in the Apache configuration files. Providing an APACHE_PREFIX option with the
location of the server root allows the install script to automatically copy the new
version of the Apache server and its support files into the server root. If you don't
provide this option, you can still copy the files manually after they're built. More details
on these options can be found in the mod_perl manual pages and in Appendix B.

Other configuration options are not involved in building mod_perl itself, but are
passed through to Apache's configure script to control other aspects of Apache's
configuration. The most frequently used of these is ADD_MODULE, which accepts a
comma-delimited list of additional modules to compile into Apache. Use this if there
are optional modules such as the mod_status and mod_proxy that you wish to build
Apache with.

When run, Makefile.PL will search the immediate vicinity for the Apache source tree.
When it finds it, it will print the path and ask you for confirmation. If the search fails,
Makefile.PL will prompt you to type in the path. You should type in the full path to the
Apache src directory. Next you'll be asked whether httpd should be built during the

make. You should answer "y" to this question. At this point, Makefile.PL will run
Apache's own configure script and you'll see a series of messages from configure.

After running configure, Makefile.PL will display a list of the options that are enabled.
Then it checks for the presence of the LWP and CGl.pm packages and warns you if
one or both are absent or outdated. Neither package is essential to successfully
install mod_perl, but LWP is required to run the regression tests. If you wish, you can
install mod_per! without running the tests. If at some later date you wish to run the
regression tests, just install LWP and run Makefile.PL again.

Here's an example configuration session:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

% perl Makefile.PL EVERYTHING=1 APACHE PREFIX=/usr/local/apache

ReadLine support enabled

Configure mod perl with ../apache 1.3.3/src ? [y] ¥

Shall I build httpd in ../apache 1.3.3/src for you? [y] ¥

cp src/modules/perl/perl PL.h ../apache 1.3.3/src/modules/perl
many similar lines deleted

Will run tests as User: 'johnd' Group: 'users'
Configuring for Apache, Version 1.3.3
+ activated perl module (modules/perl/libperl.a)

Creating Makefile
Creating Configuration.apaci in src

+ id: mod perl/1.16

+ id: Perl/5.00404 (linux) [perl]

many similar lines deleted

PerlDispatchHandler......... enabled
PerlChildInitHandler........ enabled
PerlChildExitHandler........ enabled
PerlPostReadRequestHandler..enabled
PerlTransHandler............ enabled

many similar lines deleted

Writing Makefile for Apache

Writing Makefile for Apache::Connection
Writing Makefile for Apache::Constants
Writing Makefile for Apache::File
Writing Makefile for Apache::Log
Writing Makefile for Apache::ModuleConfig
Writing Makefile for Apache::Server
Writing Makefile for Apache::Symbol
Writing Makefile for Apache::Tie
Writing Makefile for Apache::URI
Writing Makefile for Apache::Util
Writing Makefile for mod perl

If something goes wrong during configuration, there should be a diagnostic warning
that will point to the problem (for example, "no Apache source directory found").
Correct the problem and try again. If you need to pass a long series of configuration
options, you will probably find it convenient to turn the configuration command into a
short shell script along these lines:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

#!/bin/sh

# mod perl configuration 9/28/98

perl Makefile.PL EVERYTHING=1 \
ADD MODULE=unique id,status,proxy,info \
APACHE PREFIX=/usr/local/apache

This makes it easy to edit the configuration and run the command again. Plus, you'll
have a record of the configuration you used the next time you upgrade Apache or
mod_perl.

The next step is to run make . A new Apache server with an integrated mod_per! will
now be built in front of your eyes. At the end of the process you'll find a brand-new
httpd in the Apache source tree. It will look just like the old one, except significantly
larger (fourfold increases in size are not uncommon). This is because the Perl
interpreter has just been made part of httpd. It's unlikely that you'll encounter any
problems during the make if you were previously successful in compiling both Apache
and Perl, but if the make process does abort because of a fatal error, you'll have to do
some detective work to determine where things went wrong. It helps to redirect the
messages from the build process into a file for later perusal:

% make |& tee make.out

You can now run the optional tests. This step is recommended. During the tests the
newly built server will be launched and a series of scripts will barrage it with requests
to determine whether it produces the expected answers. Because the server listens to
a nonstandard port during the tests, you can run the tests on the same machine that
already hosts a web server. You do not need to be the superuser (or Administrator) in
order to run the tests; however, you do need to have the LWP library installed.
Otherwise, the tests will abort at an early stage.

To run the tests, run make test from within the mod_per! directory:

% make test

cp t/conf/mod perl srm.conf t/conf/srm.conf
../apache-1.3/src/httpd -f "pwd /t/conf/httpd.conf -X -d "pwd /t
httpd listening on port 8529

will write error log to: t/logs/error log

letting apache warm up...done
/opt/perl5/bin/perl t/TEST 0
modules/actions..... ok
modules/cgi......... ok
modules/constants. ..ok
modules/embperl..... ok
modules/eperl....... ok

many similar lines deleted

All tests successful.

Files=35, Tests=350, 35 secs (26.13 cusr 2.56 csys = 28.69 cpu
kill ‘cat t/logs/httpd.pid’

rm -f t/logs/httpd.pid

rm -f t/logs/error log


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Don't worry about any tests that are skipped. This just indicates that you haven't
installed one of the optional mod_perl features. You can always install the feature and
rerun the tests later. Any messages about failed tests, however, are cause for
concern. If you see such a message, you should rerun the tests with the verbose flag
(nake test TEST VERBOSE=1). You can try to track down the problem yourself, or
post the results to the mod_perl mailing list (which we'll discuss presently).

Provided that all goes well, you can now finish the installation. You may need to have
superuser or Administrator privileges in order to do this. Run make install to move
mod_perl's support files and documentation to the main Perl library directory. You will
see a long series of copy commands. If you specified the APACHE_PREFIX option,
then make install will also install the Apache side of things, including httpd, its
configuration files, document, and log trees. Otherwise, change to the Apache source
directory and copy the new httpd by hand to your server root directory. Make sure to
keep a copy of the old httpd binary around, just in case.

2.3.2 Win32 Installation

For Windows users, download the ApacheModulePerl binary distribution from CPAN,
in the subdirectory authors/Jeffrey Baker/. The Win32 distribution file uses a very
long name, following the CPAN conventions for binary distribution file names.s! Make
sure you download the one with the highest version number, and unpack it with your
favorite ZIP file extractor.

(5] The binary distribution filename conventions can be found on the CPAN:

http://www.cpan.org/modules/05bindist.convention.html.

Now copy the contents of the /ib subdirectory into your Perl library tree, usually
C:\perlb\lib (be careful to copy the contents of /ib, not the directory itself, or you run
the risk of clobbering your Perl library tree!). Next, move the file ApacheModulePerl.dll
to the Apache loadable modules directory, usually C:\Apache\modules. Open
httpd.conf with your favorite text editor and add the following line:

LoadModule perl module modules/ApacheModulePerl.dll

Kill and restart the server if it's already running. mod_per/ should now be installed.
Should you wish to build mod_perl from source code, consult the INSTALL.win32 file
located at the top of the mod_perl distribution directory.

2.3.3 The mod_perl Mailing List

If you have trouble running or installing mod_perl, be sure to read over the SUPPORT
document located at the top of the mod_perl distribution directory. It contains tips and
pointers to other tips for solutions to common problems.

If you cannot find a solution to your problem, you should post a message to the
mod_perl mailing list requesting help. To subscribe to the mailing list, send an email
message to majordomo@apache.org with the message "subscribe modperl" in the
mail body (not the subject line). You will receive confirmation by return mail along with
instructions for unsubscribing from the list should you ever wish to withdraw. Save this
message for future reference.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You can now email your request for help to modperl@apache.org. Be sure to
include the output of the VERBOSE regression tests, along with the following details:

e mod_perl version

e Perl version

e Apache version

¢ Operating system and version

There's also a searchable archive of the full mailing list at
http://forum.swarthmore.edu/epigone/modperl. Before posting a question,
you might want to check the archive first to see if someone else has ever had a
similar problem. Also be sure to check the mod_perl FAQ (frequently asked questions

list) at http://perl.apache.org/faq/.

If you are just getting started with mod_per! or find yourself stuck at times, consult
Stas Bekman's mod_perl Developer's Mini Guide at
http://perl.apache.org/gquide/. The guide was designed to help you overcome
possible obstacles when using mod_per/ as a replacement for CGl. It is a collection of
tips and tricks from mod_perl developers around the globe, which will save any
developer a great deal of time and headache medicine. Many areas covered by the
guide are not covered in this book, so be sure to read it! If you are only interested in
receiving announcements about new versions of mod_per/ and add-on modules, you
should subscribe to the modperl-announce mailing list. The subscription procedure is
the same, except that the mail body should read "subscribe modperl-announce."

I [ ravaisun [t v |



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.4 "Hello World" with the Perl API

Now that you have mod_perl installed, it's time to put the Perl API through its paces.

First you'll need to create a location for your Apache Perl modules to live. If you
haven't done so already, create a directory in some convenient place. We suggest
creating a lib subdirectory within the server root, and a per/ directory within that,
making the full location ~www/lib/perl (Unix), or C:\Apache\lib\perl (Win32). Within this
directory, create yet another directory for modules that live in the Apache::
namespace (which will be the vast majority of the modules we write), namely
~www/lib/perl/Apache.

You'll now have to tell Apache where to look for these modules. mod_per! uses the
same include path mechanism to find required modules that Perl does, and you can
modify the default path either by setting the environment variable P=r1.51.78 to a
colon-delimited list of directories to search before Apache starts up or by calling use
1ib '/path/to/look/in" when the interpreter is first launched. The first
technique is most convenient to use in conjunction with the PerlSetEnv directive,
which sets an environment variable. Place this directive somewhere early in your
server configuration file:

PerlSetEnv PERLS5LIB /my/lib/perl:/other/lib/perl

Unfortunately this adds a little overhead to each request. Instead, we recommend
creating a Perl startup file that runs the use lib statement. You can configure
mod_perl to invoke a startup file of common Perl commands each time the server is
launched or restarted. This is the logical place to put the use lib statement. Here's a
small startup file to get you started:

#!/usr/local/bin/perl

# modify the include path before we do anything else
BEGIN {

use Apache () ;

use lib Apache—>server7root7relative('lib/perl');

}

# commonly used modules
use Apache::Registry ()
use Apache::Constants() ;
use CGI gw (-compile :all);
use CGI::Carp ()

put any other common modules here
use Apache::DBI ();

use LWP () ;

use DB File ();

g


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This example startup file first modifies the include path to point to the location of the
Apache Perl module directory. It uses the Apache::server_root relative( ) method to
turn the relative path into an absolute path that use /ib will honor. It then loads up
some commonly used libraries, including Apache::Registry (a fast CGl-like
environment), Apache::Constants (various constants used by Apache modules), and
the CGl and CGI::Carp modules.

If most of your modules are going to use these libraries, loading them once at startup
time makes sense and assures the absolute fastest performance of your modules.
Loading less-frequently used libraries should be deferred to the time you actually
need them.

Save the startup file to some logical place. We recommend ~www/conf/startup.pl, so
that it lives alongside Apache's other configuration files. If you can you should make
this file owned and only writable by root (Administrator on Win32 systems). This is
because during the server startup phase the code in this file is executed as the
superuser, so anyone with write permissions to this file (or the directory that contains
it) effectively has superuser privileges.

We'll need to tell Apache to run the startup file at launch time. Open perl.conf
(actually, any of the configuration files will do) and add the following lines to the
bottom:

PerlRequire conf/startup.pl
PerlFreshRestart On

The first directive tells Apache to load and run the startup script when it is first
launched. Like other file paths in Apache's configuration files, partial paths are treated
as relative to the server root. The second directive tells the server to repeat this
process every time it is restarted. This allows changes to the startup script (and other
Apache Perl modules) to take effect without bringing the server completely down.

You should now start or restart the server. On Unix platforms, the easiest way to do
this is to use the apachectl script located in ~www/bin. The command apachect!
graceful will send the server a polite USR1 signal to ask it to restart when it is finished
processing all current requests, while apachectl restart will issue the server a more
imperative HUP signal to command it to cancel all pending transaction and
immediately restart. In either case, the server will be launched if it isn't already
running. Users of the Win32 port can restart the server by issuing the command
apache -k restart (Versions 1.3.3 and higher). If Apache is installed as a Windows NT
service, you may also restart it using the Services control panel or by issuing the
commands NET STOP APACHE and NET START APACHE from within a command
window.

Watch the server ErrorLog during this process. If there are any errors in the
configuration file or the Perl startup file, you'll see messages to that effect. Be
particularly alert for messages like "Invalid Command "PerlRequire'." This message
means that you haven't actually launched a mod_perl -enabled version of Apache.
Are you sure that you launched the new executable?


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Now that everything's configured properly, you can write a module using the Apache
Perl APIl. Example 2.1 gives a basic one named Apache::Hello for you to try out:

Example 2.1. A First Apache Perl Module

package Apache::Hello;
# File: Apache/Hello.pm

use strict;
use Apache::Constants gw(:common) ;

sub handler {
my Sr = shift;
$r->content type('text/html');
$r->send http header;
my $host = Sr->get remote host;
Sr->print (<<END) ;
<HTML>
<HEAD>
<TITLE>Hello There</TITLE>
</HEAD>
<BODY>
<H1>Hello S$host</H1>
Who would take this book seriously i1if the first example didn't
say "hello world"?
</BODY>
</HTML>
END
return OK;

}
1;

We'll go into the details in later chapters, but essentially, this module contains the
definition for a single subroutine named handler(). When the time comes, Apache will
invoke handler() to handle the request, passing it an Apache request object stored in
the variable < r. The request object is the primary interface between subroutine and
server.

Using methods provided by the request object, our module first sets the MIME
content type of the outgoing data to text/html/ and then sends the HTTP headers by
calling send_http_header( ) . It retrieves the DNS name of the remote host by making
another call to the request object and incorporates this value into a short HTML page
that it sends to the browser by calling the request object's print() method. At the end
of the subroutine, the module returns a value of 0k (defined in the library module
Apache::Constants ) to signal to Apache that execution was successful.

To install this module, save it as ~www/lib/perl/Apache/Hello.pm
(C:\Apachellib\per\Apache\Hello.pm on Win32 systems). This makes it accessible to
mod_perl. The next step is to associate the module with a URI by mapping it to a
portion of your document tree.is! The simplest way to do this is by adding an Apache
<Location> directive to perl.conf (or any of the other configuration files, for that


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

matter). This entry will do the trick:

[6] In the context of incoming Apache requests, we use "URI" (Uniform Resource Identifier) rather than "URL"
(Uniform Resource Locator) throughout this book. URI is the more general term, so it can refer to partial documents as
well as to fully qualified URLs. The main reason, however, is that URI is used in the Apache online documentation and
in the names of API function calls, and who are we to buck tradition?

<Location /hello/world>
SetHandler perl-script
PerlHandler Apache::Hello
</Location>

The first directive, SetHandler perl-script , tells Apache to invoke mod_per/ to handle
the phase of the HTTP transaction that produces the content of the page. The second
directive, PerlHandler Apache::Hello , tells mod_perl to load the Apache::Hello
module and execute its handler( ) subroutine. Without this directive, you would get a
"File not found" error. The URI specified in <Location> can be any arbitrary path on
your system and doesn't (and probably shouldn't) refer to a real file already in the
document tree. If there already is a physical document at that location, the Perl
module will supersede it.

You will have to restart the server again in order to have the new <Location> section
take effect. Later we will discuss how to install new modules without restarting the
server. Fire up your favorite browser and fetch the URI /hello/world. You should be

greeted by the page shown in Figure 2.1.

Figure 2.1. Apache::Hello results

If you get a server error of some sort, don't despair. Look in the server error log for
helpful messages from the Perl interpreter. They may be bare messages, or if you are
loading CGI::Carp in the Perl startup file, they may be preceded by a timestamp and -
e in the filename field, indicating that the error occurred within a Perl eval() statement.
Most of what mod_per/ does occurs within the context of an eval().

Most commonly you'll see messages about syntax errors. Fix the errors, restart the
server, and try again. If you get messages about not being able to find the
Apache::Hello module, most likely your include path is screwed up. Check that the
Perl startup script is setting the include path correctly, that Apache/Hello.pm is
installed in the correct subdirectory, and that the permissions of Hello.pm and all its


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

parent directories give the Apaché server user read access. Then restart the server
and try again.

These are the basic steps for creating and installing a module using the Apache Perl
API. Later chapters will give you a more in-depth understanding of what's going on

here and how you can take advantage of it to do wonderful stuff.



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.5 "Hello World" with the C API

In this section we will create the same "Hello World" module using the C API. This will
show you how closely related the two APIs really are. Many of the details in this
section are specific for Unix versions of Apache. For differences relating to working in
Win32 environments, be sure to read the section Section 2.5.3.

The preparation for writing C APl modules is somewhat simpler than that for the Perl
modules. You just need to create a subdirectory in the Apache source tree to hold
your site-specific source code. We recommend creating a directory named site in the
modules subdirectory. The complete path to the directory will be something like
~www/src/modules/site (C:\Apache\src\modules\site on Win32 systems).

To have this new subdirectory participate in the server build process, create a file
within it named Makefile.tmpl. For simple modules that are contained within a single
source file, Makefile.tmpl can be completely empty. The Apache configure script does
a pretty good job of creating a reasonable default makefile. Makefile.tmpl is there to
provide additional file and library dependencies that Apache doesn't know about.

The next step is to create the module itself. Example 2.2 shows the source for
mod_hello. Create a file in the site subdirectory named mod_hello.c and type in the
source code (or better yet, steal it from the source code listings in

http://www.modperl.com/book/source/).
Example 2.2. A First C-Language Module

#include "httpd.h"
#include "http config.h"
#include "http core.h"
#include "http log.h"
#include "http protocol.h"
/* file: mod hello.c */

/* here's the content handler */
static int hello handler (request rec *r) ({
const char* hostname;

r->content type = "text/html";

ap_send http header (r);

hostname = ap get remote host (r->connection,r->per dir config,
ap_rputs ("<HTML>\n" ;yT);

ap_ rputs ("<HEAD>\n" ;T ;

ap_rputs ("<TITLE>Hello There</TITLE>\n" ;X))

ap_ rputs ("</HEAD>\n" ;X))

ap rputs ("<BODY>\n" ;T 7

ap rprintf (r,"<Hl>Hello %$s</H1>\n" ,hostname) ;

ap rputs ("Who would take this book seriously 1f the first exam
ap rputs("say \"hello world\"?2\n" ,Y)

ap rputs ("</BODY>\n" , ) ;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ap_rputs ("</HTML>\n" ;X))

return OK;

}

/* Make the name of the content handler known to Apache */
static handler rec hello handlers([] =
{
{"hello-handler", hello handler},
{NULL}
}i

/* Tell Apache what phases of the transaction we handle */
module MODULE VAR EXPORT hello module =

{
STANDARD MODULE STUFF,

NULL, /* module initializer */
NULL, /* per-directory config creator */
NULL, /* dir config merger */
NULL, /* server config creator */
NULL, /* server config merger */
NULL, /* command table */
hello handlers, /* [9] content handlers */
NULL, /* [2] URI-to-filename translation */
NULL, /* [5] check/validate user id */
NULL, /* [6] check user id is valid *here* */
NULL, /* [4] check access by host address */
NULL, /* [7] MIME type checker/setter */
NULL, /* [8] fixups *x/
NULL, /* [10] logger */
NULL, /* [3] header parser */
NULL, /* process initialization */
NULL, /* process exit/cleanup */
NULL /* [1] post read request handling */

b

We'll go into the sordid details on how this module works later. Essentially, all the real
work is done in the content handler subroutine hello_handler() which accepts an
Apache request record pointer as its argument and returns an integer result code.
The subroutine first changes the content_type field of the request record to text/html,
promising the remote browser that we will be producing an HTML document. It then
calls the Apache ap_send_http_header( ) subroutine to send the HTTP header off.

The hello_handler() subroutine now fetches the DNS name of the remote host by
calling the ap_get_remote_host( ) function. It passes various parts of the request
record to the function and specifies that our preference is to retrieve the remote host's
DNS using a single DNS lookup rather than a more secure (but slower) double
lookup.7? We now build the HTML document using a series of calls to ap_rputs( ) and
ap_rprintf( ). These subroutines act just like puts( ) and printf( ), but their output is
funneled to the browser by way of the Apache server. When the document is finished,
we return a status code of 0k, indicating to Apache that execution was successful.

[7] Note that if HostNameLookups is configured to be Off, the ap_get remote_host() function will return the IP address
of the client. See Chapter 8, and Chapter 9, for more details on the ap_get remote_host() function.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The rest of this module consists of bookkeeping. First we create a handler rec
array. As discussed in more detail later, this data structure is used to associate
certain document types with the handler subroutines that process them. A document
type can be referred to by certain magic MIME types, such as application/x-httpd-cgi,
but more frequently it is just a handler name for use in Apache's AddHandler and
SetHandler directives. In this module, we associate the subroutine hello_handler()
with the handler name hello-handler. Although in theory a single module could
declare several content handlers, in practice they usually declare only one.

After this is another data structure created using the module type definition. This data
structure is essentially a list of the various phases of the Apache HTTP transaction
(described in the next chapter), with empty slots where you can place your handlers
for those phases.

In mod_hello we're only interested in handling the content generation part of the
transaction, which happens to be the seventh slot in the structure but is the ninth
phase to run. There's no rhyme or reason in order of the slots because new
transaction phases were invented over time. The bracketed numbers in the slot
comments indicate the order in which the handlers run, although as we explain in the
next chapter, not all handlers are run for all transactions. We leave all the slots NUT. T,
except for the content handlers field, in which we place the address of the previously
declared handler rec array.

Now the new module needs to be configured with Apache. This can be accomplished
with little effort thanks to Apache's configure script. The — activate-module argument
is used to add third-party modules to the server, that is, modules not included with the
Apache distribution. Its value is the path to the source or object file of the module to
be included, in this case src/modules/site/mod_hello.c. Once activated, the — enable-
module argument works just as it does with standard modules, in this case, linking
mod_hello with the new server. From the top of the Apache distribution directory
(which contains the ABOUT_APACHE file) type this command:

./configure --activate-module=src/modules/site/mod hello.c \
-—-enable-module=hello

Version 1.3.3
(modules/site/mod hello.c)

Configuring for Apache,
+ activated hello module
Creating Makefile
Creating Configuration.apaci in src

Creating Makefile in src

+ configured for Linux platform

+ setting C compiler to gcc

+ adding selected modules

+ checking for system header files

+ doing sanity check on compiler and options

Creating
Creating
Creating
Creating
Creating
Creating

Makefile
Makefile
Makefile
Makefile
Makefile
Makefile

in
in
in
in
in
in

src/support

src/main

src/ap

src/regex
src/os/unix
src/modules/standard


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You can now run make and a new httpd will be built. If you watch the build process
carefully, you'll see mod_hello.c first compiled into an object file named mod_hello.o,
and then added to a library archive named libsite.a. libsite.a, in turn, is statically linked
into the httpd executable during the final link phase. If anything goes wrong during
compilation and linking, you'll need to go back to see what you might have done
wrong.

To test the module, you'll need to associate it with a URI. The simplest way to do this
is to use SetHandler to map it to a part of the document tree. Add a <Location>
directive to perl.conf (or one of the other configuration files) that looks like this:

<Location /hey/there>
SetHandler hello-handler
</Location>

Stop the Apache server if it is already running, and launch the new httpd. Better yet,
you can keep the existing server running and just launch the new httpd with the -fflag
to specify an alternate httpd.conf file. Be sure to change the Port directive in the
alternate httpd.conf so that it listens on an unused port. Now fire up a browser and
fetch the URI http.//your.site/hey/there. You should get the same page that we saw in

Figure 2.1.

When you want to make changes to the mod_hello.c source code, just edit the file
and run make again. You only need to run configure when adding a new module or
completely removing an old one. You won't break anything if you run configure when
you don't need to, but you will cause the entire server to be recompiled from scratch,
which might take a while.

2.5.1 Building a Dynamically Loadable Module

It can be a pain to relink and reinstall the server executable every time you make a
change to a custom module. As of Version 1.3, Apache offers a way to build
dynamically loadable modules. You build the module as a shared object, place it
somewhere handy, add a LoadModule directive to httpd.conf, and send the server a
restart signal. After the module is loaded, it's indistinguishable from any other module.

Dynamic loading is available on most systems, including Linux, FreeBSD, Solaris,
BSDI, AlX, and IRIX systems. To configure your server for dynamic loading,
recompile it with the mod_so module installed. mod_so is a standard Apache module,
found in src/modules/standard, but it is not compiled in by default. From within the
Apache source tree, rerun the configure script, adding mod_so to the list of modules
you wish to enable:

./configure --enable-module=so --enable-module=other module ..

Now you must run a full make to rebuild the httpd. This is only for the purpose of
installing the statically linked mod_so. You won't need to rebuild httpd to add new
dynamically loadable modules. You can install and launch the new httpd now if you
wish, or wait until the dynamically loadable hello_module is ready to go.

You now have an httpd with mod_so installed, but you still need to build


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

mod_hello.so. This can be done in one of two ways. One way is to use the configure
script to build a new dynamically loadable module. From the top of the Apache
distribution (where the ABOUT_APACHE file is located) run the configure command
again, replacing the --enable-module option with --enable-shared.

./configure --activate-module=src/modules/site/mod hello.c \
--enable-shared=hello

When the --enable-shared argument is present, this implies that mod_so should be
built with the server, so there's no need to use --enable-module=so.

Now you'll need to run make to create the file src/modules/site/mod_hello.so. When
this is done, just copy the shared obiject file to Apache's libexec directory:

% cp src/modules/site/mod hello.so ~www/libexec/

Open httpd.conf and add the following line:

LoadModule hello module libexec/modihello.so

The LoadModule directive, available only when so_module is installed, takes two
arguments. The first is the name of the module to load at runtime, and the second is
the path to the shared obiject file to load. You can use a path relative to the server
root, as shown here, or an absolute file path.

A second, and possibly easier way to build a module as a DSO is to use the apxs
program, the "APache eXtenSion" tool. With a single command, our mod_hello
module can be compiled, installed, and configured. The -c option specifies which
module to compile. The -i option tells apxs to install the module and the -a option
adds the LoadModule directive to your httpd.conf file.

% ~www/bin/apxs -c -i -a mod hello.c
gcc -DLINUX=2 -DHAS BOOL -DUSE HSREGEX -I/usr/local/apache/inc
-¢c mod hello.c -o mod hello.so mod hello.o
cp mod hello.so /usr/local/apache/libexec/mod hello.so
chmod 644 /usr/local/apache/libexec/mod hello.so
[activating module 'hello' in /usr/local/apache/conf/httpd.con

The main advantage of apxs is that you do not need to store your C language module
source files underneath the Apache source tree but can keep them anywhere you
wish. apxs has numerous other options, the handiest of which are the -g and -n
options, which together create a dummy "template" directory that you can use as a
skeleton on which to build your own modules. The full details can be found in the
apxs manual page, located in the man subdirectory under the server root.

Regardless of whether you built mod_hello using configure or apxs, you should now
start or restart httpd and watch the error log for messages. Provided that LogLevel is
set to debug (see Chapter 4), you should see a message to this effect:

[Tue Mar 24 07:49:56 1998] [debug] mod so.c(234): loaded module

You should now be able to fetch http.//your.site/hey/there, and see the familiar page
produced by this example script.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2.5.2 Building Large C Modules

If your C module consists of more than a single source file, or if it requires linking with

shared libraries, see Appendix C.

2.5.3 Building C Modules in the Windows Environment

As of this writing, Apache does not provide any special support tools for building third-
party modules in the Win32 environment. We'll show you how to build an Apache
module DLL (Dynamic Link Library) using Microsoft Visual C++. The naming
convention for module source files is the same in Win32 systems as it is in Unix, but
the DLL library names generally replace the mod_ prefix with ApacheModule. In our
example, we will build an ApacheModuleHello.dll from our mod_hello.c source file.
The source file doesn't have to be changed in the slightest to compile under Win32.

To ensure that this procedure works, you'll have to compile everything on a Windows
NT system (Windows 95/98 doesn't work, although you can run the resulting binaries
on 95/98). You may also have to build Apache and Perl from source. The binary
distributions are not guaranteed to interoperate correctly with modules you build
yourself.

Here is the blow-by-blow procedure:
1. Create a new project.

Select the File € New menu to bring up the Projects window. Select "Win32
Dynamic-Link Library" and enter "ApacheModuleHello" as the project name and
C:\build\ApacheModuleHello (or the build location of your choice) as its location.

See Figure 2.2.

Figure 2.2. Select "Win32 Dynamic-Link Library" to create a new Apache module project.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2. Add the module source files.

From the Project menu, select Add To Project &€ Files. Add mod_hello.c to the
list (Figure 2.3).

Figure 2.3. Add the module source files to the Visual C++ project.

3. Add Apache Runtime Library.

Repeat the previous step, adding the Apache core library,
C:\Apache\ApacheCore.lib (Figure 2.4).

Figure 2.4. Add the Apache runtime library to the build.

4. Add the include directory for Apache header files.
From the Tools & Options menu, select Directories. In the dialog box, choose
Include files and add the path to the Apache include directory. This is located
underneath the Apache source tree, in the directory srclinclude (Figure 2.5).

Figure 2.5. The Apache include path must be added to the project directories.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

5. Change the Active Configuration setting from Debug to Release.

From the Build é Set Active Configuration menu, select Win32 Release. This will
enable optimizations and turn off debugging code (Figure 2.6).

Figure 2.6. Set the Active Configuration.

6. Compile.

From the Build menu, select Build ApacheModuleHello.dll. The compiler will fire
up and, if all goes well, create the DLL library. If you get any error messages
during this process, go back and fix the problems.

7. Install the DLL.

Copy ApacheModuleHello/Release/ApacheModuleHello.dll to the
C:\Apache\modules directory.

8. Configure httpd.
Add the following lines to httpd.conf :

LoadModule hello module modules/ApacheModuleHello.dll
<Location /hi/there>

SetHandler hello-handler
</Location>

Fire up your favorite browser and request the URI http://your.site/hi/there. With luck,
ApacheModuleHello will run and you'll see the page from Figure 2.1.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.6 Instant Modules with Apache::Registry

By now, although it may not be obvious, you've seen two of the problems with using
the Apache APIs. The first problem is that you can't make changes to modules
casually. When using the Perl API, you have to restart the server in order to have
your changes take effect. With the C API, you have to rebuild the module library or
completely relink the server executable. Depending on the context, this can be a
minor annoyance (when you're developing a module on a test server that gets light
usage) to a bit of a headache (when you're trying to apply bug fixes to an installed
module on a heavily used production server).

The second problem is that Apache APl modules don't look anything like CGl scripts.
If you've got a lot of CGl scripts that you want to run faster, porting them to the
Apache API can be a major undertaking.

Apache::Registry, an Apache Perl module that is part of the mod_per! distribution,
solves both problems with one stroke. When it runs, it creates a pseudo-CGl
environment that so exactly mimics the real thing that Perl CGI scripts can run under
it unmodified. It also maintains a cache of the scripts under its control. When you
make a change to a script, Apache::Registry notices that the script's modification date
has been updated and recompiles the script, making the changes take effect
immediately without a server restart. Apache::Registry provides a clean upgrade path
for existing CGl scripts. Running CGI scripts under Apache::Registry gives them an
immediate satisfying performance boost without having to make any source code
changes. Later you can modify the script at your own pace to take advantage of the
nifty features offered only by the Apache API.

Be aware that Apache::Registry is intended only for Perl CGl scripts. CGl scripts
written in other languages cannot benefit from the speedup of having a Perl
interpreter embedded in the server.

To install Apache::Registry you'll need to create a directory to hold the scripts that it
manages. We recommend a perl directory within the server root, such as ~www/perl.
Now enter the following directives into perl.conf:

Alias /perl/ /usr/local/apache/perl/
<Location /perl>

SetHandler perl-script

PerlHandler Apache: :Registry

PerlSendHeader On

Options +ExecCGI
</Location>

The Alias directive makes URIs beginning with /perl part of the virtual document tree
and associates it with the physical path /usr/local/apache/perl. Change this as
appropriate for your site. The meaning of the various directives inside <Location> are

explained fully in Chapter 4.

Restart the server, and give Apache::Registry a try by creating the script shown in
Example 2.3. Name it hello.pl, make it executable, and move it into ~www/perl/.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

With your browser, fetch http://your.site/perl/hello.pl. You should see the familiar page
that we first saw in Figure 2.1.

Example 2.3. "Hello World" Using Apache::Registry

#!/usr/local/bin/perl
# file: hello.pl

print "Content-Type: text/html\n\n";

print <<END;

<HTML>

<HEAD>

<TITLE>Hello There</TITLE>
</HEAD>

<BODY>

<H1>Hello $ENV{REMOTE7HOST}</H1>
Who would take this book seriously if the first example didn't
say "hello world"?

</BODY>

</HTML>

END

As you can see, hello.pl looks identical to a normal CGl script, even down to the use
of sEnv {rEMOTE HOST} to fetch the CGI environment variable that contains the
name of the remote host. If you make changes to this script, they will take effect
immediately without requiring a server restart. Plus, if you press the browser's reload
button a few times in quick succession, you may notice that it reloads much faster
than a normal Perl CGlI script would. That's because the script's compiled code
remains in memory between fetches. There's none of the usual overhead for loading
and running the Perl interpreter.

If you are used to using the CGl.pm module, you'll be heartened to learn that under
Apache::Registry you can create and process fill-out forms in exactly the way you
would in standard CGl scripts. Example 2.4 shows the code for hello_there.pl,
another simple-minded example which creates and processes a short fill-out form.

Example 2.4. Processing a Fill-Out Form with Apache::Registry and CGl.pm

#!/usr/local/bin/perl

use CGI gw (:standard);
use strict;

my S$name = param('name') || 'Anonymous';

print header (),

start html (-title=>'Yo!',-bgcolor=>'white'),
hl ("Hello S$Sname"),
p (

"To change your name, enter it into the text field below
em("change name.")


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

)

start form(),

"Name: ", textfield(-name=>'name',-value=>'Anonymous'),
submit (-value=>"'Change Name'),

end form(),

hr (),
end html () ;

The script begins by importing CGl.pm's standard group of function definitions.s! It
then fetches a CGI parameter named name and stores it in a local variable, calling
CGl.pm's param() function to do the dirty work of parsing the CGI query string. The
script now calls CGl::header() to produce the HTTP header, and builds up an HTML
document in one long print statement that makes calls to several other CGI functions.
Among these calls are ones to produce the fill-out form, a text field, and a submit
button.

[8] Although it's handy to import function definitions in this way, there's a significant memory overhead for every
symbol you import. If you have a lot of scripts that import from CGIl.pm, your httpd processes will eventually become
too large. You can avoid this by precompiling and importing CGl.pm's function calls from within the Perl startup script
by using the command use CGT g ( mpile :all). Alternatively, you can use CGl.pm's object-oriented calling
syntax, which does not carry the symbol importation overhead.

Figure 2.7 shows a sample page produced by this script.

Figure 2.7. The Apache::Registry script generates a fill-out form to accept and process user
input.

You'll find that most other CGl scripts will work just fine under Apache::Registry.
Those that don't are ones that assume that the process will go away after their code
exits and don't bother to do any cleanup as a result. For example, scripts that use
global variables without initializing them first will be unpleasantly surprised when the
global contains leftover data from a previous invocation of the script's code. Scripts
that use the process ID to create unique filenames are also in for a shock when
they're run again with the same PID.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The best way to avoid such problems is by writing clean code. Avoid using global
variables and always use use strict to check for inadvertent typos. While use strict
may be painful at first, it will save you more time in the long run, along with giving you
a warm fuzzy feeling that you are practicing good code hygiene. Be sure to clean up
data structures such as open filehandles and database handles before your code
exits. The Apache::register_cleanup( ) method is a handy way to arrange to have a
cleanup subroutine called before control returns to the server.

In the short term, another approach is to run legacy scripts with Apache::PerlRun .
Unlike Apache::Registry, this module simply runs the script once and forgets about it,
just like a conventional CGl script. Apache::PerlRun avoids the overhead of launching
the Perl interpreter for each request but still suffers the compile-time hit from loading
each script. Therefore, it realizes some but not all of the performance increase of
Apache::Registry.

More information on Apache::Registry and Apache::PerlRun scripts can be found in
Chapter 3 and Chapter 4. We discuss register_cleanup( ) and other tricks in

Chapter 7.
[Cravous Poaxr v



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

2.7 Troubleshooting Modules

Not every module will work the way you think it will the first time you try it. Because
the modules written with the Apache API are by definition embedded in the server,
debugging them is not as straightforward as debugging a standalone CGl script. In
this section, we cover some general module debugging techniques. You'll find more
tips later when we discuss specific issues.

2.7.1 C-Level Debugging

If you are using the C API, you can use standard debuggers to step through your
module, examine and change data structures, set watch points, and so forth. Be sure
to use a version of httpd that has been compiled with debugging symbols and to turn
compiler optimizations off. On Unix systems, you can do this by setting the cr1.AGs
environment variable before running the configure script:

% CFLAGS=-g ./configure

Launch your favorite debugger, such as gdb, and run httpd within it. Be sure to launch
httpd with the -X flag. Ordinarily, Unix versions of httpd will prefork many independent
processes. This forking will confuse the debugger and will probably confuse you too. -
X prevents Apache from preforking and keeps the server in the foreground as well.
You will also probably want to specify an alternate configuration file with the -f switch
so that you can use a high numbered port instead of the default port 80. Be sure to
specify different ErrorLog, TransferLog, PidFile, and ScoreBoardFile directives in the
alternate configuration file to avoid conflicts with the live server.

> gdb httpd
(gdb) run -X -f ~www/conf/httpd.conf

Fetch a few pages from the server to make sure that it is running correctly under the
debugger. If there is a problem that triggers a core dump, the (gdb) prompt will
return and tell you which function caused the crash. Now that you have an idea of
where the problem is coming from, a breakpoint can be set to step through and see
exactly what is wrong. If we were debugging mod_hello within the gdb debugger, the
command to use would be this:

% gdb httpd

(gdb) b hello_handler

Breakpoint 1 at 0x80%9cefb: file mod hello.c, line 82.
(gdb) run -X -f ~www/conf/httpd.conf

Now use a browser to fetch a page that will trigger the execution of the breakpointed
handler. Control will return to the debugger, allowing you to step through code looking
for the problem.

It is also possible to debug httpd without running it in -X mode. Simply start the server
as you normally would, then use the ps command to see the process IDs of the
servers. Select a PID and start gdb with the process ID as an additional argument.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The debugger will attach to the process and list all the files it is reading symbols from.
It will eventually stop, providing you with a prompt and a chance to set your
breakpoints. Be sure to type in the ¢ continue command so the child will be able to
serve requests again. This approach makes it easy to set breakpoints in dynamically
loaded modules, which are not pulled in until the parent server has started. There is a
catch though: you might have to request the page you wish to debug a number of
times before Apache hands off a request to the process you are attached to. To cut
down on the number of servers you must cycle through, simply tune the server's
configuration to start only a small number of servers.!

