

XML DEMYSTIFIED

http://dx.doi.org/10.1036/0072262109

This page intentionally left blank

XML DEMYSTIFIED

JIM KEOGH & KEN DAVIDSON

McGraw-Hill

New York Chicago San Francisco Lisbon London
 Madrid Mexico City Milan New Delhi San Juan

 Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0072262109

Copyright © 2005 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except
as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-148789-1

The material in this eBook also appears in the print version of this title: 0-07-226210-9.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will
meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any
damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under
no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or
similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of
such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract,
tort or otherwise.

DOI: 10.1036/0072262109

http://dx.doi.org/10.1036/0072262109

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0072262109

This book is dedicated to Anne, Sandy, Joanne,
Amber-Leigh Christine, and Graff, without whose help
and support this book couldn’t have been written.
 —Jim

To Liz, Alex, Jack and Janice.
 —Ken

ABOUT THE AUTHORS

Jim Keogh is on the faculty of Columbia University and Saint Peter’s College in
Jersey City, New Jersey. He developed the e-commerce track at Columbia University.
Keogh has spent decades developing applications for major Wall Street corporations
and is the author of more than 60 books, including J2EE: The Complete Reference,
Java Demystified, ASP.NET Demystified, Data Structures Demystified, and others
in the Demystified series.

Ken Davidson is a Columbia University faculty member in the computer science
department. In addition to teaching, Davidson develops applications for major
corporations in both Java and C++.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

vii

CONTENTS AT A GLANCE

CHAPTER 1 XML: An Inside Look 1

CHAPTER 2 Creating an XML Document 17

CHAPTER 3 Document Type Defi nitions 33

CHAPTER 4 XML Schema 51

CHAPTER 5 XLink, XPath, XPointer 69

CHAPTER 6 XSLT 83

CHAPTER 7 XML Parsers and Transformations 95

CHAPTER 8 Really Simple Syndication (RSS) 109

CHAPTER 9 XQuery 121

CHAPTER 10 MSXML 149

Final Exam 189

Answers to Quizzes and Final Exam 205

Index 215

This page intentionally left blank

ix

CONTENTS

Introduction xv

CHAPTER 1 XML: An Inside Look 1
XML: In the Beginning 2
What Is XML? 3
Why Is XML Such a Big Deal? 6
Document Type Defi nitions 6

Where to Place the DTD 8
Reading an XML Document 10
Why Are Corporations Switching to XML? 12
Web Services 13
Looking Ahead 13
Quiz 14

CHAPTER 2 Creating an XML Document 17
Identifying Information 18
Creating XML Markup Tags 19

Parent ... Parent/Child ... Child 20
Creating a Document Type Defi nition 22
Creating an XML Document 23
Attributes 25
Comments 27
Entities 28
Processing Instructions 29
CDATA Sections 29
Looking Ahead 30
Quiz 31

For more information about this title, click here

http://dx.doi.org/10.1036/0072262109

x XML Demystifi ed

CHAPTER 3 Document Type Defi nitions 33
Types of Document Type Defi nition 34

External Document Type Defi nition 35
Shared Document Type Defi nition 38
Element Declarations 40

Specifying the Number of Occurrences
in an Element 41

Optional Child Elements 42
Grouping Elements 43
EMPTY and ANY Elements 45
Naming Elements 45

Attribute Declarations 46
Entity Declarations 47

Looking Ahead 47
Quiz 48

CHAPTER 4 XML Schema 51
Inside an XML Schema 52

Document Type Defi nition
vs. XML Schema 53

An Inside Look at an XML Schema 55
Defi ning Simple Elements 56
Defi ning Attributes 57
Facets 58

Working with Whitespace Characters 62
Complex Elements 63

Setting the Number of Occurrences 65
Looking Ahead 66
Quiz 67

CHAPTER 5 XLink, XPath, XPointer 69
An Inside Look at XLink 70

Speaking the XLink Language 71

XPath 73
A Closer Look at XPath 75
Predicates 76
Functions 77

XPointer 80
Looking Ahead 80
Quiz 81

CHAPTER 6 XSLT 83
What Is XSLT? 84
XPath and the Transformation 84
Source and Result Documents 85
XSLT in Action 85
A Closer Look at XSL Stylesheet 87
Looking Ahead 92
Quiz 93

CHAPTER 7 XML Parsers and Transformations 95
Parsing an XML Document 96
The Simple API for XML (SAX) 96

Components of a SAX Parser 97
The DTD Handler 99

The Document Object Model 100
Java and Parsing an XML Document 104
Looking Ahead 105
Quiz 106

CHAPTER 8 Really Simple Syndication (RSS) 109
What Is Really Simple Syndication (RSS)? 110
Inside an RSS Document 110
More About the channel Element 112

Communicating with the Aggregator 114
More About the item Element 116

CONTENTS xi

xii XML Demystifi ed

Looking Ahead 118
Quiz 118

CHAPTER 9 XQuery 121
Getting Started 122

Testing Saxon-B 122
How XQuery Works 126

For, Let, and Order By Clauses 126
The Where and Return Clauses 126
A Walkthrough of an XQuery 127

Constructors 128
Conditional Statements 131
Retrieving the Value of an Attribute 136

Retrieving the Value of an Attribute
and the Attribute Name 138

Functions 141
Looking Ahead 145
Quiz 146

CHAPTER 10 MSXML 149
What Is MSXML? 149
Getting Down and Dirty with MSXML 150
Loading a Document 158

The LoadDocument() Function 159
Adding a New Element 161
The LoadNewNode() Function 162
The InsertFirst() Method 163
The InsertLast() Method 166
The InsertBefore() Function 168
The InsertAfter() Function 171

Create a New Element Programmatically 173
Select, Extract, Delete, and Validate 177

The SelectArtist() Function—Filtering
an XML Document 177

The DisplayTitles() Function 179
The DeleteNodes() Function 180
The ValidateDocument() Function 181

MSXML and XSLT 184
CD Listing 186
Summary 186
Quiz 187

Final Exam 189

Answers to Quizzes and Final Exam 205

Index 215

CONTENTS xiii

This page intentionally left blank

xv

INTRODUCTION

If you marveled at how you can use HTML to tell a browser how to display
information on your web page, then you’re going to be blown off your seat when
you master XML. XML is a standard for creating your own markup language—you
might say your own HTML. You define your own tags used to describe a
document.

Why would want to create your own markup language?
Suppose you were in the insurance industry and wanted to exchange documents

electronically with business partners. A markup language can be used to describe
each part of the document so everyone can easily identify elements of the document
electronically.

Suppose you were in the publishing industry and wanted online retailers to
display information about all your books in their electronic catalog. The table of
contents, author name, chapters, and other components of a book can be electronically
picked apart and sent to online retailers using customized XML tags.

HTML is a standard set of tags that is universally used throughout the world. A
similar set of tags can be established by an industry to describe industry-specific
documents using XML. For example, the pharmaceutical industry can create a
standard tag set to describe drugs such as dose, scientific name, and brand name.

Once an XML tag set is defined, you can use those tags just like you use HTML
tags to create a web document. And like HTML, XML tags can be interpreted into
HTML tags so your document can be displayed in a browser.

Furthermore, you can electronically:

• Parse XML documents

• Search XML document

• Create new XML documents

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

xvi XML Demystifi ed

• Insert data into an XML document

• Remove data from an XML document

• And much more.

XML confuses many who are familiar with managing data using a database. Both
a database and XML are used to manage data. However, XML is used to manage data
that doesn’t lend itself to a traditional database such as a legal document, a book, or
an insurance policy. It just isn’t easy to cram those into a formal database.

However, XML is perfect for managing that type of information because you can
create your own tags that describe parts of those documents. Best of all, there are
tools available that enable you to search and manipulate parts of an XML document
similar to how you use a database.

XML Demystified shows you how to define your own set of markup tags using
XML and how to use electronic tools to make an XML document a working part of
your business.

By the end of this book you’ll be able to make your own classy markup tags that
will leave even the sophisticated business manager in awe—and the IT department
left scratching their heads, asking: How did he do that?

A Look Inside
XML can be challenging to learn unless you follow the step-by-step approach that
is used in XML Demystified. Topics are presented in an order in which many
developers like to learn them—starting with basic components and then gradually
moving on to those features found on classy websites.

Each chapter follows a time-tested formula that first explains the topic in an
easy-to-read style and then shows how it is used in a working web page that you can
copy and load yourself. You can then compare your web page with the image of the
web page in the chapter to be assured that you’ve coded the web page correctly.
There is little room for you to go adrift.

Chapter 1: XML: An Inside Look
No doubt you heard a lot about XML since many in the business community see
XML as a revolutionary way to store, retrieve, and exchange information within a
firm and among business partners. The first chapter provides you with an overview
of XML before learning the nuts and bolts of applying XML to solve a real business
problem.

Chapter 2: Creating an XML Document
Now that you have an understanding of what XML is and how it works, it is time to
learn how to apply your knowledge and design your own set of XML markup tags.
Chapter 2 shows you step by step how to create a set of XML markup tags by
finding natural relationships among pieces of information in your document.

Chapter 3: Document Type Definitions
Markup tags used in an XML document conform to a standard set of markup tags
that are adopted by a company or an industry. An XML standard is defined in a
document type definition that specifies markup tags that can be used in the XML
document and specifies the parent-child structure of those tags. Chapter 3 takes an
in-depth look at how to develop your own document type definition.

Chapter 4: XML Schema
A parser is software used to extract data from an XML document. However, before
doing so, the parser must learn about the XML tags used to describe data in the
document by using an XML schema. In this chapter you’ll learn how to create an
XML schema for your XML document.

Chapter 5: XLink, XPath, XPointer
Real-world XML documents can become complex and difficult to navigate, especially
if the document references multiple external resources such as other documents and
images. Professional XML developers use XML’s version of global position satellites
to find elements within the XML document by using XLink, XPath, and XPointer.
Sound confusing? Well, it won’t be by the time you finish this chapter.

Chapter 6: XSLT
A common problem facing anyone who works with data is that data is usually
stored in different formats. For example, some systems store a date as 1/1/09 while
others store it as 01 Jan 09. However, much of this problem can be resolved by
using XML because data in an XML document can be easily converted into any
format by using a stylesheet. A stylesheet is a road map that shows how to convert
the XML document into another format. In this chapter, you’ll learn how to create
a stylesheet and how to use an XSLT processor to transform an XML document into
an entirely different format.

INTRODUCTION xvii

xviii XML Demystifi ed

Chapter 7: XML Parsers and Transformations
The powerhouse that makes an XML document come alive is the parser. A parser
can transform a bunch of characters in an XML document into anything you can
imagine. There are many parsers that you can choose from. This chapter provides
you with insight into each standard, enabling you to make an intelligence choice
when selecting a parser to transform your XML documents.

Chapter 8: Really Simple Syndication (RSS)
If you ever wished there was a way to distribute your web content to the millions of
web sites on the Internet, then you’ll enjoy reading this chapter. RSS is an application
of XML that is used to register your content with companies called aggregators.
Aggregators are like a chain of supermarkets for web site content. In this chapter,
you’ll how to create an RSS document that contains all the information an aggregator
requires to offer your content to other web site operators.

Chapter 9: XQuery
Think of XQuery as your electronic assistant who knows where to find any
information in an XML document as fast as your computer will allow. Your job is
to use the proper expression to request the information. In this chapter, you’ll
harness the power of XQuery by learning how to write expressions that enables you
to tap into the vast treasure trove of information stored in an XML document.

Chapter 10: MSXML
MSXML is an application program interface (API) that enables you to unleash an
XML document from within a program written with such programming languages
as JavaScript, Visual Basic, and C++ by using Microsoft’s XML Core Services,
simply referred to as MSXML. Any XML document can easily be integrated into
your application by calling features of MSXML from within your program. You’ll
learn about MSXML in this chapter and how to access an XML document using
JavaScript. The same basic principle used for JavaScript can be applied to other
programming languages.

1

CHAPTER
1

XML:
 An Inside Look

No doubt you’ve heard a lot about Extensible Markup Language (XML) since many
in the business community see it as a revolutionary way to store, retrieve, and
exchange information within a firm and among business partners.

Also you’ve probably assumed that XML has something to do with HyperText
Markup Language (HTML) since the two languages have similar names—and you
are correct. Both HTML and XML are markup languages that describe something.
It’s that something where HTML and XML go their separate ways.

HTML describes how data should look on the screen. XML describes the data itself.
It sounds a bit confusing at first, but consider the title of a book. HTML might say the
title should be displayed in bold italics. XML might say that this is a book title.

XML is a flexible markup language that you create yourself. That is, you decide
the XML tags that describe data rather than having to adhere to a standard set of
tags as you do with HTML. This flexibility enables firms and industries to create
their own standard tags to describe data that’s particular to their business.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

2 XML Demystifi ed

However, we’re getting ahead of ourselves. Let’s take a step back, and we’ll give
you an overview of XML before showing you the nuts and bolts of applying XML
to solve a real business problem.

XML: In the Beginning
Think for a moment: How would you share legal documents among various
computer systems so users can retrieve and reformat the documents easily? This
can be tricky to accomplish because legal documents aren’t like a stack of order
forms, where each form has the same kind of information (i.e., customer number,
product number) that can be stored in a database. Legal documents have similarities
but the text in these documents differs.

This was the problem IBM faced in 1969 when one of their research teams set
out to develop a way to integrate information used in law offices. Charles Goldfarb,
Ed Losher, and Ray Lorie were members of the team that came up with a solution—
Generalized Markup Language (GML). GML consisted of words that described
pieces of a legal document.

Although the text in one legal document differs from that in another legal
document, legal documents are organized into specific sections. GML was used to
identify each section, making it relatively easy for an information system to store
and retrieve a section of a legal document.

In 1974, Goldfarb transformed GML into a new all-purpose markup language
called Standard Generalized Markup Language (SGML), which the International
Organization for Standardization (ISO) eventually adopted in 1986 as a recognized
standard used in electronic publishing.

SGML had one major drawback: It was considered too complex. Tim Berners-
Lee and Anders Berglund set out to simplify SGML so that it could readily be used
to share technical documents over the Internet. Their solution: HTML. HTML
consists of a limit set of standard tags that describes how information is to be
displayed.

It is this capability that gives HTML its strength—and its weakness. Applications
that can read HTML tags can display an HTML document without having to know
anything about the document. This differs from a database application that needs to
know everything about each data element in the document, such as data type and
size, in order to display the data.

However, HTML doesn’t describe the data and there’s no way for you to enhance
the HTML set to describe data. This is the primary weakness of HTML. For
example, you can use HTML tags to specify how a book title is displayed, but you
cannot use them to identify text as a book title.

CHAPTER 1 XML: An Inside Look 3

It wasn’t until 1998, when the World Wide Web Consortium (W3C) agreed to a
new standard—XML, that this problem was solved. XML, a subset of SGML, is
used to develop a customizable markup language that is as simple to use as HTML
and that works with HTML.

As you’ll see throughout this book, you’ll be able to define your own set of XML
tags that describes information that’s relative to your business. Furthermore, you’ll
be able to use HTML to tell the browser—and other applications that can read
HTML—how to display that information.

ISBN Title Author Table of Contents

0072254548 Java Demystifi ed Jim Keogh Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

0072253592 Data Structures Demystifi ed Jim Keogh and
Ken Davidson

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Table 1-1 A Table of Data About a Book That Is Stored in a Database

What Is XML?
In a nutshell, XML is a markup language that’s used to represent data so data can be
easily shared among different kinds of applications that run on different operating
systems. To appreciate this, let’s take a look at how data is exchanged without XML.

Let’s say that you have a hot new web site that sells books. Your site displays the
book’s ISBN, or International Standard Book Number (the unique number that
identifies a book from other books), title, author, table of contents, and other kinds
of information that you normally find on a bookseller’s web site. All this information
is stored in a database and is inserted into a dynamic web page whenever a visitor
inquires about the book.

Book information is stored in one or more database tables. A table is similar to a
spreadsheet in that it has columns and rows (see Table 1-1). Columns represent a
particular kind of data. That is, all book titles appear in the same column and all
author names appear in a different column. Each kind of data has its own column.
Rows represent books. That is, each row has one ISBN, book title, the author(s),
one table of contents, and so on.

4 XML Demystifi ed

Columns are described in a variety of ways, depending on the nature of the
application and the design of the database. For example, typically, the minimum
description for a column in a table that contains information about books includes

• Column name

• Column type (text, numeric, Boolean)

• Maximum size (maximum number of characters that can be stored in
the column)

However, some database designers might also describe columns as having a

• Minimum size (minimum number of characters that can be stored in the
column)

• Label (text that appears alongside the data when the data is displayed
or printed)

• Validation rules (criteria the data must meet before being inserted into
the column)

• Formatting (such as the use of hyphens in a Social Security Number)

The list of ways to describe a column seems endless. In order for the data from
one application to be shared with another application, this application must be able
to understand how each column is described. For example, it must know that the
ISBN is text and not a numeric value although an ISBN contains numbers. Otherwise,
it might not interpret the data properly.

Furthermore, the application receiving data must know that the ISBN number
comes before the title, and the title comes before the author, and the author comes
before the table of contents, and so on. Otherwise the application might treat the
ISBN number as the author.

Before any data can be exchanged, the developer of the application receiving
data must obtain this description of the data and modify the app to read the data.
This is time-consuming and complex.

XML makes sharing data at lot easier by enabling a company or, in many cases,
an industry to define a standard set of markup tags that describe data. These markup
tags are then combined with data to form an XML document, which is then made
available to other applications.

These applications reference a known set of tags in order to extract data from the
XML document. There is no need to exchange data descriptions because the set of
markup tags already describes data in the XML document.

Let’s return to our online bookstore example to see how this works. Suppose the
book industry agrees on a standard set of markup tags to describe a book. The book

CHAPTER 1 XML: An Inside Look 5

publisher creates an XML document that uses these markup tags to describe each
of the publisher’s books. The XML document is then distributed to retailers and
others who require information about a publisher’s line of books.

Here is a very simple version of such an XML document. You probably have no
trouble understanding this document because the XML tags clearly describe the
data. The XML tags are similar in appearance to HTML tags in that there is an open
tag (<books>) and a closed tag (</books>). However, unlike HTML, we made up
the tag name.

<books>
 <book>
 <isbn>0072254548</isbn>
 <title>Java Demystified</title>
 <author>Jim Keogh</author>
 <toc>
 Chapter 1
 Chapter 2
 Chapter 3
 Chapter 4
 Chapter 5
 </toc>
 </book>
 <book>
 <isbn>0072253592</isbn>
 <title>Data Structures Demystified</title>
 <author>Jim Keogh and Ken Davidson </author>
 <toc>
 Chapter 1
 Chapter 2
 Chapter 3
 Chapter 4
 Chapter 5
 </toc>
 </book>
</books>

Typically an XML document contains nested elements, which implies the
relationship one tag has to other tags in the XML document. In the previous example,
the tag <books> contains information about all books. The tag <book> contains
information about one particular book, which is identified by other tags, such as
<isbn>, <title>, <author>, and <toc>.

The tag <books> is said to be the parent of <book>, and <book> is said to be the
parent of <isbn>, <title>, <author>, and <toc>.

6 XML Demystifi ed

Why Is XML Such a Big Deal?
Flexibility. XML enables you to update the definition of the XML document without
breaking existing processes—that is, you can make the update without having to
alter the application that processes the data.

Let’s say that in addition to the ISBN, title, author, and table of content, you want
to include the book’s publication date. The existing application looks for the original
four fields (ISBN, title, author, and table of content) to parse. Parsing is the process
of stripping out XML tags, leaving only the data left. You can add a fifth field
(publication date) without having to break the existing parsing process because
each field is delimited with XML markup tags.

In a fixed-length database, the process expects each field to be positioned at a
specific location in each row. Inserting a new field might change the location of
existing fields, requiring the process to be changed.

XML, however, isn’t constrained by a fixed-length data because the size of the
data is determined by the location of the XML closed markup tag. Here’s how the
title can be shown in an XML document:

<title>
 XML Demystified: The Greatest Book Ever Printed
</title>

You can insert as many characters as you need in the title without affecting
applications that share this XML document because they know that the title ends
right before the </title> markup tag appears in the XML document, regardless of
the length of the title.

Document Type Definitions
Before an application can read an XML document, it must learn what XML markup
tags the document uses. It does this by reviewing the document type definition
(DTD). The DTD identifies markup tags that can be used in an XML document and
defines the structure of those tags in the XML document.

The application that uses the books XML document reads the DTD to learn
about each element in the document. It’s important to remember that the DTD
identifies the name of an XML markup tag and whether or not the tag is a parent
(contains other tags) or a child (contains data). The DTD doesn’t tell the application
what kind of data it is. That is, it says, “The <isbn> tag is valid.” It doesn’t say, “The
<isbn> tag contains the identifier that uniquely identifies a book.”

CHAPTER 1 XML: An Inside Look 7

In some cases, the DTD can also tell the application what values to expect in
certain tags. Let’s say that the book element has an attribute called format. The
default format is Portable Document Format (PDF) and the allowable formats are
values Excel spreadsheet (XLS), PDF, plain (ASCII) text file (TXT), Word
document (DOC).

The parser returns PDF when you query that attribute if the attribute isn’t present
in the XML document. If the attribute is present in the XML document, the parser
validates that the attribute is one of the four allowable values. You’ll learn more
about how this works later in Chapter 7. For now, here’s how the attribute is written
in the DTD:

<!ENTITY % book_format "(XLS|PDF|TXT|DOC)">
<!ATTLIST book
format %book_format; "PDF">

For example, the DTD doesn’t tell the application what an isbn is. It simply
states that isbn is a valid XML tag for this XML document. The developer of the
application must build into the application logic to identify and process an isbn.
This comes about when companies, vendors, and those in an industry establish a
standard XML markup tag set.

Let’s return to the books XML document to so you can see the relationship
between a DTD and an XML document. The books XML document contains the
following markup tags:

<books>
<book>
<isbn>
<title>
<author>
<toc>

The structure is the placement of the markup tags within the XML document. In
our example, the <book> markup tag is placed within the <books> markup tag.
Likewise, the <isbn>, <title>, <author>, and <toc> markup tags are placed within
the <book> markup tag (in that order).

We need to create a DTD that declares these markup tags and shows their
relationships. Here’s what the DTD looks like.

<?xml version="1.0"?>
<!ELEMENT books (book*)>
<!ELEMENT book (isbn, title, author, toc)>
<!ELEMENT isbn (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT toc (#PCDATA)>

8 XML Demystifi ed

The first line specifies the version of XML that’s used to create the XML
document. Below this line are statements that declare elements that are used in the
XML document. An element is a markup tag. There are three parts to an element
declaration.

• First is !ELEMENT, which says that the declaration follows.

• Second is the element name as it appears in the XML document.

• Third is the type of element it is, which is either a group of elements or
a Parsed Character Data (PCDATA) element. PCDATA elements cannot
contain other elements. Another allowable type is Character Data (CDATA).

The first element that’s declared is books. This is a group of elements, so you
must list the names of the elements that are members of the group, which is book.
The element name book is followed by an asterisk, which means there are zero to
many book elements under books. The other allowable qualifiers are

• ? Zero or one of these (also referred to as a optional tag)

• + One to many

• No qualifier Exactly one of these

The second element is book, which, too, is a group of elements. Therefore, those
elements must be listed when you declare book.

The remaining elements are PCDATA elements and they don’t contain other
elements.

Where to Place the DTD
The DTD is placed either at the top of the XML document or in a separate file.
Begin by placing the DTD at the top of the books XML document, as shown
here:

<?xml version="1.0"?>
<!DOCTYPE books [
 <!ELEMENT books (book*)>
 <!ELEMENT book (isbn, title, author, toc)>
 <!ELEMENT isbn (#PCDATA)>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT author (#PCDATA)>
 <!ELEMENT toc (#PCDATA)>
]>
<books>

CHAPTER 1 XML: An Inside Look 9

 <book>
 <isbn>0072254548</isbn>
 <title>Java Demystified</title>
 <author>Jim Keogh</author>
 <toc>
 Chapter 1
 Chapter 2
 Chapter 3
 Chapter 4
 Chapter 5
 </toc>
 </book>
 <book>
 <isbn>0072253592</isbn>
 <title>Data Structures Demystified</title>
 <author>Jim Keogh and Ken Davidson </author>
 <toc>
 Chapter 1
 Chapter 2
 Chapter 3
 Chapter 4
 Chapter 5
 </toc>
 </book>
</books>

Placing the DTD at the top of an XML document is fine if only one XML
document uses the DTD. However, this is a problem if multiple XML documents
use the same DTD because you’ll need to change each XML document whenever
the DTD is updated.

A preferred approach is to use an external file that contains the DTD and then
reference that file in each XML document that needs to access the DTD. Here’s
how this works.

First write the DTD and save it to a text file that has the file extension .dtd. We’ll
call this file books.dtd.

<?xml version="1.0"?>
<!ELEMENT books (book)>
<!ELEMENT book (isbn, title, author, toc)>
<!ELEMENT isbn (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT toc (#PCDATA)>

10 XML Demystifi ed

Next, reference the DTD file at the beginning of the XML document. You do this
by specifying the DOCTYPE as we show in this next example. Make sure that you
replace the word “books” as the DOCTYPE and “books.dtd” as the file name with
an appropriate name for your XML document.

<?xml version="1.0"?>
<!DOCTYPE books SYSTEM "books.dtd">
<books>
 <book>
 <isbn>0072254548</isbn>
 <title>Java Demystified</title>
 <author>Jim Keogh</author>
 <toc>
 Chapter 1
 Chapter 2
 Chapter 3
 Chapter 4
 Chapter 5
 </toc>
 </book>
 <book>
 <isbn>0072253592</isbn>
 <title>Data Structures Demystified</title>
 <author>Jim Keogh and Ken Davidson </author>
 <toc>
 Chapter 1
 Chapter 2
 Chapter 3
 Chapter 4
 Chapter 5
 </toc>
 </book>
</books>

Reading an XML Document
Information contained in an XML document can be extracted from the document
through a process called parsing. Parsing is an orderly method of stripping away
the XML markup tags leaving only the data. The data is then processed by an
application depending on the nature of the application. The program that performs
parsing is called a parser.

CHAPTER 1 XML: An Inside Look 11

For example, you’d use a parser to retrieve book information from the books
XML document that you saw earlier in this chapter. The extracted book information
is then combined with HTML code to create a dynamic web page that displays the
information about the book on the screen.

Developers use one of two basic parsers. These are the Document Object Model
(DOM) parser and the Simple API for XML (SAX).

DOM reads the entire XML document into memory and then creates a tree
structure of elements (see Figure 1-1). Various techniques are used to traverse the
tree to local information contained in the XML document. You can also use DOM
to write data to the XML document, but it’s limited to working with small XML
documents because the entire XML document is placed in memory.

SAX reads the XML document, noting the locations of markup tags. The SAX
parser makes a one-time pass through the XML from start to finish. As it encounters
tags and data, it calls events that you define in your code. SAX is ideal for reading
large XML documents because there aren’t any memory constraints; only a chunk
of the XML document is ever in memory at one time. A drawback of SAX is that it
cannot traverse an XML document. That is, SAX makes one pass through the
document. If you want to return to a previous part of the document, then the
document needs to be read from the beginning of the documents.

Both DOM and SAX validate the contents of an XML document against a DTD.
You’ll learn more about DOM and SAX later in this book.

Figure 1-1 DOM transforms elements of an XML document into a tree structure,
enabling the parser to traverse elements.

12 XML Demystifi ed

Why Are Corporations Switching to XML?
XML makes exchanging data easy while providing an efficient way to modify
an XML document without having to change existing parsing routines. Companies
can exchange data with business partners without having to have their IT departments
set up elaborate routines to exchange data. This ultimately reduces the cost of doing
business.

Prior to XML, corporate IT departments exchanged details of their data formats
with their business partners. Programmers then either wrote new programs or
modified existing programs to read and process the data.

Before XML took hold, IT departments stored data in databases that use fixed-
length rows, which are still widely used today. As you’ll recall from earlier in this
chapter, a row might contain data about one book. A fixed-length row means that
the same space is allocated for every book.

With XML, fields can be inserted into and removed from an XML document
without altering the parsing process. This saves the expense that incurred when IT
professionals had to modify a process every time a column was added to or removed
from a fixed-length database.

It’s easy to find data in a database that uses fixed-length rows, especially compared
to the effort it takes to parse data in an XML document. It takes more computer
power to parse an XML document than it does to find the same data stored in a
fixed-length database, because the parser must compare strings of text, evaluate
XML markup tags, and validate the structure of the XML document. These tasks
aren’t necessary to find data in a fixed-length database.

This is the very reason why IT departments initially frown upon switching from
a fixed-length database to an XML document. It doesn’t make sense for a corporation
to move from a very efficient database tool to one that is less efficient.

However, a fixed-length database isn’t without its disadvantages. It calls for
skilled IT professionals to create and maintain it. Furthermore, the different kinds
of fixed-length database products on the market each have their own quirks.

In addition, many business managers have difficulty understanding the concept
of a fixed-length database, which makes it challenging to apply database technology
to solve business problems without help from IT.

XML, on the other hand, is straightforward, enabling a business manager who
has little or no IT training to create a set of XML markup tags and use them to build
an XML document. IT still needs to implement an XML parser, but the business
manager usually has the skills to apply XML to solve a business problem.
Furthermore, more powerful computers are available today at a reasonable cost,
thereby overcoming one of the major disadvantages of using XML: the expense.

CHAPTER 1 XML: An Inside Look 13

Businesses and their business partners are forever seeking ways to efficiently do
business with one another. One of those ways is through exchanging information
electronically. For example, it’s more efficient to place an order electronically than
it is to do it manually. That is, it’s faster to have computers talk to computers.

There can be a formidable challenge, though. Both computers must agree on
how to exchange the information. Traditionally, this has required that IT people
from both companies devise and implement a plan to bring about the exchange.

However, companies are automating this process by using web services. Web
services are a web of services and have practically nothing to do with the Internet
except as a means to exchange information. For example, a supplier might offer a
service that accepts orders electronically from customers. This service uses the
Internet to transfer the order from the customer to the supplier.

XML is used to send requests and receive replies. It’s the best choice for exchang-
ing data because it works with every operating system and programming language.

Web Services

Looking Ahead
XML is a markup language similar to HTML except that it enables you to create
your own tag set. That is, you can use XML to create your own markup language.
The most significant difference between HTML and XML is that HTML markup
tags are used to describe how information will be displayed while XML markup
tags identify the information.

Many companies use XML as a way to exchange data within an organization and
among business partners. In order to make this exchange successful, companies and
some industries have agreed upon a standard set of XML markup tags to describe data.

Data is stored in an XML document, which is a text file that contains data and
markup tags describing the data. An application accesses the data contained in an
XML document by parsing the document. Parsing strips away markup tags leaving
data, which the application then processes further.

However, before an application reads the XML document, it must learn about the
XML markup tags contained in the document by reviewing the document type
definition (DTD). The DTD identifies markup tags that can be used in the XML
document and defines the structure of these tags.

The DTD can be placed at the top of the XML document or in a separate file if
the DTD is going to be used by multiple XML documents. Reference is then made
to the DTD file at the beginning of each XML document.

14 XML Demystifi ed

Quiz
 1. XML cannot be used with HTML.

 a. True

 b. False

 2. XML is more advantageous to use than a fixed-length database system
because

 a. Today’s computers are faster than they have been in years past.

 b. It saves money by reducing IT expenses.

 c. Those without an IT background can easily understand XML.

 d. All of the above.

 3. SAX is

 a. A fixed-length database system

 b. An XML database system

 c. A variable-length database system

 d. An XML parser

 4. PCDATA is

 a. An XML element that contains other XML elements

 b. An XML element that contains parsed character data

 c. An XML element that’s used to define data for use only on a PC

 d. None of the above

 5. The Document Object Model

 a. Defines the layout of an XML document

 b. Defines XML elements that are used in an XML document

 c. Is an XML parser

 d. Is an XML document that contains labels, buttons, and other Graphical
User Interface objects

 6. You must use a parser to read an XML document.

 a. True

 b. False

CHAPTER 1 XML: An Inside Look 15

 7. XML stores data in fixed lengths.

 a. True

 b. False

 8. XML is a subset of

 a. SGML

 b. HTML

 c. MGL

 d. None of the above

 9. XML is used for web services.

 a. True

 b. False

 10. An XML element can contain other XML elements.

 a. True

 b. False

This page intentionally left blank

17

CHAPTER
2

Creating an XML
Document

Now that you have an understanding of what XML is and how it works, it’s time to
learn how to apply your knowledge and design your own set of XML markup tags,
and then use those tags to write your first XML document.

