

Professional
Ajax

2nd Edition

Nicholas C. Zakas
Jeremy McPeak

Joe Fawcett

01_109496 ffirs.qxd 2/5/07 6:41 PM Page i

01_109496 ffirs.qxd 2/5/07 6:41 PM Page i

Professional
Ajax

2nd Edition

Nicholas C. Zakas
Jeremy McPeak

Joe Fawcett

01_109496 ffirs.qxd 2/5/07 6:41 PM Page i

Professional Ajax, 2nd Edition
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-10949-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data:˙
Zakas, Nicholas C.
Professional Ajax / Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett. -- 2nd ed.

p. cm.
Includes index.
ISBN-13: 978-0-470-10949-6 (paper/website)
ISBN-10: 0-470-10949-1 (paper/website)
1. Ajax (Web site development technology) 2. Web sites--Design--Computer programs. 3. JavaScript (Computer pro-
gram language) 4. Asynchronous transfer mode. 5. World Wide Web. I. McPeak, Jeremy, 1979- II. Fawcett, Joe, 1962-
III. Title.
TK5105.8885.A52Z35 2007
005.13'3--dc22

2006103094

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRE-
SENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFES-
SIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFES-
SIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO
IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT
MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN
WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be avail-
able in electronic books.

01_109496 ffirs.qxd 2/5/07 6:41 PM Page ii

www.wiley.com

To mom, dad, Greg, Yiayia, and the rest of my family and friends who have
supported me throughout my cross-country move.

—Nicholas C. Zakas

To the love of my life, Starla. Thank you for your love, patience, and
encouragement.

—Jeremy McPeak

To my parents, Sheila and William, who instilled in me a love of reading.
Thank you!

—Joe Fawcett

01_109496 ffirs.qxd 2/5/07 6:41 PM Page iii

About the Authors
Nicholas C. Zakas has a BS in Computer Science from Merrimack College and an MBA from Endicott
College. He is the author of Professional JavaScript for Web Developers (Wiley 2005) as well as several
online articles. Nicholas works for Yahoo! as a frontend engineer and has worked in web development
for more than 6 years, during which time he has helped develop web solutions in use at some of the
largest companies in the world. Nicholas can be reached through his web site at www.nczonline.net.

Jeremy McPeak began tinkering with web development as a hobby in 1998. Currently working in the IT
department of a school district, Jeremy has experience developing web solutions with JavaScript, PHP,
and C#. He has written several online articles covering topics such as XSLT, WebForms, and C#. He is
also co-author of Beginning JavaScript, 3rd Edition (Wiley 2007). Jeremy can be reached through his web
site at www.wdonline.com.

Joe Fawcett started programming in the 1970s and briefly worked in IT upon leaving full-time educa-
tion. He then pursued a more checkered career before returning to software development in 1994. In
2003 he was awarded the title of Microsoft Most Valuable Professional in XML for community contribu-
tions and technical expertise. He currently works in London as a developer for FTC Kaplan, a leading
international provider of accountancy and business training, where he specializes in systems integration.

01_109496 ffirs.qxd 2/5/07 6:41 PM Page iv

Credits
Senior Acquisitions Editor
Jim Minatel

Senior Development Editor
Kevin Kent

Technical Editor
Alexei Gorkov

Production Editor
Angela Smith

Copy Editor
Jeri Freedman

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Sean Decker
Jennifer Mayberry
Amanda Spagnuolo
Alicia B. South

Quality Control Technician
Rob Springer

Project Coordinator
Bill Ramsey

Proofreading
Christopher Jones

Indexing
Johnna VanHoose Dinse

Anniversary Logo Design
Richard Pacifico

01_109496 ffirs.qxd 2/5/07 6:41 PM Page v

Acknowledgments

It takes many people to create a book such as this, and as such, we’d like to thank some people for their
contributions to this work.

First and foremost, thanks to everyone at Wiley for their support: to Jim Minatel for starting the process
once again, and Kevin Kent for putting up with all of the last-minute changes and course diversions
throughout the process. Also, a thanks to our technical editor, Alexei Gorkov, for doing a fantastic job
keeping us honest.

Last, a big thanks to those who provided feedback pre-publication including Peter Frueh, Adam Moore,
Jenny Han, Matt Sweeney, Tyson Guskiken, Steve Carlson, and especially Hedger Wang, who suggested
adding the chapter on request management.

01_109496 ffirs.qxd 2/5/07 6:41 PM Page vi

Contents

Introduction xv

Chapter 1: What Is Ajax? 1

Ajax Is Born 2
The Evolution of the Web 2

JavaScript 2
Frames 3
The Hidden Frame Technique 3
Dynamic HTML and the DOM 3
Iframes 4
XMLHttp 4

The Real Ajax 5
Ajax Principles 6
Technologies behind Ajax 6
Who Is Using Ajax? 7

Google Suggest 7
Gmail 8
Google Maps 9
A9 10
Yahoo! News 11
Bitflux Blog 12

Confusion and Controversy 13
Ajax and Web 2.0 14
Summary 15

Chapter 2: Ajax Basics 17

HTTP Primer 17
HTTP Requests 18
HTTP Responses 20

Ajax Communication Techniques 21
The Hidden Frame Technique 21
XMLHttp Requests (XHR) 37
Ajax with Images 50
Dynamic Script Loading 59

Cache Control 63
Summary 63

02_109496 ftoc.qxd 2/5/07 6:46 PM Page vii

viii

Contents

Chapter 3: Ajax Patterns 65

Communication Control Patterns 65
Predictive Fetch 66
Page Preloading Example 66
Submission Throttling 74
Incremental Form Validation Example 76
Incremental Field Validation Example 82
Periodic Refresh 85
New Comment Notifier Example 86
Multi-Stage Download 90
Additional Information Links Example 91

Fallback Patterns 93
Cancel Pending Requests 94
Try Again 96

Summary 97

Chapter 4: Ajax Libraries 99

The Yahoo! Connection Manager 99
Setup 99
Basic Requests 100
The Callback Object 100
Monitoring and Managing Requests 104
Form Interaction 104
File Uploads 105
GET Example 106
POST Example 107
Additional Features 108
Limitations 108

Prototype 109
The Ajax.Request Object 109
The Options Object 109
GET Example 112
POST Example 113
The Ajax.Updater Object 113
The Ajax.Responders Object 115
Advantages and Disadvantages 117

jQuery 117
Simple jQuery Expressions 117
Executing GET Requests 118
GET Example 119

02_109496 ftoc.qxd 2/5/07 6:46 PM Page viii

ix

Contents

The $.post() Method 120
POST Example 120
The load() Method 122
The $.ajax() Method 123
The ajaxStart() and ajaxStop() Methods 124
Limitations 124

Summary 125

Chapter 5: Request Management 127

Priority Queues 127
The RequestManager Object 131

Request Description Objects 132
Queuing Requests 133
Sending Requests 134
Cancelling Requests 139
Age-Based Promotion 141
Handling Ajax Patterns 142

Using RequestManager 145
Summary 148

Chapter 6: XML, XPath, and XSLT 149

XML Support in Browsers 149
XML DOM in IE 149
XML in Other Browsers 159
Cross-Browser XML 162
A Basic XML Example 163

XPath Support in Browsers 170
Introduction to XPath 170
XPath in IE 172
Working with Namespaces 173
XPath in Other Browsers 175
Working with a Namespace Resolver 177
Cross-Browser XPath 178

XSL Transformation Support in Browsers 179
Introduction to XSLT 180
XSLT in IE 182
XSLT in Other Browsers 187
Cross-Browser XSLT 189
Best Picks Revisited 189

Summary 192

02_109496 ftoc.qxd 2/5/07 6:46 PM Page ix

x

Contents

Chapter 7: Syndication with RSS and Atom 193

RSS 193
RSS 0.91 194
RSS 1.0 195
RSS 2.0 196

Atom 196
XParser 197

The xparser Namespace 197
Retrieving the Data 198
The Abstract Classes 198

Creating a News Ticker 210
The Server-Side Component 210
The Client-Side Component 211
Styling the News 221
Using the News Ticker Widget 222

Web Search with RSS 223
The Server-Side Component 224
The Client-Side Component 225
Customizing the Web Search Widget 232
Using the Web Search Widget 234

Summary 235

Chapter 8: JSON 237

What Is JSON? 237
Array Literals 237
Object Literals 238
Mixing Literals 239
JSON Syntax 240
JSON Encoding/Decoding 241

JSON versus XML 242
Server-Side JSON Tools 243

JSON-PHP 243
Other Tools 245

Creating an Autosuggest Textbox 246
Functionality Overview 246
The HTML 247
The Database Table 249
The Architecture 249
The Classes 250
The AutoSuggest Control 250

02_109496 ftoc.qxd 2/5/07 6:46 PM Page x

xi

Contents

The Suggestion Provider 267
The Server-Side Component 268
The Client-Side Component 270

Summary 272

Chapter 9: Comet 273

HTTP Streaming 274
Request Delays 274
File Modification Example 276
Using Iframes 277
Browser-Specific Approaches 282
Server-Sent DOM Events 291

Connection Management 296
Server-Side Support 297
Summary 298

Chapter 10: Maps and Mashups 299

The Rise of Mashups 300
Geocoding 300

Geocoding Web Sites 300
Geocoding Services 301

Google Maps API 301
How Does It Work? 301
Getting Started 302
Google Maps Basics 303
Controls 304
Moving the Map 306
Info Windows 306
Events 311
Map Overlays 313
Additional Information 321

Yahoo! Maps API 321
Getting Started 321
Yahoo! Maps Basics 322
Controls 324
Moving the Map 325
Smart Windows 326
Events 327
Map Overlays 328
Address Lookup 334
Additional Information 334

02_109496 ftoc.qxd 2/5/07 6:46 PM Page xi

xii

Contents

Other Mapping APIs 335
Summary 335

Chapter 11: Ajax Debugging Tools 337

The Problem 337
FireBug 338

Installation and Setup 338
The Interface 339
XHR Logging 340
Ajax Debugging with FireBug 341
FireBug Limitations 342

Microsoft Fiddler 342
Installation and Setup 343
The Interface 344
HTTP Breakpoints 347
Ajax Debugging with Fiddler 348

Summary 349

Chapter 12: Web Site Widgets 351

Creating a Weather Widget 351
The Weather.com SDK 351
The Server-Side Component 352
The Client-Side Component 361
Getting Data from the Server 361
Customizing the Weather Widget 362
Setting Up the Weather Widget as an Application 366
Adding the Weather Widget to the Web Page 370

Watching Stocks 371
Getting Yahoo! Finance Information 371
The Stock Quote Proxy 372
Client Component: The AjaxStockWatcher Class 376
Customizing the Stock Quotes 385
Using the Stock Watcher Widget 387

Creating a Site Search Widget 388
The Server-Side Component 389
The Client-Side Component 398
Customizing the Site Search Widget 403
Adding the Site Search Widget to a Page 405

Summary 406

02_109496 ftoc.qxd 2/5/07 6:46 PM Page xii

xiii

Contents

Chapter 13: Ajax Frameworks 407

JPSpan 407
Using JPSpan 408
JPSpan Example 412
Summary of JPSpan 415

DWR 416
Using DWR 416
DWR Example 419
More about dwr.xml 424
Summary of DWR 427

Ajax.NET Professional 427
Using Ajax.NET Professional 427
Type Conversion 429
Session Access 430
Ajax.NET Professional Example 431
Summary of Ajax.NET Professional 436

Summary 436

Chapter 14: ASP.NET AJAX Extensions (Atlas) 437

Requirements and Setup 438
The AJAX Client Library 438

Accessing the Client Tools with ASP.NET 438
Accessing the Client Tools without ASP.NET 439
Using Classes 440
Writing Code with the ASP.NET AJAX Library 440
Using Controls 446
Making HTTP Requests 451

The UpdatePanel Control 455
Adding the UpdatePanel to the Page 455
Adding Content to the UpdatePanel 456
Triggering an Update 457
Finishing Up 458

SiteSearch Revisited 459
The User Interface 459
Getting Started 460
Declaring the Form 460
Performing the Search 462
Clearing the Results 467
Handling Errors 467
Hooking Up the Events 468

Summary 470

02_109496 ftoc.qxd 2/5/07 6:46 PM Page xiii

xiv

Contents

Chapter 15: Case Study: FooReader.NET 471

The Client Components 472
The User Interface 472
Styling the Interface 475
Driving the UI 481

The Server Application 495
Possible Paradigms 495
Implementation 496

Setup and Testing 506
Summary 508

Chapter 16: Case Study: AjaxMail 509

Requirements 509
Architecture 510

Resources Used 510
The Database Tables 511
The Configuration File 512
The AjaxMailbox Class 513
Performing Actions 535

The User Interface 541
The Folder View 544
Read View 546
Compose View 548
Layout 550

Tying It All Together 550
Helper Functions 552
The Mailbox 553
Callback Functions 571
Event Handlers 573

The Last Step 573
Summary 574

Appendix A: Licenses for Libraries and Frameworks 575

Index 583
GNU General Public License 600

02_109496 ftoc.qxd 2/5/07 6:46 PM Page xiv

Introduction

With recent advances in JavaScript, web developers have been able to create an unprecedented user
experience in web applications. Breaking free of the “click and wait” paradigm that has dominated the
web since its inception, developers can now bring features formerly reserved for desktop applications
onto the web using a technique called Ajax.

Ajax is an all-encompassing term surrounding the use of asynchronous HTTP requests initiated by
JavaScript for the purpose of retrieving information from the server without unloading the page. These
requests may be executed in any number of ways and using any number of different data transmission
formats. Combining this remote data retrieval with the interactivity of the Document Object Model
(DOM) has bred a new generation of web applications that seem to defy all the traditional rules of what
can happen on the web. Big companies such as Google, Yahoo!, and Microsoft have devoted resources
specifically towards the goal of creating web applications that look and behave like desktop applications.

This book covers the various aspects of Ajax, including the different ways you can initiate HTTP
requests to the server and the different formats that can be used to carry data back and forth. You will
learn different Ajax techniques and patterns for executing client-server communication on your web site
and in web applications.

Who This Book Is For
This book is aimed at two groups of readers:

❑ Web application developers looking to enhance the usability of their web sites and web
applications.

❑ Intermediate JavaScript developers looking to further understand the language.

In addition, familiarity with the following related technologies is a strong indicator that this book is
for you:

❑ XML

❑ XSLT

❑ Web Services

❑ PHP

❑ C#

❑ HTML

❑ CSS

03_109496 flast.qxd 2/5/07 6:47 PM Page xv

xvi

Introduction

This book is not aimed at beginners without a basic understanding of the aforementioned technologies.
Also, a good understanding of JavaScript is vitally important to understanding this book. Those readers
without such knowledge should instead refer to books such as Beginning JavaScript, Second Edition (Wiley
2004) and Professional JavaScript for Web Developers (Wiley Publishing, Inc., 2005).

What This Book Covers
Professional Ajax provides a developer-level tutorial of Ajax techniques, patterns, and use cases.

The book begins by exploring the roots of Ajax, covering how the evolution of the web and new tech-
nologies directly led to the development of Ajax techniques. A detailed discussion of how frames,
JavaScript, cookies, XML, and XMLHttp requests (XHR) related to Ajax is included.

After this introduction, the book moves on to cover the implementation of specific Ajax techniques.
Request brokers such as hidden frames, dynamic iframes, and XHR are compared and contrasted,
explaining when one method should be used over another. To make this discussion clearer, a brief
overview of HTTP requests and responses is included.

Once a basic understanding of the various request types is discussed, the book moves on to provide in-
depth examples of how and when to use Ajax in a web site or web application. Different data transmis-
sion formats, including plain text, HTML, XML, and JSON are discussed for their advantages and
disadvantages. Also included is a discussion on web services and how they may be used to perform
Ajax techniques.

Next, more complex topics are covered. A chapter introducing a request management framework
explores how to manage all of the requests inside of an Ajax application. Ajax debugging techniques are
also discussed, including the popular FireBug and Fiddler utilities.

The last part of the book walks through the creation of two full-fledged Ajax web applications. The first,
FooReader.NET, is an Ajax-powered RSS reader. The second, called AjaxMail, is an Ajax-enabled email
system. Both of these applications incorporate many of the techniques discussed throughout the book.

How This Book Is Structured
This book begins by providing background about the origins of Ajax before moving into actual imple-
mentation. Next, the various ways to accomplish client-server communication are discussed, setting the
stage for the rest of the book. It is recommended that you read the book straight through, as each chapter
builds on information in the previous chapters.

The chapter-level breakdown is as follows:

1. What Is Ajax? Explains the origins of Ajax, the technologies involved, and where the term origi-
nated. Describes how Ajax developed as the web developed and who, if anyone, can claim own-
ership of the term and techniques.

03_109496 flast.qxd 2/5/07 6:47 PM Page xvi

xvii

Introduction

2. Ajax Basics. Introduces the various ways to accomplish Ajax communication, including the hid-
den frame technique and XHR. The advantages and disadvantages of each approach are dis-
cussed, as well as guidelines as to when each should be used.

3. Ajax Patterns. Focuses on design patterns using Ajax. There are a variety of ways to incorporate
Ajax into web sites and web applications; these have been organized into a handful of design
patterns that describe best practices for Ajax incorporation.

4. Ajax Libraries. Explores three popular Ajax libraries: the Yahoo! Connection Manager,
Prototype, and jQuery. The different approaches of these libraries are compared and contrasted,
as well as recreating previous examples using the libraries.

5. Request Management. Discusses the management of XHR requests for an Ajax application,
keeping in mind browser limitations. A methodology for creating a prioritization system is dis-
cussed, tying in aspects of the Ajax patterns discussed in Chapter 3.

6. XML, XPath, and XSLT. Introduces XML, XPath, and XSLT as complementary technologies to
Ajax. The discussion centers on using XML as a data transmission format and using
XPath/XSLT to access and display information.

7. Syndication with RSS and Atom. Deals with using Ajax together with the data syndication for-
mats RSS and Atom to create a news-based widgets. Techniques from previous chapters are
used heavily.

8. JSON. Introduces JavaScript Object Notation (JSON) as an alternate data transmission format
for Ajax communications. Advantages and disadvantages over using XML and plain text are
discussed.

9. Comet. Discusses the emergence of the server-push architecture called Comet. Several different
techniques are discussed for implementing Comet depending upon browser capabilities.

10. Maps and Mashups. Explores two of the APIs available for Ajax maps: the Google Maps API
and the Yahoo! Maps API. Each of the APIs is explored for their capabilities and limitations as
well as their use of geocoding.

11. Ajax Debugging Tools. Discusses various methods of debugging Ajax requests. The FireBug
extension for Firefox and the Fiddler tool for Internet Explorer are introduced as a way to debug
HTTP requests.

12. Web Site Widgets. Brings the techniques from the previous chapters into focus by creating Ajax
widgets that can be included in your web site.

13. Ajax Frameworks. Covers three Ajax frameworks: JPSPAN for PHP, DWR for Java/JSP, and
Ajax.NET for the .NET framework. Each of these frameworks attempts to automate some part of
the Ajax development process.

14. ASP.NET AJAX Extensions (Atlas). Introduces ASP.NET AJAX Extensions (formerly called
Atlas) and how they can simplify the creation of Ajax applications. Assumes usage of .NET 2.0
for server-side code.

15. Case Study: FooReader.NET. Explores the creation of an RSS news aggregator. This application
illustrates the use of server-side proxies, as well as the use of XML in JavaScript.

16. Case Study: AjaxMail. Walks through the development of a complete web application. This
application, called AjaxMail, is an Ajax-based email system that uses many of the techniques
described earlier in the book.

03_109496 flast.qxd 2/5/07 6:47 PM Page xvii

xviii

Introduction

What You Need to Use This Book
To run the samples in the book, you will need the following:

❑ Windows 2000, Windows Server 2003, Windows XP, or Mac OS X

❑ Internet Explorer 5.5 or higher (Windows), Firefox 1.5 or higher (all platforms), Opera 9.0 or
higher (all platforms), or Safari 2.0 or higher (Mac OS X).

The complete source code for the samples is available for download from our web site at
www.wrox.com.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show file names, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

03_109496 flast.qxd 2/5/07 6:47 PM Page xviii

xix

Introduction

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-471-0949-6.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

See Appendix A for more information about what’s included with the code download for this book.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

03_109496 flast.qxd 2/5/07 6:47 PM Page xix

xx

Introduction

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

03_109496 flast.qxd 2/5/07 6:47 PM Page xx

What Is Ajax?

From 2001 to 2005, the World Wide Web went through a tremendous growth spurt in terms of the
technologies and methodologies being used to bring this once-static medium to life. Online
brochures and catalogs no longer dominated the Internet as web applications began to emerge as a
significant portion of online destinations. Web applications differed from their web site ancestors
in that they provided an instant service to their users, not just information. Whether for business
process management or personal interests, developers were forced to create new interaction
paradigms as users came to expect richer functionality.

Spurred on by little-known and lesser-used technologies that had been included in web browsers
for some time, the Web took a bold step forward, shattering the traditional usage model that
required a full page load every time new data or a new part of the application’s logic was
accessed. Companies began to experiment with dynamic reloading of portions of web pages,
transmitting only a small amount of data to the client, resulting in a faster, and arguably better,
user experience.

At the forefront of this movement was Google. After the search giant went public, new experi-
ments conducted by Google engineers began popping up through a special part of the site called
Google Labs (labs.google.com). Many of the projects at Google Labs, such as Google Suggest
and Google Maps, involved only a single web page that was never unloaded but was constantly
updated nevertheless. These innovations, which began to bring the affordances of desktop soft-
ware interfaces into the confines of the browser, were praised around the Web as ushering in a
new age in web development. And indeed they did.

Numerous open source and commercial products began development to take advantage of this
new web application model. These projects explained their technology using a variety of terms
such as JavaScript remoting, web remote procedure calls, and dynamic updating. Soon, however, a
new term would emerge.

04_109496 ch01.qxd 2/5/07 6:47 PM Page 1

Ajax Is Born
In February 2005, Jesse James Garrett of Adaptive Path, LLC published an online article entitled, “Ajax:
A New Approach to Web Applications” (still available at www.adaptivepath.com/publications/
essays/archives/000385.php). In this essay, Garrett explained how he believed web applications
were closing the gap between the Web and traditional desktop applications. He cited new technologies
and several of the Google projects as examples of how traditionally desktop-based user interaction
models were now being used on the Web. Then came the two sentences that would ignite a firestorm
of interest, excitement, and controversy:

Google Suggest and Google Maps are two examples of a new approach to web applications that we at
Adaptive Path have been calling Ajax. The name is shorthand for Asynchronous JavaScript + XML,
and it represents a fundamental shift in what’s possible on the Web.

From that point forward, a tidal wave of Ajax articles, code samples, and debates began popping up all
over the Web. Developers blogged about it, technology magazines wrote about it, and companies began
hitching their products to it. But to understand what Ajax is, you first must understand how the evolu-
tion of several web technologies led to its development.

The Evolution of the Web
When Tim Berners-Lee crafted the first proposal for the World Wide Web in 1990, the idea was fairly
simple: to create a “web” of interconnected information using hypertext and Uniform Resource
Identifiers (URIs). The ability to link disparate documents from all around the world held huge potential
for scholarly endeavors, where people would be able to access referenced material almost instantly.
Indeed, the first version of the HyperText Markup Language (HTML) featured little more than format-
ting and linking commands, a platform not for building rich interactive software but rather for sharing
the kinds of textual and illustrative information that dominated the late age of print. It was from these
static web pages that the Web grew.

As the Web evolved, businesses saw potential in the ability to distribute information about products and
services to the masses. The next generation of the Web saw an increased ability to format and display
information as HTML also evolved to meet the needs and match the expectations of these new media-
savvy users. But a small company called Netscape would soon be ready to push the evolution of the
Web forward at a much faster pace.

JavaScript
Netscape Navigator was the first successful mainstream web browser, and as such, moved web tech-
nologies along quickly. However, Netscape often was ridiculed by standards organizations for imple-
menting new technologies and extensions to existing technologies before the standards were in place
(much as Microsoft is being chastised today for ignoring existing standards in its development of
Internet Explorer). One such technology was JavaScript.

Originally named LiveScript, JavaScript was created by Brendan Eich of Netscape and included in ver-
sion 2.0 of the browser (released in 1995). For the first time, developers were able to affect how a web
page could interact with the user. Instead of making constant trips to the server and back for simple

2

Chapter 1

04_109496 ch01.qxd 2/5/07 6:47 PM Page 2

tasks such as data validation, it became possible to transfer this small bit of processing to the browser.
This ability was very important at a time when most Internet users were connected through a 28.8 Kbps
modem, turning every request to the server into a waiting game. Minimizing the number of times that
the user had to wait for a response was the first major step toward the Ajax approach.

Frames
The original version of HTML intended for every document to be standalone, and it wasn’t until HTML
4.0 that frames were officially introduced. The idea that the display of a web page could be split up into
several documents was a radical one, and controversy brewed as Netscape chose to implement the fea-
ture before the HTML 4.0 standard was completed. Netscape Navigator 2.0 was the first browser to sup-
port frames and JavaScript together. This turned out to be a major step in the evolution of Ajax.

When the browser wars of the late 1990s began between Microsoft and Netscape, both JavaScript and
frames became formalized. As more features were added to both technologies, creative developers began
experimenting using the two together. Because a frame represented a completely separate request to the
server, the ability to control a frame and its contents with JavaScript opened the door to some exciting
possibilities.

The Hidden Frame Technique
As developers began to understand how to manipulate frames, a new technique emerged to facilitate
client-server communication. The hidden frame technique involved setting up a frameset where one
frame was set to a width or height of 0 pixels, its sole purpose being to initiate communication with the
server. The hidden frame would contain an HTML form with specific form fields that could be dynami-
cally filled out by JavaScript and submitted back to the server. When the frame returned, it would call
another JavaScript function to notify the calling page that data had been returned. The hidden frame
technique represented the first asynchronous request/response model for web applications.

While this was the first Ajax communication model, another technological advance was just around the
corner.

Dynamic HTML and the DOM
In 1996, the Web was still mainly a static world. Although JavaScript and the hidden frame technique
livened up the user interaction, there was still no way to change the display of a page without reloading
it, aside from changing the values contained within form fields. Then came Internet Explorer 4.0.

At this point, Internet Explorer had caught up with the technology of market leader Netscape Navigator
and even one-upped it in one important respect through the introduction of Dynamic HTML (DHTML).
Although still in the development phase, DHTML represented a significant step forward from the days
of static web pages, enabling developers to alter any part of a loaded page by using JavaScript. Along
with the emergence of Cascading Style Sheets (CSS), DHTML reinvigorated web development, despite
deep disparities between the paths Microsoft and Netscape followed during the early years of each dis-
cipline. Excitement in the developer community was justified, however, because combining DHTML
with the hidden frame technique meant that any part of a page could be refreshed with server informa-
tion at any time. This was a genuine paradigm shift for the Web.

3

What Is Ajax?

04_109496 ch01.qxd 2/5/07 6:47 PM Page 3

DHTML never made it to a standards body, although Microsoft’s influence would be felt strongly with
the introduction of the Document Object Model (DOM) as the centerpiece of the standards effort. Unlike
DHTML, which sought only to modify sections of a web page, the DOM had a more ambitious purpose:
to provide a structure for an entire web page. The manipulation of that structure would then allow
DHTML-like modifications to the page. This was the next step towards Ajax.

Iframes
Although the hidden frame technique became incredibly popular, it had a downside — one had to plan
ahead of time and write a frameset anticipating the usage of hidden frames. When the <iframe/> ele-
ment was introduced as an official part HTML 4.0 in 1997, it represented another significant step in the
evolution of the Web.

Instead of defining framesets, developers could place iframes anywhere on a page. This enabled devel-
opers to forego framesets altogether and simply place invisible iframes (through the use of CSS) on a
page to enable client-server communication. And when the DOM was finally implemented in Internet
Explorer 5 and Netscape 6, it introduced the ability to dynamically create iframes on the fly, meaning
that a JavaScript function could be used to create an iframe, make a request, and get the response — all
without including any additional HTML in a page. This led to the next generation of the hidden frame
technique: the hidden iframe technique.

XMLHttp
The browser developers at Microsoft must have realized the popularity of the hidden frame technique
and the newer hidden iframe technique, because they decided to provide developers with a better tool
for client-server interaction. That tool came in the form of an ActiveX object called XMLHttp, introduced
in 2001.

One of the Microsoft extensions to JavaScript allowed the creation of ActiveX controls, Microsoft’s pro-
prietary programming objects. When Microsoft began supporting XML through a library called MSXML,
the XMLHttp object was included. Although it carried the XML name, this object was more than just
another way of manipulating XML data. Indeed, it was more like an ad hoc HTTP request that could be
controlled from JavaScript. Developers had access to HTTP status codes and headers, as well as any data
returned from the server. That data might be structured XML, pre-formatted swaths of HTML, serialized
JavaScript objects, or data in any other format desired by the developer. Instead of using hidden frames
or iframes, it was now possible to access the server programmatically using pure JavaScript, indepen-
dent of the page load/reload cycle. The XMLHttp object became a tremendous hit for Internet Explorer
developers.

With popularity mounting, developers at the open source Mozilla project began their own port of
XMLHttp. Instead of allowing access to ActiveX, the Mozilla developers replicated the object’s principal
methods and properties in a native browser object, XMLHttpRequest. With both of the major browsers
supporting some form of XMLHttp, the development of Ajax-type interfaces really took off and forced
the fringe browsers, Opera and Safari, to support some form of XMLHttp as well (both chose to do so
natively with an XMLHttpRequest object, mimicking Mozilla). Ironically enough, the popularity of this
XMLHttp clone reached back to Microsoft, which introduced the native XMLHttpRequest object in
Internet Explorer 7.

4

Chapter 1

04_109496 ch01.qxd 2/5/07 6:47 PM Page 4

The Real Ajax
Despite the frequently asked questions attached to the end of Garrett’s essay, some confusion still exists
as to what Ajax really is. Put simply, Ajax is nothing more than an approach to web interaction. This
approach involves transmitting only a small amount of information to and from the server in order to
give the user the most responsive experience possible.

Instead of the traditional web application model where the browser itself is responsible for initiating
requests to, and processing requests from, the web server, the Ajax model provides an intermediate layer —
what Garrett calls an Ajax engine — to handle this communication. An Ajax engine is really just a JavaScript
object or function that is called whenever information needs to be requested from the server. Instead of the
traditional model of providing a link to another resource (such as another web page), each link makes a call
to the Ajax engine, which schedules and executes the request. The request is done asynchronously, mean-
ing that code execution doesn’t wait for a response before continuing.

The server — which traditionally would serve up HTML, images, CSS, or JavaScript — is configured to
return data that the Ajax engine can use. This data can be plain text, XML, or any other data format that
you may need. The only requirement is that the Ajax engine can understand and interpret the data

When the Ajax engine receives the server response, it goes into action, often parsing the data and making
several changes to the user interface based on the information it was provided. Because this process
involves transferring less information than the traditional web application model, user interface updates
are faster, and the user is able to do his or her work more quickly. Figure 1-1 is an adaptation of the figure
in Garrett’s article, displaying the difference between the traditional and Ajax web application models.

Figure 1-1

Web Server

Data

Query/Data
Request

Database

HTML, Images,
CSS, JavaScript

Web Browser

Traditional Web Application Model

HTTP
Request

Web Server

Data

Query/Data
Request

Database

HTML, CSS

JavaScript
Call

Data

Web Browser

Ajax Web Application Model

HTTP
Request

User
Interface

Ajax
Engine

5

What Is Ajax?

04_109496 ch01.qxd 2/5/07 6:47 PM Page 5

Ajax Principles
As a new web application model, Ajax is still in its infancy. However, several web developers have taken
this new development as a challenge. The challenge is to define what makes a good Ajax web applica-
tion versus what makes a bad or mediocre one. Michael Mahemoff (www.mahemoff.com), a software
developer and usability expert, identified several key principles of good Ajax applications that are worth
repeating:

❑ Minimal traffic: Ajax applications should send and receive as little information as possible to
and from the server. In short, Ajax can minimize the amount of traffic between the client and the
server. Making sure that your Ajax application doesn’t send and receive unnecessary informa-
tion adds to its robustness.

❑ No surprises: Ajax applications typically introduce different user interaction models than tradi-
tional web applications. As opposed to the web standard of click-and-wait, some Ajax applica-
tions use other user interface paradigms such as drag-and-drop or double-clicking. No matter
what user interaction model you choose, be consistent so that the user knows what to do next.

❑ Established conventions: Don’t waste time inventing new user interaction models that your
users will be unfamiliar with. Borrow heavily from traditional web applications and desktop
applications, so there is a minimal learning curve.

❑ No distractions: Avoid unnecessary and distracting page elements such as looping animations
and blinking page sections. Such gimmicks distract the user from what he or she is trying to
accomplish.

❑ Accessibility: Consider who your primary and secondary users will be and how they most
likely will access your Ajax application. Don’t program yourself into a corner so that an unex-
pected new audience will be completely locked out. Will your users be using older browsers or
special software? Make sure you know ahead of time and plan for it.

❑ Avoid entire page downloads: All server communication after the initial page download
should be managed by the Ajax engine. Don’t ruin the user experience by downloading small
amounts of data in one place but reloading the entire page in others.

❑ User first: Design the Ajax application with the users in mind before anything else. Try to make
the common use cases easy to accomplish and don’t be caught up with how you’re going to fit
in advertising or cool effects.

The common thread in all these principles is usability. Ajax is, primarily, about enhancing the web expe-
rience for your users; the technology behind it is merely a means to that end. By adhering to the preced-
ing principles, you can be reasonably assured that your Ajax application will be useful and usable.

Technologies behind Ajax
Garrett’s article mentions several technologies that he sees as parts of an Ajax solution. These are:

❑ HTML/XHTML: Primary content representation languages

❑ CSS: Provides stylistic formatting to XHTML

6

Chapter 1

04_109496 ch01.qxd 2/5/07 6:47 PM Page 6

❑ DOM: Dynamic updating of a loaded page

❑ XML: Data exchange format

❑ XSLT: Transforms XML into XHTML (styled by CSS)

❑ XMLHttp: Primary communication broker

❑ JavaScript: Scripting language used to program an Ajax engine

In reality, all these technologies are available to be used in Ajax solutions, but only three are required:
HTML/XHTML, DOM, and JavaScript. XHTML is obviously necessary for the displaying of informa-
tion, while the DOM is necessary to change portions of an XHTML page without reloading it. The last
part, JavaScript, is necessary to initiate the client-server communication and manipulate the DOM to
update the web page. The other technologies in the list are helpful in fine-tuning an Ajax solution, but
they aren’t necessary.

There is one major component that Garrett neglected to mention in his article: the necessity of server-
side processing. All of the previously listed technologies relate directly to the client-side Ajax engine, but
there is no Ajax without a stable, responsive server waiting to send content to the engine. For this pur-
pose, you can use the application server of your choice. Whether you choose to write your server-side
components as PHP pages, Java servlets, or .NET components, you need only ensure that the correct
data format is being sent back to the Ajax engine.

The examples in this book make use of as many server-side technologies as possible to give you enough
information to set up Ajax communication systems on a variety of servers. Most of the examples cov-
ered in the book are available in PHP, JSP, and ASP.NET versions at www.wrox.com.

Who Is Using Ajax?
A number of commercial web sites use Ajax techniques to improve their user experience. These sites are
really more like web applications than traditional brochureware web sites that just display information
because you visit it to accomplish a specific goal. The following are some of the more well-known and
well-executed web applications that use Ajax.

Google Suggest
One of the first examples that developers cite when talking about Ajax is Google Suggest
(www.google.com/webhp?complete=1). The interface is simply a clone of the main Google interface,
which prominently features a text box to enter search terms. Everything appears to be the same until you
start typing in the textbox. As you type, Google Suggest requests suggestions from the server, showing
you a drop-down list of search terms that you may be interested in. Each suggestion is displayed with a
number of results available for the given term to help you decide (see Figure 1-2).

This simple client-server interaction is very powerful and effective without being obtrusive to the user.
The interface is responsive beyond what you may have learned to expect from a web application; it
updates no matter how quickly you type and, as with autocomplete features in desktop software, you
can use the up and down arrows to highlight and select each item in the suggestions list. Although still
in beta, expect to see this approach make its way into the main Google page eventually.

7

What Is Ajax?

04_109496 ch01.qxd 2/5/07 6:47 PM Page 7

Figure 1-2

Gmail
Gmail, Google’s free e-mail service, has been raved about as a marvel of client-server interaction in the
age of Ajax. When you first log in to Gmail, a user interface engine is loaded into one of the few iframes
the application uses. All further requests back to the server occur through this user interface engine
through an XMLHttp object. The data being transferred back and forth is JavaScript code, which makes
for fast execution once downloaded by the browser. These requests serve as instructions to the user
interface engine as to what should be updated on the screen.

Additionally, the Gmail application uses several frames and iframes to manage and cache big user inter-
face changes. The extremely complicated use of frames enables Gmail to function properly with the Back
and Forward buttons, which is one of the advantages of using frames or iframes instead of or in conjunc-
tion with XMLHttp (discussed later in the book).

The biggest win for Gmail is its usability. The user interface, as shown in Figure 1-3, is simple and
uncluttered. Interaction with the user and communication with the server is all seamless. Once again,
Google used Ajax to improve on an already simple concept to provide an exceptional user experience.

8

Chapter 1

04_109496 ch01.qxd 2/5/07 6:47 PM Page 8

Figure 1-3

Google Maps
Another part of Google’s dominant Ajax web applications is Google Maps (maps.google.com).
Designed to compete with well-established mapping sites, Google Maps uses Ajax to avoid reloading its
main page at all (see Figure 1-4).

Unlike other mapping web applications, Google Maps enables you to drag the map to move it in various
directions. The dragging code is nothing new to JavaScript developers, but the tiling of the map and
seemingly endless scrolling effect are another story. The map is broken up into a series of images that are
tiled together to make the appearance of a contiguous image. The number of images used to display the
map is finite, as creating new images every time the user moves the map would quickly lead to memory
problems. Instead, the same images are used over and over to display different segments of the map.

The client-server communication is done through a hidden iframe. Whenever you do a search or ask for
new directions, this information is submitted and returned within that iframe. The data returned is in
XML format and is passed to a JavaScript function (the Ajax engine) to handle. This XML is then used in
a variety of different ways: some is used to call the correct map images, and some is transformed using
XSLT into HTML and displayed in the main window. The bottom line is that this complex Ajax applica-
tion is, as of late 2006, the number two destination for mapping on the Web.

9

What Is Ajax?

04_109496 ch01.qxd 2/5/07 6:47 PM Page 9

Figure 1-4

A9
Amazon.com is world famous for being an online marketplace for just about anything, but when it
released a search engine, it did so with little fanfare and attention. The introduction of A9 (www.a9.com)
showed off enhanced searching, enabling you to search different types of information simultaneously.
For web and image searches it uses MSN to fetch results. It performs searches of books on Amazon.com
and movies on IMDb (Internet Movie Database). Searches for Yellow Pages, Wikipedia, and
Answers.com debuted in mid-2005.

What makes A9 unique is how its user interface works. When you perform a search, the different types
of results are displayed in different areas of the page (see Figure 1-5).

On the search results page, you have the option of selecting other searches to perform using the same
criteria. When you select a check box corresponding to a type of search, the search is performed behind
the scenes using a combination of hidden iframes and XMLHttp. The user interface shifts to allow room
for the extra search results, which are loaded as soon as they are received from the server. The result is a
more responsive search results page that doesn’t need to be reloaded when you want to search on differ-
ent types of information.

10

Chapter 1

04_109496 ch01.qxd 2/5/07 6:47 PM Page 10

Figure 1-5

Yahoo! News
Also introduced in 2005 was a new design for the Yahoo! News site (news.yahoo.com). The new design
features an interesting enhancement: when you move your mouse over a particular headline, a small
box pops up with a summary and, optionally, a photo associated with that story (see Figure 1-6).

The photo information and summary are retrieved from the server using XMLHttp and inserted into the
page dynamically. This is a perfect example of how Ajax can be used to enhance a web page. Rather than
making Ajax the primary usage mode, the Yahoo! News site is completely usable without Ajax; the Ajax
functionality is used only to add a more responsive user experience in browsers that support it.
Underneath is a semantically correct HTML page that is laid out logically even without CSS formatting.

11

What Is Ajax?

04_109496 ch01.qxd 2/5/07 6:47 PM Page 11

Figure 1-6

Bitflux Blog
Another great example of using Ajax only as an enhancement is Bitflux Blog (blog.bitflux.ch), which
features a technology called LiveSearch. LiveSearch works in conjunction with the search box on the site.
As you type into the box, a list of possible search results is displayed immediately below (see Figure 1-7).

The search results are retrieved using XMLHttp as an HTML string that is then inserted into the page.
You can search the site the old-fashioned way as well: by filling in the text box and pressing Enter. The
LiveSearch Ajax functionality is just an enhancement to the overall site and isn’t required to search.

12

Chapter 1

04_109496 ch01.qxd 2/5/07 6:47 PM Page 12

Figure 1-7

Confusion and Controversy
Despite the popularity of the term Ajax, it has been met with its fair share of dissenters and controversy.
Some believe that Ajax is an aberration of what the Web was moving toward before Ajax entered the pic-
ture. The proponents of semantic HTML design, accessibility, and the separation of content and presen-
tation were gaining ground and acceptance among web developers, and some believe that the
popularity of Ajax has pushed that movement into the background. The belief of these detractors is that
Ajax promotes creating presentation within JavaScript, thus turning it into a messy mix similar to the
early days of server-side scripting. Many believe that accessibility will suffer if more developers turn to
Ajax solutions.

13

What Is Ajax?

04_109496 ch01.qxd 2/5/07 6:47 PM Page 13

Others have spent a significant amount of time dissecting Garrett’s article and disproving several
assumptions that he makes. For instance, the article mentions using XML and XMLHttp repeatedly as
being the core of the Ajax model, but many of the examples he lists don’t use them. Gmail and Google
Maps use these technologies sparingly; Google Suggest uses only XMLHttp and uses JavaScript arrays
instead of XML for data exchange. Critics also point out that the technical explanation of Ajax in the arti-
cle is completely misleading, citing several technologies that are not only unnecessary (such as XML and
XMLHttp) but unlikely to be used in many cases (such as XSLT).

Another big argument surrounding Ajax and Garrett’s Adaptive Path article is that it’s merely a new
name for a technique that has already been used for some time. Although this type of data retrieval
could be enacted in Netscape Navigator 2.0, it really became more prominent in 2001–2002, especially
with the publication of an article on Apple’s Developer Connection site entitled, “Remote Scripting With
IFRAME” (available at http://developer.apple.com/internet/webcontent/iframe.html). This
article is widely believed to be the first mainstream article published on Ajax-like methodologies. The
term remote scripting never caught on with quite the staying power as Ajax.

Still others scoff at the term Ajax and Garrett’s article, believing that its creation was little more than a
marketing gimmick for Garrett’s company, Adaptive Path, LLC. Some believe that creating a name for a
technique that already existed is disingenuous and a clear sign of ill intent. Regardless of this and other
controversies surrounding Ajax, the approach now has a name that developers are quickly becoming
familiar with, and with that comes a need for a deeper understanding and explanation so that it may be
used in the best possible ways.

Ajax and Web 2.0
Shortly after the term Ajax was coined, another term began popping up. Web 2.0 was originally the
name of a conference held by O’Reilly Media and CMP Media in late 2005. After that, the term Web 2.0
took on a life of its own and began popping up all over the Internet in descriptions of how the Web had
changed. To try to rein in the term before it got out of control, Tim O’Reilly (founder and CEO of
O’Reilly) wrote an article entitled, “What is Web 2.0” (available online at www.oreillynet.com/
pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html), describing the concepts that he
believes Web 2.0 represents. These concepts include:

❑ The Web as services, not software

❑ The group mentality of the Web — users encouraged to participate (as with tagging, blogging,
networking, and so on)

❑ Separation of data and presentation – data can be represented in any number of ways and com-
bined with any other data sources (called mashups)

❑ Richer, more responsive user experience

Ajax is tied to the last point, creating a richer experience for the user. To be clear, Ajax is not synonymous
with Web 2.0, and Web 2.0 doesn’t speak just of Ajax; Web 2.0 is about a shift in the very character of the
Web. While Ajax is an important part of creating the next generation user experience that Web 2.0 signi-
fies, it is just a one piece of a much larger puzzle.

14

Chapter 1

04_109496 ch01.qxd 2/5/07 6:47 PM Page 14

Summary
This chapter introduced you to the basic premise of Ajax. Short for Asynchronous JavaScript + XML, the
term Ajax was coined by Jesse James Garrett in an article posted on the Adaptive Path, LLC web site.
The article introduced Ajax as a new user interaction model for web applications in which full page
loads are no longer necessary.

This chapter also explored the evolution of the Web in relation to the development of technologies that
enable Ajax to be a reality today. Ajax owes its existence to the introduction of both JavaScript and
frames into web browsers, which made asynchronous data retrieval using JavaScript theoretically possi-
ble in Netscape Navigator 2.0. Throughout the evolution of new web technologies, Ajax methodologies
such as the hidden frame technique developed. The introduction of iframes and XMLHttp really pushed
Ajax development forward.

Although Ajax can be used to accomplish many things, it is best used to enhance the user experience
rather than providing cool effects. This chapter discussed several Ajax principles, all circling back to the
requirements of the user being paramount to anything else in web application development.

Several of the most popular Ajax applications were also discussed, including Google Suggest, Gmail,
Google Maps, Yahoo! News, and the Bitflux Blog.

Finally, the chapter covered the controversy surrounding Ajax, Garrett’s article, and Ajax’s place on the
Web. Some feel that the popularization of Ajax will lead to an overall lack of accessibility, whereas others
question Garrett’s motive for writing the now-famous article. As with all approaches, Ajax is at its best
when used in a logical enhancement to a well-designed web application.

15

What Is Ajax?

04_109496 ch01.qxd 2/5/07 6:47 PM Page 15

04_109496 ch01.qxd 2/5/07 6:47 PM Page 16

Ajax Basics

The driving force behind Ajax is the interaction between the client (web browser) and the server.
Previously, the understanding of this communication was limited to those who developed purely
on the server-side using languages such as Perl and C. Newer technologies such as ASP.NET, PHP,
and JSP encouraged more of a mix of client- and server-side techniques for software engineers
interested in creating web applications, but they often lacked a full understanding of all client-side
technologies (such as JavaScript). Now the pendulum has swung in the other direction, and client-
side developers need to understand more about server-side technology in order to create Ajax
solutions.

HTTP Primer
Central to a good grasp of Ajax techniques is hypertext transmission protocol (HTTP), the protocol
to transmit web pages, images, and other types of files over the Internet to your web browser and
back. Whenever you type a URL into the browser, an “http://” is prepended to the address, indi-
cating that you will be using HTTP to access the information at the given location. (Most browsers
support a number of different protocols as well, most notably FTP.)

Note that this section covers only those aspects of HTTP that are of interest to Ajax developers. It
does not constitute an HTTP reference guide or tutorial.

HTTP consists of two parts: a request and a response. When you type a URL in a web browser, the
browser creates and sends a request on your behalf. This request contains the URL that you typed
in as well as some information about the browser itself. The server receives this request and sends
back a response. The response contains information about the request as well as the data located at
the URL (if any). It’s up to the browser to interpret the response and display the web page (or
other resource).

05_109496 ch02.qxd 2/5/07 6:48 PM Page 17

HTTP Requests
The format of an HTTP request is:

<request-line>
<headers>
<blank line>
[<request-body>]

In an HTTP request, the first line must be a request line indicating the type of request, the resource to
access, and the version of HTTP being used. Next, a section of headers indicate additional information
that may be of use to the server. After the headers is a blank line, which can optionally be followed by
additional data (called the body).

There are a large number of request types defined in HTTP, but the two of interest to Ajax developers are
GET and POST. Anytime you type a URL in a web browser, the browser sends a GET request to the
server for that URL, which basically tells the server to get the resource and send it back. Here’s what a
GET request for www.wrox.com might look like:

GET / HTTP/1.1
Host: www.wrox.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)

Gecko/20050225 Firefox/1.0.1
Connection: Keep-Alive

The first part of the request line specifies this as a GET request. The second part of that line is a forward
slash (/), indicating that the request is for the root of the domain. The last part of the request line speci-
fies to use HTTP version 1.1 (the alternative is 1.0). And where is the request sent? That’s where the sec-
ond line comes in.

The second line is the first header in the request, Host. The Host header indicates the target of the
request. Combining Host with the forward slash from the first line tells the server that the request is for
www.wrox.com/. (The Host header is a requirement of HTTP 1.1; the older version 1.0 didn’t require it.)
The third line contains the User-Agent header, which is accessible to both server- and client-side scripts
and is the cornerstone of most browser-detection logic. This information is defined by the browser that
you are using (in this example, Firefox 1.0.1) and is automatically sent on every request. The last line is
the Connection header, which is typically set to Keep-Alive for browser operations (it can also be set
to other values, but that’s beyond the scope of this book). Note that there is a single blank line after this
last header. Even though there is no request body, the blank line is required.

If you were to request a page under the www.wrox.com domain, such as http://www.wrox.com/
books, the request would look like this:

GET /books/ HTTP/1.1
Host: www.wrox.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)

Gecko/20050225 Firefox/1.0.1
Connection: Keep-Alive

18

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 18

Note that only the first line changed, and it contains only the part that comes after www.wrox.com in
the URL.

Sending parameters for a GET request requires that the extra information be appended to the URL itself.
The format looks like this:

URL?name1=value1&name2=value2&..&nameN=valueN

This information, called a query string, is duplicated in the request line of the HTTP request, as follows:

GET /books/?name=Professional%20Ajax HTTP/1.1
Host: www.wrox.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)

Gecko/20050225 Firefox/1.0.1
Connection: Keep-Alive

Note that the text “Professional Ajax” had to be encoded, replacing the space with %20, in order to send
it as a parameter to the URL. This is called URL encoding and is used in many parts of HTTP. (JavaScript
has built-in functions to handle URL encoding and decoding; these are discussed later in the chapter).
The name-value pairs are separated with an ampersand. Most server-side technologies will decode the
request body automatically and provide access to these values in some sort of logical manner. Of course,
it is up to the server to decide what to do with this data.

The POST request, on the other hand, provides additional information to the server in the request body.
Typically, when you fill out an online form and submit it, that data is being sent through a POST request.

Here’s what a typical POST request looks like:

POST / HTTP/1.1
Host: www.wrox.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)

Gecko/20050225 Firefox/1.0.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 40
Connection: Keep-Alive

name=Professional%20Ajax&publisher=Wiley

You should note a few differences between a POST request and a GET request. First, the request line
begins with “POST” instead of “GET,” indicating the type of request. You’ll notice that the Host and
User-Agent headers are still there, along with two new ones. The Content-Type header indicates how
the request body is encoded. Browsers always encode post data as application/x-www-form-
urlencoded, which is the MIME type for simple URL encoding. The Content-Length header indicates
the byte length of the request body. After the Connection header and the blank line is the request body.

Browsers often send many more headers than the ones discussed in this section. The
examples here have been kept short for simplicity.

19

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 19

As with most browser POST requests, this is made up of simple name-value pairs, where name is
Professional Ajax and publisher is Wiley. You may recognize that this format is the same as that of
query string parameters on URLs.

As mentioned previously, there are other HTTP request types, but they follow the same basic format as
GET and POST. The next step is to take a look at what the server sends back in response to an HTTP
request.

For security purposes, GET requests should be used to retrieve information only. If data needs to be
added, updated, or deleted, a POST request should be used.

HTTP Responses
The format of an HTTP response, which is very similar to that of a request, is:

<status-line>
<headers>
<blank line>
[<response-body>]

As you can see, the only real difference in a response is that the first line contains status information
instead of request information. The status line tells you about the requested resource by providing a
status code. Here’s a sample HTTP response:

HTTP/1.1 200 OK
Date: Sat, 31 Dec 2005 23:59:59 GMT
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 122

<html>
<head>

<title>Wrox Homepage</title>
</head>
<body>

<!-- body goes here -->
</body>

</html>

In this example, the status line gives an HTTP status code of 200 and a message of OK. The status line
always contains the status code and the corresponding short message so that there isn’t any confusion.
The most common status codes are:

❑ 200 (OK): The resource was found and all is well.

❑ 304 (NOT MODIFIED): The resource has not been modified since the last request. This is used
most often for browser cache mechanisms.

❑ 401 (UNAUTHORIZED): The client is not authorized to access the resource. Often, this will
cause the browser to ask for a user name and password to log in to the server.

20

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 20

❑ 403 (FORBIDDEN): The client failed to gain authorization. This typically happens if you fail to
log in with a correct user name and password after a 401.

❑ 404 (NOT FOUND): The resource does not exist at the given location.

Following the status line are some headers. Typically, the server will return a Date header indicating the
date and time that the response was generated. (Servers typically also return some information about
themselves, although this is not required.) The next two headers should look familiar as well, as they are
the same Content-Type and Content-Length headers used in POST requests. In this case, the
Content-Type header specifies the MIME type for HTML (text/html) with an encoding of ISO-8859-1
(which is standard for the United States English resources). The body of the response simply contains
the HTML source of the requested resource (although it could also contain plain text or binary data for
other types of resources). It is this data that the browser displays to the user.

Note that there is no indication as to the type of request that asked for this response; however, this is of
no consequence to the server. It is up to the client to know what type of data should be sent back for
each type of request and to decide how that data should be used.

Ajax Communication Techniques
Now that you understand the basics of how HTTP communication works, it’s time to look into enacting
such communication from within a web page. As you know, there are a lot of requests going back and
forth between the browser and server while you are surfing the Web. Initially, all these requests hap-
pened because the user made an overt action that required such a step. Ajax techniques free developers
from waiting for the user to make such an action, allowing you to create a call to the server at any time.

As discussed in Chapter 1, Ajax communication supports a number of different techniques. Each of these
techniques has advantages and disadvantages, so it’s important to understand which one to use in
which situation.

The Hidden Frame Technique
With the introduction of HTML frames, the hidden frame technique was born. The basic idea behind this
technique is to create a frameset that has a hidden frame that is used for client-server communication.
You can hide a frame by setting its width or height to 0 pixels, effectively removing it from the display.
Although some early browsers (such as Netscape 4) couldn’t fully hide frames, often leaving thick bor-
ders, this technique still gained popularity among developers.

The Pattern
The hidden frame technique follows a very specific, four-step pattern (see Figure 2-1). The first step
always begins with the visible frame, where the user is interacting with a web page. Naturally, the user
is unaware that there is a hidden frame (in modern browsers, it is not rendered) and goes about interact-
ing with the page as one typically would. At some point, the user performs an action that requires addi-
tional data from the server. When this happens, the first step in the process occurs: a JavaScript function
call is made to the hidden frame. This call can be as simple as redirecting the hidden frame to another
page or as complicated as posting form data. Regardless of the intricacy of the function, the result is the
second step in the process: a request made to the server.

21

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 21

Figure 2-1

The third step in the pattern is a response received from the server. Because you are dealing with frames,
this response must be another web page. This web page must contain the data requested from the server
as well as some JavaScript to transfer that data to the visible frame. Typically, this is done by assigning
an onload event handler in the returned web page that calls a function in the visible frame after it has
been fully loaded (this is the fourth step). With the data now in the visible frame, it is up to that frame to
decide what to do with the data.

Hidden Frame GET Requests
Now that the hidden frame technique has been explained, it’s time to learn more about it. As with any
new technique, the best way to learn is to work through an example. For this example, you’ll be creating
a simple lookup page where a customer service representative can look up information about a cus-
tomer. Since this is the first example in the book, it is very simple: The user will enter a customer ID and
receive in return information about the customer. Since this type of functionality will most often be used
with a database, it is necessary to do some server-side programming as well. This example uses PHP, an
excellent open source server-side language, and MySQL (available at www.mysql.org), an open source
database that ties together very well with PHP.

First, before customer data can be looked up, you must have a table to contain it. You can create the cus-
tomer table by using the following SQL script:

CREATE TABLE `Customers` (
`CustomerId` int(11) NOT NULL auto_increment,
`Name` varchar(255) NOT NULL default ‘’,
`Address` varchar(255) NOT NULL default ‘’,
`City` varchar(255) NOT NULL default ‘’,
`State` varchar(255) NOT NULL default ‘’,
`Zip` varchar(255) NOT NULL default ‘’,
`Phone` varchar(255) NOT NULL default ‘’,

In PHP 5, MySQL support is disabled by default. For information on enabling
MySQL support in PHP 5, visit www.php.net/mysql/.

Web Server

Database

Web Page

Request

Web Browser

1

Visible Frame

Hidden Frame
JavaScript

Call

JavaScript
Call

3

2

4

22

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 22

`Email` varchar(255) NOT NULL default ‘’,
PRIMARY KEY (`CustomerId`)

) TYPE=MyISAM COMMENT=’Sample Customer Data’;

The most important field in this table is CustomerId, which is what you will use to look up the cus-
tomer information.

You can download this script, along with some sample data, from www.wrox.com.

With the database table all set up, it’s time to move on to the HTML code. To use the hidden frame tech-
nique, you must start with an HTML frameset, such as this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>
<html>

<head>
<title>Hidden Frame GET Example</title>

</head>
<frameset rows=”100%,0” style=”border: 0px”>

<frame name=”displayFrame” src=”DataDisplay.php” noresize=”noresize” />
<frame name=”hiddenFrame” src=”about:blank” noresize=”noresize” />

</frameset>
</html>

The important part of this code is the rows attribute of the <frameset/> element. By setting it to
100%,0, browsers know not to display the body of the second frame, whose name is hiddenFrame.
Next, the style attribute is used to set the border to 0, ensuring that there isn’t a visible border around
each frame. The final important step in the frameset declaration is to set the noresize attributes on each
frame so that the user can’t inadvertently resize the frames and see what’s in the hidden one; the con-
tents of the hidden frame are never meant to be part of the visible interface.

Next up is the page to request and display the customer data (DataDisplay.php). This is a relatively
simple page, consisting of a textbox to enter the customer ID, a button to execute the request, and a
<div/> element to display the retrieved customer information:

<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type=”text” id=”txtCustomerId” value=”” /></p>
<p><input type=”button” value=”Get Customer Info”

onclick=”requestCustomerInfo()” /></p>
<div id=”divCustomerInfo”></div>

You’ll notice that the button calls a function named requestCustomerInfo(), which interacts with the
hidden frame to retrieve information. It simply takes the value in the textbox and adds it to the query
string of GetCustomerData.php, creating a URL in the form of GetCustomerData.php?id=23. This
URL is then assigned to the hidden frame. Here’s the function:

function requestCustomerInfo() {
var sId = document.getElementById(“txtCustomerId”).value;
top.frames[“hiddenFrame”].location = “GetCustomerData.php?id=” + sId;

}

23

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 23

The first step in this function is to retrieve the customer identification number from the textbox. To do
so, document.getElementById() is called with the textbox ID, “txtCustomerId”, and the value
property is retrieved. (The value property holds the text that is inside the textbox.) Then, this ID is
added to the string “GetCustomerData.php?id=” to create the full URL. The second line creates the
URL and assigns it to the hidden frame. To get a reference to the hidden frame, you first need to access
the topmost window of the browser using the top object. That object has a frames array, within which
you can find the hidden frame. Since each frame is just another window object, you can set its location
to the desired URL.

That’s all it takes to request the information. Note that because the request is a GET (passing information
in the query string), it makes the request very easy. (You’ll see how to execute a POST request using the
hidden frame technique shortly.)

In addition to the requestCustomerInfo() function, you’ll need another function to display the cus-
tomer information after it is received. This function, displayCustomerInfo(), will be called by the
hidden frame when it returns with data. The sole argument is a string containing the customer data to be
displayed:

function displayCustomerInfo(sText) {
var divCustomerInfo = document.getElementById(“divCustomerInfo”);
divCustomerInfo.innerHTML = sText;

}

In this function, the first line retrieves a reference to the <div/> element that will display the data. In the
second line, the customer info string (sText) is assigned into the innerHTML property of the <div/>
element. Using innerHTML makes it possible to embed HTML into the string for formatting purposes.
This completes the code for the main display page. Now it’s time to create the server-side logic.

The basic code for GetCustomerData.php is a very basic HTML page with PHP code in two places:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >

<head>
<title>Get Customer Data</title>

<?php

//php code

?>
</head>
<body>

<div id=”divInfoToReturn”><?php echo $sInfo ?></div>
</body>

</html>

In this page, the first PHP block will contain the logic to retrieve customer data (which is discussed
shortly). The second PHP block outputs the variable $sInfo, containing customer data, into a <div/>. It
is from this <div/> that the data is read and sent to the display frame. To do so, create a JavaScript func-
tion that is called when the page has loaded completely:

24

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 24

window.onload = function () {
var divInfoToReturn = document.getElementById(“divInfoToReturn”);
top.frames[“displayFrame”].displayCustomerInfo(divInfoToReturn.innerHTML);

};

This function is assigned directly to the window.onload event handler. It first retrieves a reference to the
<div/> that contains the customer information. Then, it accesses the display frame using the
top.frames array and calls the displayCustomerInfo() function defined earlier, passing in the
innerHTML of the <div/>. That’s all the JavaScript it takes to send the information where it belongs. But
how does the information get there in the first place? Some PHP code is needed to pull it out of the
database.

The first step in the PHP code is to define all of the pieces of data you’ll need. In this example, those
pieces of data are the customer ID to look up, the $sInfo variable to return the information, and the
information necessary to access the database (the database server, the database name, a user name, a
password, and the SQL query string):

<?php

$sID = $_GET[“id”];
$sInfo = “”;

$sDBServer = “your.databaser.server”;
$sDBName = “your_db_name”;
$sDBUsername = “your_db_username”;
$sDBPassword = “your_db_password”;
$sQuery = “Select * from Customers where CustomerId=”.$sID;

//More here
?>

This code begins with retrieving the id argument from the query string. PHP organizes all query string
arguments into the $_GET array for easy retrieval. This id is stored in $sID and is used to create the SQL
query string stored in $sQuery. The $sInfo variable is also created here and set to be an empty string.
All the other variables in this code block contain information specific to your particular database config-
uration; you’ll have to replace these with the correct values for your implementation.

Having captured the user’s input and set up the foundation for the connection to the database, the next
step is to invoke that database connection, execute the query, and return the results. If there is a cus-
tomer with the given ID, $sInfo is filled with an HTML string containing all the data, including the cre-
ation of a link for the e-mail address. If the customer ID is invalid, $sInfo is filled with an error message
that will be passed back to the display frame:

<?php

$sID = $_GET[“id”];
$sInfo = “”;

$sDBServer = “your.databaser.server”;
$sDBName = “your_db_name”;
$sDBUsername = “your_db_username”;
$sDBPassword = “your_db_password”;

25

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 25

$sQuery = “Select * from Customers where CustomerId=”.$sID;

$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);
@mysql_select_db($sDBName) or $sInfo=”Unable to open database”;

if ($sInfo == “”) {
if($oResult = mysql_query($sQuery) and mysql_num_rows($oResult) > 0) {

$aValues = mysql_fetch_array($oResult,MYSQL_ASSOC);
$sInfo = $aValues[‘Name’].”
”.$aValues[‘Address’].”
”.

$aValues[‘City’].”
”.$aValues[‘State’].”
”.
$aValues[‘Zip’].”

Phone: “.$aValues[‘Phone’].”
”.
“”.
$aValues[‘Email’].””;

mysql_free_result($oResult);
} else {

$sInfo = “Customer with ID $sID doesn’t exist.”;
}

}

mysql_close($oLink);
?>

The first two lines in the highlighted section contain the calls to connect to a MySQL database from PHP.
Following that, the mysql_query() function is called to execute the SQL query. If that function returns a
result and the result has at least one row, then the code continues to get the information and store it in
$sInfo; otherwise, $sInfo is filled with an error message. The last line cleans up the database connection.

It’s beyond the scope of this book to explain the intricacies of PHP and MySQL programming. If you’d
like to learn more, consider picking up these other Wrox titles: Beginning PHP, Apache, MySQL Web
Development (Wiley 2004) or Beginning PHP5, Apache, MySQL Web Development (Wiley 2005).

One final step is necessary before moving on. The preceding code, though functional, has a major secu-
rity flaw. Because the customer ID is being passed in on the query string, it is not safe to take that value
and add it directly into a SQL query. What if the user passed in some additional SQL that was inserted at
that point? This is what is called a SQL injection attack and is very dangerous to have in a production
environment. The fix for this is simple: just make sure that customer ID is actually a number and nothing
more. To do this, the PHP is_numeric() function is very useful, as it determines if a string (or any
other value) represents a number:

<?php

$sID = $_GET[“id”];
$sInfo = “”;

if (is_numeric($sID)) {
$sDBServer = “your.databaser.server”;
$sDBName = “your_db_name”;
$sDBUsername = “your_db_username”;
$sDBPassword = “your_db_password”;
$sQuery = “Select * from Customers where CustomerId=”.$sID;

$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);

26

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 26

@mysql_select_db($sDBName) or $sInfo=”Unable to open database”;

if ($sInfo == “”) {
if($oResult = mysql_query($sQuery) and mysql_num_rows($oResult) > 0) {

$aValues = mysql_fetch_array($oResult,MYSQL_ASSOC);
$sInfo = $aValues[‘Name’].”
”.$aValues[‘Address’].”
”.

$aValues[‘City’].”
”.$aValues[‘State’].”
”.
$aValues[‘Zip’].”

Phone: “.$aValues[‘Phone’].”
”.
“”.
$aValues[‘Email’].””;

mysql_free_result($oResult);
} else {

$sInfo = “Customer with ID $sID doesn’t exist.”;
}

}
} else {

$sInfo = “Invalid customer ID.”;
}

mysql_close($oLink);
?>

Adding this very simple data check avoids possible SQL injection attacks by returning an error message
instead of database information.

Now when $sInfo is output into the <div/>, it will contain the appropriate information. The onload
event handler reads that data out and sends it back up to the display frame. If the customer was found,
the information will be displayed, as shown in Figure 2-2.

Figure 2-2

27

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 27

If, on the other hand, the customer doesn’t exist or the ID isn’t a number, an error message will be dis-
played in that same location on the screen. Either way, the customer service representative will have a
nice user experience. This completes your first Ajax example.

This example and all of the examples in the book are also available in ASP.NET and JSP in the code
download for this book, available at www.wrox.com.

Hidden Frame POST Requests
The previous example used a GET request to retrieve information from a database. This was fairly sim-
ple because the customer ID could just be appended to the URL in a query string and sent on its way.
But what if you need to send a POST request? This, too, is possible using the hidden frame technique,
although it takes a little extra work.

A POST request is typically sent when data needs to be sent to the server as opposed to a GET, which
merely requests data from the server. Although GET requests can send extra data through the query
string, some browsers can handle only up to 512KB of query string information. A POST request, on the
other hand, can send up to 2GB of information, making it ideal for most uses.

Traditionally, the only way to send POST requests was to use a form with its method attribute set to
post. Then, the data contained in the form was sent in a POST request to the URL specified in the
action attribute. Further complicating matters was the fact that a typical form submission navigates the
page to the new URL. This completely defeats the purpose of Ajax. Thankfully, there is a very easy
workaround in the form of a little-known attribute called target.

The target attribute of the <form/> element is used in a similar manner to the target attribute of the
<a/> element: it specifies where the navigation should occur. By setting the target attribute on a form,
you effectively tell the form page to remain behind while the result of the form submission is displayed
in another frame or window (in this case, a hidden frame).

To begin, define another frameset. The only difference from the previous example is that the visible
frame contains an entry form for customer data:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>
<html>

<head>
<title>Hidden Frame POST Example</title>

</head>
<frameset rows=”100%,0” style=”border: 0px”>

<frame name=”displayFrame” src=”DataEntry.php” noresize=”noresize” />
<frame name=”hiddenFrame” src=”about:blank” noresize=”noresize” />

</frameset>
</html

The body of the entry form is contained within a <form/> element and has textboxes for each of the
fields stored in the database (aside from customer ID, which will be autogenerated). There is also a
<div/> that is used for status messages relating to the client-server communication:

<form method=”post” action=”SaveCustomer.php” target=”hiddenFrame”>
<p>Enter customer information to be saved:</p>
<p>Customer Name: <input type=”text” name=”txtName” value=”” />

28

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 28

Address: <input type=”text” name=”txtAddress” value=”” />

City: <input type=”text” name=”txtCity” value=”” />

State: <input type=”text” name=”txtState” value=”” />

Zip Code: <input type=”text” name=”txtZipCode” value=”” />

Phone: <input type=”text” name=”txtPhone” value=”” />

E-mail: <input type=”text” name=”txtEmail” value=”” /></p>
<p><input type=”submit” value=”Save Customer Info” /></p>

</form>
<div id=”divStatus”></div>

Note also that the target of the <form/> element is set to hiddenFrame so that when the user clicks
the button, the submission goes to the hidden frame.

In this example, only one JavaScript function is necessary in the main page: saveResult(). This func-
tion will be called when the hidden frame returns from saving the customer data:

function saveResult(sMessage) {
var divStatus = document.getElementById(“divStatus”);
divStatus.innerHTML = “Request completed: “ + sMessage;

}

It’s the responsibility of the hidden frame to pass a message to this function that will be displayed to the
user. This will either be a confirmation that the information was saved or an error message explaining
why it wasn’t.

Next is SaveCustomer.php, the file that handles the POST request. As in the previous example, this
page is set up as a simple HTML page with a combination of PHP and JavaScript code. The PHP code is
used to gather the information from the request and store it in the database. Since this is a POST request,
the $_POST array contains all the information that was submitted:

<?php
$sName = mysql_real_escape_string($_POST[“txtName”]);
$sAddress = mysql_real_escape_string($_POST[“txtAddress”]);
$sCity = mysql_real_escape_string($_POST[“txtCity”]);
$sState = mysql_real_escape_string($_POST[“txtState”]);
$sZipCode = mysql_real_escape_string($_POST[“txtZipCode”]);
$sPhone = mysql_real_escape_string($_POST[“txtPhone”]);
$sEmail = mysql_real_escape_string($_POST[“txtEmail”]);

$sStatus = “”;

$sDBServer = “your.database.server”;
$sDBName = “your_db_name”;
$sDBUsername = “your_db_username”;
$sDBPassword = “your_db_password”;

$sSQL = “Insert into Customers(Name,Address,City,State,Zip,Phone,`Email`) “.
“ values (‘$sName’,’$sAddress’,’$sCity’,’$sState’, ‘$sZipCode’”.
“, ‘$sPhone’, ‘$sEmail’)”;

//more here
?>

29

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 29

This code snippet retrieves all the POST information about the customer; moreover, it defines a status
message ($sStatus) and the required database information (same as in the previous example). The SQL
statement this time is an INSERT, adding in all the retrieved information.

To protect against SQL injection attacks, each of the datum retrieved from the $_POST array is escaped
using mysql_real_escape_string(), a function that inserts the necessary escape sequences to ensure
a string is wholly contained as a string (for example, all apostrophes are escaped so that data containing
an apostrophe doesn’t break the query).

The code to execute the SQL statement is very similar to that of the previous example:

<?php
$sName = mysql_real_escape_string($_POST[“txtName”]);
$sAddress = mysql_real_escape_string($_POST[“txtAddress”]);
$sCity = mysql_real_escape_string($_POST[“txtCity”]);
$sState = mysql_real_escape_string($_POST[“txtState”]);
$sZipCode = mysql_real_escape_string($_POST[“txtZipCode”]);
$sPhone = mysql_real_escape_string($_POST[“txtPhone”]);
$sEmail = mysql_real_escape_string($_POST[“txtEmail”]);

$sStatus = “”;

$sDBServer = “your.database.server”;
$sDBName = “your_db_name”;
$sDBUsername = “your_db_username”;
$sDBPassword = “your_db_password”;

$sSQL = “Insert into Customers(Name,Address,City,State,Zip,Phone,`Email`) “.
“ values (‘$sName’,’$sAddress’,’$sCity’,’$sState’, ‘$sZipCode’”.
“, ‘$sPhone’, ‘$sEmail’)”;

$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);
@mysql_select_db($sDBName) or $sStatus = “Unable to open database”;

if ($sStatus == “”) {
if(mysql_query($sSQL)) {

$sStatus = “Added customer; customer ID is “.mysql_insert_id();
} else {

$sStatus = “An error occurred while inserting; customer not saved.”;
}

}

mysql_close($oLink);
?>

Here, the result of the mysql_query() function is simply an indicator that the statement was executed
successfully. In that case, the $sStatus variable is filled with a message indicating that the save was
successful and the customer ID assigned to the data. The mysql_insert_id() function always returns
the last auto-incremented value of the most recent INSERT statement. If for some reason the statement
didn’t execute successfully, the $sStatus variable is filled with an error message.

30

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 30

The $sStatus variable is output into a JavaScript function that is run when the window loads:

<script type=”text/javascript”>

window.onload = function () {
top.frames[“displayFrame”].saveResult(“<?php echo $sStatus ?>”);

}

</script>

This code calls the saveResult() function defined in the display frame, passing in the value of the PHP
variable $sStatus. Because this variable contains a string, you must enclose the PHP echo statement in
quotation marks. When this function executes, assuming that the customer data was saved, the entry
form page resembles the one shown in Figure 2-3.

Figure 2-3

After this code has executed, you are free to add more customers to the database using the same form
because it never disappeared.

Hidden iFrames
The next generation of behind-the-scenes client-server communication was to make use of iframes (short
for inline frames), which were introduced in HTML 4.0. Basically, an iframe is the same as a frame with
the exception that it can be placed inside of a non-frameset HTML page, effectively allowing any part of
a page to become a frame. The iframe technique can be applied to pages not originally created as a
frameset, making it much better suited to the incremental addition of functionality; an iframe can even

31

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 31

be created on the fly in JavaScript, allowing for simple, semantic HTML to be supplied to the browser
with the enhanced Ajax functionality serving as a progressive enhancement (this is discussed shortly).
Because iframes can be used and accessed in the same way as regular frames, they are ideal for Ajax
communication.

There are two ways to take advantage of iframes. The easiest way is to simply embed an iframe inside of
your page and use that as the hidden frame to make requests. Doing this would change the first example
display page to:

<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type=”text” id=”txtCustomerId” value=”” /></p>
<p><input type=”button” value=”Get Customer Info”

onclick=”requestCustomerInfo()” /></p>
<div id=”divCustomerInfo”></div>
<iframe src=”about:blank” name=”hiddenFrame” style=”display: none”></iframe>

Note that the iframe has its style attribute set to “display:none”; this effectively hides it from view.
Since the name of the iframe is hiddenFrame, all the JavaScript code in this page will continue to work
as before. There is, however, one small change that is necessary to the GetCustomerData.php page. The
JavaScript function in that page previously looked for the displayCustomerInfo() function in the
frame named displayFrame. If you use this technique, there is no frame with that name, so you must
update the code to use parent instead:

window.onload = function () {
var divInfoToReturn = document.getElementById(“divInfoToReturn”);
parent.displayCustomerInfo(divInfoToReturn.innerHTML);

};

When accessed inside of an iframe, the parent object points to the window (or frame) in which the
iframe resides. Now this example will work just as the first example in this chapter did.

The second way to use hidden iframes is to create them dynamically using JavaScript. This can get a lit-
tle bit tricky because not all browsers implement iframes in the same way, so it helps to simply go step
by step in creating a hidden iframe.

The first step is easy; you create the iframe using the document.createElement() method and assign
the necessary attributes:

function createIFrame() {
var oIFrameElement = document.createElement(“iframe”);
oIFrameElement.style.display = “none”;
oIFrameElement.name = “hiddenFrame”;
oIFrameElement.id = “hiddenFrame”;
document.body.appendChild(oIFrameElement);

//more code
}

The last line of this code is very important because it adds the iframe to the document structure; an
iframe that isn’t added to the document can’t perform requests. Also note that both the name and id
attributes are set to hiddenFrame. This is necessary because some browsers access the new frame by its
name and some by its id attribute.

32

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 32

Next, define a global variable to hold a reference to the frame object. Note that the frame object for an
iframe element isn’t what is returned from createElement(). In order to get this object, you must look
into the frames collection. This is what will be stored in the global variable:

var oIFrame = null;

function createIFrame() {
var oIFrameElement = document.createElement(“iframe”);
oIFrameElement.style.display = “none”;
oIFrameElement.name = “hiddenFrame”;
oIFrameElement.id = “hiddenFrame”;
document.body.appendChild(oIFrameElement);

oIFrame = frames[“hiddenFrame”];
}

If you place this code into the previous iframe example, you can then make the following modifications
to requestCustomerInfo():

function requestCustomerInfo() {
if (!oIFrame) {

createIFrame();
setTimeout(requestCustomerInfo, 10);
return;

}

var sId = document.getElementById(“txtCustomerId”).value;
oIFrame.location = “GetCustomerData.php?id=” + sId;

}

With these changes, the function now checks to see if oIFrame is null or not. If it is, it calls
createIFrame() and then sets a timeout to run the function again in 10 milliseconds. This is necessary
because only Internet Explorer recognizes the inserted iframe immediately; most other browsers take a
couple of milliseconds to recognize it and allow requests to be sent. When the function executes again, it
will go on to the rest of the code, where the last line has been changed to reference the oIFrame object.

Although this technique works fairly easily with GET requests, POST requests are a different story. Only
some browsers will enable you to set the target of a form to a dynamically created iframe; IE is not one
of them. So, to use the hidden iframe technique with a POST request requires a bit of trickery for cross-
browser compatibility.

Hidden iFrame POST Requests
To accomplish a POST request using hidden iframes, the basic approach is to load a page that contains a
form into the hidden frame, populate that form with data, and then submit the form. When the visible
form (the one you are actually typing into) is submitted, you need to cancel that submission and forward
the information to the hidden frame. To do so, you’ll need to define a function that handles the creation
of the iframe and the loading of the hidden form:

function checkIFrame() {
if (!oIFrame) {

createIFrame();

33

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 33

}
setTimeout(function () {

oIFrame.location = “ProxyForm.php”;
}, 10);

}

This function, checkIFrame(), first checks to see if the hidden iframe has been created. If not, create
IFrame() is called. Then, a timeout is set before setting the location of the iframe to ProxyForm.php,
which is the hidden form page. Because this function may be called several times, it’s important that this
page be loaded each time the form is submitted.

The ProxyForm.php file is very simple. It contains only a small bit of JavaScript to notify the main page
that it has been loaded:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Proxy Form</title>
<script type=”text/javascript”>
//<![CDATA[

window.onload = function () {
parent.formReady();

}

//]]>
</script>

</head>
<body>

<form method=”post” action=”#”>
</form>

</body>
</html>

As you can see, the body of this page contains only an empty form and the head contains only an
onload event handler. When the page is loaded, it calls parent.formReady() to let the main page
know that it is ready to accept a request. The formReady() function is contained in the main page itself
and looks like this:

function formReady() {
var oForm = document.forms[0];
var oHiddenForm = oIFrame.document.forms[0];

for (var i=0 ; i < oForm.elements.length; i++) {
var oField = oForm.elements[i];

switch (oField.type) {

//ignore buttons
case “button”:
case “submit”:
case “reset”:

34

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 34

break;

//checkboxes/radio buttons - only return the value if the control is checked.
case “checkbox”:
case “radio”:

if (!oField.checked) {
break;

}

//text/hidden/password all return the value
case “text”:
case “hidden”:
case “password”:

createInputField(oHiddenForm, oField.name, oField.value);
break;

default:
switch(oField.tagName.toLowerCase()) {

case “select”:
createInputField(oHiddenForm, oField.name,

oField.options[oField.selectedIndex].value);
break;

default:
createInputField(oHiddenForm, oField.name, oField.value);

}
}

}

oHiddenForm.action = oForm.action;
oHiddenForm.submit();

};

The first step in this function is to get a reference to the form in the hidden iframe, which you can do by
accessing the document.forms collection of that frame. Because there is only one form on the page, you
can safely get the first form in the collection (at index 0); this is stored in oHiddenForm. Following that, a
reference to the form on the main page is saved into oForm. Next, a for loop iterates through the form
elements on the main page (using the elements collection). For each form element, a new hidden input
element is created in the hidden frame using the createInputField() function (defined in a moment).
Since there can be many different types of form elements, this code takes into account the different ways
that values are stored. Buttons are ignored, since their values are usually unimportant; checkboxes and
radio buttons are included only if they are checked; textboxes are always included; select boxes are given
the correct value for the selected option. The function to create the fields is defined as follows:

function createInputField(oHiddenForm, sName, sValue) {
oHidden = oIFrame.document.createElement(“input”);
oHidden.type = “hidden”;
oHidden.name = sName;
oHidden.value = sValue;
oHiddenForm.appendChild(oHidden);

}

This function accepts three arguments: the hidden form, the name of the input field, and the value of the
input field. Then, an <input/> element is created and added into the hidden form.

35

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 35

After each form element has been added, the hidden form is assigned the same action as the main page
form. By reading the action out of the form instead of hard-coding it, you can use formReady() on any
number of pages. The last step in the function is to submit the hidden form.

The only thing left to do is to make sure the main page form doesn’t submit itself in the normal way. To
do this, assign an onsubmit event handler that calls checkIFrame() and returns false:

<form method=”post” action=”SaveCustomer.php”
onsubmit=”checkIFrame();return false”>

<p>Enter customer information to be saved:</p>
<p>Customer Name: <input type=”text” name=”txtName” value=”” />

Address: <input type=”text” name=”txtAddress” value=”” />

City: <input type=”text” name=”txtCity” value=”” />

State: <input type=”text” name=”txtState” value=”” />

Zip Code: <input type=”text” name=”txtZipCode” value=”” />

Phone: <input type=”text” name=”txtPhone” value=”” />

E-mail: <input type=”text” name=”txtEmail” value=”” /></p>
<p><input type=”submit” value=”Save Customer Info” /></p>

</form>
<div id=”divStatus”></div>

By returning false in this way, you are preventing the default behavior of the form (to submit itself to
the server). Instead, the checkIFrame() method is called and the process of submitting to the hidden
iframe begins.

With this complete, you can now use this example the same way as the hidden frame POST example; the
SaveCustomer.php page handles the data and calls saveResult() in the main page when completed.

Advantages and Disadvantages of Hidden Frames
Now that you have seen the powerful things that you can do using hidden frames, it’s time to discuss
the practicality of using them. As mentioned previously, this technique has been around for many years
and is still used in many Ajax applications.

One of the biggest arguments for using hidden frames is that you can maintain the browser history and
thus enable users to still use the Back and Forward buttons in the browser. Because the browser doesn’t
know that a hidden frame is, in fact, hidden, it keeps track of all the requests made through it. Whereas
the main page of an Ajax application may not change, the changes in the hidden frame mean that the
Back and Forward buttons will move through the history of that frame instead of the main page. This
technique is used in both Gmail and Google Maps for this very reason.

Note that the examples in this section have been simplified in order to focus on the
Ajax techniques involved. If you were to use these in a real web application, you
would need to provide more user feedback, such as disabling the form while a
request is being made.

36

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 36

Hidden frames do have some disadvantages. For one, you cannot make requests outside of your own
domain. Due to security restrictions in browsers, JavaScript can only interact with frames that are from
the same domain. Even a page from a subdomain (such as p2p.wrox.com instead of www.wrox.com)
can’t be accessed.

Another downside of hidden frames is that there is very little information about what’s going on behind
the scenes. You are completely reliant on the proper page being returned. The examples in this section all
had the same problem: If the hidden frame page fails to load, there is no notification to the user that a
problem has occurred; the main page will continue to wait until the appropriate JavaScript function is
called. You may be able to provide some comfort to a user by setting a timeout for a long period of time,
maybe five minutes, and displaying a message if the page hasn’t loaded by then, but that’s just a
workaround. The main problem is that you don’t have enough information about the HTTP request that
is happening behind the scenes. Fortunately, there is another option.

XMLHttp Requests (XHR)
When Microsoft Internet Explorer 5.0 introduced a rudimentary level of XML support, an ActiveX
library called MSXML was also introduced (discussed at length in Chapter 6). One of the objects pro-
vided in this library quickly became very popular: XMLHttp.

The XMLHttp object was created to enable developers to initiate HTTP requests from anywhere in an
application. These requests were intended to return XML, so the XMLHttp object provided an easy way
to access this information in the form of an XML document. Since it was an ActiveX control, XMLHttp
could be used not only in web pages but also in any Windows-based desktop application; however, its
popularity on the Web has far outpaced its popularity for desktop applications.

Picking up on that popularity, Mozilla duplicated the XMLHttp functionality for use in its browsers, such
as Firefox. They created a native JavaScript object, XMLHttpRequest, which closely mimicked the behav-
ior of Microsoft’s XMLHttp object. Shortly thereafter, both the Safari (as of version 1.2) and Opera (ver-
sion 7.6) browsers duplicated Mozilla’s implementation. Microsoft even went back and created their
own native XMLHttpRequest object for Internet Explorer 7. Today, all four browsers support a native
XMLHttpRequest object, commonly referred to as XHR.

Creating an XHR Object
The first step to using an XHR object is, obviously, to create one. Because Microsoft’s implementation
prior to Internet Explorer 7 is an ActiveX control, you must use the proprietary ActiveXObject class in
JavaScript, passing in the XHR control’s signature:

var oXHR = new ActiveXObject(“Microsoft.XMLHttp”);

Be careful, because iframes don’t always store browser history. Whereas IE always
stores the history of iframes, Firefox does so only if the iframe was defined using
HTML (that is, not created dynamically using JavaScript). Safari never stores
browser history for iframes, regardless of how they are included in the page.

37

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 37

This line creates the first version of the XHR object (the one shipped with IE 5.0). The problem is that
there have been several new versions released with each subsequent release of the MSXML library. Each
release brings with it better stability and speed, so you want to make sure that you are always using the
most recent version available on the user’s machine. The signatures are:

❑ Microsoft.XMLHttp

❑ MSXML2.XMLHttp

❑ MSXML2.XMLHttp.3.0

❑ MSXML2.XMLHttp.4.0

❑ MSXML2.XMLHttp.5.0

❑ MSXML2.XMLHttp.6.0

Windows Vista ships with version 6.0, which is the preferable version to use if able. However, those run-
ning other versions of Windows won’t have this available, so Microsoft recommends using the 3.0 sig-
nature as a fallback. All other versions aren’t recommended for use due to varying issues with security,
stability, and availability.

Unfortunately, the only way to determine which version to use is to try to create each one. Because this
is an ActiveX control, any failure to create an object will throw an error, which means that you must
enclose each attempt within a try...catch block. The end result is a function such as this:

function createXHR() {
var aVersions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”];

for (var i = 0; i < aVersions.length; i++) {
try {

var oXHR = new ActiveXObject(aVersions[i]);
return oXHR;

} catch (oError) {
//Do nothing

}
}
throw new Error(“MSXML is not installed.”);

}

The createXHR() function stores an array of valid XHR signatures, with the most recent one first. It iter-
ates through this array and tries to create an XHR object with each signature. If the creation fails, the
catch statement prevents a JavaScript error from stopping execution; then the next signature is
attempted. When an object is created, it is returned. If the function completes without creating an XHR
object, an error is thrown indicating that the creation failed.

Fortunately, creating an XHR object is much easier in other browsers. Mozilla Firefox, Safari, Opera, and
Internet Explorer 7 all use the same code:

var oXHR = new XMLHttpRequest();

Naturally, it helps to have a cross-browser way of creating XHR objects. You can create such a function by
altering the createXHR() function defined previously:

38

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 38

function createXHR() {

if (typeof XMLHttpRequest != “undefined”) {
return new XMLHttpRequest();

} else if (window.ActiveXObject) {
var aVersions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”];

for (var i = 0; i < aVersions.length; i++) {
try {

var oXHR = new ActiveXObject(aVersions[i]);
return oXHR;

} catch (oError) {
//Do nothing

}
}

}
throw new Error(“XMLHttp object could not be created.”);

}

Now this function first checks to see if an XMLHttpRequest class is defined (by using the typeof opera-
tor). If XMLHttpRequest is present, it is used to create the XHR object; otherwise, it checks to see if the
ActiveXObject class is present and, if so, goes through the same process of creating an XHR object for IE
6 and below. If both of these tests fail, an error is thrown.

The other option for creating cross-browser XHR objects is to use a library that already has cross-browser
code written. The zXml library, written by two of your authors, is one such library and is available for
download at www.nczonline.net/downloads/. This library defines a single function for the creation
of XHR objects:

var oXHR = zXmlHttp.createRequest();

The createRequest() function, and the zXml library itself, will be used throughout this book to aid in
cross-browser handling of Ajax technologies.

Using XHR
After you have created an XHR object, you are ready to start making HTTP requests from JavaScript. The
first step is to call the open() method, which initializes the object. This method accepts the following
three arguments:

❑ Request Type: A string indicating the request type to be made — typically, GET or POST (these
are the only ones currently supported by all browsers)

❑ URL: A string indicating the URL to send the request to

❑ Async: A Boolean value indicating whether the request should be made asynchronously

The last argument, async, is very important because it controls how JavaScript executes the request.
When set to true, the request is sent asynchronously, and JavaScript code execution continues without
waiting for the response; you must use an event handler to watch for the response to the request. If
async is set to false, the request is sent synchronously, and JavaScript waits for a response from the
server before continuing code execution. That means if the response takes a long time, the user cannot

39

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 39

interact with the browser until the response has completed. For this reason, best practices around the
development of Ajax applications favor the use of asynchronous requests for routine data retrieval, with
synchronous requests reserved for short messages sent to and from the server.

To make an asynchronous GET request to a file such as info.txt, you would start by doing this:

var oXHR = zXmlHttp.createRequest();
oXHR.open(“get”, “info.txt”, true);

Note that the case of the first argument, the request type, is irrelevant even though technically request
types are defined as all uppercase.

Next, you need to define an onreadystatechange event handler. The XHR object has a property called
readyState that changes as the request goes through and the response is received. There are five possi-
ble values for readyState:

❑ 0 (Uninitialized): The object has been created but the open() method hasn’t been called.

❑ 1 (Loading): The open() method has been called but the request hasn’t been sent.

❑ 2 (Loaded): The request has been sent.

❑ 3 (Interactive). A partial response has been received.

❑ 4 (Completed): All data has been received and the connection has been closed.

Every time the readyState property changes from one value to another, the readystatechange event
fires and the onreadystatechange event handler is called.

The onreadystatechange event handler is typically defined as:

var oXHR = zXmlHttp.createRequest();
oXHR.open(“get”, “info.txt”, true);
oXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
alert(“Got response.”);

}
};

The last step is to call the send() method, which actually sends the request. This method accepts a sin-
gle argument, which is a string for the request body. If the request doesn’t require a body (remember, a
GET request doesn’t), you must pass in null (you cannot just omit the argument):

var oXHR = zXmlHttp.createRequest();
oXHR.open(“get”, “info.txt”, true);

As a result of differences in browser implementations, the only reliable readyState
value is 4. Some browsers neglect states 1 and 2 altogether, and some fire 3 multiple
times until the response is complete. For these reasons, it’s best to only rely on
readyState 4.

40

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 40

oXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {

alert(“Got response.”);
}

};
oXHR.send(null);

That’s it! The request has been sent and when the response is received, an alert will be displayed. But
just showing a message that the request has been received isn’t very useful. The true power of XHR is
that you have access to the returned data, the response status, and the response headers.

To retrieve the data returned from the request, you can use the responseText or responseXML proper-
ties. The responseText property returns a string containing the response body, whereas the
responseXML property is an XML document object used only if the data returned has a content type of
text/xml. (XML documents are discussed in Chapter 6.) So, to get the text contained in info.txt, the
call would be as follows:

var sData = oXHR.responseText;

Note that this will return the text in info.txt only if the file was found and no errors occurred. If, for
example, info.txt didn’t exist, then the responseText would contain the server’s 404 message.
Fortunately, there is a way to determine if any errors occurred.

The status property contains the HTTP status code sent in the response, and statusText contains the
text description of the status (such as “OK” or “Not Found”). Using these two properties, you can make
sure that the data you’ve received is actually the data you want or tell the user why the data wasn’t
retrieved:

if (oXHR.status == 200) {
alert(“Data returned is: “ + oXHR.responseText);

} else {
alert(“An error occurred: “ + oXHR.statusText);

}

Generally, you should always ensure that the status of a response is 200, indicating that the request was
completely successful. The readyState property is set to 4 even if a server error occurred, so just check-
ing that is not enough. In this example, the responseText property is shown only if the status is 200;
otherwise, the error message is displayed.

Another thing to watch out for is browser caching. You may end up with a status code of 304 on a
response in IE and Opera. If you are going to be accessing data that won’t be changing frequently, you
may want to alter your code to also check for a 304:

if (oXHR.status == 200 || oXHR.status == 304) {
alert(“Data returned is: “ + oXHR.responseText);

The statusText property isn’t implemented in Opera and sometimes returns an
inaccurate description in other browsers. You should never rely on statusText
alone to determine if an error occurred.

41

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 41

} else {
alert(“An error occurred: “ + oXHR.statusText);

}

If a 304 is returned, the responseText and responseXML properties will still contain the correct data.
The only difference is that data comes from the browser’s cache instead of from the server. Caching
issues are discussed later in the chapter.

As mentioned previously, it’s also possible to access the response headers. You can retrieve a specific
header value using the getResponseHeader() method and passing in the name of the header that you
want to retrieve. One of the most useful response headers is Content-Type, which tells you the type of
data being sent:

var sContentType = oXHR.getResponseHeader(“Content-Type”);
if (sContentType == “text/xml”) {

alert(“XML content received.”);
} else if (sContentType == “text/plain”) {

alert(“Plain text content received.”);
} else {

alert(“Unexpected content received.”);
}

This code snippet checks the content type of the response and displays an alert indicating the type of
data returned. Typically, you will receive only XML data (content type of text/xml) or plain text (con-
tent type of text/plain) from the server, because these content types are the easiest to work with using
JavaScript.

If you’d prefer to see all headers returned from the server, you can use the getAllResponseHeaders()
method, which simply returns a string containing all of the headers. Each header in the string is sepa-
rated by either a new line character (\n) or a combination of the carriage return and new line (\r\n), so
you can deal with individual headers as follows:

var sHeaders = oXHR.getAllResponseHeaders();
var aHeaders = sHeaders.split(/\r?\n/);

for (var i=0; i < aHeaders.length; i++) {
alert(aHeaders[i]);

}

This example splits the header string into an array of headers by using the JavaScript split() method
for strings and passing in a regular expression (which matches either a carriage return/new line couple
or just a new line). Now you can iterate through the headers and do with them as you please. Keep in
mind that each string in aHeaders is in the format headername: headervalue.

It’s also possible to set headers on the request before it’s sent out. You may want to indicate the content
type of data that you’ll be sending, or you may just want to send along some extra data that the server
may need to deal with the request. To do so, use the setRequestHeader() method before calling
send():

var oXHR = zXmlHttp.createRequest();
oXHR.open(“get”, “info.txt”, true);

42

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 42

oXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {

alert(“Got response.”);
}

};
oXHR.setRequestHeader(“myheader”, “myvalue”);
oXHR.send(null);

In this code, a header named myheader is added to the request before it’s sent out. The header will be
added to the default headers as myheader: myvalue.

Synchronous Requests
Up to this point, you’ve been dealing with asynchronous requests, which are preferable in most situa-
tions. Sending synchronous requests means that you don’t need to assign theonreadystatechange
event handler, because the response will have been received by the time the send() method returns.
This makes it possible to do something like this:

var oXHR = zXmlHttp.createRequest();
oXHR.open(“get”, “info.txt”, false);
oXHR.send(null);

if (oXHR.status == 200) {
alert(“Data returned is: “ + oXHR.responseText);

} else {
alert(“An error occurred: “ + oXHR.statusText);

}

Sending the request synchronously (setting the third argument of open() to false) enables you to start
evaluating the response immediately after the call to send(). This can be useful if you want the user inter-
action to wait for a response or if you’re expecting to receive only a very small amount of data (for exam-
ple, less than 1K). In the case of average or larger amounts of data, it’s best to use an asynchronous call.

XHR GET Requests
It’s time to revisit the hidden frame GET example to see how the process could be improved using XHR.
The first change will be to GetCustomerData.php, which must be changed from an HTML page to sim-
ply return an HTML snippet. The entire file now becomes streamlined:

<?php
header(“Content-Type: text/plain”);

$sID = $_GET[“id”];
$sInfo = “”;

if (is_numeric($sID)) {

There is a chance that a synchronous call will never return. For instance, if the server
process is long-running, perhaps due to an infinite loop or distributed data lookup,
this could lock the entire web browser (including other tabs) for a long period of
time.

43

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 43

$sDBServer = “your.databaser.server”;
$sDBName = “your_db_name”;
$sDBUsername = “your_db_username”;
$sDBPassword = “your_db_password”;
$sQuery = “Select * from Customers where CustomerId=”.$sID;

$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);
@mysql_select_db($sDBName) or $sInfo=”Unable to open database”;

if ($sInfo == “”) {
if($oResult = mysql_query($sQuery) and mysql_num_rows($oResult) > 0) {

$aValues = mysql_fetch_array($oResult,MYSQL_ASSOC);
$sInfo = $aValues[‘Name’].”
”.$aValues[‘Address’].”
”.

$aValues[‘City’].”
”.$aValues[‘State’].”
”.
$aValues[‘Zip’].”

Phone: “.$aValues[‘Phone’].”
”.
“”.
$aValues[‘Email’].””;

mysql_free_result($oResult);
} else {

$sInfo = “Customer with ID $sID doesn’t exist.”;
}

}
} else {

$sInfo = “Invalid customer ID.”;
}

mysql_close($oLink);

echo $sInfo;
?>

As you can see, there are no visible HTML or JavaScript calls in the page. All the main logic remains the
same, but there are two additional lines of PHP code. The first occurs at the beginning, where the
header() function is used to set the content type of the page. Even though the page will return an
HTML snippet, it’s fine to set the content type as text/plain, because it’s not a complete HTML page
(and therefore wouldn’t validate as HTML). You should always set the content type in any page that is
sending non-HTML to the browser. The second added line is towards the bottom, where the $sInfo
variable is output to the stream by using the echo command.

In the main HTML page, the basic setup is this:

<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type=”text” id=”txtCustomerId” value=”” /></p>
<p><input type=”button” value=”Get Customer Info”

onclick=”requestCustomerInfo()” /></p>
<div id=”divCustomerInfo”></div>

The requestCustomerInfo() function previously created a hidden iframe but now must be changed
to use XHR:

function requestCustomerInfo() {
var sId = document.getElementById(“txtCustomerId”).value;

44

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 44

var oXHR = zXmlHttp.createRequest();
oXHR.open(“get”, “GetCustomerData.php?id=” + sId, true);
oXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {

displayCustomerInfo(oXHR.responseText);
} else {

displayCustomerInfo(“An error occurred: “ + oXHR.statusText);
}

}
};
oXHR.send(null);

}

Note that the function begins the same way, by retrieving the ID the user entered. Then, an XHR object is
created using the zXml library. The open() method is called, specifying an asynchronous GET request
for GetCustomerData.php (which has the aforementioned ID added to its query string). Next comes
the assignment of the event handler, which checks for a readyState of 4 and then checks the status of
the request. If the request was successful (status of 200 or 304), the displayCustomerInfo() func-
tion is called with the response body (accessed via responseText). If there was an error (status is not
200 or 304), then the error information is passed to displayCustomerInfo().

There are several differences between this and the hidden frame/iframe example. First, no JavaScript
code is required outside of the main page. This is important because any time you need to keep code in
two different places there is the possibility of creating incompatibilities; in the frame-based examples,
you relied on separate scripts in the display page and the hidden frames to communicate with one
another. By changing GetCustomerInfo.php to return just the data you’re interested in, you have elim-
inated potential problems with JavaScript calling between these locations. The second difference is that
it’s much easier to tell if there was a problem executing the request. In previous examples, there was no
mechanism by which you could identify and respond to a server error in the request process. Using XHR,
all server errors are revealed to you as a developer, enabling you to pass along meaningful error feed-
back to the user. In many ways, XHR is a more elegant solution than hidden frames for in-page HTTP
requests.

XHR POST Requests
Now that you’ve seen how XHR can simplify GET requests, it’s time to take a look at POST requests.
First, you need to make the same changes to SaveCustomer.php as you did for
GetCustomerInfo.php, which means you need to remove extraneous HTML and JavaScript, add the
content type information, and output the text:

<?php

header(“Content-Type: text/plain”);

$sName = mysql_real_escape_string($_POST[“txtName”]);
$sAddress = mysql_real_escape_string($_POST[“txtAddress”]);
$sCity = mysql_real_escape_string($_POST[“txtCity”]);
$sState = mysql_real_escape_string($_POST[“txtState”]);
$sZipCode = mysql_real_escape_string($_POST[“txtZipCode”]);
$sPhone = mysql_real_escape_string($_POST[“txtPhone”]);

45

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 45

$sEmail = mysql_real_escape_string($_POST[“txtEmail”]);

$sStatus = “”;

$sDBServer = “your.database.server”;
$sDBName = “your_db_name”;
$sDBUsername = “your_db_username”;
$sDBPassword = “your_db_password”;

$sSQL = “Insert into Customers(Name,Address,City,State,Zip,Phone,`Email`) “.
“ values (‘$sName’,’$sAddress’,’$sCity’,’$sState’, ‘$sZipCode’”.
“, ‘$sPhone’, ‘$sEmail’)”;

$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);
@mysql_select_db($sDBName) or $sStatus = “Unable to open database”;

if ($sStatus == “”) {
if($oResult = mysql_query($sSQL)) {

$sStatus = “Added customer; customer ID is “.mysql_insert_id();
} else {

$sStatus = “An error occurred while inserting; customer not saved.”;
}

}

mysql_close($oLink);

echo $sStatus;
?>

This now represents the entirety of SaveCustomer.php. Note that the header() function is called to set
the content type, and echo is used to output $sStatus.

In the main page, the simple form that was set up to allow entry of new customer info is the following:

<form method=”post” action=”SaveCustomer.php”
onsubmit=”sendRequest(); return false”>

<p>Enter customer information to be saved:</p>
<p>Customer Name: <input type=”text” name=”txtName” value=”” />

Address: <input type=”text” name=”txtAddress” value=”” />

City: <input type=”text” name=”txtCity” value=”” />

State: <input type=”text” name=”txtState” value=”” />

Zip Code: <input type=”text” name=”txtZipCode” value=”” />

Phone: <input type=”text” name=”txtPhone” value=”” />

E-mail: <input type=”text” name=”txtEmail” value=”” /></p>
<p><input type=”submit” value=”Save Customer Info” /></p>

</form>
<div id=”divStatus”></div>

You’ll note that the onsubmit event handler has now changed to call the function sendRequest()
(although the event handler still returns false to prevent actual form submission). This method first
assembles the data for the POST request and then creates the XHR object to send it. The data must be sent
in the format as a query string:

name1=value1&name2=value2&name3=value3

46

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 46

Both the name and value of each parameter must be URL-encoded in order to avoid data loss during
transmission. JavaScript provides a built-in function called encodeURIComponent() that can be used to
perform this encoding. To create this string, you’ll need to iterate over the form fields, extracting and
encoding the name and value. A helper function is used to do this encoding:

function encodeNameAndValue(sName, sValue) {
var sParam = encodeURIComponent(sName);
sParam += “=”;
sParam += encodeURIComponent(sValue);
return sParam;

}

The actual iteration over the form fields takes place in the getRequestBody() function:

function getRequestBody(oForm) {

//array to hold the params
var aParams = new Array();

//get your reference to the form
var oForm = document.forms[0];

//iterate over each element in the form
for (var i=0 ; i < oForm.elements.length; i++) {

//get reference to the field
var oField = oForm.elements[i];

//different behavior based on the type of field
switch (oField.type) {

//buttons - we don’t care
case “button”:
case “submit”:
case “reset”:

break;

//checkboxes/radio buttons - only return the value if the control is
checked.

case “checkbox”:
case “radio”:

if (!oField.checked) {
break;

}

//text/hidden/password all return the value
case “text”:
case “hidden”:
case “password”:

aParams.push(encodeNameAndValue(oField.name, oField.value));
break;

//everything else
default:

switch(oField.tagName.toLowerCase()) {

47

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 47

case “select”:
aParams.push(encodeNameAndValue(oField.name,

oField.options[oField.selectedIndex].value));
break;

default:
aParams.push(encodeNameAndValue(oField.name,

oField.value));
}

}

}

return aParams.join(“&”);
}

This function assumes that you will supply a reference to the form as an argument. An array (aParams)
is created to store each individual name-value pair. Then, the elements of the form are iterated over,
building up a string using encodeNameAndValue(), which is then added to the array. Doing this pre-
vents multiple string concatenation, which can lead to slower code execution in some browsers. The last
step is to call join() on the array, passing in the ampersand character. This effectively combines all the
name-value pairs with ampersands, creating a single string in the correct format.

String concatenation in most browsers is an expensive process because strings are immutable, meaning
that once created, they cannot have their values changed. Thus, concatenating two strings involves first
allocating a new string and then copying the contents of the two other strings into it. Repeating this
process over and over causes a severe slowdown. For this reason, it’s always best to keep string concate-
nations at a minimum and use the array’s join() method to handle longer string concatenation.
Firefox actually has very efficient string concatenation, but for the purposes of cross-browser coding, it’s
still best to use an array and the join() method.

The sendRequest() function calls getRequestBody() and sets up the request:

function sendRequest() {
var oForm = document.forms[0];
var sBody = getRequestBody(oForm);

var oXHR = zXmlHttp.createRequest();
oXHR.open(“post”, oForm.action, true);
oXHR.setRequestHeader(“Content-Type”, “application/x-www-form-urlencoded”);

oXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {

if (oXHR.status == 200) {
saveResult(oXHR.responseText);

} else {
saveResult(“An error occurred: “ + oXHR.statusText);

}
}

};
oXHR.send(sBody);

}

48

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 48

As with previous examples, the first step in this function is to get a reference to the form and store it in a
variable (oForm). Then, the request body is generated and stored in sBody. Next comes the creation and
setup of the XHR object. Note that the first argument of open() is now post instead of get, and the sec-
ond is set to oForm.action (once again, so this script can be used on multiple pages). You’ll also notice
that a request header is being set. When a form is posted from the browser to a server, it sets the content
type of the request as application/x-www-form-urlencoded. Most server-side languages look for
this encoding in order to parse the incoming POST data properly, so it is very important for it to be set.

The onreadystatechange event handler is very similar to that of the GET example; the only change is
the call to saveResult() instead of displayCustomerInfo(). The last line is very important, as the
sBody string is passed to send() so that it will become part of the request body. This effectively mimics
what the browser does, so all server-side logic should work as expected.

Advantages and Disadvantages of XHR
Undoubtedly, you can see the advantage of using XHR for client-server communication instead of hidden
frames. The code you write is much cleaner and the intent of the code is much more apparent than using
numerous callback functions with hidden frames. You have access to request and response headers as
well as HTTP status codes, enabling you to determine if your request was successful.

The downside is that, unlike hidden frames, there is no browser history record of the calls that were
made. The Back and Forward buttons do not tie in to XHR requests, so you have effectively cut off their
use. It is for this reason that many Ajax applications use a mixture of XHR and hidden frames to make a
truly usable interface.

Another disadvantage, which applies to Internet Explorer 6 and earlier only, is that you depend on
ActiveX controls being enabled. If the user has your page set up in a particular security zone that doesn’t
allow ActiveX controls, the code cannot access the XHR object. In that case, you may have to default to
using hidden frames.

It is also worth noting that XHR has the same restrictions as hidden frames when it comes to cross-
domain communication. Even XMLHttp was designed for making ad hoc requests from JavaScript, it
still doesn’t break the cross-domain scripting rules. An XHR object is still only allowed to access
resources from the same domain. If you need to access a URL located in a different origin, you must cre-
ate a server-side proxy to handle the communication (see Figure 2-4).

Figure 2-4

Web Server

HTTP
Response

HTTP
Response

HTTP
Request

Web Browser

Server-Side Proxies

HTTP
Request

External
Web server

49

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 49

Using a server-side proxy, the browser makes a request to the web server. The web server then contacts
another web server outside of the domain to request the appropriate information. When your web
server receives the response, it is forwarded back to the browser. The result is a seamless transmission of
external data. You’ll be using server-side proxies later in this book.

Ajax with Images
Since Netscape Navigator 3, it has been possible to change the src attribute of an image using
JavaScript. Changing this attribute actually sends a request to the server for the image, allowing an
opportunity to return data to the client. Clearly, the data is sometimes simply what is stored in the
image, but there is a much greater capability for client-server communication using images.

Dynamically Creating Images
The basic technique behind using images for Ajax communication is similar to preloading images. You
need to create a element and then assign its src attribute. To tell when the image is loaded,
assign an onload event handler:

var oImg = document.createElement(“img”);
oImg.onload = function () {

alert(“Image is ready”);
}
oImg.src = “/path/to/myimage.gif”;

The downloading of an image begins as soon as the src attribute is assigned, meaning that you don’t
even need to add the image to the page. In fact, you don’t even need to use an element at all;
you can use the Image object:

var oImg = new Image();
oImg.onload = function () {

alert(“Image is ready”);
}
oImg.src = “/path/to/myimage.gif”;

There is also an error event that you can use to determine when something has gone wrong. This is
most often fired when something other than an image has been returned from the server (such as
HTML):

var oImg = new Image();
oImg.onload = function () {

alert(“Image is ready”);
}
oImg.onerror = function () {

alert(“ERROR!”);
};
oImg.src = “/path/to/myimage.gif”;

These two events, load and error, give enough information to be a reliable communication medium
from client to server. Imagine that instead of changing the src to point to another image, you have it
point to a PHP, ASP.NET, or JSP page. That page can do any amount of processing that you’d like so long
as it returns an image at the end. You can easily send small bits of information on the query string of the
page, such as:

50

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 50

var oImg = new Image();
oImg.onload = function () {

alert(“Image is ready”);
}
oImg.onerror = function () {

alert(“ERROR!”);
};
oImg.src = “/path/to/myimage.php?message=ok”;

Once again, as long as myimage.php returns an image, everything will behave as expected. You can
return an image in one of two ways:

❑ redirecting to an image

❑ writing an image to the output stream

Redirecting to an Image
To redirect to an image with PHP, you need to first set the appropriate content type and then use the
Location header:

<?php
header(“Content-type: image/gif”);
header(“Location: pixel.gif”);

?>

This example uses a GIF image. If you are redirecting to a JPEG image, you need to set the content type
to image/jpeg.

In ASP.NET, you need only do a redirect:

<%@ Page Language=”C#” %>
<script runat=”server”>

private void Page_Load(object sender, System.EventArgs e)
{

Response.Redirect(“pixel.gif”);
}

</script>

And in JSP:

<%
response.sendRedirect(“pixel.gif”);

%>

Note that this redirect to an image, regardless of your server-side language, should be done after other
processing has occurred.

Creating an Image
To output an image using PHP, you’ll need to use the GD library (which is included in most PHP
installations):

<?php
header(“Content-type: image/jpeg”);

51

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 51

$image = imagecreate(1,1);
$white = imagecolorallocate($image, 255, 255, 255);
imagejpeg($image);
imagedestroy($image);

?>

The first command outputs the content type for a JPEG image (GIF image creation/manipulation isn’t
supported in all version of GD, so it’s best to use another image format). After that, a 1x1 image is cre-
ated and has white allocated as a color on it. The imagejpeg() function outputs the image to the
response stream and imagedestroy() frees up the memory it used.

To create and output an image using .NET, you’ll need to use the System.Drawing and System
.Drawing.Imaging namespaces:

<%@ Page Language=”C#” ContentType=”image/jpeg”%>
<%@ Import Namespace=”System.Drawing” %>
<%@ Import Namespace=”System.Drawing.Imaging” %>
<script runat=”server”>

private void Page_Load(object sender, System.EventArgs e)
{

Bitmap image = new Bitmap(1, 1);
image.Save(Response.OutputStream, System.Drawing.Imaging.ImageFormat.Jpeg);
image.Dispose();

}
</script>

This code mimics the previous PHP code, setting the content-type for a JPEG image, then creating a 1x1
image and outputting it to the response stream. Lastly, the image’s memory is freed by calling the
dispose() method.

Dynamically creating images is very similar in JSP:

<%@page contentType=”image/jpeg”%>
<%@page import=”java.awt.*” %>
<%@page import=”java.awt.image.*” %>
<%@page import=”com.sun.image.codec.jpeg.*”%>
<%

BufferedImage image = new BufferedImage(1, 1, BufferedImage.TYPE_INT_RGB);

Graphics2D g = (Graphics2D) image.getGraphics();
g.setColor(Color.white);
g.fillRect(0,0,1,1);
g.dispose();

ServletOutputStream output = response.getOutputStream();
JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(output);
encoder.encode(image);

%>

52

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 52

Here, the Java AWT library is used with the Sun JPEG codec. First, a BufferedImage is created to draw
upon. Next, the graphics interface is extracted, and the image is filled with white. The last step is to out-
put the image using a JPEGImageEncoder.

From these examples, it’s easy to see that creating images dynamically is fairly straightforward, regard-
less of your server-side language preference.

As with redirecting to an image, the creation of an image should be done after all other processing has
taken place.

Creating images dynamically or redirecting to an image provides the beginnings of Ajax communica-
tion, since both are requests that send data to the server. But this is only one part of the equation; the sec-
ond part is returning data back to the client.

Images and Cookies
When people think about cookies in this age of cyber threats, most think about security concerns, spy-
ware, and evil corporations tracking their every move. Certainly, those fears are warranted given what
goes on in the world of the Web, but cookies really are just small pieces of data that can be accessed by
both the client (through JavaScript) and the server. There are also several restrictions placed on cookies
that you need to be aware of before using them:

❑ Each domain can store a maximum of 20 cookies on a user’s machine. It’s best to reuse cookies
whenever possible instead of creating new ones.

❑ The total size of the cookie (including name, equals sign, and value) cannot exceed 4096 bytes
(512 characters), meaning cookies are useful for storing small amounts of data only.

❑ The total number of cookies allowed on a machine is 300.

Each request to and response from the server contains cookie information, regardless of what type of
resource is being requested. This means that setting the src attribute of an image brings back updated
cookie information from the server. Assuming that an onload event handler has been assigned to the
image, this is where you can retrieve the new cookie information. The following function can be used to
access specific cookie values:

function getCookie(sName) {
var sRE = “(?:;)?” + encodeURIComponent(sName) + “=([^;]*);?”;
var oRE = new RegExp(sRE);

if (oRE.test(document.cookie)) {
return decodeURIComponent(RegExp[“$1”]);

} else {
return null;

}
}

This function looks through the document.cookie property, which is a series of name-value pairs rep-
resenting each cookie accessible by the page. The pairs are URL-encoded and separated by semicolons,
which is why a regular expression is used to extract the appropriate value. If the cookie with the given
name doesn’t exist, the function returns null.

53

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 53

It is also considered a best practice to delete cookies once they are no longer used. The following func-
tion deletes a cookie with a given name:

function deleteCookie(sName) {
document.cookie = encodeURIComponent(sName) + “=0; “ +

“expires=Thu, 1 Jan 1970 00:00:00 UTC; path=/”;
}

Setting the expiration date of a cookie to some date that has already passed effectively removes the
cookie from the client machine. This function uses January 1, 1970, in GMT format to delete the cookie
(the JavaScript Date object has a toGMTString() method that can be used to get this format for any
date). The path argument is important as well, as it ensures that the cookie is removed for every location
on the domain, not just the current page.

It’s possible to recreate an earlier example, pulling customer data from a database, using this technique.
Since cookies are an insecure means of storing data, this example will only pull the customer’s name.
The GetCustomerData.php used with the XHR example must be updated slightly to this end:

<?php
header(“Content-Type: image/gif”);

$sID = $_GET[“id”];
$sInfo = “”;

if (is_numeric($sID)) {
$sDBServer = “your.databaser.server”;
$sDBName = “your_db_name”;
$sDBUsername = “your_db_username”;
$sDBPassword = “your_db_password”;
$sQuery = “Select * from Customers where CustomerId=”.$sID;

$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);
@mysql_select_db($sDBName) or $sInfo=”Unable to open database”;

if($oResult = mysql_query($sQuery) and mysql_num_rows($oResult) > 0) {
$aValues = mysql_fetch_array($oResult,MYSQL_ASSOC);
$sInfo = $aValues[‘Name’];
mysql_free_result($oResult);

} else {
$sInfo = “Customer with ID $sID doesn’t exist.”;

}
} else {

$sInfo = “Invalid customer ID.”;
}

mysql_close($oLink);

setcookie(“info”, $sInfo);
header(“Location: pixel.gif”);

?>

Note that only four lines of code have changed from the XHR example. The first sets the content-type to
be image/gif, so the browser knows to expect an image back from the server; the second retrieves only

54

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 54

the person’s name and stores it in $sInfo. The other two lines (highlighted in the example code) set a
cookie named “info” to contain the value of $sInfo and then redirect to the image pixel.gif.

On the client side, make sure to include the getCookie() function defined earlier in this section. This
function will be used to retrieve the data sent back from GetCustomerInfo.php. The function
requestCustomerInfo(), which previously used XHR, now can be updated to use an image instead:

function requestCustomerInfo() {
var sId = document.getElementById(“txtCustomerId”).value;
var oImg = new Image();
oImg.onload = function () {

displayCustomerInfo(getCookie(“info”));
deleteCookie(“info”);

};
oImg.onerror = function () {

displayCustomerInfo(“An error occurred while processing the request.”);
};
oImg.src = “GetCustomerData.php?id=” + sId;

}

In this code, an Image is created and its event handlers assigned. The same displayCustomerInfo()
function used in the XHR example is called to display any message returned from the server or any error
message. Lastly, the src of the image is set to GetCustomerData.aspx with an ID passed in. This will
yield the same user experience as the XHR example without any cross-browser compatibility issues. It is
important to mention, though, that this example works because there is only a small amount of data
being returned to the server. The data comfortably fits inside of a cookie; any large strings would end up
being concatenated.

Using Image Size
Another way to indicate information to the client is through the size of an image. Suppose that you want
to save some information into a database, but there’s the possibility the insert won’t be successful. You
could set up an Ajax request using images so that an image of size 1x1 means success and an image of
size 2x1 is a failure. Or perhaps the request simply needs to determine if someone is logged in or not, in
which case a 1x1 image indicates the user is not logged in whereas a 2x1 image indicates the user is
logged in. This technique is useful when you don’t need to be returning text back to the client and only
need to indicate some sort of server or request state.

To check the dimensions of the image, just use the width and height properties inside of the onload
event handler:

oImg.onload = function () {
if (this.width == 1 && this.height == 1) {

alert(“Success!”);

Be very careful about the type of data you assign to cookies. This information is not
encrypted, and it is considered poor practice to create a cookie that contains personal
information such as addresses, credit card numbers, and so on. Always delete cook-
ies once you have retrieved data from them.

55

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 55

} else {
alert(“Error!”);

}
};

Since this anonymous function is assigned to the image as an event handler, the this object points to the
image itself. The image’s width and height are then available (because the call returned successfully)
and can be interrogated to see what information the server is sending back. Of course, this technique
assumes that you are merely doing something simple such as updating a customer’s name, because you
are not receiving specific information from the server.

This next example sends a customer ID and a name to UpdateCustomerName.php. This information is
then used to update the customer’s name in the database, and an image is returned to determine if this
update is successful or not. Since the user must provide a customer ID to be updated, it is entirely possi-
ble that this customer may not exist in the database, in which case an error code (specific image size)
must be returned. The possible return conditions are:

❑ Success: 1x1 image

❑ Invalid ID: 2x1 image

❑ Other error: 3x1 image

The UpdateCustomerName.php file is:

<?php

header(“Content-Type: image/jpeg”);

$sID = $_GET[“id”];
$sName = mysql_real_escape_string($_GET[“name”]);

if (is_numeric($sID)) {
$iWidth = 1;

$sDBServer = “your.database.server”;
$sDBName = “your_db_name”;
$sDBUsername = “your_db_username”;
$sDBPassword = “your_db_password”;

$sSQL = “Update Customers set `Name` = ‘$sName’ where CustomerId=$sID”;

$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);
@mysql_select_db($sDBName) or $iWidth = 3;

if ($iWidth == 1) {
if (mysql_query($sSQL)) {

$iWidth = (mysql_affected_rows() > 0) ? 1 : 2;
mysql_close($oLink);

} else {
$iWidth = 3;

}
}

} else {

56

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 56

$iWidth = 2;
}

$image = imagecreate($iWidth,1);
$white = imagecolorallocate($image, 255, 255, 255);
imagejpeg($image);
imagedestroy($image);

?>

This file runs a simple SQL UPDATE statement on the customer database. The $iWidth variable deter-
mines what the width of the created image will be. If an error occurs at any time during the execution of
this page, $iWidth is set to 3 to indicate the error. If, on the other hand, the ID isn’t in the database,
$iWidth is set to 2. This situation can occur in two different ways:

❑ The ID isn’t numeric, so the statement is never executed.

❑ The statement executes but no rows are affected.

The very last step is to create and output the image as discussed earlier.

On the client side, you need a textbox to input a customer ID, a textbox to input a name, and a button to
send the request:

<form method=”post” action=”UpdateCustomerName.php”
onsubmit=”sendRequest(); return false”>

<p>Enter the customer ID: <input type=”text” name=”txtID” value=”” /></p>
<p>New customer name: <input type=”text” name=”txtName” value=”” /></p>
<p><input type=”submit” value=”Update Customer Name” /></p>

</form>
<div id=”divStatus”></div>

The sendRequest() method is responsible for sending the information and interpreting the response:

function sendRequest() {
var oForm = document.forms[0];
var sQueryString = “id=” + encodeURIComponent(oForm.txtID.value)

+ “&name=” + encodeURIComponent(oForm.txtName.value);
var oImg = new Image();
oImg.onload = function () {

var divStatus = document.getElementById(“divStatus”);
switch(this.width) {

case 1:
divStatus.innerHTML = “Customer name updated successfully.”;
break;

case 2:
divStatus.innerHTML = “Invalid customer ID; name not updated.”;
break;

default:
divStatus.innerHTML = “An error occurred.”;

}
};

oImg.onerror = function () {
var divStatus = document.getElementById(“divStatus”);

57

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 57

divStatus.innerHTML = “An error occurred.”;
};

oImg.src = “UpdateCustomerName.php?” + sQueryString;
}

There’s nothing very different in this function versus the earlier examples. The first step is to construct
the query string for the request. Next, an image is created and event handlers are assigned to it. The
onload event handler is of the most importance because it is the one that interrogates the image
response to determine what message to show to the user. In this case, it makes sense to use a switch
statement on the image’s width so that the status message can be supplied.

It’s always a good idea to assign an onerror event handler to provide as much feedback as possible to
the user. For this example, the event handler just outputs a simple error message. The last step is to set
the src of the image to initiate the request.

Advantages and Disadvantages
As with the other techniques mentioned to this point, using images for Ajax communication is not the
solution to every task. However, the image techniques discussed in this section do offer advantages:

❑ They are supported in all modern browsers as well as some older ones (such as Netscape
Navigator 4, Internet Explorer 5, and Opera 6), offering a high level of compatibility.

❑ Unlike hidden frames, there is some indication as to when a request is successful and when it
has failed.

❑ Yet another upside to using images for Ajax is that, unlike hidden frames and XHR, images are
free to access images on any server, not just the one on which the containing page resides. The
ability to communicate cross-domain using images has long been used by advertisers and link
tracking systems to capture information; you can also use this to your advantage.

There are also disadvantages to using images for Ajax communication:

❑ Not the least of these disadvantages is that images can only send GET requests, so the amount
of data that can be sent back to the server is limited to the length of the URL that your browser
supports (2MB in most cases). When using cookies, the amount of data that can be sent back
from the server is fairly limited as well (as mentioned previously, 512 characters is the maxi-
mum size of a cookie).

❑ There’s a possibility that images are disabled on the client.

❑ You should also be aware that some users disable cookies, so it is important to always test for
cookie support before relying on any cookie-based Ajax solutions.

Although you could create different image sizes for different conditions, try to
refrain from making an image too big. You don’t want to affect user experience
while waiting for a simple status from the server.

58

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 58

Dynamic Script Loading
A little-known and little-utilized Ajax technique is called dynamic script loading. The concept is simple:
create a new <script/> element and assign a JavaScript file to its src attribute to load JavaScript that
isn’t initially written into the page. The beginnings of this technique could be seen way back when
Internet Explorer 4.0 and Netscape Navigator 4.0 ruled the web browser market. At that time, develop-
ers learned that they could use the document.write() method to write out a <script/> tag. The
caveat was that this had to be done before the page was completely loaded. With the advent of the
DOM, the concept could be taken to a completely new level.

The basic technique behind dynamic script loading is very easy, just create a <script/> element using
the DOM createElement() method and add it to the page:

var oScript = document.createElement(“script”);
oScript.type = “text/javascript”;
oScript.src = “/path/to/my.js”;
document.body.appendChild(oScript);

Downloading and evaluation of the JavaScript file doesn’t begin until the new <script/> element is
actually added to the page, so it’s important not to forget this step. (This is the opposite of dynamically
creating an element or Image object, which automatically begins downloading once the src
attribute is assigned.)

Once the download is complete, the browser interprets the JavaScript code contained within. Now the
problem becomes a timing issue: how do you know when the code has finished being loaded and inter-
preted? Unlike the element, the <script/> element doesn’t have an onload event handler, so
you can’t rely on the browser to tell you when the script is complete. Instead, you’ll need to have a call-
back function that is the executed at the very end of the source file.

Simple Example
The page in this example contains a single button which, when clicked, loads a string (“Hello world!”)
from an external JavaScript file. This string is passed to a callback function, named callback() for sim-
plicity, which displays the text in an alert. The HTML for this page is:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Dynamic Script Loading Example 1</title>
<script type=”text/javascript”>
//<![CDATA[

function makeRequest() {
var oScript = document.createElement(“script”);
oScript.type = “text/javascript”;
oScript.src = “example1.js”;
document.body.appendChild(oScript);

}

function callback(sText) {
alert(“Loaded from file: “ + sText);

59

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 59

}
//]]>
</script>

</head>
<body>

<input type=”button” value=”Click Me” onclick=”makeRequest()” />
</body>

</html>

The JavaScript file example1.js contains a single line:

callback(“Hello world!”);

When the button is clicked, the makeRequest() function is called, initiating the dynamic script loading.
Since the newly loaded script is in context of the page, it can access and call the callback() function,
which can do with the returned value as it pleases. This example works in any DOM-compliant
browsers (Internet Explorer 5.0+, Safari, Firefox, and Opera 7.0+).

Dynamic Example
The previous example illustrated loading data from a static file that already exists on the server. While
this may occur, it’s much more likely that you’ll want to load dynamic data, as with examples in the pre-
vious sections. The basic technique for this is very similar to that of using images for Ajax communica-
tion: create a dynamic page (using PHP, ASP.NET, or JSP) that accepts query string arguments and
outputs JavaScript code.

Among the data being passed to the dynamic page on the server should be the name of the callback
function call. This is the most optimal thing to do for maintenance purposes. Imagine what would hap-
pen if you changed the name of the function in the static page or script file and forgot to change it in the
dynamic file. So, in the interest of avoiding such tight coupling and the problems that accompany it, it is
much safer to pass in the name of the function that should be called.

The dynamic page then has several important jobs to do. First, it must set its content type to be
text/javascript so as to identify the output as JavaScript code and not HTML or some other format.
Next, the page needs to pull the callback function name from the query string and then output it, pass-
ing in any relevant data.

Suppose that the request to the dynamic page looks like this:

/path/to/js.php?id=25&callback=myCallbackFunc

The file creating the JavaScript then must look similar to this:

<?php
header(“Content-type: text/javascript”);

?>

var sMessage = “Hello world!”;
<?php echo $_GET[“callback”] ?>(sMessage);

60

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 60

The first part of this file sets the content type to text/javascript so that the browser recognizes it as
JavaScript. Next, a JavaScript variable called sMessage is defined as a string, “Hello world!”. The last
line outputs the name of the callback function that was passed through the query string, followed by
parentheses enclosing sMessage, effectively making it a function call. If all works as planned, the last
line becomes:

myCallbackFunc(sMessage);

Taking all of this into account, it’s possible to recreate the XHR example that retrieves data from the
server about a specific customer. The only part that needs to change on the client side is the
requestCustomerInfo() function:

function requestCustomerInfo() {
var sId = document.getElementById(“txtCustomerId”).value;
var oScript = document.createElement(“script”);
oScript.type = “text/javascript”;
oScript.src = “GetCustomerData.php?id=” + sId

+ “&callback=displayCustomerInfo”;
document.body.appendChild(oScript);

}

Note that the same displayCustomerInfo() function will be used, so its name is passed in on the
query string.