[9] There are several directives related to managing the number of servers on the farm; these include StartServers,
MaxSpareServers, MinSpareServers, and MaxClients.

> gdb httpd process id number

Reading symbols from /usr/local/apache/lib/mod hello.so...done.
0x400d7a81 in flock ()

(gdb) b hello_handler

Breakpoint 1 at 0x40176c¢c77: file mod hello.c, line 82.

(gdb) ¢

Continuing.

2.7.2 Perl-Level Debugging

Ironically, debugging misbehaving Apache Perl modules is not as straightforward as
debugging C modules. This is because the current version of the Perl source-level
debugger can't work when the Perl interpreter is embedded in another program. As of
this writing, there is a pre-alpha version of a mod_perl -compatible Perl debugger in
the works; it could very well be available from the CPAN by the time you read this.

If you are using the Apache::Registry CGIl emulation layer, then one way to debug
your module is to run and debug it as a standalone CGl script. Further, if you use the
CGl.pm module in your scripts, you can take advantage of its ability to run CGl scripts
from the command line and to seed the script with test parameters. You can then walk
through the script with the Perl debugger (perl -d your script.pl ), examine
variables, and execute snippets of Perl code to home in on what your program is
doing wrong.

2.7.2.1 Using Apache::FakeRequest for debugging

If you are using the full mod_per! API, or if the bug appears when running under
Apache but not when running as a standalone script, then you may be able to track
down the problem using Apache::FakeRequest , a tiny module that comes with the
mod_perl distribution. Apache::FakeRequest sets up an empty Apache request object
that your module can use in lieu of a real request object. Apache::FakeRequest
methods don't do very much: all they do is get and set internal variables of the same
name as the method. However, you can customize the fake request's methods to
return test data to your script.

Example 2.5 shows how Apache::FakeRequest can be used to debug the
Apache::Hello module. This example shows the code for a small wrapper script that
invokes Apache::Hello's content handler, much as Apache invokes


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Apache::Hello::handler() when a page request comes in. We begin by loading both
Apache::FakeRequest and Apache::Hello (after adjusting the library path so that Perl
can find the latter module).

Next, we create a new fake request object. Apache::FakeRequest:.new() can be
called with a series of name=value pairs. Each name corresponds to a method that a
real Apache request object would respond to. When your module calls the method
without any arguments, Apache::FakeRequest just returns the value that you
specified. Your module can also call the phony method with an argument, in which
case its value will be replaced. Methods that aren't mentioned in new() will return
undef. In our case, we only care about feeding get_remote_host to Apache::Hello, so
we set that method to return foobar.com.

Now it's simply a matter of calling our module's handler with the fake request object. If
you're using the Perl debugger, you can step into the module's code and watch what
it does.

Should you want to customize Apache::FakeRequest's behavior, you can always
subclass it and override one or more of its methods.

Example 2.5. This Apache::FakeRequest Wrapper Can Be Used to Debug Apache::Hello

#!/usr/local/bin/perl

use lib '/usr/local/apache/lib/perl';
use Apache: :FakeRequest ()
use Apache::Hello ();

my S$request = Apache::FakeRequest->new('get remote host'=>'fooba
Apache::Hello: :handler ($Srequest) ;

2.7.2.2 Using Apache::Debug

Another useful debugging tool for Apache Perl modules is Apache::Debug . This
debugging facility is only available when you use Apache::Registry. It's not of use to
modules written to use the Apache Perl API directly.

Apache::Debug defines a single subroutine named dump( ) . When dump( ) is called it
sends copious debugging information to the remote browser. Hopefully some of the
information will help you figure out what's going on.

It's very simple to use Apache::Debug. Just add the command use

Apache: :Debug () to the top of your module. Then, when you encounter an
unexpected error and want to print out current status information, add a line like the
following:

Apache::Debug: :dump (Sr, SERVER ERROR, "Can't find configuration

The three arguments to dump() are the request object, an error code to return to
Apache (usually SERVER_ERROR), and an error message to print at the top of the
debugging output.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Apache::Debug also allows you to activate some debugging messages generated by
Apache::Registry. This can sometimes help you track down obscure problems that
relate to the way that mod_perl/ loads and executes your code. To increase the
debugging level, add use Apache: :Debug ("level' => slevel) to the top of your
module, where ¢ 1cvel is a bit mask generated by ORing together some combination
of the following values:

1

Makes a note in the error log whenever your module is recompiled
2

Calls Apache::Debug::dump() whenever your module dies or an eval fails
4

Turns on verbose tracing

2.7.2.3 Environment variables for debugging

A pair of environment variables control various aspects of the embedded Perl
interpreter's execution and can be used to help debug particularly obstinate problems.

MOD_PERL_TRACE

When mod_perl is built with the PERL_TRACE option, a special environment
variable, MOD PERL TRACE, can be used to enable debugging information.
This variable should be set before the server is started and should contain one
or more of the letters described below for tracing the various mod_perl features.
The trace information will be written to the server ErrorLog. For example:

5 setenv MOD PERL TRACE dh
~www/bin/httpd -X

The first line sets MOD PERL TRACE to record trace information during mod_perl
directive handling (¢) and while executing handlers (). The second line launches
Apache in single process mode.

Here's the complete list of trace options:

¢ |Enables tracing during configuration directive handling

d  |Enables tracing during mod_perl directive processing during configuration read
s |Enables tracing during processing of <Perl> sections

h |Enables tracing of Perl handlers during the processing of incoming requests

) Enables tracing of global variable handling, such as Perl interpreter construction and execution of
- |END blocks

al1|Enables all of the options listed above

PERL_DESTRUCT_LEVEL

With Apache Versions 1.3 and higher, mod_per! will call the perl_destruct( ) Perl


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

API function during the child exit phase. This will cause proper execution of
END blocks found during server startup, along with invoking the DESTROY
method on global objects that are still alive. It is possible that this operation may
take a long time to finish, causing problems during a restart. The symptom of
this is a series of messages that appear in the server log warning that certain
child processes did not exit as expected.

If you are experiencing this problem and your code does not contain any END
blocks or DESTROY methods that need to be run during child server shutdown,
you can avoid this problem by setting the PERL DESTRUCT LEVEL
environment variable to - 1:

PerlSetEnv PERL DESTRUCT LEVEL -1
2.7.2.4 Common Apache Perl module problems

Certain types of problems are common in Apache Perl modules. One common
pattern is that the code will seem to fail at random. The first time you fetch a page
generated by an Apache Perl module, it will work fine. The second time you fetch it, it
won't. If you reload repeatedly, it will sometimes work and sometimes fail, seemingly
haphazardly. This pattern is usually due to Apache's preforking behavior. Multiple
instances of your module are running, each one in a separate process. In one or
more of the processes, the module has crashed because some unexpected sequence
of inputs has led it to corrupt a data structure (or something similar). In other
processes, the module is still functioning (so far). You'll never be able to figure out
what's going on under these circumstances. Kill httpd and relaunch it with the -X flag.
With only one process running, you can more easily figure out what inputs cause the
module to misbehave.

Many Apache Perl module bugs are due to a wanton use of global variables. The very
first time the module is called, globals are initialized to their undefined states in the
way that conventional Perl scripts expect. However, in subsequent calls the globals
will contain information left over from previous invocations of the script. This will
cause scripts that depend on globals being initially undefined to fail. Suspect this
problem if your pages exhibit a pattern of progressive decay in which they seem to
work at first and then fail with increasing frequency.

Also be aware that certain actions that are second nature to Perl programmers, such
as calling die( ) or exit( ) to abort a script prematurely, may not have quite the result
you expect in the context of an Apache Perl module. Under some circumstances a
call to exit( ) within a module has been known to make the server misbehave in
strange ways. Use Apache::exit( ) instead. die( ) should be reserved for truly
unrecoverable errors. die( ) generally causes the browser to display an "Internal
Error" message. It's better to replace die(') with a procedure that displays a helpful
error message in the browser window and returns control to Apache. Several
techniques for doing this appear in the examples in subsequent chapters.

The next chapter takes you on a tour through the innards of the Apache module API.
You'll learn everything you ever wanted to know about request records, connection
records, and transaction handlers.

I I P e



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e
Chapter 3. The Apache Module Architecture and API

In this chapter we lay out the design of the Apache module architecture and its
application programming interface. We describe the phases in which Apache
processes each request, list the data types that are available for your use, and go
over the directives that control how extension modules can intercede in transaction

processing.

This is the broad overview of the API. For a full blow-by-blow description of each

function and data structure available to you, see Chapter 9, Chapter 10 and

Chapter 11.
[Crevnous Poaxr e



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.1 How Apache Works

Much of the Apache API is driven by the simple fact that Apache is a hypertext
transfer protocol (HTTP) server that runs in the background as a daemon. Because it
is a daemon, it must do all the things that background applications do, namely, read
its configuration files, go into the background, shut down when told to, and restart in
the case of a configuration change. Because it is an HTTP server, it must be able to
listen for incoming TCP/IP connections from web browsers, recognize requests for
URIs, parse the URIs and translate them into the names of files or scripts, and return
some response to the waiting browser (Figure 3.1). Extension modules play an
active role in all these aspects of the Apache server's life.

Figure 3.1. The HTTP transaction consists of a URI request from the browser to the server,
followed by a document response from the server to the browser.

Like most other servers, Apache multiplexes its operations so that it can start
processing a new request before it has finished working on the previous one. On Unix
systems, Apache uses a multiprocess model in which it launches a flock of servers: a
single parent server is responsible for supervision and one or more children are
actually responsible for serving incoming requests.tx The Apache server takes care of
the basic process management, but some extension modules need to maintain
process-specific data for the lifetime of a process as well. They can do so cleanly and
simply via hooks that are called whenever a child is launched or terminated. (The
Win32 version of Apache uses multithreading rather than a multiprocess model, but
as of this writing modules are not given a chance to take action when a new thread is
created or destroyed.)

[1] As of this writing, plans are underway for Apache Version 2.0 which will include multithreading support on Unix
platforms.

However, what extension modules primarily do is to intercede in the HTTP protocol in
order to customize how Apache processes and responds to incoming browser
requests. For this reason, we turn now to a quick look at HTTP itself.

3.1.1 The HTTP Protocol

The HTTP protocol was designed to be so simple that anyone with basic


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

programming skills could write an HTTP client or server. In fact, hundreds of people
have tried their hands at this, in languages ranging from C to Perl to Lisp. In the basic
protocol a browser that wants to fetch a particular document from a server connects
to the server via a TCP connection on the port indicated by the URI, usually port 80.
The browser then sends the server a series of request lines terminated by a carriage-
return/linefeed pair.t22 At the end of the request, there is an extra blank line to tell the
server that the request is finished. The simplest request looks something like this:

[2] For various historical and political reasons, different operating systems have differing ideas of what character
constitutes the end of a line in text files. The HTTP protocol defines the end of a line to be the character pair
represented by ASCII characters 0x0D (carriage return) and 0x0A (newline). In most ASCII environments, these
characters are represented by the more familiar "\r" and "\n" escape sequences.

GET /very/important/document.html HTTP/1.1
Host: www.modperl.com

The first line of the request contains three components. The first component is the
request method, normally GET, POST, HEAD, PUT, or DELETE. GET is a request to
fetch the contents of a document and is the most common. POST is a request which
includes a body of data after the headers, normally handled by a dynamic module or
an executable of some sort to process the data. It's commonly used to send CGl
scripts the contents of fill-out forms. HEAD tells the server to return information about
the document but not the document itself. PUT and DELETE are infrequently used:
PUT is used to send a new document to the server, creating a new document at the
given URI or replacing what was previously there, and DELETE causes the indicated
document to be removed. For obvious reasons, PUT and DELETE methods are
disabled by default on most servers.

The second component of the request is the URI of the document to be retrieved. It
consists of a Unix-style path delimited by slashes. The server often translates the
path into an actual file located somewhere on the server's filesystem, but it doesn't
have to. In this book, we'll show examples of treating the path as a database query,
as a placeholder in a virtual document tree, and other interesting applications.

The third component in the request line is the protocol in use, which in this case is
Version 1.1 of the HTTP protocol. HTTP/1.1 is a big improvement over the earlier
HTTP/1.0 version because of its support for virtual hosts and its fine-grained control
of document caching. However, at the time this book was written most browsers
actually implemented a version of HTTP/1.0 with some HTTP/1.1 features grafted on.

Following the first line are a series of HTTP header fields that the browser can send
to the server in order to fine-tune the request. Each field consists of a field name, a
colon, and then the value of the field, much like an email header. In the HTTP/1.1
protocol, there is only one mandatory header field, a Host field indicating which host
the request is directed to. The value of this field allows a single server to implement
multiple virtual hosts, each with a separate home page and document tree.

Other request header fields are optional. Here's a request sent by a recent version of
Netscape Navigator:

GET /news.html HTTP/1.1

Connection: Keep-Alive

User—-Agent: Mozilla/4.05 [en] (X11; I; Linux 2.0.3
Host: www.modperl.com

w
H

N
o
N


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Referer: http://www.modperl.com/index.html

If-Modified-Since: Tue, 24 Feb 1998 11:19:03 GMT

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, ima
Accept-Language: en

Accept-Charset: 1s0-8859-1,*,utf-8

This example shows almost all of the HTTP header fields that you'll ever need to
know. The Connection field is a suggestion to the server that it should keep the
TCP/IP connection open after finishing this request. This is an optimization that
improves performance on pages that contain multiple inline images. The User-Agent
field gives the make and model of the browser. It indicates Netscape Navigator
Version 4.05 ("Mozilla" is the code name for Netscape's browsers) running on a Linux
system. Host is the name of the host given in the URI and is used by the virtual host
system to select the right document tree and configuration file. Referer (yes, the
protocol misspells it) gives the URI of the document that referred the browser to the
current document. It's either an HTML file that links to the current page or, if the
current document is an image file, the document that contains the image. In this case,
the referrer field indicates that the user was viewing file index.html on the
www.modperl.com site before selecting a link to the current document, news.html.

If-Modified-Since is another important performance optimization. Many browsers
cache retrieved documents locally so that they don't have to go across the network
whenever the user revisits a page. However, documents change and a cached
document might be out of date. For this reason, some browsers implement a
conditional fetch using If-Modified-Since. This field indicates the date at which the
document was cached. The server is supposed to compare the date to the
document's current modification time and only return it to the browser if the document
has changed.t3!

[31we actually cheated a bit in the preceding example. The version of Netscape that we used for the example
generates a version of the If-Modified-Since header that is not compliant with the current HTTP specification (among
other things, it uses a two-digit year that isn't Y2K-compliant). We edited the field to show the correct HTTP format.

Other fields in a typical request are Accept , Accept-Language, and Accept-Charset.
Accept is a list of Multipurpose Internet Mime Extension (MIME) types that the
browser will accept. In theory, the information in this field is supposed to be used for
content negotiation. The browser tells the server what MIME types it can handle, and
the server returns the document in the format that the browser most prefers. In
practice, this field has atrophied. In the example above, Netscape sends an anemic
list of the image types it can display without the help of plug-ins, followed by a catchall
wildcard type of * / *.

Accept-Language indicates the language the user prefers, in this case "en" for
English. When a document is available in multiple languages, Apache can use the
information in this field to return the document in the appropriate language. Lastly,
Accept-Charset indicates which character sets the browser can display. The iso-
8859-1 character set, often known as "Latin-1," contains the characters used in
English and most Western European countries. "utf-8" stands for 8-bit Unicode, an
expanded alphabet that accommodates most Western and Asian character sets. In
this example, there's also a wildcard that tells the server to send the document even if
it isn't written in a character set that the browser knows about specifically.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If the request had been a POST or PUT rather than a GET, there would be one or two
additional fields at the bottom of the header. The Content-Length field, if present,
indicates that the browser will be sending some document data following the header.
The value of this field indicates how many bytes of data to expect. The Content-Type
field, if present, gives the MIME type of the data. The standard MIME type for the
contents of fill-out form fields is application/x-www-form-urlencoded.

The browser doesn't have to send any of these fields. Just the request line and the
Host field are sufficient, as you can see for yourself using the telnet application:

% telnet www.modperl.com 80
Trying 207.198.250.44...
Connected to modperl.com.
Escape character is '7~]'.
GET /news.html HTTP/1.1
Host: www.modperl.com

HTTP/1.1 200 OK

Date: Tue, 24 Feb 1998 13:16:02 GMT

Server: Apache/1.3.0 (Unix) mod perl/1.13
Last-Modified: Wed, 11 Feb 1998 21:05:25 GMT
ETag: "65e5a-37c¢c-35a7d395"

Accept-Ranges: bytes

Content-Length: 892

Connection: close

Content-Type: text/html

<HTML>

<HEAD>

<TITLE>What's New</TITLE>
</HEAD>

<BODY>

Connection closed by foreign host.

The Apache server will handle the request in the manner described later and, if all
goes well, return the desired document to the client. The HTTP response is similar to
the request. It contains a status line at the top, followed by some optional HTTP
header fields, followed by the document itself. The header is separated from the
document by a blank line.

The top line of the response starts with the HTTP version number, which in this case
is 1.1. This is followed by a numeric status code, and a human-readable status
message. As the "OK" message indicates, a response code of 200 means that the
request was processed successfully and that the document follows. Other status
codes indicate a problem on the user's end, such as the need to authenticate;
problems on the server's end, such as a CGl script that has crashed; or a condition
that is not an error, such as a notice that the original document has moved to a new
location. The list of common status codes can be found later in this chapter.

After the response status line come optional HTTP header fields. Date indicates the
current time and date and Server gives the model and version number of the server.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Following this is information about the document itself. Last-Modified and Content-
Length give the document's modification date and total length for use in client-side
caching. Content-Type gives the document's MIME type, text/html in this case.

ETag, or "entity tag" is an HTTP/1.1-specific field that makes document caching
more accurate. It identifies the document version uniquely and changes when the
document changes. Apache implements this behavior using a combination of the file's
last modified time, length, and inode number. Accept-Ranges is another HTTP/1.1
extension. It tells the browser that it is all right to request portions of this document.
This could be used to retrieve the remainder of a document if the user hit the stop
button partway through a long download and then tried to reload the page.

The Connection field is set to close as a polite way of warning the browser that the
TCP connection is about to be shut down. It's an optional field provided for HTTP/1.1
compliance.

There are also a number of HTTP fields that are commonly used for user
authentication and authorization. We'll introduce them in Chapter 6.

Following the header comes the document itself, partially shown in the example. The
document's length must match the length given in Content-Length, and its format
must match the MIME type given in the Content-Type field.

When you write your own Apache modules, you don't have to worry about all these
fields unless you need to customize them. Apache will fill in the fields with reasonable
values. Generally you will only need to adjust Content-Type to suit the type of
document your module creates.

[ erevous Lot v



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.2 The Apache Life Cycle

Apache's life cycle is straightforward (Figure 3.2). It starts up, initializes, forks off
several copies of itself (on Unix systems only), and then enters a loop in which it
processes incoming requests. When it is done, Apache exits the loop and shuts itself
down. Most of the interesting stuff happens within the request loop, but both Perl and
C-language modules can intervene at other stages as well. They do so by registering
short code routines called "handlers" that Apache calls at the appropriate moment.t4!
A phase may have several handlers registered for it, a single handler, or none at all. If
multiple modules have registered their interest in handling the same phase, Apache
will call them in the reverse order in which they registered. This in turn will depend on
the order in which the modules were loaded, either at compile time or at runtime when
Apache processes its LoadModule directives. If no module handlers are registered for
a phase, it will be handled by a default routine in the Apache core.

4] The Apache documentation sometimes refers to handlers as "hooks" or "callbacks," but don't worry, they're all the
same thing.

Figure 3.2. The Apache server life cycle

3.2.1 Server Startup and Configuration

When the server is started, Apache initializes globals and other internal resources
and parses out its command-line arguments. It then locates and parses its various
configuration files.

The configuration files may contain directives that are implemented by external


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

modules. Apache parses each directive according to a prototype found in the
command table that is part of each module and passes the parsed information to the
module's configuration-handling routines. Apache processes the configuration
directives on a first-come, first-serve basis, so in certain cases, the order in which
directives appear is important. For example, before Apache can process a directive
that is implemented by a module configured as a dynamically shared object, that
module must be pulled in with the LoadModule directive.

The process of module configuration is actually somewhat complex because Apache
recognizes multiple levels of configuration directives, including global directives,
directives that are specific for a particular virtual host, and directives that apply only to
a particular directory or partial URI. We defer the full discussion of this topic to

Chapter 9, Chapter 10, and Chapter 11.

Once Apache has processed the configuration files, it knows the location of the
various log files. It opens each configured log file, such as ErrorLog and TransferlLog .
Apache then writes its PID to the file indicated by the PidFile directive.

The file indicated by the ErrorLog directive is slightly special. After Apache opens the
ErrorLog file, it closes the existing =+ der r file descriptor and reopens it on the
ErrorLog descriptor. This means that the standard error stream for Apache and all its
loaded modules will be redirected to the error log file. Modules that need to launch
subprocesses, such as the standard mod_cgi module, will generally call the C API
ap_error_log2stderr( ) function (Chapter 11) to rehook standard error to the error log
so that the standard error of subprocesses continues to be captured in the error log.

Apache will usually be started as root (on Unix systems), so that it can open port 80.
This also allows it to open log files that are owned by root. Later, Apache will normally
fork multiple child processes which will run under an unprivileged user ID. By virtue of
having a copy of the still-open log file descriptors, child processes will have write
access to the log files, even though their privileges wouldn't ordinarily give them this
right.

3.2.2 Module Initialization

Next, Apache initializes its modules. Each module has an initialization routine that is
passed information about the server in a data structure called a server rec.The
server rec contains such information as the configured ServerName, the Port the
server is listening for requests on, and the email address of the ServerAdmin. C-
language modules are also handed a pointer to a "resource pool" that can be used for
memory management. The module initialization routine will do whatever module-
specific initialization needs to be done. If something goes wrong, it can log an error
message and exit() the process to abort Apache's startup entirely.

Perl module authors can step in at the module initialization phase by using the
PerlRequire and PerlModule directives.is! These directives both cause a Perl script to
be evaluated at mod_perl initialization time and are described in more detail later.
Note that the server is still running as root during this phase, so any code that gets
executed at this point will have superuser powers. This is a good reason to ensure
that any scripts called during this period are owned and writable by root only.

[5] Older versions of the mod_peri package had a PeriScript directive, which was later renamed to PerlRequire. The


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PeriScript directive has been deprecated, but you might still see references to it in old online archives.

When the server is restarted, the configuration and module initialization phases are
called again. To ensure that such restarts will be uneventful, Apache actually runs
these two phases twice during server startup just to check that all modules can
survive a restart.

3.2.3 Child Initialization

On Unix systems Apache now forks itself one or more times to create a set of child
processes that will do the actual work of accepting incoming requests. Before
accepting any connections, the child processes immediately set their user and group
IDs to those of an unprivileged user (such as "nobody" or "guest"). The original parent
process (still running as root) hangs around to monitor the status of its children and to
launch new ones should the number of child processes drop below a specified level.

Just before each child enters its request loop, each module is given another chance
at initialization. Although this would seem redundant with the module initialization
phase, it's necessary because some data structures, such as database handles, are
not stable across forks. Modules that need to (re)initialize themselves get another
chance every time a new child process is created. You might also want to use this
phase to perform some action that should be done as an unprivileged user. In the C
API, the module's child_init( ) function is called. In the Perl API, you can install a
handler for this phase using the PerlIChildInitHandler directive.

Chapter 7, discusses the use of child init handlers in more detail.
3.2.4 Child Exit

We'll skip forward now to the child exit phase, leaving the request loop for detailed
consideration in the next section. After processing some number of requests, each
child process will eventually exit, dying either a natural death when it reaches the limit
set by MaxRequestsPerChild or because the server as a whole has received a restart
or termination request. Under ordinary circumstances, the child will call each
module's child_exit handler, giving it a chance to clean up after itself before the
process disappears. The module can commit database transactions, close files, or do
whatever else it needs to. Perl APl modules can install a handler for this phase by
declaring a PerIChildExitHandler in the configuration file. Examples of putting this to

use are given in Chapter 7.

The child exit routine is not guaranteed to be called in all cases. If the child exits
because of a server crash or other untrappable errors, your routine may never be
called.

3.2.5 The Request Loop
Between the initialization/configuration phase and the exit phase is the request loop

(shown in Figure 3.3). This is where the server and its modules spend most of their
time as they wait for incoming requests. Here's where the fun begins.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 3.3. The Apache request. The main transaction path is shown in black, and the path
taken when a handler returns an error is shown in gray. Phases that you are most likely to write
handlers for are shown in bold.

The Apache server core handles the most common aspects of an HTTP
conversation: listening for a request, parsing the incoming request line and headers,
and composing the outgoing HTTP response message. Each time through the
request loop, there are a variety of decisions to make about the incoming request.
External modules can define custom handlers to enhance or supersede each
decision. If no handler is defined, Apache falls back to its default behavior.

Here are the eight decisions that Apache makes for each request:
1. What is it for? (URI translation phase)

The requested URI could refer to a physical file, a virtual document produced on
the fly by an external script, or a document generated by an internal module.
The server needs to have an early idea of what the URI maps to before other
questions can be asked and answered. Apache's default translation routines
use directives including Alias, ScriptAlias, and DocumentRoot to translate the
URI into a file path. External modules, such as the optional Rewrite module, can
seize control during this phase to perform more sophisticated translations.

2. Where is it coming from? (access control phase)
3. Who is it coming from? (authentication phase)

4. Who is allowed to perform this particular request? (authorization phase)


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Some documents are restricted by the server's configuration so that not
everybody has the right to retrieve them. These three decisions, described in
more detail in Chapter 6, determine who can get access to the document.

What is the document's type? (MIME type checking phase)

This step derives a preliminary guess of the requested document's MIME type.
Because certain documents (such as CGI scripts and image map files) need to
be processed differently than run-of-the-mill static HTML files, the MIME type
checking phase must be run before Apache can figure out how to process the
document. The server's configuration file determines how it makes this decision.
The decision may be based on the document's filename, file extension, or
location in the document tree. After type-mapping is done, Apache uses this
information to select the "content handler" to generate or transmit the document
itself during the response phase.

Who will generate the content for this document? (response phase)

If Apache decides that an extension module should handle the content
generation, the document's URI and all the information accumulated about the
document so far are passed to the appropriate module. For historical reasons,
the handler responsible for the response phase is known as the "content
handler."

The content handler will usually begin by adjusting the HTTP response header
to suit its needs. For example, it may change the document's content type from
the default value provided by the MIME type checking step. It will then tell
Apache to send the (possibly modified) HTTP header to the client. After the
header is sent, the module will usually create the content of the document itself
and forward it to the client. This may involve reading a static file from disk or
creating the document from scratch. Sometimes content handlers will fail for
one reason or another, in which case they must return the appropriate error
code to Apache so that the server can inform the user.

Who's going to log this transaction? (logging phase)

Whether the content handler's response is a pretty image, a fancy HTML page,
or an error of some sort, the outcome should be logged. Apache provides a
default logging system that writes to flat files. It is also possible to install a
custom log handler to do customized logging, such as writing log entries into a
relational database.

Who's going to clean up? (cleanup phase)

Finally, the request is over, and there may be some tidying up left to do.
Modules may register cleanup handlers to deallocate resources they allocated
earlier, close databases, free memory, and so forth. This phase is distinct from
the child exit phase that we described earlier. Whereas the child exit phase
happens once per child process, the request cleanup phase happens after each
and every transaction.

3.2.6 Internal Requests and Subrequests


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Although the majority of transactions will pass through each phase of the request
processing cycle from beginning to end, this isn't always the case. An error at any of
the phases will terminate processing, causing processing to jump immediately to the
logging and cleanup phases.

In addition, there are a variety of conditions that can trigger internal requests. An
internal request is just like an ordinary request, except that it is generated by Apache
itself. An internal request can be explicitly generated by a handler that has decided to
return a document other than the one that the browser requested. By calling the
internal_redirect( ) function, the handler tells Apache to stop processing the current
request and go process another one.

More commonly, internal requests are generated by Apache's ErrorDocument
system, when an error returned by a content handler triggers Apache to fetch and
display a custom HTML file or CGl script to help explain to the user what went wrong.

A special case of an internal request is a subrequest, which is commonly used by
modules to ask "what if" questions. At any stage of the transaction, a handler can
pass a file or URI to the lookup_file( ) or lookup_uri( ) functions. Each of these
functions creates a request that will appear to handlers just as if it came from a client
outside of the server. In the case of lookup_uri( ), the URI translate handler is the first
to be run. The header parser phase is skipped, and then all other handlers down the
request chain are run, stopping just before the content response phase. In the case of
lookup_file( ), Apache assumes the given file already exists, so URI translation is
skipped and the subrequest starts out with the access checker, continuing along the
same road as lookup_uri(). After the subrequest is finished, Apache returns the new
request record to the caller, which can check for success or failure in the status field.
The caller may manually run the subrequest's response phase if desired. In any case,
the logging phase will never be run for a subrequest, only the main request itself.

For example, the handler responsible for authorization ordinarily does not have
access to the MIME type of the requested file because the MIME type checker phase
comes after the authorization phase. In order to implement authorization based on the
MIME type of the requested document, the authorization handler could generate a
subrequest for the requested file in order to run all the phases up to, but not including,
the content generation and logging phases. It can then retrieve the file's MIME type
from the subrequest result.

3.2.7 The Environment and Subprocesses

Several of Apache's standard modules use environment variables: mod_cgi sets a
number of environment variables to hold information about the HTTP request prior to
launching CGl scripts, mod_include uses environment variables in HTML string
substitutions, mod_log config can incorporate the values of environment variables
into custom log entries, and mod_access can base its access restriction decisions on
the value of environment variables.

Ordinarily, the environment passed to subprocesses is a strictly limited set of
variables that contain information about the server and the current request. You can
modify this default list using the PassEnv , SetEnv, and UnsetEnv directives all of


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

which are implemented by the mod_env module (compiled in by default). PassEnv
passes an environment variable from the server's environment into that of the
subprocess, while SetEnv and UnsetEnv allow you to set or unset an environment
variable explicitly. Note that PassEnv and SetEnv are not set until the fixup stage, a
rarely used phase that runs just before the response phase. If you need to use such
environment variables earlier in the request, the mod_perl equivalents, PerlPassEnv
and PerlSetEnv, will set the variables as soon as possible. These work just like the
Apache equivalents, except that the two directives can be placed in <Directory> and
<Location> sections, as shown in the following examples:

PerlPassEnv ORGANIZATION
PerlSetEnv TMPDIR /usr/tmp
<Location /stage/upload>

PerlSetEnv TMPDIR /tmp/staging
</Location>

The mod_setenvif module (compiled in by default) adds the BrowserMatch and
SetEnvif directives, allowing you to selectively set and unset variables based on
attributes of the incoming request.

Apache has a standard way of managing the process environment area. When
Apache starts up, it copies certain environment variables from its own environment
into an internal table (which variables are inherited in this way can be controlled with
the PassEnv and PerlPassEnv directives). Later, modules that need access to the
environment get their information from the table rather than reading it directly from the
environment area. Not only is this more efficient, but it gives Apache more control
over a potentially security-sensitive domain. If a module such as mod_cgi needs to
launch a subprocess, it passes the internal environment table to the process rather
than using the current system environment.

The Perl and C APIs allow you to examine and set the contents of this environment
table. There is also a mechanism for launching and communicating with
subprocesses.

We'll now look at the Perl API for installing handlers and manipulating the Apache life
cycle.

T



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.3 The Handler API

When Apache calls a handler, it passes information about the current transaction and
the server configuration. It's the handler's responsibility to take whatever action is
appropriate for this phase and to then return an integer status code to Apache
indicating the success or failure of its operation.

3.3.1 Handler Subroutines

In the Perl API, the definition of a handler is short and sweet:
In the Perl API, the definition of a handler is short and sweet:

sub handler {

my Sr = shift;

# do something

return SOME STATUS CODE;
}

No matter which phase of the Apache life cycle the handler is responsible for, the
subroutine structure is always the same. The handler is passed a single argument
consisting of a reference to an Apache request object. The request object is an
object-oriented version of a central C record structure called the request record , and
it contains all the information that Apache has collected about the transaction. By
convention, a typical handler will store this object in a lexically scoped variable named
sr. The handler retrieves whatever information it needs from the request object, does
some processing, and possibly modifies the object to suit its needs. The handler then
returns a numeric status code as its function result, informing Apache of the outcome
of its work. We discuss the list of status codes and their significance in the next
section.

There is one special case, however. If the handler has a function prototype of ($3)
indicating that the subroutine takes two scalar arguments, the Perl API treats the
handler as an object-oriented method call. In this case, the handler will receive two
arguments. The handler's class (package) name or an object reference will be the first
argument, and the Apache request object reference will be the second. This allows
handlers to take advantage of class inheritance, polymorphism, and other useful
object-oriented features. Handlers that use this feature are called "method handlers"
and have the following structure:

sub handler ($$) {
my $class = shift;
my $r = shift;
# do something
return SOME STATUS CODE;

}
We give an example of using a Perl APl method handler in the next chapter.

Request handlers declared in the C API are very similar:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

static int handler (request rec* r) {
/* do something */
return SOME STATUS CODE;
}

The handler is called with a single argument consisting of a pointer to a
request rec request record. The subroutine pulls out whatever information it needs
from the request record, modifies it if necessary, and then returns a status code.

However, unlike the Perl API, in which all handlers have the same structure
regardless of their phase, the C API handlers that are responsible for the phases of
the server life cycle outside the request loop are heterogeneous. For example, a
child_init() handler in C looks like this:

static void child init (server rec *s, pool *p) {
/* do something */
}

In this case, there is no request record because there is no request to process at this
point. Instead there is a pointer to a server record structure (a server rec)and a
memory pool for handling memory allocation issues. We explain the differences fully

in Chapter 8.
3.3.2 Status Codes

Every handler must return a status code. There are many possible codes, each of
which is associated with a symbolic constant. The constants are defined by the
Apache::Constants module if you are using Perl and the httpd.h include file if you are
using the C language.

Table 3.1 shows the HTTP status codes, their symbolic constants, and a brief
explanation. All constants have a full name that begins with the prefix "HTTP_" as in
HTTP FORBIDDEN. The common ones also have shorter "nicknames" as well, for
example, FORBTDDEN,

Table 3.1. Common HTTP Status Codes

Code| Constant (Nickname) | Description
2XX Codes—Success
HTTP_OK
200 The URI was found. Its contents follow.
(DOCUMENT_FOLLOWS)
201 |0TTP CREATED The URI was created in response to a PUT.
202 |uTTP AccEpTED The request was accepted for processing at a later
- date.
203 |HTTP NON AUTHORITATIVE This is nonauthoritative mirrored information.
204 laTTe MO CconTENT The. request was successful, but there's no content
- to display.

HTTP PARTIAL CONTENT

206 A portion of the document follows.

(PARTIAL CONTENT)

3XX Codes—Multiple Choices Available
|[HTTP MULTIPLE CHOICES

IThnra ara miiltinla Aariimant crhnirae [l lead in


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

300

(MULTIPLE CHOICES)

HHTIT AT 1HTUIUMIT UULVUITTITIHIL VI VIVTO. \WOTu 111

content negotiation.)

301

HTTP MOVED PERMANENTLY

(MOVED)

The document has permanently moved to a new
URI.

302

HTTP MOVED TEMPORARILY

(REDIRECT)

The document has temporarily moved to a new
URI.

304

HTTP NOT MODIFIED

(USE_LOCAL_COPY)

The document has not been modified since it was
cached.

4XX Codes—Client-Side Errors

400

HTTP_BAD_REQUEST
(BAD_REQUEST)

The request contains a syntax error.

401

HTTP UNAUTHORIZED

(AUTH _REQUIRED)

The client did not provide correct authorization
information.

402

HTTP PAYMENT REQUIRED

Payment is required. (Used in charging schemes.)

403

HTTP_ FORBIDDEN

(FORBIDDEN)

The client is not allowed to access the document.

404

HTTP_NOT_FOUND

(NOT FOUND)

The requested document does not exist.

405

HTTP METHOD NOT ALLOWED

(METHOD NOT ALLOWED)

The request method (e.g., PUT) is not allowed
here.

406

HTTP NOT ACCEPTABLE

The request is not acceptable.

407

HTTP PROXY AUTHENTICATION REQUIRED

Proxy server must provide authentication.

408

HTTP REQUEST TIME OUT

The client waited too long to complete the request.

410

HTTP GONE

The requested document has been permanently
removed.

412

HTTP PRECONDITION FAILED

(PRECONDITION FAILED)

A conditional retrieval of the document has failed.

413

HTTP REQUEST ENTITY TOO LARGE

The client tried to PUT or POST data that was too
long.

414

HTTP REQUEST URI TOO LARGE

The client tried to fetch a URI that was too long.

415

HTTP UNSUPPORTED MEDIA TYPE

The client tried to PUT or POST data using an
unsupported MIME type.

5XX Codes—Server-Side Errors

500

HTTP INTERNAL SERVER ERROR

(SERVER ERROR)

The server encountered an unexpected error
condition.

501

HTTP NOT IMPLEMENTED

(NOT IMPLEMENTED)

An HTTP feature is unimplemented.

502

HTTP BAD GATEWAY

(BAD GATEWAY)

An error occurred in a remote server during a proxy
request.

503

HTTP SERVICE UNAVAILABLE

The server is temporarily down.

504

HTTP GATEWAY TIME OUT

A remote server timed out during a proxy request.

505

HTTP VERSION NOT SUPPORTED

The server doesn't support this version of HTTP.

506

HTTP VARIANT ALSO VARIES

(VARIANT ALSO VARIES)

A negotiated document has several alternative
representations.

Apache::Constants does not export all of the formal HTTP_* names, since only a



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

small handful are used by most modules. However, the constant functions are
available for all of these names, should you need them. Chapter 9 gives a complete
listing of all the HTTP_* names that are exportable by default. If your module tries to
use one of the HTTP_* names and gets an "Undefined subroutine" error, see
Chapter 9 for details on accessing it. The nicknames for the common status codes
are all exportable by Apache::Constants.

The Perl examples throughout this book use the nicknames when available, even
though their formal equivalents can be imported using the Apache::Constants :http
tag. We do this partly because of historical reasons and because the :common tag
imports a small number of functions—only those we need for the majority of modules.
As always with Perl, there's more than one way to do it; the choice is yours.

In addition to the HTTP status codes, Apache defines some return codes of its own
which handlers use to send status information to the server.

OK

This constant indicates that the handler was successful. For most phases
Apache will now pass the request on to any other module that has registered its
interest in handling the phase. However, for the URI translation, authentication,
type-mapping, and response phases, the phase terminates as soon as a
handler returns OK. The server behaves this way because it usually makes
sense for a single module to handle these phases. However, you can override
this behavior using the Perl API's "stacked handlers" mechanism, which we
discuss in the next chapter.

The internal Apache OK constant should not be confused with HTTP constant
HTTP OK (known by Apache::Constants as DOCUMENT FOLLOWS).