Creating a set of XML markup tags requires you to analyze and organize the
information that you want to place in an XML document. You’ll need to find the
natural relationships within pieces of information so you can describe those
relationships in your document type definition.

In this chapter, you’ll learn step-by-step how to do this, along with other design
features, to build a working XML document that enables you to share information
electronically among various applications.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

18 XML Demystifi ed

Identifying Information
You use an XML document to organize information from a business transaction,
such as information about a customer. However, before you can create an XML
document, you’ll first need to identify information used in the business transaction
and then develop a set of XML markup tags to describe this information.

This might seem daunting at first, but it isn’t if you carefully review each step in
the business transaction, making sure that you identify each piece of information
needed to complete the business transaction. Don’t be concerned if all the information
you find isn’t used in an XML document. At this point, simply identify the
information. Later, you’ll decide if you should include it in the XML document.

Let’s walk through an example of an order transaction and identify customer
information by first listing the steps in the transaction. List these steps in the order
they’re performed. For more complex transactions, you may want to draw a
flowchart that illustrates each step in the transaction. We’ll keep the transaction
simple in this example. Here are the steps in the order transaction:

 1. The customer selects products.

 2. The customer checks out.

 3. The customer is prompted to enter an account number.

 4. If the customer does not enter an account number, then the customer is
prompted to open an account.

 5. If the customer decides to open an account, the customer is prompted to
enter personal information and is then returned to the checkout process.

 6. The customer is presented with the subtotal for the purchase.

 7. The customer is prompted to select a shipping method.

 8. Shipping charges are calculated and added to the subtotal, which is then
presented to the customer.

 9. The customer is prompted to select a billing method.

 10. The customer is then asked to confirm the order, and with positive
confirmation, the order is processed.

Noticed that we’ve described the transaction in sufficient detail to identify the
information used in the transaction, but not at the level of detail necessary to
program the application.

Review the steps of this transaction and focus in on those ones that contain
customer information, such as the step where the customer opens a new account.

CHAPTER 2 Creating an XML Document 19

Review any documentation, such as that for a new account, which describes the
information required to open this account.

Here’s a list of the information that’s needed to open a new account:

• First Name

• Last Name

• Title

• Company

• Street Address 1

• Street Address 2

• City

• State

• Zip

• Business Phone

• Cell Phone

• Home Phone

• Fax

• E-mail

• Account Number

Practically any word can be used as an XML markup tag so long as it isn’t a
reserved XML word, such as <?xml>, which is a processing instruction. The
element tag cannot contain any white space. In places where white space makes it
easier to read, such as “first name,” an underscore is typically used: “first_name.”
XML parsers are case sensitive so “first_name” is not equal to “First_Name.” The
common convention is to use all lowercase letters as it makes it less confusing for
the programmers parsing the XML. The word should describe the information.
Many times you can use the label you’ll use on the order form to describe the
information for the XML markup tag. For example, a new account form will have
First Name as a label. It makes sense to use this as the XML markup tag for the
customer’s first name.

Creating XML Markup Tags

20 XML Demystifi ed

Be sure that the XML markup tag explicitly describes the information and is not
so general that the tag could be misconstrued. Suppose the new account form has a
label First Name, which describes the customer first name. You’re going to nest it
inside the customer element so there is no ambiguity. The names should be as short
and concise as possible.

As you learned in the previous chapter, XML markup tags are organized into a
parent/child relationship where a parent XML markup tag contains children markup
tags. A child markup tag contains information. Looking at this from the parser
perspective, a markup tag is almost always a parent; the child is the text (otherwise
referred to as an element node and a text node).

Identifying a parent/child relationship is intuitive in most cases. Think of a parent
as an object such as an order form, invoice, credit notice, and customer. Children
are information that are contained within the parent, such as a customer’s first name
and city. For example, Customer is a likely name for a parent because it contains
XML markup tags representing customer information. Make a list of these objects
using indenting to show the relationship between a parent and its children, as we’ve
illustrated here:

customer
 first_name
 last_name
 title
 company
 street_1
 street_2
 city
 state
 zip
 business_phone
 cell_phone
 home_phone
 fax
 email
 account_number

Parent ... Parent/Child ... Child
Sometimes it makes sense to further organize XML markup tags into a parent ...
parent/child ... child relationship where the child of a parent is also a parent, as we
illustrate in the following diagram:

Parent
 Parent/Child
 Child

CHAPTER 2 Creating an XML Document 21

Let’s see how this applies to our customer information example. Look over the
customer information and try to find subgroups of information. You’ll probably
notice customer name, customer address, and customer phone number as three
natural groups. These make good parent/child candidates.

Each parent/child must have its own XML markup tag so that an application can
retrieve its children. Suppose, for example, that an application wants the customer’s
mailing address. The application can grab the customer address parent, then parse
the child elements to get the various parts of the address.

This new set of XML markup tags reflects the parent/child element:

customer
 name
 first_name
 last_name
 title
 company
 address
 street_1
 street_2
 city
 state
 zip
 phone
 business
 cell
 home
 fax
 email
 account_number

Our list of XML markup tags is almost complete; however, one tag is missing.
These tags define information for one customer, yet multiple customers will appear
in the XML document. Furthermore, the XML document will likely contain other
information in addition to customer information.

Therefore, it makes sense to organize the XML document into sections, one of
which is customers. A section is simply another parent/child element as shown here:

customers
 customer
 name
 first_name
 last_name
 title
 company
 address

22 XML Demystifi ed

 street_1
 street_2
 city
 state
 zip
 phone
 business
 cell
 home
 fax
 email
 account_number

Creating a Document Type Definition
After you create a set of XML markup tags, the next step is to create a document
type definition (DTD). A DTD identifies the markup tags that can be used in an
XML document and it defines the structure of those tags, which you learned about
in the previous chapter. The DTD identifies the name of the XML markup tag and
whether or not the tag is a parent or child.

Here’s the DTD for the customer information example:

<?xml version="1.0"?>
 <!ELEMENT customers (customer*)>
 <!ELEMENT customer (name, title, company,
 address, phone, email, account_number)>
 <!ELEMENT name (first_name, last_name)>
 <!ELEMENT address (street_1, street_2, city, state, zip)>
 <!ELEMENT phone (business, cell, home, fax)>
 <!ELEMENT first_name (#PCDATA)>
 <!ELEMENT last_name (#PCDATA)>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT company (#PCDATA)>
 <!ELEMENT street_1 (#PCDATA)>
 <!ELEMENT street_2 (#PCDATA)>
 <!ELEMENT city (#PCDATA)>
 <!ELEMENT state (#PCDATA)>
 <!ELEMENT zip (#PCDATA)>
 <!ELEMENT business (#PCDATA)>
 <!ELEMENT cell (#PCDATA)>
 <!ELEMENT home (#PCDATA)>
 <!ELEMENT fax (#PCDATA)>
 <!ELEMENT email (#PCDATA)>
 <!ELEMENT account_number (#PCDATA)>

CHAPTER 2 Creating an XML Document 23

This DTD has two types of elements—parent and child. Let’s examine the second
line of the DTD, which describes the first element, customers. Customers is a parent
element and it contains the child element, customer. Notice that an asterisk follows
customer. The asterisk means there is zero to many customer elements under
customers. When you specify child elements, you can use three qualifiers that
define the number of occurrences of that child element:

• * Zero to many occurrences

• + One to many occurrences

• ? Zero or one occurrences

The last one is sometimes referred to as the “optional” qualifier since it means
either zero or one of the elements will be present. For example, the customer record
includes a fax number. If you want this data to be optional in the XML, you could
change this line in the DTD:

<!ELEMENT phone (business, cell, home, fax)>

to:

<!ELEMENT phone (business, cell, home, fax?)>

This would mean that fax is an optional element nested with the phone element.
Since business, cell, and home don’t have any qualifiers, they must appear once—
and only once—under the phone element. Furthermore, the business, cell, home,
and fax elements must appear in exactly the order they’re specified in the DTD.

Skip down to the seventh line in the DTD where first_name is defined as
containing PCDATA. This, and the remaining lines in the DTD, defines child
elements. Each of these child elements contains a child text node. The data in the
text node is Parsed Character Data (PCDATA), as designated by the PCDATA tag
in the DTD.

Creating an XML Document
The final step is to create the XML document. Begin by placing the DTD at the top
of the document, as we show in the next example. An XML parser reads these
definitions before parsing elements of the XML document.

Alternatively, you can write the DTD to a text file and then reference the text file
at the top of the XML document, as we described in the previous chapter. You could
have saved the DTD to the file customers.dtd and then replaced the DOCTYPE and
DTD in the next example with the following line:

<!DOCTYPE Customers SYSTEM "customers.dtd”>

24 XML Demystifi ed

When writing the XML document, be sure to enclose each element in angled
brackets (< >), and always have an open (<) and closed markup tag (</). You place
child elements within the open and closed markup tags of a parent element, and
place information within the open and closed markup tags of a child element.

Here’s the completed XML document. The first line of the document is a
processing instruction that explicitly identifies this document as an XML document.
This isn’t required, but it’s normally included. The DTD comes next, followed by
the elements of the XML document.

<?xml version="1.0"?>
<!DOCTYPE customers [
 <!ELEMENT customers (customer*)>
 <!ELEMENT customer (name, title, company,
 address, phone, email, account_number)>
 <!ELEMENT name (first_name, last_name)>
 <!ELEMENT address (street_1, street_2, city, state, zip)>
 <!ELEMENT phone (business, cell, home, fax)>
 <!ELEMENT first_name (#PCDATA)>
 <!ELEMENT last_name (#PCDATA)>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT company (#PCDATA)>
 <!ELEMENT street_1 (#PCDATA)>
 <!ELEMENT street_2 (#PCDATA)>
 <!ELEMENT city (#PCDATA)>
 <!ELEMENT state (#PCDATA)>
 <!ELEMENT zip (#PCDATA)>
 <!ELEMENT business (#PCDATA)>
 <!ELEMENT cell (#PCDATA)>
 <!ELEMENT home (#PCDATA)>
 <!ELEMENT fax (#PCDATA)>
 <!ELEMENT email (#PCDATA)>
 <!ELEMENT account_number (#PCDATA)>
]>
<customers>
 <customer>
 <name>
 <first_name>Bob</first_name>
 <last_name>Smith</last_name>
 </name>
 <title>Manager</title>
 <company>My Company Inc.</company>
 <address>

CHAPTER 2 Creating an XML Document 25

 <street_1>The Tech Building</street_1>
 <street_2>555 5th Street</street_2>
 <city>Some City</city>
 <state>NJ</state>
 <zip>07665</zip>
 </address>
 <phone>
 <business>555-555-1212</business>
 <cell>555-555-5432</cell>
 <home>555-555-7678</home>
 <fax>555-555-9989</fax>
 </phone>
 <email>bsmith@mycompany.com</email>
 <account_number>6970654</account_number>
 </customer>
</customers>

Attributes
An attribute is information that modifies an XML markup tag. You’re probably
familiar with attributes from when you’ve used an HTML markup tag to
display an image on a web page. The tag tells the browser to display an
image. The attribute src tells the browser what image you want to display, as
shown here:

Attributes work the same way in XML. An attribute is sometimes called a name/
value pair. The name is the name of the attribute. The value is the value assigned to
the attribute. That is, “src” is the attribute’s name and “image.gif” is the value
assigned to the attribute.

Attributes are placed within the opening markup tag. You can create as many
attributes as required, however each attribute must have a unique name, a value
contained with quotations; and each name/value pair must be separated by a space.
Like element names, attribute names cannot contain whitespace characters. This
makes it impossible to parse the XML. The value of an attribute is enclosed in
quotations and can contain white space.

XML gives you the flexibility to create your own attributes. That is, you pick the
name of the attribute and the attribute’s value. This can be tricky because you must
be careful not to confuse an attribute with the information that the XML markup tag
describes.

26 XML Demystifi ed

Suppose, for example, that you require that the customer ID be stored in the
XML document. There are at least two ways to do this. First, you could create a
customer ID child tag within the customer parent tag:

<cust_id>

The other way is to place the customer ID in an attribute of the customer tag, as
shown here:

<customer cust_id="12345">

Some developers prefer using an attribute to store a unique identifier for a parent
that represents a single instance such as a customer, order, or product because the
attribute makes it easier to identify each instance within the XML document. We
illustrate this in the following example, which contains two instances of a customer.
Notice that the customer ID pops out at you when you’re scanning these XML
markup tags. Generally it’s best to use attributes when you have a value that’s
unique to that element as a whole and is unlikely to change. In other words, you’re
always going to have one, and only one, cust_id for a customer, but you can have
several addresses (tomorrow you decide to add mailing, billing, and delivery
addresses), many phone numbers, etc. Whether you’ve used attributes or XML
markup tags, the parser is able to extract the customer ID from the XML
document.

<customers>
<customer cust_id="12345">
 <name>
 <first_name>Bob</first_name>
 <last_name>Smith</last_name>
 </name>
 <title>Manager</title>
 <company>My Company Inc.</company>
</customer>
<customer ID="56789">
 <name>
 <first_name>Tom</first_name>
 <last_name>Jones</last_name>
 </name>
 <title>Vice President</title>
 <company>His Company Inc.</company>
</customer>
</customers>

CHAPTER 2 Creating an XML Document 27

A comment is information in the XML document that’s typically not part of the
actual data. For example, if you’re transferring an XML data file to another
company, you may put a comment that gives your name, address, phone, and the
date/time that the transfer occurred. If you have a large document and need to split
it into multiple smaller documents, you might put a sequence number in the
comments. The information in the comments is often data that can be determined
from the XML, but having comments makes it easier to troubleshoot and keeps
records.

A comment doesn’t need to be declared in the DTD. One of the features of an
XML parser is you can tell it whether or not to ignore comments. Since comments
are not usually part of the data, it’s most common to ignore them while processing
the document.

You insert a comment into an XML document the same way you insert one into
an HTML document. That is, you use the open comment (<!--) and close comment
(-->). The parser considers any characters between the open and closed comments a
comment. The only sequence of characters not permitted between the opening and
closing tags is “- -.” The parser uses this special sequence to find the closing tag.

A comment can be placed on a single line or multiple lines, as shown here:

<customer cust_id="12345">
 <!-- File sent at 10:35 EST -->
 <name>
 <first_name>Bob</first_name>
 <last_name>Smith</last_name>
 </name>
 <!--
 Valid Titles
 President
 Vice President
 Manager
 -->
 <title>Manager</title>
 <company>My Company Inc.</company>
</customer>

Comments

28 XML Demystifi ed

Entities
Although XML has few special characters, there are enough that conflict with
information that’s contained in the XML document. Let’s say that your XML
document contains a formula, as shown here. You probably don’t have any problem
reading it. The formula simply says “a < b.”

<formula>a<b</formula>

However, this formula will confuse the parser and cause an error to occur because
the “<” is an XML special character that tells the parser that the characters following
the “<” are an XML markup tag.

You can avoid such confusion by using entities in place of characters that conflict
with XML special characters. An entity is a name preceded by an ampersand (&)
that tells the parser that you want to use XML special characters as information—
and not as XML tags. Table 2-1 contains commonly used entities.

Here’s the correct way to write the formula in an XML document:

<formula>a<b</formula>

Some documents contain unusual characters, especially those that have scientific
or mathematical formulas. For example, you probably have seen this one in your
geometry book: π. This is the symbol for pi. You won’t find this symbol on your
keyboard. In order to insert this symbol into an XML document, you’ll need to refer
to its UNICODE value.

UNICODE is a standard that associates a numeric value to characters that are
used in documents. Every character on your keyboard has a UNICODE value.
Likewise, every character in nearly every language spoken around the world has a
UNICODE value. You can look up UNICODE in your favorite search engine to see
the value that’s associated with the character you want to insert into your XML
document.

XML Keyword Entity

< <

> >

“ "

‘ '

& &

Table 2-1 Use the Entity Whenever Information Takes the Form of an XML Keyword

CHAPTER 2 Creating an XML Document 29

You insert the UNICODE value into your XML document by using the ampersand,
and then the pound symbol followed by the number. Here’s how you’d insert the π
symbol into your XML document:

<PI>ã</PI>

In the customers XML document example, the DTD specifies that the child
elements contain PCDATA; for example:

 <!ELEMENT first_name (#PCDATA)>

This means that the data between the opening and closing first_name tags can
contain this special character entity, as we described above. This is what is meant
by parsed character data. If the parser sees “<,” it recognizes this as a special
entity: the return “<” to the application processing the XML. Similarly, if the
application is building the XML document and tells the parser to put “<” as a piece
of data, the parser recognizes this special entity and puts “<” into the document.
The other option is Character Data (CDATA). If you specify the data between the
tags as CDATA, then no special entities are allowed. Trying to put a “<” in the data
results in an error.

Processing Instructions
A processing instruction is a command that you give to the application that’s going
to use the information contained in the XML document. For example, you might
say, “Only process new customers.” The actual commands that you use depends on
the commands the application that is processing your XML document recognizes.

If you’re writing the XML document and the application that processes the XML
document, then you can create your own commands for processing the document.
However, for existing applications, you’ll have to use commands that the person
who wrote the application has defined.

A processing instruction is not part of the data in an XML document. Instead, the
parser passes along a processing instruction to the application. Here’s how to insert
a processing instruction into your XML document. Processing instructions that
start with “xml” are reserved for current and future standards.

<?command?>

CDATA Sections
The CDATA section is part of an XML document that contains only data, and
doesn’t contain XML markup tags. The parser passes data contained in this section
to the application that is using the XML document.

30 XML Demystifi ed

The CDATA section is defined as:

<![CDATA["12345" "98765"]]>

The section opens with <![CDATA[and ends with]]>. Data appears between
them. The data between the tags is passed to the application without any translation
or interpretation. In this case,

"12345" "98765"

would be passed to the application as a raw string. One of the more common uses
of a CDATA section is to pass binary data in XML, such as an image file. A CDATA
section may appear anywhere in an XML document where character data appears.

Looking Ahead
In order to create an XML document, you must first develop a set of XML markup
tags by analyzing the information you want included in that document. During the
analysis, you’ll need to identify the natural organization of the information in terms
of parent ... child and parent ... child/parent ...child relationship.

The next step is to create the document type definition (DTD) so that the parser
knows which XML markup tags are valid for the XML document. You can store the
DTD at the top of the document or in a text file, which is then referenced at the top
of the document. Next, you’ll use the XML markup tags that you created and write
your XML document.

An XML markup tag can contain one or more attributes. Attributes are name/
value pairs that contain information that modifies the tag. However, some developers
use attributes to store information, such as a customer ID, which can be included as
its own XML markup tag.

Comments are used to place reminders throughout the XML document. The
parser usually ignores them and they’re not passed along to the application that’s
using the XML document.

Sometimes conflicts arise between an XML special character and a character
entered as part of the information of a markup tag. An entity resolves these conflicts.
It’s a symbol used in the XML document that replaces the conflicting character.

You can include processing instructions in an XML document to instruct the
application that uses the XML application on how to process the application. The
parser passes along processing instructions to the application.

The CDATA section of an XML document is a collection of data without tags
that’s passed to the application.

CHAPTER 2 Creating an XML Document 31

Quiz
 1. A parent element cannot contain another parent element.

 a. True

 b. False

 2. An attribute contains a

 a. Name/value pair

 b. Value/name pair

 c. The data section of the XML document

 d. None of the above

 3. The asterisk at the end of an element name in a DTD means it’s

 a. The end of the list of elements

 b. The beginning of the list of elements

 c. The DTD contains zero to many of this element

 d. The DTD contains this element and fewer elements

 4. What does the parser do with the CDATA section of an XML document?

 a. Ignores it

 b. Passes the data to the application that uses the XML document without
any translation or interpretation

 c. Deletes the data before passing the XML document to the application
that uses the XML document

 d. None of the above

 5. The DOCTYPE is used to

 a. Create the CDATA section of an XML document

 b. Create an XML document

 c. Identify the DTD for an XML document

 d. Identify the parser that is used to parse the XML document

 6. A child element can be a parent element.

 a. True

 b. False

32 XML Demystifi ed

 7. All XML markup tags must have an attribute.

 a. True

 b. False

 8. Special symbols can be inserted into an XML document using

 a. CDATA

 b. A UNICODE value

 c. An attribute

 d. A comment

 9. You avoid conflict between an XML special character and information in
an XML document by using a comment.

 a. True

 b. False

 10. A processing command is removed from an XML document before the
XML document is passed along to the application that uses the XML
document.

 a. True

 b. False

33

CHAPTER
3

Document Type
Defi nitions

Throughout this book you’ve learned that you create an XML document using a set
of markup tags much like you use for an HTML document. However, markup tags
used in an XML document usually conform to a standard set of markup tags that are
adopted by a company or an industry rather than the single standard used for all
HTML documents.

An XML standard is defined in a document type definition (DTD) that specifies
the markup tags that can be used in the XML document along with the parent-child
structure of those tags. The XML parser uses the DTD as reference when parsing
elements of the XML document.

We’ve introduced you to the basic concept of a DTD in the last chapter. Now
we’ll take an in-depth look at how to develop your own DTD and explore features
XML developers commonly use.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

34 XML Demystifi ed

Types of Document Type Definition
There are two types of document type definitions (DTD): an internal DTD and an
external DTD. An internal DTD appears at the beginning of the XML document
within the DOCTYPE tag, which we illustrate in the next example.

Internal DTD is perfect for when only one XML document will use the DTD
because the DTD is distributed in the same file as the XML document. Some
developers also use an internal DTD for small documents where the DTD is unlikely
to change and, especially, for those documents that will only be distributed within
their organization.

Avoid using an internal DTD if many XML documents share the same DTD
because it isn’t economical to replicate the DTD in every XML document. Further-
more, you’ll need to hunt down each of those documents whenever you want to
change the DTD.

Notice that the following example uses an internal DTD to define a customer for
the XML document. This DTD contains a number of parent-child relationships (see
Chapter 2), as you can tell from reading the definition of the customer tag.

The customer tag is a parent than contains seven child elements. These are name,
title, company, address, phone, email, and account_number. Three of those child
elements are also parents to their own child elements.

For example, name has first_name and last_name as child elements. Address has
street_1, street_2, city, state, and zip as child elements. And phone has business,
cell, home, and fax as child elements.

The DTD ends with]>. The XML document begins on the next line, where tags
defined in the DTD identify data within the XML document.

<?xml version="1.0"?>
<!DOCTYPE customers [
 <!ELEMENT customers (customer*)>
 <!ELEMENT customer (name, title, company,
 address, phone, email, account_number)>
 <!ELEMENT name (first_name, last_name)>
 <!ELEMENT address (street_1, street_2, city, state, zip)>
 <!ELEMENT phone (business, cell, home, fax)>
 <!ELEMENT first_name (#PCDATA)>
 <!ELEMENT last_name (#PCDATA)>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT company (#PCDATA)>
 <!ELEMENT street_1 (#PCDATA)>
 <!ELEMENT street_2 (#PCDATA)>

CHAPTER 3 Document Type Defi nitions 35

 <!ELEMENT city (#PCDATA)>
 <!ELEMENT state (#PCDATA)>
 <!ELEMENT zip (#PCDATA)>
 <!ELEMENT business (#PCDATA)>
 <!ELEMENT cell (#PCDATA)>
 <!ELEMENT home (#PCDATA)>
 <!ELEMENT fax (#PCDATA)>
 <!ELEMENT email (#PCDATA)>
 <!ELEMENT account_number (#PCDATA)>
]>
<customers>
 <customer>
 <name>
 <first_name>Bob</first_name>
 <last_name>Smith</last_name>
 </name>
 <title>Manager</title>
 <company>My Company Inc.</company>
 <address>
 <street_1>The Tech Building</street_1>
 <street_2>555 5th Street</street_2>
 <city>Some City</city>
 <state>NJ</state>
 <zip>07665</zip>
 </address>
 <phone>
 <business>555-555-1212</business>
 <cell>555-555-5432</cell>
 <home>555-555-7678</home>
 <fax>555-555-9989</fax>
 </phone>
 <email>bsmith@mycompany.com</email>
 <account_number>6970654</account_number>
 </customer>
</customers>

External Document Type Definition
The external DTD is a DTD that isn’t included in an XML document. Instead, it’s
placed in its own file that has a .dtd file extension. An external DTD can be shared
by any XML document if you reference the DTD at the beginning of the XML
document.

36 XML Demystifi ed

Let’s convert the internal DTD we showed you in the previous example into an
external DTD and then reference the DTD from an XML document. The first step
is to copy the DTD into its own file. You can do this using any text editor. We’ll call
the file customers.dtd. The file name should represent the contents of the file. Here’s
the customers.dtd file:
<!ELEMENT customers (customer*)>
<!ELEMENT customer (name, title, company, address, phone, email, account_number)>
<!ELEMENT name (first_name, last_name)>
<!ELEMENT address (street_1, street_2, city, state, zip)>
<!ELEMENT phone (business, cell, home, fax)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT company (#PCDATA)>
<!ELEMENT street_1 (#PCDATA)>
<!ELEMENT street_2 (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT business (#PCDATA)>
<!ELEMENT cell (#PCDATA)>
<!ELEMENT home (#PCDATA)>
<!ELEMENT fax (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT account_number (#PCDATA)>

The last step is to reference the external DTD from an XML document. You’ll
use the same XML document you used for the internal DTD. You reference the
external DTD in the DOCTYPE tag by using SYSTEM followed by the external
DTD file name within quotations, as we show in the next example.

The parser encounters the reference to the external DTD as soon as it reads the
DOCTYPE tag. It reads the external DTD from the customers.dtd file next, and
then continues reading the XML document.

<?xml version="1.0"?>
<!DOCTYPE customers SYSTEM "customers.dtd">
<customers>
 <customer>
 <name>
 <first_name>Bob</first_name>
 <last_name>Smith</last_name>
 </name>
 <title>Manager</title>
 <company>My Company Inc.</company>
 <address>
 <street_1>The Tech Building</street_1>
 <street_2>555 5th Street</street_2>
 <city>Some City</city>

CHAPTER 3 Document Type Defi nitions 37

 <state>NJ</state>
 <zip>07665</zip>
 </address>
 <phone>
 <business>555-555-1212</business>
 <cell>555-555-5432</cell>
 <home>555-555-7678</home>
 <fax>555-555-9989</fax>
 </phone>
 <email>bsmith@mycompany.com</email>
 <account_number>6970654</account_number>
 </customer>
</customers>

External DTD are commonly used when XML documents are exchanged among
business partners. Business partners agree to the structure of the DTD and then
share the same external DTD for multiple XML documents.

Typically one organization will be the “owner” of the DTD and is responsible for
updating it and making it accessible to any partner that’s using it. The most common
way to share a DTD is to make the source reference a URL. The DTD can be posted
on a public web server so anybody using it can reference it. Even though one
company or organization controls the DTD, they still need to agree on the content
of the XML with their partners.

In one sense, it’s good practice to use a DTD so that all parties using it agree and
understand the exact structure of the document. Any change to the DTD needs to be
clearly communicated. Another good reason to use a DTD is that the XML parsers
can validate the structure of the document. There’s no need to write a lot of custom
code for validation. The parser already has this built in to it. For example, if the
parser comes across an element tag in the above document that has <middle_name>,
this tag isn’t defined in the DTD and the parser throws an error. There is no need to
check for this in the application code; the parser checks it for you.

Another feature in the parser is its ability to ignore certain types of white space.
Oftentimes an XML document may be structured like this to make it more human
readable:

<name>
 <fi rst_name>Joe</fi rst_name>
 <last_name>Brown</last_name>
</name>

Technically there’s a text node between the <name> tag and <first_name> tag.
The value (on a Windows platform) is three characters, which consist of a carriage
return, line feed, and tab. These characters aren’t part of the content of the

38 XML Demystifi ed

document—they’re present just to make the XML more human readable. This
would be equally valid XML:

<name><fi rst_name>Joe</fi rst_name><last_name>Brown</last_name></name>

If you’re using a DTD, you can tell the parser to “ignore white space.” What is
white space? It refers to any of the first 33 characters in the ASCII table. This
includes the space character, carriage return, line feed, tab, escape, backspace, and
several others. The parser looks at the document and recognizes from the DTD that
the <name> tag is supposed to be followed by the <first_name> tag. If the only
characters between the <name> tag and <first_name> tag are white space (the first
33 characters in the ASCII table), then the parser ignores them.

Shared Document Type Definition
You can use a DTD for a subset of an XML document rather than apply it to the
entire document. This is referred to as a shared DTD, which shouldn’t be confused
with an external DTD that’s shared by two or more XML documents.

For example, the developer may have a structure for telephone numbers that will
be standard for all XML documents that use telephone numbers. The developer
could copy the telephone number structure in the DTD for each document. Although
this standardizes the structure of the telephone number, there’s an inherit problem:
The developer must change these DTDs whenever there’s a change to the structure
of the telephone number.

A more efficient approach is to set up the telephone number structure in a shared
DTD and then reference it as a subset of the DTD for the XML document. The
shared DTD then becomes an extension to the XML document’s DTD.

Here’s how this works. First you’ll need to create a shared DTD that contains
the structure of the telephone number. The shared DTD is an external DTD. That is, the
shared DTD is stored in its own file. Consider this snippet of XML:

<phone>
 <business>555-555-1212</business>
 <cell>555-555-5432</cell>
 <home>555-555-7678</home>
 <fax>555-555-9989</fax>
</phone>

The DTD for this snippet of XML looks like this:

<!ELEMENT phone (business,cell,home,fax)>
<!ELEMENT business (#PCDATA)>
<!ELEMENT cell (#PCDATA)>

CHAPTER 3 Document Type Defi nitions 39

<!ELEMENT home (#PCDATA)>
<!ELEMENT fax (#PCDATA)>

We’ll save this in a file called phone.dtd.
Next, we’ll show you how to create an external DTD for the XML document.

We’ll modify the customers.dtd that we created earlier in the chapter by removing
the definition of the phone tag and then inserting reference to the phone.dtd.

Here’s the revised customers.dtd. Reference to the phone.dtd appears in the last
two lines of the customers.dtd. Notice that this reference is made as an attribute of
an ENTITY tag rather than a DOCTYPE tag.

The last line in the DTD—%phone;—defines the ENTITY, and the ENTITY tag
identifies where to find the resource “phone.dtd”.

<!ELEMENT customers (customer*)>
<!ELEMENT customer (name, title, company, address, phone, email, account_number)>
<!ELEMENT name (first_name, last_name)>
<!ELEMENT address (street_1, street_2, city, state, zip)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT company (#PCDATA)>
<!ELEMENT street_1 (#PCDATA)>
<!ELEMENT street_2 (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT account_number (#PCDATA)>
<!ENTITY % phone SYSTEM "phone.dtd">
%phone;

Here’s the XML document that uses the phone tag. This document only needs to
reference the customers.dtd and not the phone.dtd because the customers.dtd links
to the phone.dtd.

<?xml version="1.0"?>
<!DOCTYPE customers SYSTEM "customers.dtd">
<customers>
 <customer>
 <name>
 <first_name>Bob</first_name>
 <last_name>Smith</last_name>
 </name>
 <title>Manager</title>
 <company>My Company Inc.</company>
 <address>
 <street_1>The Tech Building</street_1>
 <street_2>555 5th Street</street_2>
 <city>Some City</city>

40 XML Demystifi ed

 <state>NJ</state>
 <zip>07665</zip>
 </address>
 <phone>
 <business>555-555-1212</business>
 <cell>555-555-5432</cell>
 <home>555-555-7678</home>
 <fax>555-555-9989</fax>
 </phone>
 <email>bsmith@mycompany.com</email>
 <account_number>6970654</account_number>
 </customer>
</customers>

The way organizations can use shared DTDs to create DTD subsets that can be
assembled into a DTD for an XML document is similar to how classes can be used
in object-oriented programs to build complex objects.

Assembling a DTD from DTD subsets helps speed development while maintaining
standards across an organization. For example, a developer whose XML document
requires telephone numbers doesn’t have to define a phone tag. Instead, the developer
references the phone.dtd.