The GetCustomerData.php page also must change, though only slightly, to accommodate this technique:

<?php
header(“Content-Type: text/javascript”);

$sID = $_GET[“id”];
$sCallbackFunc = $_GET[“callback”];
$sInfo = “”;

if (is_numeric($sID)) {
$sDBServer = “your.databaser.server”;
$sDBName = “your_db_name”;
$sDBUsername = “your_db_username”;
$sDBPassword = “your_db_password”;
$sQuery = “Select * from Customers where CustomerId=”.$sID;

$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);
@mysql_select_db($sDBName) or $sInfo=”Unable to open database”;

if($sInfo == “”) {
if($oResult = mysql_query($sQuery) and mysql_num_rows($oResult) > 0) {

$aValues = mysql_fetch_array($oResult,MYSQL_ASSOC);
$sInfo = $aValues[‘Name’].”
”.$aValues[‘Address’].”
”.

$aValues[‘City’].”
”.$aValues[‘State’].”
”.
$aValues[‘Zip’].”

Phone: “.$aValues[‘Phone’].”
”.
“”.
$aValues[‘Email’].””;

mysql_free_result($oResult);

61

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 61

} else {
$sInfo = “Customer with ID $sID doesn’t exist.”;

}
}

} else {
$sInfo = “Invalid customer ID.”;

}

mysql_close($oLink);

$sEncodedInfo = str_replace(“\””, “\\\””, $sInfo);
$sEncodedInfo = str_replace(“\n”, “\\n”, $sEncodedInfo);
echo “$sCallbackFunc(\”$sEncodedInfo\”);”;

?>

The first change to the code is setting the content type to text/javascript, which as previously men-
tioned is necessary to identify the type of content the page is outputting. Then, the callback function
name has to be retrieved from the $_GET array and stored in $sCallbackFunc. The $sInfo variable is
then encoded so it will be a proper JavaScript string. To do so, all the quotation marks and new line char-
acters have to be escaped. The resulting string is stored in $sEncodedInfo and output on the last line as
a literal being passed into the callback function. This is the only line that will be output by the page.

With these changes, this example acts just as the XHR version does, including all error messages and
client-side behavior.

Advantages and Disadvantages
Though dynamic script loading is a quick and easy way to establish client-server communication, it does
have some drawbacks.

❑ For one, there is no feedback as to what is going on once the communication is initiated. If, for
example, the file you are accessing doesn’t exist, there is no way for you to receive a 404 error
from the server. Your site or application may sit, waiting, because the callback function was
never called.

❑ Also, you can’t send a POST request using this technique, only a GET, which limits the amount
of data that you can send. This could also be a security issue: make sure that you don’t send
confidential information such as passwords using dynamic script loading, as this information
can easily be picked up from the query string.

Dynamic script loading does offer a couple of advantages over other techniques as well.

❑ First, just like using images, it is possible to access files on other servers. This can be very pow-
erful if you are working in a multidomain environment.

❑ Further, dynamic script loading offers the ability to execute an arbitrary amount of JavaScript as
the result of server-side calculations. You aren’t limited to simply one callback function; use as
many as necessary to achieve the desired results.

62

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 62

Cache Control
Whenever you are dealing with repeated calls to the same page, you should be concerned about browser
caching. For those unaware, web browsers tend to cache certain resources to improve the speed with
which sites are downloaded and displayed. This can result in a tremendous speed increase on frequently
visited web sites, but can also cause problems for pages that change frequently. If you are making sev-
eral Ajax calls, you need to be aware that caching may cause you problems.

The best way to deal with caching is to include a header with caching information on any data being
sent from the server to the browser. This can be done using the Cache-Control and Expires headers,
which should be set up as follows:

Cache-Control: no-cache
Expires: Fri, 30 Oct 1998 14:19:41 GMT

This tells the browser not to cache the data coming from the specific URL. Instead, the browser always
calls a new version from the server instead of a saved version from its own cache. Most browsers sup-
port the Cache-Control header, and almost all support the Expires header (which is set to a date in
the past to prevent caching). Using a combination of the two headers ensures that all browsers will not
cache the page.

Summary
This chapter introduced you to several Ajax techniques for client-server communication. It began with
an HTTP primer, exploring HTTP requests and responses. You learned about the format of HTTP mes-
sages and the differences between a GET request and a POST request. The concepts of headers and mes-
sage bodies were introduced.

The first Ajax technique you learned was the hidden frame technique, which uses a frame with a width
or height of zero, effectively hiding it from the user. This technique uses JavaScript calls to and from the
hidden frame to facilitate the client-server communication. Using the hidden frame technique, you
learned how to send both GET and POST requests.

Next, you learned about replacing hidden frames with hidden iframes. Because iframes can be created
dynamically using JavaScript, this may be a preferable way to initiate client-server communication in
modern browsers. The same techniques were used as with hidden frames, although iframes provide a
bit more flexibility in the design of your pages.

It is important to note that technically the no-cache directive simply requires the
browser to ensure that the resource in question is the most up-to-date version avail-
able. If the version in the cache is the most recent version, then the cached version is
used. To force the browser never to store a copy of the resource locally, use the no-
store directive with the Cache Control header.

63

Ajax Basics

05_109496 ch02.qxd 2/5/07 6:48 PM Page 63

The chapter also introduced the use of XHR for client-server communication. You learned that Internet
Explorer, Mozilla Firefox, Safari, and Opera all support some form of XHR object, and some extra coding
is necessary to detect these differences. The differences between asynchronous and synchronous requests
were explained, and you learned how to make GET and POST requests using XHR. You also learned
how to use request and response headers along with HTTP status codes to better handle requests.

You learned about two alternate Ajax techniques using images and dynamic script loading. It was dis-
cussed how these two techniques allow cross-domain communication, unlike XHR and hidden frames.
Two different methods of using images were covered and the advantages and disadvantages of each
were discussed.

The last topic covered in this chapter was cache control and its importance in Ajax. You learned to
always set the cache control headers to avoid possible caching-related issues.

64

Chapter 2

05_109496 ch02.qxd 2/5/07 6:48 PM Page 64

Ajax Patterns

Design patterns describe programming techniques to solve common problems. Given that pro-
gramming has been around for several decades, chances are that many of the problems you face
every day have already been solved by someone else. Since the mid-1990s, a lot of attention has
been drawn to design patterns as a way to cut development time.

Even though the term Ajax has been around only since early 2005, the techniques that Ajax
describes have been used since the late 1990s, giving rise to several Ajax patterns that solve spe-
cific problems. You’ve already seen some of these patterns in action, namely the hidden frame
technique and asynchronous XHR calls. These are communication patterns between the client and
server using JavaScript. As you may have expected, there are many more types of patterns.

Author and programmer Michael Mahemoff was the first to attempt to document Ajax design pat-
terns at his web site, www.ajaxpatterns.org. The patterns presented in this chapter are a mix-
ture of Mahemoff’s and others that your authors have identified. Note that design patterns,
whether described on a web site or in a book, can never be official, only accepted. Design patterns
are not standards to be followed, but merely designs of solutions that have worked previously. It is
up to the development community to generate a “collective wisdom” around specific patterns; it’s
up to the individual developer to decide whether to implement a given pattern in his or her own
application.

Communication Control Patterns
You already know, from Chapter 2, how to communicate with the server from JavaScript. The real
question is: What is the best way to initiate and continue to make requests back to the server? In
some cases, it may be best to preload information from the server so that it is available immedi-
ately upon some user action. In other cases, you may want to send data to, or receive data from,
the server in varying intervals. Perhaps everything shouldn’t be downloaded at once, and instead
should be downloaded in a particular sequence. Ajax affords you fine granularity in controlling
the communication between client and server to achieve your desired behavior.

06_109496 ch03.qxd 2/5/07 6:48 PM Page 65

Predictive Fetch
In a traditional web solution, the application has no idea what is to come next. A page is presented with
any number of links, each one leading to a different part of the site. This may be termed “fetch on
demand,” where the user, through his or her actions, tells the server exactly what data should be
retrieved. While this paradigm has defined the Web since its inception, it has the unfortunate side effect
of forcing the start-and-stop model of user interaction upon the user. With the help of Ajax, however, this
is beginning to change.

The Predictive Fetch pattern is a relatively simple idea that can be somewhat difficult to implement: the
Ajax application guesses what the user is going to do next and retrieves the appropriate data. In a per-
fect world, it would be wonderful to always know what the user is going to do and make sure that the
next data is readily available when needed. In reality, however, determining future user action is just a
guessing game depending on your intentions.

There are simple use cases where predicting user actions is somewhat easier. Suppose that you are read-
ing an online article that is separated into three pages. It is logical to assume that if you are interested in
reading the first page, you’re also interested in reading the second and third page. So, if the first page
has been loaded for a few seconds (which can easily be determined by using a timeout), it is probably
safe to download the second page in the background. Likewise, if the second page has been loaded for a
few seconds, it is logical to assume that the reader will continue on to the third page. As this extra data is
being loaded and cached on the client, the reader continues to read and barely even notices that the next
page comes up almost instantaneously after clicking the Next Page link.

Another simple use case happens during the writing of an e-mail. Most of the time, you’ll be writing an
e-mail to someone you know, so it’s logical to assume that the person is already in your address book. To
help you out, it may be wise to preload your address book in the background and offer suggestions. This
approach is taken by many web-based e-mail systems, including Gmail and AOL Webmail. The key,
once again, is the “logical-to-assume” criterion. By anticipating and preloading information related to
the user’s most likely next steps, you can make your application feel lighter and more responsive; by
using Ajax to fetch information related to any possible next step, you can quickly overload your server
and make the browser bog down with extra processing. As a rule of thumb, only prefetch information
when you believe it’s logical to assume that information will be requisite to completing the user’s next
request.

Page Preloading Example
As mentioned previously, one of the simplest and most logical uses of the Predictive Fetch pattern is in
the preloading of pages in an online article. With the advent of weblogs, or blogs for short, everyone
seems to have been bitten by the publishing bug, writing their own articles on their own web sites.
Reading long articles online is very difficult on the eyes, so many sites split them into multiple pages.
This is better for reading, but takes longer to load because each new page brings with it all of the format-
ting, menus, and ads that were on the original page. Predictive Fetch eases the load on both the client
and server by loading only the text for the next page while the reader is still reading the first page.

To begin, you’ll need a page that handles the server-side logic for page preloading. The file
ArticleExample.php contains code for displaying an article online:

<?php
$page = 1;
$dataOnly = false;

66

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 66

if (isset($_GET[“page”])) {
$page = (int) $_GET[“page”];

}

if (isset($_GET[“dataonly”]) && $_GET[“dataonly”] == “true”) {
$dataOnly = true;

}

if (!$dataOnly) {
?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<title>Article Example</title>
<script type=”text/javascript” src=”zxml.js”></script>
<script type=”text/javascript” src=”Article.js”></script>
<link rel=”stylesheet” type=”text/css” href=”Article.css” />

</head>
<body>

<h1>Article Title</h1>
<div id=”divLoadArea” style=”display:none”></div>

<?php
$output = “<p>Page “;

for ($i=1; $i < 4; $i++) {
$output .= “<a href=\”ArticleExample.php?page=$i\” id=\”aPage$i\””;
if ($i==$page) {

$output .= “class=\”current\””;
}
$output .= “>$i “;

}
echo $output;

}

if ($page==1) {
?>

<div id=”divPage1”><!-- contents of page 1 --></div>
<?php

} else if ($page == 2) {
?>

<div id=”divPage2”><!-- contents of page 2 --></div>
<?php

} else if ($page == 3) {
?>

<div id=”divPage3”><!-- contents of page 3 --></div>
<?php

}

if (!$dataOnly) {
?>

</body>
</html>
<?php

}
?>

67

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 67

By default, this file displays the first page of text for the article. If the page query string parameter is
specified, such as page=2, then it shows the given page of the article. When the query string contains
dataonly=true, the page outputs only a <div/> element containing the article text for the given page
(not the <html/>, <head/>, or <body/> tags). Combining this with the page parameter enables you to
retrieve any page of the article that you need.

The HTML in this page has a space for the article title as well as a <div/> element used for loading extra
pages. This <div/> element has its display property set to none to ensure that its contents are not dis-
played accidentally. The PHP code immediately following contains logic to output a list of pages avail-
able for the article. In this example, there will be three pages of content, so there are three links output at
the top (see Figure 3-1).

Figure 3-1

The current page is assigned a CSS class of current so that the user knows which page he or she is
viewing. This class is defined in Article.css as:

a.current {
color: black;
font-weight: bold;
text-decoration: none;

}

Note that this page calls itself to get more data. When using an Ajax call, it passes in
dataonly=true on the query string to ensure that it gets only the data and none of
the extra markup that already exists in the page.

68

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 68

When the reader is viewing a particular page, the link for that page becomes black and bold, and is no
longer underlined, providing a clear indication of the page that he or she is reading. By default, these
links simply load the same page and change the page parameter of the query string; this is the way that
most web sites handle multipage articles. Using Predictive Fetch, however, will improve the user’s expe-
rience and the speed with which the data is available.

Several global JavaScript variables are required to implement Predictive Fetch for this example:

var oXHR = null; //The XHR object
var iPageCount = 3; //The number of pages
var iCurPage = -1; //The currently displayed page
var iWaitBeforeLoad = 5000; //The time (in ms) before loading new page
var iNextPageToLoad = -1; //The next page to load

The first variable is a global XHR object that is used to make all requests for more information. The sec-
ond, iPageCount, is the number of pages used in this article. (This is hard-coded here, but in actual
practice this would have to be generated.) The iCurPage variable stores the page number currently
being displayed to the user. The next two variables deal directly with the preloading of data:
iWaitBeforeLoad is the number of milliseconds to wait before loading the next page, and
iNextPageToLoad contains the page number that should be loaded once the specified amount of time
has passed. For this example, a new page is loaded behind the scenes every 5 seconds (5000 millisec-
onds), which should be long enough for someone to read the first few sentences of an article to deter-
mine if it’s worth reading the rest. If the reader leaves before 5 seconds are up, chances are they have no
intention of reading the rest of the article.

To begin the process, you’ll need a function to determine the URL for retrieving a particular page. This
function, getURLForPage(), accepts a single argument that specifies the page number you want to
retrieve. Then, the current URL is extracted and the page parameter is appended to the end:

function getURLForPage(iPage) {
var sNewUrl = location.href;
if (location.search.length > 0) {

sNewUrl = sNewUrl.substring(0, sNewUrl.indexOf(“?”))
}
sNewUrl += “?page=” + iPage;
return sNewUrl;

}

This function begins by extracting the URL from location.href, which gives the complete URL for the
page, including the query string. Then, the URL is tested to see if there is a query string specified by
determining if the length of location.search is greater than 0 (location.search returns just the
query string, including the question mark, if there is one specified). If there is a query string, it is
stripped off using the substring() method. The page parameter is then appended to the URL and
returned. This function will come in handy in a number of different places.

The next function is called showPage(), and as you may have guessed, it is responsible for displaying
the next page of the article:

function showPage(sPage) {

var divPage = document.getElementById(“divPage” + sPage);

if (divPage) {

69

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 69

for (var i=0; i < iPageCount; i++) {
var iPageNum = i+1;
var divOtherPage = document.getElementById(“divPage” + iPageNum);
var aOtherLink = document.getElementById(“aPage” + iPageNum);
if (divOtherPage && sPage != iPageNum) {

divOtherPage.style.display = “none”;
aOtherLink.className = “”;

}
}
divPage.style.display = “block”;
document.getElementById(“aPage” + sPage).className = “current”;

} else {
location.href = getURLForPage(parseInt(sPage));

}
}

This function first checks to see whether the given page has a <div/> element already loaded. The <div/>
element would be named divPage plus the page number (for example, divPage1 for the first page,
divPage2 for the second, and so on). If this <div/> element exists, the page has been prefetched already,
so you can just switch the currently visible page. This is done by iterating through the pages and hiding all
pages except the one indicated by the argument sPage. At the same time, the links for each page are given
an empty string for their CSS class. Then, the <div/> element for the current page has its display prop-
erty set to block in order to show it, and the link for the page has its CSS class set to current.

If, on the other hand, the <div/> element doesn’t exist, the page navigates to the next page in the article
the old-fashioned way, by getting the URL (using the getURLForPage() function defined previously)
and assigning it to location.href. This is a fallback functionality so that if the user clicks a page link
before 5 seconds are up, the experience falls back to the traditional web paradigm.

The loadNextPage() function is used to load each new page behind the scenes. This function is respon-
sible for ensuring that requests are made only for valid pages and that pages are retrieved in order and
in the specified intervals:

function loadNextPage() {

if (iNextPageToLoad <= iPageCount) {

if (!oXHR) {
oXHR = zXmlHttp.createRequest();

} else if (oXHR.readyState != 0) {
oXHR.abort();

}

oXHR.open(“get”, getURLForPage(iNextPageToLoad)
+ “&dataonly=true”, true);

oXHR.onreadystatechange = function () {

//more code here
};
oXHR.send(null);

}
}

70

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 70

The function begins by ensuring that the page number stored in iNextPageToLoad is valid by compar-
ing it to iPageCount. Passing this test, the next step is to see if the global XHR object has been created
yet. If not, it is created using the zXml library’s createRequest() method. If it has already been instan-
tiated, the readyState property is checked to ensure that it’s 0. If readyState is not 0, the abort()
method must be called to reset the XHR object.

Next, the open() method is called, specifying that the request will get an asynchronous GET request.
The URL is retrieved by using the getURLForPage() function and then appending the string
“&dataonly=true” to ensure that only the page text is returned. With all of that set, it’s time to move
on to the onreadystatechange event handler.

In this case, the onreadystatechange event handler is responsible for retrieving the article text as well
as creating the appropriate DOM structure to represent it:

function loadNextPage() {

if (iNextPageToLoad <= iPageCount) {

if (!oXHR) {
oXHR = zXmlHttp.createRequest();

} else if (oXHR.readyState != 0) {
oXHR.abort();

}

oXHR.open(“get”, getURLForPage(iNextPageToLoad)
+ “&dataonly=true”, true);

oXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
if (oXHR.status == 200) {

var divLoadArea = document.getElementById(“divLoadArea”);
divLoadArea.innerHTML = oXHR.responseText;
var divNewPage = document.getElementById(“divPage”

+ iNextPageToLoad);
divNewPage.style.display = “none”;
document.body.appendChild(divNewPage);
divLoadArea.innerHTML = “”;
iNextPageToLoad++;
setTimeout(loadNextPage, iWaitBeforeLoad);

}

}

};
oXHR.send(null);

}
}

As discussed in the previous chapter, the readyState property is checked to see when it is equal to 4,
and the status property is checked to make sure there was no error. Once you’ve passed those two con-
ditions, the real processing begins. First, a reference to the load area <div/> element is retrieved and
stored in divLoadArea. Then, the responseText from the request is assigned to the load area’s
innerHTML property. Since the text coming back is an HTML snippet, it will be parsed and the appropri-

71

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 71

ate DOM objects will be created. Next, a reference to the <div/> element that contains the next page is
retrieved (you know the ID will be divPage plus iNextPageToLoad) and its display property is set to
none to ensure it remains invisible when it is moved outside of the load area. The next line appends
divNewPage to the document’s body, putting it into the regular viewing area for usage. Then the load
area’s innerHTML property is set to an empty string to prepare for another page to be loaded. After that,
the iNextPageToLoad variable is incremented and a new timeout is set to call this function again after
the specified period of time. This function will continue to be called every 5 seconds until all pages have
been loaded.

Because this page should be functional without JavaScript, all this code is attached at runtime after
determining if the browser is capable of using XHR. Fortunately, the zXmlHttp object in the zXml
library has a function, isSupported(), that can be used to determine this:

window.onload = function () {
if (zXmlHttp.isSupported()) {

//begin Ajax code here
}

};

Inside this code block is where all the Predictive Fetch code will go, ensuring that browsers without
XHR support will not have their usability adversely affected by half-functioning code.

The first step in the process of setting up Predictive Fetch for the article is to determine which page the
user is currently viewing. To do so, you must look into the URL’s query string to see if the page parame-
ter is specified. If it is, you can extract the page number from there; otherwise, you can assume that the
page number is 1 (the default):

window.onload = function () {
if (zXmlHttp.isSupported()) {

if (location.href.indexOf(“page=”) > -1) {
var sQueryString = location.search.substring(1);
iCurPage = parseInt(sQueryString.substring(sQueryString.indexOf(“=”)+1));

} else {
iCurPage = 1;

}

iNextPageToLoad = iCurPage+1;

//more code here
}

};

In this section of code, the page’s URL (accessible through location.href) is tested to see if page= has
been specified. If so, the query string is retrieved by using location.search (which returns only the
query string, including the question mark, that the call to substring(1) strips out). The next line
retrieves just the part of the query string after the equals sign (which should be the page number), con-
verts it to an integer using parseInt(), and stores the result in iCurPage. If, on the other hand, the
page parameter isn’t specified in the query string, the page is assumed to be the first one, and 1 is
assigned to iCurPage. The last line in this section sets the iNextPageToLoad variable to the current
page plus one, ensuring that you don’t end up reloading data that is already available.

72

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 72

The next step is to override the functionality of the page links. Remember, by default, these links reload
the same page with a different query string to specify which page should be displayed. If XHR is sup-
ported, you need to override this behavior and replace it with function calls to the Ajax functionality:

window.onload = function () {
if (zXmlHttp.isSupported()) {

if (location.href.indexOf(“page=”) > -1) {
var sQueryString = location.search.substring(1);
iCurPage = parseInt(sQueryString.substring(sQueryString.indexOf(“=”)+1));

} else {
iCurPage = 1;

}

iNextPageToLoad = iCurPage+1;

var colLinks = document.getElementsByTagName(“a”);
for (var i=0; i < colLinks.length; i++) {

if (colLinks[i].id.indexOf(“aPage”) == 0) {
colLinks[i].onclick = function (oEvent) {

var sPage = this.id.substring(5);
showPage(sPage);

if (oEvent) {
oEvent.preventDefault();

} else {
window.event.returnValue = false;

}
}

}
}

setTimeout(loadNextPage, iWaitBeforeLoad);

}
};

Here, a collection of links (<a/> elements) is retrieved using getElementsByTagName(). If the link has
an ID beginning with aPage, it is a page link and needs to be addressed; this is determined by using
indexOf() and checking for a value of 0, which indicates that aPage is the first part of the string. Next,
an onclick event handler is assigned to the link. Within this event handler, the page number is
extracted by using the ID of the link (accessible through this.id) and using substring() to return
everything after aPage. Then, this value is passed into the showPage() function defined earlier in this
section, which displays the appropriate page. After that point, you need only worry about canceling the
default behavior of the link, which is to navigate to a new page. Because of differences in the Internet
Explorer (IE) and DOM event models, an if statement is necessary to determine the appropriate course
of action. If the event object was passed in to the function (the argument oEvent), then this is a DOM-
compliant browser and the preventDefault() method is called to block the default behavior. If, how-
ever, oEvent is null, that means it’s IE and so the event object is accessible as window.event. The
returnValue property is then set to false, which is the way IE cancels default event actions.

After the links have been properly handled, a timeout is created for the initial call to loadNextPage().
This first call will take place after 5 seconds and will automatically load the second page at that point.

73

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 73

When you test this functionality yourself, try clicking the page links at different points in time. If you
click it before 5 seconds have passed, you will see the page navigate to a new URL with the query string
changed. The next time, wait about 10 seconds and click a page link. You should see that the text
changes while the URL does not (it is also noticeably faster than navigating to a URL).

Submission Throttling
Predictive Fetch is one pattern for retrieving data from the server; the other side of an Ajax solution is
the sending of data to the server. Since you want to avoid page refreshes, the question of when to send
user data is important. In a traditional web site or web application, each click makes a request back to
the server so that the server is always aware of what the client is doing. In the Ajax model, the user inter-
acts with the site or application without additional requests being generated for each click.

One solution would be to send data back to the server every time a user action occurs, similar to a tradi-
tional web solution. Thus, when the user types a letter, that letter is sent to the server immediately. The
process is then repeated for each letter typed. The problem with this approach is that it has the possibil-
ity to create a large number of requests in a short amount of time, which not only may cause problems
for the server but also may cause the user interface to slow down as each request is being made and pro-
cessed. The Submission Throttling design pattern is an alternative approach to this problematic issue.

Using Submission Throttling, you buffer the data to be sent to the server on the client and then send the
data at predetermined times. The venerable Google Suggest feature does this brilliantly. It doesn’t send a
request after each character is typed. Instead, it waits for a certain amount of time and sends all the text
currently in the textbox. The delay from typing to sending has been fine-tuned to the point that it doesn’t
seem like much of a delay at all. Submission Throttling, in part, gives Google Suggest its speed.

Submission Throttling typically begins either when the web site or application first loads or because of a
specific user action. Then, a client-side function is called to begin the buffering of data. Every so often,
the user’s status is checked to see if he or she is idle (doing so prevents any interference with the user
interface). If the user is still active, data continues to be collected. When the user is idle, which is to say
he or she is not performing an action, it’s time to decide whether to send the data. This determination
varies depending on your use case; you may want to send data only when it reaches a certain size, or
you may want to send it every time the user is idle. After the data is sent, the application typically con-
tinues to gather data until either a server response or some user action signals to stop the data collection.
Figure 3-2 outlines this process.

The Submission Throttling pattern should never be used for mission-critical data. If
information must be posted to the server within a specific amount of time, you are
better off using a traditional form to ensure the correct and timely delivery of the
information.

74

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 74

Figure 3-2

Collect data

Is user idle?

Yes

Yes

Yes

No

No

Send data

Continue
collecting

data?

No

Done

Is it
time to
send
data?

75

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 75

Incremental Form Validation Example
As mentioned previously, Submission Throttling can be achieved through various user interactions.
When using forms, it’s sometimes useful to upload data incrementally as the form is being filled out.
The most common usage is to validate data as the user is filling in the form instead of waiting until the
end to determine any errors. In this case, you would most likely use the onchange event handler of each
form element to determine when to upload the data.

The change event fires for a <select/> element whenever a different option is selected; it fires for other
controls when its value has changed and it has lost focus. For example, if you typed a couple of letters
into a textbox and then clicked elsewhere on the screen (causing the textbox to lose focus), the change
event fires, and the onchange event handler is called. If you click in the textbox again, and then click
elsewhere (or press the Tab key), the textbox will lose focus but the change event will not fire because no
changes have been made. Using this event handler for Submission Throttling can prevent extraneous
requests.

Normally, the form validation is simply a precursor to submission. The form’s submit button starts out
disabled, becoming enabled only when all fields in the form have been validated by the server. For
example, suppose you are running a web site where users must sign up to gain access to certain features.
This may be a shopping site that requires sign-in to purchase items or a site that requires membership to
access the message board. The items you’ll want to be sure of when creating this new account are:

❑ The user name must not be taken.

❑ The e-mail address must be valid.

❑ The birthday must be a valid date.

Of course, the type of data required will differ depending on your usage, but these items provide a good
starting point for most applications.

The first step in creating such interaction is to define the HTML form that will collect the data. This form
should stand alone so that it can be used even if Ajax calls aren’t possible:

<form method=”post” action=”Success.php”>
<table>

<tr>
<td><label for=”txtFirstName”>First Name</label></td>
<td><input type=”text” id=”txtFirstName” name=”txtFirstName” /></td>

</tr>
<tr>

<td><label for=”txtLastName”>Last Name</label></td>
<td><input type=”text” id=”txtLastName” name=”txtLastName” /></td>

</tr>
<tr>

<td><label for=”txtEmail”>E-mail</label></td>
<td><input type=”text” id=”txtEmail” name=”txtEmail” /><img

src=”error.gif” alt=”Error” id=”imgEmailError” style=”display:none” /></td>
</tr>
<tr>

<td><label for=”txtUsername”>Username</label></td>

76

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 76

<td><input type=”text” id=”txtUsername” name=”txtUsername” /></td>

</tr>
<tr>

<td><label for=”txtBirthday”>Birthday</label></td>
<td><input type=”text” id=”txtBirthday” name=”txtBirthday” /><img

src=”error.gif” alt=”Error” id=”imgBirthdayError” style=”display:none” />
(m/d/yyyy)</td>

</tr>
<tr>

<td><label for=”selGender”>Gender</label></td>
<td><select id=”selGender”

name=”selGender”><option>Male</option><option>Female</option></select></td>
</tr>

</table>
<input type=”submit” id=”btnSignUp” value=”Sign Up!” />

</form>

You should note a few things about this form. First, not all fields will be validated using Ajax calls. The
fields for first and last name as well as gender (represented by a combo box) don’t require validation.
The other fields — for e-mail, user name, and birthday — will make use of Ajax validation. Second, you’ll
note that these fields have a hidden image after the textbox. This image is used only in the event that
there is a validation error. Initially the images are hidden, because those browsers without Ajax capabili-
ties should never see them. There is absolutely no JavaScript on this form; all the appropriate functions
and event handlers are defined in a separate file.

A single function called validateField() is used to validate each form field. This is possible because
each field uses the same validation technique (call the server and wait for a response). The only differ-
ences are the types of data being validated and which image to show if validation is unsuccessful.

The server-side functionality is stored in a file named ValidateForm.php. This file expects a name-
value pair to be passed in the query string. The name should be the name of the control whose value is
being checked, and the value should be the value of that control. Depending on the name of the control,
this page runs the appropriate validation tests on the value. Then, it outputs a simple string in the fol-
lowing format:

<true|false>||<error message>

The first part of this string indicates whether the value is valid (true if it is; false if not). The second
part, after the double pipes (||), is an error message that is provided only when the value is invalid.
Here are a couple of examples of what the returned string might look like:

true||
false||Invalid date.

The first line represents a valid value; the second represents an invalid date.

This is a plain-text message, although later in the book you will learn about using
other data formats, such as XML and JSON for this same purpose.

77

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 77

The code that does the validation is as follows:

<?php
$valid = “false”;
$message = “An unknown error occurred.”;

if (isset($_GET[“txtUsername”])) {

//load array of usernames
$usernames = array();
$usernames[] = “SuperBlue”;
$usernames[] = “Ninja123”;
$usernames[] = “Daisy1724”;
$usernames[] = “NatPack”;

//check usernames
if (in_array($_GET[“txtUsername”], $usernames)) {

$message = “This username already exists. Please choose another.”;
} else if (strlen($_GET[“txtUsername”]) < 8) {

$message = “Username must be at least 8 characters long.”;
} else {

$valid = “true”;
$message = “”;

}

} else if (isset($_GET[“txtBirthday”])) {

$date = strtotime($_GET[“txtBirthday”]);
if (!is_numeric($date) or $date < 0) {

$message = “This is not a valid date.”;
} else {

$valid = “true”;
$message = “”;

}

} else if (isset($_GET[“txtEmail”])) {

if(!eregi(
“^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-z]{2,3})$”,
$_GET[“txtEmail”])) {
$message = “This e-mail address is not valid”;

} else {
$valid = “true”;
$message = “”;

}
}

echo “$valid||$message”;
?>

In this file, the first step is to determine which field to validate. This is done using the isset() function
to test the $_GET array for a value. If there is a value for a particular field, then the validation com-
mences. For the user name, the value is checked to see if it already exists in an array of user names and
then checked to ensure that it is at least eight characters long. The birthday is passed directly into PHP’s

78

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 78

built-in strtotime() function, which converts a date string in any number of U.S. formats into a UNIX
timestamp (the number of seconds since January 1, 1970). If there is an error, this function returns –1 or
false (depending on the version of PHP), indicating that the string passed in was not a valid date. The
e-mail address is checked against a regular expression to ensure that it is in the correct format. This regu-
lar expression was devised by John Coggeshall in his article, “E-mail validation with PHP 4,” available
online at www.zend.com/zend/spotlight/ev12apr.php.

The $valid and $message variables are initialized to false and “An unknown error occurred”. This
ensures that if the file is used incorrectly (passing in an unrecognized field name, for example), a nega-
tive validation will always be returned. When a positive validation occurs, however, this requires that
both variables be reset to appropriate values (true for $valid, an empty string for $message). In the
case of a negative validation, only the $message variable has to be set since $valid is already false.
The very last step in this page is to output the response string in the format mentioned previously.

Next, the JavaScript to perform the validation must be created. A single function, validateField(),
can be used to validate each field as long as it knows which field it should be validating. This takes a lit-
tle bit of work to counteract cross-browser compatibility issues:

function validateField(oEvent) {
oEvent = oEvent || window.event;
var txtField = oEvent.target || oEvent.srcElement;

//more code to come
}

The first two lines of code inside this function equalize the differences between event models in IE and
DOM-compliant browsers (such as Mozilla Firefox, Opera, and Safari). DOM-compliant browsers pass
in an event object to each event handler; the control that caused the event is stored in the event object’s
target property. In IE, the event object is a property of window; therefore, the first line inside the func-
tion assigns the correct value to the oEvent variable. Logical OR (||) returns a non-null value when
used with an object and a null object. If you are using IE, oEvent will be undefined; thus, the value of
window.event is assigned to oEvent. If you are using a DOM-compliant browser, oEvent will be reas-
signed to itself. The second line does the same operation for the control that caused the event, which is
stored in the srcElement property in IE. At the end of these two lines, the control that caused the event
is stored in the txtField variable. The next step is to create the HTTP request using XHR:

function validateField(oEvent) {
oEvent = oEvent || window.event;
var txtField = oEvent.target || oEvent.srcElement;
var oXHR = zXmlHttp.createRequest();
oXHR.open(“get”, “ValidateForm.php?” + txtField.name + “=”

+ encodeURIComponent(txtField.value), true);
oXHR.onreadystatechange = function () {

//more code to come

Note that the user names in this example are stored in a simple array and hard-coded
into the page. In an actual implementation, the user names should be stored in a
database and the database should be queried to determine whether the user name
already exists.

79

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 79

};
oXHR.send(null);

}

As in Chapter 2, you are using the zXml library for cross-browser XHR support. The XHR object is cre-
ated and stored in oXHR. Next, the connection is initialized to a GET request using open(). Note that the
query string for ValidateForm.php is created by combining the name of the field, an equals sign, and
the value of the field (which is URL encoded using encodeURIComponent()). Also note that this is an
asynchronous request. This is extremely important for this use case, because you don’t want to interfere
with the user filling out the rest of the form while you are checking the validity of a single field; remem-
ber that synchronous requests made using XHR objects freeze most aspects of the user interface (includ-
ing typing and clicking) during their execution. The last part of this function is to handle the response
from the server:

function validateField(oEvent) {
oEvent = oEvent || window.event;
var txtField = oEvent.target || oEvent.srcElement;
var oXHR = zXmlHttp.createRequest();
oXHR.open(“get”, “ValidateForm.php?” + txtField.name + “=”

+ encodeURIComponent(txtField.value), true);
oXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {

var arrInfo = oXHR.responseText.split(“||”);
var imgError = document.getElementById(“img”

+ txtField.id.substring(3) + “Error”);
var btnSignUp = document.getElementById(“btnSignUp”);

if (!eval(arrInfo[0])) {
imgError.title = arrInfo[1];
imgError.style.display = “”;
txtField.valid = false;

} else {
imgError.style.display = “none”;
txtField.valid = true;

}

btnSignUp.disabled = !isFormValid();
} else {

alert(“An error occurred while trying to contact the server.”);
}

}
};
oXHR.send(null);

}

After checking for the correct readyState and status, the responseText is split into an array of
strings (arrInfo) using the JavaScript split() method. The value in the first slot of arrInfo will be
the value of the PHP variable $valid; the value in the second slot will be the value of the PHP variable
$message. Also, a reference to the appropriate error image and the Sign Up button is returned. The error
image is gained by dissecting the field name, removing the “txt” from the front (using substring()),
prepending “img” and appending “Error” to the end (so for the field “txtBirthday”, the error image
name is constructed as “imgBirthdayError”).

80

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 80

The value in arrInfo[0] must be passed into eval() in order to get a true Boolean value out of it.
(Remember, it’s a string: either true or false.) If this value is false, the error image’s title property
is assigned the error message from arrInfo[1], the image is displayed, and the custom valid property
of the textbox is set to false (this will come in handy later). When a value is invalid, the error image
appears, and when the user moves the mouse over it, the error message appears (see Figure 3-3). If the
value is valid, however, the error image is hidden and the custom valid property is set to true.

Figure 3-3

You’ll also notice that the Sign Up button is used in this function. The Sign Up button should be disabled
if there is any invalid data in the form. To accomplish this, a function called isFormValid() is called. If
this function returns false, the Sign Up button’s disabled property is set to true, disabling it. The
isFormValid() function simply iterates through the form fields and checks the valid property:

function isFormValid() {
var frmMain = document.forms[0];
var blnValid = true;

for (var i=0; i < frmMain.elements.length; i++) {
if (typeof frmMain.elements[i].valid == “boolean”) {

blnValid = blnValid && frmMain.elements[i].valid;
}

}

return blnValid;
}

For each element in the form, the valid property is first checked to see if it exists. This is done by using
the typeof operator, which will return boolean if the property exists and has been given a Boolean
value. Because there are fields that aren’t being validated (and thus won’t have the custom valid prop-
erty), this check ensures that only validated fields are considered.

The last part of the script is to set up the event handlers for the textboxes. This should be done when the
form has finished loading, but only if XHR is supported (because that is how the Ajax validation is being
performed here):

//if Ajax is enabled, disable the submit button and assign event handlers
window.onload = function () {

81

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 81

if (zXmlHttp.isSupported()) {
var btnSignUp = document.getElementById(“btnSignUp”);
var txtUsername = document.getElementById(“txtUsername”);
var txtBirthday = document.getElementById(“txtBirthday”);
var txtEmail = document.getElementById(“txtEmail”);

btnSignUp.disabled = true;
txtUsername.onchange = validateField;
txtBirthday.onchange = validateField;
txtEmail.onchange = validateField;
txtUsername.valid = false;
txtBirthday.valid = false;
txtEmail.valid = false;

}
};

This onload event handler assigns the onchange event handlers for each textbox as well as initializes
the custom valid property to false. Additionally, the Sign Up button is disabled from the start to pre-
vent invalid data from being submitted. Note, however, that the button will be disabled only if XHR is
supported; otherwise, the form will behave as a normal web form and the validation will have to be
done when the entire form is submitted.

When you load this example, each of the three validated text fields will make a request to the server for
validation whenever their values change and you move on to another field. The user experience is seam-
less using the Submission Throttling pattern, but the form remains functional even if JavaScript is turned
off or XHR is not supported.

Incremental Field Validation Example
Whereas the previous example validated each field when its value changed, the other popular form of
the Submission Throttling design pattern involves submitting a single field periodically as changes are
made. This is the version of Submission Throttling used for both Bitflux LiveSearch and Google Suggest,
where data is repeatedly sent to the server as the user types. In both of these cases, the submission acti-
vates a search on the server; however, the same method can be used to validate a single field repeatedly
as the user types.

Suppose that instead of asking you to fill in a whole form, the sign-up for a given site requires you first
to select a user name (maybe as step 1 of a multistep sign-up process). In this case, you’d want to ensure
that only a nonexistent user name be used. Instead of waiting for the form to be submitted, you can peri-
odically upload the data to the server for validation, making sure that the data can’t be submitted until a
valid user name is entered.

Even when using this type of validation, it is essential that all the data be validated
again once the entire form is submitted. Remember, if the user turns off JavaScript,
you still need to be sure the data is valid before performing operations using it.

82

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 82

The form for this example is much simpler, made up of a single textbox and a Next button:

<form method=”post” action=”Success.php”>
<table>

<tr>
<td><label for=”txtUsername”>Username</label></td>
<td><input type=”text” id=”txtUsername” name=”txtUsername” />

<img src=”error.gif” alt=”Error” id=”imgUsernameError”
style=”display:none” /></td>

</tr>
</table>
<input type=”submit” id=”btnNext” value=”Next” />

</form>

Note that the same basic format of the previous example has been kept, including the hidden error
image. Next, the validateField() function from the previous example is used, with a few changes:

var oXHR = null;
var iTimeoutId = null;

function validateField(oEvent) {
oEvent = oEvent || window.event;
var txtField = oEvent.target || oEvent.srcElement;

var btnNext = document.getElementById(“btnNext”);
btnNext.disabled = true;

if (iTimeoutId != null) {
clearTimeout(iTimeoutId);
iTimeoutId = null;

}

if (!oXHR) {
oXHR = zXmlHttp.createRequest();

} else if (oXHR.readyState != 0) {
oXHR.abort();

}

oXHR.open(“get”, “ValidateForm.php?” + txtField.name + “=”
+ encodeURIComponent(txtField.value), true);

oXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {

var arrInfo = oXHR.responseText.split(“||”);
var imgError = document.getElementById(“img”

Note that this example is for demonstration purposes. If you were to use the tech-
nique described in a production environment, you would have to protect against
spam bots that may use this feature to harvest user names and passwords.

83

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 83

+ txtField.id.substring(3) + “Error”);

if (!eval(arrInfo[0])) {
imgError.title = arrInfo[1];
imgError.style.display = “”;
txtField.valid = false;

} else {
imgError.style.display = “none”;
txtField.valid = true;

}

btnNext.disabled = !txtField.valid;
} else {

alert(“An error occurred while trying to contact the server.”);
}

}
};

iTimeoutId = setTimeout(function () {
oXHR.send(null);

}, 500);
};

The first thing to note about this updated function is the inclusion of two global variables: oXHR and
iTimeoutId. The first, oXHR, holds a global reference to an XHR object that is used repeatedly (as
opposed to being used just once in the previous example); the second, iTimeoutId, holds a timeout
identifier used to delay sending a request. Inside the function, the first new part sets the Next button to
be disabled right away. This is important because a request may not be sent out immediately following a
call to this function. The next block after that clears the timeout identifier if it’s not null, which prevents
the sending of too many requests in succession. (If there is a pending request, this cancels it.)

Next, the global oXHR object is tested to see if it is null. If so, a new XHRobject is created and assigned
to it. If an XHR object already exists, its readyState is checked to see if it’s ready for a request. As men-
tioned in the previous chapter, the readyState changes from 0 to 1 when the open() method is called;
therefore, any readyState other than 0 indicates that a request has already been started, so the
abort() method must be called before attempting to send a new request. Note that the same
ValidateForm.php page is used for validation purposes.

Inside of the onreadystatechange event handler, the only new line is one that changes the Next but-
ton’s disabled state based on the validity of user name. Toward the end of the function, the
setTimeout() function is called to delay the sending of the request by half a second (500 milliseconds).
The identifier from this call is saved in iTimeoutId, so it is possible to cancel the request the next time
the function is called. By using the timeout functionality of JavaScript in this way, you are ensuring that
the user hasn’t typed anything for at least half a second. If the user types something quickly, the timeout
will repeatedly be cleared and the request aborted. It’s only when there is a pause that the request will
finally be sent.

The only part left now is to set up the event handler. Since this method uploads information as the user
types, you can’t rely on the onchange event handler alone (although it is still needed). In this case, you
need to use the onkeyup event handler, which is called every time a key is pressed and then released:

84

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 84

window.onload = function () {
if (zXmlHttp.isSupported()) {

var btnNext = document.getElementById(“btnNext”);
var txtUsername = document.getElementById(“txtUsername”);

btnNext.disabled = true;
txtUsername.onkeyup = validateField;
txtUsername.onchange = validateField;
txtUsername.valid = false;

}
};

Once again, this is very similar to the previous example. The only changes are the name of the button
(which is now btnNext) and the assignment of validateField() to the onkeyup event handler. As the
user types, the user name will be checked for validity. Every time a valid user name is entered, the Next
button becomes enabled. Whenever a request is being made, the button is first disabled to accommodate
a specific situation. It is possible that the user will continue typing even after a valid user name has been
entered. As a side effect, the extra characters may cause the user name to become invalid, and you don’t
want to allow invalid data to be submitted.

Periodic Refresh
The Periodic Refresh design pattern describes the process of checking for new server information in spe-
cific intervals. This approach, also called polling, requires the browser to keep track of when another
request to the server should take place.

This pattern is used in a variety of different ways on the Web:

❑ ESPN uses Periodic Refresh to update its online scoreboards automatically. For example, the
NFL Scoreboard, located at http://sports.espn.go.com/nfl/scoreboard, shows up-to-
the-minute scores and drive charts for every NFL game being played at the time. Using XHR
objects and a little bit of Flash, the page repeatedly updates itself with new information.

❑ Gmail (http://gmail.google.com) uses Periodic Refresh to notify users when new mail has
been received. As you are reading an e-mail or performing other operations, Gmail repeatedly
checks the server to see if new mail has arrived. This is done without notification unless there is
new mail, at which point the number of new e-mails received is displayed in parentheses next
to the Inbox menu item.

❑ XHTML Live Chat (www.plasticshore.com/projects/chat) uses Periodic Refresh to imple-
ment a chat room using simple web technologies. The chat room text is updated automatically
every few seconds by checking the server for new information. If there is a new message, the
page is updated to reflect it, thus creating a traditional chat room experience.

Although it’s a nice feature, incremental field validation should be used sparingly
because it creates a high volume of requests. Unless your server configuration is set
up specifically to handle an increased volume of requests, it is best to forego this
approach.

85

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 85

❑ The Magnetic Ajax demo (www.broken-notebook.com/magnetic) re-creates online the expe-
rience of magnetic poetry (using single word magnets that can be rearranged to make sen-
tences). The full version polls the server for new arrangements every few seconds, so if you and
someone else are rearranging words at the same time, you will see the movement.

Clearly, there are many different ways that Period Refresh can increase user experience, but the basic
purpose remains the same: to notify users of updated information.

New Comment Notifier Example
A feature that has been creeping into blogs across the Web since the beginning of 2005 is a New
Comment Notifier. A New Comment Notifier does exactly what it says it does: it alerts the user when a
new comment has been added. This can take the form of a simple text message displayed on the page or
an animated message that slides in from out of view, but the basic idea is the same. In this example,
Periodic Refresh is used to check a database table containing comments to see which is the newest.

Suppose that you have a simple MySQL table, defined as follows:

CREATE TABLE `BlogComments` (
`CommentId` INT NOT NULL AUTO_INCREMENT ,
`BlogEntryId` INT NOT NULL ,
`Name` VARCHAR(100) NOT NULL ,
`Message` VARCHAR(255) NOT NULL ,
`Date` DATETIME NOT NULL ,
PRIMARY KEY (`CommentId`)
) COMMENT = ‘Blog Comments’;

The SQL query to run this is:

select CommentId,Name,LEFT(Message, 50)
from BlogComments order by Date desc
limit 0,1

This query returns the comment ID (which is autogenerated), the name of the person who left the com-
ment, and the first 50 characters of the message text (using the LEFT() function) for the most recent
comment. The 50 characters are used as a preview of the actual comment (you probably don’t want to
get the entire message because it could be long).

The page that runs this query is called CheckComments.php, and it outputs a string in the following format:

<comment ID>||<name>||<message>

This format allows the JavaScript Array.split() method to be used in order to extract the individual
pieces of information with little effort. If there are no comments or there is an error, the comment ID will
be –1 and the other parts of the string will be blank. Here is the complete code listing for
CheckComments.php:

<?php
header(“Cache-control: No-Cache”);
header(“Expires: Fri, 30 Oct 1998 14:19:41 GMT”);

//database information

86

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 86

$sDBServer = “your.database.server”;
$sDBName = “your_db_name”;
$sDBUsername = “your_db_username”;
$sDBPassword = “your_db_password”;

//create the SQL query string
$sSQL = “select CommentId,Name,LEFT(Message, 50) as ShortMessage from

BlogComments order by Date desc limit 0,1”;

$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);
@mysql_select_db($sDBName) or die(“-1|| || “);

if($oResult = mysql_query($sSQL) and mysql_num_rows($oResult) > 0) {
$aValues = mysql_fetch_array($oResult,MYSQL_ASSOC);
echo $aValues[‘CommentId’].”||”.$aValues[‘Name’].”||”.

$aValues[‘ShortMessage’];
} else {

echo “-1|| || “;
}

mysql_free_result($oResult);
mysql_close($oLink);

?>

Perhaps the most important parts of this file are the two headers included at the top. By setting Cache-
control and Expires headers, you are telling the browser to always retrieve this file from the server and
not from the client cache. Without this, some browsers would return the same information repeatedly,
effectively nullifying this functionality altogether. The rest of this file should look very familiar, because it
uses essentially the same algorithm as previous examples that make use of MySQL database calls.

You can also avoid caching problems by changing the query string every time a request is made to this
file. This is often done by assigning a timestamp into the query string to trick the browser into getting a
fresh copy from the server.

Next comes the JavaScript that calls this file. To start, you’ll need a few global variables once again:

var oXHR = null; //The XHR object
var iInterval = 1000; //The interval to check (in milliseconds)
var iLastCommentId = -1; //The ID of the last comment received
var divNotification = null; //The layer to display the notification

As usual, the first global variable is an XHR object called oXHR, which will be used for all requests. The
second variable, iInterval, specifies the number of milliseconds that should occur between each check
for new comments. In this case, it is set to 1000 milliseconds, or 1 second, although this can and should be
customized based on your needs. Next, the iLastCommentId variable is used to store the last comment
ID in the database. It is by comparing this value to the most recently retrieved comment ID that you can
determine whether a new comment has been added. The last variable, divNotification, holds a refer-
ence to the <div/> element that is used to display a notification to the user about new comments.

When a new comment is detected, divNotification is filled with information about the new com-
ment, including the name of the person making the comment, a summary of the message, and a link to
view the entire comment. If the <div/> element hasn’t yet been created, it must be created and assigned
the appropriate style information:

87

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 87

function showNotification(sName, sMessage) {
if (!divNotification) {

divNotification = document.createElement(“div”);
divNotification.className = “notification”;
document.body.appendChild(divNotification);

}

divNotification.innerHTML = “New Comment
” + sName
+ “ says: “ + sMessage + “...
<a href=\”ViewComment.php?id=”
+ iLastCommentId + “\”>View”;

divNotification.style.top = document.body.scrollTop + “px”;
divNotification.style.left = document.body.scrollLeft + “px”;
divNotification.style.display = “block”;
setTimeout(function () {

divNotification.style.display = “none”;
}, 5000);

}

As you can see, the showNotification() function accepts two arguments: a name and a message.
However, before this information is used, you must ensure that divNotification is not null. If neces-
sary, a new <div/> element is created and its CSS class set to notification before being added to the
document’s body. After that, the innerHTML property is used to set the notification HTML, which says
“New Comment” in bold, followed by the name, the message, and the link to view the comment. The
link points to ViewComment.php and assigns a query string parameter id the value of
iLastCommentId, which indicates the comment to view. Then, the position of the notification is set by
using the scrollTop and scrollLeft properties of document.body. This ensures that the notification
is always visible at the upper-left corner of the page regardless of the scroll position (if you have scrolled
down or right). Following that, the display property is set to block to make the notification visible.

The last part of this function is a timeout that hides the notification after 5 seconds (5000 milliseconds).
It’s not a good idea to leave the notification up unless you have a spot specifically designated for such a
purpose in your design; otherwise, you could be covering up important information.

In this example, the notification CSS class is defined as follows:

div.notification {
border: 1px solid red;
padding: 10px;
background-color: white;
position: absolute;
display: none;
top: 0px;
left: 0px;

}

The document.body.scrollLeft and document.body.scrollTop properties
should be used only in the quirks mode of Internet Explorer, Firefox, and Opera. If
your page uses standards mode (using an XHTML doctype), you must instead use
document.documentElement.scrollLeft and document.documentElement
.scrollTop.

88

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 88

This creates a white box with a red border around it. Of course, you’ll want to style this in a manner
that’s appropriate for the site or application in which it is used. The important parts for this example are
that position is set to absolute and display is set to none. Setting both properties ensures that when
the <div/> element is added to the page, it won’t interrupt the normal page flow or move any elements
around. The result is a notification area, as displayed in Figure 3-4.

Figure 3-4

The JavaScript function that does the most work is checkComments(), which is responsible for checking
the server for updates. The code is very similar to the previous examples:

function checkComments() {
if (!oXHR) {

oXHR = zXmlHttp.createRequest();
} else if (oXHR.readyState != 0) {

oXHR.abort();
}

oXHR.open(“get”, “CheckComments.php”, true);
oXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {

var aData = oXHR.responseText.split(“||”);
if (aData[0] != iLastCommentId) {

iLastCommentId = aData[0];

if (iLastCommentId != -1) {

89

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 89

showNotification(aData[1], aData[2]);
}

}

setTimeout(checkComments, iInterval);
}

}
};

oXHR.send(null);

}

This function creates an XHR object and calls CheckComments.php asynchronously. The important part
of this code is highlighted (the rest is almost exactly the same as the previous examples). In this section,
the responseText is split into an array using the split() method. The first value in the array,
aData[0], is the comment ID that was added last. If it isn’t equal to the last comment ID stored, then a
notification may be needed. Next, if the last comment ID is –1, no comment IDs have been retrieved and
thus a notification should not be shown. If the last comment ID is not –1, at least one comment ID has
been retrieved, and since it’s different from the one just received from the server, the notification should
be displayed. After that, the new ID is assigned to iLastCommentId for future use. The very last step in
the event handler is to set another timeout for checkComments(), to continue checking for more com-
ments.

The final step in the process is to initiate a call to checkComments() once the page has loaded. This will
retrieve the most recent comment ID in the database but won’t display a notification (because
iLastCommentId will be equal to –1 initially). When the next call is made to checkComments(), the ID
retrieved from the database can be checked against the one stored in iLastCommentId to determine if a
notification must be displayed. As usual, this functionality should be initiated only if the browser sup-
ports XHR:

window.onload = function () {
if (zXmlHttp.isSupported()) {

checkComments();
}

};

That’s all it takes to create this Periodic Refresh solution. You need only remember to include the neces-
sary JavaScript and CSS files in any page that you would like this functionality on.

Multi-Stage Download
One of the lasting problems on the Web has been the speed at which pages download. When everyone
was using 56 Kbps modems, web designers were much more aware of how much their pages “weighed”
(the size of the page in total bytes). With the popularity of residential broadband Internet solutions,

The files for this example are available for download at www.wrox.com. Along with
those files are other pages you can use to add and view comments for the purpose
of testing.

90

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 90

many sites have upgraded, including multimedia, more pictures, and more content. This approach,
while giving the user more information, also leads to slower download times as everything is loaded in
seemingly random order. Fortunately, there is an Ajax solution for this problem.

Multi-Stage Download is an Ajax pattern wherein only the most basic functionality is loaded into a page
initially. Upon completion, the page then begins to download other components that should appear on
the page. If the user should leave the page before all of the components are downloaded, it’s of no conse-
quence. If, however, the user stays on the page for an extended period of time (perhaps reading an arti-
cle), the extra functionality is loaded in the background and available when the user is ready. The major
advantage here is that you, as the developer, get to decide what is downloaded and at what point in time.

This is a fairly new Ajax pattern and has been popularized by Microsoft’s start.com. When you first visit
start.com, it is a very simple page with a search box in the middle. Behind the scenes, however, a series
of requests is being fired off to fill in more content on the page. Within a few seconds, the page jumps to
life as content from several different locations is pulled in and displayed.

Although nice, Multi-Stage Download does have a downside: the page must work in its simplest form
for browsers that don’t support Ajax technologies. This means that all the basic functionality must work
without any additional downloads. The typical way of dealing with this problem is to provide graceful
degradation, meaning that those browsers that support Ajax technologies will get the more extensive
interface while other browsers get a simple, bare-bones interface. This is especially important if you are
expecting search engines to crawl your site; since these bots don’t support JavaScript, they rely solely on
the HTML in the page to determine your site’s value.

Additional Information Links Example
When reading through an article online, frequently there are Additional Information links included for
further reading on the topic. The key question here is this: What is the main content? Clearly the article
text is the main content on the page, so it should be downloaded when the page is initially loaded. The
additional links aren’t as important, so they can be loaded later. This example walks you through the
creation of such a solution.

First, you’ll need to lay out a page to hold the article. For this example, it’s a very simple layout:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Article Example</title>
<script type=”text/javascript” src=”zxml.js”></script>
<script type=”text/javascript” src=”Article.js”></script>
<link rel=”stylesheet” type=”text/css” href=”Article.css” />

</head>
<body>

<h1>Article Title</h1>
<div id=”divAdditionalLinks”></div>
<div id=”divPage1”>

<!-- article content here -->
</div>

</body>
</html>

91

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 91

The important part of the HTML is the <div/> with the ID of divAdditionalLinks. This is the con-
tainer for the additional links that will be downloaded for the article. By default, it is styled to be right
aligned and invisible:

#divAdditionalLinks {
float: right;
padding: 10px;
border: 1px solid navy;
background-color: #cccccc;
display: none;

}

It’s very important that the CSS display property be set to none so that the empty <div/> element
doesn’t take up any space in the page layout. Without this, you would see a small empty box to the right
of the article.

Unlike the previous examples, the content to download is just plain text contained in a text file contain-
ing links and a header. This file, AdditionalLinks.txt, contains some simple HTML code:

<h4>Additional Information</h4>

Wrox
NCZOnline
XWeb

This file could just as well be created dynamically using server-side logic, but for the purposes of this
example, static content works just as well.

The JavaScript that makes this work is very simple and quite similar to all the previous examples in this
chapter:

function downloadLinks() {
var oXHR = zXmlHttp.createRequest();

oXHR.open(“get”, “AdditionalLinks.txt”, true);
oXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {

var divAdditionalLinks =
document.getElementById(“divAdditionalLinks”);

divAdditionalLinks.innerHTML = oXHR.responseText;
divAdditionalLinks.style.display = “block”;

}
}

}
oXHR.send(null);

}

window.onload = function () {
if (zXHR.isSupported()) {

downloadLinks();
}

};

92

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 92

The function that does the work is downloadLinks(), which is called only if the browser supports XHR
and only once the page is completely loaded. The code inside of downloadLinks() is the standard XHR
algorithm that you’ve used before. After the content from AdditionalLinks.txt has been retrieved, it
is set into the placeholder <div/> using the innerHTML property. The last step in the process is to set the
<div/> element’s display property to block so that it can be seen. The end result is displayed in
Figure 3-5.

Figure 3-5

If XHR isn’t supported in the browser, the block containing the additional links will never appear and so
the first paragraph will stretch all the way across the top.

This technique can be done numerous times for any number of sections of a page; you certainly aren’t
restricted to having only one section that is loaded after the initial page is complete. You can create new
XHR objects for each request and then send them off one after the other, or you can do it sequentially,
waiting until a response has been received before sending off the next request. The choice is completely
up to you and your desired functionality.

Fallback Patterns
The previous section dealt with when to send or receive data from the server, which presupposes that
everything goes according to plan on the server side: the request is received, the necessary changes are
made, and the appropriate response is sent to the client. But what happens if there’s an error on the
server? Or worse yet, what if the request never makes it to the server? When developing Ajax applica-
tions, it is imperative that you plan ahead for these problems and describe how your application should
work if one of these should occur.

93

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 93

Cancel Pending Requests
If an error occurs on the server, meaning that a status of something other than 200 or 304 is returned,
you need to decide what to do. Chances are that if a file is not found (404) or an internal server error
occurred (302), trying again in a few minutes isn’t going to help, since both of these require an adminis-
trator to fix the problem. The simplest way to deal with this situation is to simply cancel all pending
requests. You can set a flag somewhere in your code that says, “don’t send any more requests.” This
clearly has the highest impact on solutions using the Periodic Refresh pattern.

The comment notification example can be modified to take this into account. This is a case where the
Ajax solution provides additional value to the user but is not the primary focus of the page. If a request
fails, there is no reason to alert the user; you can simply cancel any future requests to prevent any fur-
ther errors from occurring. To do so, you must add a global variable that indicates whether requests are
enabled:

var oXHR = null;
var iInterval = 1000;
var iLastCommentId = -1;
var divNotification = null;
var blnRequestsEnabled = true;

Now, the blnRequestsEnabled variable must be checked before any request is made. This can be
accomplished by wrapping the body of the checkComments() function inside of an if statement:

function checkComments() {

if (blnRequestsEnabled) {
if (!oXHR) {

oXHR = zXmlHttp.createRequest();
} else if (oXHR.readyState != 0) {

oXHR.abort();
}

oXHR.open(“get”, “CheckComments.php”, true);
oXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {

var aData = oXHR.responseText.split(“||”);
if (aData[0] != iLastCommentId) {

iLastCommentId = aData[0];
if (iLastCommentId != -1) {

showNotification(aData[1], aData[2]);
}

}
setTimeout(checkComments, iInterval);

}
}

};

oXHR.send(null);
}

}

94

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 94

But that isn’t all that must be done; you must also detect the two different types of errors that may occur:
server errors that give status codes and a failure to reach the server (either the server is down or the
Internet connection has been lost).

To begin, wrap everything inside of the initial if statement inside a try...catch block. Different
browsers react at different times when a server can’t be reached, but they all throw errors. Wrapping
the entire request block in a try...catch ensures that you catch any error that is thrown, at which
point you can set blnRequestsEnabled to false. Next, for server errors, you can also set
blnRequestsEnabled to false whenever the status is not equal to 200 or 304. This will have
the same effect as if the server couldn’t be reached:

function checkComments() {

if (blnRequestsEnabled) {
try {

if (!oXHR) {
oXHR = zXmlHttp.createRequest();

} else if (oXHR.readyState != 0) {
oXHR.abort();

}

oXHR.open(“get”, “CheckComments.php”, true);
oXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {

var aData = oXHR.responseText.split(“||”);
if (aData[0] != iLastCommentId) {

if (iLastCommentId != -1) {
showNotification(aData[1], aData[2]);

}

iLastCommentId = aData[0];
}

setTimeout(checkComments, iInterval);
} else {

blnRequestsEnabled = false;
}

}
};

oXHR.send(null);
} catch (oException) {

blnRequestsEnabled = false;
}

}
}

Now, when either of the two error types occurs, an error will be thrown (either by the browser or by
you), and the blnRequestsEnabled variable will be set to false, effectively canceling any further
requests if checkComments() is called again.

95

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 95

Try Again
Another option when dealing with errors is to silently keep trying for either a specified amount of time
or a particular number of tries. Once again, unless the Ajax functionality is key to the user’s experience,
there is no need to notify him or her about the failure. It is best to handle the problem behind the scenes
until it can be resolved.

To illustrate the Try Again pattern, consider the Multi-Stage Download example. In that example, extra
links were downloaded and displayed alongside the article. If an error occurred during the request, an
error message would pop up in most browsers. The user would have no idea what the error was or what
caused it, so why bother displaying a message at all? Instead, it would make much more sense to con-
tinue trying to download the information a few times before giving up.

To track the number of failed attempts, a global variable is necessary:

var iFailed = 0;

The iFailed variable starts at 0 and is incremented every time a request fails. So, if iFailed is ever
greater than a specific number, you can just cancel the request because it is clearly not going to work. If,
for example, you want to try 10 times before canceling all pending requests, you can do the following:

function downloadLinks() {
var oXHR = zXmlHttp.createRequest();

if (iFailed < 10) {
try {

oXHR.open(“get”, “AdditionalLinks.txt”, true);
oXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {

var divAdditionalLinks =
document.getElementById(“divAdditionalLinks”);

divAdditionalLinks.innerHTML = oXHR.responseText;
divAdditionalLinks.style.display = “block”;

} else {
iFailed++;
downloadLinks();

}
}

}

oXHR.send(null);

You may also have noticed that a timeout for another request is created only if the
status is 200 or 304, which prevents another request from occurring for any other
status. That works fine for server errors, but it doesn’t do anything for communica-
tion errors. It’s always better to have more than one way to handle errors when
they occur.

96

Chapter 3

06_109496 ch03.qxd 2/5/07 6:48 PM Page 96

} catch (oException) {
iFailed++;
downloadLinks();

}
}

}

This code is constructed similarly to the previous example. The try...catch block is used to catch any
errors that may occur during the communication, and a custom error is thrown when the status isn’t
200 or 304. The main difference is that when an error is caught, the iFailed variable is incremented
and downloadLinks() is called again. As long as iFailed is less than 10 (meaning it’s failed less than
10 times), another request will be fired off to attempt the download.

In general, the Try Again pattern should be used only when the request is intended to occur only once,
as in a Multi-Stage Download. If you try to use this pattern with interval-driven requests, such as
Periodic Refresh, you could end up with an ever-increasing number of open requests taking up memory.

Summary
In this chapter, you learned about various design patterns for Ajax solutions. You first learned how to
use Predictive Fetch to improve the user experience through preloading information that is likely to be
used in the future. You created an example using Predictive Fetch to preload pages in an article after a
few seconds, when it is likely that the user intends to read the entire article.

Next, you learned about Submission Throttling, which is a way of incrementally sending data to the
server instead of doing it all at once. You learned how to use this pattern for data validation in a form.
It’s sibling pattern, Periodic Refresh, was also discussed, which periodically receives information from
the server. You built an example using Periodic Refresh that displays a notification when a new com-
ment has been posted to a blog or message board.

This chapter also introduced you to the Multi-Stage Download pattern, which is a way of continuing to
download extra information after the page has loaded. You learned that this would lead to faster initial
download time for pages and that you can control the frequency and sequence of requests in any way
you see fit.

The last section discussed fallback patterns that are used to handle errors in client-server communica-
tion. You learned that there are two types of errors you may encounter: server errors (such as 404 not
found) or communication errors (where the server cannot be contacted). Two patterns, Cancel Pending
Requests and Try Again, were discussed as ways of dealing with these errors.

97

Ajax Patterns

06_109496 ch03.qxd 2/5/07 6:48 PM Page 97

06_109496 ch03.qxd 2/5/07 6:48 PM Page 98

Ajax Libraries

With the popularity of Ajax applications exploding in 2005, developers and companies began look-
ing for ways to streamline the process. As with many common programming practices, Ajax
involves a lot of repetitive procedures that can be identified and simplified for common use. It
wasn’t long before JavaScript developers started introducing libraries to ease the redundant and
sometimes quirky behavior of Ajax communication techniques. These libraries sought to break
outside of the hidden frame and XHR modalities of communication and introduce their own
methods (which typically are just wrappers for already accepted forms of Ajax communication).
All of the libraries discussed in this chapter use interfaces that resemble but do not mimic the tech-
niques discussed in Chapter 2. Remember, the goals of such libraries are to free the developer from
worrying about cross-browser Ajax issues by hiding the details.

The Yahoo! Connection Manager
In late 2005, Yahoo! introduced its Yahoo! User Interface (YUI) library to the open source commu-
nity. Available under a BSD-style license at http://developer.yahoo.com/yui, the YUI com-
prises several JavaScript libraries used within the company to aid in the rapid development of web
applications such as Yahoo! Mail and Yahoo! Photos. One of these libraries is the Yahoo!
Connection Manager.

With Ajax making heavy use of XHR, many developers are looking for ways to equalize the differ-
ences between browser implementations. The Yahoo! Connection Manager does this by handling
all of the processing behind the scenes, exposing a simple API that frees developers from cross-
browser concerns.

Setup
Before beginning, download the YUI library at http://sourceforge.net/projects/yui. A
single ZIP file contains all of the JavaScript files necessary to use the Connection Manager. For
basic Connection Manager usage, you need two required JavaScript files: YAHOO.js, which sets up

07_109496 ch04.qxd 2/5/07 6:49 PM Page 99

the YAHOO namespace (this file is used by all Yahoo! JavaScript components), and connection.js,
which contains the Connection Manager code. The files must be included in this order:

<script type=”text/javascript” src=”/js/YAHOO.js”></script>
<script type=”text/javascript” src=”/js/connection.js”></script>

With these files included in your page, you are now ready to begin using the Connection Manager.

Basic Requests
The Yahoo! Connection Manager uses a different interface for sending XHR requests than the default one
provided by modern browsers. Instead of creating objects, the Connection Manager exposes several
static methods to handle requests. The method you’ll use most often is asyncRequest(), which has the
following signature:

transaction=YAHOO.util.Connect.asyncRequest(request_type, url, callback, postdata);

The first argument is the type of HTTP request to make: “GET” or “POST” (these are case-sensitive). The
second argument is simply the URL of the request. The third argument is a callback object containing
methods to handle the response from the request. The final argument of asyncRequest() is the data to
post to the server. For POST requests, this value is a string of URL-encoded values to be sent; for GET
requests, this value can either be omitted or set to null.

When the call is completed, asyncRequest() returns a transaction object that can be used to monitor
and interact with the currently executing request.

The Callback Object
The most important Connection Manager concept to understand is the role of the callback object. As
opposed to having a simple event handler assignment, the callback object allows you to specify a num-
ber of options. In its simplest form, the callback object provides two methods: a success() method that
is called when a valid response has been received and a failure() method that is called when an
invalid response is received. For example:

var oCallback = {
success: function (oResponse) {

//handle a successful response
},
failure: function (oResponse) {

//handle an unsuccessful request
}

};

Each of the two methods is passed an object (oResponse) containing response information from the
server and/or the Connection Manager itself. The response object has the following properties:

❑ argument: A developer-defined value to be returned with the response

❑ responseText: The text response from the server

100

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 100

❑ responseXML: An XML DOM containing XML from the server (if the content type is
“text/xml”)

❑ status: The HTTP status code returned from the server or an error code provided by the
Connection Manager

❑ statusText: The HTTP status description or an error message provided by the Connection
Manager

❑ tId: The transaction ID uniquely assigned to this request by the Connection Manager

Additionally, the response object has two methods:

❑ getAllResponseHeaders(): Returns a string containing all header information

❑ getResponseHeader(name): Returns the value of the named HTTP header

Some of these properties and methods are direct carryovers from the XHR object.

The Connection Manager’s goal is to free developers from worrying about small details, and part of that
is in determining when a response was successfully received and when it was not. If the status of the
response is between 200 and 300, the success() method is called; otherwise, the failure() method is
called. Unlike using XHR directly, the developer needn’t be bothered by checking the status property
to take an appropriate action. Here’s a simple example:

var oCallback = {
success: function (oResponse) {

alert(“Response received successfully.”);
},

failure: function (oResponse) {
alert(“The request failed.”);

}
};

YAHOO.util.Connect.asyncRequest(“GET”, “test.php”, oCallback);

This example sends a GET request to test.php, passing in the callback object. When the response is
received, either success() or failure() is called. A POST request can be sent in a similar fashion, just
by changing the first argument of the asyncRequest() method and appending the post data:

var oCallback = {
success: function (oResponse) {

alert(“Response received successfully.”);
},

failure: function (oResponse) {
alert(“The request failed.”);

}
};

var sPostData = “title=Professional%20Ajax&authors=Zakas%20McPeak%20Fawcett”;
YAHOO.util.Connect.asyncRequest(“POST”, “test.php”, oCallback, sPostData);

101

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 101

Here, the post data is added as a fourth argument. Note that the post data must be URL encoded before
being passed to the method. Connection Manager handles setting the appropriate content type for the
request, which by default is the HTTP form submission content type of “application/x-www-form-
urlencoded”. It’s possible to turn this header off for submission of non-form data by calling
setDefaultPostHeader(false):

var sPostData = “raw text data”;
YAHOO.util.Connect.setDefaultPostHeader(false);
YAHOO.util.Connect.asyncRequest(“POST”, “test.php”, oCallback, sPostData);

The callback object isn’t limited to just two methods; a few additional properties are provided for ease
of use.

The argument Property
Suppose that there’s some additional information necessary to process either a successful or an unsuc-
cessful HTTP request. Using the techniques described in Chapter 2 would require some additional
thought and planning. The Connection Manager makes this easy by using the argument property on the
callback object. This property can be set to any value or object, and that same value or object is passed
into both the success() and failure() methods as a property on the response object. For example:

var oCallback = {
success: function (oResponse) {

//retrieve the argument
var sArg = oResponse.argument;

alert(“Request was successful: “ + sArg);

},
failure: function (oResponse) {

//retrieve the argument
var sArg = oResponse.argument;

alert(“Request failed: “ + sArg);

},

argument: “string of info”
};

In this code, the argument property is specified as a string on the callback object. The success() and
failure() methods access the argument property on the response object and use it as part of a mes-
sage displayed to the user.

The scope Property
You may have a case when you want the success() and failure() methods to call methods on
another object. To facilitate this case, the callback object offers the scope property.

Note that the argument property is client side only, so the server never sees the value.

102

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 102

Suppose you have an object that is responsible for executing server requests.

Further suppose you have an object oAjaxObject that has the methods handleSuccess() and
handleFailure() that should be called for success() and failure(), respectively:

var oAjaxObject = {
name : “Test Object”,

handleSuccess : function (oResponse) {
alert(this.name + “ Response received successfully.”);

},

handleFailure : function (oResponse) {
alert(this.name + “ An error occurred.”);

}
};

One might think of creating a callback object such as this:

var oCallback = {
success: oAjaxObject.handleSuccess,
failure: oAjaxObject.handleFailure

};

This code would work if the methods didn’t both reference the this object. Since this always refers to
the scope of the function being called, it would evaluate to oCallback if this callback object were used.
In order to execute the function in the proper scope, as a method of oAjaxObject, add the scope prop-
erty to the callback object:

var oCallback = {
success: oAjaxObject.handleSuccess,
failure: oAjaxObject.handleFailure,
scope: oAjaxObject

};

The scope property says, “run the success() and failure() functions as methods of this object.”
Since good object-oriented design requires all functions to be methods of an object, this ends up being a
very common case.

The timeout Property
There is one last optional property for a callback object: timeout. The timeout property specifies how
long, in milliseconds, it should take for the response to be received. If the response is not received within
that time period, the request is cancelled and the failure() method is called. Only if the response is
received within the specified time period will the success() method be called. For instance, if a request
must return within 5 seconds to be considered successful, the following callback object may be used:

var oCallback = {
success: oAjaxObject.handleSuccess,
failure: oAjaxObject.handleFailure,
scope: oAjaxObject,
timeout: 5000

};

103

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 103

If the failure() method is called due to a timeout, the status property of the response object is set to
–1 and the statusText property is set to “transaction aborted.”

Monitoring and Managing Requests
One of the limitations of XHR is the lack of a built-in method to monitor and manage multiple requests.
The Yahoo! Connection Manager has implemented features that allow the monitoring of multiple
requests as well as the ability to abort a request that has not yet completed.

As mentioned previously, the asyncRequest() method returns an object representing the request trans-
action. This object can be used to determine if the request is still pending by passing it to the
isCallInProgress() method, like this:

var oTransaction = YAHOO.util.Connect.asyncRequest(“GET”, “info.htm”, oCallback);
alert(YAHOO.util.Connect.isCallInProgress(oTransaction)); //outputs “true”

The isCallInProgress() method returns true if the transaction hasn’t completed yet or false
otherwise.

You might have a case when a request was initiated but should not be allowed to complete. In this case,
the Connection Manager provides an abort() method. The abort() method expects the transaction
object to be passed in:

var oTransaction = YAHOO.util.Connect.asyncRequest(“GET”, “info.htm”, oCallback);
if(YAHOO.util.Connect.isCallInProgress(oTransaction)) {

YAHOO.util.Connect.abort(oTransaction);
}

Calling abort() stops the current request and frees the resources associated with it. Of course, it only
makes sense to abort requests that haven’t received a response yet, so it’s good practice to call
isCallInProgress() prior to calling abort().

Form Interaction
It is becoming more and more common to submit form values through an Ajax request instead of using the
traditional form posting technique. The Yahoo! Connection Manager makes this easy by allowing you to
set a form whose data should be sent through the request. For instance, suppose that you have a form with
the ID of “frmInfo”. A POST request to submit the data contained in the form can be created like this:

var oForm = document.getElementById(“frmInfo”);
YAHOO.util.Connect.setForm(oForm);
YAHOO.util.Connect.asyncRequest(“POST”, “datahandler.php”, oCallback);

Though this property is helpful, you can create a race condition using it. Since the
Connection Manager uses a timeout to periodically check the condition of requests,
a response may have been received but not registered before the timeout expires. For
this reason, make sure that the timeout specified is large enough to allow ample
time for a response to be received and recognized.

104

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 104

Using the setForm() method, the Connection Manager creates a string of data to be sent in the next
request. Because of this, there is no need to specify the fourth argument for the asyncRequest()
method, since all the data is already retrieved from the form.

File Uploads
Unlike XHR, the Connection Manager allows file uploads through forms. Before using this feature, be
sure to include the Yahoo! Event utility:

<script type=”text/javascript” src=”/js/YAHOO.js”></script>
<script type=”text/javascript” src=”/js/event.js”></script>
<script type=”text/javascript” src=”/js/connection.js”></script>

Next, set the second argument of setForm() to true to indicate that a file upload needs to occur:

var oForm = document.getElementById(“frmInfo”);
YAHOO.util.Connect.setForm(oForm, true);
YAHOO.util.Connect.asyncRequest(“POST”, “datahandler.php”, oCallback);

When supplying this argument, the Connection Manager switches to using an iframe to send the
request. This means that the URL receiving the POST (datahandler.php in the previous example) must
output HTML code. Since the transaction takes place in an iframe, status codes aren’t available for file
upload operations, and thus, success() and failure() can’t be used to monitor the status of the
request. Instead, define an upload() method on the callback object:

var oCallback = {
upload: function (oResponse) {

alert(oResponse.responseText);
}

};

A response object is passed into upload(), just as it is for success() and failure(). The
responseText property of the response object is then filled with the text contained within the resulting
page’s <body/> element (the status and statusText properties are not available when uploading a
file). If the text returned in the iframe is valid XML code, the responseXML property of the response
object is filled with an XML document. It is, however, up to you to determine from responseText or
responseXML whether the upload was successful or not.

As with success() and failure(), you can also use the scope and argument prop-
erties to provide additional information for the upload() method.

It’s important to note that the data string to post is constructed when you call
setForm(), not when asyncRequest() is called. The data being sent is the data at
the time when setForm() was called, so this method should be called only right
before a call to asyncRequest() to ensure that the data is the most recent available.

105

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 105

As a final note, if you are uploading a file over SSL, set the third argument of setForm() to true:

var oForm = document.getElementById(“frmInfo”);
YAHOO.util.Connect.setForm(oForm, true, true);
YAHOO.util.Connect.asyncRequest(“post”, “datahandler.php”, oCallback);

This is necessary due to an issue in Internet Explorer when unloading the iframe used for the transac-
tion, but is good to use regardless of the browsers you intend to support.

GET Example
By revisiting the XHR GET example from Chapter 2, you can see how the Yahoo! Connection Manager
simplifies the JavaScript code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Connection Manager GET Example</title>
<script type=”text/javascript”src=”yahoo.js”></script>
<script type=”text/javascript”src=”connection.js”></script>
<script type=”text/javascript”>

//<![CDATA[
function requestCustomerInfo() {

var sId = document.getElementById(“txtCustomerId”).value;
var oCallback = {

success: function (oResponse) {
displayCustomerInfo(oResponse.responseText);

},
failure: function (oResponse) {

displayCustomerInfo(“An error occurred: “ +
oResponse.statusText);

}
};
YAHOO.util.Connect.asyncRequest(“GET”,

“GetCustomerData.php?id=” + sId, oCallback);
}

function displayCustomerInfo(sText) {
var divCustomerInfo = document.getElementById(“divCustomerInfo”);
divCustomerInfo.innerHTML = sText;

}
//]]>

</script>
</head>
<body>

<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type=”text” id=”txtCustomerId” value=”” /></p>
<p><input type=”button” value=”Get Customer Info”

onclick=”requestCustomerInfo()” /></p>
<div id=”divCustomerInfo”></div>

</body>
</html>

106

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 106

Using the same displayCustomerInfo() function and updating the requestCustomerInfo() func-
tion, the example works perfectly. The major difference is that the code doesn’t have to check for a fail-
ure case; the Connection Manager handles that. Since the response object returns the same information
as an XHR object, the success and error messages are handled using the responseText and
statusText properties, respectively, mimicking the original example.

POST Example
When you are using the Connection Manager for POSTing information back to the server, the simplifica-
tion of the JavaScript code is even more dramatic. Consider the second XHR example from Chapter 2,
which involves adding a customer record to a database. In that example, code had to be written to
encode the form’s values, which included a large function designed specifically for that task. Since the
Connection Manager handles that for you, the code becomes very simple:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Connection Manager POST Example</title>
<script type=”text/javascript”src=”yahoo.js”></script>
<script type=”text/javascript”src=”connection.js”></script>
<script type=”text/javascript”>
//<![CDATA[

function sendRequest() {
var oForm = document.forms[0];

var oCallback = {
success: function (oResponse) {

saveResult(oResponse.responseText);
},

failure: function (oResponse) {
saveResult(“An error occurred: “ + oResponse.statusText);

}
};

YAHOO.util.Connect.setForm(oForm);
YAHOO.util.Connect.asyncRequest(“POST”, oForm.action, oCallback);

}

function saveResult(sMessage) {
var divStatus = document.getElementById(“divStatus”);
divStatus.innerHTML = “Request completed: “ + sMessage;

}
//]]>
</script>

</head>
<body>

<form method=”post” action=”SaveCustomer.php”
onsubmit=”sendRequest(); return false”>

<p>Enter customer information to be saved:</p>
<p>Customer Name: <input type=”text” name=”txtName” value=”” />

107

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 107

Address: <input type=”text” name=”txtAddress” value=”” />

City: <input type=”text” name=”txtCity” value=”” />

State: <input type=”text” name=”txtState” value=”” />

Zip Code: <input type=”text” name=”txtZipCode” value=”” />

Phone: <input type=”text” name=”txtPhone” value=”” />

E-mail: <input type=”text” name=”txtEmail” value=”” /></p>
<p><input type=”submit” value=”Save Customer Info” /></p>
</form>
<div id=”divStatus”></div>

</body>
</html>

What previously took more than 90 lines of JavaScript code using XHR now takes only 19 lines of code.
Most of the savings comes with the use of setForm() to encode the form values. When completed, this
example behaves exactly the same as its XHR counterpart.

Additional Features
As mentioned previously, the Connection Manager uses a polling mechanism to check the status of
request transactions it initiates. If you find that the default polling interval isn’t good enough for your
needs, the setPollingInterval() method can be called to reset the interval as desired:

YAHOO.util.Connect.setPollingInterval(250);

This method should be called before any requests have been sent, since this new setting takes effect on
all requests, both those that are in process and all those that have yet to be initiated.

Another method, initHeader(), allows specification of request headers:

YAHOO.util.Connect.initHeader(“MyName”, “Nicholas”);
YAHOO.util.Connect.asyncRequest(“get”, “info.php”, oCallback);

In this example, an extra header with a name of “MyName” and a value of “Nicholas” is sent to the
server. Note that this header is good for only one request; all headers reset to default values after each
call to asyncRequest().

Limitations
While the Yahoo! Connection Manager does make some requests easier, it does have its limitations.

❑ Currently, only asynchronous requests are supported, so you’ll be stuck using old school XHR
if you need to make a synchronous request. Though many argue that synchronous requests
should never be used, sometimes there are practical reasons for using them.

❑ It is also worth noting that as of this writing the current version of the Connection Manager
is 0.12.0 , so undoubtedly there will be some additions and changes in the future. However,
for the time being, it remains one of the most compact libraries for cross-browser Ajax
communication.

108

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 108

Prototype
One JavaScript library that has gained considerable popularity with the emergence of Ajax is Prototype,
available at http://prototype.conio.net. Prototype is not simply an Ajax library; it is actually a
complete JavaScript framework designed to ease the development of all types of JavaScript solutions.

It is beyond the scope of this book to fully explore all of Prototype’s features, so the focus here is on its
Ajax capabilities.

The Ajax.Request Object
Most of Prototype’s low-level Ajax features are contained on the aptly named Ajax object. The Ajax
object has several properties containing methods and constructors for useful objects. The simplest object,
and the most similar to XHR, is the Ajax.Request object, which has the following constructor:

request = new Ajax.Request(url, options);

The first argument is the URL to send the request to. The second argument is an object containing any
number of options for the request. As soon as the creation of the Ajax.Request object is complete, the
request is sent (think of it as combining XHR’s open() and send() methods in one call). For this reason,
the options object is very important.

The Options Object
The options object, as used in the Ajax.Request() constructor, contains all of the information about the
request except for the URL. In its simplest form, the options object contains the following properties:

❑ method: Either “get” or “post.”

❑ parameters: The data to be sent to the URL. Typically, a URL-encoded string of name-value
pairs, but can also be other data formats when method is “post.”

❑ onSuccess: Function to call when the response has been successfully received. Similar to the
success() method in the Yahoo! Connection Manager, it fires when the status of a response
is between 200 and 300.

❑ onFailure: Function to call when the response has failed. Similar to the failure() method in the
Yahoo! Connection Manager, it fires when the status of a response is not between 200 and 300.

Also like the Connection Manager callback object, the Ajax.Request options object is defined with a
simple object literal, such as:

var oOptions = {
method: “get”,
parameters: “first%20name=Nicholas&last%20name=Zakas”,
onSuccess: function (oXHR, oJson) {

//your code here
},
onFailure: function (oXHR, oJson) {

//your code here
}

}

109

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 109

The onSuccess() and onFailure() methods are functions that are passed two arguments: the XHR
object used to make the request and an optional JSON object with additional information about the
request (JSON is discussed in Chapter 8). The second argument is used mostly in conjunction with a fea-
ture in Ruby on Rails (www.rubyonrails.org), so it won’t be discussed here.

When using Ajax.Request, the URL should be specified without a query string and the parameters
property should be used:

var oOptions = {
method: “get”,
parameters: “name=Nicholas”,
onSuccess: function (oXHR, oJson) {

alert(“Response received successfully.”);
},
onFailure: function (oXHR, oJson) {

alert(“Request was unsuccessful.”);
}

};
var oRequest = new Ajax.Request(“test.php”, oOptions);

The combining of the URL and the parameters property is handled by Prototype behind the scenes.
This same methodology can be used for POST requests by just changing the method property:

var oOptions = {
method: “post”,
parameters: “name=Nicholas”,
onSuccess: function (oXHR, oJson) {

alert(“Response received successfully.”);
},
onFailure: function (oXHR, oJson) {

alert(“Request was unsuccessful.”);
}

};
var oRequest = new Ajax.Request(“test.php”, oOptions);

In this way, Prototype simplifies Ajax requests so that the switch between a GET and a POST request is
simply a one-step change. Prototype also handles setting the default POST content type on the XHR
request, further simplifying things for the developer.

The requestHeaders Property
To add headers to the outgoing request, specify the requestHeaders property in the options object.
This must be an array with an even number of items so that the first item is the name of a header, the
second item is the value of that header, and so on. For example:

There is an important distinction between GET requests made using Ajax.Request
and GET requests made with traditional XHR or with the Yahoo! Connection
Manager: the Ajax.Request object automatically adds the parameters property
value to the end of the URL specified in the constructor.

110

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 110

var oOptions = {
method: “get”,
parameters: “name=Nicholas”,
requestHeaders: [“header1”, “header1 value”, “header2”, “header2 value”],
onSuccess: function (oXHR, oJson) {

alert(“Response received successfully.”);
},
onFailure: function (oXHR, oJson) {

alert(“Request was unsuccessful.”);
}

};

This code adds two headers to the request: “header1”, which has a value of “header1 value”, and
“header2”, which has a value of “header2 value”. This is the same as calling setRequestHeader()
on an XHR object for each header.

The asynchronous Property
By default, all requests initiated using Ajax.Request are sent asynchronously, meaning that the
JavaScript doesn’t wait for a response. If, for some reason, you need to send a request synchronously,
which locks the JavaScript code execution and the user interface, it can be accomplished by setting the
asynchronous property to false:

var oOptions = {
method: “get”,
parameters: “name=Nicholas”,
asynchronous: false

};

In this case, there is no need for onSuccess() or onFailure(), because the next line of code after the
request is sent can handle all conditions. After the call has been completed, the XHR object can be
accessed directly via Ajax.Request.transport.

Remember, synchronous requests should be used sparingly and only for small amounts of data, since
they lock the user interface while the request is being processed.

Other Events
The Ajax.Request object supports several custom events outside of the success/failure realm. Each of
these events can be handled with developer-defined functions through the options object. The complete
list of event handlers is as follows:

❑ onException(): Called when an error occurred in the JavaScript code while trying to execute
the request or during a callback function call.

❑ onLoaded(): Called when the response has been received but not evaluated. The same as XHR
ready state 2. Not recommended for use due to cross-browser differences.

❑ onLoading(): Called repeatedly while a request is waiting for or receiving a response.

❑ onInteractive(): Called when the response has been received and parsed; some information
is available. The same as XHR ready state 3. Not recommended for use due to cross-browser
differences.

111

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 111

❑ onComplete(): Called when the response has been completely received and parsed. The same
as XHR ready state 4.

Each of these event handlers are passed the same two arguments as onSuccess() and onFailure():
the XHR object used to make the request and an optional second object containing response information.

In general, onException() is probably the most useful of these event handlers, since onSuccess() and
onFailure() handle most of the important cases.

GET Example
Revisiting the first XHR example from Chapter 2 again, you can see that the code for the Prototype ver-
sion is fairly straightforward and similar, in many respects, to the Yahoo! Connection Manager version:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Prototype GET Example</title>
<script type=”text/javascript”src=”prototype.js”></script>
<script type=”text/javascript”>

//<![CDATA[
function requestCustomerInfo() {

var sId = document.getElementById(“txtCustomerId”).value;
var oOptions = {

method: “get”,
parameters: “id=” + sId,
onSuccess: function (oXHR, oJson) {

displayCustomerInfo(oXHR.responseText);
},
onFailure: function (oXHR, oJson) {

displayCustomerInfo(“An error occurred: “ +
oXHR.statusText);

}
};
var oRequest = new Ajax.Request(“GetCustomerData.php”, oOptions);

}

function displayCustomerInfo(sText) {
var divCustomerInfo = document.getElementById(“divCustomerInfo”);
divCustomerInfo.innerHTML = sText;

}
//]]>

</script>
</head>
<body>

<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type=”text” id=”txtCustomerId” value=”” /></p>
<p><input type=”button” value=”Get Customer Info”

onclick=”requestCustomerInfo()” /></p>
<div id=”divCustomerInfo”></div>

</body>
</html>

112

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 112

The important thing to note here is that the query string is not appended directly to the URL, as in the
previous examples.

POST Example
The XHR POST example can also be changed to use Prototype. Unfortunately, since Prototype doesn’t
include a method to encode the data in a form, you’ll still need all the code that was in the original
example. The only thing that changes is the sendRequest() function:

function sendRequest() {
var oForm = document.forms[0];
var sBody = getRequestBody(oForm);

var oOptions = {
method: “post”,
parameters: sBody,
onSuccess: function (oXHR, oJson) {

saveResult(oXHR.responseText);
},
onFailure: function (oXHR, oJson) {

saveResult(“An error occurred: “ + oXHR.statusText);
}

};

var oRequest = new Ajax.Request(“SaveCustomer.php”, oOptions);
}

Note that the data to POST is still passed in using the parameters property of the options object.

The Ajax.Updater Object
Each of the two XHR examples had something in common: they outputted a status message to an ele-
ment on the page once the response had been received. This is actually a fairly common use case of Ajax
calls, and Prototype has made it easy to handle this automatically using the Ajax.Updater object.

The Ajax.Updater object is created using a constructor similar to that of Ajax.Request:

request = new Ajax.Updater(element_id, url, options);

Behind the scenes, Ajax.Updater uses Ajax.Request to initiate a request, so it should come as no sur-
prise that the arguments to the constructor include the ones needed for Ajax.Request. The only differ-
ence is the insertion of an additional argument at the beginning of the list: an HTML element’s ID. When
a response is received, Ajax.Updater takes the responseText from the XHR object and puts it into the
HTML element with the given ID using the innerHTML property.

When you are using Ajax.Updater, it’s not necessary to assign the onSuccess() or onFailure(),
methods because the responseText is output to the HTML element either way. For example, consider
how the GET example can change using Ajax.Updater:

113

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 113

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Prototype Updater Example</title>
<script type=”text/javascript”src=”prototype.js”></script>
<script type=”text/javascript”>

//<![CDATA[
function requestCustomerInfo() {

var sId = document.getElementById(“txtCustomerId”).value;
var oOptions = {

method: “get”,
parameters: “id=” + sId

};
var oRequest = new Ajax.Updater(“divCustomerInfo”,

“GetCustomerData.php”, oOptions);
}

//]]>
</script>

</head>
<body>

<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type=”text” id=”txtCustomerId” value=”” /></p>
<p><input type=”button” value=”Get Customer Info”

onclick=”requestCustomerInfo()” /></p>
<div id=”divCustomerInfo”></div>

</body>
</html>

In this code, the displayCustomerInfo() function has been completely removed since its only pur-
pose was to display text in divCustomerInfo. Note that the ID is passed in as the first argument of the
Ajax.Updater() constructor as well. That’s all that is necessary to maintain the functionality of the
example.

Of course, there is the possibility that a 404 or other error status may occur, and it may bring with it
some ugly HTML. To handle this case, there is an alternate constructor for Ajax.Updater where the
first argument is an object that can direct the output to one HTML element for a successful response and
another for a failure, such as:

var oRequest = new Ajax.Updater({
success: “success_element_id”,
failure: “failure_element_id”

}, url, options);

Realistically, however, you probably want the output to be displayed only when the request was success-
ful. In that case, just assign the success element ID and add an onFailure() method to the options
object, such as:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

114

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 114

<title>Prototype Updater Failure Example</title>
<script type=”text/javascript”src=”prototype.js”></script>
<script type=”text/javascript”>

//<![CDATA[
function requestCustomerInfo() {

var sId = document.getElementById(“txtCustomerId”).value;
var oOptions = {

method: “get”,
parameters: “id=” + sId,
onFailure: function (oXHR, oJson) {

alert(“An error occurred: “ + oXHR.status);
}

};
var oRequest = new Ajax.Updater({

success: “divCustomerInfo”
}, “GetCustomerData.php”, oOptions);

}
//]]>

</script>
</head>
<body>

<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type=”text” id=”txtCustomerId” value=”” /></p>
<p><input type=”button” value=”Get Customer Info”

onclick=”requestCustomerInfo()” /></p>
<div id=”divCustomerInfo”></div>

</body>
</html>

In this revision of the previous example, data is displayed on the page only if the request was successful
because only the success property is provided in the first argument. If a request fails, then an alert is
displayed using the onFailure() method of the options object.

The Ajax.Responders Object
Suppose that you want the same action to take place each time an Ajax request takes place. Why would
you want to do this? Think in terms of a generic loading message that should be displayed every time
there is a request in progress (to ensure the user interface is consistent). Using other libraries or XHR
directly, you’d be forced to manually call a specific function each time. Prototype makes this easy using
the Ajax.Responders object.

To set up event handlers for all Ajax requests, define an options object containing onCreate() and/or
onComplete() methods, such as:

var oGlobalOptions = {
onCreate: function (oXHR, oJson) {

alert(“Sending request...”);
},
onComplete: function (oXHR, oJson) {

alert(“Response received.”);
}

};

115

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 115

This options object can then be passed to the register() method:

Ajax.Responders.register(oGlobalOptions);

Adding this code, means there is no need to make any changes to the previously existing example
JavaScript code. All that is required is the addition of an area to display request status:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Prototype Responders Example</title>
<script type=”text/javascript”src=”prototype.js”></script>
<script type=”text/javascript”>

//<![CDATA[

var oGlobalOptions = {
onCreate : function (oXHR, oJson) {

document.getElementById(“divStatus”).innerHTML =
“Contacting the server...”;

},
onComplete : function (oXHR, oJson) {

document.getElementById(“divStatus”).innerHTML =
“Response received.”;

}
};
Ajax.Responders.register(oGlobalOptions);

function requestCustomerInfo() {
var sId = document.getElementById(“txtCustomerId”).value;
var oOptions = {

method: “get”,
parameters: “id=” + sId,
onFailure: function (oXHR, oJson) {

alert(“An error occurred: “ + oXHR.status);
}

};
var oRequest = new Ajax.Updater({

success: “divCustomerInfo”
}, “GetCustomerData.php”, oOptions);

}

//]]>
</script>

</head>
<body>

<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type=”text” id=”txtCustomerId” value=”” /></p>
<p><input type=”button” value=”Get Customer Info”

onclick=”requestCustomerInfo()” /></p>
<div id=”divStatus” style=”color: blue”></div>
<div id=”divCustomerInfo”></div>

</body>
</html>

116

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 116

When the button is clicked to retrieve customer information in this example, the divStatus element is
filled with status information about the request. Specifically, when the request is first sent, the status
changes to “Contacting the server...” and when the response is received, the status is set to “Response
received.” As you can see, the Ajax.Responders object allows seamless interaction with all Ajax
requests without the need to change the code that already exists.

Advantages and Disadvantages
Prototype offers a fairly straightforward approach to Ajax communication that allows both synchronous
and asynchronous communication (unlike the Yahoo! Connection Manager, which supports only asyn-
chronous requests). The Ajax.Updater object offers a clean interface for updating HTML elements, and
the Ajax.Responders object allows developers to respond to all requests and responses with ease.
Clearly, Prototype has some major advantages as far as ease of use and practicality.

That being said, some things are noticeably missing from the library.

❑ Unlike Yahoo! Connection Manager, Prototype lacks the ability to encode all of the values in a
form, necessitating developers to write their own function to do so.

❑ Further, Prototype lacks support for non-XHR types of communication, making it impossible to
upload files.

❑ And of course, Prototype is not simply an Ajax communication library, so loading the file auto-
matically brings in many other functions, objects, etc., that you may not use. However, this is
the same for all JavaScript libraries, and ultimately, it is up to your individual requirements as
to whether or not Prototype is a right fit.

jQuery
The jQuery library (available at www.jquery.com) is another library that does much more than simply
Ajax communication, but at its small size (15KB), the extra features can be helpful in some situations.

Unlike the previous two libraries discussed in this chapter, jQuery aims to change the way you write
JavaScript. It uses a querying interface to find specific nodes in the web page. The basic expression lan-
guage used by jQuery is a mix of CSS selectors (from CSS Levels 1–3) and simple XPath expressions.
Using this mix, it’s possible to find specific nodes or groups of nodes without manipulating the DOM
directly.

Simple jQuery Expressions
Since jQuery relies to heavily on its querying system, it’s important to first understand how it works.
The function used to query the DOM is $(), which accepts a string argument containing an expression.
The expression may match one or many nodes in the DOM document, and the return value is another
jQuery object that can be used to manipulate the result set (you won’t be receiving any arrays or DOM
elements back from most jQuery methods). This allows you to chain together jQuery methods into long
groups of actions. Here are some sample queries:

117

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 117

//get all <p> elements
$(“p”);

//get the <div> element with an ID of myDiv
$(“div#myDiv”);

//get all textboxes (all <input> elements with type attribute equal to “text”)
$(“input[@type=text]”);

As mentioned previously, each of these calls returns another jQuery object that can be used to manipu-
late the result set. Here are the same queries with actions attached:

//get all <p> elements and hide them
$(“p”).hide();

//get the <div> element with an ID of myDiv and change its font to Arial
$(“div#myDiv”).css(“font-family”, “Arial”);

//get all textboxes (all <input> elements with type attribute equal to “text”)
//and set their width to 400 pixels
$(“input[@type=text]”).width(“400px”);

For each of these result sets, an action is now taking place. The first line hides all <p> elements on the
page; the second changes the font of the <div> element with an ID of “myDiv”; the third sets the width
of all textboxes to 400 pixels. Programming JavaScript in this manner takes some getting used to, but
jQuery already has a pretty strong following among developers due to its simple interface.

Executing GET Requests
There are several options for performing GET requests using jQuery. The simplest method is to use
$.get(), which accepts a URL and a callback function as arguments. The callback function receives two
arguments, the text sent back from the server and a status string (“success” or “error”), such as:

$.get(“path/to/data.php?name=value”, function (sData, sStatus) {
alert(sStatus + “:” + sData);

});

It’s also possible to pass in an associative array of name-value pairs to pass with the URL instead of
specifically defining a query string:

$.get(“path/to/data.php”, { name: “value” }, function (sData, sStatus) {
alert(sStatus + “:” + sData);

});

The properties of the associative array are encoded and added to the query string, taking this responsi-
bility away from the developer.

It’s beyond the scope of this book to discuss all of the features of jQuery. Please visit
www.jquery.com to learn more.

118

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 118

There are also several specialized GET methods in jQuery, each designed for a different purpose:

❑ $.getIfModified(): Performs a GET request only if the resource has been modified since the
last time it was requested. Same arguments as $.get().

❑ $.getJSON(): Performs a GET request and evaluates the JSON response into a JavaScript
object. Same arguments as $.get() except the callback function receives a JavaScript object
instead of text. JSON is discussed in Chapter 8.

❑ $.getScript(): Performs a GET request and expects JavaScript code as a response. The code is
executed upon response. Same arguments as $.get() except that the callback function doesn’t
receive any information.

Of course, it is up to your individual requirements as to which method is appropriate.

GET Example
By revisiting the first XHR example, you can see that jQuery can be used to simplify the code necessary
to retrieve information from the server:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>jQuery GET Example</title>
<script type=”text/javascript”src=”jquery.js”></script>
<script type=”text/javascript”>

//<![CDATA[
function requestCustomerInfo() {

var sId = $(“input#txtCustomerId”).val();
$.get(“GetCustomerData.php?id=” + sId, displayCustomerInfo);

}

function displayCustomerInfo(sText, sStatus) {
if (sStatus == “success”) {

$(“div#divCustomerInfo”).html(sText);
} else {

$(“div#divCustomerInfo”).html(“An error occurred.”);
}

}
//]]>
</script>

</head>
<body>

<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type=”text” id=”txtCustomerId” value=”” /></p>
<p><input type=”button” value=”Get Customer Info”

onclick=”requestCustomerInfo()” /></p>
<div id=”divCustomerInfo”></div>

</body>
</html>

119

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 119

All of the JavaScript code in this example has been changed to use jQuery, which drastically reduces the
amount of code necessary to perform this operation. The value of the textbox is retrieved by the expres-
sion $(“input#txtCustomerId”).val() and stored in sId (the val() method retrieves the value of a
form field). Next, the $.get() method is called, passing in displayCustomerInfo() as the callback
function. Since callback functions receive only one argument, text back from the server, the
displayCustomerInfo() method can be used directly as the callback. The function itself has also been
changed to use jQuery in order to show the html() method, which gets or sets the HTML content of a
given element or set of elements.

Using the $.get() method with an associative array of requestCustomerInfo() can be rewritten as:

function requestCustomerInfo() {
var sId = $(“input#txtCustomerId”).val();
$.get(“GetCustomerData.php”, { id : sId }, displayCustomerInfo);

}

This takes responsibility for properly formatting the query string out of the developer’s hands, allowing
jQuery to handle the encoding and formatting.

The $.post() Method
POST requests are sent in jQuery using the $.post() method. This method accepts the same arguments
as $.get(): a URL, an associative array of parameters, and a callback function to receive the returned
data. For example:

$.post(“path/to/data.php”, { name: “value” }, function (sData, sStatus) {
alert(sStatus + “:” + sData);

});

As with GET requests, jQuery encodes the POST parameters in the associative array and sends that data
as the request body.

Both the second and third arguments to $.post() are optional; however, there’s no reason to send a
POST without data (the second argument). It’s also recommended that a callback function always be
provided to monitor the status of the response.

POST Example
To illustrate using the $.post()method, recall the POST example using XHR from Chapter 2. In that
example, it was necessary to serialize a form into a string. Since the $.post() method doesn’t accept a
string for data, the getRequestBody() function must be changed to create an associative array of data
instead of a string:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>jQuery POST Example</title>
<script type=”text/javascript”src=”jquery.js”></script>
<script type=”text/javascript”>

120

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 120

//<![CDATA[
function sendRequest() {

var oForm = document.forms[0];
var oBody = getRequestBody(oForm);
$.post(“SaveCustomer.php”, oBody, saveResult);

}

function getRequestBody(oForm) {

var oParams = {};

for (var i=0 ; i < oForm.elements.length; i++) {
var oField = oForm.elements[i];
switch (oField.type) {

case “button”:
case “submit”:
case “reset”:

break;

case “checkbox”:
case “radio”:

if (!oField.checked) {
break;

}

case “text”:
case “hidden”:
case “password”:

oParams[oField.name] = oField.value;
break;

default:

switch(oField.tagName.toLowerCase()) {
case “select”:

oParams[oField.name] =
oField.options[oField.selectedIndex].value;

break;
default:

oParams[oField.name] = oField.value;
}

}
}

return oParams;
}

function saveResult(sMessage, sStatus) {
if (sStatus == “success”) {

$(“div#divStatus”).html(“Request completed: “ + sMessage);
} else {

$(“div#divStatus”).html(“An error occurred.”);
}

121

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 121

}
//]]>
</script>

</head>
<body>

<form method=”post” action=”SaveCustomer.php”
onsubmit=”sendRequest(); return false”>

<p>Enter customer information to be saved:</p>
<p>Customer Name: <input type=”text” name=”txtName” value=”” />

Address: <input type=”text” name=”txtAddress” value=”” />

City: <input type=”text” name=”txtCity” value=”” />

State: <input type=”text” name=”txtState” value=”” />

Zip Code: <input type=”text” name=”txtZipCode” value=”” />

Phone: <input type=”text” name=”txtPhone” value=”” />

E-mail: <input type=”text” name=”txtEmail” value=”” /></p>
<p><input type=”submit” value=”Save Customer Info” /></p>
</form>
<div id=”divStatus”></div>

</body>
</html>

The only other changes are to saveResult(), to use jQuery to access the divStatus element. There
isn’t a large amount of code savings for this particular example, but there are several other ways to initi-
ate Ajax communication using jQuery.

The load() Method
The previous two examples simply fill an HTML element with the data returned from the server, which
is a common Ajax pattern. The Prototype library provided Ajax.Updater to simplify this pattern;
jQuery provides the load() method for the same purpose.

The load() method can be called on any element or group of elements in jQuery and has two modes:
GET and POST. To use GET mode, provide a URL (with a query string) and an optional callback func-
tion; for POST, provide a URL, an associative array of values, and an optional callback function.

Changing the GET example to use load() really simplifies the JavaScript necessary to achieve the
desired effect:

function requestCustomerInfo() {
var sId = $(“input#txtCustomerId”).val();
$(“div#divCustomerInfo”).load(“GetCustomerData.php?id=” + sId);

}

The first step in this example is to get a reference to divCustomerInfo. Once that has been completed,
the load() method is called with only a URL as an argument. The callback function isn’t necessary here,
since the default behavior is to place the returned data into the <div/>. It’s also important to note that
the displayCustomerInfo() function is no longer needed, reducing the amount of code dramatically.

In the POST example, it’s also possible to reduce the amount of code by updating the sendRequest()
function:

122

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 122

function sendRequest() {
var oForm = document.forms[0];
var oBody = getRequestBody(oForm);

$(“div#divStatus”).load(“SaveCustomer.php”, oBody);
}

By changing just one line, it’s possible to eliminate the saveResult() function completely. This code
now gets a reference to divStatus and then calls load(). Since the second argument is an associative
array (oBody), the load() method assumes the request is a POST. Once again, a callback function isn’t
necessary.

The load() method provides a quick way to load content into an element, though you do lose the abil-
ity to handle individual cases of success or failure. There is, however, another method that allows more
fine-grained control over Ajax communication.

The $.ajax() Method
All of the other methods discussed in this section are high level, hiding a lot of the communication detail
from developers. These methods all have one thing in common: under the covers, they all use the
$.ajax() method to initiate and handle requests. This method provides more fine-grained control over
requests and responses.

The $.ajax() method accepts a single argument, which is an associative array of options, not unlike
Prototype’s Ajax.Request constructor. This options object is made up of the following properties:

❑ type: The type of request, either GET or POST.

❑ url: The URL to request.

❑ data: An encoded string of data. Used for POST requests only.

❑ dataType: The type of data expected as a response: “script,” “xml,” “html,” or “json.” If
“script” is specified, then the returned data is loaded as JavaScript into the page.

❑ success(): A function to call when a successful response is received. A successful response is
anything with a status of 2xx or 304. This function receives two arguments: the XHR object and
a status string.

❑ error(): A function to call when an error occurs. Anything that isn’t considered a success is
considered an error. This function receives two arguments: the XHR object and a status string.

❑ complete(): A function to call when a response is received; called for both successful and
unsuccessful responses. This function receives two arguments: the XHR object and a status
string.

So to recreate the GET example using $.ajax(), the requestCustomerInfo() function is changed to
the following:

123

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 123

function requestCustomerInfo() {

var sId = $(“input#txtCustomerId”).val();

$.ajax({
type : “GET”,
url : “GetCustomerData.php?id=” + sId,
success : function (oXHR, status) {

$(“div#divCustomerInfo”).html(oXHR.responseText);
},
error : function (oXHR, status) {

$(“div#divCustomerInfo”).html(“An error occurred.”);
}

});
}

Since this is a low-level operation in jQuery, the success() and error() functions must look at the
XHR object for additional information about the request, including the returned data.

The ajaxStart() and ajaxStop() Methods
Prototype isn’t the only library that has global event handlers for Ajax requests; jQuery supports similar
functionality by using the ajaxStart() and ajaxStop() methods. The ajaxStart() method fires
when there are no Ajax requests pending and one is started. Likewise, the ajaxStop() method is called
when all Ajax requests have completed. Both methods accept a function that should be called when the
event occurs.

The first step to using these methods is to retrieve a reference to an element. Then, the ajaxStart() and
ajaxStop() methods can be called on that element. For instance, to use a <div/> element with an ID of
divStatus, the following code can be used:

$(“div#divStatus”).ajaxStart(function () {
$(this).html(“Contacting the server...”);

}).ajaxStop(function () {
$(this).html(“Response received.”);

});

This code calls both methods on divStatus. Since the ajaxStart() and ajaxStop() methods return
jQuery objects, the two can be chained together. Because it is divStatus itself that should be updated,
the $(this) object is used inside the functions along with the html() method to set the status text.

Limitations
The jQuery library provides a very interesting interface not only for Ajax communication but also for
JavaScript in general; this is also one of the limitations. Using jQuery means abandoning some of the
more common methods of JavaScript programming, including DOM manipulation. The library makes
you more dependent on itself, since many of the features are implemented only as methods of jQuery
objects. Still, there are some powerful methods that can enable simple or complex Ajax communication.

124

Chapter 4

07_109496 ch04.qxd 2/5/07 6:49 PM Page 124

Summary
In this chapter, you learned about several Ajax communication libraries. These libraries facilitate Ajax
communication by wrapping XHR behind methods that handle all of the details. All of the libraries men-
tioned in this chapter introduce different interfaces for Ajax designed to save developers from the mun-
dane details.

The first library introduced was the Yahoo! Connection Manager. Created by Yahoo!, this open source
library allows Ajax requests with a minimal amount of additional code. The library handles the determi-
nation of success and failure based on the HTTP status of a response as well as handling scoping issues
with callback functions. The Yahoo! Connection Manager is a pure Ajax library that does only Ajax com-
munication and nothing else.

Next, you learned about Prototype, an open source JavaScript library. Prototype, unlike the Yahoo!
Connection Manager, is a complete JavaScript library that isn’t solely used for Ajax communication. The
library has several objects that make Ajax communication and monitoring much easier for developers.

The last library discussed was jQuery. Unlike the other two libraries previously mentioned, jQuery aims
to change the way you write JavaScript. It wraps common DOM methods inside its own object structure,
which allows advanced querying of DOM documents. The library also introduces several convenient
methods to enable Ajax communication.

Choosing to use an Ajax library is a decision that must be based on requirements. One may be more
appropriate for your project than another. Make sure to do some research into any library you choose
before committing to it to ensure that it can grow and evolve with your application.

125

Ajax Libraries

07_109496 ch04.qxd 2/5/07 6:49 PM Page 125

07_109496 ch04.qxd 2/5/07 6:49 PM Page 126

Request Management

Ajax applications, while powerful and user-friendly, do have some issues relating to the requests
sent from the client to the server and the responses received back. A major concern is the number
of times that communication occurs between the client and server. If the requests are initiated fre-
quently, the server can get bogged down trying to handle requests from multiple users. Further,
the client can become unresponsive while waiting for a large number of responses from the server.

Central to this problem is part of the HTTP 1.1 specification that states a client can have no more
than two simultaneous connections to a single domain name at a time. While there are ways of
working around this strict limitation, such as using subdomains to handle some requests, most
browsers do have a maximum number of connections that can be open at a single time. When using
XHR, this limitation is handled behind the scenes: you simply initiate requests as you see fit, and
the browser queues them up for sending when there’s an open connection. This works fine when
requests are few and far between, but when requests are being sent from various parts of an appli-
cation at different times, the built-in queuing mechanism just doesn’t provide enough control over
when requests are sent and what requests should be sent first. Fortunately, it’s not too difficult to
implement a custom request manager that can handle more complex communication patterns.

Priority Queues
Whenever pieces of data need to be arranged in order of priority, the typical solution is to use a
priority queue. A standard queue is a first-in, first-out data structure: items are added at the back of
the queue, wait in line, and eventually are removed from the front of the queue. A priority queue
augments that methodology by inserting new values into the queue based on a priority, so a new
value with a higher priority doesn’t go to the back of the queue, but rather, gets inserted into an
appropriate location. In a priority queue where 0 is the highest priority and 4 is the lowest, items
with a priority of 3 will always be inserted into the queue before any items with a priority of 4.
Likewise, items with a priority of 2 are inserted ahead of those with a priority of 3, and so on. This
is the perfect paradigm for managing multiple XHR requests. Unfortunately, JavaScript doesn’t
have a built-in priority queue, so it’s necessary to create one.

08_109496 ch05.qxd 2/5/07 6:49 PM Page 127

A generic priority queue can be made with a single Array object, making use of the built-in sort()
method. When values are added to this custom priority queue, they are added to the array, which is then
sorted. By providing a custom comparison function to the sort() method, it’s possible to determine the
order in which the values should appear within the array, making it perfect for assigning priorities. A
comparison function has the following generic form:

function compare(oValue1, oValue2) {
if (oValue1 < oValue2) {

return -1;
} else if (oValue1 > oValue 2) {

return 1;
} else {

return 0;
}

}

Very simply, a comparison function returns a negative number when the first value is less than the sec-
ond (when the first should come before the second), a positive number when the first value is greater
than the second (when the first should come after the second), and zero if the values are equal (don’t
change position in the array).

The constructor for the PriorityQueue object is:

function PriorityQueue(fnCompare) {
this._items = new Array();
if (typeof fnCompare == “function”){

this._compare = fnCompare;
}

}

This constructor accepts a single argument, fnCompare, which is a comparison function to use when
determining priorities. If this argument is provided, it’s assigned to the _compare property; otherwise,
the default _compare() method is used (the default method is defined on the prototype). There is also a
single property, items, which holds the Array object used to manage the values.

Next, the methods for the PriorityQueue need to be defined. The first method is the default
_compare() method to use when one isn’t supplied. Since this method isn’t intended to be publicly
accessible, a prioritize() method is implemented to use it:

PriorityQueue.prototype = {

_compare : function (oValue1, oValue2) {
if (oValue1 < oValue2) {

return -1;
} else if (oValue1 > oValue2) {

return 1;
} else {

Note that the single underscore (_) prefixed to these names indicates that they are
not intended to be publicly accessible.

128

Chapter 5

08_109496 ch05.qxd 2/5/07 6:49 PM Page 128

return 0;
}

},

//more code here

prioritize : function () {
this._items.sort(this._compare);

}

//more code here

};

The _compare() method is just a basic comparison function that uses the primitive values of each item
to figure out which goes before which (using the less-than and greater-than operators caused a behind-
the-scenes call to valueOf() on each item). When an item is added to the queue, the prioritize()
method is called to ensure that items appear in the correct order. This is also important in case a value
inside of the queue changes, at which point it’s necessary to call prioritize() explicitly to ensure that
the ordering is valid.

There are five methods that deal with the normal operation of a priority queue: get(), item(), peek(),
put(), and size().

❑ The get() method retrieves the next item in the queue.

❑ item() returns an item in a given position.

❑ peek() gets the next item in the queue without actually removing it (just a preview of the next
item).

❑ put() is responsible for adding a new value to the queue.

❑ size() simply returns the number of items in the queue.

These methods are all fairly simple:

PriorityQueue.prototype = {

_compare : function (oValue1, oValue2) {
if (oValue1 < oValue2) {

return -1;
} else if (oValue1 > oValue2) {

return 1;
} else {

return 0;
}

},

get : function() {
return this._items.shift();

},

item : function (iPos) {
return this._items[iPos];

129

Request Management

08_109496 ch05.qxd 2/5/07 6:49 PM Page 129

},

peek : function () {
return this._items[0];

},

prioritize : function () {
this._items.sort(this._compare);

},

put : function (oValue) {
this._items.push(oValue);
this.prioritize();

},

//more code here

size: function () {
return this._items.length;

}
};

In the preceding code, you see all five methods in action:

❑ The get() method uses the array’s shift() method to remove and return the first item in the
array (if the array is empty, shift() returns null).

❑ The next method, item(), returns an item in the specified position in the queue.

❑ peek() just gets the first item in the array using the 0 index, which returns the value without
removing it.

❑ The put() method is the one that adds a value to the queue. It first adds the value to the array
and then calls prioritize().

❑ Last, the size() method simply returns the length of the array, so it’s possible to tell how many
items are in the queue.

The final method for the PriorityQueue object is remove(), which searches the queue for a specific
value and then removes it. This can be very important if an item loses priority and no longer needs to be
in the queue:

PriorityQueue.prototype = {

_compare : function (oValue1, oValue2) {
if (oValue1 < oValue2) {

return -1;
} else if (oValue1 > oValue2) {

return 1;
} else {

return 0;
}

},

get : function() {

130

Chapter 5

08_109496 ch05.qxd 2/5/07 6:49 PM Page 130

return this._items.shift();
},

peek : function () {
return this._items[0];

},

prioritize : function () {
this._items.sort(this._compare);

},

put : function (oValue) {
this._items.push(oValue);
this._items.sort(this._compare);

},

remove : function (oValue) {
for (var i=0; i < this._items.length; i++) {

if (this._items[i] === oValue) {
this._items.splice(i, 1);
return true;

}
}
return false;

},

size : function () {
return this._items.length;

}

};

The remove() method uses a for loop to search for a specific value in the array. The value is deter-
mined by using the identically equal operator (===) to ensure that types aren’t converted when making
the comparison. If the matching value is found, it is removed from the array using the splice()
method and a value of true is returned; if no matching value is found, it returns false.

This PriorityQueue object is the base upon which a robust request management object can be created.

The RequestManager Object
The RequestManager object is the main object used for handling XHR requests. Its main job is to man-
age two simultaneous XHR requests, since no more than two can be sent on any client that obeys the
HTTP 1.1 specification. This object handles the creation and destruction of all XHR objects used to make

Although this object will be used for XHR request management, the
PriorityQueue is generic enough that it can be used in any application that needs
prioritizes data items.

131

Request Management

08_109496 ch05.qxd 2/5/07 6:49 PM Page 131

the requests, meaning that the developer never has to worry about creating an XHR object directly.
Additionally, the RequestManager object handles the monitoring of all requests and the marshaling of
results to particular event handlers.

Since requests are metered by connections that the client is making, the RequestManager is implemented
using the singleton pattern (meaning that only one instance can be created per page). It wouldn’t make
sense to allow more than one instance to be created, since there’s only ever two available requests for an
entire page (for example, it wouldn’t make sense to create three RequestManager objects because there
are still only two requests to manage). The basic pattern used to define this object is:

var RequestManager = (function () {

var oManager = {
//properties/methods go here

};

//initialization goes here

//return the object
return oManager;

})();

This is one of several ways to implement a singleton pattern in JavaScript. The outermost function is
anonymous and is called immediately as the code is executed, creating the object, initializing it, and
returning it. In this way RequestManager becomes a globally available object with its own properties
and methods without creating a prototype.

Before delving into the inner workings of this object, consider the information that is to be handled. All
of the information about each request must be handled by RequestManager in order for it to be effec-
tive. However, the goal is to free developers from instantiating XHR objects directly, which is where
request description objects come in.

Request Description Objects
Instead of creating XHR objects directly, developers can define an object describing the request to exe-
cute. Since there are no methods on this object, there’s no reason to define a constructor; just use an
object literal with the following format:

var oRequest = {
priority: 1,
type: “post”,
url: “example.htm”,
data: “post_data”,
oncancel: function () {},
onsuccess: function () {},
onnotmodified: function () {},
onfailure: function () {},
scope: oObject

}

132

Chapter 5

08_109496 ch05.qxd 2/5/07 6:49 PM Page 132

This object literal contains all of the information used by the RequestManager object. First is the
priority property, which should be a numeric value where the smaller the number, the higher the
priority (priority 1 is higher than priority 2, for example); this property is required. Next come the type
and url properties, which should be set to the type of request (typically “get” or “post”) and the URL
to request, respectively. If you are sending a POST request, then the data property should be assigned to
the post data to be sent to the server; otherwise, it can be omitted.

Next come the event handlers. Each of these methods is called according to the HTTP status of the
response from the server:

❑ oncancel() is called when a request is canceled before a response has been received.

❑ onsuccess() is called to handle a response with a status in the 200 range.

❑ onnotmodified() is called to handle a response with a status of 304.

❑ onfailure() is called to handle a response with all other statuses.

The scope property works with each of these methods, setting the scope in which the function should
be called (this allows for methods on other objects to be called for any of the three methods). If the scope
isn’t specified, then all of the functions are run in the global (window) scope.

Request description objects are stored and used by RequestManager in the handling of Ajax communica-
tion. These are the only other objects that developers interact with, so they are passed around repeatedly.

Queuing Requests
All pending requests (represented by request description objects) in the RequestManager are stored in
a priority queue. The property name _pending (a private property) is used to store the PriorityQueue
object, which is created with a custom comparison function to sort the objects by priority:

var RequestManager = (function () {

var oManager = {

_pending: new PriorityQueue(function (oRequest1, oRequest2) {
return oRequest1.priority – oRequest2.priority;

}),

//more code here
};

//initialization goes here

//return the object
return oManager;

})();

The comparison function used here simply subtracts the value of each object’s priority property, which
will return a negative number if oRequest1.priority is less than oRequest2.priority, a positive

133

Request Management

08_109496 ch05.qxd 2/5/07 6:49 PM Page 133

number if the opposite is true, and 0 if they’re equal. Simply subtracting the two priorities is a much faster
way of implementing this function versus creating the full if. . . else structure discussed previously.

With the pending request queue is set up, there needs to be a publicly accessible way for developers to
add requests to the queue. The method responsible for this is called send(), which expects a request
description object to be passed in:

var RequestManager = (function () {

var oManager = {

DEFAULT_PRIORITY: 10,

_pending: new PriorityQueue(function (oRequest1, oRequest2) {
return oRequest1.priority – oRequest2.priority;

}),

//more code here

send : function (oRequest) {
if(typeof oRequest.priority != “number”){

oRequest.priority = this.DEFAULT_PRIORITY;
}
oRequest.active = false;
this._pending.put(oRequest);

}
};

//initialization goes here

//return the object
return oManager;

})();

The first step in the send() method is to check for a valid priority on the request description object. If
the property isn’t a number, then a default priority of 10 is defined so as not to cause an error in the pri-
ority queue (this priority is stored in the constant DEFAULT_PRIORITY). Next, the active property is set
to false; this property is used to determine if the request is currently being executed. The last step is to
add the object into the priority queue so that it’s prioritized among other pending requests.

Sending Requests
Now that requests can be queued, there must be a way to send them. To accomplish this, several methods
are necessary. The first, _createTransport(), is a private method that creates an XHR object appropriate
for the browser being used. This code is essentially the same as the XHR creation code discussed in
Chapter 2 (note that to save space, other properties and methods have been shortened to “...”):

var RequestManager = (function () {

var oManager = {

134

Chapter 5

08_109496 ch05.qxd 2/5/07 6:49 PM Page 134

DEFAULT_PRIORITY: 10,

//more code here

_pending: new PriorityQueue(function (oRequest1, oRequest2) {...}),

_createTransport : function (){
if (typeof XMLHttpRequest != “undefined”) {

return new XMLHttpRequest();
} else if (typeof ActiveXObject != “undefined”) {

var oHttp = null;
try {

oHttp = new ActiveXObject(“MSXML2.XmlHttp.6.0”);
return oHttp;

} catch (oEx) {
try {

oHttp = new ActiveXObjct(“MSXML2.XmlHttp.3.0”);
return oHttp;

} catch (oEx2) {
throw Error(“Cannot create XMLHttp object.”);

}
}

}
},

send : function (oRequest) {...}
};

//initialization goes here

//return the object
return oManager;

})();

Now that an appropriate XHR object can be created, the next pending request needs to be sent. Remember,
there can be two active requests at a time, so there must be a way to track this. The active property con-
tains a simple array of request description objects whose requests are active.

Initiating Requests
It’s the job of the _sendNext() method to get the next request from the queue, assign it to the active list,
and send it:

var RequestManager = (function () {

var oManager = {

DEFAULT_PRIORITY: 10,

_active: new Array(),

_pending: new PriorityQueue(function (oRequest1, oRequest2) {...}),

_createTransport : function (){...},

135

Request Management

08_109496 ch05.qxd 2/5/07 6:49 PM Page 135

_sendNext : function () {
if (this._active.length < 2) {

var oRequest = this._pending.get();
if (oRequest != null) {

this._active.push(oRequest);
oRequest.transport = this._createTransport();
oRequest.transport.open(oRequest.type, oRequest.url, true);
oRequest.transport.send(oRequest.data);
oRequest.active = true;

}
}

},

send : function (oRequest) {...}
};

//initialization goes here

//return the object
return oManager;

})();

The sendNext() method starts by checking to see if there’s an available connection. If the active array
has less than two items in it, that means a connection is available and the function continues, calling get()
on the priority queue to retrieve the next request. Since there may be no next request, it must be checked to
ensure it’s not null. If it’s not null, then the request is added to the active list and an XHR object is created
and stored in the transport property (this makes it easier to keep track of which XHR object is executing
each request). Next, the open() and send() methods are called with the information inside the request
description object. The last step is to set the active property to true, indicating that the request is currently
being processed.

Monitoring Requests
It may seem odd that an XHR object is used asynchronously without an onreadystatechange event
handler. This decision is intentional, since binding to the onreadystatechange event handler can cause
memory issues in Internet Explorer. Instead, the RequestManager polls the status of the active requests,
monitoring each XHR object every 250 milliseconds (four times a second) for changes to the readyState
property. When the readyState changes to 4, then a sequence of event-handling steps takes place. This
takes place in the _checkActiveRequests() method which, along with _sendNext(), is called in a
function that exists outside of the RequestManager object so that it can be called via setInterval():

var RequestManager = (function () {

var oManager = {

DEFAULT_PRIORITY: 10,

INTERVAL : 250,

_active: new Array(),

_pending: new PriorityQueue(function (oRequest1, oRequest2) {...}),

136

Chapter 5

08_109496 ch05.qxd 2/5/07 6:49 PM Page 136

_checkActiveRequests : function () {

var oRequest = null;
var oTransport = null;

for (var i=this._active.length-1; i >= 0; i--) {
oRequest = this._active[i];
oTransport = oRequest.transport;
if (oTransport.readyState == 4) {

oRequest.active = false;
this._active.splice(i, 1);
var fnCallback = null;
if (oTransport.status >= 200 && oTransport.status < 300) {

if (typeof oRequest.onsuccess == “function”) {
fnCallback = oRequest.onsuccess;

}
} else if (oTransport.status == 304) {

if (typeof oRequest.onnotmodified == “function”) {
fnCallback = oRequest.onnotmodified;

}
} else {

if (typeof oRequest.onfailure == “function”) {
fnCallback = oRequest.onfailure;

}
}
if (fnCallback != null) {

setTimeout((function (fnCallback, oRequest, oTransport) {
return function (){

fnCallback.call(oRequest.scope||window, {
status : oTransport.status,
data : oTransport.responseText,
request : oRequest});

}
})(fnCallback, oRequest, oTransport), 1);

}
}

}
},

_createTransport : function (){...},

_sendNext : function () {...},

send : function (oRequest) {...}
};

//initialization
setInterval(function () {

RequestManager._checkActiveRequests();
RequestManager._sendNext();

}, oManager.INTERVAL);

//return the object
return oManager;

})();

137

Request Management

08_109496 ch05.qxd 2/5/07 6:49 PM Page 137

The checkActiveRequests() method is the longest function, but it’s also the one that does most of the
work. Its job is to check the status of each active request to see if readyState is equal to 4. To accom-
plish this, a for loop is used to loop over each request in the active array (since items will be removed,
the loop goes in reverse order to avoid skipping items). For convenience, the request description object is
stored in oRequest, and the XHR object is stored in oTransport. Next, the readyState property is
checked; if it’s equal to 4, then some processing occurs.