DECLINED

The handler has decided it doesn't want to handle the request. Apache will act
as if the subroutine were never called and either handle the phase internally or
pass the request on to another module that has expressed its interest. Even if
all registered modules return DECLINED for a particular phase, it will still be
handled by the Apache core, which has default handlers for each phase (even if
they do nothing).

It is possible for a module to lie when it declines a transaction. It may actually
have done some work but wishes to let another module take the ultimate
responsibility for the phase. For example, an authentication handler might
manage caching of credential lookups from a database, but not actually make
the authentication decision itself.

DONE

When DoNE is returned, Apache immediately jumps out of the request loop, logs
the transaction, and closes the client connection. This is one way to halt the
transaction without generating an error status.

SERVER_ERROR , UNAUTHORIZED , REDIRECT , BAD_REQUEST,


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

NOT_FOUND ...

The handler can return any of the HTTP status codes described in Table 3.1.
Apache will create the appropriate HTTP header and send it to the browser.
This is the way that handlers can signal that the requested document cannot be
found, redirect the browser to another URI, or implement novel authorization
schemes. The SERVER_ERROR code is commonly used to signal a fatal error,
and it results in the display of the ugly but familiar "internal server error" page.

Apache's response to the status codes can be intercepted and customized with
the ErrorDocument directive or the custom_response() API call. We give

examples of using this feature to advantage in Chapter 4, and Chapter 9.

3.3.3 Installing Handlers

The Perl and C APIs use different techniques for installing handlers. In the C AP,
handlers are specified by placing pointers to the handler subroutines within a static
table that is compiled directly into the module code. We discuss this in more detail in
Chapter 10. In contrast, Perl APl handlers are installed using a series of
configuration directives that can be placed in the server's configuration files or even in
per-directory .htaccess files.

Installing a Perl subroutine as a handler for one of the phases in the Apache life cycle
is a matter of writing a .pm (Perl module) file to implement the handler, installing it
somewhere in the Perl include path, and adding the appropriate Perl*Handler
directive to one of Apache's configuration files. The term "Perl*Handler," as we use it
throughout this book, corresponds to any one of the 15 or so Perl API directives
named PerlTransHandler, PerlAccessHandler, PerlLogHandler, and so forth.

If there is only one handler subroutine defined in the .pm file, it is convenient to name
it handler() because the Perl API looks for subroutines with this name by default.
Otherwise the subroutine can be named anything you like if you refer to it explicitly in
the Perl*Handler directive.

Apache Perl modules usually live in the Apache:: package namespace. This is just a
convention, but a good one. It generally indicates that the module is useless outside
of the Apache server. That said, the other convention to follow is keeping Apache::
modules very small, by making good use of the building blocks found on CPAN,
putting together new building blocks where appropriate, and simply gluing them
together with the Apache API. A typical Apache Perl module file will look like this:

package Apache::Foo;
use strict;
use Apache::constants gw(:common) ;

sub handler {
my Sr = shift;
# do something
return SOME STATUS CODE;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Its declaration in the Apache configuration file will look like this:

Perl*Handler Apache::Foo

Replace Perl*Handler with a legitimate handler directive listed in the next section.
When Apache goes to process this directive, it automatically loads and compiles the
Apache::Foo module if it is not already in memory. It then calls the module's handler()
subroutine during the appropriate phase of the transaction.

If you want to register several handlers for a particular phase, you can either provide
a space-separated list of handlers to install, or repeat the Perl*Handler directive on
multiple lines. These two techniques can be mixed.

Perl*Handler Apache::Foo Apache::Bar Apache: :Baz
Perl*Handler Apache::Wiz Apache::Waz

If the handler subroutine is not named handler(), then you must refer to it explicitly by
name. For example, if the handler is named do_something(), then the directive should
be changed to:

Perl*Handler Apache::Foo::do something

Perl*Handler directives that explicitly name the handler subroutines do not cause the
module to be automatically loaded. You must do this manually beforehand, either by
placing a PerlModule directive in the configuration file or indirectly by loading the
module in the Perl startup file, if you have one. Here's an example of the first method:

PerlModule Apache::Foo
Perl*Handler Apache::Foo::do_something

If the module is not already loaded when Apache processes the Perl*Handler
directive, you will see this confusing message in your server's error log:

Undefined subroutine &Apache::Foo::do something::handler called.

It is always a good idea to preload handler modules for better performance either by

using the PerlModule directive or by pulling in modules with a PerlRequire script. The
Perl*Handler directives offer a shortcut, where a leading + character will tell mod_perl
to load the handler module at the same time. For example, the following configuraton:

Perl*Handler +Apache::Foo
is equivalent to this configuration:

Perl1Module Apache: :Foo
Perl*Handler Apache::Foo

Anonymous subroutines can also be used as Perl*Handlers, for example:

PerlChildInitHandler "sub { warn gg(child $$ starting\n) }"


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Somewhat surprisingly, although there are 11 phases in the Apache life cycle that
affect modules (server initialization, child initialization, child shutdown, and the eight
phases of the request loop), there are a few more Perl*Handler directives, including
ones that don't correspond directly to transaction processing phases, such as
PerlinitHandler, PerlDispatchHandler, and PerlRestartHandler. These phases are
implemented within the "standard" phases but are given some special treatment by
mod_perl.

3.3.4 Perl API Configuration Directives

This section lists the configuration directives that the Perl APl makes available. Most
of these directives install handlers, but there are a few that affect the Perl engine in
other ways.

PerlRequire
PerlModule

These directives are used to load Perl modules and files from disk. Both are
implemented using the Perl built-in require operator. However, there are subtle
differences between the two. A PerlModule must be a "bareword," that is, a
package name without any path information. Perl will search the ¢ 11C paths for
a .pm file that matches the name.

Example:

PerlModule Apache::Plotter

This will do the same as either of the following Perl language statements:

require Apache::Plotter;
use Apache::Plotter ()

In contrast, the PerlRequire directive expects an absolute or relative path to a
file. The Perl API will enclose the path in quotes, then pass it to the require
function. If you use a relative path, Perl will search through the @11 list for a
match.

Examples:

PerlRequire /opt/www/lib/directory colorizer.pl
PerlRequire scripts/delete temporary files.pl

This will do the same as the following Perl language statement:

require '/opt/www/lib/directory colorizer.pl';
require 'scripts/delete temporary files.pl';

As with modules and files pulled in directly by the require operator, PerlRequire
and PerIModule also require the modules to return a true value (usually 1) to
indicate that they were evaluated successfully. Like require, these files will be
added to the = 111C hash so that it will not be evaluated more than once. The
Apache::StatINC module and the PerlFreshRestart directive can alter this


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

behavior so modules can be reloaded.

Both directives will accept any number of modules and files:

)

r

PerlModule CGI LWP::Simple Apache::Plott
ts/ 1£1

PerlRequire scripts/startup.pl scrip

Q
O
et
(@]

y.pl

U

All PerIModule and PerlRequire files will be loaded during server startup by
mod_perl during the module_init phase. The value of the ServerRoot directive is
added to the ¢ 1C paths by mod_perl as an added convenience.

Remember that all the code that is run at server initialization time is run with
root privileges when the server is bound to a privileged port, such as the default
80. This means that anyone who has write access to one of the server
configuration files, or who has write access to a script or module that is loaded
by PerIModule or PerlRequire, effectively has superuser access to the system.
There is a new PerlOpmask directive and PERL _OPMASK_DEFAULT compile
time option, currently in the experimental stages, for disabling possible
dangerous operators.

The PerlModule and PerlRequire directives are also permitted in .htaccess files.
They will be loaded at request time and be run as the unprivileged web user.

PerIChildlnitHandler

This directive installs a handler that is called immediately after a child process is
launched. On Unix systems, it is called every time the parent process forks a
new child to add to the flock of listening daemons. The handler is called only
once in the Win32 version of Apache because that server uses a single-process
model.

In contrast to the server initialization phase, the child will be running as an
unprivileged user when this handler is called. All child_init handlers will be
called unless one aborts by logging an error message and calling exit( ) to
terminate the process.

Example:
PerlChildInitHandler Apache::DBLogin

This directive can appear in the main configuration files and within virtual host
sections, but not within <Directory>, <Location>, or <Files> sections or within
.htaccess files.

PerlPostReadRequestHandler

The post_read _request handler is called every time an Apache process


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

receives an incoming request, at the point at which the server has read the
incoming request's data and parsed the HTTP header fields but before the
server has translated the URI to a filename. It is called once per transaction and
is intended to allow modules to step in and perform special processing on the
incoming data. However, because there's no way for modules to step in and
actually contribute to the parsing of the HTTP header, this phase is more often
used just as a convenient place to do processing that must occur once per
transaction. All post_read_request handlers will be called unless one aborts by
returning an error code or terminating the phase with DonE.

Example:
PerlPostReadRequestHandler Apache::StartTimer

This directive can appear in the main configuration files and within virtual host
sections but not within <Directory>, <Location>, or <Files> sections or within
.htaccess files. The reason for this restriction is simply that the request has not
yet been associated with a particular filename or directory.

PerllnitHandler

When found at the "top-level" of a configuration file, that is, outside of any
<Location>, <Directory>, or <Files> sections, this handler is an alias for
PerlPostReadRequestHandler. When found inside one of these containers, this
handler is an alias for PerlHeaderParserHandler described later. Its name
makes it easy to remember that this is the first handler invoked when serving an
HTTP request.

PerlTransHandler

The uri_translate handler is invoked after Apache has parsed out the request.
Its job is to take the request, which is in the form of a partial URI, and transform
it into a filename.

The handler can also step in to alter the URI itself, to change the request
method, or to install new handlers based on the URI. The URI translation phase
is often used to recognize and handle proxy requests; we give examples in

Example:
PerlTransHandler Apache::AdBlocker

Apache will walk through the registered uri_translate handlers until one returns
a status other than DECLINED. This is in contrast to most of the other phases,

for which Apache will continue to invoke registered handlers even after one has
returned OK.

Like PerlPostReadRequestHandler, the PerlTransHandler directive may appear
in the main configuration files and within virtual host sections but not within
<Directory>, <Location>, or <Files> sections or within .htaccess files. This is
because the request has not yet been associated with a particular file or
directory.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

PerlHeaderParserHandler

After the URI translation phase, Apache again gives you another chance to
examine the request headers and to take special action in the header_parser
phase. Unlike the post_read_request phase, at this point the URI has been
mapped to a physical pathname. Therefore PerlHeaderParserHandler is the first
handler directive that can appear within <Directory>, <Location>, or <Files>
sections or within .htaccess files.

The header_parser phase is free to examine and change request fields in the
HTTP header, or even to abort the transaction entirely. For this reason, it's
common to use this phase to block abusive robots before they start chewing
into the resources that may be required in the phases that follow. All registered
header_parser handlers will be run unless one returns an error code or DONE.

Example:

PerlHeaderParserHandler Apache::BlockRobots

PerlAccessHandler

The access _checker handler is the first of three handlers that are involved in
authentication and authorization. We go into this topic in greater depth in

Chapter 6.

The access_checker handler is designed to do simple access control based on
the browser's IP address, hostname, phase of the moon, or other aspects of the
transaction that have nothing to do with the remote user's identity. The handler
is expected to return O« to allow the transaction to continue, FORETDDEN toO
abort the transaction with an unauthorized access error, or DECL.TNED to punt
the decision to the next handler. Apache will continue to step through all
registered access handlers until one returns a code other than DECTTNED or OK.

Example:
PerlAccessHandler Apache::DayLimit

The PerlAccessHandler directive can occur anywhere, including <Directory>
sections and .htaccess files.

PerlAuthenHandler

The authentication handler (sometimes referred to in the Apache documentation
as check_user_id ) is called whenever the requested file or directory is
password-protected. This, in turn, requires that the directory be associated with
AuthName, AuthType, and at least one require directive. The interactions
among these directives is covered more fully in Chapter 6.

It is the job of the authentication handler to check a user's identification
credentials, usually by checking the username and password against a
database. If the credentials check out, the handler should return ox. Otherwise
the handler returns ~UTH REQUIRED to indicate that the user has not


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

authenticated successfully. When Apache sends the HTTP header with this
code, the browser will normally pop up a dialog box that prompts the user for
login information.

Apache will call all registered authentication handlers, only ending the phase
after the last handler has had a chance to weigh in on the decision or when a
handler aborts the transaction by returning AUTH REQUIRED or another error
code. As usual, handlers may also return bECL.1NED to defer the decision to the
next handler in line.

Example:
PerlAuthenHandler Apache::AuthAnon

PerlAuthenHandler can occur anywhere in the server configuration or in
.htaccess files.

PerlAuthzHandler

Provided that the authentication handler has successfully verified the user's
identity, the transaction passes into the authorization handler, where the server
determines whether the authenticated user is authorized to access the
requested URI. This is often used in conjunction with databases to restrict
access to a document based on the user's membership in a particular group.
However, the authorization handler can base its decision on anything that can
be derived from the user's name, such as the user's position in an
organizational chart or the user's gender.

Handlers for the authorization phase are only called when the file or directory is
password-protected, using the same criteria described earlier for authentication.
The handler is expected to return peEc.1NED to defer the decision, O« to
indicate its acceptance of the user's authorization, or AUTH REQUIRED to
indicate that the user is not authorized to access the requested document. Like
the authentication handler, Apache will try all the authorization handlers in turn
until one returns AUTH REQUIRED or another error code.

The authorization handler interacts with the require directive in a way described

fully in Chapter 6.
Example:

PerlAuthzHandler Apache::AuthzGender

The PerlAuthzHandler directive can occur anywhere in the server configuration
files or in individual .htaccess files.

PerlTypeHandler

After the optional access control and authentication phases, Apache enters the
type checker phase. It is the responsibility of the type checker handler to


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

assign a provisional MIME type to the requested document. The assigned MIME
type will be taken into consideration when Apache decides what content handler
to call to generate the body of the document. Because content handlers are free
to change the MIME types of the documents they process, the MIME type
chosen during the type checking phase is not necessarily the same MIME type
that is ultimately sent to the browser. The type checker is also used by Apache's
automatic directory indexing routines to decide what icon to display next to the
filename.

The default Apache type checker generally just looks up the flename extension
in a table of MIME types. By declaring a custom type checker, you can replace
this with something more sophisticated, such as looking up the file's MIME type
in a document management database.

Because it makes no sense to have multiple handlers trying to set the MIME
type of a file according to different sets of rules, the type checker handlers
behave like content handlers and URI translation handlers. Apache steps
through each registered handler in turn until one returns 0% or aborts with an
error code. The phase finishes as soon as one module indicates that it has
successfully handled the transaction.

Example:
PerlTypeHandler Apache::MimeDBI

The PerlTypeHandler directive can occur anywhere in the server configuration
or in .htaccess files.

PerlFixupHandler

After the type checker phase but before the content handling phase is an odd
beast called the fixup phase. This phase is a chance to make any last-minute
changes to the transaction before the response is sent. The fixup handler's job
is like that of the restaurant prep cook who gets all the ingredients cut, sorted,
and put in their proper places before the chef goes to work. As an example
alluded to earlier, mod_env defines a fixup handler to add variables to the
environment from configured SetEnv and PassEnv directives. These variables
are put to use by several different modules in the upcoming response phase,
including mod_cgi, mod_include, and mod_perl.

All fixup handlers are run during an HTTP request, stopping only when a
module aborts with an error code.

Example:
PerlFixupHandler Apache::HTTP::Equiv

The PerlFixupHandler directive can occur anywhere in the server configuration
files or in .htaccess files.

PerlHandler

The next step is the content generation, or response phase, installed by the


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

generic-sounding PerlHandler directive. Because of its importance, probably 90
percent of the modules you'll write will handle this part of the transaction. The
content handler is the master chef of the Apache kitchen, taking all the
ingredients assembled by the previous phases—the URI, the translated
pathname, the provisional MIME type, and the parsed HTTP headers—whipping
them up into a tasty document and serving the result to the browser.

Apache chooses the content handler according to a set of rules governed by the
SetHandler, AddHandler, AddType, and ForceType directives. We go into the
details in Chapter 4. For historical reasons as much as anything else, the
idiom for installing a Perl content handler uses a combination of the SetHandler
and PerlHandler directives:

<Directory /home/http/htdocs/compressed>
SetHandler perl-script
PerlHandler Apache::Uncompress
</Directory>

The SetHandler directive tells Apache that the Perl interpreter will be the official
content handler for all documents in this directory. The PerlHandler directive in
turn tells Perl to hand off responsibility for the phase to the handler( ) subroutine
in the Apache::Uncompress package. If no PerlHandler directive is specified,
Perl will return an empty document.

It is also possible to use the <Files> and <FilesMatch> directives to assign
mod_perl content handlers selectively to individual files based on their names.
In this example, all files ending with the suffix .gz are passed through
Apache::Uncompress :

<FilesMatch "\.gz$">
SetHandler perl-script
PerlHandler Apache::Uncompress
</FilesMatch>

There can be only one master chef in a kitchen, and so it is with Apache content
handlers. If multiple modules have registered their desire to be the content
handler for a request, Apache will try them each in turn until one returns 0% or
aborts the transaction with an error code. If a handler returns DECLINED,
Apache moves on to the next module in the list.

The Perl API relaxes this restriction somewhat, allowing several content
handlers to collaborate to build up a composite document using a technique
called " chaining." We show you how to take advantage of this feature in the
next chapter.

The PerlHandler directive can appear anywhere in Apache's configuration files,
including virtual host sections, <Location> sections, <Directory> sections, and
<Files> sections. It can also appear in .htaccess files.

PerlLogHandler

Just before entering the cleanup phase, the log handler will be called in the
logging phase. This is true regardless of whether the transaction was


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

successfully completed or was aborted somewhere along the way with an error.
Everything known about the transaction, including the original request, the
translated file name, the MIME type, the number of bytes sent and received, the
length of time the transaction took, and the status code returned by the last
handler to be called, is passed to the log handler in the request record. The
handler typically records the information in some way, either by writing the
information to a file, as the standard logging modules do, or by storing the
information into a relational database. Log handlers can of course do whatever
they like with the information, such as keeping a running total of the number of
bytes transferred and throwing out the rest. We show several practical examples

of log handlers in Chapter 7.

All registered log handlers are called in turn, even after one of them returns ox.
If a log handler returns an HTTP error status, it and all the log handlers that
ordinarily follow it, including the built-in ones, will be aborted. This should be
avoided unless you really want to prevent some transactions from being logged.

Example:
PerlLogHandler Apache::LogMail

The PerlLogHandler directive can occur anywhere in the server configuration
files or in .htaccess files.

PeriCleanupHandler

After each transaction is done, Apache cleans up. During this phase any
module that has registered a cleanup handler will be called. This gives the
module a chance to deallocate shared memory structures, close databases,
clean up temporary files, or do whatever other housekeeping tasks it needs to
perform. This phase is always invoked after logging, even if some previous
handlers aborted the request handling process by returning some error code.

Internally the cleanup phase is different from the other phases we've discussed.
In fact, there isn't really a cleanup phase per se. In the C API, modules that
need to perform post-transaction housekeeping tasks register one or more
function callbacks with the resource pool that they are passed during
initialization. Before the resource pool is deallocated, Apache calls each of the
module's callbacks in turn. For this reason, the structure of a cleanup handler
routine in the C API is somewhat different from the standard handler. It has this
function prototype:

void cleanup handler (void* data);

We discuss how to register and use C-language cleanup handlers in Chapter
10.

The Perl API simplifies the situation by making cleanup handlers look and act
like other handlers. The PeriCleanupHandler directive installs a Perl subroutine
as a cleanup handler. Modules may also use the register_cleanup() call to


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

install cleanup handlers themselves. Like other handlers in the Perl API, the
cleanup subroutine will be called with the Apache request object as its
argument. Unlike other handlers, however, a cleanup handler doesn't have to
return a function result. If it does return a result code, Apache will ignore the
value. An important implication of this is that all registered cleanup functions are
always called, despite the status code returned by previous handlers.

Example:
PerlCleanupHandler Apache::Plotter::clean ink cartridges

The PeriCleanupHandler directive can occur anywhere in the server
configuration files or in .htaccess files.

PerlIChildExitHandler

The last handler to be called is the child exit handler. This is called just before
the child server process dies. On Unix systems the child exit handler will be
called multiple times (but only once per process). On NT systems, the exit
handler is called just once before the server itself exits.

Example:

PerlChildExitHandler Apache::Plotter::close driver

PerlFreshRestart

When this directive is set to On, mod_per! will reload all the modules found in
> 1NC whenever the server is restarted. This feature is very useful during
module development because otherwise, changes to .pm files would not take
effect until the server was completely stopped and restarted.

The standard Apache::Registry module also respects the value of
PerlFreshRestart by flushing its cache and reloading all scripts when the server
is restarted.

This directive can only appear in the main part of the configuration files or in
<VirtualHost> sections.

PerlDispatchHandler
PerlRestartHandler

These two handlers are not part of the Apache API, but pseudophases added
by mod_perl to give programmers the ability to fine-tune the Perl API. They are
rarely used but handy for certain specialized applications.

The PerIDispatchHandler callback, if defined, takes over the process of loading
and executing handler code. Instead of processing the Perl*Handler directives
directly, mod_per! will invoke the routine pointed to by PerlDispatchHandler and
pass it the Apache request object and a second argument indicating the handler
that would ordinarily be invoked to process this phase. If the handler has
already been compiled, then the second argument is a CODE reference.
Otherwise, it is the name of the handler's module or subroutine.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

The dispatch handler should handle the request, which it will usually do by
running the passed module's handler() method. The Apache::Safe module,
currently under development, takes advantage of PerlDispatchHandler to put
handlers into a restricted execution space using Malcom Beattie's Safe library.

Unlike other Perl*Handler directives, PerlDispatchHandler must always point to
a subroutine name, not to a module name. This means that the dispatch module
must be preloaded using PerlModule

PerlModule Apache::Safe
<Files *.shtml>

PerlDispatchHandler Apache::Safe::handler
</Files>

PerlRestartHandler points to a routine that is called when the server is restarted.
This gives you the chance to step in and perform any cleanup required to tweak
the Perl interpreter. For example, you could use this opportunity to trim the
global ¢ 1nC path or collect statistics about the modules that have been loaded.

I [<raivison [t v |



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

3.4 Perl API Classes and Data Structures

We'll look now at what a handler subroutine sees when it is called. All interaction
between the handler and the Apache server is done through the request record. In
the Perl API, the request record is encapsulated within a request object, which for
historical reasons is blessed into the Apache:: namespace. The Apache request
object contains most of the information about the current transaction. It also contains
references to other objects that provide further information about the server and the
current transaction. The request object's server( ) method returns an Apache::Server
object, which contains server configuration information. The connection() method
returns an Apache::Connection object, which contains low-level information about the
TCP/IP connection between the browser and the client.

In the C API, information about the request is passed to the handler as a pointer to a
request rec .Included among its various fields are pointersto a server rec and
a conn rec structure, which correspond to the Perl API's Apache::Server and
Apache::Connection objects. We have much more to say about using the

request rec in Chapters Chapter 10 and Chapter 11 when we discuss the C-

language API in more detail.
3.4.1 The Apache Request Object

The Apache request object (the request rec in C) is the primary conduit for the
transfer of information between modules and the server. Handlers can use the
request object to perform several types of operations:

Get and set information about the requested document

The URI of the requested document, its translated file name, its MIME type, and
other useful information are available through a set of request object methods.
For example, a method named uri() returns the requested document's URI, and
content_type() retrieves the document's MIME type. These methods can also be
used to change the values, for example, to set the MIME type of a document
generated on the fly.

Get incoming HTTP headers

All the request headers are available through a method called header _in().
From this information you can recover the make and model of the browser, the
list of MIME types that the browser can display, any HTTP cookies the server
has set, and information about any content the browser wishes to send, such as
the contents of a fill-out form.

Get and set outgoing HTTP headers

The outgoing HTTP headers, which do such things as set HTTP cookies,
control browser caching, and provide information about the requested
document, can be examined or set via a method called header_out(). Certain


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

very common outgoing headers have dedicated methods for setting their
values. For example, the outgoing Content-Type header is usually set using the
content_type() method rather than header_out(). Once the outgoing header
fields are fully set up, the handler can send them to the client with
send_http_header().

Read incoming document data

When the browser sends document information to the server, such as the
contents of POSTed forms or uploaded files, the handler can use the request
object's read() method to read in and manage the submitted information.

Create outgoing document data

Handlers that are responsible for content generation will use the request
object's print() method to send document data to the browser. There are also
methods for sending whole files in a single step.

Get common per-transaction information

Commonly needed information, such as the remote browser's hostname and the
port at which the server established the connection, is available from the
request object through methods with names like get_remote host() and
get_server_port(). More esoteric information is available through the
Apache::Connection and Apache::Server objects returned by the connection()
and server() methods, respectively.

Log warnings and errors

The request object provides methods for writing formatted error messages and
warnings to the server error log. The simplest and most widely used method is
log_error(). There is also a fully fledged Apache::Log class which gives you
access to Apache's more advanced logging API.

Control transaction processing

By calling the request object's custom_response(), handler(), or
internal_redirect() methods, a handler can control how the transaction is to be
processed by setting what modules will handle the content generation phase of
the request in the case of success or failure. A handler can also kick off a
subrequest using the lookup_uri() or lookup_filename() methods.

Get module configuration information

The PerlSetVar configuration file directive allows you to pass runtime
configuration information to Perl APl modules using a simple key/value system.
Perl API modules fetch this information with the dir_config() method. This
eliminates the need to pass runtime information to Perl APl modules by making
source code modifications. In addition, mod_perl supports a more complex
configuration API that allows modules to define and use custom configuration
directives.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The bulk of this book is devoted to all the many things you can do with the request
object.

3.4.2 The Apache::Server Object

The Apache::Serverclass (a scrver rec inthe C API) contains information about
the server's configuration. From this object, handlers can recover such things as the
email address of the server administrator, the list of virtual hosts that this server
supports, and the port number(s) that this server listens to.

The Apache::Server object is also where per-server module configuration information
is stored and is an integral part of the custom configuration directive API described in

Chapter 8.
3.4.3 The Apache::Connection Object

Handlers can use this class to retrieve all sorts of low-level information about the
current connection. Among the information stored here are the TCP/IP socket
endpoints of the server/browser connection, the remote and local IP addresses, and a
flag that indicates when a connection was broken prematurely.

In addition, the Apache::Connection object provides information about user
authentication. You can recover the type of authentication in use with the auth_type()
method, and the authenticated user's name with the user() method. These features
are described in more detail in Chapter 6.

3.4.4 Other Core Classes

The Perl API also defines a number of core classes that provide interfaces to other
areas of the Apache C API. We'll describe them at length in later chapters when we
need to use them. For now, we'll just list them so that you know they're there.

Apache::URI
Methods for generating and parsing URIs
Apache::Log
Methods to generate nicely formatted log messages
Apache::File
Methods to send the contents of static files in an HTTP/1.1-compliant fashion
Apache::Util

Methods for manipulating HTTP dates and times, and for working with HTML
documents

Apache::ModuleConfig and Apache::CmdParms


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Utilities for generating and processing custom configuration directives
3.4.5 Noncore Classes

mod_perl comes with a set of standalone modules that are useful in their own right.
The most important of these is Apache::Registry, which the next chapter covers in
great detail. We list them briefly here just so that you know they exist. See Appendix
A, for a full reference guide to Apache::Registry and its kin.

Apache::Registry

A persistent CGl-like environment for legacy scripts and for writing high-
performance modules without using the Apache API.

Apache::PerlRun

An object-oriented API for running Perl scripts inside of the Apache server. It
uses this API within its own handler which provides another CGI emulation
environment for running legacy scripts that do not run properly under
Apache::Regqistry.

Apache::RegistrylLoader
Speeds up Apache::Registry even further by preloading certain CGl scripts.
Apache::Resource

Controls resource allocation to avoid poorly written scripts from hogging the
server.

Apache::PerlSections

Helper methods for configuring Apache dynamically using Perl embedded in its
configuration files.

Apache::StatINC

Reloads changed modules from disk automatically when they change, rather
than the next time the server is restarted.

Apache::Include

Simple wrappers around the subrequest API and a handler for running within
mod_include.

Apache::Status

A Perl runtime browser often helpful when tracking down problems or satisfying
curiosities.

The next chapter begins a tutorial that takes you through the API one step at a time,
beginning with the all-important response phase. For the definitive reference style
listing of classes, methods, functions, and data types, see Chapter 9 for the Perl API


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

and Chapters Chapter 10 and Chapter 11 for the C API.



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Chapter 4. Content Handlers

This chapter is about writing content handlers for the Apache response phase, when
the contents of the page are actually produced. In this chapter you'll learn how to
produce dynamic pages from thin air, how to modify real documents on the fly to
produce effects like server-side includes, and how Apache interacts with the MIME-
typing system to select which handler to invoke.

Starting with this chapter we shift to using the Apache Perl API exclusively for code
examples and function prototypes. The Perl API covers the majority of what C
programmers need to use the C-language API. What's missing are various memory
management functions that are essential to C programmers but irrelevant in Perl. If
you are a C programmer, just have patience and the missing pieces will be filled in
eventually. In the meantime, follow along with the Perl examples and enjoy yourself.
Maybe you'll even become a convert.

[Cravous Poaxr v



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

4.1 Content Handlers as File Processors

Early web servers were designed as engines for transmitting physical files from the
host machine to the browser. Even though Apache does much more, the file-oriented
legacy still remains. Files can be sent to the browser unmodified or passed through
content handlers to transform them in various ways before sending them on to the
browser. Even though many of the documents that you produce with modules have
no corresponding physical files, some parts of Apache still behave as if they did.

When Apache receives a request, the URI is passed through any URI translation
handlers that may be installed (see Chapter 7, for information on how to roll your
own), transforming it into a file path. The mod_alias translation handler (compiled in
by default) will first process any Alias, ScriptAlias, Redirect, or other mod_alias
directives. If none applies, the http_core default translator will simply prepend the
DocumentRoot directory to the beginning of the URI.

Next, Apache attempts to divide the file path into two parts: a "flename" part which
usually (but not always) corresponds to a physical file on the host's filesystem, and an
"additional path information" part corresponding to additional stuff that follows the
filename. Apache divides the path using a very simple-minded algorithm. It steps
through the path components from left to right until it finds something that doesn't
correspond to a directory on the host machine. The part of the path up to and
including this component becomes the filename, and everything that's left over
becomes the additional path information.

Consider a site with a document root of /home/www that has just received a request
for URI /abc/def/ghi. The way Apache splits the file path into flename and path
information parts depends on what directories it finds in the document root:

Physical Directory Translated Filename Additional Path Information
/home/www /home/www/abc /def/ghi
/home/www/abc /home/www/abc/def /ghi
/home/www/abc/def /home/www/abc/def/ghi empty
/home/www/abc/def/ghi /home/www/abc/def/ghi empty

The footer on this page was generated automatically by Apache::Footer.
Physical Directory

Note that the presence of any actual files in the path is irrelevant to this process. The
division between the filename and the path information depends only on what
directories are present.

Once Apache has decided where the file is in the path, it determines what MIME type
it might be. This is again one of the places where you can intervene to alter the
process with a custom type handler. The default type handler (mod_mime) just


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

compares the filename's extension to a table of MIME types. If there's a match, this
becomes the MIME type. If no match is found, then the MIME type is undefined.
Again, note that this mapping from filename to MIME type occurs even when there's
no actual file there.

There are two special cases. If the last component of the filename happens to be a
physical directory, then Apache internally assigns it a "magic" MIME type, defined by
the DIr MAGIC TvPE constant as httpd/unix-directory. This is used by the directory
module to generate automatic directory listings. The second special case occurs
when you have the optional mod_mime_magic module installed and the file actually
exists. In this case Apache will peek at the first few bytes of the file's contents to
determine what type of file it might be. Chapter 7 shows you how to write your own
MIME type checker handlers to implement more sophisticated MIME type
determination schemes.

After Apache has determined the name and type of the file referenced by the URI, it
decides what to do about it. One way is to use information hard-wired into the
module's static data structures. The module's handler rec table, which we
describe in detail in Chapter 10, declares the module's willingness to handle one or
more magic MIME types and associates a content handler with each one. For
example, the mod_cgi module associates MIME type application/x-httpd-cgi with its
cgi_handler() handler subroutine. When Apache detects that a filename is of type
application/x-httpd-cgi it invokes cgi_handler() and passes it information about the file.
A module can also declare its desire to handle an ordinary MIME type, such as
video/quicktime, or even a wildcard type, such as video/*. In this case, all requests for
URIs with matching MIME types will be passed through the module's content handler
unless some other module registers a more specific type.

Newer modules use a more flexible method in which content handlers are associated
with files at runtime using explicit names. When this method is used, the module
declares one or more content handler names in its handler rec array instead of, or
in addition to, MIME types. Some examples of content handler names you might have
seen include cgi-script, server-info, server-parsed, imap-file, and perl-script. Handler
names can be associated with files using either AddHandler or SetHandler directives.
AddHandler associates a handler with a particular file extension. For example, a
typical configuration file will contain this line to associate .shtml files with the server-
side include handler:

AddHandler server-parsed .shtml

Now, the server-parsed handler defined by mod_include will be called on to process
all files ending in ".shtml" regardless of their MIME type.

SetHandler is used within <Directory>, <Location>, and <Files> sections to associate
a particular handler with an entire section of the site's URI space. In the two examples
that follow, the <Location> section attaches the server-parsed method to all files
within the virtual directory /shtml, while the <Files> section attaches imap-file to all
files that begin with the prefix "map-":


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Location /shtml>
SetHandler server-parsed
</Location>

<Files map-*>
SetHandler imap-file
</Files>

Surprisingly, the AddHandler and SetHandler directives are not actually implemented
in the Apache core. They are implemented by the standard mod_actions module,
which is compiled into the server by default. In Chapter 7, we show how to
reimplement mod_actions using the Perl API.

You'll probably want to use explicitly named content handlers in your modules rather
than hardcoded MIME types. Explicit handler names make configuration files cleaner
and easier to understand. Plus, you don't have to invent a new magic MIME type
every time you add a handler.

Things are slightly different for mod_perl users because two directives are needed to
assign a content handler to a directory or file. The reason for this is that the only real
content handler defined by mod_perl is its internal perl-script handler. You use
SetHandler to assign perl-script the responsibility for a directory or partial URI, and
then use a PerlHandler directive to tell the perl-script handler which Perl module to
execute. Directories supervised by Perl API content handlers will look something like
this:

<Location /graph>
SetHandler perl-script
PerlHandler Apache::Graph
</Location>

Don't try to assign perl-script to a file extension using something like ~ddiandler
perl-script .pl ;thisis generally useless because you'd need to set PerlHandler
too. If you'd like to associate a Perl content handler with an extension, you should use
the <Files> directive. Here's an example:

<Files ~ "\.graph$">
SetHandler perl-script
PerlHandler Apache::Graph
</Files>

There is no UnSetHandler directive to undo the effects of SetHandler. However,
should you ever need to restore a subdirectory's handler to the default, you can do it
with the directive settandler default-handler, as follows:

<Location /graph/tutorial>

SetHandler default-handler
</Location>

4.1.1 Adding a Canned Footer to Pages


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To show you how content handlers work, we'll develop a module with the Perl API
that adds a canned footer to all pages in a particular directory. You could use this, for
example, to automatically add copyright information and a link back to the home
page. Later on, we'll turn this module into a full-featured navigation bar.

Figure 4.1. The footer on this page was generated automatically by Apache::Footer.

Example 4.1 gives the code for Apache::Footer, and Figure 4.1 shows a
screenshot of it in action. Since this is our first substantial module, we'll step through
the code section by section.

package Apache::Footer;

use strict;
use Apache::Constants gw(:common) ;
use Apache::File ();

The code begins by declaring its package name and loading various Perl modules
that it depends on. The use strict pragma activates Perl checks that prevent us from
using global variables before declaring them, disallows the use of function calls
without the parentheses, and prevents other unsafe practices. The
Apache::Constants module defines constants for the various Apache and HTTP result
codes; we bring in only those constants that belong to the frequently used :common
set. Apache::File defines methods that are useful for manipulating files.

sub handler {
my Sr = shift;
return DECLINED unless $r->content type() eqg 'text/html';

The handler() subroutine does all the work of generating the content. It is roughly
divided into three parts. In the first part, it fetches information about the requested file
and decides whether it wants to handle it. In the second part, it creates the canned
footer dynamically from information that it gleans about the file. In the third part, it
rewrites the file to include the footer.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In the first part of the process, the handler retrieves the Apache request object and
stores it in S . Next it calls the request's content_type() method to retrieve its MIME
type. Unless the document is of type text/html, the handler stops here and returns a
DECLINED result code to the server. This tells Apache to pass the document on to
any other handlers that have declared their willingness to handle this type of
document. In most cases, this means that the document or image will be passed
through to the browser in the usual way.

my Sfile = $r->filename;

unless (-e Sr—->finfo) {
$r->log error ("File does not exist: $file");
return NOT FOUND;
}
unless (-r ) {
$r->log error ("File permissions deny access: S$file");
return FORBIDDEN;
}

At this point we go ahead and recover the file path, by calling the request object's
filename( ) method. Just because Apache has assigned the document a MIME type
doesn't mean that it actually exists or, if it exists, that its permissions allow it to be
read by the current process. The next two blocks of code check for these cases.
Using the Perl -e file test, we check whether the file exists. If not, we log an error to
the server log using the request object's log_error( ) method and return a result code
of NOT_FOUND. This will cause the server to return a page displaying the 404 "Not
Found" error (exactly what's displayed is under the control of the ErrorDocument
directive).

There are several ways to perform file status checks in the Perl API. The simplest
way is to recover the file's pathname using the request object's filename() method,
and pass the result to the Perl -e file test:

unless (-e Sr—->filename) {
$r->log error("File does not exist: $file");
return NOT FOUND;

}

A more efficient way, however, is to take advantage of the fact that during its path
walking operation Apache already performed a system stat( ) call to collect filesystem
information on the file. The resulting status structure is stored in the request object
and can be retrieved with the object's finfo( ) method. So the more efficient idiom is to
usethetest -e sr->finfo.

Once finfo() is called, the stat() information is stored into the magic Perl filehandle

and can be used for subsequent file testing and stat() operations, saving even more

CPU time. Using the filehandle, we next test that the file is readable by the current
process and return #orB1DDEN if this isn't the case. This displays a 403 "Forbidden"
error.

my Smodtime = localtime ((stat )[9]);


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

After performing these tests, we get the file modification time by calling stat( ). We can
use the filehandle here too, avoiding the overhead of repeating the stat( ) system
call. The modification time is passed to the built-in Perl localtime( ) function to convert
it into a human-readable string.

my Sfh;
unless ($fh = Apache::File->new ($file)) {
$r->log error ("Couldn't open $file for reading: $!");
return SERVER ERROR;
}

At this point, we attempt to open the file for reading using Apache::File 's new( )
method. For the most part, Apache::File acts just like Perl's /O::File object-oriented
I/O package, returning a filehandle on success or undef on failure. Since we've
already handled the two failure modes that we know how to deal with, we return a
result code of sErVER ERROR if the open is unsuccessful. This immediately aborts all
processing of the document and causes Apache to display a 500 "Internal Server
Error" message.

my Sfooter = <<END;

<hr>

&copy; 1998 <a href="http://www.ora.com/">0'Reilly &amp; Associa
<em>Last Modified: Smodtime</em>

END

Having successfully opened the file, we build the footer. The footer in this example
script is entirely static, except for the document modification date that is computed on
the fly.