Likewise, the organization doesn’t have to worry that DTDs around the company
have different definitions for a phone tag because one developer defines the phone
tag in the phone.dtd and other developers reference that shared DTD.

Furthermore, changes to a shared DTD occur in one place by one developer, but
immediately affect all DTDs that reference that shared DTD. Suppose the
organization decides to expand the phone tag definition to include a cell phone. One
developer changes the phone.dtd and that change is instantaneously available to the
other DTDs. This means an XML document can contain a cell phone number
without having to change its DTD.

Element Declarations
An element is a portion of the DTD that describes an XML markup tag that can be
used in the XML document. It defines an XML markup tag, along with the child of
the element. The child may be other elements, character data, or EMPTY. (We’ll
cover EMPTY later in this chapter.)

An element is declared within the document type definition by using the following
form:

<!ELEMENT element_name (names of child elements or character data type)>

CHAPTER 3 Document Type Defi nitions 41

The element_name is the name of the tag, and its child data are placed within the
parentheses. Here’s the declaration of the customer element, which you used
previously in this chapter. The customer element consists of seven child elements.
<!ELEMENT customer (name, title, company, address, phone, email, account_number)>

An element that contains character data is declared similarly, except #PCDATA
is placed between the parentheses. (PCDATA is an acronym for Parsed Character
Data.) Here’s the way you declare this type of element:

<!ELEMENT element_name (#PCDATA)>

For example, the title element of customer contains character data and is declared
as follows:

<!ELEMENT title (#PCDATA)>

This declaration tells the XML parser that PCDATA is between the opening and
closing tags for title:

<title>Manager</title>

In an XML parser, the basic building blocks of an XML document are referred
to as nodes. An element is one type of node. In the case of the customer tag, the
child nodes are other elements. In the case of the title tag, the child node is referred
to as a text node. So in the example above, the value of the title child node is
“Manager.” Every time you define an element, you define the type of child node. It
will be other element node(s) or a text node.

Specifying the Number of Occurrences in an Element
You can specify the number of times a child element can be used within a parent
element by inserting one of three symbols as the last character in the name of the
child element. These symbols are shown in Table 3-1.

Let’s say that you declare a customer name as having three child elements, which
are first_name, middle_name, and last_name. However, not every customer has a
middle name. Therefore, you need to indicate in the declaration that the middle
name is optional. Also you want to use only one middle name, should a customer
have a middle name(s).

Symbol Number of Occurrences

* Zero to many

+ One to many

? Zero or one

Table 3-1 Symbols Used to Specify the Number of Occurrences of a Child Element
Within a Parent Element

42 XML Demystifi ed

XML developers define middle_name as having zero to one occurrence. That is,
the customer may have no middle name, or only one middle name but not multiple
middle names.

Reviewing Table 3-1, you’ll notice that the question mark is the symbol you use
to indicate zero to one occurrence. Here’s how you write this in the declaration for
the middle_name:

<!ELEMENT name (first_name, middle_name?, last_name)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT middle_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>

This declaration of the name and the middle_name enables the XML document
to contain the following data. You’ll notice two customers are entered into this
document. The first customer doesn’t have a middle name and second has one. Both
are valid. However, the first customer name will be invalid if you remove the
question mark from the middle_name in the name declaration in the DTD because
the first customer doesn’t have a middle name.

<name>
 <first_name>Bob</first_name>
 <last_name>Smith</last_name>
</name>
<name>
 <first_name>Bob</first_name>
 <middle_name>Alex</middle_name>
 <last_name>Smith</last_name>
</name>

We show you a good example of zero to many in our original XML example. The
customers tag may contain zero to many customer elements. You may have a process
where you transmit a file every day, whether or not there are any new records. There
are many business cases where you’ll need a positive confirmation that there haven’t
been any new customers that day.

Now you can change the business rule a little bit and say that you only want the
file transmitted if at least one customer is defined. If this is the business rule, then
you can change the definition of the customers element so it has one to many
customer elements.

Optional Child Elements
The declaration of a parent element contains the names of child elements that are
contained within the parent, which we discussed earlier in this chapter. However, all
those child elements must be present for the XML document to be valid. If one is
missing, then the entire document is invalid.

CHAPTER 3 Document Type Defi nitions 43

There is a way to make child elements optional: You use the OR (|) operator
when specifying child elements in the parent’s declaration. We illustrate this in the
next example, which uses the OR operator to make phone numbers optional:

 <!ELEMENT phone (business|cell|home)>

This example declares the phone element as a parent that could contain either a
business phone number, cellular phone number, or a home phone number, but not
more than one. If you write the declaration like this, then the XML document must
contains all three telephone numbers. Leaving out one of them invalidates the
document.

<!ELEMENT phone (business, cell, home)>

However, by separating the names of the child element with the OR operator, the
parser is told that the XML document is still valid if one—and only one—of those
phone numbers is in the document.

This means the following portion of the XML document is valid because it
contains one phone number:

<phone>
 <cell>555-555-5432</cell>
</phone>

However, this portion is invalid because it contains multiple telephone
numbers.

<phone>
 <business>555-555-1212</business>
 <cell>555-555-5432</cell>
</phone>

Grouping Elements
Here’s a common problem: A company may have more than one address, each with
its own telephone number. How do you declare this within a DTD? This is tricky
because the solution isn’t obvious. The answer is to group the address and phone
child elements and use the + symbol (see Table 3-1) to specify that the group can
appear multiple times within the XML document.

You group child elements by placing them within parentheses as we show in the
next example. You’ll notice that the address and phone child elements form a group.
Any symbol that follows the parenthesis affects all members of the group. So in this
case, the + symbol tells the parser that there can be one to many occurrences of the
address and phone child elements within each customer tag.

<!ELEMENT customer (name, title, company,
 (address, phone)+, email, account_number)>

44 XML Demystifi ed

If you replace the customer declaration in the DTD we show at the beginning of
this chapter with this one, then the following XML document is valid, even though
the customer contains more than one address and phone number. This is because the
address and phone child elements form a group that could have many occurrences
within the customer tag.

<!DOCTYPE customers SYSTEM "customers.dtd">
<customers>
 <customer>
 <name>
 <first_name>Bob</first_name>
 <last_name>Smith</last_name>
 </name>
 <title>Manager</title>
 <company>My Company Inc.</company>
 <address>
 <street_1>The Tech Building</street_1>
 <street_2>555 5th Street</street_2>
 <city>Some City</city>
 <state>NJ</state>
 <zip>07665</zip>
 </address>
 <phone>
 <business>555-555-1212</business>
 <cell>555-555-5432</cell>
 <home>555-555-7678</home>
 <fax>555-555-9989</fax>
 </phone>
 <address>
 <street_1>The Other Tech Building</street_1>
 <street_2>124 Main Street</street_2>
 <city>Some Other City</city>
 <state>NY</state>
 <zip>10001</zip>
 </address>
 <phone>
 <business>555-312-1212</business>
 <cell>555-324-5432</cell>
 <home>555-556-7678</home>
 <fax>555-768-9989</fax>
 </phone>
 <email>bsmith@mycompany.com</email>
 <account_number>6970654</account_number>
 </customer>
</customers>

CHAPTER 3 Document Type Defi nitions 45

EMPTY and ANY Elements
Two other useful element declarations are EMPTY and ANY. An EMPTY element
indicates that the element does not have a child node. That is, it doesn’t have child
elements or PCDATA. An ANY element means that anything can be used as a
child element.

The image element (img) is a good example of an EMPTY element because an
image element doesn’t contain data. It does reference an image file, but the reference
is an attribute of the element rather than information contained within the element.
Here’s how an EMPTY element is declared:

<!ELEMENT img EMPTY>

Here’s how the EMPTY element is used within an XML document:

You commonly use the ANY element when you’re updating a DTD to
accommodate multiple versions of XML. If you’re changing the definition of the
XML, ANY gives you a way to loosely define the XML. Suppose the address isn’t
part of the original DTD. Now you want to make it required but it’s going to take
some time for all the partners to update their processes. You can have the customer
tag contain ANY elements during this transition. The use of ANY is very strongly
discouraged because it doesn’t provide a concise definition of the document. It was
only added to the specification to be used when there’s no other practical way to
deal with updating and redefining documents.

Naming Elements
You have great flexibility when naming elements in your DTD so long as your
names conform to the rules. Here are those rules:

• Begin element names with a letter, colon, or underscore followed by a
combination of letters, numbers, underscores, periods, colons, or hyphens.

• White space is not permitted within the name.

• Avoid using a colon in the name so the element isn’t confused with
namespaces, which uses a colon in its name.

• Avoid starting the element name with XML because this is reserved for
XML standards.

• Keep element names short and concise. Although there isn’t any limit
placed on the length of the name, some XML processors may restrict the
length of element names.

46 XML Demystifi ed

Attribute Declarations
An attribute declaration defines an attribute for an element. An attribute is
information that describes an aspect of the element. For example, customer ID and
customer type might be attributes for a customer element.

Attributes are declared in an attribute list within the document type definition.
The attribute list contains the name of the element and a declaration of each attribute.
Here’s how to declare attributes for the customer element:

<!ATTLIST customer
 cust_id (CDATA) #REQUIRED
 type (retail|wholesale) "retail">

You use the ATTLIST keyword to identify the declaration of the attribute list.
Next to ATTLIST is the name of the element, which is customer in this example.
Each subsequent line declares an attribute.

The first attribute is called cust_id and is declared as character data (CDATA).
The #REQUIRED keyword indicates that this attribute must be present for every
customer. (It doesn’t need a value—cust_id=““ would be perfectly valid XML
because the attribute is present.) That is, an error message is generated if there is a
customer element that doesn’t contain a cust_id attribute. Table 3-2 lists other
keywords that are used to describe the form of an attribute.

The last line in the code declares type as an attribute. Valid values for this attribute
are contained within the parentheses. These are retail or wholesale. The pipe (|) is the
OR operator. Only one of these values is considered a valid option. Any other values
cause an error message to generate when the XML document is processed. Notice
that retail is repeated within quotations. This is the default value for this attribute. If
no type is entered, then the parser uses retail as the value for the type attribute.

Here’s how these attributes are used in an XML document:

<customer cust_id="55323" type="retail">
 ...
</customer>

Form Description

#REQUIRED The attribute is required but doesn’t have any specifi c default value.

#FIXED The attribute is only allowed to have one value. The attribute itself may
be optional, but if it is present in the XML document, it can only have
this value.

#IMPLIED The value is not required and no default value is provided.

“VALUE” The text contained within the quotes is the default value.

Table 3-2 Forms of Attribute Values

CHAPTER 3 Document Type Defi nitions 47

This, too, is valid, although the type attribute isn’t assigned a value in the XML
document. Remember that the type attribute is declared with a default value.
Therefore, the parser automatically assigns the default value, which is retail, to the
type attribute when the type attribute is assigned a value in the XML document.

<customer cust_id="55323">
 ...
</customer>

Entity Declarations
An entity may refer to a block of text, an external file, an alias name, or other forms
of referencing. The parser processes some entities. These are referred to as parsed
entities. Other entities are not parsed and are called unparsed entities.

Parsed and unparsed entities are identified by the absence or presence of a special
character in the entity declaration. If the entity contains <, ?, &, ‘, “, or #, then
characters following the special character and up to the next whitespace character
(i.e., space) are not parsed. All other characters are parsed.

You can create your own unparsed characters within the document type definition.
Here’s how you do it. Suppose you want to use NJ as an alias name for New Jersey
so that you can use &NJ wherever you want New Jersey to appear in an XML
document and have the parser replace &NJ with New Jersey during processing.

First you need to declare NJ as an unparsed element in the DTD using the
following code:

<!ENTITY NJ "New Jersey">

Then you can use this code in your XML document whenever you want to use
New Jersey:

<state>&NJ;</state>

The parser replaces &NJ; with New Jersey during processing just as if the XML
document contains this:

<state>New Jersey</state>

Looking Ahead
You use the document type definition (DTD) to declare tags that can be used in an
XML document. There are two types of DTDs, those internal to the XML document
and those that are external, which are contained in a separate file. You can reference
an external DTD among many XML documents by using the SYSTEM keyword
followed by the name of the external DTD file.

48 XML Demystifi ed

An external DTD can be divided into subsets called shared DTD. A subset
declares some elements. Subsets are then referenced with the DTD, which inherits
the element declared in the subset.

You can modify elements declared in a DTD by using symbols to indicate the
number of occurrences of a child element within a parent element. This enables an
element to be repeated multiple times in an XML document or not be included from
the XML document. You can group child elements within the declaration of the
parent element, enabling you to treat the group of elements as one.

Attributes are data related to an element such as a customer type. You declare
attributes in an attribute list by using the keyword ATTLIST. The attribute list can
specify valid values for an attribute as well as a default value.

An entity is a form of reference such as an alias name. Some entities are parsed
and others are unparsed. Unparsed entities begin with a special character, which the
parser ignores.

Quiz
 1. An XML document must contain all elements declared in the DTD.

 a. True

 b. False

 2. #PCDATA refers to

 a. Parsed charter data

 b. Program character data

 c. Parsed character data

 d. None of the above

 3. A question mark following the name of a child name in the declaration of a
parent element means

 a. The child element is required.

 b. The child element is optional.

 c. The name of the child element is unknown.

 d. One occurrence of the child element is required.

CHAPTER 3 Document Type Defi nitions 49

 4. What is address, phone in the declaration <!ELEMENT customer
(company, (address, phone)+, email)> ?

 a. A group

 b. The value of address and phone is concatenated.

 c. The value of email is concatenated to the value of address and phone.

 d. The value of email is concatenated to the value of phone.

 5. What is this: <!ENTITY % phone SYSTEM “phone.dtd”>?

 a. A reference to the internal DTD called phone.dtd

 b. A reference to the phone system

 c. References a shared DTD

 d. References the phone.dtd XML document

 6. An image tag is an example of an EMPTY element.

 a. True

 b. False

 7. All XML markup tags must have an attribute.

 a. True

 b. False

 8. An element name can begin with

 a. A colon

 b. An underscore

 c. Letters

 d. All of the above

 9. You cannot set valid options when declaring an attribute.

 a. True

 b. False

 10. #REQUIRED specifies that an element is required in all XML documents
that use the DTD.

 a. True

 b. False

This page intentionally left blank

51

CHAPTER
4

XML Schema

As we discussed in Chapter 3, a parser is software you use to extract data from an
XML document. However, before it does this, the parser must learn about the XML
tags used to describe data in the document.

The parser has no way of knowing the XML tags unless you tell it what they are
by creating a document type definition (DTD), which you learned how to do in
Chapter 3. A DTD describes the structure of the XML document by defining XML
tags used in the document and relationships among these tags.

However, there is another way you can describe the structure of an XML
document: You can create an XML schema. An XML schema does everything a
DTD does and more, which is why many developers have switched to using it. In
this chapter, you’ll learn how to take advantage of an XML schema in your
application.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

52 XML Demystifi ed

Inside an XML Schema
An XML schema is an alternative to using a DTD to describe the structure of an
XML document. You create it by using the XML schema language, which is
commonly referred to as XML schema definition (XSD).

An XML schema defines the building blocks of an XML document much the
same way the DTD does. These building blocks consist of elements, attributes, and
the parent/child relationship among elements.

Remember, an element is an XML tag, and an attribute is information related to
an element, such as an account number for the XML tag customer. A child element
contains data. A parent element contains other parent elements and child elements.
Recall that the customer element that you defined in Chapter 3 was a parent element
and contained child elements such as the customer cell phone number. It also
contained the customer name element, which is itself a parent element because it
contains customer first name and customer last name tags as shown here:

<customer>
 <name>
 <firstname />
 <lastname />
 </name>
</customer>

You can define the same structure in an XML schema. However, an XML schema
has the capability of defining more than the descriptions found in a DTD. In an
XML schema you can also define data types and namespaces.

You define a data type to eliminate any confusion that might arise with interpreting
the data the XML tag describes. For example, many XML documents contain dates
such as March 6, 2007. However, the format of the date can vary depending on your
country. Here are common ways a date is represented in an XML document:

3/6/2007
03-06-2007
3-6-2007
6-3-2007
2007 March 6
March 6, 2007
6 March 2007

All of these are valid dates. However, the parser might become confused unless
you specifically define the data type of the date. The data type tells the parser the
format used to represent a date in the XML document.

CHAPTER 4 XML Schema 53

Here’s how the data type is defined in an XML schema. This defines the data
type “date” as year-month-day. The parser considers other date formats errors if it
encounters them when processing the XML document. There are also predefined
formats for time as well as date/time, which you’ll learn about later in this chapter.

<date type="date">2007-03-06</date>

Likewise, you can define an integer data type in this way. You can define positive
and negative integers. If you omit the sign, then + is assumed.

<id type="integer">87326</id>

Document Type Definition vs. XML Schema
Let’s take a closer look at an XML schema by starting with an XML document.
Here’s an XML document that defines customers. The customers element contains
a customer child element. This customer element contains two child elements:
firstname and lastname. Of course, a real XML document would contain more data
about a customer, but we’ll keep the document brief for illustration purposes.

<?xml version="1.0"?>
<customers>
 <customer>
 <firstname>Mary</firstname>
 <lastname>Smith</lastname>
 </customer>
</customers>

You need to define the customers, customer, firstname, and lastname XML tags
in order for the parser to process this document. We’ll define these first using a
DTD and then using an XML schema so you can compare both techniques.

Here’s the DTD that describes the structure of the previous XML document.
Notice there are two parent tags and two data elements. The first parent tag is
customers, which contains the customer tag. The customer tag is also a parent tag
and contains the firstname and lastname tags. The firstname and lastname tags are
data elements that contain information about the customer. Save this DTD into the
customers.dtd file.

<!ELEMENT customers (customer*)>
<!ELEMENT customer (firstname, lastname)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>

54 XML Demystifi ed

Next you must reference the DTD file in the XML document. You do this with
the <!DOCTYPE> tag, as you’ll recall from Chapter 3. We illustrate this in the
update of the XML document that follows. The parser reads the customers.dtd file
when it encounters the <!DOCTYPE> tag in the XML document to learn about the
tags before processing the XML document.

<?xml version="1.0"?>
<!DOCTYPE customers SYSTEM "customers.dtd">
<customers>
 <customer>
 <firstname>Mary</firstname>
 <lastname>Smith</lastname>
 </customer>
</customers>

Now let’s take a look at how you use the XML schema in place of the DTD. You
use the XML schema language to create the XML schema. Each statement of an
XLM schema begins with <xs: and is followed by the keyword in the XML schema
language.

You’ll learn the XML schema language throughout this chapter; however, first,
we’ll show you an XML schema that’s equivalent to the customers.dtd DTD. Here’s
the XML schema. At first glance, you’ll probably notice there are few similarities
between a DTD and an XML schema, although both define the structure of an XML
document.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name=”customers”>
 <xs:element name=”customer”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <.xs:element>
</xs:element>
</xs:schema>

The XML schema begins with the xs:schema tag. This tag contains the xmlns:xs
attribute that points to the XMLSchema specifications used to write the XML
schema. (You’ll find these specifications on the www.w3.org web site.)

The XML schema then proceeds to define the customers element and the customer
element, which are similar to those in the DTD. The customer tag is defined as
having a complexType, which is a DTD and a particular sequence of elements.

www.w3.org

CHAPTER 4 XML Schema 55

The customer element is a parent element that contains firstname and lastname
elements, which is also similar to the one in the DTD. However, notice that these
elements are defined as a string data type. This is unique to the XML schema. We’ll
examine each component of an XML schema in detail in “An Inside Look at an
XML Schema.”

You save the XML schema to a file called customers.xsd. Next you’ll need to
reference the customers.xsd file from within the XML document. You do this by
inserting the xsi:schemaLocation attribute into the customers tag within the XML
document. We illustrate this in the next revision of the XML document. When the
parser encounters the xsi:schemaLocation attribute, it reads the customers.xsd
XML schema and then applies it to the XML document.

<?xml version="1.0"?>
<customers xmlns:xsi=”http://www.w3.org/2001/XMLSchema-in-
stance"
xsi:schemaLocation="customers.xsd">

 <customer>
 <firstname>Mary</firstname>
 <lastname>Smith</lastname>
 </customer>
</customers>

An Inside Look at an XML Schema
An XML schema begins with the xs:schema tag, which is the outermost tag and
encloses all the elements of the XML schema. Typically the xs:schema tag includes
attributes, especially the xmlns:xs=“http://www.w3.org/2001/XMLSchema” attribute.
This attribute specifies that elements and data types contained in the XML schema are
defined in the 2001 XMLSchema namespace (found at www.w3.org/2001/
XMLSchema).

The xmlns:xs is the name of the attribute and states that elements and data types
for the XML schema should have the xs prefix. You can use any prefix within the
XML schema to define elements and data types, but the xs prefix is preferred.

Here’s the basic structure of an XML schema:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

</xs:schema>

http://www.w3.org/2001/XMLSchema
www.w3.org/2001/XMLSchema
www.w3.org/2001/XMLSchema

56 XML Demystifi ed

You reference an XML schema from within an XML document by referring to
an instance of the XML schema using the following two attributes in the first tag in
the XML document:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="customers.xsd"

The xmlns:xsi attribute declares an instance of the XML schema, which is defined
in XMLSchema-instance located at www.w3.org/2001/XMLSchema-instance. This
gives you the location of the DTD. XMLSchema is built on top of a DTD.

The xsi:schemaLocation attribute identifies the file that contains the XML schema
that will be used when parsing the XML document. You can store the XML
schema using any file name; however, the name should imply the nature of the
XML schema and end with the xsd file extension. The location can be a URL.

Defining Simple Elements
You define elements of the XML schema within the <xs:schema>...</xs:schema>
tags. The most common of these is the simple element. A simple element contains
text and has no child elements and no attributes. However, the text can be defined
using a data type such as date, integer, float, or one of the other data types mentioned
in the next paragraph.

For example, a simple element is defined:

<xs:element name="ElementName" type="ElementType"/>

The name attribute defines the name of the element and the type attribute defines
the element’s data type. Here are the data types that are most often used in an XML
schema:

xs:string
xs:boolean
xs:decimal
xs:float
xs:double
xs:dateTime
xs:time
xs:date

For many XML schemas, you’ll want to define a default value for an element.
The parser automatically uses the default value if the XML document doesn’t
provide a value for the element. A default value is defined as an attribute of the
element.

www.w3.org/2001/XMLSchema-instance

CHAPTER 4 XML Schema 57

Let’s say that you’re defining a simple element called format. Data within the
format tag specifies the format of the document. The format will be in the xs:string
data types. The default value is Portable Document Format (PDF), which is a format
used by Adobe Acrobat Reader. Here’s an element that defines the value as
“PDF”:

<format>PDF</format>

If you want the default to be PDF, this is how you would define it in the XML
schema:

<xs:element name="format" type="xs:string" default="PDF"/>

Sometimes the value associated with an element must be a specified value. That
is, when you create the XML document using the XML schema, you must insert a
specific value into the tag. You can specify the value that must be inserted into the
tag by inserting the fixed attribute into your tag.

The fixed attribute defines the value for the tag. If you don’t place the value in
the tag, the parser automatically uses the value that’s associated with the fixed
attribute.

Here’s how to define the fixed attribute:

<xs:element name="format" type="xs:string" fixed="PDF"/>

Defining Attributes
An attribute is information about an element. Let’s say that the element is called car
and an attribute of the car element is color, which is the color of the car. The value
of the color attribute is the actual color.

An attribute is defined in the XML schema using the xs:attribute tag. The xs:
attribute tag itself requires two attributes: name and type. The name attribute is the
name of the attribute you’re defining. The type attribute is the data type of the
attribute you’re defining.

Here’s how to define the attribute color. The name of the attribute is color and it’s
a string data type. This means that any value assigned to the color attribute in the
XML document will be treated as a string, even if an integer is used as its value.

<xs:attribute name="color" type="xs:string"/>

You can specify a default value by using the default attribute in the attribute
definition. The default attribute requires you to supply the default value for the
attribute that you’re defining. This value is used if the attribute is excluded from the
corresponding element in the XML document.

58 XML Demystifi ed

Here’s how to set the default value. Green is used as the color any time this
attribute is excluded from the XML document.

<xs:attribute name="color" type="xs:string"
default="green"/>

There might come a time when you want to set the value for the attribute, such
as if you were writing an XML schema for Henry Ford, who offered customers any
color Model T Ford as long as it was black.

You set the value of an attribute in the XML schema by using the fixed attribute.
The value of the fixed attribute becomes the value of the attribute in the XML
document. Here’s how you use the fixed attribute. An error occurs if you attempt to
assign a value other than the fixed value to the attribute.

<xs:attribute name="color" type="xs:string" fixed="black"/>

You can define an attribute as being required or optional depending on the nature
of your XML document. You do this by using the use attribute in the attribute’s
definition. The use attribute accepts one of two values: required or optional. As the
name implies, a required value mandates that a value be assigned to the attribute
within the XML document. Failure to do this generates an error. An optional value
doesn’t require that a value be set for the attribute.

Here’s how to specify whether or not the attribute is required. Of course, you
would use only one of these statements in your XML schema since an attribute can
be either required or optional, but not both.

<xs:attribute name="color" type="xs:string" use="required"/>
<xs:attribute name="color" type="xs:string" use="optional"/>

You can use an attribute in an XML document once it’s defined in the XML schema
that’s associated with the XML document. Here’s how the color attribute would
appear within the car element of an XML document:

<car color="red">
 ...
</car>

Facets
A facet is a valid value that can be assigned to an attribute. Suppose the car
manufacturer offers a car in black, blue, red, or green, but not in any other color.
Each of these colors is a valid value that can be assigned to the color attribute.

You can restrict an attribute’s value to a set of valid values by using the xs:
restriction tag within the definition of the attribute. The restriction tag lists valid

CHAPTER 4 XML Schema 59

values. Values that aren’t listed generate an error if you assign them to the attribute
within the XML document.

The xs:restriction tag is a parent tag that contains one or more xs:enumeration
tags, each one specifying a valid value for the attribute. The xs:enumeration tag has
one attribute called value that’s assigned the valid value. You can have as many xs:
enumeration tags as is necessary for your XML document.

Let’s enhance the definition of the color attribute to limit the color choices to
black, blue, red, and green. Here’s the revised definition:

<xs:attribute name="color" type="colorType"/>
<xs:simpleType name="colorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="black"/>
 <xs:enumeration value="blue"/>
 <xs:enumeration value="red"/>
 <xs:enumeration value="green"/>
 </xs:restriction>
</xs:simpleType>

You’ll notice that we modified this definition. The first change occurs in the type
attribute. We changed the type from xs:string to colorType. The colorType is a data
type that’s defined on the second line as a xs:simpleType.

The definition xs:simpleType contains the xs:restriction tag and related xs:
enumeration tag. Here’s what we’re saying: ColorType is an xs:simpleType that’s
restricted to four xs:strings that are itemized as the value of the xs:enumeration tags.
Any time an attribute is defined as a colorType data type, that attribute can only be
assigned black, blue, red, or green as its value; otherwise an error is generated.

For example, the following is valid:

<car color="black">

And the following is invalid:

<car color="yellow">

Ranges
Sometimes you’ll need to specify a range of numbers as valid values for an element,
such as a range of valid temperatures. You can do this by using the xs:minInclusive
and xs:maxInclusive tags within the restriction tag of the xs:element definition.

Let’s say that that valid range is from 32 through 212. Here’s how you incorporate
this into a definition of an element within an XML schema. You’ll notice that this
definition resembles the previous definition of an attribute. Both define a xs:

60 XML Demystifi ed

simpleType, although they are given two different names—and two different
definitions. The value of the temperature element must be an xs:decimal value
between 32 and 212 inclusive. Any value outside this range causes an error.

<xs:element name="temperature" type="temperatureType"/>
<xs:simpleType name="temperatureType">
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="32"/>
 <xs:maxInclusive value="212"/>
 </xs:restriction>
</xs:simpleType>

With this definition, the following value in an XML document is valid:

<temperature>120</temperature>

And this value is invalid and causes an error.

<temperature>350</temperature>

You can also use maxExclusive and minExclusive. Exclusive doesn’t include the
boundary value. That is, Exclusive is equivalent to “greater than,” and Exclusive is
equivalent to “greater than or equal to.”

Regular Expressions
You can enforce stricter restrictions on values that can be used as elements in an
XML document by incorporating a regular expression in the definition of an
element. A regular expression is a pattern of characters that defines the kinds, and
format, of characters that can be entered into an element of an XML document.

Unfortunately, showing you how to create regular expressions is beyond the
scope of this book. However, you can learn about regular expressions by reading
C++: The Complete Reference, Fourth Edition by Herb Schildt (McGraw-Hill/
Osborne, 2002).

Once you learn how to create a regular expression, you can use it in the definition
of an element to restrict the contents of the element. Here’s how you do this. Let’s
say that you define an element that contains a zip code. A zip code contains five
digits. Each digit can be from zero through nine. This is written as a regular
expression as [0-9] {5}. This reads: a digit from zero through nine, five digits.

A regular expression is assigned as the value to the value attribute of the xs:
pattern tag in the XML schema, as shown in this definition of the 5_digit_zip

CHAPTER 4 XML Schema 61

element. You’ll notice that this element is defined in a way similar to the element in
the previous section of this chapter was defined; however, the xs:pattern tag is used
to restrict the contents of the element.

<xs:element name="5_digit_zip">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9]{5}"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Another common use for a regular expression is to limit the content of an element
to only lowercase characters. You do this by using ([a–z]) * as the regular expression.
This is read as zero or more occurrences of characters that fall into the range a–z.

Here’s how this regular expression looks in the definition of the lowercase
element:

<xs:element name="lowercase">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="([a-z])*"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

If you want only uppercase letters entered, then you use ([A–Z]) *. And you use
([a–zA–Z])* if you want to restrict the contents to lowercase and uppercase letters
only.

You can use a regular expression to specify valid values for an attribute, too. You
accomplish this by using the OR (|) regular expression operator. The OR operator
separates alternative valid values that can be used for an attribute.

Let’s return to the color attribute for the car element. Here’s the way you could
specify that the color can be black, blue, red or green.

<xs:attribute name="color"/>
<xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="black|blue|red|green"/>
 </xs:restriction>
</xs:simpleType>
</xs:attribute>

62 XML Demystifi ed

Working with Whitespace Characters
Each character on your keyboard is assigned a unique number called an ASCII
number. You don’t need to know these numbers, but if you’re curious, look up
“ASCII table” in a search engine and you’ll see the ASCII numbers.

Some characters are nonprintable characters, such as a space inserted when you
press the spacebar or the tab when you press the TAB key. These are referred to as
whitespace characters. You’ll find a list of these characters numbered from zero to
33 on the ASCII table.

Whitespace characters are inserted into a document to give instructions to the
program that reads the document. You don’t see these on the screen, but a program,
such as a parser, can see them.

For example, a carriage return and linefeed whitespace characters are inserted
into a document when you press the ENTER key. This gives the program instructions
to move the cursor to the beginning of the next line.

You can tell the parser how to handle whitespace characters that appear in an
XML document by using the xs:whiteSpace tag in the XML schema. There are
three things that you can do when you encounter a whitespace character in an XML
document: preserve, replace, or collapse.

Preserve means that the parser does nothing special with the whitespace character.
It simply passes the whitespace characters along with the rest of the XML document.
Replace tells the parse to replace all whitespace characters with a space. Collapse
tells the parser to replace all whitespace characters with spaces (similar to replace),
then it collapses multiple occurrences of whitespaces to a single space. Furthermore,
leading and trailing whitespaces are deleted.

You specify preserve, replace, and collapse as the value of the value attribute of
the xs:whiteSpace tag. Here is an example of preserve:

<xs:element name="description">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:whiteSpace value="preserve"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Restricting the Length of a Field
A seemingly endless number of characters can be used as the content of an element.
However, other applications that use the data might restrict the number of characters
they can receive from the XML document.

CHAPTER 4 XML Schema 63

Let’s say that the lastname element of an XML document contains a name that is
40 characters long. After the parser processes the XML document, the lastname is
sent to a column of a table in a database. The column permits up 35 characters. This
means five characters are truncated.

A common solution to this problem is to limit the number of characters that can
be contained in the element. You can do this by using the xs:maxLength tag in the
XML schema. The xs:maxLength has a value attribute that’s assigned the maximum
number of characters that can be placed in the element. An error occurs if the content
exceeds this value.