The first step in processing a completed request is to set the active property to false, to indicate that it
has returned and is complete. Then, the request is removed from the _active array using splice(). Next
comes the decision as to which callback function should be executed. A variable, fnCallback, is created to
store the callback function. This variable is assigned a value based on the status of the response and the
availability of the callback function. If the status is between 200 and 299, then fnCallback is assigned the
value of onsuccess; for a status of 304, fnCallback is set equal to onnotmodified; all other statuses
force fnCallback to be assigned to onfailure. Each of these assignments takes place only if the given
callback function is available (typeof is used to ensure that the function is defined).

After the assignment of fnCallback, the variable is checked to see if it’s a valid function. If so, then a
timeout is created to execute it. The timeout is important because it’s possible for a callback function to
take longer than 250 milliseconds to execute, which creates a race condition where the first call inside the
interval may not have been completed by the time the next call begins. Delaying the execution of the
callback ensures that the interval function executes completely before it is executed again.

In order to ensure proper scoping, a special time of function is created to pass into the setTimeout()
function. This anonymous function accepts three arguments: fnCallback, oRequest, and oTransport
(the same variables necessary to execute the callback function). These arguments are passed in immedi-
ately to the anonymous function in order to create proper copies of each variable. Inside of the anony-
mous function, another function is returned that actually executes the callback. It is safe to execute the
callback within that scope because the variables are no longer the ones used within the for loop; they
are copies. This technique is a bit involved, so consider the step-by-step buildup. First, the anonymous
function is defined:

function (fnCallback, oRequest, oTransport) {
...
}

Next, the anonymous function defines and returns a function in its body:

function (fnCallback, oRequest, oTransport) {
return function () {

...
};

}

The returned function is written to execute the callback function:

function (fnCallback, oRequest, oTransport) {
return function () {

fnCallback.call(oRequest.scope||window, {
status : oTransport.status,
data : oTransport.responseText,
request : oRequest});

};
}

138

Chapter 5

08_109496 ch05.qxd 2/5/07 6:49 PM Page 138

Then, the outer function is called, passing in the necessary variables:

(function (fnCallback, oRequest, oTransport) {
return function () {

fnCallback.call(oRequest.scope||window, {
status : oTransport.status,
data : oTransport.responseText,
request : oRequest});

};
})(fnCallback, oRequest, oTransport)

This effectively creates and returns a function to execute, so the result can be passed into setTimeout():

setTimeout((function (fnCallback, oRequest, oTransport) {
return function () {

fnCallback.call(oRequest.scope||window, {
status : oTransport.status,
data : oTransport.responseText,
request : oRequest});

};
})(fnCallback, oRequest, oTransport), 1);

Now, the callback function will be executed with the proper variables by using call() and passing in the
appropriate scope in which to run and a data object. The first argument is a logical OR of the scope prop-
erty and the window object, which returns scope if it’s not null; otherwise, it returns window. The second
argument is an object literal with three properties: status, which is the HTTP status of the request; data,
which is the response body; and request, which returns the request description object that was used to
make the request. This function call takes place inside a timeout, which is delayed for 1 millisecond.

After checkActiveRequests() is called in the interval function, it’s time to see if there’s room to make
another request. The sendNext() method is then called to initiate the next request (if another request is
pending).

Cancelling Requests
It’s entirely possible that a request may need to be canceled before it’s executed. The cancel() method
handles this, accepting the request description object as an argument and ensuring that it doesn’t get
sent. This is accomplished by removing the object from the list of pending requests. If the request is
already active (it’s in the active array, not the priority queue), then the XHR request must be aborted
and the request removed from the active list:

var RequestManager = (function () {

var oManager = {

As mentioned previously, this whole function is called using setInterval() every
250 milliseconds. The interval setting is stored as INTERVAL on the RequestManager
object. For most uses, this rate of polling is fine, but this interval length can and
should be customized according to individual needs.

139

Request Management

08_109496 ch05.qxd 2/5/07 6:49 PM Page 139

DEFAULT_PRIORITY: 10,

INTERVAL : 250,

_active: new Array(),

_pending: new PriorityQueue(function (oRequest1, oRequest2) {...}),

_checkActiveRequests : function (){...},

_createTransport : function (){...},

_sendNext : function () {...},

cancel : function (oRequest) {
if (!this._pending.remove(oRequest)){

oRequest.transport.abort();

if (this._active[0] === oRequest) {
this._active.shift();

} else if (this._active[1] === oRequest) {
this._active.pop();

}

if (typeof oRequest.oncancel == “function”) {
oRequest.oncancel.call(oRequest.scope||window,

{request : oRequest});
}

}
},

send : function (oRequest) {...}
};

//initialization
setInterval(function () {...}, 250);

//return the object
return oManager;

})();

The cancel() method begins by attempting to remove the request description object from the priority
queue. Remember that the priority queue’s remove() method returns true if the item was found and
removed, and false if not. So, if this call to remove() returns false, it means that the request is active.
When the request is active, the first step is to call abort() on the XHR object being used by the request.
Since there are only two possible items in the array, it’s easy to check each item in _active to see if it’s
the request of interest. If the request is the first item, then shift() is called to remove it; if the request is
the second item, pop() is called to remove it. The last step is to execute the oncancel() callback func-
tion if it’s defined.

140

Chapter 5

08_109496 ch05.qxd 2/5/07 6:49 PM Page 140

Age-Based Promotion
With priority queues, there’s a danger that a low-priority item will remain at the back indefinitely. This
means that, in the case of the RequestManager, there may be low priority requests that are never exe-
cuted. Obviously, this is an undesirable occurrence, since even the lowest-priority requests should be
executed eventually. Age-based promotion seeks to resolve this issue by automatically bumping up the pri-
ority of requests that have remained in the queue for a longer-than-normal time.

The actual time considered to be “longer than normal” is directly related to the functionality that your
application requires. In this case, assume that the time limit is 1 minute (60,000 milliseconds). Any
request that hasn’t been executed for 1 minute will receive an automatic priority promotion. Doing this
ensures that a request will only be in the queue for a maximum of 1 minute times its initial priority (a
request with a priority of 4 will be in the queue for a maximum of 4 minutes).

To accomplish age-based promotion, the RequestManager needs to add an additional property to each
request description object. The age property tracks how long the request has been at a given priority.
When age reaches the maximum, the priority property is automatically decremented (remember, the
lower the number, the higher the priority), and age is reset back to 0. This functionality takes place in the
_agePromote() method:

var RequestManager = (function () {

var oManager = {

AGE_LIMIT : 60000,

DEFAULT_PRIORITY: 10,

INTERVAL : 250,

_active: new Array(),

_pending: new PriorityQueue(function (oRequest1, oRequest2) {...}),

_agePromote : function() {
for (var i=0; i < this._pending.size(); i++) {

var oRequest = this._pending.item(i);
oRequest.age += this.INTERVAL;
if (oRequest.age >= this.AGE_LIMIT){

oRequest.age = 0;
oRequest.priority--;

}
}
this._pending.prioritize();

},

_checkActiveRequests : function (){...},

_createTransport : function (){...},

_sendNext : function () {...},

cancel : function (oRequest) {...},

send : function (oRequest) {

141

Request Management

08_109496 ch05.qxd 2/5/07 6:49 PM Page 141

if(typeof oRequest.priority != “number”){
oRequest.priority = this.DEFAULT_PROPERTY;

}
oRequest.active = false;
oRequest.age = 0;
this._pending.put(oRequest);

}
};

//initialization
setInterval(function () {

RequestManager._checkActiveRequests();
RequestManager._sendNext();
RequestManager._agePromote();

}, oManager.INTERVAL);

//return the object
return oManager;

})();

This new code adds a constant, AGE_LIMIT, to define how long a request should remain at the given pri-
ority. The constant is used inside of _agePromote() to determine when a request should be promoted.
Before a request can be checked, its age property must be initialized; this takes place in the send()
method with one additional line. The _agePromote() method is called inside of the interval function,
just after _sendNext() to ensure that all of the pending requests are in the correct order for the next
interval. Inside of _agePromote(), each item in the _pending queue has its age updated by adding the
INTERVAL value to its current age. If age is greater than or equal to the limit, age is reset to 0 and the
priority is decremented. The last step is to call prioritize() on the queue, since this method effec-
tively changes the priority of an item already in the queue.

Handling Ajax Patterns
Having a prioritized list of requests is very helpful in managing traffic between the client and server, but
it does require the developer to determine the relative priority of each request. In some cases, this is
quite simple. For example, if a user action (a mouse click, a key press, etc.) initiated a request, clearly it is
very important because the user is waiting for a response, so a priority of 0 would be most appropriate.
In other cases, however, it’s not always clear what the priority should be. To remedy this situation, it
may be necessary to provide methods that decide priorities according to the Ajax pattern being used.
Recall the patterns discussed earlier in the book:

❑ Predictive Fetch: Guesses what the user will do next and preloads the necessary information
from the server.

❑ Submission Throttling: Incrementally sends data to the server.

❑ Periodic Refresh: Also known as polling, periodically polls the server for updated information.

❑ Multi-Stage Download: Downloads only the most important information first and then sends
subsequent requests for additional information.

Consider the relative priorities among these four patterns. None of them is as important as a user action,
so that means a priority of 1 or lower.

142

Chapter 5

08_109496 ch05.qxd 2/5/07 6:49 PM Page 142

While helpful, Predictive Fetch is far from high priority. Its intent is to improve the user experience, not to
control it. In an Ajax application that is making requests using various patterns, chances are that Predictive
Fetch requests are a fairly low priority. Assuming that priorities are assigned from 0 to 10, Predictive Fetch
may accurately be described as a priority of 5.

Submission Throttling is more important than Predictive Fetch because it is sending user information to
the server as opposed to retrieving information from the server. Once again, this is not as important as a
user action, so it falls somewhere between a priority of 0 and 5, probably landing at 2.

Periodic Refresh is very similar to Predictive Fetch, though the fact that it’s sent on a recurring basis
indicates that it’s more important. More than likely, Periodic Refresh is waiting to indicate some new
information to the user as soon as it’s available. Because it’s receiving data from the server, however, it
would be a lower priority than Submission Throttling, which sends data to the server. So, Periodic
Refresh is a priority of 3.

The last pattern is Multi-Stage Download, which is actually just another form of Predictive Fetch. The
only difference between the two is when the request(s) take place. For Multi-Stage Download, the
requests typically take place at the initial page load, while Predictive Fetch can occur at any time,
depending on user action. Really, the two patterns are too close to consider one a higher priority than the
other, so Multi-Stage Download can also be considered a 5.

Now that the priorities are clear among these patterns, what can be done to make this easier for developers?
The best approach is to add a method for each pattern, along with one for a user action, so that developers
don’t need to remember these priorities on their own. Also, by encapsulating this functionality and auto-
assigning priorities, this frees you to easily change priorities later without changing code in multiple places.

Each of these methods works the same way: accept a request description object as an argument, assign
the given priority, and then pass the modified object to the send() method to be queued. Since the
names of the Ajax patterns are rather verbose, the method names have been shortened:

❑ poll(): Use for Periodic Refresh.

❑ prefetch(): Use for Predictive Fetch and Multi-Stage Download.

❑ submit(): Use for a user action.

❑ submitPart(): Use for Submission Throttling.

The code for each is as follows:

var RequestManager = (function () {

var oManager = {

AGE_LIMIT : 60000,

DEFAULT_PRIORITY: 10,

INTERVAL : 250,

_active: new Array(),

143

Request Management

08_109496 ch05.qxd 2/5/07 6:49 PM Page 143

_pending: new PriorityQueue(function (oRequest1, oRequest2) {...}),

_agePromote : function() {...},

_checkActiveRequests : function (){...},

_createTransport : function (){...},

_sendNext : function () {...},

cancel : function (oRequest) {...},

poll : function (oRequest) {
oRequest.priority = 3;
this.send(oRequest);

},

prefetch : function (oRequest) {
oRequest.priority = 5;
this.send(oRequest);

},

send : function (oRequest) {...},

submit : function (oRequest) {
oRequest.priority = 0;
this.send(oRequest);

},

submitPart : function (oRequest) {
oRequest.priority = 2;
this.send(oRequest);

}

};

//initialization
setInterval(function () {...}, oManager.INTERVAL);

//return the object
return oManager;

})();

These methods can be used in place of send(), such as:

RequestManager.poll({
type: “get”,
url: “example.htm”,
data: “post_data”,
onsuccess: function () {},

});

RequestManager.submitPart({
type: “post”,

144

Chapter 5

08_109496 ch05.qxd 2/5/07 6:49 PM Page 144

url: “handler.php”,
data: “name=Nicholas”,
onsuccess: function () {},

});

Note that a priority property isn’t assigned in these request description objects, as it is not needed. If a
priority property were assigned, however, it would be overridden by the method being called.

Using RequestManager
To try out the RequestManager object, it’s easiest to set up a page that sends multiple requests in a row
and reports back when the results have been received. In this way, the order in which the responses are
received indicates the order in which the requests were sent (with a small margin of error due to differ-
ent server response times per request). Consider the following simple HTML page:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Request Manager Example</title>
<script type=”text/javascript” src=”PriorityQueue.js”></script>
<script type=”text/javascript” src=”RequestManager.js”></script>
<script type=”text/javascript” src=”RequestManagerExample.js”></script>

</head>
<body>

<fieldset>
<legend>Responses</legend>
<div id=”divResponses”></div>

</fieldset>
</body>
</html>

This page includes the necessary RequestManager files and has a <fieldset/> surrounding a <div/>
called “divResponses”. This <div/> element is responsible for outputting the results of each request
so that it’s obvious as to what has occurred. The RequestManagerExample.js file contains the
JavaScript for this example, beginning with some callback functions to handle various responses:

function outputResult(oResponse, sColor) {
var divResponses = document.getElementById(“divResponses”);
var oRequest = oResponse.request;
var sMessage = “<div style=\”background-color:” + sColor + “\”>”

+ oResponse.status + “ (“ + oRequest.priority + “) “
+ oRequest.type + “ “ + oRequest.url + “ “ + oRequest.age + “</div>”;

divResponses.innerHTML += sMessage;
}

function outputSuccessResult(oResponse) {
outputResult(oResponse, “white”);

}

function outputFailureResult(oResponse) {

145

Request Management

08_109496 ch05.qxd 2/5/07 6:49 PM Page 145

outputResult(oResponse, “red”);
}

function outputNotModifiedResult(oResponse) {
outputResult(oResponse, “silver”);

}

Each of these functions handles a different case and is used as the values of onsuccess, onfailure, and
onnotmodified for each request. They each output a message, including the HTTP status, the priority
(in parentheses), the request type, the URL, and the age of the request. The outputSuccessResult()
function prints its message with a white background, outputFailureResult() uses a red background,
and outputNotModifiedResult() has a silver background. This color-coding makes it easier to differ-
entiate which function was called. Since the color is the only thing that changes, the outputResult()
function provides the basic functionality used by the other functions.

Next, there are some functions to create specific types of requests:

function addPoll() {
RequestManager.poll({

type : “get”, url : “poll.txt”,
onsuccess : outputSuccessResult,
onfailure : outputFailureResult,
onnotmodified : outputNotModifiedResult

});
}

function addSubmit() {
RequestManager.submit({

type : “post”, url : “post.txt”, data : “name=Nicholas”,
onsuccess : outputSuccessResult,
onfailure : outputFailureResult,
onnotmodified : outputNotModifiedResult

});
}

function addSubmitPart() {
RequestManager.submitPart({

type : “post”, url : “post.txt”, data : “name=Nicholas”,
onsuccess : outputSuccessResult,
onfailure : outputFailureResult,
onnotmodified : outputNotModifiedResult

});
}

function addPreFetch() {
RequestManager.prefetch({

type : “get”, url : “data.txt”,
onsuccess : outputSuccessResult,
onfailure : outputFailureResult,
onnotmodified : outputNotModifiedResult

});
}

function addLowPriority() {

146

Chapter 5

08_109496 ch05.qxd 2/5/07 6:49 PM Page 146

RequestManager.send({
priority: 10, type : “get”, url : “data.txt”,
onsuccess : outputSuccessResult,
onerror : outputFailureResult,
onnotmodified : outputNotModifiedResult

});
}

Each of these functions creates a different type of request to be placed in the queue. The addPoll()
function creates a poll request to poll.txt, which doesn’t exist; this should result in a 404 error. Next,
the addSubmit() and addSubmitPart() functions create POST requests to a text file, post.txt, which
should fail with a 405 error (most servers won’t let you post data to a plain text file). The
addPreFetch() function creates a GET request for data.txt, while addLowPriority() creates a very
low-priority request that should be executed only after everything else has been completed.

The onload event handler is then assigned to initiate a few requests using these methods:

window.onload = function () {
addPoll();
addPoll();
addSubmit();
addPreFetch();
addLowPriority();
addSubmitPart();
addLowPriority();
addPreFetch();
addPoll();
addSubmit();

};

This creates a series of different requests with varying priorities. Since these requests are added in rapid
succession, they effectively end up being added to the queue simultaneously, which means that the out-
put on the page should be very similar to this:

405 (0) post post.txt 0
405 (0) post post.txt 250
405 (2) post post.txt 500
404 (3) get poll.txt 750
404 (3) get poll.txt 1000
404 (3) get poll.txt 1250
200 (5) get data.txt 1500
200 (5) get data.txt 1750
200 (10) get data.txt 2000
200 (10) get data.txt 2250

In this output, it’s clear to see that the calls to submit() were executed first; they each returned a 405
error, had a priority of 0, used POST, and were 0 and 250 milliseconds old, respectively. Next up is the
call created via submitPart(), which had a priority of 2. After that, the various polling requests were
executed at a priority of 3, and requests created using prefetch() were executed with a priority of 5.
The two low-priority requests were executed last.

It is possible to see differing results due to the differences in client machines, how long it takes to create
an XHR object, and how long it takes to get a response from the server. However, most browsers should

147

Request Management

08_109496 ch05.qxd 2/5/07 6:49 PM Page 147

execute very similarly, producing output resembling the output reproduced in the preceding examples,
with maybe one or two higher-priority requests not executing correctly (although, all other requests
should still complete before the lowest-priority ones).

Summary
In this chapter, you learned about the challenges in managing Ajax requests from a single application.
The two-connection HTTP 1.1 limit was discussed as it pertains to XHR objects, and a discussion of why
this limitation is important followed.

Next, an alternate approach to create XHR objects was discussed, involving developer-defined prioritiza-
tions to ensure that important requests are executed before lower priority communication takes place. You
were led through the creation of a priority queue data structure in JavaScript, making use of the Array
object’s built-in sort() method for prioritizing values in the queue. This generic PriorityQueue object
became the basis for a request management object.

With the basic data structure created, you began creating the RequestManager object, which uses the
priority queue to determine the requests to execute next. The RequestManager object expects request
description objects to be provided that describe the request that should take place. It then uses this
description to make the request at an appropriate time, without tying functions to XHR objects (which
can cause memory leaks).

Four different callback functions were made available on each request description object, one for success
(HTTP code in the 200–299 range), one for “not modified” (HTTP code 304), one for “failure” (all other
codes), and one to call if the request is canceled before being sent. Each of these callback functions can be
a standalone function or an object method whose scope can be provided using the scope property.

Last, you learned how to implement an age-based promotion system so that lower-priority requests will
be ensured of execution. This works by automatically promoting requests to the next priority after
they’ve been in the queue for a specified amount of time. By adding this to the RequestManager object,
you now have a robust Ajax connection management object.

148

Chapter 5

08_109496 ch05.qxd 2/5/07 6:49 PM Page 148

XML, XPath, and XSLT

As the popularity of XML grew, web developers wanted to use the technology on both the server
and client side, but only the former initially offered XML functionality. Starting with Internet
Explorer 5.0 and Mozilla 1.0 (predecessor to Firefox), Microsoft and Mozilla implemented
JavaScript support for XML in their browsers. Opera 8 and Safari 1.2 introduced some basic XML
support, and while Opera’s JavaScript XML support is catching up, Safari still lags behind the
pack with the least amount of implemented support. With that being said, browser makers con-
tinue to broaden the availability of XML support with new features, giving web developers pow-
erful tools akin to those formerly found only on the server.

XML Support in Browsers
Many web browsers are available today, but few have complete support for XML and its related
technologies. Internet Explorer (IE) and Mozilla Firefox lead the pack in support, followed closely
by Opera (as of version 9). Apple’s Safari trails significantly behind, supporting only rudimentary
XML features. Despite these differences in support, all browsers implement basic XML functional-
ity; therefore, this section covers all four major browsers.

XML DOM in IE
When Microsoft added XML support to IE 5.0, they did so by incorporating the MSXML ActiveX
library, a component originally written to parse Active Channels in IE 4.0. This initial version
wasn’t intended for public use, but developers discovered the component and began using it.
Microsoft responded with a fully upgraded version of MSXML, which was included in IE 4.01.

MSXML was primarily an IE-only component until 2001 when Microsoft released MSXML 3.0, a
separate distribution available through the company’s web site. Later that year, version 4.0 was
released and MSXML was renamed Microsoft XML Core Services Component. Since its inception,
MSXML has gone from a basic, non-validating XML parser to a full-featured component that can
validate XML documents, perform XSL transformations, support namespace usage, the Simple

09_109496 ch06.qxd 2/5/07 6:49 PM Page 149

API for XML (SAX), and the W3C XPath and XML Schema standards, all while improving performance
with each new version.

Creating an XML DOM Object
To facilitate ActiveX object creation in JavaScript, Microsoft implemented a class called ActiveXObject.
Its constructor takes a single argument, a string containing the name and version of the ActiveX object to
create; in this case, it is the version of the XML document. The first XML DOM ActiveX object was called
Microsoft.XmlDom, and its creation looks like this:

var oXmlDom = new ActiveXObject(“Microsoft.XmlDom”);

The newly created XML DOM object behaves like any other DOM object, enabling you to traverse the
DOM tree and manipulate DOM nodes.

At the time of this writing, there are six different versions of the MSXML DOM document; the version
strings are as follows:

❑ Microsoft.XmlDom

❑ MSXML2.DOMDocument

❑ MSXML2.DOMDocument.3.0

❑ MSXML2.DOMDocument.4.0

❑ MSXML2.DOMDocument.5.0

❑ MSXML2.DOMDocument.6.0

Since there have been many improvements with each new release of MSXML, you always want to use
the latest version. Microsoft recommends checking for the latest version (MSXML6 as of this writing)
and to use MSXML3 as the fallback version. Therefore, it is helpful to create a function to determine
which version to use. The following function, createDocument(), creates an MSXML6 DOM if the
client machine supports it. Otherwise, a MSXML3 DOM is created:

function createDocument() {
var aVersions = [

“MSXML2.DOMDocument.6.0”,
“MSXML2.DOMDocument.3.0”,

];

for (var i = 0; i < aVersions.length; i++) {
try {

var oXmlDom = new ActiveXObject(aVersions[i]);
return oXmlDom;

} catch (oError) {
//Do nothing

}

MSXML is available only on Windows-based Internet Explorer. IE 5 on the Mac has
no XML DOM support.

150

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 150

}
throw new Error(“MSXML is not installed.”);

}

This function iterates through the aVersions array, which contains the version strings. It starts with the
latest version, MSXML2.DOMDocument.6.0, and attempts to create the DOM document. If the object cre-
ation is successful, it is returned and createDocument() exits; if it fails, an error is thrown and then
caught by the try...catch block, so the loop continues and the next version is tried. If the creation of
an MSXML DOM document fails after trying the two versions, an error is thrown stating that MSXML is
not installed. Call the function like this:

var oXmlDom = createDocument();

Now that you have an XML document at your disposal, it is time to load some XML data.

Loading XML Data in IE
The MSXML DOM document supports two methods of loading XML data: load() and loadXML(). The
load() method accepts a single argument, which is a URL from which to download an XML file; the
loadXML() method also accepts a single argument, though it is a string of XML data. Both methods
have the effect of parsing XML data and creating an XML DOM structure.

The load() method behaves similar to XHR in that it can load data from an external file in two modes:
asynchronous or synchronous. This is controlled by the async property. By default, async is set to
true, so the load() method is asynchronous; to use synchronous mode, async must be set to false,
as follows:

oXmlDom.async = false;

When in asynchronous mode, the MSXML object exposes the readyState property, which almost has
the same five states as the XHR readyState property (discussed in Chapter 2). The exception is that the
MSXML object does not have the 0 (UNITIALIZED) state. Additionally, the DOM document supports the
onreadystatechange event handler, enabling you to monitor the readyState property:

oXmlDom.onreadystatechange = function () {
if (oXmlDom.readyState == 4) {

//Do something when the document is fully loaded.
}

};

oXmlDom.load(“myxml.xml”);

In this example, the fictitious XML document named myxml.xml is loaded into an XML DOM. When
readyState reaches the value of 4, the document is fully loaded and the code inside the if block will
execute.

Generally, it’s considered poor practice to initiate requests in synchronous mode due
to the possibility of freezing the user interface. Synchronous mode should be used
sparingly and only when small amounts of data are being sent from the server.

151

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 151

The second way to load XML data, loadXML(), is a bit simpler and doesn’t require any HTTP requests
since its data is already present on the client. The data passed in must contain well-formed XML, as in
the following example:

var sXml = “<root><person><name>Jeremy McPeak</name></person></root>”;
oXmlDom.loadXML(sXml);

Here, the XML data contained in the variable sXml is loaded into the oXmlDom document. There is no
reason to check the readyState property or to set the async property when using loadXML() because
it doesn’t involve a server request; the data is loaded synchronously and is immediately available.

Validating XML Data While Loading
By default, an MSXML DOM object validates the XML document when it parses the data. A valid XML
document is one that references a Document Type Definition (DTD) in a DOCTYPE declaration and con-
forms to that DTD.

There are times when this behavior is not desired, and instead, the document should be checked only for
well-formedness. To allow this, the MSXML DOM object exposes the validateOnParse property. It
accepts with a true (the default) or false value, and it should be set before the DOM object loads the
document.

var oXmlDom = createDocument();
oXmlDom.async = false;
oXmlDom.validateOnParse = false;
oXmlDom.load(“myxml.xml”);

In this code, when the XML DOM object loads and parses the XML, it will be checked only to see if the
document is well formed.

Preserving White Space
The MSXML DOM treats white space differently than standards-compliant DOM implementations. By
default, the MSXML DOM removes white space–only nodes from the document, leaving nothing but
XML and text nodes. While many consider this behavior to be a more common sense issue, the fact
remains that it is not standards compliant.

The MSXML DOM, however, does offer the preserveWhiteSpace property that tells the parser to
either throw out the white space–only nodes or to keep them. The property accepts a Boolean value, and
the default is false. The following code loads an XML document and preserves its white space:

var oXmlDom = createDocument();
oXmlDom.async = false;
oXmlDom.preserveWhiteSpace = true;
oXmlDom.load(“myxml.xml”);

When true, this property allows an MSXML DOM object to behave like a standards-compliant DOM.

Note that unlike XHR, there is no status property on the XML DOM object.

152

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 152

Traversing the XML DOM in IE
Navigating an XML DOM document is much like navigating an HTML DOM document; it is a hierarchi-
cal node structure. At the top of the tree is the documentElement, which contains the root element of the
document. From there, you can access any element or attribute in the document using the properties
listed in Table 6-1.

Table 6-1 XML DOM Properties

Property Description

attributes Collection of attributes for this node.

childNodes Collection of child nodes.

firstChild First child of the node.

lastChild Last child of the node.

nextSibling The node immediately following the current node.

nodeName The qualified name of the node.

nodeType The XML DOM node type.

nodeValue The text associated with the node, if any.

ownerDocument The XML DOM document of which this node is a part.

ParentNode Parent node of the current node.

PreviousSibling The node immediately before the current node.

Text Returns the content of the node or the concatenated text of the
current node and its descendants. This is an IE-only property.

Xml Returns the XML string representing the current node and its
children. This is an IE-only property.

Traversing and retrieving data from the DOM is a straightforward process. Consider the following XML
document:

<?xml version=”1.0” encoding=”utf-8”?>

<books>
<book isbn=”9780470109496”>Professional Ajax</book>
<book isbn=”0764579088”>Professional JavaScript for Web Developers</book>
<book isbn=”0764557599”>Professional C#</book>
<book isbn=”1861002025”>Professional Visual Basic 6 Databases</book>

</books>

This simple XML document includes a root element, <books/>, with four child <book/> elements.
Using this document as a reference, you can explore the DOM. The DOM tree is based on the relation-
ships nodes have with other nodes. One node may contain other nodes, which are called child nodes
(each <book/> element is a child node of the <books/> element). Another node may share the same par-
ent as other nodes, in which case these nodes are siblings (each <book/> element is a sibling of the other
<book/> elements).

153

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 153

Perhaps you want to retrieve the first <book/> element in the document. This is easily achieved with the
firstChild property:

var oFirstBook = oXmlDom.documentElement.firstChild;

Using the firstChild property, the first <book/> element is referenced and assigned to the variable
oFirstBook because it is the first child element of the root element <books/>.

You can also use the childNodes collection to achieve the same results:

var oFirstBook2 = oXmlDom.documentElement.childNodes[0];

Selecting the first item in the childNodes collection (at index 0) returns the first child of the node, just as
if accessing the firstChild property. You can determine the number of children a node has by using
the length property, as follows:

var iChildren = oXmlDom.documentElement.childNodes.length;

If nodes can have children, that means they can also have parents. The parentNode property returns the
parent of the given node:

var oParent = oFirstBook.parentNode;

Recall that oFirstBook is the first <book/> element in the document. The parentNode property of this
node refers to the <books/> element, the documentElement of the document.

The <book/> elements are siblings to each other because they share the same direct parent. Two proper-
ties, nextSibling and previousSibling, exist to access these adjacent nodes. The nextSibling prop-
erty references the next occurring sibling, whereas the previousSibling property selects the preceding
sibling:

var oSecondBook = oFirstBook.nextSibling;

var oFirstBook2 = oSecondBook.previousSibling;

In this code, the second <book/> element is referenced and assigned to oSecondBook. The
oFirstBook2 variable is then assigned to the previous sibling of oSecondBook, resulting in
oFirstBook2 containing the same value as oFirstBook. If a node has no previous or next siblings,
previousSibling and nextSibling will be null.

Now that you know how to traverse through the document hierarchy, the next step is to extract from
nodes in the tree. For example, to retrieve the text contained within the third <book/> element
(Professional C#), you can use the text property as follows:

var sText = oRoot.childNodes[2].text;

The text property retrieves all the text contained within this node and is a Microsoft proprietary prop-
erty, but it is extremely helpful. Without the text property, you would have to access the text node as
follows:

154

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 154

var sText = oRoot.childNodes[2].firstChild.nodeValue;

This code achieves the same results as using the text property. Like the previous example, the third
<book/> element is referenced using the childNodes collection; the text node of the <book/> element is
then referenced with the use of firstChild because a text node is still a node in the DOM. The text is
then retrieved by using the nodeValue property (which is always set to the text contents for a text node).

The results from these two examples are identical; however, the text property behaves in a different
way than using the nodeValue property on a text node. The text property retrieves the value of all text
nodes contained within the element and its children, whereas the nodeValue property gets only the
value of the current node. The text property is helpful, but it has the potential to return more text than
desired. For example, consider this modified XML document:

<?xml version=”1.0” encoding=”utf-8”?>

<books>
<book isbn=”9780470109496”>

<title>Professional Ajax</title>
<author>Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett</author>

</book>
<book isbn=”0764579088”>Professional JavaScript for Web Developers</book>
<book isbn=”0764557599”>Professional C#</book>
<book isbn=”1861002025”>Professional Visual Basic 6 Databases</book>

</books>

This new XML document adds two new children to the first <book/> element: the <title/> element,
which contains the title of the book, and the <author/> element, which holds the author data. Once
again, use the text property:

alert(oFirstBook.text);

There is nothing new in this code, as you have already seen it. However, look at the results, as shown in
Figure 6-1.

Notice that the text nodes from the <title/> and <author/> elements are retrieved and concatenated.
If oFirstBook.nodeValue had been used, it would have returned null, because oFirstBook is not a
text node.

There are a number of methods to retrieve nodes and values from an XML node; the two most often
used are getAttribute() and getElementsByTagName().

The getAttribute() method takes a string argument containing the name of the attribute to retrieve. If
the attribute does not exist, the value returned is null. Using the same XML document introduced ear-
lier in this section, consider the following code:

var sAttribute = oFirstBook.getAttribute(“isbn”);
alert(sAttribute);

This code retrieves the value of the isbn attribute of the first <book/> element and assigns it to the
sAttribute variable. This value is then displayed using alert().

155

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 155

Figure 6-1

The getElementsByTagName() method returns a NodeList of child elements with the specified tag
name. This method searches for elements within the given node’s descendants only, so the returned
NodeList does not include any elements that are ancestors or children of ancestors. For example:

var cBooks = oRoot.getElementsByTagName(“book”);
alert(cBooks.length);

This code retrieves all <book/> elements within the document and returns the NodeList to cBooks.
With the sample XML document, an alert box displays that four <book/> elements were found. To
retrieve all descendant elements, pass “*” as the parameter to getElementsByTagName(), as follows:

var cElements = oRoot.getElementsByTagName(“*”);

In this example, the cElements collection contains both the <book/> elements as well as the <title/>
and <author/> elements.

Retrieving XML Data in IE
Retrieving XML data is as simple as using a property, the xml property. This property serializes the XML
data of the current node. Serialization is the process of converting objects into an easily storable or trans-
mittable format. The xml property converts XML into a string representation, complete with tag names,
attributes, and text:

var sXml = oRoot.xml;
alert(sXml);

156

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 156

This code serializes the XML data starting with the document element, which is then passed to the
alert() method. A portion of the serialized XML looks like this:

<books><book isbn=”9780470109496”>Professional Ajax</book></books>

You can load serialized data into another XML DOM object, send it to a server application, or pass it to
another page. The serialized XML data returned by the xml property depends on the current node.
Using the xml property at the documentElement node returns the XML data of the entire document,
whereas using it on a <book/> element returns only the XML data contained in that <book/> element.

Manipulating the DOM in IE
To this point, you have learned how to traverse the DOM, extract information from it, and convert XML
into string format. You also have the ability to add to, delete from, and replace nodes in the DOM.

Creating Nodes
You can create a variety of nodes using DOM methods, but the most often used is the
createElement() method. This method takes one argument, a string containing the tag name of the
element to create, and returns an XMLDOMElement reference:

var oNewBook = oXmlDom.createElement(“book”);
oXmlDom.documentElement.appendChild(oNewBook);

This code creates a new <book/> element and appends it to documentElement using the
appendChild() method. The appendChild() method adds the new element, specified by its argu-
ment, after the last child node. This code appends an empty <book/> element to the document, so the
element needs some text:

var oNewBook = oXmlDom.createElement(“book”);

var oNewBookText = oXmlDom.createTextNode(“Professional .NET 2.0 Generics”);
oNewBook.appendChild(oNewBookText);

oXmlDom.documentElement.appendChild(oNewBook);

This code creates a text node with the createTextNode() method and appends it to the newly created
<book/> element with appendChild(). The createTextNode() method takes a string argument speci-
fying the text contents for the text node.

At this point, you have programmatically created a new <book/> element, provided it a text node, and
appended it to the document. One last piece of information is required to get this new element on par
with its other siblings, the isbn attribute. Creating an attribute is as simple as using the
setAttribute() method, which is available on every element node:

The xml property is read-only. If you want to add elements to the document, you
will have to use DOM methods to do so.

157

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 157

var oNewBook = oXmlDom.createElement(“book”);

var oNewBookText = oXmlDom.createTextNode(“Professional .NET 2.0 Generics”);
oNewBook.appendChild(oNewBookText);
oNewBook.setAttribute(“isbn”,”0764559885”);

oXmlDom.documentElement.appendChild(oNewBook);

The new line of code in this example creates an isbn attribute and assigns it the value of 0764559885.
The setAttribute() method takes two string arguments: the first is the name of the attribute, and the
second is the value to assign to the attribute. IE also provides other methods to add attributes to an ele-
ment; however, they hold no real advantage over setAttribute() and require much more coding.

Removing, Replacing, and Inserting Nodes
If you can add nodes to a document, it seems only natural to be able to remove them as well; the
removeChild() method does just that. This method accepts a single argument, the node to remove. To
remove the first <book/> element from the document, the following code can be used:

var oRemovedChild = oRoot.removeChild(oRoot.firstChild);

The removeChild() method returns the child node that was removed, so oRemovedChild now refer-
ences the removed <book/> element. With a reference to the old node, it can be placed anywhere else in
the document.

Perhaps you want to replace the third <book/> element with oRemovedChild. The replaceChild()
method can be used to that end:

var oReplacedChild = oRoot.replaceChild(oRemovedChild, oRoot.childNodes[2]);

The replaceChild() method accepts two arguments: the node to add and the node to replace. In this
code, the node referenced by oRemovedChild replaces the third <book/> element, and the removed
node is returned and stored in oReplacedChild.

Because oReplacedChild references the replaced node, you can easily insert it back into the document.
You could use appendChild() to add the node to the end of the child list, or you can use the
insertBefore() method to insert the node before another sibling:

oRoot.insertBefore(oReplacedChild, oRoot.lastChild);

This code inserts the previously replaced node before the last <book/> element. The insertBefore()
method takes two arguments: the node to insert and the node to insert before. You’ll notice the use of the
lastChild property, which retrieves the last child node, effectively inserting oReplacedChild as the
second-to-last child node. The insertBefore() method also returns the value of the inserted node, but
it is not necessary for this example.

Error Handling in IE
When XML data is loaded, errors can occur for a variety of reasons. For example, the external XML file
may not be found or the XML code may not be well formed. To handle these occasions, MSXML pro-
vides the parseError property, which contains error information.

158

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 158

The parseError object provides a number of properties to enable you to better understand an error:

❑ errorCode: The error code as a long integer

❑ filepos: A long integer specifying the position in the file where the error occurred

❑ line: The line number that contains the error as a long integer

❑ linepos: The character position in the line where the error occurred (long integer)

❑ reason: A string specifying why the error happened

❑ srcText: The text of the line where the error happened

❑ url: The URL of the XML document as a string

To check for errors, the parseError object exposes the errorCode property, which can be compared to
the integer 0; if errorCode does not equal 0, an error has occurred. The following example is designed
specifically to cause an error:

var sXml = “<root><person><name>Jeremy McPeak</name></root>”;
var oXmlDom = createDocument();
oXmlDom.loadXML(sXml);

if (oXmlDom.parseError.errorCode != 0) {
alert(“An Error Occurred: “ + oXmlDom.parseError.reason);

} else {
//Code to do for successful load.

}

In the highlighted line, notice that the <person/> element is not closed. Since the XML being loaded is
not well formed, an error occurs during the parsing process. The errorCode is then compared to 0; if
they do not match (and they don’t in this example), an alert displays the error’s cause by using the
reason property.

XML in Other Browsers
The developers of Firefox, Opera, and Safari took a more standards-centric approach when implement-
ing XML support. Instead of an external component, these developers made it a part of the JavaScript
implementation. In the case of Firefox and Opera, doing this ensured XML DOM support on all plat-
forms in all Gecko and Opera browsers.

To create an XML DOM, the createDocument() method of the document.implementation object is
called. This method takes three arguments: the first is a string containing the namespace URI for the doc-
ument to use, the second is a string containing the qualified name of the document’s root element, and
the third is a DocumentType object (also called doctype), which is usually null. To create an empty DOM
document, you can do this:

The errorCode property can be positive or negative; only when errorCode is 0 can
you be sure that no error occurred.

159

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 159

var oXmlDom = document.implementation.createDocument(“”, “”, null);

By passing in an empty string for the first two arguments, and null for the last, you ensure a completely
empty document. To create an XML DOM with a document element, specify the tag name in the second
argument:

var oXmlDom = document.implementation.createDocument(“”, “books”, null);

This code creates an XML DOM whose documentElement is <books/>. You can take it a step further
and specify a namespace in the creation of the DOM by specifying the namespace URI in the first
argument:

var oXmlDom = document.implementation.createDocument(“http://www.site1.com”,
“books”, null);

When a namespace is specified in the createDocument() method, the browser uses the it as the default
namespace like the following XML node:

<books xmlns=”http://www.site1.com” />

From here, you can populate the XML document programmatically; generally, however, you will want to
load preexisting XML documents into a blank XML DOM object.

Loading XML Data
Firefox and Opera support the same load() method as IE. Therefore, you can use the same code to load
external XML data in all three browsers:

oXmlDom.load(“books.xml”);

Also like IE, Firefox and Opera implement the async property: setting async to false forces the docu-
ment to be loaded in synchronous mode; otherwise, the document is loaded asynchronously. There are,
however, some differences in the implementations.

One major difference is that Firefox and Opera don’t have the readyState property or the
onreadystatechange event handler. Instead, they support the load event and the onload event
handler. The load event fires after the document is completely loaded:

oXmlDom.onload = function () {
//Do something when the document is fully loaded.

};
oXmlDom.load(“books.xml”);

Currently, Safari doesn’t support the load() method. The only way to retrieve
XML documents is to use the XMLHttpRequest object and retrieve the responseXML
property.

160

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 160

Firefox, Opera, and Safari do not implement the loadXML() method; however, it is possible to emulate
this method’s behavior through the DOMParser object. This object has a method called
parseFromString(), which loads a string and parses it into a document:

var sXml = “<root><person><name>Jeremy McPeak</name></person></root>”;
var oParser = new DOMParser();
var oXmlDom = oParser.parseFromString(sXml,”text/xml”);

In this code, a string of XML is created to pass to the DOMParser. The two arguments for
parseFromString() are the XML string and the content type of the data (typically set to “text/xml”).
The parseFromString() method returns an XML DOM object as if it were created using
createDocument().

Opera 9 also supports DOM 3 Load/Save specification; however, it is beyond the scope of this book to
cover these interfaces in detail.

Retrieving XML Data in the Other Browsers
Despite all of their differences, IE and the other browsers do share many properties and methods used to
retrieve XML data contained in the document. As in IE, you can retrieve the root element of the docu-
ment by using the documentElement property, as follows:

var oRoot = oXmlDom.documentElement;

The non-IE browsers also support the W3C standard properties of attributes, childNodes,
firstChild, lastChild, nextSibling, nodeName, nodeType, nodeValue, ownerDocument,
parentNode, and previousSibling. Unfortunately, these browsers do not support the Microsoft-
proprietary text and xml properties, but it is possible to emulate their behavior.

As a quick recap, the text property returns the content of the node or the concatenated text of the cur-
rent node and its descendants. Therefore, it returns not only the text of the existing node but also the text
of all child nodes; this is easy enough to emulate. A simple function that takes a node as an argument
can provide the same result:

function getText(oNode) {
var sText = “”;
for (var i = 0; i < oNode.childNodes.length; i++) {

if (oNode.childNodes[i].hasChildNodes()) {
sText += getText(oNode.childNodes[i]);

} else {
sText += oNode.childNodes[i].nodeValue;

}
}
return sText;

}

In getText(), sText stores every piece of text that is retrieved. As the for loop iterates through
oNode’s children, each child is checked to see if it contains children. If it does, the childNode is passed
into getText() and goes through the same process. If no children exist, then the nodeValue of the cur-
rent node is added to the string (for text nodes, this is just the text string). After all children have been
processed, the function returns sText.

161

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 161

The IE xml property serializes all XML contained in the current node. This can be accomplished by using
an XMLSerializer object, common to Firefox, Opera, and Safari. This object has a single method called
serializeToString(), which is used to serialize a DOM node:

function serializeXml(oNode) {
var oSerializer = new XMLSerializer();
return oSerializer.serializeToString(oNode);

}

The serializeXml() function takes an XML node as an argument. The result of this method, a string
representation of the XML data, is returned to the caller.

IE, Firefox, Opera, and Safari share the same W3C DOM methods for manipulating nodes. Refer to the
“Manipulating the DOM in IE” section earlier in this chapter for a refresher.

Cross-Browser XML
In an Ajax application, and most JavaScript code, you always need to consider cross-browser differences.
When using an XML-based solution in multiple browsers, you have two options: create your own func-
tions that use the correct code based on the browser, or use a ready-made library. Most of the time it’s
easiest to use a preexisting library, such as the zXml library introduced in Chapter 2. Along with XHR
support, zXml also provides common interfaces for XML operations.

For example, to create an XML DOM document, you can use zXmlDom.createDocument():

var oXmlDom = zXmlDom.createDocument();

This single line of code can be used instead of writing separate browser-dependent code each time a
DOM document is needed. Additionally, zXml adds a variety of IE functionality to the standard DOM
document.

One of the major things zXml does for convenience is to add support for the readyState property and
the onreadystatechange event handler. Instead of needing to use the separate onload event handler
in Firefox, you can write one set of code without browser detection, such as:

oXmlDom.onreadystatechange = function () {
if (oXmlDom.readyState == 4) {

//Do something when the document is fully loaded.
}

};

The zXml library also adds the xml and text attributes to all nodes in Firefox. Instead of using an
XMLSerializer or a standalone function to get these values, you can use them the same way as in IE:

var oRoot = oXmlDom.documentElement;

var sFirstChildText = oRoot.firstChild.text;

var sXml = oRoot.xml;

162

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 162

Note that these properties will only work in IE and Firefox. Opera and Safari do not currently support
getters and setters; so, the getText() and getXml() methods are provided for these browsers. To get
the text or XML code from a node in all browsers, the JavaScript would look like this:

var oRoot = oXmlDom.documentElement;
var sFirstChildText = oRoot.firstChild.text || oRoot.firstChild.getText();
var sXml = oRoot.xml || oRoot.getXml();

The zXml library also provides a loadXML() method for the non-IE browsers, eliminating the need to
use a DOMParser object.

var oXmlDom2 = zXmlDom.createDocument();
oXmlDom2.loadXML(sXml);

Lastly, the zXml library adds a parseError object for non-IE browsers, which emulates the correspond-
ing object in IE. The one major difference is the errorCode property, which is simply set to a non-zero
number when an error occurs. Therefore, you shouldn’t use this property to look for a specific error,
only to see if an error has occurred. Other than that, you can use the other properties as you would in IE:

if (oXmlDom.parseError.errorCode != 0) {

var str = “An error occurred!!\n” +
“Description: “ + oXmlDom.parseError.reason + “\n” +
“File: “ + oXmlDom.parseError.url + “\n” +
“Line: “ + oXmlDom.parseError.line + “\n” +
“Line Position: “ + oXmlDom.parseError.linePos + “\n” +
“Source Code: “ + oXmlDom.parseError.srcText;

alert(str);
} else {

//Code to do for successful load.
}

You certainly aren’t required to use a cross-browser XML library for your solutions, but it can definitely
help.

A Basic XML Example
XML is a semantic, descriptive language. Generally, the elements contained in any given XML document
describe the data of that document, thus making it a decent data store for static information, or informa-
tion that doesn’t change often.

Imagine you run an online bookstore and have a list of Best Picks whose information is stored in an
XML document, books.xml. This information can be displayed to the user without a server component.
The following example uses the zXml library to load the XML file, parse through it, and display the
information on a web page using DOM methods.

163

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 163

The books.xml file contains the following XML data:

<?xml version=”1.0” encoding=”utf-8”?>

<bookList>
<book isbn=”9780470109496”>

<title>Professional Ajax</title>
<author>Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett</author>
<publisher>Wrox</publisher>

</book>
<book isbn=”0764579088”>

<title>Professional JavaScript for Web Developers</title>
<author>Nicholas C. Zakas</author>
<publisher>Wrox</publisher>

</book>
<book isbn=”0764557599”>

<title>Professional C#</title>
<author>Simon Robinson, et al</author>
<publisher>Wrox</publisher>

</book>
<book isbn=”1861006314”>

<title>GDI+ Programming: Creating Custom Controls Using C#</title>
<author>Eric White</author>
<publisher>Wrox</publisher>

</book>
<book isbn=”1861002025”>

<title>Professional Visual Basic 6 Databases</title>
<author>Charles Williams</author>
<publisher>Wrox</publisher>

</book>
</bookList>

The document element <bookList/> contains a few <book/> elements, which include information
about a given book.

Loading XML Data
The first step is to create an XML DOM document and load the XML data into it. Because books.xml
will be loaded asynchronously, the onreadystatechange event handler must be set:

var oXmlDom = zXmlDom.createDocument();
oXmlDom.onreadystatechange = function () {

if (oXmlDom.readyState == 4) {

}
};

When the readystatechange event fires and the event handler is called, the readyState property is
checked; a value of 4 indicates that the document is completely loaded and the DOM is ready to use.

164

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 164

The next step is to check for errors; even though the document is loaded, it does not mean that no errors
were found by the XML parser:

var oXmlDom = zXmlDom.createDocument();
oXmlDom.onreadystatechange = function () {

if (oXmlDom.readyState == 4) {
if (oXmlDom.parseError.errorCode == 0) {

parseBookInfo(oXmlDom);
} else {

var str = “An error occurred!!\n” +
“Description: “ + oXmlDom.parseError.reason + “\n” +
“File: “ + oXmlDom.parseError.url + “\n” +
“Line: “ + oXmlDom.parseError.line + “\n” +
“Line Position: “ + oXmlDom.parseError.linePos + “\n” +
“Source Code: “ + oXmlDom.parseError.srcText;

alert(str);
}

}
};

If no error occurred (parseError is 0), the XML DOM document is passed to parseBookInfo(), the
function that parses the book list. If an error did occur, the error information collected in the
parseError object is displayed in an alert box.

With the onreadystatechange event handler written, the load() method is used to load the XML
data:

oXmlDom.load(“books.xml”);

The next step in the process is to parse the XML data.

Parsing the Book List
The parseBookInfo() function is in charge of parsing the DOM document. This function accepts one
argument, which is the DOM document itself:

function parseBookInfo(oXmlDom) {
var oRoot = oXmlDom.documentElement;
var oFragment = document.createDocumentFragment();

The variable oRoot is set to the documentElement of the XML document for convenience. Next, a docu-
ment fragment is created. Since the parseBookInfo() function generates many HTML elements and,
thus, many changes to the HTML DOM loaded in the browser, this fragment is used to efficiently build
up the new elements before adding them to the HTML document; adding each element to the HTML
DOM individually is an expensive process in terms of the time it takes to display the changes. Instead,
each element is added to the document fragment, which will be added to the document once all HTML
elements are created. Doing so allows the HTML DOM to be updated only once instead of multiple
times, resulting in faster rendering.

165

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 165

Only <book/> elements are children of the document element, so it’s possible to retrieve a NodeList of
<book/> elements and iterate through it:

var cBooks = oRoot.getElementsByTagName(“book”);

for (var i = 0, iLen=cBooks.length; i < iLen; i++) {
var sIsbn = cBooks[i].getAttribute(“isbn”);
var sAuthor, sTitle, sPublisher;

Inside the for loop, the actual parsing begins. To start, the isbn attribute of the <book/> element is
retrieved with getAttribute() and stored in sIsbn. This value is used to display the book cover as
well as the actual ISBN value to the user. The variables sAuthor, sTitle, and sPublisher are also
declared; these variables will hold the values of the <author/>, <title/>, and <publisher/> ele-
ments, respectively.

Next, the book data is retrieved, which can be done in a number of different ways. You could use the
childNodes collection and loop through the children, but this example uses a different approach. The
same result can be achieved using a do...while loop, which makes use of the firstChild and
nextSibling properties:

var oCurrentChild = cBooks[i].firstChild;

do {
switch (oCurrentChild.tagName) {

case “title”:
sTitle = oCurrentChild.text;
break;

case “author”:
sAuthor = oCurrentChild.text;
break;

case “publisher”:
sPublisher = oCurrentChild.text;
break;

default:
break;

}
} while (oCurrentChild = oCurrentChild.nextSibling);

Note that since getElementsByTagName() returns a NodeList, it is more efficient
to store the length of the list in a variable, iLen, and use it to control the for loop.
Putting cBooks.length in a loop control field causes a DOM lookup every time it is
checked, which is an expensive process. By storing the length of the list in a variable
and comparing against that, the performance is greatly improved.

166

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 166

In the first line, the variable oCurrentChild is assigned the first child of the current <book/> element.
(Remember, this occurs inside of the for loop.) The child’s tagName is used in a switch block to deter-
mine what should be done with its data. When a match to the tagName is found, the node’s text is
retrieved and stored in the sTitle, sAuthor, or sPublisher variables. After that, the oCurrentChild
variable is assigned the node immediately following the current node by using the nextSibling prop-
erty. If a next sibling exists, the loop continues; if not, oCurrentChild is null and the loop exits.

When all data variables contain the needed data, you can start generating HTML elements to display
that data. The HTML structure of the elements looks like this:

<div class=”bookContainer”>

<div class=”bookContent”>

<h3>Professional Ajax</h3>
Written by: Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett

ISBN #9780470109496
<div class=”bookPublisher”>Published by Wrox</div>

</div>
</div>

To add some readability to the list, the containing <div/> elements have alternating background colors.
Books that are an odd number in the list (book number 1, 3, and so on) have a grayish background color
and a class name of bookContainer-odd, whereas even-numbered books (book number 0, 2, and so on)
have a white background defined by the bookContainer CSS class.

Generating this HTML output through DOM methods is an easy but lengthy process. The first step is to
create the containing <div/>, the , and the content <div/> elements, which is done using the
createElement() DOM method once for each:

var divContainer = document.createElement(“div”);
var imgBookCover = document.createElement(“img”);
var divContent = document.createElement(“div”);

var sOdd = (i % 2)?””:”-odd”;
divContainer.className = “bookContainer” + sOdd;

Along with the element creation, the differing class names are processed here as well. The current book
is judged to be odd or even by using the modulus (%) operator. The sOdd variable is assigned the appro-
priate suffix, an empty string for even and “-odd” for odd, and used in the className assignment.

You can then assign the properties of the book cover image. These PNG images use the ISBN number as
their file names:

imgBookCover.src = “images/” + sIsbn + “.png”;
imgBookCover.className = “bookCover”;
divContainer.appendChild(imgBookCover);

167

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 167

Here, the src and className properties are assigned and the image is appended to divContainer.
With the image finished, the text content can be added. The first piece of information to be added is the
book’s title, which is a level 3 heading element (<h3/>). Again, this element is created with
createElement():

var h3Title = document.createElement(“h3”);
h3Title.appendChild(document.createTextNode(sTitle));
divContent.appendChild(h3Title);

To create a text node containing the title, the createTextNode() method is used, the result of which is
appended to the <h3/> element. Then, the completed heading is appended to divContent.

The author and ISBN information are next to be added. These two pieces of information are text nodes
and have no parent element other than divContent. There is, however, one breaking element (
) in
between the two text nodes:

divContent.appendChild(document.createTextNode(“Written by: “ + sAuthor));
divContent.appendChild(document.createElement(“br”));
divContent.appendChild(document.createTextNode(“ISBN: #” + sIsbn));

In this code, the text node containing the author information is appended to divContent, followed by
the creation and appending of the breaking element (
). On the third line, the text node containing
the ISBN information is created and appended.

The last piece of information to add is the publisher:

var divPublisher = document.createElement(“div”);
divPublisher.className = “bookPublisher”;
divPublisher.appendChild(document.createTextNode(“Published by: “ + sPublisher));
divContent.appendChild(divPublisher);

The publisher is displayed in a <div/> element. After its creation, the className “bookPublisher” is
assigned and the text node containing the publisher’s name is appended to the element. The
divPublisher element is complete, and so can be appended to divContent.

At this point, all data operations are complete. However, divContent still lacks its class name and must
be appended to divContainer, which in turn must be appended to the document fragment. The fol-
lowing three lines of code do this:

divContent.className = “bookContent”;
divContainer.appendChild(divContent);
oFragment.appendChild(divContainer);

The last step is to append the document fragment to the page body after the book nodes are iterated
through:

document.body.appendChild(oFragment);

168

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 168

This code doesn’t actually append the document fragment itself; instead, it appends all the child nodes
of the document fragment, making all the changes to the HTML DOM at once. With this final line of
code, parseBookInfo() is complete.

Tying It Together
The body of this web page is generated entirely by JavaScript. Because of this, the element creation and
insertion code must execute after the document is loaded. To do this, define a function called init() to
house the XML DOM creation code:

function init() {
var oXmlDom = zXmlDom.createDocument();
oXmlDom.onreadystatechange = function () {

if (oXmlDom.readyState == 4) {
if (oXmlDom.parseError.errorCode == 0) {

parseBookInfo(oXmlDom);
} else {

alert(“An Error Occurred: “ + oXmlDom.parseError.reason);
}

}
};
oXmlDom.load(“books.xml”);

}

The init() function handles the window load event. This ensures that the JavaScript-generated ele-
ments are added to the page without causing errors.

The example must be run as part of an HTML document. All that is required are two <script/> ele-
ments, a <link/> element for the CSS, and the assignment of the onload event handler:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>XML Example</title>
<link rel=”stylesheet” type=”text/css” href=”books.css” />
<script type=”text/javascript” src=”zxml.js”></script>
<script type=”text/javascript” src=”books.js”></script>

</head>
<body onload=”init()”>

</body>
</html>

When this example is run, it yields the result shown in Figure 6-2.

169

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 169

Figure 6-2

XPath Support in Browsers
As XML grew in popularity, the need to access specific pieces of data contained within large amounts of
code became apparent. In July 1999, XML Path Language (XPath) was introduced in the eXtensible
Stylesheet Language (XSL) specification as a means to find any node within an XML document. XPath
uses a non-XML syntax that closely resembles the path syntax of a file system, allowing the construction
of paths to any part of a document. The language consists of location paths and other expressions, as
well as a few helpful functions to aid in retrieving specific data.

Introduction to XPath
An XPath expression consists of two parts: a context node and a selection pattern. The context node is
the context from which the selection pattern begins. Referring to books.xml from the previous section,
consider this XPath expression:

book/author

170

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 170

If this expression were executed at the root level context, all <author/> nodes would be returned
because the <book/> element is a child of the document element and contains an <author/> element.
This expression is not very specific, so all <author/> elements are returned.

What if you want to retrieve only the <book/> element that has a specific ISBN? The XPath expression
would look like this:

book[@isbn=’9780470109496’]

The book part of the expression describes which element to retrieve. Inside of the square brackets is a
condition that this element must match. The @isbn part represents the isbn attribute (@ being short for
attribute). So, this expression reads “find the book elements that have an isbn attribute of
‘9780470109496’.”

XPath expressions can also be very complex. Consider the following expression:

book[author[contains(text(),’McPeak’)]]

This expression reads, “find the book elements that have author elements whose text contains the string
‘McPeak’.” Since this is a more complicated expression, it helps to break it down, working from the out-
side towards the inside. Removing all conditions, you have this expression:

book[...]

First, you know that a <book/> element will be returned, since it is the outermost element; next come
the conditions. Inside the first set of brackets is the <author/> element:

author[...]

So, now you now know you are looking for a book element with a child <author/> element. However,
the children of the <author/> element need to be checked as well because the expression doesn’t end
there:

contains(text(),’McPeak’)

The contains() function takes two arguments and returns true if the first string argument contains
the second string argument. The text() function, which is an XSL function, returns a node-set of all
descendent nodes. When passed to the contains() function, the node-set is implicitly converted to a
string, essentially resulting in the text contents of the <author/> element being passed as the first argu-
ment in contains(). The second argument passed to contains() is the search text, in this case
‘McPeak’.

The resulting node set is one <book/> element, because there is only one book with an author (or coau-
thor) whose name is McPeak.

Note that the contains() function, like all XPath functions, is case-sensitive.

171

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 171

As you can see, XPath is a useful language that makes finding specific nodes in XML data rather simple.
It is no wonder that browser makers are implementing XPath in their browsers for client-side use.

XPath in IE
Microsoft’s implementation of XPath is a part of MSXML 3.0 and later. If you are using any version of
Windows XP, or have IE 6.0 or higher installed, then your browser has this capability. If not, you will
need to download and install the latest MSXML package.

Before using XPath, however, it is important to set the SelectionLanguage property. In MSXML3, the
default SelectionLanguage is XSLPattern, not XPath. To set this property, use the setProperty()
method:

oXmlDom.setProperty(“SelectionLanguage”, “XPath”);

Once SelectionLanguage is set, it is safe to use XPath to select nodes.

Microsoft chose to implement two methods that select nodes based on XPath expressions. The first,
selectSingleNode(), returns the first node within its context that matches the expression or null if
there is no match. For example:

var oFirstAuthor = oXmlDom.documentElement.selectSingleNode(“book/author”);

This code returns the first <author/> element that is a child of a <book/> element in the context of
documentElement. The result of this is the following node:

<author>Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett</author>

The second method in Microsoft’s XPath implementation is selectNodes(). This method returns a
NodeList, a collection of all nodes that match the pattern in the XPath expression:

var cAuthors = oXmlDom.documentElement.selectNodes(“book/author”);

As you may have guessed, all <author/> elements with a parent of <book/> in the context of the docu-
ment element are returned. If the pattern cannot be matched in the document, a NodeList is still
returned, but it has a length of 0. It is a good idea to check the length of a returned NodeList before
attempting to use it:

var cAuthors = oXmlDom.documentElement.selectNodes(“book/author”);

if (cAuthors.length > 0) {
//Do something

}

All MSXML versions after 3.0 have XPath as the default value of
SelectionLanguage.

172

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 172

Working with Namespaces
The X in XML stands for eXtensible. There are no predefined elements in an XML document; every ele-
ment in any given XML document was created by a developer. This extensibility is part of what makes
XML so popular, but it also inherently causes a problem: naming conflicts. For example, consider the fol-
lowing XML document:

<?xml version=”1.0” encoding=”utf-8”?>

<addresses>
<address>

<number>12345</number>
<street>Your Street</street>
<city>Your City</city>
<state>Your State</state>
<country>USA</country>

</address>
</addresses>

There is nothing out of the ordinary in this document. It simply describes an address located in the USA.
But what if the following lines are added?

<?xml version=”1.0” encoding=”utf-8”?>

<addresses>
<address>

<number>12345</number>
<street>Your Street</street>
<city>Your City</city>
<state>Your State</state>
<country>USA</country>

</address>

<address>
<ip>127.0.0.1</ip>
<hostname>localhost</hostname>

</address>
</addresses>

This document now describes two types of addresses: a physical mailing address and a computer
address. While both are legitimate addresses, handling this information requires different approaches,
especially since both <address/> elements contain completely different child elements. This is where
namespaces come into play.

Namespaces consist of two parts: a namespace URI and a prefix. The namespace URI identifies the name-
space. Generally, namespace URIs are web site URLs, because they must be unique to access different
web sites. The prefix is a local name in the XML document for the namespace. Every tag name in the
namespace uses the namespace prefix. The syntax of namespace declarations is:

xmlns:namespace-prefix=”namespaceURI”

173

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 173

The xmlns keyword tells the XML parser that a namespace declaration is taking place. The namespace-
prefix is the local name used in the elements that fall under this namespace, and namespaceURI is the
universal resource identifier that the prefix represents.

Namespace declarations must appear before the namespace is used in the XML document. In the exam-
ple, the root element contains the namespaces declarations:

<?xml version=”1.0” encoding=”utf-8”?>

<addresses xmlns:mail=”http://www.wrox.com/mail”
xmlns:comp=”http://www.wrox.com/computer”>

<mail:address>
<mail:number>12345</mail:number>
<mail:street>Your Street</mail:street>
<mail:city>Your City</mail:city>
<mail:state>Your State</mail:state>
<mail:country>USA</mail:country>

</mail:address>
<comp:address>

<comp:ip>127.0.0.1</comp:ip>
<comp:hostname>localhost</comp:hostname>

</comp:address>
</addresses>

This newly edited XML document defines two namespaces: one with the prefix mail to represent a mail-
ing address, and the other with a prefix of comp to represent a computer address. Every element associ-
ated with a certain address type is associated with the corresponding namespace, so every element
associated as a mailing address has the mail prefix, whereas every computer-based address has the
comp prefix.

The use of namespaces avoids naming conflicts, and XML processors now understand the difference
between the two address types.

Namespaces in XPath add a slight complication when using selectSingleNode() and
selectNodes(). Consider the following modified version of books.xml:

<?xml version=”1.0” encoding=”utf-8”?>

<bookList xmlns=”http://site1.com” xmlns:pub=”http://site2.com”>
<book isbn=”9780470109496”>

<title>Professional Ajax</title>
<author>Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett</author>
<pub:name>Wrox</pub:name>

</book>
<book isbn=”0764579088”>

<title>Professional JavaScript for Web Developers</title>
<author>Nicholas C. Zakas</author>
<pub:name>Wrox</pub:name>

</book>
<book isbn=”0764557599”>

<title>Professional C#</title>
<author>Simon Robinson, et al</author>

174

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 174

<pub:name>Wrox</pub:name>
</book>
<book isbn=”1861006314”>

<title>GDI+ Programming: Creating Custom Controls Using C#</title>
<author>Eric White</author>
<pub:name>Wrox</pub:name>

</book>
<book isbn=”1861002025”>

<title>Professional Visual Basic 6 Databases</title>
<author>Charles Williams</author>
<pub:name>Wrox</pub:name>

</book>
</bookList>

This newly revised document has two namespaces in use: the default namespace specified by xmlns=
”http://site1.com”, followed by the pub namespace specified as xmlns:pub=”http://site2.com”.
A default namespace does not have a prefix; therefore, all non-prefixed elements in the document use
the default namespace. Notice that the <publisher/> elements are replaced by <pub:name/> elements.

When dealing with an XML document that contains namespaces, these namespaces must be declared in
order to use XPath expressions. The MSXML DOM document exposes a method called setProperty(),
which is used to set second-level properties for the object. The property “SelectionNamespaces”
should be set with an alias namespace for any default or external namespace. Aside from using the
setProperty() method, namespace declarations are assigned just as they are in XML documents:

var sNameSpace = “xmlns:na=’http://site1.com’ xmlns:pub=’http://site2.com’”;
oXmlDom.setProperty(“SelectionNamespaces”, sNameSpace);

The namespaces na and pub represent the namespaces used in the XML document. Notice that the
namespace prefix na is defined for the default namespace. MSXML will not recognize a default name-
space when selecting nodes with XPath, so the declaration of an alias prefix is necessary. Now that the
SelectionNamespace property is set, you can select nodes within the document:

var oRoot = oXmlDom.documentElement;
var sXPath = “na:book/pub:name”;
var cPublishers = oRoot.selectNodes(sXPath);

if (cPublishers.length > 0) {
alert(cPublishers.length + “ <pub:name/> elements found with “ + sXPath);

}

The XPath expression uses the namespaces specified in the SelectionNamespaces property and selects
all <pub:name/> elements. In the case of this example, a NodeList consisting of five elements is
returned, which you can then use.

XPath in Other Browsers
The XPath implementation in the non-IE browsers follow the DOM standard, which is quite different
from the IE implementation. This different implementation allows XPath expressions to be run against
HTML and XML documents alike. At the center of this are two primary objects: XPathEvaluator and
XPathResult.

175

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 175

Firefox is the only browser that allows you to explicitly create XPathEvaluator objects by calling the
class’ constructor. The W3C documentation, however, describes that a DOM object should implement
the XPathEvaluator interface. Therefore, you do not need to create a separate XPathEvaluator object
in order to use XPath.

An object implementing the XPathEvaluator interface evaluates a given XPath expression using the
evaluate() method, which takes five arguments: the XPath expression to be evaluated, the context
node that the expression should be run against, a namespace resolver (which is a function that handles
mapping prefixes to namespaces), the result type (10 different result types are available), and an
XPathResult object to contain the results (if this argument is null, then a new XPathResult object
is returned).

Before moving on, it’s important to understand the various result types that can be returned from
evaluate(). These are:

❑ XPathResult.ANY_TYPE, which returns no specific type. The method returns the type that nat-
urally results from the evaluation of the expression.

❑ XPathResult.ANY_UNORDERED_NODE_TYPE, which returns a node set of one node that is
accessed through the singleNodeValue property; null is returned if there are no matching
nodes. The returned node may or may not be the first occurring node.

❑ XPathResult.BOOLEAN_TYPE, which returns a Boolean value.

❑ XPathResult.FIRST_ORDERED_NODE_TYPE, which returns a node set consisting of one node.
This node is accessed with the singleNodeValue property of the XPathResult class. The node
returned is the first occurring one in the document.

❑ XPathResult.NUMBER_TYPE, which returns a number value.

❑ XPathResult.ORDERED_NODE_ITERATOR_TYPE, which returns a document-ordered node set
that can be iterated through using the iterateNext() method; therefore, you can easily access
each individual node in the set.

❑ XPathResult.ORDERED_NODE_SNAPSHOT_TYPE, which returns a document-ordered node set
that is a snapshot of the result set. Any modifications made to the nodes in the document do not
affect the retrieved results.

❑ XPathResult.STRING_TYPE, which returns a string value.

❑ XPathResult.UNORDERED_NODE_ITERATOR_TYPE, which returns a node set that can be iter-
ated through; however, the results may or may not be in the same order as they appear in the
document.

❑ XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE, which returns an unordered snapshot node
set. Any modifications made to the nodes in the document do not affect the result set.

At the time of this writing, Safari does not support XPath; however, the latest ver-
sion of WebKit (the engine behind Safari) supports XPath to some extent. You can
download the latest WebKit nightly at http://www.webkit.org.

176

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 176

The most common result type is XPathResult.ORDERED_NODE_ITERATOR_TYPE:

var sXPath = “book/author”;
var oResult = oXmlDom.evaluate(sXPath, document, null,

XPathResult.ORDERED_NODE_ITERATOR_TYPE, null);

var aNodes = new Array;

if (oResult != null) {
var oElement;
while (oElement = oResult.iterateNext()) {

aNodes.push(oElement);
}

}

This code uses the evaluate() method of a DOM object to evaluate the XPath expression book/author
in the context of the document’s root element. Because the result type is
ORDERED_NODE_ITERATOR_TYPE, the evaluation returns a node set that you can iterate through using
the iterateNext().

The iterateNext() method resembles the nextSibling property of a DOM node in that it selects the
next node in the result set and returns null when the end of the result set is reached. This function
enables you to use it in a while loop as in the previous example; as long as oElement is not null, it is
added to the aNodes array through the push() method. Populating an array gives you IE-like function-
ality; therefore, you can use it in a for loop or access separate array elements easily.

Working with a Namespace Resolver
A namespace resolver translates an element’s namespace prefix in an XPath expression into the namespace
URI associated with that prefix. The W3C specification states that an XPathNSResolver object can be
used as a resolver, but it also states that you can define a function to handle the translation. This particu-
lar function can have any name.

Writing a namespace resolver is simple. The function must accept a string value as an argument, and it
must return a string. The string argument is a namespace prefix, for which the function must return a
namespace URI. The following namespace resolver function uses the values from the IE example:

function nsResolver(sPrefix) {
switch (sPrefix) {

case “na”:
return “http://site1.com”;
break;

case “pub”:
return “http://site2.com”;
break;

default:
return null;
break;

}
}

177

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 177

With the resolver written, you can use the following XPath expression on the modified books.xml docu-
ment from the IE namespace example:

var sXPath = “na:book/pub:name”;

var oResult = oXmlDom.evaluate(sXPath,oXmlDom.documentElement,nsResolver,
XPathResult.ORDERED_NODE_ITERATOR_TYPE, null);

var aNodes = new Array;

if (oResult != null) {
var oElement;
while (oElement = oResult.iterateNext()) {

aNodes.push(oElement);
}

}

This example resembles the last evaluation code. However, notice the addition to the evaluate()
method: the pointer to the nsResolver() function, written earlier, is passed in to handle the name-
spaces in the XPath expression. The resulting NodeList is converted to an array by using the
iterateNext() method of the XPathResult class to iterate through the result.

As you can see, the W3C XPath implementation is quite different from the Microsoft approach; so it is
helpful to use a cross-browser library that enables you to perform XPath evaluations easily.

Cross-Browser XPath
The zXml library provides cross-browser XPath functionality through a common interface. The object
responsible for providing XPath functionality is zXPath, which has two methods.

The first method is selectSingleNode(). This method, like the IE method of the same name, returns
the first node that matches a pattern. Unlike the IE implementation, this method accepts three argu-
ments: the context node, the XPath expression string, and a hashtable with the prefix as keys and the
namespace URIs as values. Following are a couple of examples of how these hashtables can look:

//Assigning each key a value
var oXmlNs = {};
oXmlNs[“na”] = “http://site1.com”;
oXmlNs[“pub”] = “http://site2.com”;
oXmlNs[“ns”] = “http://site3.com”;

//Using object literal notation to create a hashtable
var oXmlNs = {

na : “http://site1.com”,
pub : “http://site2.com”,
ns : “http://site3.com”

};

If you are not working with namespaces, then the first two arguments of selectSingleNode() are the
only required arguments.

178

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 178

The returned result of selectSingleNode() is the selected XML node, or null if a match cannot be
found. If the browser does not support XPath, an error is thrown stating that the browser does not have
an XPath engine installed. The following example evaluates an XPath expression against the document
element:

var oRoot = oXmlDom.documentElement;
var oNode = zXPath.selectSingleNode(oRoot, “book/author”, null);

if (oNode) {
alert(oNode.xml || oNode.getXml());

}

This example searches for the first <author/> element contained in a <book/> element in the context of
the document root. If found, the serialized form of the XML data is displayed to the user in an alert box.

The second method of zXPath is selectNodes(), which returns a node set much like the IE
selectNodes() method. The syntax closely resembles that of the selectSingleNode() method above,
and the arguments are exactly the same, and the same namespace rules apply. Also as with
selectSingleNode(), an error is thrown in the event that the browser does not have an XPath engine
installed. The next example demonstrates the selectNodes() method:

var oNamespaces = {
na : “http://site1.com”,
pub : “http://site2.com”

};

var oRoot = oXmlDom.documentElement;
var sXPath = “na:book/pub:name”;
var oNodes = zXPath.selectNodes(oRoot, sXPath, oNamespaces);

if (oNodes.length > 0) {
alert(oNodes.length);

}

This example, much like the selectSingleNode() example, searches for all author elements of a docu-
ment that incorporates namespaces. If the result set has a length greater than 0, the length of the result is
displayed to the user.

XPath is a powerful tool to navigate through and select certain nodes in an XML document, although it
was never intended to be used as a standalone tool. Instead, it was created for use in XSL
Transformations.

XSL Transformation Support in Browsers
eXtensible Stylesheet Language (XSL) is a family of languages that are designed to transform XML data.
XSL refers to three main languages: XSL Transformations (XSLT), which is a language that transforms
XML documents into other XML documents; XPath, which was discussed in the previous section;
and XSL Formatting Objects (XSL-FO), which describes how the transformed data should be rendered
when presented. Since no browser currently supports XSL-FO, all transformations must be accom-
plished through the use of XSLT.

179

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 179

Introduction to XSLT
XSLT is an XML-based language designed to transform an XML document into another data form. This
definition may make XSLT to be a not-so-useful technology, but the truth is far from the matter. The most
popular use of XSLT is to transform XML documents into HTML documents, which is precisely what
this introduction covers.

XSLT documents are nothing more than specialized XML documents, so they must conform to the same
rules as all XML documents: they must contain an XML declaration, they must have a single root ele-
ment, and they must be well formed.

As an example, consider books.xml. The information contained in this file can be transformed into
HTML using XSLT, without the need to build the DOM structure manually. For starters, you need an
XSLT document, books.xsl, which begins with an XML declaration and a root element:

<?xml version=”1.0” encoding=”UTF-8” ?>

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”html” omit-xml-declaration=”yes” indent=”yes” />

</xsl:stylesheet>

The document element of an XSLT document is <xsl:stylesheet/>. In this element, the XSL version is
specified and the xsl namespace is declared. This required information determines the behavior of the
XSLT processor; without it, an error will be thrown. The xsl prefix is also important, as this allows all
XSL directives to be visibly and logically separate from other code in the document.

The <xsl:output/> element defines the format of the resulting output. In this example, the resulting
transformation results in HTML data, with the XML declaration omitted and the elements indented. You
can specify the format to be plain text, XML, or HTML data.

Just like any application, a transformation must have an entry point. XSLT is a template-based language,
and the processor works on an XML document by matching template rules. In this example, the first ele-
ment to match is the root of the XML document. This is done by using the <xsl:template/> directive.
Directives tell the processor to execute a specific function. The <xsl:template/> directive creates a tem-
plate that is used when the pattern in the match attribute is matched:

<?xml version=”1.0” encoding=”UTF-8” ?>

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”html” omit-xml-declaration=”yes” indent=”yes” />

<xsl:template match=”/”>

<html>
<head>

<link rel=”stylesheet” type=”text/css” href=”books.css” />
<title>XSL Transformations</title>

</head>

180

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 180

<body>
<xsl:apply-templates />

</body>
</html>

</xsl:template>

</xsl:stylesheet>

The match attribute takes an XPath expression to select the proper XML node. In this case, it is the root
element of books.xml (the XPath expression / always selects the root node of the document). Inside of
the template, you’ll notice HTML elements. These elements are a part of the transformation’s output.
Inside of the <body/> element, another XSL directive is found. The <xsl:apply-templates /> element
tells the processor to start parsing all templates within the context of the document element, which
brings the next template into play:

<?xml version=”1.0” encoding=”UTF-8” ?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”html” omit-xml-declaration=”yes” indent=”yes” />

<xsl:template match=”/”>

<html>
<head>

<link rel=”stylesheet” type=”text/css” href=”books.css” />
<title>XSL Transformations</title>

</head>
<body>

<xsl:apply-templates />
</body>

</html>

</xsl:template>

<xsl:template match=”book”>
<div class=”bookContainer”>

<xsl:variable name=”varIsbn” select=”@isbn” />
<xsl:variable name=”varTitle” select=”title” />

<div class=”bookContent”>

<h3><xsl:value-of select=”$varTitle” /></h3>
Written by: <xsl:value-of select=”author” />

ISBN #<xsl:value-of select=”$varIsbn” />
<div class=”bookPublisher”><xsl:value-of select=”publisher” /></div>

</div>
</div>

</xsl:template>

</xsl:stylesheet>

This new template matches all <book/> elements, so when the processor reaches each <book/> in the
XML document, this template is used. The first two XSL directives in this template are <xsl:variable/>,
which define variables.

181

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 181

Variables in XSL are primarily used in XPath expressions or attributes (where elements cannot be used
without breaking XML syntax). The <xsl:variable/> element has two attributes: name and select.
As you may have guessed, the name attribute sets the name of the variable. The select attribute speci-
fies an XPath expression and stores the matching value(s) in the variable. After the initial declaration,
variables are referenced to with the $ sign (so, the variable defined as varIsbn is later referenced as
$varIsbn).

The first variable, $varIsbn, is assigned the value of the <book/> element’s isbn attribute. The second,
$varTitle, is assigned the value of the <title/> element. These two pieces of information are used in
the attributes of the HTML element. To output variables in attributes, you surround the variable
name in braces:

Without the braces, the output would use the string literals “$varTitle” and “$varIsbn” instead.

The remainder of XSL directives in this example are <xsl:value-of/> elements. These elements
retrieve the value of the matched variable or node according to the select attribute. The select
attribute behaves in the same way as the select attributes of <xsl:variable/> do: they take an XPath
expression and select the node or variable that matches that expression. The first instance of
<xsl:value-of/> in this template references the $varTitle variable (notice the lack of braces), so the
value of the variable is used. Next, the value of the <author/> element is used; the same with
$varTitle and <publisher/>.

In order for an XML document to transform in the browser, it must have a stylesheet specified. In
books.xml, add the following line immediately after the XML declaration:

<?xml-stylesheet type=”text/xsl” href=”books.xsl”?>

This tells the XML processor to apply the stylesheet books.xsl to this document. Viewing this modified
XML document in a web browser will no longer show the XML structure, but it will show the resulting
transformation to HTML. However, using this directive won’t work through JavaScript. For that, you’ll
need to use some special objects.

XSLT in IE
There are two ways to transform an XML document in IE, both of which require the use of MSXML.
Starting with version 3.0, MSXML has full support for XSLT 1.0. If you don’t have Windows XP or IE 6, it
is time to upgrade. You can find the latest MSXML downloads at
http://msdn.microsoft.com/XML/XMLDownloads/.

The first and easiest method loads both the XML and XSLT documents into separate XML DOM objects:

Using variables in attributes of XSL directives, such as the select and name
attributes to name a few, is the exception to this rule. Using curly braces in these
types of attributes will cause an error, and the document transformation will fail.

182

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 182

var oXmlDom = zXmlDom.createDocument();
var oXslDom = zXmlDom.createDocument();

oXmlDom.async = false;
oXslDom.async = false;

oXmlDom.load(“books.xml”);
oXslDom.load(“books.xsl”);

When both documents are loaded, you call the transformNode() method to start the transformation:

var sResults = oXmlDom.transformNode(oXslDom);

The transformNode() method takes an XML DOM object as an argument (in this case, the XSL docu-
ment) and returns the transformed data as a string. But you don’t have to call transformNode() at the
document level; it can be called from any element in the XML document:

var sResults = oXmlDom.documentElement.firstChild.transformNode(oXslDom);

The transformNode() method will transform only the element it was called from and its children. In
this example, the first <book/> element is transformed, as shown in Figure 6-3.

Figure 6-3

183

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 183

The second method of transformations in IE is a bit more involved, but it also gives you more control
and features. This process involves creating multiple objects in the MSXML library. The first step in this
somewhat lengthy process is to create a thread-safe XML DOM object, which the XSL stylesheet is
loaded into:

var oXmlDom = zXmlDom.createDocument();
oXmlDom.async = false;
oXmlDom.load(“books.xml”);

var oXslDom = new ActiveXObject(“Msxml2.FreeThreadedDOMDocument.3.0”);
oXslDom.async = false;
oXslDom.load(“books.xsl”);

The FreeThreadedDOMDocument class is yet another ActiveX class and a part of the MSXML library.
You must use the FreeThreadedDomDocument class to create XSLTemplate objects, which this example
does (the next example shows the creation of a XSLTemplate object). In early versions of MSXML, every
call to the transformNode() method forced a recompile of the XSL stylesheet slowing the transforma-
tion process considerably. With a FreeThreadedDOMDocument, the compiled stylesheet is cached and
ready to use until it’s removed from memory.

After the XML DOM object creation, you must create another ActiveX object, an XSL template:

var oXslTemplate = new ActiveXObject(“Msxml2.XSLTemplate.3.0”);
oXslTemplate.stylesheet = oXslDom;

The XSLTemplate class is used to cache XSL stylesheets and create an XSLProcessor; so, after the tem-
plate is created, the XSL document is assigned to the XSLTemplate class’s stylesheet property, which
caches and loads the XSL stylesheet.

The next step in this process is to create an XSLProcessor, which is created by calling the
createProcessor() method of the XSLTemplate class:

var oXslProcessor = oXslTemplate.createProcessor();
oXslProcessor.input = oXmlDom;

After creation of the processor, its input property is assigned oXmlDom, the XML DOM object containing
the XML document to transform. At this point, everything the processor requires is in place, so all that
remains is the actual transformation and the retrieval of the output:

oXslProcessor.transform();
document.body.innerHTML = oXslProcessor.output;

Unlike transformNodes(), the transform() method does not return the resulting output as a string.
To retrieve the output of the transformation, use the output property of the XSLProcessor object. This
entire process requires much more coding than the transformNode() method and yields the same
result. So, why use this process?

MSXML provides a few extra methods that can be used in these transformations. The first is
addObject(). This method adds a JavaScript object to the stylesheet, and can even call methods and
output property values in the transformed document. Consider the following object:

184

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 184

var oBook = {
propertyOne : “My Current Books”,
methodOne : function () {

alert(“Welcome to my Book List”);
return “”;

}
};

What if you wanted to use this information in the transformation? Using the addObject() method, you
can pass this information into the XSLT stylesheet, passing in two arguments: the oBook object and a
namespace URI to identify it. So, to add this object with a namespace URI of “http://my-object”, you
could do the following:

var oXmlDom = zXmlDom.createDocument();
oXmlDom.async = false;
oXmlDom.load(“books.xml”);

var oXslDom = new ActiveXObject(“Msxml2.FreeThreadedDOMDocument.3.0”);
oXslDom.async = false;
oXslDom.load(“books.xsl”);

var oXslTemplate = new ActiveXObject(“Msxml2.XSLTemplate.3.0”);
oXslTemplate.stylesheet = oXslDom;

var oXslProcessor = oXslTemplate.createProcessor();
oXslProcessor.input = oXmlDom;

oXslProcessor.addObject(oBook, “http://my-object”);

oXslProcessor.transform();
document.body.innerHTML = oXslProcessor.output;

The oBook object is now passed to the XSLProcessor, meaning that the XSLT stylesheet can use it.
Now, the XSL document must be changed to look for this object and use its information. The first
requirement is to add a new namespace to the root element, <xsl:stylesheet/>. This namespace will
match the one used in addObject():

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:bookObj=”http://my-object”>

The prefix bookObj will be used to access this information. Now that the namespace and prefix are
ready to go, some <xsl:value-of/> elements should be added to the document to retrieve the object’s
members:

<xsl:template match=”/”>

<html>
<head>

<link rel=”stylesheet” type=”text/css” href=”books.css” />
</head>
<body>

185

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 185

<xsl:value-of select=”bookObj:methodOne()” />
<div align=”center”>

<xsl:value-of select=”bookObj:get-propertyOne()” />
</div>
<xsl:apply-templates />

</body>
</html>

</xsl:template>

Remember that the <xsl:value-of/> XSL directive retrieves the value of an element, or in this case, an
object. The first <xsl:value-of/> directive retrieves (or calls) methodOne(), which sends an alert wel-
coming the user to the page. The second <xsl:value-of/> directive is similar to the first, except that it
retrieves the value of the propertyOne property of the oBook object. When the transformed output is
displayed in the browser, the user will see the phrase My Current Books at the top of the page.

The next useful feature of the XSLProcessor is the addParameter() method. Unlike sending an object
into a transformation, parameters are a standard part of XSLT. Parameters are passed to the XSL
stylesheet and used as variables. To specify a parameter, pass the name and its value, like this:

var oXslProcessor = oXslTemplate.createProcessor();
oXslProcessor.input = oXmlDom;
oXslProcessor.addParameter(“message”, “My Book List”);

This code adds the “message” parameter to the XSLProcessor. When the XSL transformation executes,
the processor uses the value of the parameter, “My Book List”, and places it in the according location.
Parameters in XSL use the <xsl:param/> directive:

<xsl:param name=”message” />

Notice that the name attribute matches the name passed in addParameter(). This parameter receives
the value “My Book List” which is retrieved using the variable syntax you learned earlier:

<xsl:value-of select=”$message” />

In this example, the <xsl:value-of/> directive retrieves the parameters value. The updated XSL
stylesheet would look like this:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:param name=”message” />

<xsl:template match=”/”>

When using an object in transformations, all properties and methods must return a
value that the XSLProcessor can understand. String, number, and Boolean values
all work as expected; returning any other value that cannot be coerced into an XSL
data type will throw a JavaScript error when the transformation executes.

186

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 186

<html>
<head>

<link rel=”stylesheet” type=”text/css” href=”books.css” />
</head>
<body>

<xsl:value-of select=”$message” />
<xsl:apply-templates />

</body>
</html>

</xsl:template>

The updated stylesheet adds two new lines of code. The first is the addition of the <xsl:param/> direc-
tive, and the second is the <xsl:value-of/> directive that retrieves the value of the parameter.
Parameter declarations can exist anywhere in the XSL document. This code shows the parameter decla-
ration at the top of the document, but you are not limited to this location.

One final feature of using an XSLProcessor is its speed; it compiles the XSL stylesheet, so subsequent
transformations using the same stylesheet result in faster transformations (compared to using
transformNode()). To do this, use the reset() method of the XSLProcessor object. This method
clears the input and output properties but not the stylesheet property. This readies the processor for
the next transformation with the same stylesheet.

XSLT in Other Browsers
Like XML and XPath, the implementation of XSLT transformations in non-IE browsers varies from the IE
implementation. These browsers do implement an XSLTProcessor class to perform transformations,
but the similarities end there.

The first step in performing a transformation is to load the XML and XSL documents into a DOM object:

var oXmlDom = zXmlDom.createDocument();
var oXslDom = zXmlDom.createDocument();

oXmlDom.async = false;
oXslDom.async = false;

oXmlDom.load(“books.xml”);
oXslDom.load(“books.xsl”);

The XSLTProcessor class exposes the importStylesheet() method, which takes an XML DOM object
containing the XSLT document as an argument:

var oXsltProcessor = new XSLTProcessor();
oXsltProcessor.importStylesheet(oXslDom);

Like XPath, Safari currently doesn’t support XSLT transformations.

187

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 187

Last, the transformation methods are called. There are two of these methods: transformToDocument()
and transformToFragment(). The transformToDocument() method takes an XML DOM object as an
argument and returns a new XML DOM document containing the transformation. Normally, this is the
method you want to use:

var oNewDom = oXsltProcessor.transformToDocument(oXmlDom);

The resulting DOM object can be used like any other XML DOM object. You can select certain nodes
with XPath, traverse the node structure with properties and methods, or even use it in another
transformation.

The transformToFragment() method returns a document fragment, as its name suggests, to append
to another DOM document. This method takes two arguments: the first is the XML DOM object you
want to transform, and the second is the DOM object you intend to append the result to:

var oFragment = oXsltProcessor.transformToFragment(oXmlDom, document);
document.body.appendChild(oFragment);

In this example, the resulting document fragment is appended to the body of the document object. Note
that you can append the resulting fragment to any node within the DOM object passed to the
transformToFragment() method.

But what if you wanted a string returned as the result of transformation like the transformNode()
method implemented by Microsoft? You could use the XMLSerializer class you learned of earlier. Just
pass the transformation result to the serializeToString() method:

var oSerializer = new XMLSerializer();
var str = oSerializer.serializeToString(oNewDom);

When using the zXml library, this is simplified by using the xml property:

var str = oFragment.xml;

The XSLTProcessor class also enables you to set parameters to pass to the XSL stylesheet. The
setParameter() method facilitates this functionality; it accepts three arguments: the namespace URI,
the parameter name, and the value to assign the parameter. For example:

oXsltProcessor.importStylesheet(oXslDom);

oXsltProcessor.setParameter(null, “message”, “My Book List”);
var oNewDom = oXsltProcessor.transformToDocument(oXmlDom);

In this example, the parameter message is assigned the value “My Book List”. The value of null is
passed for the namespace URI, which allows the parameter to be used without having to specify a prefix
and corresponding namespace URI in the stylesheet:

<xsl:param name=”message” />

The setParameter() method must be called before the calling of transformToDocument() or
transformToFragment(), or else the parameter value will not be used in the transformation.

188

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 188

Cross-Browser XSLT
In the previous sections, you’ve seen how the zXml library makes handling XML data across both main
platforms easier. Now you will use the library to perform XSLT transformations. There is only one
method for XSLT in the library: transformToText(). This method, which returns text from a transfor-
mation, takes two arguments: the XML document to transform and the XSL document:

var sResult = zXslt.transformToText(oXmlDom, oXslDom);

As the name of the method suggests, the returned result is a string. You can then add the result of the
transformation (sResult) to an HTML document:

var oDiv = document.getElementById(“transformedData”);
oDiv.innerHTML = sResult;

This is perhaps the simplest object in the zXml library.

Best Picks Revisited
Imagine once again that you run an online bookstore. Your visitors like the Best Picks feature you imple-
mented, but you start to receive feedback that they want the picks of the previous week as well. You
decide to roll with an Ajax solution.

Using XHR, the browser retrieves the book list and the request’s responseText is loaded into an XML
DOM object. The stylesheet also is loaded into its own XML DOM object, and the XML data from the
book list is transformed into HTML, which is then written to the page. To provide some usability, you
provide a link in the upper-right corner to change from one list to another.

The first step in this solution is to retrieve the XML file with XHR. This is the beginning of the code and
the entry point for the mini-application, so you’ll encapsulate the code in a function called init():

function init(sFilename) {
var oReq = zXmlHttp.createRequest();
oReq.onreadystatechange = function () {

if (oReq.readyState == 4) {
// only if “OK”
if (oReq.status == 200) {

transformXml(oReq.responseText);
}

}
};
oReq.open(“GET”, sFilename, true);
oReq.send();

}

The init() function accepts one argument: the file name of the XML file to load. For cross-browser
compatibility (not to mention easier coding for you), you create an XHR object using the zXml library.
This is an asynchronous request, so the readyState property must be checked using the
onreadystatechange event handler. When the request returns as OK, the responseText is sent to
the transformXml() function:

189

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 189

function transformXml(sResponseText) {
var oXmlDom = zXmlDom.createDocument();
oXmlDom.async = false;
oXmlDom.loadXML(sResponseText);

var oXslDom = zXmlDom.createDocument();
oXslDom.async = false;
oXslDom.load(“books.xsl”);

var str = zXslt.transformToText(oXmlDom,oXslDom);
document.getElementById(“divBookList”).innerHTML = str;

}

Calling transformXml() loads the passed response text into an XML DOM object using the loadXML()
method. The XSL stylesheet is also loaded, and both objects are passed to the transformToText()
method in the zXml library. The transformation’s result, a string, is then added to an element in the doc-
ument via the innerHTML property. As a result of this function, this week’s book list is visible to the user.

A good portion of the code is written, but you still lack the list-changing feature. To facilitate this ability,
another function needs writing, but first, the application needs to know what list to load as the user
clicks the link. This is easily handled by Boolean variable called bIsThisWeek. When this week’s book
list is loaded, bIsThisWeek becomes true; otherwise, it’s false. Since this week’s list is already loaded,
bIsThisWeek is set to true:

var bIsThisWeek = true;

The link that the user clicks to change the list uses the onclick event, so the next function will handle
that event:

function changeList() {
var aChanger = document.getElementById(“aChanger”);

if (bIsThisWeek) {
aChanger.innerHTML = “This Week’s Picks”;
init(“lastweekbooks.xml”);
bIsThisWeek = false;

} else {
aChanger.innerHTML = “Last Week’s Picks”;
init(“thisweekbooks.xml”);
bIsThisWeek = true;

}
return false;

}

In this code, the link (aChanger) is retrieved with the getElementById() method. The variable
bIsThisWeek is checked. According to its value, the proper list is loaded by sending the file name to the
init() function. This retrieves the new list, transforms the data, and writes it to the page. Also, note
that the link text changes to cue users of what happens the next time they click the link. The
bIsThisWeek variable also changes so that the correct list is loaded the next time the user clicks the link.
Last, the function returns false. Since this function is an event handler for a link, returning any other
value would cause the link to behave as a link and could take the user away from the application.

190

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 190

Finally, you can complete the mini application with the HTML, and here is the entire document:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Book XML Exercise</title>
<link rel=”stylesheet” type=”text/css” href=”books.css” />
<script type=”text/javascript” src=”zxml.js”></script>
<script type=”text/javascript”>

function init(sFilename) {
var oReq = zXmlHttp.createRequest();
oReq.onreadystatechange = function () {

if (oReq.readyState == 4) {
// only if “OK”
if (oReq.status == 200) {

transformXml(oReq.responseText);
}

}
};
oReq.open(“GET”, sFilename, true);
oReq.send();

}

function transformXml(sResponseText) {
var oXmlDom = zXmlDom.createDocument();
oXmlDom.async = false;
oXmlDom.loadXML(sResponseText);

var oXslDom = zXmlDom.createDocument();
oXslDom.async = false;
oXslDom.load(“books.xsl”);

var str = zXslt.transformToText(oXmlDom,oXslDom);
document.getElementById(“divBookList”).innerHTML = str;

}

var bIsThisWeek = true;

function changeList() {
var aChanger = document.getElementById(“aChanger”);
if (bIsThisWeek) {

aChanger.innerHTML = “This Week’s Picks”;
init(“lastweekbooks.xml”);
bIsThisWeek = false;

} else {
aChanger.innerHTML = “Last Week’s Picks”;
init(“thisweekbooks.xml”);
bIsThisWeek = true;

}
return false;

}
</script>

</head>

191

XML, XPath, and XSLT

09_109496 ch06.qxd 2/5/07 6:50 PM Page 191

<body onload=”init(‘thisweekbooks.xml’)”>
Last Week’s Picks
<div id=”divBookList”></div>

</body>
</html>

To run this mini-application, you must run it from a web server because XHR is used. Any web server
software will work fine. Just place this HTML file, the zXml library, and the CSS file into a directory
called booklists on your web server. Then fire up your browser and point it to http://localhost/
booklists/book.htm.

Summary
In this chapter, you learned how to create and traverse the XML DOM objects in the major browsers of
today, as well as the differences between IE and non-IE implementations. You once again used the cross-
browser XML library zXml, which enables you to create, traverse, and manipulate XML DOM objects
easily using a single interface. You also learned how to load XML data using JavaScript and output it to
the page.

In the second section, a brief introduction to XPath showed you the power the language offers for XML
documents. You learned how IE and the other browsers implement XPath and namespace support and
how they differ from each other. To ease this difficulty, the zXPath object of the zXml library was intro-
duced, again providing one interface to select desired nodes easily for both browsers.

Finally, you learned about XSLT transformations and how to perform them using MSXML and the
XSLTProcessor class. Although the two interfaces have a few things in common, another cross-browser
object of the zXml library was introduced to smooth out the wrinkles: the zXslt object, which allows
XSLT transformations to be performed on both platforms with one method call.

192

Chapter 6

09_109496 ch06.qxd 2/5/07 6:50 PM Page 192

Syndication with RSS
and Atom

The introduction of XML ushered in a new era of information sharing. Previously, data sharing
was difficult at best as companies used proprietary transmission protocols and data formats that
were unavailable to the public. The idea of transmitting information on a web site using anything
other than HTML was a strange, if not unheard of, idea. But this changed in 1998 when Microsoft
introduced Internet Explorer 4.0 with a new feature called Active Channels. Built upon the
Microsoft-developed Channel Definition Format (CDF), Active Channels allowed web site content
to be transmitted (or syndicated) to users’ desktops using the bundled Active Desktop. The prob-
lem with Active Channels, however, was its poor support for the everyday user. Anyone could
make a channel from scratch, but the industry lacked tools to create and manage CDF files easily.
The primary users of Active Channels, big media companies, pushed users away with excessive
ads that increased the amount of bandwidth the channels used. Additionally, there was little
demand for or perceived value in using Active Channels. The whole concept of syndication
seemed to have died with Active Channels and the failure of CDF to reach recommendation status
from the World Wide Web Consortium. Then came RSS.

RSS
In March of 1999, Netscape launched the My Netscape portal, a single place for users to visit for all
of their news. The idea was simple: to pull information from any number of news sources and dis-
play it on My Netscape. To facilitate this idea, Dan Libby of Netscape Communications developed
an XML data format based on the Resource Description Framework (RDF) called RDF Site
Summary (RSS). This format would later become known as RSS 0.9.

Shortly after the introduction of RSS 0.9, Dave Winer of Userland Software contacted Libby regarding
the RSS 0.9 format. Winer had developed an XML format to use with his site, ScriptingNews, and
believed that it and RSS 0.9 could be combined with it and simplified to make a better, more usable,

10_109496 ch07.qxd 2/5/07 6:50 PM Page 193

format. In July of 1999, Libby released a prototype of the new Rich Site Summary (also abbreviated as RSS),
which became RSS 0.91. My Netscape then began using RSS 0.91 and continued to do so until 2001, when
support for external RSS feeds was dropped. Netscape soon lost interest in RSS and left it without an owner.
What would follow splintered the RSS format into two different versions.

A mailing list of developers and other interested parties formed in order to continue the development of
RSS. This group, called RSS-DEV (http://groups.yahoo.com/group/rss-dev), produced a specifi-
cation called RSS 1.0, in December 2000. RSS 1.0 was based on the original RDF Site Summary (RSS 0.9)
and sought to extend it by modularizing the original 0.9 version. These modules are namespaces that
can be created by anyone, allowing new functionality to be added without changing the specification.
It’s important to note that RSS 1.0 is a descendant of RSS 0.9 but not related to RSS 0.91.

At the same time, Winer declared himself the owner of RSS and continued to develop his own version,
releasing what he deemed RSS 2.0 (Really Simple Syndication). This new RSS format was based on RSS
0.91, the version that Winer and Libby developed together. The emphasis for RSS 2.0 was the simplicity of
the format. When Winer ended up working at Harvard, he assigned ownership of RSS 2.0 to Harvard’s
Berkman Center for the Internet & Society, which now manages and publishes the specification at
http://blogs.law.harvard.edu/tech/rss. RSS 2.0 is the most widely used RSS format today.

Today, the term RSS encompasses three different versions of the RSS format: RSS 0.91, RSS 1.0, and
RSS 2.0.

RSS 0.91
RSS 0.91 is based upon Document Type Declarations (DTDs) and was possibly the most popular RSS
version until the release of RSS 2.0. Some statistics show RSS 0.91 capturing 52 percent of the syndication
market in 2001, with a steady increase until the introduction of 2.0. Only a handful of 0.91 feeds were in
use as of 2006, but RSS 2.0 owes much of its current success to RSS 0.91.

RSS 0.91’s DTD lists 24 elements (14 more than RSS 0.9); it is easily read by humans and machines alike.
Here’s a simple 0.91 example:

<?xml version=”1.0” encoding=”UTF-8” ?>

<!DOCTYPE rss PUBLIC “-//Netscape Communications//DTD RSS 0.91//EN”
“http://my.netscape.com/publish/formats/rss-0.91.dtd”>

<rss version=”0.91”>
<channel>

<title>My Revenge</title>
<link>http://sithboys.com</link>
<description>Dedicated to having our revenge</description>
<item>

<title>At last!</title>
<link>http://sithboys.com/atlast.htm</link>
<description>

At last we will reveal ourselves to the Jedi. At last we
will have our revenge.

</description>
</item>

</channel>
</rss>

194

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 194

Like Microsoft’s CDF, RSS 0.91 (and 2.0, for that matter) feeds are channel-based; a defining feature of
the two RSS formats is the inclusion of all data inside the <channel/> element. All site information, (the
<title/>, <link/>, <description/>, and so forth elements), as well as the <item/> elements, are
contained by <channel/>. This is in stark contrast to RSS 1.0.

RSS 1.0
RSS 1.0 is a departure from the 0.91 standard and follows the RDF format of 0.9. RSS 1.0 is far more ver-
bose than other versions but is also more extensible. This extensibility makes it an attractive format for
developers of RDF-based applications.

Although it maintains some resemblance to RSS 0.91, RSS 1.0 is structurally different:

<?xml version=”1.0”?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns=”http://purl.org/rss/1.0/”>

<channel rdf:about=”http:// sithboys.com/about.htm”>
<title>My Revenge</title>
<link> http://sithboys.com</link>
<description>

Dedicated to having our revenge
</description>
<image rdf:resource=”http://sithboys.com/logo.jpg” />
<items>

<rdf:Seq>
<rdf:li resource=”http://sithboys.com/atlast.htm” />

</rdf:Seq>
</items>
<textinput rdf:resource=”http://sithboys.com/search/” />

</channel>

<image rdf:about=”http://sithboys.com/logo.jpg”>
<title>The Logo of the Sith</title>
<link>http://sithboys.com/</link>
<url>http://sithboys.com/logo.jpg</url>

</image>

<item rdf:about=”http://sithboys.com/atlast.htm”>
<title>At last!</title>
<link>http://sithboys.com/atlast.htm</link>
<description>

At last we will reveal ourselves to the Jedi. At last we will have
our revenge.

</description>
</item>

</rdf:RDF>

The <item/> elements outside of <channel/> contain the data of each entry; on the other hand, the
<items/> element inside of <channel/> contains a list of values (the <rdf:Seq/> element) that refer-
ence the <item/> elements outside of <channel/>. As you can see, it is far more complex than RSS 0.91,
and although RSS 1.0 has gained a following, it does not have the popularity that the other formats enjoy.

195

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 195

RSS 1.0 is not DTD-based like version 0.91, so it is not necessary to have one in the document.

RSS 2.0
RSS 2.0 almost exactly mirrors RSS 0.91 but introduces some new elements, such as <author/> , while
allowing modularized extensions like RSS 1.0. To further simplify things, RSS 2.0 also does away with
the required DTD. Given the simplicity it has inherited from RSS 0.91, and the extensibility similar to
RSS 1.0, it is no wonder that RSS 2.0 is the most-used RSS format at the time of this writing.

The following is an example of a basic RSS 2.0 document:

<?xml version=”1.0” encoding=”UTF-8” ?>

<rss version=”2.0”>
<channel>

<title>My Revenge</title>
<description>Dedicated to having our revenge</description>
<link>http://sithboys.com</link>
<item>

<title>At last!</title>
<link>http://sithboys.com/atlast.htm</link>
<author>DarthMaul@sithboys.com</author>
<description>

At last we will reveal ourselves to the Jedi. At last we will have
our revenge.

</description>
</item>

</channel>
</rss>

Atom
Atom is the newest entry on the syndication scene. Since its inception in mid-2003, Atom has received
quite a bit of coverage and usage. Atom, unlike RSS, is a strict specification. One of the problems of the
RSS specification is the lack of information on how a developer handles HTML markup in its elements.
Atom’s specification addresses this issue and gives developers strict rules they must follow, as well as a
host of new features, enabling developers to choose the content type of an element and specify attributes
that designate how a specific element should be handled. With such features, it is no wonder power-
houses like Google and Movable Type are getting behind Atom.

Atom resembles RSS in the sense that they both have the same data constructs. Most of Atom’s element
names differ from RSS, and the document structure is slightly different:

<?xml version=”1.0” encoding=”iso-8859-1”?>

<feed version=”1.0” xmlns=”http://www.w3.org/2005/Atom” xml:lang=”en”>
<title>My Revenge</title>
<link rel=”alternate” type=”text/html” href=”http://sithboys.com” />
<modified>2006-06-30T15:51:21-06:00</modified>

196

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 196

<tagline>Dedicated to having our revenge</tagline>
<id>tag:sithboys.com</id>
<copyright>Copyright (c) 2006</copyright>
<entry>

<title>At last!</title>
<link rel=”alternate” type=”text/html” href=”

http://sithboys.com/atlast.htm” />
<modified>2005-06-30T15:51:21-06:00</modified>
<issued>2005-06-30T15:51:21-06:00</issued>
<id>tag:sithboys.com/atlast</id>
<author>

<name>Darth Maul</name>
</author>
<content type=”text/html” xml:lang=”en”

xml:base=”http://sithboys.com”>
At last we will reveal ourselves to the Jedi. At last we will
have our revenge.

</content>
</entry>

</feed>

According to the Atom specification, all elements in the Atom format must reside in the http://www.w3
.org/2005/Atom namespace, or else many parsers will not parse the feed. All site-defining elements
exist as direct children to the document element. An Atom feed can also contain many <entry/>
elements, resembling the <item/> elements of an RSS feed.

XParser
News aggregation sites using syndication formats are gaining popularity as the formats become more
widely used. Many sites use server-side logic to parse RSS and Atom feeds, displaying them in some
sort of user-friendly format. However, it may be necessary to perform the same functions on the client-
side using JavaScript. This is where XParser comes in.

XParser is a JavaScript library that parses RSS and Atom feeds into JavaScript objects, making the feed’s
data easy to access in web applications. Its primary goal is to provide an interface for JavaScript devel-
opers to quickly access a feed’s most important elements. The code is object–oriented, broken into
abstract classes that the Atom- and RSS-specific classes inherit from. Such a design allows the different
feed types to be parsed according to their specific differences while leaving room for extensions. This
section explains how the XParser code is designed and implemented.

The xparser Namespace
XParser begins with the xparser namespace. A namespace contains the library’s code in one simple
package and protects the contained code from external naming conflicts. Of course, JavaScript does not
implement an official namespace construct; however, you can simulate the behavior of a namespace
quite easily with a simple object.

var xparser = {};

197

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 197

This code defines the xparser object using object literal notation. It is this object that holds data, meth-
ods, and classes for XParser.

Because the script deals with different types of feeds, it needs some way to identify the feed it is parsing.
This is easily accomplished with the feedType object:

xparser.feedType = {
rss : 1,
atom : 2

};

The feedType object contains two properties (rss and atom), which are assigned numeric values. These
numeric constants allow assignment and comparison of a feed’s format.

Retrieving the Data
To retrieve data from a specific XML node, the XParser library depends upon the FeedNode class. As its
name implies, it represents a DOM node contained in the feed and is responsible for accessing and
retrieving the node’s value. The class accepts one argument, the XML node:

xparser.FeezdNode = function (oNode) {
this.value = (oNode && (oNode.text || oNode.getText())) || null;

};

FeedNode exposes one property called value, which either contains the node’s text or a null value.

The text property does not exist in Firefox’s DOM, and getText() doesn’t exist in Opera. To gain
this functionality, XParser uses the zXml library introduced in Chapter 2, which extends Firefox’s
and Opera’s DOM.

The Abstract Classes
As stated earlier, XParser is responsible for parsing two types of feeds, RSS and Atom. While there are
many ways to accomplish this, the best is to have one class responsible for parsing each of the two dif-
ferent feed types. Despite their differences, the feed types share some similarities, and finding that com-
mon ground can save time and code. To facilitate this design, XParser contains two abstract classes:
BaseFeed and BaseItem.

The BaseFeed Class
The BaseFeed class represents the feed as a whole, defining several properties that each feed uses to
describe itself. The constructor accepts three arguments: the feed type (1 or 2, as defined in the
FeedType object), a function pointer to call when parsing is complete, and the scope in which the call
back function should execute. Here’s the code for the BaseFeed class:

xparser.BaseFeed = function (iFeedType, fpCallBack, oCallBackScope) {
this.type = iFeedType || null;
this.title = null;
this.link = null;
this.description = null;

198

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 198

this.copyright = null;
this.generator = null;
this.modified = null;
this.author = null;
this.items = [];

this.callBack =
(typeof fpCallBack == “function”) ? fpCallBack : function () {};

this.callBackScope =
(typeof oCallBackScope == “object”) ? oCallBackScope : this;

};

The first line assigns the feed type, which defaults to null if no argument is passed to the constructor.
This ensures that no errors are thrown when prototype chaining subclasses (discussed later).

The title, link, description, copyright, generator, modified, and author properties are gener-
alized properties that both Atom and RSS feeds contain. These properties, at some point, will hold
FeedNode objects. The items array represents the feed’s <rss:item/> or <atom:entry/> elements.
The final four lines of the BaseFeed constructor assign the default values for the callback and
callBackScope properties. The former defaults to an empty function, while the latter defaults to the
BaseFeed instance.

This class exposes a method called parse(), which accepts a context node, an associative array (object)
of property and element names as keys and values, respectively, and an associate array of namespace
prefixes and namespace URIs as arguments:

xparser.BaseFeed.prototype = {
parse : function (oContextNode, oElements, oNamespaces) {

}
};

With the information provided, it’s possible to evaluate XPath expressions to extract the desired data. To
do this, loop through oElements and use the zXPath class to perform the XPath evaluation:

xparser.BaseFeed.prototype = {
parse : function (oContextNode, oElements, oNamespaces) {

//Loop through the keys
for (var sProperty in oElements) {

if (oElement.hasOwnProperty(sProperty)) {
//Create FeedNode objects with the node
//returned from the XPath evaluation
this[sProperty] = new xparser.FeedNode(

zXPath.selectSingleNode(
oContextNode,
oElements[sProperty],
oNamespaces

)
);

}
}

}
};

199

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 199

The associative array passed to the oElements parameter contains “title”, “link”, “description”, “copy-
right”, “generator”, “modified”, and “author” as the keys. These keys correspond directly to the proper-
ties of the BaseFeed class. This provides a quick and easy way to assign values to these properties.

The BaseItem Class
The BaseItem class follows the same pattern. Like the BaseFeed class, BaseItem’s constructor initial-
izes its properties as null:

xparser.BaseItem = function () {
this.title = null;
this.author = null;
this.link = null;
this.description = null;
this.date = null;

};

These properties are a generalized equivalent to the feed’s item (or entry) elements. Also, like the
BaseFeed class, this class exposes a parse() method, which is implemented similarly:

xparser.BaseItem.prototype = {
parse : function (oContextNode, oElements, oNamespaces) {

//Loop through the keys
for (var sProperty in oElements) {

if (oElements.hasOwnProperty(sProperty)) {
//Create FeedNode objects with the node
//returned from the XPath evaluation
this[sProperty] = new xparser.FeedNode(

zXPath.selectSingleNode(
oContextNode,
oElements[sProperty],
oNamespaces

)
);

}
}

}
};

These two classes provide a basis that the RSS and Atom classes can inherit from. Also, this design
future-proofs the library, allowing easy addition of new feed types (provided any new feed type uses a
compatible format).

It’s important to note that BaseFeed is an abstract class and as such should not be
instantiated directly. These types of classes are designed to be inherited from; there-
fore, only the child classes need to worry about providing the information in the
correct format.

200

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 200

Parsing RSS Feeds
The RSSFeed class is in charge of parsing RSS feeds. The constructor accepts three arguments: the root
element of the XML document, the callback function, and the scope in which the callback function
should run:

xparser.RssFeed = function (oRootNode, fpCallBack, oCallBackScope) {
xparser.BaseFeed.apply(this,

[xparser.feedType.rss, fpCallBack, oCallBackScope]
);

};

xparser.RssFeed.prototype = new xparser.BaseFeed();

Two things are taking place in this code. First, the BaseFeed constructor is called using the apply()
method and passing in the appropriate arguments (including xparser.feedType.rss as the feed
type). This is a common way of inheriting properties from a superclass in JavaScript; it ensures that all
inherited properties are instantiated with the appropriate values. Second, the RssFeed prototype is set
to a new instance of BaseFeed, which inherits all methods from BaseFeed.

For more information on inheritance and object-oriented design in JavaScript, see Professional
JavaScript for Web Developers (Wiley Publishing, Inc., 2005).

The next step is to parse the XML data supplied by the oRootNode argument. This is a simple matter of
creating an associative array of class properties as keys and the corresponding XML element name as
values.

xparser.RssFeed = function (oRootNode, fpCallBack, oCallBackScope) {
xparser.BaseFeed.apply(this,

[xparser.feedType.rss, fpCallBack, oCallBackScope]
);

var oChannelNode = zXPath.selectSingleNode(oRootNode, “channel”);

var oElements = {
title : “title”,
link : “link”,
description : “description”,
copyright : “copyright”,
generator : “generator”,
modified : “lastbuilddate”,
author : “managingeditor”

};

this.parse(oChannelNode, oElements, []);
};

This new code first retrieves the <rss:channel/> element. Remember, the <rss:channel/> element
serves as a container for the entire feed. Next, create the oElements associative array by supplying the
values of the XML element names. This information is passed to the parse() method, which retrieves the
desired elements, creates FeedNode objects with the elements, and assigns them to the class properties.

201

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 201

Next, populate the items array:

xparser.RssFeed = function (oRootNode, fpCallBack, oCallBackScope) {
xparser.BaseFeed.apply(this,

[xparser.feedType.rss, fpCallBack, oCallBackScope]);

var oChannelNode = zXPath.selectSingleNode(oRootNode, “channel”);

var oElements = {
title : “title”,
link : “link”,
description : “description”,
copyright : “copyright”,
generator : “generator”,
modified : “lastbuilddate”,
author : “managingeditor”

};

this.parse(oChannelNode, oElements, []);

var cItems = zXPath.selectNodes(oChannelNode, “item”);

for (var i = 0, oItem; oItem = cItems[i]; i++) {
this.items.push(new xparser.RssItem(oItem));

}

this.callBack.call(this.callBackScope, this);
};

The first new line uses XPath to retrieve the <rss:item/> nodes. Next, the code loops through the
selected XML nodes and creates an RssItem object with the element. The new object is added to the
items arrayusing the push() method. After the items array is fully populated, the feed is completely
parsed; thus, the final line executes the callback function in the specified scope. Also, the RssFeed object
is passed to the callback function. This allows easy access to the feed object in case those using the
library need easy access to the information the object houses.

Just as a RssFeed extends BaseFeed, an RssItem class extends BaseItem. This item class is quite simple;
the RssItem constructor accepts one parameter, the <rss:item/> node:

xparser.RssItem = function (oItemNode) {
xparser.BaseItem.apply(this);

var oElements = {
title : “title”,
link : “link”,
description : “description”,
date : “pubdate”,
author : “author”

};

this.parse(oItemNode, oElements, {});
};

xparser.RssItem.prototype = new xparser.BaseItem();

202

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 202

This code resembles that of RssFeed. The first line calls the parent class constructor to initialize proper-
ties. Next, the oElements associative array is created and passed, along with the XML node, to the
parse() method. Since the RSS specification does not specify a namespace, an empty object is passed as
the namespace parameter of the parse() method.

Parsing Atom
The code for parsing Atom feeds is very similar to the RSS-parsing code. There are just a few key differ-
ences to take into account.

The first difference is the use of namespaces. According to the Atom specification, all elements in the
feed must reside in the http://www.w3.org/2005/Atom namespace. XParser may also come across an
Atom feed that uses a previous version, in which case, the aforementioned namespace will not work.
You can work around this issue, however, by retrieving the namespace URI of the root element:

xparser.AtomFeed = function (oRootNode, fpCallBack, oCallBackScope) {
xparser.BaseFeed.apply(this,

[xparser.feedType.atom, fpCallBack, oCallBackScope]
);

var oNamespaces = {
atom : oRootNode.namespaceURI

};
};

The first few lines are very similar to the code in the RssFeed constructor, the only difference being the
feedType passed to the BaseFeed constructor. The next block of code creates an associative array called
oNamespaces, which is responsible for holding key/value pairs consisting of the element prefix and the
associated namespace URI. In this case, the atom key corresponds to the namespaceURI of the root ele-
ment. This ensures that an attempt to parse the Atom feed, regardless of version, takes place.

The next key difference is, of course, the elements to retrieve. As a result of XParser’s design, however,
this obstacle is easily overcome:

xparser.AtomFeed = function (oRootNode, fpCallBack, oCallBackScope) {
xparser.BaseFeed.apply(this,

[xparser.feedType.atom, fpCallBack, oCallBackScope]
);

var oNamespaces = {
atom : oRootNode.namespaceURI

};

var oElements = {
title : “atom:title”,
link : “atom:link/@href”,
description : “atom:tagline”,
copyright : “atom:copyright”,
generator : “atom:generator”,
modified : “atom:modified”,
author : “atom:author”

};

this.parse(oRootNode, oElements, oNamespaces);
};

203

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 203

The first new block of code creates the oElements associative array with the Atom element names. The
element’s prefix, atom, matches the prefix contained in oNamespaces. The combined information is then
passed to the parse() method to assign the properties their proper value.

Next, populate the items array:

xparser.AtomFeed = function (oRootNode, fpCallBack, oCallBackScope) {
xparser.BaseFeed.apply(this,

[xparser.feedType.atom, fpCallBack, oCallBackScope]
);

var oNamespaces = {
atom : oRootNode.namespaceURI

};

var oElements = {
title : “atom:title”,
link : “atom:link/@href”,
description : “atom:tagline”,
copyright : “atom:copyright”,
generator : “atom:generator”,
modified : “atom:modified”,
author : “atom:author”

};

this.parse(oRootNode, oElements, oNamespaces);

var cEntries = zXPath.selectNodes(oRootNode, “atom:entry”, oNamespaces);

for (var i = 0, oEntry; oEntry = cEntries[i]; i++) {
this.items.push(new xparser.AtomItem(oEntry, oNamespaces));

}

this.callBack.apply(this.callBackScope, [this]);
};

The new code selects the <atom:entry/> elements and assigns the collection to cEntries. Next, the
code loops through the collection and adds new AtomItem objects to the items array. When the parsing
is complete, the callback function is executed in the specified scope.

Also, like the RssFeed class, the AtomFeed class’s prototype is set to a new instance of BaseFeed to
inherit methods:

xparser.AtomFeed.prototype = new xparser.BaseFeed();

Naturally, the code for AtomItem resembles that of RssItem. In fact, the only difference between the two
is the XML element names contained in oElements:

xparser.AtomItem = function (oEntryNode, oNamespaces) {
xparser.BaseItem.apply(this, []);

var oElements = {
title : “atom:title”,

204

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 204

link : “atom:link/@href”,
description : “atom:content”,
date : “atom:issued”,
author : “atom:author”

};

this.parse(oEntryNode, oElements, oNamespaces);
};

And of course, you need to assign this new class’s prototype as well:

xparser.AtomItem.prototype = new xparser.BaseItem();

This last line of code completes the parsing aspect of XParser. Of course, this approach is helpful only if
you know what type of feed to parse. The library needs some way of creating a feed object, regardless of
the feed’s type.

Putting It Together
To address this issue, XParser contains a factory method called getFeed(), whose purpose is to
retrieve the feed, determine if the feed is usable, and create the feed object. The method relies upon an
XHR object to retrieve the feed. In order to do this, the zXml library is used once again, as the zXmlHttp
.createRequest() factory method is called to create the XHR object in a cross-browser fashion.

The getFeed() method accepts three arguments: the feed’s URL, the callback function pointer, and the
callback function’s scope.

xparser.getFeed = function (sUrl, fpCallBack, oCallBackScope) {
var oReq = zXmlHttp.createRequest();
oReq.onreadystatechange = function () {

if (oReq.readyState == 4) {
if (oReq.status == 200 || oReq.status == 304) {

//more code here
}

}
};

oReq.open(“GET”, sUrl, true);
oReq.send(null);

};

This code for creating and handle the XHR object is similar to other examples in this book, as the
readystatechange handler checks for status codes of both 200 and 304.The next step is to determine
the requested feed’s type. In order to do this, you need to load the XHR’s responseText into an XML
DOM:

xparser.getFeed = function (sUrl, fpCallBack, oCallBackScope) {
var oReq = zXmlHttp.createRequest();
oReq.onreadystatechange = function () {

if (oReq.readyState == 4) {
if (oReq.status == 200 || oReq.status == 304) {

205

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 205

var oFeed = null;

var oXmlDom = zXmlDom.createDocument();
oXmlDom.loadXML(oReq.responseText);

if (oXmlDom.parseError.errorCode != 0) {
throw new Error(“XParser Error: The requested feed is not “ +

“valid XML and could not be parsed.”);
} else {

var oRootNode = oXmlDom.documentElement;

//more code here
}

}
}

};

oReq.open(“GET”, sUrl, true);
oReq.send(null);

};

In this new code, an XML DOM is created and loaded with data. The XML document’s
documentElement is assigned to a variable for easy access to the node. Also, the variable oFeed is
initialized as null; this variable eventually assumes the value of a feed object.

A simple way to determine the feed’s format is to check the documentElement’s nodeName property, since
Atom uses <feed/> as its root element and RSS uses <rss/>. You also need to take into consideration that
the Atom feed may or may not use a default namespace. This concern is easily addressed by checking
whether or not the root element uses a prefix:

xparser.getFeed = function (sUrl, fpCallBack, oCallBackScope) {
var oReq = zXmlHttp.createRequest();
oReq.onreadystatechange = function () {

if (oReq.readyState == 4) {
if (oReq.status == 200 || oReq.status == 304) {

var oFeed = null;

var oXmlDom = zXmlDom.createDocument();
oXmlDom.loadXML(oReq.responseText);

if (oXmlDom.parseError.errorCode != 0) {
throw new Error(“XParser Error: The requested feed is not “ +

“valid XML and could not be parsed.”);
} else {

var oRootNode = oXmlDom.documentElement;

//Get the name of the document element.
var sRootName;
if (oRootNode.nodeName.indexOf(“:”) > -1) //a prefix exists

sRootName = oRootNode.nodeName.split(“:”)[1];
else

sRootName = oRootNode.nodeName;

switch (sRootName.toLowerCase()) {
case “feed”: //It’s Atom.

206

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 206

//more code here
break;

case “rss”: //It’s RSS
//more code here
break;

default: //The feed isn’t supported.
//more code here
break;

}
}

}
}

};

oReq.open(“GET”, sUrl, true);
oReq.send(null);

};

In the newly added code, the root element’s name is checked to see if it contains a colon (:). If it does,
this means that the element name contains a prefix, so it’s split into two parts: the prefix and the tag
name. The tag name is assigned to the sRootName variable. If no prefix exists, then sRootName takes on
the value of the element’s name.

Once the element’s name is known, it can be handled accordingly. The switch block determines the next
step based on the root element’s name. Using this code, the desired AtomFeed or RssFeed object is created:

xparser.getFeed = function (sUrl, fpCallBack, oCallBackScope) {
var oReq = zXmlHttp.createRequest();
oReq.onreadystatechange = function () {

if (oReq.readyState == 4) {
if (oReq.status == 200 || oReq.status == 304) {

var oFeed = null;

var oXmlDom = zXmlDom.createDocument();
oXmlDom.loadXML(oReq.responseText);

if (oXmlDom.parseError.errorCode != 0) {
throw new Error(“XParser Error: The requested feed is not “ +

“valid XML and could not be parsed.”);
} else {

var oRootNode = oXmlDom.documentElement;

//Get the name of the document element.
var sRootName;
if (oRootNode.nodeName.indexOf(“:”) > -1)

sRootName = oRootNode.nodeName.split(“:”)[1];
else

sRootName = oRootNode.nodeName;

switch (sRootName.toLowerCase()) {
case “feed”: //It’s Atom.

oFeed = new xparser.AtomFeed(
oRootNode,
fpCallBack,

207

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 207

oCallBackScope
);
break;

case “rss”: //It’s RSS
//Check the version.
if (parseInt(oRootNode.getAttribute(“version”)) < 2)

throw new Error(“XParser Error! RSS feed “ +
“version is not supported”

);

oFeed = new xparser.RssFeed(
oRootNode,
fpCallBack,
oCallBackScope

);
break;

default: //The feed isn’t supported.
throw new Error(“XParser Error: The supplied feed “ +

“is currently not supported.”
);
break;

}
}

}
}

};

oReq.open(“GET”, sUrl, true);
oReq.send(null);

};

The newly added code creates an AtomFeed object and passes it the required arguments. Creating an RSS
feed, however, requires a few more steps. First, the RSS version is checked (by checking the version
attribute in the root element). If the version is less than 2, the code throws an error stating the RSS version
isn’t supported. If the feed is the correct version, however, an RssFeed object is created. Last, if the docu-
ment’s root could not be matched, the feed isn’t supported, so an error is thrown. Throwing errors allows
a developer using the library to anticipate these types of errors and handle them accordingly.

While we’re on the subject of errors, the getFeed() method needs one more in case the XHR request
fails:

xparser.getFeed = function (sUrl, fpCallBack, oCallBackScope) {
var oReq = zXmlHttp.createRequest();
oReq.onreadystatechange = function () {

if (oReq.readyState == 4) {
if (oReq.status == 200 || oReq.status == 304) {

var oFeed = null;

var oXmlDom = zXmlDom.createDocument();
oXmlDom.loadXML(oReq.responseText);
if (oXmlDom.parseError.errorCode != 0) {

throw new Error(“XParser Error: The requested feed is not “ +
“valid XML and could not be parsed.”);

} else {

208

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 208

var oRootNode = oXmlDom.documentElement;

//Get the name of the document element.
var sRootName;
if (oRootNode.nodeName.indexOf(“:”) > -1)

sRootName = oRootNode.nodeName.split(“:”)[1];
else

sRootName = oRootNode.nodeName;

switch (sRootName.toLowerCase()) {
case “feed”: //It’s Atom. Create the object.

oFeed = new xparser.AtomFeed(
oRootNode,
fpCallBack,
oCallBackScope

);
break;

case “rss”: //It’s RSS
//Check the version.
if (parseInt(oRootNode.getAttribute(“version”)) < 2)

throw new Error(“XParser Error! RSS feed “ +
“version is not supported”

);

oFeed = new xparser.RssFeed(
oRootNode,
fpCallBack,
oCallBackScope

);
break;

default: //The feed isn’t supported.
throw new Error(“XParser Error: The supplied feed “ +

“is currently not supported.”
);
break;

}
}

} else { //The HTTP Status code isn’t what we wanted; throw an error.
throw new Error(“XParser Error: XHR failed. “ +

“HTTP Status: “ + oReq.status
);

}
}

};

oReq.open(“GET”, sUrl, true);
oReq.send(null);

};

This new code throws an error if the HTTP status is anything other than 200 or 304, making it easier to
debug and realize that the request failed for some reason. Also, notice that the errors are prepended with
the string “XParser Error” to clearly indicate that the error occurred within the library.