$Sr->send http header;

while (<$fh>) {

s! (</BODY>) !SfooterS$Sl!oi;
} continue {

Sr->print ($ );

}

The last phase is to rewrite the document. First we tell Apache to send the HTTP
header. There's no need to set the content type first because it already has the
appropriate value. We then loop through the document looking for the closing
</BODY> tag. When we find it, we use a substitution statement to insert the footer in
front of it. The possibly modified line is now sent to the browser using the request
object's print() method.

return OK;

}
1;

At the end, we return an OK result code to Apache and end the handler subroutine
definition. Like any other .pm file, the module itself must end by returning a true value
(usually 1) to signal Perl that it compiled correctly.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If all this checking for the existence and readability of the file before processing
seems a bit pedantic, don't worry. It's actually unnecessary for you to do this. Instead
of explicitly checking the file, we could have simply returned pec.1nED if the attempt
to open the file failed. Apache would then pass the URI to the default file handler
which will perform its own checks and display the appropriate error messages.
Therefore we could have replaced the file tests with the single line:

my $fh = Apache::File->new($file) || return DECLINED;

Doing the tests inside the module this way makes the checks explicit and gives us a
chance to intervene to rescue the situation. For example, we might choose to search
for a text file of the same name and present it instead. The explicit tests also improve
module performance slightly, since the system wastes a small amount of CPU time
when it attempts to open a nonexistent file. If most of the files the module serves do
exist, however, this penalty won't be significant.

Example 4.1. Adding a Canned Footer to HTML Pages

package Apache::Footer;
# file: Apache/Footer.pm

use strict;
use Apache::Constants gw(:common) ;
use Apache::File ()

sub handler {
my Sr = shift;
return DECLINED unless $r->content type() eqg 'text/html';

my $file = $Sr->filename;

unless (-e $Sr->finfo) {
$r->log error ("File does not exist: $file");
return NOT FOUND;
}
unless (-r ) {
$r->log error ("File permissions deny access: Sfile");
return FORBIDDEN;
}

my $modtime = localtime((stat )I[9]);
my $fh;
unless ($fh = Apache::File->new($file)) {

$r->log error ("Couldn't open $file for reading: $!");
return SERVERiERROR;
}
my S$footer = <<END;
<hr>
&copy; 1998 <a href=">http://www.ora.com/">0'Reilly &amp; Associ
<em>Last Modified: S$modtime</em>


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

END
$r->send http header;

while (<S$Sfh>) {

s! (</BODY>) !Sfooter$l!oi;
} continue {

Sr-=>print($ );

}

return OK;

There are several ways to install and use the Apache::Footer content handler. If all
the files that needed footers were gathered in one place in the directory tree, you
would probably want to attach Apache::Footer to that location:

<Location /footer>
SetHandler perl-script
PerlHandler Apache::Footer
</Location>

If the files were scattered about the document tree, it might be more convenient to
map Apache::Footer to a unique filename extension, such as .footer. To achieve this,
the following directives would suffice:

AddType text/html .footer
<Files ~ "\.footers$">
SetHandler perl-script
PerlHandler Apache::Footer
</Files>

Note that it's important to associate MIME type text/html with the new extension;
otherwise, Apache won't be able to determine its content type during the MIME type
checking phase.

If your server is set up to allow per-directory access control files to include file
information directives, you can place any of these handler directives inside a
.htaccess file. This allows you to change handlers without restarting the server. For
example, you could replace the <Location> section shown earlier with a .htaccess file
in the directory where you want the footer module to be active:

SetHandler perl-script
PerlHandler Apache::Footer

4.1.2 A Server-Side Include System

The obvious limitation of the Apache::Footer example is that the footer text is


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

hardcoded into the code. Changing the footer becomes a nontrivial task, and using
different footers for various parts of the site becomes impractical. A much more
flexible solution is provided by Vivek Khera's Apache::Sandwich module. This module
"sandwiches" HTML pages between canned headers and footers that are determined
by runtime configuration directives. The Apache::Sandwich module also avoids the
overhead of parsing the request document; it simply uses the subrequest mechanism
to send the header, body, and footer files in sequence.

We can provide more power than Apache::Sandwich by using server-side includes.
Server-side includes are small snippets of code embedded within HTML comments.
For example, in the standard server-side includes that are implemented in Apache,
you can insert the current time and date into the page with a comment that looks like
this:

Today 1is <!--#echo var="DATE LOCAL"-->.

In this section, we use mod_perl to develop our own system of server-side includes,
using a simple but extensible scheme that lets you add new types of includes at a
moment's whim. The basic idea is that HTML authors will create files that contain
comments of this form:

J

<!--#D CT PARAMI PARAMZ PARAM3 PARAM4...-->

~

3]
~

v

[
N

R

A directive name consists of any sequence of alphanumeric characters or
underscores. This is followed by a series of optional parameters, separated by
spaces or commas. Parameters that contain whitespace must be enclosed in single
or double quotes in shell command style. Backslash escapes also work in the
expected manner.

The directives themselves are not hardcoded into the module but are instead
dynamically loaded from one or more configuration files created by the site
administrator. This allows the administrator to create a standard menu of includes that
are available to the site's HTML authors. Each directive is a short Perl subroutine. A
simple directive looks like this one:

sub HELLO { "Hello World!"; }

This defines a subroutine named HELLO() that returns the string "Hello World!" A
document can now include the string in its text with a comment formatted like this
one:

I said <!-—-#HELLO-->

A more complex subroutine will need access to the Apache object and the server-side
include parameters. To accommodate this, the Apache object is passed as the first
function argument, and the server-side include parameters, if any, follow. Here's a
function definition that returns any field from the incoming request's HTTP header,
using the Apache object's header _in( ) method:

sub HTTPiHEADER {
my (Sr,S$field) = @ ;
$r->header in($field);

}


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

With this subroutine definition in place, HTML authors can insert the User-Agent field
into their document using a comment like this one:

You are using the browser <!-- #HTTP HEADER User-Agent -->.

Example 4.2 shows an HTML file that uses a few of these includes, and Figure 4.2
shows what the page looks like after processing.

Figure 4.2. A page generated by Apache::ESSI

Example 4.2. An HTML File That Uses Extended Server-Side Includes

<html> <head> <title>Server-Side Includes</title></head>
<body bgcolor=white>

<hl>Server-Side Includes</hl>

This is some straight text.<p>

This is a "<!-- #HELLO -->" include.<p>

The file size is <strong><!-- #FSIZE --></strong>, and it was
last modified on <!-- #MODTIME %x --><p>

Today 1s <!-- #DATE "%A, in <em>anno domini</em> %Y"-->.<p>

The user agent is <em><!--#HTTP HEADER User-Agent--></em>.<p>


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Oops: <!-—#00PS 0--><p>

Here is an included file:
<pre>

<!-—#INCLUDE /include.txt 1-->
</pre>

<!=—#FOOTER-->
</body> </html>

Implementing this type of server-side include system might seem to be something of
a challenge, but in fact the code is surprisingly compact (Example 4.3). This module
is named Apache::ESSI , for "extensible server-side includes."

Again, we'll step through the code one section at a time.

package Apache::ESSI;

use strict;

use Apache::Constants gw(:common) ;
use Apache::File ()

use Text::ParseWords gw(quotewords) ;
my (SMODIFIED, $SUBSTITUTION) ;

We start as before by declaring the package name and loading various Perl library
modules. In addition to the modules that we loaded in the Apache::Footer example,
we import the quotewords( ) function from the standard Perl Text::ParseWords
module. This routine provides command shell-like parsing of strings that contain
quote marks and backslash escapes. We also define two lexical variables,
SMODIFIED and 2sUBSTITUTION, which are global to the package.

sub handler {
my $r = shift;

$r->content type() eq 'text/html' || return DECLINED;
my Sfh = Apache::File->new(Sr->filename) || return DECLINED;
my $sub = read definitions(Sr) | | return SERVER ERROR;

$r->send http header;
$r->print ($sub->($r, $fh));
return OK;

}

The handler() subroutine is quite short. As in the Apache::Footer example, handler()
starts by examining the content type of the document being requested and declines to
handle requests for non-HTML documents. The handler recovers the file's physical
path by calling the request object's filename() method and attempts to open it. If the
file open fails, the handler again returns an error code of bECL.1NED. This avoids
Apache::Footer's tedious checking of the file's existence and access permissions, at
the cost of some efficiency every time a nonexistent file is requested.

Once the file is opened, we call an internal function named read_definitions(). This


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

function reads the server-side includes configuration file and generates an
anonymous subroutine to do the actual processing of the document. If an error occurs
while processing the configuration file, read_definitions() returns undef and we return
SERVER ERROR in order to abort the transaction. Otherwise, we send the HTTP
header and invoke the anonymous subroutine to perform the substitutions on the
contents of the file. The result of invoking the subroutine is sent to the client using the
request object's print() method, and we return a result code of 0k to indicate that
everything went smoothly.

sub read definitions {
my Sr = shift;
my $def = Sr->dir config('ESSIDefs');
return unless S$def;
return unless -e (Sdef = $r—>server7rootirelative($def));

Most of the interesting work occurs in read_definitions(). The idea here is to read the
server-side include definitions, compile them, and then use them to generate an
anonymous subroutine that does the actual substitutions. In order to avoid
recompiling this subroutine unnecessarily, we cache its code reference in the
package variable s sussT1TUTTON and reuse it if we can.

The read_definitions() subroutine begins by retrieving the path to the file that contains
the server-side include definitions. This information is contained in a per-directory
configuration variable named = ss1Def s, which is set in the configuration file using
the PerlSetVar directive and retrieved within the handler with the request object's
dir_config() method (see the end of the example for a representative configuration file
entry). If, for some reason, this variable isn't present, we return undef. Like other
Apache configuration files, we allow this file to be specified as either an absolute path
or a partial path relative to the server root. We pass the path to the request object's
server_root_relative( ) method. This convenient function prepends the server root to
relative paths and leaves absolute paths alone. We next check that the file exists
using the -e file test operator and return undef if not.

return $SUBSTITUTION{Sdef} if SMODIFIED{S$def} && SMODIFIED{S$def}

Having recovered the name of the definitions file, we next check the cache to see
whether the subroutine definitions are already cached and, if so, whether the file
hasn't changed since the code was compiled and cached. We use two hashes for this
purpose. The =sUBsTITUTION array holds the compiled code and “MODTFTED
contains the modification date of the definition file the last time it was compiled. Both
hashes are indexed by the definition file's path, allowing the module to handle the
case in which several server-side include definition files are used for different parts of
the document tree. If the modification time listed in 2 MODTF1ED is less than or equal
to the definition file's current modification date, we return the cached subroutine.

my Spackage = join "::", PACKAGE , Sdef;

$package =~ tr/a-zA-Z0-9 / /c;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The next two lines are concerned with finding a unique namespace in which to
compile the server-side include functions. Putting the functions in their own
namespace decreases the chance that function side effects will have unwanted
effects elsewhere in the module. We take the easy way out here by using the path to
the definition file to synthesize a package name, which we store in a variable named
Spackage.

eval "package S$package; do 'Sdef'";
if(S@) |
$r->log error ("Eval of $def did not return true: $S@");
return;

}

We then invoke eval() to compile the subroutine definitions into the newly chosen
namespace. We use the package declaration to set the namespace and do to load
and run the definitions file. We use do here rather than the more common require
because do unconditionally recompiles code files even if they have been loaded
previously. If the eval was unsuccessful, we log an error and return undef.

SSUBSTITUTION{S$def} = sub {
do substitutions ($package, @ );
b
SMODIFIED{Sdef} = -M Sdef; # store modification date
return SSUBSTITUTION{Sdef};
}

Before we exit read_definitions(), we create a new anonymous subroutine that
invokes the do_substitutions() function, store this subroutine in >sursTITUTTON, and
update =MoD1FTED with the modification date of the definitions file. We then return
the code reference to our caller. We interpose a new anonymous subroutine here so
that we can add the contents of the Spackage variable to the list of variables passed
to the do_substitutions() function.

sub do substitutions {

my Spackage = shift;

my ($r, S$fh) = @ ;

# Make sure that eval() errors aren't trapped.
local $SIG{_ WARN };

local $SIG{_ DIE };

local $/; #slurp $fh

my $data = <S$Sfh>;

Sdata =~ s/<!—-=\s*\# (\w+) # start of a function name
\s* (.*?) # optional parameters
\s*-—-> # end of comment

/call sub ($package, $1, $r, $2)/xseg;
Sdata;
}

When handler() invokes the anonymous subroutine, it calls do_substitutions() to do
the replacement of the server-side include directives with the output of their
corresponding routines. We start off by localizing the Ss16{ waARN } and SSIG{
~DIE  } handlers and setting them back to the default Perl CORE::warn() and


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

CORE::die() subroutines. This is a paranoid precaution against the use of CGI::Carp,
which some mod_perl users load into Apache during the startup phase in order to
produce nicely formatted server error log messages. The subroutine continues by
fetching the lines of the page to be processed and joining them in a single scalar
value named sdata.

We then invoke a string substitution function to replace properly formatted comment
strings with the results of invoking the corresponding server-side include function. The
substitution uses the e flag to treat the replacement part as a Perl expression to be
evaluated and the g flag to perform the search and replace globally. The search half
of the function looks like this:

/<V==\s*\# (\w+)\s* (.*?2) \s*=-=>/

This detects the server-side include comments while capturing the directive name in
51 and its optional arguments in $2.

The replacement of the function looks like this:

Y

/call sub (Spackage, $1, Sr, $2)/

Edp!

This just invokes another utility function, call_sub(), passing it the package name, the
directive name, the request object, and the list of parameters.

sub call sub

{
my ($package, $name, Sr, Sargs) = @ ;
my $sub = \&{join '::', Spackage, Sname};
$r->chdir file;
my Sres = eval { $sub->(Sr, quotewords('[ ,]',0,Sargs)) };
return "<em>[SQ@]</em>" 1f SQ@Q;

return S$Sres;

}

The call_sub() routine starts off by obtaining a reference to the subroutine using its
fully qualified name. It does this by joining the package name to the subroutine name
and then using the funky Perl \ s { . . . } syntax to turn this string into a subroutine
reference. As a convenience to the HTML author, before invoking the subroutine we
call the request object's chdir_file( ) method. This simply makes the current directory
the same as the requested file, which in this case is the HTML file containing the
server-side includes.

The server-side include function is now invoked, passing it the request object and the
optional arguments. We call quotewords() to split up the arguments on commas or
whitespace. In order to trap fatal runtime errors that might occur during the function's
execution, the call is done inside an evalf} block. If the call function fails, we return the
error message it died with captured within <. Otherwise, we return the value of the
call function.

At the bottom of Example 4.3 is an example entry for perl.conf (or httpd.conf if you
prefer). The idea here is to make Apache::ESSI the content handler for all files ending
with the extension .ehtml. We do this with a <Files> configuration section that
contains the appropriate SetHandler and PerlHandler directives. We use the
PerlSetVar directive to point the module to the server-relative definitions file,


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

conf/essi.defs.

In addition to the <Files> section, we need to ensure that Apache knows that .ehtm/
files are just a special type of HTML file. We use AddType to tell Apache to treat
.ehtml files as MIME type text/html.

You could also use <Location> or <Directory> to assign the Apache::ESS/ content
handler to a section of the document tree, or a different <Files> directive to make
Apache::ESSI the content handler for all HTML files.

Example 4.3. An Extensible Server-Side Include System

package Apache::ESSI;
# file: Apache/ESSI.pm

use strict;

use Apache::Constants gw(:common) ;
use Apache::File ()

use Text::ParseWords gw (quotewords) ;
my (SMODIFIED, S$SUBSTITUTION) ;

sub handler {
my Sr = shift;

$r->content type() eq 'text/html' || return DECLINED;
my $fh = Apache::File->new ($r->filename) || return DECLINED;
my $sub = read definitions ($Sr) | | return SERVER ERROR;

$r->send http header;
Sr->print ($sub->($r, $fh));
return OK;

sub read definitions {
my Sr = shift;
my Sdef = S$r->dir config('ESSIDefs');
return unless S$def;
return unless -e ($Sdef = S$r->server root relative(Sdef));
return S$SSUBSTITUTION{Sdef} if SMODIFIED{Sdef} && SMODIFIED{S

my S$package = join "::", PACKAGE , S$Sdef;

$package =~ tr/a-zA-20-9 / /c;
eval "package S$package; do '$Sdef'";

if(S@) A
$r->log error ("Eval of $def did not return true: $S@");
return;

}

SSUBSTITUTION{Sdef} = sub {
do substitutions ($package, @ );
I

SMODIFIED{Sdef} = -M S$Sdef; # store modification date
return S$SUBSTITUTION({Sdef};


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}

sub do substitutions {

my S$package = shift;

my ($Sr, $fh) = @ ;

# Make sure that eval () errors aren't trapped.
local $SIG{__WARN };

local $SIG{_ DIE };

local $/; #slurp $fh

my $data = <S$fh>;

Sdata =~ s/<!--\s*\# (\w+) # start of a function name
\s* (.*?) # optional parameters
\s*——> # end of comment

/call sub ($package, $1, $r, $2)/xseg;
Sdata;

sub call sub {

my (Spackage, S$name, $r, $args) = @ ;

my $sub = \&{join '::', Spackage, Sname};

$r->chdir file;

my $res = eval { $sub->(Sr, gquotewords('[ ,]',0,Sargs)) };

return "<em>[S$SQ@]</em>" 1if $@;
return Sres;

Here are some perl.conf directives to go with Apache::ESSI :

<Files ~ "\.ehtml$">

SetHandler perl-script

PerlHandler Apache::ESSI

PerlSetVar ESSIDefs conf/essi.defs
</Files>
AddType text/html .ehtml

At this point you'd probably like a complete server-side include definitions file to go
with the module. Example 4.4 gives a short file that defines a core set of functions
that you can build on top of. Among the functions defined here are ones for inserting
the size and modification date of the current file, the date, fields from the browser's
HTTP request header, and a function that acts like the C preprocessor #include
macro to insert the contents of a file into the current document. There's also an
include called OOPS which divides the number 10 by the argument you provide. Pass
it an argument of zero to see how runtime errors are handled.

The INCLUDE() function inserts whole files into the current document. It accepts
either a physical pathname or a "virtual" path in URI space. A physical path is only
allowed if it lives in or below the current directory. This is to avoid exposing sensitive
files such as /etc/passwd.

If the Svirtual flag is passed, the function translates from URI space to a physical


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

path name using the lookup_uri() and filename() methods:
$file = Sr->lookup uri(Spath)->filename;

The request object's lookup_uri( ) method creates an Apache subrequest for the
specified URI. During the subrequest, Apache does all the processing that it ordinarily
would on a real incoming request up to, but not including, activating the content
handler. lookup_uri( ) returns an Apache::SubRequest object, which inherits all its
behavior from the Apache request class. We then call this object's filename() method
in order to retrieve its translated physical file name.

Example 4.4. If you're a fan of server-side includes, you should also check out the Apache
Embperl and ePerl packages. Both packages, along with several others available from the
CPAN, build on mod_perl to create a Perl-like programming language embedded entirely within
server-side includes.

# Definitions for server-side includes.
# This file is require'd, and therefore must end with
# a true value.

use Apache::File ()
use Apache::Util gw(ht time size string);

# insert the string "Hello World!"
sub HELLO {

my Sr = shift;

"Hello World!"™;
}

# insert today's date possibly modified by a strftime() format
# string
sub DATE {

my (Sr,S$format) = @ ;

return scalar (localtime) unless Sformat;

return ht time(time, Sformat, O0);

}

# insert the modification time of the document, possibly modifie

# by a strftime() format string.
sub MODTIME {
my ($r,Sformat) = @ ;
my S$mtime = (stat Sr->finfo) [9];

return localtime ($mtime) unless S$format;
return ht time ($Smtime, Sformat, O0);

}

# insert the size of the current document
sub FSIZE {

my $r = shift;

return size string -s Sr->finfo;

}

# divide 10 by the argument (used to test runtime error trapping
sub OOPS { 10/$ [1]; }


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

# insert a canned footer
sub FOOTER {
my $r = shift;
my $modtime = MODTIME (Sr) ;
return <<END;
<hr>
&copy; 1998 <a href="http://www.ora.com/">0'Reilly &amp; Associa
<em>Last Modified: $Smodtime</em>
END
}

# insert the named field from the incoming request
sub HTTP HEADER {

my (Sr,$h) = @ ;

$r->header in($h);
}

#fensure that path is relative, and does not contain
sub is below only { $ [0] !~ m:(~/1(~I/)\N.\.(/1$)): }

# Insert the contents of a file. If the $virtual flag is set
# does a document-root lookup, otherwise treats filename as a
# physical path.

sub INCLUDE {

my ($r,Spath,$virtual) = @ ;
my $file;
if($Svirtual) {
$file = Sr->lookup uri($path)->filename;
}
else {

unless (is below only(S$path)) {
die "Can't include S$path\n";

}

Sfile = Spath;
}
my $fh = Apache::File->new($file) || die "Couldn't open S$fil
local $/;
return <$fh>;

}

1;

If you're a fan of server-side includes, you should also check out the Apache Embperl
and ePerl packages. Both packages, along with several others available from the
CPAN, build on mod_perl to create a Perl-like programming language embedded
entirely within server-side includes.

4.1.3 Converting Image Formats

Another useful application of Apache content handlers is converting file formats on
the fly. For example, with a little help from the Aladdin Ghostscript interpreter, you can
dynamically convert Adobe Acrobat (PDF) files into GIF images when dealing with a
browser that doesn't have the Acrobat plug-in installed.(x


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[1] At least in theory you can dlvme what MIME types a browser prefers by examining the contents of the Accept
header with ¢ = Acce ) . According to the HTTP protocol, this should return a list of MIME types
that the browser can handle anng W|th a numeric preference score. The CGl.pm module even has an accept()
function that leverages this information to choose the best format for a given document type. Unfortunately, this part of
the HTTP protocol has atrophied, and neither Netscape's nor Microsoft's browsers give enough information in the
Accept header to make it useful for content negotiation.

In this section, we show a content handler that converts image files on the fly. It takes
advantage of Kyle Shorter's Image::Magick package, the Perl interface to John
Cristy's ImageMagick library. Image::Magick interconverts a large number of image
formats, including JPEG, PNG, TIFF, GIF, MPEG, PPM, and even PostScript. It can
also transform images in various ways, such as cropping, rotating, solarizing,
sharpening, sampling, and blurring.

The Apache::Magick content handler accepts URIs in this form:
/path/to/image.ext/Filterl/Filter2?arg=value&arg=value

In its simplest form, the handler can be used to perform image format conversions on
the fly. For example, if the actual file is named bluebird.gif and you request
bluebird.jpg, the content handler automatically converts the GIF into a JPEG file and
returns it. You can also pass arguments to the converter in the query string. For
example, to specify a progressive JPEG image (interlace = "Line") with a quality
of 50 percent, you can fetch the file by requesting a URI like this one:

/images/bluebird.jpg?interlace=Line&quality=50

You can also run one or more filters on the image prior to the conversion. For
example, to apply the "Charcoal" filter (which makes the image look like a charcoal
sketch) and then put a decorative border around it (the "Frame" filter), you can
request the image like this:

/images/bluebird.jpg/Charcoal/Frame?quality=75

Any named arguments that need to be passed to the filter can be appended to the
query string, along with the conversion arguments. In the last example, we can
specify a gold-colored frame this way:

/images/bluebird. jpg/Charcoal/Frame?quality=75&color=gold

This API doesn't allow you to direct arguments to specific filters. Fortunately, most of
the filters that you might want to apply together don't have overlapping argument
names, and filters ignore any arguments that don't apply to them. The full list of filters
and conversion operations can be found at the PerlMagick web site, located at

http://www.wizards.dupont.com/cristy/www/perl.html. You'll find pointers to

the latest ImageMagick code library there as well.

One warning before you use this Apache module on your system: some of the
operations can be very CPU-intensive, particularly when converting an image with
many colors, such as JPEG, to one that has few colors, such as GIF. You should also
be prepared for Image::Magick 's memory consumption, which is nothing short of
voracious.

Example 4.5 shows the code for Apache::Magick.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package Apache::Magick;

use strict;

use Apache::Constants gw(:common) ;
use Image::Magick ()

use Apache::File ();

use File::Basename gw(fileparse);
use DirHandle () ;

We begin as usual by bringing in the modules we need. We bring in
Apache::Constants, File::Basename for its file path parsing utilities, DirHandle() for
object-oriented interface to directory reading functions, and the Image::Magick
module itself.

my %LegalArguments = map { $ => 1 }

gw (adjoin background bordercolor colormap colorspace
colors compress density dispose delay dither
display font format iterations interlace
loop magick mattecolor monochrome page pointsize
preview type quality scene subimage subrange
size tile texture treedepth undercolor);

my %LegalFilters = map { $ => 1}

gw (AddNoise Blur Border Charcoal Chop
Contrast Crop Colorize Comment CycleColormap
Despeckle Draw Edge Emboss Enhance Equalize Flip Flop
Frame Gamma Implode Label Layer Magnify Map Minify
Modulate Negate Normalize OilPaint Opaque Quantize
Raise ReduceNoise Rotate Sample Scale Segment Shade
Sharpen Shear Solarize Spread Swirl Texture Transparent
Threshold Trim Wave Zoom) ;

We then define two hashes, one for all the filter and conversion arguments
recognized by Image::Magick and the other for the various filter operations that are
available. These lists were cut and pasted from the Image::Magick documentation.
We tried to exclude the ones that were not relevant to this module, such as ones that
create multiframe animations, but a few may have slipped through.

sub handler {
my $r = shift;

# get the name of the requested file
my $file = $r->filename;

# If the file exists and there are no transformation argumen
# just decline the transaction. It will be handled as usual
return DECLINED unless $Sr->args || Sr->path info || !-r Sr->

The handler() routine begins as usual by fetching the name of the requested file. We
decline to handle the transaction if the file exists, the query string is empty, and the
additional path information is empty as well. This is just the common case of the
browser trying to fetch an unmodified existing file.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

my S$source;

my (Sbase, S$directory, Sextension) = fileparse($Sfile, '\.\w+
if (-r Sr->finfo) { # file exists, so it becomes the source
Ssource = S$file;
}
else { # file doesn't exist, so we search for 1
return DECLINED unless -r S$Sdirectory;
$source = find image ($r, $directory, $base);

}

unless ($Ssource) {
$r->log error ("Couldn't find a replacement for $file");
return NOT_FOUND;

}

We now use File::Basename''s fileparse( ) function to parse the requested file into its
basename (the filename without the extension), the directory name, and the
extension. We check again whether we can read the file, and if so it becomes the
source for the conversion. Otherwise, we search the directory for another image file to
convert into the format of the requested file. For example, if the URI requested is
bluebird.jpeg and we find a file named bluebird.gif, we invoke Image::Magick to do the
conversion. The search is done by an internal subroutine named find_image(), which
we'll examine later. If successful, the name of the source image is stored in Ssource.
If unsuccessful, we log the error with the log_error() function and return a NOT FOUND
result code.

$r->send http header;
return OK if Sr->header only;

At this point, we send the HTTP header using send_http_header( ) . The next line
represents an optimization that we haven't seen before. It may be that the client isn't
interested in the content of the image file, but just in its meta-information, such as its
length and MIME type. In this case, the browser sends an HTTP HEAD request rather
than the usual GET. When Apache receives a HEAD request, it sets header_only( ) to
true. If we see that this has happened, we return from the handler immediately with an
Ok status code. Although it wouldn't hurt to send the document body anyway,
respecting the HEAD request results in a slight savings in processing efficiency and
makes the module compliant with the HTTP protocol.

my S$Sq = Image::Magick->new;
my Serr = S$g->Read ($source) ;

Otherwise, it's time to read the source image into memory. We create a new
Image::Magick object, store it in a variable named <, and then load the source
image file by calling its Read() method. Any error message returned by Read() is
stored into a variable called serr.

my %arguments = Sr->args;
# Run the filters

for (split '/', Sr->path info) {
my Sfilter = ucfirst $ ;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

next unless S$LegalFilters{S$filter};
Serr ||= $g->S$filter (%arguments);

}

# Remove invalid arguments before the conversion
for (keys %arguments) {

delete Sarguments{$ } unless S$LegalArguments{$ };
}

The next phase of the process is to prepare for the image manipulation. The first thing
we do is tidy up the input parameters. We retrieve the query string parameters by
calling the request object's args() method and store them in a hash named
Sarguments.

We then call the request object's path_info( ) method to retrieve the additional path
information. We split the path info into a series of filter names and canonicalize them
by capitalizing their initial letters using the Perl built-in operator ucfirst( ) . Each of the
filters is applied in turn, skipping over any that aren't on the list of filters that
Image::Magick accepts. We do an OR assignment into S rr, so that we maintain the
first non-null error message, if any. Having run the files, we remove from the
~arguments array any arguments that aren't valid in Image::Magick 's file format
conversion calls.

# Create a temporary file name to use for conversion
my ($tmpnam, S$fh) = Apache::File->tmpfile;

Image::Magick needs to write the image to a temporary file. We call the Apache::File
tmpfile( ) method to create a suitable temporary file name. If successful, tmpfile()
returns the name of the temporary file, which we store in the variable stmpnam, and a
filehandle open for writing into the file, which we store in the variable < h. The
tmpfile( ) method is specially written to avoid a "race condition" in which the temporary
file name appears to be unused when the module first checks for it but is created by
someone else before it can be opened.

# Write out the modified image
open (STDOUT, ">&=" . fileno($fh));

The next task is to have Image::Magick perform the requested conversion and write it
to the temporary file. The safest way to do this would be to pass it the temporary file's
already opened filehandle. Unfortunately, Image::Magick doesn't accept filehandles;
its Write( ) method expects a filename, or the special filename - to write to standard
output. However, we can trick it into writing to the filehandle by reopening standard
output on the filehandle, which we do by passing the filehandle's numeric file
descriptor to open( ) using the rarely seen > ¢~ notation. See the open( ) entry in the
perlfunc manual page for complete details.

Since STDOUT gets reset before every Perl API transaction, there's no need to save
and restore its original value.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Sextension =~ s/"\.//;
Serr ||= $g->Write('filename' => "\USextension\L:-", %argume
if (Serr) {
unlink Stmpnam;
$r->log error (Serr);
return SERVERiERROR;

}
close Sfh;

We now call Image::Magick 's Write() method with the argument
"filename'=>EXTENSTON: - where EXTENSION is the uppercased extension of
the document that the remote user requested. We also tack on any conversion
arguments that were requested. For example, if the remote user requested
bluebird. jpg?quality=75, the call to Write() ends up looking like this:

Sg->Write('filename'=>"'JPG:-"', 'quality'=>75);

If any errors occurred during this step or the previous ones, we delete the temporary
file, log the errors, and return a sErVER ERROR status code.

# At this point the conversion is all done!
# reopen for reading
Sfh = Apache::File->new (Stmpnam) ;
unless ($fh) {
$r->log error ("Couldn't open S$tmpnam: $S!");
return SERVER ERROR;
}

# send the file
$r->send fd($fh);

# clean up and go
unlink Stmpnam;
return OK;

}

If the call to Write() was successful, we need to send the contents of the temporary
file to the waiting browser. We could open the file, read its contents, and send it off
using a series of print() calls, as we've done previously, but in this case there's a
slightly easier way. After reopening the file with Apache::File 's new( ) method, we call
the request object's send fd( ) method to transmit the contents of the filehandle in
one step. The send_fd( ) method accepts all the same filehandle data types as the
Perl built-in 1/O operators. After sending off the file, we clean up by unlinking the
temporary file and returning an oOx status.

We'll now turn our attention to the find_image() subroutine, which is responsible for
searching the directory for a suitable file to use as the image source if the requested
file can't be found:

sub find image {
my ($r, Sdirectory, Sbase) = @ ;
my Sdh = DirHandle->new (Sdirectory) or return;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The find_image() utility subroutine is straightforward. It takes the request object, the
parsed directory name, and the basename of the requested file and attempts to
search this directory for an image file that shares the same basename. The routine
opens a directory handle with DirHandle->new() and iterates over its entries.

my Ssource;
for my Sentry ($dh->read) {
my Scandidate = fileparse(Sentry, '\.\w+');
if (Sbase eq S$candidate) {
# determine whether this is an image file

Ssource = join '', S$directory, S$entry;
my $subr = Sr->lookup file($source);
last if $Ssubr->content type =~ m:"image/:;

undef $source;

}

For each entry in the directory listing, we parse out the basename using fileparse(). If
the basename is identical to the one we're searching for, we call the request object's
lookup_file( ) method to activate an Apache subrequest. lookup_file( ) is similar to
lookup_uri( ), which we saw earlier in the context of server-side includes, except that
it accepts a physical pathname rather than a URI. Because of this, lookup_file() will
skip the URI translation phase, but it will still cause Apache to trigger all the various
handlers up to, but not including, the content handler.

In this case, we're using the subrequest for the sole purpose of getting at the MIME
type of the file. If the file is indeed an image of one sort or another, then we save the
request in a lexical variable and exit the loop. Otherwise, we keep searching.

Sdh->close;
return S$source;

}

At the end of the loop, ssource will be undefined if no suitable image file was found,
or it will contain the full pathname to the image file if we were successful. We close
the directory handle, and return Ssource.

Example 4.5. Apache::Magick Converts Image Formats on the Fly

package Apache: :Magick;
# file: Apache/Magick.pm

use strict;

use Apache::Constants gw(:common) ;
use Image::Magick ()

use Apache::File ()

use File::Basename gw (fileparse);
use DirHandle () ;

my %LegalArguments = map { $ => 1 }
gw (adjoin background bordercolor colormap colorspace
colors compress density dispose delay dither


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

display font format iterations interlace

loop magick mattecolor monochrome page pointsize
preview type quality scene subimage subrange
size tile texture treedepth undercolor);

my %LegalFilters = map { $_ => 1 }
gw (AddNoise Blur Border Charcoal Chop

Contrast Crop Colorize Comment CycleColormap

Despeckle Draw Edge Emboss Enhance Equalize Flip Flop
Frame Gamma Implode Label Layer Magnify Map Minify
Modulate Negate Normalize OilPaint Opaque Quantize
Raise ReduceNoise Rotate Sample Scale Segment Shade
Sharpen Shear Solarize Spread Swirl Texture Transparent
Threshold Trim Wave Zoom) ;

sub handler {

my Sr = shift;

# get the name of the requested file
my $Sfile = Sr->filename;

# If the file exists and there are no transformation argumen
# just decline the transaction. It will be handled as usual

return DECLINED unless Sr->args || S$r->path info || !-r Sr->

my Ssource;

my (Sbase, Sdirectory, Sextension) = fileparse($file, '\.\w+

if (-r Sr->finfo) { # file exists, so 1t becomes the source
Ssource = S$file;

}

else { # file doesn't exist, so we search for i
return DECLINED unless -r S$directory;
$source = find image($Sr, $directory, S$base);

unless ($source) {
$r->log error ("Couldn't find a replacement for S$file");
return NOT FOUND;

}

$r->send http header;
return OK 1if $r—>header_only;

# Read the image
my $g = Image::Magick->new;
my Serr = $g->Read ($source);

# Conversion arguments are kept in the query string, and the
# image filter operations are kept in the path info
my %$arguments = Sr->args;

# Run the filters
for (split '/', Sr->path info) {
my Sfilter = ucfirst $ ;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

sub

next unless $LegalFilters{$filter};
Serr ||= $Sg->$filter (%arguments);
}

# Remove invalid arguments before the conversion
for (keys Sarguments) {

delete Sarguments{$ } unless SLegalArguments{$ };
}

# Create a temporary file name to use for conversion
my ($tmpnam, $fh) = Apache::File->tmpfile;

# Write out the modified image

open (STDOUT, ">&=" . fileno(S$fh));
Sextension =~ s/"\.//;
Serr ||= S$Sg->Write('filename' => "\USextension\L:-", %argume

if (Serr) {
unlink S$Stmpnam;
$r->log error($Serr);
return SERVER_ERROR;

}

close S$fh;

# At this point the conversion is all done!

# reopen for reading

Sfh = Apache::File->new ($tmpnam) ;

unless ($fh) {
$r->log error ("Couldn't open S$tmpnam: $!");
return SERVER ERROR;

}

# send the file
$r->send fd(Sfh);

# clean up and go
unlink S$Stmpnam;
return OK;

find image {
my ($r, S$directory, S$base) = @ ;
my $Sdh = DirHandle->new ($directory) or return;

my S$source;
for my S$entry ($dh->read) {
my Scandidate = fileparse(Sentry, '\.\w+');
if (Sbase eq $candidate) {
# determine whether this is an image file
Ssource = join '', S$directory, Sentry;
my $subr = Sr->lookup file($source);
last if $subr->content type =~ m:"image/:;
undef S$source;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Sdh->close;
return S$source;

Here is a perl.conf entry to go with Apache::Magick :

<Location /images>
SetHandler perl-script
PerlHandler Apache::Magick
</Location>

4.1.4 A Dynamic Navigation Bar

Many large web sites use a navigation bar to help users find their way around the
main subdivisions of the site. Simple navigation bars are composed entirely of link
text, while fancier ones use inline images to create the illusion of a series of buttons.
Some sites use client-side Java, JavaScript, or frames to achieve special effects like
button "rollover," in which the button image changes when the mouse passes over it.
Regardless of the technology used to display the navigation bar, they can be
troublesome to maintain. Every time you add a new page to the site, you have to
remember to insert the correct HTML into the page to display the correct version of
the navigation bar. If the structure of the site changes, you might have to manually
update dozens or hundreds of HTML files.

Apache content handlers to the rescue. In this section, we develop a navigation bar
module called Apache::NavBar. When activated, this module automatically adds a
navigation bar to the tops and bottoms of all HTML pages on the site. Each major
content area of the site is displayed as a hypertext link. When an area is "active" (the
user is viewing one of the pages contained within it), its link is replaced with

highlighted text (see Figure 4.3).

Figure 4.3. The navigation bar at the top of this page was generated dynamically by
Apache::NavBar.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In this design, the navigation bar is built dynamically from a configuration file. Here's

the one that Lincoln uses at his laboratory's site at http://stein.cshl.org:

# Configuration file for the navigation bar

/index.html

/jade/

/AcePerl/
/software/boulder/
/software/WWW/
/linux/

Home

Jade
AcePerl
BoulderIO
WWW

Linux

The right column of this configuration file defines six areas named "Home," "Jade,"
"AcePerl," "BoulderlO," "WWW.," and "Linux" (the odd names correspond to various
software packages). The left column defines the URI that each link corresponds to.
For example, selecting the "Home" link takes the user to /index.html. These URIs are
also used by the navigation bar generation code to decide when to display an area as
active. In the example above, any page that starts with /linux/is considered to be part
of the "Linux" area and its label will be appropriately highlighted. In contrast, since
/index.html refers to a file rather than a partial path, only the home page itself is
considered to be contained within the "Home" area.