Here’s how to set the maximum value of an element. This sets the maximum
length to 30 characters:

<xs:element name="firstname">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="30"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Besides setting the maximum length, you can also set a minimum length for an
element or fix its length to a specific number of characters. You set the minimum
length by using the xs:minLength tag, and set the fixed length by using the xs:length
tag. Both of these are illustrated here. Each is placed within the xs:restriction tag.

<xs:minLength value="1"/>
<xs:length value="20"/>

Complex Elements
A complex element is an XML element that contains other elements and may contain
attributes. Think of a complex element as a subset of an XML document, such as
the customer element we show here. The customer element contains the firstname,
middlename, and lastname elements to form a complex element:

<customer>
 <firstname>Mary</firstname>
 <middlename>Ellen</middlename>
 <lastname>Smith</lastname>
</customer>

There are several ways you can define a complex element in an XML schema.
One way is to define a complex type when defining the element. We illustrate this

64 XML Demystifi ed

in the next example, which defines the customer element. You use the xs:
complexType tag to define the other elements that comprise the complex element.
Notice that we’ve used the xs:sequence tag here. This specifies that the other
elements must appear in the XML document in the same sequence they appear in
this definition.

<xs:element name="customer">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="middlename" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

An error occurs if they appear out of sequence. For example, this generates an
error with the preceding schema because the middlename is before the firstname.
They must appear in the order specified.

<customer>
 <middlename>Ellen</middlename>
 <firstname>Mary</firstname>
 <lastname>Smith</lastname>
</customer>

Previously in this chapter you learned that you could create a parent-child
relationship between elements. This is the case with the customer element. The
customer element is the parent and the complexType—not the individual elements—
is the child. Therefore, the customer element has one child: the complexType.

There is a drawback to defining a complexType within the definition of an
element. You cannot use the complexType outside of the element. That is, you can’t
use firstname, middlename, and lastname without using customer.

At first glance this may not seem important because a customer has a first name,
middle name, and last name. However, consider other kinds of people referenced in
an XML document, such as employees, vendors, and others who have a first name,
middle name, and last name. You would have to repeat the definition of this
complexType for each kind of person who’s described in an XML document.

A more efficient technique is to define a complexType outside of the element and
give it a unique name. You then use the name of the complexType any time you
want to refer to elements defined in the complexType.

Let’s redefine the nameinfo complexType as a stand-alone type. This is practically
the same definition except you’ve given the complexType a name—nameinfo.

CHAPTER 4 XML Schema 65

 <xs:complexType name="nameinfo">
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="middlename" type=”xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

Now you can define an element as being a nameinfo type. When doing this, the
new element inherits the firstname, middlename, and lastname elements just as if it
were defined within the definition of the element.

Here’s how to designate an element as a nameinfo type. You’ll notice that we’ve
included the definition of the complexType in this example:

<xs:element name="customer" type="nameinfo"/>
<xs:element name="salesperson" type="nameinfo"/>
<xs:element name="manager" type="nameinfo"/>
<xs:complexType name="nameinfo">
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="middlename" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

Setting the Number of Occurrences
In Chapter 3, you learned how to specify the number of times an element and its
children can be used in an XML document using a DTD. You can do something
similar in an XML schema by using the minOccurs and maxOccurs attributes.

The value of the minOccurs attribute determines the minimum number of times
that an element must appear in the XML document. The value of the maxOccurs
attribute determines the maximum number of occurrences for an element. You include
the minOccurs and maxOccurs when you define the element, as shown here:

<xs:element name="customer" minOccurs="0"maxOccurs=”unbounded”>

In this example, the customer element can appear zero times—that is, it doesn’t
have to be used in the XML document—and unbounded. Unbounded means an
unlimited number of times. Table 4-1 shows a comparison between defining the
number of occurrences using the DTD and using minOccurs and maxOccurs in the
XML schema.

66 XML Demystifi ed

If you don’t specify the minOccurs and maxOccurs attributes, the default value
is one.

With DTDs you learned how to reference multiple DTDs to form the definition
of an XML document. An XML schema has a similar mechanism. You can use xs:
include, which is basically the same as copying and pasting the referenced schema
into the current schema. It doesn’t allow for any type of override of or alteration to
the schema. The syntax looks like this:

<xs:include schemaLocation="customer.xsd"/>

This tells the processor to include the customer.xsd definition. You can also use
xs:redefine to include an external schema. xs:redefine allows you to alter the
definitions in the remote file:

<xs:redefine schemaLocation="customer.xsd"/>
 … new definitions …
</xs:redefine>

Looking Ahead
An XML schema is another way to describe the structure of an XML document. The
XML schema defines the building blocks used to build the XML document, similar
in concept to the document type definition (DTD).

The XML schema language is used to create the XML schema. Each statement
in the XML schema languge begins with <xs: and is followed by a keyword. The
first statement contains the xs:schema tag that identifies it as an XML schema.

An element is defined by using the xs:element tag that contains a name attribute,
which identifies the name of the element and a type attribute that identifies the data
type of the element. The data type can be one of the predefined data types or a data
type that you defined, such as a complexType.

Number of
Occurrences

DTD minOccurs maxOccurs

Zero to many * Zero Unbounded

One to many + One Unbounded

Zero or one ? Zero One

Table 4-1 A Comparison Between minOccurs and maxOccurs

CHAPTER 4 XML Schema 67

You define your own attributes for an element by using the xs:attribute tag. This
tag also requires that you specify a name of the attribute, which is assigned to the
name attribute, and a type attribute, which is the data type of the attribute. Optionally,
you can define a default value, define a fixed value, and indicate whether the
attribute is required or optional.

A facet is a valid value that can be assigned to an attribute. You define facets by
using the xs:restriction and xs:enumeration tags. The xs:restriction tag states there
are restrictions imposed on the attribute, and the xs:enumeration tag specifies those
restrictions. You can set restrictions in the form of a range of values or specify more
complex restrictions by using a regular expression.

You can create your own data type as either simpleType or complexType. You
use a simpleType when defining one element, and a complexType when defining
multiple elements.

Quiz
 1. An XML schema is used to define a complex type.

 a. True

 b. False

 2. type=“integer” means

 a. The content of an element is the word integer.

 b. All types except integers can be used in the corresponding element.

 c. Only integers can be used in the corresponding element.

 d. None of the above.

 3. xmlns:xs=“http://www.w3.org/2001/XMLSchema” is used to

 a. Identify ownership of the XML schema

 b. Identify ownership of the XML document

 c. Identify the XML schema specifications used in the XML schema

 d. Identify that this is an XML schema

 4. The xs:sequence tag

 a. Specifies the sequence in which elements must appear in an XML
document

 b. Specifies the sequence in which elements must appear in an XML
schema

http://www.w3.org/2001/XMLSchema

68 XML Demystifi ed

 c. Specifies the sequence in which attributes must appear in an XML
document

 d. Specifies the sequence in which attributes must appear in an XML
schema

 5. xsi:schemaLocation=“customers.xsd” is used to

 a. Identify the owner of the XML document

 b. Identify the owner of the XML schema

 c. Identify the location of the XML document

 d. Identify the location of the XML schema

 6. You can require a specific value for an attribute by setting the value
for fixed.

 a. True

 b. False

 7. A regular expression can be used to specify complex restrictions for the
content of an element.

 a. True

 b. False

 8. You can specify a series of valid values for an element by using which of
the following in a regular expression?

 a. |

 b. OR

 c. or

 d. +

 9. A facet is a valid value that can be assigned to an attribute.

 a. True

 b. False

 10. The xs:enumeration tag is used to define a valid value for an attribute.

 a. True

 b. False

69

CHAPTER
5

XLink, XPath,
XPointer

Real-world XML documents can become complex and difficult to navigate,
especially if they reference multiple external resources, such as other documents
and images. Professional XML developers use XML’s version of a global position
satellite to find elements within the XML document.

XML’s global position satellite system has nothing to do with satellites. It simply
provides three clever features that you can use to find your way around the document.
These features are XLink, XPath, and XPointer.

XLink hooks up your document with any number of external resources while
XPath and XPointer show your parser how to navigate around the document to find
the piece of the document that you need to process.

Sounds confusing? We’ll, it won’t be by the time you finish this chapter.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

70 XML Demystifi ed

An Inside Look at XLink
XLink is XML’s way of linking a resource to a specific behavior. This might sound
new to you, but it shouldn’t if you’re familiar with the way HTML links resources.
XLink is basically a generalization of the HTML link.

Before seeing how XLink works, let’s take a step back and review how HTML
links are used; this will give you a foundation for understanding how to use XLink.
An HTML link is an attribute within an anchor tag, such as the href attribute, that’s
used to define a hyperlink, as we show here. The anchor tag can link to a resource
such as this HTML page or to a location within the same page, which is called a
relative link.

Another common link is used in the img tag to link the src attribute to an image
file, as we show here. The image file is an external resource to the web page and
gets pulled into the current document. The browser loads the HTML page, parses it,
and finds the image tag, then makes the request to the server for this resource.

Tags that are associated with links exhibit a certain behavior based on a given
link’s attribute. For example, the href attribute enables the anchor tag to jump to
another page or to a different location on the same page. If the target attribute is
used within the anchor tag, then the other page is displayed in a new browser
window, as we show here.

click here

HTML tags that use links are specific. That is, you must define the link each and
every time that you link an HTML tag. So, if all your images are located in the
images directory on your server, you’ll need to reference the images directory each
time that you link to an image; for example:

In contrast, XLink enables you to generalize. For example, you can define a base
as the images directory. The base is then referenced each time you link to an image.
You don’t need to repeat the directory name in the link.

HTML links are limited to a one-to-one relationship between the source and
destination. That is, the src attribute can reference one image file. XLink enables
you to specify multiple sources with multiple destinations.

CHAPTER 5 XLink, XPath, XPointer 71

Speaking the XLink Language
Before you can begin to learn how to use XLink, you’ll need to learn how to speak
its language—at least to your colleagues. Let’s start with the term link. A link
defines the relationship between two or more resources, such as that between a
document and an image file. A locator identifies the remote resource referred to in
the link. And the XML element that contains the link is called the linking element.

Here’s an example of a simple XLink:

<mylink xlink:type="simple" xlink:href="image.gif" xlink:show="embed" />

Let’s identify the parts in the preceding XML code. The link element is mylink.
xlink is the namespace the parser uses to identify attributes used in this statement.
Each xlink is associated with an attribute.

xlink:type
The xlink:type attribute defines the type of link. There are two possible links: simple
and extended.

simple
This link associates a local resource with a remote resource, which is very similar
to an HTML link. A simple link is always outbound, meaning the remote resource
cannot be a portion of the document that contains the xlink:type attribute.

extended
This link associates any number of resources with local or remote resources.
Therefore, you use an extended type if you’re referencing a resource contained
within the same XML document as the xlink:type.

xline:show
xline:show specifies the presentation of the resource. There are five presentations:
new, replace, embed, other, and none.

new
This causes the link to be loaded into a new window or frame; it’s similar to the
HTML anchor tag we show here.

click here

72 XML Demystifi ed

replace
The linked resource replaces an existing resource. This is similar to an HTML link
where the remote resource overwrites the document that called the remote
resource.

embed
The linked resource should be inserted into the existing resource at the specified
location. This is similar to an image tag in HTML.

other
This is used to enable you to define the behavior rather than depend on XLink.

none
No information is provided.

xlink:actuate
The browser evaluates links in HTML each time it encounters them while processing
the XML document. In XML, links can be evaluated at specified times by specifying
an attribute to the xlink:actuate element.

Four attributes are used with the xlink:actuate element: onload, onRequest, other,
and none.

onload
The onload attribute specifies that the resource that’s linked to the document should
be loaded immediately without any user interaction. This behavior is similar to
using the HTML image tag, where the image is immediately loaded and displayed
within the HTML document.

onRequest
The onRequest attribute causes the linked resource to be loaded only when a
specified event occurs after the XML document has been loaded. Think of the
onRequest attribute as being like an HTML hyperlink where the linked HTML page
isn’t loaded until the web site visitor selects the hyperlink. Selecting the hyperlink
is the event that triggers loading the resource.

other
The other attribute enables you to define the behavior that causes the resource to be
loaded into the XML document. The behavior occurs when the parser encounters a
specified tag or markup in the XML document that you specify in the attribute. This
exact behavior is application defined.

CHAPTER 5 XLink, XPath, XPointer 73

none
The none attribute is used when nothing is to happen with a link. That is, the link is
not used to load the resource into the XML document.

Next let’s take a look at an extended link. With a simple link, you’re linking to
one resource much the same way you do with HTML. Here’s an example of an
extended link:
<schedule xlink:title="Jim Keogh’s Courses" xlink:type="extended">
 <relation xlink:type="arc" xlink:from="student" xlink:to="course"/>
 <relation xlink:type="arc" xlink:from="student" xlink:to="counselor"/>
 <relation xlink:type="arc" xlink:from="grades" xlink:to="student"/>
 <data xlink:type="locator" xlink:role="student"
 xlink:href="http://www.jimkeogh.com/courses/student8765.xml"/>
 <data xlink:type="locator" xlink:role="course"
 xlink:href="http://www.jimkeogh.com/courses/course9443.xml"/>
 <data xlink:type="locator" xlink:role="course"
 xlink:href="http://www.jimkeogh.com/courses/course165.xml"/>
 <data xlink:type="locator" xlink:role="course"
 xlink:href="http://www.jimkeogh.com/courses/course893.xml"/>
 <data xlink:type="locator" xlink:role="course"
 xlink:href="http://www.jimkeogh.com/courses/course786.xml"/>
 <data xlink:type="locator" xlink:role="counselor"
 xlink:href="http://www.jimkeogh/counselors/jones.xml"/>
 <grades xlink:type="resource" xlink:role="grades"
 xlink:label="grades.html">3.2</grades>
</schedule>

This link pulls together data from several different sources into one place. It starts
by defining relationships. The student is associated with a course so the link is from
the student to the course. Similarly, the student is associated with a counselor so the
arc is from the student to the counselor. Grades are associated to the student so the arc
is from the grades to the student. The <data> parts of link are locators to tell the
processor where to find the resources. And last, the grades element pulls together
the grades for the student.

XPath
Throughout this book, you’ve learned that an XML document is composed of many
elements that are commonly referred to as subtrees, like branches of a tree. The
parse must navigate the subtree structure in order to process the XML document.
This can become a challenge in real-world XML documents because these
documents are complex. You use XPath to ease the task of navigating the subtrees
of an XML document.

XPath is a language that enables you to specify the location of a subtree within
an XML document. The XPath language consists of declarative statements, the
most important of which is the Location Path statement. The Location Path statement
tells the parser how to locate a particular subtree.

74 XML Demystifi ed

Here’s a typical Location Path statement:

child::class[position()<=10] / descendant::student / attribute::href

And here’s what the Location Path statement is telling the parser. The path starts
by selecting the first ten class elements of the XML document (<=10). Next, it
selects all the student elements within the first ten class elements (descendant::
student). And then it locates the HTML hyperlinks that are part of the first ten class
elements (attribute::href).

The child::class portion of the Location Path statement selects the child elements
of the document that have the name “class." That is, if the element is named “class,”
then the parse selects that element; otherwise the parser doesn’t use the element.
The position() function specifies the number of elements to select. In this case, ten
child elements called class are selected. The descendant::student portion of the
Location Path statement selects all the descendant elements that have the name
student, which can be subtrees within the XML document.

The attribute::href specifies the name of the attribute that’s being sought. This
example tells the parser to look for the href attribute within the student element of
the document. Table 5-1 shows commonly used XPath Location Path segments.

There are two types of Location Paths. These are absolute path and relative path.
An absolute path begins with a forward slash (/), which is followed by the path that
points to an element of the XML document. For example, this path starts at the root
of the document and points to the student element:

/child:schedule/child:class/child:student

This would point to this element within the XML, regardless of where your
current context is:

<schedule>
 <class>

<student>

Segment Description

Child::* Selects all children elements of the context node

Child::text() Selects all text node children of the context node

Child::node() Selects all children, both elements and text nodes

attribute::* Selects all attributes of the context node

ancestor::elementname Selects all ancestor elements with the given name and might
appear on more than one layer in the XML document

Table 5-1 Commonly Used XPath Location Path Segments

CHAPTER 5 XLink, XPath, XPointer 75

A relative path consists of a sequence of locations that are separated by a forward
slash, as we show here. The path begins with an element called class and then
continues within the class element to the student element.

child:class/child::student

This points to this element within the XML, assuming your current context is
<schedule>.

<schedule>
 <class>

<student>

A Closer Look at XPath
The XPath statement is divided into three parts, each separated by a forward slash,
as we show here. The first part is called an axis. The axis specifies a tree relationship
of nodes in the XML document.

axis_name::node_test[predicate]

In the following example, child is the name of the axis. The name of the element
node appears after the double colon. The double colon is referred to as the node test.
This code selects all the child nodes named “class”:

child::class

This selects the four class nodes if your current context is the courses node:

<courses>
 <class> … </class>
 <class> … </class>
 <class> … </class>
 <class> … </class>
</courses>

The second part of the XPath statement is referred to as the predicate and begins
with a forward slash. A predicate specifies a condition or restriction on the node
specified in the node test. The predicate in this example is student, which is the
name of a child element of class. This restricts the parser to the student element.

child::class/child::student

There are several types of axes. Table 5-2 lists commonly used axes.

76 XML Demystifi ed

Predicates
A predicate is a filter on a node of an XML document. Here’s how this works. The
parser uses the axis to select a set of nodes from the XML document. The predicate
further filters the selected set of nodes.

The key to the predicate is the proximity position. The proximity position is the
starting position of the search for the desired node. An axis is either a forward axis,
a reverse axis, or a self-axis. A forward axis contains the context node and nodes
that come after the context node. A reverse axis is an axis that contains the context
node and nodes that came before the context node. A self-axis contains only itself
and doesn’t refer forward or backwards.

Axis Description

child Contains the children of the context node.

descendant Contains all children of the context node, which can go many
layers deep (i.e., a child of a child of a child).

parent Contains the parent of the context node, if there is one.

ancestor Similar to descendant except it contains all parent nodes of the
context node, including the root node of the document.

following-sibling Contains all the following siblings of the context node. If the
context node is the fourth of ten student nodes, this returns node 5
through node 10.

preceding-sibling Contains all the preceding siblings of the context node. For
example, if the context node is the fourth student node, this returns
the fi rst through the third student nodes.

following Contains all nodes following the context node, excluding
descendants, attribute nodes, and namespace nodes. Let’s say the
HTML head tag is the current context. This contains the body tag,
but not children of the head tag or body tag.

preceding Contains all nodes preceding the context node.

attribute Contains the attributes of the context node. This will be empty if
the context node is something other than an element.

namespace Contains namespace nodes of the context node. This will be empty
if the context node is something other than an element.

self Contains just the context node.

descendant–or-self Contains the context node and descendant nodes.

Table 5-2 Commonly Used Axes

CHAPTER 5 XLink, XPath, XPointer 77

Nodes in an axis are numbered beginning with position 1 and follow in order
according to where the node appears in the document. Let’s say there are ten nodes in
a forward axis. The first node is assigned number 1; the second is assigned number 2;
and so forth.

A reverse axis reverses the order of the nodes. Consider this fragment of XML.
The nodes are identified by position:

<courses> forward axis reverse axis

 <class> … </class> node 1 node 4

 <class> … </class> node 2 node 3

 <class> … </class> node 3 node 2

 <class> … </class> node 4 node 1

</courses>

The predicate can be used to specify the number of each node that you want
selected. Let’s say that you want node 1 through and including node 5. Here’s the
location statement that you need to write:

child::class[position()<=5]

The predicate is position() <=5. This states that you want to select node 1 through
and including node 5. The predicate returns a Boolean value—true or false. A false is
returned if a node doesn’t meet the predicate filter; otherwise, a true is returned.

A predicate can specify a specific value. Let’s say that you want to select the
node called name, whose value is Mary Smith. Here’s how you write this statement.
This says to select the student nodes that have a child element called name with a
text value of Mary Smith:

child::student[child::name='Mary Smith']

You can also use predicates to match attributes of an element. Suppose you want
to match the student ID 123. The student ID is assigned to the id attribute. Here’s
the statement that you need to write. This says to select the student element nodes
that have an id attribute with a value of 123.

Child::student[attribute::id='123']

Functions
By now, you probably guessed that XPath uses functions (since you used the
position() function in a previous example). Functions play an important role in
writing predicates because you can use them to perform a task where the results of
the task determine the filter value for the predicate.

78 XML Demystifi ed

For example, you used the position() function to return the position of the current
node in a node set. Once you know the position, the predicate expression uses the
position to determine if the node should be selected.

Table 5-3 contains commonly used XPath functions.

Position Functions Description

number position() Returns the position of a node within a node set.

number last() Returns the position of the last node in the node set.
This can be used to either get the last node or return
the size of the node set.

number count(node-set) Similar to last() except you pass a node set as an
argument. This can be used to evaluate any node set
where last() only looks at the current context node.

node-set id(object) If the argument object is a node set, this returns a
node set that represents the union of all nodes that
have an id equal to one of the nodes passed in as an
argument. If the argument is a string, the string is
parsed into tokens separated by white space, and then
it returns a node set where each node has an id equal
to one of the tokens.

String Functions Description

string string(object) Converts the object argument into a string.

string concat(string, string, string*) Returns the concatenation of the arguments.

boolean starts-with(string, string) Returns true if the fi rst argument string starts with the
second argument string; otherwise, it returns false.

boolean contains(string, string) Returns true if the fi rst argument string contains the
second argument string; otherwise, it returns false.

string substring-before(string, string) Returns the substring of the fi rst argument string that
precedes the fi rst occurrence of the second argument
string in the fi rst argument string, or returns the empty
string if the fi rst argument string doesn’t contain the
second argument string.

string substring-after(string, string) - Returns the substring of the fi rst argument string that
follows the fi rst occurrence of the second argument
string in the fi rst argument string, or returns the empty
string if the fi rst argument string doesn’t contain the
second argument string.

Table 5-3 Commonly Used XPath Functions

CHAPTER 5 XLink, XPath, XPointer 79

String Functions Description

string substring(string, number,
number?)

Returns the substring of the fi rst argument starting at
the position specifi ed by the second argument. The third
argument is optional and specifi es the maximum number
of characters to include in the returned substring. Position
1 is the fi rst character in the string. This is different than
it is with languages such as C and Java, where the fi rst
position is 0.

number string-length(string?) Returns the number of characters in the string. Notice
that the argument is optional. If the argument is omitted,
the function defaults to the context node and the context
node is converted to a string and returned.

Boolean Functions Description

boolean boolean(object) This function depends on the type of argument
as follows:
A number is true if it is not zero and not NaN (not
a number).
A string is true if its length is greater than zero.
A node set is true if its size is greater than zero.
An object is converted to a Boolean in a way that’s
dependent on the type of object.

boolean not(boolean) Returns true if the argument is false; otherwise, it
returns false.

boolean true() Always returns true.

boolean false() Always returns false.

boolean lang(string) Returns true if the language of the context node is
the same as the argument of a sublanguage of the
argument. The language is specifi ed in the xml::lang
attribute of the context node.

Number Functions Description

number number(object?) Converts the argument to a number. This depends on
the type of argument passed as follows:
A string will be converted to a number provided the
string contains only an optional + or – sign followed
by digits.
Whitespace is permitted on either side of the string
but any other characters will cause this to return NaN.
A Boolean argument of true will return 1 and a
Boolean false will return 0.

Table 5-3 Commonly Used XPath Functions (continued)

80 XML Demystifi ed

XPointer
XLink uses XPointer to identify the location of a resource, even if the document
doesn’t contain any anchor elements. This means that you can change the linked
resource without changing the links to that resource.

Here’s how XPointer works. Let’s say that you want to reference the second
resource of the following resource. Here’s the XPointer statement that you’ll need
to write. The # symbol is the XPointer and it tells the parser to go to the first ten
students of the class element in the page.html resource. This code says to go to the
class element and link to the first ten student elements:

http://www.foo.org/page.html#xpointer(class/student[position <= 10])

In HTML you define an anchor id and link directly to the anchor tag. The
XPointer example lets you do this and lets you link to multiple nodes within the
same document.

Looking Ahead
In this chapter you learned how you use XLink, XPath, and XPointer to link to
outside resources and to navigate an XML document. XLink is similar to links used
in an HTML document to access HTML pages, images, and other resources that are
not included in the HTML document. However, XLink can link to multiple resources,
depending on the behavior of an element with an XML document.

Number Functions Description

number sum(node-set) Returns the sum of the node set by converting each
node in the node set to a number.

number fl oor(number) Returns the closest integer less than or equal to the
argument; for example, fl oor(4.6) returns 4 and
fl oor(–9.7) returns –10.

number ceiling(number) Returns the closest integer greater than or equal to
the argument; for example, ceiling(4.6) return 5 and
ceiling(–9.7) returns –9.

number round(number) Returns the closest integer to the argument. The
function “rounds up”; in other words, round(4.5)
returns 5 and round(–4.5) returns –4. If the argument
is NaN, then it returns NaN.

Table 5-3 Commonly Used XPath Functions (continued)

CHAPTER 5 XLink, XPath, XPointer 81

XPath is a language used to specify a subtree within an XML document. The
Location Path statement is the most important component of XPath because it tells
the parser how to locate a particular subtree in the document. The Location Path
statement uses a predicate that contains the criteria for selecting the subtree. You
use XPath functions and logical operators to write the expression that specifies the
selection criteria.

XPointer identifies the location of a resource, even if the document doesn’t
contain any anchor elements; this enables you to change the linked resource without
changing the links to that resource.

Quiz
 1. A locator identifies the remote resource referred to in the link.

 a. True

 b. False

 2. A simple link

 a. Associates a local resource with a remote resource

 b. Associates any number of resources with local or remote resources

 c. Associates an xlink:type with an XML document

 d. None of the above

 3. xline:new

 a. Enables you to define the linking behavior

 b. Inserts a resource into the existing resource

 c. Overwrites an existing resource

 d. Is the link to be loaded into a new window or frame

 4. In XML, links can be evaluated

 a. Only when the link is encountered

 b. At specified times, by specifying an attribute to the xlink:actuate
element

 c. Only when the link is loaded

 d. Immediately before the link is read by the parser

82 XML Demystifi ed

 5. onRequest is similar to

 a. An HTML hyperlink

 b. An HTML image link

 c. An HTML body tag

 d. An HTML head tag

 6. XPath specifies an external resource.

 a. True

 b. False

 7. A predicate is used with XPointer to establish selection criteria.

 a. True

 b. False

 8. In child::class, class is

 a. The name of the element

 b. The name of a function

 c. The name of the XML document

 d. None of the above

 9. An axis called attributes contains nodes called attribute nodes.

 a. True

 b. False

 10. The position() function is used to determine an element’s position in an
XML document.

 a. True

 b. False

83

CHAPTER
6

 XSLT

You’ve probably heard of the difficulties federal law enforcement agencies have
sharing electronic data. Data is stored in different formats, which can prevent one
agency’s computers from reading another agency’s data.

This is a common problem anyone who works with data faces. However, you can
resolve much of this problem by using XML. You feel the true power of XML when
you use it to efficiently convert text in an XML document into a different format
that any application can access. The conversion process is called transformation,
and if the XML document is associated with a stylesheet, a processor handles the
conversion.

A stylesheet is a road map that shows an application how to convert the XML
document into another format. In this chapter, you’ll learn how to create a stylesheet
and how to use an XSLT processor to transform an XML document into an entirely
different format.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

84 XML Demystifi ed

What Is XSLT?
Extensible Stylesheet Language Transformation (XSLT) is XML’s version of
HTML’s cascading stylesheet (CSS). CSS is used to describe the style that should
be used to present an HTML document. A style consists of fonts, colors, sizes, and
other formatting properties that are probably familiar to you if you’ve ever changed
the appearance of a document in a word processor.

The Extensible Stylesheet Language (XSL) describes the style that should be
applied to an XML document, and XSLT is the process, called transforming, that
applies the style to the XML document. This transformation sets XSLT apart
from CSS.

CSS describes the finer details of how the HTML document will appear on the
web page. XSL describes the new format of an XML document, such as an HTML
document, Extensible Hypertext Markup Language (XHTML) document, or any
format that an application requires. XSTL converts the XML document to the new
format according to instructions in the XSL.

Think of XSLT as the key to making an XML document come alive. As you’ll
recall from Chapter 1, an XML document contains markup tags that aren’t readable
by a browser or other software because XML markup tags are customized by the
developer. That is, the browser doesn’t know the difference between text and an
XML markup tag.

However, the browser understands HTML and XHTML markup tags because
they’ve been standardized. XSLT bridges the communication gap by
transforming an XML document into a format that’s readable by a browser or
other software.

XPath and the Transformation
An XML document is typically organized into sections, each one containing data.
For example, a customers section identified by the customers XML markup tag
contains one or more customers, each one identified by the customer XML markup
tag. There might be hundreds of customer sections within a customers section in a
real-world XML document.

Let’s say that a request is made to display information about a particular
customer on a web page. In order to do this, the XML document must be
transformed into an HTML document before the browser can display the
customer’s information.

CHAPTER 6 XSLT 85

Instead of transforming the entire XML document into an HTML document,
XSLT uses XPath (see Chapter 5) to locate information about a particular customer
in the XML document. You’ll recall that the XPath feature enables you to navigate
through an XML document, skipping over unneeded elements and reading only
those elements that need to be extracted. Once it’s found, only the customer’s
information is transformed into the HTML document and sent to the browser. Other
parts of the XML document remain untouched.

Source and Result Documents

XSLT in Action

XSLT references two documents. These are called the source document and the
result document. The source document is the XML document that’s being
transformed. The result document is the target file, such as an HTML document.

It’s important to realize that a result document can be any format your application
requires. Typically this is an HTML or XHTML document. However, you can transform
an XML document into a format that’s specific to any application software.

Think of XSLT as basically the search and replace feature found in most word
processors. XSL identifies the pattern of characters XSLT must search for in the
source document. XSL also identifies the pattern of characters that XSLT must
write in the result when these characters are found. This enables you to transform
an XML document into any document.

For example, the XSL might say if customerFirstName is found in the source
document, then write <h3> <cTypeface:Bold>, then the customer’s first name
followed by </h3> in the result document.

Now that you have a good understanding of what XSLT is and how it generally
works, you can create your own XSL. However, before doing so you’ll need to have
an environment to test your creations in.

Many popular web browsers, such as Netscape 8.0 and Internet Explorer 6.0,
have XSLT support. Make sure you have one of these browsers installed on your
computer. If you don’t, then download the latest browser from www.netscape.com,
www.microsoft.com, or from any web site that offers a downloadable browser with
support for XSLT.

www.netscape.com
www.microsoft.com

86 XML Demystifi ed

You’re ready to write your first XSLT once you have an XSLT-supported browser
installed on your computer. Let’s begin by creating an XML source document. Use
a text editor and write the following XML document, then save it in a file called
customers.xml.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="customers.xsl"?>
<customers>
 <customer id="286">
 <firstname>Henry</firstname>
 <lastname>Hudson</lastname>
 <phone>
 <areacode>212</areacode>
 <exchange>555</exchange>
 <number>5576</number>
 </phone>
 </customer>
 <customer id="588">
 <firstname>Jim</firstname>
 <lastname>Keogh</lastname>
 <phone/>
 </customer>
</customers>

Next you’ll write the XSL stylesheet. Using the text editor, write the following
stylesheet and save it to a file called customers.xsl. Make sure that this file is in the
same directory as the customers.xml file.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
 <html>
 <body>
 <h2>Customer Listing</h2>
 <table border="1">
 <tr>
 <th align="center">Customer ID</th>
 <th align="center">Name</th>
 </tr>
 <xsl:for-each select="customers/customer">
 <tr>
 <td>
 <xsl:value-of select="@id"/>
 </td>

CHAPTER 6 XSLT 87

 <td>
 <xsl:value-of select="firstname"/>
 <xsl:value-of select="lastname"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

Open the customers.xml document using an XSLT-supported browser. When the
browser encounters the following line in the customers.xml document, it opens the
XSL file. Here it finds instructions on how to transform the customers.xml document
into an HTML document, which is the result file. Once the document is transformed,
the browser reads the HTML tags and displays the result file on the screen: <?xml-
stylesheet type=“text/xsl” href=“customers.xsl”?>

The result document looks something like the following customer listing when
it’s displayed by the browser.