With these final lines of code, the XParser library can now be used in any web application. The remain-
der of this chapter walks you through the creation of two components that utilize the XParser library.

209

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 209

Creating a News Ticker
Popular on both television news networks and web sites, a news ticker displays information in a
scrolling format. Unlike the static nature of television, the Web enables users to interact with these tick-
ers. If something catches their eye, they can click the news item and it takes them to their desired infor-
mation. Because of this interactivity, news tickers are quite popular on web sites, and as it turns out, easy
to implement using Ajax (see Figure 7-1).

Like any other Ajax-enabled application, a web-based news ticker comes in two parts: a server applica-
tion and a client application. Since RSS feeds can exist on any server, a PHP server-side proxy is used to
retrieve requested feeds for the client. The client application is, of course, a mix of HTML and JavaScript.

Figure 7-1

The Server-Side Component
The PHP server application is extremely simple. Its only function is to retrieve data from a URL and
return it back to the client. To do so, the page expects a url variable in the query string to indicate which
data to retrieve. For instance:

newsticker.php?url=http://rss.news.yahoo.com/rss/topstories

This URL tells newsticker.php, the server-side component, to retrieve data from the Yahoo! News Top
Stories RSS feed.

210

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 210

Because the server’s only job is to retrieve remote information, the code is only a few lines long:

<?php
header(“Content-Type: text/xml”);
header(“Cache-Control: no-cache”);

if (isset($_GET[“url”])) {
$remoteUrl = $_GET[“url”];

$xml = file_get_contents($remoteUrl);

echo $xml;
} else {

header(“HTTP/1.1 400 Bad Request”);
}

?>

The first two lines set the Content-Type and Cache-Control headers, respectively. It is important
to set the MIME content type to text/xml; otherwise, Mozilla Firefox doesn’t recognize the data as
XML and won’t automatically parse it into an XML DOM document. It also is important to set the
Cache-Control header to no-cache because Internet Explorer caches all data retrieved via XHR
unless explicitly told not to.

In the next line of code, the query string is checked for the url parameter. To do this, use the isset()
function, which returns a Boolean value based on whether a variable, function, or object exists. If
a value has been passed in, the value of url is assigned to the $remoteUrl variable and passed to
file_get_contents(). This function opens a file (local or remote), reads the file, and returns its
contents as a string. The last step is to write the file’s contents, stored in the $xml variable, to the page.
This concludes the server-side code.

If the url parameter cannot be found in the query string, PHP returns an HTTP status of 400, which
signifies a bad request. Because XParser is responsible for making requests to the server, it will handle
this HTTP status and throw an error specifying that XHR failed to retrieve the data.

The Client-Side Component
Before delving into the code, consider the client’s required functionality. The client:

1. Builds the HTML to display the news feeds.

2. Requests data from the server application. When the server responds with the requested data,
the client parses the data with XParser.

3. Places the parsed data into the HTML.

4. Uses JavaScript to animate the ticker.

5. Polls for updated data every 1.5 minutes.

211

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 211

In addition, a few user interface criteria must be met:

❑ The data in the ticker, news article titles, should be links that take the user to the specified news
article.

❑ The ticker should stop scrolling when the user’s mouse enters the ticker and should resume
scrolling when the user mouses out.

To implement this functionality, the client-side code consists of two classes: the NewsTicker class, which
builds the ticker in HTML format, animates the ticker, and provides the ability to add news feeds into
the ticker, and the NewsTickerFeed class, which requests the feed, parses it, places it in the HTML, and
polls for new data.

The NewsTicker Class
The NewsTicker class is the main class of the client-side code. The constructor accepts one argument,
which is the HTMLElement to append the news ticker:

function NewsTicker(oAppendTo) {
var oThis = this;
this.timer = null;
this.feeds = [];

//more code to come
}

These first few lines of code initialize the properties of the NewsTicker class. First, a pointer to the
object is created by assigning the variable oThis. The timer property, initially set to null, will control
the scrolling animation (setTimeout() returns a unique timer identifier). The feeds property is an
array that will contain NewsTickerFeeds objects.

Next, elements are created for the primary user interface of the news ticker:

function NewsTicker(oAppendTo) {
var oThis = this;
this.timer = null;
this.feeds = [];
this.tickerContainer = document.createElement(“div”);
this.ticker = document.createElement(“div”);
this.tickerContainer.className = “newsTickerContainer”;
this.ticker.className = “newsTicker”;

//more code to come
}

These properties, tickerContainer and ticker, reference newly created <div/> elements. The
tickerContainer element does what its name implies: it contains all elements of the widget, whereas
the ticker element scrolls the news feeds contained in it. The HTML code output by this constructor is:

<div class=”newsTickerContainer”>
<div class=”newsTicker”></div>

</div>

212

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 212

As a part of the user interface, remember that the scrolling animation stops when users move their
mouse over the news ticker. To facilitate this functionality, event handlers are assigned for the
onmouseover and onmouseout events of tickerContainer:

function NewsTicker(oAppendTo) {
var oThis = this;
this.timer = null;
this.feeds = [];
this.tickerContainer = document.createElement(“div”);
this.ticker = document.createElement(“div”);
this.tickerContainer.className = “newsTickerContainer”;
this.ticker.className = “newsTicker”;

this.tickerContainer.onmouseover = function () {
oThis.stopTick();

};

this.tickerContainer.onmouseout = function () {
oThis.tick();

};
}

In the onmouseover event handler, the stopTick() method clears the timer property, which stops the
animation. Notice the use of the oThis pointer, since the scope changes inside the event handler. The
onmouseout event handler causes the animation to begin again by calling the tick() method, which
performs the animation.

The next step is to append the ticker element to tickerContainer and to append the widget’s HTML
to its parent HTMLElement:

function NewsTicker(oAppendTo) {
var oThis = this;
this.timer = null;
this.feeds = [];
this.tickerContainer = document.createElement(“div”);
this.ticker = document.createElement(“div”);

this.tickerContainer.className = “newsTickerContainer”;
this.ticker.className = “newsTicker”;

this.tickerContainer.onmouseover = function () {
clearTimeout(oThis.timer);

};

this.tickerContainer.onmouseout = function () {
oThis.tick();

};

this.tickerContainer.appendChild(this.ticker);

var oToAppend = (oAppendTo)?oAppendTo:document.body;
oToAppend.appendChild(this.tickerContainer);

//more code to come
}

213

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 213

The first line of this code appends ticker to tickerContainer, which completes the HTML layout.
The next line offers a convenience for developers: if oAppendTo exists, then the widget is appended to
the value of oAppendTo. If it doesn’t, the HTML is appended to document.body. This gives the argu-
ment a default value; to append the widget directly to the document, the argument can be omitted.

The final lines of the constructor initialize the ticker:

function NewsTicker(oAppendTo) {
var oThis = this;
this.timer = null;
this.feeds = [];
this.tickerContainer = document.createElement(“div”);
this.ticker = document.createElement(“div”);

this.tickerContainer.className = “newsTickerContainer”;
this.ticker.className = “newsTicker”;

this.tickerContainer.onmouseover = function () {
clearTimeout(oThis.timer);

};

this.tickerContainer.onmouseout = function () {
oThis.tick();

};

this.tickerContainer.appendChild(this.ticker);

var oToAppend = (oAppendTo)?oAppendTo:document.body;
oToAppend.appendChild(this.tickerContainer);

this.ticker.style.left = this.tickerContainer.offsetWidth + “px”;
this.tick();

}

This code positions the ticker at the farthest right edge of tickerContainer (the animation scrolls from
right to left) and calls tick() to start the animation.

Internet Explorer and Firefox have different modes in which they render markup differently according
to the doctype specified in the HTML page. Under what is known as standards mode, you must add
“px” to any pixel measurement or the browser will not position the element.

Animating the Ticker
The basic logic of any animation is to move an element by a set amount of pixels repeatedly and at set
intervals until the element reaches a specific location. The scrolling animation used in this widget is
probably the simplest type of animation you can perform: a linear, right-to-left movement until the
ticker’s right edge reaches the container’s left edge. The leftmost limit of the animation can be expressed
by this.ticker.offsetWidth, which gives the element’s width in pixels and then negates it to ensure
that the entire element is not visible. When the ticker reaches this position in the page, the animation
restarts. The tick() method begins by gathering this information:

NewsTicker.prototype.tick = function () {
var iTickerLength = this.ticker.offsetWidth;

214

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 214

var oThis = this;

//more code to come
};

The iTickerWidth variable contains the ending point of the animation: the negative offsetWidth of
the ticker. Once again, a pointer to the NewsTicker object is assigned to oThis for later event handler
assignments.

The first step in the animation is to decide whether the ticker contains any data, because there’s no use in
scrolling an empty <div/> element:

NewsTicker.prototype.tick = function () {
var iTickerLength = this.ticker.offsetWidth;
var oThis = this;

if (this.ticker.innerHTML) {
if (this.ticker.offsetLeft > -iTickerLength) {

var iNewLeft = this.ticker.offsetLeft - 1;
this.ticker.style.left = iNewLeft + “px”;

} else {
this.ticker.style.left = this.tickerContainer.offsetWidth + “px”;

}
}

//more code to come
};

This code checks the element’s innerHTML property; any HTML present in the ticker means that data
exists and the animation should begin. The location of the ticker (offsetLeft) is checked against the
animation’s boundary (iTickerLength). If the location is greater than the limit, the animation contin-
ues. The next line gets the new left position of the ticker: one pixel to the left. The last line of this code
block sets the left position to reflect the value contained in iNewLeft. This, however, is only one part of
the animation. The ticker continues to move until it reaches the boundary; therefore, the ticker must be
reset to its original location.

The last step is to perform an animation. Animations are implemented in JavaScript using a timeout that
repeatedly calls a function in charge of moving an element. In the case of this animation, that function is
the tick() method itself, so a wrapper function must be created and passed into the setTimeout()
function:

NewsTicker.prototype.tick = function () {
var iTickerLength = this.ticker.offsetWidth;
var oThis = this;

if (this.ticker.innerHTML) {
if (this.ticker.offsetLeft > -iTickerLength) {

var iNewLeft = this.ticker.offsetLeft - 1;
this.ticker.style.left = iNewLeft + “px”;

} else {
this.ticker.style.left = this.tickerContainer.offsetWidth + “px”;

215

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 215

}
}

var doSetTimeout = function() {
oThis.tick();

};
this.timer = setTimeout(doSetTimeout,1);

};

This last bit of code sets a timeout for the doSetTimeout() function, which simply calls tick() again.
Doing so causes tick() to run every millisecond, so the animation continues until it is stopped by clear-
ing the timeout (when the user mouses over the container).

Stopping the Animation
Anything that is started must, at some point, be stopped; so it is with the news ticker animation: the ani-
mation stops when the user moves their mouse pointer over the ticker. The mouseover event handler
calls the stopTick() method:

NewsTicker.prototype.stopTick = function () {
clearTimeout(this.timer);
this.timer = null;

};

The timer property is passed to the clearTimeout() function, canceling the next code execution. Even
though the timeout is cleared at that point, the timer property still holds the numeric value of that time-
out; therefore, assign the property the value of null.

Adding Feeds
Now that the animation and HTML layout are complete, the only step left is to add feeds to the ticker. To
facilitate this action, the NewsTicker class needs an add() method. This method accepts a single argu-
ment, which is the URL of a remote feed:

NewsTicker.prototype.add = function (sUrl) {
this.feeds.push(new NewsTickerFeed(this, sUrl));

};

When this code executes, it creates a new NewsTickerFeed object and adds the object to the feeds
array. This array is only used to initially load the feed data when the news ticker is created.

Removing the News Ticker
The final method of the NewsTicker class is the dispose() method. This method’s job is to remove the
ticker from the Web page and clean up the associated memory:

NewsTicker.prototype.dispose = function () {
for (var i = 0; i < this.feeds.length; i++) {

this.feeds[i].dispose();
}

//more code to come
};

216

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 216

The first step in this process is the removal of all feeds associated with this ticker, as this code demon-
strates by looping through the feeds array and calling the dispose() method of the individual
NewsTickerFeed objects. Next, the animation must be stopped by calling the stopTick() method, and
the references to the various DOM elements must be deleted:

NewsTicker.prototype.dispose = function () {
for (var i = 0; i < this.feeds.length; i++) {

this.feeds[i].dispose();
}

this.stopTick();

this.tickerContainer.parentNode.removeChild(this.tickerContainer);
this.ticker = null;
this.tickerContainer = null;

};

This code stops the animation and removes the HTML elements from the page, setting the ticker and
tickerContainer properties to null (doing so prepares the object for the garbage collector).

The NewsTickerFeed Class
A news ticker isn’t very useful without content to display. The NewsTickerFeed class pulls the required
feeds, parses them with XParser, and assembles the HTML for the ticker. The constructor accepts two
arguments: a reference to its the NewsTicker object (this allows access to the NewsTicker properties
and methods when needed) and the URL of the feed to download:

function NewsTickerFeed(oParent, sUrl) {
this.parent = oParent;
this.url = sUrl;
this.timer = null;
this.container = null;

this.poll();
}

Compared to the NewsTicker class’s constructor, the NewsTickerFeed constructor is relatively simple.
This class has four properties: parent (a reference to the parent NewsTicker object); url (the URL of
the feed); timer (the reference used in the timeout for updating the feed); and container (the
element containing the feed’s information in the ticker). The last step in the constructor is to call the
poll() method, which makes a request to the server to retrieve the feed.

Polling for New Information
The poll() method automatically checks for feed updates every minute and a half (this can be config-
ured based on your needs):

NewsTickerFeed.prototype.poll = function () {
var oThis = this;
var sFullUrl = “newsticker.php?url=” + encodeURIComponent(this.url);
xparser.getFeed(sFullUrl, this.populateTicker, this);

}

217

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 217

This code uses XParser to retrieve the XML feed. Before calling xparser.getFeed(), the URL is built,
with the feed URL string being encoded by the encodeURIComponent() JavaScript function. It is
important to encode the URL, because this ensures that any characters such as white space, ampersands,
quotation marks, and so on are converted to their corresponding escape sequence for proper transmis-
sion. The code uses populateTicker as the callback for the request and asks it to be fired within the
NewsTickerFeed object’s scope.

One final addition to poll() is the automatic updating. To facilitate this, use an approach similar to the
tick() method of the NewsTicker class:

NewsTickerFeed.prototype.poll = function () {
var oThis = this;
var sFullUrl = “newsticker.php?url=” + encodeURIComponent(this.url);
xparser.getFeed(sFullUrl, this.populateTicker, this);

var doSetTimeout = function () {
oThis.poll();

};

this.timer = setTimeout(doSetTimeout, 90000);
}

This new code creates a function called doSetTimeout() to pass to the setTimeout() method. Because
this version of doSetTimeout() exists only in the scope of the poll() method, it will not interfere with
the previous function of the same name in tick(). The poll() method is now set to run every 1.5 min-
utes (every 90,000 milliseconds) and will update the feed.

Stop Automatic Polling
There may be instances where you want to stop a feed from updating. Doing so is as simple as the
calling stopPolling():

NewsTickerFeed.prototype.stopPolling = function () {
clearTimeout(this.timer);
this.timer = null;

};

This method simply clears the timeout used for polling and assigns the value of null to the timer property.

Adding Content
When XParser finishes parsing the remote feed, it calls the populateTicker() method and passes
itself as an argument. With the supplied XParser object, you can start to create the HTML:

NewsTickerFeed.prototype.populateTicker = function (oParser) {
var spanTickerLinks = document.createElement(“span”);

var aFeedTitle = document.createElement(“a”);
aFeedTitle.className = “newsTicker-feedTitle”;
aFeedTitle.href = oParser.link.value;
aFeedTitle.target = “_new”;

218

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 218

aFeedTitle.innerHTML = oParser.title.value;

spanTickerLinks.appendChild(aFeedTitle);

//more code to come
}

The first step is to create an element to encapsulate all the links. This element serves the purpose of con-
venience: when the feed is updated, it is easier to remove one element with several children than it is to
remove several elements one at a time. Also, don’t confuse this container with the container property.
The latter contains spanTickerLinks.

To separate the different feeds in the ticker, the feed’s title is used. This is also a link, so if the user clicks
on the title, a new window pops up taking him or her to the feed’s web site. This link is given a CSS
class of newsTicker-feedTitle and is appended to spanTickerLinks.

Next, create the link items by iterating through the items array of the XParser object:

NewsTickerFeed.prototype.populateTicker = function (oParser) {
var spanTickerLinks = document.createElement(“span”);

var aFeedTitle = document.createElement(“a”);
aFeedTitle.className = “newsTicker-feedTitle”;
aFeedTitle.href = oParser.link.value;
aFeedTitle.target = “_new”;
aFeedTitle.innerHTML = oParser.title.value;

spanTickerLinks.appendChild(aFeedTitle);

for (var i = 0; i < oParser.items.length; i++) {
var item = oParser.items[i];

var aFeedLink = document.createElement(“a”);
aFeedLink.href = item.link.value;
aFeedLink.target = “_blank”;
aFeedLink.className = “newsTicker-feedItem”;
aFeedLink.innerHTML = item.title.value;

spanLinkContainer.appendChild(aFeedLink);
}

}

Each link opens a new window when clicked and has a CSS class of newsTicker-feedItem. When the
link is completed, it is appended to spanLinkContainer, which is then added to the ticker:

NewsTickerFeed.prototype.populateTicker = function (oParser) {
var spanLinkContainer = document.createElement(“span”);

var aFeedTitle = document.createElement(“a”);
aFeedTitle.className = “newsTicker-feedTitle”;
aFeedTitle.href = oParser.link.value;
aFeedTitle.target = “_new”;

219

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 219

aFeedTitle.innerHTML = oParser.title.value;

spanLinkContainer.appendChild(aFeedTitle);

for (var i = 0, itemsLength = oParser.items.length; i < itemsLength; i++) {
var item = oParser.items[i];

var aFeedLink = document.createElement(“a”);
aFeedLink.href = item.link.value;
aFeedLink.target = “_new”;
aFeedLink.className = “newsTicker-feedItem”;
aFeedLink.innerHTML = item.title.value;

spanLinkContainer.appendChild(aFeedLink);
}
if (!this.container) {

this.container = document.createElement(“span”);
this.container.className = “newsTicker-feedContainer”;
this.parent.ticker.appendChild(this.container);

} else {
this.container.removeChild(this.container.firstChild);

}

this.container.appendChild(spanLinkContainer);
}

When a NewsTickerFeed class is first created, the container property is declared but given a null
value. This is done for a couple of reasons. First, the ticker’s animation does not begin until it contains
HTML. To keep the animation from running prematurely, the element referenced by container should
not be added until the feed’s data is retrieved, parsed, and assembled into HTML. This means that
appending the container to the ticker should occur in populateTicker().

Second, because this operation takes place in populateTicker(), it is important not to add the same
container to the ticker over and over again). Therefore, when the previous code executes, it checks
if container has been initialized. If not, the element is created and appended to the ticker;
otherwise, the link container is removed from container, and the newly created link container is added
to the widget.

Removing Data
There may be a case where a feed needs to be removed from the ticker, either to be replaced or just sim-
ply to free up space. In that case, it’s important to free up any memory used by the NewsTickerFeed
object. This is where the dispose() method takes over.

Like the NewsTicker method of the same name, the NewsTickerFeed’s dispose() method performs
the removal of the feed from the ticker:

NewsTickerFeed.prototype.dispose = function () {
if (this.timer) this.stopPolling();
if (this.container) {

this.parent.ticker.removeChild(this.container);

220

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 220

this.container = null;
}

this.parent = null;
};

The first line checks to see if the feed still automatically updates itself (remember, the timer property is
assigned the value of null when stopPolling() is called). If so, then it is stopped from doing so. It
then checks for, and removes, the HTML elements used by the NewsTickerFeed object. And last, it
removes the reference to the NewsTicker object that contained the feed.

Styling the News
Since no two sites are the same visually, the ability to style the news ticker is very important. Before
looking at the CSS, however, it is important to review the HTML structure of the news ticker:

<div class=”newsTickerContainer”>
<div class=”newsTicker”>

<a />
<a />

<a />
<a />

</div>
</div>

The outermost <div/> element is important for two reasons. First, it encapsulates every part of the wid-
get. Second, it is the viewing box for the news items. Because it contains every element in the widget, it
must be an extremely wide box, but you don’t want to all the data seen until it enters the visible area.
Therefore, the CSS overflow property must be set to “hidden”:

.newsTickerContainer {
overflow: hidden;
position: relative;
background-color: silver;
height: 20px;
width: 100%;
padding-top: 2px;

}

Setting the overflow property to “hidden” hides any content that is not positioned within the specified
area. Next, the position property is set to “relative.” Other CSS properties can be customized
depending on where the news ticker is being used; in this example code, height, width, padding, and
background-color are assigned.

221

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 221

The next element contains all the feed links. This <div/> element is absolutely positioned so that it can
be moved with JavaScript:

.newsTicker {
white-space: nowrap;
position: absolute;
height: 25px;

}

Note also that the white-space property is set to nowrap, which disallows line breaks in the text. This
is important because, otherwise, the text could end up on multiple lines instead of a single line.

The last two elements exposing CSS classes are the links: newsTicker-feedTitle and
newsTicker-feedItem. The first is the link to the news site. Although none of the following properties
is required, they set the feed’s title apart from the remaining links:

.newsTicker-feedTitle {
margin: 0px 6px 0px 6px;
font-weight: bold;
color: black;
text-decoration: none;

}

There are six pixels of space on the left and right sides, giving distance between the feed items. The text
is bold, is black, and has no underline, thus causing more separation in likeness between this link and
the others.

The only formatting the feed items have are four pixels of space on each side, giving the links a defined
look while still maintaining what the user expects:

.newsTicker-feedItem {
padding: 4px;

}

The beauty of CSS is its ability to change the look and feel of any page or widget, regardless of markup
(in most circumstances). Feel free to experiment with different CSS properties to format the news ticker
to your specifications.

Using the News Ticker Widget
Since the back-end code is PHP, setting up this widget is as simple as uploading files and referencing
them in your HTML. To add the JavaScript and CSS into your page, simply add the <script/> and
<link/> tags:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Ajax News Ticker</title>

222

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 222

<link rel=”stylesheet” type=”text/css” href=”css/newsticker.css” />
<script type=”text/javascript” src=”js/zxml.js”></script>
<script type=”text/javascript” src=”js/xparser.js”></script>
<script type=”text/javascript” src=”js/newsticker.js”></script>

</head>
<body>

</body>
</html>

You’ll also need to instantiate a new instance of NewsTicker. Remember, NewsTicker adds itself to an
HTMLElement, so it’s best to create the object when the page loads with the onload event:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Ajax News Ticker</title>
<link rel=”stylesheet” type=”text/css” href=”css/newsticker.css” />
<script type=”text/javascript” src=”js/zxml.js”></script>
<script type=”text/javascript” src=”js/xparser.js”></script>
<script type=”text/javascript” src=”js/newsticker.js”></script>
<script type=”text/javascript”>
window.onload = function() {

var newsTicker = new NewsTicker();
newsTicker.add(“http://rss.news.yahoo.com/rss/topstories”);

}

</script>
</head>
<body>

</body>
</html>

Because this widget uses XParser to parse the news feeds, any RSS 2.0 and Atom feed can be used with
this widget. (The preceding example pulls the Yahoo! Top Stories feed.) The news ticker elements will be
created inside the document’s <body/> element because no container object was passed in to the
NewsTicker constructor.

Web Search with RSS
With the ever-expanding technology of the Web, conventional search engines are opening the doors to
more unconventional means to get you to the content you desire. The first to jump onto the scene was
Yahoo! with their Y!Q service (http://yq.search.yahoo.com/publisher/index.html). This new
service enables developers to embed search functionality into any web page. Y!Q provides search results
related to the content of the page, giving readers more information without leaving the page.

223

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 223

The Y!Q service is a great idea, but it hasn’t surfaced without criticism. The main argument? It requires
the use of Yahoo!’s JavaScript, and you have to add a <form/> element meeting the Yahoo! requirements
to perform a search. For many web site authors, it takes too much effort to use the service. And after all
the work, the search results are presented in the Yahoo! style, breaking the look and feel of the web site.

Thankfully, Yahoo! isn’t the only search engine breaking into this type of service. MSN Search
(http://search.msn.com) provides a similar service, but it also enables the web developer to control
the look, feel, and implementation. This ability comes from MSN Search providing RSS versions of its
search results, making it possible to subscribe to a particular search or add the results to your page using
Ajax methods.

In mid-2006, Google also jumped into competition for “search from your site” functionality, releasing
Google BlogSearch (http://blogsearch.google.com), which provides results returned in either
RSS or Atom formats.

The Server-Side Component
To run a search and get the results back in RSS format, a request can be made in the following format:

http://search.msn.com/results.aspx?q=[SEARCHTERM]&format=rss

With this knowledge, it’s possible to write server-side code to retrieve the remote feed. Once again, it’s
necessary to create a server-side proxy to access this information, since it exists on a different server. The
URL to request information from the server application looks like this:

websearch.php?search=[SEARCHTERM]

There’s only one variable in the query string: search. Therefore, the application should look for this
query item:

<?php
header(“Content-Type: text/xml”);
header(“Cache-Control: no-cache”);

if (isset($_GET[“search”])) {

$searchTerm = urlencode(stripslashes($_GET[“search”]));

$url = “http://search.msn.com/results.aspx?q=$searchTerm&format=rss”;

$xml = file_get_contents($url);

echo $xml;
} else {

header(“HTTP/1.1 400 Bad Request”);
}
?>

224

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 224

As you know, the first two lines set the required headers so that the browser will handle the data cor-
rectly. The next line of code uses the isset() function to determine whether the search key is present in
the query string.

The search term must go through a variety of functions in order to send a proper request to the remote
host. First, it is passed to the stripslashes() function. If magic quotes are enabled in the PHP configu-
ration (which is the default), any quote that reaches the PHP engine is automatically escaped with a
slash: \”search query\”. The stripslashes() function removes these escape sequence, leaving only
“search query”. After the slashes’ removal, it then goes to the urlencode() function, which properly
encodes characters to be used in a query string. Spaces, quotes, ampersands, and other characters are
all encoded.

When the search term is ready for transmission, it is included into the URL and stored in the $url vari-
able. Finally, the file_get_contents() function opens the remote file, reads the contents, and returns
it as a string to the $xml variable, which is printed to the page using the echo command.

The Client-Side Component
The client-side code departs from the classes created earlier in this chapter. Instead of creating a class
and using instances of that class, this widget consists of a static object called msnWebSearch:

var msnWebSearch = {};

This object is created using object literal notation and exposes several methods to get the search results
and to draw and position the HTML that contains the data. The first method is drawResultBox(),
which draws the HTML for search results in the following format:

<div class=”ajaxWebSearchBox”>
<div class=”ajaxWebSearchHeading”>MSN Search Results

X
</div>

<div class=”ajaxWebSearchResults”>

</div>
</div>

The result box is divided into two parts: a heading and a results pane (see Figure 7-2). The heading tells
the user that this new box contains results from an MSN search. It also contains an X, which will close
the box. The results pane contains block-style links, which opens a new window when clicked.

If the search term is not encoded like this, the MSN server will return a code 400:
Bad Request.

225

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 225

Figure 7-2

Positioning the Search Results
The position() method, as you may have guessed, positions the search box. It accepts two arguments:
an event object and the HTMLElement object referencing the result box:

msnWebSearch.position = function (e, divSearchBox) {
var x = e.clientX + document.documentElement.scrollLeft;
var y = e.clientY + document.documentElement.scrollTop;

divSearchBox.style.left = x + “px”;
divSearchBox.style.top = y + “px”;

};

The first two lines get the left and top positions to place the search results box. Two pieces of information
are required to perform this operation. First is the x and y coordinates of the mouse. This information is
stored in the clientX and clientY properties.

These coordinates, however, are insufficient to properly position the results box because the clientX
and clientY properties return the mouse position in relation to the client area in the browser window,
not the actual coordinates in the page. To account for this, use the scrollLeft and scrollTop proper-
ties of the document element. With the final coordinates calculated, you can finally position the box
where the user clicked the mouse.

226

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 226

Drawing the Results User Interface
The code to generate this HTML is rather lengthy because the elements are generated using DOM meth-
ods. The drawResultBox() method accepts one argument, an event object:

msnWebSearch.drawResultBox = function (e) {
var divSearchBox= document.createElement(“div”);
var divHeading = document.createElement(“div”);
var divResultsPane = document.createElement(“div”);
var aCloseLink = document.createElement(“a”);

//more code to come
};

These first lines create the HTML elements via the createElement() method. After the elements have
been created, their properties can be assigned. The first two elements to finalize are a CloseLink and
divHeading:

msnWebSearch.drawResultBox = function (e) {
var divSearchBox= document.createElement(“div”);
var divHeading = document.createElement(“div”);
var divResultsPane = document.createElement(“div”);
var aCloseLink = document.createElement(“a”);

aCloseLink.href = “#”;
aCloseLink.className = “ajaxWebSearchCloseLink”;
aCloseLink.onclick = this.close;
aCloseLink.appendChild(document.createTextNode(“X”));

divHeading.className = “ajaxWebSearchHeading”;
divHeading.appendChild(document.createTextNode(“MSN Search Results”));
divHeading.appendChild(aCloseLink);

//more code to come
};

A method, close(), becomes the handler for the close link’s onclick event. The next group of lines
populate the heading <div/> with text and the closing link.

When this result box is drawn into the page, a response from the server application has not yet been
received. To show the user that something is happening, a loading message is displayed (see Figure 7-3).

Using documentElement to retrieve the scrollLeft and scrollTop properties
only works in the browser’s standards mode. In “quirks mode,” document.body
.scrollLeft and document.body.scrollTop must be used.

227

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 227

Figure 7-3

To create this loading message, create another element and append it to the divResultsPane element:

msnWebSearch.drawResultBox = function (e) {
var divSearchBox= document.createElement(“div”);
var divHeading = document.createElement(“div”);
var divResultsPane = document.createElement(“div”);
var aCloseLink = document.createElement(“a”);

aCloseLink.href = “#”;
aCloseLink.className = “ajaxWebSearchCloseLink”;
aCloseLink.onclick = this.close;
aCloseLink.appendChild(document.createTextNode(“X”));

divHeading.className = “ajaxWebSearchHeading”;
divHeading.appendChild(document.createTextNode(“MSN Search Results”));
divHeading.appendChild(aCloseLink);

var divLoading = document.createElement(“div”);
divLoading.appendChild(document.createTextNode(“Loading Search Feed”));

divResultsPane.className = “ajaxWebSearchResults”;
divResultsPane.appendChild(divLoading);

//more code to come
};

228

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 228

This code creates the loading message and appends it to divResultsPane, while also assigning a CSS
class name to divResultsPane.

With these elements completed, all that remains is to add them to the divSearchBox element:

msnWebSearch.drawResultBox = function (e) {
var divSearchBox= document.createElement(“div”);
var divHeading = document.createElement(“div”);
var divResultsPane = document.createElement(“div”);
var aCloseLink = document.createElement(“a”);

aCloseLink.href = “#”;
aCloseLink.className = “ajaxWebSearchCloseLink”;
aCloseLink.onclick = this.close;
aCloseLink.appendChild(document.createTextNode(“X”));

divHeading.className = “ajaxWebSearchHeading”;
divHeading.appendChild(document.createTextNode(“MSN Search Results”));
divHeading.appendChild(aCloseLink);

var divLoading = document.createElement(“div”);
divLoading.appendChild(document.createTextNode(“Loading Search Feed”));

divResultsPane.className = “ajaxWebSearchResults”;
divResultsPane.appendChild(divLoading);

divSearchBox.className = “ajaxWebSearchBox”;
divSearchBox.appendChild(divHeading);
divSearchBox.appendChild(divResultsPane);

document.body.appendChild(divSearchBox);

//more code to come
};

This code appends the divHeading and divResultsPane elements to the search box and appends the
search box to the page.

The final step in drawResultBox() is to position the newly drawn box and return divSearchBox to its
caller:

msnWebSearch.drawResultBox = function (e) {
var divSearchBox= document.createElement(“div”);
var divHeading = document.createElement(“div”);
var divResultsPane = document.createElement(“div”);
var aCloseLink = document.createElement(“a”);

aCloseLink.href = “#”;
aCloseLink.className = “ajaxWebSearchCloseLink”;
aCloseLink.onclick = this.close;
aCloseLink.appendChild(document.createTextNode(“X”));

divHeading.className = “ajaxWebSearchHeading”;

229

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 229

divHeading.appendChild(document.createTextNode(“MSN Search Results”));
divHeading.appendChild(aCloseLink);

var divLoading = document.createElement(“div”);
divLoading.appendChild(document.createTextNode(“Loading Search Feed”));

divResultsPane.className = “ajaxWebSearchResults”;
divResultsPane.appendChild(divLoading);

divSearchBox.className = “ajaxWebSearchBox”;
divSearchBox.appendChild(divHeading);
divSearchBox.appendChild(divResultsPane);

document.body.appendChild(divSearchBox);

this.position(e, divSearchBox);

return divSearchBox;
};

The way the msnWebSearch object is set up, divSearchBox must be returned to its caller for other oper-
ations.

Displaying the Results
The populateResults() method populates the result pane with the search results. It accepts two argu-
ments: the element to contain the results and an XParser object.

msnWebSearch.populateResults = function (divResultsPane,oParser) {
var oFragment = document.createDocumentFragment();

divResultsPane.removeChild(divResultsPane.firstChild);

//more code to come
}

This method generates <a/> elements programmatically with DOM methods; these elements are
appended to a document fragment created in the first line. The next line removes the loading <div/>
element appended in drawResultBox().The next step is to create the links:

msnWebSearch.populateResults = function (divResultsPane,oParser) {
var oFragment = document.createDocumentFragment();

divResultsPane.removeChild(divResultsPane.firstChild);

for (var i = 0; i < oParser.items.length; i++) {
var oItem = oParser.items[i];

var aResultLink = document.createElement(“a”);
aResultLink.href = oItem.link.value;
aResultLink.className = “ajaxWebSearchLink”;
aResultLink.target = “_new”;

230

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 230

aResultLink.appendChild(document.createTextNode(oItem.title.value));

oFragment.appendChild(aResultLink);
}

divResultsPane.appendChild(oFragment);
}

This code cycles through the items of the feed, generates links from the data, and appends the <a/> ele-
ment to the document fragment. When the loop exits, the document fragment is appended to
divResultsPane to display the search results.

Closing the Results Box
To close the search results box, the msnWebSearch object provides the close() method:

msnWebSearch.close = function () {
var divSearchBox = this.parentNode.parentNode;
document.body.removeChild(divSearchBox);

return false;
};

The search box isn’t really closed; in fact, it is removed from the document. To do this, retrieve the
divSearchBox element. The first line does this by retrieving the parent node of this element’s parent.
Because close() handles the onclick event, this references the link. The next line removes the
divSearchBox element from the document. The last line, return false, forces the browser not to fol-
low the default behavior of a link (going to the location noted in the href attribute).

Building the Search Interface
The last method of the msnWebSearch object is search(), which provides the interface to perform a
search. You can call search() with the onclick event of an element. It accepts two methods, an event
object and the search term:

msnWebSearch.search = function (e,sSearchTerm) {
var divSearchBox = this.drawResultBox(e);
var url = “websearch.php?search=” + encodeURIComponent(sSearchTerm);

function parserCallback(oParser) {
msnWebSearch.populateResults(divSearchBox.childNodes[1],oParser);

}

xparser.getFeed(url, parserCallback, this);
};

The first line calls the drawResultBox() method and passes the event, e, to it. The next line encodes the
URL for proper transmission. The enclosed parserCallback() function is the callback function for
XParser, and it will call the populateResult() method when the search feed is finished loading to
populate the search box with results. The last line uses the xparser.getFeed() method to retrieve the
search feed.

Of course, one of the reasons for building this widget is to make it fit the look of your own site.

231

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 231

Customizing the Web Search Widget
Thanks to CSS, you can easily customize the widget for your existing site and any redesign you may
have later down the road.

The first CSS class is ajaxWebSearchBox, the class for the search box. Because the box is positioned to
where the mouse was clicked, it must have a position of “absolute”:

.ajaxWebSearchBox
{

position: absolute;
background-color: #0d1e4a;
width: 500px;
padding: 1px;

}

The absolute position is the only requirement. All other properties are optional according to your needs.
In this example, the box has a dark-blue background, a width of 500 pixels, and 1 pixel of padding on all
four sides. This padding will give the box a 1-pixel border around the box’s contents.

The next class is ajaxWebSearchHeading, which contains the box’s heading text and the closing link.

.ajaxWebSearchHeading
{

position: relative;
background-color: #1162cc;
font: bold 14px tahoma;
height: 21px;
color: white;
padding: 3px 0px 0px 2px;

}

Once again, the only required property is position. The remaining properties help to give the element
a heading-like look. The background color is a lighter blue with white, bold text 14 pixels high and in the
Tahoma font. The element’s height is 21 pixels, and it is padded on the top and left edges.

The closing link is absolutely positioned in order to place it in the top-right corner:

a.ajaxWebSearchCloseLink
{

position: absolute;
right: 5px;
top: 3px;
text-decoration: none;
color: white;

}

a.ajaxWebSearchCloseLink:hover
{

color: red;
}

232

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 232

The element is positioned 5 pixels from the right and 3 pixels from the top, placing the element in the
top-right corner. This link does not have any text decoration and is colored white. When the user hovers
over the link, the text color turns red.

Next, the ajaxWebSearchResults class styles the results pane:

.ajaxWebSearchResults
{

background-color: #d3e5fa;
padding: 5px;

}

There are no required CSS properties for this element. The existing properties are merely to define the
results pane and make it relatively easy to read. The background color is a light blue, and 5 pixels of
padding surround the edges. You can also style the loading message:

.ajaxWebSearchResults div
{

text-align: center;
font: bold 14px tahoma;
color: #0a246a;

}

This element does not have a class name, but you can still style it by using the parent child notation
shown in the preceding example. This example places the text in the center of the <div/> element and
gives it a bold, blue font 14 pixels high.

The last elements you need to style are the result links. These have a class name of ajaxWebSearchLink:

a.ajaxWebSearchLink
{

font: 12px tahoma;
padding: 2px;
display: block;
color: #0a246a;

}

a.ajaxWebSearchLink:hover
{

color: white;
background-color: #316ac5;

}

a.ajaxWebSearchLink:visited
{

color: purple;
}

Note that no visited or active pseudo-classes are used. This is because the win-
dow always ignores the href attribute of this link (it has return false in its event
handler). Therefore, the link is never truly active or visited.

233

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 233

The only required property is display, which is set to block. This gives every link its own line. The
padding, two pixels worth, gives a bit of separation between the links, making them easier to read. The
font-face is Tahoma and is 12 pixels high. Their color is a dark blue, giving a nice contrast to the light
blue background of ajaxWebSearchResults. When the user hovers over these links, the background
color is set to blue, whereas the text color changes to white.

The visited pseudo-class is set, in the last rule in the previous code. This is to provide users with user
interface cues they are already used to. By having the visited pseudo-class set to display a color of
purple, users know they’ve already visited that link, which can save them time by not visiting a page
they may not want to.

Using the Web Search Widget
Using this widget is simple. First, upload the websearch.php file to your web server. Next, you need an
HTML document to reference all the components. The msnWebSearch object relies on the XParser class,
which in turn depends on the zXml library. You must reference these files:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xml:lang=”en” lang=”en” xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<title>Ajax WebSearch</title>
<link rel=”stylesheet” type=”text/css” href=”css/websearch.css” />
<script type=”text/javascript” src=”js/zxml.js”></script>
<script type=”text/javascript” src=”js/xparser.js”></script>
<script type=”text/javascript” src=”js/websearch.js”></script>

</head>

<body>

</body>
</html>

To perform a search, set the msnWebSearch.search() method as the element’s onclick handler:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xml:lang=”en” lang=”en” xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<title>Ajax WebSearch</title>
<link rel=”stylesheet” type=”text/css” href=”css/websearch.css” />
<script type=”text/javascript” src=”js/zxml.js”></script>
<script type=”text/javascript” src=”js/xparser.js”></script>
<script type=”text/javascript” src=”js/websearch.js”></script>

234

Chapter 7

10_109496 ch07.qxd 2/5/07 6:50 PM Page 234

</head>

<body>

<a href=”#” onclick=’msnWebSearch.search(event,”\”Professional Ajax\””);
return false;’>Search for “Professional Ajax”

<a href=”#” onclick=’msnWebSearch.search(event,”Professional Ajax”);
return false;’>Search for Professional Ajax

</body>
</html>

The first new link performs a search for the exact phrase Professional Ajax, whereas the second searches
for all the words. Also note the return false in the onclick event. Once again, this forces the browser
to ignore the href attribute and is required. Clicking these links will draw the search box at the mouse’s
cursor, and you’ll have the search results just pixels away.

Summary
In this chapter, you learned a brief history of online syndication, including the rise of RSS and Atom as
the two dominant XML formats for syndication. Next, you learned how to create XParser, a JavaScript
RSS/Atom parser that provides an easy-to-use interface for developers of web applications based on
RSS and Atom. Using this library, you built two widgets that can easily be used in any Web application.

You first learned how to create a news ticker built upon PHP, DHTML, and Ajax to display news feeds in
a scrolling format. You also enabled this widget to auto-update, making sure that the latest information
is available for your readers.

The second widget implemented an Ajax search, using MSN’s search capabilities to display the search
results. Through PHP, this widget retrieved the search result RSS feed, and a static JavaScript object dis-
played the results to the user.

235

Syndication with RSS and Atom

10_109496 ch07.qxd 2/5/07 6:50 PM Page 235

10_109496 ch07.qxd 2/5/07 6:50 PM Page 236

JSON

With the popularity of web services around 2004, XML practically became the de facto standard
for data transmission. However, XML is not without its detractors. Some consider it to be overly
verbose for data transmission purposes, necessitating the sending of many more bytes across the
Internet to accomplish what could have been done in a much smaller form. Because of this consid-
eration, new forms of XML compression and even entirely new XML formats, such as Binary XML,
have been developed. All these solutions work on extending or adding on to XML, making back-
ward compatibility an issue. Douglas Crockford, a long-time software engineer, proposed a new
data format built on JavaScript, called JavaScript Object Notation (JSON).

What Is JSON?
JSON is a very lightweight data format based on a subset of the JavaScript syntax, namely array
and object literals. Because it uses JavaScript syntax, JSON definitions can be included within
JavaScript files and accessed without the extra parsing that comes with XML-based languages. But
before you can use JSON, it’s important to understand the specific JavaScript syntax for array and
object literals.

Array Literals
Array literals are specified by using square brackets ([and]) to enclose a comma-delimited list of
JavaScript values (meaning a string, number, Boolean, or null value), such as:

var aNames = [“Benjamin”, “Michael”, “Scott”];

This is functionally equivalent to the following, more traditional form:

var aNames = new Array(“Benjamin”, “Michael”, “Scott”);

11_109496 ch08.qxd 2/5/07 6:51 PM Page 237

Regardless of how the array is defined, the result is the same. Values are accessed in the array by using
the array name and bracket notation:

alert(aNames[0]); //outputs “Benjamin”
alert(aNames[1]); //outputs “Michael”
alert(aNames[2]); //outputs “Scott”

Note that the first position in the array is 0, and the value in that position is “Benjamin”.

Because arrays in JavaScript are not typed, they can be used to store any number of different datatypes:

var aValues = [“string”, 24, true, null];

This array contains a string, followed by a number, followed by a Boolean, followed by a null value.
This is completely legal and perfectly fine JavaScript (though not recommended for maintainability
purposes).

Object Literals
Object literals are used to store information in name-value pairs, ultimately creating an object. An object
literal is defined by two curly braces ({ and }). Inside of these can be placed any number of name-value
pairs, defined with a string, a colon, and the value. Each name-value pair must be followed with a
comma, except for the last one (making this more like defining an associative array in Perl). For example:

var oCar = {
“color” : “red”,
“doors” : 4,
“paidFor” : true

};

This code creates an object with three properties named color, doors, and paidFor, each containing
different values. These properties are accessed by using the object name and dot notation, such as:

alert(oCar.color); //outputs “red”
alert(oCar.doors); //outputs “4”
alert(oCar.paidFor); //outputs “true”

Bracket notation can also be used by passing in the name of the property as a string value (similar to the
way it was defined using object literal notation):

alert(oCar[“color”]); //outputs “red”
alert(oCar[“doors”]); //outputs “4”
alert(oCar[“paidFor”]); //outputs “true”

It’s important to note that both methods of creating arrays are acceptable when writ-
ing JavaScript, but only array literals are valid in JSON.

238

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 238

The same object could be created using the JavaScript Object constructor, like this:

var oCar = new Object();
oCar.color = “red”;
oCar.doors = 4;
oCar.paidFor = true;

As you can see, the object literal notation requires much less code than using the Object constructor.

Mixing Literals
It’s possible to mix object and array literals, creating an array of objects or an object containing an array.
Suppose that you wanted to create an array of car objects similar to the one created in the last section:

var aCars = [
{

“color” : “red”,
“doors” : 2,
“paidFor” : true

},
{

“color” : “blue”,
“doors” : 4,
“paidFor” : true

},
{

“color” : “white”,
“doors” : 2,
“paidFor” : false

}
];

This code defines an array, aCars, which has three objects in it. The three objects each have properties
named color, doors, and paidFor. (Each object represents a car, of course.) The information in the
array is accessible by using a combination of bracket and dot notation. For example, the following line
will get the number of doors on the second car in the array:

alert(aCars[1].doors); //outputs “4”

In this example, you are first getting the value in the second position of the array (position 1) and then
getting the property named doors.

Once again, although either approach is valid in JavaScript, only object literal nota-
tion is valid in JSON.

239

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 239

You can also define the array to be inside of object literals, such as:

var oCarInfo = {
“availableColors” : [“red”, “white”, “blue”],
“availableDoors” : [2, 4]

};

This code defines an object called oCarInfo that has two properties, availableColors and
availableDoors. Both of these properties are arrays, containing strings and numbers, respectively. To
access a value here, just reverse the order of the bracket and dot notation. So, to get to the second avail-
able color, do this:

alert(oCarInfo.availableColors[1]);

In this example, you are first returning the property named availableColors and then getting the
value in the second position (position 1). But what does all this have to do with JSON?

JSON Syntax
JSON syntax is really nothing more than the mixture of object and array literals to store data. The only
difference from the examples in the last section is that JSON doesn’t have variables. Remember, JSON
represents only data; it has no concept of variables, assignments, or equality. Therefore, the JSON code
for the last example is simply:

{
“availableColors” : [“red”, “white”, “blue”],
“availableDoors” : [2, 4]

}

Note that the variable oCarInfo has been removed, as has the semicolon following the closing curly
brace. If this data were transmitted via HTTP to a browser, it would be fairly quick because of the small
number of characters. Suppose that this data was retrieved by using XHR (or some other form of client-
server communication) and stored in a variable named sJSON. You now have a string of information, not
an object, and certainly not an object with two arrays. To transform it into an object, simply use the
JavaScript eval() function:

var oCarInfo = eval(“(“ + sJSON + “)”);

This example surrounds the JSON text with parentheses and then passes that string into the eval()
function, which acts like a JavaScript interpreter. The result of this operation is a JavaScript object identi-
cal to the oCarInfo object defined in the last section. Information in this object can be accessed in the
exact same way:

alert(oCarInfo.availableColors[0]); //outputs “red”
alert(oCarInfo.availableDoors[1]); //ouputs “4”

240

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 240

There are obvious benefits to using JSON as a data format for JavaScript communication: it takes the
evaluation of the data out of your hands and, therefore, grants you faster access to the information con-
tained within.

JSON Encoding/Decoding
To aid JavaScript developers with JSON usage, Crockford has written a JavaScript library that adds
several methods for translating data between JSON and JavaScript. This library is available at
www.json.org/json.js. Unlike other JavaScript libraries, this one takes advantage of JavaScript’s
extensibility, adding methods to Object, Array, and String.

The first method is parseJSON(), which is accessible on any string. For instance, if you have a string
sJSON that contains JSON code, it can be translated into a JavaScript object like this:

var oObject = sJSON.parseJSON();

This method provides safer evaluation of JSON code than eval(), which evaluates all JavaScript code
and could potentially allow the execution of arbitrary code. The parseJSON() method ensures that the
JSON code contains only data and will not result in code being executed.

The library also adds the toJSONString() method to all objects, including Array. This method recur-
sively serializes any object into a JSON string. Consider the following example:

var oCar = new Object();
oCar.doors = 4;
oCar.color = “blue”;
oCar.year = 1995;
oCar.drivers = new Array(“Penny”, “Dan”, “Kris”);

document.write(oCar.toJSONString());

This code outputs the following JSON string:

{“doors”:4,”color”:”blue”,”year”:1995,”drivers”:[“Penny”,”Dan”,”Kris”]}

The ability to encode and decode between JavaScript and JSON is an important ability and one that
Crockford’s library provides in a secure manner. With this tool, you’re now ready to use JSON in an
enterprise-level web application.

It’s very important to include the extra parentheses around any JSON string before
passing it into eval(). Remember, curly braces also represent statements in
JavaScript (such as used with the if statement). The only way the interpreter knows
that the curly braces represent an object and not a statement is by looking for an
equals sign before it or to look for parentheses around it (which indicates that the
code is an expression to be evaluated instead of a statement to be run).

241

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 241

JSON versus XML
As mentioned previously, one of the advantages of JSON over XML is that it’s more compact. XML is
considered by some to be overly verbose for its purpose. But what does this mean exactly? Consider the
following XML data:

<classinfo>
<students>

<student>
<name>Michael Smith</name>
<average>99.5</average>
<age>17</age>
<graduating>true</graduating>

</student>
<student>

<name>Steve Johnson</name>
<average>34.87</average>
<age>17</age>
<graduating>false</graduating>

</student>
<student>

<name>Rebecca Young</name>
<average>89.6</average>
<age>18</age>
<graduating>true</graduating>

</student>
</students>

</classinfo>

This example contains information about three students in a class. Right away, there is some XML infor-
mation that isn’t entirely necessary: the <classinfo> and <students/> elements. These elements help
to define the overall structure and meaning of the information, but the actual information you’re inter-
ested in is the students and their information. Plus, for each piece of information about the students, the
name of the information is repeated twice, although the actual data appears only once (for example,
“name” appears both in <name> and </name>. Consider the same information formatted as JSON:

{ “classinfo” :
{

“students” : [
{

“name” : “Michael Smith”,
“average” : 99.5,
“age” : 17,
“graduating” : true

},
{

“name” : “Steve Johnson”,
“average” : 34.87,
“age” : 17,
“graduating” : false

},
{

242

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 242

“name” : “Rebecca Young”,
“average” : 89.6,
“age” : 18,
“graduating” : true

}
]

}
}

A lot of the superfluous information isn’t present in this JSON form. Since closing tags aren’t necessary
to match opening tags, this greatly reduces the number of bytes needed to transmit the same informa-
tion. Not including spaces, the JSON data is 224 bytes, whereas the comparable XML data is 365 bytes,
saving more than 100 bytes. (This is why Crockford, JSON’s creator, calls it the “fat-free alternative
to XML.”)

The disadvantage to JSON-formatted data as compared to XML is that it’s far less readable to the naked
eye. Because XML is verbose, it’s fairly easy to understand what data is being represented with a simple
glance. JSON, with its shorthand notation, can be difficult to decipher without other software tools.
Of course, an argument can be made that data exchange formats should never be viewed with the naked
eye. Thus, it makes sense that server-side JSON tools are necessary to create the data being sent to the
client.

Server-Side JSON Tools
When Crockford first proposed JSON, he was the only one creating tools for encoding and decoding. As
the popularity of JSON grew, others started to step up and create client- and server-side libraries to facil-
itate its use. Although it is beyond the scope of this book to discuss every one of these tools, it is useful
to take a look at one and then develop a solution using it.

JSON-PHP
JSON-PHP is a PHP library for encoding and decoding JSON information. This utility, written by Michal
Migurski, is available for free at http://mike.teczno.com/json.html. To use this library, simply
include the JSON.php file and create an instance of the Services_JSON object:

<?php
require_once(“JSON.php”);
$oJSON = new Services_JSON();

?>

The first line includes the JSON.php file that contains the Services_JSON object definition. The second
line simply instantiates the object and stores it in the variable $oJSON. Now, you’re ready to start encod-
ing and decoding JSON in your PHP page.

The encode() Method
To encode a PHP object into a JSON string, use the encode() method, which accepts a single argument:
an object to encode, which can be an array or a full-fledged object. It doesn’t matter how the object or

243

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 243

array was created, by using a class definition or not; all objects can be encoded using this method.
Consider the following class definition:

<?php
class Person {

var $age;
var $hairColor;
var $name;
var $siblingNames;

function Person($name, $age, $hairColor) {
$this->name = $name;
$this->age = $age;
$this->hairColor = $hairColor;
$this->siblingNames = array();

}
}

?>

This PHP code defines a class called Person that stores some personal information. The class would be
used as follows:

<?php
$oPerson = new Person(“Mike”, 26, “brown”);
$oPerson->siblingNames[0] = “Matt”;
$oPerson->siblingNames[1] = “Tammy”;

?>

To encode the $oPerson object, simply pass it into the encode() method, like this:

<?php
$sJSONText = $oJSON->encode($oPerson);

?>

This creates a JSON string of:

{“age”:26,”hairColor”:”brown”,”name”:”Mike”,”siblingNames”:[“Matt”,”Tammy”]}

The $oPerson object is now ready to be transferred to JavaScript or any other language that can support
JSON-encoded information.

The decode() Method
The decode() method is used to perform the opposite function, taking a JSON string and parsing it into
an object. Suppose that you have the JSON string displayed previously and want to create a PHP object
from it. Just pass the string into the decode() method:

<?php
$oPerson = $oJSON->decode($sJSONText);

?>

244

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 244

Now, the $oPerson variable can be used just like the one in the previous example, as if it were created
using the Person class:

<?php
print(“<h3>Person Information</h3>”);
print(“<p>Name: “.$oPerson->name.”
”);
print(“Age: “.$oPerson->age.”
”);
print(“Hair Color: “.$oPerson->hairColor.”
”);
print(“Sibling Names:</p>”);

for ($i=0; $i < count($oPerson->siblingNames); $i++) {
print(“”.$oPerson->siblingNames[$i].””);

}

print(“”);

?>

This code prints out the information contained in the $oPerson object, proving that the object has been
constructed appropriately. JSON-PHP is in several projects throughout this book because it is quite sim-
ply the easiest way to deal with JSON in a server-side language.

Other Tools
As of 2006, there are JSON libraries for use with every popular server-side language. Depending on your
environment, you may find these resources useful:

❑ C#/.NET: The Json.NET library is a free JSON parser/serializer that mimics the built-in XML
functionality of .NET. Json.NET is available at www.newtonsoft.com/products/json.

❑ ColdFusion: The CFJSON library, written by Jehiah Czebotar, is available at http://jehiah
.com/projects/cfjson.

❑ Java/JSP: The JSON in Java utilities, written by Douglas Crockford, are available at www.json
.org/java/.

❑ Perl: The JSON library, written by Makamaka Hannyaharamitu, is available at http://search
.cpan.org/dist/JSON/.

❑ PHP: In addition to JSON-PHP, there is also php-json, a C extension for PHP written by Omar
Kilani and available at www.aurore.net/projects/php-json/. You must be comfortable
with compiling PHP with extensions.

❑ Python: The json-py library, written by Patrick D. Logan, is available at https://sourceforge
.net/projects/json-py/.

Douglas Crockford also maintains a fairly comprehensive list of JSON utilities at www.json.org. It’s a
good idea to check there for other language needs.

245

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 245

Creating an Autosuggest Textbox
The best way to learn about any new programming concept is to put it into a practical example. Google
Suggest (located at www.google.com/webhp?complete=1) is a very simple Ajax application that many
programmers have spent time dissecting, analyzing, and re-creating. If you haven’t yet taken a look at
the live application, please do so now; it will greatly aid in your understanding of the following exam-
ple.

Functionality such as this, suggesting to the user values to type in, has been around in desktop applica-
tions for some time now. Google Suggest brought the idea to the Web and generated a lot of excitement
while doing it. As mentioned earlier in the book, Google Suggest was one of the very early Ajax applica-
tions that got developers excited about the concept. It seems fitting to attempt to emulate the behavior of
Google Suggest to help others understand Ajax.

The example built in this section aids in the selection of states or provinces in a personal information
form. For sites that deal with international customers, it is often vital to include the state or province
along with the country. However, it’s not optimal to load every state and province in the entire world
into a drop-down box for the user to select from. It’s much easier to let the user start typing and then
retrieve only those results that would make the most sense. Autosuggest functionality is perfect for this
use case.

Functionality Overview
Before building anything, it’s always helpful to understand exactly what you’re building. Anyone can
say they are going to emulate the functionality of Google Suggest, but what does that mean? The exam-
ple you will build in this section has the following functionality:

❑ Typeahead: As the user is typing, the rest of the textbox fills in with the best suggestion at the
time. As the user continues to type, the textbox automatically adjusts its suggestion. The sug-
gested text always appears selected (highlighted). This should work no matter how fast the user
types.

❑ Suggestions list: Also as the user is typing, a drop-down list of other suggestions is displayed.
These suggestions are generated automatically while the user types so that there is no dis-
cernible delay.

❑ Keyboard controls: When the suggestions are displayed, the user is able to scroll up and down
the list by using the up and down arrows on the keyboard and select a suggestion. Pressing
Enter places the value into the textbox and hides the suggestion list. The Esc key can also be
used to hide the suggestions.

❑ Hide suggestions: The drop-down suggestion list is smart enough to hide itself whenever the
textbox is not used or when the browser window is hidden.

As with many applications, it may be shocking how much is actually going on behind the scenes. This is
the key with Ajax: you don’t stop and think about what’s going on, because it works in an intuitive way.

246

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 246

The HTML
The first step in any client-side component is to build the HTML to use. For the autosuggest textbox, this
includes the textbox itself as well as the drop-down list of suggestions. You’re probably familiar with the
HTML textbox:

<input type=”text” name=”txtAutosuggest” value=”” />

In most cases, this line would be enough to use a textbox. The problem is that some browsers (notably
Internet Explorer on Windows and Mozilla Firefox on all operating systems) provide autocomplete func-
tionality that drops down a list of suggestions based on values you’ve entered before. Since this would
compete directly with the suggestions you’ll be providing, this has to be turned off. To do so, set the
autocomplete attribute to off:

<input type=”text” name=”txtAutosuggest” value=”” autocomplete=”off” />

Now, you can be assured that there will be no interference from the autocomplete browser behavior. The
only other user interface component to design is the drop-down list of suggestions.

The suggestion drop-down list is nothing more than an absolutely positioned <div/> element that is
positioned below the textbox so as to give the illusion of being a drop-down list (see Figure 8-1).

Figure 8-1

Inside of this <div/> element are several other <div/> elements, one for each suggestion. By changing
the style of these elements, it’s possible to achieve the look of highlighting a given suggestion. The
HTML to create the list displayed in Figure 8-1 is as follows:

<div class=”suggestions”>
<div class=”current”>Maine</div>
<div>Maryland</div>
<div>Massachusetts</div>
<div>Michigan</div>
<div>Minnesota</div>
<div>Mississippi</div>
<div>Missouri</div>
<div>Montana</div>

</div>

247

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 247

This HTML isn’t coded directly into the main HTML file; instead, it is created dynamically by JavaScript
code. However, you need to know the general format of the HTML in order to create it appropriately.

Of course, some CSS is needed to make the drop-down list function properly. The outermost <div/> has
a class of suggestions, which is defined as:

div.suggestions {
-moz-box-sizing: border-box;
box-sizing: border-box;
background-color: white;
border: 1px solid black;
position: absolute;

}

The first two lines of this CSS class are for browsers that support two forms of box sizing: content box
and border box (for more information, read www.quirksmode.org/css/box.html). In quirks mode,
Internet Explorer defaults to border box; in standards mode, Internet Explorer defaults to content box.
Most other DOM-compliant browsers (Mozilla, Opera, and Safari) default to content box, meaning that
there is a difference in how the <div/> element will be rendered among browsers. To provide for this,
the first two lines of the CSS class set rendering to border box. The first line, -moz-box-sizing, is
Mozilla-specific and used for older Mozilla browsers; the second line is for browsers that support the
official CSS3 box-sizing property. Assuming that you use quirks mode in your page, this class will
work just fine. (If you use standards mode, simply remove these first two lines.)

The remaining styles simply add a border and specify that the <div/> element be absolutely positioned.

Next, a little bit of formatting is needed for the drop-down list items:

div.suggestions div {
cursor: default;
padding: 0px 3px;

}

The first line specifies the default cursor (the arrow) to be displayed when the mouse is over an item in
the drop-down list. Without this, the cursor would display as the caret, which is the normal cursor for
textboxes and web pages in general. The user needs to believe that the drop-down item is not a part of
the regular page flow, but an attachment to the textbox, and changing the cursor helps. The second line
simply applies some padding to the item (which you can modify as you wish).

Last, some CSS is needed to format the currently selected item in the drop-down list. When an item is
selected, the background will be changed to blue and the text color will be changed to white. This pro-
vides a basic highlight that is typically used in drop-down menus:

div.suggestions div.current {
background-color: #3366cc;
color: white;

}

All of these styles are to be contained in an external CSS file named autosuggest.css.

248

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 248

The Database Table
In order to easily query the states and provinces that match a particular text snippet, it is necessary to
use a database table. The database table can be very simple for this example, although you may need
more information to make it practical for your needs. To get this to work, you really need only a single
column to store the state and province names. However, it’s always best to define a primary key, so this
table will include a second column containing an auto-incremented ID number for each state or
province. The following SQL statement creates a table named StatesAndProvinces with two columns,
Id and Name:

CREATE TABLE StatesAndProvinces (
Id INT NOT NULL AUTO_INCREMENT,
Name VARCHAR(255) NOT NULL,
PRIMARY KEY (Id)

) COMMENT = ‘States and Provinces’;

Of course, the time-consuming part is to fill in state and province names from various countries
around the world. The code download for this example, available at www.wrox.com, includes a SQL file
that populates the table with all U.S. states as well as one that will insert all Canadian provinces and
territories.

Setting up this information in a database table enables you to quickly get a list of suggestions for text the
user has typed in. If the user has typed the letter M, for example, you can run the following query to get
the first five suggestions:

SELECT *
FROM StatesAndProvinces
WHERE Name LIKE ‘M%’
ORDER BY Name ASC
LIMIT 0, 5

This statement returns a maximum of five suggestions, in alphabetical order, for all names starting with
M. Later, this will be used in the PHP code that returns the suggestions.

The Architecture
In Chapter 1, you saw the basic architecture of an Ajax solution involving the user interface and Ajax
engine on the client. The autosuggest architecture follows this general format, where the user interface is
the autosuggest control and the Ajax engine is a suggestion provider (see Figure 8-2).

In this architecture, the autosuggest control has no idea where the suggestions are coming from; they
could be coming from the client or the server. All the autosuggest control knows is how to call the sug-
gestion provider to get suggestions for the text contained within the textbox. The suggestion provider
handles all the server communication and notifies the autosuggest control when the suggestions are
available. To accomplish this, both the autosuggest control and the suggestion provider need to imple-
ment specific interfaces so that each knows what method to call on the other.

249

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 249

Figure 8-2

The Classes
Two classes are necessary to represent the two client-side components of the autosuggest functionality,
appropriately called AutoSuggestControl and SuggestionProvider. The AutoSuggestControl is
assigned a SuggestionProvider when it is created so that all requests go through it. The
SuggestionProvider has only one method, requestSuggestions(), which is called by the
AutoSuggestControl whenever suggestions are needed. This method takes two arguments: the
AutoSuggestControl itself and a Boolean value indicating whether the control should type ahead
when the suggestions are returned.

When the suggestions have been retrieved, the SuggestionProvider calls the autosuggest() method
of the AutoSuggestControl, passing in the array of suggestions as well as the typeahead flag that was
passed into it. This allows for a delay between the request for suggestions and the response, making it
possible to use asynchronous requests. This approach sounds more complicated than it is; Figure 8-3
represents the interaction between these two objects in a clearer manner.

Figure 8-3

With the architecture designed, it’s time to start coding.

The AutoSuggest Control
The AutoSuggestControl class is the wrapper for all autosuggest functionality. To work properly, the
control needs to know which textbox to work on and the suggestion provider to use. This makes for a
relatively simple constructor:

AutoSuggestControl

autosuggest()

SuggestionProvider

requestSuggestion()

Web Server

Data

Query/Data
Request

Database

JavaScript
Call

JavaScript
Call

Data

Web Browser

Autosuggest Control Architecture

HTTP
Request

Autosuggest
Control

Suggestion
Provider

250

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 250

function AutoSuggestControl(oTextbox, oProvider) {
this.provider = oProvider;
this.textbox = oTextbox;

}

It’s upon this simple base that the complex functionality of an autosuggest textbox is built.

Since the AutoSuggestControl class is quite complicated, it’s much simpler to break up its explanation
into specific types of functionality. The following sections build on each other, and the complete code can
be downloaded from www.wrox.com.

Implementing Typeahead
Typeahead textboxes look at what the user has typed and then make a suggestion, highlighting only the
part that was added automatically. For example, if you were to type Ma into a textbox, the suggestion
may be Maine, but only ine would be highlighted. Doing this allows the user to continue typing without
interruption because any new characters simply replace the highlighted section.

Originally, the only type of highlighting possible using JavaScript was to highlight all the text in the
textbox using the select() method, as follows:

var oTextbox = document.getElementById(“txtState”);
oTextbox.select();

This code gets a reference to a textbox with the ID of txtState and then selects all the text contained
within it. Although this functionality is fine for many everyday uses, it’s not very helpful for implement-
ing typeahead. Thankfully, both Internet Explorer and Firefox have ways of selecting parts of the text
instead of the entire item (for other browsers, this feature is not available). But as usual, the two biggest
combatants in the browser world do things in two completely different ways.

The Internet Explorer solution is to use a text range. Not to be confused with DOM ranges, an Internet
Explorer text range is an invisible selection of text on the page, beginning on a single character and end-
ing on a single character. When a text range is filled out, you can highlight just the text contained within
it, which is perfect for typeahead. To create a text range for a specific textbox, you use the
createTextRange() method that Internet Explorer provides on every textbox.

Once you have a text range, its methods enable you to select certain parts of the text. Although there are
many text range methods, the only ones of interest for this example are moveStart() and moveEnd(),
both of which accept two arguments: a unit and a number. The unit can be character, word, sentence,
or textedit, whereas the number indicates the number of units to move from the start or end of the
text (this should be a positive number for moveStart() and a negative for moveEnd()). When the end-
points of the text range are set, you can call its select() method to highlight just those characters. For
example, to select just the first three characters in a textbox, you could do this:

var oRange = oTextbox.createTextRange();
oRange.moveStart(“character”, 0);
oRange.moveEnd(“character”, 3 - oTextbox.value.length);
oRange.select();
oTextbox.focus();

251

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 251

Note that to get the appropriate value for moveEnd(), it’s necessary to subtract the length of the text
in the textbox from the number of characters to select (3). The last step is to set the focus to the
textbox so that the selection is visible. (Text can be selected only when the textbox has focus.) The pro-
cess is a bit involved in Internet Explorer, but pretty easy to script. Firefox, on the other hand, is very
straightforward.

Textboxes in Firefox have a nonstandard method called setSelectionRange(), which accepts two
arguments: the index of the character to start with and the index of character after the last character to
select. So, to select the first three characters in a textbox using Mozilla, you need only two lines of code:

oTextbox.setSelectionRange(0,3);
oTextbox.focus();

The first method you’ll need in the AutoSuggestControl class is a method to select a range of charac-
ters in a browser-specific way. This method, called selectRange(), handles all the dirty work for you:

AutoSuggestControl.prototype.selectRange = function (iStart, iEnd) {
if (this.textbox.createTextRange) {

var oRange = this.textbox.createTextRange();
oRange.moveStart(“character”, iStart);
oRange.moveEnd(“character”, iEnd- this.textbox.value.length);
oRange.select();

} else if (this.textbox.setSelectionRange) {
this.textbox.setSelectionRange(iStart, iEnd);

}

this.textbox.focus();
};

This method uses feature detection, the process of detecting certain browser features, to determine how
to select the characters. It tests for the existence of the createTextRange() method to determine
whether the Internet Explorer text ranges should be used, and tests for the setSelectionRange()
method to determine whether the Firefox method should be used. The arguments are the first character
to select and the number of characters to select. These values are then passed to the browser-specific
methods of text selection.

The typeAhead() Method
Now that you can select specific parts of the textbox, it’s time to implement the typeahead functionality.
To do this, a typeAhead() method is defined that accepts a single argument: the suggestion to display
in the textbox. The suggestion being passed in is assumed to be appropriate (and assumed to have at
least one character). This method then does three things:

1. Gets the length of the text already in the textbox.

2. Places the suggestion into the textbox.

3. Selects only the portion of the text that the user didn’t type using the information from step 1.

252

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 252

Additionally, since typeahead can be supported only in Internet Explorer and Firefox, you should check
to make sure that one of those browsers is being used. If the browser doesn’t support text selection, then
none of the steps should be executed so as not to interrupt the user’s typing. Once again, testing for the
createTextRange() and setSelectionRange() methods of the textbox is the way to go:

AutoSuggestControl.prototype.typeAhead = function (sSuggestion) {
if (this.textbox.createTextRange || this.textbox.setSelectionRange) {

var iLen = this.textbox.value.length;
this.textbox.value = sSuggestion;
this.selectRange(iLen, sSuggestion.length);

}
};

With this method complete, you now need another method to call it and pass in the suggestion.

The autosuggest() Method
Perhaps the most important method in the control is autosuggest(). This single method is responsible
for receiving an array of suggestions for the textbox and then deciding what to do with them.
Eventually, this method will be used to implement the full autosuggest functionality (including drop-
down suggestions), but for now, it’s used to implement typeahead only.

Because autosuggest() will be passed an array of suggestions, you have your pick as to which one to
use for the typeahead value. It’s recommended that you always use the first value in the array to keep
things simple. The problem is that there may not always be suggestions for a value, in which case an
empty array will be passed. The typeAhead() method shouldn’t be called if there are no suggestions, so
it’s important to check the length of the array first:

AutoSuggestControl.prototype.autosuggest = function (aSuggestions) {
if (aSuggestions.length > 0) {

this.typeAhead(aSuggestions[0]);
}

};

But where do the suggestions come from? It’s actually the job of the suggestion provider to call this
method and pass in the suggestions. Implementation of this feature is discussed later in the chapter.

Handling Key Events
Of course, the autosuggest functionality has to be tied to the textbox using events. There are three events
that deal with keys: keydown, keypress, and keyup. The keydown event fires whenever the user presses
a key on the keyboard but before any changes occur to the textbox. This obviously won’t help with auto-
suggest because you need to know the full text of the textbox; using this event would mean being one
keystroke behind. For the same reason, the keypress event can’t be used. It is similar to keydown but
fires only when a character key is pressed. The keyup event, however, fires after changes have been
made to the textbox, which is exactly when autosuggest should begin working.

253

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 253

Setting up an event handler for the textbox involves two steps: defining a function and assigning it as an
event handler. The function is actually a method of the autosuggest control, called handleKeyUp(). This
method expects the event object to be passed in as an argument (how to accomplish this is discussed
later) so that it can tell whether the key being pressed should enact the autosuggest functionality. Since
keyup fires for all keys, not just character keys, you’ll receive events when someone uses a cursor key,
the Tab key, and any other key on the keyboard. To avoid interfering with how a textbox works, sugges-
tions should be made only when a character key is pressed. This is where the event object’s keyCode
property enters the picture.

The keyCode property is supported by most modern browsers (including Internet Explorer on Windows
and Macintosh, Firefox, Opera, and Safari) and returns a numeric code representing the key that was
pressed. Using this property, it’s possible to set up behaviors for specific keys. Since the autosuggest
functionality should happen only when character keys are pressed, you need to check this property for
an appropriate value before proceeding. Believe it or not, the easiest way to do this is actually to detect
the keys that you want to ignore. This approach is more efficient because there are more character keys
than non-character keys. The following table displays the key codes for all keys that should be ignored.

Key Code Key Code

Backspace 8 Print Screen 44

Tab 9 Delete 46

Enter 13 F1 112

Shift 16 F2 113

Ctrl 17 F3 114

Alt 18 F4 115

Pause/Break 19 F5 116

Caps Lock 20 F6 117

Esc 27 F7 118

Page Up 33 F8 119

Page Down 34 F9 120

End 35 F10 121

Home 36 F11 122

Left Arrow 37 F12 123

Up Arrow 38

Right Arrow 39

Down Arrow 40

254

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 254

You may notice a pattern among the key codes. It looks like all keys with a code less than or equal to 46
should be ignored, and all keys with codes between 112 and 123 should be ignored. This is generally
true, but there is an exception. The space bar has a key code of 32, so you actually need to check to see if
the code is less than 32 (but not 16, which is the Shift key), between 33 and 46, or between 112 and 123.
If it’s not in any one of these groups, then you know it’s a character key.

Here’s what the handleKeyUp() method looks like:

AutoSuggestControl.prototype.handleKeyUp = function (oEvent) {
var iKeyCode = oEvent.keyCode;

if ((iKeyCode != 16 && iKeyCode < 32) || (iKeyCode >= 33 && iKeyCode <= 46)
|| (iKeyCode >= 112 && iKeyCode <= 123)) {

//ignore
} else {

this.provider.requestSuggestions(this);
}

};

When a user presses a character key, the autosuggest functionality begins by calling the suggestion
provider’s requestSuggestions() method and passing a pointer to the autosuggest control as an
argument. Remember, it’s the suggestion provider that will call the autosuggest() method defined
earlier. The requestSuggestions() method begins the process of retrieving suggestions for usage.

With this method defined, it must be assigned as the event handler for the textbox. It’s best to create a
separate method to handle initializations for the control such as this (there will be more in the future).
The init() method serves this purpose:

AutoSuggestControl.prototype.init = function () {
var oThis = this;
this.textbox.onkeyup = function (oEvent) {

if (!oEvent) {
oEvent = window.event;

}
oThis.handleKeyUp(oEvent);

};
};

The init() method starts by creating a pointer to the this object so that it may be used later. An
anonymous function is defined for the textbox’s onkeyup event handler. Inside of this function, the
handleKeyUp() method is called using the oThis pointer. (Using this here would refer to the textbox
instead of the autosuggest control.)

Since this method requires the event object to be passed in, it’s necessary to check for both DOM and
Internet Explorer event objects. The DOM event object is passed in as an argument to the event han-
dler, whereas the Internet Explorer event object is a property of window. Instead of doing a browser
detect, you can check to see if the oEvent object is passed into the event handler. If not, then assign
window.event into the oEvent variable. The oEvent variable can then be passed directly into the
handleKeyUp() event handler.

255

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 255

The init() method should be called from within the AutoSuggestControl constructor:

function AutoSuggestControl(oTextbox, oProvider) {
this.provider = oProvider;
this.textbox = oTextbox;
this.init();

}

That’s all it takes to implement the typeahead functionality of the autosuggest control. At this point, you
are displaying a single suggestion to the user as he or she types. The goal is, of course, to provide multi-
ple suggestions using a drop-down list.

Showing Multiple Suggestions
Earlier in the chapter, you took a look at the HTML and CSS used for the drop-down list of suggestions.
Now, the task is to create the HTML programmatically and apply the CSS to create the actual functional-
ity; this is a multistep process. First, a property is needed to store the <div/> element because various
methods of the AutoSuggestControl need access to it. This property is called layer and is initially set
to null:

function AutoSuggestControl(oTextbox, oProvider) {
this.layer = null;
this.provider = oProvider;
this.textbox = oTextbox;
this.init();

}

The drop-down list will be created after you define a few simple methods to help control its behavior.
The simplest method is hideSuggestions(), which hides the drop-down list after it has been shown:

AutoSuggestControl.prototype.hideSuggestions = function () {
this.layer.style.visibility = “hidden”;

};

Next, a method is needed for highlighting the current suggestion in the drop-down list. The
highlightSuggestion() method accepts a single argument, which is the <div/> element containing
the current suggestion. The purpose of this method is to set the <div/> element’s class attribute to
current on the current suggestion and clear the class attribute on all others in the list. Doing so pro-
vides a highlighting effect on the drop-down list similar to the regular form controls. The algorithm is
quite simple: iterate through the child nodes of the layer. If the child node is equal to the node that was
passed in, set the class to current; otherwise, clear the class attribute by setting it to an empty string:

AutoSuggestControl.prototype.highlightSuggestion = function (oSuggestionNode) {

for (var i=0; i < this.layer.childNodes.length; i++) {
var oNode = this.layer.childNodes[i];
if (oNode == oSuggestionNode) {

oNode.className = “current”
} else if (oNode.className == “current”) {

oNode.className = “”;
}

}
};

256

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 256

With these two methods defined, it’s time to create the drop-down list <div/>. The createDropDown()
method creates the outermost <div/> element and defines the event handlers for the drop-down list. To
create the <div/> element, use the createElement() method and then assign the various styling
properties:

AutoSuggestControl.prototype.createDropDown = function () {

this.layer = document.createElement(“div”);
this.layer.className = “suggestions”;
this.layer.style.visibility = “hidden”;
this.layer.style.width = this.textbox.offsetWidth;
document.body.appendChild(this.layer);

//more code to come
};

This code first creates the <div/> element and assigns it to the layer property. From there, the
className (equivalent to the class attribute) is set to suggestions, as is needed for the CSS to work
properly. The next line hides the layer, since it should be invisible initially. Then, the width of the layer is
set equal to the width of the textbox by using the textbox’s offsetWidth property (this is optional
depending on your individual needs). The very last line adds the layer to the document. With the layer
created, it’s time to assign the event handlers to control it.

At this point, the only concern is making sure that the drop-down list is functional if the user uses the
mouse. That is, when the drop-down list is visible, moving the mouse over a suggestion should high-
light it. Likewise, when a suggestion is clicked on, it should be placed in the textbox and the drop-down
list should be hidden. To make this happen, you need to assign three event handlers: onmouseover,
onmousedown, and onmouseup.

The onmouseover event handler is used simply to highlight the current suggestion; onmousedown is
used to select the given suggestion (place the suggestion in the textbox and hide the drop-down list),
and onmouseup is used to set the focus back to the textbox after a selection has been made. Because all
these events are fired by the drop-down list itself, it’s best just to use a single function for all of them, as
follows:

AutoSuggestControl.prototype.createDropDown = function () {

this.layer = document.createElement(“div”);
this.layer.className = “suggestions”;
this.layer.style.visibility = “hidden”;
this.layer.style.width = this.textbox.offsetWidth;
document.body.appendChild(this.layer);

var oThis = this;

this.layer.onmousedown = this.layer.onmouseup =
this.layer.onmouseover = function (oEvent) {

oEvent = oEvent || window.event;
oTarget = oEvent.target || oEvent.srcElement;

if (oEvent.type == “mousedown”) {
oThis.textbox.value = oTarget.firstChild.nodeValue;
oThis.hideSuggestions();

257

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 257

} else if (oEvent.type == “mouseover”) {
oThis.highlightSuggestion(oTarget);

} else {
oThis.textbox.focus();

}
};

};

The first part of this section is the assignment that makes oThis equal to the this object. This is
necessary so that a reference to the AutoSuggestControl object is accessible from within the event
handler. Next, a compound assignment occurs, assigning the same function as an event handler for
onmousedown, onmouseup, and onmouseover. Inside of the function, the first two lines are used to
account for the different event models (DOM and IE), using a logical OR (||) to assign the values for
oEvent and oTarget. (The target will always be a <div/> element containing a suggestion.)

If the event being handled is mousedown, then set the value of the textbox equal to the text inside of the
event target. The text inside of the <div/> element is contained in a text node, which is the first child
node. The actual text string is contained in the text node’s nodeValue property. After the suggestion is
placed into the textbox, the drop-down list is hidden.

When the event being handled is mouseover, the event target is passed into the
highlightSuggestion() method to provide the hover effect; when the event is mouseup, the focus is
set back to the textbox (this fires immediately after mousedown).

Positioning the Drop-Down List
To get the full effect of the drop-down list, it’s imperative that it appear directly below the textbox. If the
textbox were absolutely positioned, this wouldn’t be much of an issue. In actual practice, textboxes are
rarely absolutely positioned and more often are placed inline, which presents a problem in aligning the
drop-down list. To calculate the position where the drop-down list should appear, you can use the
textbox’s offsetLeft, offsetTop, and offsetParent properties.

The offsetLeft and offsetTop properties tell you how many pixels away from the left and top of the
offsetParent an element is placed. The offsetParent is usually, but not always, the parent node of
the element, so to get the left position of the textbox, you need to add up the offsetLeft properties of
the textbox and all of its ancestor elements (stopping at <body/>), as shown here:

AutoSuggestControl.prototype.getLeft = function () {

var oNode = this.textbox;
var iLeft = 0;

while(oNode != document.body) {
iLeft += oNode.offsetLeft;
oNode = oNode.offsetParent;

}

return iLeft;
};

258

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 258

The getLeft() method begins by pointing oNode at the textbox and defining iLeft with an initial
value of 0. The while loop will continue to add oNode.offsetLeft to iLeft as it traverses up the
DOM structure to the <body/> element.

The same algorithm can be used to get the top of the textbox:

AutoSuggestControl.prototype.getTop = function () {

var oNode = this.textbox;
var iTop = 0;

while(oNode != document.body) {
iTop += oNode.offsetTop;
oNode = oNode.offsetParent;

}

return iTop;
};

These two methods will be used to place the drop-down list in the correct location.

Adding and Displaying Suggestions
The next step in the process is to create a method that adds the suggestions into the drop-down list and
then displays it. The showSuggestions() method accepts an array of suggestions as an argument and
then builds up the necessary DOM elements to display them. From there, the method positions the drop-
down list underneath the textbox and displays it to the user:

AutoSuggestControl.prototype.showSuggestions = function (aSuggestions) {

var oDiv = null;
this.layer.innerHTML = “”;

for (var i=0; i < aSuggestions.length; i++) {
oDiv = document.createElement(“div”);
oDiv.appendChild(document.createTextNode(aSuggestions[i]));
this.layer.appendChild(oDiv);

}

this.layer.style.left = this.getLeft() + “px”;
this.layer.style.top = (this.getTop()+this.textbox.offsetHeight) + “px”;
this.layer.style.visibility = “visible”;

};

The first line simply defines the variable oDiv for later use. The second line clears the contents of the
drop-down list by setting the innerHTML property to an empty string. Then, the for loop creates a
<div/> element and a text node for each suggestion before adding it to the drop-down list layer.

The next section of code starts by setting the left position of the layer using the getLeft() method. To
set the top position, you need to add the value from getTop() to the height of the textbox (retrieved by
using the offsetHeight property). Without doing this, the drop-down list would appear directly over
the textbox. (Remember, getTop() retrieves the top of the textbox, not the top of the drop-down list
layer.) Last, the layer’s visibility property is set to visible to show it.

259

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 259

Updating the Functionality
In order to show the drop-down list of suggestions, you’ll need to make several changes to the function-
ality defined previously.

The first update is the addition of a second argument to the autosuggest() method, which indicates
whether the typeahead functionality should be used (the reason why will be explained shortly).
Naturally, the typeAhead() method should be called only if this argument is true. If there’s at least one
suggestion, typeahead should be used and the drop-down list of suggestions should be displayed by
calling showSuggestions(); if there are no suggestions, the drop-down list should be hidden by calling
hideSuggestions():

AutoSuggestControl.prototype.autosuggest = function (aSuggestions, bTypeAhead) {
if (aSuggestions.length > 0) {

if (bTypeAhead) {
this.typeAhead(aSuggestions[0]);

}
this.showSuggestions(aSuggestions);

} else {
this.hideSuggestions();

}
};

It’s also necessary to update the handleKeyUp() method for a couple of different reasons. The first rea-
son is to add the bTypeAhead argument to the requestSuggestions() call. When called from here,
this argument will always be true:

AutoSuggestControl.prototype.handleKeyUp = function (oEvent) {

var iKeyCode = oEvent.keyCode;

if ((iKeyCode != 16 && iKeyCode < 32) || (iKeyCode >= 33 && iKeyCode <= 46)
|| (iKeyCode >= 112 && iKeyCode <= 123)) {
//ignore

} else {
this.provider.requestSuggestions(this, true);

}
};

Remember, the requestSuggestions() method is defined on the suggestion provider, which is
described later in this chapter.

This functionality now works exactly as it did previously, but there are a couple of other keys that
require special attention: Backspace and Delete. When either of these keys is pressed, you don’t want to
activate the typeahead functionality because it will disrupt the process of removing characters from the
textbox. However, there’s no reason not to show the drop-down list of suggestions. For the Backspace
(key code of 8) and Delete (key code of 46) keys, you can call requestSuggestions(), but this time,
pass in false to indicate that typeahead should not occur:

AutoSuggestControl.prototype.handleKeyUp = function (oEvent) {

var iKeyCode = oEvent.keyCode;

260

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 260

if (iKeyCode == 8 || iKeyCode == 46) {
this.provider.requestSuggestions(this, false);

} else if (((iKeyCode != 16 && iKeyCode < 32) || (iKeyCode >= 33 && iKeyCode <=
46)

|| (iKeyCode >= 112 && iKeyCode <= 123)) {
//ignore

} else {
this.provider.requestSuggestions(this, true);

}
};

Now when the user is removing characters, suggestions will still be displayed and the user can click one
of them to select the value for the textbox. This is acceptable, but to really be usable, the autosuggest
control needs to respond to keyboard controls.

Adding Keyboard Support
The desired keyboard functionality revolves around four keys: the up arrow, the down arrow, Esc, and
Enter (or Return). When the drop-down suggestion list is displayed, the user should be able to press the
down arrow to highlight the first suggestion, then press it again to move to the second, and so on. The
up arrow should then be used to move back up the list of suggestions. As each suggestion is highlighted,
the value must be placed in the textbox. If the user presses Esc, the suggestions should be hidden and
the suggestion removed from the textbox. When the Enter key is pressed, the suggestions should also be
hidden, but the last suggestion should remain highlighted in the textbox.

In order for the user to use the up and down arrow keys, you’ll need to keep track of the currently
selected item in the suggestions list. To do this, you must add two properties to the
AutoSuggestControl definition, as follows:

function AutoSuggestControl(oTextbox, oProvider) {
this.cur = -1;
this.layer = null;
this.provider = oProvider;
this.textbox = oTextbox;
this.userText = oTextbox.value;
this.init();

}

The cur property stores the index of the current suggestion in the suggestions array. By default, this
value is set to -1 because there are no suggestions initially. When the arrow keys are pressed, cur will
change to point to the current suggestion. The second added property, userText, holds the current
value of the textbox and changes to reflect what the user actually typed.

As cur changes, the highlighted suggestion changes as well. To encapsulate this functionality, a method
called goToSuggestion() is used. This method accepts only one argument, a number whose sign indi-
cates which direction to move in. For instance, any number greater than 0 moves the selection to the next
suggestion; any number less than or equal to 0 moves the selection to the previous suggestion. Here’s
the code:

261

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 261

AutoSuggestControl.prototype.goToSuggestion = function (iDiff) {
var cSuggestionNodes = this.layer.childNodes;

if (cSuggestionNodes.length > 0) {
var oNode = null;

if (iDiff > 0) {
if (this.cur < cSuggestionNodes.length-1) {

oNode = cSuggestionNodes[++this.cur];
}

} else {
if (this.cur > 0) {

oNode = cSuggestionNodes[--this.cur];
}

}

if (oNode) {
this.highlightSuggestion(oNode);
this.textbox.value = oNode.firstChild.nodeValue;

}
}

};

This method begins by obtaining the collection of child nodes in the drop-down layer. Since only
<div/> elements containing suggestions are child nodes of the layer, the number of child nodes accu-
rately matches the number of suggestions. This number can be used to determine if there are any sug-
gestions (in which case it will be greater than zero). If there are no suggestions, the method need not do
anything.

When there are suggestions, a variable named oNode is created to store a reference to the suggestion
node to highlight, and the method checks to see which direction to go in. If iDiff is greater than 0, it
tries to go to the next suggestion. In doing so, the method first checks to ensure that cur isn’t greater
than the number of suggestions minus 1 (because the index of the last element in a collection with
n elements is n–1). Assuming that there is a next suggestion, cur is prefix incremented (meaning it
assumes its new value before the line it’s on executes) to retrieve the node for the next suggestion.

If iDiff is less than or equal to zero, then that means the previous suggestion needs to be highlighted.
In that case, you must first check to ensure cur is greater than 0 (if cur isn’t at least 1, then there isn’t a
previous suggestion to go to). Passing that test, cur is then prefix decremented to get a reference to the
correct suggestion node.

The last step in the method is to ensure that oNode isn’t null. If it’s not, then the node is passed to
highlightSuggestion() and the suggestion text is placed into the textbox; if it is null, then no action
is taken.

Another part of keeping track of the selected suggestion is to be sure that cur is reset at the correct
point; otherwise, you can get some very odd behavior. The correct place to reset cur to –1 is in the
autosuggest() method, just before the drop-down list is displayed:

262

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 262

AutoSuggestControl.prototype.autosuggest = function (aSuggestions, bTypeAhead){

this.cur = -1;

if (aSuggestions.length > 0) {
if (bTypeAhead) {

this.typeAhead(aSuggestions[0]);
}

this.showSuggestions(aSuggestions);
} else {

this.hideSuggestions();
}

};

Along the same lines, it’s important to set userText to the correct value. This should be done in the
handleKeyUp() method:

AutoSuggestControl.prototype.handleKeyUp = function (oEvent) {

var iKeyCode = oEvent.keyCode;
this.userText = this.textbox.value;

if (iKeyCode == 8 || iKeyCode == 46) {
this.provider.requestSuggestions(this, false);

} else if (((iKeyCode != 16 && iKeyCode < 32) || (iKeyCode >= 33 && iKeyCode <=
46)

|| (iKeyCode >= 112 && iKeyCode <= 123)) {
//ignore

} else {
this.provider.requestSuggestions(this, true);

}
};

This small addition saves what the user typed before asking for suggestions. This will be very useful
when dealing with the Esc key. With these two methods updates, all that’s left is to make sure that
goToSuggestion() gets called at the right time.

To handle the up arrow, down arrow, Esc, and Enter keys, a handleKeyDown() method is necessary.
Similar to handleKeyUp(), this method also requires the event object to be passed in. And once again,
you’ll need to rely on the key code to tell which key was pressed. The key codes for the up arrow, down
arrow, Esc, and Enter keys are 38, 40, 27, and 13, respectively. The handleKeyDown() method is defined
as follows:

AutoSuggestControl.prototype.handleKeyDown = function (oEvent) {
switch(oEvent.keyCode) {

case 38: //up arrow
this.goToSuggestion(-1);
break;

case 40: //down arrow
this.goToSuggestion(1);
break;

263

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 263

case 27: //esc
this.textbox.value = this.userText;
this.selectRange(this.userText.length, 0);
/* falls through */

case 13: //enter
this.hideSuggestions();
oEvent.returnValue = false;
if (oEvent.preventDefault) {

oEvent.preventDefault();
}
break;

}
};

When the up arrow is pressed (key code 38), the goToSuggestion() method is called with an argument
of –1, indicating that the previous selection should be selected. Likewise, when the down arrow is
pressed (key code 40), goToSuggestion() is called with 1 as an argument to highlight the next sugges-
tion. If Esc is pressed (key code 27), there are a couple of things to do.

First, you need to set the textbox value back to the original text that the user typed. Second, you need to
set the selection in the textbox to be located after what the user typed so that he or she can continue typ-
ing. This is done by setting the selection range to the length of the text with a selection length of zero.
Then, this case falls through to the Enter key’s case (key code 13), which hides the suggestions list. This
way, the code contains only one call to hideSuggestions() instead of two. Remember, when the user
presses the up or down arrows, the suggestion is automatically placed into the textbox. This means that
when the Enter key is pressed, you need only hide the drop-down list of suggestions.

For both Esc and Enter, you also must block the default behavior for the key press. This is important to
prevent unintended behavior, such as the Enter key submitting the form when the user really just
wanted to select the current suggestion. The default behavior is blocked first by setting
event.returnValue equal to false (for IE) and then calling preventDefault() (if it’s available, for
DOM-compliant browsers).

Updating init()
Now that all this new functionality has been added, it must be initialized. Previously, the init()
method was used to set up the onkeyup event handler; now it must be extended to also set up the
onkeydown and onblur event handlers, as well as to create the drop-down suggestion list. The
onkeydown event handler is set up in a manner similar to onkeyup:

AutoSuggestControl.prototype.init = function () {

var oThis = this;

this.textbox.onkeyup = function (oEvent) {
if (!oEvent) {

oEvent = window.event;
}

oThis.handleKeyUp(oEvent);
};

264

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 264

this.textbox.onkeydown = function (oEvent) {

if (!oEvent) {
oEvent = window.event;

}

oThis.handleKeyDown(oEvent);
};

//more code to come
};

As you can see, the same algorithm is used with the onkeydown event handler: first, determine the loca-
tion of the event object, and then pass it into the handleKeyDown() method.

Up to this point, the only time the drop-down list is hidden is when the user presses the Enter key. But
what if the user clicks elsewhere on the screen or uses the Tab key to switch to a new form field? To pre-
pare for this event, you must set up an onblur event handler, which hides the suggestions whenever the
textbox loses focus:

AutoSuggestControl.prototype.init = function () {

var oThis = this;

this.textbox.onkeyup = function (oEvent) {
if (!oEvent) {

oEvent = window.event;
}

oThis.handleKeyUp(oEvent);
};

this.textbox.onkeydown = function (oEvent) {

if (!oEvent) {
oEvent = window.event;

}

oThis.handleKeyDown(oEvent);
};

this.textbox.onblur = function () {
oThis.hideSuggestions();

};

this.createDropDown();
};

You’ll also notice that the createDropDown() method is called to create the initial drop-down list struc-
ture. This completes the keyboard support for the autosuggest control, but there is one more thing to
take into account.

265

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 265

Fast-Type Support
Because the handleKeyUp() method requests suggestions whenever a key is pressed, you may be won-
dering if it can keep up when someone is typing quickly. The answer is no. You may be surprised to
know that it is possible to type too fast for the event handling to keep up. In this case, you get sugges-
tions that are too late (including letters you never typed) and a very choppy user experience (with long
pauses as you type). So, how can you make sure that fast typists aren’t left out of this functionality?

Quite simply, you should wait a short amount of time before requesting suggestions from the server.
This can be done using the setTimeout() method, which delays the calling of a function for a set time
interval. The new functionality works like this: a timeout ID is saved in the AutoSuggestControl
object. If another key is pressed before the timeout has been activated, the existing timeout is cleared and
a new one is put in its place. So basically, when a user presses a key, the control waits a certain amount
of time before requesting suggestions. If another key is pressed before the request is made, the control
cancels the original request (by clearing the timeout) and asks for a new request to be made after the
same amount of time. In this way, you can be sure that the request for suggestions goes out only when
the user has paused during typing.

To implement this functionality, the first thing you need is a property to hold the timeout ID. You can
add the timeoutId property directly to the AutoSuggestControl class, as follows:

function AutoSuggestControl(oTextbox, oProvider) {
this.cur = -1;
this.layer = null;
this.provider = oProvider;
this.textbox = oTextbox;
this.timeoutId = null;
this.userText = oTextbox.value;
this.init();

}

Next, update the handleKeyUp() method to make use of this new property:

AutoSuggestControl.prototype.handleKeyUp = function (oEvent /*:Event*/) {

var iKeyCode = oEvent.keyCode;
var oThis = this;

this.userText = this.textbox.value;

clearTimeout(this.timeoutId);

if (iKeyCode == 8 || iKeyCode == 46) {

this.timeoutId = setTimeout(function () {
oThis.provider.requestSuggestions(oThis, false);

}, 250);

} else if (((iKeyCode != 16 && iKeyCode < 32) || (iKeyCode >= 33 && iKeyCode <
46)

|| (iKeyCode >= 112 && iKeyCode <= 123)) {
//ignore

} else {

266

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 266

this.timeoutId = setTimeout(function () {
oThis.provider.requestSuggestions(oThis, true);

}, 250);
}

};

The first new line in this method stores a reference to the this object, which is important when using
the setTimeout() method. The second new line of code clears any timeout that may have already been
started; this cancels any suggestion request that may have been initiated. The other two sections of new
code change the call to the requestSuggestions() to occur after 250 milliseconds (which is plenty of
time for this purpose). Each call is wrapped in an anonymous function that is passed in to
setTimeout(). The result of setTimeout(), the timeout ID is stored in the new property for later
usage. All in all, this ensures that no requests will be made unless the user has stopped typing for at least
250 milliseconds.

This completes the code for the AutoSuggestControl class. All of the functionality has been imple-
mented, and all that’s left is to create a suggestion provider to call.

The Suggestion Provider
The SuggestionProvider class is relatively simple compared to the AutoSuggestControl, since it has
only one purpose: to request suggestions from the server and forward them to the control. To do so,
SuggestionProvider needs an instance of XHR. Instead of using a new object for each request, the
same object will be used over and over, to avoid the overhead of creating and destroying objects in rapid
succession. This single instance is created using the zXML library’s zXmlHttp factory and is stored in a
property called xhr:

function SuggestionProvider() {
this.xhr = zXmlHttp.createRequest();

}

The lone method of the suggestion provider is requestSuggestions(), which you may remember
from the architecture discussion. This method accepts two arguments: the AutoSuggestControl to
work on and a flag indicating whether typeahead should be used. The complete code is as follows:

SuggestionProvider.prototype.requestSuggestions = function (oAutoSuggestControl,
bTypeAhead) {

var oXHR = this.xhr;

//cancel any active requests
if (oXHR.readyState != 0) {

oXHR.abort();
}

//define the data
var oData = {

requesting: “StatesAndProvinces”,
text: oAutoSuggestControl.userText,
limit: 5

};

267

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 267

//open connection to server
oXHR.open(“post”, “suggestions.php”, true);
oXHR.setRequestHeader(“Content-type”, “text/html”);
oXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHRo.status == 304) {

//evaluate the returned text JavaScript (an array)
var aSuggestions = oXHR.responseText.parseJSON();

//provide suggestions to the control
oAutoSuggestControl.autosuggest(aSuggestions, bTypeAhead);

}
}

};

//send the request
oXHR.send(oData.toJSONString());

};

The first line inside the method sets oXHR equal to the stored XHR object. This is done simply for conve-
nience and to keep the code clean. Next, you check to make sure that there isn’t already a request wait-
ing for a response. If the XHR object is ready to be used cleanly, its readyState will be 0; otherwise, you
must cancel the existing request (by calling abort()) before making another request.

Because the data being sent to the server is to be JSON-encoded, you first need to create an object
(oData) to hold the information. There are three pieces of information being sent: the table to get the
data out of, the current value in the textbox, and the maximum number of suggestions to retrieve (5).
The maximum number of suggestions is important because it prevents long database queries from being
executed repeatedly.

Next, a request is opened to suggestions.php, the server-side component of the control. This
request is asynchronous (last argument of open() is set to true), so it’s necessary to provide an
onreadystatechange event handler. The event handler first checks to ensure that the readyState is 4,
and then parses the returned text as a JSON array of values. This array, along with the original type-
ahead flag, is then passed back to the AutoSuggestControl via the autosuggest() method.

The last step in this method is, of course, to send the request. Note that since the request is doing a
POST, the data has to be passed into the send() method. The oData object is first encoded into JSON
before being sent.

With that, the SuggestionProvider class is complete. The only thing left to do is to write the
suggestions.php file that uses the data that is sent.

The Server-Side Component
In many ways, the server-side component for the autosuggest control is the most straightforward: it’s
just a single thread being executed from top to bottom, with no functions or methods to be concerned
about. Note that because this is a PHP page, all the code discussed in this section must be contained
within a PHP code block (<?php . . . ?>).

268

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 268

The first part of the page is to set the content type to text/plain, indicating that this is a plain text file
and shouldn’t be handled as anything else. You can optionally specify a character set, but make sure that
it is Unicode-compatible, such as UTF-8, since all Unicode characters are valid in JavaScript. Here’s the
line that assigns the content type:

header(“Content-Type: text/plain; charset=UTF-8”);

Next, include the JSON-PHP library and create a new instance of the JSON object:

require_once(“JSON.php”);
$oJSON = new Services_JSON();

Normally when data is sent to a PHP page, you can use $_GET, $_POST, or $_REQUEST to retrieve it. In
this case, however, the data isn’t being sent in traditional name-value pairs; instead, it’s being sent as a
JSON string, and there is no built-in support for this specific type of data. Instead, you need to get the
body of the request and decode it manually. The body of any request is available in PHP through
$HTTP_RAW_POST_DATA, which contains the original, encoded content that was sent. Because the JSON
string wasn’t URL-encoded, however, you can just pass this directly into the decode() method to recon-
stitute the oData object:

$oData = $oJSON->decode($HTTP_RAW_POST_DATA);

You’ll also need an array to store the suggestions in:

$aSuggestions = array();

If there are no suggestions, no values will be added to the array and an empty array ([]) will be
returned to the client.

Before tapping the database for suggestions, make sure that there is actually text in the textbox.
Suggestions are requested when the user hits Delete or Backspace, so there’s a possibility that the
textbox could be empty. You should check for this first by seeing if the length of the text is greater than 0;
if so, you can continue on to query the database.

The query string itself is built up from the data submitting from the client. The name of the table, the
LIKE statement, and the number of results to return are all incorporated into the SQL query. The follow-
ing code creates a connection to the database, executes the query, and then adds the results of the query
to the $aSuggestions array:

if (strlen($oData->text) > 0) {

//create the SQL query string
$sQuery = “Select Name from “.$oData->requesting.” where Name like ‘“.

$oData->text.”%’ order by Name ASC limit 0,”.$oData->limit;

//make the database connection
$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);
@mysql_select_db($sDBName) or die(“Unable to open database”);

269

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 269

if($oResult = mysql_query($sQuery)) {
while ($aValues = mysql_fetch_array($oResult,MYSQL_ASSOC)) {

array_push($aSuggestions, $aValues[‘Name’]);
}

}

mysql_free_result($oResult);
mysql_close($oLink);

}

This code should be fairly familiar to you as it is the same basic algorithm used throughout the book
to access a MySQL database using PHP. (You must fill in the appropriate values for $sDBServer,
$sDBUsername, and $sDBPassword to reflect your database settings.) The only unique part is that the
results are being stored in an array, which facilitates the conversion into a JSON string to be sent back
to the client.

The actual encoding is the very last step of the page. In one step, you can encode the array and output it
to the page:

echo($oJSON->encode($aSuggestions));

Now, it’s up to the client to parse the JSON code correctly.

The Client-Side Component
So far, you’ve built the HTML, CSS, JavaScript, and PHP to be used by the autosuggest control. The only
thing left to do is to assemble it all into a page that you can use. The most important thing to remember
is to include of all necessary JavaScript files. In this case, you need to include json.js, zxml.js, and
autosuggest.js. Also important is the inclusion of the stylesheet file, autosuggest.css.

It’s also necessary to instantiate the AutoSuggestControl after the page has completely loaded, using
the onload event handler. The complete code for the example page is:

<html>
<head>

<title>Autosuggest Example</title>
<script type=”text/javascript” src=”json.js”></script>
<script type=”text/javascript” src=”zxml.js”></script>
<script type=”text/javascript” src=”autosuggest.js”></script>
<link rel=”stylesheet” type=”text/css” href=”autosuggest.css” />
<script type=”text/javascript”>

window.onload = function () {
var oTextbox = new

AutoSuggestControl(document.getElementById(“txtState”), new SuggestionProvider());
}

</script>
</head>
<body>

<form method=”post” action=”your_action.php”>
<table border=”0”>

<tr>

270

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 270

<td>Name:</td>
<td><input type=”text” name=”txtName” id=”txtName” /></td>

</tr>
<tr>

<td>Address 1:</td>
<td><input type=”text” name=”txtAddress1”

id=”txtAddress1” /></td>
</tr>
<tr>

<td>Address 2:</td>
<td><input type=”text” name=”txtAddress2”

id=”txtAddress2” /></td>
</tr>
<tr>

<td>City:</td>
<td><input type=”text” name=”txtCity” id=”txtCity” /></td>

</tr>
<tr>

<td>State/Province:</td>
<td><input type=”text” name=”txtState” id=”txtState”

autocomplete=”off” /></td>
</tr>
<tr>

<td>Zip Code:</td>
<td><input type=”text” name=”txtZip” id=”txtZip” /></td>

</tr>
<tr>

<td>Country:</td>
<td><input type=”text” name=”txtCountry”

id=”txtCountry” /></td>
</tr>

</table>
<input type=”submit” value=”Save Information” />

</form>
</body>

</html>

Note that once the necessary files are included, you need to place only one line of JavaScript in the
window.onload event handler to set up the functionality:

var oTextbox = new AutoSuggestControl(document.getElementById(“txtState”),
new SuggestionProvider());

This line creates a new AutoSuggestControl object, passing a reference to the textbox with the ID of
txtState and a new SuggestionProvider() class. It’s important that this line be executed in the
onload event handler because document.getElementById() isn’t 100 percent accurate until the entire
page has been loaded.

The example itself is done in a way in which this control may be used: filling in personal information.
This could be a page where customers can update their information or it could be a shipping form.
Whichever way you choose to use this functionality, it is sure to improve the usability of your form. An
autosuggest control, although not as flashy as some Ajax solutions, is a good example of how Ajax can
be used in a noninterfering way.

271

JSON

11_109496 ch08.qxd 2/5/07 6:51 PM Page 271

Summary
In this chapter, you learned all about JavaScript Object Notation (JSON) as an alternative data transmis-
sion format to XML. You learned that JSON has several advantages over XML for data transmission
needs, including a smaller amount of code to represent the same data and a logical object-and-array
structure that most programming languages can understand and use.

You also learned that while JavaScript can understand and interpret JSON natively, there are several
server-side libraries that provide the same functionality. You learned about a JavaScript utility for pars-
ing and encoding JSON data, as well as the JSON-PHP library that can be used to do the same for PHP.

The chapter went on to describe how to make an Ajax-assisted autosuggest control that enables you to
display suggestions based on what the user has typed. This control works similarly to the way that
Google Suggest does and takes into account user interaction with the mouse and keyboard as well as
providing for fast typists. This control helped to illustrate the power of simple Ajax solutions.

The next chapter will expand on what you’ve learned here to create reusable Ajax widgets for your web
site. These widgets can use a variety of data transmission formats, including JSON.

272

Chapter 8

11_109496 ch08.qxd 2/5/07 6:51 PM Page 272

Comet

Earlier in the book we discussed how Ajax changed the nature of the Web by freeing users from
the traditional click-and-wait paradigm. Although it improves the user experience, Ajax still uses
the standard HTTP model: the client sends a request for resources to the server, which is answered
by a response from the server with the requested resources (or an error message if they are not
available). This is called a pull method of communication.

In the pull architecture, the client is in control. Communication begins when the client makes a
request and ends when the client receives the response. The pull architecture is how the Web has
always worked, but as it continues to evolve and user expectations rise, this communication
method is increasingly becoming a burdensome hurdle.

Consider a typical chat client such as Yahoo! Messenger. This type of client uses a push architec-
ture, allowing the server to push information out to the client whenever necessary. The result is
fast communication because data is being sent as soon as it is available. If chat clients used a pull
architecture, their performance would suffer, and there would be significantly more network traf-
fic as the client repeatedly polled to see if new data was available. Since the nature of chat is such
that new data may be available several times a second, the push architecture is much more suit-
able for this purpose.

Given the speed and usability advantages of push architectures, web developers have begun
investigating means by which the same functionality can be realized on the Web. Ajax was just the
beginning; the next step is going beyond traditional HTTP to implement push-based web systems
using one or more of several new techniques. Alex Russell coined the term Comet to describe the
evolving push architecture of the web (Comet is a tongue-in-cheek jab at Ajax, since both are also
household cleaners).

12_109496 ch09.qxd 2/5/07 6:51 PM Page 273

HTTP Streaming
In the time before broadband Internet access was available to the masses, browser developers looked for
ways to speed up the perceived rendering time of web pages. One such method is called progressive ren-
dering; in this method rendering of the page begins as soon as the <body> tag is received, ensuring that
the site display begins as soon as possible. This is the effect seen on long web pages when the vertical
scrollbar continues to grow as the page is being loaded. In this circumstance, the browser is completing
the displaying of the page as new information is received, creating a longer and longer page with each
passing second. This same effect can be observed when connecting to servers that are experiencing very
heavy traffic as the server struggles to keep up with the requests.

Consider what’s happening when a page is being rendered progressively. The opening <body> tag is
read, and then some more data is received. Some time passes. Some more data is received. This pattern
is repeated until the entire page has been downloaded and is being displayed to the user. But how does
the browser know how long to wait for new data? Further, how does it know how much more data is
coming? The answer to both questions is that the browser has no idea. This is the essence of HTTP
streaming.

Request Delays
Instead of relying on network latency and server response time to determine the waiting time between
data bursts, it’s possible to artificially create this delay. The following example comes from the PHP
manual for the sleep() method (www.php.net/sleep) and illustrates this technique:

<?php

// current time
echo date(‘h:i:s’) . “\n”;

// sleep for 10 seconds
sleep(10);

// wake up !
echo date(‘h:i:s’) . “\n”;

?>

When loaded into the browser, this page outputs the current time, waits 10 seconds, and then outputs
the time again. Granted, this isn’t a very useful page, but it does illustrate how to force the server to wait
before sending the next piece of data. In practice, you should add calls to ob_flush() and flush()
immediately after the calls to echo() to force data to be sent to the client:

HTTP streaming is frequently mislabeled as Persistent HTTP, which has nothing to
do with this technique. Persistent HTTP is simply a way of keeping a connection
open so that numerous HTTP requests can be sent without opening and closing con-
nections for each request.

274

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 274

<?php

// current time
echo date(‘h:i:s’) . “\n”;
ob_flush();
flush();

// sleep for 10 seconds
sleep(10);

// wake up !
echo date(‘h:i:s’) . “\n”;
ob_flush();
flush();

?>

Adding these two function calls ensures that the output buffer is completely flushed, forcing the data to
be sent to the client.

Suppose that the same technique were used to output HTML and JavaScript instead of plain text:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>HTTP Streaming Example 2</title>
</head>
<body>

<script type=”text/javascript”>
//<![CDATA[

document.title = “First message”;
//]]>
</script>

<?php
ob_flush();
flush();

// sleep for 10 seconds
sleep(10);

?>
<script type=”text/javascript”>
//<![CDATA[

document.title = “Second message”;
//]]>
</script>

</body>
</html>

This feature of PHP, sending chunks of data periodically to the browser, may not be
enabled on all servers. For more information, see www.php.net/flush.

275

Comet

12_109496 ch09.qxd 2/5/07 6:51 PM Page 275

The JavaScript in this example simply sets the title of the window two different times. Without the call to
sleep(), it would happen so fast that you would only see the title change to “Second message.”
However, with the delay, it is easy to see that both commands are executed as soon as the client receives
the data. This proof-of-concept works but doesn’t do anything very interesting. What if some sort of
command were coupled with the call to sleep()?

File Modification Example
Suppose that there’s a file whose modification time is of interest. Perhaps data is being written into it
that should be picked up as soon as it is available. In any event, it’s important to know as soon as the file
has been modified. The following PHP code implements this solution:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>HTTP streaming Example 3</title>
</head>
<body>

<?php
//get the file modification time
$modified = filemtime(‘details.txt’);
$lastModified = $modified;

//clear file statistics
clearstatcache();

//check every so often to see if it has changed
while (true) {

// sleep for 1 second
sleep(1);

//check the modification time
$lastModified = filemtime(‘details.txt’);

//clear file statistics
clearstatcache();

//check it against the previous time
if ($modified != $lastModified) {

$output = date(‘h:i:s’, $lastModified);
?>

<script type=”text/javascript”>
//<![CDATA[

document.title = “File was modified at <?php echo $output ?>”;
//]]>
</script>

<?php
ob_flush();
flush();

276

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 276

$modified = $lastModified;

// sleep for 1 second
sleep(1);

}
}

?>

</body>
</html>

The PHP code in this example first checks to see when the file in question, details.txt, has been mod-
ified. This value is stored in two variables: $modified and $lastModified. Two variables are used so
that there will be a point of comparison later on: $modified holds the modification time from the last
change (or when the page was first loaded), while $lastModified holds the most recent modification
time. It’s then possible to compare $lastModified with $modified to see if they’re the same; if they’re
not, that means the file has changed.

After calling filemtime() to retrieve the modification time of the file, clearstatcache() is called.
This is a PHP-only necessity, since PHP caches the results of many file operations for faster execution.
Then, a while loop begins. This loop will never exit because the control condition is hard-coded to
true. In this way, the page will continue to check and report on the modification time of the file indefi-
nitely.

Inside of the loop, sleep() is called to create an artificial delay and free up CPU cycles for other opera-
tions. Then, filemtime() is called again, and the value is compared to the previously stored value in
$modified. If the modification time is different, a JavaScript call is made to change the document’s title.
After the JavaScript code is output, calls to ob_flush() and flush() ensure that the data in the buffer
is sent across the HTTP stream (instead of being buffered for later transmission). Then, $modified is
updated with the new modification time and the thread pauses for another second to prevent sending
too much data at one time.

To test this functionality, try uploading details.txt periodically and watch the title bar of the browser.
No changes to details.txt are necessary because the process of uploading the file changes the modifi-
cation time.

Keep in mind that this is a simplified example. The point to take away is that any JavaScript code can be
executed in place of the code in this example. Most likely, the code to execute would be a call to some
function that specifically keeps track of this data.

Using Iframes
It may seem strange that the previous example continues to execute indefinitely because this is not the
way developers learn to create web applications. However, HTTP streaming is a completely different
paradigm, just as Ajax is a completely different paradigm from traditional web applications. To make the
most of this technique, a change in thought process is necessary. Part of that thought process questions
how long an indefinite loop can run on a server, since computers deal only with finites.

277

Comet

12_109496 ch09.qxd 2/5/07 6:51 PM Page 277

Eventually, the infinite loop in the previous example will stop running because servers have a built-in
timeout mechanism that prevents long-running scripts from continuing to run and eat up CPU cycles.
This is a stopgap system designed to ensure that a single page on a site cannot bring the entire site
down. The exact timeout setting is specific to the server being used and can be changed by the server
administrators, so there isn’t a hard number that can be depended upon. Basically, there’s no way to tell
when the script will stop running and at what point during its execution that stop will occur. For this
reason, it’s important not to execute too much code using HTTP streaming. It’s also for this reason that a
heartbeat is absolutely necessary.

A heartbeat is essentially a small piece of code executed periodically to inform some other code that the
process is still running. In terms of HTTP streaming, the heartbeat indicates that the request is still being
processed, and code execution on the server continues. When a heartbeat fails to be registered, the client
must recognize this and restart the server process.

Setting up this sort of system requires two pages. The first page is the main client, the one in which
most of the JavaScript code exists. Inside of that page is an iframe that contains the second page, which
is the HTTP streaming connection to the server. The inner page is responsible for calling functions on the
outer page to display information as well as register heartbeats. The outer page, in turn, must keep track
of the heartbeats being sent and know when to reset the server connection. Here’s what the outer page
looks like:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>HTTP streaming Example 4</title>
<script type=”text/javascript”>

//<![CDATA[

var iTimeoutId = null;

function heartbeat() {
clearTimeout(iTimeoutId);
iTimeoutId = setTimeout(resetConnection, 10000);

}

function resetConnection() {
frames[“connection”].location.replace(

“ProgressiveHTTPExample4Connection.php?t=” + (new Date()).getTime());
heartbeat();

}

function modifiedAt(sDateTime) {
document.getElementById(“divStatus”).innerHTML =

“Modified at “ + sDateTime;
}

window.onload = resetConnection;

//]]>
</script>

</head>

278

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 278

<body>
<div id=”divStatus”>Waiting for first message...</div>
<iframe src=”about:blank” name=”connection”></iframe>

</body>
</html>

Most of this page is JavaScript code; the only HTML necessary in the <body/> is a <div/> to display
status information and the <iframe/> to contain the connection page.

This example’s JavaScript code consists of one variable and three functions.

❑ The iTimeoutId variable holds a reference to the timeout instance in charge of checking for
dead connections.

❑ The heartbeat() function is the one to be called by the connection page periodically, letting it
know that the connection is still alive. You find only two lines inside of this function: one to can-
cel the current timeout and one to start a new one. While the connection is alive, the timeout
should never fire (it’s set to 10 seconds, and since the heartbeat() function should be called
roughly once every second, there shouldn’t be an overlap). The timeout is set to call the
resetConnection() function if and when the timeout executes.

❑ The resetConnection() function is also quite simple. It resets the iframe’s URL to the connec-
tion page and appends a timestamp to the end (the timestamp is necessary to avoid getting a
cached version of the page). Then, there’s a single call to heartbeat(), which resets the time-
out. The connection page should then begin sending heartbeat signals, and the process will con-
tinue.

❑ The last JavaScript function is modifiedAt(), which is a function that is called when the file
has been modified. The data is passed in and displayed in divStatus, so the connection page
isn’t responsible for displaying this data itself.

As a final step, the window’s onload event handler is set to call resetConnection(), ensuring that a
connection will begin as soon as the page loads.

The other part of this example, the connection page, looks very similar to the previous example (the dif-
ferences are highlighted):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>HTTP streaming Example 4 Connection</title>
</head>
<body>

<?php
//get the file modification time
$modified = filemtime(‘details.txt’);
$lastModified = $modified;

//clear file statistics
clearstatcache();

//check every so often to see if it has changed
while (true) {

279

Comet

12_109496 ch09.qxd 2/5/07 6:51 PM Page 279

?>
<script type=”text/javascript”>

//<![CDATA[
parent.heartbeat();
//]]>
</script>

<?php
ob_flush();
flush();

// sleep for 1 second
sleep(1);

//check the modification time
$lastModified = filemtime(‘details.txt’);

//clear file statistics
clearstatcache();

//check it against the previous time
if ($modified != $lastModified) {

$output = date(‘h:i:s’, $lastModified);
?>

<script type=”text/javascript”>
//<![CDATA[

parent.modifiedAt(“<?php echo $output ?>”);
//]]>
</script>

<?php
ob_flush();
flush();
$modified = $lastModified;

// sleep for 1 second
sleep(1);

}
}

?>

</body>
</html>

In this page, a call is made to the heartbeat() function every time the while loop executes. This call
uses the parent object to access heartbeat() because it is contained in an iframe and the function exists
in its parent page. When the file is modified, another call is made to the parent frame, this time to
modifiedAt(), which is passed the timestamp.

It’s very important that each code block be contained within its own <script/> tag.
Code execution will not begin in most browsers until the closing </script> tag is
read. Even though it seems redundant, you must provide a complete <script/> tag
for every function call or logical group of function calls.

280

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 280

Dynamically Created Iframes
In the previous examples, an iframe was already present in the page. It is possible to accomplish the
same functionality using dynamically created iframes that aren’t visible on the page. To do so, you need
to create an iframe using the DOM createElement() method, set the display property to none, and
then set the src property:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>HTTP streaming Example 5</title>
<script type=”text/javascript”>

//<![CDATA[

var iTimeoutId = null;
var oFrame = null;

function heartbeat() {
clearTimeout(iTimeoutId);
iTimeoutId = setTimeout(resetConnection, 10000);

}

function resetConnection() {
oFrame.src =

“ProgressiveHTTPExample4Connection.php?t=” + (new Date()).getTime();
heartbeat();

}

function modifiedAt(sDateTime) {
document.getElementById(“divStatus”).innerHTML =

“Modified at “ + sDateTime;
}

window.onload = function () {
oFrame = document.createElement(“iframe”);
oFrame.style.display = “none”;
document.body.appendChild(oFrame);
resetConnection();

};

//]]>
</script>

</head>
<body>

<div id=”divStatus”>Waiting for first message...</div>
</body>

</html>

The first step is to define a global variable called oFrame that holds a reference to the dynamically cre-
ated iframe. In the window’s onload event handler, the iframe is created and stored in oFrame. Then, it
is hidden from view by setting display to “none”. The iframe is then added to the body of the docu-
ment (which is required for the iframe to work). Finally, the resetConnection() function is called,
which in turn sets the src attribute of the iframe.

281

Comet

12_109496 ch09.qxd 2/5/07 6:51 PM Page 281

Usability Issues
Although using iframes to implement a web-based push architecture can yield some interesting results,
it has a major usability flaw. While the connection is open, the browser indicates that it is busy:

❑ In Internet Explorer, the throbber (the animated icon in the upper-right corner) continues to
move and the progress bar shows up at the bottom of the screen.

❑ In Firefox, the cursor changes to display an arrow and an hourglass and a message is displayed
in the status bar indicating that the browser is waiting for more information.

❑ In Safari, the progress bar continues to expand and the message “Loading” appears in the
title bar.

❑ In Opera, the cursor changes to display an arrow and an hourglass.

Although these may seem like minor annoyances, such obvious indications of browser activity can eas-
ily confuse inexperienced users. There are, however, other ways of achieving push functionality.

Browser-Specific Approaches
HTTP streaming is still a fairly new concept, and as such, there is no consistency in browser implemen-
tation. For some browsers, HTTP streaming is nothing more than a hack using existing technology (such
as using iframes in the previous examples); in others, it’s a planned feature being implemented in one of
many ways. Depending on your individual requirements for browser support, you may need to use
combinations of these techniques.

Internet Explorer HTTP Streaming
HTTP streaming support in Internet Explorer was not an intentional design decision but rather was
achieved by some enterprising engineers at Google using existing and less documented browser
features.

When Google added chat capabilities to its Gmail web client, developers immediately began to dissect
what was happening behind the scenes. It was Alex Russell who first posted a message
(http://alex.dojotoolkit.org/?p=538) on his blog about the inner workings of the Gmail chat
client. He discovered the use of a little-known, safe-for-the-web ActiveX control called HTMLFile.

The HTMLFile ActiveX object is exactly what it sounds like: an implementation of an HTML document
that mimics the functionality of the document object in an external form. Because this object exists out-
side of the normal page flow, it has no ties to the browser window and, thus, can be used to perform all
kinds of operations without disturbing the browser’s user interface. The Google engineers used this to
their advantage, inserting an iframe into this object that could be used to achieve HTTP streaming with-
out involving the browser window. The basic technique involves creating an HTMLFile object with an
iframe in it and using that iframe to create a streaming HTTP connection, such as:

var oPage = new ActiveXObject(“htmlfile”);
oPage.open();
oPage.write(“<html><body></body></html>”);
oPage.close();

oPage.body.innerHTML = “<iframe src=\”connection.php\”></iframe>”;

282

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 282

This sample code illustrates creating an HTMLFile object and initializing it for Comet communication.
After creating the object, it behaves just like document, so you’re able to use open(), write(), and
close() to set the HTML of the page. Then, the body’s innerHTML is set to an iframe containing the
connection. This connection will remain open and receive information without influencing the browser
window or indicating to the user that something is going on. The only thing left is to use the connection
to call JavaScript. This is where a problem occurs.

Because the page containing the iframe is technically not part of the browser hierarchy, there is no way
to access the JavaScript in the main page from the iframe. Using parent or top simply returns the
HTMLFile object. To access the main page, you need to assign a new property to the HTMLFile object:

oPage.parentWindow._parent = self;

This one line assigns a reference to the current window into the _parent property of the HTMLFile
object’s parentWindow. The connection page can now access anything in the main page by using code
like this:

parent._parent.heartbeat();

Thus, the connection file must be modified slightly:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>IE HTTP Streaming Example Connection</title>
</head>
<body>

<?php
//get the file modification time
$modified = filemtime(‘details.txt’);
$lastModified = $modified;

//clear file statistics
clearstatcache();

//check every so often to see if it has changed
while (true) {

?>
<script type=”text/javascript”>

//<![CDATA[
parent._parent.heartbeat();
//]]>
</script>

<?php
ob_flush();
flush();

// sleep for 1 second
sleep(1);

//check the modification time

283

Comet

12_109496 ch09.qxd 2/5/07 6:51 PM Page 283

$lastModified = filemtime(‘details.txt’);

//clear file statistics
clearstatcache();

//check it against the previous time
if ($modified != $lastModified) {

$output = date(‘h:i:s’, $lastModified);
?>

<script type=”text/javascript”>
//<![CDATA[

parent._parent.modifiedAt(“<?php echo $output ?>”);
//]]>
</script>

<?php
ob_flush();
flush();

// sleep for 1 second
sleep(1);

$modified = $lastModified;
}

}
?>

</body>
</html>

The client-side code also must be modified to use the HTMLFile object:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>IE HTTP Streaming Example 1</title>
<script type=”text/javascript”>

//<![CDATA[

var iTimeoutId = null;
var oPage = null;

function heartbeat() {
clearTimeout(iTimeoutId);
iTimeoutId = setTimeout(resetConnection, 10000);

}

function resetConnection() {
oPage.body.innerHTML = “<iframe src=\”IEExampleConnection.php?t=”

+ (new Date()).getTime() + “\”></iframe>”;
heartbeat();

}

function modifiedAt(sDateTime) {

284

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 284

document.getElementById(“divStatus”).innerHTML =
“Modified at “ + sDateTime;

}

window.onload = function () {
oPage = new ActiveXObject(“htmlfile”);
oPage.open();
oPage.write(“<html><body></body></html>”);
oPage.close();
oPage.parentWindow._parent = self;
resetConnection();

};

//]]>
</script>

</head>
<body>

<div id=”divStatus”>Waiting for first message...</div>
</body>

</html>

This example now works the same way as the previous one but without involving the browser window.

Firefox HTTP Streaming
Firefox supports HTTP streaming in a clean, though not terribly obvious, way. It is possible to open an
HTTP stream using XHR and monitor the readyState property to determine when new data has
arrived. Unlike other browsers, the readystatechange event fires every time the browser receives data
from the server. While the actual readyState property remains set at 3, the event fires repeatedly, indi-
cating that there is new data ready to be accessed. Consider the following:

var oXHR = new XMLHttpRequest();
oXHR.open(“get”, “connection.php”, true);
oXHR.onreadystatechange = function () {

switch (oXHR.readyState) {
case 3:

alert(oXHR.responseText);
break;

case 4:
alert(“Done”);

}
};
oXHR.send(null);

PHP uses chunk encoding by default, which means that it may buffer the output
and send it in chunks. This can cause Comet that uses the HTMLFile object not to
behave as expected (script execution can be delayed). If using PHP, try disabling
chunk encoding for the connection file.

285

Comet

12_109496 ch09.qxd 2/5/07 6:51 PM Page 285

Whenever the readystatechange event fires and the readyState is 3, an alert displays the returned
text. If the page is streaming content, the alert would show an ever-growing amount of text each time
through. This can be problematic since, chances are, you are only interested in the most recently received
text. For this reason, the output must be delimited to allow easy access to the most recent data. In the
case of JavaScript code, it makes sense to delimit each call with a semicolon (;), so that the returned data
looks something like this:

;heartbeat();heartbeat();heartbeat();modifiedAt(“10:34:56”);heartbeat()

With this data, it’s possible to use an array to quickly get the most recent command:

var aCommands = oXHR.responseText.split(“;”);
var sCommand = aCommands.pop();

After this code has run, sCommand contains the most recent command from the server (pop() always
returns the last item in an array). Assuming that semicolon delimitation is used in the commands, the
file modification example can be rewritten to use Firefox’s HTTP streaming support. First, the client:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Firefox HTTP Streaming Example</title>
<script type=”text/javascript”>

//<![CDATA[

var iTimeoutId = null;
var oXHR = null;

function heartbeat() {
clearTimeout(iTimeoutId);
iTimeoutId = setTimeout(resetConnection, 10000);

}

function resetConnection() {
oXHR.abort();
oXHR.open(“get”,

“FirefoxExampleConnection.php?t=” + (new Date()).getTime(), true);
oXHR.onreadystatechange = function () {

switch(oXHR.readyState) {
case 3:

var aCommands = oXHR.responseText.split(“;”);
var sCommand = aCommands.pop();
eval(sCommand);
break;

case 4:
resetConnection();
break;

}
};
oXHR.send(null);
heartbeat();

}

286

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 286

function modifiedAt(sDateTime) {
document.getElementById(“divStatus”).innerHTML =

“Modified at “ + sDateTime;
}

window.onload = function () {
oXHR = new XMLHttpRequest();
resetConnection();

};

//]]>
</script>

</head>
<body>

<div id=”divStatus”>Waiting for first message...</div>
</body>

</html>

The major changes in this version of the example are the creation of an XHR object in the onload event
handler and the parsing of the returned data/evaluation of the command using eval(). Whenever the
readyState of the XHR object is 3, an array is created containing all commands received to that point.
The most recent command must be passed into eval() to be interpreted as a JavaScript call.