Example 4.6 gives the complete code for Apache::NavBar. At the end of the
example is a sample entry for perl.conf (or httpd.conf if you prefer) which activates the

navigation bar for the entire site.

package Apache:

use strict;
use Apache:

:NavBar;
# file Apache/NavBar.pm

:Constants gw(:common) ;

use Apache::File ()

my $BARS = ()

my STABLEATTS = '"WIDTH="100%" BORDER=1"';
my $TABLECOLOR = '#C8FFFF';

my SACTIVECOLOR =

"#FF0000';

The preamble brings in the usual modules and defines some constants that will be
used later in the code. Among the constants are ones that control the color and size

of the navigation bar.

sub handler {
my Sr = shift;

my S$bar = read configuration(Sr) ||

return DECLINED;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The handler( ) function starts by calling an internal function named
read_configuration( ) , which, as its name implies, parses the navigation bar
configuration file. If successful, the function returns a custom-designed NavBar object
that implements the methods we need to build the navigation bar on the fly. As in the
server-side includes example, we cache NavBar objects in the package global “BARS
and only re-create them when the configuration file changes. The cache logic is all
handled internally by read_configuration().

If, for some reason, read_configuration() returns an undefined value, we decline the
transaction by returning pr=c . 1NED. Apache will display the page, but the navigation
bar will be missing.

$r->content type eq 'text/html' | | return DECLINED;
my $fh = Apache::File->new ($r->filename) || return DECLINED;

As in the server-side include example, we check the MIME type of the requested file.
If it isn't of type text/html, then we can't add a navigation bar to it and we return
DECLINED to let Apache take its default actions. Otherwise, we attempt to open the
file by calling Apache::File 's new() method. If this fails, we again return pECcT.TNED to
let Apache generate the appropriate error message.

my Snavbar = make bar (Sr, Sbar);

Having successfully processed the configuration file and opened the requested file,
we call an internal subroutine named make_bar() to create the HTML text for the
navigation bar. We'll look at this subroutine momentarily. This fragment of HTML is
stored in a variable named Snavbar.

$r->send http header;
return OK if Sr->header only;

local $/ = "";
while (<S$Sfh>) {

s: (</BODY>) :SnavbarS$Sl:i;

S: (<BODY.*?>):$1Snavbar:si;
} continue {

Sr->print ($ );

}

return OK;

}

The remaining code should look familiar. We send the HTTP header and loop through
the text in paragraph-style chunks looking for all instances of the <BODY> and
</BODY> tags. When we find either tag we insert the navigation bar just below or
above it. We use paragraph mode (by setting </ to the empty string) in order to catch
documents that have spread the initial <BODY> tag among multiple lines.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

sub make bar

my ($r, S$bar) = @ ;

# create the navigation bar
my $current url = Sr->uri;
my (@cells;

The make_bar() function is responsible for generating the navigation bar HTML code.
First, it recovers the current document's URI by calling the Apache request object's
uri( ) method. Next, it calls $bar->urls( ) to fetch the list of partial URIs for the site's
major areas and iterates over the areas in a for() loop:

for my Surl (Sbar->urls) {

my $label = Sbar->label (Surl);

my $is current = Scurrent url =~ /"Surl/;

my $cell = $is current ?

qq (<FONT COLOR="S$SACTIVECOLOR">S$1label</FONT>)

qq (<A HREF="Surl">S$label</A>);

push @cells,

gq (<TD CLASS="navbar" ALIGN=CENTER BGCOLOR="STABLECOLOR">S

}

For each URI, the code fetches its human-readable label by calling $bar->label() and
determines whether the current document is part of the area using a pattern match.
What happens next depends on whether the current document is part of the area or
not. In the former case, the code generates a label enclosed within a <FONT> tag
with the COLOR attribute set to red. In the latter case, the code generates a hypertext
link. The label or link is then pushed onto a growing array of HTML table cells.

return qgq(<TABLE S$TABLEATTS><TR>@cells</TR></TABLE>\n) ;
}

At the end of the loop, the code incorporates the table cells into a one-row table and
returns the HTML to the caller.

We next look at the read_configuration() function:

sub read configuration {
my $r = shift;
my $conf file;
return unless Sconf file = Sr->dir config('NavConf');
return unless -e (Sconf file = Sr->server root relative (Scon

Potentially there can be several configuration files, each one for a different part of the
site. The path to the configuration file is specified by a per-directory Perl configuration
variable named NavConf. We retrieve the path to the configuration file with
dir_config(), convert it into an absolute path name with server_root_relative(), and test
that the file exists with the -e operator.

my Smod time = (stat ) [9];
return $BARS{$conf_file} if $BARS{$conf_file}
&& $BARS{Sconf file}->modified >= Smod time;
return S$SBARS{Sconf file} = NavBar->new(Sconf file);


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Because we don't want to reparse the configuration each time we need it, we cache
the NavBar object in much the same way we did with the server-side include
example. Each NavBar object has a modified() method that returns the time that its
configuration file was modified. The NavBar objects are held in a global cache named
:BARS and indexed by the name of the configuration files. The next bit of code calls
stat( ) to return the configuration file's modification time—notice that we can stat( ) the
~ filehandle because the foregoing -e operation will have cached its results. We then
check whether there is already a ready-made NavBar object in the cache, and if so,
whether its modification date is not older than the configuration file. If both tests are
true, we return the cached object; otherwise, we create a new one by calling the
NavBar new( ) method.

You'll notice that we use a different technique for finding the modification date here
than we did in Apache::ESSI (Example 4.3). In the previous example, we used the
-M file test flag, which returns the relative age of the file in days since the Perl
interpreter was launched. In this example, we use stat() to determine the absolute age
of the file from the filesystem timestamp. The reason for this will become clear later,
when we modify the module to handle If~-Modified-Since caching.

Toward the bottom of the example is the definition for the NavBar class. It defines
three methods named new(), urls(), and label() :

package NavBar;

# create a new NavBar object
sub new {

my ($class,Sconf file) = @ ;

my (G@c,%c);

my Sfh = Apache::File->new($Sconf file) || return;

while (<$fh>) {
chomp;
s/™\s+//; s/\s+$//; # fold leading and trailing whitesp
next 1f /~#/ || /*$/; # skip comments and empty lines
next unless my (Surl, $label) = /7~ (\S+)\s+(.+)/;
push @c, Surl; # keep the url in an ordered array

Sc{Surl} = S$Slabel; # keep its label in a hash
}

return bless {'urls' => \(@c,
'labels' => \%c,
'modified' => (stat S$conf file) [9]}, Sclass;

}

The new() method is called to parse a configuration file and return a new NavBar
object. It opens up the indicated configuration file, splits each row into the URI and
label parts, and stores the two parts into a hash. Since the order in which the various
areas appear in the navigation bar is significant, this method also saves the URIs to
an ordered array.

# return ordered list of all the URIs in the navigation bar
sub urls { return @{shift->{'urls'}}; }

# return the label for a particular URI in the navigation bar


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

sub label { return $ [0]->{'labels'}->{$ [11} || $ [11; }

# return the modification date of the configuration file
sub modified { return $ [0]->{'modified'}; }

1;

The urls() method returns the ordered list of areas, and the /abel() method uses the
NavBar object's hash to return the human-readable label for the given URI. If none is
defined, it just returns the URL. modified() returns the modification time of the
configuration file.

Example 4.6. A Dynamic Navigation Bar

package Apache: :NavBar;
# file Apache/NavBar.pm

use strict;
use Apache::Constants gw(:common) ;
use Apache::File ()

my %BARS = ();

my STABLEATTS = '"WIDTH="100%" BORDER=1"';

my $TABLECOLOR = "#CS8FFFF';

my $ACTIVECOLOR = '#FF0000';

sub handler {
my Sr = shift;
my S$bar = read configuration($r) || return DECLINED;
$r->content type eq 'text/html' | | return DECLINED;
my $fh = Apache::File->new ($r->filename) || return DECLINED;
my S$navbar = make bar ($Sr, $bar);

$r->send _http header;
return OK if Sr->header only;

local s/ = "";
while (<$fh>) {

s: (</BODY>) :$Snavbar$l:oi;

S: (<BODY.*?>) :$1Snavbar:osi;
} continue {

Sr->print ($ );

}

return OK;

sub make bar {

my ($r, $bar) = @_;

# create the navigation bar
my Scurrent url = Sr->uri;
my @Qcells;

for my $Surl ($bar->urls) {
my S$Slabel = Sbar->label (Surl);


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

my $is current = Scurrent url =~ /"Surl/;
my Scell = $is current ?
gq (<FONT COLOR="SACTIVECOLOR">S1label</FONT>)
qq (<A HREF="Surl">S$label</A>);

push @cells,

gq (<TD CLASS="navbar" ALIGN=CENTER BGCOLOR="STABLECOLOR">
}
return qq (<TABLE S$STABLEATTS><TR>Q@cells</TR></TABLE>\n) ;

}

# read the navigation bar configuration file and return it as a
sub read configuration {

my $r = shift;

my Sconf file;

return unless Sconf file = $r->dir config('NavConf');
return unless -e (Sconf file = S$r->server root relative(Scon
my Smod time = (stat ) [9];

return $BARS{Sconf file} if SBARS{Sconf file}
&& SBARS{Sconf file}->modified >= Smod time;
return $BARS{Sconf file} = NavBar->new(Sconf file);
}

package NavBar;

# create a new NavBar object
sub new {

my ($class,Sconf file) = @ ;

my (Q@c,%c);

my $Sfh = Apache::File->new(Sconf file) || return;

while (<$fh>) {
chomp;
s/™\s+//; s/\s+$//; # fold leading and trailing whitesp
next if /~#/ || /*$/; # skip comments and empty lines
next unless my (Surl, $label) = /7~ (\S+)\s+(.+)/;
push @c, S$Surl; # keep the url in an ordered array

Sc{surl} = S$label; # keep its label in a hash
}
return bless {'urls' => \Qc,
'labels' => \%c,
'modified' => (stat Sconf file) [9]}, Sclass;
}

# return ordered list of all the URIs in the navigation bar
sub urls { return @{shift->{'urls'}}; }

# return the label for a particular URI in the navigation bar
sub label { return $ [0]->{'labels'}->{$ [11} || $ [1]; }

# return the modification date of the configuration file
sub modified { return $ [0]->{'modified'}; }


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A configuration file section to go with Apache::NavBar might read:

<Location />

SetHandler perl-script

PerlHandler Apache::NavBar

PerlSetVar NavConf conf/navigation.conf
</Location>

Because so much of what Apache::NavBar and Apache:ESSI do is similar, you might
want to merge the navigation bar and server-side include examples. This is just a
matter of cutting and pasting the navigation bar code into the server-side function
definitions file and then writing a small stub function named NAVBAR(). This stub
function will call the subroutines that read the configuration file and generate the
navigation bar table. You can then incorporate the appropriate navigation bar into
your pages anywhere you like with an include like this one:

<!--#NAVBAR-->

4.1.5 Handling If-Modified-Since

One of us (Lincoln) thought the virtual navigation bar was so neat that he immediately
ran out and used it for all documents on his site. Unfortunately, he had some pretty
large (>400 MB) files there, and he soon noticed something interesting. Before
installing the navigation bar handler, browsers would cache the large HTML files
locally and only download them again when they had changed. After installing the
handler, however, the files were always downloaded. What happened?

When a browser is asked to display a document that it has cached locally, it sends
the remote server a GET request with an additional header field named /f-Modified-
Since. The request looks something like this:

GET /index.html HTTP/1.0
If-Modified-Since: Tue, 24 Feb 1998 11:19:03 GMT
User—-Agent:

(etc. etc. etc.)

The server will compare the document's current modification date to the time given in
the request. If the document is more recent than that, it will return the whole
document. Otherwise, the server will respond with a 304 "not modified" message and
the browser will display its cached copy. This reduces network bandwidth usage
dramatically.

When you install a custom content handler, the If~-Modified-Since mechanism no
longer works unless you implement it. In fact, you can generally ignore If-Modified-
Since because content handlers usually generate dynamic documents that change


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

from access to access. However, in some cases the content you provide is sufficiently
static that it pays to cache the documents. The navigation bar is one such case
because even though the bar is generated dynamically, it rarely changes from day to
day.

In order to handle If~Modified-Since caching, you have to settle on a definition for the
document's most recent modification date. In the case of a static document, this is
simply the modification time of the file. In the case of composite documents that
consist equally of static file content and a dynamically generated navigation bar, the
modification date is either the time that the HTML file was last changed or the time
that the navigation bar configuration file was changed, whichever happens to be more
recent. Fortunately for us, we're already storing the configuration file's modification
date in the NavBar object, so finding this aggregate modification time is relatively
simple.

To use these routines, simply add the following just before the call to -
>send http header in the handler() subroutine:

$r->update mtime (Sbar->modified) ;
$r-.set last modified;

my $rc = $Sr-> meets conditions
return $rc unless Src == OK;

We first call the update_mtime( ) function with the navigation bar's modification date.
This function will compare the specified date with the modification date of the request
document and update the request's internal mt i me field to the most recent of the two.
We then call set_last_modified( ) to copy the mt ime field into the outgoing Last-
Modified header. If a synthesized document depends on several configuration files,
you should call update_mtime() once for each configuration file, followed by
set_last_modified() at the very end.

The complete code for the new and improved Apache::NavBar, with the If-Modified-
Since improvements, can be found at this book's companion web site.

If you think carefully about this module, you'll see that it still isn't strictly correct.
There's a third modification date that we should take into account, that of the module
source code itself. Changes to the source code may affect the appearance of the
document without changing the modification date of either the configuration file or the
HTML file. We could add a new update_mtime() with the modification time of the
Apache::NavBar module, but then we'd have to worry about modification times of
libraries that Apache::NavBar depends on, such as Apache::File. This gets hairy very
quickly, which is why caching becomes a moot issue for any dynamic document much
more complicated than this one. See Section 9.4 in Chapter 9, for a complete
rundown of the methods that are available to you for controlling HTTP/1.1 caching.

4.1.6 Sending Static Files

If you want your content handler to send a file through without modifying it, the easiest
way is to let Apache do all the work for you. Simply return pEc.TnED from your


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

handler (before you send the HTTP header or the body) and the request will fall
through to Apache's default handler. This is a lot easier, not to mention faster, than
opening up the file, reading it line by line, and transmitting it unchanged. In addition,
Apache will automatically handle a lot of the details for you, first and foremost of
which is handling the I-Modified-Since header and other aspects of client-side
caching.

If you have a compelling reason to send static files manually, see Using Apache::File
to Send Static Files in Chapter 9 for a full description of the technique. Also see

Section 4.3 later in this chapter, for details on how to direct the browser to request a
different URI or to make Apache send the browser a different document from the one

that was specifically requested.



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

4.2 Virtual Documents

The previous sections of this chapter have been concerned with transforming existing
files. Now we turn our attention to spinning documents out of thin air. Despite the fact
that these two operations seem very different, Apache content handlers are
responsible for them both. A content handler is free to ignore the translation of the
URI that is passed to it. Apache neither knows nor cares that the document produced
by the content handler has no correspondence to a physical file.

We've already seen an Apache content handler that produces a virtual document.
Chapter 2, gave the code for Apache::Hello, an Apache Perl module that produces a
short HTML document. For convenience, we show it again in Example 4.7. This
content handler is essentially identical to the previous content handlers we've seen.
The main difference is that the content handler sets the MIME content type itself,
calling the request object's content type() method to set the MIME type to type
text/html. This is in contrast to the idiom we used earlier, where the handler allowed
Apache to choose the content type for it. After this, the process of emitting the HTTP
header and the document itself is the same as we've seen before.

After setting the content type, the handler calls send_http_header() to send the HTTP
header to the browser, and immediately exits with an 0« status code if header_only()
returns true (this is a slight improvement over the original Chapter 2 version of the
program). We call get_remote_host( ) to get the DNS name of the remote host
machine, and incorporate the name into a short HTML document that we transmit
using the request object's print( ) method. At the end of the handler, we return ox.

There's no reason to be limited to producing virtual HTML documents. You can just
as easily produce images, sounds, and other types of multimedia, provided of course
that you know how to produce the file format that goes along with the MIME type.

Example 4.7. "Hello World" Redux

package Apache::Hello;
# file: Apache/Hello.pm

use strict;
use Apache::Constants gw(:common) ;

sub handler {
my $r = shift;
$r—>content7type('text/html');
$r->send http header;
return OK unless S$r->header only;
my S$host = Sr->get remote host;
Sr->print (<<END) ;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<HTML>
<HEAD>
<TITLE>Hello There</TITLE>
</HEAD>
<BODY>
<H1>Hello Shost</H1>
"Hello world" is a terribly overused phrase in programming books
don't you think?
</BODY>
</HTML>
END
return OK;

1;

only for RuBoard - do not distribute or recompile m



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

4.3 Redirection

Instead of synthesizing a document, a content handler has the option of redirecting
the browser to fetch a different URI using the HTTP redirect mechanism. You can use
this facility to randomly select a page or picture to display in response to a URI
request (many banner ad generators work this way) or to implement a custom
navigation system.

Redirection is extremely simple with the Apache API. You need only add a Location
field to the HTTP header containing the full or partial URI of the desired destination,
and return a REDTRECT result code. A complete functional example using mod_perl is

only a few lines (Example 4.8). This module, named Apache::GoHome , redirects
users to the hardcoded URI http.//www.ora.com/. When the user selects a document
or a portion of the document tree that this content handler has been attached to, the
browser will immediately jump to that URI.

The module begins by importing the REDTRECT error code from Apache::Constants
(REDIRECT isn't among the standard set of result codes imported with :common). The
handler() method then adds the desired location to the outgoing headers by calling
Apache::header_out( ). header_out( ) can take one or two arguments. Called with one
argument, it returns the current value of the indicated HTTP header field. Called with
two arguments, it sets the field indicated by the first argument to the value indicated
by the second argument. In this case, we use the two-argument form to set the HTTP
Location field to the desired URI.

The final step is to return the REDTRECT result code. There's no need to generate an
HTML body, since most HTTP-compliant browsers will take you directly to the
Location URI. However, Apache adds an appropriate body automatically in order to
be HTTP-compliant. You can see the header and body message using telnet:

% telnet localhost 80
Trying 127.0.0.1...
Connected to localhost.
Escape character is '"*]'.
GET /gohome HTTP/1.0

HTTP/1.1 302 Moved Temporarily

Date: Mon, 05 Oct 1998 22:15:17 GMT

Server: Apache/1.3.3-dev (Unix) mod perl/1.16
Location: http://www.ora.com/

Connection: close

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<HTML><HEAD>

<TITLE>302 Moved Temporarily</TITLE>

</HEAD><BODY>

<H1>Moved Temporarily</HI1>

The document has moved <A HREF="http://www.ora.com/">here</A>.<P
</BODY></HTML>

NMAarnmnAam~t+a~an AlAacA~aAd Ty FAavAada~n A+


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

cullilcc L Lol cLudbcu Vy LuLrclilyll 11D UL .

You'll notice from this example that the REDTRECT status causes a "Moved
Temporarily" message to be issued. This is appropriate in most cases because it
makes no warrants to the browser that it will be redirected to the same location the
next time it tries to fetch the desired URI. If you wish to redirect permanently, you
should use the MOvED status code instead, which results in a " 301 Moved
Permanently" message. A smart browser might remember the redirected URI and
fetch it directly from its new location the next time it's needed.

Example 4.8. Generating a Redirect from a Content Handler

package Apache: :GoHome;
# file: Apache/GoHome.pm

use strict;
use Apache::Constants gw (REDIRECT) ;

sub handler {
my $r = shift;
$r->content type('text/html');
$r->header out (Location => 'http://www.ora.com/');
return REDIRECT;

As a more substantial example of redirection in action, consider Apache::RandPicture
(Example 4.9) which randomly selects a different image file to display each time it's
called. It works by selecting an image file from among the contents of a designated
directory, then redirecting the browser to that file's URI. In addition to demonstrating a
useful application of redirection, it again shows off the idiom for interconverting
physical file names and URISs.

The handler begins by fetching the name of a directory to fetch the images from,
which is specified in the server configuration file by the Perl variable PictureDir.
Because the selected image has to be directly fetchable by the browser, the image
directory must be given as a URI rather than as a physical path.

The next task is to convert the directory URI into a physical directory path. The
subroutine adds a / to the end of the URI if there isn't one there already (ensuring
that Apache treats the URI as a directory), then calls the request object's lookup_uri()
and filename() methods in order to perform the URI translation steps. The code looks

like this:
my $subr = Sr->lookup uri($dir uri);
my Sdir = $subr->filename;

Now we need to obtain a listing of image files in the directory. The simple way to do
this would be to use the Perl glob operator, for instance:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

chdir $dir;
@files = <*.{Jpg,gif}>;

However, this technique is flawed. First off, on many systems the glob operation
launches a C subshell, which sends performance plummeting and won't even work on
systems without the C shell (like Win32 platforms). Second, it makes assumptions
about the extension types of image files. Your site may have defined an alternate
extension for image files (or may be using a completely different system for keeping
track of image types, such as the Apache MIME magic module), in which case this
operation will miss some images.

Instead, we create a DirHandle object using Perl's directory handle object wrapper.
We call the directory handle's read() method repeatedly to iterate through the
contents of the directory. For each item we ask Apache what it thinks the file's MIME
type should be, by calling the lookup_uri() method to turn the filename into a
subrequest and content type() to fetch the MIME type information from the
subrequest. We perform a pattern match on the returned type and, if the file is one of
the MIME image types, add it to a growing list of image URIs. The subrequest object'
uri() method is called to return the absolute URI for the image. The whole process
looks like this:

(7]

my @files;
for my Sentry ($dh->read) {
# get the file's MIME type
my $rr = $Ssubr->lookup uri(Sentry);
my Stype = $rr->content type;
next unless S$type =~ m:"image/:;
push @files, S$Srr->uri;

}

Note that we look up the directory entry's filename by calling the subrequest object's
lookup_uri( ) method rather than using the main request object stored in < r. This
takes advantage of the fact that subrequests will look up relative paths relative to their
own URI.

The next step is to select a member of this list randomly, which we do using this time-
tested Perl idiom:

my $lucky one = $files[rand @files];

The last step is to set the Location header to point at this file (being sure to express
the location as a URI) and to return a REDTRECT result code. If you install the module
using the sample configuration file and <IMG> tag shown at the bottom of the listing,
a different picture will be displayed every time you load the page.

Example 4.9. Redirecting the Browser to a Randomly Chosen Picture


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package Apache::RandPicture;
# file: Apache/RandPicture.pm

use strict;
use Apache::Constants gw(:common REDIRECT) ;
use DirHandle () ;

sub handler {
my Sr = shift;
my $Sdir uri = S$r->dir config('PictureDir');
unless ($dir uri) {
$r->log reason("No PictureDir configured");
return SERVER ERROR;
}

$dir uri .= "/" unless $Sdir uri =~ m:/S$:;
my $subr = Sr->lookup uri($dir uri);
my Sdir = $subr->filename;

# Get list of images in the directory.

my $dh = DirHandle->new ($dir);

unless ($dh) {
$r->log _error ("Can't read directory $dir: $!");
return SERVER_ERROR;

}

my @files;

for my S$entry (Sdh->read) {
# get the file's MIME type
my Srr = S$subr->lookup uri(Sentry);
my Stype = S$rr->content type;
next unless S$type =~ m:"image/:;
push @files, S$rr->uri;

}

Sdh->close;

unless (@files) {
$r->log error ("No image files in directory");
return SERVER ERROR;

}

my $Slucky one = Sfiles[rand @files];
$r->header out (Location => $lucky one);
return REDIRECT;

A configuration section to go with Apache::RandPicture might be:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Location /random/picture>
SetHandler perl-script
PerlHandler Apache::RandPicture
PerlSetVar PictureDir /banners
</Location>

And you'd use it in an HTML document like this:

<image src="/random/picture" alt="[Our Sponsor]">

Although elegant, this technique for selecting a random image file suffers from a bad
performance bottleneck. Instead of requiring only a single network operation to get
the picture from the server to the browser, it needs two round-trips across the
network: one for the browser's initial request and redirect and one to fetch the image
itself.

You can eliminate this overhead in several different ways. The more obvious
technique is to get rid of the redirection entirely and simply send the image file
directly. After selecting the random image and placing it in the variable S 1ucky one,
we replace the last two lines of the handler() subroutine with code like this:

$subr = Sr->lookup uri ($lucky one);
$r->content type (Ssubr->content type);
$r->send http header;
return OK unless S$r->header only;
my Sfh = Apache::File->new($Ssubr->filename) || return FORBID
$r->send fd($fh);

We create yet another subrequest, this one for the selected image file, then use
information from the subrequest to set the outgoing content type. We then open up
the file and send it with the send_fd() method.

However, this is still a little wasteful because it requires you to open up the file
yourself. A more subtle solution would be to let Apache do the work of sending the file
by invoking the subrequest's run( ) method. run(' ) invokes the subrequest's content
handler to send the body of the document, just as if the browser had made the
request itself. The code now looks like this:

my $subr = Sr->lookup uri ($lucky one);

unless ($subr->status == DOCUMENT FOLLOWS) {
$r->log error("Can't lookup file $Slucky one}: $!");
return SERVERiERROR;

}

$r->content type($subr->content type);

$Sr->send http header;

return OK 1f $r—>header_only;

Ssubr->run;

return OK;

We call lookup_uri() and check the value returned by its status() method in order to
make sure that it is pocuMENT FOLLOWS (status code 200, the same as HTTP OK).
This constant is not exported by Apache::Constants by default but has to be imported


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

explicitly. We then set the main request's content type to the same as that of the
subrequest, and send off the appropriate HTTP header. Finally, we call the
subrequest's run( ) method to invoke its content handler and send the contents of the
image to the browser.

4.3.1 Internal Redirection

The two Apache::RandPicture optimizations that we showed in the previous section
involve a lot of typing, and the resulting code is a bit obscure. A far more elegant
solution is to let Apache do all the work for you with its internal redirection
mechanism. In this scheme, Apache handles the entire redirection internally. It
pretends that the web browser made the request for the new URI and sends the
contents of the file, without letting the browser in on the secret. It is functionally
equivalent to the solution that we showed at the end of the preceding section.

To invoke the Apache internal redirection system, modify the last two lines of
Apache::RandPicture 's handler() subroutine to read like this:

Sr->internal redirect ($lucky one);
return OK;

The request object's internal_redirect( ) method takes a single argument consisting of
an absolute local URI (one starting with a / ). The method does all the work of
translating the URI, invoking its content handler, and returning the file contents, if any.
Unfortunately internal_redirect() returns no result code, so there's no way of knowing
whether the redirect was successful (you can't do this from a conventional redirect
either). However, the call will return in any case, allowing you to do whatever cleanup
is needed. You should exit the handler with a result code of Ox.

In informal benchmarks, replacing the basic Apache::RandPicture with a version that
uses internal redirection increased the throughput by a factor of two, exactly what
we'd expect from halving the number of trips through the network. In contrast,
replacing all the MIME type lookups with a simpler direct grep for image file
extensions had negligible effect on the speed of the module. Apache's subrequest
mechanism is very efficient.

If you have very many images in the random pictures directory (more than a few
hundred), iterating through the directory listing each time you need to fetch an image
will result in a noticeable performance hit. In this case, you'll want to cache the
directory listing in a package variable the first time you generate it and only rebuild
the listing when the directory's modification time changes (or just wait for a server
restart, if the directory doesn't change often). You could adapt the Apache::ESSI
caching system for this purpose.

Internal redirection is a win for most cases when you want to redirect the browser to a
different URI on your own site. Be careful not to use it for external URIs, however. For
these, you must either use standard redirection or invoke Apache's proxy API

(Chapter 7).

When you use internal redirection to pass control from one module to another, the
second module in the chain can retrieve the original query string, the document URI,
and other information about the original request by calling the request object's prev()


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

method or, in Apache::Registry scripts only, by examining certain environment
variables. There is also a way, using Apache::err_header_out() for the original
module to set various HTTP header fields, such as cookies, that will be transferred to
the second across the internal redirect. Because internal redirects are most
commonly used in error handlers, these techniques are discussed in the section

Section 4.6" later in this chapter.
| [+eveisun Lo |



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

4.4 Processing Input

You can make the virtual documents generated by the Apache API interactive in
exactly the way that you would documents generated by CGl scripts. Your module will
generate an HTML form for the user to fill out. When the user completes and submits
the form, your module will process the parameters and generate a new document,
which may contain another fill-out form that prompts the user for additional
information. In addition, you can store information inside the URI itself by placing it in
the additional path information part.

4.4.1 CGIl Parameters

When a fill-out form is submitted, the contents of its fields are turned into a series of
name=value parameter pairs that are available for your module's use. Unfortunately,
correctly processing these parameter pairs is annoying because, for a number of
historical reasons, there are a variety of formats that you must know about and deal
with. The first complication is that the form may be submitted using either the HTTP
GET or POST method. If the GET method is used, the URI encoded parameter pairs
can be found separated by ampersands in the "query string," the part of the URI that
follows the > character:

-

http://your.site/uri/path?namel=vall&namelZ=valZ&name3=val3...

To recover the parameters from a GET request, mod_perl users should use the
request object's args( ) method. In a scalar context this method returns the entire
query string, ampersands and all. In an array context, this method returns the parsed
name=value pairs; however, you will still have to do further processing in order to
correctly handle multivalued parameters. This feature is only found in the Perl API.
Programmers who use the C API must recover the query string from the request
object's args field and do all the parsing manually.

If the client uses the POST method to submit the fill-out form, the parameter pairs can
be found in something called the "client block." C APl users must call three functions
named setup_client_block( ), should_client _block( ), and get client_block( ) in order
to retrieve the information.

While these methods are also available in the Perl API, mod_perl users have an
easier way: they need only call the request object's content( ) method to retrieve the
preparsed list of name=value pairs. However, there's a catch: this only works for the
older application/x-www-form-urlencoded style of parameter encoding. If the browser
uses the newer multipart/form-data encoding (which is used for file uploads, among
other things), then mod_per! users will have to read and parse the content information
themselves. read( ) will fetch the unparsed content information by looping until the
requested number of bytes have been read (or a predetermined timeout has
occurred). Fortunately, there are a number of helpful modules that allow mod_per!
programmers to accept file uploads without parsing the data themselves, including
CGl.pm and Apache::Request, both of which we describe later.

To show you the general technique for prompting and processing user input,


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 4.10 gives a new version of Apache::Hello. It looks for a parameter named
user_name and displays a customized welcome page, if present. Otherwise, it
creates a more generic message. In both cases, it also displays a fill-out form that
prompts the user to enter a new value for user_name. When the user presses the
submission button labeled "Set Name," the information is POSTed to the module and

the page is redisplayed (Figure 4.4).

Figure 4.4. The Apache::Hello2 module can process user input.

The code is very simple. On entry to handler( ) the module calls the request object's
method( ) method to determine whether the handler was invoked using a POST
request, or by some other means (usually GET). If the POST method was used, the
handler calls the request object's content( ) method to retrieve the posted parameters.
Otherwise, it attempts to retrieve the information from the query string by calling args(
) . The parsed name=value pairs are now stuffed into a hash named = params for
convenient access.

Having processed the user input, if any, the handler retrieves the value of the
user_name parameter from the hash and stores it in a variable. If the parameter is
empty, we default to "Unknown User."

The next step is to generate the document. We set the content type to text/html as
before and emit the HTTP header. We again call the request object's header_only() to
determine whether the client has requested the entire document or just the HTTP
header information.

This is followed by a single long Apache::print() statement. We create the HTML
header and body, along with a suitable fill-out form. Notice that we use the current
value of the user name variable to initialize the appropriate text field. This is a frill that
we have always thought was kind of neat.

Example 4.10. Processing User Input with the Apache Perl API


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package Apache::Hello2;

# file: Apache/Hello2.pm

use strict;

use Apache::Constants gw(:common) ;

sub handler {
my $r = shift;
my S$params = $r->method eqg 'POST' ? Sr->content : Sr->args;
my $user_name = $params{'user_name'} | | 'Unknown User';

$r->content type('text/html'");
$r->send http header;
return OK if Sr->header only;

Sr->print (<<END) ;
<HTML>
<HEAD>
<TITLE>Hello There</TITLE>
</HEAD>
<BODY>
<Hl1>Hello Suser name</H1>
Who would take this book seriously if the first example didn\'t
say "hello Suser name"?
<HR>
<FORM METHOD="POST">
Enter your name: <INPUT TYPE="text" NAME="user name" VALUE="Suse
<INPUT TYPE="submit" VALUE="Set Name">
</FORM>
</BODY>
</HTML>
END

return OK;

A perl.conf entry to go with it might read:

<Location /hello/friend>
SetHandler perl-script
PerlHandler Apache::Hello2
</Location>

This method of processing user input is only one of several equally valid alternatives.
For example, you might want to work with query string and POSTed parameters
simultaneously, to accommodate this type of fill-out form:

<FORM ACTION="/hello/friend?day=saturday" METHOD="POST">
<INPUT TYPE="text" NAME="user name">
<INPUT TYPE="submit">

</FORM>


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In this case, you could recover the values of both the day and user_name parameters
using a code fragment like this one:

my %$params = (Sr->args, S$Sr->content);

If the same parameter is present in both the query string and the POSTed values,
then the latter will override the former. Depending on your application's logic, you
might like this behavior. Alternatively, you could store the two types of parameter in
different places or take different actions depending on whether the parameters were
submitted via GET or POST. For example, you might want to use query string
parameters to initialize the default values of the fill-out form and enter the information
into a database when a POST request is received.

When you store the parsed parameters into a hash, you lose information about
parameters that are present more than once. This can be bad if you are expecting
multivalued parameters, such as those generated by a selection list or a series of
checkboxes linked by the same name. To keep multivalued information, you need to
do something like this:

my $%$params;

my @args = (Sr->args, S$r->content);
while (my(Sname,Svalue) = splice @args,0,2) {
push @{S$params{S$name}}, Svalue;

}

This bit of code aggregates the GET and POST parameters into a single array named
@args. It then loops through each name=value pair, building up a hash in which the
key is the parameter name and the value is an array reference containing all the
values for that parameter. This way, if you have a selection list that generates query
strings of the form:

vegetable=kale&vegetable=broccoli&vegetable=carrots
you can recover the complete vegetable list in this manner:

@vegetables = @{$Sparams{'vegetable'}};

U

An alternative is to use a module that was still in development at the time this chapter
was written. This module, named Apache::Request , uses the CGl.pm-style method
calls to process user input but does so efficiently by going directly to the request
object. With this module, the user input parameters are retrieved by calling param( ).
Call param( ) without any arguments to retrieve a list of all the parameter names. Call
param( ) with a parameter name to return a list of the values for that parameter in an
array context, and the first member of the list in a scalar context. Unlike the vanilla
request object, input of type multipart/form-data is handled correctly, and uploaded
files can be recovered too (using the same APl as CGl.pm).

To take advantage of Apache::Request in our "Hello World" module, we modify the
top part of the module to read as follows:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package Apache::Hello3;
# file: Apache/Hello3.pm

use strict;
use Apache::Constants gw(:common) ;
use Apache: :Request;

sub handler {
my Sr = Apache::Request->new(shift);
my $user name = S$r->param('user name') || 'Unknown User';
$r->content type('text/html');
Sr->print (<<END) ;
Who cares if every single example
says "Hello World"??7?!
END

4

The main detail here is that instead of retrieving the request object directly, we wrap it
inside an Apache::Request object. Apache::Request adds param() and a few other
useful methods and inherits all other method calls from the Apache class. More
information will be found in the Apache::Request manual page when that package is
officially released.

Like CGl.pm, Apache::Request allows you to handle browser file uploading, although
it is somewhat different in detail from the interface provided in CGl.pm versions 2.46
and lower (the two libraries have been brought into harnony in Version 2.47). As in
ordinary CGl, you create a file upload field by defining an <INPUT> element of type
"file" within a <FORM?> section of type "multipart/form-data". After the form is
POSTed, you retrieve the file contents by reading from a filehandle returned by the
Apache::Request upload( ) method. This code fragment illustrates the technique:

my $r = Apache::Request->new (shift);

my $moose = 0;
my S$uploaded file = Sr->upload('uploaded-file');
my S$uploaded name = Sr->param('uploaded-file');

while (<Suploaded file>) ({
Smoose++ 1f /moose/;

}

print "S$moose moose(s) found in Suploaded name\n";

4.4.2 Additional Path Information

Recall that after Apache parses an incoming URI to figure out what module to invoke,
there may be some extra bits left over. This extra stuff becomes the "additional path
information" and is available for your module to use in any way it wishes. Because it
is hierarchical, the additional path information part of the URI follows all the same
relative path rules as the rest of the URI. For example, . . means to move up one


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

level. For this reason, additional path information is often used to navigate through a
virtual document tree that is dynamically created and maintained by a CGl script or
module. However, you don't have to take advantage of the hierarchical nature of path
information. You can just use it as a handy place to store variables. In the next
chapter, we'll use additional path information to stash a session identifier for a long-
running web application.

Apache modules fetch additional path information by calling the request object's
path_info( ) method. If desired, they can then turn the path information into a physical
filename by calling lookup_uri(') .

An example of how additional path information can be used as a virtual document
tree is shown in Example 4.11, which contains the code for Apache::TreeBrowser .
This module generates a series of documents that are organized in a browseable tree
hierarchy that is indistinguishable to the user from a conventional HTML file hierarchy.
However, there are no physical files. Instead, the documents are generated from a
large treelike Perl data structure that specifies how each "document" should be
displayed. Here is an excerpt:

'"bark'=>{
-title=>"'The Wrong Tree',
-contents=>"'His bark was worse than his bite.',
'smooth'=>{
-title=>"'Like Butter',
-contents=>"'As smooth as silk.'
}/
'"rough'=>{
-title=>'Ruffled’',
-contents=>"Don't get rough with me."
}/
bo..

In this bit of the tree, a document named "bark" has the title "The Wrong Tree" and
the contents "His bark was worse than his bite." Beneath this document are two
subdocuments named "smooth" and "rough." The "smooth" document has the title
"Like Butter" and the contents "As smooth as silk." The "rough" document is similarly
silly. These subdocuments can be addressed with the additional path information
/bark/smooth and /bark/rough, respectively. The parent document, naturally enough,
is addressed by /bark. Within the module, we call each chunk of this data structure a
"node."

Using the information contained in the data structure, Apache::TreeBrowser
constructs the document and displays its information along with a browseable set of
links organized in hierarchical fashion (see Figure 4.5). As the user moves from
document to document, the currently displayed document is highlighted—sort of a
hierarchical navigation bar!