Customer ID Name

286 Henry Hudson

588 Jim Keogh

The result document is XHTML, which is displayed as a regular HTML
document. When you view the source, you’ll see the XML document. The resulting
XHTML is displayed in the browser.

A Closer Look at XSL Stylesheet
The XSL stylesheet contains a mixture of XSL and HTML. You can probably pick
out the HTML tags and have a good idea of how the HTML tags are used in the
result document if you view the source code in the browser.

Let’s take a closer look at the XSL stylesheet. The XSL stylesheet begins with
the XML declaration that identifies the version of XML that’s being used in the
source document:

<?xml version="1.0"?>

Next, you define the version of XSL that’s used for the XSL stylesheet:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

88 XML Demystifi ed

Style instructions, such as </xsl:for-each>, follow these declarations. The
instructions are

• <xsl:template>

• <xsl:value-of>

• <xsl:for-each>

• <xsl:if>

• <xsl:choose>

• <xsl:sort>

• <xsl:apply-templates>

<xsl:template>
An XSL stylesheet contains a set of rules that XSLT uses to transform the source
document into the result document. These rules are based on matching templates.
This simply tells XSLT to search for a particular pattern of characters in the source
document.

The <xsl:template> element is used for matching. The pattern of characters that
are to be matched is assigned to the match attribute. The match attribute in the
previous example is assigned / , as we show here:

<xsl:template match="/">

The / implies matching the root element, which means matching the entire source
document. The root element is an entry point into the source document and not part
of the source document itself. From the root, the first child is the <customers>
element.

Let’s take a closer look at the follow snippet of the XSL stylesheet to get a better
understanding of the role of the root element:

<xsl:template match="/">
...
 <xsl:for-each select="customers/customer">
 ...
 </xsl:for-each>
 ...
</xsl:template>

You start by matching the root of the document and then move to the <xsl:for-
each> element. The <xsl:for-each> element iterates the customer elements as

CHAPTER 6 XSLT 89

instructed by the value of the select attribute. The select attribute customers/customer
refers to the customer element, which is the child of the customers element.

The <xsl:for-each> element says, “For each occurrence of the customer element
within the customers element.” You can achieve the same result by using the
following code. The match attribute states, “Begin at the root (entry point of the
source document) and go to the customers element.”

<xsl:template match="/customers">
...
 <xsl:for-each select="customer">
 ...
 </xsl:for-each>
 ...
</xsl:template>

<xsl:value-of>
The <xsl:value-of> element extracts text from the source document and transforms it
into the result document. This is the XPath. In the example we show you in the previous
section, we’re extracting the customer ID and the customer’s first and last names.

The <xsl:value-of select=“@id”/> instruction extracts the customer ID. The @
symbol indicates that the customer ID is an attribute of the customer element and
not a child element.

The <xsl:value-of select=“firstname”/> instruction extracts the customer’s
first name which is contained in the firstname element of the source document.
You’re probably wondering if is a typo. It isn’t.

This is a whitespace that’s inserted into the result document, so there’s a space
between the customer’s first and last names. 160 is the ISO-8859-1 character value
for a nonbreaking whitespace character, which is the equivalent of in
HTML. (ISO is the International Standards Organization that among other things
establishes values for various nonprintable characters such as a space.)

We’re retrieving all customers from the source document in our example. In a
real-world application, you might need to retrieve a particular customer. You can do
this by modifying the attribute value of <xsl:value-of select=“@id”/>.

Suppose you want only customer 286. Here’s what you need to write:

<xsl:value-of select="@id='286'"/>

Likewise, you can specify values for XML elements, such as the first name of a
customer as we show here:

<xsl:for-each select="firstname='Jim'">

90 XML Demystifi ed

<xsl:for-each>
The <xsl:for-each> element defines what is to happen when the XLST encounters
each customer element in the source XML document. Two things will happen.
XLST writes a new row and two columns in HTML format to the result document.
XLST also extracts the customer ID and the customer’s first and last names from
the XML document and writes them into the appropriate columns in each row.

HTML elements are placed within the <xsl:for-each> element just as you write
them into an HTML document. You use the <xsl:value-of select=/> element to
extract text from the source document. Place the <xsl:value-of select=/> element
wherever you want the text to appear in the HTML document. In this example,
we’re placing it within the <td> element.

It’s important to keep in mind that you can replace the HTML format with any
format that your application requires.

<xsl:if>
XSL supports conditional logic by using the <xsl:if> element. The <xsl:if> element
uses a test attribute to specify if an action should be taken. The value of the test
attribute is a conditional expression.

Let’s say that want to display a message if the customer’s first name is Jim.
Here’s what you’d write. XSLT writes <p>Hello Jim!</p> into the result document
whenever it encounters Jim as the text for the <firstname> element in the XML
source document.

<xsl:if test="firstname='Jim'">
 <p>Hello Jim!</p>
</xsl:if>

<xsl:choose>
The <xsl:choose> element tells XSLT to choose one or more lines to write to the
result document based on a test condition. The <xsl:choose> element contains two
or more <xsl:when test=> elements, which contain a test attribute whose value is a
conditional expression that determines if lines within the <xsl:when test=> element
should be written to the result document. The <xsl:choose> element can also contain
the <xsl:otherwise> element, which contains lines that are to be written to the result
document if none of the <xsl:when test=> element conditions are met.

The following code illustrates how this works. This example compares the
firstname element text of the XML source document to Jim and to Bob. If either
matches the text of the firstname element, then the appropriate Hello message is
written to the result document. If neither matches, then the Hello message within
the <xsl:otherwise> element is written to the result document.

CHAPTER 6 XSLT 91

<xsl:choose>
 <xsl:when test="firstname='Jim'">
 <p>Hello Jim!</p>
 </xsl:when>
 <xsl:when test="firstname='Bob'">
 <p>Hello Bob!</p>
 </xsl:when>
 <xsl:otherwise>
 <p>Hello!</p>
 </xsl:otherwise>
</xsl:choose>

<xsl:sort>
Text extracted from the XML source document can be written to the result document
in sorted order by using the <xsl:sort> element in the XST stylesheet. The sort is
based on the value of the select attribute of the <xsl:sort> element.

For example, here’s how you sort the text of the lastname element in the XML
source document. The <xsl:sort> element must appear as the first element within
the <xsl:for-each> element.

<xsl:sort select="lastname"/>

XSL sorts in natural order and is case insensitive. This means uppercase and
lowercase versions of the same letter appear in the same location of the sorted
document. You can specify if the uppercase or the lowercase version of the same letter
appears first using the case-order attribute of the <xsl:sort> tag, as we show here.
Lower-first means that the lowercase version of the letter appears before the uppercase
version of the same letter, and upper-first places the uppercase version first.

<xsl:sort select="lastname" case-order="lower-first"/>
<xsl:sort select="lastname" case-order="upper-first"/>

The default sort order is ascending; however, you can change the sort order to
descending by setting the order attribute to descending, as we illustrate here:

<xsl:sort select="lastname" order="descending"/>

Sorting can be tricky when the element contains a number rather than letters.
Numbers are treated as text. This means that

1
2
10

is sorted as
1
10
2

92 XML Demystifi ed

You really want this sorted in numerical order. You can fix this problem by using
the data-type attribute of the <xsl:sort> element. Set the data-type attribute to
number and XSLT places the numbers in numerical order, as we show here:

<xsl:sort select="@id" data-type="number"/>

<xsl:apply-templates>
Writing an XSL can become time-consuming, especially if you have to define styles
for many elements in an XML source document. A common problem you might run
into is replicating lines of code when you want to repeat a style element in the XSL
stylesheet.

You can avoid replicating code by creating a template. A template associates a
block of code with a name. You use the name in your XSL stylesheet whenever you
want the block of code to appear in the XSL stylesheet.

You create the template using the <xsl:templates> element. Let’s suppose that an
XML source document describes a telephone number using the areacode element,
exchange element, and number element. You’ll need to reference each of these
every time you want to extract a telephone number.

Instead of repeating these, you can create a template and then call the template
whenever you want to extract elements of the phone number. Here’s how to create
a template. The value of the match attribute is the name of the template.

<xsl:template match="phone">
 (<xsl:value-of select="areacode"/>)
 <xsl:value-of select="exchange"/> -
 <xsl:value-of select="number"/>
</xsl:template>

You call the template by using the <xsl:apply-templates> element in the XSL
stylesheet, as we show here. The value of the select attribute is the name of the
template that you want to use.

<td>
 <xsl:apply-templates select="phone"/>
</td>

Looking Ahead
You use the Extensible Stylesheet Language (XSL) to describe how an XML
document is to be transformed by the Extensible Stylesheet Language Transformation
(XSLT) processor into a result document. Transformation is the process of converting

CHAPTER 6 XSLT 93

an XML document into another format that includes HTML and XHTML. XSLT
uses XPath to locate portions of an XML document that need to be transformed into
the result document.

The XSL stylesheet contains a blend of XSL instructions and characters that,
together, form a result document, which then is accessible to another application
such as a browser. You begin the XSL stylesheet by defining the versions of XML
and XSL that are being used. You then follow with a definition of a template.

The template contains XSL instructions that perform various operations on the
XML document. The <xsl:for-each> instruction executes one or more additional
instructions for each XML element that’s specified in the <xsl:for-each> instruction.

The <xsl:value-of/> instruction extracts text from a specified element in the
XML document and writes it to the result document. The <xsl:if> instruction causes
the XSLT processor to evaluate a condition in the XML document. If the condition
exists, then lines within the <xsl:if> instruction are copied to the result document.

The <xsl:choose> instruction requires the processor to evaluate several conditions
in the XML document and then copy lines within the <xsl:then> portion of the <xsl:
choose> instruction to the result document.

You can sort text extracted from the source document by using the <xsl:sort>
instruction. This instruction places the text in natural ascending order. There are
attributes you can use to change the natural order.

A block of XSL instructions can be associated with a name and then used
elsewhere in the XSL stylesheet by simply referring to that name.

Quiz
 1. XML can only be transformed into HTML or XHTML.

 a. True

 b. False

 2. Instructions for transforming an XML document are contained in the

 a. XSL stylesheet

 b. CSS stylesheet

 c. XSLT stylesheet

 d. None of the above

 3. The <xsl:for-each select=“customers/customer”> statement states

 a. For each customer element of the result document

 b. For each customers element of the result document

94 XML Demystifi ed

 c. For each customer element of the source document that’s a child
of customers

 d. For each customers element of the source document

 4. The <xsl:value-of> element is used to

 a. Extract text from the result document

 b. Extract text from the source document

 c. Place text into the source document

 d. None of the above

 5. The <xsl:value-of select=“@id=‘Jim’“/> statement is used to

 a. Select the Jim element

 b. Select the id attribute

 c. Select the Jim attribute

 d. Select the id attribute if the value is ‘Jim’

 6. The <xsl:for-each> element contains only XSL elements.

 a. True

 b. False

 7. The <xsl:if> element instructs the CSS to evaluate a condition before
extracting an element.

 a. True

 b. False

 8. In order to sort numeric values, you must set the <xsl:sort> to

 a. data-type=“number”

 b. data-type=“value”

 c. data-type=“decimal”

 d. None of the above

 9. You can repeat lines of code within the XSL stylesheet by defining an
apply-template.

 a. True

 b. False

 10. Only a browser can access a result document.

 a. True

 b. False

95

CHAPTER
7

XML Parsers and
Transformations

A parser is the powerhouse that makes an XML document come alive and become
a universal way to exchange information among different applications. It can
transform a bunch of characters in an XML document into anything you can
imagine.

There are many parsers that you can choose from but each conforms to one of two
standards: the Simple API for XML (SAX) and Document Object Model (DOM).
There is also the Java Transformer, which enables you to translate between DOM,
SAX, and a stream. Your job is to choose the standard that’s right for your job.

In this chapter, we provide you with insight into each standard, enabling you to
make an intelligence choice when selecting a parser to transform your XML
documents.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

96 XML Demystifi ed

Parsing an XML Document
An XML document is basically a text file where some tags represent information
and other tags represent XML tags that describe the information. XML tags are
designed to provide instructions to the program that transforms the information
contained in the XML document into another form. The program that reads and
interprets the information is called a parser and the process where information in
an XML document is transformed into another form is called transformation.

In its simplest form, a parser extracts and reformats information contained in an
XML document based on the XML tag that describes the information. For example,
suppose that the parser encountered the <CustomerLastName> XML tag. The
parser copies information contained in the tag and then reformats it into an HTML
document. The parser reads it, and the transformer allows you to convert it to
another type of document; for example, an HTML document.

In its more complicated form, a parser extracts selected XML tags and reformats
the information based on business logic. Suppose account manager Bob Smith is
planning a sales trip and wants a list of the customers who are within the same
vicinity. The list can be generated by giving the parser specific instructions, such as
search the XML document for customers whose account manager is Bob Smith.
Once they’re found, the parser determines if the customer’s zip code is within a
specific set of zip codes. If so, then select information about the customer is copied
from the XML document into an HTML web page that is displayed on Bob Smith’s
computer.

Instructions for the parser are written in the Extensible Stylesheet Language
Transformation (XSLT) and stored in the Extensible Stylesheet Language (XSL),
which you learned about in the Chapter 6.

A parser is a program. There are a number of parsers that are available, each of
which adheres to one of two XML parsing standards. These standards are SAX
and DOM.

The Simple API for XML (SAX)
The Simple API for XML (SAX) standard was developed by members of the XML-
DEV mailing list. It was driven by a need to have an open standard for companies
or public organizations; this way, they could implement a standard that would be
consistent across the board.

SAX is not technically an XML parser—it’s a specification that defines the
interface to the parser. Its first release was in May 1998. Of all the implementations

CHAPTER 7 XML Parsers and Transformations 97

of the SAX specification, the Java implementation is probably the most mature and
most widely used.

It’s important to understand that SAX is a standard for an application program
interface (API). It specifies standards for classes that you use to build a SAX parser.

This may sound confusing, especially if you’ve never programmed before.
However, you can probably imagine the many steps that are necessary to read and
transform an XML document. You need to write code for each step in order to build a
parser to transform the XML documents. This is a tedious and time-consuming job.

However, you can minimize the tedium and save time by using the classes of an
API, which other developers have already written. Think of these classes as already
assembled subparts of the parser. You assemble the subparts together to create a
parser.

You aren’t expected to write a parser, but you’ll need a parser in order to transform
your XML document. A SAX parser (a parser that was developed using the SAX
API) is designed to read large XML documents because it starts at the beginning of
the XML document and reads a group of lines, called a block at a time, until it
reaches the end of the document. The entire transformation process occurs in one
reading.

As it reads each block, the SAX parser determines if the block contains an XML
tag or information. If it’s an XML tag, the SAX parser compares the XML tag to the
XSL and then transforms the information based on the XSL instructions. The SAX
parser then reads the next block of the XML document.

A block is discarded once it’s transformed. This frees memory for the next block,
which gives the SAX parser an advantage over a DOM parser. A DOM parser loads
the entire XML document in memory, which you’ll learn about in “The Document
Object Model,” later in this chapter. The SAX parser requires a small amount of
memory to transform a very large XML document.

This advantage is also a disadvantage because a SAX parser cannot reference a
block of an XML document other than the block that’s in memory. This means that
it cannot modify XML information that has already been transformed based on the
block that’s currently being read.

A SAX parser gets one chance at reading each XML tag. Sometimes this is all
you need, though for a more complex transformation, you’ll need to use a DOM
parser that can reference any part of the XML document (see “The Document
Object Model,” later in this chapter).

Components of a SAX Parser
There are four components in a SAX parser: the Content Handler, Error Handler,
DTD Handler, and Entity Resolver.

98 XML Demystifi ed

The Content Handler is responsible for reacting to events that occur during the
transformation of the XML document. An event is something that happens while
the SAX parser reads the XML document, such as starting the document, starting
an element, ending a document, and ending an element. Table 7-1 lists some of the
events in the order that they occur when the SAX parser transforms an XML
document.

Each event is associated with a method. A method is a block of instructions that’s
executed whenever the event occurs while the XML document is being parsed. For
example, instructions in the startDocument() method are executed when the parser
begins to parse the XML document.

This can be seen in the following example. It’s a short XML document, but it
contains all the components that are necessary to illustrate how a SAX parser works.
The first event that occurs is starting to parse the XML document. This results in
calling the startDocument().

The next event is starting an element, which is the <customer> element. The
startElement() method is called. Another start element event happens when the
<firstname> is read. This is followed by a character event that triggers the characters()
method to execute, and is when the information within the <firstname> tag is copied
and transformed according the XSL. The close element event is next when the </
firstname> tag is read. This causes the endElement() method to run. This pattern
continues until the XML parser reads the last element. The last event is the end of the
document, which causes the endDocument() method to execute. As you can see,
writing an application that uses the SAX parser can get complicated. You need to
keep track of where you are in the document to extract the data you’re interested in.

<?xml version="1.0"?>
<customer>
 <firstname>Jim</firstname>
 <lastname>Keogh</lastname>
</customer>

Event Description

startDocument() Start parsing

startElement() Element opening tag

characters() Information in the element

endElement() Element closing tag

endDocument() End parsing

Table 7-1 Events That Occur When Parsing an XML Document

CHAPTER 7 XML Parsers and Transformations 99

The Error Handler is the component of a SAX parser that responds to errors
discovered by the SAX parser when it’s reading the XML document. There are
three types of errors: warnings, error, and fatal error.

A warning indicates that the SAX parser encountered something unusual in the
XML document, but it wasn’t enough to stop it from transforming the XML
document. An error is more serious than a warning. It doesn’t prevent the parser
from continuing; however, the transformed document might be properly transformed.
A fatal error prevents the SAX parser from continuing.

Each error has a corresponding error handler that’s called when the SAX parser
encounters it. A handler is a method with instructions on how to respond to the
error. These methods are warning(), error(), and fatalError().

You don’t need to be concerned with how error handlers work. However, you do
need to understand how to react to the error messages that these error handlers
display. Each SAX parser has its own set of error messages, so you’ll need to refer
to the documentation that comes with your SAX parser to know how to respond to
error messages.

The DTD Handler
The DTD Handler reads the Data Type Definition (DTD) (see Chapter 3) and then
uses the DTD to validate tags in the XML document. If an XML tag violates the
DTD, the DTD Handler causes the Error Handler to display a warning or error
message on the screen indicating the nature of the problem. We illustrate this in the
following XML document and DTD.

The XML document:

<?xml version="1.0"?>
<!DOCTYPE customer SYSTEM “customer.dtd">
<customer id="123" type="manufacturing">
 <firstname>Jim</firstname>
 <lastname>Keogh</lastname>
</customer>

The DTD:

<!ELEMENT customer (firstname, lastname)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ATTLIST customer
 id (CDATA) #REQUIRED
 type (retail|wholesale) “retail">

100 XML Demystifi ed

Notice the XML is properly formed; however, there’s a mistake in the customer
type attribute. The DTD provides the allowable values of “retail” or “wholesale.” If
the attribute isn’t present in the XML, the customer type attribute defaults to “retail,”
according to the DTD. The XML has a value of “manufacturing.” This produces a
warning in the XML document, but it doesn’t prevent the XML from being parsed
because it’s still properly formed XML.

Try changing the customer tag to:

<customer id="123" type=manufacturing">

This will produce a fatal error. There’s no quotation mark after type=. This type of
error prevents the XML from parsing correctly.

The Entity Resolver component of the SAX parser helps the SAX parser locate
external resources that are referenced within the XML document. Oftentimes, an
XML document contains references to the URL of an external resource, such as the
location of the DTD.

The URL is referenced in the XML document, but additional information related
to the resource is contained in the Entity Resolver.

Suppose you have this DOCTYPE declaration in your XML document:

<!DOCTYPE web-app
 PUBLIC “-//My Company, Inc.//DTD Web Application"
 “http://www.jimkeogh.com/dtds/web-app.dtd">

The DTD is located at http://www.jimkeogh.com/dtds/web-app.dtd. Your
application may be running on a server that doesn’t have access to the Internet so
you won’t be able to get a copy of the DTD. This is one place where you can use an
Entity Resolver. The parser calls your Entity Resolver when it encounters this
DOCTYPE tag. You can then direct it to a location where it can find it. You can put
a copy on the local file system or another server that you do have access to. This, in
effect, overrides the default behavior. It’s a means of telling the parser where to find
these external resources. You may not have the option of modifying the original
XML to point to a more convenient location, so you can use the Entity Resolver to
deal with it.

The Document Object Model
The Document Object Model (DOM) is similar to SAX in that it’s a standard that
defines an API used by the developer to create a parser. However, a DOM parser
works differently than a SAX parser because a DOM parser reads the entire XML
document, organizes the XML document into a tree structure, and stores it into
memory.

http://www.jimkeogh.com/dtds/web-app.dtd

CHAPTER 7 XML Parsers and Transformations 101

The DOM parser uses the tree structure to access parts of the XML document
without having to read the XML document sequentially (from top to bottom), as is
the case with the SAX parser. This means that a DOM parser can refer back to a
previously read portion of the XML document, which is a disadvantage of using the
SAX parser.

The DOM parser is also capable of creating an XML document and altering an
existing XML document, something that cannot be done if you use a SAX parser
because a SAX parser cannot write an XML document. It is read only.

However, the DOM parser has a major disadvantage in that it can only read XML
documents that can fit into memory, which makes the DOM parser an unlikely
choice if you need to transform very large XML documents. The available memory
in the computer that runs the DOM parser must be sufficient to store the XML
document; otherwise you won’t be able to use the DOM parser.

Here’s how the DOM parser works. Suppose you want to parse the following
XML document. Obviously it will fit into memory, so you can use a DOM parser.
Figure 7-1 shows the tree structure that the DOM parser builds in memory.

<?xml version="1.0"?>
<customer>
 <firstname>Jim</firstname>
 <lastname>Keogh</lastname>
</customer>

The root is the beginning of the XML document and extends to nodes. A node is
like a branch of the tree. The first node is an element node that contains the customer
element. Compare Figure 7-1 to the XML document and you’ll see how the tree
follows along with the structure of the XML document.

Figure 7-1 The DOM parser builds a tree structure of the XML document in memory.

102 XML Demystifi ed

The customer element in the XML document contains the firstname and lastname
elements. The firstname element contains the information Jim and the lastname
element contains the information Keogh. These are represented as text nodes in the
tree. A real-world XML document will probably have comments and Character
Data (CDATA) sections. Each of these is represented as a node on the tree by the
DOM parser. Processing instructions are not part of the DOM tree.

The DOM API provides a variety of methods that you can use to build the DOM
parser. Table 7-2 lists some methods used to navigate the tree structure of the XML
document. You don’t need to use them, but it gives you insight into how the DOM
parser can move about the tree.

Method Description

getFirstChild() Returns the fi rst child node, such as customer node in Figure 7-1.

getLastChild() Returns the last child node. If customer is the current node, then
lastname is the last child node.

getChildNodes() Returns a list of child nodes in the order they appear in the document.
If customer is the current node, then the list of child notes contains
fi rstname and lastname.

getNextSibling() Returns the sibling that’s right of the current node at the same node
level. If fi rstname is the current node, the next sibling is lastname.

getPreviousSibling() Returns the sibling that’s left of the current node at the same node
level. If lastname is the current node, the next sibling is fi rstname.

getParentNode() Returns the parent node of the current node. If fi rstname is the
current node, then customer is returned.

getNodeType() Returns the type of the current node. If fi rstname is the current
node, then element node is returned.

getNodeName() Returns the name of the current node. If customer is the current
node, then the name customer is returned.

getNodeValue() Returns the value of the current node. If Text Jim is the current
node, the Jim is returned.

getAttributes() Returns a list of attributes that are defi ned in the current node.

getElementsByTagName() Returns a list of elements that have the same name. If you’re
searching for lastname, then all the lastname elements are returned.

createElement() Creates a new element node. After the node is created, it can be
linked into any place in the document.

createTextNode() Creates a new text node. After the node is created, it can be
linked into any place in the document.

Table 7-2 Methods in the DOM API

CHAPTER 7 XML Parsers and Transformations 103

Let’s see how a DOM parser updates the tree of an XML document. Once
updated, the tree is then transformed back to an XML document. Here’s the updated
document. Notice that we inserted a middlename element within the customer
element:

<?xml version="1.0"?>
<customer>
 <firstname>Jim</firstname>
 <middlename>Edward</middlename>
 <lastname>Keogh</lastname>
</customer>

Now you want to reflect this change in the tree as shown in Figure 7-2. To do
this, the createElement() method is called to create the middlename element and
then the insertBefore() method is called to place the middlename element before
the lastname element in the tree.

Method Description

createComment() Creates a new comment node. After the node is created, it can be
linked into any place in the document.

appendChild() Links a new child node to the current node.

insertBefore() Inserts a node into a specifi c location within the tree.

Table 7-2 Methods in the DOM API (continued)

Figure 7-2 The middlename element and text are inserted into the tree.

104 XML Demystifi ed

The getPreviousSibling() method is called next to move to the middlename
element, which is previous to the lastname element. The createTextNode()method is
called to create a text node that contains the name Edward. The appendChild() method
is then called to place the new text node beneath the middlename element in the tree.

TIPTIP Sometimes when running a DOM parser, you’ll see an error message referring
to the SAX parser. This can be confusing since you’re not running a SAX parser.
Well, that isn’t totally true. The DOM parser initially uses a SAX parser to read the
XML file. Errors that occur during the initial parsing are SAX parser errors and not
DOM parser errors.

Java and Parsing an XML Document
Java is a popular programming language used to develop applications that can run
on different kinds of computers without having to rewrite the program. That is, the
same physical program can run on computers that run Windows, Linux, UNIX, and
even an Apple computer without changing the program. It’s for this reason that Java
has become a popular programming language developers use to write a program
that transforms an XML document. The program is referred to as a transformer.

A transformer reads a source file and transforms it into a results file (see Figure
7-3). The source file might be the true the DOM parser creates. The result might be
an XML document that displays elements in a serial format (i.e., the standard XML
format). The source can be any file or stream of characters. The result can also be
any file or stream of data.

Figure 7-3 A transformer uses its own stylesheet to transform a source to a result.

CHAPTER 7 XML Parsers and Transformations 105

For example, a transformer can read an XML document, transform it to HTML,
and then send the HTML characters as a stream that’s transmitted across the Internet
to the browser that requested the document. The Stream is said to be a serial form
of the source document. This is not quite right. The transformer can take a DOM,
SAX, or Stream and the source and result. For example, you can start by creating a
DOM object. The DOM object may be created from a Stream or created within
memory (for example, building a new document). The DOM can then be transformed
to a Stream. This uses the transformer to go from DOM to Stream, so the DOM is
the source and the Stream is the result.

Java provides an API that enables you to apply stylesheets to the source document
as the source is being transformed to the result. However, the stylesheet isn’t
referenced in the XML document as the XSLT is referenced. Instead, the stylesheet
is referenced in the transformer and not the XML document.

This may appear strange at first, but it isn’t when you consider that several web
sites typically use the same XML document, and each site applies a different style
to display the XML document. These web sites ignore references to the stylesheet
if it’s in the XML document because each site has its own transformer that contains
its own stylesheet.

Looking Ahead
An XML document is transformed into a useful format by a parser. A parser is a
program that adheres to one of two standards: the Simple API for XML (SAX) and
Document Object Model (DOM). You use one of these standards to build parsers.

A SAX parser reads blocks of an XML document one at a time, and then transforms
a block before reading the next one. This is why a SAX parser is ideal for reading
very large XML documents. A SAX parser cannot create or modify an XML
document.

A DOM parser reads the entire XML document and organizes the document into
a tree structure in memory before transforming the XML document into another
format. You must have sufficient memory available to hold the entire XML
document; otherwise, you cannot use a DOM parser. A DOM parser can read,
create, and modify an XML document.

Both the SAX parser and the DOM parser use the stylesheet that is referenced in
the XML document. The stylesheet contains instructions on how to transform the
XML document into another format. You must use the proper version of the SAX
parser and the DOM parser that’s suited for your computer. The transformer uses
the stylesheet, and it overrides what’s in the local document.

106 XML Demystifi ed

The Java transformer is a program written in the Java programming language
that can run on any computer. It can read, create, and modify an XML document.
However, the Java transformer uses its own stylesheet rather than the stylesheet that
is referenced in the XML document. And unlike the SAX and DOM parsers, the
same version of the Java transformer can be used on every Java-compatible
computer.

Quiz
 1. The SAX parser is able to transverse an XML document.

 a. True

 b. False

 2. The SAX parser creates a node by using

 a. createElement()

 b. createTextNode()

 c. createComment()

 d. None of the above

 3. The SAX parser reacts to a new element by using

 a. endElement()

 b. characters()

 c. startElement()

 d. startDocument()

 4. Which of the following is represented as a node in the tree a DOM parser
creates?

 a. CDATA sections

 b. Comments

 c. Elements

 d. All of the above

 5. A Java transformer can use

 a. Its own stylesheet

 b. DTD

CHAPTER 7 XML Parsers and Transformations 107

 c. XSLT

 d. All of the above

 6. The same version of a DOM parser must be used on all computers.

 a. True

 b. False

 7. A Stream is a series of characters that can be the results of transformation
performed by a Java transformer.

 a. True

 b. False

 8. A SAX parser

 a. Reads a block of an XML document at a time

 b. Organizes the XML document into a tree

 c. Enables you to correct the contents of an XML document

 d. None of the above

 9. You should use a SAX parser if a DOM parser is unable to load the XML
document into memory.

 a. True

 b. False

 10. The appendChild() method links a node to the current node.

 a. True

 b. False

This page intentionally left blank

109

CHAPTER
8

Really Simple
Syndication

(RSS)

XML is more than theory. It’s used in real-world applications to transfer information
between different applications, eliminating the need for developers to write complex
programs to access data from databases. In this chapter, we’ll explore one of those
real-world applications called Really Simple Syndication (RSS).

If you’ve ever wished there was a way to distribute your web content to the
millions of web sites on the Internet, then you’ll enjoy reading this chapter. RSS is
an application of XML that you use to register your content with companies called
aggregators. Aggregators are like a chain of supermarkets for web site content.

In this chapter, you’ll learn how to create an RSS document that contains all the
information an aggregator requires to offer your content to other web site
operators.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

110 XML Demystifi ed

What Is Really Simple Syndication (RSS)?
RSS is a method that uses XML to distribute a document published on a web site to
other web sites, similar to how an article in your local newspaper is picked up by
the news wire services and distributed to other media outlets.

Dave Winer came up with this idea back in 1997. Netscape adopted RSS two
years later, which made their version of RSS the de facto standard. Winer updated
RSS in 2003 after Netscape discontinued RSS development. Today there are
several companies (www.newsisfree.com and www.syndic8.com) that offer a free
aggregation service using RSS. The aggregator, similar to a news wire service,
gathers documents from a variety of web sites and makes them available for
publication by other web sites.

Here’s how RSS works. First you format your document using RSS-defined
XML tags and then post the document on your web site. Next, you register with an
aggregator. Each day the aggregator polls registered web sites for RSS documents.

When polling a registered web site, the aggregator verifies the link and then
displays information about the feed so clients can sort through topics and link to
documents that interest them. RSS XML tags contain values that identify the
document and parts of the document, which helps the client determine which parts
to display on their web site.

For example, you might display a book review on your web site. The RSS XML
tags enable you to identify the topic of your review and to identify its parts, such as
the headline, subheadline, synopsis, and full review.

The client who wants to publish your review can decide to display only the
headline; the headline and the synopsis; the headline, the subheadline, and the
synopsis; or the complete review. The client links to your document rather than
storing your document on its own web server.

Inside an RSS Document
Let’s say that you wrote two articles: one titled “Risk Mitigation in IT Projects” and
the other titled “Outsourcing Myths and Misconceptions.” You want to make both
available to other web sites by using the RSS feed. The RSS feed is the term
developers call the process of distributing an RSS XML document.