If readyState ever reaches 4, it means that the connection timed out and the connection must be reset.
Note that the first line of code inside of resetConnection() is a call to the abort() method, which
effectively resets the XHR object to make it ready for another connection.

Next, take a look at the new server portion of the example:

<?php
header(“Content-type: text/javascript”);

//get the file modification time
$modified = filemtime(‘details.txt’);
$lastModified = $modified;

//clear file statistics
clearstatcache();

//check every so often to see if it has changed
while (true) {

echo(“;heartbeat()”);
ob_flush();
flush();

// sleep for 1 second
sleep(1);

//check the modification time
$lastModified = filemtime(‘details.txt’);

//clear file statistics

287

Comet

12_109496 ch09.qxd 2/5/07 6:51 PM Page 287

clearstatcache();

//check it against the previous time
if ($modified != $lastModified) {

$output = date(‘h:i:s’, $lastModified);

echo(“;modifiedAt(\”$output\”)”);
ob_flush();
flush();

$modified = $lastModified;

// sleep for 1 second
sleep(1);

}

}
?>

The changes in this example are subtle: all HTML has been removed. Since each command must be man-
ually interpreted using eval(), there is no need for the HTML tags anymore. The content type of the
page has been set to “text/javascript” to indicate the type of data being returned. Further, a semi-
colon precedes each text output so that it will always be the last item in the commands array on the
client.

When you run this example, you will notice that no user interface changes as the page continues to load
and send information to the client.

LiveConnect HTTP Streaming
LiveConnect is a little-known and underutilized technology supported by Firefox, Safari, and Opera,
allowing Java objects to be used from within JavaScript. To use LiveConnect, the client machine must
have a Java Runtime Environment (JRE) installed, and Java must be enabled in the browser. Most of the
objects in the java package and its subpackages are available for use from within JavaScript using
LiveConnect, enabling functionality that may not be possible using native JavaScript objects. For a cross-
browser, cross-platform method of HTTP streaming, LiveConnect can be used very effectively, thanks to
the availability of the java.net package.

The key to using LiveConnect for HTTP streaming is to open a stream over HTTP. This is done by creat-
ing a new java.net.URL object and then calling openStream(). Doing so returns an instance of
java.io.InputStream, which can then be passed into a java.io.InputStreamReader object. Then,
this reader must be passed into a java.io.BufferedReader object for easy access. After that, the
reader must be checked periodically to determine when new data is available. Here’s the rewritten file
modification page:

Some servers put limits on the amount of time that a server process can run, which
can cause errors to occur during the execution of this example as well as other Comet
processes. Often times when this happens, the server returns an HTML string
describing the problem, which can cause an error when passed into eval(). Always
check your server’s settings to determine the best way to implement Comet solutions.

288

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 288

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Live Connect Example</title>
<script type=”text/javascript”>

//<![CDATA[

var iTimeoutId = null;
var oReader = null;

function resetConnection() {
var oURL = new java.net.URL(

“http://localhost/LiveConnectExampleConnection.php”);
var oStream = oURL.openStream();
if (oReader != null) {

oReader.close();
}
oReader = new java.io.BufferedReader(

new java.io.InputStreamReader(oStream));

checkInput();
}

function checkInput() {
try {

var sLine = oReader.readLine();
if (sLine != null) {

eval(sLine + “”);
}
setTimeout(checkInput, 500);

} catch (oEx) {
resetConnection();

}
}

function heartbeat() {
clearTimeout(iTimeoutId);
iTimeoutId = setTimeout(resetConnection, 10000);

}

function modifiedAt(sDateTime) {
document.getElementById(“divStatus”).innerHTML =

“Modified at “ + sDateTime;
}

window.onload = resetConnection;

//]]>
</script>

</head>
<body>

<div id=”divStatus”>Waiting for first message...</div>
</body>

</html>

289

Comet

12_109496 ch09.qxd 2/5/07 6:51 PM Page 289

The key to this example is the global oReader object, which contains a reference to a
java.io.BufferedReader. When resetConnection() is called, a new java.net.URL object is cre-
ated with the URL to send the request to. Note that this must be an absolute path to the page, since these
Java objects don’t know the context of the page in which the JavaScript code is running.

When the openStream() method is called, it returns a reference to an input stream for the URL. Before
continuing on, any existing instance of oReader must be closed (by calling close()) to free any remain-
ing memory. Once it’s a sure thing that there are no other readers still in memory, a new
java.io.BufferedReader is created and stored in oReader. Then, checkInput() is called to see if
there’s any data.

The checkInput() function does the important part of the process: checking for data and executing
JavaScript commands based on that data. Each time this function is called, readLine() returns
any available data. If any data is available, it is stored in sLine, which is then passed into eval() to
call the JavaScript command returned from the server. Since sLine is returned from a Java method,
it’s actually not a JavaScript string but rather an instance of java.lang.String. To convert it into a
JavaScript, an empty string is appended. After that, a timeout is created to call checkInput() in
another 500 milliseconds.

All of the logic inside of checkInput() is wrapped in a try block. At some point, the connection will
time out, and the call to readLine() will throw an error. The try block will catch this error and call
resetConnection() to ensure that the stream is reopened.

The server-side component to this LiveConnect example is very similar to the Firefox equivalent:

<?php
header(“Content-type: text/javascript”);

//get the file modification time
$modified = filemtime(‘details.txt’);
$lastModified = $modified;

//clear file statistics
clearstatcache();

//check every so often to see if it has changed
while (true) {

echo(“heartbeat()\n”);
ob_flush();
flush();

// sleep for 1 second
sleep(1);

//check the modification time
$lastModified = filemtime(‘details.txt’);

//clear file statistics
clearstatcache();

//check it against the previous time

290

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 290

if ($modified != $lastModified) {
$output = date(‘h:i:s’, $lastModified);

echo(“modifiedAt(\”$output\”)\n”);
ob_flush();
flush();

$modified = $lastModified;

// sleep for 1 second
sleep(1);

}

}
?>

The important difference in this page is that each JavaScript call is followed by a new line character (\n).
Since the reader on the client side reads in data one line at a time, it’s very important that this character
be appended to each line of output so that it is read in a timely manner.

Server-Sent DOM Events
The Web Hypertext Application Technology Working Group (known as WHATWG) is a group of devel-
opers, companies, and others, interested in pushing browser development toward a platform more suit-
able for applications. WHATWG publishes a specification called Web Applications 1.0, which is a
working draft as of October 2006. While Web Applications 1.0 introduces some very interesting concepts,
one of the most interesting is called server-sent DOM events.

Server-sent DOM events allow a server to stream data to the client, which fires events in response to that
data, allowing developers easy access to server information. Essentially, the browser opens a persistent
connection to a particular page on the server and listens for new data coming in. The data for server-side
DOM events comes in the form of event information, such as:

Event: MyEvent
Name1: value1
name2: value2

Event: MyEvent
data: See you later!

Each time the server sends data it must have an event name (specified by Event:) and some data in
name-value pairs. Each part of this data is then made available to the client through JavaScript. There
must be one blank line in between events so that the client recognizes an event as being fully received.
Also, the content type of the data stream must be “application/x-dom-event-stream”.

To receive events from the server, an <event-source/> element is necessary. This is a new element
introduced in Web Applications 1.0 and can be accessed using all of the usual DOM methods. The src
attribute should be set to the URL providing the streamed data, such as:

<event-source src=”connection.php” id=”source” />

291

Comet

12_109496 ch09.qxd 2/5/07 6:51 PM Page 291

Once the element is included in a page, you can use the addEventListener() method to assign event
handlers for specific events. For example, to respond to an event called “MyEvent”, the code would be:

var oSource = document.getElementById(“source”);
oSource.addEventListener(“MyEvent”, function (oEvent) {

alert(oEvent.type);
}, false);

When the event is fired and the event handler called, an event object is passed in as the only argument.
This event object is exactly the same as any other DOM event object in terms of the properties and
methods, so type is the name of the event that was fired and target points to the <event-source/>
element. However, there is some extra information provided on the event object in the form of the name-
value pairs received in the data stream. If there is a named value called data in the stream, a property
named data is accessible on the event object to retrieve that information.

Firing UI Events
The true power of server-sent DOM events isn’t simply in firing custom events; it’s in firing UI events on
the client from the server. So at any time, the server can decide that a click event should be fired, or
mouseover or keydown . . . any event named in the DOM Level 3 Events specification can be fired
through server-side DOM events. The complete list of events is:

❑ abort (Event)

❑ blur (UIEvent)

❑ click (MouseEvent)

❑ change (Event)

❑ DOMActivate (UIEvent)

❑ DOMAttrModified (MutationEvent)

❑ DOMAttributeNameChanged (MutationNameEvent)

❑ DOMCharacterDataModified (MutationEvent)

❑ DOMElementNameChanged (MutationNameEvent)

❑ DOMFocusIn (UIEvent)

❑ DOMFocusOut (UIEvent)

❑ DOMNodeInserted (MutationEvent)

❑ DOMNodeInsertedIntoDocument (MutationEvent)

❑ DOMNodeRemoved (MutationEvent)

Note that in the case of custom events, the third argument in addEventListener()
has no meaning but is typically set to false.

292

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 292

❑ DOMNodeRemovedFromDocument (MutationEvent)

❑ DOMSubtreeModified (MutationEvent)

❑ error (Event)

❑ focus (UIEvent)

❑ keydown (KeyboardEvent)

❑ keyup (KeyboardEvent)

❑ load (Event)

❑ mousedown (MouseEvent)

❑ mousemove (MouseEvent)

❑ mouseover (MouseEvent)

❑ mouseout (MouseEvent)

❑ mouseup (MouseEvent)

❑ reset (Event)

❑ resize (UIEvent)

❑ scroll (UIEvent)

❑ select (Event)

❑ submit (Event)

❑ textInput (TextEvent)

❑ unload (Event)

To fire one of these events, specify its exact name (including case) as the Event value:

Event: click

Of course, firing a click event isn’t very useful without firing it on a particular element. So, in addition to
specifying the event, you must also specify a target using the Target attribute:

Event: click
Target: #target

Since the server doesn’t have any DOM references, it needs to send the ID of the element upon which to
fire the event. The format is the same as using an ID in CSS: precede the ID with the pound sign (#). It’s
also possible to fire an event on the document itself by specifying Document as the target:

Event: click
Target: Document

293

Comet

12_109496 ch09.qxd 2/5/07 6:51 PM Page 293

Depending on the event, you can also specify additional information to be sent:

Event: click
Target: #target
button : 2
screenX : 0
screenY : 0

In this example, the button, screenX, and screenY properties are filled with specified values. As long
as the names of these name-value pairs match properties on the event object, they will be assigned
appropriately. Any names that don’t match will be ignored.

Browser Support
As of October 2006, the only browser supporting server-sent DOM events is Opera 9.01. It was actually
an Opera engineer, Ian Hickson, who wrote the original specification back in 2004 (that specification was
later incorporated into Web Applications 1.0). While the Opera implementation takes most things into
account, there are some limitations to be aware of:

1. The <event-source/> element must be in the main markup of the page; creating it using
document.createElement() doesn’t work.

2. You can only use values named data: for custom events. All other names are ignored.

It should be noted that these limitations are minor and do not interfere significantly with the ability to
make use of this extremely powerful feature. The following example runs on Opera 9.01 and later, and
presumably will work with other browsers that implement server-sent DOM events in the future.

Example
The file modification example becomes extremely simple when using server-sent DOM events. Consider
the simplification of the client:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Server-Sent DOM Events Example 1</title>
<script type=”text/javascript”>

//<![CDATA[

Server-sent DOM events are also on the Mozilla roadmap, though it is unclear what
version of Firefox will be the first to implement it.

When sending UI events to the browser, it is unnecessary to assign event handlers
to the <event-source/> element. Each of the events is transported automatically to
the targeted element and is handled by the event handlers on that element.

294

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 294

function modifiedAt(sDateTime) {
document.getElementById(“divStatus”).innerHTML =

“Modified at “ + sDateTime;
}

window.onload = function () {
var oSource = document.getElementById(“source”);

oSource.addEventListener(“modified”, function (oEvent) {
modifiedAt(oEvent.data);

}, false);

};

//]]>
</script>

</head>
<body>

<div id=”divStatus”>Waiting for first message...</div>
<event-source id=”source” src=”ServerSentDOMEventsConnection.php” />

</body>
</html>

Here, an <event-source/> element is added in the page with an id of “source” and its src attribute
set to ServerSentDOMEventsConnection.php. This is enough to start the information stream from the
server to the client; however, an event handler must be added to access the data as it comes in. So, in the
onload event handler, a reference to the <event-source/> element is retrieved by using
getElementById(). Then, an event handler is added using addEventListener() and passing in the
name of the custom event “modified”. This handler simply retrieves information from the data value
and then passes it to modifiedAt() (which is the same as in previous examples).

On the server, the basic functionality is the same as in previous examples, just with a different format:

<?php
header(“Content-type: application/x-dom-event-stream”);

//get the file modification time
$modified = filemtime(‘details.txt’);
$lastModified = $modified;

//clear file statistics
clearstatcache();

//check every so often to see if it has changed
while (true) {

// sleep for 1 second
sleep(1);

//check the modification time
$lastModified = filemtime(‘details.txt’);

//clear file statistics

295

Comet

12_109496 ch09.qxd 2/5/07 6:51 PM Page 295

clearstatcache();

//check it against the previous time
if ($modified != $lastModified) {

$output = date(‘h:i:s’, $lastModified);
echo(“Event: modified\n”);
echo(“data: $output\n\n”);
ob_flush();
flush();
$modified = $lastModified;

// sleep for 1 second
sleep(1);

}

}
?>

The major changes here are the different content type for the page (“application/x-dom-event-
stream”, which is required by the specification) and the output. As opposed to previous examples, this
page outputs plain text in the proper format for interpretation:

Event: modified
data: 5:23:06

That’s all it takes to make this example work the same way as the previous ones. The differences are that
the browser handles resetting the connection if it dies and access to incoming server data is much easier
than using iframes or XHR.

Connection Management
A server implementing HTTP 1.1 allows a maximum of two simultaneous connections to a given client
at the same time. Part of the reason for this is to ensure that no one client can overwhelm a server with
so many requests that other clients don’t get responses. Web browsers following this standard will also
only allow two connections to a given domain, which is why pages with lots of external resources
(JavaScript files, stylesheets, images, etc.) take longer to finish loading.

If you’re going to be implementing a Comet connection, keep in mind that this will be using up one of
the two available connections to the server. This can significantly slow down interactivity when an Ajax
application requires the use of both traditional Ajax techniques and a Comet connection. With only one
free connection available, all Ajax traffic must wait for it to become free before sending a request and
receiving a response. Particularly problematic is when one Ajax response takes a long time to be sent,
backing up all of the Ajax traffic for the application.

The best solution to this problem is to use a specific subdomain for the Comet connection. For instance,
if your web application runs off of www.mywebapplication.com, use comet.mywebapplication.com

296

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 296

for your Comet connection. This ensures that both connections are still available to the web application
from the main domain (subdomain connections don’t count against the two-connection limit) while the
Comet connection remains open.

Server-Side Support
Although the concept of HTTP streaming brings a lot of exciting possibilities to web applications, there
are some concerns. Normal web browser traffic opens a connection, gets the data it needs, and then
closes the connection. If every user is connected to a streaming HTTP web application at the same time,
that means one connection must be kept alive for every user. On web applications with a large amount
of traffic, this means significant server overhead. Plus, leaving infinite loops running on the server
necessitates better memory management than typical web application servers provide. Fortunately, there
are several server-side solutions designed to enable web servers to handle Comet-style communication.

❑ Twisted (http://twistedmatrix.com/trac/): An open source server-side event-publishing
framework designed for optimal network usage. Twisted is written in Python and works over
a large number of network protocols (not just HTTP). It’s worth noting that Twisted wasn’t
designed specifically for Comet, but its server event paradigm works exceptionally well for
the management of HTTP streaming.

❑ Pushlets (http://www.pushlets.com): An open source approach to HTTP streaming for JSP
application servers. Pushlets use an event-publishing/subscribing model similar to server-sent
DOM events to enable client-server communication. The framework comes with both server-
and client-side libraries.

❑ DivMod: Nevow (http://divmod.org/trac/wiki/DivmodNevow): An open source web
application framework built in Python with Comet support through a feature called Athena.
Athena includes both server-side classes and a client-side library to implement Comet
communication.

As with the emergence of Ajax solutions, server-side Comet solutions are being released more and more
frequently. Be sure to investigate appropriate solutions for your server architecture before implementing
Comet for your web application.

You should not implement Comet-style interactions on any web application without
first talking to the people in charge of your server system. Make sure that they
understand what you are trying to accomplish so that an accurate assessment can be
made for server needs.

Remember, JavaScript can’t access external domains, so a subdomain is your only
choice to work within the HTTP 1.1 limit.

297

Comet

12_109496 ch09.qxd 2/5/07 6:51 PM Page 297

Summary
In this chapter, you learned about Comet, a push architecture for web applications. Instead of using Ajax
techniques such as polling to get updated data, the information is pushed out to the client via HTTP
streaming — a continuous connection with the server that pushes out data periodically. You learned how
to implement HTTP streaming solutions using Internet Explorer, Firefox, and LiveConnect.

Next, you learned about server-sent DOM events, part of the Web Applications 1.0 specification pub-
lished by the Web Hypertext Application Technology Working Group (WHATWG). This technology
allows the server to fire DOM events, such as click, mouseover, and keydown, as well as custom
events that developers can subscribe to using the <event-source/> element. You learned how to use
this technology in Opera.

You then were introduced to some basic concepts of connection management. The two-connection limit
of HTTP 1.1 was discussed in relation to Ajax and Comet, and you learned that using a subdomain for a
Comet connection is preferable because it still leaves two connections available to the main domain for
other Ajax requests.

Last, you learned about several server-side solutions for implementing Comet. Since Comet puts more
stress on traditional web application servers, it’s preferable to use a system designed specifically for
HTTP streaming.

298

Chapter 9

12_109496 ch09.qxd 2/5/07 6:51 PM Page 298

Maps and Mashups

In the beginning, there was MapQuest (www.mapquest.com), a site that allowed users to find
maps and get driving directions in the United States. Debuting during the dot-com era, MapQuest
grew incredibly popular and even went public, being listed on the NASDAQ exchange. All of the
hype caught the eye of America Online, which acquired the company in 2000. Competitive map-
ping sites were developed by others, most notably Yahoo! and Microsoft, but MapQuest remained
the most popular site for mapping and driving directions. Mapping web sites went through itera-
tive changes over the next few years, but for the most part, things stayed still.

When Google Maps (maps.google.com, later local.google.com) came online in 2004, it offered
a revolutionary interface for the traditional web-based mapping systems. Instead of the traditional
click-and-wait interaction that MapQuest and others used to pan and zoom maps, Google Maps
used Ajax communication to download additional mapping info or maps at different zoom levels
without reloading the page. Additionally, the ability to drag the map around instead of relying on
the ubiquitous compass interface provided a truly unique user experience in the world of online
mapping.

The development of Google Maps reignited interest in online mapping and the possibilities that
Ajax opened for this particular usage. Yahoo!, Microsoft, and even MapQuest rushed to update
their map offerings to be more competitive with Google Maps, using Ajax and other, more respon-
sive user interface paradigms.

As with many new developments in technology, developers were immediately drawn to the new
interfaces used by Google Maps and other Ajax-enabled applications. Savvy web developers
reverse-engineered Google Maps, embedding its interface in their own pages as a proof of concept.
Though not harmful, this occurrence opened the eyes of Google, and soon they released the
Google Maps API to the public. As before, Yahoo!, Microsoft, and MapQuest each followed suit
with their own Ajax-enabled mapping APIs, flooding the technology world with numerous
options for embedding maps into web pages.

13_109496 ch10.qxd 2/5/07 6:52 PM Page 299

The Rise of Mashups
Closely related to the various mapping APIs is the concept of a mashup. Mashups are web applications
that combine information from a number of sources to provide a new user experience. This information
isn’t located at a single source; rather, it comes from numerous sources that publish information publicly
through web services, RSS feeds, or other means. Traditionally, mashups involve combining such infor-
mation with a map.

Chicago Crime (www.chicagocrime.org) is widely considered to be the first mashup, combining crime
information for Chicago with a map generated by the Google Maps API. This site is credited with the
rise of mashups as its developers integrated Google Maps long before the API was available. Over time,
and through the use of the evolving Google Maps API, Chicago Crime has grown into a mashup cover-
ing nearly all aspects of crime in the Chicago area, with breakdowns by crime type, street, district, ward,
and more.

Another popular first-mover in the realm of mashups was Housing Maps (www.housingmaps.com),
which combines housing listings from Craig’s List (www.craigslist.org) with a map generated by
Google Maps. The map is used to show locations where there are listings as well as the addresses and
photos of available properties.

To create a map-enabled mashup such as these, you must have access to location-based information.
Most such information is represented by physical street addresses, such as those used to get directions.
However, these addresses must be mapped to specific locations on the map using a technique called
geocoding.

Geocoding
Geocoding is the process by which information is associated with particular geographic points in the world.
These points are identified by degrees in latitude and longitude, which you may remember from grade
school as the north-south and east-west measurements, respectively. It may surprise you to know that most
mapping APIs don’t actually know the location of addresses; they know the location of points given in lati-
tude and longitude. All addresses must be converted to a set of points before being located on a map.

All of the mapping APIs require the use of degree decimals for both latitude and longitude. This is dif-
ferent from what you probably learned about in school, where latitude and longitude are identified by
degrees, minutes, and seconds. If you have a location in this format, you’ll need to use a converter to get
the degree decimal values. And of course, if you have an address, you’ll need to convert that to latitude
and longitude into degree decimals as well.

Geocoding Web Sites
Most countries provided geocoded information about the terrain through census records. In the United
States, for instance, the U.S. Census Bureau geocodes nearly every highway and surface street in the
country. Further, this data is in the public domain and can be accessed via the Topologically Integrated
Geographic Encoding and Referencing system (Tiger, www.census.gov/geo/www/tiger). Plowing
through all of this information is an arduous process since there’s more than 20 GB of data for the United
States alone. With the new interest in mapping and mashups, a number of services have arisen to allow
easier access to geocoded information.

300

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 300

❑ geocoder.us (www.geocoder.us): This web site can return the latitude and longitude of any
address in the United States. Simply go to the web site and enter in an address. The information
returned includes both the degrees/minutes/seconds and degree decimal formats of the loca-
tion, as well as an up-close map.

❑ Travel GIS (www.travelgis.com/geocode): This site offers geocoded information for 24 coun-
tries in a very simple interface. Addresses are returned in decimal format only.

❑ worldKit GeoCoder (http://brainoff.com/geocoder): This is a simple web site where you
can enter in an address and it returns the latitude/longitude coordinates in decimal format
along with some additional information. It gives you a map of the world and pinpoints each
location you enter on that map with a red dot. You can zoom in and out on the map as well as
click on it to get the latitude and longitude of any point in the world.

Geocoding Services
Even though web sites providing geocode information are useful, they are only minimally so when cre-
ating a mashup. Most mashups require a dynamic lookup of geocoded information as the user interacts
with the application. To aid in this case, there are several geocoding web services offering address
lookup in real time:

❑ Yahoo! Maps Geocoding Service
(http://developer.yahoo.com/maps/rest/V1/geocode.html): This RESTful service
returns XML containing the latitude, longitude, street address, city, state, and zip code of the
entered address. As this is purely for noncommercial purposes, you are limited to 5,000 lookups
per day, and you must sign up for a Yahoo! Application ID at http://api.search.yahoo.com/
webservices/register_application.

❑ Google Maps Geocoding Service
(www.google.com/apis/maps/documentation/#Geocoding_Examples): This lightweight
API can be formatted to return data in XML, KML (Google’s Keyhole Markup Language), CSV,
or JSON and returns all of the information about a given address, including its coordinates and
full address information (country, zip code, etc.). As with the Yahoo! version, this is for noncom-
mercial use only; there is also a limit of 50,000 lookups per day. Before using the Google Maps
Geocoding Service, you must sign up for an API key at www.google.com/apis/maps/
signup.html. The Google Maps API also has JavaScript access to geocoding information.

Google Maps API
When Google Maps first debuted, it was the victim of numerous hackers. People were enthralled with
this next-generation Ajax application that did things no one had ever seen done before. Developers from
around the world wanted to know how it worked and how they could use it to their advantage. Though
not damaging in any way, these early Google Maps hackers opened the eyes of the folks in Mountain
View, California, and soon the Google Maps API was released to the public.

How Does It Work?
The Google Maps API is one of the most interesting uses of Ajax in that it doesn’t necessarily need to use
XHR or iframes to accomplish its functionality. Instead, the API uses the dynamic nature of images to

301

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 301

fetch new information from the server on demand. Although it doesn’t use the Ajax image technique dis-
cussed in Chapter 2, the same basic idea is at work: images can have their sources changed at any time.
The Google Maps API uses this functionality to create the illusion of panning over one large image when,
in reality, it loads only small pieces of the overall image to give the perception of a much larger one.

The initial view of the map is split into several images that are placed next to each other, giving the
appearance of one large image. When a map is first loaded, the API determines how many of these
images are necessary to completely fill the map container. The images are arranged in a grid that over-
laps the ends of the map container. If the map is zoomed, each of the tiled images is set to a different
URL, loading a new image into the element. This gives the illusion of an asynchronous zoom
when, in reality, it’s just a new take on the old image-swapping technique that has been around since the
late 1990s.

When the map is panned or dragged by the user, it appears as if the map is neverending image thanks to
some interesting JavaScript. The images are, indeed, moved as the user drags the mouse, but once the
images disappear out of the map’s viewable area, they are removed and placed at the other end of the
map. For instance, images that disappear off the right side of the map are placed just out of view on the
left, and images that disappear off the bottom of the map are placed just out of view on the top. It’s this
constant repositioning of image tiles that gives the illusion that the user is panning over a single large
image. Joel Webber, one of the first developers to dissect how Google Maps works, likened the technique
to building a railroad track by taking a piece from the end and placing it at the front: images are neither
created nor destroyed, just moved around.

Behind the scenes, there’s also some XML and XSLT performing extra functions on the map, but the
majority of the work is handled by images.

Getting Started
To begin, you need to have a Google account (such as to access Gmail). If you don’t have a Google
account yet, go to www.google.com/accounts for information on how to sign up. The next step is to go
to www.google.com/apis/maps/signup.html to sign up for an API key. To do so, you must provide a
URL indicating the location at which the API will be used. This location is a specific directory on your
server; so www.mydomain.com/maps1 and www.mydomain.com/maps2 would each require separate keys.

The Google Maps API does have some important limitations you should be aware of:

❑ The API is for noncommercial use only. To obtain a commercial license, you’ll need to contact
Google directly.

❑ The page using the Google Maps API has no page view limits; however, if you anticipate more
than 500,000 page views per day, you’ll need to contact Google about getting a commercial
license.

❑ You are prohibited from obscuring attributions or ads that appear within the map viewport.

❑ You must keep your site up to date with the most current version of the API. Google generally
gives users a month to upgrade to a newly released version.

302

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 302

There is only one JavaScript file necessary for you to begin using the Google Maps API. Unlike other
APIs, you can’t download the files locally. Instead, you’ll need to access the file located on the Google
Maps server. This file must include the version and your key in this format:

http://maps.google.com/maps?file=api&v={version}&key={your key}

For instance, if the most recent version is version 2, the following code should be included:

<script type=”text/javascript”
src=”http://maps.google.com/maps?file=api&v=2&key={your key}”></script>

Once the file is included, you can begin writing your application.

Google Maps Basics
The main object in the Google Maps API is called GMap2. The constructor accepts a single argument,
which is the element that should contain the map. It is recommended that this container element be a
<div/> for best compatibility and extensibility. This <div/> element can be styled as normal, minimally
specifying the width and height. The GMap2 object is smart enough to work within the styles provided
for the container <div/>, so the page’s overall layout will never be compromised due to the inclusion of
a map. To create a map using a <div/> element with an ID of “divMap”, use the following:

var oMap = new GMap2(document.getElementById(“divMap”));

Once the map object is created, you must initialize the view to a specific area. This is done by calling the
setCenter() method of the map, which accepts two arguments: a point given in latitude/longitude
and a zoom level. The first argument must be a GLatLng object (creating by passing in a latitude and a
longitude in decimal format); the second argument is a zoom level where 0 is completely zoomed out
and any number greater than 0 reveals more detail in the map. For example, the following code centers a
map on the United States so that the entire country is in view:

var oMap = new GMap2(document.getElementById(“divMap”));
oMap.setCenter(new GLatLng(32, -92), 3);

There are some browsers that may not support the Google Maps API, so it’s best to check ahead of time
before creating a new GMap2 object, by using the GBrowserIsCompatible() function:

if (GBrowserIsCompatible()) {
var oMap = new GMap2(document.getElementById(“divMap”));
oMap.setCenter(new GLatLng(32, -92), 3);

}

These four lines of code are all that it takes to get a simple map instantiated on a page (see Figure 10-1).

The map display with this code is very basic and fairly limited. While the map of the United States is
plainly visible, there is little user interaction. It’s possible to move the viewport of the map by dragging
the image, but other than that, there’s no zooming or view switching. The easiest way to enable this
functionality is to include one or more controls.

303

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 303

Figure 10-1

Controls
The official Google Maps interface at http://maps.google.com has a number of different ways the
user can manipulate the map. Each of these manipulations is handled by a different control. The Google
Maps API provides a number of default controls that can be used to implement the full Google Maps
interface or just the parts necessary for your purposes:

❑ GLargeMapControl: The typical pan/zoom control displayed on http://maps.google.com.

❑ GSmallMapControl: A smaller version of the previous control, with only plus/minus and
directional controls (but no zoom slider).

❑ GSmallZoomControl: The zoom slider control without any directional controls.

❑ GScaleControl: A scale indicating units in miles and kilometers.

❑ GOverviewMapControl: A zoomed-out view of the map with the current viewport area high-
lighted.

❑ GMapTypeControl: The Map/Satellite/Hybrid control.

One or more of these controls can be added to the map via the addControl() method. Each of the con-
trols can be created without any parameters and passed into the method:

oMap.addControl(new GSmallMapControl());

304

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 304

Though this is most often done just after creating a GMap2 object, controls can be added at any time.
Additionally, controls can be removed using the removeControl() method if you have a reference to
the control:

var oControl = new GSmallMapControl();
oMap.addControl(oControl);

//do some other stuff

oMap.removeControl(oControl);

The first three controls, GLargeMapControl, GSmallMapControl, and GSmallZoomControl should not
be used together, since they all occupy the same location on the map (upper-left corner). The
GMapTypeControl can safely be used with any of the others, since it occupies the upper-right corner.

If you want your map to have controls right from the onset, you should add them immediately after cre-
ating the GMap2 object but before you call setCenter(), such as:

if (GBrowserIsCompatible()) {
var oMap = new GMap2(document.getElementById(“divMap”));
oMap.addControl(new GSmallMapControl());
oMap.addControl(new GMapTypeControl());
oMap.setCenter(new GLatLng(32, -92), 3);

}

Adding these controls yields the map in Figure 10-2.

Figure 10-2

305

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 305

Moving the Map
It’s possible to dynamically control the view of the map once it’s been loaded by using several methods of
the GMap2 object. Although the user can access various controls on the map to zoom and move the map
view, it may be necessary to control the map separately. All of the navigation that can be performed using
the controls can also be accomplished by directly calling the JavaScript methods for the specific behavior.

The setCenter() method was used earlier to initialize the map display, but it can also be used at any
time to recenter the map on a specific point. This recentering is immediate and has no animation associ-
ated with it. For a smoother transition to a new point on the map, there are several methods available:

❑ panBy(distance): Specifies the distance (as a GSize) that the map should be moved by.

❑ panDirection(x, y): Specifies the direction that the map should be panned to. The x argu-
ment should be -1 to move left, 0 to not move, or 1 to move right; the y argument should be -1 to
move up, 0 to not move, or 1 to move down.

❑ panTo(center): Specifies a GLatLng object that should be the new center of the map. The map
that animates moving to that position (same as setCenter(), except with animation).

These methods can be used as any time to move the map to a new position, for example:

oMap.panBy(new GSize(20,20)); //Pans the maps by 20 pixels in each direction
oMap.panDirection(1, 0); //Pans the maps to the right
oMap.panTo(new GLatLng(50, -80)); //Pans map to the specified location

Info Windows
Info windows provide additional information about a point on the map. On the Google Maps web site, info
windows are used to provide address information about a point on the map, although they can be used
for many more purposes. Visually, info windows look like dialogue bubbles from a comic strip: a round,
white bubble anchored by a white triangle pointing to a specific location on the map (see Figure 10-3).

Figure 10-3
306

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 306

Basic Info Windows
An info window can be opened at any time by using the openInfoWindow() method of the GMap2
object. This method accepts three arguments: a GLatLng object specifying where the info window
should be anchored, a DOM node providing the contents of the info window, and an optional configura-
tion object.

To open a very simple info window at the center of the map, the following code can be used:

oMap.openInfoWindow(oMap.getCenter(),
document.createTextNode(“Center of the map!”));

The getCenter() method of the GMap2 object returns a GLatLng object for the center of the map, ensur-
ing that the info window points to the exact center. Even though this info window displays only text, it’s
still necessary to pass in a DOM node for the second argument, so a text node is created with the mes-
sage to display.

There is a second method, openInfoWindowHtml(), that allows an HTML string to be passed in as the
body of the info window instead of a DOM node. This method accepts the same three arguments (a point
to anchor to, the contents of the window, and an optional configuration object) and is called like this:

oMap.openInfoWindowHtml(oMap.getCenter(), “Center of the map!”);

This example opens an info window with stylized text (italics, assuming that there are no styles overrid-
ing the default display of). In this way, it’s possible to create rich text on the fly and display it in
an info window without the need to create DOM objects.

Configuration Options
The third argument to both of the previously mentioned methods is a configuration object for the info
window. This object can contain one more of the following properties:

❑ maxWidth: The maximum allowable width of the info window in pixels

❑ onCloseFn: A function to call once the info window has been closed

❑ onOpenFn: A function to call once the info window has been opened

This configuration object can be included as an object literal, such as:

oMap.openInfoWindowHtml(oMap.getCenter(), “Center of the map!”,
{ onCloseFn: function() { alert(“Closed”) } });

When you run this code, an alert is displayed after the user clicks the close button on the info window.
Generally speaking, the onCloseFn option is the most useful of the available options, since it
provides a hook to an otherwise untraceable event. maxWidth can otherwise be set using CSS and
onOpenFn can easily be mimicked by calling a function right after the call to openInfoWindow()
or openInfoWindowHtml(), since both are synchronous operations.

Tabbed Info Windows
A new addition to version 2 of the Google Maps API is the tabbed info window. Tabbed info windows
can be used to present more information about a particular point on the map without taking up extra
horizontal and vertical space (see Figure 10-4).

307

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 307

Figure 10-4

As with nontabbed info windows, the tabbed version can be created with two methods:
openInfoWindowTabs() and openInfoWindowTabsHtml(). Both methods accept three arguments: a
GLatLng object indicating where on the map to point to, an array of GInfoWindowTab objects represent-
ing the tabs, and an optional configuration object. The difference between the two methods has to do
with the data available within each GInfoWindowTab object. When you use openInfoWindowTabs(),
each GInfoWindowTab object must be created using a string for the tab title and a DOM node for the tab
contents; openInfoWindowTabsHtml() expects each GInfoWindowTab to have been created using a
string for the tab title and a string for the contents (which can contain HTML). The following code cre-
ates an info window with two tabs:

var aTabs = [
new GInfoWindowTab(“First tab”, document.createTextNode(“First tab text”)),
new GInfoWindowTab(“Second tab”, document.createTextNode(“Second tab text”))

];
oMap.openInfoWindowTabs(oMap.getCenter(), aTabs);

The first part of this code creates an array containing two GInfoWindowTab objects whose contents are
text nodes. This array is then passed in as the second argument of openInfoWindowTabs() to display
the info window. To display formatted HTML text instead of plain text, use openInfoWindowTabs()
and assign the tab contents as a string:

var aTabs = [
new GInfoWindowTab(“First tab”, “First tab text”),
new GInfoWindowTab(“Second tab”, “Second tab text”)

];
oMap.openInfoWindowTabsHtml(oMap.getCenter(), aTabs);

This code produces the result seen previously in Figure 10-4. Note that only three lines have changed:
the two lines defining the GInfoWindowTab objects and the method call.

308

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 308

The configuration object can contain the same options as those used with non-tabbed info windows, as
well as an additional property called selectedTab. This value is an integer indicating the number of the
tab that should be selected when the info window is initially displayed; the default value is 0, which
selects the first tab. To select the second tab by default, the following code passes in a configuration
object with selectedTab set to 1:

var aTabs = [
new GInfoWindowTab(“First tab”, “First tab text”),
new GInfoWindowTab(“Second tab”, “Second tab text”)

];
oMap.openInfoWindowTabsHtml(oMap.getCenter(), aTabs, { selectedTab: 1 });

Map Blowups
A map blowup is a special type of info window that shows a zoomed-in view of a particular point on the
map. The contents of this info window are a smaller version of the main map, complete with buttons for
changing the map type and a zoom control (see Figure 10-5).

Figure 10-5

The showMapBlowup() method is used to open a map blowup info window. This method accepts two
arguments: a GLatLng object indicating the point to both anchor on and blow up and an optional config-
uration object. For example, to show a blowup of the center of the map, use the following code:

oMap.showMapBlowup(oMap.getCenter());

When the second argument is specified, the configuration object has two additional properties to interact
with map blowups. The first is zoomLevel, which indicates the zoom factor of the map shown in the
info window. The second is mapType, which indicates what type of map should be displayed (one of

309

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 309

G_NORMAL_MAP, G_SATELLITE_MAP, G_HYBRID_MAP or any custom map type). To display a blowup of
the center of the map at a zoom level of 5 showing a satellite map, the following code can be used:

oMap.showMapBlowup(oMap.getCenter(), {zoomLevel: 5, mapType: G_SATELLITE_MAP});

Aside from these two properties, the same three basic configuration options are available (maxWidth,
onOpenFn, and onCloseFn).

Manipulating Info Windows
Once an info window is opened, a reference to the GInfoWindow object can be retrieved by calling the
getInfoWindow() method. The GInfoWindow object can be helpful when it’s necessary to interact with
the info window outside of user action. For instance, an info window may need to be hidden after a certain
amount of time. This can be accomplished by using a timeout and calling the hide() method, like this:

setTimeout(function () {
var oInfoWindow = oMap.getInfoWindow();
oInfoWindow.hide();

}, 5000);

It’s also possible to redisplay an info window after it’s been hidden using the show() method:

setTimeout(function () {
var oInfoWindow = oMap.getInfoWindow();
oInfoWindow.hide();

setTimeout(function () {
oInfoWindow.show();

}, 5000);

}, 5000);

Since the contents of the info window aren’t overwritten until either openInfoWindow() or
openInfoWindowHtml() is called, the original contents are redisplayed when show() is called. Each
time hide() or show() is called, an internal flag is set indicating the info window’s state. This flag is
accessed using the isHidden() method:

setTimeout(function () {
var oInfoWindow = oMap.getInfoWindow();
oInfoWindow.hide();
alert(“Hidden? “ + oInfoWindow.isHidden());

setTimeout(function () {
oInfoWindow.show();
alert(“Hidden? “ + oInfoWindow.isHidden());

}, 5000);

}, 5000);

This code outputs the returned value of isHidden() after the call to hide() and after the call to
show(), indicating the status of the internal flag.

310

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 310

The info window also remembers which point it was set up to be anchored to; this value can be retrieved
using the getPoint() method, which returns the GLatLng object that was originally used to create the
info window. Similarly, it’s possible to determine how far away the tip of the info window arrow is to
that point by using the getPixelOffset() method, which returns a GSize object indicating how far
away the info window is:

var oInfoWindow = oMap.getInfoWindow();
var oPoint = oInfoWindow.getPoint();
var oOffset = oInfoWindow.getPixelOffset();

alert(“Info window points to (“ + oPoint.lat() + “,” + oPoint.lng()
+ “) and the arrow tip is “ + oOffset.height + “ y pixels and “
+ oOffset.width + “ x pixels from that point.”);

Tabbed info windows have several other methods designed to interact with the tabs. The selectTab()
method can be called at any time to change the selected tab in the info window. As with the
selectedTab property of the configuration object, pass in the index of the tab that should be selected
(where 0 is for the first tab, 1 is for the second, etc.):

setTimeout(function () {
var oInfoWindow = oMap.getInfoWindow();
oInfoWindow.selectTab(1);

}, 5000);

The index of the currently selected tab can be determined by using getSelectedTab():

setTimeout(function () {
var oInfoWindow = oMap.getInfoWindow();
alert(“Selected tab: “ + oInfoWindow.getSelectedTab());
oInfoWindow.selectTab(1);
alert(“Selected tab: “ + oInfoWindow.getSelectedTab());

}, 5000);

In this example, the index of the selected tab is output before and after the call to selectTab() in order
to show that the tab has changed.

There are also a couple of other methods that can be used to retrieve other information about the tabbed
info window:

❑ getContentContainers(): Returns an array of DOM nodes corresponding to the contents of
each tab.

❑ getTabs(): Returns the array of GInfoWindowTab objects that was originally passed in to cre-
ate the tabbed info window.

Events
Most objects in the Google Maps API support custom events. To access these events, there is a GEvent
object with a couple of methods. The first, addListener(), is used to assign a function as an event

311

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 311

handler for a particular event. This method accepts three arguments: the object to observe, the name of
the event, and a function to call when the event occurs. For example, to listen to the load event of a
GMap2 object, the following code can be used:

GEvent.addListener(oMap, “load”, function () {
alert(“Map is loaded.”);

});

This code displays an alert when the map has finished loading and is ready to be interacted with.

The other method of GEvent is called bind(), and its purpose is to add an event handler that is a
method of an object. It takes four arguments: the object to observe, the name of the event, the object on
which the method exists, and the method to call. Consider the following example:

var oCustom = new Object();
oCustom.message = “Complete”;
oCustom.handleMapLoad = function () {

alert(this.message);
};

GEvent.bind(oMap, “load”, oCustom, oCustom.handleMapLoad);

This example creates a custom object called oCustom that contains a method to call when the map has
finished loaded (called handleMapLoad). The GEvent.bind() method specifies oCustom and
oCustom.handleMapLoad as the third and fourth arguments. This ensures that the handleMapLoad()
method is called when the map is fully loaded.

The GMap2 object supports the following events:

❑ addmaptype: Fires when a map type is added to the map; supplies a maptype argument to the
event handler.

❑ addoverlay: Fires when an overlay is added; the overlay is passed in as an argument to the
event handler.

❑ click: Fires when the map is clicked; supplies a point (GPoint object) as an argument to the
event handler. If the click occurred on an overlay (discussed later), then the overlay is also
passed in as an argument.

❑ clearoverlays: Fires when the clearOverlays() method is called.

❑ drag: Fires repeatedly while the user is dragging the map.

❑ dragend: Fires when the user stops dragging the map.

❑ dragstart: Fires when the user starts to drag the map.

❑ infowindowclose: Fires when an info window closes.

❑ infowindowopen: Fires when an info window opens.

❑ load: Fires when the map is completely loaded.

❑ maptypechanged: Fires when the map type changes (for example, from Map to Satellite).

312

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 312

❑ mousemove: Fires when the cursor moves across the map; a GLatLng object indicating the last
position of the mouse inside the map is passed in as an argument to the event handler.

❑ mouseout: Fires when the cursor moves from the map to the outside of the map; a GLatLng
object indicating the last position inside of the map is passed in as an argument to the event
handler.

❑ mouseover: Fires when the cursor moves onto the map from outside of the map; a GLatLng
object indicating the mouse position on the map is passed in as an argument to the event handler.

❑ move: Fires repeatedly as the map is moving.

❑ moveend: Fires when the map stops moving.

❑ movestart: Fires when the map begins to move.

❑ removemaptype: Fires when a map type is removed from the map; supplies a maptype argu-
ment to the event handler.

❑ removeoverlay: Fires when an overlay is removed; the overlay is passed in as an argument to
the event handler.

❑ zoomend: Fires when the map has stopped zooming; old zoom level and new zoom level are
provided as arguments to the event handler.

These events can be used to monitor the user’s interaction with the map at any particular time. Keep in
mind that most objects on the map also support their own events.

Map Overlays
A map overlay is any graphical marker placed onto a map to indicate some geographic location. When
using the Google Maps site, areas of interest are often indicated by an icon or some other marker placed
directly on the map; these are examples of overlays.

There are three methods on the GMap2 object relating directly to overlays. The first is addOverlay(),
which adds the specified overlay object to the map control. To add an overlay stored in a variable called
oOverlay, the following code can be used:

oMap.addOverlay(oOverlay);

Of course, anything that can be added can also be removed, so the second method is removeOverlay(),
which removes a specified overlay from the map. In order to remove a specific overlay, you need a refer-
ence to it (not unlike the way event handlers are removed). Once you have a reference, the method can
be called like this:

oMap.removeOverlay(oOverlay);

It may not be practical to keep track of all the overlays used on a map, so it’s also possible to remove all
of the overlays using the third method, clearOverlays(). This method is called without any argu-
ments:

oMap.clearOverlays();

313

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 313

This method removes all overlays added since the map was created. The Google Maps API provides sev-
eral types of overlays that can be used with just a little configuration.

Markers
The simplest of the provided overlays are markers. Markers are the most commonly used indicator on
the Google Maps web site: a red pushpin-like image that is based at a point of interest. A marker can be
created by instantiating a GMarker object. The constructor of the GMarker accepts two arguments: a
GLatLng object indicating where the marker should be set, and a configuration object containing addi-
tional information for the marker (this second argument is optional). Creating a simple marker can be
done like this:

var oMarker = new GMarker(new GLatLng(32, -92));

This code creates a marker that can be added to the map at any time. The optional second argument
specifies additional information for the marker and can be specified as an object literal with one or more
of the following properties:

❑ title: Text that should be displayed when the cursor is moved over the marker.

❑ icon: An icon that should be used for the overlay instead of the default icon.

❑ clickable: If false, disables click events for the marker; the default value is true.

❑ draggable: When set to true, allows the marker to be dragged and repositioned by the user; the
default value is false.

❑ dragCrossMove: Set to true to force dragged markers to appear under the cursor instead of
floating above; the default value is false. This setting only applies if draggable is true.

❑ bouncy: Determines if a dragged marker should bounce when it’s dropped; the default value is
false.

❑ bounceGravity: A number indicating the acceleration of the bounce when a marker is
dropped. Only used when bouncy is set to true.

To create a marker whose tooltip text is “My marker”, the code is as follows:

var oMarker = new GMarker(new GLatLng(32, -92), { title: “My marker” });

This essentially sets the title attribute of the element used to represent the marker; it uses the default
behavior to enable this functionality. It’s also possible to change the icon displayed for the marker by
using the icon option in the configuration object. This property’s value must be a GIcon object.

Specifying an Icon
The GIcon object is used to specify icons that can be used in Google Maps. Though there are a number
of properties, only three are required.

❑ The first property is image, which specifies the URL of the image to display:

var oIcon = new GIcon();
oIcon.image = “flag.gif”;

314

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 314

❑ Next, the iconSize property must be provided. This value must be a GSize() object indicating
the width and height of the image specified in the image property. The GSize() object con-
structor accepts two arguments, the width and height of the image in pixels. So, if the image is
26 pixels wide by 33 pixels high, the size is specified like this:

var oIcon = new GIcon();
oIcon.image = “flag.gif”;
oIcon.iconSize = new GSize(26, 33);

❑ The final required property is iconAnchor, which indicates what point on the image should be
centered on the GLatLng location. This value is a GPoint object, which specifies an x and y
coordinate of the image. To have the lower-left corner of the image appear at the coordinate on
the map, the following code can be used:

var oIcon = new GIcon();
oIcon.image = “flag.gif”;
oIcon.iconSize = new GSize(26, 33);
oIcon.iconAnchor = new GPoint(0, 33);

This code specifies the anchor to be at the point (0, 33) on the image, which is the lower-left cor-
ner. After adding this property, the GIcon object can be specified as part of a marker:

var oIcon = new GIcon();
oIcon.image = “flag.gif”;
oIcon.iconSize = new GSize(26, 33);
oIcon.iconAnchor = new GPoint(0, 33);

var oMarker = new GMarker(new GLatLng(32, -92), {title:”My marker”, icon: oIcon});
oMap.addOverlay(oMarker);

There are other properties on a GIcon object that can be set, depending on your needs:

❑ shadow: The URL for an image to use as the shadow of the marker. According to Google’s docu-
mentation, this shadow should be at 45 degrees to stylistically agree with default shadows pro-
vided by the API.

❑ shadowSize: A GSize object indicating the size of the shadow image.

❑ infoWindowAnchor: A GPoint object indicating where info windows should be anchored
within the icon. When you are opening an info window from a marker with an icon, this prop-
erty must be specified. Info windows are discussed later in this chapter.

❑ printImage: The URL of an image to use for the print version of the map. This image must be
the same size as the one specified by image.

❑ mozPrintImage: The URL of an image to use for the print version of the map in Mozilla-based
browsers such as Firefox. This image must be the same size of the one specified by image.

❑ printShadow: The URL of a shadow image to use for printed maps. This image must be the
same size of the one specified by shadow.

❑ transparent: The URL of a 24-bit PNG image with 1 percent opacity that has the same size
and shape as the image specified by image. This is used by Internet Explorer to specify the
clickable area of the marker.

315

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 315

Manipulating Markers
There are several methods available on marker objects that allow the manipulation of position and func-
tionality as well as providing information about the marker. For instance, the GIcon object used for the
marker can be returned via the getIcon() method, and the GLatLng object used to anchor the marker
can be retrieved using getPoint():

var oIcon = oMarker.getIcon();
var oAnchor = oMarker.getPoint();

If the marker needs to be moved once it has been placed on the map, this can be done using the
setPoint() method. This method accepts a GLatLng object that the marker should be moved to. For
example:

oMarker.setPoint(new GLatLng(33, -91));

A call to setPoint() moves the marker immediately. There is no animation; the marker simply disap-
pears from the first point and reappears at the second.

There are also several methods relating to draggable markers. The draggable() method returns true
or false to indicate if the marker is draggable by the user. If it is, you can enable or disable dragging
using enableDragging() and disableDragging(), respectively. When using these methods, the
draggingEnabled() method returns true or false to indicate if the marker is enabled for dragging:

function toggleDraggable(oMarker) {
if (oMarker.draggable()) {

if (oMarker.draggingEnabled()) {
oMarker.disableDragging();

} else {
oMarker.enableDragging();

}
}

}

This function toggles the draggability of a marker and illustrates the use of these methods. If the marker
is capable of being dragged, then draggable() returns true, even if dragging is disabled. Then,
draggingEnabled() indicates if the marker can currently be dragged. If it can, the dragging is disabled
using disableDragging(); otherwise, it’s enabled using enableDragging(). Note that for
enableDragging() and disableDragging() to work, the marker must have been created using the
draggable option.

Marker Info Windows
If an info window should be pointing to a specific marker on the map, the marker can open an info win-
dow itself by using its own versions of openInfoWindow(), openInfoWindowHtml(), openInfo
WindowTabs(), openInfoWindowTabsHtml(), and showMapBlowup(). The difference is that these
methods don’t need to be passed a GLatLng object to indicate where the info window should be
anchored; the marker itself is used as the anchor.

Each of these methods accepts one less argument than its GMap2 counterpart, meaning that openInfo
Window() and openInfoWindowHtml() accept two arguments: the content (either a DOM node or
HTML string, respectively) and an optional configuration object (only the maxWidth property is valid

316

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 316

when using these methods). The openInfoWindowTabs() and openInfoWindowTabsHtml() methods
also only accept two arguments: an array of GInfoWindowTab objects and an optional configuration
object (only the maxWidth and selectedTab properties are valid when using this method). The
showMapBlowup() method accepts only an optional configuration object (only zoomLevel and mapType
are valid properties when using this method). Some basic examples:

oMarker.openInfoWindow(document.createTextNode(“Marker info window”));

oMarker.openInfoWindowHtml(“Marker info window”, { maxWidth: 500 });

oMarker.showMapBlowup({ zoomLevel: 5, mapType: G_HYBRID_MAP });

oMarker.openInfoWindowTabsHtml([new GInfoWindowTab(“Tab 1”, “Tab 1 Content”)]);

oMarker.openInfoWindowTabs(
[new GInfoWindowTab(“Tab 1”, document.createTextNode(“Tab 1 Content”)),
new GInfoWindowTab(“Tab 2”, document.createTextNode(“Tab 2 Content”))],

{ selectedTab: 1});

Marker Events
As mentioned previously, most of the objects in the Google Maps API support events. Markers support a
number of events that can be handled by custom event handlers:

❑ click: Fires when the marker is clicked. This event bubbles to the containing GMap2 object.

❑ dblclick: Fires when the marker is double-clicked. This event bubbles to the containing GMap2
object.

❑ dragstart: Fires when the marker starts being dragged (only if the marker has draggable set
to true).

❑ drag: Fires when the marker is being dragged (only if the marker has draggable set to true).

❑ dragend: Fires when the marker stops being dragged (only if the marker has draggable set to
true).

❑ infowindowopen: Fires when an info window is opened from the marker.

❑ infowindowclose: Fires when the info window opened from the marker is closed.

❑ mousedown: Fires when a mouse button is pressed down over the marker.

❑ mouseup: Fires when a mouse button is released over the marker.

❑ mouseout: Fires when the mouse is moved from over the marker to outside of the marker.

❑ mouseover: Fires when the mouse is first moved over the marker.

❑ remove: Fires when the marker is removed through removeOverlay() or clearOverlays().

To open an example when a marker is clicked, the following code can be used:

GEvent.addListener(oMarker, “click”, function () {
oMarker.openInfoWindowHtml(“This is my marker.”);

});

317

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 317

When the user clicks on this marker, an info window is displayed pointing right to the marker (an
infowindowopen event is also fired). The map will scroll appropriately so that the entire info window
can be displayed to the user. When this info window is closed, the infowindowclose event is fired,
which can also be listened to:

GEvent.addListener(oMarker, “infowindowclose”, function () {
alert(“Info window was closed.”);

});

Note that the onOpenFn and onCloseFn properties of the configuration object cannot be used with info win-
dows created from markers, so the infowindowopen and infowindowclose events must be used instead.

Using a Marker Manager
If a map contains a large number of markers, it’s not always optimal to display every marker all the
time. For instance, it would not make sense to show the weather for each individual city when the map
of the entire United States is visible; it’s just too much information to show at that level. To aid in this
type of case, the Google Maps API provides the GMarkerManager object.

Generally speaking, a GMarkerManager object is used to determine which markers to display under
what circumstances. Instead of adding markers to the GMap2 object, markers are added to a
GMarkerManager object, which informs the GMap2 object when markers need to be displayed. To accom-
plish this, the GMarkerManager watches the zoom level and center of the map, checking for markers
that need to be visible within the viewport.

To create a GMarkerManager, pass in a reference to the GMap2 object it should be working with. There is
also a second optional argument, which is an object with one or more of the following properties:

❑ borderPadding: The number of pixels outside of the viewable area that the manager should
observe. This is a buffer area around the outside of the map within which markers are displayed
so that there is no delay in their appearance when the map is panned.

❑ maxZoom: The maximum zoom level (where 0 is the smallest value) monitored by the manager.
If not specified, the manager monitors all zoom levels.

❑ trackMarkers: Determines if the manager should keep track of markers that are moved either
by users or by using the setPoint() method. The default value is false.

For example, the following code creates a marker manager that monitors 20 pixels outside of the view-
port in each direction and all zoom levels up to 10:

var oManager = new GMarkerManager(oMap, { borderPadding: 20, maxZoom: 10 });

Once the object is instantiated, markers can be added by using addMarker(), which accepts three argu-
ments: the marker, a minimum zoom level that must be met before the marker is displayed, and an
optional maximum zoom level beyond which the marker won’t be displayed. If the last two arguments
are omitted, it’s assumed that the marker should be displayed at all zoom levels; if only the last argu-
ment is omitted, it’s assumed that the marker should be shown for all zoom levels past the minimum.
For example:

oManager.addMarker(new GMarker(new GLatLng(32, -92)), 3);
oManager.addMarker(new GMarker(new GLatLng(33, -91)), 5, 10);

318

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 318

This code specifies two markers on the map. The first marker is displayed only at zoom levels of 3 or
greater, while the second is displayed only between zoom levels of 5 and 10. Typically, a range is speci-
fied for markers that represent regions. For instance, the weather going on in the northern part of a state
should be shown only until the zoom level is such that individual cities can have their own weather
markers (which would be more specific than the weather for the region).

There is also an addMarkers() method, which allows the addition of multiple markers using the same
zoom level requirements. The addMarkers() method also accepts three arguments: the first is an array
of markers as opposed to a single marker; the other arguments are the same as in addMarker() (the
minimum zoom level and an optional maximum zoom level). For example:

oManager.addMarkers([
new GMarker(new GLatLng(31, -93)),
new GMarker(new GLatLng(33, -93))

], 7, 13);

Here, two markers are added that are displayed when the zoom level is between 7 and 13. If there are a
number of markers that should be displayed using the same criteria, it is more efficient to use
addMarkers() rather than individual calls to addMarker().

The final step after adding markers to the manager is to call the refresh() method. This method sets
up the initial display of the map and sets up the necessary hooks to monitor the viewport. After calling
refresh(), the manager handles all other viewport updates automatically. Make sure that this method
is called after adding all of the markers:

oManager.addMarker(new GMarker(new GLatLng(32, -92)), 3);
oManager.addMarker(new GMarker(new GLatLng(33, -91)), 5, 10);
oManager.addMarkers([

new GMarker(new GLatLng(31, -93)),
new GMarker(new GLatLng(33, -93))

], 7, 13);
oManager.refresh();

Marker managers are best used for maps that show regional information with possible drilldowns into
more local information. As previously discussed, a weather map is a good candidate for using a marker
manager.

Polylines
A polyline is a line that overlays the map, connecting two or more geographic points. On the Google
Maps site, polylines are frequently used to show the route between two locations. Polylines, however,
need not be created strictly along roadways; in fact, polylines can be placed anywhere on the map.

Polylines are implemented differently depending on the capabilities of the browser being used, so before
using them, it’s necessary to ensure that all of the necessary information is present in the page. In
Internet Explorer, Vector Markup Language (VML) is used to draw polylines, and this requires inclusion
of the Microsoft VML namespace and the definition of a VML CSS rule:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xmlns:v=”urn:schemas-microsoft-com:vml”>
<head>

<style type=”text/css”>

319

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 319

v\:* {
behavior:url(#default#VML);

}
</style>

</head>
<body>

<!-- page body -->
</body>

</html>

Including these sections of code ensures that polylines will work appropriately in Internet Explorer; this
code is safely ignored in other browsers.

Polylines can be added to the map by creating GPolyline objects and adding them to the map via the
addOverlay() method. The GPolyline constructor accepts four arguments: an array of GLatLng
objects indicating two or more vertices for the polyline, an optional string indicating the color of the line,
an optional number indicating the weight of the line (how many pixels wide it is), and an optional float-
ing point number (decimal between 0 and 1) indicating the opacity of the line. Here’s a simple example:

var oPolyline = new GPolyline([
new GLatLng(40.758224, -73.917404),
new GLatLng(34.101509, -118.32691)

], “#f00”, 10);

oMap.addOverlay(oPolyline);

The first point in this example corresponds to the corner of 42nd Street and Broadway in New York
while the second is the corner of Hollywood and Vine in Los Angeles. The line created is red (“#f00” is
the hexadecimal shorthand code for red) and 10 pixels wide. Effectively, this code creates a diagonal line
across the United States (see Figure 10-6).

Figure 10-6

320

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 320

The more points provided for the polyline, the more turns the line takes. When there are more than two
points, the order in which they are presented is important, since the line is drawn from the first point to
the second, from the second to the third, and so on.

Once a polyline is created, you can get information about it via two methods: getVertexCount() and
getVertex(). The getVertexCount() method returns the number of vertices in the polyline (the
number of points provided). The getVertex() method accepts a single argument, which is the index of
the vertex to retrieve (0 for the first vertex, 1 for the second, etc.), and returns a GLatLng object with the
vertex information. For example:

alert(“Number of vertices: “ + oPolyline.getVertexCount());
alert(“First vertex: “ + oPolyline.getVertex(0));

This simple example outputs the number of vertices and the first vertex in the polyline. Essentially, these
two methods are used to retrieve the information that was first passed in when the polyline was created.

As with markers, polylines can be removed from the map at any time using the removeOverlay() or
clearOverlays()methods.

Additional Information
The Google Maps API is actually quite extensive, and it is beyond the scope of this book to point out all
the details. However, you should be aware that the API contains many more objects and features than
are discussed in this book; the information presented here is intended to be a jumping-off point only.
Google maintains documentation for the API online at http://www.google.com/apis/maps/
documentation/. The documentation includes a complete class reference for all of the API’s objects as
well as detailed examples for various features. Additionally, the Wrox book Google Maps Mashups (Wiley
2007) contains extensive examples and information on building mashups using the Google Maps API.

Yahoo! Maps API
The Yahoo! Maps API debuted around the same time as the Google Maps API, but with less fanfare. The
folks at Yahoo! decided to take an interesting approach to their new mapping product, developing both
Ajax and Flash APIs. The Ajax API (covered here) is composed of JavaScript objects used to implement
maps on any web site. The Flash API, on the other hand, can be embedded within Flash movies or Flex
applications as well as embedded in web sites. Both the Ajax and Flash APIs use the same data and
image sources, so visually there is very little difference between the two.

Getting Started
To use the Yahoo! Maps API, you must have a Yahoo! ID. If you don’t have one, go to http://edit
.yahoo.com and click on the “Sign Up” link. After signing up, go to http://api.search.yahoo.com/
webservices/register_application to request an application ID. This application ID can be used
not only for the Yahoo! Maps API but also for the other public Yahoo! APIs.

321

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 321

There are some limitations on using the Yahoo! Maps API:

❑ The API is for noncommercial use only. You can contact Yahoo! directly to inquire about a com-
mercial license.

❑ The attribution inside of the map must not be obscured.

❑ You are limited to 50,000 requests per day. If you anticipate needing more than that, you’ll need
to discuss your needs with Yahoo! directly.

Once you have agreed to the terms of use and received an application ID, you’ll need to include the
Yahoo! Maps API JavaScript file in your page. This file resides on Yahoo! servers and must be accessed
directly from there by providing the API version number and your application ID in the following for-
mat:

http://api.maps.yahoo.com/ajaxymap?v={api version}&appid={your application ID}

At the time of writing, the most recent version is 3.4, so the code can be included using a <script/> tag
like this:

<script type=”text/javascript”
src=”http://api.maps.yahoo.com/ajaxymap?v=3.4&appid={app ID}”></script>

This is the only file necessary to begin using Yahoo! Maps on your site.

Yahoo! Maps Basics
The map object in the Yahoo! Maps API is YMap. The constructor for a YMap object can accepts three
arguments: the container element in which to create the map, an optional map type indicating which
type of map to display (map, satellite, or hybrid), and an optional YSize object indicating the dimen-
sions of the map container. Generally, the third argument isn’t needed as long as the width and height of
the container element are specified.

To create a map using a <div/> element with an ID of “divMap”, use the following:

var oMap = new YMap(document.getElementById(“divMap”));

This code initializes the map container element as a Yahoo! map control, but the map itself hasn’t been
drawn yet. To display the map, the drawZoomAndCenter() method must be called, passing in the coor-
dinate on which to center and the zoom level. Map coordinates are represented by YGeoPoint objects in
the Yahoo! Maps API, which store the decimal format latitude and longitude of a location. The zoom
level is a number between 1 and 16, where 1 is zoomed all the way in and 16 is zoomed all the way out.
To display a map that shows the entire United States, use the following code:

var oMap = new YMap(document.getElementById(“divMap”));
oMap.drawZoomAndCenter(new YGeoPoint(32, -92), 14);

These two lines of code produce a basic map with a distance legend (see Figure 10-7).

322

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 322

Figure 10-7

It’s possible to specify a different map type for the initial view of the map. The possible values are
YAHOO_MAP_REG (the regular map), YAHOO_MAP_SAT (satellite photos), and YAHOO_MAP_HYB (hybrid
combination of map and photos). One of these values can be passed in to the YMap constructor to set the
initial map type:

var oMap = new YMap(document.getElementById(“divMap”), YAHOO_MAP_SAT);
oMap.drawZoomAndCenter(new YGeoPoint(32, -92), 14);

This code creates the same basic view of the map but with satellite imagery. There’s also a setMapType()
method that can be used to change the map type at any time:

var oMap = new YMap(document.getElementById(“divMap”));
oMap.drawZoomAndCenter(new YGeoPoint(32, -92), 14);
oMap.setMapType(YAHOO_MAP_SAT);

Since every map has a map type set either by default or by the developer, the map type can be retrieved
using the getCurrentMapType() method, which returns one of the three constants used in the
setMapType() method:

switch(oMap.getCurrentMapType()) {
case YAHOO_MAP_REG:

alert(“Regular map”);
break;

case YAHOO_MAP_SAT:
alert(“Satellite map”);
break;

case YAHOO_MAP_HYB:
alert(“Hybrid map”);
break;

}

323

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 323

Although it’s possible to set the map type programmatically, it’s also helpful to allow the user to decide
how to display the map. To allow more fine-grained user control of the map, you’ll need to use controls.

Controls
Controls allow users to manipulate the view of the map directly. The Yahoo! Maps API provides several
built-in controls that can be added to the map individually depending on your specific needs. These
built-in controls are added using one of the following methods on the YMap object:

❑ addPanControl(): Adds a pan control containing arrows pointing north, south, east, and west;
clicking on any of these buttons pans the map in the specified direction. This control is placed in
the upper-right corner of the map. The control can be removed by using removePanControl().

❑ addTypeControl(): Adds a map type control containing buttons for each of the three map
types. Clicking on a button changes the map’s view to that of the specified map type. This con-
trol is placed in the upper-left corner of the map. The control can be removed by using
removeTypeControl().

❑ addZoomLong(): Adds a large zoom control to the map made up of plus and minus buttons, as
well as a zoom scale. This control is placed in the upper-right corner of the map. The control can
be removed by using removeZoomControl().

❑ addZoomScale(): Adds a zoom scale control to the map indicating the measurements being
used in the current map view. This control is added by default and is placed in the lower-left
corner of the map. The control can be removed by using removeZoomScale().

❑ addZoomShort(): Adds a small zoom control to the map made up of only a plus and minus
button. This control is placed in the upper-right corner of the map. The control can be removed
using removeZoomControl().

To create a map with a pan control, map type control, and long zoom control, use the following code:

var oMap = new YMap(document.getElementById(“divMap”));
oMap.addPanControl();
oMap.addTypeControl();
oMap.addZoomLong();
oMap.drawZoomAndCenter(new YGeoPoint(32, -92), 14);

This code creates the map displayed in Figure 10-8.

Note that the zoom scale control is in the lower-left corner by default, since removeZoomScale() wasn’t
called. It’s best to call these methods before the call to drawZoomAndCenter().

324

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 324

Figure 10-8

Moving the Map
By default, a map created using the Yahoo! Maps API can be dragged by the user to pan the view.
Adding a pan control to the map gives users another way to scroll the viewport of the map. The view
can also be panned programmatically using a couple of methods available on the YMap object.

The first method, panToLatLon(), pans the map to a specific location given by latitude and longitude.
This method accepts a single argument, which is a YGeoPoint, indicating where the map should be
panned to. When the map is panned, this method uses animation to move the map to that position, pro-
viding a smooth scrolling effect that is similar to the panning animation used in the Google Maps API.
Panning via latitude/longitude can be accomplished like this:

oMap.panToLatLon(new YGeoPoint(50, -80));

This method pans the map to a specific location, meaning that subsequent calls using the same data
won’t move the map at all. It is possible to move the map relative to the current view, by pixels, using
the panToXY() method. This method accepts a single argument, a YCoordPoint object, which repre-
sents the x and y coordinates in pixels. The map is panned so that the center is the location that was rep-
resented at those coordinates. To pan the map to the location 20 pixels from the top and left of the
map,use the following code:

oMap.panToXY(new YCoordPoint(20, 20));

Because the information is relative to the current view of the map, this line of code can be executed
repeatedly and will cause the map to move each time until the end of the map is reached.

325

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 325

Smart Windows
To display information about a location the map, Yahoo! Maps uses a smart window. Smart windows are
small, white bubbles that point to a specific location with a small triangle and display text or some other
HTML code. All smart windows are also created with a close button, a small “X” in the upper-right cor-
ner (see Figure 10-9).

Figure 10-9

Smart windows are opened using the showSmartWindow() method of the YMap object. This method
accepts two arguments: a YGeoPoint to anchor to and the content for the smart window. The content
can be an HTML string or a DOM text node. The following code opens a smart window at the center of
the map with a simple message:

oMap.showSmartWindow(oMap.getCenterLatLon(), “Hello world!”);

This code uses the getCenterLatLon() method to retrieve a YGeoPoint object for the center of the
map so that the smart window can be opened in the exact location. The second argument is plain text,
though it could just as easily have contained HTML:

oMap.showSmartWindow(oMap.getCenterLatLon(), “Hello world!”);

If you need output characters that are part of HTML syntax, such as less than (<), then creating a text
node is the way to go:

oMap.showSmartWindow(oMap.getCenterLatLon(), document.createTextNode(“5 < 10”));

326

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 326

Events
Most of the objects in the Yahoo! Maps API support events that can be handled to provide an increased
level of interaction. The YEvent object publishes a single method called Capture() that is used to
assign event handlers. The Capture() method accepts four arguments: the target object, the name of the
event, a function to call when the event occurs, and an optional scope object (used if the function to call
is a method of another object). All supported Yahoo! Maps events are contained in the EventsList
object, which has properties corresponding to specific events that can be managed. For the YMap object,
the following events are supported:

❑ EventsList.changeZoom: Occurs when the zoom level changes.

❑ EventsList.endAutoPan: Occurs when an “auto” pan occurs (pan to a specific point as
opposed to the map being dragged around arbitrarily).

❑ EventsList.endMapDraw: Occurs when the drawing of the map is finished.

❑ EventsList.endPan: Occurs when the panning of the map stops.

❑ EventsList.KeyDown: Occurs when a key is pressed.

❑ EventsList.KeyUp: Occurs when a key is released.

❑ EventsList.MouseClick: Occurs when the mouse is clicked on the map.

❑ EventsList.MouseDown: Occurs when the mouse button is pressed down when the cursor is
on the map.

❑ EventsList.MouseDoubleClick: Occurs when the mouse is double-clicked on the map.

❑ EventsList.MouseOut: Occurs when the mouse leaves the map area.

❑ EventsList.MouseOver: Occurs when the mouse first enters the map area.

❑ EventsList.MouseUp: Occurs when a mouse button is released when the cursor is over the map.

❑ EventsList.onPan: Occurs repeatedly as the map is panned.

❑ EventsList.onEndGeoCode: Occurs when a geocode request returns.

❑ EventsList.onEndLocalSearch: Occurs when a local search request returns.

❑ EventsList.onEndTrafficSearch: Occurs when a traffic search request returns.

❑ EventsList.polylineAdded: Occurs when a polyline has been added to the map.

❑ EventsList.polylineRemoved: Occurs when a polyline has been removed from the map.

❑ EventsList.startAutoPan: Occurs when an auto-pan is started.

❑ EventsList.startPan: Occurs when a pan is started.

To handle the EventsList.changeZoom event, for example, the following code can be used:

YEvent.Capture(oMap, EventsList.changeZoom, function () {
alert(“Zoom level changed.”);

});

327

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 327

Or, if the event handler function is a method of an object, the code can be changed to this:

var oCustom = {
handleZoom : function () {

alert(“Zoom level changed.”);
}

};

YEvent.Capture(oMap, EventsList.changeZoom, oCustom.handleZoom, oCustom);

Here, the object oCustom has a method called handleZoom() that should be called when the map’s
zoom level has changed. The third argument is a pointer to the handleZoom() method on the oCustom
object, and the fourth argument passes in the oCustom object itself, which tells the event handler that the
function is actually a method of this object.

Map Overlays
To add an overlay to a Yahoo! map, use the addOverlay() method. All available overlays can be added
using this method, including markers, customer markers, and polylines. Unlike the Google Maps API,
overlays in Yahoo! Maps can be created relative to a geographic location (YGeoPoint) or a point on the
map container (YCoordPoint). The latter makes it possible place an overlay on the map that remains in
the same spot no matter how the map is panned or zoomed.

Markers
The simplest type of overlay is a marker. A marker on a Yahoo! Map looks almost like a small smart win-
dow without any text that points to a specific location. There are two ways to add a marker to the map.
The first is to use the addMarker() method, which accepts a YGeoPoint and an ID string as arguments
(the ID can be used later to retrieve information about the marker if necessary). For example, to add a
marker at the center of the map, the following code can be used:

oMap.addMarker(oMap.getCenterLatLon(), “marker1”);

This is the fastest way to add a marker to the map when there’s no additional information necessary. A
more verbose way is to create a YMarker object and add it to the map using the addOverlay() method.
A YMarker object is created by simply passing in a YGeoPoint object indicating where the marker
should be placed:

var oMarker = new YMarker(oMap.getCenterLatLon());
oMap.addOverlay(oMarker);

A YMarker object can be retrieved for markers added via addMarker() using the getMarkerObject()
method and passing in the ID:

var oMarker = oMap.getMarkerObject(“marker1”);

In either case, a YMarker object can be further augmented to customize the marker.

328

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 328

Working with Labels
Markers can display small labels on top of the image. These labels are best left to one or two characters
due to the limited amount of space available on the marker. A label is added to a marker using the
addLabel() method, which accepts an HTML string as an argument. This method can be called any-
time after a marker has been created:

var oMarker = new YMarker(oMap.getCenterLatLon());
oMarker.addLabel(“1”);
oMap.addOverlay(oMarker);

This code adds a label of “1” to the given marker before adding it to the map. This produces a marker
such as the one displayed in Figure 10-10.

It’s important to note that addLabel() can be called only once per marker. After that point, the label can
be changed by calling reLabel():

var oMarker = new YMarker(oMap.getCenterLatLon());
oMarker.addLabel(“1”);
oMap.addOverlay(oMarker);

//other code

oMarker.reLabel(“2”);

Calls to reLabel() erase any previous label and replace it with the specified HTML string.

Figure 10-10

329

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 329

Auto-Expand Windows
Closely related to the concept of labels are auto-expand windows. Auto-expand windows appear automati-
cally when the mouse cursor is moved over a marker, and they disappear when the cursor moves away
from the marker. The purpose of auto-expand windows is to show small additional amounts of informa-
tion about a particular location. Visually, auto-expand windows look like smaller versions of smart win-
dows without a close button (see Figure 10-11).

Figure 10-11

To define an auto-expand window, use the addAutoExpand() method, which accepts an HTML string
as its only argument:

var oMarker = new YMarker(oMap.getCenterLatLon());
oMarker.addLabel(“1”);
oMarker.addAutoExpand(“The first marker.”);
oMap.addOverlay(oMarker);

The call to addAutoExpand() automatically assigns all of the relevant event-handling code for the
marker. It is also possible to open and close the auto-expand window programmatically instead of wait-
ing for a user action using openAutoExpand() and closeAutoExpand(). Calls to these methods don’t
interfere with the event handling assigned to the marker, so auto-expand windows opened using
openAutoExpand() will still close if the cursor is moved over the marker and then away from it.

Specifying a Custom Image
There may be a case when a marker should have a custom image (instead of the default marker image).
An image can be specified when a YMarker object is created as the second argument in the constructor.
This argument is a YImage object whose constructor accepts four arguments: the source URL for the
image to use, an optional YSize object indicating the width and height to use instead of the default val-

330

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 330

ues, a optional YCoordPoint giving the offset for a smart window from the image, and an optional
YCoordPoint specifying where the image should be placed relative to the lower-left corner of the
image. In most cases, only the first argument is necessary:

var oImage = new YImage(“flag.gif”);
var oMarker = new YMarker(oMap.getCenterLatLon(), oImage);
oMap.addOverlay(oMarker);

Because the flag icon used in this example has its flagpole on the left of the image, the flag is anchored
exactly at the specific coordinates on the map. Suppose that you wanted to use a smiley face image with
a width and height of 29 pixels that had its center at an exact coordinate on the map; you would need to
specify the fourth argument of the YImage constructor:

var oImage = new YImage(“smiley.gif”, null, null, new YCoordPoint(-15, 15));
var oMarker = new YMarker(oMap.getCenterLatLon(), oImage);
oMap.addOverlay(oMarker);

The fourth argument to the YImage constructor is a YCoordPoint specifying how the image should be
offset when it’s placed. Since the center of the image is 15 pixels from the top and 15 pixels from the left,
the YCoordPoint is created with -15 as an x-offset (moving the image 15 pixels to the left) and 15 as a y-
offset (moving the image 15 pixels down).

Marker Smart Windows
Smart windows can be opened directly from marker objects, ensuring that the smart window is
anchored at the same location as the marker. The openSmartWindow() method accepts only one argu-
ment, which is the content to display in the smart window. As with the YMap method of the same name,
the content can be an HTML string or a DOM text node. Typically, marker smart windows are assigned
to appear when a marker is clicked, such as:

YEvent.Capture(oMarker, EventsList.MouseClick, function () {
oMarker.openSmartWindow(“Information about the marker.”);

});

This code displays a smart window over the marker when it is clicked by using the Yahoo! Maps API
event-handling capabilities. Once a smart window is open, its contents can be changed by using the
updateSmartWindow() method:

oMarker.updateSmartWindow(“Updated information about the marker.”);

It’s also possible to close the marker’s smart window programmatically using the
closeSmartWindow() method:

oMarker.closeSmartWindow();

Both the openSmartWindow() and closeSmartWindow() methods fire events of the same name. For
example, to listen for a marker smart window to be closed, use the following code:

YEvent.Capture(oMarker, EventsList.closeSmartWindow, function () {
alert(“Closed smart window.”);

});

331

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 331

The EventsList.closeSmartWindow event fires both when the user clicks the close button on the
smart window and when the closeSmartWindow() method is called.

Polylines
Polylines in the Yahoo! Maps API are implemented the same way regardless of the browser being used,
so unlike with the Google Maps API, there is no need to include extra namespaces or CSS code to use
this feature. All that is necessary is to create a YPolyline object and add it to the map using
addOverlay(). The constructor for YPolyline accepts four arguments: an array of YGeoPoint objects
indicating where the vertices are, an optional color string indicating the color of the polyline, an optional
width (integer) specifying how thick the polyline should be, and an optional alpha setting (floating point
value between 0 and 1). For example:

var oPolyline = new YPolyline([
new YGeoPoint(40.758224, -73.917404),
new YGeoPoint(34.101509, -118.32691)

], “#f00”, 10);

oMap.addOverlay(oPolyline);

This recreation of the Google Maps example creates a red line that is 10 pixels wide spanning from New
York to Los Angeles.

A polyline can be removed by using the removeOverlay() method and passing in the YPolyline
object:

oMap.removeOverlay(oPolyline);

Both adding and removing polylines cause events to fire on the YMap object. To listen to both events, use
the EventsList.polylineAdded and EventsList.polylineRemoved events:

YEvent.Capture(oMap, EventsList.polylineAdded, function () {
alert(“Polyline added.”);

});

YEvent.Capture(oMap, EventsList.polylineRemoved, function () {
alert(“Polyline removed.”);

});

These events can come in handy if your application creates and removes polylines based on user data.

Custom Overlays
Yahoo! Maps makes it easy to add custom overlays to a map using the YCustomOverlay object. The con-
structor for YCustomOverlay accepts two arguments: a point to place the overlay at and a DOM node to
place at that point. The first argument can be either a YGeoPoint, to create a location-specific overlay, or
a YCoordPoint, to create an overlay that remains at the same position on the map no matter the zoom
level or movement of the underlying map.

332

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 332

As an example, consider placing a small blue box at the center of the map. This can be accomplished by
creating a <div/> element, sizing it appropriately, setting its background color to blue, and then passing
it into the YCustomOverlay constructor:

var oDiv = document.createElement(“div”);
oDiv.style.width = “16px”;
oDiv.style.height = “16px”;
oDiv.style.backgroundColor = “blue”;

oMap.addOverlay(new YCustomOverlay(oMap.getCenterLatLon(), oDiv));

The blue <div/> created in this example moves as the map moves so that it’s upper-left corner is located
at the geographic point specified in the YCustomOverlay constructor. To create the same small blue
square at a specific position within the map container, just replace the first argument with a
YCoordPoint:

var oDiv = document.createElement(“div”);
oDiv.style.width = “16px”;
oDiv.style.height = “16px”;
oDiv.style.backgroundColor = “blue”;

oMap.addOverlay(new YCustomOverlay(new YCoordPoint(200, 20), oDiv));

This code places the blue square 200 pixels from the left and 20 pixels from the top of the map container.
It will remain in that exact location regardless of zooming and panning. This type of custom overlay is
helpful when making custom controls for the map.

GeoRSS Support
GeoRSS is an XML-based language designed to describe geographic information. The Yahoo! Maps API
can make use of GeoRSS information for various purposes. For example, if you have set up a number of
markers or other overlay information on a map that you want to save and be able to call up at any time,
you can export the map data to GeoRSS code using YMap object’s exportFormat() method:

var sGeoRSS = oMap.exportFormat(“GEORSS”);

This code returns a GeoRSS string that representing all of the data contained in the map. The argument
“GEORSS” is required even though the exportFormat() method doesn’t currently support any other
data formats.

GeoRSS text can also be stored in external files and loaded into a map using the YGeoRSS object, which is
another type of map overlay. A YGeoRSS object is created by passing in a URL to a file containing
GeoRSS information. This information is then read by the API and transformed into a series of markers,
overlays, etc., representing the data contained in the file. The Yahoo! Maps developer site offers a sample
GeoRSS file at http://developer.yahoo.com/maps/sample.xml. To load this file, use the following
JavaScript code:

oMap.addOverlay(new YGeoRSS(“http://developer.yahoo.com/maps/sample.xml”));

333

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 333

This creates markers for various locations around the Sunnyvale, California, area, complete with smart
windows containing more information when each marker is clicked.

Using GeoRSS files can significantly reduce the amount of coding necessary to add a large amount of
markers to a map. It’s worth noting that the Yahoo! Maps API adds some of its own custom elements to
the standard GeoRSS format to support features like smart windows.

Address Lookup
The Yahoo! Maps API supports address lookup, meaning that it can locate a plain-text address on the
map. For example, suppose that you wanted to center the map on your favorite zip code; just pass the
zip code into the drawZoomAndCenter() method:

oMap.drawZoomAndCenter(“90210”, 12);

This code centers the map on Beverly Hills, California, at a zoom level of 12. Address determination can
deal with full addresses as well, so it’s possible to center on a specific address, such as:

oMap.drawZoomAndCenter(“701 First Avenue, Sunnyvale, CA”, 12);

Of course, centering on a specific address has limited usefulness, which is why it’s possible to place
markers at specific addresses as well:

oMap.addMarker(“701 First Avenue, Sunnyvale, CA”);

This code adds a marker at the address specified. Behind the scenes of each of these calls is a geocoding
request that takes the address and returns the geographic location as a YGeoPoint. However, that detail
is abstracted away, making the API even more powerful due to its simplicity.

Additional Information
As with many APIs, the Yahoo! Maps API is quite large, and it’s beyond the scope of this book to cover
every feature in depth. There are, however, some excellent resources available online at http://
developer.yahoo.com/maps/ajax/, including numerous examples exploring custom functionality.
The complete class reference is located at http://developer.yahoo.com/maps/ajax/V3.4/
reference.html (the URL changes for each new version of the API, so make sure to check the
version you are using).

There is also another Wrox book, Yahoo! Maps Mashups (Wiley 2007), that contains examples that mash
up data from multiple locations, including Flickr and Upcoming.org. Additionally, this book explores
uses of the Yahoo! Maps Flash API along with the Ajax API.

Note that address lookup does require an extra request to the server for the geocode
information, so it may slow down the redrawing/placing of markers on the map
compared to using latitude and longitude coordinates.

334

Chapter 10

13_109496 ch10.qxd 2/5/07 6:52 PM Page 334

Other Mapping APIs
Though the Google and Yahoo! mappings APIs are the popularly used, there are two other major com-
petitors in the arena of Ajax maps. The first is MapQuest (www.mapquest.com), which has upgraded its
mapping service to use Ajax, producing a user experience very similar to that of Google and Yahoo!. To
learn more about the MapQuest Open API, visit www.mapquest.com/openapi. The MapQuest Open
API has similar limitations to the Google and Yahoo! APIs in terms of commercial use and rate limits.

The other mapping API option is the Virtual Earth API from Microsoft. Virtual Earth is used to power
Microsoft’s Live Local Search (http://local.live.com). Virtual Earth has some interesting features,
such as “bird’s eye view” that shows a non-flat view of certain areas, as well as an interesting zoom ani-
mation. Where the Virtual Earth API falls short is in its documentation, which consists mostly of devel-
oper blog posts and sample applications. To get started with the Virtual Earth API, visit http://dev
.live.com/virtualearth/.

Summary
In this chapter, you learned about the emerging Ajax mapping trend. Before delving into a discussion on
mapping APIs, the topic of geocoding was discussed. Geocoding is a technique for assigning informa-
tion to a particular location in the world. You learned that geocoded information must be in decimal for-
mat for latitude and longitude to be used by mapping APIs, and you were presented with various
options for obtaining such information.

Next, you learned about the Google Maps API and how it works. You learned about creating a map and
about using overlaying markers and polylines in order to indicate information about a spot on the map.
Various ways to manipulate the map, including zooming and panning, were discussed, including how
to add the built-in Google Maps controls to your custom map. You also learned about the different types
of info windows available, including map blowups and tabbed info windows.

After that, the Yahoo! Maps API was introduced. You learned how to accomplish similar tasks including
the use of markers and polylines as well as the use of GeoRSS data for adding information to maps.
Using built-in Yahoo! Maps controls was discussed, as well as ways to programmatically add controls to
the map view. You learned how to create custom overlays using DOM elements and how to place over-
lays relative to the map container’s size instead of relative to geographic locations.

To round out the chapter, you learned about two other mapping APIs that are available: the MapQuest
Open API and the Microsoft Virtual Earth API.

Ultimately, the mapping API that you use will be more of a matter of personal preference than anything
else. All of the mapping APIs are fairly robust and provide very similar feature sets. Make sure that you
understand your requirements for customization and interaction when evaluating each of these APIs
because they offer slightly different user experiences.

335

Maps and Mashups

13_109496 ch10.qxd 2/5/07 6:52 PM Page 335

13_109496 ch10.qxd 2/5/07 6:52 PM Page 336

Ajax Debugging Tools

One of the most important parts of the software development cycle is testing. In most companies,
the developers who write the software are at least partially responsible for testing their code. The
responsibilities vary from writing case studies for quality assurance personnel to creating and
running unit tests themselves. In any case, software bugs will occur, and that is when debugging
software becomes an invaluable tool.

Debuggers have come a long way since their humble beginnings. What used to be an arduous
journey at a text-based console has given way to today’s graphic debuggers, complete with color-
coded information to make rapid application development more, well, rapid.

For Ajax applications, debugging has historically been difficult. The mixture of JavaScript and
client-server communication proved to be a unique challenge for programmers trying to bullet-
proof their code. More recently, however, new techniques and technologies have arisen that make
debugging Ajax applications much easier.

The Problem
Debugging JavaScript code has traditionally been very difficult. For a long time, browsers had lit-
tle or no support for JavaScript developers. Early editions of Safari had no JavaScript console and
Opera only added a console after version 8. Firefox included a JavaScript console in version 1.0 but
had no built-in support for anything other than outputting JavaScript messages. Internet Explorer,
as of version 7.0, still has no JavaScript console, relying solely on pop-up error messages when
something goes wrong.

With these tools, or lack thereof, most developers resorted to an age-old way of debugging: calling
alert() at various spots in the code. This was useful for determining if code execution reached a
certain block of code or to figure out the value of a particular variable. Of course, this is not an
optimal solution since it interrupts the flow of code. Given the loosely typed nature of JavaScript,

14_109496 ch11.qxd 2/5/07 6:58 PM Page 337

the lack of debugging tools stymied the growth of JavaScript solutions. It wasn’t until true JavaScript
debuggers arose that developers were able to build more extensive applications.

Microsoft introduced the Microsoft Script Debugger, which was a free add-on utility for Internet
Explorer. It was a simple program that could intercept JavaScript errors and open up the offending code
in a text viewer. Script Debugger also displayed the call stack, but beyond that, had little more to offer.
Microsoft did follow this up by allowing Visual Studio to interact with Internet Explorer as a JavaScript
debugger along with introducing the Microsoft Script Editor (packaged with Microsoft Office 2003 or
later). These two tools had much more useful JavaScript debugging mechanisms, including support for
watches and a command line interface to the JavaScript being executed.

An extension called Venkman brought powerful debugging capabilities to Mozilla, and later, to Firefox.
Venkman (available at www.mozilla.org/projects/venkman/) began the evolution of standalone
JavaScript debuggers for Firefox, supporting many features typically seen in expensive IDEs. Though a bit
sluggish, Venkman works seamlessly with Firefox and includes watches and a command line interface.

For these two browsers, JavaScript debugging was much easier, allowing you to step through code line
by line. This worked great until Ajax became a popular form of programming. Stepping through code
couldn’t solve the majority of problems you encounter in Ajax because of the asynchronous nature of the
code. Further, code execution can fork based on information received from the server.

Suddenly, the JavaScript debuggers that web developers depended on were no longer useful. Errors
occurred because the server returned unexpected information, and with no tools to help, it was back to
using alert() statements for Ajax debugging. Traditionally, JavaScript debuggers cared only about
what was happening on the client. Now, they had to know two more important pieces of information:
the data being sent to the server and the data being received from the server. Ajax development was
slowed significantly until a new crop of tools emerged.

FireBug
Mozilla’s Firefox has long inspired creative add-ons due to its open and fairly straightforward add-on
capabilities. In 2006, Firefox contributor Joe Hewitt introduced FireBug as a new tool to help developers
create and debug web sites and web applications. Built into FireBug are tools that allow DOM inspection
of the page that is currently loaded, style information about particular elements, and the part most inter-
esting to Ajax developers, monitoring of all traffic from the XHR object.

Installation and Setup
FireBug is available for free from www.getfirebug.com. FireBug is downloaded as an XPI, meaning
that Firefox knows how to install it. Once you have clicked on the download link, you’ll be prompted to
allow the package to be installed. Clicking OK on this dialog installs FireBug (though you’ll need to
restart the browser to use it).

FireBug augments the Firefox window in two ways.

❑ First, it adds a small panel on the right of the status bar to display error information for the page
(green if there are no errors, red if there are errors).

338

Chapter 11

14_109496 ch11.qxd 2/5/07 6:58 PM Page 338

❑ Second, a main panel displaying information about the currently loaded page is displayed at the
bottom of the window. This panel can be visible or hidden by default and can be quickly tog-
gled by clicking on the status panel.

The Interface
The basic FireBug 1.0 interface has three tabs in the main panel.

❑ The first tab is called Console, and it contains a basic command line JavaScript interface. It is on
this tab that JavaScript error messages are logged, but it’s also possible to interact with the page
by typing in JavaScript commands (see Figure 11-1).

Figure 11-1

❑ The second tab is called HTML, and it contains a basic DOM inspector. From this tab, you can
view the entire page as a hierarchy of DOM nodes, including style, event, and property infor-
mation.

❑ The third tab is called CSS, and it contains a CSS inspector, allowing you to view all of the
loaded style sheets and modify the styles dynamically.

339

Ajax Debugging Tools

14_109496 ch11.qxd 2/5/07 6:58 PM Page 339

❑ The fourth tab is called Script, and it contains a basic JavaScript debugger. You can select from
the currently loaded script files and set breakpoints. While not as powerful as Venkman, this
FireBug’s debugger is suitable for basic debugging tasks.

❑ The fifth tab is called DOM, which is a bit of a misnomer since it displays a hierarchical list of
all objects that exist in the window scope. You can then drill down on each object to get more
information about its properties.

❑ The last tab is called Net and contains a graph indicating the resources that were loaded by the
page at specific points in time. This can be useful to see the order in which resources are being
loaded as well as how long each request takes.

FireBug tries to be a one-stop shop for web debugging by providing all of these tools. However, it has
one feature that other Firefox extensions don’t: XHR logging.

XHR Logging
Though there are many ways of establishing Ajax communication, the most common is still the XHR
object. It follows, then, that many problems with such communication are most likely related to XHR
usage. FireBug aims to assist in debugging these types of problems by logging all requests made via XHR.

Every time an XHR object is used to make an HTTP request, that information is logged onto the Console
tab as a line item. The line contains the method of request (typically GET or POST) as well as the URL
used for the request followed by the amount of time (in milliseconds) it took for the response to be fully
received. This line can be expanded (by clicking on the triangle next to the request) to display more tabs
(see Figure 11-2).

If a GET request was sent, there are three tabs: Params, Headers, and Response.

❑ The Params tab enumerates the name-value pairs of query string arguments. It displays the
arguments unencoded so you can easily see what data the server is receiving.

❑ The Headers tab contains the HTTP response headers sent along with the data as well as the
headers sent with the request. This tab can contain helpful information such as cookie data,
content type, and the timestamp of the response.

❑ The Response tab contains the raw text sent back from the server to the client. This is the exact,
unformatted server response, so it may be necessary to copy this text and paste it into an editor
to view it in a more human-readable manner.

If a POST request was sent, there are four tabs. Added to the Params, Headers, and Response tabs that
are also present for GET requests, a Post tab displays the data sent to the server. Since data for POST
requests are sent as the request body, the URL alone doesn’t provide enough information about what the
server received.

340

Chapter 11

14_109496 ch11.qxd 2/5/07 6:58 PM Page 340

Figure 11-2

Ajax Debugging with FireBug
Here’s a short list of things you want to be on the lookout for when debugging your Ajax application
using FireBug:

❑ Is the outgoing data correct? For GET requests, always double-check to ensure that the query
string is properly encoded and that all of the expected data is included. For POST requests,
ensure that the data being posted is in the correct format (plain text, JSON, XML, etc.) and con-
tains the information that is necessary. An error in any of these indicates there is a problem with
the JavaScript that is creating and sending the request.

❑ Is the incoming data correct? Both GET and POST requests can receive information from the
server in any number of formats. Make sure that the format is correct and the data is what you
are expecting. Double-check the data that is being sent to the server to ensure that it is correct.
If you are sending the correct data, then this type of error indicates a problem with the server-
side code.

341

Ajax Debugging Tools

14_109496 ch11.qxd 2/5/07 6:58 PM Page 341

❑ Are the headers correct? Always make sure that the correct HTTP headers are being sent back
to the client. For instance, if the server is returning XML data, make sure that the Content-Type
header is set to “text/xml” so that the responseXML object can be used.

Remember, FireBug is simply outputting data relating to the Ajax requests going back and forth, but it
has no control over the data being sent or received. Further, you can’t set breakpoints in the requests or
responses; all you get is the information after the response has been received.

FireBug Limitations
As discussed earlier in the book, Ajax communication is not limited to the use of XHR. While FireBug
does a great job dissecting requests made using the XHR object, it doesn’t address any of the other Ajax
communication techniques. So, if you are using hidden frames or any of the other techniques discussed
in Chapter 2, FireBug won’t be of any help.

Another limitation is that FireBug doesn’t log information until a response is received from the server.
This means that you may have outstanding requests in transit that have not yet received a response and
therefore won’t have been logged to the console. A good understanding of when your application makes
these requests is key to debugging using FireBug.

Microsoft Fiddler
Since the core of Ajax relies on requests going to servers (and responses being received from them), it
makes sense that debugging Ajax applications relies heavily on understanding what is being sent to and
received from the server. FireBug for Firefox inspects the requests and responses sent through XHR
objects, but this is only a very small percentage compared to all of the requests and responses used dur-
ing a typical user session. And, as discussed in the previous section, many requests may be sent without
using XHR at all. The way to solve these problems is to use an HTTP proxy.

An HTTP proxy is a small program running on the client computer that intercepts all HTTP requests and
responses. In normal HTTP communication, the browser initiates and sends a request over the Internet
to a server. The server then sends a response back to the browser, which then acts upon the data it
received. When an HTTP proxy is used, all requests are first sent through the proxy; it’s the proxy’s
job to send that request to the server. The response is sent back to the proxy as well, and the proxy then
forwards it to the browser (see Figure 11-3).

However, the true value of the HTTP proxy isn’t the simple interception of requests and responses but
rather the ability to log the details of this communication. By being able to see the entirety of each
request or response, including headers, debugging Ajax communication is made much simpler. This is
where Microsoft Fiddler comes in.

Even though this section focuses on using Fiddler for debugging Ajax applications,
it’s worth pointing out that it has many uses. Since Fiddler intercepts all HTTP traf-
fic coming to and leaving from the client, it’s possible to monitor traffic caused by
desktop applications.

342

Chapter 11

14_109496 ch11.qxd 2/5/07 6:58 PM Page 342

Figure 11-3

Installation and Setup
One of the most useful and easiest to use HTTP proxies available is Microsoft Fiddler. This free tool
(available from www.fiddlertool.com) installs itself as an HTTP proxy for WinInet, which is the
Internet communication library used by many desktop applications, including Internet Explorer. Once
installed, Fiddler automatically begins intercepting HTTP traffic to and from your computer.

To intercept HTTP traffic from Internet Explorer or Opera, no further setup is required. Since both use
WinInet, Fiddler automatically sets itself up to intercept requests and responses for them. To intercept
HTTP traffic for Firefox, you’ll need to modify some settings in the browser:

1. Under the Tools menu, select Options.

2. Click on the General tab if it’s not already selected.

3. Click on the Connection Settings button.

4. In the Connection Settings window, select Manual proxy configuration.

5. For HTTP Proxy, enter 127.0.0.1. For Port, enter 8888 (see Figure 11-4).

6. Click OK on the Connection Settings window, and then Click OK on the Options window.

After this point, all HTTP traffic for Firefox goes through Fiddler along with any other traffic coming
from other browsers on your machine.

Normal Browser Communication

Computer

Request

Response

Server

Browser

HTTP Proxy Communication

Computer

Request

Response

Server

Browser Proxy

343

Ajax Debugging Tools

14_109496 ch11.qxd 2/5/07 6:58 PM Page 343

Figure 11-4

The Interface
The Fiddler window is fairly unrefined and simple. There are two main regions: the left side and the
right side. The left side of the window contains a list of HTTP requests sent from the machine. Each
request takes a single line and is accompanied by an icon that indicates the type of data returned from
that request. The line includes the response status, the protocol used (usually HTTP), the host name, the
URL, the caching type, the length of the response, and the content type (see Figure 11-5).

There is a context menu for each request; right-clicking on a single request or a group of selected
requests brings up several options: a Copy menu allows copying specific parts of a request to the clip-
board, and a Save menu allows saving request data to text files.

344

Chapter 11

14_109496 ch11.qxd 2/5/07 6:58 PM Page 344

Figure 11-5

On the right side of the window are three tabs. The first tab (pictured in Figure 11-5) is Performance
Statistics. This tab displays information relating to data transmission rates, including the number of
bytes sent and received as well as the types of data received. It also gives estimated roundtrip times from
various locations in the world using different connection methods (modem, DSL, etc.).

The second tab on the right is the Session Inspector. This tab provides specific information about each
request and accompanying response. It is separated into two sections: the top contains information
about the request and the bottom contains information about the response (see Figure 11-6).

345

Ajax Debugging Tools

14_109496 ch11.qxd 2/5/07 6:58 PM Page 345

Figure 11-6

In the request section, you can choose from any number of data views:

❑ Headers: Displays the HTTP request headers that were sent to the server from the client. This
data is represented in a hierarchical view and typically contains information about the web
browser along with basic request information.

❑ TextView: Displays the body of the request (for POST requests only).

❑ Forms: Displays information that appears on the query string and in the body of the request,
provided that the body is formatted with a content type of “application/x-www-form-urlen-
coded.”

❑ Hex: Displays the hexadecimal representation of the request.

❑ Auth: Displays information from Proxy-Authorization and Authorization headers.

❑ Raw: Displays the entire request as simple text.

❑ XML: Displays the body as a hierarchical XML tree if the body of the request is an XML
document.

346

Chapter 11

14_109496 ch11.qxd 2/5/07 6:58 PM Page 346

The response section of the Session Inspector tab has similar options for viewing information about
the response:

❑ Transformer: Displays encoding information about the response.

❑ Headers: Displays a hierarchical tree of response headers.

❑ TextView: Displays the plain text of the response body.

❑ ImageView: Displays an image if the response retrieved one.

❑ Hex: Displays the hexadecimal representation of the response.

❑ Auth: Displays information from Proxy-Authenticate and WWW-Authenticate headers.

❑ Caching: Displays caching information about the response.

❑ Privacy: Displays privacy (P3P) information about the response

❑ Raw: Displays the raw text of the response.

❑ XML: Displays the response body as an XML hierarchy if the response is an XML document.

The third tab is the Request Builder, which allows you to manually construct an HTTP request (includ-
ing all headers and the request body) and inspect the response. This can be very helpful when testing the
server-side portion of an Ajax solution. It’s also possible to clone a request that has already been made
by dragging the request from the left side of the window onto the Request Builder tab. This prefills the
Request Builder fields with information from that request.

HTTP Breakpoints
One of the most interesting and powerful options in Fiddler is the ability to set breakpoints for HTTP
requests and responses. Under the Rules menu, select Automatic Breakpoints, and you’ll see options for
Before Requests, After Responses, Disabled, and Ignore Images. By selecting Before Requests, Fiddler
intercepts outgoing requests (it will ignore any image requests if Ignore Images is checked) and holds
them in the window (see Figure 11-7).

When a request breakpoint is set, a special icon is shown on the request in the list of requests. Selecting
the request fills the Session Inspector tab with all of the information about the request. It’s then possible
to edit all of the request information before it’s sent on to the server. After that, there are two options dis-
played in the window: Break on Response or Run to Completion. Clicking Break on Response sends the
request and then sets a breakpoint for the response before it is returned to the browser (the same as
selecting After Responses on the Automatic Breakpoints submenu); clicking Run to Completion sends
the request and doesn’t interfere with the response.

A response breakpoint is very similar to a request breakpoint: it holds the response and allows you to
edit the details before the browser receives the data. Once again, using the Session Inspector, you can
edit the headers and response body. After editing the information, the only option is Run to Completion,
which sends the modified response to the browser.

347

Ajax Debugging Tools

14_109496 ch11.qxd 2/5/07 6:58 PM Page 347

Figure 11-7

Ajax Debugging with Fiddler
With all of these powerful features, Fiddler is an ideal environment for Ajax debugging. Here are some
things you can use Fiddler for:

❑ Is the outgoing data correct? As with FireBug, ensure that the data being sent to the server is in
the correct format and contains the correct data. Errors here indicate a problem with the
JavaScript constructing the request.

❑ Is the incoming data correct? Also as with FireBug, check that the incoming data is in the cor-
rect format and contains appropriate data. A problem here indicates an error on the server.

❑ Confirm your assumptions. If you think there’s an error in a request or response, set a break-
point and try running the request/response again. This is especially helpful if you don’t own
the server-side code that may be the problem.

Since Fiddler monitors all HTTP traffic, these techniques can be using not just for Ajax communication
initiated through XHR but also through hidden frames and any other Ajax technique discussed in
Chapter 2.

348

Chapter 11

14_109496 ch11.qxd 2/5/07 6:58 PM Page 348

Summary
Ajax debugging has traditionally been very difficult because of the asynchronous nature of the code
combined with the data exchange between client and server. In this chapter, you learned about two tools
that can aid in the debugging of Ajax applications.

First, you learned about FireBug, an extension for Firefox. This extension installs into the Firefox win-
dow as a panel containing information about the current page. One of FireBug’s features is the ability to
log all communication initiated using the XHR. Every time a request is made and a response received, an
entry is made in the FireBug console containing the URL, the headers, and the response, and any data
that was sent to the server in a POST request.

Next, you learned about the Microsoft Fiddler HTTP proxy tool. This tool intercepts all of the HTTP
requests and responses sent from and received by your computer. Using Fiddler, it’s possible to look at
all of the information being sent between client and server, including headers, body, and more. What’s
more, Fiddler allows you to set breakpoints for requests and responses, which allows you to modify
requests before they are sent to the server and modify responses before they are received in the browser.

As the importance of Ajax debugging becomes more evident, more tools are likely to arise. For the time
being, though, FireBug and Microsoft Fiddler provide excellent Ajax debugging for free.

349

Ajax Debugging Tools

14_109496 ch11.qxd 2/5/07 6:58 PM Page 349

14_109496 ch11.qxd 2/5/07 6:58 PM Page 350

Web Site Widgets

Both on the desktop and on the Web, widgets have become a highly sought-after commodity. A
widget is a small, self-contained application that performs a specific function. Programs like the
Yahoo! Widget Engine (http://widgets.yahoo.com/) offers users a platform to run widgets on
their computers. Ranging from newsreaders to eBay feedback monitors, these widgets provide
useful information to people that want them. They are applications that require little to no setup
and perform only their allotted function.

On the Web, most widgets are DHTML-based and designed to emulate operating system controls
such as menus, structure trees, and toolbars. While these widgets have provided a means to emu-
late traditional applications, they don’t offer much more than that. With the introduction of Ajax,
web widgets are changing to incorporate data manipulation and retrieval, creating rich widgets
that have traditionally been found only on the desktop.

Creating a Weather Widget
Weather information is popular to display both on the desktop and on the Web. Many applications
and widgets are solely devoted to retrieving and displaying this information. Since weather
changes constantly, Ajax is well suited to this type of widget.

The Weather.com SDK
The first step in creating this widget is to locate a source of weather information. Probably the
most popular is the Weather.com XML weather service. The use of the Weather.com XML service
hinges upon following their guidelines. To use their XML feeds, you must first register for a
license at http://registration.weather.com/registration/xmloap/step1. After you
register, Weather.com sends an e-mail with a link to the XML feed SDK and provides you with a
license key and partner ID.

15_109496 ch12.qxd 2/5/07 6:59 PM Page 351

For web-based applications, like this widget, you must limit how often you retrieve information from
the service. As specified in the SDK documentation, the refresh rate for the Current Conditions informa-
tion is 30 minutes; therefore, the server application must cache the retrieved weather information and
only refresh the information every 30 minutes. There are two ways to accomplish this:

1. Create a smart thread that runs independently of the web application and pulls the feed every
30 minutes. The application then solely uses the cached feed and never worries about the time
span between information pulls.

2. With every page request, the application can keep track of the last time the feed was retrieved
and allow refreshing of the data only after 30 minutes have passed.

Although the first option is ideal, limiting the amount of file system operations to once per half-hour, it
is difficult to implement due to timeout restrictions. For instance, an ASP.NET application times out after
20 minutes of inactivity. The second option is simpler to implement and doesn’t require any configura-
tion changes on the server. The weather widget uses this option.

The Server-Side Component
At the heart of the server application lie two classes created within the Wrox.ProfessionalAjax.Weather
namespace. These classes can be compiled into a class library (a .dll file) or used natively within an appli-
cation. For the purposes of this example, the classes are used directly in the application, so no reference to an
external library is needed.

The Settings Class
The Settings class is a static class that contains all of the information required to pull weather informa-
tion from Weather.com. Static classes are used to create data and functions that can be accessed without
creating objects of the class. Only three pieces of information are required to retrieve this data: your
license key, your partner ID, and the location ID.

This information could be considered sensitive data, because you do not want anyone abusing the
Weather.com’s service with your information. Therefore, it’s recommended that you use the Web.config
file to store the license information by adding settings to the <appSettings/> element.

<appSettings>
<add key=”license” value=”[license key]” />
<add key=”partner” value=”[partner id]” />
<add key=”location” value=”[location id]” />

</appSettings>

With this information added to the application settings, not only is it secure, but it is also easily accessi-
ble by your application.

Note that you need to replace the bracketed items with your own information.

The Settings class exposes three public properties to access this information.

By using the System.Configuration.ConfigurationManager class, you can extract the settings in
the <appSettings/> elements in Web.config. Just pass the value used in the key attribute:

352

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 352

public static class Settings
{

public static string LicenseKey
{

get
{

return ConfigurationManager.AppSettings[“license”];
}

}

public static string PartnerId
{

get
{

return ConfigurationManager.AppSettings[“partner”];
}

}

public static string LocationId
{

get
{

return ConfigurationManager.AppSettings[“location”];
}

}
}

These properties provide read-only access to the application settings because there is no need for them
to change.

Don’t forget to add System.Configuration to the using statements before attempting to use
ConfigurationManager without System.Configuration in front of it.

The WeatherInfo Class
The WeatherInfo class provides methods to retrieve the information from the Weather.com XML service;
its constructor accepts one argument that contains the path to the application:

public class WeatherInfo
{

private string _path; //Path of the application
private string _cachedFile; //Path of the cached file.

public WeatherInfo(string path)
{

_path = path;
_cachedFile = String.Format(“{0}/weather_cache.xml”,_path);

}

//more code here
}

This class has two private fields, path and cachedFile. The former is assigned the path argument, and
the latter contains the path to the cached weather feed.

353

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 353

Reading Cached Weather Data
When the client requests data, and the 30 minutes have not yet passed from the last Weather.com
request, then it should be read from the cached file. The _getCachedWeather() method retrieves data
from the cached file and return its contents as a string.

private string _getCachedWeather()
{

string str = String.Empty;

//Open and read the cached weather feed.
using (StreamReader reader = new StreamReader(_cachedFile))
{

str = reader.ReadToEnd();
}

//Return the contents
return str;

}

First, the variable str is created and initialized as an empty string; this variable will contain the contents
of the cached file when it is read. Next, a StreamReader object is created to open the cached weather
feed; the contents are read via the ReadToEnd() method and stored in str. Finally,
_getCachedWeather() exits and returns the data.

Getting Weather Data from the Web
When the cached data is too old, the server should retrieve new weather information from Weather.com.
The _getWebWeather() method performs this operation.

private string _getWebWeather()
{

//more code here
}

According to the SDK, the URL to retrieve the weather feed looks like the following:

http://xoap.weather.com/weather/local/[locID]?cc=*&prod=xoap&par=[partID]&key=[lic]

The information contained in brackets is the location ID, partner ID, and license key. Using the
String.Format() method, you can format the URL to contain your own settings information:

private string _getWebWeather()
{

//Get the base url for using the service.
string baseUrl =

“http://xoap.weather.com/weather/local/{0}?cc=*&prod=xoap&par={1}&key={2}”;

//Now format the url with the needed information
string url = String.Format(baseUrl, Settings.LocationId, Settings.PartnerId,

Settings.LicenseKey);

//more code here
}

354

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 354

This is primarily where the Settings class is used. The resulting string returned from String.Format()
is complete with the required information that the Weather.com guidelines dictate.

The next operation makes a request to the remote host and retrieves the weather feed:

private string _getWebWeather()
{

//Get the base url for using the service.
string baseUrl =

“http://xoap.weather.com/weather/local/{0}?cc=*&prod=xoap&par={1}&key={2}”;

//Now format the url with the needed information
string url = String.Format(baseUrl, Settings.LocationId, Settings.PartnerId,

Settings.LicenseKey);

//Use a web client. It’s less coding than an HttpWebRequest.
using (WebClient client = new WebClient())
{

//Read the results
try
{

//Create an XmlReader to read the response
XmlTextReader xml = new XmlTextReader(client.OpenRead(url));

}
catch (WebException exception)
{

//more code here
}

}
}

At the beginning of this new code, a WebClient object is created to connect to Weather.com’s service.
The server’s response is read using the OpenRead() method, which returns a Stream object that can be
read with an XmlTextReader object, which is used in an XSL Transformation.

Transforming the data on the server is advantageous for several reasons. For one, it greatly simplifies the
client-side code. The data sent to the client is already in HTML, so it is easily added to the page. A
server-side transformation also makes the client work less. The data is complete when it reaches the
client; no other data manipulation, other than placing in the page, is required.

XSL transformations in .NET closely resemble the transformations provided by MSXML covered in
Chapter 6. The first step in a transformation is to create the objects involved. Transformations in .NET
2.0 require an XslCompiledTransform object, an XmlReader object (XmlTextReader in this case), and
a Stream object (a StreamWriter), which contains the resulting transformed data:

private string _getWebWeather()
{

//String that the weather feed will be written to
string xmlStr = String.Empty;

//Get the base url for using the service.
string baseUrl =

355

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 355

“http://xoap.weather.com/weather/local/{0}?cc=*&prod=xoap&par={1}&key={2}”;

//Now format the url with the needed information
string url = String.Format(baseUrl, Settings.LocationId, Settings.PartnerId,

Settings.LicenseKey);

//Use a web client. It’s less coding than an HttpWebRequest.
using (WebClient client = new WebClient())
{

//Read the results
try
{

//Create an XmlReader to read the response
XmlTextReader xml = new XmlTextReader(client.OpenRead(url));

//Get the XSLT object ready
XslCompiledTransform xslt = new XslCompiledTransform();
xslt.Load(_path + “/weather.xslt”);

//Write the resulting XSLT to the cache file
using (StreamWriter writer = new StreamWriter(_cachedFile))
{

xslt.Transform(xml, null, writer);
}

//return the cached copy
return _getCachedWeather();

}
catch (WebException exception)
{

//more code here
}

}
}

The first step in this process is to load the XSL document into the XslCompiledTransform object. Next,
create a StreamWriter object to create or overwrite the cache file. This StreamWriter object, along
with the XML data, is then passed to the Transform() method. The StreamWriter object serves as the
transformation’s output, so as the XslCompiledTransform object transforms the XML data, the trans-
formed data is being written to the cache file. When the transformation is complete, the cached copy is
returned to the caller by returning _getCachedWeather().

Handling Web-Related Errors

If for some reason this operation fails (most likely as a result of not finding the remote host), code execu-
tion drops the catch block where the error is handled. Since the weather data begins as XML and is
transformed into HTML, having the error information follow the same pattern seems fitting. Therefore,
the following code creates a simple XML document:

356

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 356

private string _getWebWeather()
{

//String that the weather feed will be written to
string xmlStr = String.Empty;

//Get the base url for using the service.
string baseUrl =

“http://xoap.weather.com/weather/local/{0}?cc=*&prod=xoap&par={1}&key={2}”;

//Now format the url with the needed information
string url = String.Format(baseUrl, Settings.LocationId, Settings.PartnerId,

Settings.LicenseKey);

//Use a web client. It’s less coding than an HttpWebRequest.
using (WebClient client = new WebClient())
{

//Read the results
try
{

//Create an XmlReader to read the response
XmlTextReader xml = new XmlTextReader(client.OpenRead(url));

//Get the XSLT object ready
XslCompiledTransform xslt = new XslCompiledTransform();
xslt.Load(_path + “/weather.xslt”);

//Write the resulting XSLT to the cache file
using (StreamWriter writer = new StreamWriter(_cachedFile))
{

xslt.Transform(xml, null, writer);
}

//return the cached copy
return _getCachedWeather();

}
catch (WebException exception)
{

//Write up the XML, and put in the exception info
string xmlStr = “<errorDoc>”;
xmlStr += “<alert>An Error Occurred!</alert>”;
xmlStr += String.Format(“<message>{0}</message>”, exception.Message);
xmlStr += “</errorDoc>”;

//Load it into an XmlDocument
XmlDocument doc = new XmlDocument();
doc.LoadXml(xmlStr);

//more code here
}

}
}

357

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 357

The next step is to perform the transformation on this XML document. This XSL Transformation is simi-
lar to that of the weather data, except that instead of the output being written to the file, the output is
returned as a string to the caller.

private string _getWebWeather()
{

//String that the weather feed will be written to
string xmlStr = String.Empty;

//Get the base url for using the service.
string baseUrl =

“http://xoap.weather.com/weather/local/{0}?cc=*&prod=xoap&par={1}&key={2}”;

//Now format the url with the needed information
string url = String.Format(baseUrl, Settings.LocationId, Settings.PartnerId,

Settings.LicenseKey);

//Use a web client. It’s less coding than an HttpWebRequest.
using (WebClient client = new WebClient())
{

//Read the results
try
{

//Create an XmlReader to read the response
XmlTextReader xml = new XmlTextReader(client.OpenRead(url));

//Get the XSLT object ready
XslCompiledTransform xslt = new XslCompiledTransform();
xslt.Load(_path + “/weather.xslt”);

//Write the resulting XSLT to the cache file
using (StreamWriter writer = new StreamWriter(_cachedFile))
{

xslt.Transform(xml, null, writer);
}

//return the cached copy
return _getCachedWeather();

}
catch (WebException exception)
{

//Write up the XML, and put in the exception info
string xmlStr = “<errorDoc>”;
xmlStr += “<alert>An Error Occurred!</alert>”;
xmlStr += String.Format(“<message>{0}</message>”, exception.Message);
xmlStr += “</errorDoc>”;

//Load it into an XmlDocument
XmlDocument doc = new XmlDocument();
doc.LoadXml(xmlStr);

358

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 358

//And put it into an XmlReader
XmlNodeReader reader = new XmlNodeReader(doc);

//XSLT
XslCompiledTransform xslt = new XslCompiledTransform();
xslt.Load(_path + “/weather.xslt”);

//Load the XmlWriter data into the result document
XmlDocument resultDocument = new XmlDocument();
using (XmlWriter writer =

resultDocument.CreateNavigator().AppendChild())
{

xslt.Transform(reader, null, writer);
}

//Output the serialized XML
return resultDocument.OuterXml;

}
}

}

Because of the XslCompiledTransform class’s architecture, it does not support transforming XML data
into an XmlReader. This XSL class is new in .NET 2.0, and it provides better performance than the
XslTransform class in earlier .NET versions. Instead, the solution is to use an XPathNavigator object
to load an XML tree into an XmlDocument from an XmlWriter object. By using the OuterXml property
of the resulting XmlDocument object, the serialized HTML can be returned.

In order for the application to update the contents of weather_cache.xml, ASP.NET must have the
proper modify permissions for the file.

Deciding Which Version to Use
The _getWebWeather() and _getCachedWeather() methods are the primary workhorses of the appli-
cation. All that’s left is to determine which method to call when weather information is required. This
determination is made by a public method, GetWeather(), which decides whether to pull the feed from
the Web or from the cache based on the time that the cached file was last modified. A public read-only
property called LastModified provides easy access to this information:

public DateTime LastModified
{

get
{

if ((File.Exists(_cachedFile)))
{

return File.GetLastWriteTime(_cachedFile);
}
else
{

return new DateTime(1,1,1);
}

}
}

359

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 359

This property gets the date and time that the cached file was last written to. Before checking the file
modification time, you must be certain that the file exists by using File.Exists(). If it exists, the
GetLastWriteTime() method returns the date and time of the last modification; if the file does not
exist, a DateTime instance is created using the earliest possible values by passing the value of 1 for the
year, month, and day. This ensures that the application will always pull a new feed if the cached file
does not exist.

The GetWeather() method uses this information to decide whether to pull a newer feed:

public string GetWeather()
{

DateTime timeLimit = LastModified.AddMinutes(30);

//more code here
}

Using the AddMinutes() method, 30 minutes are added to the time LastModified returns. This new
DateTime instance, timeLimit, must be compared to the current time by using the CompareTo()
method:

public string GetWeather()
{

DateTime timeLimit = LastModified.AddMinutes(30);

if (DateTime.Now.CompareTo(timeLimit) > -1)
{

return _getWebWeather();
}
else
{

return _getCachedWeather();
}

}

The CompareTo() method returns an integer value that’s either greater than zero, equal to zero, or less
than zero. If the current time (specified by DateTime.Now) is greater than timeLimit, the returned inte-
ger is greater than zero. If the two times are equal, the method returns zero. If the current time is less
than timeLimit, then a negative integer is returned. The retrieval of a newer feed occurs only when at
least 30 minutes have passed (CompareTo() returns zero or a number greater than zero); otherwise, the
cached version is retrieved.

Using the WeatherInfo Class
The ASP.NET file weather.aspx serves as a proxy between the client and the Weather.com XML service.
It is in this page that the WeatherInfo class is used. The first step in implementing the weather.aspx
page is to create an instance of WeatherInfo. This should be done in the Page_Load event handler:

protected void Page_Load(object sender, EventArgs e)
{

WeatherInfo weather = new WeatherInfo(Server.MapPath(String.Empty));
string weatherData = weather.GetWeather();

//more code here
}

360

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 360

In this code, an instance of the WeatherInfo class is created by passing the path to the application with
Server.MapPath(String.Empty). The weather information is then retrieved using the GetWeather()
method. The next, and final, step is to set the headers and to output the weather data:

protected void Page_Load(object sender, EventArgs e)
{

WeatherInfo weather = new WeatherInfo(Server.MapPath(String.Empty));
string weatherData = weather.GetWeather();

Response.ContentType = “text/xml”;
Response.CacheControl = “no-cache”;

Response.Write(weatherData);
}

This completes the server portion of the weather widget. The next step is to create a client to consume
the information.

The Client-Side Component
The client code for this widget is very simple due to all of the work performed by the server. It’s the job
of the AjaxWeatherWidget class to manage the widget on the client side. This class has one property
and one method. The property is element, which is the element to attach weather information to. The
getWeather() method is responsible for retrieving the data from the server and updating the display.

The AjaxWeatherWidget constructor is:

function AjaxWeatherWidget(oElement) {
this.element = (oElement)?oElement:document.body;

this.getWeather();
}

The AjaxWeatherWidget constructor accepts one argument: the HTMLElement on which to append the
data, which is assigned to the element property. In the event that no argument is supplied, element
becomes document.body. The constructor calls getWeather() to retrieve data from the server as soon
as the object is created.

Getting Data from the Server
The getWeather() method contacts the server application and retrieves the weather information with XHR.

AjaxWeatherWidget.prototype.getWeather = function () {
var oThis = this;

var oReq = zXmlHttp.createRequest();

//more code here

oReq.open(“GET”, “weather.aspx”, true);
oReq.send(null);

};

361

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 361

The method starts by creating a pointer to the object and storing it in oThis. Then an XHR object is
created, primed, and sent to the server. Next, handle the readystatechange event.

AjaxWeatherWidget.prototype.getWeather = function () {
var oThis = this;

var oReq = zXmlHttp.createRequest();

oReq.onreadystatechange = function () {
if (oReq.readyState == 4) {

if (oReq.status == 200 || oReq.status == 304) {
oThis.element.innerHTML = oReq.responseText;

}
}

};

oReq.open(“GET”, “weather.aspx”, true);
oReq.send(null);

};

When the request is successful, the server’s response is added to the page with the HTMLElement’s
innerHTML property. Because the server does all the work, this is all that is required of the client code.

Customizing the Weather Widget
Out of the box, this widget fits nicely into a sidebar, providing visitors with the weather information you
dictate. The look of the widget relies upon custom images as well as the weather images provided in the
SDK (see Figure 12-1).

Figure 12-1

362

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 362

Giving the widget the look and feel in the example files relies heavily upon CSS positioning; nearly
every element is absolutely positioned, so the HTML structure isn’t extremely important. All you need is
valid (X)HTML:

<div id=”weatherContainer”>
<div id=”weatherIcon”></div>
<div id=”weatherTemp”>70</div>
<div id=”weatherLocation”>Dallas, TX (75226)</div>
<div id=”weatherWind”>Wind:

<div>13 MPH S</div>
</div>
<div id=”weatherTime”>Last Update:

7:45 PM
</div>

</div>

This XHTML is a result of an XSL transformation. When going over each piece of information in this
section, the XPath expression to the location of the information in the XML feed is given.

To achieve this look, it is important to note that the containing <div/> element, weatherContainer,
does not have a default (inherit) position; otherwise, the contained, absolutely positioned elements will
position themselves based on the document and not weatherContainer:

#weatherContainer {
position: relative;
background: url(../img/background.gif);
width: 220px;
height: 149px;

}

A relative position doesn’t interfere with the page flow unless you provide top and left coordinates. The
background of this <div/> element is a custom-made GIF file the same size as the <div/>: 220 pixels
wide and 149 pixels high.

The SDK includes Weather.com’s own images to provide a visual display of the current weather condi-
tions. These image files are PNG images and are named xx.png, where xx is a number. This number,
found in the XML feed, resides at weather/cc/icon (cc stands for current conditions). To achieve the
look of the example, give this element an absolute position, which enables you to place it anywhere in its
container and removes it from the document flow.

#weatherIcon {
position: absolute;
top: -25px;
left: -25px;

}

This code places the image 25 pixels to the left and top from the top-left corner of the container. Because
the images provided by Weather.com are PNGs, additional coding is required for Internet Explorer 6
because the browser ignores the transparency information.

Internet Explorer 7 correctly displays PNGs using their transparency channel.

363

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 363

Microsoft exposes a DirectX filter called AlphaImageLoader, which makes PNGs correctly display trans-
parency. However, the use of this filter is limiting, because it must be applied with CSS. To resolve this
issue, you can download the PNG Behavior at WebFX (http://webfx.eae.net/dhtml/pngbehavior/
pngbehavior.html). It is an excellent tool, and is perfect in this situation. To use it, simply add the fol-
lowing rule to your CSS:

#weatherIcon img {
width: 128px;
height: 128px;
behavior: url(css/pngbehavior.htc);

}

In Internet Explorer, this rule applies the PNG Behavior to every element in the widget, but it
only applies the AlphaImageLoader filter for PNG files. All other tags with .gif, .jpg, or any
other extension are left alone. The filter property is Internet Explorer–specific; therefore, all other
browsers ignore the property and its value.

The next item in the widget is the temperature, contained in a <div/> element with an id of
weatherTemp and located in the XML at weather/cc/temp. The styling of this information is:

#weatherTemp {
position: absolute;
color: white;
font: bold 48px Tahoma;
right: 12px;
top: 5px;

}

Positioning this element as absolute enables you to place it anywhere in the container you want. In this
situation, its location resides in the top-right corner. The text contained in this element is colored white
and is 48 pixels tall.

Below the temperature is the weather location information. From the XML feed, this information is
located in weather/loc/dnam. This text is colored white and uses a smaller font:

#weatherLocation {
font: 12px Tahoma;
color: white;
position: absolute;
right: 12px;
top: 60px;

}

Once again, this element is absolutely positioned. The right edge is 12 pixels from the right edge of
weatherContainer and is 60 pixels from its top. The font is 12 pixels tall and in the Tahoma typeface.

You must set the height and width properties when using AlphaImageLoader.

364

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 364

The wind is another important piece of information to display. In the XML document, the information is
located in weather/cc/wind:

#weatherWind {
position: absolute;
font: bold 12px Tahoma;
color: white;
left: 85px;
top: 85px;

}

#weatherWind div {
font-weight: normal;

}

If you remember from the HTML structure discussed earlier in this section, weatherWind contains
another <div/> element. This inner <div/> contains the actual wind information, whereas its parent
merely serves as a label and positions the information. Unlike the previous elements, weatherWind is
positioned using the left property, instead of right, to position the element horizontally, and the ele-
ment is positioned 85 pixels from the top. The label text is bolded, whereas the wind information is not.

The final piece of information this widget displays is the time it was last updated. This information also
exists in the XML data. Its location: weather/loc/tm. Like the wind information previously discussed,
the HTML structure for the time information consists of a parent element (weatherTime) and a child
element (). The outer element positions the information and serves as a label; the inner element
contains the actual time information:

#weatherTime {
position: absolute;
font: bold 12px Tahoma;
color: white;
left: 85px;
bottom: 5px;

}

#weatherTime span {
font-weight: normal;

}

The premise behind the time is the same as the wind, except with a the data is displayed inline
instead of on a new line.

In the event of an error, the HTML structure returned to the client looks like this:

<div id=”weatherContainer”>
<div id=”weatherIcon”></div>
<div id=”weatherErrorAlert”>An Error Occurred!</div>
<div id=”weatherErrorMessage”>Error Description</div>

</div>

365

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 365

The weatherIcon <div/> element remains, and the element inside it contains an image called
error.png. The next <div/> element, weatherErrorAlert, contains the text that tells the user an error
occurred.