Figure 4.5. Apache::TreeBrowser creates a hierarchical navigation tree.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The source code listing is long, so we'll run through it a chunk at a time:

package Apache::TreeBrowser;

use strict;
use Apache::Constants gw(:common REDIRECT) ;

my $TREE = make tree();

sub handler {
my Sr = shift;

The module starts by importing the usual Apache constants and the REDTRECT result
code. It then creates the browseable tree by calling an internal subroutine named
make_tree() and stores the information in a package global named <$TrEE. In a real-
life application, this data structure would be created in some interesting way, for
example, using a query on a database, but in this case make_tree() just returns the
hardcoded data structure that follows the  DAT2A  token at the end of the code.

my $path info = S$r->path info;
my S$path translated = Sr->lookup uri($path info)->filename;
my Scurrent uri = Sr->uri;

Now's the time to process the additional path information. The handler fetches the
path information by calling the request object's path_info() method and fetches the


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

module's base URI by calling uri(). Even though we won't be using it, we transform
the additional path information into a physical pathname by calling lookup_uri() and
filename(). This is useful for seeing how Apache does URI translation.

unless ($path info) {
$r->header out (Location => "Scurrent uri/");
return REDIRECT;
}

For this module to work correctly, some additional path information has to be
provided, even if it's only a / character. If we find that the additional path information
is empty, we rectify the situation by redirecting the browser to our URI with an
additional / appended to the end. This is similar to the way that Apache redirects
browsers to directories when the terminal slash is omitted.

$r->content type('text/html'");
$r->send http header;
return OK if Sr->header only;
my ($junk, @components) = split "/", Spath info;

# follow the components down
my ($node, S$Sname) = (STREE, '');
foreach (l@components) {

last unless Snode->{S };

Sname = $ ;

$node = $node->{$ };

}

At this point we begin to construct the document. We set the content type to text/html,
send out the HTTP header, and exit if header_only() returns true. Otherwise, we split
the path information into its components and then traverse the tree, following each
component name until we either reach the last component on the list or come to a
component that doesn't have a corresponding entry in the tree (which sometimes
happens when users type in the URI themselves). By the time we reach the end of
the tree traversal, the variable snode points to the part of the tree that is referred to
by the additional path information or, if the path information wasn't entirely correct, to
the part of the tree corresponding to the last valid path component.

Sr->print (<<END) ;

<HTML>

<HEAD>
<TITLE>Snode->{-title}</TITLE>
</HEAD>

<BODY BGCOLOR="white">
<Hl1>$node->{-title}</H1>

Contents = <b>$node->{-contents}</b>

<H2>Navigation Tree</H2>
END
my Sprefix = "http://http://../" x @components;
print S$prefix ?
qq (<H3><A HREF="Sprefix">Tree Root</A></H3>\n)


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

qq (<H3><FONT COLOR="red">Tree RooOt</FONT></H3>) ;

We now call print() to print out the HTML document. We first display the current
document's title and contents. We then print a hyperlink that points back to the "root"
(really the top level) of the tree. Notice how we construct this link by creating a
relative URI based on the number of components in the additional path information. If
the additional path information is currently /bark/rough/cork, we construct a link
whose HREF is
http://http://../http://http://../http://http://../. Through the
magic of relative addressing, this will take us back to the root / document.

print node('', STREE, Snode, Sprefix);
print gg (<A HREF="http://http://../">Go up one level</A><P>)

The next task is to construct the hierarchical navigation system shown in Figure 4.5.
We do this by calling print_node( ) , an internal function. This is followed by a link to
the next-higher document, which is simply the relative path http://http://. . /.

Sr->print (<<END) ;

Node = <EM>Sname</EM><br>

URI = <EM>Scurrent uri</EM><br>

Path information =<EM>Spath info</EM><br>
Translated path = <EM>$path translated</EM>
</BODY>

</HTML>

END

return OK;

}

Last, we print out some more information about the current document, including the
internal name of the document, the current URI, the additional path information, and
the translated path information.

Let's now look at the print_node() subroutine:

sub print node {
my (Sname, $node, Scurrent, Sprefix) = (@
my (@branches) = grep !/*-/, sort keys %
if ($Sname) {
# print the node itself
print Snode != S$Scurrent ?
gqq (<LI><A HREF="S$prefixS$Sname/">S$name</A></LI>\n)
gq (KLI><FONT COLOR="red">$name</FONT></LI>\n);
# print branches underneath it
Sprefix .= "Sname/";

gnode;

}
return unless (@branches;
print "<UL>\n";
foreach (@branches) {
print node($ , $node->{$ }, Scurrent, Sprefix);
}
print "</UL>\n";


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This subroutine is responsible for displaying a tree node as a nested list. It starts by
finding all the branches beneath the requested node, which just happens to be all the
hash keys that don't begin with a hyphen. It then prints out the name of the node. If
the node being displayed corresponds to the current document, the name is
surrounded by <FONT> tags to display it in red. Otherwise, the node name is turned
into a hyperlink that points to the appropriate document. Then, for each subdocument
beneath the current node, it invokes itself recursively to display the subdocument.
The most obscure part of this subroutine is the need to append a sprefix variable
to each URI the routine generates. Spre £ 1x contains just the right number of
http://http://../ sequences to make the URIs point to the root of the virtual
document tree. This simplifies the program logic.

The last function in this module is make_tree(). It simply reads in the text following the
~DATA  token and eval()s it, turning it into a Perl data structure:

sub make tree {
local $/;
my S$data = <DATA>;
eval Sdata;

}

1;
_DATA

Example 4.11. Using Path Information to Browse a Tree

package Apache::TreeBrowser;
# file: Apache/TreeBrowser.pm

use strict;
use Apache::Constants gw(:common REDIRECT) ;

my S$TREE = make tree();

sub handler {
my $r = shift;
my $path info = Sr->path info;
my S$path translated = $Sr->lookup uri($path info)->filename;
my $current uri = S$r->uri;
unless (Spath info) {
$r->header out (Location => "Scurrent uri/");
return REDIRECT;
}

$r->content type('text/html'");
$r->send http header;

return OK if Sr->header only;

my ($junk, @components) = split "/", Spath info;

# follow the components down
my (Snode, S$Sname) = (STREE, '');
foreach (l@components) {


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

last unless Snode->{$ };
Sname = $ ;
$node = $node->{$ };

}

Sr->print (<<END) ;
<HTML>
<HEAD>
<TITLE>Snode->{-title}</TITLE>
</HEAD>
<BODY BGCOLOR="white">
<Hl1>$node->{-title}</H1>

Contents = <b>S$node->{-contents}</b>

<H2>Navigation Tree</H2>
END

my Sprefix = "http://http://../" x @components;
print Sprefix ?
qq (<H3><A HREF="S$Sprefix">Tree Root</A></H3>\n)
qq (<H3><FONT COLOR="red">Tree RoOt</FONT></H3>);

print node('', $TREE, Snode, S$prefix);
print gg (<A HREF="http://http://../">Go up one level</A><P>)

Sr->print (<<END) ;
Node = <EM>S$name</EM><br>
URI = <EM>Scurrent uri</EM><br>
Path information =<EM>S$path info</EM><br>
Translated path = <EM>$path translated</EM>
</BODY>
</HTML>
END

return OK;

sub print node {

my ($name, S$node, Scurrent, Sprefix) = @ ;
my (@branches) = grep !/"-/, sort keys %$Snode;

i1f (Sname) {
# print the node itself
print S$node != Scurrent ?
qq (<LI><A HREF="SprefixS$Sname/">Sname</A></LI>\n)
qq (<LI><FONT COLOR="red">$name</FONT></LI>\n) ;
# print branches underneath it
Sprefix .= "S$Sname/";
}
return unless @branches;
print "<UL>\n";
foreach (@branches) {
print node($ , $node->{$ }, Scurrent, Sprefix);


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}
print "</UL>\n";

# create a sample tree to browse
sub make tree

local $/;

my Sdata = <DATA>;

eval S$Sdata;

__DATA
return {
-title => 'The Root of All Evil',
-contents => 'And so it begins...',
'bark' => {
-title => 'The Wrong Tree',
-contents => 'His bark was worse than his bite.',
'smooth' => {
-title => 'Like Butter',
-contents => 'As smooth as silk.',
Yo
'rough' => {
-title => 'Ruffled',
-contents => "Don't get rough with me.",

'cork' => {

-title => 'Corked',

—-contents => "Corks don't grow on trees...or do t
I
'cinnamon' => {

-title => 'The Cinnamon Tree',
-contents => 'Little bird, little bird in the cin

I

I
'bough' => {
-title => 'Stealing a Bough',
-contents => "I've taken a bough of silence.",
'forked' => {
-title => 'Forked Boughs',
-contents => 'What lightning and snakes\' tongues hav
by
'straight' => {
-title => 'Single Boughs',
-contents => 'Straight, but not narrow.',
by
'extra' => {
-title => 'Take a Bough',
-contents => 'Nothing beats that special feeling,
when you are stealing that extra b

I

Hy
'branch' => {
-title => 'The Branch Not Taken',


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

-contents => 'Branch or be branched.',
"twig' => {
-title => 'Twiggy',
-contents => 'Anorexia returns!',
'"twiglet' => {
-title => 'The Leastest Node',
-contents => 'Winnie the Pooh, Eeyore, and Twigle

}I
}I
'"leaf' => {
-title => 'Leaf me Alone!',
-contents => 'Look back, Leaf Ericksonn.',

by
}

Here is a sample configuration file entry to go with Apache::TreeBrowser :

<Location /virtual>
SetHandler perl-script
PerlHandler Apache::TreeBrowser

</Location>

only for RuBoard - do not distribute or recompile m g



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

4.5 Apache::Registry

If you are using mod_perl to write Apache modules, then you probably want to take
advantage of Apache::Regqistry. Apache::Registry is a prewritten Apache Perl module
that is a content handler for files containing Perl code. In addition to making it
unnecessary to restart the server every time you revise a source file,
Apache::Registry sets up a simulated CGI environment, so that programs that expect
to get information about the transaction from environment variables can continue to
do so. This allows legacy CGl applications to run under the Apache Perl API, and lets
you use server-side code libraries (such as the original CGl.pm) that assume the
script is running in a CGI environment.

Apache::Registry is similar in concept to the content filters we created earlier in this
chapter, but instead of performing simple string substitutions on the contents of the
requested file, Apache::Registry compiles and executes the code contained within it.
In order to avoid recompiling the script each time it's requested, Apache::Registry
caches the compiled code and checks the file modification time each time it's
requested in order to determine whether it can safely use the cached code or whether
it must recompile the file. Should you ever wish to look at its source code,
Apache::Regqistry is a good example of a well-written Apache content handler that
exercises much of the Perl API.

We created a typical configuration file entry for Apache::Registry in Chapter 2. Let's
examine it in more detail now.

Alias /perl/ /usr/local/apache/perl/
<Location /perl>

SetHandler perl-script

PerlHandler Apache: :Registry

PerlSendHeader On

Options +ExecCGI
</Location>

The Alias directive simply maps the physical directory /usr/local/apache/perl/ to a
virtual directory named /perl. The <Location> section is more interesting. It uses
SetHandler to make perl-script the content handler for this directory and sets
Apache::Registry to be the module to handle requests for files within this part of the
document tree.

The perisendHeader On line tells mod_perl to intercept anything that looks like a
header line (such as Content-Type: text/html )and to automatically turn it into
a correctly formatted HTTP/1.0 header the way that Apache does with CGI scripts.
This allows you to write scripts without bothering to call the request object's
send_http_header() method. Like other Apache::Registry features, this option makes
it easier to port CGl scripts to the Apache API. If you use CGl.pm's header() function
to generate HTTP headers, you do not need to activate this directive because
CGl.pm detects mod_perl and calls send_http_header() for you. However, it does not
hurt to use this directive anyway.

Option +ExecCGl ordinarily tells Apache that it's all right for the directory to contain


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

CGl scripts. In this case the flag is required by Apache::Registry to confirm that you
really know what you're doing. In addition, all scripts located in directories handled by
Apache::Registry must be executable—another check against accidentally leaving
wayward nonscript files in the directory.

When you use Apache::Registry, you can program in either of two distinct styles. You
can choose to ignore the Apache Perl API entirely and act as if your script were
executed within a CGI environment, or you can ignore the CGl compatibility features
and make Apache API calls. You can also combine both programming styles in a
single script, although you run the risk of confusing yourself and anyone else who
needs to maintain your code!

A typical example of the first style is the hello.pl script (Example 4.12), which you
also saw in Chapter 2. The interesting thing about this script is that there's nothing
Apache-specific about it. The same script will run as a standard CGl script under
Apache or any other web server. Any library modules that rely on the CGI
environment will work as well.

Example 4.12. An Apache::Registry Script That Uses CGIl-Compatibility Mode

#!/usr/local/bin/perl
# file: hello.pl

print "Content-Type: text/html\n\n";

print <<END;

<HTML>

<HEAD>

<TITLE>Hello There</TITLE>

</HEAD>

<BODY>

<H1>Hello $ENV{REMOTE7HOST }</H1>

Who would take this book seriously if the examples
didn't say "hello world" in at least four different ways?
</BODY>

</HTML>

END

Example 4.13 shows the same script rewritten more compactly by taking advantage
of the various shortcuts provided by the CGl.pm module.

Example 4.13. An Apache::Registry Script That Uses CGl.pm

#!/usr/local/bin/perl
# file: hello2.pl

use CGI gw (:standard);
print header,
start html ('Hello There'),
hl('Hello', remote host()),
'"Who would take this book seriously if the examples',


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

'didn\'t say "hello world" in at least four different ways?',
end html;

In contrast, Example 4.14 shows the script written in the Apache Perl API style. If
you compare the script to Example 4.7, which used the vanilla API to define its own
content handler, you'll see that the contents of this script (with the exception of the # !
line at the top) are almost identical to the body of the handler() subroutine defined
there. The main difference is that instead of retrieving the Apache request object from
the subroutine argument list, we get it by calling 2pache->request (). request() is a
static (class) method in the Apache package where the current request object can
always be found.

There are also some subtle differences between Apache::Registry scripts that make
Apache API calls and plain content handlers. One thing to notice is that there is no
return value from Apache::Registry scripts. Apache::Registry normally assumes an
HTTP status code of 200 (0x). However, you can change the status code manually by
calling the request object's status() method to change the status code before sending
out the header:

Sr->status (404) ; # forbidden

Strictly speaking, it isn't necessary to call send_http_header( ) if you have
PerlSendHeader On. However, it is good practice to do so, and it won't lead to
redundant headers being printed.

Alternatively, you can use the CGIl compatibility mode to set the status by printing out
an HTTP header that contains a Status: field:

print "Status: 404 Forbidden\n\n";

Another subtle difference is that at least one of the command-line switches that may
be found on the topmost # ! line is significant. The -w switch, if present, will signal
Apache::Registry to turn on Perl warnings by setting the <~ global to a true value.
Another common switch used with CGI scripts is -T, which turns on taint checking.
Currently, taint checking can be activated for the Perl interpreter as a whole only at
server startup time by setting the configuration directive PerliTaintCheck On .
However, if Apache::Registry notices -T on the # ! line and taint checks are not
activated, it will print a warning in the server error log.

Since Apache::Registry scripts can do double duty as normal CGl scripts and as
mod_perl scripts, it's sometimes useful for them to check the environment and
behave differently in the two situations. They can do this by checking for the
existence of the environment variable 0D PERL or for the value of

GATEWAY INTERFACE. When running under mod_perl, GATEWAY INTERFACE Will
be equalto cc1-rer1 /1. 1. Under the normal CGl interface, it will be cc1/1 . 1.

Example 4.14. An Apache::Registry Script That Uses the Apache API


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

#!/usr/local/bin/perl
# file: hello3.pl

use strict;

my Sr = Apache->request;
$r->content type('text/html');
$r->send http header;

return OK if Sr->header only;

my Shost = $r->get remote host;
Sr->print (<<END) ;

<HTML>

<HEAD>

<TITLE>Hello There</TITLE>
</HEAD>

<BODY>

<H1>Hello $host</H1>

Enough with the "Hello worlds" already!
</BODY>

</HTML>

END

4.5.1 A Useful Apache::Registry Application

All the Apache::Registry examples that we've seen so far have been short and,
frankly, silly. Now let's look at an example of a real-world script that actually does
something useful. The guestbook script (Example 4.15), as its name implies,
manages a typical site guestbook, where visitors can enter their names, email
addresses, and comments. It works well as both a standalone CGl script and a
mod_perl Apache::Reqistry script, automatically detecting when it is running under
the Apache Perl APl in order to take advantage of mod_perl's features. In addition to
showing you how to generate a series of fill-out forms to handle a moderately
complex user interaction, this script demonstrates how to read and update a file
without the risk of several instances of the script trying to do so simultaneously.

Unlike some other guestbook programs, this one doesn't append users' names to a
growing HTML document. Instead, it maintains a flat file in which each user's entry is
represented as a single line in the file. Tabs separate the five fields, which are the
date of the entry, the user's name, the user's email address, the user's location (e.g.,
city of residence), and comments. Nonalphanumeric characters are URL-escaped to
prevent the format from getting messed up if the user enters newlines or tabs in the
fields, giving records that look like:

05/07/98 JR Jr ewing%40dallas.com Dallas,%20TX Like%20the%20

When the script is first called, it presents the user with the option of signing the
guestbook file or looking at previous entries (Figure 4.6).

Figure 4.6. The Apache::Registry guestbook script generates its own fill-out form.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If the user presses the button labeled "Sign Guestbook," a confirmation page
appears, which echoes the entry and prompts the user to edit or confirm it (Figure
4.7).

Figure 4.7. The confirmation page generated by guestbook

Pressing the "Change Entry" button takes the user back to the previous page with the
fields filled in and waiting for the user's changes. Pressing "Confirm Entry" appends
the user's entry to the guestbook file and displays the whole file (Figure 4.8).


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 4.8. The listing of previous guestbook entries generated by guestbook

Turning to the source code, the script begins by importing functions from a variety of
modules, including CGIl.pm, /O::File, Fcntl, and POSIX :

use strict;

use CGI gw (:standard :html3 escape unescape escapeHTML) ;
use IO::File ()

use Fcntl gw(:flock);

use POSIX gw(strftime);

use vars gw (@FIELDS $REQUIRED $BIG SGUESTBOOKFILE) ;

@FIELDS = gw(name e-mail location comments)
SREQUIRED = ('name' => 1, 'e-mail' => 1);
$BIG = ('comments' => 1);

The script then defines some constants. ¢ 121.Ds is an array of all the fields known
to the guestbook. By changing the contents of this array you can generate different
fill-out forms. ©REQUTRED is a hash that designates certain fields as required, in this
case name and e-mail. The script will refuse to add an entry to the guestbook until
these fields are filled out (however, no error checking on the contents of the fields is
done). ©21G is a hash containing the names of fields that are displayed as large text
areas, in this case comment s. Other fields are displayed as one-line text entries.

if ($EN\/{MOD7PERL} ) |
SGUESTBOOKFILE = Apache->request->dir config('GuestbookFile'

}
SGUESTBOOKFILE | |= "/usr/tmp/guestbookfile.txt";

Next the script checks if it is running under mod_perl by checking for the MoD PERL
environment variable. If the script finds that it is running under mod_perl, it fetches the
Apache request object and queries the object for a per-directory configuration
variable named GuestbookFile. This contains the physical pathname of the file where


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the guestbook entries are stored. If the script is a standalone CGI script, or if no
GuestbookFile configuration variable is defined, the script defaults to a hardcoded file
path. In the case of Apache::Registry scripts, the PerlSetVar directive used to set per-
directory configuration variables must be located in a .htaccess file in the same
directory as the script.

print header,
start html(-title => 'Guestbook', -bgcolor => 'silver'),
hl ("Guestbook") ;

The script now begins to generate the document by calling shortcut functions defined
in the CGI module to generate the HTTP header, the HTML header and title, and a
level 1 heading of "Guestbook."

CASE: {
$ = param('action');
/"sign/1i and do { sign guestbook(); last CASE; };
/~confirm/i and do { write guestbook() and view guestbook()
/~view/1 and do { view guestbook(l); last CASE; };

generate form();

}

We now enter the variable part of the script. Depending on what phase of the
transaction the user is in, we either want to prompt the user to fill out the guestbook
form, confirm an entered entry, or view the entire guestbook. We distinguish between
the phases by looking at the contents of a script parameter named action. If action
equals sign, we know that the user has just completed the fill-out form and pressed
the "Sign Guestbook" button, so we jump to the routine responsible for this part of the
transaction. Similarly, we look for action values of confirm and view, and jump to the
appropriate routines for these actions. If action is missing, or if it has some value we
don't expect, we take the default action of generating the fill-out form.

print end html;
exit 0;

Having done its work, the script prints out the </HTML> tag and exits.

sub generate form ({
my (@rows;
for my $field (QFIELDS) {
my $title = "Your S$field";
Stitle .= " (optional)" if !SREQUIRED{Sfield};
my Selement = SBIG{S$field} ?
textarea (-name => S$field,
-rows => 4,
-columns => 50,
-wrap => 1)
textfield(-name => S$field, -size => 50);
push @rows, th(Stitle) . td($Selement);
}
print start form,
table (TR{-align => 'LEFT'}, \@rows),
br,
submit (-name => 'action', -value => 'View Guestbook'),


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

submit (-name => 'action', -value => 'Sign Guestbook'),
end form;

}

The subroutine responsible for generating the form is named, appropriately enough,
generate_form(). It iterates over ¢ = 1E1.Ds and dynamically generates a text label and
a form element for each field, modifying the format somewhat based on whether the
field is marked optional or big. Each label/field pair is pushed onto a list named
@rows. When the loop is finished, ¢ rows is turned into a nicely formatted table using
CGl.pm's table-generation shortcuts. The "View Guestbook" and "Sign Guestbook"
buttons are added to the form, and the routine finishes.

sub sign guestbook {
my @missing = check missing (QGFIELDS);
if (@missing) {
print warning (@missing);
generate form();
return;

}

sign_guestbook() has a slightly more complex job. Its first task is to check the
submitted form for missing required fields by calling the internal subroutine
check_missing(). If any are missing, it displays the missing fields by calling another
internal subroutine, print_warning(), and then invokes generate form() to redisplay
the form with its current values. No particular hocus-pocus is required to display the
partially completed form correctly; this is just one of the beneficial side effects of
CGl.pm's "sticky forms" feature.

my (@rows;
foreach (QFIELDS) {
push @rows, TR(th({-align=>'LEFT'},$ ),
td (escapeHTML (param (S ))));

}

print "Here is your guestbook entry. Press ",
em('Confirm')," to save it, or ",em('Change'),
" to change it.",

hr,

table (@rows),

hr;

If all the required fields are filled in, sign_guestbook() generates an HTML table to
display the user's entries. The technique for generating the form is similar to that used
in the previous subroutine, except that no special cases are needed for different types
of fields. We do, however, have to be careful to call escapeHTML() (a function
imported from CGl.pm) in order to prevent HTML entities and other funny characters
that the user might have entered from messing up the page.

print start form;
foreach (QFIELDS) {
print hidden (-name => $7);
}
print submit (-name => 'action',
-value => 'Change Entry'),


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

submit (-name =>
-value =>
end form;

'action',
'"Confirm Entry'),
}

We end the routine by creating a short fill-out form. This form contains the contents of
the user's guestbook entry stashed into a series of hidden fields, and push buttons
labeled "Change Entry" and "Confirm Entry." We hide the guestbook entry information
in this way in order to carry the information forward to the next set of pages.

sub check missing {
my sp;
for (@ ) { ++Sp{S_}

_} if param($ ) }
return grep !$p{$ }, ke

ys $REQUIRED;

sub print warning {

print font ({-color => 'red'},
'"Please fill in the following fields: ',
em(join ', ', @ ),

vv).
. ’

}

The check_missing() and print_warning() subroutines are short and sweet. The first
routine uses the Perl grep() function to check the list of provided fields against the list
of required fields and returns a list of the truants, if any. The second routine accepts a
list of missing fields and turns it into a warning of the form, "Please fill in the following
fields: e-mail." For emphasis, the message is rendered in a red font (under browsers
that understand the <FONT> extension).

The write_guestbook() and view_guestbook() subroutines are the most complex of
the bunch. The main complication is that, on an active site, there's a pretty good
chance that a second instance of the script may be invoked by another user before
the first instance has completed opening and updating the guestbook file. If the writes
overlap, the file could be corrupted and a guestbook entry lost or scrambled. For this
reason, it's important for the script to lock the file before working with it.

POSIX-compliant systems (which include both Unix and Windows systems) offer a
simple form of advisory file locking through the flock( ) system call. When a process
opens a file and flock( ) s it, no other process can flock( ) it until the first process
either closes the file or manually relinquishes the lock. There are actually two types of
lock. A "shared" lock can be held by many processes simultaneously. An "exclusive"
lock can only be held by one process at a time and prevents any other program from
locking the file. Typically, a program that wants to read from a file will obtain a shared
lock, while a program that wants to write to the file asks the system for an exclusive
lock. A shared lock allows multiple programs to read from a file without worrying that
some other process will change the file while they are still reading it. A program that
wants to write to a file will call flock( ) to obtain an exclusive lock; the call will then
block until all other processes have released their locks. After an exclusive lock is
granted, no other program can lock the file until the writing process has finished its
work and released the lock.

It's important to realize that the flock() locking mechanism is advisory. Nothing


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

prevents a program from ignoring the flock() call and reading from or writing to a file
without seeking to obtain a lock first. However, as long as only the programs you've
written yourself attempt to access the file and you're always careful to call flock()
before working with it, the system works just fine.

sub lock {
my Spath = shift;
my $for writing = shift;

my ($lock type, $path name, Sdescription);
if ($for writing)
$lock type = LOCK EX;

$path name = ">>Spath";
Sdescription = 'writing';
}
else {

$lock type = LOCK SH;
Spath name = S$path;
Sdescription = 'reading';

}

my $Sfh = IO::File->new(Spath name) or
warn "Couldn't open Spath for $description: $!", return;

# now try to lock it

my $success;

my $tries = 0;

while ($Stries++ < 10) {
last if Ssuccess = flock($fh, $lock type|LOCK NB);
print p("Waiting for S$description lock on guestbook file.
sleep(1l); # walt a second

}

unless ($success) {
warn ("Couldn't get lock for S$description");
return;

}
return $fh;

}

To make life a little simpler, the guestbook script defines a utility function named
lock() that takes care of opening and locking the guestbook file (you'll find the
definition at the bottom of the source listing). lock() takes two arguments: the name of
the file to open and a flag indicating whether the file should be opened for writing. If
the write flag is true, the function opens the file in append mode and then attempts to
obtain an exclusive lock. Otherwise, it opens the file read only and tries to obtain a
shared lock. If successful, the opened filehandle is returned to the caller.

The flock() function is used to obtain both types of lock. The first argument is the
opened filehandle; the second is a constant indicating the type of lock to obtain. The
constants for exclusive and shared locks are LoCk Ex and LOCK Si, respectively.
Both constants are imported from the Fcntl module using the :flock tag. We combine
these constants with the .ocx N& (nonblocking) constant, also obtained from Fentl,
in order to tell flock() to return if a lock cannot be obtained immediately. Otherwise,


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

flock() will block indefinitely until the file is available. In order to avoid a long wait in
which the script appears to be hung, we call flock() in a polling loop. If a lock cannot
immediately be obtained, we print a warning message to the browser screen and
sleep for 1 second. After 10 consecutive failed tries, we give up and exit the script. If
the lock is successful, we return the filehandle.

sub write guestbook {
my $fh = lock (SGUESTBOOKFILE, 1);
unless (S$Sfh) {
print strong('An error occurred: unable to open guestbook
Delete('action');

print a({-href => self url}, 'Try again');
return;

}

seek ($fh,0,2); # paranoia: seek to end of file

my S$date = strftime('$D',localtime) ;
print $fh join("\t", S$date, map {escape(param($ ))} (QFIELDS

print "Thank you, ", param('name'),", for signing the guestb
Sfh->close;
1;

To write a new entry into the guestbook, the write_guestbook() function calls lock()
with the path to the guestbook file and a flag indicating we want write access. If the
call fails, we display an appropriate error message and return. Otherwise, we seek to
the end of the file, just in case someone else wrote to the file while we were waiting
for the lock. We then join together the current date (obtained from the POSIX
strftime() function) with the current values of the guestbook fields and write them out
to the guestbook filehandle. To avoid the possibility of the user messing up our tab-
delimited field scheme by entering tabs or newlines in the fill-out form, we're careful to
escape the fields before writing them to the file. To do this, we use the map operator
to pass the fields through CGl.pm's escape() function. This function is ordinarily used
to make text safe for use in URIs, but it works just as well here.

After writing to the file, we're careful to close the filehandle. This releases the lock on
the file and gives other processes access to it.

sub view guestbook ({
my $show sign button = shift;
print start form,
submit (-name => 'Sign Guestbook'),
end form
if Sshow sign button;
my Sfh = lock (SGUESTBOOKFILE, O0);

my @Qrows;

unless (Sfh) {
print strong('An error occurred: unable to open guestbook
Delete('action');
print a({-href => self url}, 'Try again');


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

return;

}

The view_guestbook() subroutine looks a lot like the one we just looked at but in
reverse. It starts by creating a tiny fill-out form containing a single button labeled
"Sign Guestbook." This button is only displayed when someone views the guestbook
without signing it first and is controlled by the Sshow sign button flag. Next we
obtain a read-only filehandle on the guestbook file by calling lock() with a false
second argument. If Jock() returns an undefined result, we print an error message and
exit. Otherwise, we read the contents of the guestbook file line by line and split out the
fields.

while (<$fh>) {
chomp;
my @data = map {escapeHTML($ )} map {unescape($ )} split(
unshift @rows, td(\Q@data);
}
unshift @rows, th(['Date',@FIELDS]);
print p(
table ({-border => "'},
caption (strong('Previous Guests')),
TR (\Q@rows))) ;
Sfh->close;
print a({-href => '/'}, 'Home');
1;
}

The fields are then processed through map() twice: once to unescape the URL
escape characters using the CGIl.pm unescape() function and once again to make
them safe to display on an HTML page using CGl.pm's escapeHTML() function. The
second round of escaping is to avoid problems with values that contain the <, >, and
& symbols. The processed lines are turned into HTML table cells, and unshifted onto
a list named ¢ rows. The purpose of the unshift is to reverse the order of the lines, so
that more recent guestbook entries appear at the top of the list. We add the headings
for the table and turn the whole thing into an HTML table using the appropriate
CGl.pm shortcuts. We close the filehandle and exit.

If we were not interested in running this script under standard CGl, we could increase
performance slightly and reduce memory consumption substantially by replacing a
few functions with their Apache:: equivalents:

I0::File -—> Apache::File
CGI::escape --> Apache::Util::escape uri
CGI::unescape --> Apache::Util::unescape uri

CGI::escapeHTML --> Apache::Util::escape html
POSIX::strftime --> Apache::Util::ht time

See the reference listings in Chapter 9 for the proper syntax for these replacements.
You'll also find a version of the guestbook script that uses these lightweight

replacements on this book's companion web site, http://www.modperl.com.

Example 4.15. A Guestbook Script


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

#!/usr/local/bin/perl
# guestbook.cgi
use strict;

use CGI gw(:standard :html3 escape unescape escapeHTML) ;

use IO::File ();

use Fcntl gw(:flock);

use POSIX gw(strftime);

use vars gw (@FIELDS $REQUIRED $%BIG SGUESTBOOKFILE) ;

@FIELDS = gw(name e-mail location comments);
$REQUIRED = ('name' => 1, 'e-mail' => 1);
$BIG = ('comments' => 1);

if (SENV{MOD PERL}) {

SGUESTBOOKFILE = Apache->request->dir config('GuestbookFile'

}
SGUESTBOOKFILE ||= "/usr/tmp/guestbookfile.txt";

print header,

start html (-title => 'Guestbook', -bgcolor => 'silver'),

hl ("Guestbook") ;

CASE: {
$ = param('action');
/~sign/i and do { sign guestbook(); last CASE;
/"~confirm/i and do { write guestbook(
/"view/i and do { view guestbook(l); last CASE;

generate form();

}

print end html;
exit 0;

sub generate form ({
my @rows;
for my $field (@FIELDS) {
my Stitle = "Your S$field";
Stitle .= " (optional)"™ if !SREQUIRED{Sfield};
my Selement = $BIG{$field} ?
textarea (-name => S$field,
-rows => 4,
-columns => 50,
-wrap => 1)

) and view guestbook ()
)

textfield (-name => $field, -size => 50);

push @rows, th(Stitle) . td($Selement);
}
print start form,
table (TR{-align => 'LEFT'}, \Q@rows),
br,

submit (-name => 'action', -value => 'View Guestbook'),
submit (-name => 'action', -value => 'Sign Guestbook'),


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

sub

sub

sub

sub

end form;

sign guestbook {
my @missing = check missing (@FIELDS) ;
if (@missing) {
print warning (@missing);
generate form();
return;
}
my @Qrows;
foreach (QFIELDS) {
push @rows, TR(th({-align=>'LEFT'},$ ),
td (escapeHTML (param (S ))));

}

print "Here is your guestbook entry. Press ",
em('Confirm')," to save it, or ",em('Change'),
" to change it.",

hr,

table (@Grows),

hr;

print start form;
foreach (@FIELDS) {
print hidden (-name => $ );

}
print submit (-name => 'action',
-value => 'Change Entry'),
submit (-name => 'action',
-value => 'Confirm Entry'),
end form;

check missing {
my %p;
for (@) { ++$p{S_} if param(S$S_) }

return_grep 'Sp{$_}, keys %REQUIRED;

print warning {

print font ({-color => 'red'},
'Please fill in the following fields: ',
em(join ', ', @ ),

L)

write guestbook {

my S$Sfh = 1lock (SGUESTBOOKFILE, 1);

unless (Sfh) {
print strong('An error occurred: unable to open
Delete ('action');
print a({-href => self url}, 'Try again');
return;

guestbook


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

seek ($fh,0,2); # paranoia: seek to end of file

my Sdate = strftime('%D',localtime);

print $fh join("\t", Sdate, map {escape(param($ ))} (QFIELDS
print "Thank you, ", param('name'),", for signing the guestb
Sfh->close;

1;

sub view guestbook {
my Sshow sign button = shift;
print start form,
submit (-name => 'Sign Guestbook'),
end form
if Sshow sign button;
my $Sfh = 1lock (SGUESTBOOKFILE, O0);

my @rows;
unless (Sfh) {
print strong('An error occurred: unable to open guestbook
Delete ('action');
print a({-href => self url},'Try again');
return;
}
while (<$fh>) {
chomp;
my @data = map {escapeHTML (S )} map {unescape(S$ )} split(
unshift @rows, td(\Qdata):;
}
unshift @Qrows, th(['Date',Q@FIELDS]);
print p(
table ({-border => "'},
caption (strong('Previous Guests')),
TR (\Q@rows))) ;
Sfh->close;
print a({-href => '/'}, 'Home');
1;

sub lock {
my Spath = shift;
my Sfor writing = shift;

my ($lock type, Spath name, S$description);
if (Sfor writing) {
$lock type = LOCK EX;

$path name = ">>$Spath";
Sdescription = 'writing';
}
else {

$lock type = LOCK SH;
Spath name Spath;
Sdescription = 'reading';


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}

my $fh = IO::File->new ($Spath name) or
warn "Couldn't open Spath for Sdescription: $!", return;

# now try to lock it

my S$success;

my Stries = 0;

while (Stries++ < 10) {
last if Ssuccess = flock($fh, $lock type|LOCK NB);
print p("Waiting for S$description lock on guestbook file.
sleep(l); # walt a second

}

unless ($Ssuccess) {
warn ("Couldn't get lock for Sdescription");
return;

}
return S$fh;

}
A .htaccess file to go with the guestbook script might be:

PerlSetVar GuestbookFile /home/www/etc/guests.txt

4.5.2 Apache::Registry Traps

There are a number of traps and pitfalls that you can fall into when using
Apache::Registry. This section warns you about them.

It helps to know how Apache::Registry works in order to understand why the traps are
there. When the server is asked to return a file that is handled by the
Apache::Registry content handler (in other words, a script!), Apache::Registry first
looks in an internal cache of compiled subroutines that it maintains. If it doesn't find a
subroutine that corresponds to the script file, it reads the contents of the file and
repackages it into a block of code that looks something like this:

package S$mangled package name;
use Apache gw(exit);
sub handler {
#line 1 Soriginal filename
contents of the file

}

smangled package name is a version of the script's URI which has been modified
in such a way as to turn it into a legal Perl package name while keeping it distinct
from all other compiled Apache::Registry scripts. For example, the guestbook.cgi
script shown in the last section would be turned into a cached subroutine in the
package Apache::ROOT:.perl::guestbook 2ecgi. The compiled code is then cached
for later use.

Before Apache::Registry even comes into play, mod_perl fiddles with the environment


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

to make it appear as if the script were being called under the CGI protocol. For
example, the sENV {QUERY STRING} environment variable is initialized with the
contents of Apache::args(), and s=nv{SERVER NAME} is filled in from the value
returned by Apache::server_hostname(). This behavior is controlled by the
PerlSetupEnv directive, which is On by default. If your scripts do not need to use CGl
>NV variables, turning this directive Off will reduce memory overhead slightly.

In addition to caching the compiled script, Apache::Registry also stores the script's
last modification time. It checks the stored time against the current modification time
before executing the cached code. If it detects that the script has been modified more
recently than the last time it was compiled, it discards the cached code and
recompiles the script.

The first and most common pitfall when using Apache::Registry is to forget that the
code will be persistent across many sessions. Perl CGIl programmers commonly
make profligate use of globals, allocate mammoth memory structures without
disposing of them, and open filehandles and never close them. They get away with
this because CGI scripts are short-lived. When the CGI transaction is done, the script
exits, and everything is cleaned up automatically.

Not so with Apache::Registry scripts (or any other Apache Perl module, for that
matter). Globals persist from invocation to invocation, big data structures will remain
in memory, and open files will remain open until the Apache child process has exited
or the server itself it shut down.

Therefore, it is vital to code cleanly. You should never depend on a global variable
being uninitialized in order to determine when a subroutine is being called for the first
time. In fact, you should reduce your dependency on globals in general. Close
filehandles when you are finished with them, and make sure to kill (or at least wait on)
any child processes you may have launched.

Perl provides two useful tools for writing clean code. use strict turns on checks that
make it harder to use global variables unintentionally. Variables must either be
lexically scoped (with my ) or qualified with their complete package names. The only
way around these restrictions is to declare variables you intend to use as globals at
the top of the script with use vars . This code snippet shows how:

use strict;
use vars qgw{ SINIT SDEBUG @NAMES $HANDLES} ;

We have used strict in many of the examples in the preceding sections, and we
strongly recommend it for any Perl script you write.

The other tool is Perl runtime warnings, which can be turned on in Apache::Registry
scripts by including a -w switch on the # ! line, or within other modules by setting the
magic S variable to true. You can even enable warnings globally by setting <~ to
true inside the server's Perl startup script, if there is one (see Chapter 2).

-w will catch a variety of errors, dubious programming constructs, typos, and other


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

sins. Among other things, it will warn when a bareword (a string without surrounding
quotation marks) conflicts with a subroutine name, when a variable is used only once,
and when a lexical variable is inappropriately shared between an outer and an inner
scope (a horrible problem which we expose in all its gory details a few paragraphs
later).

-w may also generate hundreds of "Use of uninitialized value" messages at runtime,
which will fill up your server error log. Many of these warnings can be hard to track
down. If there is no line number reported with the warning, or if the reported line
number is incorrect,2! try using Perl's # 1 i ne token described in the perlsyn manual

page and in Chapter 9 under Section 9.5."