Here’s the RSS document that you need to prepare:

<?xml version="1.0" ?>
<rss version="2.0">

www.newsisfree.com
www.syndic8.com

CHAPTER 8 Really Simple Syndication (RSS) 111

<!-- my first RSS document -->
 <channel>
 <title>Jim Keogh Home Page</title>
 <link>http://www.jimkeogh.com</link>
 <description>Jim Keogh Lecture Series</description>
 <item>
 <title>Risk Mitigation in IT Projects</title>
 <link>http://www.jimkeogh.com/riskmitigation/</link>
 <description>Seminar on limiting risks in
 large IT projects</description>
 </item>
 <item>
 <title>Outsourcing Myths and Misconceptions</title>
 <link>http://www.jimkeogh.com/outsourcing/</link>
 <description>Real world examples
 and issues with outsourcing</description>
 </item>
 </channel>
</rss>

The first thing you’ll notice is that the RSS document doesn’t contain the articles.
Instead, it contains a description of each article and the link to the article. The client
links to the article if they have an interest in publishing the article.

The first line of the RSS document is the XML declaration that identifies the
XML version used in the document. Following this is the RSS declaration that
identifies the version of RSS the document uses.

You can insert a comment anywhere in your RSS document by using the <!-- and
--> symbols, which are the same as comments in HTML. This example contains
one comment that identifies this as your first RSS document.

The rss element is the outermost tag of the RSS document and it contains the RSS
elements that are used to describe the feed. In this example, the channel is the
RSS element that’s used to describe the feed.

The channel element has three child elements. These are

• title The title element defines the title of the channel. In this example,
Jim Keogh Home Page is the title.

• link The link element identifies the hyperlink of the web site that’s
associated with this channel. It’s important not to confuse this link with
the link to an article. These are separate links.

• description The description element contains text that describes the
channel, which is the web site www.jimkeogh.com.

www.jimkeogh.com

112 XML Demystifi ed

Each channel can have one or more item elements. An item element defines an
article that the RSS aggregator is distributing. Information defined in an item
element appears on the RSS aggregator web site. There are two item elements in
this example: the Risk Mitigation in IT Projects article and the Outsourcing Myths
and Misconceptions article.

Each item element has three child elements. These are

• title The title element is the title of the item. Remember that the text you
enter in the title element is the title that appears on the aggregator’s web
site.

• link The link element is the link to the article on your web site. Make
sure that you provide the full path to the article; otherwise, the client won’t
be able to link to the article.

• description The description element provides a brief description for the
article. The content of the description is very important because clients use
it to determine if they’ll select the article for publication. Some clients will
simply display the title, link, and description on their web sites and then it’s
up to their web site visitors to decide whether or not to link to your article.

More About the channel Element
The channel element contains other child elements (we didn’t use them in the
previous example). However, it’s useful to include some of these child elements in
the RSS document because they provide the aggregator and, ultimately, the client
with more information that describes the channel.

The category child element enables the aggregator to place your feed into a
group of feeds within the same category. Clients are then able to visit the
aggregator’s web site and drill down into the category to see feeds that specialize
in topics that interest them.

A channel category for our example might be

<category>Lecture Series</category>

The category element can also be used for item elements. This enables you to
place your document within a category, making it easy for the client to find it. For
example, good categories for our documents would be

<category>IT Projects</category>
<category>Outsourcing</category>

CHAPTER 8 Really Simple Syndication (RSS) 113

The copyright element is another useful element within the channel element. It
displays notice that the copyright law protects the material referenced in the RSS
document. Some aggregators display the copyright element so clients can determine
if the channel’s offerings are current.

Here’s how to use the copyright element:

<copyright>2007 Jim Keogh, Inc.</copyright>

You can dress up your RSS document with an image such as a logo that some
aggregators will display on their web sites when showing your offerings. You do
this by using the image element within the channel element.

The image element requires you to include three child elements. These are

• url The url element contains the link to the image.

• title The title element specifies text that’s displayed if the aggregator
is unable to display the image. This is similar to the alt attribute in the
HTML image tag.

• link The link element defines the link to the web site that’s offering
the channel.

Here’s how to use the image element in your RSS document. The image is contained
in the logo.gif file. The Lecture Series text is displayed in place of the image if the
image cannot be displayed. The channel is provided by www.jimkeogh.com.

<?xml version="1.0" ?>
<rss version="2.0">
 <channel>
 ...
 
 ...
 </channel>
</rss>

You’ll probably recall times when you Googled an expression and received links
that are written in different languages. The same thing happens when aggregators
list RSS documents. Some are written in English and others are written in other
languages.

You can specify the language used to write your document by specifying the
language element in the RSS document. The language element must specify the

www.jimkeogh.com

114 XML Demystifi ed

language code that conforms to the ISO 639 standards. Here’s how you’d specify
U.S. English:

<language>us-en</language>

Communicating with the Aggregator
You can use elements within the channel element to provide the aggregator with
information about when the aggregator should update its copy of your RSS
document. There are five elements that are frequently used in the RSS document:
pubDate, skipDays, skipHours, ttl, and webMaster.

<pubDate>
The pubDate element is where you place the date that you last updated your RSS
document. The aggregator might review the contents of this element before updating
your RSS document on its web site.

The date must be in the data and time format specification of the RFC 822 as
shown here:

<pubDate>Mon, 06 Mar 2006 12:00:00 GMT</pubDate>

<skipDays>
You use the skipDays element to tell the aggregator to skip updating your RSS
document on certain days. For example, some developers don’t update their
RSS document on the weekends, so they place Saturday and Sunday in the skipDays
element.

The skipDays element requires that you use at least one day child element. The
day child element is where you place the name of the day that the aggregator doesn’t
have to update its copy of your RSS document. You can have up to seven day child
elements in the skipDays element. Here’s how you skip updating on the weekend:

<skipDays>
 <day>Saturday</day>
 <day>Sunday</day>
</skipDays>

<skipHours>
If you know that your last update of the RSS document is always at 5 p.m. and never
before 9 a.m., then you can tell the aggregator to skip updating its copy of your RSS
document after 5 p.m. and before 9 a.m. by using the skipHours child element.

CHAPTER 8 Really Simple Syndication (RSS) 115

The skipHours child element requires at least one hour child element and can
have up to 24 hour child elements. Each hour child element must contain an integer
that represents the hour you want the aggregator to skip the update. The hour child
element uses the 24-hour clock where 0 is one o’clock in the morning and 23 is
midnight.

Here’s how to tell the aggregator to skip the updates after normal business
hours:

<skipHours>
 <hour>0</hour>
 <hour>1</hour>
 <hour>2</hour>
 <hour>3</hour>
 <hour>4</hour>
 <hour>5</hour>
 <hour>6</hour>
 <hour>7</hour>
 <hour>17</hour>
 <hour>18</hour>
 <hour>19</hour>
 <hour>20</hour>
 <hour>21</hour>
 <hour>22</hour>
 <hour>23</hour>
</skipHours>

<ttl>
The ttl (time to live) element specifies the number of minutes that the RSS
document has before the copy of the RSS document in cache is refreshed. The
RSS document is placed in cache (memory) the first time it’s loaded. During the
session, the RSS document is displayed from cache when subsequent requests are
made for the RSS document.

Retrieving the RSS document from cache rather than from the server provides a
quick response; however, the contents of the copy of the RSS document in cache
can easily be outdated. In order to avoid this problem you use the ttl element to set
the number of minutes that the RSS document can remain in cache; after this
expires, the RSS document must be refreshed from the server.

Let’s say that your RSS documents almost always remains unchanged for two
hours. Therefore, you can set the ttl element to 120 minutes. This means that the
aggregator is asked to refresh its copy of the RSS document that’s stored in cache
every 120 minutes.

116 XML Demystifi ed

<webMaster>
It’s important that the aggregator has a way to communicate directly to you should
anything go wrong when it’s accessing your RSS document or links that are
embedded in the document. The best way to open the line of communication with
the aggregator is to use the webMaster element.

The webMaster element is where you place the e-mail address of the person who
responds to inquiries from the aggregator. Here’s what you need to write:

<webMaster>jm@jimkeogh.com</webMaster>

More About the item Element
You’ll recall from earlier in this chapter that the item element is used to identify
XML documents in the RSS document that you have available for publication. The
example of the RSS document we show in the “Inside an RSS Document” section
contained the minimum information that you need to include in the item element.
However, there are additional child elements that you can use to provide the
aggregator with more information about the publication.

Here are the six most commonly used child elements for an item element.

<author>
You use the author element to provide the aggregator with the author’s e-mail
address. Some developers opt not to include this to prevent spammers from acquiring
the e-mail address. Here’s how you write the author element:

<author>jm@jimkeogh.com</author>

<comments>
Sometimes you’ll want to provide the aggregator with additional information about
an item that you don’t want published on the aggregator’s web site. Place this
information in a document and then reference that document in the comments element,
as we show here. The itemcomments is the document that contains the comments.

<comments>http://www.jimkeogh.com/itemcomments</comments>

<enclosure>
You use the enclosure element if you have a media file that you want to include with
the item in the RSS document. For example, you might record a brief audio message

CHAPTER 8 Really Simple Syndication (RSS) 117

that encourages clients to publish your document. You can include that with the
item by using the following enclosure element:

<enclosure url="http://www.jimkeogh.com/lecture1.mp3" length="6000"
type="audio/mpeg" />

You must include three attributes with the enclosure element:

• url The url is the link to the media file. In this example, lecture1.mp3
is the name of the media file.

• length The length attribute specifies the size of the media file in bytes.
This example is 6000 bytes in length.

• type The type attribute states the type of media file. The media file in
this example is an audio file using the mpeg format.

<guid>
You use the guid element to assign the item a unique value called the Globally
Unique Identifier (GUID). You create the ID from a string, numeric value, URL, or
any character that uniquely identifies the item. The aggregator can use this ID to
determine if its copy of the RSS document has been updated.

Here’s how to write the guid element:

<guid>http://www.jimkeogh.com/lecture1234</guid>

<pubDate>
The pubDate element is identical to the pubDate element used in the category
element. The pubDate element here specifies the date that the item was published
or updated. This follows the same description for the category element (see the
“Communicating with the Aggregator” section).

<source>
You use the source element to identify a file used for the item a third party provides.
This enables you to combine resources obtained from other web sites (with
permission) into your RSS document.

Here’s how to write the source element:

<source url="http://thirdpartycontent.com/content">Some other site</source>

118 XML Demystifi ed

Looking Ahead
Really Simple Syndication (RSS) is an application of XML that enables content
providers to make their documents available to other web sites using an aggregator
much like a local newspaper distributes their news stories to media outlets using a
news wire service.

In order to distribute their content, the content provider creates an RSS document
using XML. The RSS document provides the aggregator with general information
regarding the content provider and with specific information about each item the
content provider offers.

The rss element encloses child elements that describe the RSS document. Within
the rss element is the channel element, which identifies the content provider and
contains one or more item elements.

The item element describes a document that the content provider is publishing.
This element includes the title of the document, the URL that contains the document,
and a brief description of the item. The aggregator typically displays information in
the item element on the aggregator’s web site so clients can pick and choose the
context they want published on their web sites.

You can enhance both the channel and the item elements by using one of a series
of other child elements that, among other things, associates a channel with a specific
category of other channels.

Once you’ve created the RSS document, it’s registered with an aggregator. The
aggregator then makes a copy of the RSS document and uses it to display the items
on the aggregator web site in the hope that clients will want to use it on their own
web sites.

The RSS document contains only references to documents and not the actual
document. Clients who want to use the document on their web sites read the
RSS document and then update their web sites with links contained in the RSS
document.

Quiz
 1. An aggregator is a web site that offers content to other web site operators.

 a. True

 b. False

 2. What element do you use to display your logo on the aggregator’s web site?

 a. logoElement

 b. imageElement

CHAPTER 8 Really Simple Syndication (RSS) 119

 c. image

 d. None of the above

 3. The comment element is used to

 a. Display comments in the RSS document

 b. Display comments in the article document

 c. Tell the aggregator when to find a document that
contains comments

 d. Contain test, which is hidden from the aggregator

 4. The skipDays element is used to

 a. Tell the client that the documents are out of date

 b. Tell the aggregator days that you don’t want the aggregator to update
its copy of your RSS document

 c. Tell the aggregator you no longer want your documents distributed

 d. All of the above

 5. What does the value 21 in the hour element tell the aggregator to do?

 a. Don’t update for the next 21 hours

 b. Update only at 8 p.m.

 c. Don’t update at 9 p.m.

 d. Don’t update at 8 p.m.

 6. Registering your RSS document with an aggregator guarantees a wide
distribution of your documents.

 a. True

 b. False

 7. You specify the language used to write your document by using the ISO
639 standard in the language element.

 a. True

 b. False

 8. Which of the following is a GUID for an item?

 a. atdecb

 b. 45727

 c. 3rs3567dvg

 d. All of the above

120 XML Demystifi ed

 9. The link element within the image element identifies the web site that’s
responsible for the image.

 a. True

 b. False

 10. You use the enclosure element if you have a media file that you want to
include with an item in the RSS document.

 a. True

 b. False

121

CHAPTER
9

XQuery

A customer calls you asking a question about her order. You need to quickly access
her order; however, all orders are stored in a very long XML document. It’s too
time-consuming to search through each line of the XML document. What do you
do? You could panic and have an unhappy customer, or you can create an XQuery
to electronically search for and display the customer’s order.

Think of XQuery as your electronic assistant who knows where to find any
information in an XML document as fast as your computer will allow. Your job is
to use the proper expression to request the information. XQuery interprets your
request and retrieves the information that you need from the XML document.

The way you use XQuery is similar to how you use SQL to access information
from a relational database. The relational database is like an XML document—both
contain lots of information, making it inefficient to search by hand.

In this chapter, you’ll harness the power of XQuery by learning how to write
expressions that enable you to tap into the vast treasure trove of information stored
in an XML document.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

122 XML Demystifi ed

Getting Started
There are a few things that you’ll need to do before you write your first XQuery
expression. XQuery is an extension of XPath; therefore, make sure that you read
Chapter 6 before moving ahead with this chapter. You’ll also need an XQuery
processor. An XQuery processor is the software that’s like an electronic assistant
who searches an XML document for information you request. Skip this section if
you already have installed an XQuery processor; otherwise, read on and learn how
to install one.

Several XQuery processors are available. Some are freeware or open source, and
others are commercial software products. Let’s save a few dollars. Download the
Saxon-B version 8, which is an open source XQuery processor, at:

http://saxon.sourceforge.net/

Saxon-B is a zip file. Download it to c:\saxon and then unzip the file. That’s all
you need to do to install Saxon-B.

Saxon-B is a Java program. Therefore, you’ll also need to have a runtime version
of Java installed on your computer. You’ll find a free, downloadable copy at:

http://java.sun.com

Download the latest version of Java 2 Standard Edition (J2SE) and follow the
installation instructions that come with the downloaded file. You don’t need to know
anything about Java to run Saxon-B with the examples we show in this chapter.
Take note of where you install the Java runtime. You will need to know this to
execute the samples.

Testing Saxon-B
Once you’ve installed the software, you’ll need to make sure everything is working
properly. To do this, create an XML document and an XQuery, and then use Saxon-
B to retrieve information from the XML document.

Here’s the XML document that you’ll use to learn XQuery. Write this document
using an editor and save it in the saxon directory as catalog.xml:

<?xml version="1.0"?>
<catalog>
 <cd upc="602498678299">
 <artist>U2</artist>
 <title>How to Dismantle an Atomic Bomb</title>
 <price>13.98</price>
 <label>Interscope Records</label>
 <date>2004-11-23</date>

http://saxon.sourceforge.net/
http://java.sun.com

CHAPTER 9 XQuery 123

 </cd>
 <cd upc="75679244222">
 <artist>Led Zeppelin</artist>
 <title>Physical Graffiti</title>
 <price>22.99</price>
 <label>Atlantic</label>
 <date>1994-08-16</date>
 </cd>
 <cd upc="75678367229">
 <artist>Rush</artist>
 <title>Rush in Rio</title>
 <price>13.98</price>
 <label>Atlantic</label>
 <date>2003-10-21</date>
 </cd>
 <cd upc="74646938720">
 <artist>Billy Joel</artist>
 <title>Songs in the Attic</title>
 <price>10.99</price>
 <label>Sony</label>
 <date>1998-10-20</date>
 </cd>
 <cd upc="75678263927">
 <artist>Led Zeppelin</artist>
 <title>Houses of the Holy</title>
 <price>10.98</price>
 <label>Atlantic</label>
 <date>1994-07-19</date>
 </cd>
 <cd upc="8811160227">
 <artist>Jimi Hendrix</artist>
 <title>Are You Experienced?</title>
 <price>12.99</price>
 <label>Experience Hendrix</label>
 <date>1997-04-22</date>
 </cd>
 <cd upc="74640890529">
 <artist>Bob Dylan</artist>
 <title>The Times They Are A-Changin'</title>
 <price>9.99</price>
 <label>Sony</label>
 <date>1990-10-25</date>
 </cd>
</catalog>

124 XML Demystifi ed

Next, you’ll need to create the XQuery. Type the following XQuery into your
editor and save it in the saxon directory in a file called catalog.xq. This XQuery
retrieves and displays a list of titles contained in the XML document. Although the
XQuery probably looks strange to you, you’ll understand each line of the XQuery
by the time you finish reading this chapter.

<html>
<body>
 List of titles in this catalog:

 {
 for $x in doc("catalog.xml")/catalog/cd/title
 order by $x
 return {data($x)}
 }

</body>
</html>

The final step to test Saxon-B is to execute the XQuery. Here’s what you need
to do:

 1. Open a Command Prompt window if you’re using a Windows computer.

 2. Make saxon the current directory.

 3. Type the following command:

c:\Saxon> c:\jdk15\bin\java -cp saxon8.jar net.sf.saxon.Query -t catalog

.xq > output.html

 4. Press ENTER.

This command probably looks like a bunch of gibberish. It isn’t. The first part
(c:\jdk15\bin\java) specifies the path to Java and runs Java. The second part (-cp
saxon8.jar net.sf.saxon.Query) tells Java to extract the Query portion of the saxon8
.jar file, which is the file that contains Saxon-B. The third part (-t catalog.xq) of the
command identifies the XQuery file, which is catalog.xq. The last part (> output
.html) redirects the result of running the XQuery to the file called output.html.

TIPTIP The jdk15 portion of the first part of the command is the directory where
Java is installed on our computer. You probably installed Java in a different
directory so you’ll need to replace jdk15 with the name of the directory on
your computer where you installed Java.

CHAPTER 9 XQuery 125

You can use this same command to run all the examples in this chapter; however,
for each example you’ll need to change the name of the query from catalog.xq to
the name we give to the query.

Nothing much happens when you run Saxon-B—at least nothing you can see on
the screen. Open the output.html in an editor and you’ll see the result of your
XQuery. It should look like this:

<html>
 <body>
 List of titles in this catalog:

 Are You Experienced?
 Houses of the Holy
 How to Dismantle an Atomic Bomb
 Physical Graffiti
 Rush in Rio
 Songs in the Attic
 The Times They Are A-Changin'

 </body>
</html>

Figure 9-1 shows the result of your XQuery when it’s displayed by a browser.

Figure 9-1 Your browser displays the result of your XQuery request.

126 XML Demystifi ed

How XQuery Works
An XQuery must contain a conditional expression that specifies the search criteria.
A conditional expression is either true or false. For example, /catalog/cd/title =
‘XML Demystified’ is a conditional expression. Saxon-B looks at the next title tag
in the XML document and determines if the text of the title tag is ‘XML Demystified’.
If so, then the conditional expression is true; otherwise, the conditional expression
is false.

A conditional expression is used within a FLWOR expression. FLWOR sounds
like more gibberish, but it’s really an acronym for for, let, where, order by, and
return clauses. A clause is a component of an XQuery.

For, Let, and Order By Clauses
You use the for and let clauses to assign values to variables within the XQuery. A
variable is a placeholder for a value such as $x. Look at the catalog.xq file and
you’ll notice the following for clause. For each title tag in the catalog XML file,
Saxon-B assigns the text of the current title XML tag to the $x variable and then
sorts the titles.

for $x in doc("catalog.xml")/catalog/cd/title

Look at the code that follows the for clause and you’ll see that variable $x is used
by the order by clause. The text of the title replaces the $x variable when Saxon-B
runs the XQuery before processing the order by clause.

The order by clause places the value of $x in sorted order. In this example, the
order by clause sorts all the titles in alphabetical order before storing the titles into
the output.html file. Titles within the XML document remain unchanged.

You can specify the direction of the sort by using ascending or descending, as we
show here. The default direction is ascending.

order by $x descending

The let clause, not used in the catalog.xq example, assigns a value to a variable.
Suppose you want to assign the title ‘XML Demystified’ to variable $x. Here’s how
you write the let clause to do this. You can then use $x in place of ‘XML Demystified’
throughout the XQuery.

let $x := 'XML Demystified'

The Where and Return Clauses
You use the where clause to specify a filter criterion using a conditional expression.
Let’s say that you want to see titles by Jimi Hendrix. You can use the where clause

CHAPTER 9 XQuery 127

to tell Saxon-B to compare the text of the artist tag to Jimi Hendrix. If there is a
match, then the text of the title tag is assigned the variable $x, which is then used
by the order by clause to sort all titles by Jimi Hendrix. This is illustrated in the
following segment of the XQuery.

for $x in doc("catalog.xml")/catalog/cd/title
 where doc("catalog.xml")/catalog/cd/artist = 'Jimi Hendrix'
order by $x

The return clause identifies information that Saxon-B returns to the output.html
file. It can return literal characters, the content of tags in an XML document, and
the value of variables used within the XQuery.

The catalog.xq XQuery uses the return clause to return HTML characters and the
value of the $x. The HTML characters format the data for the browser. The data($x)
function is called to return the text associated with $x. Remember $x is the title
element that includes the markup tag and any child nodes. The data() function
extracts the text from between the tags, for example:

$x equals: <title>How to Dismantle an Atomic Bomb</title>
data($x) equals: How to Dismantle an Atomic Bomb

A function is a task that Saxon-B performs. You call the function by name
anytime you want the task to be performed in your XQuery. This is referred to as a
function call and must be contained with French braces ({ }). This example calls the
data() function, which extracts the text from the argument:

return {data($x)}

A Walkthrough of an XQuery
Let’s take a closer look at the catalog.xq now that you have an understanding of
how clauses work. The catalog.xq is basically an HTML document that has XQuery
clauses embedded in it. (Our example is converting to HTML, but it can be to any
language you like.)

You probably recognized the first part of the XQuery because it’s HTML.
The <body> tag contains text that’s displayed on the screen followed by an
unordered list.

<html>
<body>
 List of titles in this catalog:

128 XML Demystifi ed

Next is the meat of the XQuery. This is where you tell Saxon-B the information
that you want returned from the XML document. It begins with an open French
brace ({) and ends with a closed French brace (}).

{
 for $x in doc("catalog.xml")/catalog/cd/title
 order by $x
 return {data($x)}
}

The first line within the French brace is the for clause, which you learned about
previously in this chapter. The for clause tells Saxon-B to look for something within
the XML document. In this case the something is the title tag.

You must tell Saxon-B to retrieve the XML document and then specify all the
parent tags, if any, of the tag that you want returned. Retrieving the XML document
is a task. You have Saxon-B do this by calling the doc() function and passing it the
name of the XML document. The parent tags are catalog and cd.

Each time Saxon-B encounters the title tag in the XML document it assigns the
title tag to variable $x. Once the end of the XML document is reached, Saxon-B
sorts titles contained in variable $x.

The return clause is then called to return all the titles to the output.html file.
Notice that the HTML tag is part of the return value, which causes titles to be
displayed on a bulleted list.

The last part of the XQuery is also familiar because it contains the closing HTML
tags for the tags opened in the first part of the XQuery.

</body>
</html>

Constructors
Information contained in an XML document is stored as a series of characters called
a string. This isn’t a problem unless you want to use the information in a calculation;
then you need to convert the character to a type of information that can be calculated.
There are several types of data, which are referred to as data types. You’re familiar
with most of them. These are numbers, decimals, dates, and Boolean. Boolean is
true or false. And, of course, there is a string.

Let’s say that you want to calculate the sales tax for a CD. The price of the CD
is $19.95 and is in the XML document. However, $19.95 is a string and not a

CHAPTER 9 XQuery 129

number. Therefore, you must convert $19.95 from a string to a decimal. A decimal
contains both a whole number and a decimal number.

You can convert information contained in an XML document to another data
type by using a constructor. A constructor tries to convert the content of an XML
tag to a data type. If it fails, then it returns an error. Table 9-1 contains a list of
constructors. You use them within the XQuery to convert information from the
XML document into a different data type so it can be used in a calculation.

A constructor requires you to pass it the name of the tag. The constructor then
returns the converted value. Typically you’ll assign the converted value to a variable
and then use the variable in a calculation.

Here’s how to convert the CD price to a decimal value. The xs:decimal() is the
constructor. The doc() function retrieves the catalog.xml document that contains the
price. /catalog/cd/price are parent/child tags that identify the tag whose text is being
converted to a decimal. The converted value is assigned to the $price variable:

let $price := xs:decimal(doc(“catalog.xml")/catalog/cd /price)

Constructors are frequently used in the conditional statements in a where clause
to compare the search criteria to the value of the XML tag. Let’s say that you want
to extract the title and price of all the CDs that are less than $11.00 with a release
date greater than 1993-10-31.

In order to do this, you need to convert the text of the price tag to a decimal and
the text of the date tag to a date data type. Once they’re converted, you can write a
conditional statement that compares these values against the search criteria.

Constructor Description

xs:decimal Constructs a decimal value from a string. The string
must be a number.

xs:date Constructs a date value from a string. The string must
conform to the pattern YYYY-MM-DD; for example,
2006-10-31.

xs:double Constructs a double precision fl oating point number
from a string.

xs:fl oat Constructs a fl oating point number from a string.

xs:hexBinary Constructs a hex binary value from a string.

xs:int Constructs an integer from a string.

xs:time Constructs a time.

Table 9-1 Constructors Used to Convert XML Strings

130 XML Demystifi ed

Let’s walk through the next example and see how this works. The for clause
opens the catalog XML document and assigns the /catalog/cd tags to the $cd
variable. You then combine the $cd variable with the /price tag and the /date tag in
the constructors. You do this to make the code easier to read. You could have passed
the complete parent/child tags to the constructor such as we did in the example we
show earlier in this section.

You use the xs:decimal() constructor and the xs:date() constructor to convert the
price and the date to its respective data type and assign the converted value to variables.
You then use variables in the conditional expression of the where clause. The value of
the $price variable is compared to 11.00 and the value of the $date variable is compared
to 1993-10-31. Notice that 1993-10-31 must also be converted to a date because “1993-
10-31” is a string just like the date in the XML document. You use the less than operator
(<) to determine if the value of the price variable is less than 11.00; and use the greater
than operator (>) to determine if the value of the date variable is greater than 1993-10-
31. Both conditions must be true for the conditional statement to be true, and for
information about the CD to be returned by the XQuery.

<html>
<body>
 List of titles in this catalog:

 {
 for $cd in doc("catalog.xml")/catalog/cd
 let $price := xs:decimal($cd/price)
 let $date := xs:date($cd/date)
 where $price < 11.00 and $date > xs:date("1993-10-31")
 order by $date
 return {data($cd/title)} - ${$price} - {$date}
 }

</body>
</html>

Here’s the result of this XQuery:

<html>
 <body>
 List of titles in this catalog:

 Houses of the Holy - $10.98 - 1994-07-19
 Songs in the Attic - $10.99 - 1998-10-20

 </body>
</html>

Figure 9-2 shows the result of the XQuery when it’s displayed by a browser.

CHAPTER 9 XQuery 131

A conditional statement specifies the search criteria for an XQuery. It simply tells
Saxon-B to retrieve specific information from an XML document only if the
information adheres to the conditional expression contained in the conditional
statement.

A conditional expression contains operators and operands that resolve to either
true or false. Operators include less than (<), greater than (>), equals (=), less than
or equal to (<=), greater than or equal to (>=), and not equal to (!=). An operand is
a value evaluated by an operator in a conditional expression. In this case, it’s the
name of the XML tag that contains the information that you want Saxon-B to
compare to the search criteria—and the value of the search criteria is an operand
as well.

A conditional statement is used in a for clause, which we explained earlier in the
section “For, Let, and Order By Clauses”. It’s also used in an if…then…else
statement. An if…then…else statement basically tells Saxon-B, “If the conditional
expression is true, then execute these statements, else execute these other statements
if the conditional expression is false.”

Figure 9-2 The XQuery result your browser displays.

Conditional Statements

132 XML Demystifi ed

The if…then…else statement contains a conditional expression and two blocks
of statements, as we show here. The conditional expression is contained within
parentheses. In this example, the conditional expression is testing where the text of
the price XML tag is greater than 15. The first code block is between the if…then
and the else. It contains statements that are executed if the text of the price tag is
greater than 15. The second block of code follows the else. The statement contained
beneath the else is executed if the text of the price tag is not greater than 15.

Notice that we use the round-half-to-even() function. This function rounds the
calculated value. So 1.5 becomes 2 and 2.5 becomes 2. It rounds to the nearest even
number. The round-half-to-even() function has two parameters. The first parameter
is the value that’s being rounded. In this case, we used a calculation. The result of
the calculation is rounded. The second parameter is the number of decimal places
that we want to show. In this example, we show two decimal places.

if($price > 15) then
 round-half-to-even($price * 0.8, 2)
else
 round-half-to-even($price * 0.9, 2)

Another form for an if…then…else statement is the if…then…else if…else
statement. The if…then…else if…else statement is very similar to the if…then…
else statement except that it contains two conditional statements.

The first conditional statement is the same as the one we show in the previous
example. The second conditional statement is in the else if portion of the statement.
This tells Saxon-B that if the first conditional statement is false, then test the second
conditional statement. If the second conditional statement is true, then execute the
statements between the else if and else. If the second conditional statement is false,
then execute the statements that follow the else.

There are three code blocks in an if…then…else if…else statement, as we show
here. The first code block is between the if…then and else if. The second code
block is between the else if and else. And the third code block is after the else.

if($price > 15) then
 round-half-to-even($price * 0.8, 2)
else if($price > 11) then
 round-half-to-even($price * 0.9, 2)
else
 "No discount"

Suppose you want to extract the CD artist and title and then determine if a discount
should be applied to the price. If the price is more than $15.00, then calculate a 20-
percent discount. If the price is greater than $11.00 and less then or equal to $15.00,

CHAPTER 9 XQuery 133

then calculate a 10-percent discount. There’s no discount if the price is less than or
equal to $11.00.

Here is the XQuery that you’ll need to write to extract this information and
perform these calculations. You’ll notice that this is basically the same XQuery that
you used throughout this chapter. However, we inserted an if…then…else if…else
statement in the return clause of the XQuery. This conditional statement returns
either the discounted price or the price itself if the price is less than or equal to
$11.00. It also controls the format for decimal values.

<html>
<body>
 List of titles in this catalog:

 <table border="1">
 <tr>
 <td>Artist</td>
 <td>Title</td>
 <td>List Price</td>
 <td>Sale Price</td>
 </tr>
 {
 for $cd in doc("catalog.xml")/catalog/cd
 let $price := xs:decimal($cd/price)
 order by $cd/artist
 return
 <tr>
 <td>{data($cd/artist)}</td>
 <td>{data($cd/title)}</td>
 <td>{$price}</td>
 <td>
 {

 if($price > 15) then
 round-half-to-even($price * 0.8, 2)
 else if($price > 11) then
 round-half-to-even($price * 0.9, 2)
 else
 "No discount"

}
 </td>
 </tr>
 }
 </table>
</body>
</html>

134 XML Demystifi ed

Here’s what the XQuery writes to the output.html file, and Figure 9-3 shows the
result when it’s displayed in a browser.

<html>
 <body>
 List of titles in this catalog:
<table border="1">
 <tr>
 <td>Artist</td>
 <td>Title</td>
 <td>List Price</td>
 <td>Sale Price</td>
 </tr>
 <tr>
 <td>Billy Joel</td>
 <td>Songs in the Attic</td>
 <td>10.99</td>
 <td>No discount</td>
 </tr>

Figure 9-3 Here’s the result of the XQuery when it’s displayed in a browser.