#weatherErrorAlert
{

color: white;
font: bold 14px Tahoma;
position: absolute;
right: 7px;
top: 10px;

}

The text in this element keeps with the current theme. The color is white and bolded in Tahoma font. It is
positioned absolutely 7 pixels from the right and 10 pixels from the top of the container <div/>. This
puts the text to the right of the error icon.

The error message that contains the description of the error is in the weatherErrorMessage <div/>
element.

#weatherErrorMessage
{

font: 12px Tahoma;
color: white;
position: absolute;
right: 15px;
top: 85px;

}

This rule styles the text white in color. It’s positioned 85 pixels from the top, placing it well into the
“body” of the container, making it easily readable by the reader.

Because this widget depends on the XSL stylesheet, total customization essentially rests in your hands;
you have the ability to completely change the markup, structure, and style of the data. In this section,
the path to the information was given for each element. These few elements are by no means a full list of
the available elements in the XML feed. The SDK does not cover these elements; however, this informa-
tion resides within the Weather.com DTD, located at www.weather.com/documentation/xml/
weather.dtd.

Setting Up the Weather Widget as an Application
Setting up ASP.NET web applications requires a few extra steps compared to other web applications.

The first requirement is to make sure that Internet Information Services (IIS) is installed on the machine.
IIS is Microsoft’s web server and is available only for owners of Windows 2000 Professional, Windows
2000 Server, Windows XP Professional, and Windows Server 2003. Installing IIS requires the Windows
CD and can be done in the Add/Remove Windows Components section of the Add/Remove Programs
Control Panel applet (see Figure 12-2).

366

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 366

Figure 12-2

Next, you also must install the .NET Framework version 2.0 or better. It is freely available at http://
msdn2.microsoft.com/en-us/netframework/aa731542.aspx for users of Windows 2000 and
later versions.

When IIS and the .NET Framework are installed, create a folder called WeatherWidget in the IIS
wwwroot directory, located at c:\Inetpub\, and move all the widget’s files and folders to the newly
created WeatherWidget folder. After the files have been placed in the WeatherWidget directory, you
need to register the application in IIS, which you can do in the IIS Management Console (see Figure
12-3). In the computer’s Control Panel (Start➪Control Panel), double-click Administrative Tools, and
then double-click the Internet Information Services icon.

In the console, you will see a list of files and folders. These items are contained in the IIS root folder.
In the left-hand pane, locate the WeatherWidget folder. Right-click the folder and choose Properties
from the context menu. You are now looking at the web properties of the WeatherWidget folder (see
Figure 12-4).

367

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 367

Figure 12-3

Figure 12-4

368

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 368

On the Directory tab, you see an Application Settings section in the bottom part of the window. Click the
Create button, and the Properties window is displayed (see Figure 12-5).

Figure 12-5

Now click on the ASP.NET tab. You should see a drop down box that allows you to change the ASP.NET
version. Make sure that 2.0.xxxx is selected (Figure 12-6).

Figure 12-6 369

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 369

Click OK. IIS now knows to treat the contents of the WeatherWidget folder as an application, and will
run it as one. The Weather widget is now installed.

Adding the Weather Widget to the Web Page
Because the back-end code consists mainly of a C# class, your options of implementation are twofold:

1. You can add the class to an already existing ASP.NET-enabled web site. Doing so would require
a recompilation of your code. If you take this route, you will need to modify the weather.aspx
page to fit your namespace.

2. You can use the code contained in the downloadable examples as its own freestanding mini-
application (the steps outlined in the previous section).

The choice is ultimately yours, but the remainder of the section assumes that you chose the latter option.
To implement the AjaxWeatherWidget class, you should reference the proper CSS and JavaScript files
in your HTML:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Ajax Weather</title>
<link rel=”stylesheet” type=”text/css” href=”css/weatherwidget.css”/>
<script type=”text/javascript” src=”js/zxml.js”></script>
<script type=”text/javascript” src=”js/weatherwidget.js”></script>

</head>
<body>
</body>
</html>

The Weather widget’s only outside dependency is the zXml library, which you also should reference in
your HTML.

All that remains is to create an AjaxWeatherWidget object and append it to an HTML element:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Ajax Weather</title>
<link rel=”stylesheet” type=”text/css” href=”css/weatherwidget.css”/>
<script type=”text/javascript” src=”js/zxml.js”></script>
<script type=”text/javascript” src=”js/weatherwidget.js”></script>
<script type=”text/javascript”>
function init() {

var divMyWeather = document.getElementById(“myWeather”);
var oWeather = new AjaxWeatherWidget(divMyWeather);

}

onload = init;
</script>

370

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 370

</head>
<body>

<div id=”myWeather”></div>
</body>
</html>

This new code adds another <script/> element containing a function called init(). Inside this func-
tion, retrieve a reference to the <div/> element with myWeather as its ID. This <div/> element will
serve as the weather widget container. Also, it is important to run init() during the onload event,
because the browser will not find the myWeather <div/> element and will not append the widget to it.

The Weather widget is a simple widget, especially in the client-side component; the ASP.NET classes do
all the work. Compare this with the next widget, the Stock Watcher, where both the client and server
side are more complex, yet they’re easily implemented to retrieve stock information.

Watching Stocks
Nothing changed the stock market quite like the Web. What used to be the domain of financial experts
has become something that the everyman can now take part in. Online trading companies like E*Trade
have changed the face of stock trading forever. Regardless of this change, the Web is first, and foremost,
a vast repository of information, and stock price information is no exception.

Getting Yahoo! Finance Information
While not as feature filled as some Yahoo! premium services, basic stock reporting with Yahoo! Finance
can easily be used in any Web application. The 15-minute delay certainly isn’t desirable for anyone
wanting up-to-the-second information, but this free service could satisfy anyone who wants to casually
watch certain stocks during the day.

Yahoo! Finance stock information comes in comma-separated value (CSV) format, and you use the
following URL to download information on any stock:

http://finance.yahoo.com/d/quotes.csv?s=stock_symbols&f=special_tags

Stock symbols should be separated by a plus sign (+). There’s a host of information available for each
individual stock, and you can specify what pieces of information you want with special tags. For exam-
ple, the URL to get the day’s opening price and the last trade’s price for Microsoft’s and GE’s stock
would look like this:

http://finance.yahoo.com/d/quotes.csv?s=MSFT+GE&f=ol1

For a complete list of available tags, visit www.gummy-stuff.org/Yahoo-data.htm.

The widget built in this section retrieves the stock symbol (tag: s), the company’s name (tag: n), the last
trade price (tag: l1), and the change since opening (tag: c1).

371

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 371

The Stock Quote Proxy
You’ll use PHP to retrieve the stock quotes in CSV format and create a JSON structure (to send to the
browser), which looks like this:

{
“error” : true || false,
“stocks” :
[

{
“symbol” : “stock symbol”,
“companyName” : “company’s name”,
“lastTrade” : “23.54”,
“change” : “0.03”

}
]

}

The first property in the object is error, which will hold a Boolean value (false means no error
occurred). Next is stocks, an array of objects containing the requested data for each stock.

Organizing Stock Data
The structure of the stock objects comes from a PHP class called Stock, contained in the
stock.class.php file.

class Stock {
var $symbol;
var $companyName;
var $lastTrade;
var $change;

//More code to come.
}

The Stock class has four properties: symbol, companyName, lastTrade, and change. The constructor
accepts one argument, $stock_data, which is a string containing the stock quote data.

class Stock {
var $symbol;
var $companyName;
var $lastTrade;
var $change;

function Stock($stock_data) {
//Split the data by commas.
$split_data = explode(“,”, $stock_data);

//Add the data to the properties
$this->symbol = $split_data[0];
$this->companyName = $split_data[1];
$this->lastTrade = $split_data[2];
$this->change = $split_data[3];

}
}

372

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 372

$stock_data is in CSV format, so use the explode() function to split the string into an array and
assign the class’s properties their corresponding values. You can rely upon this order of assignment, as
the data received from Yahoo! is in symbol,companyName,lastTrade,change format.

Retrieving the Stock Quotes
Aside from the JSON PHP class introduced in Chapter 8, the remainder of PHP code is contained in
stockproxy.php, which is primarily responsible for retrieving data from Yahoo! Finance. Because JSON
is used in this widget, the first two lines of this file set the required headers:

header(“Content-Type: text/plain; charset=UTF-8”);
header(“Cache-Control: no-cache”);

//more to come

The first line sets the Content-Type header to text/plain with a UTF-8 character set, and the second
line sets the Cache-Control header, forcing browsers to not cache the information. Next, include the
needed PHP files.

header(“Content-Type: text/plain; charset=UTF-8”);
header(“Cache-Control: no-cache”);

require_once(“inc/stock.class.php”);
require_once(“inc/JSON.php”);

class JSONObject {}

$SYMBOLS = array(
“MSFT”,
“GE”

);

//more to come

Also, a generic class called JSONObject is defined; an instance of this class holds data in a structured
format until it is time to serialize it into a JSON string. And $SYMBOLS is an array that contains stock
symbols. These symbols are used to retrieve quotes from Yahoo! Finance.

The workhorse of this PHP application is the get_stock_quotes() function. This function attempts to
retrieve information from http://finance.yahoo.com, and if successful, structures the data for JSON
serialization.

//Header, required files, and JSONObject

$SYMBOLS = array(
“MSFT”,
“GE”

);

function get_stock_quotes() {
global $SYMBOLS;

//Get the symbols in the format we need.

373

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 373

$symbol_string = implode(“+”, $SYMBOLS);

//Build the URL
$url = “http://finance.yahoo.com/d/quotes.csv?s=”. $symbol_string .”&f=snl1c1”;

//Get the data.
$data = file_get_contents($url);

//Create the JSON object.
$json = new Services_JSON ();

//Create the JSONObject
$object_to_serialize = new JSONObject();

//more to come
}

The first step of this function is to transform the $SYMBOLS array into the format that you need
(SYMBOL1+SYMBOL2+SYMBOL3, etc). The implode() function does this and returns the string to
$symbol_string. Next, build the URL with $symbol_string, and use file_get_contents() to
retrieve the data from Yahoo!. The last lines of this code create a Services_JSON object called $json,
and a JSONObject object called $object_to_serialize.

If file_get_contents() failed to retrieve data from Yahoo!’s server, the $data variable will be false.
So first, check to see if the request was successful:

function get_stock_quotes() {
//Code cut for space......

//Create the JSON object.
$json = new Services_JSON ();

//Create the JSONObject
$object_to_serialize = new JSONObject();

if (!$data) {
$object_to_serialize->error = true;

} else {
//more to come

}

//more to come
}

If not, then add a property to $object_to_serialize called error, and set it to true. This informa-
tion is utilized by the client, allowing the user to know that an error occurred. If the request was success-
ful, then the data needs to be parsed.

The data received looks something like this:

“MSFT”,”MICROSOFT CP”,27.87,-0.05
“GE”,”GEN ELECTRIC CO”,36.14,-0.15

374

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 374

Each quote is followed by “\r\n”, and string data is contained within double quotation marks. The code
needs to take these factors into account.

if (!$data) {
$object_to_serialize->error = true;

} else {
//Start to populate our JSON object.
$object_to_serialize->error = false;
$object_to_serialize->stocks = array();

//Remove the quotes that we get from Yahoo!
$data = preg_replace(‘/”/’, “”, $data);

//Create an array.
$split_data = explode(“\r\n”, $data);

//The last element is just \r\n. Pop it off.
array_pop($split_data);

foreach($split_data as $stock_data)
$object_to_serialize->stocks[] = new Stock($stock_data);

//more code here
}

The first step is to add error and stocks properties to $object_to_serialize. The error property
is set to false, and stocks is an array. Next, use the preg_replace() function to remove the double
quotation marks from the string values.

The next goal is to remove the carriage returns and separate the quotes from each other. To do this, use
the explode() function. The result is an array with each element containing one quote. The last quote in
the CSV, however, has a carriage return at the end of the line, which gives $split_data an extra array
element in the last position of the array. By using array_pop(), you can remove the last element in the
array, leaving nothing but stock quote data contained in $split_data.

Last, parse the data by looping through the $split_data array and adding Stock instances to the
$object_to_serialize->stock property.

The final step of get_stock_quotes(), and the stockproxy.php file, is to output the serialized
$object_to_serialize object and call the get_stock_quotes() function:

header(“Content-Type: text/plain; charset=UTF-8”);
header(“Cache-Control: no-cache”);

require_once(“inc/stock.class.php”);
require_once(“inc/JSON.php”);

class JSONObject {}

$SYMBOLS = array(
“MSFT”,
“GE”

375

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 375

);

function get_stock_quotes() {
global $SYMBOLS;

//Get the symbols in a format we can use.
$symbol_string = implode(“+”, $SYMBOLS);

//Build the URL
$url = “http://finance.yahoo.com/d/quotes.csv?s=”. $symbol_string .”&f=snl1c1”;

//Get the data.
$data = file_get_contents($url);

//Create the JSON object.
$json = new Services_JSON ();

//Create the JSONObject
$object_to_serialize = new JSONObject();

if (!$data) {
$object_to_serialize->error = true;

} else {
//Remove the quotes that we get from Yahoo!
$data = preg_replace(‘/”/’,””,$data);

//Start to populate our JSON object.
$object_to_serialize->error = false;
$object_to_serialize->stocks = array();

//Create an array.
$split_data = explode(“\r\n”, $data);

//The last element is just \r\n. Pop it off.
array_pop($split_data);

foreach($split_data as $stock_data)
$object_to_serialize->stocks[] = new Stock($stock_data);

}

//Echo the serialized data, yo!
echo $json->encode($object_to_serialize);

}

get_stock_quotes();

Client Component: The AjaxStockWatcher Class
The client portion of this widget isn’t overly complex; it is a class designed to poll data from the server,
build an HTML table, populate it with data, and update it every so often. Before digging into the
JavaScript, take a look at the HTML structure the script creates.

376

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 376

The User Interface
The table is a three-column table; the first cell contains the company name, followed by the last trade
price, and finishing off with the change.

<table class=”ajaxStockWatcher-Table”>
<tr>

<td class=”ajaxStockWatcher-stockName”>
Company Name

</td>
<td class=”ajaxStockWatcher-lastTrade”>10.00</td>
<td class=”ajaxStockWatcher-change ajaxStockWatcher-change-up”>+1.00</td>

</tr>
<tr>

<td class=”ajaxStockWatcher-stockName”>
Company Name2

</td>
<td class=”ajaxStockWatcher-lastTrade”>8.00</td>
<td class=”ajaxStockWatcher-change ajaxStockWatcher-change-down”>-2.00</td>

</tr>
</table>

Each quote exists in its own table row, and the company’s name is used in a hyperlink to take the user to
Yahoo! Finance report on the stock. Notice that the third cell in each row uses two CSS classes. This
allows anyone who applies this widget to their web site greater flexibility when writing the CSS rules.
For example, they could use the ajaxStockWatcher-change class to apply styling to the cell, and use
the ajaxStockWatcher-change-up and -down classes to color the text green or red, depending upon if
the stock’s change is up or down.

The Class Constructor
The AjaxStockWatcher class constructor accepts one optional argument: the HTMLElement you
append the HTML built by the widget to:

function AjaxStockWatcher(oElement) {
//Get the element we’ll append to.
//If one’s not specified, use the document’s <body/>
this.toAppend = (oElement) ? oElement : document.body;

//Create the table that’ll house our data
this.table = document.createElement(“table”);

//Assign its CSS class
this.table.className = “ajaxStockWatcher-table”;

//and append it to toAppend
this.toAppend.appendChild(this.table);

//more code here
}

The first line of code defines the toAppend property. This property’s value points to the HTMLElement
specified in the oElement argument. If no value is passed to the constructor, then toAppend assumes

377

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 377

the value of document.body. The next few lines of code create the <table/> element, assign its CSS
class to ajaxStockWatcher-table, and append it toAppend.

The class preparation is nearly complete. All that remains is to set up the automatic polling with this
next code:

function AjaxStockWatcher(oElement) {
//Get the element we’ll append to.
//If one’s not specified, use the document’s <body/>
this.toAppend = (oElement) ? oElement : document.body;

//Create the table that’ll house our data
this.table = document.createElement(“table”);

//Assign its CSS class
this.table.className = “ajaxStockWatcher-table”;

//and append it to toAppend
this.toAppend.appendChild(this.table);

//For the timeout
this.timer = null;

//Begin polling.
this.poll();

}

The first new line of code initializes the timer property to null. The AjaxStockWatcher class uses this
property to keep track of the timeouts used for automatic polling. The last line of the constructor calls
the poll() method, which starts the polling cycle.

Polling for Data
The poll() method is responsible for requesting and receiving stock information from the server com-
ponent with an XHR object.

AjaxStockWatcher.prototype.poll = function() {
//Pointer to the current object.
var oThis = this;

//Create the XHR object and handle the o.r.s.c. event
var oReq = zXmlHttp.createRequest();
oReq.onreadystatechange = function () {

if (oReq.readyState == 4) {
if (oReq.status == 200 || oReq.status == 304) {

oThis.handleResponse(oReq.responseText);
}

}
};

//Send the request
oReq.open(“GET”, “stockproxy.php”, true);
oReq.send(null);

};

378

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 378

The method first begins with creating a variable called oThis, a pointer to the current object. Next, an
XHR object is created, and the onreadystatechange event handler is assigned. On a successful request,
the XHR object’s responseText is passed to the handleResponse() method, and finally, the request is
sent to stockproxy.php.

Handling the Server’s Response
On a successful request, the AjaxStockWatcher object needs to take the received data and populate the
table. This job is delegated to the handleResponse() method. This method accepts one argument called
sJson, the serialized data from the server component.

AjaxStockWatcher.prototype.handleResponse = function (sJson) {
//Parse the JSON string
var oResult = sJson.parseJSON();

//more code here
}

The first line takes the serialized data and parses it into a JavaScript object by using the JSON library.
Next, the contents of the table are cleared by looping through the rows collection and removing each
row from the table. Then, the method determines if a server-side error occurred. This is accomplished by
checking the error property of the oResult object:

AjaxStockWatcher.prototype.handleResponse = function (sJson) {
//Parse the JSON string
var oResult = sJson.parseJSON();

//Delete the existing stocks shown.
while (this.table.rows.length > 0)

this.table.deleteRow(0);

if (!oResult.error) {
//No error. Display the information.
for (var i = 0; i < oResult.stocks.length; i++) {

var oStock = oResult.stocks[i];

//Insert a new row
var oRow = this.table.insertRow(i);

//more code here

}
}

}

If the server component had no errors, then handleResponse()loops through the stocks array and
create the table row for the current stock with the insertRow() method.

379

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 379

Adding the Data Cells and Data
Next, you add in the data cells as follows:

AjaxStockWatcher.prototype.handleResponse = function (sJson) {
//Parse the JSON string
var oResult = sJson.parseJSON();

//Delete the existing stocks shown.
while (this.table.rows.length > 0)

this.table.deleteRow(0);

if (!oResult.error) {
//No error. Display the information.
for (var i = 0; i < oResult.stocks.length; i++) {

var oStock = oResult.stocks[i];

//Insert a new row
var oRow = this.table.insertRow(i);

//Add a cell for the stock’s name
var tdName = oRow.insertCell(0);
tdName.className = “ajaxStockWatcher-stockName”;

//And the last trade amount.
var tdLastTrade = oRow.insertCell(1);
tdLastTrade.className = “ajaxStockWatcher-lastTrade”;

//And the change
var tdChange = oRow.insertCell(2);
tdChange.className = “ajaxStockWatcher-change”;
tdChange.className += (parseFloat(oStock.change) > 0) ?

“ ajaxStockWatcher-change-up” : “ ajaxStockWatcher-change-down”;

//more code here
}

}
}

By using the insertCell() method, you can easily add cells to an existing <tr/> elements, as this code
illustrates. This code is straightforward, except for perhaps the className assignment for the tdChange
element. The first assignment statement sets the cell’s CSS class to ajaxStockWatcher-change. Then,
the className is appended according to oStock.change’s value. If it is a positive value, the “up” class
is used; otherwise, the “down” class is added to the className property.

With the cells added to the table, you can now add data to them.

AjaxStockWatcher.prototype.handleResponse = function (sJson) {
//Parse the JSON string
var oResult = sJson.parseJSON();

//When we should call poll() again.

380

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 380

//30 seconds is the default.
var iTimeForNextPoll = 30;

//Delete the existing stocks shown.
while (this.table.rows.length > 0)

this.table.deleteRow(0);

if (!oResult.error) {
//No error. Display the information.
for (var i = 0; i < oResult.stocks.length; i++) {

var oStock = oResult.stocks[i];

//Insert a new row
var oRow = this.table.insertRow(i);

//Add a cell for the stock’s name
var tdName = oRow.insertCell(0);
tdName.className = “ajaxStockWatcher-stockName”;

//And the last trade amount.
var tdLastTrade = oRow.insertCell(1);
tdLastTrade.className = “ajaxStockWatcher-lastTrade”;

//And the change
var tdChange = oRow.insertCell(2);
tdChange.className = “ajaxStockWatcher-change”;
tdChange.className += (parseFloat(oStock.change) > 0) ?

“ ajaxStockWatcher-change-up” : “ ajaxStockWatcher-change-down”;

//Create the link used as
var aLinkToYahoo = document.createElement(“a”);
aLinkToYahoo.appendChild(document.createTextNode(oStock.companyName));
aLinkToYahoo.href = “http://finance.yahoo.com/q?s=” + oStock.symbol;

//Append the data to the <td/>s
tdName.appendChild(aLinkToYahoo);
tdLastTrade.appendChild(document.createTextNode(oStock.lastTrade));
tdChange.appendChild(document.createTextNode(oStock.change));

}
}
//more code here

}

This new code first creates the hyperlink that takes the user to Yahoo! Finance’s web page for this partic-
ular stock. Then, the link and remaining stock data (the last trade and price change) are appended to
their corresponding cells in the table row.

Handling Errors
If the server component returns an error, for whatever reason, the user should know why stock data is
not displayed. This is easily accomplished with the following code:

381

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 381

AjaxStockWatcher.prototype.handleResponse = function (sJson) {
//Parse the JSON string
var oResult = sJson.parseJSON();

//When we should call poll() again.
//30 seconds is the default.
var iTimeForNextPoll = 30;

//Delete the existing stocks shown.
while (this.table.rows.length > 0)

this.table.deleteRow(0);

if (!oResult.error) {
//No error. Display the information.
for (var i = 0; i < oResult.stocks.length; i++) {

var oStock = oResult.stocks[i];

//Insert a new row
var oRow = this.table.insertRow(i);

//Add a cell for the stock’s name
var tdName = oRow.insertCell(0);
tdName.className = “ajaxStockWatcher-stockName”;

//And the last trade amount.
var tdLastTrade = oRow.insertCell(1);
tdLastTrade.className = “ajaxStockWatcher-lastTrade”;

//And the change
var tdChange = oRow.insertCell(2);
tdChange.className = “ajaxStockWatcher-change”;
tdChange.className += (parseFloat(oStock.change) > 0) ?

“ ajaxStockWatcher-change-up” : “ ajaxStockWatcher-change-down”;

var aLinkToYahoo = document.createElement(“a”);
aLinkToYahoo.appendChild(document.createTextNode(oStock.companyName));
aLinkToYahoo.href = “http://finance.yahoo.com/q?s=” + oStock.symbol;

//Append the data to the <td/>s
tdName.appendChild(aLinkToYahoo);
tdLastTrade.appendChild(document.createTextNode(oStock.lastTrade));
tdChange.appendChild(document.createTextNode(oStock.change));

}

} else { //An error occurred. Probably network related.
//Insert a new row
var oRow = this.table.insertRow(0);

//Add a cell, and text to tell the user
//an error occurred
var tdError = oRow.insertCell(0)
tdError.colSpan = 3;
tdError.appendChild(

382

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 382

document.createTextNode(
“An error occurred. Attempting to reconnect...”

)
);

}

//more code here
}

This code creates a new row in the table (if an error occurred, it’ll be the only row in the table). Then a
data cell is created, and a text node is appended to it stating that an error occurred and that the widget is
attempting to retrieve the information again. This approach allows you to keep the user informed in a
graceful way (as opposed to using an alert box every 30 seconds).

Retrieving Updated Information
The handleResponse() method should do one more thing: call poll() again in 30 seconds to retrieve
updated information, and this is easily accomplished with the following code.

AjaxStockWatcher.prototype.handleResponse = function (sJson) {
//Parse the JSON string
var oResult = sJson.parseJSON();

//When we should call poll() again.
//30 seconds is the default.
var iTimeForNextPoll = 30;

//Delete the existing stocks shown.
while (this.table.rows.length > 0)

this.table.deleteRow(0);

if (!oResult.error) {
//No error. Display the information.
for (var i = 0; i < oResult.stocks.length; i++) {

var oStock = oResult.stocks[i];

//Insert a new row
var oRow = this.table.insertRow(i);

//Add a cell for the stock’s name
var tdName = oRow.insertCell(0);
tdName.className = “ajaxStockWatcher-stockName”;

//And the last trade amount.
var tdLastTrade = oRow.insertCell(1);
tdLastTrade.className = “ajaxStockWatcher-lastTrade”;

//And the change
var tdChange = oRow.insertCell(2);
tdChange.className = “ajaxStockWatcher-change”;
tdChange.className += (parseFloat(oStock.change) > 0) ?

“ ajaxStockWatcher-change-up” : “ ajaxStockWatcher-change-down”;

var aLinkToYahoo = document.createElement(“a”);

383

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 383

aLinkToYahoo.appendChild(document.createTextNode(oStock.companyName));
aLinkToYahoo.href = “http://finance.yahoo.com/q?s=” + oStock.symbol;

//Append the data to the <td/>s
tdName.appendChild(aLinkToYahoo);
tdLastTrade.appendChild(document.createTextNode(oStock.lastTrade));
tdChange.appendChild(document.createTextNode(oStock.change));

}

} else { //An error occurred. Probably network related.
//Insert a new row
var oRow = this.table.insertRow(0);

//Add a cell, and text to tell the user
//an error occurred
var tdError = oRow.insertCell(0)
tdError.colSpan = 3;
tdError.appendChild(

document.createTextNode(
“An error occurred. Attempting to reconnect...”

)
);

}

//Pointer to the current object.
var oThis = this;

//For the timeout
var doSetTimeout = function () {

oThis.poll();
};

//Run doSetTimeout() in 30 seconds.
this.timer = setTimeout(doSetTimeout, 30000);

}

This new code assigns a pointer to the current object to the oThis variable. Next, a function called
doSetTimeout() is created to call the poll() method. Then, by using setTimeout(), the enclosed
method is set to be called in 30 seconds, thus facilitating the automatic update feature.

Stop Automatic Updates
Of course, there are times when it’s desirable to stop a script from automatically updating itself; there-
fore, the widget needs a mechanism to do just that. The last method of the AjaxStockWatcher class,
and the simplest one, is the stopPoll() method.

AjaxStockWatcher.prototype.stopPoll = function () {
//Stop the polling
clearTimeout(this.timer);

};

The one line of code in this method uses the clearTimeout() method to stop the timeout created in
handleResponse().

384

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 384

Customizing the Stock Quotes
The style sheet provided in the code download styles this widget to fit into a sidebar (see Figure 12-7).

Figure 12-7

Giving the HTML this look and feel relies upon a simple CSS style sheet. Only the <table/> and <td/>
elements have associated CSS classes, but you can easily style other HTML elements used in the widget.

/* The stock watcher table */
.ajaxStockWatcher-table
{

font: 13px Arial;
border: 2px solid #0066CC;

}

/* The table rows */
.ajaxStockWatcher-table tr
{

background-color: #D4E2F7;
}

385

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 385

The first rule of the style sheet is the ajaxStockWatcher-table class. The text inside the table is 13 pix-
els in height and uses the Arial font face. A blue border, two pixels in width, also surrounds the table.
Next, the <tr/> elements within the table are styled to have a light-blue background. This makes the
information easier to read.

The next step is to style the data cells.

/* <td/> with the stock company’s name */
.ajaxStockWatcher-stockName {}

/* <td/> with the last trade price */
.ajaxStockWatcher-lastTrade
{

padding-left: 5px;
padding-right: 5px;
text-align: right;

}

/* <td/> with the change amount */
.ajaxStockWatcher-change
{

text-align: right;
}

The first rule in this code is ajaxStockWatcher-stockName. It currently has no CSS properties,
but you can easily style it, the hyperlink, and the text if you so desire. Following the stock name is the
ajaxStockWatcher-lastTrade class. The left and right portions of this cell are padded with 5 pixels,
and the right alignment of the text is how currency is typical displayed. The next rule, the
ajaxStockWatcher-change class, aligns the text to the right for the same reasons for the
-lastTrade class.

Two classes remain in the style sheet, and they are the ajaxStockWatcher-change-up and -down
classes. These classes merely change the color of the text:

/* Used when the stock is up */
.ajaxStockWatcher-change-up
{

color: green;
}

/* Used when the stock is down */
.ajaxStockWatcher-change-down
{

color: red;
}

When the stock change is positive, the text color is green. When the stock’s down, the color is red. This
visual effect allows the viewer to easily correlate up and down stocks quickly, because one can identify
color quicker than one can read plain text.

386

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 386

Using the Stock Watcher Widget
To add the widget to a web page, you must reference the required files. The widget relies upon the zXml
and JSON libraries, so make sure they’re added.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Stock Watcher</title>
<link rel=”stylesheet” type=”text/css” href=”css/ajaxstocktracker.css” />
<script type=”text/javascript” src=”js/zxml.js”></script>
<script type=”text/javascript” src=”js/json.js”></script>
<script type=”text/javascript” src=”js/ajaxStockTracker.js”></script>

</head>
<body>
</body>

</html>

Also required are the ajaxStockTracker.css and ajaxStockTracker.js files. Next, create an
instance of the AjaxStockWatcher class:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Stock Watcher</title>
<link rel=”stylesheet” type=”text/css” href=”css/ajaxstocktracker.css” />
<script type=”text/javascript” src=”js/zxml.js”></script>
<script type=”text/javascript” src=”js/json.js”></script>
<script type=”text/javascript” src=”js/ajaxStockTracker.js”></script>
<script type=”text/javascript”>

var stockWatcher;
onload = function() {

stockWatcher = new AjaxStockWatcher();
};

</script>
</head>
<body>
</body>

</html>

This code appends the table to the document’s body. If you wanted to add it to a preexisting element,
your code might look like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Stock Watcher</title>
<link rel=”stylesheet” type=”text/css” href=”css/ajaxstocktracker.css” />

387

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 387

<script type=”text/javascript” src=”js/zxml.js”></script>
<script type=”text/javascript” src=”js/json.js”></script>
<script type=”text/javascript” src=”js/ajaxStockTracker.js”></script>
<script type=”text/javascript”>

var stockWatcher;
onload = function() {

var divStocks = document.getElementById(“divStocks”);
stockWatcher = new AjaxStockWatcher(divStocks);

};
</script>

</head>
<body>

<div id=”divStocks”></div>
</body>

</html>

This approach allows you to easily add the widget into a predesigned location.

The Stock Watcher widget in this section varies from the Weather widget discussed earlier in the chapter.
Both the client- and server-side components have a level of complexity; the server retrieved the informa-
tion, parsed it, and formatted it into JSON. The client code took the JSON, parsed it, and dynamically
created the HTML to display the information.

The next widget follows along the same lines as the Stock Watcher: the server retrieves information and
returns it as JSON, and the client displays that information. The major difference is the following widget,
the Site Search widget, uses the .NET Framework.

Creating a Site Search Widget
Search functionality is an integral part of any web site; it enables your viewers to find the data they
desire quickly and easily. However, conventional search mechanisms suffer from the same problems as
the rest of the Web: they require a page refresh and may lose data when the search is performed.

Within the past year, many Ajax solutions have cropped up, with one standing out from the rest:
LiveSearch. LiveSearch (http://blog.bitflux.ch/wiki/LiveSearch), developed by the people at
BitFlux (www.bitflux.ch), is a search-as-you-type solution that emulates the Apple Spotlight feature in
OSX Tiger.

LiveSearch presents a new take on web site searches, but it also has its critics. For one thing, it offers a
different approach to achieving the desired results. The average user is used to entering his or her search
criteria and pressing a Search button. LiveSearch, on the other hand, uses the onkeypress DOM event
and returns the results as you type. This method may be more efficient in terms of getting your results,
but it is unexpected by the user, which can cause confusion.

This next widget is an Ajax solution for searching a site that uses a SQL database as a data store. It will
feature a user interface that users are already accustomed to: a search box, a submit button, and a
<div/> element that displays the search results (see Figure 12-8).

388

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 388

Figure 12-8

The Server-Side Component
You will use the .NET Framework and C# language to interface with an MSSQL database to perform the
search query. The returned results will be in JSON, thanks to the Json.NET library mentioned in Chapter
8 (http://www.newtonsoft.com/products/json/). The code in the following sections will use a SQL
query to search a database containing the posts on a web log (blog).

The Database Information
The database table for this specific blog is relatively simple. It contains four columns: id, title, date,
and posting. The following SQL statement creates this table, called BlogPosts:

CREATE TABLE BlogPosts (
BlogId int IDENTITY (1, 1) NOT NULL,
Title text NOT NULL,
Post text NOT NULL,
Date datetime NOT NULL

)

When this query runs, it creates the table, but it is empty. The code download for this example, located at
www.wrox.com, contains a SQL file that will add records to the table.

389

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 389

There are primarily two pieces of desired information needed for the search results: id (used in the URL
to the blog post) and title. With this knowledge, you can create the search query:

SELECT TOP 10
BlogId, title
FROM BlogPosts
WHERE Post LIKE ‘%SEARCHSTRING%’ OR
Title LIKE ‘%SEARCHSTRING%’
ORDER BY Date DESC

This query selects the id and title columns from the BlogPosts table where the contents of posting
and title contain an instance of the search string. The results returned are ordered by descending date,
and only 10 records are returned.

The Database Connection String
There are a variety of ways you can store the database connection string in the application. The best
practice, however, is to store it in the Web.config file, an ASP.NET configuration file that contains
settings readily available and accessible within the application. This file’s purpose is twofold:

1. It provides a central location for all application settings.

2. It provides a secure means of storing settings that contain sensitive data (such as database infor-
mation), as the web server will not serve .config files.

.NET 2.0 Web.config files have a special section called <connectionStrings/> where you can add
multiple database connection strings and give them unique names. To add a new connection string, use
the <add/> element.

<connectionStrings>
<add

name=”SiteSearch”
connectionString=”Data Source=localhost;

Initial Catalog=BlogDatabase;User ID=sa;Password=pwd”
providerName=”System.Data.SqlClient”

/>
</connectionStrings>

The name attribute defines a key to access the connection string within the application code. The string
“SiteSearch” is used to distinguish what this connection string is used for. The connectionString
attribute defines the connection string value, and the providerName attribute is the name of the
ADO.NET provider to use to access the database.

In order to access this connection string within the application, use the
ConfigurationManager.ConnectionStrings collection.

string conString =
ConfigurationManager.ConnectionStrings[“SiteSearch”].ConnectionString;

This retrieves the database connection string associated with the string “SiteSearch”.

390

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 390

The connection string is now kept in a secure location. Before delving into the code, however, the
returned data structure needs discussing.

The Returned Data Structure
The only two pieces of information retrieved are the blog post ID and its title, and a result of a search
could contain more than one blog post. At this point, you need a result set of objects that each contains
title and id properties:

[
{

“title” : “Title 1”,
“id” : “1”

},

{
“title” : “Title 2”,
“id” : “2”

},

{
“title” : “Title 3”,
“id” : “3”

}
]

This code illustrates what the data returned from the server looks like. The structure is an array contain-
ing several objects, each with title and id properties.

The SearchResults Class
The object portions of the JSON structure are provided by a class called SearchResults, which takes
information from the database and organizes each returned row as an object. This is a simple class. It has
two public properties called id and title. The class definition is as follows:

public class SearchResult
{

public string id;
public string title;

public SearchResult(string id, string title)
{

this.id = id;
this.title = title;

}
}

The names of the properties are intentionally lowercase. While this does go against .NET naming con-
ventions (the first letter of public members’ names are supposed to be uppercase), it ensures the serial-
ized form of SearchResult objects follow the conventional JavaScript camel-case naming conventions.

391

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 391

The AjaxSiteSearch Class
This widget uses a simple static class called AjaxSiteSearch to connect to the database, perform the
search query, and return the results as a JSON string.

public static class AjaxSiteSearch
{

//more code here
}

This class contains one static method called Search(), and as you’ve probably already guessed, this
method searches the database for a particular search string. This method accepts one argument, the
search string, which is used in the String.Format() method to format the search query:

public static class AjaxSiteSearch
{

public static string Search (string searchString)
{

//Get the connection string.
string conString =

ConfigurationManager.ConnectionStrings[“SiteSearch”].ConnectionString;

//Get our connection string.
string query = String.Format(“SELECT TOP 10 BlogId, Title FROM BlogPosts

WHERE Post LIKE ‘%{0}%’ OR Title LIKE ‘%{0}%’ ORDER BY Date DESC”,
searchString);

//more code here
}

}

The variable query now holds the completed query string used later in the method.

The Json.NET library provides methods to serialize .NET objects into JSON strings without having to
cast objects to a different type. Referring to the returned data structure, remember that the client code
expects an array of objects. Therefore, the next step is to instantiate an ArrayList object.

public static class AjaxSiteSearch
{

public static string Search (string searchString)
{

//Get the connection string.
string conString =

ConfigurationManager.ConnectionStrings[“SiteSearch”].ConnectionString;

//Get our connection string.
string query = String.Format(“SELECT TOP 10 BlogId, Title FROM BlogPosts

WHERE Post LIKE ‘%{0}%’ OR Title LIKE ‘%{0}%’ ORDER BY Date DESC”,
searchString);

//Initialize the JSON Array
ArrayList searchResults = new ArrayList();

//more code here
}

}

392

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 392

Next, create a database connection and a SqlCommand:

public static class AjaxSiteSearch
{

public static string Search (string searchString)
{

//Get the connection string.
string conString =

ConfigurationManager.ConnectionStrings[“SiteSearch”].ConnectionString;

//Get our connection string.
string query = String.Format(“SELECT TOP 10 BlogId, Title FROM BlogPosts

WHERE Post LIKE ‘%{0}%’ OR Title LIKE ‘%{0}%’ ORDER BY Date DESC”,
searchString);

//Initialize the JSON Array
ArrayList searchResults = new ArrayList();

//Setup the database connection
using (SqlConnection conn = new SqlConnection(conString))
{

//And get the command ready
SqlCommand command = new SqlCommand(query, conn);
//Open the connection
conn.Open();

//Perform the query.
using (SqlDataReader reader = command.ExecuteReader())
{

//more code here
}

}
}

}

This code creates the database connection using the connection string stored in conString. Next, create
a new SqlCommand using the search query and database connection. Doing this prepares the query to
run against the database, which the second using block in the previous code does by creating a
SqlDataReader returned by the ExecuteReader() method. This data reader provides the ability to
read the result from the executed database query.

Before any data is retrieved from the data reader, first check if the result contains any rows by using the
HasRows property:

public static class AjaxSiteSearch
{

public static string Search (string searchString)
{

//Get the connection string.
string conString =

ConfigurationManager.ConnectionStrings[“SiteSearch”].ConnectionString;

//Get our connection string.

393

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 393

string query = String.Format(“SELECT TOP 10 BlogId, Title FROM BlogPosts
WHERE Post LIKE ‘%{0}%’ OR Title LIKE ‘%{0}%’ ORDER BY Date DESC”,
searchString);

//Initialize the JSON Array
ArrayList searchResults = new ArrayList();

//Setup the database connection
using (SqlConnection conn = new SqlConnection(conString))
{

//And get the command ready
SqlCommand command = new SqlCommand(query, conn);
//Open the connection
conn.Open();

//Perform the query.
using (SqlDataReader reader = command.ExecuteReader())
{

try
{

//If we got results...
if (reader.HasRows)
{

//Add the info to the JSON Array
while (reader.Read())
{

//more code here
}

}
}
catch { }

}
}

}
}

This code uses the HasRows property to determine if the data reader contains any rows. If so, the pro-
cessing of the contained data can begin.

The while loop is used to read the result set through the Read() method of the SqlDataReader class.
The Read() method returns a Boolean value; when the end of the result set is reached, Read() returns
false and the loop exits.

Inside the loop, create a SearchResult object by passing the appropriate column information to the
constructor. To access the database column’s value, pass the column name as the index to reader:

public static class AjaxSiteSearch
{

public static string Search (string searchString)
{

//Get the connection string.
string conString =

ConfigurationManager.ConnectionStrings[“SiteSearch”].ConnectionString;

//Get our connection string.

394

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 394

string query = String.Format(“SELECT TOP 10 BlogId, Title FROM BlogPosts
WHERE Post LIKE ‘%{0}%’ OR Title LIKE ‘%{0}%’ ORDER BY Date DESC”,
searchString);

//Initialize the JSON Array
ArrayList searchResults = new ArrayList();

//Setup the database connection
using (SqlConnection conn = new SqlConnection(conString))
{

//And get the command ready
SqlCommand command = new SqlCommand(query, conn);
//Open the connection
conn.Open();

//Perform the query.
using (SqlDataReader reader = command.ExecuteReader())
{

try
{

//If we got results...
if (reader.HasRows)
{

//Add the info to the JSON Array
while (reader.Read())
{

searchResults.Add(
new SearchResult(

reader[“BlogId”].ToString(),
reader[“Title”].ToString()

)
);

}
}

}
catch { }

}
}
//more code here

}
}

This code not only creates the SearchResult object, but it also adds it to the ArrayList by using the
Add() method.

When the loop exits, the ArrayList is completed and ready to return to the caller. But what if the query
returned no results? The client-side code handles this functionality. In the event that no rows are found
from the query, an empty array is returned. The client-side code will check the length of the result set
and perform the necessary operation.

At this point, the objects involved with the JSON string construction are complete. The final step is to
serialize the ArrayList by using the JavaScriptConvert.SerializeObject() method.

395

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 395

public static class AjaxSiteSearch
{

public static string Search (string searchString)
{

//Get the connection string.
string conString =

ConfigurationManager.ConnectionStrings[“SiteSearch”].ConnectionString;

//Get our connection string.
string query = String.Format(“SELECT TOP 10 BlogId, Title FROM BlogPosts

WHERE Post LIKE ‘%{0}%’ OR Title LIKE ‘%{0}%’ ORDER BY Date DESC”,
searchString);

//Initialize the JSON Array
ArrayList searchResults = new ArrayList();

//Setup the database connection
using (SqlConnection conn = new SqlConnection(conString))
{

//And get the command ready
SqlCommand command = new SqlCommand(query, conn);
//Open the connection
conn.Open();

//Perform the query.
using (SqlDataReader reader = command.ExecuteReader())
{

try
{

//If we got results...
if (reader.HasRows)
{

//Add the info to the JSON Array
int i = 0;
while (reader.Read())
{

searchResults.Add(
new SearchResult(

reader[“BlogId”].ToString(),
reader[“Title”].ToString()

)
);

}
}

}
catch { }

}
}

//Return the JSON data.
return JavaScriptConvert.SerializeObject(searchResults);

}
}

This last line returns the JSON string to be written into the page.

396

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 396

Building the Search Page
With the AjaxSiteSearch class completed, all that remains on the server-side is the search page. This
page will accept an argument in the query string called search, which contains the search term. An
example query string could look like the following:

http://yoursite.com/search.aspx?search=ajax

To provide this functionality, check for the existence of this parameter by using the
Response.QueryString collection:

Response.CacheControl = “no-cache”;
Response.ContentType = “text/plain; charset=UTF-8”;

if (Request.QueryString[“search”] != null)
{

//more code here
}

The first two lines should be familiar to you by now. The first line sets the CacheControl header to
no-cache so that the browser will not cache the data, while the second sets the MIME ContentType to
text/plain with UTF-8 encoding.

As you learned in Chapter 8, plain text with Unicode encoding is the desired content type for JSON
strings.

After the headers are set, check the existence of the search parameter in the query string. Next, perform
the search:

Response.CacheControl = “no-cache”;
Response.ContentType = “text/plain; charset=UTF-8”;

if (Request.QueryString[“search”] != null)
{

string searchTerm = Request.QueryString[“search”];

string json = AjaxSiteSearch.Search(searchTerm);
Response.Write(json);

}

The first new line creates the searchTerm variable, a string storing the value of the search parameter in
the query string, followed by the database connection string. Next, pass the searchTerm variable to the
AjaxSiteSearch.Search() method to perform the search. The resulting JSON string is returned and
stored in the json variable, which is then written to the page via the Response.Write() method.

You could add an else block to handle the case when the search parameter in the query string does not
exist; however, the client-side code will handle form validation making it unnecessary to do so.

397

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 397

The Client-Side Component
Client functionality is overly important, especially for a widget such as this. Before using the search
capabilities of your site, the user already made the assumption of how it works. Therefore, it is impor-
tant to follow a couple of guidelines:

❑ The user will enter text to search and press either Enter or the Submit button. The search-as-
you-type feature of LiveSearch is revolutionary, but it goes against what the user is already
accustomed to. Near instantaneous results without a page refresh is enough new functionality.

❑ The user expects to be told when no results are found. If you remember from the SiteSearch
class, an empty JSON array is returned when no results are found; therefore, this responsibility
is passed to the client code.

These guidelines may seem like a no-brainer, but it is important to consider the user’s experience.
What’s hip and cool isn’t necessarily always the right thing to do.

The User Interface
The first step in any client-side component is to build the user interface with HTML. For this widget,
you will use four elements contained within a <div/> element:

<div class=”ajaxSiteSearchContainer”>
<form class=”ajaxSiteSearchForm”>

<input class=”ajaxSiteSearchTextBox” />
<input type=”submit” value=”Go” class=”ajaxSiteSearchButton” />

</form>
<div class=”ajaxSiteSearchResultPane”>

Result Text
</div>

</div>

Every element contains a class attribute. This ensures that the widget is easily customizable with CSS,
and you can tailor it to fit in almost every web site.

Of course, you will not add this HTML directly into the HTML code of your web site; JavaScript dynam-
ically creates the HTML and appends it to the desired HTML element.

The AjaxSiteSearch Class
The AjaxSiteSearch class encapsulates everything needed to display the user interface, make requests
to the server, and display the server’s response, aside from the CSS information and other dependencies.
The class’s constructor accepts one argument, an HTML element to append the search user interface:

function AjaxSiteSearch(oElement) {
//more code here

}

The first step is to write the HTML elements that make up the user interface. This is done, naturally, with
DOM methods:

398

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 398

function AjaxSiteSearch(oElement) {
var oThis = this;
this.result = null;

this.widgetContainer = document.createElement(“div”);
this.form = document.createElement(“form”);
this.textBox = document.createElement(“input”);
this.submitButton = document.createElement(“input”);
this.resultPane = document.createElement(“div”);

this.widgetContainer.className = “ajaxSiteSearchContainer”;
this.form.className = “ajaxSiteSearchForm”;
this.textBox.className = “ajaxSiteSearchTextBox”;
this.submitButton.className = “ajaxSiteSearchButton”;
this.resultPane.className = “ajaxSiteSearchResultPane”;

this.submitButton.type = “submit”;
this.submitButton.value = “Go”;

//more code here
}

The first line of this code creates the oThis variable, a pointer to the object. This comes in handy later in
the constructor. The following lines create the needed HTML elements and assign their class names, and
the Submit button’s type and value attributes are set to submit and Go, respectively.

When the user clicks the Submit button or presses the Enter key when the form has focus, the form’s
onsubmit event fires. The following event handler will start the search process:

function AjaxSiteSearch(oElement) {
var oThis = this;
this.result = null;

this.widgetContainer = document.createElement(“div”);
this.form = document.createElement(“form”);
this.textBox = document.createElement(“input”);
this.submitButton = document.createElement(“input”);
this.resultPane = document.createElement(“div”);

this.widgetContainer.className = “ajaxSiteSearchContainer”;
this.form.className = “ajaxSiteSearchForm”;
this.textBox.className = “ajaxSiteSearchTextBox”;
this.submitButton.className = “ajaxSiteSearchButton”;
this.resultPane.className = “ajaxSiteSearchResultPane”;

this.submitButton.type = “submit”;
this.submitButton.value = “Go”;

this.form.onsubmit = function () {
oThis.clearResults();

//more code here

return false;
};

}

399

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 399

This is where the object pointer’s use is required. Inside the onsubmit event handler, the scope changes;
so, this references the <form/> element instead of the AjaxSiteSearch object. Because the event han-
dler makes calls to the AjaxSiteSearch object, an external variable referencing the object is required,
and that is what oThis does.

The first line of the onsubmit event handler calls the object’s clearResults() method. This method,
covered later, removes any links in the results list from a prior search. This ensures that only the results
from the current search request are displayed. In the last line, the value of false is returned. This over-
rides the form’s default behavior, which is to submit the form.

Also during the onsubmit event, the form is validated. If the textbox does not contain any text, the user
is notified that no text is entered:

function AjaxSiteSearch(oElement) {
var oThis = this;
this.result = null;

this.widgetContainer = document.createElement(“div”);
this.form = document.createElement(“form”);
this.textBox = document.createElement(“input”);
this.submitButton = document.createElement(“input”);
this.resultPane = document.createElement(“div”);

this.widgetContainer.className = “ajaxSiteSearchContainer”;
this.form.className = “ajaxSiteSearchForm”;
this.textBox.className = “ajaxSiteSearchTextBox”;
this.submitButton.className = “ajaxSiteSearchButton”;
this.resultPane.className = “ajaxSiteSearchResultPane”;

this.submitButton.type = “submit”;
this.submitButton.value = “Go”;

this.form.onsubmit = function () {
oThis.clearResults();

if (oThis.textBox.value != “”) {
oThis.search();

} else {
alert(“Please enter a search term”);

}

return false;
};

//more code here
}

If text is entered, however, the object’s search() method is called. This method, also covered shortly, is
responsible for retrieving the search term and making the XHR request to the server.

With the elements created and the onsubmit event handler written, all that remains in the constructor is
appending the elements to the document:

400

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 400

function AjaxSiteSearch(oElement) {
var oThis = this;
this.result = null;

this.widgetContainer = document.createElement(“div”);
this.form = document.createElement(“form”);
this.textBox = document.createElement(“input”);
this.submitButton = document.createElement(“input”);
this.resultPane = document.createElement(“div”);

this.widgetContainer.className = “ajaxSiteSearchContainer”;
this.form.className = “ajaxSiteSearchForm”;
this.textBox.className = “ajaxSiteSearchTextBox”;
this.submitButton.className = “ajaxSiteSearchButton”;
this.resultPane.className = “ajaxSiteSearchResultPane”;

this.submitButton.type = “submit”;
this.submitButton.value = “Go”;

this.form.onsubmit = function () {
oThis.clearResults();

if (oThis.textBox.value != “”) {
oThis.search();

} else {
alert(“Please enter a search term”);

}

return false;
};

this.form.appendChild(this.textBox);
this.form.appendChild(this.submitButton);
this.widgetContainer.appendChild(this.form);
this.widgetContainer.appendChild(this.resultPane);

var oToAppend = (oElement)?oElement:document.body;
oToAppend.appendChild(this.widgetContainer);

}

Because this widget appends itself to the given HTML element, it is a good idea to create an
AjaxSiteSearch object during the page’s onload event. Otherwise, the desired destination element
could not exist, thus throwing an error.

Clearing the Results
The clearResults() method is a simple method to remove all child nodes in the results <div/> element:

AjaxSiteSearch.prototype.clearResults = function () {
while (this.resultPane.hasChildNodes()) {

this.resultPane.removeChild(this.resultPane.firstChild);
}

};

401

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 401

This method utilizes the hasChildNodes() method, a method exposed by a node in the DOM. As long
as the results <div/> contains children, the first child is removed. It is a simple method, but it gets the
job done.

Making the XHR Request
As stated before, the search() method makes the request to the server to perform the search:

AjaxSiteSearch.prototype.search = function () {
var oThis = this;
var sUrl = encodeURI(“search.aspx?search=” + this.textBox.value);

var oReq = zXmlHttp.createRequest();
oReq.onreadystatechange = function () {

if (oReq.readyState == 4) {
if (oReq.status == 200 || oReq.status == 304) {

oThis.handleResponse(oReq.responseText);
}

}
};

oReq.open(“GET”, sUrl, true);
oReq.send();

};

The familiar first line creates a pointer to the object used inside of the XHR object’s onreadystatechange
event handler. The second line encodes the search URL and search term with the encodeURI() function.
Doing this replaces certain characters with their appropriate escape sequence (for example: white space is
turned into %20).

The remainder of the code performs the XHR request. On a successful request, the responseText is
passed to the handleResponse() method.

Processing the Information
The handleResponse() method takes the server’s response (the JSON string), decodes it, and displays
the results as links in the results <div/> element. This method accepts one argument, a JSON string:

AjaxSiteSearch.prototype.handleResponse = function (sJson) {
this.result = sJson.parseJSON();

//more code here
};

This code takes the sJson argument and passes it to the JSON.parse() method to convert the string
into JavaScript.

Now that the information can be used programmatically, the code begins to go through a decision-
making process. Remember, the result from the server is an array of objects; therefore, you can use the
length property to determine if the search returned any results:

402

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 402

AjaxSiteSearch.prototype.handleResponse = function (sJson) {
this.result = JSON.parse(sJson);

if (this.result.length > 0) {
//more code here

} else {
alert(“Your search returned no results.”);

}
};

Naturally, if any results are present, you want to display that information. If not, the user is notified
through an alert box that no results were found from the search.

Displaying the results is as simple as creating <a/> elements:

AjaxSiteSearch.prototype.handleResponse = function (sJson) {
this.result = sJson.parseJSON();

if (this.result.length > 0) {
var oFragment = document.createDocumentFragment();
for (var i = 0; i < this.result.length; i++) {

var linkResult = document.createElement(“a”);
linkResult.href = “http://yoursite.com/?postid=” + this.result[i].id;
linkResult.innerHTML = this.result[i].title;
linkResult.className = “ajaxSiteSearchLink”;

oFragment.appendChild(linkResult);
}

this.resultPane.appendChild(oFragment);
} else {

alert(“Your search returned no results.”);
}

};

The first new line of code creates a document fragment to append the <a/> elements to. The next block
of code, a for loop, generates the links. Notice the assignment of the href property of the link. In order
for this to work on your site, you must change the href value to reflect your own web site.

When the link creation is complete, it is added to the document fragment, which is appended to the
results <div/> element. These links remain visible until a new search is performed, which will clear the
results pane and populate it with new results.

Customizing the Site Search Widget
To make the Site Search widget conform to your page’s look and feel, it was designed to be fully
customizable. Every element in the widget has a corresponding CSS classification, making customization
a snap.

403

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 403

The outermost <div/> element, the widget’s container, has the CSS class ajaxSiteSearchContainer.
You can give your search widget its overall look with this element; you can also set a global style, since
all elements will inherit many of its style properties:

div.ajaxSiteSearchContainer
{

background-color: #fdfed4;
border: 1px solid #7F9DB9;
font: 12px arial;
padding: 5px;
width: 225px;

}

The first two lines set the background color of the element and its border, respectively. These two prop-
erties give the visual idea that everything within the border and background color belongs to the widget.
This can be helpful to the user, especially when text seems to appear from the ether. The next line sets
the font size and family for the widget. This setting is inherited by the results <div/> element and the
links it contains. The 5-pixel padding is mainly for visual purposes; otherwise, everything could look
scrunched together. Last, the width is applied to the widget. This confines the widget into a specified
space, and text will wrap accordingly.

The <form/> element also possesses the ability for styling. The given class name for this element is
ajaxSiteSearchForm:

form.ajaxSiteSearchForm {}

This example does not apply any style to the element, but the ability exists to do so. By applying
padding or a border (or any other style for that matter), you can give the visual impression of separating
the form from the results.

The <form/> contains two child elements, the textbox and the Submit button, both of which are
<input/> elements:

input.ajaxSiteSearchTextBox
{

border: 1px solid #7F9DB9;
padding: 2px;

}

input.ajaxSiteSearchButton
{

background-color: #7F9DB9;
border: 0px;
color: white;
font-weight: bold;
margin-left: 3px;
padding: 1px;

}

The textbox’s CSS (class ajaxSiteSearchTextBox) gives the box a solid, colored border 1 pixel in
width and pads the contents by 2 pixels. The button, whose class name is ajaxSiteSearchButton, has
a background color and no border but is padded on all sides by one pixel. The text inside the button is
white and bold. It is scooted 3 pixels to the right by setting its left margin to 3 pixels.

404

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 404

The results <div/> in this example does not have any styling. Instead, it inherits the font size and family
from its parent:

div.ajaxSiteSearchResultPane {}

The final elements in this widget are the links:

a.ajaxSiteSearchLink
{

color: #316ac5;
display: block;
padding: 2px;

}

a:hover.ajaxSiteSearchLink
{

color: #9b1a1a;
}

In the example CSS, only two states are styled: a normal link and a link when the mouse hovers over it.
In the former (default) state, the links are treated as block-level elements, meaning that each link starts
on its own line. They have a bluish color and contain two pixels of padding. When the user mouses over
a link, the hover state is activated. The only style change made is the color, which turns the text color
from bluish to reddish.

These style properties are for example only; the real fun with widgets is making them your own and
fitting them into your own page. Feel free to bend these elements to your will.

Adding the Site Search Widget to a Page
Much as with the weather widget, your options for implementation are twofold:

1. You can add the class to an already existing ASP.NET-enabled web site. Doing so, however,
would require you to recompile your code and modify the search.aspx page to fit your
namespace.

2. You can use the code contained in the downloadable examples as its own freestanding mini-
application. You can follow the steps outlined earlier in the chapter.

Just as with the weather widget, the choice of implementation is yours; however, the remainder of the code
assumes that you chose the latter option. On the client page, you need to reference all files needed to use
this widget. The AjaxSiteSearch class depends on the zXml and JSON libraries to function properly:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Ajax SiteSearch</title>
<link rel=”stylesheet” type=”text/css” href=”css/ajaxsitesearch.css” />
<script type=”text/javascript” src=”js/json.js”></script>

405

Web Site Widgets

15_109496 ch12.qxd 2/5/07 6:59 PM Page 405

<script type=”text/javascript” src=”js/zxml.js”></script>
<script type=”text/javascript” src=”js/ajaxsitesearch.js”></script>

</head>
<body>

</body>
</html>

To instantiate an AjaxSiteSearch object, use the new keyword:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Ajax SiteSearch</title>
<link rel=”stylesheet” type=”text/css” href=”css/ajaxsitesearch.css” />
<script type=”text/javascript” src=”js/json.js”></script>
<script type=”text/javascript” src=”js/zxml.js”></script>
<script type=”text/javascript” src=”js/ajaxsitesearch.js”></script>
<script type=”text/javascript”>
function init() {

var oSiteSearch = new AjaxSiteSearch();
}

onload = init;
</script>

</head>
<body>

</body>
</html>

When creating the AjaxSiteSearch object, pass the desired element you want the widget to be
appended to. If no HTMLElement is passed to the constructor, it is appended to the document.body.
Creating an object automatically generates the required HTML elements, so there is nothing left to do to
implement the widget.

Summary
In this chapter, you took the skills you have learned thus far and applied them to building your own
Web-based widgets. This chapter showed you many practical widgets that Ajax makes possible.

First, you learned how to build a widget to consume the Weather.com XML service, transform the XML,
and display the data to the user. Next, you learned how to use Yahoo! Finance’s stock quote CSV ser-
vices to create a stock watcher widget. The chapter went on to describe how to create a widget to search
a blog’s database using MSSQL. Using the Json.NET library, you learned how to build JSON strings and
output them to the client.

406

Chapter 12

15_109496 ch12.qxd 2/5/07 6:59 PM Page 406

Ajax Frameworks

Up to this point, the examples and discussions in the book have focused on writing every piece of
functionality for both client and server. You may have noticed that there can be a fair amount of
repetition between examples, code being duplicated and altered only slightly to produce a differ-
ent result. It is undoubtedly innefficient for numerous developers to be writing the same code over
and over again. The identifyication of these common threads in Ajax solutions has given rise to
several frameworks that aim to allow rapid development of Ajax applications by freeing the devel-
oper from programming low-level communication between client and server.

The frameworks covered in this chapter are known as remote invocation frameworks, meaning that
the framework is responsible for generating client-side JavaScript that abstracts out the XMLHttp
communication, parameter passing, and response handling. Fortunately, there are frameworks
available for each of the three major application server technologies: PHP, JSP, and ASP.NET.

JPSpan
JPSpan is an open source Ajax framework for PHP (available for download at www.sourceforge.
net/projects/jpspan) that creates JavaScript wrappers for PHP objects and methods. It accom-
plishes this task by using reflection to inspect the composition of an object. Reflection is a common
feature of object-oriented languages, allowing developers to determine information about the
makeup of an object at runtime. By using reflection, JPSpan is able to create appropriate JavaScript
wrappers for each method of the object. These JavaScript functions handle the cross-browser cre-
ation of XHR objects as well as the instantiation of objects on the server and data type conversion
of arguments and results.

What’s more, since JPSpan is simply a series of PHP pages and JavaScript files, there is no real
installation to speak of. Simply download the files from the previously mentioned web site and
copy the JPSpan folder to the PHP web server.

16_109496 ch13.qxd 2/5/07 7:00 PM Page 407

Using JPSpan
Most of the coding for a JPSpan Ajax solution takes place on the server using a PostOffice object. The
PostOffice object is responsible for two things: generating the JavaScript for the client and handling Ajax
requests on the server. Generally speaking, the same PHP file handles both activities, depending on the
query string of the request. The standard way of doing this using JPSpan is to have the query string equal
to “client” when the JavaScript wrappers should be generated (for example, myserver.php?client) and
to omit the word “client” when server requests are being handled. The latter is actually handled by the
JavaScript wrappers directly, so developers never have to worry about the correct format for handling
requests.

The basic format for a JPSpan server page is as follows:

<?php
//include the necessary files
require_once ‘../JPSpan/JPSpan.php’;
require_once JPSPAN . ‘Server/PostOffice.php’;

//create the PostOffice object
$server = & new JPSpan_Server_PostOffice();

//add a handler for your class
$server->addHandler(new MyCustomObject());

//check the query string
if (isset($_SERVER[‘QUERY_STRING’])

&& strcasecmp($_SERVER[‘QUERY_STRING’], ‘client’) == 0){

//turn off JavaScript compression
define(‘JPSPAN_INCLUDE_COMPRESS’, false);

//output the JavaScript wrappers
$server->displayClient();

} else {

//include the error handler
require_once JPSPAN . ‘ErrorHandler.php’;

//handle incoming requests
$server->serve();

}
?>

The first two lines of code include the main JPSpan library (which defines a global constant called JPSPAN
containing the directory in which the framework was installed) and the PostOffice class that is used for
generating the client-side code for the solution. After that, an instance of JPSpan_Server_PostOffice is
created and stored in $server; this is the object that contains all of the Ajax logic.

Next, the PostOffice is assigned an object to handle using the addHandler() method. This method
accepts a single argument, which is an object (not a class) that should be available to the client and
whose functionality should be handled by the server. Any number of objects can be handled by a single
PostOffice.

408

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 408

After the objects have been added to the PostOffice, it’s time to determine whether the request should
return the JavaScript wrappers or handle a request. The if statement checks to see if the query string is
exactly equal to “client”, indicating that the JavaScript wrappers should be emitted to the client. This is
done using the displayClient() method, which outputs the JavaScript for all of the handled objects
(defining JSPAN_INCLUDE_COMPRESS as false turns off server-side code compression that’s intended to
remove white space due to performance issues). If the query string is not “client”, then the server begins
listening for requests. The first step is to include ErrorHandler.php, which handles any errors caused
by the request. Then, the serve() method is called to handle the request.

To include the JavaScript in a page, include the file in a <script/> tag, such as:

<script type=”text/javascript” src=”/myserver.php?client”></script>

This single line includes all of the generated JavaScript for each object handled by the PostOffice. For
each of the handled objects, a JavaScript constructor is defined. This constructor is the name of the PHP
class in all lowercase (due to a quirk in PHP’s implementation of reflection) and accepts a single object
containing callback functions for each PHP method. For example, consider the following PHP class:

class MyCustomObject {
function MyCustomObject() {

if (!isset($_SESSION[‘message’])) {
$_SESSION[‘message’] = ‘Hello world!’;

}
}

function getMessage() {
return $_SESSION[‘message’];

}

function setMessage($message) {
$_SESSION[‘message’] = $message;
return true;

}
}

In this class there is a constructor and two methods. The constructor simply stores a message in the ses-
sion so that the other methods have data to work with. The getMessage() method returns the value
stored in the session, while the setMessage() method changes that value to something else. It’s impor-
tant to note that this value must be stored in the session because this object doesn’t persist from request
to request. Each request sent back to the server creates a new instance of MyCustomObject, thus dis-
allowing access to property values stored in a previous instance.

The generated JavaScript contains a constructor named mycustomobject (all lowercase due to a quirk
in the PHP implementation of reflection). When instantiated, this object contains methods called
getmessage() and setmessage() (again, both in all lowercase) that are used to invoke the methods of
the same name on the server.

When creating an instance of mycustomobject, you must pass in a single argument. This argument is
an object containing methods called getmessage() and setmessage() as well. The difference is that

409

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 409

these methods are actually callback functions that receive the result of the server request as their only
argument. For instance:

var oHandlers = {
getmessage : function (oResult) {

alert(“Got: “ + oResult);
},

setmessage : function (oResult) {
if (oResult) {

alert(“Message set.”);
} else {

alert(“An error occurred while setting the message.”);
}

}
};

var oObject = new mycustomobject(oHandlers);

oObject.setmessage(“Welcome”);

//other logic here

oObject.getmessage(); //outputs “Got: Welcome”

In this example, oHandlers is an object containing callback functions for getmessage() and
setmessage(). Whenever either one of these methods is called, the result is automatically passed into
the corresponding callback function. This object is passed into the mycustomobject constructor to cre-
ate a new object. After that, each of the two methods is called. The oResult value for the setmessage()
callback should be a Boolean value of true; if it’s not, that means that something went wrong on the
server. For the getmessage() callback, oResult is just the string value that was stored, so it is dis-
played in an alert.

As you can see, there is no XHR programming required to make JPSpan code work. Using reflection, all
of the necessary hooks are accounted for, making it possible to focus on the server-side portion of the
code without worrying about the client-server communication.

Type Translation
Anytime data is being sent from the server to the client or vice versa, data must be provided in a way
that both can understand. If this isn’t possible, then the data must be translated. JPSpan includes three
PHP files responsible for this data translation: Serializer.php, Types.php, and Unserializer.php.

Serializer.php contains the mappings for translation from PHP to JavaScript in an array called
_JPSPAN_SERIALIZER_MAP. This array contains an element for each PHP type that can be represented
in JavaScript:

$GLOBALS[‘_JPSPAN_SERIALIZER_MAP’] = array(
‘string’=>array(

‘class’=>’JPSpan_SerializedString’,
‘file’=>NULL
),

410

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 410

‘integer’=>array(
‘class’=>’JPSpan_SerializedInteger’,
‘file’=>NULL
),

‘boolean’=>array(
‘class’=>’JPSpan_SerializedBoolean’,
‘file’=>NULL
),

‘double’=>array(
‘class’=>’JPSpan_SerializedFloat’,
‘file’=>NULL
),

‘null’=>array(
‘class’=>’JPSpan_SerializedNull’,
‘file’=>NULL
),

‘array’=>array(
‘class’=>’JPSpan_SerializedArray’,
‘file’=>NULL
),

‘object’=>array(
‘class’=>’JPSpan_SerializedObject’,
‘file’=>NULL
),

‘jpspan_error’=>array(
‘class’=>’JPSpan_SerializedError’,
‘file’=>NULL
),

);

Each item in the array is an associative array containing two properties: class, which indicates the
serializer class to use for translating this type of data, and file, which indicates the file in which the
specified class exists. In this example, file is NULL for all items because these are default mappings
contained within the same file. If you were to override the default mapping, you would need to provide
the location for the custom class.

The files Unserializer.php and Types.php are used for conversion from JavaScript to PHP. Types.php
contains definitions for two base types: JPSpan_Object and JPSpan_Error; all JavaScript values are con-
verted into one of these two types. The JPSpan_Object class is simply an empty class that serves as a base
for more specific implementations; JPSpan_Error has the properties code, name, and message.

The Unserializer.php file uses two classes for deserialization, both of which are found in the
unserializer folder: JPSpan_Unserializer_XML in XML.php and JPSpan_Unserializer_PHP in
PHP.php. By default, JPSpan uses XML to contain all of the information about a remote method call. For
example, the data being sent to the server for a call to setMessage() with a string of “Welcome” as the
only argument looks like this:

<r><a><e k=”0”><s>Welcome</s></e></r>

Note that there is no mention of the actual method name being called. The <r/> element is simply the
root of the XML document while the <a/> element represents an array of values (the arguments). Inside
of the array is any number of elements, each represented by an <e/> element containing a property

411

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 411

called k, which indicates the key value for associative arrays or the index for sequential arrays (in this
case it’s an index). Within each <e/> element is an element representing the type of value being passed.
In the case of setMessage(), the argument is a string, so the <s/> element is used to surround the
actual string value. There are also other elements used for other types of values, such as for
Boolean values and <i/> for integer values.

This information is useful if you need to augment JPSpan for custom data types. Otherwise, you never
need to touch these files. The default JPSpan settings should be good enough for most needs.

Error Handling
Errors can occur with any application, especially when communicating between client and server.
JPSpan has a means of trapping nonfatal errors that occur when processing the request and having them
appear as standard client-side exceptions. The ErrorHandler.php file is a generic handler that propa-
gates nonfatal errors to the client. It can handle general PHP errors as well as those caused specifically
by JPSpan components. There are two basic configuration settings for error handling.

❑ The first setting is JPSPAN_ERROR_MESSAGES, which is a Boolean value that determines how
much information to send to the client when a generic PHP error occurs. When defined as TRUE,
detailed error messages are returned only for JPSpan-specific exceptions; PHP errors simply
return an error that says, “Server unable to respond.” If defined as FALSE, verbose error infor-
mation is returned for all types of errors. This setting is defined such as:

if (!defined(‘JPSPAN_ERROR_MESSAGES’)){
define (‘JPSPAN_ERROR_MESSAGES’, TRUE);

}

❑ The second setting is JPSPAN_ERROR_DEBUG, which allows even more information to be sent to
the client. When this setting is set to TRUE, two additional pieces of information are returned
with error messages: the filename in which the error occurred and the line number that caused
the error. Since this information is sensitive, it is set to FALSE by default. You can change the set-
ting by doing the following:

if (!defined(‘JPSPAN_ERROR_DEBUG’))
{

define (‘JPSPAN_ERROR_DEBUG’, TRUE);
}

This setting should be set to TRUE only while debugging; production code should have this set-
ting as FALSE.

Should you decide to modify either of these settings, this code should occur before inclusion of
ErrorHandler.php in the server page.

JPSpan Example
In order to truly understand how to use JPSpan, it’s helpful to look at a familiar example. Here, you will
be rebuilding the example from Chapter 2, retrieving data about a customer when given a customer ID.
The same database table, Customers, will be used, as will the same sample data.

412

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 412

The CustomerInfo Class
The most important part of this example is the CustomerInfo class, which contains the logic used to com-
municate with the database. For simplicity, this class has only one method: getCustomerInfo(). This
method accepts a single argument, the customer ID, and returns a string of information about the customer:

<?php

class CustomerInfo {

function getCustomerInfo($sId) {

if (is_numeric($sId)) {

//variable to hold customer info
$sInfo = “”;

//database information
$sDBServer = “your.databaser.server”;
$sDBName = “your_db_name”;
$sDBUsername = “your_db_username”;
$sDBPassword = “your_db_password”;

//create the SQL query string
$sQuery = “Select * from Customers where CustomerId=”.$sId;

//make the database connection
$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);
@mysql_select_db($sDBName) or $sInfo = “Unable to open database”;

if ($sInfo == “”) {
if($oResult = mysql_query($sQuery)

and mysql_num_rows($oResult) > 0) {
$aValues = mysql_fetch_array($oResult,MYSQL_ASSOC);
$sInfo = $aValues[‘Name’].”
”.$aValues[‘Address’].”
”.

$aValues[‘City’].”
”.$aValues[‘State’].”
”.
$aValues[‘Zip’].”

Phone: “.
$aValues[‘Phone’].”
”.
“”.
$aValues[‘Email’].””;

mysql_free_result($oResult);
} else {

$sInfo = “Customer with ID $sId doesn’t exist.”;
}

}
mysql_close($oLink);

} else {
$sInfo = “Invalid customer ID.”;

}

return $sInfo;

}

}

?>

413

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 413

The getCustomerInfo() method is fairly straightforward. It does a database lookup based on the cus-
tomer ID that is passed in as an argument. The logic is the same as that in the examples in Chapter 2.

This class is stored in a file named CustomerInfo.php so that it can be included in the JPSpan
server page.

Creating the Server Page
The server page is very similar to the sample page shown earlier in this section. In fact, there are only
two changes to the overall code:

<?php
//include the necessary files
require_once ‘../JPSpan/JPSpan.php’;
require_once JPSPAN . ‘Server/PostOffice.php’;

//include the CustomerInfo class
require_once ‘CustomerInfo.php’;

//create the PostOffice object
$server = & new JPSpan_Server_PostOffice();

//add a handler for your class
$server->addHandler(new CustomerInfo());

//check the query string
if (isset($_SERVER[‘QUERY_STRING’])

&& strcasecmp($_SERVER[‘QUERY_STRING’], ‘client’) == 0){

//turn off JavaScript compression
define(‘JPSPAN_INCLUDE_COMPRESS’, false);

//output the JavaScript wrappers
$server->displayClient();

} else {

//include the error handler
require_once JPSPAN . ‘ErrorHandler.php’;

//handle incoming requests
$server->serve();

}
?>

The highlighted lines are necessary to include the CustomerInfo class and add handling for a
Customer object, respectively. This file is saved as CustomerInfoServer.php.

Creating the Client Page
Now that the CustomerInfo class is incorporated into the server page, it’s time to construct the client
page. Once again, this code is very similar to that of Chapter 2:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

414

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 414

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>JPSpan Example</title>
<script type=”text/javascript”src=”CustomerInfoServer.php?client”></script>
<script type=”text/javascript”src=”JPSpanExample.js”></script>

</head>
<body>

<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type=”text” id=”txtCustomerId” value=”” /></p>
<p><input type=”button” value=”Get Customer Info”

onclick=”requestCustomerInfo()” /></p>
<div id=”divCustomerInfo”></div>

</body>
</html>

The first highlighted line includes the JavaScript necessary to call the JPSpan server. Note that this exam-
ple assumes CustomerInfoServer.php to be in the same directory as the client page. The second line
includes the JavaScript file necessary to use the JPSpan wrappers. This file contains the following code:

var oHandlers = {
getcustomerinfo : function (sInfo) {

displayCustomerInfo(sInfo);
}

};

var oInfo = new customerinfo(oHandlers);

function requestCustomerInfo() {
var sId = document.getElementById(“txtCustomerId”).value;
oInfo.getcustomerinfo(sId);

}

function displayCustomerInfo(sText) {
var divCustomerInfo = document.getElementById(“divCustomerInfo”);
divCustomerInfo.innerHTML = sText;

}

The differences in this code versus the examples in Chapter 2 are the use of the JPSpan methods. First, an
object called oHandlers is created to contain the callback function for getcustomerinfo(). Within this
callback function, the displayCustomerInfo() function is called (which is unchanged from Chapter 2).
The information returned from the server is in HTML format, so it can be passed directly. Next, an
instance of customerinfo is created and stored in oInfo so that it can be used to retrieve the data.

As you can see from the small amount of JavaScript code necessary to make this example work, JPSpan
eliminates much of the client-side development. In addition, it allows work on the server to focus purely
on the logic necessary to perform the task in question rather than worrying about data type formatting
and how the client should be communicating with the server.

Summary of JPSpan
JPSpan is easy to use and integrates well with PHP. It can cope with classes that use the built-in types
and more complex ones if they themselves are built from these. If JPSpan has one main failing, it is that

415

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 415

the online documentation is somewhat sparse. Although PHP is covered extensively by numerous sites,
if you need to customize JPSpan itself, you will need to dig into the source files and examples included
in the basic installation.

DWR
Direct Web Remoting (DWR) is an Ajax framework for Java/JSP available for download at http://
getahead.ltd.uk/dwr. DWR works similarly to JPSpan in that it uses Java’s version of reflection to
examine Java bean classes and then create JavaScript wrappers to call the various methods. Also like
JPSpan, DWR includes its own JavaScript library for cross-browser Ajax communication, freeing the
developer from worrying about browser incompatibilities. DWR assumes the use of Apache Tomcat
(http://tomcat.apache.org).

Using DWR
Setting up DWR in your web application is very simple. The first step is to place the dwr.jar file into
the WEB-INF/lib directory. The next step is to edit the web.xml file contained in WEB-INF. There are
two sections that need to be added.

❑ The first section describes the DWR invoker servlet:

<servlet>
<servlet-name>dwr-invoker</servlet-name>
<display-name>DWR Servlet</display-name>
<servlet-class>uk.ltd.getahead.dwr.DWRServlet</servlet-class>
<init-param>

<param-name>debug</param-name>
<param-value>true</param-value>

</init-param>
</servlet>

This code needs to go with the other <servlet/> tags inside of web.xml.

❑ The second section that needs to be added is as follows:

<servlet-mapping>
<servlet-name>dwr-invoker</servlet-name>
<url-pattern>/dwr/*</url-pattern>

</servlet-mapping>

This information provides the URL that can be used to call the DWR invoker and must be
located alongside any other <servlet-mapping/> tags in the file.

DWR expects that the classes you use will be Java beans, meaning that they can be
created without passing any information to the constructor. This is important
because the server-side objects don’t persist from request to request and need to be
created from scratch each time.

416

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 416

The final step is to create a file called dwr.xml in the WEB-INF directory. This file specifies the Java
classes that should be wrapped by DWR for use on the client:

<!DOCTYPE dwr PUBLIC
“-//GetAhead Limited//DTD Direct Web Remoting 1.0//EN”
“http://www.getahead.ltd.uk/dwr/dwr10.dtd”>

<dwr>
<allow>

<create creator=”new” javascript=”JDate”>
<param name=”class” value=”java.util.Date”/>

</create>
<create creator=”new” javascript=”Demo”>

<param name=”class” value=”your.java.Bean”/>
</create>

</allow>
</dwr>

This is the example file suggested on DWR’s web site. The root element, <dwr/>, contains an <allow/>
element. Each of the <create/> elements contained within specify objects that are allowed to be created
by JavaScript. In each <create/> element, the javascript attribute specifies the name that must be
used in JavaScript to invoke the Java bean. Since there is already a Date object in JavaScript, this exam-
ple specifies the constructor name JDate for using the Java Date object. The <param/> element specifies
the complete class name for the bean to use. You can add any number of <create/> elements to allow
JavaScript wrappers for your custom beans.

After making these changes, you can go to the following URL to test the installation:

http://hostname/webappName/dwr/

In this URL, hostname should be your machine name and webappName should be the name of your web
application (the folder name in which the files are contained). This redirects you to a test suite page that
displays all of the Java beans that are available for remote invocation. Clicking on one of these class
names brings up a test suite page that allows direct invocation of certain methods (see Figure 13-1).

Figure 13-1 displays the test page for the Java Date object. It displays helpful information such as what
JavaScript URLs to include if you want to use the object, as well as warnings about using overloaded
methods.

If you see an error message when going to the test page that seems to originate from one of the Java
XML classes, it’s possible that you have two copies of the XML API on your system. To remedy this sit-
uation, go to the installation folder for Tomcat, which is normally named jakarta-tomcat-5.x.x,
and open the folder common\endorsed. Rename the file xml-apis.jar to xml-apis.jar.bak. If
this doesn’t fix the problem, try restarting Tomcat.

To use a Java bean from JavaScript, you need to include at least two files. The first needs to be a URL that
tells DWR what bean you want to use. That URL is in the following format:

<script type=”text/javascript” src=”/webappName/dwr/interface/bean.js”></script>

417

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 417

Figure 13-1

In this example, webappName is once again the directory in which your web application resides and
bean is the name used in the javascript attribute of the <create/> element relating to the specific
bean you want to use. For example, to use the Java Date object from the example dwr.xml file, include
this in your page:

<script type=”text/javascript” src=”/webappName/dwr/interface/JDate.js”></script>

There should be one of these <script/> elements for each Java bean that is to be used on the client.
After that, you need to include the DWR JavaScript engine:

<script type=”text/javascript” src=”/webappName/dwr/engine.js”></script>

It’s this file that’s responsible for handling the cross-browser communication between client and server.

On the client side, each bean is encapsulated in an object with methods identical to those that exist on
the server. For example, the Java Date object is represented through a JavaScript object called JDate,
which has all of the methods of the Java Date object. Unlike using JPSpan, DWR doesn’t require you to
create a new object for each call; every method is treated as static on the client. Additionally, each
method accepts one extra argument: a callback function that accepts the return value from the method
call. To call the Date object’s toGMTString() method, for instance, the code looks like this:

function handleGMTStringResponse(sResponse) {
alert(sResponse);

}

JDate.toGMTString(handleGMTStringResponse);

418

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 418

Note again that no objects need to be created; the toGMTString() method is called directly off of the
JDate object. Since toGMTString() doesn’t accept any arguments, the only argument passed in is the
callback function, handleGMTStringResponse(). If the method did accept arguments, then the call-
back function would be the last argument.

DWR Example
Since DWR works in a similar fashion as JPSpan, it makes sense to recreate the same example. Once again,
you’ll be pulling information out of the database about a specific customer. In order to access a MySQL
database from a Java, you’ll need to download MySQL Connector/J from www.mysql.com/products/
connector/j. Install the most recent version using the instructions provided with the download.

Next, create a new directory under webapps called DwrExample. Under that directory, create a WEB-INF
directory with two subdirectories: classes and lib. Copy the web.xml file from another application or
create one using the code in the previous section and place it in the WEB-INF directory. Also copy the
dwr.xml file from the previous section into this directory.

All of this code is available for downloading at www.wrox.com. You may download this example and
simply copy it into your webapps directory.

The CustomerInfo Class
As with the previous example, the CustomerInfo class handles most of the work:

package wrox;
import java.sql.*;

public class CustomerInfo {

public String getCustomerInfo(int id) {

//more code here
}

}

In order to use databases, the java.sql package is included in this file. These objects will be used in the
getCustomerInfo() method to retrieve the information from the database. The very first step in that
method is to attempt to create the MySQL driver for database access:

package wrox;
import java.sql.*;

public class CustomerInfo {

public String getCustomerInfo(int id) {
try {

Class.forName(“com.mysql.jdbc.Driver”).newInstance();

//more code here

} catch (Exception e){

419

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 419

return “An error occurred while trying to get customer info.”;
}

}
}

This is the standard way of creating database drivers in Java, passing in the fully qualified class name to
Class.forName(). Calling newInstance() is necessary due to some quirkiness in Java implementa-
tions. This effectively loads the database driver (or causes an error, which is caught and an error message
is returned).

Next, a connection must be made to the database server. This is done using a URL in the following format:

jdbc:mysql://dbservername/dbname?user=your_user_name&password=your_password

The dbservername may be localhost but may also be a full domain name for the database server; the
dbname should be the name of the database being accessed. Of course, you need to provide the appro-
priate username and password for that database as well. This all comes together as an argument to
getConnection() method for DriverManager:

package wrox;
import java.sql.*;

public class CustomerInfo {

public String getCustomerInfo(int id) {
try {

Class.forName(“com.mysql.jdbc.Driver”).newInstance();

String dbservername = “localhost”;
String dbname = “your_db_name”;
String username = “your_user_name”;
String password = “your_password”;
String url = “jdbc:mysql://” + dbservername + “/” + dbname + “?user=”

+ username + “&password=” + password;

Connection conn = DriverManager.getConnection(url);

//more code here

} catch (Exception e){
return “An error occurred while trying to get customer info.”;

}
}

}

This new section of code creates a connection to the database and stores it in the variable conn, which
now can be used to run queries:

package wrox;
import java.sql.*;

public class CustomerInfo {

420

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 420

public String getCustomerInfo(int id) {
try {

Class.forName(“com.mysql.jdbc.Driver”).newInstance();

String dbservername = “localhost”;
String dbname = “your_db_name”;
String username = “your_user_name”;
String password = “your_password”;
String url = “jdbc:mysql://” + dbservername + “/” + dbname + “?user=”

+ username + “&password=” + password;

Connection conn = DriverManager.getConnection(url);

String sql = “Select * from Customers where CustomerId=” + id;
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql);
boolean found = rs.next();

//more code here

} catch (Exception e){
return “An error occurred while trying to get customer info.”;

}
}

}

Here, a Statement object is created using the createStatement() method. This object can then be
used to execute the query by passing the SQL query into executeQuery(), which returns a ResultSet
object. The next() method on a ResultSet object returns false if there are no matching records or
true if there’s at least one (in this case, there should be only one). So if found is true, that means the
data is available and can be used. All that’s left is to return the data formatted appropriately:

package wrox;
import java.sql.*;

public class CustomerInfo {

public String getCustomerInfo(int id) {
try {

Class.forName(“com.mysql.jdbc.Driver”).newInstance();

String dbservername = “localhost”;
String dbname = “your_db_name”;
String username = “your_user_name”;
String password = “your_password”;
String url = “jdbc:mysql://” + dbservername + “/” + dbname + “?user=”

+ username + “&password=” + password;

Connection conn = DriverManager.getConnection(url);

String sql = “Select * from Customers where CustomerId=” + id;
Statement stmt = conn.createStatement();

421

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 421

ResultSet rs = stmt.executeQuery(sql);
boolean found = rs.next();

StringBuffer message = new StringBuffer();

if (found) {
message.append(rs.getString(“Name”));
message.append(“
”);
message.append(rs.getString(“Address”));
message.append(“
”);
message.append(rs.getString(“City”));
message.append(“
”);
message.append(rs.getString(“State”));
message.append(“
”);
message.append(rs.getString(“Zip”));
message.append(“

”);
message.append(“Phone: “ + rs.getString(“Phone”));
message.append(“
<a href=\”mailto:”);
message.append(rs.getString(“Email”));
message.append(“\”>”);
message.append(rs.getString(“Email”));
message.append(“”);

} else {
message.append(“Customer with ID “);
message.append(id);
message.append(“ could not be found.”);

}

rs.close();
conn.close();

return message.toString();
} catch (Exception e){

return “An error occurred while trying to get customer info.”;
}

}
}

In this final section of the code, a StringBuffer object is created to hold the response that will be sent
back to the client. If a record is found, then a block of text with HTML formatting is returned, which is
done by using the getString() method of the RecordSet, passing in the name of each column. If a
record is not found, an error message is built up in the message object. Then, the RecordSet and
Connection are both closed and the message is returned by calling toString().

Save this class in CustomerInfo.java. You’ll need to compile the class and place it into the WEB-INF/
classes/wrox directory to be accessible to DWR.

Updating dwr.xml
In order for DWR to know that you need this class on the client, some additions to dwr.xml are neces-
sary. The following code must be added inside of the <allow/> element:

<create creator=”new” javascript=”CustomerInfo”>
<param name=”class” value=”wrox.CustomerInfo” />

</create>

422

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 422

After making this change, restart Tomcat to ensure that the new settings have been picked up. Now, you
can go to http://localhost/DwrExample/dwr to verify that the CustomerInfo class is being han-
dled properly. If it is, you should see it listed on the test page and be able to call getCustomerInfo().

Creating the Client Page
The client page is the same as the JPSpan example, with the obvious difference being the inclusion of the
DWR files:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>JPSpan Example</title>
<script type=”text/javascript”

src=”/DwrExample/dwr/interface/CustomerInfo.js”></script>
<script type=”text/javascript”src=”/DwrExample/dwr/engine.js”></script>
<script type=”text/javascript”src=”DwrExample.js”></script>

</head>
<body>

<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type=”text” id=”txtCustomerId” value=”” /></p>
<p><input type=”button” value=”Get Customer Info”

onclick=”requestCustomerInfo()” /></p>
<div id=”divCustomerInfo”></div>

</body>
</html>

There are three JavaScript files included in this page. The first is the JavaScript wrapper for the
CustomerInfo class, the second is the DWR JavaScript engine, and the third is the code to tie it all
together:

function handleGetCustomerInfoResponse(sInfo) {
displayCustomerInfo(sInfo);

}

function requestCustomerInfo() {
var sId = document.getElementById(“txtCustomerId”).value;
CustomerInfo.getCustomerInfo(parseInt(sId), handleGetCustomerInfoResponse);

}

function displayCustomerInfo(sText) {
var divCustomerInfo = document.getElementById(“divCustomerInfo”);
divCustomerInfo.innerHTML = sText;

}

As with the JPSpan example, you can see the advantage of using DWR for Ajax communication: the
code becomes much simpler. By using only a callback function and the generated CustomerInfo object,
all of the client-server communication is hidden from the developer.

423

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 423

More about dwr.xml
The dwr.xml file used in the previous example was fairly simple, including a <create/> element for
the CustomerInfo object with basic settings:

<create creator=”new” javascript=”CustomerInfo”>
<param name=”class” value=”wrox.CustomerInfo” />

</create>

This code tells DWR to create a CustomerInfo object using the Java new operator and allow the client to
call any of the methods on that object. Calling getCustomerInfo() from the client performs the follow-
ing on the server:

CustomerInfo info = new CustomerInfo();
String result = info.getCustomerInfo(id);

For many cases, this approach is all that is needed. However, DWR provides several customization
options for more complicated use cases.

Excluding Methods
Suppose that there are methods on a Java bean that should not be called by the client. This is possible
when a bean is used both for client-side and server-side execution. You can exclude a method from the
JavaScript wrapper by creating an <exclude/> element inside of the <create/> element. For example,
the following excludes the toGMTString() method from being called on the Date class:

<create creator=”new” javascript=”JDate”>
<param name=”class” value=”java.util.Date”/>
<exclude method=”toGMTString”/>

</create>

If an attempt is made to call this method on the client, a JavaScript runtime error will occur.

The Script Creator
As mentioned previously, DWR creates beans by using the Java new operator by default. However, there
are some objects that cannot be created by simply using a constructor; they may be accessible only via
the methods on another class or from a call to a static getInstance() method. An example of this is the
EmailValidator class from the org.apache.commons.validator package, which does not have a
public constructor. In order to create an instance of EmailValidator, it’s necessary to use the static
method getInstance(). To provide for this, DWR allows you to create a small script section for the
creation of an object.

Using BeanShell, one of the Bean Scripted Framework (BSF) languages, you can provide code to create
the instance of the class. To do so, the creator attribute of the <create/> element must be set to
“script”. The <param/> element that previously indicated the Java class to instantiate now must spec-
ify the scripting language as BeanShell. Then, a second <param/> element is necessary, with its name
attribute set to “script”. Inside of this element is where the BeanShell code must import the necessary
Java packages and return the object instance. For example, to create an instance of EmailValidator, use
the following version of the <create> element:

424

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 424

<create creator=”script” javascript=”EmailValidator”>
<param name=”language” value=”beanshell”/>
<param name=”script”>

import org.apache.commons.validator.EmailValidator;
return EmailValidator.getInstance();

</param>
</create>

Note that there is no mention of a Java class outside of the BeanShell code. Any class of object may be
created and returned through the script.

The Spring Creator
The Spring framework (www.springframework.org) is designed to bring together a number of differ-
ent Java technologies as well as enable practical code reuse and sophisticated management of Java
beans. It is a lightweight replacement for parts of the Java 2 Enterprise Edition (J2EE), which is used to
create highly scalable applications where high numbers of users are expected to use the system simulta-
neously. In these situations, resources such as memory need to be carefully managed. DWR provides
hooks to allow usage of the Spring framework.

To access an enterprise bean from the client, you need to specify the creator attribute as “spring”.
Then, provide <param/> elements specifying the name of the bean and the location of the Spring config-
uration file, such as:

<create creator=”spring” javascript=”MyBean”>
<param name=”beanName” value=”MyBean”/>
<param name=”location” value=”beans.xml”/>

</create>

It is beyond the scope of this book to discuss the full extent of the Spring framework. For more informa-
tion on the Spring framework, visit www.springframework.org; for more information on the Spring
integration in DWR, visit http://getahead.ltd.uk/dwr/server/spring.

The scope Attribute
The <create/> element can also accept an attribute named scope, which defines the scope in which the
object should be created and stored. This value can be any one of standard Java bean scopes:

❑ request: The object is created at the time of a request and destroyed after a response has been
sent. This is the default if not otherwise specified.

❑ page: For the purposes of DWR, essentially the same as request.

❑ session: The object is created and then stored and reused for all requests during the session. In
this way, you can set object values and access them in later requests.

❑ application: The object is created and used by every session connecting to the web application.

You can read more on BeanShell at www.beanshell.org/ and see other languages
supported by BSF at http://jakarta.apache.org/bsf/index.html.

425

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 425

If you want to use the CustomerInfo class across a session, for example, the syntax would be as follows:

<create creator=”new” javascript=”Customer” scope=”session”>
<param name=”class” value=”wrox.Customer”/>

</create>

The scope attribute is particularly useful when data needs to be stored throughout the context of a ses-
sion, allowing the client to set and get information off of a Java bean.

Converters
Generally speaking, DWR is very good at converting Java data types to JavaScript data types and vice
versa. Strings in Java get mapped to strings to JavaScript, integers and floats in Java get mapped to num-
ber in JavaScript, and hashtables in Java get mapped to objects in JavaScript. To provide these mappings,
DWR uses converters.

Converters simply convert data types between Java and JavaScript. There are a number of predefined con-
verters that ship with DWR, such as the DateConverter, which works between the java.util.Date
and the JavaScript Date object, the ArrayConverter, and the StringConverter. There is also the
BeanConverter, which works between beans and JavaScript objects. This particular converter is disabled
by default for security reasons. You can allow it by including a single line of code within the <allow/>
element in dwr.xml:

<dwr>
<allow>

<convert converter=”bean” match=”your.full.package.BeanName”/>
<!-- other allowed converters and creators -->
</allow>

</dwr>

The match attribute specifies which bean to allow. You can allow an entire package by using an asterisk
as a wildcard:

<convert converter=”bean” match=”your.full.package.*”/>

Also, it’s possible to exclude certain properties from being converted by adding a <param/> element
like this:

<convert converter=”bean” match=”your.full.package.BeanName”>
<param name=”exclude” value=”property1, property2”/>

</convert>

The properties and methods you want to exclude should be separated by a comma and a space.
Alternatively, and more safely, you can specify which properties can be converted (all others are
ignored):

<convert converter=”bean” match=”your.full.package.BeanName”>
<param name=”include” value=”property1, property2”/>

</convert>

426

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 426

Summary of DWR
DWR is an excellent way to harness the power of Java for use in web applications. Joe Walker, the pri-
mary developer of DWR, constantly is updates the framework with new functionality designed to make
web applications more responsive. Since DWR works with the literally hundreds of available Java pack-
ages, chances are that there’s something already available that can perform the operations necessary for
your application. There is also the advantage that there is no shortage of information, tutorials, and
experts willing to share their knowledge about the Java platform.

Ajax.NET Professional
Ajax.NET Professional (available at www.ajaxpro.info) is an Ajax framework designed for use with the
.NET framework, specifically ASP.NET. As with JPSpan and DWR, Ajax.NET allows developers to create
classes on the server that can be accessed via the client. This is done by once again abstracting out the
communication between client and server, providing cross-browser communication behind the scenes.

This framework uses the .NET version of reflection to inspect the classes and create a JavaScript inter-
face. Ajax.NET Professional also takes advantage of a .NET feature called attributes, which are used to
mark specific methods that should be available to the client. This allows developers to concentrate on
the true object-oriented design without worrying about exposing sensitive methods to the client.

Using Ajax.NET Professional
To use Ajax.NET Professional, you need to be running IIS version 5 or greater and have the .NET
Framework installed. Download the package of DLLs from the web site. There are two sets of DLLs, one
for use with .NET 1.1 and one for .NET 2.0. If you already have an ASP.NET project (Visual Studio .NET)
or a web site (Visual Studio Web Developer Express or Visual Studio 2005), you can use it with Ajax.NET
Professional by referencing the appropriate DLLs. If you are using .NET 1.1, add a reference to
AjaxPro.dll to your project; for .NET 2.0, add a reference to AjaxPro.2.dll. This should be done for
every project/web site that needs to reference Ajax.NET Professional.

Next, open up web.config and add the following inside of the <system.web/> element:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.web>
<httpHandlers>

<add verb=”POST,GET” path=”ajaxpro/*.ashx”
type=”AjaxPro.AjaxHandlerFactory, AjaxPro.2”/>

</httpHandlers>
<!-- more code here -->

</system.web>
</configuration>

For more information on which converters are available and which need to be
enabled before they can be used in your code, see http://getahead.ltd.uk/dwr/
server/dwrxml/converters.

427

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 427

These lines create a new HTTP handler for the web application. For all POST and GET requests to
the server that come through the path ajaxpro and end with an extension of .ashx, the
AjaxPro.AjaxHandlerFactory will be used instead of the default handler (this has no effect on other
requests coming into the server).

Marking Methods
Ajax.NET Professional expects the developer to mark any methods that should be available on the client
with the AjaxPro.AjaxMethod attribute. This should be placed just before the method definition in the
source code. For example, consider this simple C# class:

namespace AjaxNET.Example {
public class ExampleClass {

[AjaxPro.AjaxMethod]
public String GetMessage() {

return “Hello world!”;
}

}
}

The highlighted line is the attribute necessary for publishing the GetMessage() method for client-side
use. There is one additional step necessary for generating the JavaScript wrappers.

When the page that needs to use this class is instantiated, it must indicate which classes should be avail-
able to the client. This is done by calling AjaxPro.Utility.RegisterTypeForAjax() and passing in
the type of class to marshal, such as:

AjaxPro.Utility.RegisterTypeForAjax(typeof(AjaxNET.Example.ExampleClass));

This call should take place in the Page_Load method of an ASP.NET page to ensure that the class will be
available when called and also includes all of the necessary JavaScript resources.

Using the JavaScript Wrappers
The JavaScript wrappers generated for .NET classes function similarly to those created by DWR; each
method of an object becomes a static method of a corresponding JavaScript. Arguments are passed in as
if it was a normal JavaScript function, and the last argument is a callback function to handle the server
response.

Callback functions in Ajax.NET Professional receive a response object as their only argument. This object
contains three properties: error, which is set to true if there was a communication error; request,
which contains the XMLHttp object used to make the request; and value, which is the return value of
the method call. For example, the GetMessage() method in the previous example can be called like this:

Make sure you have at least one <form runat=”server”> element in your page, as
Ajax.NET Professional uses this to insert the JavaScript files.

428

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 428

function handleResponse(oResponse) {
if (!oResponse.error) {

alert(oResponse.value);
}

}
AjaxNET.Example.ExampleClass.GetMessage(handleResponse);

In most cases, it will be necessary to look only at the response object’s error and value properties, as in
this example. This creates an asynchronous request to the server, ultimately executing the appropriate
method. However, Ajax.NET Professional also offers the ability to make a call synchronously.

To create a synchronous call to the server, you need only omit the callback function when calling the
method. If the last argument isn’t a function, Ajax.NET Professional assumes that the call should be
made synchronously and instead of using a callback function it returns the response object as the func-
tion value:

var oResponse = AjaxNET.Example.ExampleClass.GetMessage();
if (!oResponse.error) {

alert(oResponse.value);
}

The response object returned from a synchronous call is the exact same object that would have been
returned from an asynchronous call. Once again, it’s best to check for errors before using the value that
was returned.

Type Conversion
By default, Ajax.NET Professional handles the seamless conversion of JavaScript data types and objects
to .NET and back. Additionally, there is some built-in support for common .NET complex types, such as
an ADO.NET DataSet. Ajax.NET Professional creates appropriate JavaScript object definitions. When it
provides such an interface, the same properties and methods are available on the client as there on the
server, the only difference being that it is completely read-only.

It’s also possible to return a custom class to JavaScript. To do so, it must be marked with the
Serializable attribute so that Ajax.NET Professional can convert it into a JSON format. For example,
consider a class that represents a web site user:

[Serializable()]
public class User
{

private string _userName = “”;
private string _userEmail = “”;

public string UserName

As mentioned throughout the book, synchronous calls should be used sparingly if at
all. Every synchronous requests locks the user interface while waiting for a
response, so it could drastically effect the experience of users should a call take
longer than usual to return.

429

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 429

{
get
{

return _userName;
}

}

public string UserEmail
{

get
{

return _userEmail;
}

}
public User(string Name, string Email)
{

_userName = Name;
_userEmail = Email;

}
}

Assuming that a User object was returned by a method named GetUserFromId(), the properties
would be available in JavaScript, such as:

MyClass.GetUserFromId(6, callback);

function callback(oResponse)
{

var oUser = oResponse.value;
alert(oUser.UserName + “\n” + oUser.UserEmail);

}

Session Access
Ajax.NET Professional can also allow access to objects in the session scope. This is accomplished by
passing a parameter to the AjaxPro.AjaxMethod() attribute specifying the level of access that is
needed. The access level is specified by an enumeration called HttpSessionStateRequirement, which
has three values: Read, Write, and ReadWrite. This type of access is established like this:

[AjaxPro.AjaxMethod(HttpSessionStateRequirement.Read)]
public string MyMethod()
{

//code here
}

This code specifies that MyMethod() should have read access to variables that are in the session scope
when called from the client. Without specifying this argument to the AjaxPro.AjaxMethod() attribute,
the method would be unable to access HttpContext.Current.Session when called using JavaScript.

When specifying access to session-level variables, it’s best to go with the lowest per-
mission level necessary to complete the task. For instance, don’t specify ReadWrite
if you only need Read.

430

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 430

Ajax.NET Professional Example
Once again, this example focuses on retrieving customer information from the server. However, since
.NET applications typically use SQL Server, this example assumes that the same Customers table used
in the previous examples exists in a SQL Server database.

A SQL script for creating the Customers table in SQL Server is included in the code example download
at www.wrox.com.

This example requires a web site (.NET 2.0); you can either create a new web site or add on to an existing
one. Either way, your first step is to modify the web.config file as specified earlier in this section. The
next step after that is to begin coding the CustomerInfo class.

The CustomerInfo Class
The CustomerInfo class in .NET is very similar to the one used for DWR and Java. The basic makeup of
the class is once again an object with a single method called GetCustomerInfo() that accepts an integer
ID and returns a string of HTML formatted code:

using System.Data.SqlClient;

namespace Wrox {

public class CustomerInfo {

[AjaxPro.AjaxMethod()]
public string GetCustomerInfo(int id) {

//more code here
}

}
}

This class must include the System.Data.SqlClient namespace, which contains the objects necessary
for connecting to a database. Before initiating a database connection, however, several variables must be
defined containing information about the database to connect to:

using System.Data.SqlClient;

namespace Wrox {

public class CustomerInfo {

[AjaxPro.AjaxMethod()]
public string GetCustomerInfo(int id) {

string info = “”;
string dataSourceName = @”localhost\SQLEXPRESS”;
string catalogName = “ProAjax”;
string connectString = String.Format(

“Data Source={0};Integrated Security=SSPI;Initial Catalog={1}”,
dataSourceName, catalogName);

431

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 431

string query = String.Format(
“Select * from Customers where CustomerId={0}”, id);

SqlConnection conn = null;
SqlCommand command = null;

//more code here

return info;
}

}
}

The very first variable defined, info, is the string that holds either the customer information string or an
error message to return to the client. The next few string variables define the information necessary for
connecting to a SQL Server. These variables have default values here that assume you have a version of
SQL Server Express running on the same server as IIS; these settings should be changed to appropriate
values for your server configuration. The last two variables are conn, which is a database connection,
and command, which is the method by which SQL commands are executed. Next, the database connec-
tion must be created, and the query must be run:

using System.Data.SqlClient;

namespace Wrox {

public class CustomerInfo {

[AjaxPro.AjaxMethod()]
public string GetCustomerInfo(int id) {

string info = “”;
string dataSourceName = @”localhost\SQLEXPRESS”;
string catalogName = “ProAjax”;
string connectString = String.Format(

“Data Source={0};Integrated Security=SSPI;Initial Catalog={1}”,
dataSourceName, catalogName);

string query = String.Format(
“Select * from Customers where CustomerId={0}”, id);

SqlConnection conn = null;
SqlCommand command = null;

try
{

conn = new SqlConnection(connectString);
command = new SqlCommand(query, conn);

conn.Open();
SqlDataReader reader = command.ExecuteReader();

//more code here

432

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 432

conn.Close();
}
catch (Exception ex)
{

info = “Error occurred while trying to connect to database: “
+ ex.Message;

}

return info;
}

}
}

As it is with Java, it’s important to wrap database operations inside of a try...catch block because
there are numerous places where an error may occur. The first new step here is to create an instance of
SqlConnection by passing in the previously defined connection string. Then, a new SqlCommand object
is created by using query and the newly created connection; this is the interface by which the query can
be executed. With the objects defined, it’s time to open the connection using the Open() method. Now
the query can be run by using the command variable, and more specifically, the ExecuteReader()
method, which creates and returns a SqlDataReader object. If an error occurs at any time during this
code, it is caught and the info variable is filled with an error message returned to the client.

The last step is to add in the code that reads from the database and formats an HTML string:

using System.Data.SqlClient;

namespace Wrox {

public class CustomerInfo {

[AjaxPro.AjaxMethod()]
public string GetCustomerInfo(int id) {

string info = “”;
string dataSourceName = @”localhost\SQLEXPRESS”;
string catalogName = “ProAjax”;
string connectString = String.Format(

“Data Source={0};Integrated Security=SSPI;Initial Catalog={1}”,
dataSourceName, catalogName);

string query = String.Format(
“Select * from Customers where CustomerId={0}”, id);

SqlConnection conn = null;
SqlCommand command = null;

try
{

conn = new SqlConnection(connectString);
command = new SqlCommand(query, conn);

conn.Open();
SqlDataReader reader = command.ExecuteReader();

433

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 433

if (reader.HasRows)
{

reader.Read();
info = String.Format(“{0}
{1}
{2}
{3}
{4}

Phone: {5}
{6}”,
reader.GetString(reader.GetOrdinal(“Name”)),
reader.GetString(reader.GetOrdinal(“Address”)),
reader.GetString(reader.GetOrdinal(“City”)),
reader.GetString(reader.GetOrdinal(“State”)),
reader.GetString(reader.GetOrdinal(“Zip”)),
reader.GetString(reader.GetOrdinal(“Phone”)),
reader.GetString(reader.GetOrdinal(“Email”))

);
}
else
{

info = String.Format(“Customer with ID {0} doesn’t exist.”,
id);

}

conn.Close();
}
catch (Exception ex)
{

info = “Error occurred while trying to connect to database: “
+ ex.Message;

}

return info;
}

}
}

After the query has been executed, calling reader.hasRows() determines if there are any results. If so,
then reader.Read() moves the reader to the first (and in this case, only) matching row. Then, the string
is constructed getting using String.Format() to insert information into the correct location. If, on the
other hand, there is no matching row, info gets filled with a message indicating that the customer
doesn’t exist. Then you’re ready to move to the next step, creating the client page.

Creating the Client Page
The client page is a new ASPX file with a codebehind file. This example assumes C# as the server-side
language, but it’s also possible to create the same functionality using any other .NET language. The
ASPX file is fairly simple:

If you are using .NET 2.0, this class file should be contained within the special
App_Code directory of the web site.

434

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 434

<%@ Page Language=”C#” AutoEventWireup=”true” CodeFile=”AjaxNETExample.aspx.cs”
Inherits=”AjaxNETExample” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Ajax.NET Professional Example</title>
<script type=”text/javascript”src=”AjaxNETExample.js”></script>

</head>
<body>

<form runat=”server”></form>
<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type=”text” id=”txtCustomerId” value=”” /></p>
<p><input type=”button” value=”Get Customer Info”

onclick=”requestCustomerInfo()” /></p>
<div id=”divCustomerInfo”></div>

</body>
</html>

The highlighted lines of code in this example are the only changes from the previous iteration of this
example. The codebehind file has most of the important code:

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class AjaxNETExample : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

AjaxPro.Utility.RegisterTypeForAjax(typeof(Wrox.CustomerInfo), this);
}

}

The most important line in the codebehind is the call to AjaxPro.Utility.RegisterTypeForAjax(),
which signals that JavaScript wrappers should be created for the Wrox.CustomerInfo class. That’s all
that is necessary to generate the client-side code. To use the generated JavaScript wrappers, the front end
code looks very similar to that of the DWR example:

function handleGetCustomerInfoResponse(oResponse) {
if (!oResponse.error) {

displayCustomerInfo(oResponse.value);
} else {

alert(“An error occurred.”);
}

}

435

Ajax Frameworks

16_109496 ch13.qxd 2/5/07 7:00 PM Page 435

function requestCustomerInfo() {
var sId = document.getElementById(“txtCustomerId”).value;
Wrox.CustomerInfo.GetCustomerInfo(parseInt(sId),

handleGetCustomerInfoResponse);
}

function displayCustomerInfo(sText) {
var divCustomerInfo = document.getElementById(“divCustomerInfo”);
divCustomerInfo.innerHTML = sText;

}

And that’s all it takes to recreate this example using Ajax.NET Professional. Note that the
GetCustomerInfo() method is specified in .NET-style Pascal case. This is something to be careful of
when using C# objects in JavaScript. Also note that the full namespace of the class is used on the client
side (Wrox.CustomerInfo instead of just CustomerInfo).

Summary of Ajax.NET Professional
If you are using ASP.NET to run a web site or web application, Ajax.NET Professional provides very
powerful remote scripting capabilities with very little setup. The author, Michael Schwarz, seems to
have taken into account most of the needs of Ajax applications in creating this framework. The data type
conversion for Ajax.NET Professional is very strong, and it can handle almost any type of custom class,
not to mention enumerations. As far as downsides go, Ajax.NET Professional is lacking in documenta-
tion, so it can be a bit challenging to work through its quirks in the beginning. There is, however, an
active e-mail support list available at http://groups.google.com/group/ajaxpro. Also, Ajax.NET
Professional has been tested only on Internet Explorer and Firefox, so developers looking for Safari or
Opera support may have to do a bit of testing on their own.

Summary
This chapter introduced you to the concept of Ajax frameworks. Where Ajax libraries are primarily client-
side objects designed to ease Ajax communication, frameworks provide support for both the client and
server sides of Ajax communication. The libraries covered in this chapter all provide developers with an
automated way of creating JavaScript wrappers for corresponding server objects. These wrappers include
cross-browser Ajax communication that is completely abstracted away from the developer’s view.

Next, you were introduced to open source Ajax frameworks for each of the three major web application
servers. The first framework covered was JPSpan, an Ajax framework for PHP. Next, Direct Web Remoting
(DWR) was introduced as an Ajax framework for JSP. Last, Ajax.NET Professional was discussed as an Ajax
framework for ASP.NET.

The same example was used for each of these frameworks so that you could see the similarities and dif-
ferences among the three. Each framework uses reflection to inspect server-side objects and create
appropriate JavaScript wrappers for those objects. As with most open source projects, these frameworks
may very well change in the future or be discontinued, so choose your framework carefully.

436

Chapter 13

16_109496 ch13.qxd 2/5/07 7:00 PM Page 436

ASP.NET AJAX
Extensions (Atlas)

As Microsoft readied the release of .NET 2.0, the software giant announced that it had begun work
on project known as “Atlas,” an Ajax framework built to interface seamlessly with ASP.NET 2.0.
Microsoft’s original goal for Atlas was ambitious: a cross-browser framework for building Ajax-
enabled applications with rich UI and connectivity to web services and/or an ASP.NET 2.0 appli-
cation. Over one year later, Microsoft came close to the mark with the newly renamed ASP.NET
AJAX Extensions (note that the official name of the framework has the word “AJAX” in all capital
letters, as opposed to the way it is used throughout this book).

While ASP.NET AJAX Extensions contains “ASP.NET” in its name and is released to work with
ASP.NET, the framework contains tools that any JavaScript developer can use. The core libraries
and the Community Technology Preview (CTP) releases contain a variety of JavaScript functional-
ity, such as an Ajax library, namespace and interface constructs, and classes that wrap DOM ele-
ments (Microsoft calls these “controls”), providing a development environment similar to what
Windows developers are accustomed to.

But don’t assume that ASP.NET AJAX Extensions are strictly client side. The framework contains a
variety of new .NET classes and server controls, providing developers with a simple, and seam-
less, interface for developing Ajax-enabled applications.

Whether you’re an ASP.NET developer or someone looking for a set of tools to aid your Ajax
development, ASP.NET AJAX Extensions could be for you.

Note that the December 2006 CTP of ASP.NET AJAX Extensions RC 1 is used for
examples in this chapter. Make sure to check the current release when you try to
make use of it in your own code.

17_109496 ch14.qxd 2/5/07 7:01 PM Page 437

Requirements and Setup
In order to run the ASP.NET AJAX Extensions, you must be running Windows 2000 or later and have the
.NET Framework 2.0 installed (which is freely available at http://msdn2.microsoft.com/en-us/
netframework/) on any machine used to develop or run an application using this framework.

Although not necessary, you should consider installing a version of Visual Studio 2005 before installing
the AJAX Extensions. Microsoft provides a wide array of Visual Studio versions, including the free
Microsoft Visual Web Developer 2005 Express Edition
(http://msdn.microsoft.com/vstudio/express/vwd/). When installed, the AJAX Extensions, as
well as the CTP, install files for Visual Studio, adding new project types that aid in the rapid develop-
ment of Ajax applications. Although a version of Visual Studio is not required, this chapter assumes that
Microsoft Visual Web Developer 2005 Express Edition (called Visual Studio for short) is installed.

Next, you’ll need to download the AJAX Extensions. Before Atlas was renamed ASP.NET AJAX,
Microsoft released the package as a single CTP every few months. When the framework entered beta,
Microsoft changed the distribution format. ASP.NET AJAX Extensions now consists of two downloads:

❑ ASP.NET AJAX 1.0 provides the core ASP.NET AJAX Extensions for client- and server-side
development. The components in this download are feature complete.

❑ ASP.NET 2.0 AJAX Futures CTP contains features that extend the core framework with addi-
tional functionality. The components in this download continue to be in development.

The second package is optional; however, it is recommended to download it in order to take advantage
of extra features. Both packages can be found at http://ajax.asp.net. Make sure to install ASP.NET
AJAX 1.0 before the Futures CTP.

The AJAX Client Library
While the server components of the AJAX Extensions are limited to use with ASP.NET, a good portion of
the client components can be used with any web site regardless of the application server. With this hav-
ing been said, ASP.NET developers have easier access to the client tools via Visual Studio.

Accessing the Client Tools with ASP.NET
Ironically, the simplest way to access the client tools with ASP.NET is to use the new server controls that
come with the Extensions. To begin, you’ll need an Ajax-enabled ASP.NET web site.

Open Visual Web Dev, and pull up the New Web Site dialog (see Figure 14-1) by going to the File menu
and choosing New Web Site.

The AJAX Extensions CTP installs two new templates: ASP.NET AJAX-Enabled Web Site and ASP.NET
AJAX CTP-Enabled Web Site; choose the second option and press OK. When Visual Studio creates and
opens the project, the source code for the Default.aspx file is opened. It consists of the Page declara-
tion at the top of the file, followed by the HTML’s doctype, head, and body.

438

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 438

Figure 14-1

Inside the page’s body is a server control:

<asp:ScriptManager ID=”ScriptManager1” runat=”server” />

The ScriptManager control manages the JavaScript components, partial-page rendering, and HTTP
requests/responses for ASP.NET Ajax pages. In short, this control adds the core JavaScript files to the
web page. This enables the use of components like the WebRequest class and the namespace constructs.
It doesn’t, however, add the JavaScript files from the CTP. For this, add a ScriptReference control.

<asp:ScriptManager ID=”ScriptManager1” runat=”server”>
<Scripts>

<asp:ScriptReference Assembly=”Microsoft.Web.Preview”
Name=”PreviewScript.js” />

</Scripts>
</asp:ScriptManager>

The ScriptReference control registers a JavaScript file for use within the web page. This control can
register a standalone JavaScript file or a script file that is embedded within an assembly. This example
registers the PreviewScript.js file within the Microsoft.Web.Preview assembly, which contains UI
controls (wrappers for DOM elements), among other components, and DOM extensions for Gecko-based
browsers.

By use of the ScriptManager and ScriptReference server controls, the appropriate JavaScript files
are added to the web page when the server processes this page. Of course, using these controls isn’t the
only way to add ASP.NET AJAX JavaScript files to the page.

Accessing the Client Tools without ASP.NET
When the Extensions are installed, it places the .NET binaries and the JavaScript files onto your hard
drive at %Program Files%\Microsoft ASP.NET\ASP.NET 2.0 AJAX Extensions\v1.0.61025 (your

439

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 439

version number may be different). In the ScriptLibrary directory, you’ll find the Debug and Release
subdirectories containing JavaScript files. The Debug folder contains the original JavaScript files, while
the scripts in the Release folder have had all white space removed.

These JavaScript files can be copied to other locations and referenced with a normal <script/> tag. The
two files used in this section are MicrosoftAjax.js and PreviewScript.js.

You can use either the debug or release versions of the code for development purposes; however, the release
files are smaller.

Using Classes
Before digging into the classes available, it is important to know how they are written. Like any other
class, the ones included with the AJAX Library have constructors and methods. The real difference, how-
ever, comes with what are called properties. In traditional JavaScript, a property is a construct that gets or
sets class data.

//Traditional property usage
element.style.top = “10px”; //Use the top property to set the top position
alert(element.style.top); //Display the element’s top position.

Properties in ASP.NET AJAX classes are actually methods, prefixed with either get_ (to get the value of
a property) or set_ (to set the value of a property), that provide access to JavaScript properties within
the class. Therefore, “properties” are accessed like this:

object.set_propertyName(newValue);
var value = object.get_propertyName();

Keep this in mind when using classes of the ASP.NET AJAX library, because they follow this pattern.

Writing Code with the ASP.NET AJAX Library
The ASP.NET AJAX library extends JavaScript with object-oriented programming constructs, such as
namespaces, enumerations, and interfaces, as well as extending existing constructs such as classes and
subclasses. Microsoft does this by introducing a new datatyping system much like the one that exists
within the .NET Framework Class Library.

At the heart of this new typing system is the Type class, which exposes a number of static methods to
aid in the creation of datatypes.

Registering Namespaces
JavaScript technically does not have a namespace construct. However, developers have emulated name-
spaces by using objects. Consider the following code:

//create the ProAjax namespace
var ProAjax = {

//create the Ch12 namespace
Ch12 : {

//create the Person class

440

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 440

Person : function () {
//constructor logic

}
}

}

This code creates an object called ProAjax, where another object, Ch12, is defined within it. This essen-
tially emulates two levels of a namespace. Inside Ch12 is the Person class; so to access this class, you
must go through the two levels:

var oPerson = new ProAjax.Ch12.Person();

This works fine. However, it lacks any sense of a type: ProAjax and ProAjax.Ch12 are both considered
objects, not namespaces.

Microsoft addresses this issue by creating its own namespace construct. Of course, these namespaces are
just JavaScript objects, but the AJAX Extensions expose methods that allow the marking of an object as a
namespace and the testing of an object to determine if it is a namespace.

To create a namespace, use the Type.registerNamespace() method:

Type.registerNamespace(“ProAjax”);

This code creates the ProAjax namespace. Once a namespace is created, another namespace, a class, an
interface, or an enumeration can be declared to reside in that namespace. To recreate the namespace
made in the previous example, the following code can be used:

Type.registerNamespace(“ProAjax.Ch12”);

This code actually does two things. First, it extracts “ProAjax” and tests to see if a namespace already
exists with that name. If not, it creates the ProAjax namespace. Then, it goes on to perform the same
process on “Ch12”; it creates the namespace only if it doesn’t already exist.

To determine if an object is a namespace, use the Type.isNamespace() method like this:

Type.isNamespace(ProAjax.Ch12); //returns true

This method returns true if the object is a namespace, and false if not.

Registering Classes
Classes are another concept that JavaScript does not technically support. It does, however, provide the
logical equivalent: constructors and the ability to create objects with these constructors. JavaScript also
provides developers with the means to check if objects are an instance of a certain class, with the
instanceof operator (which also allows you to check for inheritance relationships). But generally,
JavaScript sees classes as functions, not proper class definitions.

441

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 441

Microsoft addresses these issues by emulating classes. Registering a class consists of three steps:

1. Create the class as you normally would. If the class is to be in a namespace, declare the class
within the namespace.

2. Initialize the class with the initializeBase() method if you plan on using inheritance.

3. Register the class with the registerClass() method.

To declare a class called ProAjax.Ch12.Person, the following code is used:

ProAjax.Ch12.Person = function() {
//more code here

};

This creates the Person class within the ProAjax.Ch12 namespace. Next, initialize the class for inheritance:

ProAjax.Ch12.Person = function() {
ProAjax.Ch12.Person.initializeBase(this);

};

//more code here

The initializeBase() method initializes the base class and its members within the context of a given
instance. This method accepts two arguments, in fact, the same two arguments used with the
Function.apply() method. The first is the object to initialize, and the second is an array of arguments
to pass to the base constructor (which may be null).

The final step in this process is to register the class.

ProAjax.Ch12.Person = function() {
ProAjax.Ch12.Person.initializeBase(this);

};

ProAjax.Ch12.Person.registerClass(“ProAjax.Ch12.Person”);

The registerClass() method is invoked directly from the class, as demonstrated in this code. This
method accepts multiple arguments. The first argument is required and is a string representing the fully
qualified name of the class. The second argument is an optional base class to inherit from. Any argument
passed after the second is considered an interface that the class implements.

Deriving a class from another class follows the same pattern. First create the class, then initialize it with
initializeBase(), and register the class. However, the call to registerClass() must include the
superclass to inherit from. For example, if a class ProAjax.Ch12.Author is to extend
ProAjax.Ch12.Person, the following code is used:

ProAjax.Ch12.Person = function() {
ProAjax.Ch12.Person.initializeBase(this);

};

ProAjax.Ch12.Person.registerClass(“ProAjax.Ch12.Person”);

442

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 442

ProAjax.Ch12.Author = function() {
ProAjax.Ch12.Author.initializeBase(this);

};

ProAjax.Ch12.Author.registerClass(“ProAjax.Ch12.Author”, ProAjax.Ch12.Person);

This code ensures that the ProAjax.Ch12.Author class inherits all properties and methods of
ProAjax.Ch12.Person.

In the event you need to determine if a specific type or function is a class, simply use the
Type.isClass() method:

Type.isClass(ProAjax.Ch12.Person); //returns true

It’s also possible to determine if one class inherits from another by using the inheritsFrom() method.
This method is called directly from the subclass, such as:

ProAjax.Ch12.Author.inheritsFrom(ProAjax.Ch12.Person); //returns true

There are also two methods to deal directly with the type of class, getType() and getTypeName(). The
getType() method returns the constructor used to create a particular object, whereas getTypeName()
returns the fully qualified class name of the object (including the namespace). For example:

var oAuthor = new ProAjax.Ch12.Author();
var fnConstructor = Object.getType(oAuthor);

var bInherits = fnConstructor.inheritsFrom(ProAjax.Ch12.Person); //returns true
alert(Object.getTypeName(oAuthor)); //alerts “ProAjax.Ch12.Author”

Registering Enumerations
ASP.NET AJAX also allows the registration of enumeration (enum) types, because they are a concept not
formally supported in JavaScript.

The registration of enums is a multistep process as well:

1. Create the type.

2. Add the name-value pairs to the prototype..

3. Register the type as an enum.

Creating an enum type is essentially the same as creating a class, except that the constructor is empty. To
create an enum called ProAjax.Ch12.Color, the first step is to define the constructor:

ProAjax.Ch12.Color = function() {};

443

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 443

This code creates the Color type. This will become an enum with red, green, and blue as its named
constants:

ProAjax.Ch12.Color = function() {};
ProAjax.Ch12.Color.prototype = {

red : 0xFF0000,
blue : 0x0000FF,
green: 0x00FF00

};
//more code here

The last step is to register the type as an enum using the registerEnum() method:

ProAjax.Ch12.Color = function() {};
ProAjax.Ch12.Color.prototype = {

red : 0xFF0000,
blue : 0x0000FF,
green: 0x00FF00

};

ProAjax.Ch12.Color.registerEnum(“ProAjax.Ch12.Color”);

The registerEnum() method is called directly from the constructor. Like the previous registration
methods, registerEnum() accepts a string argument that contains the fully qualified name of the
enum. There is an optional second argument, a Boolean value, which indicates if the enum is a bit field
(a field containing only binary values).

Registering Interfaces
An interface, in object-oriented programming, is a contract for a class. Traditional interfaces define a set
of methods and properties that a class must implement. A class that implements an interface must
implement all of the properties and methods of that interface.

Interface definitions using the AJAX Extensions closely resemble class and enum definitions:

//IAuthor interface
ProAjax.Ch12.IAuthor = function() {

//more code here
};

ProAjax.Ch12.IAuthor.prototype = {
get_books : function () {

//more code here
}

};

//more code here

In traditional JavaScript, this code creates a class called IAuthor and assigns the class’ prototype to
contain a method called get_books(). To make this an AJAX Extensions interface, you must make a
few changes.

444

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 444

1. First, the constructor must throw an error, since interfaces cannot be instantiated.

2. Then, since interface methods don’t contain the implementation details, each method must also
throw an error.

3. The last step is to call registerInterface():

ProAjax.Ch12.IAuthor = function() {
throw Error.notImplemented();

};

ProAjax.Ch12.IAuthor.prototype = {
get_books : function () {

var sTypeName = Object.getTypeName(this);
throw Error.notImplemented(sTypeName + “ does not “ +

“fully implement this interface.”);
}

};

ProAjax.Ch12.IAuthor.registerInterface(“ProAjax.Ch12.IAuthor”);

The Error.notImplemented() method creates an Error object that is thrown to stop code execution.
When a class implements this interface but does not implement the get_books() method, an error is
thrown when the method is called. This error states that the class (retrieved via Object.getTypeName())
does not fully implement the interface. The last line calls registerInterface() on the interface con-
structor and passes in the fully qualified name of the interface.

Interfaces are applied to a class when the class is registered via the registerClass() method. The follow-
ing code changes the previous registration of the Author class to implement the ProAjax.Ch12.IAuthor
interface:

ProAjax.Ch12.Author = function() {
ProAjax.Ch12.Author.initializeBase(this);

};

ProAjax.Ch12.Author.prototype = {
get_books : function () {

alert(“We’re in get_books()!”);
}

};

ProAjax.Ch12.Author.registerClass(“ProAjax.Ch12.Author”, ProAjax.Ch12.Person,
ProAjax.Ch12.IAuthor);

Since Author now implements the IAuthor interface, it must implement all of the properties and
methods of IAuthor. This new code defines the Author’s prototype, which contains the get_books()
method (the only method defined on IAuthor). There is no limit to the amount of interfaces a class can
inherit from; simply pass the extra interfaces to the registerClass() method.

445

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 445

There may be times when it’s necessary to determine if a particular object or class implements an inter-
face. To do this, use the implementsInterface() method on the class in question:

var author = new ProAjax.Ch12.Author();

if (ProAjax.Ch12.Author.implementsInterface(ProAjax.Ch12.IAuthor)) {
//It’s safe to execute the following line
author.get_books();

}

In this code, the ProAjax.Ch12.Author class is checked to see if it implements ProAjax.Ch12.IAuthor.
If so, it is then safe to assume that an object of type ProAjax.Ch12.Author has the method get_books().
Though this is helpful, it’s much more useful to check a specific object before it’s used. To do so, pass the
object in question to Object.getType() and then call implementsInterface() on the result (which is
the class constructor):

var author = new ProAjax.Ch12.Author();

if (Object.getType(author).implementsInterface(ProAjax.Ch12.IAuthor)) {
//It’s safe to execute the following line
author.get_books();

}

Here, the class constructor of author is returned and checked to see if it implements the specified inter-
face. If the result is true, then it is safe to call get_books(). An alternate approach is to use the
isImplementedBy() method that is present on the interface itself. This method accepts a single argu-
ment, which is the object to check. So, this example can be rewritten as:

var author = new ProAjax.Ch12.Author();

if (ProAjax.Ch12.IAuthor.isImplementedBy(author)) {
//It’s safe to execute the following line
author.get_books();

}

All of these approaches are valid; use whichever approach fits your situation.