[2] Certain uses of the eval operator and "here" documents are known to throw off Perl's line numbering.

It may also be helpful to see a full stack trace of the code which triggered the warning.
The cluck( ) function found in the standard Carp module will give you this
functionality. Here is an example:

use Carp ()
local $SIG{ WARN } = \&Carp::cluck;

Note that -w checks are done at runtime, which may slow down script execution time.
In production mode, you may wish to turn warnings off altogether or localize warnings
using the s~ global variable described in the perlvar manpage.

Another subtle mod_perl trap that lies in wait for even experienced programmers
involves the sharing of lexical variables between outer and inner named subroutines.
To understand this problem, consider the following innocent-looking code:

#!/usr/local/bin/perl -w

for (0..3) {
bump and print();
}

sub bump and print {
my $a = 1;
sub bump {
Sa++;
print "In the inner scope, \S$a is $a\n";
}
print "In the outer scope, \$a is $a\n";
bump () ;
}

When you run this script, it generates the following inexplicable output:

Variable "$a" will not stay shared at ./test.pl line 12.
In the outer scope, Sa is 1

In the inner scope, Sa is
In the outer scope, $a is
In the inner scope, $a 1is
In the outer scope, $a 1is
In the inner scope, $a 1is

DS =W N


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

()]

In the outer scope, a

S
In the inner scope, $Sa

Ul =

i
i

)]

For some reason the variable Sz has become "unstuck" from its my() declaration in
bump_and_print() and has taken on a life of its own in the inner subroutine bump().
Because of the -w switch, Perl complains about this problem during the compilation
phase, with the terse warning that the variable "will not stay shared." This behavior
does not happen if the inner subroutine is made into an anonymous subroutine. It
only affects named inner subroutines.

The rationale for the peculiar behavior of lexical variables and ways to avoid it in
conventional scripts are explained in the perldiag manual page. When using
Apache::Registry this bug can bite you when you least expect it. Because
Apache::Registry works by wrapping the contents of a script inside a handler()
function, inner named subroutines are created whether you want them or not. Hence,
this piece of code will not do what you expect:

#!/usr/local/bin/perl
use CGI gw/param header/;

my Sname = param('name');
print header ('text/plain');
print body () ;

exit 0;

sub print body {
print "The contents of \Sname is S$name.\n";

}

The first time you run it, it will run correctly, printing the value of the name CGil
parameter. However, on subsequent invocations the script will appear to get "stuck"
and remember the values of previous invocations. This is because the lexically
scoped Sname variable is being referenced from within print_body(), which, when
running under Apache::Registry, is a named inner subroutine. Because multiple
Apache processes are running, each process will remember a different value of
Sname, resulting in bizarre and arbitrary behavior.

Perl may be fixed someday to do the right thing with inner subroutines. In the
meantime, there are several ways to avoid this problem. Instead of making the outer
variable lexically scoped, you can declare it to be a package global, as this snippet
shows:

use strict;
use vars 'Sname';
Sname = param('name') ;

Because globals are global, they aren't subject to weird scoping rules.

Alternatively, you can pass the variable to the subroutine as an argument and avoid
sharing variables between scopes altogether. This example shows that variant:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

my S$name = param('name');
print body ($name) ;

sub print body {
my S$name = shift;
print "The contents of \Sname is S$name.\n";

}

Finally, you can put the guts of your application into a library and use or require it.
The Apache::Registry then becomes only a hook that invokes the library:

#!/usr/local/bin/perl
require "my application guts";
do everything();

The shared lexical variable problem is a good reason to use the -w switch during
Apache::Registry script development and debugging. If you see warnings about a
variable not remaining shared, you have a problem, even if the ill effects don't
immediately manifest themselves.

Another problem that you will certainly run into involves the use of custom libraries by
Apache::Registry scripts. When you make an editing change to a script, the
Apache::Registry notices the recent modification time and reloads the script.
However, the same isn't true of any library file that you load into the script with use or
require. If you make a change to a require d file, the script will continue to run the old
version of the file until the script itself is recompiled for some reason. This can lead to
confusion and much hair-tearing during development!

You can avoid going bald by using Apache::StatINC , a standard part of the mod_per!
distribution. It watches over the contents of the internal Perl = 11 C array and reloads
any files that have changed since the last time it was invoked. Installing
Apache::StatINC is easy. Simply install it as the PerlInitHandler for any directory that
is managed by Apache::Registry. For example, here is an access.conf entry that
installs both Apache::Registry and Apache::StatINC :

Alias /perl/ /usr/local/apache/perl/
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
PerlInitHandler Apache::StatINC
PerlSendHeader On
Options +ExecCGI
</Location>

Because Apache::StatINC operates at a level above the level of individual scripts,
any nonstandard library locations added by the script with use lib or by directly
manipulating the contents of © 11C will be ignored. If you want these locations to be
monitored by Apache::StatINC, you should make sure that they are added to the
library search path before invoking the script. You can do this either by setting the
PERLS5LTE environment variable before starting up the Apache server (for instance, in
the server startup script), or by placing a use lib line in your Perl startup file, as

described in Chapter 2.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When you use Apache::StatINC, there is a slight overhead for performing a stat on
each included file every time a script is run. This overhead is usually immeasurable,
but it will become noticeable on a heavily loaded server. In this case, you may want to
forego it and instead manually force the embedded Perl interpreter to reload all its
compiled scripts by restarting the server with apachect!. In order for this to work, the
PerlFreshRestart directive must be turned on in the Apache configuration file. If you
haven't done so already, add this line to perl.conf or one of the other configuration
files:

PerlFreshRestart On

You can try reloading compiled scripts in this way whenever things seem to have
gotten themselves into a weird state. This will reset all scripts to known initial settings
and allow you to investigate problems systematically. You might also want to stop the
server completely and restart it using the -X switch. This forces the server to run as a
single process in the foreground. Interacting with a single process rather than multiple
ones makes it easier to debug misbehaving scripts. In a production environment,
you'll want to do this on a test server in order to avoid disrupting web services.

[Crevnous Poaxr v



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

4.6 Handling Errors

Errors in Apache modules do occur, and tracking them down is significantly trickier
than in standalone Perl or C programs. Some errors are due to bugs in your code,
while others are due to the unavoidable hazards of running in a networked
environment. The remote user might cancel a form submission before it is entirely
done, the connection might drop while you're updating a database, or a file that you're
trying to access might not exist.

A virtuous Apache module must let at least two people know when a problem has
occurred: you, the module's author, and the remote user. You can communicate
errors and other exception conditions to yourself by writing out entries to the server
log. For alerting the user when a problem has occurred, you can take advantage of
the simple but flexible Apache ErrorDocument system, use CGI::Carp, or roll your
own error handler.

4.6.1 Error Logging

We talked about tracking down code bugs in Chapter 2 and will talk more about C-

language specific debugging in Chapter 10. This section focuses on defensive
coding techniques for intercepting and handling other types of runtime errors.

The most important rule is to log everything. Log anything unexpected, whether it is a
fatal error or a condition that you can work around. Log expected but unusual
conditions too, and generate routine logging messages that can help you trace the
execution of your module under normal conditions.

Apache versions 1.3 and higher offer syslog-like log levels ranging in severity from
debug, for low-priority messages, through warn, for noncritical errors, to emerg, for
fatal errors that make the module unusable. By setting the LogLevel directive in the
server configuration file, you can adjust the level of messages that are written to the
server error log. For example, by setting LogLevel to warn, messages with a priority
level of warn and higher are displayed in the log; lower-priority messages are ignored.

To use this adjustable logging API, you must load the standard Apache::Log module.
This adds a log( ) method to the Apache request object, which will return an
Apache::Log object. You can then invoke this object's methods in order to write nicely
formatted log entries to the server's error log at the priority level you desire. Here's a
short example:

use Apache::Log () ;

my $log = Sr->1log;
Slog->debug ("Trying to lock guestbook file now");
unless (lock (SGUESTBOOKFILE, 1)) {
Slog->emerg("Can't get lock!");
return SERVER ERROR;

}
Slog->debug ("Got lock™");


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In this example, we first obtain a log object by calling the request object's log()
method. We call the log object's debug() method to send a debug message to the
error log and then try to perform a locking operation. If the operation fails, we log an
error message at the emerg priority level using the log object's emerg() method and
exit. Otherwise, we log another debugging message.

You'll find the full list of method calls made available by Apache::Log in Chapter 9, in
Section 9.1.6 under Section 9.1." In addition, the Apache Perl API offers three
simpler methods for entering messages into the log file. You don't have to import the
Apache::Log module to use these methods, and they're appropriate for smaller
projects (such as most of the examples in this book).

$r->log_error($message)

log_error( ) writes out a time-stamped message into the server error log using a
facility of error. Use it for critical errors that make further normal execution of the
module impossible. This method predates the 1.3 LogLevel API but still exists
for backward compatibility and as a shortcut to $r->log->error.

$r->warn($message)

warn( ) will log an error message with a severity level of warn. You can use this
for noncritical errors or unexpected conditions that you can work around. This
method predates the 1.3 LogLevel API but still exists for backward compatibility
and as a shortcut to $r->/log->warn.

$r->log_reason($message, $file)

This is a special-purpose log message used for errors that occur when a
content handler tries to process a file. It results in a message that looks
something like this:

to /usr/local/apache/htdocs/index.html failed for ppp
on: user phyllis not authorized

acce

[0)]

-
D

a

[0)]

You might also choose to include a SDERUG global in your modules, either hard-
coding it directly into the source, or by pulling its value out of the configuration file with
Apache::dir_config(). Your module can then check this global every time it does
something significant. If set to a true value, your script should send verbose
informational messages to the Apache error log (or to an alternative log file of your
choice).

4.6.2 The ErrorDocument System

Apache provides a handy ErrorDocument directive that can be used to display a
custom page when a handler returns a non-OK status code. The custom page can be
any URI, including a remote web page, a local static page, a local server-side include
document, or a CGl script or module. In the last three cases, the server generates an
internal redirect, making the redirection very efficient.

For example, the configuration file for Lincoln's laboratory site contains this directive:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com
ErrorDocument 404 /perl/missing.cgi

When the server encounters a 404 "Not Found" status code, whether generated by a
custom module or by the default content handler, it will generate an internal redirect
to a mod_perl script named missing.cgi . Before calling the script, Apache sets some
useful environment variables including the following:

REDIRECT_URL

The URL of the document that the user was originally trying to fetch.
REDIRECT_STATUS

The status code that caused the redirection to occur.
REDIRECT_REQUEST_METHOD

The method (GET or POST) that caused the redirection.
REDIRECT_QUERY_STRING

The original query string, if any.
REDIRECT_ERROR_NOTES

The logged error message, if any.

A slightly simplified version of missing.cgi that works with Apache::Registry (as well
as a standalone CGl script) is shown in Example 4.16. For a screenshot of what the
user gets when requesting a nonexistent URI, see Figure 4.9.

Figure 4.9. The missing.cgi script generates a custom page to display when a URI is not found.

Example 4.16. A Simple Apache::Registry ErrorDocument Handler


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

#!/usr/local/bin/perl
# file: missing.cgi
use CGI gw (:standard);
use strict;

print header,
start html (-title => 'Missing Document', -bgcolor => 'whit
hl (img({-src => '/icons/unknown.gif'}),
'Document Not Found'),
p("I'm sorry, but the document you requested,",
strong (SENV{REDIRECT URL}),

"is not available. Please try the",

a({-href => "/search.html"}, "search page"),

"for help locating the document."),
hr,
address (a({-href => "mailto:SENV{SERVER ADMIN}"}, 'webmast
end html;

If you want to implement the ErrorDocument handler as a vanilla Apache Perl API
script, the various REDIRECT _ environment variables will not be available to you.
However, you can get the same information by calling the request object's prev( )
method. This returns the request object from the original request. You can then query
this object to recover the requested URI, the request method, and so forth.

Example 4.17 shows a rewritten version of missing.cgi that uses prev( ) to recover
the URI of the missing document. The feature to note in this code is the call to $r-
>prev on the fifth line of the handler( ) subroutine. If the handler was invoked as the
result of an internal redirection, this call will return the original request object, which
we then query for the requested document by calling its uri( ) method. If the handler
was invoked directly (perhaps by the user requesting its URI), the original request will
be undefined and we use an empty string for the document URI.

Example 4.17. An ErrorDocument Handler Using the Vanilla Apache API

package Apache::Missing;
# File: Apache/Missing.pm

use strict;
use Apache::Constants gw(:common) ;
use CGI gw(:html);

sub handler {
my $r = shift;
$r->content type('text/html');
$r->send http header;
return OK if Sr->header only;

my $original request = Sr->prev;
my $original uri = Soriginal request ? Soriginal request->ur

my $admin = Sr->server->server admin;

Sr->print (


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

start html (-title => 'Missing Document',
-bgcolor => 'white'),
hl (img({-src => '/icons/unknown.gif'}),
'Document Not Found'),

p (
"I'm sorry, but the document you requested,",
strong(Soriginal uri),
", is not available. Please try the",
a({-href => "/search.html"}, "search page"),
"for help locating the document."
)I

hr,

address(a({-href => "mailto:$admin"}, 'webmaster'))

end html

) ;

return OK;

Here's an example using Apache::Missing in the configuration file:

<Location /Missing>
SetHandler perl-script
PerlHandler Apache::Missing
</Location>

If the static nature of the Apache ErrorDocument directive is inadequate for your
needs, you can set the error document dynamically from within a handler by calling
the request object's custom_response( ) method. This method takes two arguments:
the status code of the response you want to handle and the URI of the document or
module that you want to pass control to. This error document setting will persist for
the lifetime of the current request only. After the handler exits, the setting returns to its
default.

For example, the following code snippet sets up a custom error handler for the
SERVER ERROR error code (a generic error that covers a variety of sins). If the
things_are_ok() subroutine (not implemented here) returns a true value, we do our
work and return an OK status. Otherwise, we set the error document to point to a URI
named /Carp and return a SERVER ERROR status.

package Apache: :GoFish;
# file: Apache/GoFish.pm

use strict;
use Apache::Constants gw(:common) ;

sub handler {
my $r = shift;
if (things are ok($Sr)) {
do something() ;
return OK;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}
$r->custom response (SERVER ERROR, "/Carp");
return SERVER ERROR;

4.6.3 HTTP Headers and Error Handling

You already know about using header_out( ) to set HTTP header fields. A properly
formatted HTTP header is sent to the browser when your module explicitly calls
send_http_header( ), or it is sent for you automatically if you are using
Apache::Registry, the PerlSendHeader directive is set to On, and your script prints
some text that looks like an HTTP header.

You have to be careful, however, if your module ever returns non-OK status codes.
Apache wants to assume control over the header generation process in the case of
errors; if your module has already sent the header, then Apache will send a
redundant set of headers with unattractive results. This applies both to real HTTP
errors, like BAD rREQUEST and NOT FOUND, as well as to nonfatal conditions like
REDIRECT and AUTH REQUIRED.

Consider the following fishy example:

package Apache::Crash;
# File: Apache/Crash.pm

use strict;
use Apache::Constants gw(:common) ;
use constant CRASH => 1;

sub handler {
my Sr = shift;
$r->content type ('text/plain');
$r->send http header;
return OK if Sr->header only;
return SERVER ERROR if CRASH;
Sr->print ('Half a haddock is better than none.');
return OK;

After setting the document MIME type, this module sends off the HTTP header. It
then checks a constant named cr2sH and if true, which it always is, returns a status
code of sErRVER ERROR. Apache would ordinarily send a custom HTTP header in
response to this status code, but because the module has already emitted a header,
it's too late. Confusion results. If we map this module to the URI /Crash, we can telnet
directly to the server to demonstrate the problem:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

% telnet www.modperl.com 80
Trying 192.168.2.5...
Connected to modperl.com.
Escape character is '"]'.
GET /Crash HTTP/1.0

HTTP/1.1 200 OK

Date: Thu, 21 May 1998 11:31:40 GMT
Server: Apache/1.3bo6

Connection: close

Content-Type: text/plain

HTTP/1.1 200 OK

Date: Thu, 21 May 1998 11:31:40 GMT
Server: Apache/1.3b6

Connection: close

Content-Type: text/html

<HTML><HEAD>

<TITLE>500 Internal Server Error</TITLE>
</HEAD><BODY>

<Hl>Internal Server Error</H1>

The server encountered an internal error or
misconfiguration and was unable to complete
your request.<P>

</BODY></HTML>

Connection closed by foreign host.

Not only are there two HTTP headers here, but both of them indicate a status code of
200 ok, which is definitely not right. When displayed in the browser, the page will be
marred by extraneous header lines at the top of the screen.

The cardinal rule is that you should never call Apache::send_http_header() until your
module has completed all its error checking and has decided to return an OK status
code. Here's a better version of Apache::Crash that avoids the problem:

package Apache::Crash;
# File: Apache/Crash.pm

use strict;
use Apache::Constants gw(:common) ;
use constant CRASH => 1;

sub handler {
my $r = shift;
return SERVER ERROR if CRASH;
$r->content type('text/plain');
$r->send http header;
return OK if Sr->header only;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Sr->print ('Half a haddock is better than none.');
return OK;

Now when we telnet to the server, the server response looks the way it should:

(~) 103% telnet www.modperl.com 80
Trying 192.168.2.5...

Connected to modperl.com.

Escape character is '"*]'.

GET /Crash HTTP/1.0

HTTP/1.1 500 Internal Server Error
Date: Thu, 21 May 1998 11:40:56 GMT
Server: Apache/1.3b6

Connection: close

Content-Type: text/html

<HTML><HEAD>

<TITLE>500 Internal Server Error</TITLE>
</HEAD><BODY>

<Hl>Internal Server Error</H1>

The server encountered an internal error or
misconfiguration and was unable to complete
your request.<P>

</BODY></HTML>

Another important detail about error handling is that Apache ignores the fields that
you set with header_out( ) when your module generates an error status or invokes an
internal redirect. This is usually not a problem, but there are some cases in which this
restriction can be problematic. The most typical case is the one in which you want a
module to give the browser a cookie and immediately redirect to a different URI. Or
you might want to assign an error document to the UnAUTHORT 21D status code so
that a custom login screen appears when the user tries to access a restricted page. In
both cases you need to manipulate the HTTP header fields prior to the redirect.

For these cases, call the request object's err_header_out( ) method. It has identical
syntax to header_out( ), but the fields that you set with it are sent to the browser only
when an error has occurred. Unlike ordinary headers, the fields set with
err_header_out( ) persist across internal redirections, and so they are passed to
Apache ErrorDocument handlers and other local URIs.

This provides you with a simple way to pass information between modules across
internal redirects. Combining the example from this section with the example from the
previous section gives the modules shown in Example 4.18. Apache::GoFish
generates a SERVER ERROR, Which is intercepted and handled by the custom
ErrorDocument handler named Apache::Carp (Example 4.19). Before relinquishing
control, however, Apache::GoFish creates a custom HTTP field named X-Odor which
gives the error handler something substantial to complain about. The end result is

shown in Figure 4.10.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 4.10. When Apache::GoFish generates a custom error document, it displays the contents
of the custom X-Odor header.

The code should be fairly self-explanatory. The main point to notice is
Apache::GoFish's use of err_header_out() to set the value of the X-Odor field, and
Apache::Carp 's use of the same function to retrieve it. Like header_out(), when you
call err_header_out() with a single argument, it returns the current value of the field
and does not otherwise alter the header. When you call it with two arguments, it sets
the indicated field.

An interesting side effect of this technique is that the X-Odor field is also returned to
the browser in the HTTP header. This could be construed as a feature. If you wished
to pass information between the content handler and the error handler without leaving
tracks in the HTTP header, you could instead use the request object's "notes" table to
pass messages from one module to another. Chapter 9 covers how to use this
facility (see the description of the notes() method under Section 9.1.4").

Example 4.18. Invoking a Custom Error Handler Document

package Apache: :GoFish;
# File: Apache/GoFish.pm

use Apache::Constants gw(:common :response);
use constant CRASH=>1;

sub handler {
my Sr = shift;
$r—>err_header_out('X—Odor':>"something's rotten in Denmark")
$r7>custom7response(SERVERiERROR, "/Carp") ;
return SERVER ERROR if CRASH;
$r->content type('text/plain');
$r->send http header;
return OK if Sr->header only;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Sr->print (
return OK;

'"Half a haddock is better than none.');

Here is a sample configuration entry:

<Location /Go
SetHandler
PerlHandle

</Location>

Fish>
perl-script
r Apache::GoFish

Example 4.19. An Error Handler to Complement the Previous Example

package Apach
# File: Apach
use strict;

use Apache::C
use CGI gw(:h

sub handler {
my $r = s
my Sodor
Sodor | |=
Sr->conte
$r->send
return OK

my $origi
my $origi

my $admin

Sr->print

return OK

Here is a sample

<Location /Ca
SetHandler

e::Carp;
e/Carp.pm

onstants gw(:common) ;
tml) ;

hift;

= $r—>err_header_out('X—Odor');
'unspecified odor';

nt type ('text/html');

http header;
if Sr->header only;

nal request = $r->prev;
nal uri = Soriginal request ? Soriginal request->ur
= Sr->server->server admin;

(

start html (-title => 'Phew!!', -bgcolor => 'white')
hl('Phew!!"),

p("Something fishy happened while processing this r
p("The odor was ", strong($odor), '.'"),

hr,

address (a({-href => "mailto:$admin"}, 'webmaster'))
end html

)7

4

configuration entry:

rp>
perl-script


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

PerlHandler Apache::Carp

</Location>

only for RuBoard - do not distribute or recompile



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

4.7 Chaining Content Handlers

The C-language Apache API only allows a single content handler to completely
process a request. Several handlers may be given a shot at it, but the first one to
return an OK status will terminate the content handling phase of the transaction.

There are times when it would be nice to chain handlers into a pipeline. For example,
one handler could add canned headers and footers to the page, another could correct
spelling errors, while a third could add trademark symbols to all proprietary names.
Although the native C API can't do this yet, 2! the Perl API can, using a technique
called "stacked handlers."

[3] At the time this was written, the Apache developers were discussing a layered /O system which will be part of the
Apache 2.0 APL.

It is actually quite simple to stack handlers. Instead of declaring a single module or
subroutine in the PerlHandler directive, you declare several. Each handler will be
called in turn in the order in which it was declared. The exception to this rule is if one
of the handlers in the series returns an error code (anything other than ox,
DECLINED, or DONE). Handlers can adjust the stacking order themselves, or even
arrange to process each other's output.

4.7.1 Simple Case of Stacked Handlers

Example 4.20 gives a very simple example of a stack of three content handlers. It's
adapted slightly from the mod_perl manual page. For simplicity, all three handlers are
defined in the same file, and are subroutines named header(), body(), and footer(). As
the names imply, the first handler is responsible for the top of the page (including the
HTTP header), the second is responsible for the middle, and the third for the bottom.

A suitable configuration section looks like this:

PerlModule My
<Location /My>

SetHandler perl-script

PerlHandler My::header My::body My::footer
</Location>

We first load the whole module into memory using the PerIModule directive. We then
declare a URI location /My and assign the perl-script handler to it. Perl in turn is
configured to run the My::header, My::body, and My::footer subroutines by passing
them as arguments to a PerlHandler directive. In this case, the /My location has no
corresponding physical directory, but there's no reason that it couldn't.

After bringing in the 0k constant from Apache::Constants, we define the subroutines
header(), body(), and footer(). header() sets the document's content type to plain text,
sends the HTTP header, and prints out a line at the top of the document. body() and
footer() both print out a line of text to identify themselves. The resulting page looks
like this:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

header text
body text
footer text

Example 4.20. A Simple Stacked Handler

package My;

use strict;
use Apache::Constants 'OK';

sub header {
my Sr = shift;
$r->content type('text/plain');
$r->send http header;
Sr->print ("header text\n");
OK;

}

sub body {
my Sr = shift;
Sr->print ("body text\n");
OK;

}

sub footer {
my $r = shift;
Sr->print ("footer text\n");
OK;

}

4.7.2 Coordinating Stacked Handlers

Stacked handlers often have to coordinate their activities. In the example of the
previous section, the header( ) handler must be run before either of the other two in
order for the HTTP header to come out correctly. Sometimes it's useful to make the
first handler responsible for coordinating the other routines rather than relying on the
configuration file. The request object's push_handlers( ) method will help you do this.

push_handlers() takes two arguments: a string representing the phase to handle, and
a reference to a subroutine to handle that phase. For example, this code fragment will
arrange for the footer() subroutine to be the next content handler invoked:

$r—>push7handlers(PerlHandler => \&footer);

With this technique, we can rewrite the previous example along the lines shown in
Example 4.21. In the revised module, we declare a subroutine named handler() that
calls push_handlers() three times, once each for the header, body, and footer of the
document. It then exits. The other routines are unchanged.

The revised configuration file entry looks like this:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Location /MyChain>
SetHandler perl-script
PerlHandler My::Chain
</Location>

Because we followed the mod_perl convention of naming the first handler subroutine
handler(), there's now no need for a PerIModule statement to load the module into
memory.

Example 4.21. Coordinated Stacked Handlers
package My::Chain;

use strict;
use Apache::Constants 'OK';

sub handler {
my Sr = shift;
for my $cv (\&header, \é&body, \&footer) {
$r->push handlers (PerlHandler => Scv);
}
OK;

sub header {
my Sr = shift;
$r->content type('text/plain');
$r->send http header;
Sr->print ("header text\n");
OK;

sub body {
my Sr = shift;
Sr->print ("body text\n");
OK;

sub footer {
my Sr = shift;
Sr->print ("footer text\n");
OK;

4.7.3 Stacked Handler Pipelining


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The stacked handlers we looked at in the previous example didn't interact. When one
was finished processing, the next took over. A more sophisticated set of handlers
might want to pipeline their results in such a way that the output of one handler
becomes the input to the next. This would allow the handlers to modify each other's
output in classic Unix filter fashion. This sounds difficult, but in fact it's pretty simple.
This section will show you how to set up a filter pipeline. As an aside, it will also
introduce you to the concept of Apache Perl APl method handlers.

The trick to achieving a handler pipeline is to use "tied" filehandles to connect the
neighbors together. In the event that you've never worked with a tied filehandle
before, it's a way of giving a filehandle seemingly magic behavior. When you print( )
to a tied filehandle, the data is redirected to a method in a user-defined class rather
than going through the usual filesystem routines. To create a tied filehandle, you
simply declare a class that defines a method named TIEHANDLE( ) and various
methods to handle the sorts of things one does with a filehandle, such as PRINT()
and READ( ).

Here's a concrete example of a tied filehandle class that interfaces to an antique
daisywheel printer of some sort:

package DaisyWheel;

sub TIEHANDLE {
my (Sclass, S$printer name) = @ ;
open_ daisywheel (Sprinter name);
bless { 'printer' => Sprinter name }, S$class;

}

sub PRINT {
my S$Sself = shift;
send to daisywheel ($self->{'printer'}, @ );

}

sub DESTROY {
my $self = shift;
close daisywheel ($self->{'printer'});

}

1;
_END

The TIEHANDLE() method gets called first. It is responsible for opening the
daisywheel printer driver (routine not shown here!) and returning a blessed object
containing its instance variables. The PRINT() method is called whenever the main
program prints to the tied filehandle. Its arguments are the blessed object and a list
containing the arguments to print(). It recovers the printer name from its instance
variables and then passes it, and the items to print, to an internal routine that does
the actual work. DESTROY( ) is called when the filehandle is untie( ) d or closed. It
calls an internal routine that closes the printer driver.

To use this class, a program just has to call tie( ) with the name of an appropriate
printer:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

use DaisyWheel ()

tie *DAISY, 'DaisyWheel', 'dwj002';

print DAISY "Daisy... Daisy... Daisy the Kangaroco.\n";
print DAISY "She wanted to live in a private home, \n";
print DAISY "So she ran away from the zoo!\n";

close DAISY;

A more complete tied filehandle class might include a PRINTF() method, a READ()
method, a READLINE() method, and a GETC() method, but for output-only
filehandles PRINT() is usually enough.

Now back to Apache. The strategy will be for each filter in the pipeline, including the
very first and last ones, to print to STDOUT, rather than directly invoking the
Apache::print() method via the request object. We will arrange for STDOUT to be
tied() in each case to a PRINT() method defined in the next filter down the chain. The
whole scheme looks something like this:

filterl -> filter2::PRINT () [STDOUT tied to filterZ2]
filter?2 -> filter3::PRINT() [STDOUT tied to filter3]
filter3 -> filter4::PRINT () [STDOUT tied to filter4]
filterN -> Apache::PRINT () [STDOUT tied to Apache]

Interestingly enough, the last filter in the chain doesn't have to get special treatment.
Internally, the Apache request ties STDOUT to Apache::PRINT(), which in turn calls
Apache::print(). This is why handlers canuse sr->print ('something') and
print ('something') interchangeably.

To simplify setting up these pipelines, we'll define a utility class called
Apache::Forward.1s1 Apache::Forward is a null filter that passes its input through to
the next filter in the chain unmodified. Modules that inherit from this class override its
PRINT() method to do something interesting with the data.

[4] The more obvious name, Apache::Filter, is already taken by a third-party module that does output chaining in a
slightly different manner.

Example 4.22 gives the source code for Apache::Forward. We'll discuss the code
one section at a time.

package Apache::Forward;

use strict;

use Apache::Constants gw (OK SERVER ERROR) ;
use vars gw ($SVERSION) ;

SVERSION = '1.00"';

sub handler ($3%) {
my ($Sclass, $r) = @ ;
my S$next = tied *STDOUT || return SERVER ERROR;
tie *STDOUT, Sclass, $r, $next or return SERVER ERROR;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$r—>registericleanup(sub { untie *STDOUT 1});
OK;
}

Most of the work is done in the handler() subroutine, which is responsible for correctly
tying the STDOUT filehandle. Notice that the function prototype for handler() is (55,
or two scalar arguments. This is a special signal to Apache to activate its method
handler behavior. Instead of calling handler() like an ordinary subroutine, Apache
calls handler() like this:

Apache: :Forward->handler ($r) ;

The result is that the handler() receives the class name as its first argument, and the
request object as the second argument. This object-oriented calling style allows
Apache::Forward to be subclassed.

The handler() subroutine begins by recovering the identity of the next handler in the
pipeline. It does this by calling tied() on the STDOUT filehandle. tied() returns a
reference to whatever object a filehandle is tied to. It will always return a valid object,
even when the current package is the last filter in the pipeline. This is because
Apache ties STDOUT to itself, so the last filter will get a reference to the Apache
object. Nevertheless, we do check that tied() returns an object and error out if not—
just in case.

Next the subroutine reties STDOUT to itself, passing tie() the request object and the
reference to the next filter in the pipeline. This call shouldn't fail, but if it does, we
return a server error at this point.

Before finishing up, the handler() method needs to ensure that the filehandle will be
untied before the transaction terminates. We do this by registering a handler for the
cleanup phase. This is the last handler to be called before a transaction terminates
and is traditionally reserved for this kind of garbage collection. We use
register_cleanup() to push an anonymous subroutine that unties STDOUT. When the
time comes, the filehandle will be untied, automatically invoking the class's
DESTROY/() method. This gives the object a chance to clean up, if it needs to. Note
that the client connection will be closed before registered cleanups are run, so class
DESTROY() methods should not attempt to send any data to the client.

sub TIEHANDLE {

my ($class, $r, S$next) = @ ;
bless { 'r' => S$r, # request object
'next' => Snext # next in the chain
}, Sclass;

}

The next routine to consider is TIEHANDLE( ) , whose job is to return a new blessed
object. It creates a blessed hash containing the keys r and next. r points to the
request object, and next points to the next filter in the pipeline. Both of these
arguments were passed to us by handler( ).


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

sub PRINT {
my S$Sself = shift;
# Subclasses should do something interesting here
Sself->forward(@ );

}

The PRINT() method is invoked whenever the caller wants to print something to the
tied filehandle. The arguments consist of the blessed object and a list of data items to
be processed. Subclasses will want to modify the data items in some way, but we just
forward them unmodified to the next filter in line by calling an internal routine named
forward().

#sub DESTROY {

# my S$self = shift;
# # maybe clean up here
#}

DESTROQY/() is normally responsible for cleaning up. There's nothing to do in the
general case, so we comment out the definition to avoid being called, saving a bit of
overhead.

sub forward {
shift()->{"next'}->PRINT (Q ) ;

}

forward() is called by PRINT() to forward the modified data items to the next filter in
line. We shift the blessed object off the argument stack, find the next filter in line, and
invoke its PRINT() method.

Example 4.22. A Chained Content Handler

package Apache::Forward;

use strict;

use Apache::Constants gw (OK SERVER ERROR) ;
use vars gw ($SVERSION) ;

SVERSION = '1.00"';

sub handler ($3%) {
my ($class, $r) = @ ;
my S$next = tied *STDOUT || return SERVER ERROR;
tie *STDOUT, $Sclass, $r, Snext or return SERVER ERROR;
Sr->register cleanup(sub { untie *STDOUT });
OK;

sub TIEHANDLE {

my ($Sclass, $r, S$next) = Q@ ;
bless { 'r' => $Sr, # request object
'next' => S$Snext # next in the chain

}, S$Sclass;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}

sub PRINT {
my S$Sself = shift;
# Subclasses should do something interesting here
Sself->forward(@ );

}

#sub DESTROY {

# my S$self = shift;
# # maybe clean up here
#}

sub forward {
shift()->{"next'}->PRINT (@ ) ;

Having defined the filter base class, we can now define filters that actually do
something. We'll show a couple of simple ones to give you the idea first, then create a
larger module that does something useful.

Apache::Upcase (Example 4.23) transforms everything it receives into uppercase
letters. It inherits from Apache::Forward and then overrides the PRINT() method.
PRINT() loops through the list of data items, calling uc() on each. It then forwards the
modified data to the next filter in line by calling its forward() method (which we do not
need to override).

Example 4.23. Apache::Upcase Transforms Its Input into Uppercase

package Apache: :Upcase;

use strict;

use Apache::Forward ()

use vars gw (@ISA SVERSION) ;
@ISA = gw (Apache::Forward)
SVERSION = '1.00"';

sub PRINT {
my Sself = shift;
$self->forward(map { uc $_ } @ );

Along the same lines, Apache::Censor (Example 4.24) filters its input data to
replace four-letter words with starred versions. It takes the definition of "four-letter
word" a little liberally, transforming "sent" into "s**t." It is identical in every way to
Apache::Upcase, except that PRINT( ) performs a global regular expression


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

substitution on the input data. The transformed data is then forwarded to the next filter
as before.

Example 4.24. A Handler that Removes Four-Letter Words

package Apache::Censor;

use strict;

use Apache::Forward ()

use vars gw (@ISA SVERSION) ;
@ISA = gw (Apache: :Forward);
SVERSION = '1.00"';

sub PRINT {
my ($self, @data) = @ ;
foreach (Rdata) { s/\b(\w)\w{2} (\w)\b/S$S1**$2/g; }
Sself->forward (@Rdata) ;

To watch these filters in action, we need a data source. Here's a very simple content
handler that emits a constant string. It is very important that the content be sent with a
regular print() statement rather than the specialized $r->print() method. If you call
Apache::print() directly, rather than through the tied STDOUT filehandle, you short-
circuit the whole chain!

package Apache::TestFilter;

use strict;
use Apache::Constants 'OK';

sub handler {

my $r = shift;

$r->content type('text/plain');

$r->send http header;

print (<<END) ;
This is some text that is being sent out with a print/()
statement to STDOUT. We do not know whether STDOUT is tied
to Apache or to some other source, and in fact it does not
really matter. We are Jjust the content source. The filters
come later.
END

OK;

The last step is to provide a suitable entry in the configuration file. The PerlHandler
directive should declare the components of the pipeline in reverse order. As Apache


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

works its way forward from the last handler in the pipeline to the first, each of the
handlers unties and reties STDOUT. The last handler in the series is the one that
creates the actual content. It emits its data using print() and the chained handlers do
all the rest. Here's a sample entry:

<Location /Filter>

SetHandler perl-script

PerlHandler Apache::Upcase Apache::Censor Apache::TestFilter
</Location>

Figure 4.11 shows the page that appears when the pipeline runs.

Figure 4.11. The final output from three chained content handlers

The last filter we'll show you is actually useful in its own right. When inserted into a
filter pipeline, it compresses the data stream using the GZip protocol, and flags the
browser that the data has been GZip-encoded by adding a Content-Encoding field to
the HTTP header. Browsers that support on-the-fly decompression of GZip data will
display the original document without any user intervention.ts!

[5] For historical reasons this facility is limited to Unix versions of Netscape Navigator, to PowerPC versions of
Navigator on the Macintosh, and to some other Unix-based browsers such as W3-Emacs. However, now that
Navigator's source code has been released to the developer community, we hope to see a more widespread
implementation of this useful feature.

This filter requires the zlib compression library and its Perl interface, Paul Marquess'
Compress::ZIib . zlib, along with instructions on installing it, can be found at
ftp.//ftp.uu.net/pub/archiving/zip/zlib*. As usual, you can find Compress::Zlib at CPAN.
Together these libraries provide both stream-based and in-memory
compression/decompression services, as well as a high-level interface for creating
and reading gzip files.

The filter is a little more complicated than the previous ones because GZip works best
when the entire document is compressed in a single large segment. However, the
filter will be processing a series of print() statements on data that is often as short as
a single line. Although we could compress each line as a single segment,
compression efficiency suffers dramatically. So instead we buffer the output, using
zlib 's stream-oriented compression routines to emit the encoded data whenever zlib
thinks enough data has been received to compress efficiently. We also have to take
care of the details of creating a valid GZip header and footer. The header consists of
the current date, information about the operating system, and some flags. The footer
contains a CRC redundancy check and the size of the uncompressed file.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 4.25 gives the complete code for Apache::GZip. Although it inherits its
core functionality from Apache::Forward, each subroutine has to be tweaked a bit to
support the unique requirements of GZip compression.

package Apache: :GZip;

use strict;

use Apache::Constants gw(:common) ;

use Compress::Zlib gw(deflateInit crc32 MAX WBITS Z DEFLATED);
use Apache::Forward () ;

use vars gw (SVERSION @ISA);

use constant GZIP MAGIC => 0x1f8b;
use constant O0S MAGIC => 0x03;

SVERSION = '1.00"';
@ISA = gw (Apache::Forward)

After the usual preamble, we import the compression routines from Compress::Zlib,
and bring in the Apache::Forward class. We then define a couple of constants needed
for the GZip header (in case you're wondering, we got these constants by looking at
the zlib C code).

sub handler ($$) {
my ($class, $Sr) = @ ;
#return DECLINED unless $r->header in("Accept-Encoding"”) =~
$r->content encoding('gzip');
Sclass—->SUPER: :handler (Sr) ;
}

In order for the browser to automatically decompress the data, it needs to see a
Content-Encoding field with the value gz ip in the HTTP header. In order to insert this
field, we override the parent class's handler() subroutine and set the field using the
request object's content_encoding() method. We then call our superclass's handler()
method to do the rest of the work.