CHAPTER 9 XQuery 135

 <tr>
 <td>Bob Dylan</td>
 <td>The Times They Are A-Changin'</td>
 <td>9.99</td>
 <td>No discount</td>
 </tr>
 <tr>
 <td>Jimi Hendrix</td>
 <td>Are You Experienced?</td>
 <td>12.99</td>
 <td>11.69</td>
 </tr>
 <tr>
 <td>Led Zeppelin</td>
 <td>Physical Graffiti</td>
 <td>22.99</td>
 <td>18.39</td>
 </tr>
 <tr>
 <td>Led Zeppelin</td>
 <td>Houses of the Holy</td>
 <td>10.98</td>
 <td>No discount</td>
 </tr>
 <tr>
 <td>Rush</td>
 <td>Rush in Rio</td>
 <td>13.98</td>
 <td>12.58</td>
 </tr>
 <tr>
 <td>U2</td>
 <td>How to Dismantle an Atomic Bomb</td>
 <td>13.98</td>
 <td>12.58</td>
 </tr>
 </table>
 </body>
</html>

136 XML Demystifi ed

Retrieving the Value of an Attribute
Not all of the information is contained in the text of an XML tag. Sometimes
information is assigned to an attribute of a tag, such as the UPC code in the CD tag
that we show here:

<cd upc="75679244222">

You can use an XQuery to extract the value of an attribute by calling the data()
function and specifying the @ symbol in front of the attribute name. Let’s say that
the UPC code is an attribute of the cd element and the cd element is the child of the
catalog element. You then access the UPC code by using the following call to the
data() function. You’ve seen something like this used previously in this chapter
when you learned about how to use the data() function. The only new feature is the
@ symbol, which you use to tell Saxon-B to use the value of the attribute rather
than the text of the element.

{data(doc("catalog.xml")/catalog/cd/@upc)}

Here’s the XQuery that accesses the value of the upc attribute. This is basically
the same XQuery that you learned about previously in this chapter, except that you
pass the @upc to the data() function.

<html>
<body>
 List of titles in this catalog:

 <table border="1">
 <tr>
 <td>UPC</td>
 <td>Artist</td>
 <td>Title</td>
 </tr>
 {
 for $cd in doc("catalog.xml")/catalog/cd
 order by $cd/artist
 return
 <tr>
 <td>{data($cd/@upc)}</td>
 <td>{data($cd/artist)}</td>
 <td>{data($cd/title)}</td>
 </tr>
 }

CHAPTER 9 XQuery 137

 </table>
</body>
</html>

Here’s what the XQuery writes to the output.html file.

<html>
 <body>
 List of titles in this catalog:
<table border="1">
 <tr>
 <td>UPC</td>
 <td>Artist</td>
 <td>Title</td>
 </tr>
 <tr>
 <td>74646938720</td>
 <td>Billy Joel</td>
 <td>Songs in the Attic</td>
 </tr>
 <tr>
 <td>74640890529</td>
 <td>Bob Dylan</td>
 <td>The Times They Are A-Changin'</td>
 </tr>
 <tr>
 <td>8811160227</td>
 <td>Jimi Hendrix</td>
 <td>Are You Experienced?</td>
 </tr>
 <tr>
 <td>75679244222</td>
 <td>Led Zeppelin</td>
 <td>Physical Graffiti</td>
 </tr>
 <tr>
 <td>75678263927</td>
 <td>Led Zeppelin</td>
 <td>Houses of the Holy</td>
 </tr>
 <tr>
 <td>75678367229</td>
 <td>Rush</td>
 <td>Rush in Rio</td>

138 XML Demystifi ed

 </tr>
 <tr>
 <td>602498678299</td>
 <td>U2</td>
 <td>How to Dismantle an Atomic Bomb</td>
 </tr>
 </table>
</body>
</html>

Here’s what the XQuery writes to the output.html file, and Figure 9-4 shows the
result when it’s displayed in a browser.

Retrieving the Value of an Attribute
and the Attribute Name
When you use the @ symbol followed by the attribute name without calling the
data() function, an XQuery can return the name of the attribute, along with its value,
as we illustrate here:

{$cd/@upc}

Figure 9-4 Here’s how the UPC attribute appears when the output.html fi le is displayed
in a browser.

CHAPTER 9 XQuery 139

Let’s modify the previous XQuery to display both the UPC attribute name and its
value. Here’s the revised XQuery:

<html>
<body>
 List of titles in this catalog:

 <table border="1">
 <tr>
 <td>UPC</td>
 <td>Artist</td>
 <td>Title</td>
 </tr>
 {
 for $cd in doc("catalog.xml")/catalog/cd
 order by $cd/artist
 return
 <tr>
 <td>{$cd/@upc}</td>
 <td>{data($cd/artist)}</td>
 <td>{data($cd/title)}</td>
 </tr>
 }
 </table>
</body>
</html>

Here’s the new output.html file. Notice that the attribute appears just as it does in
the XML document. It has the attribute name, equal sign, and the value. Saxon-B is
smart enough to replace the " that’s in the XML document in double
quotations.

<html>
 <body>
 List of titles in this catalog:
<table border="1">
 <tr>
 <td>UPC</td>
 <td>Artist</td>
 <td>Title</td>
 </tr>
 <tr>
 <td upc="74646938720"></td>
 <td>Billy Joel</td>
 <td>Songs in the Attic</td>
 </tr>
 <tr>

140 XML Demystifi ed

 <td upc="74640890529"></td>
 <td>Bob Dylan</td>
 <td>The Times They Are A-Changin'</td>
 </tr>
 <tr>
 <td upc="8811160227"></td>
 <td>Jimi Hendrix</td>
 <td>Are You Experienced?</td>
 </tr>
 <tr>
 <td upc="75679244222"></td>
 <td>Led Zeppelin</td>
 <td>Physical Graffiti</td>
 </tr>
 <tr>
 <td upc="75678263927"></td>
 <td>Led Zeppelin</td>
 <td>Houses of the Holy</td>
 </tr>
 <tr>
 <td upc="75678367229"></td>
 <td>Rush</td>
 <td>Rush in Rio</td>
 </tr>
 <tr>
 <td upc="602498678299"></td>
 <td>U2</td>
 <td>How to Dismantle an Atomic Bomb</td>
 </tr>
 </table>
 </body>
</html>

CAUTIONCAUTION Don’t place text or any node before the attribute because it will cause
an error. For example, the following statement confuses Saxon-B because the
attribute is in the wrong location. Attributes are assigned first and then followed
by the text of the element.

<td> some other data {$cd/@upc}</td>

CHAPTER 9 XQuery 141

You already learned that a function is a task that Saxon-B already knows how to
perform; all you need to do is to call the function in your XQuery whenever you
want Saxon-B to perform that task.

Table 9-2 contains commonly used XQuery functions. You can find a complete
list of functions at www.w3.org/2005/02/xpath-functions.

In addition to calling built-in functions, you can also define your own functions
that can be called the same way a built-in function is called. Here’s what you need
to do. First create the function by writing a function declaration statement.

Function Description Example

upper-case() Converts the argument to
uppercase letters.

upper-case(“Led Zeppelin”)
returns: “LED ZEPPELIN”

lower-case() Converts the argument to
lowercase letters.

lower-case(“Led Zeppelin”)
returns: “led zeppelin”

substring() Returns a substring. substring(“Led Zeppelin”,1, 6)
returns: “Led Ze”

string() Returns the string representation
of the argument.

string(645)
returns: “645” as a string.

concat() Returns the concatenation of two
strings.

concat(“XQu”, “ery”)
returns: “XQuery”

string-join() Returns a concatenation of the
arguments separated by the
specifi ed separator. The fi rst
argument is a list of strings and the
second argument is the separator.
You may fi nd this particularly
useful for displaying names.

string-join((“Mary”, “Ellen”,
“Smith”), “ “)
returns: “Mary Ellen Smith”

string-length() Returns the length of the string.
If the argument is a node, then
it returns the length of the string
data for that node.

string-length(“Led
Zeppelin”)
returns: 12

Table 9-2 Commonly Used Built-In XQuery Functions

Functions

www.w3.org/2005/02/xpath-functions

142 XML Demystifi ed

The function declaration statement must have a prefix, a function name, a
parameter list, and a return value. In addition, a function declaration statement must
also define a code block that contains statements that are executed when the function
is called from within an XQuery.

Here’s the structure of a function declaration statement:

declare function prefix:function_name($parameter as datatype, ...)
 as returntype
{
 ... code for the function goes here...
};

Let’s declare a function. You’ll call it convertdate and it will convert the date
format 2006-10-04 to October 4, 2006. The prefix will be called local. The parameter
is the date that will be converted and the return value is the converted date.

Here’s the function declaration. Notice that the parameter is placed within
parentheses. You’ll need to give the parameter a name and specify its data type.
The name is always prefaced with a $ symbol. You’ll also need to specify the data
type of the value returned by the function. The return type in this example is a
string.

The code block is defined with open and closed French braces ({ }). This is
where you place statements that execute each time the function is called. The
function begins by assigning all the months to an array called $month. An array is
a variable that can have many values. Next, the month-from-date() function is called
to extract the month of the date and assign it to the $month variable. The day-from-
date() function and year-from-date() function are passed to the concat() function in
the return clause to return the reformatted date.

The function declaration statement must appear at the top of the XQuery, as we
show in the following example. Think of this as defining the function before you
call the function within the XQuery. The function is called later in the XQuery
{local:convertdate(xs:date($cd/date))}.

declare function local:convertdate($date as xs:date) as xs:string
{
 let $months := ("January","February","March","April","May",
 "June","July","August","September","October","November","December")
 let $month := $months[month-from-date($date)]
 return
 concat($month, " ", string(day-from-date($date)), ", ",
 string(year-from-date($date)))
};
<html>
<body>

CHAPTER 9 XQuery 143

 List of titles in this catalog:

 <table border="1">
 <tr>
 <td>UPC</td>
 <td>Artist</td>
 <td>Title</td>
 <td>Date</td>
 </tr>
 {
 for $cd in doc("catalog.xml")/catalog/cd
 order by $cd/artist
 return
 <tr>
 <td>{data($cd/@upc)}</td>
 <td>{data($cd/artist)}</td>
 <td>{data($cd/title)}</td>
 <td>{local:convertdate(xs:date($cd/date))}</td>
 </tr>
 }
 </table>
</body>
</html>

Here’s the output.html file that the XQuery produces:

<html>
<body>
 List of titles in this catalog:
<table border="1">
 <tr>
 <td>UPC</td>
 <td>Artist</td>
 <td>Title</td>
 <td>Date</td>
 </tr>
 <tr>
 <td>74646938720</td>
 <td>Billy Joel</td>
 <td>Songs in the Attic</td>
 <td>October 20, 1998</td>
 </tr>
 <tr>
 <td>74640890529</td>
 <td>Bob Dylan</td>
 <td>The Times They Are A-Changin'</td>
 <td>October 25, 1990</td>

144 XML Demystifi ed

 </tr>
 <tr>
 <td>8811160227</td>
 <td>Jimi Hendrix</td>
 <td>Are You Experienced?</td>
 <td>April 22, 1997</td>
 </tr>
 <tr>
 <td>75679244222</td>
 <td>Led Zeppelin</td>
 <td>Physical Graffiti</td>
 <td>August 16, 1994</td>
 </tr>
 <tr>
 <td>75678263927</td>
 <td>Led Zeppelin</td>
 <td>Houses of the Holy</td>
 <td>July 19, 1994</td>
 </tr>
 <tr>
 <td>75678367229</td>
 <td>Rush</td>
 <td>Rush in Rio</td>
 <td>October 21, 2003</td>
 </tr>
 <tr>
 <td>602498678299</td>
 <td>U2</td>
 <td>How to Dismantle an Atomic Bomb</td>
 <td>November 23, 2004</td>
 </tr>
 </table>
</body>
</html>

Here’s how the output.html file appears when displayed in a browser (see
Figure 9-5).

CHAPTER 9 XQuery 145

Figure 9-5 Here’s how the output.html fi le is displayed in a browser.

Looking Ahead
XQuery is used to query information contained in an XML document. The XQuery
is processed by the XQuery processor. Some of these processors are freeware or
open source and others are commercial software products.

An XQuery is typed into an editor and saved to a file that contains the .xq file
extension. The XQuery file is then passed to the XQuery processor as a command
line argument. The result of the XQuery is contained in the output.html file, which
you can open in your browser.

An XQuery contains conditional expressions that define search criteria. A
conditional expression can be either true or false. Portions of the XML document
that meet the search criteria are copied to the output.html file.

146 XML Demystifi ed

The for and let clauses are used to assign values to variables within the XQuery.
The order by clause is used to sort the results in ascending or descending order. The
where clause specifies a filter criteria using the conditional expression and the
return clause identifies information that the XQuery processor returns to the output
.html file.

In the next chapter you’ll learn about MSXML, which lets you combine the
power of XML and programming languages such as JavaScript, Visual Basic, and
C++ when using Microsoft’s XML Core Services.

Quiz
 1. Saxon-B is the only software that can process an XQuery.

 a. True

 b. False

 2. What kind of clause is used to specify the filter criteria?

 a. SQL clause

 b. Declarative clause

 c. where clause

 d. None of the above

 3. $x is an

 a. Element

 b. Attribute

 c. XQuery

 d. Variable

 4. Order by

 a. Places all elements in the XML document in ascending order

 b. Places all elements in the XML document in descending order

 c. Places all return values in ascending order by default

 d. Places all return values in descending order by default

CHAPTER 9 XQuery 147

 5. The where clause

 a. Locates the XML document

 b. Locates the output file

 c. Specifies the filter criteria

 d. All of the above

 6. All functions used by an XQuery are built-in functions.

 a. True

 b. False

 7. The data() function returns the text value of a variable.

 a. True

 b. False

 8. A constructor

 a. Converts information contained in an XML document to another data
type

 b. Is the first instance of a function

 c. Is the first instance of a variable

 d. None of the above

 9. The doc() function retrieves an XML document.

 a. True

 b. False

 10. The round-half-to-even() function rounds half the value returned by a
function.

 a. True

 b. False

This page intentionally left blank

149

CHAPTER
10

MSXML

You combine the power of XML and programming languages such as JavaScript,
Visual Basic, and C++ when you use Microsoft’s XML Core Services, simply
referred to as MSXML. MSXML is an application program interface that contains
features that enable you to interact with XML from within an application written in
one of the commonly used programming languages.

This means that you can unleash an XML document from within a program
rather than having to use a web browser. You can easily integrate any XML document
into your application by calling features of MSXML from within your program.

You’ll learn about MSXML in this chapter and how to access an XML document
using JavaScript. The same basic principles used for JavaScript can be applied to
other programming languages.

What Is MSXML?
XML is a dynamic approach to managing information. As you’ve learned throughout
this book, you can access an XML document using an XML-enabled browser. This
is fine if you want to display all or a portion of an XML document. Simply follow
the directions we present in this book and you’re able to view information contained
in the XML document from your browser.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

150 XML Demystifi ed

However, accessing an XML document using an application other than a browser
can be tricky because code must be written within the application to extract
information contained in the XML document.

Fortunately, Microsoft provides the magic wand to take the pain out of writing
code to access an XML document from within an application with Microsoft XML
Core Services—MSXML for short. MSXML consists of preprogrammed classes
and functions that contain code to access and manipulate information in an XML
document.

You don’t have to write the tedious code to read and parse an XML document
because Microsoft has done this for you. All you need to do is to call the appropriate
classes or functions within your application to work with an XML document.

MSXML is designed for a variety of programming languages, including C, C++,
Visual Basic, VBScript, Jscript, and JavaScript. You can download the MSXML
API at http://msdn.microsoft.com/xml/default.aspx, and will need to do so before
you can use the examples we illustrate in this chapter.

We use JavaScript as the programming language for this chapter because you
don’t need to use a compiler to create a JavaScript application. You simply write the
code using the same editor that you use to write your web page. JavaScript is
executed by calling the JavaScript from a web page using your browser.

We’ll show you a few JavaScript basics in this chapter—enough so you can get
started using MSXML. However, you may want to read JavaScript Demystified by Jim
Keogh (McGraw-Hill Osborne Media, 2005) to become proficient using JavaScript.

You’ll need to install the MSXML API or download it from the Microsoft web
site. We’re using version 4.0; however, you should download the latest release.

Getting Down and Dirty with MSXML
Let’s jump in. To start learning MSXML, you’ll first create an XML document. The
XML document is a catalog of CDs that we’ll simply call catalog.xml. It contains
seven CDs, as you’ll see in the code that follows. Enter this XML code into a file
and save it to your drive. Be sure to call the file catalog.xml.

<?xml version="1.0"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>
 <cd upc="602498678299">
 <artist>U2</artist>
 <title>How to Dismantle an Atomic Bomb</title>
 <price>13.98</price>
 <label>Interscope Records</label>
 <date>2004-11-23</date>

http://msdn.microsoft.com/xml/default.aspx

CHAPTER 10 MSXML 151

 </cd>
 <cd upc="75679244222">
 <artist>Led Zeppelin</artist>
 <title>Physical Graffiti</title>
 <price>22.99</price>
 <label>Atlantic</label>
 <date>1994-08-16</date>
 </cd>
 <cd upc="75678367229">
 <artist>Rush</artist>
 <title>Rush in Rio</title>
 <price>13.98</price>
 <label>Atlantic</label>
 <date>2003-10-21</date>
 </cd>
 <cd upc="74646938720">
 <artist>Billy Joel</artist>
 <title>Songs in the Attic</title>
 <price>10.99</price>
 <label>Sony</label>
 <date>1998-10-20</date>
 </cd>
 <cd upc="75678263927">
 <artist>Led Zeppelin</artist>
 <title>Houses of the Holy</title>
 <price>10.98</price>
 <label>Atlantic</label>
 <date>1994-07-19</date>
 </cd>
 <cd upc="8811160227">
 <artist>Jimi Hendrix</artist>
 <title>Are You Experienced?</title>
 <price>12.99</price>
 <label>Experience Hendrix</label>
 <date>1997-04-22</date>
 </cd>
 <cd upc="74640890529">
 <artist>Bob Dylan</artist>
 <title>The Times They Are A-Changin'</title>
 <price>9.99</price>
 <label>Sony</label>
 <date>1990-10-25</date>
 </cd>
</catalog>

152 XML Demystifi ed

You’ll notice that the XML document refers to the catalog.dtd. As you’ll recall
from Chapter 3, a DTD file contains the document type definition that defines the
markup tags that can be used in the XML document and specifies the parent-child
structure of those tags. The XML parser references the DTD when parsing elements
of the XML document.

Create a DTD for this example. You do this by writing the following information
into a file and saving the file as catalog.dtd in the directory that contains the catalog
.xml file.

<!ELEMENT catalog (cd*)>
<!ELEMENT cd (artist, title, price, label, date)>
<!ELEMENT artist (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT label (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ATTLIST cd
 upc CDATA #REQUIRED>

The final step you’ll take to prepare to learn MSXML is to create the HTML file
that contains the JavaScript used to access the catalog.xml document. The HTML
file follows. Some of it is familiar because it’s HTML. Other parts, you’ll understand
if you know JavaScript (don’t worry if you don’t understand them; we explain
JavaScript throughout this chapter). However, the portions of the HTML file that
use MSXML are probably confusing, even if you previously worked with
JavaScript.

For now, simply create this HTML file and save it to a file called default.html in
the directory where you saved catalog.xml and catalog.dtd. We explain each part of
the HTML file throughout this chapter.

<html>
<head>
<script language="javascript">
var objXML;
function LoadDocument()
{
 var inputfile = document.all("inputfile").value;
 objXML = new ActiveXObject("MSXML2.DOMDocument.4.0");
 objXML.async = false;
 objXML.load(inputfile);
 if (objXML.parseError.errorCode != 0)
 {
 alert("Error loading input file: " + objXML.parseError.reason);
 return;
 }
 document.all("xmldoc").value = objXML.xml;
}

CHAPTER 10 MSXML 153

function InsertFirst()
{
 var objNewNode = LoadNewNode();
 if(objNewNode == null)
 {
 return;
 }
 var root = objXML.documentElement;
 root.insertBefore(objNewNode, root.firstChild);
 document.all("xmlresult").value = objXML.xml;
}
function InsertLast()
{
 var objNewNode = LoadNewNode();
 if(objNewNode == null)
 {
 return;
 }
 var root = objXML.documentElement;
 root.appendChild(objNewNode);
 document.all("xmlresult").value = objXML.xml;
}
function InsertBefore(upc)
{
 var objNewNode = LoadNewNode();
 if(objNewNode == null)
 {
 return;
 }
 var root = objXML.documentElement;
 var objNodes = objXML.selectNodes("/catalog/cd[@upc='" + upc + "']");
 if(objNodes.length == 0)
 {
 alert("Could not find node with upc " + upc);
 return;
 }
 root.insertBefore(objNewNode, objNodes.item(0));
 document.all("xmlresult").value = objXML.xml;
}
function InsertAfter(upc)
{
 var objNewNode = LoadNewNode();
 if(objNewNode == null)
 {
 return;
 }
 var root = objXML.documentElement;
 var childNodes = root.childNodes;
 for(var i=0; i < childNodes.length; i++)
 {
 var node = childNodes.item(i);
 var nodeUPC = node.getAttribute("upc");
 if(nodeUPC == upc)
 {
 root.insertBefore(objNewNode, childNodes.item(i+1));

154 XML Demystifi ed

 document.all("xmlresult").value = objXML.xml;
 return;
 }
 }
 alert("Could not find node with upc " + upc);
}
function LoadNewNode()
{
 var xmlNewNode = document.all("newnode").value;
 var objNewNode = new ActiveXObject("MSXML2.DOMDocument.4.0");
 objNewNode.async = false;
 objNewNode.loadXML(xmlNewNode);
 if (objNewNode.parseError.errorCode != 0)
 {
 alert("Error loading new node: " + objNewNode.parseError.reason);
 return null;
 }
 else
 {
 return objNewNode.documentElement;
 }
}
function CreateAndAppendNode()
{
 var upc = document.all("createUpc").value;
 var artist = document.all("createArtist").value;
 var title = document.all("createTitle").value;
 var price = document.all("createPrice").value;
 var label = document.all("createLabel").value;
 var date = document.all("createDate").value;
 var elementCd = objXML.createElement("cd");
 elementCd.setAttribute("upc", upc);
 var elementArtist = objXML.createElement("artist");
 var textArtist = objXML.createTextNode(artist);
 elementArtist.appendChild(textArtist);
 elementCd.appendChild(elementArtist);
 var elementTitle = objXML.createElement("title");
 var textTitle = objXML.createTextNode(title);
 elementTitle.appendChild(textTitle); elementCd.appendChild(elementTitle);
 var elementPrice = objXML.createElement("price");
 var textPrice = objXML.createTextNode(price);
 elementPrice.appendChild(textPrice);
 elementCd.appendChild(elementPrice);
 var elementLabel = objXML.createElement("label");
 var textLabel = objXML.createTextNode(label);
 elementLabel.appendChild(textLabel);
 elementCd.appendChild(elementLabel);
 var elementDate = objXML.createElement("date");
 var textDate = objXML.createTextNode(date);
 elementDate.appendChild(textDate);
 elementCd.appendChild(elementDate);
 var root = objXML.documentElement;
 root.appendChild(elementCd);
 document.all("xmlresult").value = objXML.xml;
}

CHAPTER 10 MSXML 155

function SelectArtist(artist)
{
 var objNodes = objXML.selectNodes
 ("/catalog/cd[artist='" + artist + "']");
 if(objNodes.length == 0)
 {
 alert("Could not find artist with name " + artist);
 return;
 }
 var root = objXML.documentElement;
 var cdList = root.selectNodes("/catalog/cd");
 cdList.removeAll();
 for(var i=0; i < objNodes.length; i++)
 {
 root.appendChild(objNodes.item(i));
 }
 document.all("xmlresult").value = objXML.xml;
}
function DisplayTitles()
{
 var result = "";
 var objNodes = objXML.selectNodes("/catalog/cd/title");
 for(var i=0; i < objNodes.length; i++)
 {
 result += objNodes.item(i).text + "\r\n";
 }
 document.all("xmlresult").value = result;
}
function DeleteNodes(upc)
{
 var objNodes = objXML.selectNodes("/catalog/cd[@upc='" + upc + "']");
 if(objNodes.length == 0)
 {
 alert("Could not find node with upc " + upc);
 return;
 }
 for(var i=0; i < objNodes.length; i++)
 {
 objXML.documentElement.removeChild(objNodes.item(i));
 }
 document.all("xmlresult").value = objXML.xml;
}
function ValidateDocument()
{
 var err = objXML.validate();
 if (err.errorCode == 0)
 {
 alert("Document is valid.");
 }
 else
 {
 alert("Error validating document:" + err.reason);
 }
}
function TransformDocument(stylesheet)

156 XML Demystifi ed

{
 var xslProcessor;
 var xslTemplate = new ActiveXObject("Msxml2.XSLTemplate.4.0");
 var xslDocument = new ActiveXObject(
 "Msxml2.FreeThreadedDOMDocument.4.0");
 xslDocument.async = false;
 xslDocument.loadXML(stylesheet);
 if (xslDocument.parseError.errorCode != 0)
 {
 var myErr = xmlDoc.parseError;
 alert("You have error " + myErr.reason);
 return;
 }
 xslTemplate.stylesheet = xslDocument;
 xslProcessor = xslTemplate.createProcessor();
 xslProcessor.input = objXML;
 xslProcessor.transform();
 window.frames.htmlresult.document.open();
 window.frames.htmlresult.document.clear();
 window.frames.htmlresult.document.write(xslProcessor.output);
 window.frames.htmlresult.close();
}
</script>
</head>
<body onload="LoadDocument();">
<table cellpadding="5">
<tr>
<td nowrap>File name: <input type="text"
 id="inputfile" value="catalog.xml"></td>
<td><input type="button" onclick="LoadDocument();"
 value="Load Document"></td>
</tr>
<tr valign="top">
<td>XML Document:</td>
<td><textarea id="xmldoc" rows="20" cols="80" readonly>
 </textarea></td>
</tr>
<tr valign="top">
<td nowrap>

 Insert First:

 Insert Last:

<a href="#" onclick="InsertBefore(
 document.all('upcBefore').value);
 return false;">Insert Before UPC:
 <input type="text" id="upcBefore"
 value="75678367229" size="15">

 <a href="#" onclick=
 "InsertAfter(document.all('upcAfter').value);
 return false;">Insert After UPC:
 <input type="text" id="upcAfter"
 value="75678367229" size="15">

</td>
<td><textarea id="newnode" rows="10" cols="80">

CHAPTER 10 MSXML 157

<cd upc="75596280822">
 <artist>Phish</artist>
 <title>Live Phish, Vol. 15</title>
 <price>26.99</price>
 <label>ELEKTRA/WEA</label>
 <date>2002-10-29</date>
</cd>
</textarea>
</td>
</tr>
<tr valign="top">
<td nowrap><a href="#" onclick="CreateAndAppendNode();
 return false">Create/Append Node</td>
<td nowrap>
upc: <input type="text" id="createUpc"
 value="75596280822" size="15">

artist: <input type="text" id="createArtist"
 value="Phish" size="15">

title: <input type="text" id="createTitle"
 value="Live Phish, Vol. 15" size="15">

price: <input type="text" id="createPrice"
 value="26.99" size="15">

label: <input type="text" id="createLabel"
 value="ELEKTRA/WEA" size="15">

date: <input type="text" id="createDate"
 value="2002-10-29" size="15">
</td>
</tr>
<tr valign="top">
<td colspan="2" nowrap>
<a href="#" onclick="
 SelectArtist(document.all('artist').value);
 return false;">Select Artist:
 <input type="text" id="artist" value="U2" size="15">

<a href="#" onclick="DisplayTitles();
 return false;">Display Titles

<a href="#" onclick=
 "DeleteNodes(document.all('upcDelete').value);
 return false;">Delete Nodes w/UPC:
 <input type="text" id="upcDelete"
 value="75678367229" size="15">

<a href="#" onclick="ValidateDocument();
 return false;">Validate Document
</td>
</tr>
<tr valign="top">
<td nowrap><a href="#"
 onclick="TransformDocument(document.all('stylesheet').value);
 return false;">Transform Document:</td>
<td>
<textarea id="stylesheet" rows="20" cols="80">
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">

158 XML Demystifi ed

<html>
 <body>
 <h2>CD Listing</h2>
 <table border="1">
 <tr>
 <th align="center">UPC</th>
 <th align="center">Artist</th>
 <th align="center">Title</th>
 </tr>
 <xsl:for-each select="catalog/cd">
 <tr>
 <td>
 <xsl:value-of select="@upc"/>
 </td>
 <td>
 <xsl:value-of select="artist"/>
 </td>
 <td>
 <xsl:value-of select="title"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
</html>
</xsl:template>
</xsl:stylesheet>
</textarea>
</td>
</tr>
<tr valign="top">
<td>XML Result:</td>
<td><textarea id="xmlresult" rows="20" cols="80"></textarea></td>
</tr>
<tr valign="top">
<td>HTML Result:</td>
<td><iframe id="htmlresult"
 src="about:blank" width="100%" height="300"></td>
</tr>
</table>
</body>
</html>

Loading a Document
Let’s begin by loading the XML document from the file system into the browser.
You accomplish this by entering the name of the XML document into the File
name: input field on the HTML form and then selecting the button to refresh the
document. These two lines of code within the HTML document create these
elements:

CHAPTER 10 MSXML 159

<td nowrap>File name: <input type="text"
 id="inputfile" value="catalog.xml"></td>
<td><input type="button" onclick="LoadDocument();
 " value="Load Document"></td>

The first line creates the input field, and the second line creates the button.
Look at the opening <body> tag on the HTML document and you’ll see that you

tell the browser to call the LoadDocument() JavaScript function each time that the
HTML page is loaded into the browser. This causes the browser to load the default
file and display it in the text area of the web page.

<body onload="LoadDocument();">

Notice that the onclick attribute of the input button also calls the LoadDocument()
function when the button is selected. This time the LoadDocument() function loads
the file that’s named in the File name: input box, which is then displayed in the text
area of the web page replacing the current file. You may want to use this button
periodically to refresh the XML document to its original state.

The LoadDocument() Function
A function is a piece of code that contains one or more lines of code that execute
only if the function is called by another part of the application. Each function has a
unique name that’s used to call it. A function is defined before it’s called. You’ll
notice that the LoadDocument() function is defined at the beginning of the HTML
file.

LoadDocument() is a JavaScript function that loads a document. Here’s what it
looks like:

var objXML;
function LoadDocument()
{
 var inputfile = document.all("inputfile").value;
 objXML = new ActiveXObject("MSXML2.DOMDocument.4.0");
 objXML.async = false;
 objXML.load(inputfile);
 if (objXML.parseError.errorCode != 0)
 {
 alert("Error loading input file: " + objXML.parseError.reason);
 return;
 }
 document.all("xmldoc").value = objXML.xml;
}

There are two components shown in this example. The first is objXML. This is
a variable. Think of a variable as a placeholder for a real value. The objXML is a
global variable defined outside the function definition, which means that it can be

160 XML Demystifi ed

accessed from anywhere in the application. In contrast, inputfile is a local variable
to the LoadDocument() function and is only accessible from within the
LoadDocument() function definition.

The second component in this example is the function definition. The function is
called LoadDocument(). Code between the French braces ({ }) executes each time
another part of the application calls the LoadDocument() function.

The first line in the LoadDocument() function definition accesses the value of
the inputfile input box on the HTML form. This is the input box containing the
name of the document to load. The value is the name of the document. This file
name is assigned to a variable called inputfile.

The second line assigns the objXML variable to an instance of the MSXML
DOM Object. This function begins by finding out which file to load, which is then
stored to the inputfile. Next, you create an ActiveX object for the DOM parser (see
Chapter 7). The version number is supplied because MSXML is designed to coexist
with previous versions rather than replace a previous version with the latest
version.

TIPTIP Visual Basic, VBScript, C, and C++ access objects using either the ActiveX
or COM interface.

The third line determines if the file is being accessed synchronously or
asynchronously. The DOMDocument object contains properties and functions
(sometimes called methods). One of those properties is called async; it controls
how the document is going to behave with your application. By setting the async
property to false, you’re saying that you want to wait until the document is loaded
before executing the next line of code. If you set the async property to true, then the
next line of code executes while the document is still loading.

The fourth line calls the load() method, which is defined in the MSXML API.
Notice that the inputfile variable is placed between the parentheses of the load()
function. This is referred to as passing a variable. In other words, you’re passing the
name of the file that you want the load() function to load. The file name is the URL
to the document. You can replace this with any valid URL to load the document.