Using Controls
In Windows development terminology, controls are UI elements that the user interacts with; text boxes,
images, drop-down boxes, and menus are all examples of controls. The more basic controls are mostly
used in forms, allowing the user to input data and labeling form fields so that the user knows where to

It’s been debated whether or not JavaScript needs interfaces. The main argument
against interfaces is that it’s easy enough to discover if a particular object imple-
ments some method or property with the typeof operator. With that said, ASP.NET
AJAX brings the functionality to JavaScript, so it’s up to developers whether or not
to use the feature.

446

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 446

input data. The controls present in ASP.NET AJAX are similar in these aspects, because they are essen-
tially wrappers for common HTML elements and offer alternate ways of accessing data (as opposed to
DOM properties and methods).

The controls discussed in this section are not yet a part of the core library; they are features of the
Futures CTP. All of the controls reside in the PreviewScript.js file and in the Sys.Preview.UI
namespace. Each control constructor accepts an HTMLElement as an argument. Once an element is asso-
ciated with the control, that association cannot be changed. To retrieve the HTMLElement, you can either
use the document.getElementById() method or the AJAX Extensions-provided $get() function,
which behaves in the same manner.

The TextBox Control
The Sys.Preview.UI.TextBox control corresponds directly to <input/> elements whose type attribute
is set to “text” and <textarea/> elements. The constructor accepts either an HTMLInputElement or an
HTMLTextAreaElement as an argument. To begin, assume that the following <input/> element is in the
document’s body.

<input id=”inputUsername” type=”text” />

Because the creation of this control depends upon the HTMLInputElement, the following code must exe-
cute after the element is loaded into the document (during the window’s load event, for example):

var oUsername = new Sys.Preview.UI.TextBox($get(“inputUsername”));

This code creates a TextBox control by calling the Sys.Preview.UI.Textbox constructor and supply-
ing it an element with the id of “inputUsername”.

The TextBox control exposes one property: text, which can get and set the value in the text box:

oUsername.set_text(“Enter Your Username.”); //set the text

var sUsername = oUsername.get_text(); //gets the text in the TextBox

Using the TextBox control can be beneficial when you are dealing with forms. Once the control is cre-
ated, retrieving the box’s value is as simple as calling get_text() (and setting it is it just as easy). Of
course, some state that the get_text() and set_text() methods are not necessary, as once you’ve
found the element in the DOM, using the value property to get and set the text box’s value is actually
easier (and involves less typing) than using the TextBox properties. However, if you’re using other con-
trols, using the TextBox control keeps your code unified, as opposed to a mix of controls and DOM
scripting. Ultimately, it boils down to personal preference.

The Button Control
The Sys.Preview.UI.Button control is used for elements that can exhibit button-like behavior; in
other words, anything that can receive a click event can most likely be a Button. This is in stark con-
trast to the TextBox control, where only two types of elements can be used. For instance, a Button can be
a simple <div/> element, such as:

<div id=”divButton”>A DIV Button</div>

447

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 447

To create a Button control using this <div/> element, use the Sys.Preview.UI.Button constructor
and pass in a reference to the element:

var oDivButton = new Sys.Preview.UI.Button($get(“divButton”));

This code retrieves the <div/> element and passes it to the Button constructor. The next step is to ini-
tialize the control by calling initialize() (a step that wasn’t necessary with the Textbox control).
This must be done before event handlers can be added to the control:

var oDivButton = new Sys.Preview.UI.Button($get(“divButton”));

oDivButton.initialize();

The final step is to add event handlers to the Button. This control exposes only one event: click. To
add event handlers for the click event, use the add_click() method:

var oDivButton = new Sys.Preview.UI.Button($get(“divButton”));

oDivButton.initialize();

function divButton_click(oButton, oEventArgs) {
alert(“You clicked a <div/> button!”);

}

oDivButton.add_click(divButton_click);

The add_click() method emulates the behavior of the attachEvent() method in IE and the
addEventListener() method in standards-based browsers; any number of handlers can be added to
handle the click event.

Event handlers in the ASP.NET AJAX Library have two arguments passed to them. The first is the object
that raised the event; the second is any event arguments that may be passed to event handler. In this
case, the Button control is passed as the first argument, and an empty object is passed in the second.

To remove a click event handler, use the remove_click() method and pass in the same function
pointer that was used with add_click():

oDivButton.remove_click(divButton_click);

Unlike the TextBox control, the Button control is a bit more diverse in its usage, since anything that can
receive a click event can be a button, and the fact that the ASP.NET AJAX Library handles event han-
dling in its own cross-browser way saves time when building applications for multiple browsers.

The Selector Control
The Sys.Preview.UI.Selector control is a wrapper for the <select/> element, such as:

<select id=”selectBooks”>
<option value=”9780470109496”>Professional Ajax</option>
<option value=”0764579088”>Professional JavaScript for Web Developers</option>
<option value=”0470051515”>Beginning JavaScript, 3rd Ed</option>

</select>

448

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 448

There are three options in this drop-down box. The words displayed in the options are titles of books,
and their values are the corresponding ISBN numbers.

To create a Selector control using this element, pass it to the Sys.Preview.UI.Selector constructor
and then call the initialize() method:

var oSelectBooks = new Sys.Preview.UI.Selector($get(“selectBooks”));

oSelectBooks.initialize();

Now that the control has been initialized, you are free to use the control’s properties and assign event
handlers. The most common event to handle is the selectionChanged event. To add a handler for this
event, use the add_selectionChanged() method:

var oSelectBooks = new Sys.Preview.UI.Selector($get(“selectBooks”));

oSelectBooks.initialize();

function selectBooks_selectionChanged(oSelect, oEventArgs) {
//more code here

}

oSelectBooks.add_selectionChanged(selectBooks_selectionChanged);

This code creates the selectBooks_selectionChanged() function to handle the selectionChanged
event. The event handler accepts two arguments: the Selector control and an event arguments object.

The Selector control also exposes a property called selectedValue, which gets or sets the value of
the selected item:

var oSelectBooks = new Sys.Preview.UI.Selector($get(“selectBooks”));

oSelectBooks.initialize();

function selectBooks_selectionChanged(oSelect, oEventArgs) {
alert(“Value: “ + oSelect.get_selectedValue());

}

oSelectBooks.add_selectionChanged(selectBooks_selectionChanged);

This code gets the selectedValue and displays it to the user when the selection changes. Setting this
property changes the selected item in the drop-down box to the option with the corresponding value.
The following code changes the selected item to “Beginning JavaScript, 3rd Ed”:

oSelectBooks.set_selectedValue(“0470051515”);

If the value passed to the property does not exist in any of the <option/> elements, no change is made
and no error is thrown. Also, setting the selectedValue property does not raise the
selectionChanged event.

449

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 449

The Label Control
In Windows programming, a Label control contains only text, and it usually is used to label form fields.
In the AJAX Extensions, the Sys.Preview.UI.Label control wraps almost any HTMLElement that can
contain text or markup, with the most common being or <div/> elements, such as:

<div id=”divTextLabel”></div>
<div id=”divHtmlLabel”></div>

To create a Label control, use the Sys.Preview.UI.Label class constructor and pass in a reference to
an element:

var oDivTextLabel = new Sys.Preview.UI.Label($get(“divTextLabel”));
var oDivHtmlLabel = new Sys.Preview.UI.Label($get(“divHtmlLabel”));

This code creates two Label controls using the two <div/> elements. The Label class exposes two
properties.

❑ The first, text, gets or sets the content of the Label; it can be either plain text or HTML markup.

❑ The second property, htmlEncode, is a Boolean value specifying how the content should be dis-
played: true for plain text or false for HTML (the default).

The following uses both properties to set the content for the oDivTextLabel to plain text:

var oDivTextLabel = new Sys.Preview.UI.Label($get(“divTextLabel”));
var oDivHtmlLabel = new Sys.Preview.UI.Label($get(“divHtmlLabel”));

oDivTextLabel.set_htmlEncode(true);
oDivTextLabel.set_text(“Plain text label.”);

As a result of setting htmlEncode to true, the Label displays any content set by the text property as
plain text, so any HTML tags passed to the text property are encoded using appropriate HTML entities.
The oDivTextLabel element, therefore, displays the following:

Plain text label

Compare this to setting up a label for HTML content:

var oDivTextLabel = new Sys.Preview.UI.Label($get(“divTextLabel”));
var oDivHtmlLabel = new Sys.Preview.UI.Label($get(“divHtmlLabel”));

oDivTextLabel.set_htmlEncode(true);
oDivTextLabel.set_text(“Plain text label.”);

oDivHtmlLabel.set_text(“HTML label.”);

The default for htmlEncode is false, so the text in oDivHtmlLabel is displayed as bold text (because
the element is taken literally).

450

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 450

Making HTTP Requests
The ASP.NET AJAX Extensions wouldn’t be much of an Ajax framework without providing its own API
for asynchronous HTTP communication. The framework provides the WebRequest class in the Sys.Net
namespace to perform GET or POST HTTP requests.

Making GET Requests
To create an instance of this class, use the WebRequest constructor:

var oRequest = new Sys.Net.WebRequest();

//more code here

The next step is to assign the url property with a URL to send the request to. The URL can be set to a
fully qualified URL, an absolute URL, or a relative URL.

var oRequest = new Sys.Net.WebRequest();

oRequest.set_url(“textfile.txt”);

//more code here

This code assigns the property a relative URL value of textfile.txt.

Before the request is sent, however, the WebRequest object needs some way of dealing with the data it
receives from the server. When using the zXml library, you had to code every step of the request and had
to take several things into consideration (handling the readyStateChange event and checking the
readyState property, for example). ASP.NET AJAX does all this for you; all you need to do is handle
the completed event. To assign a handler, use the add_completed() method:

var oRequest = new Sys.Net.WebRequest();

oRequest.set_url(“textfile.txt”);
oRequest.add_completed(request_completed);

//more code here

function request_completed(oExecutor, oEventArgs) {
//more code here

}

Like the click event of the Button control and the selectionChanged event of the Selector control,
the handler for the completed event accepts two arguments. The first is an XMLHttpExecutor object,
and the second is an event arguments object (which most of the time is empty). The XMLHttpExecutor

It is important to note that when set to true, the htmlEncode property only encodes
HTML tags passed to the text property; any HTML set by other means is still ren-
dered as HTML.

451

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 451

class makes an asynchronous network request to the provided URL using the browser’s XHR compo-
nent. From this object it’s possible to retrieve the server’s response.

The first step in doing this is to make sure that a response was received from the server. This is done
with the responseAvailable property.

var oRequest = new Sys.Net.WebRequest();

oRequest.set_url(“textfile.txt”);
oRequest.add_completed(request_completed);

//more code here

function request_completed(oExecutor, oEventArgs) {
var sStatusCode = oExecutor.get_statusCode();

//If data is available, fill the page with information
if (oExecutor.get_responseAvailable() &&

(sStatusCode == “200” ||
sStatusCode == “304”)) {

//more code here
}
//otherwise something went wrong
else {

//more code here
}

}

This code checks to see if a response is available and then checks the statusCode property for the HTTP
response status. When it has been determined that the request was successful, the response body can be
retrieved from the responseData property. If a response wasn’t received, the XMLHttpExecutor object
can provide some insight as to the reason by using the timedOut and aborted properties:

var oRequest = new Sys.Net.WebRequest();

oRequest.set_url(“textfile.txt”);
oRequest.add_completed(request_completed);

//more code here

function request_completed(oExecutor, oEventArgs) {
var sStatusCode = oExecutor.get_statusCode();

//If data is available, fill the page with information
if (oExecutor.get_responseAvailable() &&

(sStatusCode == “200” ||
sStatusCode == “304”)) {

alert(oExecutor.get_responseData());
}
//otherwise something went wrong
else {

452

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 452

//Check to see if the request timed out
if (oExecutor.get_timedOut()) {

alert(“Request Timed Out”);
}
//if not, check to see if it was aborted
else if (oExecutor.get_aborted()) {

alert(“Request Aborted”);
}

else if (sStatusCode != 200 || sStatusCode != 304) {
alert(“HTTP Error! Status: “ + sStatusCode);

}
}

}

The changes to the code handle the possible errors that might have occurred if the request failed. It uses
the timedOut, aborted, and statusCode properties to generate an alert with an appropriate message
for the cause of the failure.

The final step of the request process is to send the request to the server. This is done with the invoke()
method:

var oRequest = new Sys.Net.WebRequest();

oRequest.set_url(“textfile.txt”);
oRequest.add_completed(request_completed);

oRequest.invoke();

function request_completed(oExecutor, oEventArgs) {
var sStatusCode = oExecutor.get_statusCode();

//If data is available, fill the page with information
if (oExecutor.get_responseAvailable() &&

(sStatusCode == “200” ||
sStatusCode == “304”)) {

alert(oExecutor.get_responseData());
}
//otherwise something went wrong
else {

//Check to see if the request timed out
if (oExecutor.get_timedOut()) {

alert(“Request Timed Out”);
}
//if not, check to see if it was aborted
else if (oExecutor.get_aborted()) {

alert(“Request Aborted”);
}

else if (sStatusCode != 200 || sStatusCode != 304) {
alert(“HTTP Error! Status: “ + sStatusCode);

}
}

}

453

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 453

It’s possible to access the WebRequest object inside the completed event handler by using the
webRequest property of the executor. Also, if your requested data is XML, you can use the executor’s
xml property, which attempts to load the response data into an XML DOM.

Making POST Requests
POST requests follow the same pattern as GET requests; the only difference is that POST requests incor-
porate the use of the body property. The following code makes two changes to the previous code:

var oRequest = new Sys.Net.WebRequest();

oRequest.set_url(“posttest.aspx”);
oRequest.set_body(“name=Jeremy”);
oRequest.add_completed(request_completed);

oRequest.invoke();

function request_completed(oExecutor, oEventArgs) {
var sStatusCode = oExecutor.get_statusCode();

//If data is available, fill the page with information
if (oExecutor.get_responseAvailable() &&

(sStatusCode == “200” ||
sStatusCode == “304”)) {

alert(oExecutor.get_responseData());
}
//otherwise something went wrong
else {

//Check to see if the request timed out
if (oExecutor.get_timedOut()) {

alert(“Request Timed Out”);
}
//if not, check to see if it was aborted
else if (oExecutor.get_aborted()) {

alert(“Request Aborted”);
}

else if (sStatusCode != 200 || sStatusCode != 304) {
alert(“HTTP Error! Status: “ + sStatusCode);

}
}

}

The highlighted portion of the code changes the url property to posttest.aspx. It also sets the body
property to “name=Jeremy”.

The posttest.aspx ASP.NET file simply gets the value of the name argument and concats that value
with the string “Hello, [name]”. Its code is:

protected void Page_Load(object sender, EventArgs e)
{

Response.ContentType = “text/plain”;
Response.CacheControl = “No-cache”;

if (Request.Form[“name”] != null)

454

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 454

{
string name = Request.Form[“name”].ToString();
Response.Write(“Hello, “ + name + “!”);

}
else
{

Response.Write(“I’m sorry, but no name could be found”);
}

}

When the request is made, and a response received, an alert box shows “Hello, Jeremy!” as in Figure 14-2.

Figure 14-2

The key to POST requests is the body property. If the value of get_body() is non-null, then the
WebRequest object performs a POST request. If get_body() is null, then a GET request executes.

The UpdatePanel Control
The UpdatePanel control, in conjunction with the ScriptManager, defines areas within the web page
to be partially updated without refreshing the entire page. These areas can be updated independently of
one another and are usually triggered to update the content contained in them. An UpdatePanel can be
added to the page declaratively with tags or programmatically.

Adding the UpdatePanel to the Page
Adding an UpdatePanel is a simple process. The first step is to add a ScriptManager control to the page.

<asp:ScriptManager ID=”ScriptManager1” runat=”server” />

The next step is to decide how the UpdatePanel behaves. The UpdatePanel class inherits the
System.Web.UI.Control class, so all the attributes exposed by the parent are exposed by the child
class. The most important attributes, however, are specific to the UpdatePanel class. They are:

❑ ChildrenAsTriggers: A Boolean value that indicates whether or not the UpdatePanel should
be updated when immediate child controls cause a postback. A postback is the process of sending
and receiving data from the server. The default value for this attribute is true. Note that chil-
dren of a nested UpdatePanel do not cause an update of the parent UpdatePanel.

❑ RenderMode: Indicates how the panel is rendered. If set to “Block” (the default), the ASP.NET
engine renders the UpdatePanel as a <div/> element. If “Inline”, the panel is rendered as a
 element.

455

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 455

❑ UpdateMode: Determines how the panel’s contents are updated. If set to “Always”, the default
value, the panel updates with every postback that originates from the page, including asyn-
chronous postbacks (updates from other panels). The second value, “Conditional”, updates
the panels when the following conditions are met:

❑ The Update() method of the UpdatePanel instance is explicitly called.

❑ The postback is caused by a control that is defined as a trigger (more on triggers later).
The triggering control can be either inside or outside the UpdatePanel control.

❑ The ChildrenAsTriggers attribute is set to true, and a child control causes a postback.

Keeping these conditions in mind, an UpdatePanel that continually updates itself is added to the page
like this:

<asp:ScriptManager ID=”ScriptManager1” runat=”server” />

<asp:UpdatePanel ID=”UpdatePanel1” UpdateMode=”Conditional” runat=”server”>

<%-- More Code Here --%>

</asp:UpdatePanel>

Adding Content to the UpdatePanel
The whole purpose of an UpdatePanel is to update content, and the content of an UpdatePanel control
is housed inside a <ContentTemplate/> element. The ContentTemplate is actually a property of the
UpdatePanel class, but the element allows you to add content to the panel declaratively.

<asp:ScriptManager ID=”ScriptManager1” runat=”server” />

<asp:UpdatePanel ID=”UpdatePanel1” UpdateMode=”Conditional” runat=”server”>
<ContentTemplate>

<%-- More Code Here --%>
</ContentTemplate>

<%-- More Code Here --%>
</asp:UpdatePanel>

The content contained within <ContentTemplate/> can be a mix of HTML and ASP.NET controls. The
following code adds a TextBox server control to the <ContentTemplate/>:

<asp:ScriptManager ID=”ScriptManager1” runat=”server” />

<asp:UpdatePanel ID=”UpdatePanel1” UpdateMode=”Conditional” runat=”server”>
<ContentTemplate>

<asp:TextBox ID=”TextBox1” Text=”0” runat=”server” />
</ContentTemplate>

<%-- More Code Here --%>
</asp:UpdatePanel>

The TextBox control, like that of the client library, is for text input from the user. This particular code
places a normal text box into the page and initializes its text as the number zero (0).

456

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 456

Triggering an Update
The UpdatePanel has been added to the page and has content ready to update. However, there’s noth-
ing (yet) to cause the TextBox to be updated with new data. Since the UpdatePanel in this example is
set for Conditional UpdateMode, the update must be triggered according to the criteria listed in the
previous section.

Probably the most common way to trigger an update is to assign triggers. Triggers are events from other
controls that cause an UpdatePanel to refresh, and they can be added declaratively to the UpdatePanel
control with the <Triggers/> element.

<asp:ScriptManager ID=”ScriptManager1” runat=”server” />

<asp:UpdatePanel ID=”UpdatePanel1” UpdateMode=”Conditional” runat=”server”>
<ContentTemplate>

<asp:TextBox ID=”TextBox1” Text=”0” runat=”server” />
</ContentTemplate>
<Triggers>

<%-- More Code Here --%>
</Triggers>

</asp:UpdatePanel>

<asp:Button ID=”Button1” Text=”Add More” runat=”server” />

Triggers are bound to other ASP.NET controls, which can be either inside or outside of the UpdatePanel.
This code declares a Button control, which will be bound to a trigger. But first, there are two types of trig-
gers that can be used.

❑ The first, PostBackTrigger, causes a normal postback (the whole page is refreshed). This trig-
ger type can be useful when performing functions like uploading a file, because files cannot be
uploaded asynchronously. The PostBackTrigger element allows for only one attribute:
ControlID, which corresponds to another control’s ID property.

❑ The second trigger type, AsyncPostBackTrigger, causes an asynchronous postback. The ele-
ment that declares this trigger has two possible attributes: ControlID and EventName. The
ControlID attribute is the same as it is with PostBackTrigger. The new attribute, EventName,
is optional, but it can be set to a specific event of the bound control to trigger the update (other-
wise, any event will trigger the update). For example, if EventName is set to “Click”, the
UpdatePanel will be updated only when the trigger control is clicked.

Of these two trigger types, only one fits the goals of this example: the AsyncPostBackTrigger. The
following code binds the Button1 control to a trigger:

<asp:ScriptManager ID=”ScriptManager1” runat=”server” />

<asp:UpdatePanel ID=”UpdatePanel1” UpdateMode=”Conditional” runat=”server”>
<ContentTemplate>

<asp:TextBox ID=”TextBox1” Text=”0” runat=”server” />
</ContentTemplate>
<Triggers>

<asp:AsyncPostBackTrigger ControlID=”Button1” EventName=”Click” />

457

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 457

</Triggers>
</asp:UpdatePanel>

<asp:Button ID=”Button1” Text=”Add More” runat=”server” />

This new code binds the Button control to the trigger, and it triggers an update only when the Button
is clicked. In its current state, however, nothing will happen, because the Click event is not handled.

Don’t confuse the Click event of a Button control with the click event in the browser’s DOM. The
former is a server event that executes server-side code, whereas the latter executes code within the
browser. They both serve a similar purpose, but one does not call the other.

Finishing Up
The meat of the application is complete; however, nothing happens when the Button control is clicked.
The purpose of this application is to take whatever number is in the TextBox control and increment it
when the Button is clicked. This is a simple algorithm to code in C#:

protected void Button1_Click(object sender, EventArgs e)
{

long oldNumber = System.Convert.ToInt64(TextBox1.Text);
long newNumber = ++oldNumber;
TextBox1.Text = newNumber.ToString();

}

protected void ScriptManager1_AsyncPostBackError(object sender,
AsyncPostBackErrorEventArgs e)

{
ScriptManager1.AsyncPostBackErrorMessage = e.Exception.Message;

}

The first function handles the Button’s Click event. When executed, this method retrieves the string
value from the TextBox control and converts it to a long integer. The next line increments the value
contained in oldNumber and assigns it to the newNumber variable. The final line converts the number to
a string and sets the TextBox so that it contains that new value.

If a non-number is entered into the TextBox, the application throws a FormatException error. When this
happens, the ScriptManager’s AsyncPostBackError event fires. The second function in this code han-
dles this event, and it sets the ScriptManager object’s AsyncPostBackErrorMessage property to the
exception’s message. This information is then sent back to the client, which displays the message in an alert
box. Figure 14-3 shows what happens when Ajax is typed into the text box instead of a numeric value.

Figure 14-3

458

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 458

The last step in this process is to assign the function to handle the two events:

<asp:ScriptManager ID=”ScriptManager1” runat=”server”
OnAsyncPostBackError=”ScriptManager1_AsyncPostBackError” />

<asp:UpdatePanel ID=”UpdatePanel1” UpdateMode=”Conditional” runat=”server”>
<ContentTemplate>

<asp:TextBox ID=”TextBox1” Text=”0” runat=”server” />
</ContentTemplate>
<Triggers>

<asp:AsyncPostBackTrigger ControlID=”Button1” EventName=”Click” />
</Triggers>

</asp:UpdatePanel>

<asp:Button ID=”Button1” Text=”Add More” OnClick=”Button1_Click” runat=”server” />

This new code adds the OnClick event handler to the Button control declaration. Now when the user
clicks the button, it will trigger the UpdatePanel to asynchronously update itself. To prove it works,
add a JavaScript onload event handler to alert you when the page refreshes.

SiteSearch Revisited
Earlier in the book, the creation of an Ajax Site Search widget was discussed. That widget demonstrated
a typical Ajax application that retrieves data from the server and displays that data with dynamically
created HTML. In this section, this widget is revisited using the AJAX Extensions. This change alters
many aspects of the original AjaxSiteSearch; the HTML structure changes to accommodate the inclusion
of server controls, and a few adjustments to the C# code are required. Also, you won’t write one line of
JavaScript code.

The User Interface
The UI is still important, so the new UI doesn’t change much from the original AjaxSiteSearch widget.
The HTML structure, however, does change slightly due to the server controls. Also, this new version
includes a new button to clear the search results. The resulting HTML looks like this:

<div class=”ajaxSiteSearchContainer”>
<form class=”ajaxSiteSearchForm”>

<input type=”text” id=”txtSearchTerm” class=”ajaxSiteSearchTextBox” />

<input type=”submit” value=”Go” id=”btnSearch” class=”ajaxSiteSearchButton” />
<input type=”submit” value=”Clear” id=”btnClear” class=”ajaxSiteSearchButton” />

<div class=”ajaxSiteSearchResultPane”>
<div id=”upResultsUpdate”>

<div id=”plhResults”>
Result Text

</div>
</div>

</div>
</form>

</div>

459

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 459

Aside from the extra button, the three key changes are the and <div/> elements with the IDs
of “upTextBoxUpdate”, “upResultsUpdate”, and the “plhResults”. The and the first
<div/> elements are added by the UpdatePanel controls. The second <div/> element (“plhResults”)
is added by another control called PlaceHolder; these controls reserve a location in the page, allowing
the addition of future controls at runtime.

Getting Started
Open up Visual Studio and create a new ASP.NET AJAX–enabled web site. Set the language to Visual
C#, and name the project ASPAjaxSiteSearch. Make sure that you save this web site in your web
server’s wwwroot directory. When Visual Studio creates and opens the project, you should be greeted
with the default project. Default.aspx should be open, and you should have Default.aspx and
Web.config in the Solution Explorer panel.

The Database Connection String
The first order of business is to edit the Web.config file so that it contains the database connection
string. This version of the widget uses the same data as the original AjaxSiteSearch widget; therefore, the
connection string will remain the same. Add the following <add/> element to the
<connectionStrings/> element:

<add
name=”SiteSearch”
connectionString=”Data Source=localhost;

Initial Catalog=BlogDatabase;User ID=sa;Password=pwd”
providerName=”System.Data.SqlClient”

/>

Don’t forget to input your own credentials into this connection string.

Adding the Style Sheet
Next, right-click on the project’s name in the Solution Explorer and create a new folder called css. Right-
click on this folder and choose the “Add Existing Item...” option. Locate the ajaxsitesearch.css file
created for the original widget and add it to the project. Although the HTML structure changes, the style
sheet will not need any editing.

Declaring the Form
With Default.aspx open, switch over to Source view mode (the button is in the lower-left corner of the
viewable area). Remove everything within the page’s body and add the following HTML:

<div class=”ajaxSiteSearchContainer”>
<form id=”form1” class=”ajaxSiteSearchForm” runat=”server”>

<%-- More Code Here --%>

<div class=”ajaxSiteSearchResultPane”>
<%-- More Code Here --%>

</div>
</form>

</div>

460

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 460

Note that the opening <form/> tag has an attribute called runat. When set to “server,” this attribute
tells the ASP.NET engine that it needs to parse the element and its children.

The next step is to add the Go and Clear buttons. These are Button controls.

<div class=”ajaxSiteSearchContainer”>
<form id=”form1” class=”ajaxSiteSearchForm” runat=”server”>

<%-- More Code Here --%>

<asp:Button CssClass=”ajaxSiteSearchButton” ID=”btnSearch” Text=”Go”
runat=”server” />

<asp:Button CssClass=”ajaxSiteSearchButton” ID=”btnClear” Text=”Clear”
runat=”server” />

<div class=”ajaxSiteSearchResultPane”>
<%-- More Code Here --%>

</div>
</form>

</div>

Button controls have a variety of attributes available to use. In this code, the CssClass attribute is set to
“ajaxSiteSearchButton”. When the ASP.NET engine parses these controls, it transforms the CssClass
attribute to the HTML class attribute. The next attribute, ID, serves two purposes. First, this attribute is
used as the resulting <input/> element’s id attribute, and second, it serves as an identifier when writing
C# code. The Text attribute sets the button’s text that is displayed to the user.

Now it’s time to add the ScriptManager and UpdatePanel controls. This application uses two
UpdatePanel controls. The first panel is for the TextBox control, and it is updated when the Clear
button is clicked:

<div class=”ajaxSiteSearchContainer”>
<form id=”form1” class=”ajaxSiteSearchForm” runat=”server”>

<asp:ScriptManager ID=”ScriptManager1” runat=”server” />
<asp:UpdatePanel ID=”upTextBoxUpdate” RenderMode=”Inline” runat=”server”>

<ContentTemplate>
<asp:Textbox CssClass=”ajaxSiteSearchTextBox”

ID=”txtSearchTerm” runat=”server” />
</ContentTemplate>

</asp:UpdatePanel>

<asp:Button CssClass=”ajaxSiteSearchButton” ID=”btnSearch” Text=”Go”
runat=”server” />

<asp:Button CssClass=”ajaxSiteSearchButton” ID=”btnClear” Text=”Clear”
runat=”server” />

<div class=”ajaxSiteSearchResultPane”>
<%-- More Code Here --%>

</div>
</form>

</div>

The content of the first panel is the txtSearchTerm TextBox control; this is where users type in their
search query. This UpdatePanel is set to update the TextBox control on every postback (remember, the
UpdateMode attribute is optional and defaults to “Always”).

461

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 461

The second UpdatePanel updates the search results. In the original AjaxSiteSearch widget, the results
were appended to the <div/> element with a CSS class of “ajaxSiteSearchResultPane”. This ele-
ment still exists in this new version; however, the results are appended to a <div/> element inside of the
original. This is due to the use of a PlaceHolder control:

<div class=”ajaxSiteSearchContainer”>
<form id=”form1” class=”ajaxSiteSearchForm” runat=”server”>

<asp:ScriptManager ID=”ScriptManager1” runat=”server” />
<asp:UpdatePanel ID=”upTextBoxUpdate” RenderMode=”Inline” runat=”server”>

<ContentTemplate>
<asp:Textbox CssClass=”ajaxSiteSearchTextBox”

ID=”txtSearchTerm” runat=”server” />
</ContentTemplate>

</asp:UpdatePanel>

<asp:Button CssClass=”ajaxSiteSearchButton” ID=”btnSearch” Text=”Go”
runat=”server” />

<asp:Button CssClass=”ajaxSiteSearchButton” ID=”btnClear” Text=”Clear”
runat=”server” />

<div class=”ajaxSiteSearchResultPane”>
<asp:UpdatePanel UpdateMode=”Conditional” ID=”upResultsUpdate”

runat=”server”>
<ContentTemplate>

<asp:PlaceHolder ID=”plhResults” runat=”server” />
</ContentTemplate>
<Triggers>

<asp:AsyncPostBackTrigger ControlID=”btnSearch”
EventName=”Click” />

<asp:AsyncPostBackTrigger ControlID=”btnClear” EventName=”Click” />
</Triggers>

</asp:UpdatePanel>
</div>

</form>
</div>

As mentioned earlier, PlaceHolder controls reserve space in the web page; this application uses this
space by adding (and clearing) the search results. This control resides in the ContentTemplate of this
UpdatePanel, which is updated when the Go and Clear Button controls’ Click event fires. Clicking
the btnSearch button fills the PlaceHolder with data, and the btnClear button clears that data.

Performing the Search
The search should execute when the Go button is clicked. The Click event handler, called
btnSearch_Click(), resembles that of the AjaxSiteSearch.Search() method in the original widget.
In fact, a good portion of that code is reused. The main changes result from adapting the code to use
ASP.NET controls.

The btnSearch_click() event handler accepts two arguments. The first, sender, is the object that
received the event. The second, e, is the event arguments that describe the event.

462

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 462

protected void btnSearch_Click(object sender, EventArgs e)
{

//Get the search string
string searchString = txtSearchTerm.Text;

//more code here
}

The first step is to get the search string. Since ASP.NET controls can be used to get this information, it’s
not necessary to rely on fetching arguments out of the query string. To get the search term, use the Text
property of the txtSearchTerm TextBox control. Then compare that value to an empty string. Doing so
allows you to tell the user that he or she needs to enter text into the TextBox:

protected void btnSearch_Click(object sender, EventArgs e)
{

//Get the search string
string searchString = txtSearchTerm.Text;

//Check to see if anything was entered.
//If not, tell the user to enter text.
if (searchString == String.Empty)
{

throw new Exception(“Please enter a search term.”);
}
//more code here

}

This code compares the searchString variable to an empty string. If it is true, this code throws a
generic exception, which in turns fires the ScriptManager’s AsyncPostBackError event (the handler
will be written shortly).

If the user did enter text, a search should be performed with that text. This is where the code becomes
familiar:

protected void btnSearch_Click(object sender, EventArgs e)
{

//Get the search string
string searchString = txtSearchTerm.Text;

//Check to see if anything was entered.
//If not, tell the user to enter text.
if (searchString == String.Empty)
{

throw new Exception(“Please enter a search term.”);
}
else
{

//Get our connection string.
string connectionString =

ConfigurationManager.ConnectionStrings[“SiteSearch”].ConnectionString;
//Build the query.
string query = String.Format(“SELECT TOP 10 BlogId, “ +

“Title FROM BlogPosts WHERE Post LIKE ‘%{0}%’ “ +

463

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 463

“OR Title LIKE ‘%{0}%’ ORDER BY Date DESC”, searchString);

//Set up the database connection
using (SqlConnection conn = new SqlConnection(connectionString))
{

//And get the command ready
SqlCommand command = new SqlCommand(query, conn);
//Open the connection.
conn.Open();

//Perform the query.
using (SqlDataReader reader = command.ExecuteReader())
{

//If we got results...
if (reader.HasRows)
{

//Loop through them
while (reader.Read())
{

//more code here
}

}
else //No results found
{

//more code here
}

}
}

}
}

This code is exactly like that from AjaxSiteSearch.Search(). The database connection string is
obtained from the application’s configuration, the query is built, a connection to the database is opened,
and the query is executed against the database.

The difference this time around is in the data sent back to the client. The AjaxSiteSearch.Search()
method returned a JSON string, which the client-side code used to create hyperlinks dynamically. In
btnSearch_Click(), HyperLink controls will be added to the PlaceHolder. The end result is the
same (links added to an HTML element), but this saves you from writing any JavaScript.

protected void btnSearch_Click(object sender, EventArgs e)
{

//Get the search string
string searchString = txtSearchTerm.Text;

//Check to see if anything was entered.
//If not, tell the user to enter text.
if (searchString == String.Empty)
{

throw new Exception(“Please enter a search term.”);
}
else

464

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 464

{
//Get our connection string.
string connectionString =

ConfigurationManager.ConnectionStrings[“SiteSearch”].ConnectionString;
//Build the query.
string query = String.Format(“SELECT TOP 10 BlogId, “ +

“Title FROM BlogPosts WHERE Post LIKE ‘%{0}%’ “ +
“OR Title LIKE ‘%{0}%’ ORDER BY Date DESC”, searchString);

//Set up the database connection
using (SqlConnection conn = new SqlConnection(connectionString))
{

//And get the command ready
SqlCommand command = new SqlCommand(query, conn);
//Open the connection.
conn.Open();

//Perform the query.
using (SqlDataReader reader = command.ExecuteReader())
{

//If we got results...
if (reader.HasRows)
{

//Loop through them
while (reader.Read())
{

//Create a link
HyperLink link = new HyperLink();

link.Text = reader[“Title”].ToString();
link.NavigateUrl = “http://www.yoursite.com/” +

reader[“BlogId”].ToString();
link.CssClass = “ajaxSiteSearchLink”;

//Add it to the PlaceHolder
plhResults.Controls.Add(link);

}
}
else //No results found
{

//more code here
}

}
}

}
}

The HyperLink control represents a normal hyperlink. It contains data and has a URL to navigate to
when clicked. This code creates a HyperLink control programmatically by creating an instance of the
HyperLink class. The value of the Title database column is assigned to the Text, the NavigateUrl
property is set to the URL to navigate to, and the CssClass property assumes the value of
“ajaxSiteSearchLink”. After building the HyperLink, it is then added to plhResults.

465

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 465

The final step in btnSearch_Click() is to tell the user when a search did not find a match; throwing a sim-
ple exception works just fine for this purpose due to the AJAX Extensions’ handling of server-side errors:

protected void btnSearch_Click(object sender, EventArgs e)
{

//Get the search string
string searchString = txtSearchTerm.Text;

//Check to see if anything was entered.
//If not, tell the user to enter text.
if (searchString == String.Empty)
{

throw new Exception(“Please enter a search term.”);
}
else
{

//Get our connection string.
string connectionString =

ConfigurationManager.ConnectionStrings[“SiteSearch”].ConnectionString;
//Build the query.
string query = String.Format(“SELECT TOP 10 BlogId, “ +

“Title FROM BlogPosts WHERE Post LIKE ‘%{0}%’ “ +
“OR Title LIKE ‘%{0}%’ ORDER BY Date DESC”, searchString);

//Set up the database connection
using (SqlConnection conn = new SqlConnection(connectionString))
{

//And get the command ready
SqlCommand command = new SqlCommand(query, conn);
//Open the connection.
conn.Open();

//Perform the query.
using (SqlDataReader reader = command.ExecuteReader())
{

//If we got results...
if (reader.HasRows)
{

//Loop through them
while (reader.Read())
{

//Create a link
HyperLink link = new HyperLink();

link.Text = reader[“Title”].ToString();
link.NavigateUrl = “http://www.yoursite.com/” +

reader[“BlogId”].ToString();
link.CssClass = “ajaxSiteSearchLink”;

//Add it to the PlaceHolder
plhResults.Controls.Add(link);

}
}

466

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 466

else //No results found
{

//Let the user know.
throw new Exception(“No match could be found.”);

}
}

}
}

}

This final line in this event handler throws a new generic exception, telling the user that no match could
be found.

Clearing the Results
The results are cleared when the Clear button is clicked:

protected void btnClear_Click(object sender, EventArgs e)
{

foreach (Control control in plhResults.Controls)
plhResults.Controls.Remove(control);

txtSearchTerm.Text = String.Empty;
}

Clearing the form involves two operations. The first removes the PlaceHolder’s child controls
(HyperLink controls). By using a foreach loop to loop through the PlaceHolder’s controls, this code
removes each control with the Controls.Remove() method. Once empty, the Text property of the
txtSearchTerm TextBox is set to an empty string, clearing any search term that the user entered.

The TextBox’s UpdatePanel is set to always update. If it were set to update conditionally, this code
would not clear the text within the box.

Handling Errors
The btnSearch_Click() event handler throws two errors, so the AsyncPostBackError event for the
ScriptManager must be handled.

protected void ScriptManager1_AsyncPostBackError(object sender,
AsyncPostBackErrorEventArgs e)

{
ScriptManager1.AsyncPostBackErrorMessage = e.Exception.Message;

}

This code simply sets the AsyncPostBackErrorMessage property so that the user gets informational
error messages.

467

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 467

Hooking Up the Events
The final step in this rewrite is hooking up the event handlers to the Button controls. For this example,
the event handlers are added through the markup:

<div class=”ajaxSiteSearchContainer”>
<form id=”form1” class=”ajaxSiteSearchForm” runat=”server”>

<asp:ScriptManager ID=”ScriptManager1” runat=”server”
OnAsyncPostBackError=”ScriptManager1_AsyncPostBackError” />

<asp:UpdatePanel ID=”upTextBoxUpdate” RenderMode=”Inline” runat=”server”>
<ContentTemplate>

<asp:Textbox CssClass=”ajaxSiteSearchTextBox”
ID=”txtSearchTerm” runat=”server” />

</ContentTemplate>
</asp:UpdatePanel>

<asp:Button CssClass=”ajaxSiteSearchButton” ID=”btnSearch” Text=”Go”
OnClick=”btnSearch_Click” runat=”server” />

<asp:Button CssClass=”ajaxSiteSearchButton” ID=”btnClear” Text=”Clear”
OnClick=”btnClear_Click” runat=”server” />

<div class=”ajaxSiteSearchResultPane”>
<asp:UpdatePanel UpdateMode=”Conditional” ID=”upResultsUpdate”

runat=”server”>
<ContentTemplate>

<asp:PlaceHolder ID=”plhResults” runat=”server” />
</ContentTemplate>
<Triggers>

<asp:AsyncPostBackTrigger ControlID=”btnSearch”
EventName=”Click” />

<asp:AsyncPostBackTrigger ControlID=”btnClear” EventName=”Click”
/>

</Triggers>
</asp:UpdatePanel>

</div>
</form>

</div>

This new code simply adds the OnClick event handler to the Button controls. Now when they’re
clicked, the events will execute the correct code.

With this addition, the rewrite is complete. Open your web browser and point it to http://
yourserver/ASPAjaxSiteSearch. You’ll see Figure 14-4.

468

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 468

Figure 14-4

Now type “lo” in the search box and click the Go button. Figure 14-5 shows what you should see.

That’s it! You’ve duplicated the AjaxSiteSearch widget from Chapter 12, and even expanded on it, while
writing less code and without writing any JavaScript!

469

ASP.NET AJAX Extensions (Atlas)

17_109496 ch14.qxd 2/5/07 7:01 PM Page 469

Figure 14-5

Summary
This chapter covered the new ASP.NET AJAX Extensions, which consists of client-side JavaScript code
and server extensions.

The chapter began by walking you through many aspects of the ASP.NET AJAX client library, showing
you how it expands JavaScript to include a typed system. You learned how to create namespaces,
classes, enumerations, and interfaces.

Next, you learned how to utilize some of the client-side controls, wrappers for normal HTMLElements
that provide an easy to use API. You learned about the TextBox, Button, Selector, and Label controls.

After covering many aspects of the client library, the chapter moved into the server-side of the AJAX
Extensions, and introduced the UpdatePanel. You built a simple example of the UpdatePanel’s use by
updating contents in a TextBox.

Finally, you rewrote the AjaxSiteSearch widget from Chapter 12 and refactored the code to utilize the
ASP.NET AJAX Extensions. By doing so, you saw how you can write Ajax-enabled applications with
writing little to no JavaScript.

470

Chapter 14

17_109496 ch14.qxd 2/5/07 7:01 PM Page 470

Case Study: FooReader.NET

Chapter 7 covered syndication with RSS and Atom and how easy it is to share information. In
order to view information from several different sources, an application called an aggregator is
used to combine the different feeds in one location. An aggregator makes it easier and faster to
stay up to date with information collected from around the Web (much easier than visiting several
web sites each day).

FooReader.NET is a web-based, .NET RSS/Atom aggregator ported from ForgetFoo’s ColdFusion-
based FooReader (http://reader.forgetfoo.com/). With many conventional applications fill-
ing the aggregator void, including popular e-mail and browser applications, why build a
web-based RSS/Atom aggregator? Consider the following reasons:

❑ The Web is cross-platform. Building a web-based aggregator ensures that anyone with
Internet Explorer 6+, Firefox, or Opera can access it.

❑ The Web is centrally located. One of the problems with conventional aggregators that are
installed on the computer is the upkeep of data in many locations. If you like to read syn-
dicated feeds at work and at home, you must install an aggregator on each computer and
load it with the appropriate feeds. A web-based aggregator eliminates this problem
because any change made to the feed list is seen regardless of the user’s location.

This chapter explains how FooReader.NET is built using Ajax, and as with any web application,
there are two main components: the client side and the server side.

If you installed a version of Visual Studio, open it and create a new web site called FooReader.
Make sure that the language is C#.

18_109496 ch15.qxd 2/5/07 7:01 PM Page 471

The Client Components
The client-side components of an Ajax solution are in charge of communicating with the server and dis-
playing the received data to the user. For FooReader.NET, several client-side components are necessary
to manage the overall user experience.

❑ The user interface: The UI ties the user to his or her data. Because the UI is essentially a web
page, the usual suspects of web browser technologies are used. The design is marked up in
HTML, and CSS (and a little bit of JavaScript) styles it for the desired look and feel.

❑ XParser: The JavaScript library responsible for requesting and parsing feeds.

❑ The JavaScript code: Drives the UI, taking the information XParser received and displaying it to
the user. This is contained in the fooreader.js file.

The User Interface
The key to any successful application is the design of the user interface. If the user cannot use the appli-
cation, there is no reason for the application to exist. FooReader.NET was designed for ease of use. In
fact, it borrows heavily from the Microsoft Outlook 2003 (and later) user interface. It has a three-pane
interface. The first two panes are fixed width, while the third pane is fluid. (See Figure 15-1.)

Figure 15-1

472

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 472

The interface is contained in default.htm, and its layout is as follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xml:lang=”en” lang=”en” xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>FooReader.NET (Version 1.5)</title>
<link rel=”stylesheet” type=”text/css” href=”css/FooReader.css” />
<script type=”text/javascript” src=”js/zxml.src.js”></script>
<script type=”text/javascript” src=”js/XParser.js”></script>
<script type=”text/javascript” src=”js/FooReader.js”></script>

</head>
<body>

<div id=”divLoading”>

</div>

<div id=”divTopBar”>

<div id=”divLicense”>

<a href=”http://creativecommons.org/licenses/by-nc-sa/2.5/”
title=”Some Rights Reserved” target=”_blank”>License

</div>
</div>

<div id=”divPaneContainer”>
<div id=”divFeedsPane”>

<div class=”paneheader”>Feeds</div>
<div id=”divFeedList”></div>

</div>

<div id=”divItemsPane”>
<div id=”divViewingItem” class=”paneheader”>Items</div>
<div id=”divItemList”></div>

</div>

<div id=”divReadingPane”>
<div id=”divMessageContainer”>

<div id=”divMessageHeader”>
<div id=”divMessageTitle”></div>
<a href=”” id=”aMessageLink” title=”Click to goto posting.”

target=”_new”>Travel to Post
</div>
<div id=”divMessageBody”></div>

</div>
</div>

</div>
</body>
</html>

The first two direct children of the document’s body are the divLoading and divTopBar elements. The
former provides a UI cue, telling the user that the application is loading a feed. It appears when a request
is made to the server application and hides when the server’s response is received and processed. The

473

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 473

divTopBar element primarily serves as a title bar in conventional applications; it tells the user that the
application they’re using is FooReader.NET, and it provides a link to the Creative Commons license that it
is released under.

Next is the divPaneContainer element. As its name suggests, the three panes reside in this element.
This element allows certain styles to easily be applied to the group of panes, as opposed to applying
them to each pane separately.

The first pane, called the feeds pane, displays the different feeds as links that the user can click on. A
<div/> element with an id of divFeedList in the feeds pane allows the feeds list to be dynamically
written to the document. Feeds are block level <a/> elements with a CSS class of “feedlink”. The fol-
lowing is the HTML of these links.

Feed title

When the user clicks on a feed, the feed’s items are loaded into the second pane: the items pane. This
pane has two elements that are used to display information.

❑ The first is a <div/> element with an id of divViewingItem (it is also the pane’s header). This
element displays which feed is currently loaded into the application.

❑ The second element is another <div/> element, whose id attribute is set to divItemList. This
element will contain a list of <item/> RSS elements or <entry/> Atom elements, and they are
dynamically added to divItemList.

The HTML structure for these items is as follows.

<div class=”itemheadline”>[Headline]</div>
<div class=”itemdate”>[Date]</div>

This HTML is fairly standard, except for the frfeeditem attribute in the <a/> element. When a feed is
loaded and the items are added to the page, each item is assigned a number by which to identify itself.

When the user clicks an item, it loads the item into the last pane: the reading pane. This pane has three
elements that display the item’s information. The first, whose id is divMessageTitle, is where the
<title/> element of RSS and Atom feeds is displayed. The second element has an id of aMessageLink
whose href attribute is changed dynamically. Finally, the last element is divMessageBody, where the
contents of the <rss:description/> and <atom:content/> elements are displayed.

This page requires one style sheet, FooReader.css, along with three JavaScript files: the zXml library,
XParser, and FooReader.js, which contains all the client functionality.

Since FooReader.NET uses XParser, the application will not work in Safari. It does, however, work in IE
6+, Firefox 1+, and Opera 9+.

The finished UI is achieved by a combination of CSS and JavaScript; the CSS sets the size of the docu-
ment’s body (a necessity for Opera), the three panes, and styles the other elements. JavaScript sizes the
elements inside the panes.

474

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 474

Styling the Interface
The only style sheet used in FooReader.NET is FooReader.css, and it exists in the css directory. One of
the keys to making this interface work is the size of the browser’s viewport. The page is explicitly set to
use all available vertical space in the browser’s window.

html, body {
height: 100%;
margin: 0px;
overflow: hidden;
background-color: gray;
font: 11px verdana, arial, helvetica, sans-serif;

}

The height property is set to 100%. This property is necessary for Opera; otherwise, the JavaScript portion
of styling the elements would have to branch code to accommodate the differing Browser Object Models.
The overflow is set to hidden, because some of the elements in the page will cause scrollbars to appear in
the browser’s window. The goal of the UI is to make FooReader.NET feel like a normal application, and
scrollbars at the document level inhibit that feeling (the individual panes will scroll, if necessary).

The Topbar
The next rules are for divTopBar, and the elements contained in it:

/* The Topbar */
#divTopBar {

background: gray url(“../img/top_bg.gif”) repeat-x;
height: 31px;
padding-left: 25px;
position: relative;

}

The top bar has a background color of gray (to match the gray background of the page) and a back-
ground image of top_bg.gif. Its left side is padded by 25 pixels. This pushes the element to the
right. Its relative position allows for any child elements to be positioned within the confines of the ele-
ment, like the following divLicense element:

#divLicense {
position: absolute;
right: 10px;
top: 3px;

}

#divLicense a {
color: white;
padding: 1px 4px 2px 4px;

}

#divLicense a:hover {
background: blue url(“../img/toolbar_back.gif”) repeat-x;
border: 1px solid #000080;
color: #000080;
padding: 0px 3px 1px 3px;

}

475

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 475

This element contains one link: the license. It is absolutely positioned 10 pixels from the right edge and 3
pixels from the top of divTopBar. The link inside divLicense has a text color of white. When the user
moves their mouse pointer over the link, it gains a background image that repeats horizontally, a blue
border 1 pixel in width, the text color changes to a dark blue, and the padding is adjusted to be 1 pixel
less on all sides. This change in padding occurs because a border is added to the element. If no adjust-
ment was made to the padding, the link would actually grow 1 pixel on each side.

The Loading Cue
In the HTML structure, the divLoading element contains an image. This image shows an animated
progress bar; it’s about 5 to 10 pixels high and a little under 300 pixels in length.

The image’s parent element, the <div/> element, is absolutely positioned, and its display property is
set to none, removing it completely from the document flow.

/* The loading <div/> */
#divLoading {

position: absolute;
display: none;
top: 20%;
left: 35%;
width: 302px;
z-index: 5;
background: transparent url(“../img/loading.gif”) no-repeat;
padding: 30px 10px;

}

Probably the most important style declaration is z-index. Since the element is first in the HTML docu-
ment, it is hidden by the other elements in the page. Specifying a z-index greater than 0 causes the
loading <div/> element to be placed in front of the other elements, making it visible to the user (see
Figure 15-2).

The Panes
The three panes are contained within the aptly named divPaneContainer element. This element posi-
tions the panes in their desired location: away from the browser’s left edge and the top bar:

#divPaneContainer {
position: relative;
top: 10px;
left: 10px;

}

Positioning this element allows freedom from the tedium of positioning all the panes individually.

476

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 476

Figure 15-2

The feeds and items pane also have a header at the top of each pane. This header lets the user know
what type of data the two panes contain. They are 20 pixels in height and have bold, white text. Here is
its style rule:

.paneheader {
height: 20px;
background-image: url(“../img/header_background.gif”);
font: bold 16px arial;
color: white;
padding: 2px 0px 2px 5px;
letter-spacing: 1px;
overflow: hidden;

}

477

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 477

The Feeds Pane
The first pane is the feed pane. The divFeedsPane element itself is simple, as the following rule shows:

#divFeedsPane {
float: left;
width: 148px;
border: 1px solid navy;
background-color: white;
overflow: hidden;

}

The element is set to float left and is 148 pixels wide. Floating an element shifts the element to the right or
left. In this case, divFeedsPane is shifted to the left. This makes the items pane flow along its right side,
even though they are both block-level elements. To ensure that the pane always maintains it size, its over-
flow property is set to hidden. This hides any content that extends beyond the pane’s boundaries. It is desir-
able, however, for the pane’s contents to scroll. That is part of divFeedList’s job, and here is its CSS rule:

#divFeedList {
padding: 5px 1px 5px 1px;
overflow: auto;

}

This element contains the feed links. Its overflow property is set to auto. This allows divFeedList to
scroll if its contents make the element larger than divFeedsPane. The scrollbars will appear inside
divFeedsPane, making the contents scrollable, while keeping the pane itself the same (see Figure 15-3).

Figure 15-3

The links in this pane are styled as block-level elements. They have padding to give them visual separa-
tion from each other.

a.feedlink {
display: block;
padding: 5px;
font: bold 12px arial;
text-decoration: none;
color: #5583d3;

}

a.feedlink:hover {
color: #3768B9;
text-decoration: underline;

}

478

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 478

The Items Pane
The items pane’s CSS rule closely resembles that of the feed’s pane:

#divItemsPane {
float: left;
width: 225px;
border: 1px solid navy;
background-color: white;
margin-left: 5px;
margin-right: 5px !important;
margin-right: 2px;
overflow: hidden;

}

It, too, floats left and hides its overflow. The right and left margins add space between this pane and the
other two panes; however, IE6 and the other browsers render margins differently. In order for every
browser to render the UI the same, the !important declarative must be used. The first margin-right
uses this. So IE7, Firefox, and Opera will use that specific value regardless of what margin-right is
assigned in the next declaration. The second assignment is for IE6. It adds an extra line to the CSS, but it
makes the UI look uniform in all four browsers.

The items in this pane also have their own styling. If you refer back to the item HTML structure men-
tioned earlier, you see that they are simply <a/> elements with a CSS class of itemlink. These items
have two states. The first is their normal state; how they look when the user hasn’t clicked one. When a
user clicks an item, it the JavaScript code changes the CSS class to itemlink-selected. Both states
share many similar style declarations.

a.itemlink, a.itemlink-selected {
border-bottom: 1px solid #EAE9E1;
background-image: url(“../img/item_icon.gif”);
background-repeat: no-repeat;
cursor: pointer;
text-decoration: none;
display: block;
padding: 2px;
font: 11px tahoma;

}

The remaining rules for the items are to differentiate the two states from each other, as well as define the
:hover pseudo-classes for the normal state:

a.itemlink {
background-color: white;
color: #808080;

}

a.itemlink:hover {
background-color: #D3E5FA;

}

a.itemlink:hover .itemheadline {
color: black;

479

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 479

}

.itemheadline,.itemdate {
margin-left: 20px;

}

a.itemlink-selected {
background-color: #316AC5;
color: white;

}

The Reading Pane
The third pane is different from the other panes in that it has no defined width, as the following CSS shows:

#divReadingPane {
margin: 0px 20px 0px 0px;
border: 1px solid black;
background-color: white;
height: 100%;
overflow: hidden;

}

Instead, the browser automatically sizes the element’s width to fill the remainder of divPaneContainer,
and the margin declaration in this CSS rule brings the right edge in by 20 pixels. Like the two previous
panes, the reading pane’s overflow is set to hidden. Unlike the other panes, however, the height is
specified to 100%. This makes the pane’s height that of the pane container.

The direct child of divReadingPane is divMessageContainer, which contains the message elements.
Other than serving this purpose, it pads the message area by 5 pixels on all sides:

#divMessageContainer {
padding: 5px;

}

The first part of a message is the header, which contains the article’s title and a link to take the user to
the article. Its CSS follows:

#divMessageHeader {
height: 34px;
background-color: white;
border-bottom: 1px solid #ACA899;
padding: 8px;

}

#divMessageTitle {
font: bold 16px arial;

}

#aMessageLink {
font: 11px arial;

}

480

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 480

The divMessageBody element is where the feed item’s content is displayed, and the following CSS rule
applies to this element.

#divMessageBody {
background-color: white;
padding: 0px 0px 0px 5px;
font: 13px tahoma;
overflow: auto;

}

This portion of the reading pane scrolls if the contents exceed the height of the reading pane. Its height is
not specified.

The height of the elements that contain content (divFeedList, divItemList, and divMessageBody)
are not styled through CSS. Instead, that is handled by JavaScript.

Driving the UI
The JavaScript contained in fooreader.js controls all aspects of the UI. It retrieves the feed list, parses it,
and populates the feeds pane. It creates XParser objects to request, receive, and parse RSS and Atom feeds,
and uses that information to populate the items and reading panes. It sizes many elements of the UI and
resizes them when the window’s size changes. In short, it’s the backbone of the client-side components.

The Helper Functions
The majority of code is contained inside the fooReader object, but two functions stand alone to aid in the
element’s resizing. The first function is called getStyle(), and it is a cross-browser approach to getting
the value of a specific style property. It accepts two arguments, the element and the CSS property name.

function getStyle(oElement, sProperty) {
var sStyle;

if (typeof window.getComputedStyle == “undefined”) {
sStyle = oElement.currentStyle[sProperty];

} else {
sStyle = getComputedStyle(oElement, “”)[sProperty];

}

return sStyle;
}

This code uses IE’s currentStyle property and the W3C DOM getComputedStyle() method to
retrieve the value of a specific property.

The second function, getStyleNumber(), performs a similar activity, except that it returns an integer
instead of a string:

function getStyleNumber(oElement, sProperty) {
return parseInt(getStyle(oElement, sProperty));

}

481

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 481

The fooReader Object
As mentioned earlier, the fooReader object contains most of the JavaScript code, making it the main
part of the application. It contains various properties and methods necessary to run the UI. It is the only
object of its kind in the application. Therefore, it is defined in object literal notation:

var fooReader = {
parser : null,
feeds : [],

//HTML elements
divFeedList : null,
divViewingItem : null,
divItemList : null,
divMessageTitle : null,
aMessageLink : null,
divMessageBody : null,
divLoading : null,

selectedItem : null,

//more code here
}

//more code here

The properties that comprise this definition are as follows:

❑ The first property, parser, contains an XParser feed object.

❑ Next is an array called feeds, and this contains a list of feeds retrieved from the feeds list.

❑ The next seven properties reference HTMLElement objects. These elements are constantly used
throughout the application’s session, so it makes good sense to cache them.

❑ The last property, selectedItem, is a pointer to the item (<a/> element) last clicked by the
user.

These properties are initialized as null to prevent any errors from occurring.

Initializing the UI
Before the user can interact with the UI, the HTMLElement properties need to be initialized. The method
for this is called init(), and aside from assigning the properties for the elements, it sizes the UI ele-
ments that need dynamic sizes. This method is called only on the load and resize events of the win-
dow. Therefore, the function exists as a method of the fooReader object, but its definition lies outside of
the main object definition. This doesn’t really do anything except present the visual differentiation
between this method and the other members of fooReader.

var fooReader = {
parser : null,
feeds : [],

//HTML elements

482

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 482

divFeedList : null,
divViewingItem : null,
divItemList : null,
divMessageTitle : null,
aMessageLink : null,
divMessageBody : null,
divLoading : null,

selectedItem : null,

//more code here
}

fooReader.init = function (evt) {
evt = evt || window.event;

if (evt.type == “load”) { //Things to initialize only on the load event
fooReader.divFeedList = document.getElementById(“divFeedList”);
fooReader.divViewingItem = document.getElementById(“divViewingItem”);
fooReader.divItemList = document.getElementById(“divItemList”);
fooReader.divMessageTitle = document.getElementById(“divMessageTitle”);
fooReader.aMessageLink = document.getElementById(“aMessageLink”);
fooReader.divMessageBody = document.getElementById(“divMessageBody”);
fooReader.divLoading = document.getElementById(“divLoading”);

//more code here
}

var divPaneContainer = document.getElementById(“divPaneContainer”);
var divReadingPane = document.getElementById(“divReadingPane”);
var divMessageContainer = document.getElementById(“divMessageContainer”);
var divMessageHeader = document.getElementById(“divMessageHeader”);

//more code here

};

window.onload = fooReader.init;
window.onresize = fooReader.init;

Since developers still have to cope with differing event models, the first line of the method retrieves the
correct event object. Next, the event’s type is checked to determine whether it was the load event that
fired. If this is true, the various HTMLElement properties are assigned with the
document.getElementById()method.

Outside the if block, other HTMLElements are retrieved and assigned to variables. These variables are
used in the sizing operations that follow:

//fooReader object code here

fooReader.init = function (evt) {
evt = evt || window.event;

if (evt.type == “load”) { //Things to initialize only on the load event
fooReader.divFeedList = document.getElementById(“divFeedList”);

483

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 483

fooReader.divViewingItem = document.getElementById(“divViewingItem”);
fooReader.divItemList = document.getElementById(“divItemList”);
fooReader.divMessageTitle = document.getElementById(“divMessageTitle”);
fooReader.aMessageLink = document.getElementById(“aMessageLink”);
fooReader.divMessageBody = document.getElementById(“divMessageBody”);
fooReader.divLoading = document.getElementById(“divLoading”);

//more code here
}

var divPaneContainer = document.getElementById(“divPaneContainer”);
var divReadingPane = document.getElementById(“divReadingPane”);
var divMessageContainer = document.getElementById(“divMessageContainer”);
var divMessageHeader = document.getElementById(“divMessageHeader”);

var iDocHeight = document.documentElement.clientHeight;
divPaneContainer.style.height = iDocHeight –

divPaneContainer.offsetTop - 12 + “px”;

var iFeedsListHeight = divPaneContainer.offsetHeight –
fooReader.divViewingItem.offsetHeight -
getStyleNumber(fooReader.divFeedList, “paddingTop”) –
getStyleNumber(fooReader.divFeedList, “paddingBottom”);

fooReader.divFeedList.style.height = iFeedsListHeight + “px”;

//more code here
};

window.onload = fooReader.init;
window.onresize = fooReader.init;

This new code begins by getting the height of the viewport with document.documentElement
.clientHeight. That value is then used in conjunction with divPaneContainer’s offsetTop to set
divPaneContainer’s height. The numeric constant, 12, is for visual purposes only, because it provides
12 pixels of space between the bottom of the container and the bottom of the window.

Next is the assignment of the iFeedsListHeight variable, which is used to set the height of
divFeedList. This element’s height is set to fill all available space in the pane. So, the calculation takes
the size of the pane container’s height, subtracts the size of the pane header by using the
divViewingItem’s offsetHeight property, and finally subtracts the paddingTop and
paddingBottom style values from divFeedList itself. The two latter values both contribute to
divFeedList’s height. Therefore, they need to be included in the calculation. This size in combination
with overflow: auto in the CSS makes the contents of this pane scroll if it exceeds the size of the pane.

Next, use the same process for the items pane, except substitute fooReader.divFeedList for
fooReader.divItemList, like this:

//fooReader object code here

fooReader.init = function (evt) {
evt = evt || window.event;

484

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 484

if (evt.type == “load”) { //Things to initialize only on the load event
fooReader.divFeedList = document.getElementById(“divFeedList”);
fooReader.divViewingItem = document.getElementById(“divViewingItem”);
fooReader.divItemList = document.getElementById(“divItemList”);
fooReader.divMessageTitle = document.getElementById(“divMessageTitle”);
fooReader.aMessageLink = document.getElementById(“aMessageLink”);
fooReader.divMessageBody = document.getElementById(“divMessageBody”);
fooReader.divLoading = document.getElementById(“divLoading”);

//more code here
}

var divPaneContainer = document.getElementById(“divPaneContainer”);
var divReadingPane = document.getElementById(“divReadingPane”);
var divMessageContainer = document.getElementById(“divMessageContainer”);
var divMessageHeader = document.getElementById(“divMessageHeader”);

var iDocHeight = document.documentElement.clientHeight;
divPaneContainer.style.height = iDocHeight –

divPaneContainer.offsetTop - 12 + “px”;

var iFeedsListHeight = divPaneContainer.offsetHeight –
fooReader.divViewingItem.offsetHeight -
getStyleNumber(fooReader.divFeedList, “paddingTop”) –
getStyleNumber(fooReader.divFeedList, “paddingBottom”);

fooReader.divFeedList.style.height = iFeedsListHeight + “px”;

var iItemListHeight = divPaneContainer.offsetHeight –
fooReader.divViewingItem.offsetHeight –
getStyleNumber(fooReader.divItemList, “paddingTop”) –
getStyleNumber(fooReader.divItemList, “paddingBottom”);

fooReader.divItemList.style.height = iItemListHeight + “px”;

var iMessageBodyHeight = divReadingPane.offsetHeight –
divMessageHeader.offsetHeight –
getStyleNumber(divMessageContainer, “paddingTop”) –
getStyleNumber(divMessageContainer, “paddingTop”);

fooReader.divMessageBody.style.height = iMessageBodyHeight + “px”;
};

window.onload = fooReader.init;
window.onresize = fooReader.init;

Setting the height of divMessageBody follows somewhat the same pattern you’ve just seen. It uses the read-
ing pane’s and the message header’s height instead of the pane container and header. It also gets the vertical
padding values from the divMessageContainer element as opposed of the divMessageBody. The end
result is the same, however. When the message body’s height is set, the content will scroll if necessary.

485

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 485

Showing and Hiding Loading Cues
The fooReader object exposes two methods for showing and hiding the loading cue:
showLoadingDiv() and hideLoadingDiv().

hideLoadingDiv : function () {
this.divLoading.style.display = “none”;

},

showLoadingDiv : function () {
this.divLoading.style.display = “block”;

},

These methods simply change the display property to “none” or “block” to hide and show the element.

Setting the Reading Pane’s Content
There is one method that sets the content in the reading pane, and it is called setMessage(). This
method adds content to the divMessageTitle, aMessageLink, and divMessageBody elements. It
accepts three arguments, the message title, the link associated with the message, and the message’s body,
and it uses the values accordingly.

setMessage : function (sTitle, sHref, sMessageBody) {
this.divMessageTitle.innerHTML = sTitle;
this.aMessageLink.href = sHref;
this.divMessageBody.innerHTML = sMessageBody;

},

Item Methods
There are four methods associated with the items pane, and they are responsible for populating the
item pane with items, changing the item pane header, clearing the item pane, and selecting an item
programmatically.

Adding Items
The first method, addItem(), dynamically creates an item’s HTML and appends it to the item pane. It
accepts two arguments: an XParser item object and the number associated with the item.

addItem : function (oItem, iNum) {
var aItem = document.createElement(“A”);
aItem.className = “itemlink”;
aItem.href = oItem.link.value;

aItem.setAttribute(“frFeedItem”,iNum);
aItem.id = “item” + iNum;

var divHeadline = document.createElement(“DIV”);
divHeadline.className = “itemheadline”;
divHeadline.innerHTML = oItem.title.value;

var divDate = document.createElement(“DIV”);
divDate.className = “itemdate”;

486

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 486

divDate.appendChild(document.createTextNode(“Date: “ + oItem.date.value));
aItem.appendChild(divHeadline);
aItem.appendChild(divDate);

//more code here

this.divItemList.appendChild(aItem);
},

This code uses the information contained in the XParser item object to create the item’s HTML. Notice
that an attribute called “frFeedItem” is created for the aItem element. This attribute is used to contain
the number associated with this item and is used later to add content to the reading pane.

At this point, clicking the item does nothing for the application. In fact, it takes the user to the URL spec-
ified in aItem’s href property. This is not the desired functionality, so the click event must be handled.
Clicking the item should do two things.

❑ First, the currently selected item should return to its normal state, and the newly clicked item
should become selected.

❑ Second, the reading pane should be populated with content.

The onclick event handler executes in the scope of the <a/> element. Therefore, the code needs to use
fooReader’s API to access parts of the UI.

addItem : function (oItem, iNum) {
var aItem = document.createElement(“A”);
aItem.className = “itemlink”;
aItem.href = oItem.link.value;

aItem.onclick = function () {
var oSelectedItem = fooReader.selectedItem;

if (oSelectedItem != this) {
if (oSelectedItem) {

oSelectedItem.className = “itemlink”;
}

fooReader.selectedItem = this;
this.className = “itemlink-selected”;

}

var iItemNum = this.getAttribute(“frFeedItem”);

var oItem = fooReader.parser.items[iItemNum];
fooReader.setMessage(oItem.title.value,

oItem.link.value,
oItem.description.value);

return false;
};

//more code here

487

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 487

aItem.setAttribute(“frFeedItem”,iNum);
aItem.id = “item” + iNum;

var divHeadline = document.createElement(“DIV”);
divHeadline.className = “itemheadline”;
divHeadline.innerHTML = oItem.title.value;

var divDate = document.createElement(“DIV”);
divDate.className = “itemdate”;
divDate.appendChild(document.createTextNode(“Date: “ + oItem.date.value));
aItem.appendChild(divHeadline);
aItem.appendChild(divDate);

this.divItemList.appendChild(aItem);
},

The first few lines of this code retrieve fooReader.selectedItem and determine whether or not this is
a new item being clicked. If it is, then the old selected item’s className property is set to “itemlink”
to return it to the normal state. Then fooReader.selectedItem stores the new selected item and
changes its className to “itemlink-selected”.

Next, the value contained in the link’s frFeedItem attribute is retrieved and used in the
fooReader.parser.items collection to retrieve the correct item, and its information is sent to the
setMessage() method. Finally, the event handler returns false, forcing the browser not to navigate to
the URL specified by the href property.

The items now populate the items pane and perform the desired function when clicked. However, it
would add a nice touch to do something when the item is double-clicked. In Outlook 2003+, double-
clicking an item pulls up the e-mail message in a new window. FooReader.NET can essentially do the
same thing; it can open a new window and navigate to the article’s URL.

addItem : function (oItem, iNum) {
var aItem = document.createElement(“A”);
aItem.className = “itemlink”;
aItem.href = oItem.link.value;

aItem.onclick = function () {
var oSelectedItem = fooReader.selectedItem;

if (oSelectedItem != this) {
if (oSelectedItem) {

oSelectedItem.className = “itemlink”;
}

fooReader.selectedItem = this;
this.className = “itemlink-selected”;

}

var iItemNum = this.getAttribute(“frFeedItem”);

var oItem = fooReader.parser.items[iItemNum];
fooReader.setMessage(oItem.title.value,

oItem.link.value,
oItem.description.value);

488

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 488

return false;
};

aItem.ondblclick = function () {
window.open(this.href);

};

aItem.setAttribute(“frFeedItem”,iNum);
aItem.id = “item” + iNum;

var divHeadline = document.createElement(“DIV”);
divHeadline.className = “itemheadline”;
divHeadline.innerHTML = oItem.title.value;

var divDate = document.createElement(“DIV”);
divDate.className = “itemdate”;
divDate.appendChild(document.createTextNode(“Date: “ + oItem.date.value));
aItem.appendChild(divHeadline);
aItem.appendChild(divDate);

this.divItemList.appendChild(aItem);
},

This code defines the ondbclick event handler, and like the onclick event handler, ondbclick exe-
cutes within the context of the <a/> element. So, the this keyword references the HTMLAnchorElement.
The body of the handler is simple: the window.open() method is called and the value of the href prop-
erty is passed to it. The result is a new window opening to the new URL.

Changing the Heading Information
Letting the user know what feed is currently loaded is important, so a method called
setViewingItem() is responsible for changing the item pane’s heading to that of the feed’s title. It
accepts one argument, a string value containing the text to change to.

setViewingItem : function (sViewingItem) {
this.divViewingItem.innerHTML = sViewingItem;

},

The divViewingItem element’s CSS hides the element’s overflow, so if the text is larger than the ele-
ment’s specified dimensions, it will not resize the element.

Clearing Items
Before loading a new feed into the application, the old feed’s items must be removed from the items
pane. The clearItems() method does this and accepts no arguments. It simply loops through and
removes the child nodes of the divItemList element.

clearItems : function () {
while (this.divItemList.hasChildNodes()) {

this.divItemList.removeChild(this.divItemList.lastChild);
}

},

When the loop exists, all items are removed from the pane, and it is ready to be populated again.

489

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 489

Selecting Items
There are times when selecting a specific item programmatically is necessary. For example, when a feed
loads into the application, the first item is selected automatically. The selectItem() method does this,
and the action simulates the effect of clicking an item. It accepts an integer argument, the number of the
item to select.

selectItem : function (iItemNum) {
if (iItemNum > -1 && iItemNum < fooReader.parser.items.length) {

var oItem = document.getElementById(“item” + iItemNum);

oItem.onclick.call(oItem);
} else {

throw new Error(“FooReader Error: Supplied index is out of range.”);
}

},

This method first checks to see if iItemNum is within the range of 0 and the length of the fooReader
.parser.items array. If so, then the code retrieves the item with document.getElementById(). Next,
the item’s onclick method is invoked in the scope of the item with the call() method. This doesn’t
actually raise the click event, but it simulates the action performed by a click in this application. Ideally,
the DOM 2 dispatchEvent() method would be called, but IE does not support the method.

If the value of iItemNum is outside the specified bounds, then an error is thrown, stating that the value is
out of range.

Feed Methods
There are a variety of methods involved with the feeds pane, and they load specific feeds, add feeds to
the pane, and parse and retrieve the feed list.

Loading Specific Feeds
Loading a specific feed to be displayed into the UI involves the loadFeed() method. This method
accepts one argument: the URL of the feed to retrieve. Its job is to show the loading cue and request the
feed from the server by using XParser.

loadFeed : function (sUrl) {
this.showLoadingDiv();

var sUrl = “xmlproxy.aspx?feed=” + encodeURIComponent(sUrl);

xparser.getFeed(sUrl, this.loadFeed_callBack, this);
},

The URL provided to the loadFeed() function is passed to the encodeURIComponent() JavaScript
function to ensure proper transmission. Then by using XParser, the request is made to the server to
retrieve the feed. When the request is completed, the loadFeed_callBack() method is called.

The callback method’s purpose is to take the information from the XParser feed object, populate the
items pane, and hide the loading cue.

490

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 490

loadFeed_callBack : function (oFeed) {
this.parser = oFeed;

this.clearItems();

this.setViewingItem(this.parser.title.value);

for (var i = 0, item; item = this.parser.items[i]; i++) {
this.addItem(item, i);

}

this.hideLoadingDiv();

this.selectItem(0);
},

The final step is selecting the first item in the items pane, which in turns loads data into the reading pane.

Adding Feeds
Adding feeds to the feeds pane is similar to adding items to the items pane. The method responsible for
this is addFeed(), and it accepts two arguments: the feed’s title and its URL.

addFeed : function (sTitle, sUrl) {
var aFeedLink = document.createElement(“a”);
aFeedLink.appendChild(document.createTextNode(sTitle));
aFeedLink.href = sUrl;
aFeedLink.className = “feedlink”;
aFeedLink.title = “Load “ + sTitle;

aFeedLink.onclick = function () {
fooReader.loadFeed(this.href);
return false;

};

this.divFeedList.appendChild(aFeedLink);
},

When the feed is clicked, the onclick event handler loads the selected feed with the loadFeed()
method, which in turn populates the items pane and loads the first item into the reading pane.

The Feeds List
The list of feeds used by FooReader.NET is contained in the feeds.xml file. The XML in this file is in the
Outline Processor Markup Language (OPML). OPML is an XML format developed by Dave Winer (who
also developed RSS) for marking up outlines. It now has become the standard exchange format for feed
lists in RSS and Atom aggregators.

491

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 491

OPML’s structure is simple, and it looks like the following (and this is the list provided in the code
download).

<opml version=”1.0”>
<head>

<title>FooReader Feed List</title>
</head>
<body>

<outline text=”Yahoo! Top Stories” title=”Yahoo! Top Stories”
type=”rss” xmlUrl=”http://rss.news.yahoo.com/rss/topstories”></outline>

<outline text=”Nicholas C. Zakas” title=”Nicholas C. Zakas”
type=”rss” xmlUrl=”http://www.nczonline.net/rss/”></outline>

<outline text=”Jeremy McPeak” title=”Jeremy McPeak”
type=”rss” xmlUrl=”http://www.wdonline.com/rss/”></outline>

</body>
</opml>

The root element is <opml/>, and it must contain a version attribute. As of this writing, version 1.0 is
the only version available. The root element contains two child elements: <head/> and <body/>.

The <head/> element is reminiscent of HTML’s <head/> element in that it contains metadata. The pre-
vious example shows the <title/> element, and it represents the title of the document. Other elements
valid in the <head/> are dateCreated, dateModified, ownerName, ownerEmail, expansionState,
vertScrollState, windowTop, windowLeft, windowBottom, windowRight. The expansionState
element contains a comma-separated list of line numbers that the aggregator should expand when dis-
played. The window elements define the position and size of the display window. An OPML processor
may disregard any of these elements, but the most commonly used are title, dateCreated, and
dateModified. The <body/> element contains the outline data, and it must contain at least one
<outline/> element.

The <outline/> element represents one line of the outline. You can nest <outline/> elements with
other <outline/> elements to create a hierarchical outline structure. The <outline/> element has a
variety of attributes, but the most common are text, title, type, and xmlUrl.

❑ The text and title attributes are used interchangeably, although it is recommended to use
both and assign them the same value.

❑ The type attribute contains the type of feed this line represents.

❑ The xmlUrl attribute contains the link to the external feed.

While it is perfectly legal to nest <outline/> elements in the body, FooReader.NET recognizes only
<outline/> elements that are direct children of <body/>.

Parsing the Feeds List

The fooReader object exposes a method and a class to parse the feeds list and organize the individual
feeds.

492

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 492

The OpmlFileFeed class is a representation of a feed contained in feeds.xml. The constructor accepts
one argument, the <outline/> node:

OpmlFileFeed : function (oFeedNode) {
this.title = oFeedNode.getAttribute(“title”);
this.url = oFeedNode.getAttribute(“xmlUrl”);

},

The class has two properties: title and url, which map to the title and xmlUrl attributes respectively.
It is a simple class, and the instances of this class are assigned as elements of the fooReader.feeds[]
array.

The function that reads feeds.xml is called readOpmlFile(). It accepts one argument: serialized
XML data.

readOpmlFile : function (sXmlText) {
var oXmlDom = zXmlDom.createDocument();
oXmlDom.loadXML(sXmlText);

var nlFeeds = zXPath.selectNodes(oXmlDom.documentElement, “body/outline”);

for (var i = 0, oFeed; oFeed = nlFeeds[i]; i++) {
this.feeds.push(new this.OpmlFileFeed(oFeed));

}
},

This code creates an XML DOM and loads the XML data into it. Next, it uses an XPath evaluation to
retrieve a NodeList of <outline/> elements and loops through them to populate the feeds[] array
with OpmlFileFeed objects.

Retrieving the Feeds List

The last method of the application, and also the second to execute (after fooReader.init), is
getFeedList(). This method creates an XHR request and requests the feeds.xml file from the server.

getFeedList : function () {
var oHttp = zXmlHttp.createRequest();

oHttp.onreadystatechange = function () {
if (oHttp.readyState == 4) {

if (oHttp.status == 200 || oHttp.status == 304) {
//more code here

}
}

};

var date = (new Date()).getTime();
oHttp.open(“GET”, “feeds.xml?time=” + date, true);
oHttp.send(null);

}

493

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 493

It is important to note that the feeds.xml file is static. It is not dynamically created by the server applica-
tion, and thus it is cached the first time it is requested. To get around this issue, an argument called time is
added to the query string, and its value is set to the time of when getFeedList() executes. This ensures a
unique request every time this method executes, foiling the caching attempts made by the browser.

Once the XHR receives the full response from the server, the application can begin to initialize.

getFeedList : function () {
var oHttp = zXmlHttp.createRequest();

oHttp.onreadystatechange = function () {
if (oHttp.readyState == 4) {

if (oHttp.status == 200 || oHttp.status == 304) {
fooReader.readOpmlFile(oHttp.responseText);

for (var i = 0, feed; feed = fooReader.feeds[i]; i++) {
fooReader.addFeed(feed.title, feed.url);

}

fooReader.loadFeed(fooReader.feeds[0].url);
}

}
};

var date = (new Date()).getTime();
oHttp.open(“GET”, “feeds.xml?time=” + date, true);
oHttp.send(null);

}

The first step is to parse the feeds list with the readOpmlFile() method. Once the feeds[] array is
populated, the code then loops through that array and populates the feeds pane with addFeed(). The
last new line uses the loadFeed() method to load the first feed in the list.

Finishing Up
All the code is in place and ready to execute, but nowhere in the code is getFeedsList() called. This is
actually called in the init() method.

fooReader.init = function (evt) {
evt = evt || window.event;

if (evt.type == “load”) { //Things to initialize only on the load event
fooReader.divFeedList = document.getElementById(“divFeedList”);
fooReader.divViewingItem = document.getElementById(“divViewingItem”);
fooReader.divItemList = document.getElementById(“divItemList”);
fooReader.divMessageTitle = document.getElementById(“divMessageTitle”);
fooReader.aMessageLink = document.getElementById(“aMessageLink”);
fooReader.divMessageBody = document.getElementById(“divMessageBody”);
fooReader.divLoading = document.getElementById(“divLoading”);

fooReader.getFeedList();
}

var divPaneContainer = document.getElementById(“divPaneContainer”);
var divReadingPane = document.getElementById(“divReadingPane”);

494

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 494

var divMessageContainer = document.getElementById(“divMessageContainer”);
var divMessageHeader = document.getElementById(“divMessageHeader”);

var iDocHeight = document.documentElement.clientHeight;
divPaneContainer.style.height = iDocHeight –

divPaneContainer.offsetTop - 12 + “px”;

var iFeedsListHeight = divPaneContainer.offsetHeight –
fooReader.divViewingItem.offsetHeight -
getStyleNumber(fooReader.divFeedList, “paddingTop”) –
getStyleNumber(fooReader.divFeedList, “paddingBottom”);

fooReader.divFeedList.style.height = iFeedsListHeight + “px”;

var iItemListHeight = divPaneContainer.offsetHeight –
fooReader.divViewingItem.offsetHeight –
getStyleNumber(fooReader.divItemList, “paddingTop”) –
getStyleNumber(fooReader.divItemList, “paddingBottom”);

fooReader.divItemList.style.height = iItemListHeight + “px”;

var iMessageBodyHeight = divReadingPane.offsetHeight –
divMessageHeader.offsetHeight –
getStyleNumber(divMessageContainer, “paddingTop”) –
getStyleNumber(divMessageContainer, “paddingTop”);

fooReader.divMessageBody.style.height = iMessageBodyHeight + “px”;
};

The getFeedsList() method is called only when the load event fires in the browser. Otherwise, it
would execute each time the browser’s window resizes, and it would interrupt the user’s reading.

The code execution of the client-side application is a chain reaction. One method calls another method
until the reading pane displays content. When the user clicks a feed or an item, the reaction begins from
that point and continues until the reading pane’s contents are updated.

The server-side application is different in that its sole purpose is to retrieve data from a remote server.

The Server Application
In a perfect world, an application such as FooReader.NET would be strictly client-side. JavaScript would
be able to retrieve XML feeds across domains with XHR, and there would be no need to make any calls
to a server component. Because of JavaScript’s security restrictions, however, it is not possible to retrieve
data from a different domain; thus, a server-side component is required.

Possible Paradigms
The server’s job in FooReader.NET is to retrieve the remote XML feeds for the client to use. Following
this model, there are two possible design paths for the server; both have their pros and cons.

495

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 495

The first method is a cached feed architecture. The server program would act as a service, fetching a list
of feeds at a certain time interval, caching them, and serving the cached feeds to the client when
requested. This option potentially saves bandwidth, but it also risks the reader not having up-to-date
feeds. More user action would be required to display the current, up-to-date feeds, which goes against
the Ajax ideology.

The second method is a delivery on demand architecture, where the server would retrieve any given feed
when the user requests it. This may use more bandwidth, but it ensures the reader will have up-to-date
information; moreover, this design is inline with the Ajax concepts and is what the user would expect.

Implementation
The solution implemented in FooReader.NET uses a hybrid approach. The requested feeds are retrieved
with the delivery-on-demand model, but the application caches a feed when it is fetched. The cached
version is used only in the event that the remote host cannot be contacted, and an up-to-date feed cannot
be retrieved. This ensures that the user has something to read, even though it is older data.

Because the server is only responsible for pulling and caching remote feeds, it makes sense to have one
ASP.NET page responsible for these operations. This page, called xmlproxy.aspx, will have a code-
behind file where the ASP.NET code is contained.

Codebehind is a method for authoring web pages for the ASP.NET platform. Unlike inline programming
models, where the server-side code is interspersed with HTML markup (like PHP and ASP), codebehind
enables you to remove all logic from the HTML code and place it in a separate class file. This results in a
clean separation of HTML and your .NET programming language of choice.

The language of choice for this project is C#, which is the language created specifically for the .NET
Framework.

Providing Errors
The problem with the approach of providing XML data to the client is handling errors. The client-side
component expects all data to be XML data in either RSS or Atom format. While this does present a
problem, its solution is rather simple: provide the error message in one of the two formats.

If you’re following along with Visual Studio, create a new class file and call it FooReaderError.cs.
Visual Studio will ask you if you want to place the file in the App_Code folder. Choose yes.

The FooReaderError class is a static class, and it builds a simple RSS document with data from an
Exception instance. It exposes one static method called WriteErrorDocument() that accepts an
Exception object as a parameter. The following is the code for the FooReaderError class:

public static class FooReaderError
{

public static string WriteErrorDocument(Exception exception)
{

string xml = “<?xml version=\”1.0\” encoding=\”utf-8\” ?>”;
xml += “<rss version=\”2.0\”>”;
xml += “<channel>”;
xml += “<title>FooReader Error</title>”;

496

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 496

xml += “<description>FooReader Error</description> “;
xml += “<link>javascript:void(0);</link>”;
xml += “<item>”;
xml += “<pubDate>Just Now</pubDate>”;
xml += String.Format(“<title>FooReader Error: {0}</title>”,

exception.GetType().ToString());

xml += “<description>”;
xml += “<![CDATA[“;
xml += “<p>An error occurred.</p>”;
xml += String.Format(“<p style=’color: red’>{0}</p>”, exception.Message);
xml += “]]>”;
xml += “</description>”;
xml += “<link>javascript:void(0);</link>”;
xml += “</item>”;
xml += “</channel> “;
xml += “</rss>”;

return xml;
}

}

This code builds an RSS document to inform the user of two things.

❑ The first gives the error’s type by using exception.GetType().ToString(). This informa-
tion is placed into the <item/> element’s <title/>.

❑ The second piece of information is the error message itself, which is displayed as red text.

The resulting XML file looks like this:

<?xml version=”1.0” encoding=”utf-8” ?>

<rss version=”2.0”>
<channel>

<title>FooReader Error</title>
<description>FooReader Error</description>
<link>javascript: void(0);</link>

<item>
<pubDate>Just Now</pubDate>
<title>FooReader Error: [Error Type]</title>
<description>

<![CDATA[
<p>An error occurred.</p>
<p style=’color: red’>[Error Message]</p>

]]>
</description>
<link>javascript: void(0);</link>

</item>
</channel>

</rss>

With the error strategy in place, the proxy code can handle and display errors when needed.

497

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 497

Building the Proxy
ASP.NET pages are classes that inherit from the System.Web.UI.Page class, and as such, they have for-
mal class definitions and can have any number of properties and methods. The xmlproxy class, named
after the file name, has one private method, aside from the usual protected Page_Load event handler.

If you’re following along in Visual Studio, don’t forget to add the proper using statement at the top of
the class file. They are System.IO and System.Net.

public partial class xmlproxy : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

//more code here
}

private string getLocalFile(string path)
{

string contents = String.Empty;
using (StreamReader file = File.OpenText(path))
{

contents = file.ReadToEnd();
}
return contents;

}
}

The getLocalFile() method is a private method for retrieving files located in the server’s file system.
This method is called to retrieve a cached feed. It uses a System.IO.StreamReader object to open the
file and extract and return the file’s contents.

Setting the Headers
The entry point for the server side is the Page_Load event handler, and all code, with the exception of
the getLocalFile() method and the FooReaderError class, is contained in the event handler. The
first step is to set two headers. Settings headers in ASP.NET is a simple task:

Response.ContentType = “text/xml”;
Response.CacheControl = “No-cache”;

//more code here

Headers are set with the Response object, which encapsulates HTTP response information. Setting the
MIME content type is imperative to the operation of the application. Mozilla-based browsers will not
load an XML file as XML unless the MIME specifies an XML document, and “text/xml” is one of many
types that do this.

It is also important to make sure that the XML data retrieved with XHR is not cached. Today’s browsers
cache all data retrieved with XHR unless explicitly told not to with the CacheControl header. If this
header is not set, the browser will use the cached data until the browser’s cache is dumped.

498

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 498

Getting the Remote Feed
FooReader.NET’s server component works as a simple proxy server. The client asks for a specific URL,
and the application essentially forwards that request to the remote server. To determine the feed to
retrieve, the server relies upon the query string. When requesting a feed, the client component sends a
request in the following format:

xmlproxy.aspx?feed=[feed_url]

In ASP.NET, the Request object contains a NameValueCollection called QueryString. Using this col-
lection, you can extract the value of the feed variable like this:

Response.ContentType = “text/xml”;
Response.CacheControl = “No-cache”;

if (Request.QueryString[“feed”] != null)
{

Uri url = null;

try
{

url = new Uri(Request.QueryString[“feed”]);
}
catch (UriFormatException exception)
{

Response.Write(FooReaderError.WriteErrorDocument(exception));

Response.End();
}

string fileName = String.Format(@”{0}\xml\{1}.xml”,
Server.MapPath(String.Empty),
HttpUtility.UrlEncode(url.AbsoluteUri)

);

//more code here
}
else
{

try
{

throw new Exception(“No feed specified for retrieval.”);
}
catch (Exception exception)
{

Response.Write(FooReaderError.WriteErrorDocument(exception));
}

}

This new code first checks the existence of the feed variable in the query string and attempts to create a
Uri object with its value. If the value of feed is not in the correct format, the ASP.NET runtime throws a
UriFormatException exception. If this happens, the UriFormException instance is passed to
FooReaderError.WriteErrorDocument(). The resulting XML is written to the page with the

499

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 499

Response.Write() method, and the application is terminated with Response.End(). Otherwise, the
code continues, and a string called fileName is created. This variable is used as the file name of the
cached feed when it is received.

If the feed argument could not be found in the query string, then a new Exception is thrown and caught
to display the appropriate message to the user. This error should not occur through the FooReader.NET
application because the client-side code will always include feed and its value in the query string.

String.Format(), as its name implies, formats strings (duh!). The first argument passed to the
method is the string to format. This string most likely contains characters called format items that look
like {0}, {1}, {2}, and so on. These format items are replaced with the corresponding arguments
passed to the method. In the example above, {0} is replaced with the resulting string that
Server.MapPath(String.Empty) returns.

The @ operator before a string tells the compiler not to process escape strings. The string in the above
example could have been written as “{0}\\xml\\{1}.xml” with the same results.

The .NET Framework provides a variety of classes that can retrieve data from a remote server. In fact,
the Weather Widget in Chapter 12 used the System.Net.WebClient class to retrieve data from
Weather.com’s weather service. The WebClient class offers a simple interface; however, its simplicity
can also be a drawback. For example, WebClient does not have any way of setting an amount of time to
wait before the request times out. It also lacks the ability to let the remote server know what kind of
application is requesting the feed. It is for these reasons that FooReader.NET does not use WebClient,
but uses System.Net.HttpWebRequest instead.

The HttpWebRequest class derives from the System.Net.WebRequest abstract class and provides
HTTP-specific functionality, so it is best suited for this application. To create an HttpWebRequest object,
call the Create() method of the WebRequest class and cast it as HttpWebRequest as the following
code does:

Response.ContentType = “text/xml”;
Response.CacheControl = “No-cache”;

if (Request.QueryString[“feed”] != null)
{

Uri url = null;

try
{

url = new Uri(Request.QueryString[“feed”]);
}
catch (UriFormatException exception)
{

Response.Write(FooReaderError.WriteErrorDocument(exception));

Response.End();
}

string fileName = String.Format(@”{0}\xml\{1}.xml”,
Server.MapPath(String.Empty),
HttpUtility.UrlEncode(url.AbsoluteUri)

);

500

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 500

try
{

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);

request.UserAgent = “FooReader.NET 1.5 (http://reader.wdonline.com)”;
request.Timeout = 5000;

//more code here
}
catch (WebException exception)
{

if (System.IO.File.Exists(fileName))
{

Response.Write(getLocalFile(fileName));
}
else
{

Response.Write(FooReaderError.WriteErrorDocument(exception));
}

}
}
else
{

try
{

throw new Exception(“No feed specified for retrieval.”);
}

catch (Exception exception)
{

Response.Write(FooReaderError.WriteErrorDocument(exception));
}

}

After the request object’s creation, this code uses the UserAgent property to assign the user-agent HTTP
header. It is not necessary to use this property, but it accurately documents what is hitting the remote
server. Many conventional aggregators have their own user-agent string; FooReader.NET does, too.

Following the UserAgent line, the Timeout property is set to 5 seconds. If no response is received from
the remote server after 5 seconds, the request times out. If this happens, a WebException exception is
thrown, in which case control is dropped to the catch block. The first line checks to see if the cached file
exists in the file system; if so, it is retrieved with getLocalFile() and written to the page. If not, then
the FooReaderError class provides an error document and outputs it to the application’s response.

A WebException error can be thrown for any error that is network-related, not just for time outs.

At this point, however, the request has not been sent yet; the code is just ready to handle any web-
related errors when it’s sent. Sending the request involves invoking the HttpWebRequest object’s
GetResponse() method, which returns a WebResponse instance. The following new code does this.

Response.ContentType = “text/xml”;
Response.CacheControl = “No-cache”;

if (Request.QueryString[“feed”] != null)

501

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 501

{
Uri url = null;

try
{

url = new Uri(Request.QueryString[“feed”]);
}
catch (UriFormatException exception)
{

Response.Write(FooReaderError.WriteErrorDocument(exception));

Response.End();
}

string fileName = String.Format(@”{0}\xml\{1}.xml”,
Server.MapPath(String.Empty),
HttpUtility.UrlEncode(url.AbsoluteUri)

);

try
{

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);

request.UserAgent = “FooReader.NET 1.5 (http://reader.wdonline.com)”;
request.Timeout = 5000;

using (HttpWebResponse response = (HttpWebResponse)request.GetResponse())
{

using (StreamReader reader =new
StreamReader(response.GetResponseStream()))

{
string feedXml = reader.ReadToEnd();

Response.Write(feedXml);

//more code here
}

}
}
catch (WebException exception)
{

if (System.IO.File.Exists(fileName))
{

Response.Write(getLocalFile(fileName));
}
else
{

Response.Write(FooReaderError.WriteErrorDocument(exception));
}

}
//more code here

}
else
{

502

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 502

try
{

throw new Exception(“No feed specified for retrieval.”);
}

catch (Exception exception)
{

Response.Write(FooReaderError.WriteErrorDocument(exception));
}

}

When the request is sent, and the response is received, you can get the contents of the server’s response
by using the GetResponseStream() method, a member of the HttpWebResponse class. This method
returns a Stream object and can be read with a System.IO.StreamReader object, which is created in
the second using block. The contents of the stream are then “read” and stored in the feedXml variable.
The value contained in feedXml is then written to the page with Response.Write(). Since the using
statement is used for the creation of the HttpWebResponse and StreamReader objects, they will be
properly disposed of and do not require closing.

Caching the Feed
Caching the feed is beneficial to the user in case the remote server cannot be reached. FooReader.NET is a
newsreader, and it is desirable for the user to have something to read, even if it is an older version. A
System.IO.StreamWriter object is perfect for this job for its ease of use and its default UTF-8 encoding:

Response.ContentType = “text/xml”;
Response.CacheControl = “No-cache”;

if (Request.QueryString[“feed”] != null)
{

Uri url = null;

try
{

url = new Uri(Request.QueryString[“feed”]);
}
catch (UriFormatException exception)
{

Response.Write(FooReaderError.WriteErrorDocument(exception));

Response.End();
}

string fileName = String.Format(@”{0}\xml\{1}.xml”,
Server.MapPath(String.Empty),
HttpUtility.UrlEncode(url.AbsoluteUri)

);

try
{

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);

request.UserAgent = “FooReader.NET 1.5 (http://reader.wdonline.com)”;

503

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 503

request.Timeout = 5000;

using (HttpWebResponse response = (HttpWebResponse)request.GetResponse())
{

using (StreamReader reader =new
StreamReader(response.GetResponseStream()))

{
string feedXml = reader.ReadToEnd();

Response.Write(feedXml);

using (StreamWriter writer = new StreamWriter(fileName))
{

writer.Write(feedXml);
}

}
}

}
catch (WebException exception)
{

if (System.IO.File.Exists(fileName))
{

Response.Write(getLocalFile(fileName));
}
else
{

Response.Write(FooReaderError.WriteErrorDocument(exception));
}

}
catch (IOException exception)
{

//do nothing here
}

//more code here
}
else
{

try
{

throw new Exception(“No feed specified for retrieval.”);
}

catch (Exception exception)
{

Response.Write(FooReaderError.WriteErrorDocument(exception));
}

}

The fileName variable, created earlier, is passed to the StreamWriter class’s constructor. This creates
the file or overwrites an existing one with the same name. The XML data contained in feedXml is then
written to the file using the Write() method. This will cache the file, but any file system operation can
increase the chance of an error. Therefore, it’s important to handle a System.IO.IOException excep-
tion. This error is not critical. If the application got to the point of caching the file, then the request was
successful, and data is available to send to the client-side component.

504

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 504

Only two errors are caught in this stage of the application. However, many others could occur, so it’s
important to catch every error possible. This can be done by catching a generic Exception like this:

Response.ContentType = “text/xml”;
Response.CacheControl = “No-cache”;

if (Request.QueryString[“feed”] != null)
{

Uri url = null;

try
{

url = new Uri(Request.QueryString[“feed”]);
}
catch (UriFormatException exception)
{

Response.Write(FooReaderError.WriteErrorDocument(exception));

Response.End();
}

string fileName = String.Format(@”{0}\xml\{1}.xml”,
Server.MapPath(String.Empty),
HttpUtility.UrlEncode(url.AbsoluteUri)

);

try
{

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(url);

request.UserAgent = “FooReader.NET 1.5 (http://reader.wdonline.com)”;
request.Timeout = 5000;

using (HttpWebResponse response = (HttpWebResponse)request.GetResponse())
{

using (StreamReader reader =new
StreamReader(response.GetResponseStream()))

{
string feedXml = reader.ReadToEnd();

Response.Write(feedXml);

using (StreamWriter writer = new StreamWriter(fileName))
{

writer.Write(feedXml);
}

}
}

}
catch (WebException exception)
{

if (System.IO.File.Exists(fileName))
{

Response.Write(getLocalFile(fileName));
}

505

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 505

else
{

Response.Write(FooReaderError.WriteErrorDocument(exception));
}

}
catch (IOException exception)
{

//do nothing here
}
catch (Exception exception)
{

Response.Write(FooReaderError.WriteErrorDocument(exception));
}

}
else
{

try
{

throw new Exception(“No feed specified for retrieval.”);
}

catch (Exception exception)
{

Response.Write(FooReaderError.WriteErrorDocument(exception));
}

}

Doing this allows the application to appear responsive to the user because every action (even if it is an
error) causes the application to do something. It also allows them to address any issue that may arise
because the error and the cause for the error are displayed for the user to see.

It also ensures that the client receives XML data every time it gets a response from the server. This is
important because the client-side components depend on data being in RSS or Atom format.

Now that both the client and server components are completed, it is time to set up FooReader.NET on
the web server.

Setup and Testing
Because FooReader.NET is an ASP.NET application, setting it up on the web server requires following
the same steps outlined in Chapter 12. Turn to the section of Chapter 12 that discusses setting up the
Weather Widget as an application for more information.

Before deploying any web application, it is always a good idea to test the installation. Open your
browser and navigate to http://localhost/fooreader/xmlproxy.aspx?feed=http://
rss.news.yahoo.com/rss/topstories.

This tests to make sure that the server-side component is able to retrieve an external news feed properly.
If everything is working correctly, you should see the XML feed displayed in your browser. Figure 15-4
shows the results in Firefox 2.0.

506

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 506

Figure 15-4

If for some reason you see an ASP.NET error, the error message will tell you what you should do. The
most common error is an Access Denied error, in which case the proper modify rights should be given to
the ASP.NET user account (or NETWORK SERVICE for Windows 2003).

If you do not have access to set permissions for the web server, such as when you rent web space from a
provider, you may be able to solve Access Denied errors by turning on impersonation. The imperson-
ation settings are located in the web.config file.

The web.config file is an XML-based configuration file for a web application. The root element of
web.config is <configuration/>, which is usually followed by the <system.web/> element. You can
add the following line to the <system.web/> element:

<identity impersonate=”true”/>

Bear in mind that this solution is highly situational and depends on the web server’s settings. However,
it may solve unauthorized access errors you may encounter in a rented-server environment.

Once the application is tested and is confirmed to work, you can edit feeds.xml to contain whatever
feeds you desire.

507

Case Study: FooReader.NET

18_109496 ch15.qxd 2/5/07 7:01 PM Page 507

Summary
In this chapter, you learned how to build an ASP.NET RSS and Atom aggregator. You built a three-pane
HTML page to serve as the UI for the application and styled it with CSS; then you built the client-side
application to dynamically resize the UI, to request feeds with XParser from the server application, and
to use the data to populate the feeds, items, and reading panes.

You learned that while the client-side components of a web application are a necessity to properly dis-
play data to the user, server-side components are needed to retrieve the necessary data. Using C# and
the .NET Framework, you learned how to retrieve remote XML feeds, cache them, and output them to a
page. You also learned how to set HTTP headers so that browsers will know what to expect, and remote
servers will know what is hitting them.

Finally, you learned how to set up the application in IIS and test it to make sure that it was properly
installed.

508

Chapter 15

18_109496 ch15.qxd 2/5/07 7:01 PM Page 508

Case Study: AjaxMail

One of the most popular Ajax applications is Gmail, a web-based e-mail system that incorporates a
lot of Ajax techniques to create a seamless user experience. Gmail loads a single page and then
makes changes to reflect user actions, eliminating almost entirely the “click-and-wait” experience
of most web applications. There is a lot of back and forth with the server to retrieve information
that the user never knows is occurring because of the system’s design. Because Gmail is an excel-
lent example of how to build an Ajax-based web application, this chapter focuses on developing a
similar application called AjaxMail.

In this chapter, you will use techniques learned throughout the book to bring AjaxMail to life. Both
hidden frames and the XHR object will be used for communicating with the server, and you will
be reminded when and how to use each technique. Remember, the whole point of using Ajax is to
improve the user’s experience; this chapter gives you the opportunity to see first-hand how to cre-
ate an application with the user in mind.

Requirements
Before building a web application, it’s always good to define the requirements and build to them.
You may never have considered the requirements for an e-mail application before. You probably
use an e-mail application like Outlook, Thunderbird, or Eudora on a daily basis and have never
really stopped to think about all the things it must do to provide a good user experience. For sim-
plicity, AjaxMail will support a subset of what these applications do (although it is easy enough to
extend the functionality on your own).

AjaxMail is open source. The most recent version of all files are freely available at
www.sourceforge.net/projects/ajaxmail.

19_109496 ch16.qxd 2/5/07 7:02 PM Page 509

The requirements for AjaxMail are:

❑ Support for POP3 to receive mail and SMTP to send mail

❑ Ability to read a list of e-mail messages from the server

❑ Visual indication if a message contains an attachment

❑ Ability to read an individual e-mail with support for plain text messages only

❑ Notification when new mail messages arrive

❑ Ability to send, forward, and reply to messages

To implement these requirements, a variety of Ajax patterns and communication techniques will be used.
There is extensive use of XHR, requiring the use of the zXml library, as well as some hidden iframes. In
building this application, you will learn how to incorporate and integrate the various techniques you have
learned in this book.

Architecture
AjaxMail is built using PHP for the server-side language and MySQL for the database. A database is nec-
essary to keep track of information relating to specific messages, such as what folder they are in and
whether they have been read. Both of these can be accomplished by setting specific flags for a message
in the database.

There are two folders in AjaxMail: Inbox and Trash. When a message is deleted from the Inbox, it is
moved to the Trash. The message is permanently deleted when the Trash is emptied; otherwise, the mes-
sage remains in the Trash. (It is also possible to restore a message from the Trash and place it back in the
Inbox.) Even though this chapter uses only these two folders, you may use as many folders as you wish.

Each time a request is made to the server, AjaxMail checks to see if there are any new messages in the
specified POP3 e-mail account. If there are, the messages are downloaded and saved into the MySQL
database. The messages are then read out of the database and sent back to the client.

Resources Used
AjaxMail uses several open source software libraries to achieve its functionality:

❑ zXml Library: The cross-browser XML JavaScript library used throughout this book. Available
at www.nczonline.net/downloads.

❑ Douglas Crockford’s JSON JavaScript Library: The JavaScript JSON parser. Available at
www.json.org.

❑ PHPMailer: A PHP SMTP e-mail sending solution. Available at http://phpmailer.source
forge.net.

❑ JSON-PHP: The PHP JSON library. Available at http://mike.teczno.com/json.html.

510

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 510

❑ POP3Lib: A PHP POP3 mail interface written by one of your authors, Jeremy McPeak. Available
at www.wdonline.com/php/pop3lib.zip.

Note that all these resources are included in the book’s example code downloads, available at
www.wrox.com.

The Database Tables
Because AjaxMail will need e-mails to be stored in the database, several tables must be created. If you
have sufficient rights to create a new database on the MySQL server, you should create a database
named AjaxMail. (You may also use any other database that is already set up.) There are three tables to
add: AjaxMailFolders, AjaxMailMessages, and AjaxMailAttachments.

The first table, AjaxMailFolders, defines the various folders available in AjaxMail:

CREATE TABLE AjaxMailFolders (
FolderId int(11) NOT NULL auto_increment,
Name text NOT NULL,
PRIMARY KEY (FolderId)

);

INSERT INTO AjaxMailFolders VALUES (1, ‘Inbox’);
INSERT INTO AjaxMailFolders VALUES (2, ‘Trash’);

Each folder in AjaxMail is assigned a FolderId (an auto-incrementing primary key) and a name. For the
purposes of this chapter, there are only two folders: Inbox and Trash. You can feel free to add more to
suit your own needs.

The AjaxMailMessages table holds each e-mail’s information. It consists of 11 columns: a unique iden-
tification number (auto-incremented ,so you don’t need to worry about it), the different fields of an
e-mail (To, From, Subject, and so on), what folder it exists in (Inbox, Trash, and so on), and whether the
user has read the e-mail. You can create the table using the following SQL statement:

CREATE TABLE AjaxMailMessages (
MessageId int(11) NOT NULL auto_increment,
`To` text NOT NULL,
CC text NOT NULL,
BCC text NOT NULL,
`From` text NOT NULL,
Subject text NOT NULL,
Date bigint(20) default NULL,
Message text NOT NULL,
HasAttachments tinyint(1) NOT NULL default ‘0’,
Unread tinyint(1) NOT NULL default ‘1’,
FolderId int(11) NOT NULL default ‘0’,
PRIMARY KEY (MessageId)

);

The MessageId field is an auto-incrementing field and provides the e-mail with a unique ID number in
the database; it is also the table’s primary key. The To, CC, BCC, From, Subject, Date, and Message
fields are parts of an e-mail message. (To and From must be enclosed in backtick symbols because they

511

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 511

are keywords in SQL.) The HasAttachments and Unread fields are tinyint, which means that they
can have values of 0 or 1 (false or true). Finally, the FolderId field contains the ID number of the folder
in which the message is stored. This enables you to select messages that exist only in the Inbox or Trash
folders.

If an e-mail contains any attachments, they are stored in the AjaxMailAttachments table:

CREATE TABLE AjaxMailAttachments (
AttachmentId int(11) NOT NULL auto_increment,
MessageId int(11) NOT NULL default ‘0’,
Filename text NOT NULL,
ContentType text NOT NULL,
Size int(11) NOT NULL default ‘0’,
Data longtext NOT NULL,
PRIMARY KEY (AttachmentId)

)

Like the AjaxMailMessages table, the AjaxMailAttachments table contains an auto-incrementing
field. This filed is called AttachmentId and provides each attachment with a unique ID number. The
next field, MessageId, houses the message ID of the e-mail to which it was attached (this number
matches the MessageId field in AjaxMailMessages). Next, the Filename and ContentType columns
store the attachment’s reported file name and content type (both are necessary to enable the user to
download the attachment later). Last, the Size and Data fields store the attachment’s size (in bytes) and
the binary/text data of the file, respectively.

The Configuration File
Much like any application, AjaxMail relies on a configuration file, called config.inc.php, to provide
information required to function properly. Because this information is required in many different areas
of the application, it’s best to store it as constants. In PHP, constants give you the advantage of being
available in every scope of the application, meaning that you don’t need to define them using the
global keyword as you do with other global variables.

To create a constant in PHP, use the define() method, passing in the name of the constant (as a string)
and its value. For example:

define(“MY_CONSTANT”, “my value”);

The first group of constants relates directly to your MySQL database:

define(“DB_USER”, “root”);
define(“DB_PASSWORD”, “password”);
define(“DB_SERVER”, “localhost”);
define(“DB_NAME”, “AjaxMail”);

These constants are used when connecting to the database and must be replaced to reflect your database
settings. Next, some constants are needed to provide information about your POP3 server:

define(“POP3_USER”, “test@domain.com”);
define(“POP3_PASSWORD”, “password”);
define(“POP3_SERVER”, “mail.domain.com”);

512

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 512

Once again, these constants must be replaced with the information specific to your POP3 server. As you
may have guessed, you also must supply some information about the SMTP server:

define(“SMTP_DO_AUTHORIZATION”, true);
define(“SMTP_USER”, “test@domain.com”);
define(“SMTP_PASSWORD”, “password”);
define(“SMTP_SERVER”, “mail.domain.com”);

define(“EMAIL_FROM_ADDRESS”, “test@domain.com”);
define(“EMAIL_FROM_NAME”, “Joe Somebody”);

The first four lines set constant variables relating to user authentication for your SMTP server. The first
variable sets whether or not your SMTP server requires user authentication to send e-mail. If set to true,
the SMTP_USER and SMTP_PASSWORD must be set. (false means no authentication is required to send
mail through the SMTP server.)

The second group of SMTP settings defines the user settings. You should set EMAIL_FROM_ADDRESS to
contain your e-mail address, and set EMAIL_FROM_NAME to contain your name. When you send an
e-mail, your recipient will see these values as the sender.

The final setting is the MESSAGES_PER_PAGE constant, which defines how many e-mail messages should
be displayed per page:

define(“MESSAGES_PER_PAGE”, 10);

These constants are used throughout the application: when retrieving e-mail, connecting to the database,
sending mail, and even displaying the information.

The AjaxMailbox Class
The code contained in the file called AjaxMail.inc.php serves as the workhorse of the server-side
application. This file houses the AjaxMailbox class, which is the primary interface by which all the mail
is handled. A few helper classes, mainly used for JSON encoding, also exist in this file.

The AjaxMailbox class, which you will build in this section, begins with an empty class declaration:

class AjaxMailbox {

//more code here
}

Database Operations
It’s the responsibility of AjaxMailbox to handle all the interaction with the database. To facilitate this
communication, several methods relate just to the database.

513

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 513

The first method is connect(), which, as you may expect, initiates a connection to the database:

class AjaxMailbox {

function connect() {
$conn = mysql_connect(DB_SERVER, DB_USER, DB_PASSWORD)

or die(“Could not connect : “ . mysql_error());
mysql_select_db(DB_NAME);
return $conn;

}

//more code here
}

Using the database constants defined in config.inc.php, this method creates a database connection
and stores it in the variable $conn. Then, the specific database is selected and $conn is returned. Of
course, you also need to be able to disconnect from the database:

class AjaxMailbox {

function connect() {
$conn = mysql_connect(DB_SERVER, DB_USER, DB_PASSWORD)

or die(“Could not connect : “ . mysql_error());
mysql_select_db(DB_NAME);
return $conn;

}

function disconnect($conn) {
mysql_close($conn);

}

//more code here
}

The disconnect() method accepts a connection object (the same one returned from connect()) and
uses mysql_close() to close that connection.

During development of a database application, you may sometimes end up with bad data in your
database tables. At such times, it’s best just to clear all the data from the tables and start fresh. As a
means of database maintenance, AjaxMailbox has a method, clearAll(), that does just this:

class AjaxMailbox {

//connect and disconnect methods

function clearAll() {
$conn = $this->connect();

$query = “truncate table AjaxMailMessages”;
mysql_query($query,$conn);

$query = “truncate table AjaxMailAttachments”;

514

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 514

mysql_query($query,$conn);

$this->disconnect($conn);
}

//more code here

}

This method begins by calling connect() to create a database connection. Then, two SQL statements
are executed, using the TRUNCATE command to clear out both AjaxMailMessages and
AjaxMailAttachments. The TRUNCATE command is used for two reasons. First, it is generally faster
than deleting every row in a table, and second, it clears the AUTO_INCREMENT handler, so any fields that
automatically increment will start back at 1. The last step is to disconnect from the database by calling
disconnect().

Retrieving E-Mail
Retrieving e-mail from a POP3 server is not an easy task, and it is beyond the scope of this book to walk
you through the lengthy process. Instead, AjaxMail uses POP3Lib to interface with the POP3 server. This
library contains numerous classes that aid in this type of communication. These classes are used in the
checkMail() method, which is responsible for downloading messages from the POP3 server and
inserting them into the database.

The method begins by creating a new instance of the Pop3 class, which is the POP3Lib main class for
communicating with a POP3 server. Its constructor accepts four arguments, three of which are required.
The first argument is the POP3 server name, the second is the user name, the third is the password for
that user name, and the fourth (optional) argument is the port at which to connect to the POP3 server
(default is 110). To create a connection to the POP3 server, use the login() method. This method returns
a Boolean value indicating the success (true) or failure (false) of the login attempt:

class AjaxMailbox {

//database methods

function checkMail() {
$pop = new Pop3(POP3_SERVER, POP3_USER, POP3_PASSWORD);

if ($pop->login()) {
//Email downloading/database manipulation code here.

}

}

//more code here

}

The checkMail() method begins by creating a Pop3 object using the constant information defined in
config.inc.php. Then, the login() method is called to try connecting to the server.

515

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 515

With a successful login, the Pop3 object retrieves the number of messages found on the server and
assigns this value to the mailCount property. Additionally, the messages array is initialized and popu-
lated with the header information of all e-mails residing on the server (the header information includes
to, from, subject, date, and attachment information). Each item in the messages array at this point is a
Pop3Header object.

To retrieve the entire e-mail, which includes the headers, message, and attachments, you must call the
getEmails() method. This method completely repopulates the messages array with Pop3Message
objects that contain all the e-mail information. A Pop3Message object has the following properties and
methods:

Property/Method Description

from The sender’s e-mail address.

to The recipient’s e-mail address. This property also contains
all recipients if the e-mail was sent with multiple addresses
in the To field.

subject The subject of the e-mail.

cc The recipient information held in the CC field.

bcc If you receive an e-mail as a blind carbon copy, your e-mail
address is in this property.

date The date of the e-mail in RFC 2822 format.

unixTimeStamp The date in a Unix timestamp (number of seconds since
midnight on January 1, 1970).

hasAttachments A Boolean value indicating whether the e-mail contains one
or more attachments.

attachments An array of attachments sent with the e-mail.

getTextMessage() Retrieves the plain text body of an e-mail.

getHTMLMessage() Retrieves the HTML body of an e-mail (if any).

These properties and methods are used to extract information about an e-mail and insert it into the
database.

After a successful login, the first thing to do is to check for any e-mails on the server. You can do so by
using the mailCount property. If mailCount is greater than zero, getEmails() is called to retrieve all
the e-mail information and a database connection is made, anticipating the insertion of new e-mails:

class AjaxMailbox {

//database methods

function checkMail() {
$pop = new Pop3(POP3_SERVER, POP3_USER, POP3_PASSWORD);

if ($pop->login()) {

516

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 516

if ($pop->mailCount > 0) {

$conn = $this->connect();
$pop->getEmails();

//more code here

$this->disconnect($conn);
}

$pop->logoff();
}

}

//more code here

}

In this code snippet, the disconnect() and logoff() methods are called in their appropriate locations.
The logoff() method, as you may have guessed, closes the connection to the POP3 server.

With all the e-mail information now retrieved, you can begin inserting data into the database by iterat-
ing over the e-mails in the messages array:

class AjaxMailbox {

//database methods

function checkMail() {
$pop = new Pop3(POP3_SERVER, POP3_USER, POP3_PASSWORD);

if ($pop->login()) {

if ($pop->mailCount > 0) {

$conn = $this->connect();
$pop->getEmails();

foreach ($pop->messages as $message) {
$query = “insert into AjaxMailMessages(`To`,CC,BCC,`From`,”;
$query .=

“Subject,`Date`,Message,HasAttachments,FolderId,Unread)”;
$query .= “ values(‘%s’,’%s’,’%s’,’%s’,’%s’,%s,’%s’,”

.$message->hasAttachments.”,1,1)”;
$query = sprintf($query,

(addslashes($message->to)),
(addslashes($message->cc)),
(addslashes($message->bcc)),
(addslashes($message->from)),
(addslashes($message->subject)),
$message->unixTimeStamp,

517

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 517

(addslashes($message->getTextMessage()))
);

$result = mysql_query($query, $conn);

//more code here

}
$this->disconnect($conn);

}

$pop->logoff();
}

}

//more code here

}

A foreach loop is used to iterate over the messages array. For each message, a SQL INSERT statement is
created and then executed. Since the SQL statement is so long, sprintf() is used to insert the informa-
tion into the right location. Note that each value, (aside from unixTimeStamp) must be encoded using
addslashes() so that the string will be proper SQL syntax. The statement is executing using
mysql_query(). The only remaining part is to deal with attachments.

You can determine if a message has attachments by using the hasAttachments property of a message.
If there are attachments, you first must retrieve the ID of the most recently added e-mail message.
(Remember, attachments are tied to the e-mail from which they were attached.) After the ID is deter-
mined, SQL INSERT statements are created for each attachment:

class AjaxMailbox {

//database methods

function checkMail() {
$pop = new Pop3(POP3_SERVER, POP3_USER, POP3_PASSWORD);

if ($pop->login()) {

if ($pop->mailCount > 0) {

$conn = $this->connect();
$pop->getEmails();

foreach ($pop->messages as $message) {
$query = “insert into AjaxMailMessages(`To`,CC,BCC,`From`,”;
$query .=

“Subject,`Date`,Message,HasAttachments,FolderId,Unread)”;
$query .= “ values(‘%s’,’%s’,’%s’,’%s’,’%s’,%s,’%s’,”

.$message->hasAttachments.”,1,1)”;
$query = sprintf($query,

(addslashes($message->to)),
(addslashes($message->cc)),

518

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 518

(addslashes($message->bcc)),
(addslashes($message->from)),
(addslashes($message->subject)),
$message->unixTimeStamp,
(addslashes($message->getTextMessage()))

);

$result = mysql_query($query, $conn);

if ($message->hasAttachments) {

$messageId = mysql_insert_id($conn);

foreach ($message->attachments as $attachment) {
$query = “insert into AjaxMailAttachments(MessageId,”;
$query .= “Filename, ContentType, Size, Data)”;
$query .= “values($messageId, ‘%s’, ‘%s’, ‘%s’, ‘%s’)”;
$query = sprintf($query,

addslashes($attachment->fileName),
$attachment->contentType,
strlen($attachment->data),
addslashes($attachment->data));

mysql_query($query, $conn);
}

}

}
$this->disconnect($conn);

}

$pop->logoff();
}

}

//more code here

}

The most recently inserted ID can be retrieved using mysql_insert_id(). Then, the attachments are
iterated over, using a foreach loop. Each item in the attachments array is a Pop3Attachment object. This
class represents attachment data for a particular e-mail and contains three properties: contentType,
which contains the attachment’s MIME content-type, fileName, which represents the file name of the
attachment, and data, which contains the actual attachment file data. Depending on the content-type of
the attachment, data can be either binary or plain text information.

Once again, the sprintf() function is used to format the query string. Notice the use of strlen() on
the attachment data; this retrieves the size of the data in bytes for easy retrieval later on. After the string
has been formatted, the query is run against the database to insert the data into AjaxMailAttachments.
This concludes the checkMail() method.

This method is never called directly; instead, it is called whenever a request to the server is made. In
essence, checkMail() is piggybacked onto other requests so that the user is always viewing the most
recent data.

519

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 519

Getting the E-Mail List
Probably the most common operation of the application is to retrieve a list of e-mails to display to the
user. The method responsible for this operation, getFolderPage(), accepts two arguments: the ID
number of the folder and the page number to retrieve:

class AjaxMailbox {

//database methods

//check mail method

function getFolderPage($folder, $page) {
$this->checkMail();

//more code here
}

}

When called, getFolderPage() first calls checkMail() to ensure that the most recent data is available
in the database. If there are any new messages, they will be inserted into the database so that any queries
run thereafter will be up to date.

The next step is to build a JSON string to send back to the client. To aid in this, a generic class called
JSONObject is defined:

class JSONObject {
}

A JSONObject instance is used merely to hold data until it is time to be serialized into the JSON format.
For getFolderPage(), this object contains information about the folder. The JSON data contains many
useful bits of information: the total number of messages (messageCount), the current page (page), the total
number of pages (pageCount), the folder number (folder), the first message returned (firstMessage), the
total number of unread messages (unreadCount), and finally an array of messages in the page (messages).
The data structure looks like this:

{
“messageCount”:0,
“page”:1,
“pageCount”:1,
“folder”:1,
“firstMessage”:0,
“unreadCount”: 0,
“messages”:[]

}

The JSONObject is created and initialized with several properties relating to information in the
database:

class AjaxMailbox {

//database methods

520

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 520

//check mail method

function getFolderPage($folder, $page) {
$this->checkMail();

$conn = $this->connect();

$query = “select count(MessageId) as count from AjaxMailMessages”;
$query .= “ where FolderId=$folder”;

$result = mysql_query($query, $conn);
$row = mysql_fetch_assoc($result);

$info = new JSONObject();
$info->messageCount = (int) $row[“count”];
$info->page = $page;
$info->pageCount = (int) ceil($info->messageCount/MESSAGES_PER_PAGE);
$info->folder = $folder;

$firstMessageNum = ($page-1) * MESSAGES_PER_PAGE;
$info->firstMessage = $firstMessageNum+1;
$info->messages = array();

$info->unreadCount = $this->getUnreadCount($conn);

//more code here
}

}

Using the SQL count() function, you can easily retrieve the total number of messages in a given folder.
A JSONObject is created and stored in $info, and its messageCount property is set to the value
retrieved from the database. Next, the page number is assigned to the page property (this is the same
value that was passed into the method). The pageCount property determines how many total pages
exist for the current folder. This is done by dividing the messageCount by the MESSAGES_PER_PAGE
constant and applying the mathematical ceiling function (essentially, round up to the nearest whole
number). Then, the folder ID is assigned to the folder property.

Next, the index of the first message to display on the page is calculated and stored in $firstMessageNum.
This number is important because it keeps the database from retrieving too much information. The $info
object is assigned a property of firstMessage that is equal to $firstMessageNum plus one. This is done
because this value will be displayed to the user, and you never want to show message number zero; the
first message should always be message number one. A property called messages is created and initialized
to an empty array; this will contain message objects later.

The last step in this section of code is to create a property named unreadCount and assign it the number
of unread messages in the database. To do so, use the getUnreadCount() method, defined as follows:

class AjaxMailbox {

//other methods

function getUnreadCount($conn) {
$query = “select count(MessageId) as UnreadCount from AjaxMailMessages”;

521

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 521

$query .= “ where FolderId=1 and Unread=1”;
$result = mysql_query($query, $conn);
$row = mysql_fetch_assoc($result);
return intval($row[“UnreadCount”]);

}

//other methods
}

After getting this information, it’s time to retrieve specific e-mail messages. To do so, execute a query on
all messages in a given folder, ordered by the date. This is where the first message number comes into
play; by adding a LIMIT statement to the end of the query, you can ensure the exact messages are con-
tained in the result set. The first message number is specified and then the total number of messages, the
LIMIT statement retrieves just those messages:

class AjaxMailbox {

//database methods

//check mail method

function getFolderPage($folder, $page) {
$this->checkMail();

$conn = $this->connect();

$query = “select count(MessageId) as count from AjaxMailMessages”;
$query .= “ where FolderId=$folder”;

$result = mysql_query($query, $conn);
$row = mysql_fetch_assoc($result);

$info = new JSONObject();
$info->messageCount = (int) $row[“count”];
$info->page = $page;
$info->pageCount = (int) ceil($info->messageCount/MESSAGES_PER_PAGE);
$info->folder = $folder;

$firstMessageNum = ($page-1) * MESSAGES_PER_PAGE;
$info->firstMessage = $firstMessageNum+1;
$info->messages = array();

$info->unreadCount = $this->getUnreadCount($conn);

$query = “select * from AjaxMailMessages where FolderId=$folder”;
$query .= “ order by date desc limit $firstMessageNum, “;
$query .= MESSAGES_PER_PAGE;

$result = mysql_query($query, $conn);

//more code here
}

}

522

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 522

The complete SQL statement selects all messages where the value in FolderId matches $folder and
orders the returned rows by date in descending order. It also starts the selection from the value in
$firstMessageNum, and retrieves only the amount specified by MESSAGES_PER_PAGE.

At this point, there are two possible scenarios: either the database returned results or it didn’t. In the
application, it is important to know when either situation takes place. Thankfully, it is easy to discern
when a query is not successful. The mysql_query() function returns false on an unsuccessful query;
therefore, you can check to see if a query failed by checking the $result variable. If there is an error, it
can be returned in a property of the $info object. Otherwise, you’ll need to iterate through the rows that
were returned, creating a new JSONObject for each message and adding it to the messages array:

class AjaxMailbox {

//database methods

//check mail method

function getFolderPage($folder, $page) {
$this->checkMail();

$conn = $this->connect();

$query = “select count(MessageId) as count from AjaxMailMessages”;
$query .= “ where FolderId=$folder”;

$result = mysql_query($query, $conn);
$row = mysql_fetch_assoc($result);

$info = new JSONObject();
$info->messageCount = (int) $row[“count”];
$info->page = $page;
$info->pageCount = (int) ceil($info->messageCount/MESSAGES_PER_PAGE);
$info->folder = $folder;

$firstMessageNum = ($page-1) * MESSAGES_PER_PAGE;
$info->firstMessage = $firstMessageNum+1;
$info->messages = array();

$info->unreadCount = $this->getUnreadCount($conn);

$query = “select * from AjaxMailMessages where FolderId=$folder”;
$query .= “ order by date desc limit $firstMessageNum, “;
$query .= MESSAGES_PER_PAGE;

$result = mysql_query($query, $conn);
if (!$result) {

$info->error = mysql_error($conn);
} else { while ($row = mysql_fetch_assoc($result)) {

$message = new JSONObject();
$message->id = $row[‘MessageId’];
$message->from = $row[‘From’];
$message->subject = $row[‘Subject’];
$message->date = date(“M j Y”, intval($row[“Date”]));

523

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 523

$message->hasAttachments = ($row[‘HasAttachments’] == 1);
$message->unread = ($row[‘Unread’] == 1); $info-

>messages[] = $message;
}

}

$this->disconnect($conn);
return $info;

}

}

In this code, the $result variable is checked. If the query failed, an error property is added to the
$info object and assigned the error message retrieved from mysql_error(). Client-side code can then
check this property to determine if an error occurred. If the query executed successfully, a new instance
of JSONObject is created to contain the message information; this is stored in $message. This object is
populated with all the information from the $row object, paying particular attention to format the mes-
sage date so that it displays the month, day, and year only. (This eliminates the need for JavaScript to for-
mat the date.) Also, since the HasAttachments and Unread fields are bits, they are compared to the
number 1 so that the corresponding properties on $message are filled with Boolean values instead of
integers. The last line inside of the while loop adds the $message object to the end of the messages
array.

After that is completed, you can safely disconnect from the database (using disconnect()) and return
the $info object. It is up to the process using getFolderPage() to JSON-encode the object to be sent to
the client.

Getting a Specific Message
Retrieving a specific message involves two helper classes, AjaxMailMessage and
AjaxMailAttachmentHeader, and a method of the AjaxMailbox class called getMessage(). The two
helper classes are used purely to store information that will later be JSON-encoded and sent to the client.