The commented line that comes before the call to content_encoding() is an attempt to
"do the right thing." Browsers are supposed to send a header named Accept-
Encoding if they can accept compressed or otherwise encoded data formats. This line
tests whether the browser can accept the GZip format and declines the transaction if
it can't. Unfortunately, it turns out that many Netscape browsers don't transmit this
essential header, so we skip the test.te

[6] Andreas Koenig's Apache::GzipChain module, which does much the same thing as this one, contains a hardcoded
pattern match for the browser type contained in the User-Agent field. You can add this sort of test yourself if you wish,
or wait for the browser developers to implement Accept-Encoding correctly.

sub TIEHANDLE {
my $class = shift;
my Sr = shift;
my $self = Sclass->SUPER::TIEHANDLE (Sr, @ );
my $d = deflateInit (-WindowBits => -MAX WBITS ())

| | return;
@{$self}{'crc','d','l'",'h'} = (crc32(undef), $d,0,0);


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$r->push handlers (PerlHandler => sub { $self->flush });
return $self;

}

All the compression work is done in TIEHANDLE(), PRINT(), and flush().
TIEHANDLE() begins by invoking the superclass's handler() method to create an
object blessed into the current class. The method then creates a new Compress::Zlib
deflation object by calling deflatelnit(), using an argument of -Windowrits thatis
appropriate for GZip files (again, we got this by reading the zlib C source code).
Finally we add a few new instance variables to the object and return it to the caller.
The instance variables include crc, for the cyclic redundancy check, d for the deflation
object, / for the total length of the uncompressed data, and h for a flag that indicates
whether the header has been printed.z Finally, TIEHANDLE( ) will call the
push_handlers( ) method, installing our flush( ) method at the end of the output chain.

[7] At the time this chapter was being prepared, the author of Compress::Zlib, Paul Marquess, was enhancing his
library to make this manual manipulation of the compressed output stream unnecessary.

sub gzheader {
pack ("nccVece", GZIP MAGIC, Z DEFLATED, O0,time,0, OS MAGIC)

sub PRINT {
my $self = shift;
Sself->forward (gzheader ()) unless S$self->{'h'}++;
foreach (@ ) {
my Sdata = S$self->{d}->deflate(S );
Sself->{1} += length (S );

Sself->{crc} = crc32($ , S$self->{crc});

Sself->forward (Sdata) ;
}

The PRINT( ) method is called once each time the previous filter in the pipeline calls
print( ). It first checks whether the GZip header has already been sent, and sends it if
not. The GZip header is created by the gzheader() routine and consists of a number
of constants packed into a 10-byte string. It then passes each of its arguments to the
deflation object's deflate() method to compress the information, then forwards
whatever compressed data is returned to the next filter in the chain (or Apache, if this
is the last filter). The subroutine also updates the running total of bytes compressed
and calculates the CRC, using Compress::Zlib's crc32() subroutine.

sub flush {
my $self = shift;
my $data = $self->{d}->flush;
return unless S$self->{'h'};
Sself->forward ($Sdata) ;
Sself->forward (pack ("V V", S$self->{'crc'}, S$self->{"'1"}));

}

The flush() routine is called when the last of our chained handlers is run. Because zlib
buffers its compressed data, there is usually some data left in its internal buffers that
hasn't yet been printed. We call the deflation object's flush() method to obtain


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

whatever is left and forward it onward. Lastly we forward the CRC and the total length
of the uncompressed file, creating the obligatory GZip footer.

Apache::GZip will usually go last in the filter chain, like this:

<Location /Compressed>

SetHandler perl-script

PerlHandler Apache::GZip OneFilter AnotherFilter
</Location>

You can use Apache::GZip with any content handler that prints directly to STDOUT.
Most of the modules given in this chapter send data via $r->print(). Simply delete the
$r-> part to make them compatible with Apache::GZip and other chained content
handlers.

Example 4.25. A Handler That Compresses Its Input Before Forwarding It
package Apache::GZip;

use strict;

use Apache::Constants gw(:common) ;

use Compress::Z1ib gw(deflateInit crc32 MAX WBITS 7Z DEFLATED);
use Apache::Forward ()

use vars gw (SVERSION @ISA);

use constant GZIP MAGIC => 0x1f8b;
use constant OS MAGIC => 0x03;

SVERSION = '1.00"';
@ISA = gw (Apache::Forward);

sub handler ($3%5) {
my ($class, $r) = @ ;
#return DECLINED unless $r->header in("Accept-Encoding") =~
$r->content encoding('gzip');
Sclass—->SUPER: :handler (Sr) ;

sub TIEHANDLE {
my $class = shift;
my Sr = shift;
my $self = Sclass->SUPER::TIEHANDLE (Sr, @ );
my $d = deflateInit (-WindowBits => -MAX WBITS()) || return;
@{Sself}{'crc','d','l','h'} = (crc32(undef),S$d,0,0);
$r—>push7handlers(PerlHandler => sub { S$self->flush });
return S$self;

sub gzheader {
pack ("nccVece", GzIP MAGIC, 7Z DEFLATED, 0,time,0, OS MAGIC)
}

sub PRINT ({


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

my $self = shift;
Sself->forward(gzheader ()) unless Sself->{'h'}++;
foreach (@ ) {
my S$data = $self->{d}->deflate($ );
$self->{1} += length($ );
$self->{crc} = crc32($ , S$self->{crc});
Sself->forward ($Sdata) ;

sub flush {
my Sself = shift;
my Sdata = $self->{d}->flush;
return unless S$self->{'h'};
Sself->forward ($data) ;
Sself->forward (pack ("V V", S$self->{'crc'}, S$self->{"'1"'}));

Readers who are interested in content handler pipelines should be aware of Jan
Pazdziora's Apache::OutputChain module. It accomplishes the same thing as
Apache::Forward but uses an object model that is less transparent than this one
(among other things, the Apache::OutputChain module must always appear first on
the PerlHandler list). You should also have a look at Andreas Koenig's
Apache::PassFile and Apache::GZipChain modules. The former injects a file into an
OutputChain and is an excellent way of providing the input to a set of filters. The latter
implements compression just as Apache::GZip does but doesn't buffer the
compression stream, losing efficiency when print() is called for multiple small data
segments.

Just as this book was going to press, Ken Williams announced Apache::Filter , a
chained content handler system that uses a more devious scheme than that
described here. Among the advantages of this system is that you do not have to list
the components of the pipeline in reverse order.

4.7.4 Other Types of Stacked Handlers

Content handlers aren't the only type of Apache Perl API handler that can be stacked.
Translation handlers, type handlers, authorization handlers, and in fact all types of
handlers can be chained using exactly the same techniques we used for the content
phase.

A particularly useful phase for stacking is the cleanup handler. Your code can use this
to register any subroutines that should be called at the very end of the transaction.
You can deallocate resources, unlock files, decrement reference counts, or clear
globals. For example, the CGl.pm module maintains a number of package globals
controlling various programmer preferences. In order to continue to work correctly in
the persistent environment of mod_perl, CGl.pm has to clear these globals after each
transaction. It does this by arranging for an internal routine named _reset_globals() to
be called at the end of each transaction using this line of code:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com
$r->push handlers ('PerlCleanupHandler',\&CGI:: reset globals);

Your program can push as many handlers as it likes, but you should remember that
despite its name, the handler stack doesn't act like the classic LIFO (last-in/first-out)
stack. Instead it acts like a FIFO (first-in/first-out) queue. Also remember that if the

same handler is pushed twice, it will be invoked twice.



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

4.8 Method Handlers

It should come as no surprise that between the Apache distribution and third-party
modules, there exist dozens of authentication modules, several directory indexing
modules, and a couple of extended server-side include modules. All of these modules
contain code that was copied and pasted from each other. In some cases all but a
minuscule portion of the module consists of duplicated code.

Code duplication is not bad in and of itself, but it is wasteful of memory resources
and, more important, of developers' time. It would be much better if code could be
reused rather than duplicated, by using a form of object-oriented subclassing. For the
C-language API there's not much hope of this. Vanilla C doesn't provide object-
oriented features, while C++ would require both the Apache core and every extension
module to adopt the same class hierarchy—and it's a little late in the game for this to
happen.

Fortunately, the Perl language does support a simple object-oriented model that
doesn't require that everyone buy into the same class hierarchy. This section
describes how these object-oriented features can be used by Perl APl modules to
reuse code instead of duplicating it.

We've already looked at piecing together documents in various ways. Here we will
explore an implementation using method handlers. There are two classes involved
with this example: My::PageBase and My::Page.

Example 4.26 shows the My::PageBase class, which provides the base functionality
for the family of documents derived from this class. My::PageBase stitches together a
document by calling four methods: the header() method sends the HTTP headers, the
top() method emits the beginning of an HTML document, including the title, the body()
method emits the main contents of the page, and the bottom() method adds a
common footer. My::PageBase includes generic definitions for header(), top(), body(),
and bottom(), each of which can be overridden by its subclasses. These are all very
simple methods. See Example 4.26 for the definitions.

The My::PageBase handler() method looks like this:

sub handler ($S$) {

my ($self, $r) = @ ;
unless (ref ($self)) {
Sself = S$self->new;

}
for my $meth (gw(header top body bottom)) {

Sself->Smeth (Sr) ;
}

return OK;

}

The key to using My::PageBase in an object-oriented way is the handler()
subroutine's use of the ($<) function prototype. This tells mod_perl that the handler


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

wants two arguments: the static class name or object, followed by the Apache request
object that is normally passed to handlers. When the handler is called, it retrieves its
class name or object reference and stores it in the lexical variable Sse 1 f. It checks
whether sse1 7 is an object reference, and if not, it calls its own new() method to
create a new object. It then invokes the header(), top(), body(), and bottom() methods
in turn.

The My::PageBase new() method turn the arguments passed to it into a blessed hash
in the My::PageBase package. Each key in the hash is an attribute that can be used
to construct the page. We do not define any default attributes:

sub new {
my $class = shift;
bless {@ }, Sclass;
}

We will see later why this method is useful.

As we saw in the section on the Apache::Forward module, method handlers are
configured just like any other:

<Location /my>
PerlHandler My: :PageBase
SetHandler perl-script
</Location>

However, for clarity's sake, or if you use a handler method named something other
than handler(), you can use Perl's standard -> method-calling notation. You will have
to load the module first with the PerlModule directive:

Per1Module My::PageBase
<Location /my>
PerlHandler My::PageBase->handler
SetHandler perl-script
</Location>

When My::PageBase is installed in this way and you request URI /my, you will see the

exciting screen shown in Figure 4.12.

Figure 4.12. The generic document produced by My::PageBase


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Naturally, we'll want to add a bit more spice to this page. Because the page is
modularized, we can do so one step at a time by subclassing Apache::PageBase 's
methods. The My::Page class does so by inheriting from the My::PageBase class and
simply overriding the body() method.

package My: :Page;
# file: My/Page.pm

use strict;

use vars qw (@QISA) ;

use My::PageBase ()
@ISA = gw (My::PageBase) ;

sub body {
my ($self, S$r) = Q@ ;
Sr->print (<<END) ;
<p><img src="/icons/cover.gif" align=CENTER>
This is My homepage</p>
<br clear=all>
END

Then change the configuration to invoke the handler() method via My::Page rather
than My::PageBase :

PerlModule My: :Page
<Location /my>
PerlHandler My::Page—->handler
SetHandler perl-script
</Location>

Things look almost the same, but the body text has changed (Figure 4.13).

Figure 4.13. My::Page overrides the body() method of My::PageBase, creating a more
interesting document.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Now we need a better title for our document. We could override the top() method as
we did for body(), but that would involve cutting and pasting a significant amount of
HTML (see Example 4.26). Instead, we can make use of the object's title attribute,
which is used by the top() method in this way:

my S$title = $self->{title} || "untitled document";

So how do we set the fitle attribute? This is where the My::PageBase new() method
comes in. When it is called with a set of attribute=value pairs, it blesses them into a
hash reference and returns the new object. To set the title attribute, we just have to
call the new() method like this:

use My::Page ()
SMy: :Homepage = My::Page->new(title => 'My Homepage');

This will create a global scalar variable in the My namespace named
SMy: :Homepage. It's most convenient to do this during server startup—for instance,
in the Perl startup file.

Now we just change the configuration section to use the object as the handler rather
than the class name:

<Location /my>
PerlHandler S$SMy::Homepage->handler
SetHandler perl-script

</Location>

The object will be retrieved by mod_perl and used to invoke the handler, which will
lead to the creation of the page shown in Figure 4.14.

Figure 4.14. After creating a My::Page object with a title attribute defined, the page displays a
custom title and level 1 header.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 4.26. Using a Method Handler for Object-Oriented Programming Techniques

package My::PageBase;
# file: My/PageBase.pm

use strict;
use Apache::Constants gw (:common) ;

sub new {

my Sclass = shift;
bless {@ }, Sclass;

sub handler ($$) {

my ($self, $r) = @ ;
unless (ref($self)) {
Sself = Sself->new;

}
for my $meth (gw(header top body bottom)) {

Sself->Smeth (Sr) ;
}

return OK;

sub header {
my ($self, Sr) = @ ;
$r->content type($self->{type} || "text/html");
$r->send http header;

sub top {
my ($self, $r) = @ ;
my $title = S$self->{title} || "untitled document";
Sr->print (<<EOF) ;

<html>

<head>

<title>S$title</title>

</head>

<body>

<hl>S$title</hl>

<hr>

EOF

}

sub bottom {
my ($self, $r) = @ ;
my Sadmin = Sr->server->server admin;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Sr->print (<<EOF) ;
<hr>
<i><a href="mailto:S$admin">$admin</a></1i>
</body>
</html>
EOF
}

sub body {
my ($self, $r) = @ ;
Sr->print ("<p>This 1s the document body<p>");

This wraps up our discussion of the basic techniques for generating page content,
filtering files, and processing user input. The next chapter ventures into the perilous
domain of imposing state on the stateless HTTP protocol. You'll learn techniques for
setting up user sessions, interacting with databases, and managing long-term
relationships with users.

[Crevnous Poaxr v



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

Chapter 5. Maintaining State

If you've ever written a complicated CGl script, you know that the main inconvenience
of the HTTP architecture is its stateless nature. Once an HTTP transaction is finished,
the server forgets all about it. Even if the same remote user connects a few seconds
later, from the server's point of view it's a completely new interaction and the script
has to reconstruct the previous interaction's state. This makes even simple
applications like shopping carts and multipage questionnaires a challenge to write.

CGil script developers have come up with a standard bag of tricks for overcoming this
restriction. You can save state information inside the fields of fill-out forms, stuff it into
the URI as additional path information, save it in a cookie, ferret it away in a server-
side database, or rewrite the URI to include a session ID. In addition to these
techniques, the Apache API allows you to maintain state by taking advantage of the
persistence of the Apache process itself.

This chapter takes you on a tour of various techniques for maintaining state with the
Apache API. In the process, it also shows you how to hook your pages up to relational

databases using the Perl DBI library.
[Crssvious st v |



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

5.1 Choosing the Right Technique

The main issue in preserving state information is where to store it. Six frequently used
places are shown in the following list. They can be broadly broken down into client-
side techniques (items 1 through 3) and server-side techniques (items 4 through 6).

1. Store state in hidden fields

Store state in cookies

Store state in the URI

Store state in web server process memory

Store state in a file

S

Store state in a database

In client-side techniques the bulk of the state information is saved on the browser's
side of the connection. Client-side techniques include those that store information in
HTTP cookies and those that put state information in the hidden fields of a fill-out
form. In contrast, server-side techniques keep all the state information on the web
server host. Server-side techniques include any method for tracking a user session
with a session ID.

Each technique for maintaining state has unique advantages and disadvantages. You
need to choose the one that best fits your application. The main advantage of the
client-side techniques is that they require very little overhead for the web server: no
data structures to maintain in memory, no database lookups, and no complex
computations. The disadvantage is that client-side techniques require the cooperation
of remote users and their browser software. If you store state information in the
hidden fields of an HTML form, users are free to peek at the information (using the
browser's "View Source" command) or even to try to trick your application by sending
a modified version of the form back to you.t1 If you use HTTP cookies to store state
information, you have to worry about older browsers that don't support the HTTP
cookie protocol and the large number of users (estimated at up to 20 percent) who
disable cookies out of privacy concerns. If the amount of state information you need
to save is large, you may also run into bandwidth problems when transmitting the
information back and forth.

[1] Some sites that use the hidden fields technique in their shopping carts script report upward of 30 attempts per
month by users to submit fraudulently modified forms in an attempt to obtain merchandise they didn't pay for.

Server-side techniques solve some of the problems of client-side methods but
introduce their own issues. Typically you'll create a "session object" somewhere on
the web server system. This object contains all the state information associated with
the user session. For example, if the user has completed several pages of a
multipage questionnaire, the session will hold the current page number and the
responses to previous pages' questions. If the amount of state information is small,
and you don't need to hold onto it for an extended period of time, you can keep it in
the web server's process memory. Otherwise, you'll have to stash it in some long-


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

term storage, such as a file or database. Because the information is maintained on
the server's side of the connection, you don't have to worry about the user peeking or
modifying it inappropriately.

However, server-side techniques are more complex than client-side ones. First,
because these techniques must manage the information from multiple sessions
simultaneously, you must worry about such things as database and file locking.
Otherwise, you face the possibility of leaving the session storage in an inconsistent
state when two HTTP processes try to update it simultaneously. Second, you have to
decide when to expire old sessions that are no longer needed. Finally, you need a
way to associate a particular session object with a particular browser. Nothing about a
browser is guaranteed to be unique: not its software version number, nor its IP
address, nor its DNS name. The browser has to be coerced into identifying itself with
a unique session ID, either with one of the client-side techniques or by requiring users
to authenticate themselves with usernames and passwords.

A last important consideration is the length of time you need to remember state. If you
only need to save state across a single user session and don't mind losing the state
information when the user quits the browser or leaves your site, then hidden fields
and URI-based storage will work well. If you need state storage that will survive the
remote user quitting the browser but don't mind if state is lost when you reboot the
web server, then storing state in web server process memory is appropriate.
However, for long-term storage, such as saving a user's preferences over a period of
months, you'll need to use persistent cookies on the client side or store the state
information in a file or database on the server side.

T



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

5.2 Maintaining State in Hidden Fields

Figure 5.1 shows the main example used in this chapter, an online hangman game.
When the user first accesses the program, it chooses a random word from a
dictionary of words and displays a series of underscores for each of the word's letters.
The game prompts the user to type in a single letter guess or, if he thinks he knows it,
the whole word. Each time the user presses return (or the "Guess" button), the game
adds the guess to the list of letters already guessed and updates the display. Each
time the user makes a wrong guess, the program updates the image to show a little
bit more of the stick figure, up to six wrong guesses total. When the game is over, the
user is prompted to start a new game. A status area at the top of the screen keeps
track of the number of words the user has tried, the number of games he's won, and
the current and overall averages (number of letters guessed per session).t2!

[2] Lincoln was very gratified when he tested the first working version of the game on his wife. She took over the
computer and refused to give it back for hours!

This hangman game is a classic case of a web application that needs to maintain
state across an extended period of time. It has to keep track of several pieces of
information, including the unknown word, the letters that the user has already
guessed, the number of wins, and a running average of guesses. In this section, we
implement the game using hidden fields to record the persistent information. In later
sections, we'll reimplement it using other techniques to maintain state.

Figure 5.1. The script described in this chapter generates an online hangman game.

The complete code for the first version of the hangman game is given in Example
5.1. Itis an Apache::Registry script and therefore runs equally well as a vanilla CGl


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

script as under mod_perl (except for being much faster under mod_perl, of course).
Much of the code is devoted to the program logic of choosing a new word from a
random list of words, processing the user's guesses, generating the HTML to display
the status information, and creating the fill-out form that prompts the user for input.

This is a long script, so we'll step through the parts that are relevant to saving and
retrieving state a section at a time:

# file: hangmanl.cgi
# hangman game using hidden form fields to maintain state

use IO::File ()
use CGI gw(:standard);

use strict;

use constant WORDS => '/usr/games/lib/hangman-words';
use constant ICONS => '/icons/hangman';

use constant TRIES => 6;

In order to compartmentalize the persistent information, we keep all the state
information in a hash reference called $state. This hash contains six keys: worD for
the unknown word, cursseD for the list of letters the user has already guessed,
GUEsSsES LEET for the number of tries the user has left in this game, c2MENO for the
number of games the user has played (the current one included), won for the number
of games the user has won, and ToT21, for the total number of incorrect guesses the
user has made since he started playing.

We're now ready to start playing the game:

# retrieve the state
my Sstate = get state();

# reinitialize 1f we need to
Sstate = initialize(Sstate) if !Sstate or param('restart');

# process the current guess, if any
my ($message, $status) = process guess(param('guess') || '', Ssta

We first attempt to retrieve the state information by calling the subroutine get_state().
If this subroutine returns an undefined value or if the user presses the "restart" button,
which appears when the game is over, we call the initialize() subroutine to pick a new
unknown word and set the state variables to their defaults. Next we handle the user's
guess, if any, by calling the subroutine process_guess(). This implements the game
logic, updates the state information, and returns a two-item list consisting of a
message to display to the user (something along the lines of "Good guess!") and a
status code consisting of one of the words "won", "lost", "continue", or "error."

The main task now is to generate the HTML page:

# start the page
print header,
start html (-Title => 'Hangman 1',
-bgcolor => 'white',


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

-onLoad => 'if (document.gf) document.gf.guess.f
hl('Hangman 1l: Fill-Out Forms');

# draw the picture
picture (Sstate) ;

# draw the statistics
status ($message, S$state);

# Prompt the user to restart or to enter the next guess.
if ($status =~ /"~ (won|lost)$/) {
show restart form(Sstate);
}
else {
Showiguessiform($state);

}

print hr,
a({-href => '/'}, "Home"),
p(cite({-style => "fontsize: 10pt"}, 'graphics courtesy Andy
end html () ;

Using CGl.pm functions, we generate the HTTP header and the beginning of the
HTML code. We then generate an <IMG> tag using the state information to select
which "hanged man" picture to show and display the status bar. If the status code
returned by process_guess() indicates that the user has completed the game, we
display the fill-out form that prompts the user to start a new game. Otherwise, we
generate the form that prompts the user for a new guess. Finally we end the HTML
page and exit.

Let's look at the relevant subroutines now, starting with the initialize() function:
sub initialize {

my $state = shift;
Sstate = {} unless S$state;

Sstate->{WORD} = pick random word();
$State—>{GUESSESiLEFT} = TRIES;
Sstate->{GUESSED} = '';
Sstate->{GAMENO} += 1;

Sstate—->{WON} += 0;

Sstate->{TOTAL} += 0;

return S$state;

}

All the state maintenance is performed in the subroutines initialize( ), get_state( ), and
set_state( ). initialize( ) creates a new empty state variable if one doesn't already
exist, or resets just the per-game fields if one does. The per-game fields that always
getreset are WORD, GUESSES LEFT, and GUESSED. The first field is set to a new
randomly chosen word, the second to the total number of tries that the user is
allowed, and the third to an empty hash reference. GAMENO and TOTAL need to
persist across user games. GAMENO is bumped up by one each time initialize( ) is
called. ToTAL is set to zero only if it is not already defined. The (re)initialized state
variable is now returned to the caller.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

sub save state {
my $state = shift;
foreach (gw (WORD GAMENO GUESSES LEFT WON TOTAL GUESSED) ) {
print hidden(-name => § , -value => $state->{$ }, -overri
}
}

The save_state() routine is where we store the state information. Because it stashes
the information in hidden fields, this subroutine must be called within a <FORM>
section. Using CGl.pm 's hidden() HTML shortcut, we produce a series of hidden tags
whose names correspond to each of the fields in the state hash. For the variables
WORD, GAMENO, GUESSES LEFT, and so on, we just call hidden() with the name and
current value of the variable. The output of this subroutine looks something like the
following HTML:

<INPUT TYPE="hidden" NAME="WORD" VALUE="tourists">
<INPUT TYPE="hidden" NAME="GAMENO" VALUE="2">
<INPUT TYPE="hidden" NAME="GUESSES LEFT" VALUE="5">
<INPUT TYPE="hidden" NAME="WON" VALUE="0">

<INPUT TYPE="hidden" NAME="TOTAL" VALUE="7">

<INPUT TYPE="hidden" NAME="GUESSED" VALUE="eiotu">

get_state() reverses this process, reconstructing the hash of state information from
the hidden form fields:

sub get state {
return undef unless param();
my Sstate = {};
foreach (gw (WORD GAMENO GUESSES LEFT WON TOTAL GUESSED) ) {
Sstate->{$ } = param($_);

}

return S$state;

}

This subroutine loops through each of the scalar variables, calls param() to retrieve its
value from the query string, and assigns the value to the appropriate field of the state
variable.

The rest of the script is equally straightforward. The process _guess() subroutine (too
long to reproduce inline here; see Example 5.1) first maps the unknown word and
the previously guessed letters into hashes for easier comparison later. Then it does a
check to see if the user has already won the game but hasn't moved on to a new
game (which can happen if the user reloads the page).

The subroutine now begins to process the guess. It does some error checking on the
user's guess to make sure that it is a valid series of lowercase letters and that the
user hasn't already guessed it. The routine then checks to see whether the user has
guessed a whole word or a single letter. In the latter case, the program fails the user
immediately if the guess isn't an identical match to the unknown word. Otherwise, the
program adds the letter to the list of guesses and checks to see whether the word has
been entirely filled in. If so, the user wins. If the user has guessed incorrectly, we


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

decrement the number of turns left. If the user is out of turhs, he loses. OthénNise, we
continue.

The picture() routine generates an <IMG> tag pointing to an appropriate picture.
There are six static pictures named hO0.gif through h5.gif. This routine generates the
right filename by subtracting the total number of tries the user is allowed from the
number of turns he has left.

The status() subroutine is responsible for printing out the game statistics and the word
itself. The most interesting part of the routine is toward the end, where it uses map()
to replace the not-yet-guessed letters of the unknown word with underscores.

pick_random_word() is the routine that chooses a random word from a file of words.
Many Linux systems happen to have a convenient list of about 38,000 words located
in /usr/games/lib (it is used by the Berkeley ASCII terminal hangman game). (If you
don't have such a file on your system, check for /usr/dict/words, /usr/share/words,
/usr/words/dictionary, and other variants.) Each word appears on a separate line. We
work our way through each line, using a clever algorithm that gives each word an
equal chance of being chosen without knowing the length of the list in advance. For a
full explanation of how and why this algorithm works, see Chapter 8 of Per/
Cookbook, by Tom Christiansen and Nathan Torkington (O'Reilly & Associates,
1998).

Because the state information is saved in the document body, the save_state()
function has to be called from the part of the code that generates the fill-out forms.
The two places where this happens are the routines show_guess _form() and
show_restart_form() :

sub show guess form {

my S$state = shift;

print start form(-name => 'gf'),
"Your guess: ",
textfield (-name => 'guess', -value => '', -override =>
submit (-value => 'Guess');

save state($state);

print end form;

}

show_guess_form() produces the fill-out form that prompts the user for his guess. It
calls save_state() after opening a <FORM> section and before closing it.

sub show restart form {
my S$state = shift;
print start form,
"Do you want to play again?",
submit (-name => 'restart', -value => 'Another game');
delete Sstate->{WORD};
save state($state);
print end form;

}

show_restart_form() is called after the user has either won or lost a game. It creates a


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

single button that prompts the user to restart. Because the game statistics have to be
saved across games, we call save_state() here too. The only difference from
show_guess _form() is that we explicitly delete the worD field from the state variable.
This signals the script to generate a new unknown word on its next invocation.

Astute readers may wonder at the -onLoad argument that gets passed to the
start_html() function toward the beginning of the code. This argument points to a
fragment of JavaScript code to be executed when the page is first displayed. In this
case, we're asking the keyboard focus to be placed in the text field that's used for the
player's guess, avoiding the annoyance of having to click in the text field before typing
into it. We promise we won't use JavaScript anywhere else in this book!

Example 5.1. A Hangman Game Using Fill-out Forms to Save State

# file: hangmanl.cgi
# hangman game using hidden form fields to maintain state

use IO::File ()
use CGI gw(:standard);

use strict;

use constant WORDS => '/usr/games/lib/hangman-words';
use constant ICONS => '/icons/hangman';

use constant TRIES => 6;

# retrieve the state
my $state = get state();

# reinitialize 1f we need to
Sstate = initialize(Sstate) if !Sstate or param('restart');

# process the current guess, if any
my ($message, $status) = process guess(param('guess') || '', S$Ssta

# start the page
print header,
start html (-Title => 'Hangman 1',
-bgcolor => 'white',
-onLoad => 'if (document.gf) document.gf.guess.fo
hl ('Hangman 1: Fill-Out Forms');

# draw the picture
picture ($state);

# draw the statistics
status ($message, S$state);

# Prompt the user to restart or for his next guess.
if ($status =~ /"~ (won|lost)$S/) {

show restart form($state);
}

else {


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

}

show guess form($state);

print hr,

a({-href => '/'}, "Home"),
p(cite({-style => "fontsize: 10pt"}, 'graphics courtesy Andy
end html () ;

FHEHHHHHHHS subroutines ##H#HHFFHEHFSEES
# This is called to process the user's guess
sub process guess {

my (Sguess, S$state) = @ ;

# lose immediately if user has no more guesses left

return ('', 'lost') unless S$state->{GUESSES LEFT} > 0;
my %guessed = map { $ => 1 } S$state->{GUESSED} =~ /(.)/g;
my %$letters = map { $ => 1 } S$state->{WORD} =~ /(.)/g;

# return immediately if user has already guessed the word
return ('', 'won') unless grep(!S$guessed{$ }, keys %letters)

# do nothing more if no guess
return ('', 'continue') unless S$Sguess;

# This section processes individual letter guesses

Sguess = lc S$guess;

return ("Not a valid letter or word!", 'error')
unless S$guess =~ /"[a-z]+S$/;

return ("You already guessed that letter!", 'error')

if Sguessed{Sguess};

# This section is called when the user guesses the whole wor
if (length(Sguess) > 1 and S$Sguess ne Sstate->{WORD}) {
$state->{TOTAL} += S$state->{GUESSES LEFT};
return (gg{You lose. The word was "S$state->{WORD}."}, 'l
}

# update the list of guesses
foreach ($guess =~ /(.)/g) { Sguessed{S }++; }
Sstate->{GUESSED} = join '', sort keys %guessed;

# correct guess -- word completely filled in
unless (grep(!Sguessed{$ }, keys %Sletters)) {
Sstate->{WON}++;
return (gg{You got it! The word was "S$state->{WORD}."},
}

# incorrect guess
if (!$Sletters{Sguess}) {
Sstate->{TOTAL}++;
$state->{GUESSES LEFT}--;
# user out of turns
return (gqg{The jig is up. The word was "S$Sstate->{WORD}".
if Sstate->{GUESSES LEFT} <= 0;


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

# user still has some turns
return ('Wrong guess!', 'continue');

}

# correct guess but word still incomplete
return (gqg{Good guess!}, 'continue');

}

# create the cute hangman picture
sub picture {
my Stries left = shift->{GUESSES LEFT};
my $picture = sprintf("%$s/h%d.gif", ICONS, TRIES-Stries left

print img({-src => Spicture,
-align => 'LEFT',
-alt => "[Stries left tries left]"});

}

# print the status

sub status {
my ($message, S$state) = @ ;
# print the word with underscores replacing unguessed letter
print table({-width => '100%'},

TR (
td(b('Word #:'), S$state->{GAMENO}),
td(b ('Guessed:"'), S$Sstate->{GUESSED})
),
TR (
td(b('Won:"'), Sstate->{WON}),
td(b('Current average:'),
sprintf ("%$2.3f", Sstate->{TOTAL}/Sstate->{G
td(b('Overall average:'),

Sstate->{GAMENO} > 1 2
sprintf ("%$2.3f",
(Sstate->{TOTAL}- (TRIES-$Sstate->{GU
'0.000")
)

) ;
my %guessed = map { $_ => 1 } $state->{GUESSED} =~ /(.)/g;
print h2 ("Word:",

map {$guessed{$ } 2 $ : ' '}
Sstate->{WORD} =~ /(.)/q);
print h2 (font ({-color => 'red'}, S$message)) 1f S$Smessage;

}

# print the fill-out form for requesting input
sub show guess form {
my S$state = shift;
print start form(-name => 'gf'),
"Your guess: ",
textfield(-name => 'guess', -value => '', -override =>
submit (-value => 'Guess');
save state($state);


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

print end form;

}

# ask the user if he wants to start over
sub show restart form {
my Sstate = shift;
print start form,
"Do you want to play again?",
submit (-name => 'restart', -value =>
delete Sstate->{WORD};
save state($Sstate);
print end form;

}

# pick a word, any word
sub pick random word {
my $list = IO::File->new (WORDS)
|| die "Couldn't open ${\WORDS}: $!\n";
my S$word;
rand($.) < 1 && (Sword = S ) while <S$list>;
chomp S$word;
Sword;

}

'Another game') ;

FHAHHHH AR AR EHHHEHE state maintenance ##HHHFHFHFHEHES

# This is called to initialize a whole new state object

# or to create a new game.
sub initialize {
my Sstate = shift;

Sstate = {} unless S$state;
$state->{WORD} = pick random word();
$State—>{GUESSES_LEFT} = TRIES;
Sstate->{GUESSED} = '"';
Sstate->{GAMENO} += 1;

Sstate->{WON} += 0;

Sstate->{TOTAL} += 0;

return S$state;

}

# Retrieve an existing state

sub get state ({
return undef unless param() ;
my $state = {};

foreach (gqw (WORD GAMENO GUESSES LEFT WON TOTAL GUESSED)) {

$state->{$_} = param($_);

}

return S$state;

}

# Save the current state
sub save state {
my S$state = shift;

foreach (gw (WORD GAMENO GUESSES_LEFT WON TOTAL GUESSED)) {
print hidden(-name => $ , -value => Sstate->{S$ }, -overri


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

}

Although this method of maintaining the hangman game's state works great, it has
certain obvious limitations. The most severe of these is that it's easy for the user to
cheat. All he has to do is to choose the "View Source" command from his browser's
menu bar and there's the secret word in full view, along with all other state
information. The user can use his knowledge of the word to win the game, or he can
save the form to disk, change the values of the fields that keep track of his wins and
losses, and resubmit the doctored form in order to artificially inflate his statistics.

These considerations are not too important for the hangman game, but they become
real issues in applications in which money is at stake. Even with the hangman game
we might worry about the user tampering with the state information if we were
contemplating turning the game into an Internet tournament. Techniques for
preventing user tampering are discussed later in this chapter.

I [ rawaisos [t v |



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rawus Poaxr v

5.3 Maintaining State with Cookies

The other main client-side technique we'll consider uses HTTP cookies to store state
information. HTTP cookies are named bits of information that are transmitted between
the server and browser within the HTTP header. Ordinarily the server creates a
cookie by including a Set-Cookie field in the HTTP header. The browser then stashes
away the cookie information in a small in-memory or on-disk database. The next time
the browser makes a request from that particular server, it returns that cookie in a
Cookie field.

Cookies are relatively flexible. You can create cookies that will be returned to only
one specific server or to any server in your domain. You can set them up so that
they're returned only when users access a particular part of the document tree or any
URI in the document hierarchy. They can be set to expire immediately when the user
exits the browser, or they can be made to persist on the user's disk database for an
extended period of time. You can also create secure cookies that are only returned to
the server when a secure protocol, such as SSL, is in effect. This prevents cookies
from being intercepted in transit by network eavesdroppers.

The exact format of HTTP cookies is somewhat involved and is described in the
HTTP specification at http://www.w3.org/Protocols. Fortunately it's easy to make
cookies in the right format using the CG/::Cookie module. To create a cookie with the
name Hangman, a value equal to the hangman state variable sstate, and an
expiration time one month from now, you would call CG/::Cookie::new( ) in this way:

Scookie = CGI::Cookie->new (—-name => 'Hangman',
-value => {WORD => 'terpitude',
GAMENO => 1},
-expires => '"+1M');

You can now send the cookie to the browser among the HTTP header fields using the
-cookie argument to CGl.pm 's header() method as shown here:

print header (-cookie => Scookie);

On subsequent invocations of the program you can retrieve named cookies sent by
the browser with CGl.pm's cookie( ) method:

Scookie = cookie ('Hangman') ;
Note that CGl.pm allows you to set and retrieve cookies that consist of entire hashes.

If you want to bypass CGl.pm and do the cookie management yourself within the Perl
Apache API, you can use CGI::Cookie to create and parse the cookie format and then
get the cookies in and out of the HTTP header using the Apache header _in( ) and
header_out( ) methods. The experimental Apache::Request module also has cookie-
handling functions.

Using the Perl Apache API, here's how to add a cookie to the HTTP header:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$r->header out ('Set-Cookie' => Scookie);

Here's how to retrieve and parse the cookies from the HTTP header and then find the
one named Hangman:

$cookies = CGI::Cookie->parse($Sr—->header in('Cookie'));
Scookie = S$cookies{'Hangman'};

Because we already require it for the hangman game, we'll use the CGIl.pm shortcuts
for cookie management. We only need to make a few changes to reimplement the
hangman game to use cookies for state maintenance. The updated subroutines are

shown in Example 5.2.

use CGI::Cookie ():
# retrieve the state
my S$state = get state() unless param('clear');

At the top of the file, in addition to importing functions from CGIl.pm, we bring in the
CGlI::Cookie module. This isn't strictly necessary, since CGl.pm will do it for us, but it
makes the code clearer. We retrieve the state as before by calling get_state(), but
now we do it only if the CGI parameter c1car is not defined. We'll see why we made
this change later.

Sstate = initialize(Sstate) if !Sstate or param('restart');
my ($message, S$status) = process guess (param('guess') || "', Ssta
print header (-cookie => saveistate($state)),
start html (-Title => 'Hangman 2',
-bgcolor => 'white',
-onLoad => 'if (document.gf) document.gf.guess.f

hl ('Hangman 2");

Next, having retrieved the state, we (re)initialize it if necessary in order to choose a
fresh word at the beginning of a new game. We process the user's guess by calling
process_guess() and then print out the HTTP header. Here's where we find the first
big difference. Instead of sending the state information to the browser within the
HTML body, we need to save it in the HTTP header. We call save_state() in order to
create a correctly formatted cookie, then send it down the wire to the browser by
passing it to CGl.pm 's header( ) method as the value of the -cookie argument.

sub get state {
my %cookie = cookie (COOKIE NAME) ;
return undef unless $%$cookie;
return \%cookie;

sub save state {
my S$state = shift;
return CGI::Cookie->new (-name => COOKIE NAME,
-value => S$state,
-expires => '"+1M'");

}

Turning our attention to the pivotal get state( ) and save_state( ) functions, we see


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

that get_state( ) calls CGl.pm 's cookie( ) method to retrieve the value of the cookie
named Hangman (stored in the constant cooxTE NAME). cookie() takes care of
flattening and expanding arrays and hashes for us (but not more complex structures,
unfortunately), so we don't need to copy any fields to a separate <=tz te variable, we
just return a reference to the cookie hash itself! Similarly, in sav