The first helper class, AjaxMailMessage, represents a single e-mail message:

class AjaxMailMessage {

var $to;
var $from;
var $cc;
var $bcc;
var $subject;
var $message;
var $date;
var $attachments;
var $unread;
var $hasAttachments;
var $id;

function AjaxMailMessage() {
$this->attachments = array();

}
}

524

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 524

The properties of this class resemble those of the field names in the database; the sole exception is the
attachments property, which is an array of attachments associated with this e-mail. The JSON structure
of the AjaxMailMessage class looks like this:

{
to : “to”,
from : “from”,
cc : “cc”,
bcc : “bcc”,
subject : “subject”,
message : “message”,
date : “date”,
attachments : [],
unread : false,
hasAttachments : true,
id : 1

}

The attachments array actually contains instances of AjaxMailAttachmentHeader, which provide gen-
eral information about an attachment without containing the actual binary or text data:

class AjaxMailAttachmentHeader {
var $id;
var $filename;
var $size;

function AjaxMailAttachmentHeader($id, $filename, $size) {
$this->id = $id;
$this->filename = $filename;
$this->size = “” . (round($size/1024*100)/100).” KB”;

}
}

The constructor for this class accepts three arguments: the attachment ID (the value of the
AttachmentId column of the AjaxMailAttachments table), the file name, and the size of the attach-
ment in bytes. The size is converted into a string (indicated by the number of kilobytes in the file) by
dividing the size by 1024 and then rounding to the nearest hundredth of a kilobyte (so you can get a
string such as “0.55 KB”). When JSON-encoded, the AjaxMailAttachmentHeader object is added to the
previous JSON structure, as follows:

{
“to” : “to”,
“from” : “from”,
“cc” : “cc”,
“bcc” : “bcc”,
“subject” : “subject”,
“message” : “message”,
“date” : “date”,
“attachments” :
[

{
“id” : 1,
“filename” : “filename”,

525

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 525

“size” : “1KB”
}

],
“unread” : false,
“hasAttachments” : true,
“id” : 1

}

The getMessage() method utilizes these two classes when assembling the data for transmission to the
client. This method takes one argument, the message ID number that corresponds to the MessageId col-
umn in the AjaxMailMessages table:

class AjaxMailbox {

//other methods

function getMessage($messageId) {
$conn = $this->connect();

//get the information
$query = “select MessageId, `To`, `From`, CC, BCC, Subject, Date, “;
$query .= “Message, HasAttachments, Unread from AjaxMailMessages where”;
$query .= “ MessageId=$messageId”;
$result = mysql_query($query, $conn);
$row = mysql_fetch_assoc($result);

//more code here

}

//other methods
}

This method begins by making a connection to the database using the connect() method. Then, a
query to retrieve the various parts of the e-mail is created (stored in $query) and executed, with the
results ending up in the $row object.

The next step is to create an AjaxMailMessage object and populate it with all the data from the
database:

class AjaxMailbox {

//other methods

function getMessage($messageId) {
$conn = $this->connect();

//get the information
$query = “select MessageId, `To`, `From`, CC, BCC, Subject, Date, “;
$query .= “Message, HasAttachments, Unread from AjaxMailMessages where”;
$query .= “ MessageId=$messageId”;
$result = mysql_query($query, $conn);

526

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 526

$row = mysql_fetch_assoc($result);

$message = new AjaxMailMessage();
$message->id = $row[“MessageId”];
$message->to = $row[“To”];
$message->cc = $row[“CC”];
$message->bcc = $row[“BCC”];
$message->unread = ($row[“Unread”]==1);
$message->from = $row[“From”];
$message->subject = $row[“Subject”];
$message->date = date(“M j, Y h:i A”, intval($row[“Date”]));
$message->hasAttachments = ($row[“HasAttachments”]==1);
$message->unreadCount = $this->getUnreadCount($conn);
$message->message = $row[“Message”];

//more code here
}

//other methods
}

As with getFolderPage(), the database fields represented as bits are compared to 1 to get a Boolean
value. The date is also formatted into a longer string, one that contains both the date and time (format-
ted as in “Oct 28, 2005 05:17 AM”). You’ll also notice that the unreadCount property is added to the
message. Although this doesn’t pertain to the message itself, it helps to keep the user interface updated
with the most recent number of unread mails in the database.

The last part of this method is to return information about the attachments (if any).

class AjaxMailbox {

//other methods

function getMessage($messageId) {
$conn = $this->connect();

//get the information
$query = “select MessageId, `To`, `From`, CC, BCC, Subject, Date, “;
$query .= “Message, HasAttachments, Unread from AjaxMailMessages where”;
$query .= “ MessageId=$messageId”;
$result = mysql_query($query, $conn);
$row = mysql_fetch_assoc($result);

$message = new AjaxMailMessage();
$message->id = $row[“MessageId”];
$message->to = $row[“To”];
$message->cc = $row[“CC”];
$message->bcc = $row[“BCC”];
$message->unread = ($row[“Unread”]==1);
$message->from = $row[“From”];
$message->subject = $row[“Subject”];
$message->date = date(“M j, Y h:i A”, intval($row[“Date”]));
$message->hasAttachments = ($row[“HasAttachments”]==1);

527

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 527

$message->unreadCount = $this->getUnreadCount($conn);
$message->message = $row[“Message”];

if ($message->hasAttachments) {
$query = “select AttachmentId,Filename,Size from AjaxMailAttachments”;
$query .= “ where MessageId=$messageId”;

$result = mysql_query($query, $conn);

while ($row = mysql_fetch_assoc($result)) {
$message->attachments[] = new AjaxMailAttachmentHeader(

$row[“AttachmentId”],
$row[“Filename”],
(int) $row[“Size”]);

}
}

$this->disconnect($conn);
return $message;

}

//other methods
}

In this section of code, you begin by verifying whether there are any attachments on the e-mail. If an
attachment exists, a query is run to return all the attachments in the database. Note that the actual con-
tents of the attachment aren’t returned, just the attachment ID, file name, and size. Using a while loop
to iterate over the results, a new AjaxMailAttachmentHeader is created for each attachment and
added to the $message object’s attachments array. After that, you need only disconnect from the
database and return the $message object. Once again, it is up to the process using this method to JSON-
encode the returned object.

Sending an E-Mail
AjaxMail relies on the PHPMailer library (http://phpmailer.sourceforge.net) to send e-mails.
This full-featured library enables you to send mail either through an SMTP server or the sendmail appli-
cation (www.sendmail.org). As discussed earlier, AjaxMail uses SMTP exclusively.

The method used to send mail is called sendMail(). This method accepts four arguments, with only the
first three being required. These arguments are $to (the string containing the e-mail addresses to send
to), $subject (the subject of the e-mail), $message (the body of the e-mail), and $cc (which can option-
ally specify who to send a carbon copy to).

The first step in this method is to create an instance of the PHPMailer class and assign the To and CC
fields. You can add these by using the AddAddress() and AddCC() methods of the PHPMailer object,
respectively. Each of these accepts two arguments: the e-mail address and the real name of the person.
This presents a problem in that the $to and $cc arguments can contain multiple e-mail addresses sepa-
rated by semicolons or commas and may consist of name <e-mail> pairs. For example, an e-mail sent to
two recipients without carbon copying could look like this:

Joe Somebody <joe@somebody.com>; Jim Somebody <jim@somebody.com>

528

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 528

You must take this into account when sending mail using PHPMailer:

class AjaxMailbox {

//other methods here

function sendMail($to, $subject, $message, $cc=””) {
$mailer = new PHPMailer();

$tos = preg_split (“/;|,/”, $to);
foreach ($tos as $to) {

preg_match(“/(.*?)<?([a-z0-9\._%\-]+@[a-z\d\.\-]+\.[a-z]{2,3})>?/i”,
$to, $matches);

$mailer->AddAddress($matches[2],str_replace(‘“‘,’’,$matches[1]));
}

if ($cc != “”) {
$ccs = preg_split (“/;|,/”, $cc);

foreach ($ccs as $cc) {
preg_match(“/(.*?)<?([a-z0-9\._%\-]+@[a-z\d\.\-]+\.[a-

z]{2,3})>?/i”, $cc, $matches);

$mailer->AddCC($matches[2],str_replace(‘“‘,’’,$matches[1]));
}

}

//more code here
}

//other methods here
}

The first line in the method creates an instance of PHPMailer. In the next line, the $to string is split by
both semicolons and commas with the preg_split() function, which returns an array of e-mail
addresses. Then, iterating through the $tos array, the code checks for a match to real name <email> with
the preg_match() function. The regular expression used in the preg_match() function returns an
array with three matches. The first is the entire string, the second is the real name if it exists, and the
third is the e-mail address. You can then add the addresses by using AddAddress() and passing in the
second and third matches. Since the real name may be enclosed in quotation marks, str_replace() is
used to strip out any quotation marks that may be in the real name part of the string. This same process
is repeated for the $cc string, where the AddCC() method is used.

You will always have three elements in the $matches array, even if no name is in the string.

Next, you need to assign the pertinent SMTP information to the $mailer object, along with the subject
and message body. Then, you can send the e-mail:

class AjaxMailbox {

//other methods here

function sendMail($to, $subject, $message, $cc=””) {

529

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 529

$mailer = new PHPMailer();

$tos = preg_split (“/;|,/”, $to);
foreach ($tos as $to) {

preg_match(“/(.*?)<?([a-z0-9\._%\-]+@[a-z\d\.\-]+\.[a-z]{2,3})>?/i”,
$to, $matches);

$mailer->AddAddress($matches[2],str_replace(‘“‘,’’,$matches[1]));
}

if ($cc != “”) {
$ccs = preg_split (“/;|,/”, $cc);

foreach ($ccs as $cc) {
preg_match(“/(.*?)<?([a-z0-9\._%\-]+@[a-z\d\.\-]+\.[a-

z]{2,3})>?/i”, $cc, $matches);

$mailer->AddCC($matches[2],str_replace(‘“‘,’’,$matches[1]));
}

}

$mailer->Subject = $subject;
$mailer->Body = $message;
$mailer->From = EMAIL_FROM_ADDRESS;
$mailer->FromName = EMAIL_FROM_NAME;
$mailer->SMTPAuth = SMTP_DO_AUTHORIZATION;
$mailer->Username = SMTP_USER;
$mailer->Password = SMTP_PASSWORD;
$mailer->Host = SMTP_SERVER;
$mailer->Mailer = “smtp”;

$mailer->Send();
$mailer->SmtpClose();

//more code here
}

//other methods here
}

For the first two properties, Subject and Body, simply use the values that were passed into the method.
You set their values equal to those passed to the method. Next, the From and FromName properties are
set to the constant values from config.inc.php; the first represents the sender’s e-mail address, and
the second contains the sender’s real name (which many e-mail clients simply display as the sender).

The properties following those are the SMTP authorization settings. Some SMTP servers require authen-
tication to send e-mail messages and some don’t. If SMTPAuth is false, PHPMailer attempts to send
e-mails without sending the Username and Password. If true, the class sends those values to the server
in an attempt to authorize the sending of the e-mail.

The final two properties before sending an e-mail are the SMTP server and the method of which to send.
The Host property is assigned to SMTP_SERVER, and the Mailer property is set to “smtp”, indicating
the type of mailer being used (as opposed to “sendmail”).

530

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 530

After setting those properties, you can invoke the Send() method to actually send the e-mail and then
call SmtpClose() to close the SMTP connection. But the method isn’t quite done yet. The client still
needs to know if the e-mail message was sent successfully. To provide that information, you’ll need to
create a response object containing information about the transmission:

class AjaxMailbox {

//other methods here

function sendMail($to, $subject, $message, $cc=””) {
$mailer = new PHPMailer();

$tos = preg_split (“/;|,/”, $to);
foreach ($tos as $to) {

preg_match(“/(.*?)<?([a-z0-9\._%\-]+@[a-z\d\.\-]+\.[a-z]{2,3})>?/i”,
$to, $matches);

$mailer->AddAddress($matches[2],str_replace(‘“‘,’’,$matches[1]));
}

if ($cc != “”) {
$ccs = preg_split (“/;|,/”, $cc);

foreach ($ccs as $cc) {
preg_match(“/(.*?)<?([a-z0-9\._%\-]+@[a-z\d\.\-]+\.[a-

z]{2,3})>?/i”, $cc, $matches);

$mailer->AddCC($matches[2],str_replace(‘“‘,’’,$matches[1]));
}

}

$mailer->Subject = $subject;
$mailer->Body = $message;
$mailer->From = EMAIL_FROM_ADDRESS;
$mailer->FromName = EMAIL_FROM_NAME;
$mailer->SMTPAuth = SMTP_DO_AUTHORIZATION;
$mailer->Username = SMTP_USER;
$mailer->Password = SMTP_PASSWORD;
$mailer->Host = SMTP_SERVER;
$mailer->Mailer = “smtp”;

$mailer->Send();
$mailer->SmtpClose();

$response = new JSONObject();

if ($mailer->IsError()) {
$response->error = true;
$response->message = $mailer->ErrorInfo;

} else {
$response->error = false;
$response->message = “Your message has been sent.”;

}

return $response;

531

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 531

}

//other methods here
}

A JSONObject is instantiated to carry the information back to the client. PHPMailer provides a method
called IsError(), which returns a Boolean value indicating the success or failure of the sending pro-
cess. If it returns true, that means the e-mail was not sent successfully, so the $response object has its
error property set to true and the error message is extracted from the ErrorInfo property of
$mailer. Otherwise, the error property is set to false and a simple confirmation message is sent. The
last step is to return the $response object.

Getting Attachment Data
When attachments are stored in the database, you need a way to get them back out. The
getAttachment() method provides all the information necessary to enable a user to download an
attachment. This method takes one argument, the attachment ID, and returns an AjaxMailAttachment
object. The AjaxMailAttachment class is another helper that encapsulates all the information about an
attachment:

class AjaxMailAttachment {
var $contentType;
var $filename;
var $size;
var $data;

function AjaxMailAttachment($contentType, $filename, $size, $data) {
$this->contentType = $contentType;
$this->filename = $filename;
$this->size = $size;
$this->data = $data;

}
}

The getAttachment() method itself is fairly straightforward:

class AjaxMailbox {

//other methods here

function getAttachment($attachmentId) {
$conn = $this->connect();

$query = “select * from AjaxMailAttachments where “;
$query .= “ AttachmentId=$attachmentId”;
$result = mysql_query($query, $conn);
$row = mysql_fetch_assoc($result);

$this->disconnect($conn);

return new AjaxMailAttachment(
$row[“ContentType”],
$row[“Filename”],

532

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 532

$row[“Size”],
$row[“Data”]

);
}

//other methods here
}

This code connects to the database with the connect() method and performs the database query. This
particular query selects all fields from AjaxMailAttachments where AttachmentId is equal to the
method’s argument. After running the query, the database connection is closed and an
AjaxMailAttachment object is returned containing all the information about the attachment.

Handling the Trash
Four methods in the AjaxMailbox class deal with moving messages to and from the Trash. The first
method, deleteMessage(), doesn’t actually delete the e-mail message; instead, it updates the
FolderId column in the database so that it has a value of 2, meaning that the message now resides in
the Trash. This method accepts one argument, the identification number of the message:

class AjaxMailbox {

//other methods here

function deleteMessage($messageId) {
$conn = $this->connect();

$query = “update AjaxMailMessages set FolderId=2 where “;
$query .= “ MessageId=$messageId”;
mysql_query($query,$conn);

$this->disconnect($conn);
}

//other methods here
}

This method simply connects to the database, runs the SQL statement to change the FolderId, and then
disconnects from the database. Of course, you can also restore a message from the Trash once it has been
moved there. To do so, simply set the FolderId back to 1; this is the job of the restoreMessage()
method.

The restoreMessage() method also accepts one argument, the message ID, and follows the same basic
algorithm:

class AjaxMailbox {

//other methods here

function restoreMessage($messageId) {
$conn = $this->connect();

$query = “update AjaxMailMessages set FolderId=1 where “;

533

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 533

$query .= “ MessageId=$messageId”;
mysql_query($query,$conn);

$this->disconnect($conn);
}

//other methods here
}

This method mirrors deleteMethod(), with the only difference being the value of FolderId to be set.

From time to time, there will be a lot of e-mail messages in the Trash. There may come a time when the
user decides that he or she no longer needs them and the Trash should be emptied. The emptyTrash()
method deletes every message with a FolderId value of 2 as well as any attachments those messages
may have had.

The emptyTrash() method relies on two queries to delete the message and attachment information in
the database. The first query deletes the attachments of messages in the Trash, and the second query
deletes the messages themselves:

class AjaxMailbox {

//other methods here

function emptyTrash() {
$conn = $this->connect();

$query = “delete from AjaxMailAttachments where MessageId in “;
$query .= “ (select MessageId from AjaxMailMessages where FolderId=2)”;

mysql_query($query, $conn);

$query = “delete from AjaxMailMessages where FolderId=2”;
mysql_query($query,$conn);

$this->disconnect($conn);
}

//other methods here
}

The first query uses a feature called subquerying to select MessageIds of messages that are in the Trash.
Subqueries are a feature in MySQL 4 and above (if you use MySQL 3.x, you need to upgrade before
using this code). The second query is very straightforward, simply deleting all messages with a
FolderId of 2. The last step, of course, is to disconnect from the database.

Marking Messages as Read
Nearly every e-mail client marks messages as unread when they first arrive. This feature enables users to
keep track of the messages they previously read and easily tell which messages are new. The methods
responsible for this feature in AjaxMail resemble those of deleting and restoring messages because they
simply accept a message ID as an argument and then update a single column in the database.

534

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 534

The first method, markMessageAsRead(), marks the message as read after the user opens it:

class AjaxMailbox {

//other methods here

function markMessageAsRead($messageId) {
$conn = $this->connect();

$query = “update AjaxMailMessages set Unread=0 where MessageId=$messageId”;
mysql_query($query,$conn);

$this->disconnect($conn);
}

//other methods here
}

This code runs an UPDATE statement that sets the message’s Unread column to 0, specifying the message
as read.

Similarly, the method to mark a message as unread performs almost the exact same query:

class AjaxMailbox {

//other methods here

function markMessageAsUnread($messageId) {
$conn = $this->connect();

$query = “update AjaxMailMessages set Unread=1 where MessageId=$messageId”;
mysql_query($query,$conn);

$this->disconnect($conn);
}

//other methods here
}

The only difference between the markMessageAsUnread() method and the markMessageAsRead()
method is the value the Unread column is assigned when you run the query.

Performing Actions
AjaxMail, like many other PHP applications, relies on an action-based architecture to perform certain
operations. In other words, the application queries a separate PHP file that handles certain actions and
executes code according to the action. There are several files that perform action requests from the client
in different ways.

535

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 535

AjaxMailAction.php
The AjaxMailAction.php. file is one of the files used by the client to perform various actions. Your first
step in writing this file is to include all the required files. Because this file uses the AjaxMailbox class,
you need to include quite a few files, including the config.inc.php file, the four files in POP3Lib,
AjaxMail.inc.php, and JSON.php for JSON encoding:

require_once(“inc/config.inc.php”);
require_once(“inc/pop3lib/pop3.class.php”);
require_once(“inc/pop3lib/pop3message.class.php”);
require_once(“inc/pop3lib/pop3header.class.php”);
require_once(“inc/pop3lib/pop3attachment.class.php”);
require_once(“inc/AjaxMail.inc.php”);
require_once(“inc/JSON.php”);

You also need to set several headers:

header(“Content-Type: text/plain”);
header(“Cache-Control: No-Cache”);
header(“Pragma: No-Cache”);

The first header sets the Content-Type to text/plain, a requirement because this page returns a
JSON-encoded string as opposed to HTML or XML. Because this file will be used repeatedly, you must
include the No-Cache headers described in Chapter 2 to avoid incorrect data.

When using AjaxMailAction.php, at least three pieces of information are sent: the action to perform,
the current folder ID, and the page number. An optional fourth piece of information, a message ID, can
be sent as well. So, the query string for this file may look something like this:

AjaxMailAction.php?action=myAction&page=1&folder=1&id=123

Because the message ID is used only in certain circumstances, you don’t have to retrieve it until it is
needed. In the meantime, you can retrieve the three other arguments as follows:

$folder = $_GET[“folder”];
$page = (int) $_GET[“page”];
$action = $_GET[“action”];

This code retrieves the values of the variables in the query string. The page number is cast to an integer
value for compatibility with methods in AjaxMailbox. Next, create an instance of AjaxMailbox and
JSON, as well as a variable named $output, which will be filled with a JSON string:

$mailbox = new AjaxMailbox();

$oJSON = new Services_JSON();

$output = “”;

The next step is to perform the desired action. Using a switch statement on the $action enables you to
easily determine what should be done. There are two actions that need the message ID argument,
delete and restore:

536

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 536

switch($action) {
case “delete”:

$mailbox->deleteMessage($_GET[“id”]);
break;

case “restore”:
$mailbox->restoreMessage($_GET[“id”]);
break;

case “empty”:
$mailbox->emptyTrash();
break;

case “getfolder”:
//no extra processing needed
break;

}

This code performs a specific operation based on the $action string. In the case of delete, the
deleteMessage() method is called and the message ID parameter is passed in. For restore, the
restoreMessage() method is called with the message ID. If empty is the action, the emptyTrash()
method is called. Otherwise, if the action is getfolder, no additional operation is required. This is
because AjaxMailAction.php always returns JSON-encoded folder information regardless of the
action that is performed:

$info = $mailbox->getFolderPage($folder, $page);
$output = $oJSON->encode($info);
echo $output;

Here, the getFolderPage() method is used to retrieve a list of e-mails to return to the client.
Remember, getFolderPage() checks for new messages before returning a list, so you will have the
most recent information. The result of getFolderPage() is encoded using $oJSON->encode() and
then output to the client using the echo operator.

AjaxMailNavigate.php
AjaxMail uses both XHR and a hidden iframe to make requests back to the server. The
AjaxMailNavigate.php file is used inside the hidden iframe and, as such, must contain valid HTML
and JavaScript code. This file expects the same query string as AjaxMailAction.php because it uses the
same information.

The first part of this file is the PHP code that performs the requested action:

<?php
require_once(“inc/config.inc.php”);
require_once(“inc/pop3lib/pop3.class.php”);
require_once(“inc/pop3lib/pop3message.class.php”);
require_once(“inc/pop3lib/pop3header.class.php”);
require_once(“inc/pop3lib/pop3attachment.class.php”);
require_once(“inc/AjaxMail.inc.php”);
require_once(“inc/JSON.php”);

header(“Cache-control: No-Cache”);
header(“Pragma: No-Cache”);

$folder = $_GET[“folder”];

537

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 537

$page = (int) $_GET[“page”];
$id = “”;
if (isset($_GET[“id”])) {

$id = (int) $_GET[“id”];
}
$action = $_GET[“action”];

$mailbox = new AjaxMailbox();
$oJSON = new Services_JSON();

$output = “”;

switch($action) {
case “getfolder”:

$info = $mailbox->getFolderPage($folder, $page);
$output = $oJSON->encode($info);
break;

case “getmessage”:
$message = $mailbox->getMessage($id);
if ($message->unread) {

$mailbox->markMessageAsRead($id);
}
$output = $oJSON->encode($message);
break;

default:
$output = “null”;

}

?>

This file requires the same include files as AjaxMailAction.php, although it needs only the no cache
headers because the content being returned is HTML (not plain/text). Next, the information is pulled
out of the query string and stored in variables. New instances of AjaxMailbox and JSON are created in
anticipation of performing an action.

As with AjaxMailAction.php, the $action variable is placed into a switch statement to determine
what to do. The getfolder action calls getFolderPage() to retrieve the information for the given
page in the given folder. The result is JSON-encoded and stored in the $output variable.

If the action is getmessage, the getMessage() method is called. If the message hasn’t been read, it is
marked as read. The message is then JSON-encoded and assigned to the $output variable. If the
$action is something else, $output is assigned a value of null.

The next part of the page is the HTML content:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>

<title>Ajax Mail Navigate</title>
</head>
<body>

<script language=”JavaScript” type=”text/javascript”>

538

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 538

//<![CDATA[

window.onload = function () {
var oInfo = <?php echo $output ?>;

<?php
switch($action) {

case “getfolder”:
echo “parent.oMailbox.displayFolder(oInfo);”;
break;

case “getmessage”:
echo “parent.oMailbox.displayMessage(oInfo);”;
break;

case “compose”:
echo “parent.oMailbox.displayCompose();”;
break;

case “reply”:
echo “parent.oMailbox.displayReply();”;
break;

case “replyall”:
echo “parent.oMailbox.displayReplyAll();”;
break;

case “forward”:
echo “parent.oMailbox.displayForward();”;
break;

}
?>

};

//]]>
</script>

</body>
</html>

In this part of the page, the $output variable is output to the page into the JavaScript variable oInfo.
Because $output is either null or a JSON-encoded string, it is valid JavaScript. The variable is assigned
in the window.onload event handler. Then, based on the $action, a different JavaScript method is out-
put to the page and called.

AjaxMailSend.php
To handle the sending of e-mail from the client, the AjaxMailSend.php file is used. Its sole purpose is to
gather the information from the server and then send the e-mail. It needs to include config.inc.php,
JSON.php, and AjaxMail.inc.php, as with the other files. However, it doesn’t need to include the
POP3Lib files because there will be no interaction with the POP3 server. Instead, the PHPMailer files
class.phpmailer.php and class.smtp.php must be included:

<?php
require_once(“inc/config.inc.php”);
require_once(“inc/phpmailer/class.phpmailer.php”);
require_once(“inc/phpmailer/class.smtp.php”);
require_once(“inc/JSON.php”);
require_once(“inc/AjaxMail.inc.php”);

header(“Content-Type: text/plain”);

539

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 539

header(“Cache-control: No-Cache”);
header(“Pragma: No-Cache”);

$to = $_POST[“txtTo”];
$cc = $_POST[“txtCC”];
$subject = $_POST[“txtSubject”];
$message = $_POST[“txtMessage”];

$mailbox = new AjaxMailbox();

$oJSON = new Services_JSON();

$response = $mailbox->sendMail($to, $subject, $message, $cc);
$output = $oJSON->encode($response);
echo $output;

?>

You’ll note that the same headers are set for this page as they are for AjaxMailAction.php because it
will also return a JSON-encoded string. The next section gathers the information from the submitted
form. Then, new instances of AjaxMailbox and JSON are created. The information from the form is
passed into the sendMail() method, and the response is JSON-encoded and then output using echo.

AjaxMailAttachment.php
The last file, AjaxMailAttachment.php, facilitates the downloading of a specific attachment. This file
accepts a single query string parameter: the ID of the attachment to download. To do this, you need to
once again include all the POP3Lib files, config.inc.php, and AjaxMail.inc.php:

<?php
require_once(“inc/config.inc.php”);
require_once(“inc/pop3lib/pop3.class.php”);
require_once(“inc/pop3lib/pop3message.class.php”);
require_once(“inc/pop3lib/pop3header.class.php”);
require_once(“inc/pop3lib/pop3attachment.class.php”);
require_once(“inc/AjaxMail.inc.php”);

$id = $_GET[“id”];
$mailbox = new AjaxMailbox();
$attachment = $mailbox->getAttachment($id);

header(“Content-Type: $attachment->contentType”);
header(“Content-Disposition: attachment; filename=$attachment->filename”);

echo $attachment->data;
?>

After including the required files, the attachment ID is retrieved and stored in $id. A new AjaxMailbox
object is created and getAttachment() is called to retrieve the specific attachment information. Next,
the content-type header is set to the content type of the attachment (retrieved from $attachment->
contentType) and the content-disposition header is set to attachment, passing in the file name of the
attachment. This second header does two things. First, it forces the browser to show a dialog box asking
if you want to open the file or save it; second, it suggests the file name to use when downloading the file.
The last part of the file outputs the attachment data to the page, effectively mimicking a direct file
download.

540

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 540

The User Interface
The key to any successful (and useful) web application is the design of the user interface. Because
AjaxMail is meant to demonstrate the use of Ajax techniques, the user interface is quite simple and bare-
bones. There are three different views of the user interface:

❑ Folder view: Displays a folder of messages (either Inbox or Trash)

❑ Read view: Displays a received message

❑ Compose view: Displays a form so that you can send e-mails

All the views are designed to be very simple, and all are loaded when the main page, index.php, is ini-
tially loaded.

The basic layout of index.php is as follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en”>
<head>

<title>Ajax Mail</title>
<link rel=”stylesheet” type=”text/css” href=”styles/AjaxMail.css” />
<script type=”text/javascript” src=”scripts/zxml.js”></script>
<script type=”text/javascript” src=”scripts/json.js”></script>
<script type=”text/javascript” src=”scripts/AjaxMail.js”></script>

</head>
<body>

<ul id=”ulMainMenu”>
<li id=”liCompose”>

Compose Mail
Inbox

Trash

(Empty)

<div id=”divNotice”></div>
<div id=”divFolder”>

<!-- folder view -->
</div>
<div id=”divReadMail” style=”display: none”>

<!-- read mail view -->
</div>

<div id=”divComposeMail” style=”display: none”>
<!-- compose mail view -->

</div>
<iframe id=”iLoader” src=”about:blank”></iframe>

</body>
</html>

The page requires a style sheet, AjaxMail.css, along with three JavaScript files, the zXml library file
(zxml.js), the JSON library (json.js), and the JavaScript file containing all the AjaxMail functionality
(AjaxMail.js). Within the body is an unordered list containing three links, one each for Compose Mail,

541

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 541

the Inbox, and the Trash. The Trash link also has a link for Empty next to it, which can be used to purge
any messages in the Trash. Because each of these links is to call a JavaScript function, there is no need to
use a regular <a/> tag. Instead, each link is implemented as a with a CSS class of link, which
formats the text to look like a regular link. The first link, Compose Mail, is made bold to call it out from
the others. The complete CSS for the main menu (contained in AjaxMail.css) is:

span.link {
text-decoration: underline;
color: blue;
cursor: pointer;
cursor: hand;

}

#ulMainMenu {
position: absolute;
left: 0px;
top: 0px;
margin: 0px;
padding: 10px;

}

#ulMainMenu li {
display: block;
padding: 2px 0px 2px 0px;
margin: 0px;
font-size: 80%;

}

#ulMainMenu #liCompose {
font-weight: bold;
padding: 2px 0px 8px 0px;

}

Next in the index.php page is a <div/> element called divNotice. This element is used to display
notifications to the user, which is critical in an Ajax application. Because the page itself doesn’t reload or
change to another page, there is no indication if a particular operation was successful. This area is used
to relay such information.

AjaxMail needs two different types of notifications: one for general information and one for error infor-
mation. General information includes such things as notifying the user when an e-mail is sent or deleted;
error information is important when one of these actions is supposed to occur but doesn’t. A general
information notification appears as a yellow box with a small “i” icon to the left, whereas an error notifi-
cation appears as a red box with an exclamation point icon to the left (see Figure 16-1).

Figure 16-1

542

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 542

The divNotice element is dynamically assigned text as well as an appropriate CSS class, info or
error, to create the desired appearance. The styles are defined as follows:

#divNotice {
-moz-box-sizing: border-box;
box-sizing: border-box;
padding: 4px;
background-repeat: no-repeat;
background-position: 4px 4px;
padding-left: 24px;
font-size: 60%;
font-family: Arial,Helvetica,Sans-Serif;
visibility: hidden;
height: 16px;
position: absolute;
top: 5px;
left: 150px;
width: 600px;

}

div.info {
background-color: #F7FFCD;
background-image: url(../images/icon_info.gif);
border: 1px solid #A5A54A;

}

div.error {
background-color: #FFE6E6;
background-image: url(../images/icon_alert.gif);
border: 1px solid red;

}

By using the background-image property to assign the appropriate icon, you are able to completely
control the appearance of the notification area by using styles instead of worrying about changing an
 element when the style is changed. The background-position property states where the
image should appear, and setting the background-repeat property to no-repeat ensures that only
one copy of the image will be visible.

After the notification element comes a <div/> for each of the three AjaxMail views. The <div/> element
for the folder view, divFolder, is first in the page and is always visible by default. The other two
<div/> elements, divReadMail and divComposeMail, each have their display property set to none so
that they are not visible when the page is first loaded. The contents of each <div/> element will be dis-
cussed later.

The last part of the page is an <iframe/> called iLoader. This hidden frame is used to navigate back
and forth throughout the three views of AjaxMail. Anytime a user interface switch is made, the request
goes through the hidden frame to allow the use of the Back and Forward browser buttons.

543

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 543

The Folder View
The folder view is the first thing the user sees after the application is loaded. It consists of the title of the
folder (either Inbox or Trash), a pagination control that displays which messages are being displayed
and the total number of messages, and a list of e-mail messages (see Figure 16-2). Taking a cue from
Gmail, AjaxMail doesn’t use table headers for the list of messages because people are accustomed to see-
ing e-mail listed by the person who sent it, subject, and date.

Figure 16-2

You may notice that the traditional check box next to each e-mail is missing. That’s because there is only
one thing you can do with an e-mail in AjaxMail: delete it. Instead of a check box, there is a red X next to
each e-mail that can be clicked to delete it (move it to the Trash). When you switch to the Trash folder,
the icons change to green arrows that, when clicked, moves the e-mail back into the Inbox (see Figure
16-3).

Aside from this difference, the folder view is the same regardless of which folder is displayed.
Additionally, each e-mail has an optional attachment indicator that appears next to the subject if the
e-mail contains an attachment. This icon is displayed only when an attachment is detected on the e-mail;
otherwise, it is hidden.

There’s also a small “loading” message next to the name of the folder. This is used to indicate when
there is an open request to the server and disappears when the request is complete. While a request is
processing, no other actions can be taken to prevent overriding of requests.

544

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 544

Figure 16-3

The HTML for the folder view is fairly simple because a large amount of the display is created by
JavaScript depending on data received from the server:

<div id=”divFolder”>
<div id=”divFolderHeader” class=”header”>

<h1 id=”hFolderTitle”>Inbox</h1>
<div id=”divFolderStatus” class=”status”>Loading...</div>
<div id=”divItemCount”>

<img src=”images/btn_prev.gif” alt=”Previous Page”
title=”Previous Page” id=”imgPrev” />

<img src=”images/btn_next.gif” alt=”Next Page”

title=”Next Page” id=”imgNext” />
</div>

</div>
<table border=”0” cellpadding=”0” cellspacing=”0” id=”tblMain”>

<thead>
<tr id=”trTemplate”>

<td></td>
<td class=”from”></td>
<td class=”attachment”>

<img src=”images/icon_attachment.gif” title=”Attachment”
/></td>

<td class=”subject”></td>
<td class=”date” nowrap=”nowrap”></td>

</tr>

545

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 545

<tr id=”trNoMessages”>
<td colspan=”5”>There are no messages in this folder.</td>

</tr>
</thead>
<tbody>

<tr style=”visibility: hidden”>
<td colspan=”5”></td>

</tr>
</tbody>

</table>
</div>

The first thing to notice about this code is that nearly every element has an id attribute assigned. Any
element that must be accessed via JavaScript needs to have an id attribute so that it can be accessed
using the document.getElementById() method directly. For example, hFolderTitle contains the
name of the folder, which is assigned by JavaScript after the folder data is retrieved. Because this will
happen frequently, the JavaScript needs a reference to this element. Likewise, the divFolderStatus ele-
ment that contains the loading message needs an id attribute so that it can be shown and hidden when
appropriate. The spnItems element will be filled in with information about which messages are being
displayed. The trickiest part of the HTML is the table to display the messages.

Within the table is a <thead/> element that contains two rows: one called trTemplate and one called
trNoMessages. These rows are used as templates by JavaScript to create rows on the fly. Since rows
with these formats will be needed frequently, it is faster and more effective to create the HTML and hide
it from the user then to duplicate it and fill in the necessary information. You’ll see how this is done later
in the chapter. For now, just know that neither of these rows is directly visible to the user.

The <tbody/> element contains a single hidden row. This is done to set the initial browser measure-
ments for the table. Without this, each table row would be displayed incorrectly initially because the
browser had no standards from which to base its measurements. Providing this hidden row gives the
browser enough information to make sure that any further rows are displayed properly.

Read View
The read view is quite simply designed to display an e-mail message so that the user can read it (see
Figure 16-4). It consists of a subject line followed by spaces for the sender’s e-mail address, the recipi-
ent’s e-mail address, and the message date. There are also additional spaces for displaying both CC and
BCC information if necessary.

Under the message header information are links for Reply, Reply All, Forward, and View Attachments.
The last link appears only if there are attachments on the message. Each of the first three links switches
you to the compose view with some prefilled information allowing you to easily send an e-mail.

Below the links is the message body. Because AjaxMail supports only plain text messages, it’s easy to
format the text using CSS. If there are any attachments, they are listed below the main message text. You
can click the name of an attachment to download it.

546

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 546

Figure 16-4

The read view HTML is also very simple for the same reason, because most of the information is added
later on by JavaScript.

<div id=”divReadMail” style=”display: none”>
<div class=”header”>

<h1 id=”hSubject”></h1>
</div>
<div class=”message-headers”>

<div id=”divMessageFrom”></div>
<div id=”divMessageDate”></div>

</div>
<div id=”divMessageTo”></div>
<div id=”divMessageCC”></div>
<div id=”divMessageBCC”></div>
<ul class=”message-actions”>

Reply
Reply All
Forward
<li id=”liAttachments”>View Attachments

<div id=”divMessageBody”></div>
Attachments
<div id=”divMessageAttachments”>

<ul id=”ulAttachments”>

</div>
</div>

547

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 547

As with the folder view, nearly every element for the read view has an id attribute. The hSubject ele-
ment is used to display the subject of the message, whereas the divMessageBody element is used to dis-
play the message text. The divMessageFrom, divMessageDate, divMessageTo, divMessageCC, and
divMessageBCC elements are used to display each type of header information for the message.
Immediately following those elements are the message actions, Reply, Reply All, Forward, and View
Attachments. Note that only the View Attachments link uses an <a/> element. This is to take advantage
of HTML anchors to move the screen’s view down the page to the attachments list. All the other links are
implemented using elements with the link CSS class. The attachments are listed in the
ulAttachments element. If there are no attachments, the entire divMessageAttachments element is
hidden.

Compose View
The compose view does a lot of work in the user interface for AjaxMail. It is used not only to create new
e-mail messages, but also for replying to and forwarding e-mails. To keep things simple for this book,
the compose view supports only the To and CC fields (no BCC) and does not enable you to send
attachments.

This view consists of a text box for the To, CC, and subject fields, and the message of the e-mail (see
Figure 16-5). There are also two links, Send and Cancel. Send begins the process of sending the e-mail,
and Cancel places the user back into the previous view (either folder view or read view).

Figure 16-5

548

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 548

The HTML for this view consists mostly of a form with text fields:

<div id=”divComposeMail” style=”display: none”>
<div class=”header”>

<h1 id=”hComposeHeader”>Compose Mail</h1>
</div>
<div id=”divComposeMailForm”>

<ul id=”ulComposeActions” class=”message-actions”>
Send
Cancel

<div id=”divComposeBody”>

<form method=”post” name=”frmSendMail”>
<table border=”0” cellpadding=”0” cellspacing=”0”>

<tr>
<td class=”field-label-container”>

<label for=”txtTo” class=”field-label”>To:</label></td>
<td class=”field-container”>

<textarea rows=”2” cols=”30” id=”txtTo” name=”txtTo”
class=”form-field”></textarea></td>

</tr>
<tr>

<td class=”field-label-container”>
<label for=”txtCC” class=”field-label”>CC:</label></td>

<td class=”field-container”>
<textarea rows=”2” cols=”30” id=”txtCC” name=”txtCC”

class=”form-field”></textarea></td>
</tr>
<tr>

<td class=”field-label-container”>
<label for=”txtSubject”

class=”field-label”>Subject:</label></td>
<td class=”field-container”>

<input type=”text” id=”txtSubject” name=”txtSubject”
class=”form-field” /></td>

</tr>
<tr>

<td class=”message-container” colspan=”2”>
<textarea id=”txtMessage” name=”txtMessage” rows=”15”

cols=”30” class=”form-field”></textarea></td>
</tr>

</table>
</form>

</div>
</div>
<div id=”divComposeMailStatus” style=”display: none”>

<h2>Sending...</h2>

</div>
</div>

There are two main parts of this view: divComposeBody, which contains the form, and
divComposeMailStatus, which displays a notification that a message is being sent. When Send is
clicked, divComposeMailStatus is shown with the Sending . . . message as well as an animated image

549

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 549

to indicate that the message is in the process of being sent. If an error occurs during the process, an alert
will be displayed to the user and the form will once again be made visible. If, on the other hand, the
message goes through without any problems, the user is returned to the previous view (as if he or she
clicked Cancel) and a notification is displayed stating that the message was sent successfully.

Layout
To ensure the user interface has a consistent feel, each view must be laid out so that one can easily slide
into the place of the others when necessary. To accomplish this, each view is positioned absolutely in the
same location:

#divFolder,
#divReadMail,
#divComposeMail {

position: absolute;
top: 35px;
left: 150px;
width: 600px;
-moz-box-sizing: border-box;
box-sizing: border-box;

}

The last two CSS properties, -moz-box-sizing and box-sizing, are used to ensure that the measure-
ments are the same across all browsers. By default, Internet Explorer renders everything using the bor-
der box calculations, whereas others don’t. These two lines (the first for Mozilla, the second for others)
ensure that the size remains consistent regardless of the browser. The rest of the style information places
each view in the same location on the screen and makes each view have the same width (although the
height is allowed to grow and shrink, as necessary).

Next, the iframe must be hidden so that it doesn’t disrupt the page flow. Because the iframe’s id
attribute is set, you can refer to it directly:

#iLoader {
display: none;

}

Also remember that the <thead/> element needs to be hidden so that it won’t display the template rows
in the folder view:

thead {
display: none;

}

Tying It All Together
Now that you know all about the architecture, database, user interface, and server-side components, it’s
time to glue it all together using JavaScript. To begin, you need to define some constants. The first con-
stants are simply locations of various resources that need to be used by AjaxMail:

550

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 550

var sAjaxMailURL = “AjaxMailAction.php”;
var sAjaxMailNavigateURL = “AjaxMailNavigate.php”;
var sAjaxMailAttachmentURL = “AjaxMailAttachment.php”;
var sAjaxMailSendURL = “AjaxMailSend.php”;

var sImagesDir = “images/”;
var sRestoreIcon = sImagesDir + “icon_restore.gif”;
var sDeleteIcon = sImagesDir + “icon_delete.gif”;
var sInfoIcon = sImagesDir + “icon_info.gif”;
var sErrorIcon = sImagesDir + “icon_alert.gif”;
var aPreloadImages = [sRestoreIcon, sDeleteIcon, sInfoIcon, sErrorIcon];

The first parts of this code simply define the URLs used to make requests back to the server. These will
be used later to integrate the Ajax interface. The second part of this code identifies images that are neces-
sary for the user interface and then places them into an array called aPreloadImages. These images are
preloaded so that the user interface responds quickly:

for (var i=0; i < aPreloadImages.length; i++) {
var oImg = new Image();
oImg.src = aPreloadImages[i];

}

This code uses an Image object, which is essentially an invisible element. Because not all of these
images are necessary when the application is first loaded, most won’t be loaded until used for the first
time. This could result in a delay that may be confusing to users. Preloading the images prevents this
issue from occurring.

Next, there are some messages and strings that need to be displayed to the user. It helps to define these
early in the code so that it’s easy to change the messages in the future, if necessary:

var sEmptyTrashConfirm =
“You are about to permanently delete everything in the Trash. Continue?”;

var sEmptyTrashNotice = “The Trash has been emptied.”;
var sDeleteMailNotice = “The message has been moved to the Trash.”;
var sRestoreMailNotice = “The message has been moved to your Inbox.”;
var sRestore = “Restore”;
var sDelete = “Move to the Trash”;
var sTo = “To “;
var sCC = “CC “;
var sBCC = “BCC “;
var sFrom = “From “;

When one of the notices is displayed, you really want to show it only for a short amount of time so that
it doesn’t become distracting to the user or blend in with the rest of the screen. The variable
iShowNoticeTime indicates the duration (in number of milliseconds) for a notice to appear on the
screen. By default, this is 5 seconds (5000 milliseconds):

var iShowNoticeTime = 5000;

551

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 551

The last bit of code to be defined ahead of time is a couple of constants and an array:

var INBOX = 1;
var TRASH = 2;
var aFolders = [“”,”Inbox”, “Trash”];

In this code, the first two variables are constants defining the numeric identifiers for the Inbox and Trash
folders. These coincide with the values they have in the database. The array of strings contains the
names for each of the folders, so these don’t have to be returned from the database all the time. The first
string in the array is empty, since it will never be used. (There is no folder with a numeric ID of zero.)

Helper Functions
Before diving into the main part of the code, there are some helper functions that are necessary. Helper
functions are functions that aren’t necessarily specific to a particular application but perform some pro-
cess that is necessary. AjaxMail has a handful of helper functions.

The first helper function is one that you have seen before. The getRequestBody() function was intro-
duced in Chapter 2 to serialize the data in an HTML form so that it can be passed into an XHR request.
This function is necessary once again for AjaxMail. To refresh your memory, here’s what the function
looks like:

function getRequestBody(oForm) {
var aParams = new Array();

for (var i=0 ; i < oForm.elements.length; i++) {
var sParam = encodeURIComponent(oForm.elements[i].name);
sParam += “=”;
sParam += encodeURIComponent(oForm.elements[i].value);
aParams.push(sParam);

}

return aParams.join(“&”);
}

This code is exactly the same as it was in Chapter 2 and will be used to send e-mail messages.

One problem with e-mail addresses is that they can be specified in any number of formats. For example:

❑ myname@somewhere.com

❑ My Real Name <myname@somewhere.com>

❑ “My Real Name” <myname@somewhere.com>

In an actual implementation, you may choose to have these variables generated by
some server-side process that reads the values out of the database and outputs
appropriate JavaScript code. For simplicity in this example, these values are defined
right in the JavaScript file.

552

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 552

If you use e-mail frequently, you’ll probably recognize these formats as they are used in most major
e-mail applications. When displaying an e-mail’s sender in the folder view, AjaxMail displays the real
name only. If no real name is present, the e-mail address is shown. To handle this, a helper function
called cleanupEmail() is used:

var reNameAndEmail = /(.*?)<(.*?)>/i;

function cleanupEmail(sText) {
if (reNameAndEmail.test(sText)) {

return RegExp.$1.replace(/”/g, “”);
} else {

return sText;
}

}

The most important part of the function is actually the regular expression reNameAndEmail, which
matches a string containing both a real name and an e-mail address regardless of the use of quotation
marks. Inside the function, the text is tested against this regular expression. If test() returns true, that
means the e-mail address contains both pieces of information, and you should extract the real name
(which is stored in RegExp.$1). However, this name may have quotation marks in it, so the next step is
to replace all the quotation marks with an empty string using the replace() method. If, on the other
hand, the regular expression doesn’t match the text that was passed in, this means that it contains just an
e-mail address, so it is returned without any changes.

The last helper function is called htmlEncode(), and it simply replaces greater-than (>), less-than (<),
ampersand (&), and quote (“”) characters with their appropriate HTML entities. This ensures that no
dangerous HTML will be created when reading text from an e-mail:

function htmlEncode(sText) {
if (sText) {

return sText.replace(/&/g, “&”).replace(/</g, “<”).replace(/>/g,
“>”).replace(/”/g, “"”)

} else {
return “”;

}
}

This function also checks to make sure text is passed in. If sText is null, the function returns an empty
string; otherwise, the replacements are done using the replace() method.

The Mailbox
The main part of the AjaxMail application is the mailbox. This is a single JavaScript object containing all
the properties and methods necessary to run the user interface. Because there should be only one
instance of this object, it is defined using object literal notation:

var oMailbox = {

info: new Object(),
processing: false,
message: new Object(),

553

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 553

nextNotice: null,

//more code here
}

The mailbox object is stored in a variable named oMailbox and has four properties. The first property,
info, is an object that will contain the folder information for the folder view. This object will be returned
from the server but is initialized here to a generic object to avoid possible errors. Next is the processing
property, which is simply a Boolean flag indicating whether the application is processing a request.
When set to true, no other processes can be initiated. The third property is message, which will contain
an object describing the message being read in the read view. Once again, this property is initialized to
an empty object in order to avoid possible errors. The last property, nextNotice, is used by several call-
back functions to determine which notice should be displayed once a particular process has completed.

Before you can begin interacting with the user interface, it helps to store references to the elements you’ll
be using the most. You can do this by using document.getElementById() repeatedly, but that would
require a lot of lines of code for all the elements used in AjaxMail. Instead, it’s faster and more efficient
to iterate over all the elements in a page and add a reference to each one that has an id attribute. This is
part of the job of the init()method:

init: function () {
var colAllElements = document.getElementsByTagName(“*”);
if (colAllElements.length == 0) {

colAllElements = document.all;
}

for (var i=0; i < colAllElements.length; i++) {
if (colAllElements[i].id.length > 0) {

this[colAllElements[i].id] = colAllElements[i];
}

}

//more code here
},

This method first calls document.getElementsByTagName() and passes in an asterisk. In DOM-
compliant browsers, this should return a collection of all the elements in the document. However, the
Internet Explorer implementation doesn’t support this usage, so you’ll also need to be prepared for this.
If the returned collection has no elements (length is not greater than zero), this means that Internet
Explorer is in use. To work around this limitation, you can use the document.all collection (supported
in Internet Explorer only) in place of the collection returned from getElementsByTagName(). Once
colAllElements contains a usable collection, you can then iterate over the collection using a for loop.
If the element has an id property (the length of the id property is greater than zero), a reference is
saved on the mailbox object. So, divFolderStatus is saved to the mailbox object as a property named
divFolderStatus and can be accessed using this.divFolderStatus inside of a method or
oMailbox.divFolderStatus outside of a method.

554

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 554

Data-Loading Methods
The mailbox object uses two types of data: folder information and message information. Folder informa-
tion is returned as a JSON string from the server and then parsed into an object containing information
about the given folder. A typical folder information object looks like this:

{
“messageCount”:2,
“page”:1,
“pageCount”:1,
“folder”:1,
“firstMessage”:1,
“unreadCount”: 1,
“messages”:[

{
“id”:”64”,
“from”:”Joe Smith <joe@smith.com>”,
“subject”:”Re: How about this weekend?”,
“date”:”Oct 29 2005”,
“hasAttachments”:false,
“unread”:true

},
{

“id”:”63”,
“from”:”Joe Smith <joe@smith.com>”,
“subject”:”How about this weekend?”,
“date”:”Oct 29 2005”,
“hasAttachments”:false,
“unread”:false

}
]

}

This object is stored in the info property of the mailbox so that it can be used by all methods. To assign
the data, the loadInfo() method is used. Because you may have an object or a JSON string to assign,
this method needs to check the type of the argument that is passed in:

loadInfo: function (vInfo) {
if (typeof vInfo == “string”) {

this.info = vInfo.parseJSON();
} else {

this.info = vInfo;
}

},

If vInfo is a string, it is parsed into an object using the parseJSON() method (which is added to the
String class via json.js); otherwise, it’s an object, so it can be directly assigned to the info property.
This object is used whenever a folder page is rendered, but there is also some data needed to display an
individual e-mail.

555

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 555

The JSON object representing a single e-mail message is in the following format:

{
“id”:”63”,
“to”:”you@somewhere.com”,
“from”:”Joe Smith <joe@smith.com>”,
“cc”:””,
“subject”:”How about this weekend?”,
“bcc”:””,
“date”:”Oct 29, 2005 05:15 AM”,
“hasAttachments”:false,
“unread”:true,
“message”:”I was thinking this weekend would be good? How about you?
Joe”,
“attachments”:[],
“unreadCount”:8

}

When a message is viewed in AjaxMail, this information is assigned to the message property so that it is
accessible from all methods. The loadMessage() method accepts either an object or a JSON string con-
taining this message information and assigns it to the message property:

loadMessage: function (vMessage) {
if (typeof vMessage == “string”) {

this.message = vMessage.parseJSON();
} else {

this.message = vMessage;
}

},

As you can see, this is essentially the same as loadInfo(); it just deals with different data. These two
methods are critical because they are the primary means of passing data from the server to the client.

User Notification Methods
You will remember the processing property from the mailbox object description earlier. To set the
value of this property, a special method called setProcessing() is used. The sole argument for this
method is a Boolean value, set to true when the mailbox is processing or false when it is not. This
method also shows the divFolderStatus element whenever the mailbox is processing:

setProcessing: function (bProcessing) {
this.processing = bProcessing;
this.divFolderStatus.style.display = bProcessing ? “block” : “none”;

},

If the bProcessing argument is true, the divFolderStatus element has its display property set to
block, ensuring that it is visible; otherwise, the property is set to none, hiding it from view. This method
is used throughout the mailbox object to prevent multiple simultaneous requests from occurring.

Another method used throughout is showNotice(), which displays a notice to the user regarding the
state of a request:

556

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 556

showNotice: function (sType, sMessage) {
var divNotice = this.divNotice;
divNotice.className = sType;
divNotice.innerHTML = sMessage;
divNotice.style.visibility = “visible”;
setTimeout(function () {

divNotice.style.visibility = “hidden”;
}, iShowNoticeTime);

},

This method accepts two arguments: the type of message (either info or error) and the message to be
displayed. The type of message also is the CSS class that will be assigned to divNotice, giving it the
appropriate format. The message is assigned to the element via the innerHTML property, which means
you can include HTML code in the message if necessary. After that, the element is made visible to the
user by setting the visibility property to visible. Since the message should be displayed only for a
specific amount of time, the setTimeout() function is used to determine when the visibility prop-
erty should be set back to hidden. The interval is the global variable iShowNoticeTime that was
defined earlier. Any notice displayed using this method will be shown immediately and then disappear
after the designated amount of time.

Communication Methods
There are two different ways that AjaxMail communicates with the server: through XHR and through a
hidden iframe. To provide for this, several methods are used to encapsulate most of the communication
functionality so that other functions can use them directly.

All XHR GET requests are made through the request() method. This method takes three arguments:
the action to perform, a callback function to notify when the request is complete, and an optional e-mail
message ID. Every request going through this method goes to AjaxMailAction.php, passing in the
action (the first argument) on the query string. Here’s the complete method:

request: function (sAction, fnCallback, sId) {
if (this.processing) return;
try {

this.setProcessing(true);
var oXHR = zXmlHttp.createRequest();
var sURL = sAjaxMailURL + “?folder=” +this.info.folder + “&page=”

+ this.info.page + “&action=” + sAction;
if (sId) {

sURL += “&id=” + sId;
}

oXHR.open(“get”, sURL, true);
oXHR.onreadystatechange = function (){

try {
if (oXHR.readyState == 4) {

if (oXHR.status == 200) {
fnCallback(oXHR.responseText);

} else {
throw new Error(“An error occurred while attempting to

contact the server. The action (“ + sAction + “) did not complete.”);
}

557

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 557

}
} catch (oException) {

oMailbox.showNotice(“error”, oException.message);
}

};
oXHR.send(null);

} catch (oException) {
this.showNotice(“error”, oException.message);

}
},

Note that the very first line checks to see if the mailbox is processing another request. If it is, the function
returns without executing the next request. Otherwise, the standard try...catch arrangement involving
an XHR object is executed. Before anything is done, setProcessing() is called to indicate that a request
has begun. The URL is constructed by adding the current folder ID and page to the query string, followed
by the action to perform. If a message ID is specified (sID), that is also added to the query string so that the
action can be completed. Next, the XHR object is initialized and the onreadystatechange event handler is
assigned. Inside the event handler, the callback function (fnCallback) is called when the request succeeds,
passing in the response text. If an error occurs during this process, a custom error is thrown. When the
catch statement intervenes, the showNotice() method is used to display details about the message.

The method to send an e-mail is very similar, but uses a POST request instead:

sendMail: function () {
if (this.processing) return;
this.divComposeMailForm.style.display = “none”;
this.divComposeMailStatus.style.display = “block”;

try {
this.setProcessing(true);
var oXHR = zXmlHttp.createRequest();
var sData = getRequestBody(document.forms[“frmSendMail”]);

oXHR.open(“post”, sAjaxMailSendURL, true);
oXHR.setRequestHeader(“Content-Type”,

“application/x-www-form-urlencoded”);

oXHR.onreadystatechange = function (){
try {

if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {

sendConfirmation(oXHR.responseText);
} else {

oMailbox.showNotice(“error”,
“An error occurred while attempting to contact the

server. The mail was not sent.”);
}

}
} catch (oException) {

oMailbox.showNotice(“error”, oException.message);
}

558

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 558

};
oXHR.send(sData);

} catch (oException) {
this.showNotice(“error”, oException.message);

}
},

As with the request() method, the sendMail() method begins by checking to see if the mailbox is
processing a request. If there are no other requests active, some user interface changes are made. First,
the compose mail form is hidden from view by setting its display property to none. Then, the status
area is shown by setting its display property to block. This effectively shows that the mail is being
sent as an animated GIF plays.

Next, the setProcessing() method is called to indicate a request has begun and a data string is cre-
ated by calling getRequestBody() on the mail form. After initializing the oXHR object, the appropriate
request header is set. The onreadystatechange event handler is the standard setup, and the response
text is passed into the sendConfirmation() function (described in the upcoming Callback Functions
section).

The last communication method is navigate(), which is used whenever the user interface change
should be recorded in the browser history (allowing the user to click Back and Forward to navigate
through the user interface changes). This method uses the hidden iframe to make requests to the server
and receive responses back:

navigate: function (sAction, sId) {
if (this.processing) return;
try {

this.setProcessing(true);
var sURL = sAjaxMailNavigateURL + “?folder=” +this.info.folder

+ “&page=” + this.info.page + “&action=” + sAction;
if (sId) {

sURL += “&id=” + sId;
}
this.iLoader.src = sURL;

} catch (oException) {
this.showNotice(“error”, oException.message);

}
},

This method accepts only two arguments: an action to perform and an optional message ID (similar to
request()). As with the other communication methods, this one begins by checking to see if the mailbox
is processing another request and exits the method if that is the case. Otherwise, a standard try...catch
block surrounds the rest of the code to catch any errors that may occur. Then, the processing flag is set
to true to indicate a new request has begun. The URL is constructed in the same manner as in request(),
adding the message ID only if it has been supplied. Last, the URL is assigned to the iframe via the src
property. Now it is up to the page returned in the iframe to notify the mailbox that processing has been
completed.

559

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 559

Rendering Methods
The most complex methods of the mailbox object are those relating to the rendering of data onto the
screen. There are two methods: renderFolder(), which displays a mailbox folder, and
renderMessage(), which displays a single e-mail message. Both of these use a small method called
updateUnreadCount() that is responsible for updating the number of unread messages next to the
Inbox link:

updateUnreadCount: function (iCount) {
this.spnUnreadMail.innerHTML = iCount > 0 ? “ (“ + iCount + “)” : “”;

}

This method expects the number of unread messages to be passed in as an argument. If that number is
greater than 0, the spnUnreadMail element is updated to display that number; otherwise, the element is
assigned an empty string. With this method defined, it’s time to take a look at the two more complicated
methods.

The renderFolder() method uses the info property to display the appropriate e-mail messages in the
folder view. To begin, this method clears the folder view of all message information so that it can easily
build up and insert new information:

renderFolder: function () {;
var tblMain = this.tblMain;

while (tblMain.tBodies[0].hasChildNodes()) {
tblMain.tBodies[0].removeChild(tblMain.tBodies[0].firstChild);

}

//more code here
},

This first part of the method stores a reference to tblMain in a local variable and then proceeds to
remove all the child nodes from the <tbody/> element (referenced as tblMain.tBodies[0]). With all
of the rows removed, it’s now okay to start adding rows.

The next part of the method creates the DOM representation for the messages. Note that for simplicity,
only the additions to the method are shown:

renderFolder: function () {;

//remove all existing rows

var oFragment = document.createDocumentFragment();

if (this.info.messages.length) {
for (var i=0; i < this.info.messages.length; i++) {

var oMessage = this.info.messages[i];
var oNewTR = this.trTemplate.cloneNode(true);
oNewTR.id = “tr” + oMessage.id;
oNewTR.onclick = readMail;

if (oMessage.unread) {

560

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 560

oNewTR.className = “new”;
}

var colCells = oNewTR.getElementsByTagName(“td”);
var imgAction = colCells[0].childNodes[0];
imgAction.id = oMessage.id;
if (this.info.folder == TRASH) {

imgAction.onclick = restoreMail;
imgAction.src = sRestoreIcon;
imgAction.title = sRestore;

} else {
imgAction.onclick = deleteMail;
imgAction.src = sDeleteIcon;
imgAction.title = sDelete;

}

colCells[1].appendChild(
document.createTextNode(cleanupEmail(oMessage.from)));

colCells[2].firstChild.style.visibility = oMessage.hasAttachments ?
“visible” : “hidden”;

colCells[3].appendChild(
document.createTextNode(htmlEncode(oMessage.subject)));

colCells[4].appendChild(document.createTextNode(oMessage.date));
oFragment.appendChild(oNewTR);

}
} else {

var oNewTR = this.trNoMessages.cloneNode(true);
oFragment.appendChild(oNewTR);

}

tblMain.tBodies[0].appendChild(oFragment);

//more code here
},

In this section of the code, the first step is to create a document fragment upon which the DOM will be
built. Next, the number of messages is checked. If there is at least one message, the view must be built
accordingly; otherwise, a clone of trNoMessages is created and added to the fragment in place of any
other rows. When there are messages, however, the process is a bit more involved.

For each message, the process begins by storing the message in a local variable, oMessage. This is
retrieved from the info property in the messages array. Next, a clone of the template row trTemplate
is created and stored in oNewTR (passing in true to cloneNode() ensures that all nodes are cloned, not
just the <tr/> element itself). Next, the ID of the row is assigned by prepending tr to the message’s ID.
Then, the onclick event handler is assigned to be readMail(), which is defined later in the “Event
Handlers” section. If the message hasn’t been read yet, oMessage.unread will be true, so the row will
be assigned a CSS class of new. The next step is to assign data into each of the table cells.

To make references to the cells easier, the getElementsByTagName() method is used to extract a collec-
tion of just the table cells (colCells). The action icon, either to delete or restore the message, is in the
first cell. The actual element is stored in imgAction for easy reference. Then, the image is
assigned an ID equal to the message ID. To determine what the image should do when clicked, the cur-
rent folder is checked by using info.folder. If the current folder is the Trash, then the image is set up

561

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 561

to restore the e-mail by setting the onclick, src, and title properties to restore-specific values; other-
wise, the icon is set up to delete e-mail by setting the same properties to delete-specific values. Both
restoreMail() and deleteMail() are global functions used as event handlers. These are discussed in
the “Event Handlers” section.

The second cell in each row should display who the e-mail is from, so oMessage.from is passed to the
helper function cleanupEmail(), which was defined earlier in the chapter. The result of this function
call is passed into document.createTextNode() to create the text for the cell, which is added using
appendChild().

For the third cell in the row, you need to decide if the attachments icon should be displayed or not. If
oMessage.hasAttachments is true, then the visibility of the icon is set to visible; otherwise, it’s
set to hidden. This is done using a compound assignment statement instead of an if statement for
simplicity.

The fourth table cell contains the e-mail subject, which is passed into htmlEncode() to ensure that all
characters are displayed correctly. This text is then used to create a text node that is added to the cell in
the same way as the first cell. The fifth cell simply displays the message date after it is added to it as a
text node. Then, the entire row is added to the document fragment before the loop begins again.

Regardless of the number of messages, the fragment is passed into the appendChild() method of the
table body to add the rows to the folder view. However, the user interface isn’t complete yet; there is still
other information that must be updated.

Specifically, the folder title must be displayed, the unread message count must be updated, and the pagi-
nation control must be initialized:

renderFolder:function () {

//delete all existing rows

//create rows for messages

if (this.hFolderTitle.innerHTML != aFolders[this.info.folder]) {
this.hFolderTitle.innerHTML = aFolders[this.info.folder];

}

this.updateUnreadCount(this.info.unreadCount);

this.spnItems.style.visibility = this.info.messages.length ?
“visible” : “hidden”;

this.spnItems.innerHTML = this.info.firstMessage + “-”
+ (this.info.firstMessage + this.info.messages.length - 1) + “ of “
+ this.info.messageCount;

if (this.info.pageCount > 1) {
this.imgNext.style.visibility = this.info.page < this.info.pageCount ?

“visible” : “hidden”;
this.imgPrev.style.visibility = this.info.page > 1 ? “visible” : “hidden”;

} else {
this.imgNext.style.visibility = “hidden”;
this.imgPrev.style.visibility = “hidden”;

562

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 562

}

this.divFolder.style.display = “block”;
this.divReadMail.style.display = “none”;
this.divComposeMail.style.display = “none”;

},

The first step in this section of code is to set the contents of the hFolderTitle element to the name of
the folder, but only if it’s different from the one currently being displayed. To do so, use the innerHTML
element to both get and set the value (if necessary). Next, the number of unread messages is passed into
updateUnreadCount() to update the number of unread messages next to the Inbox link.

If there is at least one message, spnItems must be displayed. This is the element that displays the cur-
rently viewed message count, such as “1-10 of 21.” If there is at least one message, its visibility prop-
erty is set to visible; otherwise, it is set to hidden. Then, the contents of the element are created by
using various properties of the info object. The firstMessage property returns the number of the first
message returned in this page. You can then calculate the number of the last message returned by
adding the number of messages to firstMessage and then subtracting one. The total number of mes-
sages is returned in the messageCount property.

When there is more than one page of messages to be displayed, the imgNext and imgPrev images
should be shown, but not always at the same time. If you are on the first page, for instance, imgPrev
should not be shown; likewise for imgNext on the last page. By using the page property to get the cur-
rent page, you can determine whether the image should be visible and display the appropriate value for
the visibility property. Of course, if there is only one page, neither image needs to be displayed.

The very last step is to show the divFolder element and hide both divReadMail and divComposeMail
from sight. This initializes the application to the folder view. When the user clicks a message in the list, it
brings up the read view, which is rendered by the renderMessage() method.

Just as the renderFolder() method used the info property to determine what to render, the
renderMessage() method uses the message property for the same reason. All the information neces-
sary to display a single e-mail is contained within the message property. To begin, you assign the con-
tents of each element in the read view by using values from message:

renderMessage: function () {
this.hSubject.innerHTML = htmlEncode(this.message.subject);
this.divMessageFrom.innerHTML = sFrom + “ “ + htmlEncode(this.message.from);
this.divMessageTo.innerHTML = sTo + “ “ + htmlEncode(this.message.to);
this.divMessageCC.innerHTML = this.message.cc.length ?

sCC + “ “ + htmlEncode(this.message.cc) : “”;
this.divMessageBCC.innerHTML = this.message.bcc.length ?

sBCC + “ “ + htmlEncode(this.message.bcc) : “”;
this.divMessageDate.innerHTML = this.message.date;
this.divMessageBody.innerHTML = this.message.message;

//more code here

this.updateUnreadCount(this.message.unreadCount);
this.divFolder.style.display = “none”;
this.divReadMail.style.display = “block”;
this.divComposeMail.style.display = “none”;

},

563

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 563

Each of the elements responsible for displaying the various parts of the e-mail is assigned data from the
message object. Of course, most of these values use htmlEncode() to ensure that the data is displayed
correctly. For the CC and BCC fields, their values are assigned only if they contain data to begin with. If
not, the divMessageCC and divMessageBCC fields are assigned empty strings, which effectively hides
them from view.

Then the unread message count is updated. This is being updated here as well because there’s no reason
to waste a roundtrip to the server and not get such a small piece of information. The last step in the pro-
cess is to hide divFolder and divComposeMail while showing divReadMail. However, there is some
code missing from this method. The previous code doesn’t take into account attachments.

Dealing with attachments essentially means outputting a list of all the attachments for a message and
linking them so that each can be downloaded with a simple click. The ulAttachments element, which
is part of the code in index.php, should be shown only when there is at least one attachment. Here’s
how to build this section of the view:

renderMessage: function () {
this.hSubject.innerHTML = htmlEncode(this.message.subject);
this.divMessageFrom.innerHTML = sFrom + “ “ + htmlEncode(this.message.from);
this.divMessageTo.innerHTML = sTo + “ “ + htmlEncode(this.message.to);
this.divMessageCC.innerHTML = this.message.cc.length ?

sCC + “ “ + htmlEncode(this.message.cc) : “”;
this.divMessageBCC.innerHTML = this.message.bcc.length ?

sBCC + “ “ + htmlEncode(this.message.bcc) : “”;
this.divMessageDate.innerHTML = this.message.date;
this.divMessageBody.innerHTML = htmlEncode(this.message.message);

if (this.message.hasAttachments) {
this.ulAttachments.style.display = “”;

var oFragment = document.createDocumentFragment();

for (var i=0; i < this.message.attachments.length; i++) {
var oLI = document.createElement(“li”);
oLI.className = “attachment”;
oLI.innerHTML = “<a href=\”” + sAjaxMailAttachmentURL + “?id=”

+ this.message.attachments[i].id + “\” target=\”_blank\”>”
+ this.message.attachments[i].filename + “ (“
+ this.message.attachments[i].size + “)”;

oFragment.appendChild(oLI);
}

this.ulAttachments.appendChild(oFragment);
this.liAttachments.style.display = “”;

} else {
this.ulAttachments.style.display = “none”;
this.liAttachments.style.display = “none”;
this.ulAttachments.innerHTML = “”;

}

this.updateUnreadCount(this.message.unreadCount);
this.divFolder.style.display = “none”;

564

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 564

this.divReadMail.style.display = “block”;
this.divComposeMail.style.display = “none”;

},

Naturally, the first step in rendering attachment information is to check if there are any attachments
using the hasAttachments property. If there are attachments, the ulAttachments element is displayed
and the attachments are iterated over, creating a new element for each one and assigning addi-
tional information using the innerHTML property. Each of these new elements is added to a document
fragment for efficiency. When all attachments have had their DOM representation created, the fragment
is appended to ulAttachments. Then, the liAttachments element is displayed by setting its display
property to an empty string. This element contains the View Attachments link in the message header.

If there are no attachments to the message, ulAttachments and liAttachments are hidden from view
by setting their display properties to none. Additionally, ulAttachments is cleared of all its data by
setting innerHTML to an empty string. This prevents attachments from showing up on e-mails that they
weren’t attached to.

Action Methods
With all the Ajax request methods and callback functions in place, you now have all the tools necessary
to create the functionality of an e-mail application. For each action, it’s important to have a clear idea of
how the user interface should respond and what the user would expect.

To begin, consider the task of deleting an e-mail message. When the user clicks on the red X next to a
message, the message should be deleted (moved to the Trash). The Back and Forward button are of no
use here, because you’d never want to take the user back to a point where the e-mail is still in the list.
That means the request() method should be used. Next, should this action cause a user interface
change? Yes, the message should disappear from the list. Therefore, you need to use the request()
method with the loadAndRender() callback function:

deleteMessage: function (sId) {
this.nextNotice = sDeleteMailNotice;
this.request(“delete”, loadAndRender, sId);

},

Because you want to delete a specific message, the message ID must be passed into the method. To pre-
pare for the action, the nextNotice property is set to the delete mail notice string. Then, request() is
called, passing in the delete string, the loadAndRender() callback function, and the message ID.
When the request is completed, the notice is displayed and the user can continue interacting with the
application, knowing that the message has been moved to the Trash. To restore the message from the
Trash, you can use the same methodology.

When the user is viewing the messages in the Trash, a click on the green arrow restores the message
(moves it to the Inbox). This is essentially the same as the delete operation; it simply changes where the
message is stored. Not surprising, the method is very similar:

restoreMessage: function (sId) {
this.nextNotice = sRestoreMailNotice;
this.request(“restore”, loadAndRender, sId);

},

565

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 565

Once again, this function assigns a notice to be displayed when the request completes and uses
request() to restore the message represented by the message ID (sID).

The Trash also has a special action: empty. When the Trash is emptied, all the messages in it are perma-
nently deleted and cannot be recovered. This action is interesting in that it behaves differently depend-
ing on what the user is looking at. If the Inbox is being viewed, it’s still possible to click the Empty link.
In this case, you don’t want to change the user interface, aside from letting the user know that the Trash
has been emptied. If, on the other hand, the user is viewing the message in the Trash, the user interface
should be refreshed to show that the Trash is empty. Therefore, the emptyTrash() method is a little
more involved:

emptyTrash: function () {
if (confirm(sEmptyTrashConfirm)) {

this.nextNotice = sEmptyTrashNotice;
if (this.info.folder == TRASH) {

this.request(“empty”, loadAndRender);
} else {

this.request(“empty”, execute);
}

}
},

In this method, the first step is to confirm that the user actually wants to empty the Trash. Using the
JavaScript confirm() function with sEmptyTrashConfirm presents a dialog box to the user with two
options: OK or Cancel. If the user clicks OK, confirm() returns true and the Trash should be emptied. So,
the nextNotice property is assigned as with the previous methods. Next, the currently displayed folder is
checked. If it’s the Trash, request() is called with the loadAndRender() callback function to update the
display; if it’s not Trash, request() is called with execute() so that the user interface isn’t updated.

Thus far, the methods in this section have dealt with performing an action on e-mail messages. The
getMessages() method actually is responsible for retrieving the folder information from the server. It
accepts the folder ID and the page number to retrieve as arguments and then uses the navigate()
method to retrieve the desired information:

getMessages: function (iFolder, iPage) {
this.info.folder = iFolder;
this.info.page = iPage;
this.navigate(“getfolder”);

},

To retrieve the correct message, the folder and page properties of the info object must be set to the
appropriate values. Then, when navigate() is called, the URL will contain the correct folder and page
information. This method is then used in both nextPage() and prevPage() to move through the dif-
ferent pages of messages in a given folder:

nextPage: function () {
this.getMessages(this.info.folder, this.info.page+1);

},

prevPage: function () {
this.getMessages(this.info.folder, this.info.page-1);

},

566

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 566

Both methods pass in the current folder to getMessages(), but the page argument is different. For
nextPage(), the current page number is incremented by one, whereas prevPage() decrements it by
one.

There may be times when a user just wants to refresh the information about a folder instead of switching
folders. For instance, to check for new mail the user can click the Inbox link while the Inbox is already
being displayed. In this case, you don’t want to add anything to the browser history because you cer-
tainly will never want to go back to an older view of the folder, so you should use request() instead of
navigate():

refreshFolder: function (iFolder) {
this.info.folder = iFolder;
this.info.page = 1;
this.request(“getfolder”, loadAndRender);

},

This method is very similar to getMessages() in that the folder ID needs to be passed in and assigned
to the info.folder property. The page is set to 1 because any refresh needs to begin with the first page.
And because the action requires the user interface to change, the loadAndRender() callback function is
passed in when calling request().

A similar method is switchFolder(), which retrieves the first page of messages for the given folder:

switchFolder: function (iNewFolder) {
this.getMessages(iNewFolder, 1);

},

This method is used for switching to the Inbox from the Trash or vice versa. A simple call to
getMessages() inside of the method is all that is necessary.

Navigation Methods
Keeping the navigation straight in an Ajax application can be tricky, but thanks to the navigate()
method defined earlier, things are much more straightforward. Whenever you need to move from one
view of AjaxMail to another, you can simply pass a string to the navigate() method and wait for the
action to be completed. To that end, there are four methods that either directly or indirectly make use of
the navigate() method to perform their function:

cancelReply: function () {
history.go(-1);

},

compose: function () {
this.navigate(“compose”);

},

forward: function () {
this.navigate(“forward”);

},

readMessage: function (sId) {

567

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 567

this.navigate(“getmessage”, sId);
},

reply: function (blnAll) {
this.navigate(“reply” + (blnAll ? “all” : “”));

},

The first method, cancelReply(), uses the browser’s internal history to do its job. When users click
Compose Mail, Forward, Reply, or Reply All, the navigate() method is called to put them into com-
pose view. To undo this and move back to the previous view, the history object can be used because
the move was recorded in the hidden iframe. Using the go() method with a –1 value moves the browser
back to the previous view.

All the other methods in this section simply pass a string value to navigate(), indicating the action
that should be taken next. The readMessage() method also accepts the ID of the message to retrieve,
and the reply() method accepts a single Boolean argument that indicates whether the action should be
reply or replyall; when set to true, it is the latter.

You’ll remember from earlier that AjaxMailNavigate.php calls different JavaScript mailbox methods
depending on what action has taken place. Each of these methods begins with the word “display,” and
each has a specific view to initialize.

The displayFolder() method does exactly what it says: it displays a folder of e-mail messages. It accepts
a folder info object as its only argument and then renders the folder before setting the processing flag
back to false:

displayFolder: function (oInfo) {
this.loadInfo(oInfo);
this.renderFolder();
this.setProcessing(false);

},

A similar method is displayMessage(), which accepts a message information object, loads it, renders
the message, and then sets the processing flag to false:

displayMessage: function (oMessage) {
this.loadMessage(oMessage);
this.renderMessage();
this.setProcessing(false);

},

These two methods take care of the Folder view and Read view, respectively. The Compose view is a lit-
tle bit different because there are so many ways it can be used. It can be used to create a new e-mail, in
which case all fields are blank, or it could be used to send a reply, reply all, or forward, in which case dif-
ferent information needs to be prefilled in the form. To facilitate the different requirements of these user
actions, a single method is used:

displayComposeMailForm: function (sTo, sCC, sSubject, sMessage) {
this.txtTo.value = sTo;
this.txtCC.value = sCC;
this.txtSubject.value = sSubject;

568

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 568

this.txtMessage.value = sMessage;
this.divReadMail.style.display = “none”;
this.divComposeMail.style.display = “block”;
this.divFolder.style.display = “none”;
this.setProcessing(false);

},

The displayComposeMailForm() method accepts all the various information that could be assigned to
the compose view and places it into the correct fields. Then, divReadMail and divFolder are hidden
while divComposeMail is shown. Last, the processing flag is set to true. The
displayComposeMailForm() method is not called by AjaxMailNavigate.php, but is instead called
by several more specific methods, each catering to a specific action:

displayCompose: function () {
this.displayComposeMailForm(“”, “”, “”, “”);

},

displayForward: function () {
this.displayComposeMailForm(“”, “”,

“Fwd: “ + this.message.subject,
“---------- Forwarded message ----------\n”

+ this.message.message);
},

displayReply: function () {
var sTo = this.message.from;
var sCC = “”;

this.displayComposeMailForm(sTo, sCC, “Re: “ + this.message.subject,
“\n\n\n\n\n” + this.message.from + “said: \n” + this.message.message);

},

displayReplyAll: function () {
var sTo = this.message.from + “,” + this.message.to;
var sCC = this.message.cc;

this.displayComposeMailForm(sTo, sCC, “Re: “ + this.message.subject,
“\n\n\n\n\n” + this.message.from + “said: \n” + this.message.message);

},

The displayCompose() method, which simply displays a blank compose view, passes in an empty
string to displayComposeMailForm(). The displayForward() method prepends “Fwd:” to the front
of the message subject and “-----Forwarded Message------” to the front of the message from the e-mail
that’s currently being viewed. Both displayReply() and displayReplyAll() prepend “Re:” in front
of the message subject and then include a short string before the current e-mail’s body text. The only dif-
ference between these two methods is what the prefilled values of the To and CC fields are. For
displayReply(), the To field is simply filled with whoever sent the message initially; for
displayReplyAll(), the To field also includes everyone else the e-mail was sent to and the CC field
contains the same CC recipients as the original message.

569

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 569

Initialization Methods
The last section of methods in the mailbox object initializes the properties and data. Earlier, you saw the
beginnings of the init() method; the next part involves assigning event handlers to various user inter-
face elements:

init: function () {
var colAllElements = document.getElementsByTagName(“*”);
if (!colAllElements.length) {

colAllElements = document.all;
}

for (var i=0; i < colAllElements.length; i++) {
if (colAllElements[i].id.length > 0) {

this[colAllElements[i].id] = colAllElements[i];
}

}

this.imgPrev.onclick = function () {
oMailbox.prevPage();

};
this.imgNext.onclick = function () {

oMailbox.nextPage();
};
this.spnCompose.onclick = function () {

oMailbox.compose();
};
this.spnEmpty.onclick = function () {

oMailbox.emptyTrash();
};
this.spnReply.onclick = function () {

oMailbox.reply(false);
};
this.spnReplyAll.onclick = function () {

oMailbox.reply(true);
};
this.spnForward.onclick = function () {

oMailbox.forward();
};
this.spnCancel.onclick = function () {

oMailbox.cancelReply();
};
this.spnSend.onclick = function () {

oMailbox.sendMail();
};

//more code here
},

All the event handlers assigned here simply call a mailbox method that was defined earlier in this chap-
ter. You also need to assign the event handlers for the Inbox and Trash links:

this.spnInbox.onclick = function () {
if (oMailbox.info.folder == INBOX) {

oMailbox.refreshFolder(INBOX);

570

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 570

} else {
oMailbox.switchFolder(INBOX);

}
};

this.spnTrash.onclick = function () {
if (oMailbox.info.folder == TRASH) {

oMailbox.refreshFolder(TRASH);
} else {

oMailbox.switchFolder(TRASH);
}

};

These lines occur where the “more code here” comment is in the previous listing but are pulled out here
for easier explanation. Each of these two links can perform one of two operations: either switching to the
folder view or refreshing it. To determine which of these actions to take, each event handler first checks
to see what the currently displayed folder is. For the Inbox link, if the current folder is already Inbox,
then it calls refreshFolder(); otherwise, it calls switchFolder(). The same holds true for the Trash
link, except that it checks to see if Trash is the folder already being displayed.

The init() method is actually called by another method called load(), defined as:

load: function () {
this.init();
this.getMessages(INBOX, 1);

},

This method first initializes the user interface by calling init() and then makes the initial request for
the first page of the Inbox folder using getMessages(). When index.php is loaded, this method must
be called (as described later).

Callback Functions
To make use of the request() and sendMail() methods of the mailbox object, several callback func-
tions are necessary. These are functions that take over processing once data has been returned from the
server. Each of these functions is standalone; that is, they are not methods of the mailbox object.

When the e-mail messages are first downloaded from the server, the data must be loaded into the info
property and then rendered:

function loadAndRender(sInfo) {

oMailbox.loadInfo(sInfo);
oMailbox.renderFolder();

if (oMailbox.nextNotice) {
oMailbox.showNotice(“info”, oMailbox.nextNotice);
oMailbox.nextNotice = null;

}
oMailbox.setProcessing(false);

}

571

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 571

The loadAndRender() function expects a JSON string to be passed in as an argument. That data is
loaded using the loadInfo() method. Once that happens, the renderFolder() method is called to
begin displaying the new information. After that, the function checks to see if there is a notice that needs
to be displayed (stored in nextNotice). If so, that notice is displayed and nextNotice is set back to
null. The very last step is to set the processing flag to false, indicating that the mailbox is free to
make other requests.

The simpler case is when a command has to be executed on the server without returning any informa-
tion. When the request has completed, you simply want to display any notification that may be waiting
and then reset the processing flag to false. To do so, use the execute() callback function:

function execute(sInfo) {
if (oMailbox.nextNotice) {

oMailbox.showNotice(“info”, oMailbox.nextNotice);
oMailbox.nextNotice = null;

}
oMailbox.setProcessing(false);

}

Using this callback function instead of loadAndRender() prevents the user interface from updating
when the request completes. The action taken is done purely behind the scenes and is indicated only by
the notice (if any) that is displayed. As with loadAndRender(), the last step is to set processing back
to false.

The last callback function, sendConfirmation(), is used only when sending mail. It expects a simple
JSON object to be returned with two properties: error and message. If error is true, an error has
occurred and the message property contains an error message to display to the user; otherwise, the mail
was sent successfully and message contains a confirmation message to be displayed using
showNotice():

function sendConfirmation(sData) {
var oResponse = sData.parseJSON();
if (oResponse.error) {

alert(“An error occurred:\n” + oResponse.message);
} else {

oMailbox.showNotice(“info”, oResponse.message);
oMailbox.divComposeMail.style.display = “none”;
oMailbox.divReadMail.style.display = “none”;
oMailbox.divFolder.style.display = “block”;

}
oMailbox.divComposeMailForm.style.display = “block”;
oMailbox.divComposeMailStatus.style.display = “none”;
oMailbox.setProcessing(false);

}

This function also resets some of the user interface. If the message was sent successfully, it sends the user
back to folder view by hiding divComposeMail and divReadMail and then showing divFolder.
Regardless of the success, divComposeMailForm has its display property set back to block, whereas
divComposeMailStatus has its display property set to none, effectively resetting the compose view.

572

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 572

Event Handlers
The “Action Methods” section described methods of the mailbox object that are used to perform specific
actions. To facilitate the assigning of event handlers that use these methods, a handful of small functions
are used:

function deleteMail() {
oMailbox.deleteMessage(this.id);

}

function restoreMail() {
oMailbox.restoreMessage(this.id);

}

function readMail() {
oMailbox.readMessage(this.id.substring(2));

}

Each of these functions simply calls a method of oMailbox and passes in some identifier. Because these
functions are used as event handlers, the this object points to the element upon which the event han-
dler has been assigned. (You could also use event.srcElement in Internet Explorer or event.target
in DOM-compliant browsers.) For deleteMail() and restoreMail(), the ID of the element is equiva-
lent to a message ID, so it can be passed directly into the deleteMessage() and restoreMessage()
methods, respectively. The readMail() function is applied to a table row whose ID is in the format
“trID”, so the first two character must be stripped off using the substring() method before being
passed into readMessage().

The Last Step
The last step in making AjaxMail functional is to call oMailbox.load() when the page has been loaded.
To accomplish this, use the window’s onload event handler:

window.onload = function () {
oMailbox.load();

};

Now, when the page has finished loading, the Ajax initialization begins and the application is ready to
use.

To test AjaxMail, navigate to www.yourdomainname.com/AjaxMail. This loads the initial view and you
are ready to go.

By defining these functions globally, you avoid using closures to assign event han-
dlers. Closures are a manner in which it’s possible to define a function that makes
use of variables defined outside of it. They also happen to be the main cause of
memory leaks in many web browsers. Whenever possible, it is preferable to create
standalone functions to use as event handlers.

573

Case Study: AjaxMail

19_109496 ch16.qxd 2/5/07 7:02 PM Page 573

Summary
In this chapter, you learned how to create a full-fledged Ajax application called AjaxMail. You began by
designing the server-side architecture. Using PHP and MySQL, you designed a back-end system
designed to download messages from a POP3 server and store them in a database. You created several
database tables to handle the various data associated with an e-mail application. POP3Lib was used for
POP3 communication, and PHPMailer was used for SMTP communication.

You then designed a dynamic user interface that doesn’t require any page reloads. Communication is
accomplished by using a combination of XHR and a hidden iframe. The XHR requests performed
actions such as deleting a specific e-mail message, whereas the hidden iframe was used to allow the
Back and Forward buttons to function as usual.

574

Chapter 16

19_109496 ch16.qxd 2/5/07 7:02 PM Page 574

Licenses for Libraries
and Frameworks

For your convenience the source code download includes the following libraries or frameworks
that are discussed and used in the book.

❑ Ajax.NET Professional

❑ DWR

❑ JPSpan

❑ jQuery

❑ JSON-PHP

❑ Prototype

❑ YUI library

The following sections reprint the appropriate licensing information for this software.

Ajax.NET Professional
Copyright © 2006, Michael Schwarz

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction, includ-
ing without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

20_109496 appa.qxd 2/5/07 7:02 PM Page 575

The above copyright notice and this permission notice shall be included in all copies or substantial por-
tions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

DWR
Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by
this License.

“Source” form shall mean the preferred form for making modifications, including but not lim-
ited to software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this

576

Appendix A

20_109496 appa.qxd 2/5/07 7:02 PM Page 576

License, Derivative Works shall not include works that remain separable from, or merely link
(or bind by name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work
and any modifications or additions to that Work or Derivative Works thereof, that is intention-
ally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual
or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this
definition, “submitted” means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic
mailing lists, source code control systems, and issue tracking systems that are managed by, or
on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding
communication that is conspicuously marked or otherwise designated in writing by the copy-
right owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-
free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display,
publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or
Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell,
import, and otherwise transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or
by combination of their Contribution(s) with the Work to which such Contribution(s) was sub-
mitted. If You institute patent litigation against any entity (including a cross-claim or counter-
claim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses granted to You
under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form, provided
that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this
License; and

(b) You must cause any modified files to carry prominent notices stating that You changed
the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices con-
tained within such NOTICE file, excluding those notices that do not pertain to any part
of the Derivative Works, in at least one of the following places: within a NOTICE text
file distributed as part of the Derivative Works; within the Source form or documenta-
tion, if provided along with the Derivative Works; or, within a display generated by the

577

Licenses for Libraries and Frameworks

20_109496 appa.qxd 2/5/07 7:02 PM Page 577

Derivative Works, if and wherever such third-party notices normally appear. The con-
tents of the NOTICE file are for informational purposes only and do not modify the
License. You may add Your own attribution notices within Derivative Works that You
distribute, alongside or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional
or different license terms and conditions for use, reproduction, or distribution of Your modifica-
tions, or for any such Derivative Works as a whole, provided Your use, reproduction, and distri-
bution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intention-
ally submitted for inclusion in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or conditions. Notwithstanding the
above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use
in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITH-
OUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including,
without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MER-
CHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
determining the appropriateness of using or redistributing the Work and assume any risks asso-
ciated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negli-
gence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages,
including any direct, indirect, special, incidental, or consequential damages of any character
arising as a result of this License or out of the use or inability to use the Work (including but not
limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any
and all other commercial damages or losses), even if such Contributor has been advised of the
possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indem-
nity, or other liability obligations and/or rights consistent with this License. However, in accept-
ing such obligations, You may act only on Your own behalf and on Your sole responsibility, not
on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each
Contributor harmless for any liability incurred by, or claims asserted against, such Contributor
by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the fields
enclosed by brackets “[]” replaced with your own identifying information. (Don’t include the brackets!)

578

Appendix A

20_109496 appa.qxd 2/5/07 7:02 PM Page 578

The text should be enclosed in the appropriate comment syntax for the file format. We also recommend
that a file or class name and description of purpose be included on the same “printed page” as the copy-
right notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except
in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing per-
missions and limitations under the License.

JPSpan
The PHP License, version 3.0

Copyright © 1999 - 2004 The PHP Group. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. The name “PHP” must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact group@php.net.

4. Products derived from this software may not be called “PHP”, nor may “PHP” appear in their
name, without prior written permission from group@php.net. You may indicate that your soft-
ware works in conjunction with PHP by saying “Foo for PHP” instead of calling it “PHP Foo” or
“phpfoo”

5. The PHP Group may publish revised and/or new versions of the license from time to time. Each
version will be given a distinguishing version number.

Once covered code has been published under a particular version of the license, you may
always continue to use it under the terms of that version. You may also choose to use such cov-
ered code under the terms of any subsequent version of the license published by the PHP
Group. No one other than the PHP Group has the right to modify the terms applicable to cov-
ered code created under this License.

6. Redistributions of any form whatsoever must retain the following acknowledgment:

“This product includes PHP, freely available from <http://www.php.net/>”.

579

Licenses for Libraries and Frameworks

20_109496 appa.qxd 2/5/07 7:02 PM Page 579

THIS SOFTWARE IS PROVIDED BY THE PHP DEVELOPMENT TEAM “AS IS”’ AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE PHP DEVELOPMENT TEAM OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

jQuery
Copyright © 2006 John Resig, http://jquery.com/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial por-
tions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

JSON-PHP
THIS SOFTWARE IS PROVIDED “AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

See also the GPL, which appears at the back of the book.

580

Appendix A

20_109496 appa.qxd 2/5/07 7:02 PM Page 580

Prototype
Copyright © 2005 Sam Stephenson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

YUI Library
Software License Agreement (BSD License)

Copyright © 2006, Yahoo! Inc.

All rights reserved.

Redistribution and use of this software in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

❑ Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

❑ Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

❑ Neither the name of Yahoo! Inc. nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission of
Yahoo! Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

581

Licenses for Libraries and Frameworks

20_109496 appa.qxd 2/5/07 7:02 PM Page 581

20_109496 appa.qxd 2/5/07 7:02 PM Page 582

In
de

x

Index

A
A9 10
abort() method 104, 140
abstract classes

XParser 198
BaseFeed 198–200
RSSFeed 201–203

Active Channels 193
ActiveObject class 150
ActiveX, XMLHttp 4
addHandler() method 408
Additional Information links 91–93
age-based promotion, priority queues 141–142
agePromote() method 142
$.ajax() method 123–124
Ajax

A9 and 10
Bitflux Blog 12
Gmail and 8
Google Maps and 9
Google Suggest and 7
history of 2
principles 6
technologies behind 6–7
Yahoo! News and 11

Ajax engine 5
AJAX library

classes 440–443
code, writing 440–446
enumerations 443–444

interfaces 444–446
namespaces 440–441

Ajax.NET Professional 427–428
client page 434–436
CustomerInfo class 431–434
GetCustomerInfo() method 431
GetMessage() method 428
GetUserFromId() method 430
JavaScript wrappers 428–429
marking methods 428
session access 430
type conversion 429–430

Ajax.Request object 109
asynchronous property, Prototype 111
events 111–112
Options object 109–110
requestHeaders property, Prototype 110

Ajax.Responders object 115–117
Ajax.Updater object 113–115
AjaxMail

action methods 565–567
AjaxMailAction.php 536–537
AjaxMailAttachment.php 540
AjaxMailbox class 513–515
AjaxMailNavigate.php 537–539
AjaxMailSend.php 539–540
attachments 532–533
callback functions 571–572
communication methods 557–559
configuration file 512–513
data loading 555–556

21_109496 bindex.qxd 2/5/07 7:03 PM Page 583

AjaxMail (continued)
database tables 511–512
Douglas Crockford’s JSON JavaScript Library 510
e-mail list 520–524
event handlers 573
Helper functions 552–553
initialization methods 570–571
JSON-PHP 510
mailbox 553–554
navigation methods 567–569
PHP3Lib 511
PHPMailer 510
read messages, marking 534–535
rendering methods 560–565
requirements 509
retrieving e-mail 515–519
retrieving specific messages 524–528
sending messages 528–532
user interface 541–543

compose view 548–550
folder view 543–546
layout 550
read view 546–548

user notification 556–557
zXml Library 510

AjaxMailbox class 513–515
AjaxSiteSearch class 392–401
ajaxStart() method 124
AjaxStockWatcher class 376

automated updates 384
class constructor 377–378
error handling 381–383
polling for data 378–379
server response 379–381
updated information 383–384
user interface 377

ajaxStop() method 124
animation, news ticker 214–216
architecture, autosuggest textbox 249
argument property, Yahoo! Connection Manager 102
array literals, JSON 237
Array object, priority objects and 128
array_pop() function 375
ASP.NET, client tools and 438–439
ASP.NET AJAX Extensions

ASP.NET AJAX Library 440
classes, registering 441–442
enumerations, registering 443–444

initializeBase() method 442
interfaces, registering 444–446
namespaces 440–441
registerClass() method 442
registerEnum() method 444

client library 438–155
classes 440
client tools 438–440

controls 446–447
Button control 447–448
Label control 450
Selector control 448–449
TextBox control 447

HTTP requests
GET requests 451–454
POST requests 454–455

requirements 438
setup 438
Site Search widget

clearing results 467
error handling 467
events 468–470
interface 459–460
declaring form 460–461
searches 462–467

UpdatePanel control
adding content 456
adding to page 455–456
updates, triggering 457–458

Atom 196–197
feeds, parsing 203–205

autosuggest textbox 246
adding suggestions 259
architecture 249
autosuggest() method 253
AutoSuggestControl class 250
classes 250
client-side component 270–271
database table 249
displaying suggestions 259
drop-down list 258–259
event handling 253–256
fast-type support 266–267
functionality 260–261
hide suggestions 246
highlightSuggestion() method 256
HTML 247–248
init() method 264–265

584

AjaxMail (continued)

21_109496 bindex.qxd 2/5/07 7:03 PM Page 584

keyboard controls 246
keyboard support 261–264
keyCode property 254
multiple suggestions 256–258
requestSuggestions() method 255
server-side component 268–270
SuggestionProvider class 267–268
suggestions list 246
typeahead 246

implementing 251–252
typeAhead() method 252–253

autosuggest() method 253

B
BaseFeed class 198–200
Berners-Lee, Tim 2
Bitflux Blog 12
breakpoints, debugging (Fiddler) 347
browsers

caching, 63
cross-browser XML 162–163
XML 159
XPath 175–177
XSLT 187–188

Button control 447–448

C
Cache-Control header 63
caching 63
callback object, Yahoo! Connection Manager

100–102
Cancel Pending Requests pattern 94–95
cancel() method 139
cancelling requests 139–140
cancelReply() method 568
CDF (Channel Definition Format) 193
change event 76
checkActiveRequests() method 136
checkMail() method 515
Chicago Crime 300
cleanupEmail() method 562
clearResults() method 401
code writing, AJAX library 440–446
Comet

browser support 294–296
connection management 296–297
DivMod 297

HTTP streaming 274
file modification 276–277
Firefox 285–288
heartbeats 278
iframes 277–281
Internet Explorer 282–284
LiveConnect 288–294
progressive rendering 274
request delays 274–276

Pushlets 297
server-sent DOM events 291–292

UI events 292–294
server-side support 297
Twisted 297

comments, New Comment Notifier 86–90
communication patterns 65
communication techniques

hidden frame technique 21
advantages 36–37
disadvantages 36–37
GET requests 22–28
iFrames 31–33
iFrame POST requests 33–36
POST requests 28–31
patterns 21

connections, Comet 296–297
Content-Type header, POST request, 19
controls 446

Button 447–448
Label 450
Selector 448–449
TextBox 447
UpdatePanel 455–456

triggering updates 457–458
cookies, images and 53–55
createProcessor() method 184
createRequest() function 39
createTransport() method 134
createXHR() function 38
CSS (Cascading Style Sheets) 3

D
data validation, XML 152
database table, autosuggest textbox 249
debugging

Fiddler 342, 348
HTTP breakpoints 347
installation 343

585

debugging

In
de

x

21_109496 bindex.qxd 2/5/07 7:03 PM Page 585

debugging (continued)
interface 344–347
setup 343

Firebug 338–341
installation 338–340
limitations 342
setup 338–340
XHR logging 340

introduction 337
decode() method 244–245
decoding, JSON 241
deleteMessage() method 533
design patterns 65
disconnect() method 517
displayFolder() method 568
DivMod 297
DOM (Document Object Model) 3

IE and
node creation 157–158
node insertion 158
node removal 158
node replacement 158

MSXML
white space 152

server-sent events 291–292
UI events 292–294

XML
creating 159
IE 153–156

Douglas Crockford’s JSON JavaScript Library 510
drop-down list, autosuggest textbox 258–259
DTD (Document Type Definition), XML documents

and 152
DWR (Direct Web Remoting) 416–419

client page 423
converters 426
createStatement() method 421
CustomerInfo class 419–422
dwr.xml 422–423
executeQuery() method 421
excluding methods 424
getCustomerInfo() method 419
getInstance() method, 424
newInstance() method 420
scope attribute 425–426
scripts, creating 424–425
Spring framework 425

dynamic HTML 3

dynamic script loading 59–62
dynamically created iframes 281

E
e-mail (AjaxMail)

attachments, 532–533
list 520–524
marking messages read 534–535
retrieving 515–519
retrieving specific messages 524–528
sending 528–532

Eich, Brendan 2
emptyTrash() method 534
encode() method 243–244
encoding, JSON 241
enumerations, AJAX library 443–444
error handling

FooReader.NET 496–497
JPSpan 412
Site Search widget 467
XML data, IE and 158–159

ESPN, Periodic Refresh 85
event handling

AjaxMail 573
autosuggest textbox 253–256
request responses 39
Site Search widget 468–469

events
Ajax.Request object (Prototype) 111–112
change 76
Google Maps API 311–313
onchange 76
Yahoo! Maps API 327–328

Expires header 63
explode() function 375
expressions, jQuery 117–118

F
failure() method 100
fast-type, autosuggest textbox 266–267
fetch on demand 66
Fiddler 342, 348

Auth view 346
Forms view 346
Headers view 346
Hex view 346

586

debugging (continued)

21_109496 bindex.qxd 2/5/07 7:03 PM Page 586

HTTP breakpoints 347
HTTP proxy 342
incoming data 348
interface 344–347
installation 343
interface 344–347
outgoing data 348
Raw view 346
Session Inspector 345
setup 343
TextView 346
XML view 346

fields, validation, incremental 82–85
filemtime() method 277
file uploads, Yahoo! Connection Manager 105–106
Firebug 338, 341

headers 342
incoming data 341
installation 338–340
interface 339–340
limitations 342
outgoing data 341
setup 338–340
XHR logging 340

Firefox, HTTP streaming and 285–288
fooReader object 482
FooReader.NET

error handling 496–497
feed, caching 503–506
feeds pane 472, 478
headers 498
items pane 474, 479
proxy 498
reading pane 474, 480
remote feed 499–503
setup 506–507
testing 506–507
user interface 472–475

clearing items 489
feed methods 490
feeds 491
feeds list 491–494
fooReader object 482
getStyle() function 481
heading information 489
Helper functions 481
initializing 482–485
items pane 486–489
loading cue 476

loading cues, showing/hiding 486
loading specific feeds 490
panes 476–481
reading pane content 486
selecting items 490
TopBar 475–476

forms
validation, incremental 76–82
Yahoo! Connection Manager 104

frames, HTML 3
hidden 3, 21

advantages/disadvantages 36–37
GET requests 22–28
POST requests 28–31

iframes 4
frameworks

Ajax.NET Professional 427–428
client page 434–436
CustomerInfo class 431–434
JavaScript wrappers 428–429
marking methods 428
session access 430
type conversion 429–430

DWR 416–419
client page 423
converters 426
CustomerInfo class 419–422
dwr.xml 422–423
excluding methods 424
scope attribute 425–426
scripts, creating 424–425
Spring framework 425

JPSpan 407–410
client page 414–415
CustomerInfo class 413–414
error handling 412
server page 414
type translation 410–412

remote invocation frameworks 407
FreeThreadedDOMDocument class 184
functions

array_pop() 375
createRequest() 39
createXHR() 38
explode() 375
getCookie() 55
getRequestBody() 48, 552
getURLForPage() 69
imagejpeg() 52

587

functions

In
de

x

21_109496 bindex.qxd 2/5/07 7:03 PM Page 587

functions (continued)
init() 169
loadAndRender() 565
selectSingleNode() 174
sendRequest() 46
validateField() 77, 83

G
Garrett, Jesse James 2
geocoding 300

geocoder.us 301
services

GoogleMaps Geocoding Service 301
Yahoo! Maps Geocoding Service 301

Travel GIS 301
Web sites 300
WorldKit GeoCoder 301

GET request example, Prototype 112–113
GET request, HTTP 18
GET requests 451–454

hidden frames 22–28
jQuery 118–120
XHR 43–45
Yahoo! Connection Manager 106–107

getAllResponseHeaders() method 42
getAttachment() method 532
getAttribute() method 166
_getCachedWeather() method 354
getCookie() function 55
getEmails() method 516
getFeed() method 205
getFolderPage() method 520
getMessage() method 409, 524
getMessage(0 method 524
getRequestBody() function 48, 552
getResponseHeader() method 42
getUnreadCount() method 521
getURLForPage() function 69
GetWeather() method 359
_getWebWeather() method 354
GLargeMapControl 304
GMail 8

Periodic Refresh 85
GMapTypeControl 304
Google Maps 9, 299

Google Maps API
controls 304–305

GLargeMapControl 304
GMapTypeControl 304
GOverviewMapControl 304
GSMallMapControl 304
GSmallZoomControl 304
GScaleControl 304

events 311–313
addListener() method 311

GMap 2 303
addmaptype event 312
addoverlay event 312
click event 312
clearoverlays event 312
drag event 312
dragend event 312
dragstart event 312
infowindowclose event 312
infowindowopen event 312
load event 312
maptypechanged event 312
mousemove event 313
mouseout event 313
mouseover event 313
move event 313
moveend event 313
movestart event 313
removemaptype event 313
removeoverlay event 313
zoomend event 313

info windows 306–311
basic info windows 307
configuration options 307
getInfoWindow() method 310
getPixelOffset() method 311
getPoint() method 311
map blowups 309–310
openInfoWindow() method 307
openInfoWindowHtml() method 307
openInfoWindowTabs() method 308
openInfoWindowTabsHtml() method 308
selectTab() method 311
tabbed info windows 307–309

limitations 302
map blowups 309

588

functions (continued)

21_109496 bindex.qxd 2/5/07 7:03 PM Page 588

map overlays 313–321
clearOverlays() method 313
GMarker object 314
GIcon object 314–315
icons 314–315
marker events 317–318
marker info windows 316
marker manager 318–319
markers 314
polylines 319–321
removeOverlay() method 313

moving map 306
overview 301–303
showMapBlowup() method 309
startup 302

Google Maps Geocoding Service 301
Google Suggest 7, 246

Submission Throttling and 74
GOverviewMapControl 304
GSMallMapControl 304
GSmallZoomControl 304
GScaleControl 304

H
handleResponse() method 379
headers

Cache-Control 63
Expires 63
FooReader.NET 498

height property, images 55
Helper functions, AjaxMail 552–553
hidden frames 21

advantages/disadvantages 36–37
GET requests 22–28
POST requests 28–31

hidden iframes 31–33
POST requests 33–36

history of Ajax 2
Housing Maps 300
HTML

autosuggest textbox 247–248
dynamic 3
frames 3

hidden 3, 21
iframes, hidden 31–33
news feed and 221–222

HTML (HyperText Markup Language) 2
HTTP

GET request 18
POST request 18
requests 18–21

GET 451–454
POST 454–455
synchronous 43
XHR objects 39–43

responses, 20–21
URL encoding 19

HTTP streaming 274
file modification 276–277
Firefox and 285–288
iframes 277–280

dynamically created 281
Internet Explorer and 282–285
LiveConnect and 288–291
requests, delays 274–276

hypertext 2

I
iCurPage variable 69
IE (Internet Explorer)

DOM, nodes 157–158
HTTP streaming and 282–285
MSXML and 149
XML, error handling 158–159
XML data

loading 151–152
retrieving 156

XML DOM 153–156
XPath 172
XSLT 182–187

iframes, HTML 4
dynamically created 281
hidden 31–33

POST requests 33–36
HTTP streaming 277–280

imagejpeg() function 52
images

advantages/disadvantages 58
cookies and 53–55
creating dynamically 50–51
document.cookie property 53
dispose() method 52

589

images

In
de

x

21_109496 bindex.qxd 2/5/07 7:03 PM Page 589

images (continued)
downloading 50
error event 50
getCookie() function 55
height property 55
imagedestroy() function 52
imagejpeg() function 52
 element 50
load event 50
outputting, PHP and 51–53
redirecting to, PHP and 51
SendRequest() method 57
size 55–58
src attribute 50
width property 55

incremental field validation 82–85
incremental form validation 76–82
iNextPageToLoad variable 69
init() function 169
init() method 264–265
iPageCount variable 69
isCallInProgress() method 104
iWaiteBeforeLoad variable 69

J
JavaScript 2
jQuery 117

$.ajax() method 123–124
complete property 123
data property 123
dataType property 123
error() property 123
success property 123
type property 123
url property 123

$.post() method 120
ajaxStart() method 124
ajaxStop() method 124
expressions 117–118
GET requests 118–120
$.getIfModified() method 119
$.getJSON() method 119
$.getScript() method 119
load() method 122–123
POST requests 120–122

JSON (JavaScript Object Notation)
array literals 237
decode() method 244–245

decoding 241
encode() method 243–244
encoding 241
introduction 237
mixing literals 239–240
object literals 238–239
overview 237
server-side tools

JSON-PHP 243
libraries 245

syntax 240–241
XML comparison 242–243

JSON-PHP 243, 510
decode() method 244–245
encode() method 243–244

JSPan 407–410
addHandler() method 408
client page 414–415
CustomerInfo class 413–414
displayClient() method 409
error handling 412
ErrorHandler.php 412
example 412–415
getCustomerInfo() method 413, 414
getMessage() method 409
server() method 409
server page 414
setMessage() method 409
type translation 410–412
Types.php 411
Unserializer.php 411

L
Label control 450
libraries

jQuery 117
$.ajax() method 123–124
$.post() method 120
ajaxStart() method 124
ajaxStop() method 124
expressions 117–118
GET requests 118–120
load() method 122–123
POST requests 120–122

MSXML Active X library 149
Prototype 109

Ajax object 109
Ajax.Request object 109–112

590

images (continued)

21_109496 bindex.qxd 2/5/07 7:03 PM Page 590

Ajax.Responders 115–117
Ajax.Updater 113–115

Yahoo! Connection Manager 99
argument property 102
callback object 100–102
file uploads 105–106
form interaction 104
GET example 106–107
POST example 107–108
requests 100, 104
scope property 102–103
timeout property 103

YUI 99–100
literals

array literals 237
mixing 239–240
object literals 238–239

LiveConnect, HTTP streaming and 288–291
LiveSearch 388
load() method 122–123, 151
loadAndRender() function 565
loadInfo() method 555
loadMessage() method 556
loadXML() method 151
logoff() method 517

M
Magnetic Ajax demo, Periodic Refresh 86
Mahemoff, Michael 6
mailbox, AjaxMail 553–554
map overlays

Google Maps API 313–321
icons 314–315
marker events 317–318
marker info windows 316
marker manager 318–319
markers 314
polylines 319–321

Yahoo! Maps API 328
auto-expand windows 330
custom 332–333
custom images 330
GeoRSS support 333–334
labels 329
marker smart windows 331–332
markers 328
polylines 332

maps
geocoding 300

geocoder.us 301
services 301
Travel GIS 301
Web sites 300
WorldKit GeoCoder 301

Google Maps API 301–304
MapQuest 299
mashups 300

Chicago Crime 300
Housing Maps 300

$message variable 79
methods

$.ajax() 123–124
$.post() 120
abort() 104, 140
addHandler() 408
agePromote() 142
ajaxStart() 124
ajaxStop() 124
autosuggest() 253
cancel() 139
cancelReply() 568
checkActiveRequests() 136
checkMail() 515
cleanupEmail() 562
clearResults() 401
createProcessor() 184
createTransport() 134
decode() 244–245
deleteMessage () 533
disconnect() 517
displayFolder() 568
emptyTrash() 534
encode() 243–244
failure() 100
filemtime() 277
getAttachment() 532
getAttribute() 166
getEmails() 516
getFeed() 205
getFolderPage() 520
getMessage() 409
getUnreadCount() 521
GetWeather() 359
handleResponse() 379
init() 264–265

591

methods

In
de

x

21_109496 bindex.qxd 2/5/07 7:03 PM Page 591

methods (continued)
isCallInProgress() 104
load() 122–123, 151
loadInfo() 555
loadMessage() 556
loadXML() 151
logoff() 517
navigate() 567
onFailure() 110
onSuccess() 110
readMessage() 568
refreshFolder() 571
remove() 140
renderFolder() 560
renderMessage() 560
request() 557, 571
restoreMessage() 533
sendConfirmation() 572
sendMail() 528, 571
sendNext() 136
sendRequest() 57
setForm() 105
setMessage() 409
sleep() 274
success() 100
transform() 184
typeAhead() 252–253
_getCachedWeather() 354
_getWebWeather 354

mixing literals, JSON 239–240
MSXML 37

DOM, whitespace 152
IE and 149

MSXML Active X library 149
MSXML DOM document 150
Multi-Stage Download 143
Multi-Stage Download pattern 90–91

N
namespaces

AJAX library 440–441
prefix 173
resolvers 177–178
URI 173
XML 173–175
xmlns keyword 174
xparser 197–198

navigate() method 567
New Comment Notifier 86–90
news ticker

adding content 218–220
adding feeds 216
animation 214–216
client-side 211–212
Content-Control header 211
Content-Type header 211
CSS, 221
dispose() method 216
feeds, adding 216
HTML structure 221–222
isset() function 211
news ticker widget 222–223
NewsTicker class 212–214
NewsTickerFeed class 217
poll() method 217–218
polling for new information 217–218
removing 216–217
removing data 220–221
server-side 210–211
stopTick() method 213
stopping polling 218
tickerContainer 213
widget, using 222–223

nodes, DOM
creating 157–158
inserting 158
removing 158
replacing 158

O
object literals, JSON 238–239
onchange event 76
onFailure() method 110
onSuccess() method 110
output, images (PHP) 51–53

P
pages, preloading (Predictive Fetch) 66–74
patterns 21

Cancel Pending Requests 94–95
communication patterns 65
design patterns 65
Multi-Stage Download 90–91, 142, 143

592

methods (continued)

21_109496 bindex.qxd 2/5/07 7:03 PM Page 592

Periodic Refresh 85–86, 142, 143
poll() method 143
prefetch() method 143
Predictive Fetch 66, 142

page preloading 66–74
priorities 142–145
Submission Throttling 142, 143
submit() method 143
submitPart() method 143
Try Again 96–97

Periodic Refresh 143
New Comment Notifier and 86

Periodic Refresh pattern 85–86
PHP, images

outputting 51–53
redirecting to 51

PHPMailer 510
POP3Lib 511
$.post() method, jQuery 120
POST request example, Prototype 113
POST requests 454–455

hidden frames 28–31
hidden iframes 33–36
HTTP, 18
jQuery 120–122
XHR 45–49
Yahoo! Connection Manager 107–108

Predictive Fetch 143
Predictive Fetch pattern 66

page preloading 66–74
priorities, patterns 142–145
priority queues

age-based promotion 141–142
Array object and 128
get() method 129
item() method 129
peek() method 129
put() method 129
prioritize() method 129
size() method 129
sort() method 128

PriorityQueue object 128, 133
progressive rendering 274
properties

height 55
readyState 151
width 55

Prototype 109

Ajax object 109
Ajax.Request object 109

asynchronous property 111
events 111–112
Options object 109–110
requestHeaders property 110

Ajax.Responders object 115–117
Ajax.Updater object 113–115
GET Request example 112–113
onComplete() event handler 112
onException() event handler 111
onFailure() method 110
onInteractive() event handler 111
onLoaded() event handler 111
onLoading() event handler 111
onSuccess() method 110
POST Request example 113

proxies, FooReader.NET 498
Pushlets 297

Q
queuing requests 133–134

R
RDF (Resource Description Framework) 193
readMessage () method 568
readyState property 151
redirecting to images, PHP and 51
reflection 407
refreshFolder() method 571
remote feed, FooReader.NET 499–503
remote invocation frameworks 407
remove() method 140
renderFolder() method 560
renderMessage() method 560
Request Description objects, RequestManager

object 132–133
request() method 557, 571
RequestManager object 131–132, 145–147

addLowPriority() function 147
addPreFetch() function 147
addSubmit() function 147
addSubmitPart() function 147
age-based promotion 141–142
cancelling requests 139–140
outputFailureResult() function 146

593

RequestManager object

In
de

x

21_109496 bindex.qxd 2/5/07 7:03 PM Page 593

RequestManager object (continued)
outputNotModifiedResult() function 146
outputResult() function 146
outputSuccessResult() function 146
queuing requests 133–134
Request Description objects 132–133
sending requests 134–139

checkActiveRequests() method 134
initiating 135–136
monitoring 136–139

requests
cancelling 139–140
queuing 133–134
sending 134–139

initiating 135–136
monitoring 136–139

Yahoo! Connection Manager 104
restoreMessage() method 533
RSS

Web searches and 223
client-side 225
close() method 224
createElement() method 224
customizing widget 232–234
drawResultBox() method 224
populateResults() method 230
results box 231
results interface 227–229
results position 226
search interface 231
server-side 224–225

RSS (RDF Site Summary) 193
RSS (Really Simple Syndication) 194
RSS (Rich Site Summary) 194
RSS 0.91 194–195
RSS 1.0 195
RSS 2.0 196
RSS feeds, parsing 201–203
RSSFeed class 201–203

S
scope property, Yahoo! Connection Manager

102–103
scripts

advantages/disadvantages 62
document.write() method 59

dynamic script loading 59–62
makeRequest() function 60
<script/> element 59

searches, Web, RSS and 223–234
SearchResults class 391
Selector control 448–449
selectSingleNode() function 174
sendConfirmation() method 572
sending requests 134–139

initiating 135–136
monitoring 136–139

sendMail() method 528, 571
sendNext() method 136
sendRequest() function 46
sendRequest() method 57
serialization 156
server-sent DOM events 291–292

UI events 292–294
services, geocoding 301
setForm() method 105
setMessage() method 409
site search widget 388

Add() method 395
adding to page 405–406
building search page 397
clearResults() method 401
client-side component 398

AjaxSiteSearch class 398–401
clearing results 401
customizing site 403–405
information processing 402–403
user interface 398
XHR request 402

ExecuteReader() method 393
handleResponse() method 402
Read() method 394
Search() method 397
server-side component 389

AjaxSiteSearch class 392–395
database connection string 390
database information 389–390
returned data structure 391
SearchResults class 391

user interface 459–460
clearing results 467
database connection string 460
error handling 467

594

RequestManager object (continued)

21_109496 bindex.qxd 2/5/07 7:03 PM Page 594

event handling 468–469
form declaration 460–462
performing search 462–467

sleep() method 274
Spring framework, DWR 425
SQL injection attack 26
Stock Quote Proxy 372

data organization 372–373
retrieving quotes 373–375

stock watcher widget 371
AjaxStockWatcher class 376

automated updates 384
class constructor 377–378
error handling 381–383
polling for data 378–379
server response 379–381
updated information 383–384
user interface 377

custom quotes 385–386
data cells, adding 380
error handling 381–383
file_get_contents() function 374
get_stock_quotes() function 373
handleResponse() method 379
implode() function 374
insertCell() method 380
poll() method 378
server response 379
Stock Quote Proxy 372

data organization 372–373
retrieving quotes 373–375

using 387–388
Yahoo! Finance 371

Submission Throttling 74, 143
success() method 100
SuggestionProvider class, autosuggest textbox

267–268
synchronous requests 43

T
TextBox control 447
timeout property, Yahoo! Connection Manager 103
transform() method 184
Try Again pattern 96–97
Twisted 297
typeahead, autosuggest textbox 251–252
typeAhead() method 252–253

U
UpdatePanel control 455–456

triggering updates 457–458
URIs (Uniform Resource Identifiers) 2
URL encoding 19
user interface

AjaxMail 541–543
compose view 548, 550
folder view 543–546
layout 550
read view 546–548

FooReader.NET 472–475
clearing items 489
feed methods 490
feeds 491
feeds list 491–494
fooReader object 482
heading information 489
Helper functions 481
initializing 482–485
items pane 486–489
loading cue 476
loading cues, showing/hiding 486
loading specific feeds 490
panes 476–481
reading pane content 486
selecting items 490
TopBar 475–476

Site Search widget 459–460
clearing results 467
database connection string 460
error handling 467
event handling 468–469
form declaration 460–462
performing search 462–467

users, predicting actions 66

V
$valid variable 79
validateField() function 77, 83
validation

fields, incremental 82–85
forms, incremental 76–82

variables
$message 79
$valid 79

595

variables

In
de

x

21_109496 bindex.qxd 2/5/07 7:03 PM Page 595

variables (continued)
iCurPage 69
iNextPageToLoad 69
iPageCount 69
iWaiteBeforeLoad 69

W
weather widget 351

adding to Web page 370–371
as application 366–367, 370
client-side component 361

getWeather() method 361–362
customizing 362–366
_getCachedWeather() method 359
_getWebWeather() method 359
server-side component 352

cached data, reading 354
error handling 356–359
gathering data from Web 354–356
Settings class 352–353
versions 359–360
WeatherInfo class 353, 360

Weather.com SDK 351–352
WeatherInfo class 353
Web 2.0 14
Web searches

RSS and 223
client-side 225
customizing widget 232–234
results box 231
results display 230–231
results interface 227–229
results position 226
search interface 231
server-side 224–225

WHATWG (Web Hypertext Application Technology
Working Group) 291

white space, MSXML DOM 152
widgets

site search 388, 468–469
adding to page 405–406
building search page 397
client-side component 398–403
customizing site 403–405
server-side component 389–395
user interface 459–467

stock watcher 371

AjaxStockWatcher class 376–384
custom quotes 385–386
Stock Quote Proxy 372–375
using 387–388
Yahoo! Finance 371

weather widget 351
adding to Web page 370–371
as application 366–367, 370
client-side component 361–362
customizing 362–366
server-side component 352–360
Weather.com SDK 351–352

width property, images 55

X
XHR (XMLHttp Requests) 37

advantages/disadvantages 49–50
browser caching 41
GET requests 43–45
getAllResponseHeaders 42
getResponseHeader() method 42
objects

createXHR () function 38
creating 37–39

onreadystatechange event handler 40
POST requests 45–49
responseText property 41
responseXML property 41
send() method 40
XMLHttpRequest class 39
zXml library, 39

XHR logging, Firebug 340
XHR objects, HTTP requests 39–43
XHTML Live Chat, Periodic Refresh 85
XML

browsers 159
cross-browser XML 162–163
loading data 160–191
retrieving data 161–162

createDocument() method 159
cross-browser 162–163
data

loading to browser 160–161
loading in IE 151–152
retrieving in other browsers 161

data retrieval, IE 156
data validation 152

596

variables (continued)

21_109496 bindex.qxd 2/5/07 7:03 PM Page 596

documents, DTDs 152
DOM

attributes property 153
childNodes property 153, 154
creating 159
firstChild property 153, 154
IE 153–156
lastChild property 153
nextSibline property 153
nodeName property 153
nodeType property 153
nodeValue property 153
object, creating 150–151
ownerDocument property 153
ParentNode property 153
PreviousSibling property 153
properties 153
text property 153
Xml property 153

IE and
error handling 158–159
parseError object 159

JSON comparison 242–243
load() method 151
loadXML() method 152
loading data 164–165
loading data to IE 151–152
namespace resolvers 177–178
namespaces 173–175
nodes

appendChild() method 157
creating 157
createElement() method
data retrieval 198
inserting 158
removing 158
replacing 158

parsing lists 165–168
XMLHttp 4
XParser 197

abstract classes 198
BaseFeed 198–200
RSSFeed 201–203

data retrieval 198
parsing

Atom 203
RSS feeds 201–203

xparser namespace 197–198

XPath
browsers 175–177
cross-browser 178–179
evaluate() method 176
IE 172
introduction 170–172
namespaces

prefixes 173
resolover 177–178
URI 173
xmlns keyword 174

XPathEvaluator objects 176
XSLT (XSL Transformations)

addObject() method 185
browsers 187–188
cross-browser 189
directives 180
IE 182–187
ImportStylesheet() method 187
introduction 180–182
transformNode() method 183
transformToDocument() method 188
transformToFragment() method 188
XMLSerializer class 188
XSLTemplate class 183
XSLTProcessor class 187

XSLTemplate class 184

Y
Yahoo! Connection Manager 99

argument property 102
callback object 100–102
file uploads 105–106
form interaction 104
GET example 106–107
POST example 107–108
requests 100, 104
scope property 102–103
timeout property 103

Yahoo! Finance 371
Yahoo! Maps API

address lookup 334
controls

addPanControl() method 324
addTypeControl() method 324
addZoomLong() method 324
addZoomScale() method 324
addZoomShort() method 324

597

Yahoo! Maps API

In
de

x

21_109496 bindex.qxd 2/5/07 7:03 PM Page 597

Yahoo! Maps API (continued)
events 327–328
map overlays 328

auto-expand windows 330
custom 332–333
custom images 330
GeoRSS support 333–334
labels 329
marker smart windows 331–332
markers 328
polylines 332

moving maps 325
panToLatLon() method 325
panToXY() method 325

overview 322–323
smart windows 326

showSmartWindow() method 326
getCenterLatLon() method 326

startup 321–322
Yahoo! Maps Geocoding Service 301
Yahoo! News 11
YUI library (Yahoo! User Interface) 99

argument property 100 102
asyncRequest() method 104

callback object 100–101
failure method 100
files, uploads 105
forms 104–105
GET request, example 106–107
getAll ResponseHeaders() method 101
getResponseHeader() method 101
POST request, example 107–108
requests 100 104
responseText property 100
responseXML property 101
scope property 102–103
setup 100
status property 101
statusText property 101
tId property 101
timeout property 103

Z
zXml library 510

598

Yahoo! Maps API (continued)

21_109496 bindex.qxd 2/5/07 7:03 PM Page 598

22_109496 bob.qxd 2/5/07 7:03 PM Page 599

GNU General Public License
Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By con-
trast, the GNU General Public License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This General Public License applies to most
of the Free Software Foundation’s software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you dis-
tribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

23_109496 license.qxd 2/5/07 7:04 PM Page 600

Terms and Conditions for Copying,
Distribution and Modification

0. This License applies to any program or other work which contains a notice placed by the copy-
right holder saying it may be distributed under the terms of this General Public License. The
“Program”, below, refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications and/or trans-
lated into another language. (Hereinafter, translation is included without limitation in the term
“modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output from
the Program is covered only if its contents constitute a work based on the Program (indepen-
dent of having been made by running the Program). Whether that is true depends on what the
Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling the
user how to view a copy of this License. (Exception: if the Program itself is interac-
tive but does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work
are not derived from the Program, and can be reasonably considered independent and separate
works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

23_109496 license.qxd 2/5/07 7:04 PM Page 601

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or
with a work based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of
the following:

a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribu-
tion, a complete machine-readable copy of the corresponding source code, to be dis-
tributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribu-
tion and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control compila-
tion and installation of the executable. However, as a special exception, the source code dis-
tributed need not include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as dis-
tribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or dis-
tributing the Program (or any work based on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

23_109496 license.qxd 2/5/07 7:04 PM Page 602

6. Each time you redistribute the Program (or any work based on the Program), the recipient auto-
matically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipi-
ents’ exercise of the rights granted herein. You are not responsible for enforcing compliance by
third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent license would not permit royalty-
free redistribution of the Program by all those who receive copies directly or indirectly through
you, then the only way you could satisfy both it and this License would be to refrain entirely
from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version num-
ber of this License which applies to it and “any later version”, you have the option of following
the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copy-
righted by the Free Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

23_109496 license.qxd 2/5/07 7:04 PM Page 603

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

23_109496 license.qxd 2/5/07 7:04 PM Page 604

	Professional Ajax, 2nd Edition
	About the Authors
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: What Is Ajax?
	Ajax Is Born
	The Evolution of the Web
	The Real Ajax
	Ajax Principles
	Technologies behind Ajax
	Who Is Using Ajax?
	Confusion and Controversy
	Ajax and Web 2.0
	Summary

	Chapter 2: Ajax Basics
	HTTP Primer
	Ajax Communication Techniques
	Cache Control
	Summary

	Chapter 3: Ajax Patterns
	Communication Control Patterns
	Fallback Patterns
	Summary

	Chapter 4: Ajax Libraries
	The Yahoo! Connection Manager
	Prototype
	jQuery
	Summary

	Chapter 5: Request Management
	Priority Queues
	The RequestManager Object
	Using RequestManager
	Summary

	Chapter 6: XML, XPath, and XSLT
	XML Support in Browsers
	XPath Support in Browsers
	XSL Transformation Support in Browsers
	Summary

	Chapter 7: Syndication with RSS and Atom
	RSS
	Atom
	XParser
	Creating a News Ticker
	Web Search with RSS
	Summary

	Chapter 8: JSON
	What Is JSON?
	JSON versus XML
	Server-Side JSON Tools
	Creating an Autosuggest Textbox
	Summary

	Chapter 9: Comet
	HTTP Streaming
	Connection Management
	Server-Side Support
	Summary

	Chapter 10: Maps and Mashups
	The Rise of Mashups
	Geocoding
	Google Maps API
	Yahoo! Maps API
	Other Mapping APIs
	Summary

	Chapter 11: Ajax Debugging Tools
	The Problem
	FireBug
	Microsoft Fiddler
	Summary

	Chapter 12: Web Site Widgets
	Creating a Weather Widget
	Watching Stocks
	Creating a Site Search Widget
	Summary

	Chapter 13: Ajax Frameworks
	JPSpan
	DWR
	Ajax. NET Professional
	Summary

	Chapter 14: ASP.NET AJAX Extensions (Atlas)
	Requirements and Setup
	The AJAX Client Library
	The UpdatePanel Control
	SiteSearch Revisited
	Summary

	Chapter 15: Case Study: FooReader.NET
	The Client Components
	The Server Application
	Setup and Testing
	Summary

	Chapter 16: Case Study: AjaxMail
	Requirements
	Architecture
	The User Interface
	Tying It All Together
	The Last Step
	Summary

	Appendix A: Licenses for Libraries and Frameworks
	Ajax.NET Professional
	DWR
	JPSpan
	jQuery
	JSON-PHP
	Prototype
	YUI Library

	Index
	GNU General Public License
	Preamble
	Terms and Conditions for Copying, Distribution and Modification