The fifth line checks for errors to make sure the document loaded properly. This
is done by using an if statement. An if statement evaluates a condition. If the
condition is true, then code within the French braces is executed; otherwise the
code is skipped. In this example, the if statement determines if an error occurred
opening the file. If so, then an error message is displayed and the function is
terminated. If not, then the application skips to the line following the closed French
brace (}). The DOMDocument object has a property called parseError that contains

CHAPTER 10 MSXML 161

details of any errors that might have occurred. This is an instance of the
IXMLDOMParseError object. It checks if the errorCode is not zero, which means
an error occurred. If so, then the error message is displayed on the screen.

The sixth line displays the XML document in the text area of the HTML page.
Look carefully and you’ll notice that the line references the XML property of the
objXML variable. Remember that the objXML variable references the DOMDocument.
The XML property of the DOMDocument contains the XML representation of the
DOMDocument. Remember, the DOM is a tree type structure. The XML property
essentially serializes the DOM back to its familiar markup form.

Adding a New Element
The XML document contains information about CDs. Each CD has a upc attribute
and five child elements. Add the following CD to the catalog:

<cd upc="75596280822">
 <artist>Phish</artist>
 <title>Live Phish, Vol. 15</title>
 <price>26.99</price>
 <label>ELEKTRA/WEA</label>
 <date>2002-10-29</date>
</cd>

You’ll need to use four different functions to determine where to place the new
CD within the XML document. These functions are

• InsertFirst() Put the new entry at the beginning of the list

• InsertLast() Put the new entry at the end of the list

• InsertBefore() Put the new entry before the CD with the given upc
attribute

• InsertAfter() Put the new entry after the CD with the given upc attribute

Each function is called by an option on the HTML form. Options appear in the
first column of the table. The user of the application decides the position of the new
CD within the XML document by selecting the appropriate option.

The first two options place the new CD at the beginning or at the end of the XML
document, respectively. The last two options require the user to specify a UPC. The
UPC is the identifier for a CD that’s already in the XML document. The function
then places the new CD either before or after the CD that the user specifies.

The second column contains a text area containing information about the new
CD. We’ve provided a default value when the page loads, but you can change this

162 XML Demystifi ed

in the browser. Each function references the text area value when inserting the new
CD into the XML document.

<tr valign="top">
<td nowrap>
<a href="#" onclick="InsertFirst();
 return false;">Insert First:

<a href="#" onclick="InsertLast();
 return false;">Insert Last:

<a href="#" onclick="InsertBefore(document.all('upcBefore').value);
 return false;">Insert Before UPC:
 <input type="text" id="upcBefore"
 value="75678367229" size="15">

<a href="#" onclick="InsertAfter(document.all('upcAfter').value);
 return false;">Insert After UPC:
 <input type="text" id="upcAfter"
 value="75678367229" size="15">

</td>
<td><textarea id="newnode" rows="10" cols="80">
<cd upc="75596280822">
 <artist>Phish</artist>
 <title>Live Phish, Vol. 15</title>
 <price>26.99</price>
 <label>ELEKTRA/WEA</label>
 <date>2002-10-29</date>
</cd>
</textarea>
</td>
</tr>

The LoadNewNode() Function
The InsertFirst(), InsertLast(), InsertBefore(), and InsertAfter() functions must
retrieve information about the new CD from the text area. This is done by calling
the LoadNewNode() method. The LoadNewNode() method loads information about
the new CD from the text area into the DOM parser and then returns a reference to
the root node of the information about the new CD to one of the four functions that
called it. Here’s the LoadNewNode() method:

function LoadNewNode()
{
 var xmlNewNode = document.all("newnode").value;
 var objNewNode = new ActiveXObject("MSXML2.DOMDocument.4.0");
 objNewNode.async = false;
 objNewNode.loadXML(xmlNewNode);
 if (objNewNode.parseError.errorCode != 0)
 {
 alert("Error loading new node: " + objNewNode.parseError.reason);
 return null;
 }

CHAPTER 10 MSXML 163

 else
 {
 return objNewNode.documentElement;
 }
}

The first line retrieves text from the text area on the HTML form.
The second line creates a new DOMDocument object that contains information

about the new CD.
The third line sets the value for the async property to false so that the entire

document loads before returning control to the calling point.
The fourth line calls the loadXML() method of the DOMDocument object. The

loadXML() method works similarly to the load() method called within the
LoadDocument() function except the loadXML() method is used when the argument
is a string. In this case, you’re passing the actual XML document as an argument
instead of passing a URL that points to the document.

The fifth line checks if an error occurred when loading information about the
new CD. If there is an error, then an error message is displayed. If there isn’t an
error, then the value of the documentElement of the DOMDocument is returned to
the statement that called the LoadNewNode() method. The documentElement is the
root element of the document, which is a reference to the <cd> element and all its
child elements.

The InsertFirst() Method
The InsertFirst() method is called when the user decides to place information about
the new CD at the beginning of the XML document. Here’s the InsertFirst()
method:

function InsertFirst()
{
 var objNewNode = LoadNewNode();
 if(objNewNode == null)
 {
 return;
 }
 var root = objXML.documentElement;
 root.insertBefore(objNewNode, root.firstChild);
 document.all("xmlresult").value = objXML.xml;
}

The first line calls the LoadNewNode() method, which returns a reference to the
root node of the information about the new CD. The reference is assigned to the
objNewNode variable.

164 XML Demystifi ed

The second line determines if the value of the objNewNode is null. It’s null if the
LoadNewNode() method doesn’t return a reference to the root node. If this happens,
then the InsertFirst() method returns without inserting information about the new
CD at the beginning of the XML document.

The third line is executed if the LoadNewNode() method returns a root node. The
root node is a reference to an IXMLDOMElement object. This line assigns the
value of the IXMLDOMElement object’s documentElement property of the new
CD information to a variable called root.

The fourth line calls the insertBefore() method of the IXMLDOMElement object.
The insertBefore() method has two arguments. The first argument is a reference to
the node that’s being inserted into the document. This reference is returned by the
LoadNewNode() method. The second argument is the node that will come after the
new CD in the XML document.

The first CD in the XML document is 602498678299 (see the “Getting Down
and Dirty with MSXML” section earlier in this chapter). The new CD will be
inserted before CD 602498678299, making the new CD appear first in the XML
document and CD 602498678299 second.

The second argument to the insertBefore() method is reference to CD 602498678299.
CD 602498678299 is first in the XML document and, therefore, it can be identified
by using the firstChild property of the IXMLDOMElement object.

The fifth line displays the code output of the XML representation of the
DOMDocument into the text area of the HTML form. The output looks something
like this:

<?xml version="1.0"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>

<cd upc="75596280822">
 <artist>Phish</artist>
 <title>Live Phish, Vol. 15</title>
 <price>26.99</price>
 <label>ELEKTRA/WEA</label>
 <date>2002-10-29</date>
 </cd>

<cd upc="602498678299">
 <artist>U2</artist>
 <title>How to Dismantle an Atomic Bomb</title>
 <price>13.98</price>
 <label>Interscope Records</label>
 <date>2004-11-23</date>
 </cd>

CHAPTER 10 MSXML 165

 <cd upc="75679244222">
 <artist>Led Zeppelin</artist>
 <title>Physical Graffiti</title>
 <price>22.99</price>
 <label>Atlantic</label>
 <date>1994-08-16</date>
 </cd>
 <cd upc="75678367229">
 <artist>Rush</artist>
 <title>Rush in Rio</title>
 <price>13.98</price>
 <label>Atlantic</label>
 <date>2003-10-21</date>
 </cd>
 <cd upc="74646938720">
 <artist>Billy Joel</artist>
 <title>Songs in the Attic</title>
 <price>10.99</price>
 <label>Sony</label>
 <date>1998-10-20</date>
 </cd>
 <cd upc="75678263927">
 <artist>Led Zeppelin</artist>
 <title>Houses of the Holy</title>
 <price>10.98</price>
 <label>Atlantic</label>
 <date>1994-07-19</date>
 </cd>
 <cd upc="8811160227">
 <artist>Jimi Hendrix</artist>
 <title>Are You Experienced?</title>
 <price>12.99</price>
 <label>Experience Hendrix</label>
 <date>1997-04-22</date>
 </cd>
 <cd upc="74640890529">
 <artist>Bob Dylan</artist>
 <title>The Times They Are A-Changin'</title>
 <price>9.99</price>
 <label>Sony</label>
 <date>1990-10-25</date>
 </cd>
</catalog>

166 XML Demystifi ed

The InsertLast() Method
The InsertLast() method is called when the user wants to place information about
the new CD at the bottom of the XML document. Here’s the InsertLast() method:

function InsertLast()
{
 var objNewNode = LoadNewNode();
 if(objNewNode == null)
 {
 return;
 }
 var root = objXML.documentElement;
 root.appendChild(objNewNode);
 document.all("xmlresult").value = objXML.xml;
}

You’ll notice that the InsertLast() method is nearly the same as the InsertFirst()
method, except the appendChild() method is called instead of calling the
insertBefore() method. The appendChild() method places information about the
new CD at the end of the XML document.

The appendChild() method requires one argument, which is reference to
information about the new CD. This reference is returned by the LoadNewNode()
method.

Here’s the XML document after calling the InsertLast() method. You’ll notice
that the first and last items in the XML document are the same CD because in our
example we selected the InsertFirst option and then the InsertLast option. Each
placed the same CD into different areas of the XML document. We’ve shown it this
way to demonstrate that you can continue altering the document to get it into its
desired final state. For the remaining examples, refresh the document using the
LoadDocument() function so it only shows the current change.

<?xml version="1.0"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>

<cd upc="75596280822">
 <artist>Phish</artist>
 <title>Live Phish, Vol. 15</title>
 <price>26.99</price>
 <label>ELEKTRA/WEA</label>
 <date>2002-10-29</date>
 </cd>

<cd upc="602498678299">
 <artist>U2</artist>

CHAPTER 10 MSXML 167

 <title>How to Dismantle an Atomic Bomb</title>
 <price>13.98</price>
 <label>Interscope Records</label>
 <date>2004-11-23</date>
 </cd>
 <cd upc="75679244222">
 <artist>Led Zeppelin</artist>
 <title>Physical Graffiti</title>
 <price>22.99</price>
 <label>Atlantic</label>
 <date>1994-08-16</date>
 </cd>
 <cd upc="75678367229">
 <artist>Rush</artist>
 <title>Rush in Rio</title>
 <price>13.98</price>
 <label>Atlantic</label>
 <date>2003-10-21</date>
 </cd>
 <cd upc="74646938720">
 <artist>Billy Joel</artist>
 <title>Songs in the Attic</title>
 <price>10.99</price>
 <label>Sony</label>
 <date>1998-10-20</date>
 </cd>
 <cd upc="75678263927">
 <artist>Led Zeppelin</artist>
 <title>Houses of the Holy</title>
 <price>10.98</price>
 <label>Atlantic</label>
 <date>1994-07-19</date>
 </cd>
 <cd upc="8811160227">
 <artist>Jimi Hendrix</artist>
 <title>Are You Experienced?</title>
 <price>12.99</price>
 <label>Experience Hendrix</label>
 <date>1997-04-22</date>
 </cd>
 <cd upc="74640890529">
 <artist>Bob Dylan</artist>
 <title>The Times They Are A-Changin'</title>
 <price>9.99</price>

168 XML Demystifi ed

 <label>Sony</label>
 <date>1990-10-25</date>
 </cd>

<cd upc="75596280822">
 <artist>Phish</artist>
 <title>Live Phish, Vol. 15</title>
 <price>26.99</price>
 <label>ELEKTRA/WEA</label>
 <date>2002-10-29</date>
 </cd>
</catalog>

The InsertBefore() Function
The InsertBefore() function is called when the user specifies the position of the new
CD in the XML document. The user does this by entering the UPC code of the CD
that will come after the new CD in the XML document. Here’s the InsertBefore()
function:

function InsertBefore(upc)
{
 var objNewNode = LoadNewNode();
 if(objNewNode == null)
 {
 return;
 }
 var root = objXML.documentElement;
 var objNodes = objXML.selectNodes(
 "/catalog/cd[@upc='" + upc + "']");
 if(objNodes.length == 0)
 {
 alert("Could not find node with upc " + upc);
 return;
 }
 root.insertBefore(objNewNode, objNodes.item(0));
 document.all("xmlresult").value = objXML.xml;
}

The UPC of the CD that will come after the new CD in the XML document is
passed as an argument to the InsertBefore() function by the statement that calls the
InsertBefore() function (see the “Getting Down and Dirty with MSXML” section in
this chapter).

CHAPTER 10 MSXML 169

The first four lines of the InsertBefore() function are the same as those for the
InsertFirst() and InsertLast() functions.

Line five calls the selectNodes() method of the DOMDocument object. This
method requires one argument containing an XPath expression (see Chapter 5) to
identify the node that will come after the new CD in the XML document.

This expression says, Look in the /catalog element for a cd element whose upc
attribute is equal to the UPC passed to the selectNodes() method. There can be
more than one match. Therefore, the selectNodes() method returns a collection that
contains references of matching nodes.

Line six evaluates the value of the length property of the node list returned by the
selectNodes() method. If the length is zero, then the CD entered by the user can’t
be located in the XML document and an alert message is displayed; then the function
returns to the statement that called it.

Line seven executes if the selectNodes() method returned a node indicating that
the CD was found in the XML document. Line seven calls the insertBefore()
method, which is also called by the InsertFirst() function and InsertLast() function.
The insertBefore() method requires two arguments. The first argument references
the new CD and the second argument references the first CD that will come after
the new CD in the XML document. The second argument is the first node the
collection returned by the selectNodes() method.

Line eight is the same as it was in the previous functions.
Here’s the XML document after the InsertBefore() function executes:

<?xml version="1.0"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>
 <cd upc="602498678299">
 <artist>U2</artist>
 <title>How to Dismantle an Atomic Bomb</title>
 <price>13.98</price>
 <label>Interscope Records</label>
 <date>2004-11-23</date>
 </cd>
 <cd upc="75679244222">
 <artist>Led Zeppelin</artist>
 <title>Physical Graffiti</title>
 <price>22.99</price>
 <label>Atlantic</label>
 <date>1994-08-16</date>
 </cd>

170 XML Demystifi ed

<cd upc="75596280822">
 <artist>Phish</artist>
 <title>Live Phish, Vol. 15</title>
 <price>26.99</price>
 <label>ELEKTRA/WEA</label>
 <date>2002-10-29</date>
 </cd>

<cd upc="75678367229">
 <artist>Rush</artist>
 <title>Rush in Rio</title>
 <price>13.98</price>
 <label>Atlantic</label>
 <date>2003-10-21</date>
 </cd>
 <cd upc="74646938720">
 <artist>Billy Joel</artist>
 <title>Songs in the Attic</title>
 <price>10.99</price>
 <label>Sony</label>
 <date>1998-10-20</date>
 </cd>
 <cd upc="75678263927">
 <artist>Led Zeppelin</artist>
 <title>Houses of the Holy</title>
 <price>10.98</price>
 <label>Atlantic</label>
 <date>1994-07-19</date>
 </cd>
 <cd upc="8811160227">
 <artist>Jimi Hendrix</artist>
 <title>Are You Experienced?</title>
 <price>12.99</price>
 <label>Experience Hendrix</label>
 <date>1997-04-22</date>
 </cd>
 <cd upc="74640890529">
 <artist>Bob Dylan</artist>
 <title>The Times They Are A-Changin'</title>
 <price>9.99</price>
 <label>Sony</label>
 <date>1990-10-25</date>
 </cd>
</catalog>

CHAPTER 10 MSXML 171

The InsertAfter() Function
The InsertAfter() function is called when the user specifies a CD in the XML
document that comes before the new CD. Here’s the InsertAfter() function:

function InsertAfter(upc)
{
 var objNewNode = LoadNewNode();
 if(objNewNode == null)
 {
 return;
 }
 var root = objXML.documentElement;
 var childNodes = root.childNodes;
 for(var i=0; i < childNodes.length; i++)
 {
 var node = childNodes.item(i);
 var nodeUPC = node.getAttribute("upc");
 if(nodeUPC == upc)
 {
 root.insertBefore(objNewNode, childNodes.item(i+1));
 document.all("xmlresult").value = objXML.xml;
 return;
 }
 }
 alert("Could not find node with upc " + upc);
}

The first three lines are the same as they are in previous functions.
The fourth line assigns the childNodes property of the IXMLDOMElement

object to the childNodes variable. The childNodes property contains all the child
nodes of the <catalog> element in the document.

The fifth line executes a for loop that steps through each child node looking for
the child node whose upc attribute matches the UPC code that the user entered. The
item() method is called to retrieve the node from the list. Next, the getAttribute()
method is called and passed the name of the attribute whose value you want returned.
And then an if statement is used to compare the value of the upc attribute of the
current child node to the UPC that the user entered.

If they match, then the insertBefore() method is called to insert the new CD into
the XML document. The insertBefore() method requires two arguments. The first
argument references information about the new CD and the second argument
references the existing node in the XML document. The second argument jumps
one node ahead by using i+1. In this way, it’s going to the next node and inserting

172 XML Demystifi ed

before that. The API does not have an insertAfter() method so this is another way to
accomplish the same thing. Suppose you were inserting after the last node in the
list. i+1 would not reference a valid node because it’s beyond the boundary of the
list. The second argument would evaluate to null. When the method sees null as the
second argument, it puts the new node last in the list. It’s equivalent to calling
appendNode(). The XML document is then displayed before the function returns to
the statement that called the InsertAfter() function.

If they don’t match, then the function returns without changing the XML
document.

Here’s the XML document after the new CD is inserted:

<?xml version="1.0"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>
 <cd upc="602498678299">
 <artist>U2</artist>
 <title>How to Dismantle an Atomic Bomb</title>
 <price>13.98</price>
 <label>Interscope Records</label>
 <date>2004-11-23</date>
 </cd>
 <cd upc="75679244222">
 <artist>Led Zeppelin</artist>
 <title>Physical Graffiti</title>
 <price>22.99</price>
 <label>Atlantic</label>
 <date>1994-08-16</date>
 </cd>
 <cd upc="75678367229">
 <artist>Rush</artist>
 <title>Rush in Rio</title>
 <price>13.98</price>
 <label>Atlantic</label>
 <date>2003-10-21</date>
 </cd>

<cd upc="75596280822">
 <artist>Phish</artist>
 <title>Live Phish, Vol. 15</title>
 <price>26.99</price>
 <label>ELEKTRA/WEA</label>
 <date>2002-10-29</date>
 </cd>

<cd upc="74646938720">
 <artist>Billy Joel</artist>

CHAPTER 10 MSXML 173

 <title>Songs in the Attic</title>
 <price>10.99</price>
 <label>Sony</label>
 <date>1998-10-20</date>
 </cd>
 <cd upc="75678263927">
 <artist>Led Zeppelin</artist>
 <title>Houses of the Holy</title>
 <price>10.98</price>
 <label>Atlantic</label>
 <date>1994-07-19</date>
 </cd>
 <cd upc="8811160227">
 <artist>Jimi Hendrix</artist>
 <title>Are You Experienced?</title>
 <price>12.99</price>
 <label>Experience Hendrix</label>
 <date>1997-04-22</date>
 </cd>
 <cd upc="74640890529">
 <artist>Bob Dylan</artist>
 <title>The Times They Are A-Changin'</title>
 <price>9.99</price>
 <label>Sony</label>
 <date>1990-10-25</date>
 </cd>
</catalog>

Create a New Element Programmatically
Now we’ll show you how to create a new <cd> element and its child elements and
insert them into an XML document using a program. First you’ll create an HTML
page that contains the input fields where you can enter values for the new CD:

<tr valign="top">
 <td nowrap><a href="#" onclick="CreateAndAppendNode();
 return false">Create/Append Node</td>
 <td nowrap>
 upc: <input type="text" id="createUpc"
 value="75596280822" size="15">

 artist: <input type="text" id="createArtist"
 value="Phish" size="15">

 title: <input type="text" id="createTitle"

174 XML Demystifi ed

 value="Live Phish, Vol. 15" size="15">

 price: <input type="text" id="createPrice"
 value="26.99" size="15">

 label: <input type="text" id="createLabel"
 value="ELEKTRA/WEA" size="15">

 date: <input type="text" id="createDate"
 value="2002-10-29" size="15">
 </td>
</tr>

You’re required to enter six values. These are the upc attribute and values for
each of the five child elements. Click the hyperlink once you’re finished and the
CreateAndAppendNode() function executes. Here’s the CreateAndAppendNode()
function:

function CreateAndAppendNode()
{
 var upc = document.all("createUpc").value;
 var artist = document.all("createArtist").value;
 var title = document.all("createTitle").value;
 var price = document.all("createPrice").value;
 var label = document.all("createLabel").value;
 var date = document.all("createDate").value;

 var elementCd = objXML.createElement("cd");
 elementCd.setAttribute("upc", upc);

 var elementArtist = objXML.createElement("artist");
 var textArtist = objXML.createTextNode(artist);
 elementArtist.appendChild(textArtist);
 elementCd.appendChild(elementArtist);

 var elementTitle = objXML.createElement("title");
 var textTitle = objXML.createTextNode(title);
 elementTitle.appendChild(textTitle);
 elementCd.appendChild(elementTitle);

 var elementPrice = objXML.createElement("price");
 var textPrice = objXML.createTextNode(price);
 elementPrice.appendChild(textPrice);
 elementCd.appendChild(elementPrice);

 var elementLabel = objXML.createElement("label");
 var textLabel = objXML.createTextNode(label);
 elementLabel.appendChild(textLabel);

CHAPTER 10 MSXML 175

 elementCd.appendChild(elementLabel);

 var elementDate = objXML.createElement("date");
 var textDate = objXML.createTextNode(date);
 elementDate.appendChild(textDate);
 elementCd.appendChild(elementDate);

 var root = objXML.documentElement;
 root.appendChild(elementCd);

 document.all("xmlresult").value = objXML.xml;
}

The first six lines gather values from the HTML table and assign them to
variables.

Line seven calls the createElement() method to create a new element. The
createElement() method requires one argument, which is the name of the element
that you want to create. In this example, you’re creating a cd element. The
createElement() method returns a reference to the new element.

Line eight calls the setAttribute() method to assign a value to the attribute of the
new element. The setAttribute() method requires two arguments. The first argument
is the name of the attribute that’s being set and the second argument is the value
assigned to the new attribute.

Lines 9 through 30 create child elements for the <cd> element. Notice that each
child element is actually two nodes—one for the element and the other for the text.
Line 31 displays the XML document, as we show here:

<?xml version="1.0"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>
 <cd upc="602498678299">
 <artist>U2</artist>
 <title>How to Dismantle an Atomic Bomb</title>
 <price>13.98</price>
 <label>Interscope Records</label>
 <date>2004-11-23</date>
 </cd>
 <cd upc="75679244222">
 <artist>Led Zeppelin</artist>
 <title>Physical Graffiti</title>
 <price>22.99</price>
 <label>Atlantic</label>
 <date>1994-08-16</date>
 </cd>

176 XML Demystifi ed

 <cd upc="75678367229">
 <artist>Rush</artist>
 <title>Rush in Rio</title>
 <price>13.98</price>
 <label>Atlantic</label>
 <date>2003-10-21</date>
 </cd>
 <cd upc="74646938720">
 <artist>Billy Joel</artist>
 <title>Songs in the Attic</title>
 <price>10.99</price>
 <label>Sony</label>
 <date>1998-10-20</date>
 </cd>
 <cd upc="75678263927">
 <artist>Led Zeppelin</artist>
 <title>Houses of the Holy</title>
 <price>10.98</price>
 <label>Atlantic</label>
 <date>1994-07-19</date>
 </cd>
 <cd upc="8811160227">
 <artist>Jimi Hendrix</artist>
 <title>Are You Experienced?</title>
 <price>12.99</price>
 <label>Experience Hendrix</label>
 <date>1997-04-22</date>
 </cd>
 <cd upc="74640890529">
 <artist>Bob Dylan</artist>
 <title>The Times They Are A-Changin'</title>
 <price>9.99</price>
 <label>Sony</label>
 <date>1990-10-25</date>
 </cd>

<cd upc="75596280822">
 <artist>Phish</artist>
 <title>Live Phish, Vol. 15</title>
 <price>26.99</price>
 <label>ELEKTRA/WEA</label>
 <date>2002-10-29</date>
 </cd>
</catalog>

CHAPTER 10 MSXML 177

So far in this chapter, you’ve learned how to insert one XML document into another.
In addition to this, you’ll need to select, extract, delete, and validate information
contained in an XML document.

We’ll explore how to perform these common tasks in this section. First we’ll
show you how to create an HTML page that enables you to execute each of these
tasks. In a real-world application, of course, these tasks would be built into your
application.

Here’s the HTML page we’ll use for these examples:

<tr valign="top">
<td colspan="2" nowrap>
<a href="#" onclick="SelectArtist(document.all('artist').value);
 return false;">Select Artist:
 <input type="text" id="artist" value="U2" size="15">

<a href="#" onclick="DisplayTitles();
 return false;">Display Titles

<a href="#" onclick="DeleteNodes(
 document.all('upcDelete').value); return
 false;">Delete Nodes w/UPC:
 <input type="text" id="upcDelete"
 value="75678367229" size="15">

<a href="#" onclick="ValidateDocument();
 return false;">Validate Document
</td>
</tr>

The SelectArtist() Function—
Filtering an XML Document
The SelectArtist() function is used to display information about an artist’s CDs by
entering the name of the artist and then having the SelectArtist() search and display
related information about the artist’s CDs. Here’s the SelectArtist() function:

function SelectArtist(artist)
{
 var objNodes = objXML.selectNodes(
 "/catalog/cd[artist='" + artist + "']")
 if(objNodes.length == 0)
 {
 alert("Could not find artist with name " + artist);

Select, Extract, Delete, and Validate

178 XML Demystifi ed

 return;
 }
 var root = objXML.documentElement;
 var cdList = root.selectNodes("/catalog/cd");
 cdList.removeAll();
 for(var i=0; i < objNodes.length; i++)
 {
 root.appendChild(objNodes.item(i));
 }
 document.all("xmlresult").value = objXML.xml;
}

The first line calls the selectNodes() method, which you learned about throughout
this chapter. The selectNodes() method requires one argument, which is the XPath
expression (see Chapter 5) used to identify the artist. This expression says, Look in
the catalog element for a cd element whose artist is equal to the artist entered by the
user. The selectNodes() method returns a collection that contains information about
all the CDs that are listed for the artist.

The second line examines the length property of the collection, which contains
the total number of items returned by the selectNodes() method. If the length is
zero, then the artist wasn’t found. An alert is displayed on the screen that the function
returns without displaying any information.

Line three executes if the length is greater than zero, and assigns reference to the
documentElement to the root variable.

Line four calls the selectNodes() method to retrieve information about all the
CDs in the document.

Line five calls the removeAll() method, which removes all information about
CDs from the XML document. The XML document now looks like this:

<?xml version="1.0"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog></catalog>

Line six executes a for loop that calls the appendChild node to insert back into
the XML document information about CDs from the selected artist. The XML
document now looks like this:

<?xml version="1.0"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>
 <cd upc="602498678299">
 <artist>U2</artist>
 <title>How to Dismantle an Atomic Bomb</title>
 <price>13.98</price>

CHAPTER 10 MSXML 179

 <label>Interscope Records</label>
 <date>2004-11-23</date>
 </cd>
</catalog>

The DisplayTitles() Function
You use the DisplayTitles() function to copy and display information contained in
an XML document, but not alter the original document. Here’s the DisplayTitles()
function:

function DisplayTitles()
{
 var result = "";
 var objNodes = objXML.selectNodes("/catalog/cd/title");
 for(var i=0; i < objNodes.length; i++)
 {
 result += objNodes.item(i).text + "\r\n";
 }
 document.all("xmlresult").value = result;
}

You’ll notice that the DisplayTitles() function has many components that are found
in previous examples shown in this chapter. And although we’re retrieving selected
titles, you can use the same code to select any element from the XML document by
simply replacing the element title with the appropriate element name.

The first line declares a variable. The pair of double quotations indicates an
empty string is assigned to the variable to initialize it.

The second line calls the selectNodes() function to retrieve a collection that
contains title elements.

The third line steps through the collection and assigns the text value of these
elements to the result variable. Notice that it also assigns a \r\n. The \r is a carriage
return and the \n is a new line. This simply places each element on its own line
when the results are displayed.

The fourth line displays the text of the elements as shown here:

How to Dismantle an Atomic Bomb
Physical Graffi ti
Rush in Rio
Songs in the Attic
Houses of the Holy
Are You Experienced?
The Times They Are A-Changin’

180 XML Demystifi ed

The DeleteNodes() Function
The DeleteNodes() function removes a specific node from the XML document.
Here’s the DeleteNodes() function. You’ll notice that it requires one argument,
which is the UPC code of the CD that is to be deleted from the XML document.

function DeleteNodes(upc)
{
 var objNodes = objXML.selectNodes(
 "/catalog/cd[@upc='" + upc + "']");
 if(objNodes.length == 0)
 {
 alert("Could not find node with upc " + upc);
 return;
 }
 for(var i=0; i < objNodes.length; i++)
 {
 objXML.documentElement.removeChild(objNodes.item(i));
 }
 document.all("xmlresult").value = objXML.xml;
}

The first line calls the selectNodes() method and passes it the XPath expression
that’s used to locate elements whose upc attribute matches the CD UPC the user
enters. The selectNodes() method returns a collection containing those elements.

The second line uses an if statement to evaluate if a CD matched the UPC. If not,
then the length property is zero, the alert message is displayed, and the function
returns without deleting any information from the XML document.

The third line executes only if there are elements to be deleted. It uses a for loop
to step through the collection and calls the removeChild() method to remove the
element.

The fourth line executes once the final element is deleted. This line displays the
results we show here:

<?xml version="1.0"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>
 <cd upc="602498678299">
 <artist>U2</artist>
 <title>How to Dismantle an Atomic Bomb</title>
 <price>13.98</price>
 <label>Interscope Records</label>
 <date>2004-11-23</date>
 </cd>

CHAPTER 10 MSXML 181

 <cd upc="75679244222">
 <artist>Led Zeppelin</artist>
 <title>Physical Graffiti</title>
 <price>22.99</price>
 <label>Atlantic</label>
 <date>1994-08-16</date>
 </cd>
 <cd upc="74646938720">
 <artist>Billy Joel</artist>
 <title>Songs in the Attic</title>
 <price>10.99</price>
 <label>Sony</label>
 <date>1998-10-20</date>
 </cd>
 <cd upc="75678263927">
 <artist>Led Zeppelin</artist>
 <title>Houses of the Holy</title>
 <price>10.98</price>
 <label>Atlantic</label>
 <date>1994-07-19</date>
 </cd>
 <cd upc="8811160227">
 <artist>Jimi Hendrix</artist>
 <title>Are You Experienced?</title>
 <price>12.99</price>
 <label>Experience Hendrix</label>
 <date>1997-04-22</date>
 </cd>
 <cd upc="74640890529">
 <artist>Bob Dylan</artist>
 <title>The Times They Are A-Changin'</title>
 <price>9.99</price>
 <label>Sony</label>
 <date>1990-10-25</date>
 </cd>
</catalog>

The ValidateDocument() Function
You use the ValidateDocument() function to validate an XML document against the
document’s DTD to determine if all elements in the XML document are defined in the
DTD. Here’s the ValidateDocument() function. Notice that this is one of the simplest

182 XML Demystifi ed

functions that you can build. It simply calls the validate() method and then evaluates
the return value. If the returned errorCode is zero, then the XML document is valid.
If the errorCode is other than zero, then the XML doesn’t comply with the DTD.

function ValidateDocument()
{
 var err = objXML.validate();
 if (err.errorCode == 0)
 {
 alert("Document is valid.");
 }
 else
 {
 alert("Error validating document:" + err.reason);
 }
}

To test this function, return to the InsertFirst() function at the beginning of this
chapter. Change the value of the new CD element in the text area of the HTML page to
the following. Notice that the price element is deleted. This is required by the DTD.

<cd upc="75596280822">
 <artist>Phish</artist>
 <title>Live Phish, Vol. 15</title>
 <label>ELEKTRA/WEA</label>
 <date>2002-10-29</date>
</cd>

Click the InsertFirst() hyperlink and the XML document will look like this. Notice
that price is missing, making the XML document invalid according to the DTD.

<?xml version="1.0"?>
<!DOCTYPE catalog SYSTEM "catalog.dtd">
<catalog>

<cd upc="75596280822">
 <artist>Phish</artist>
 <title>Live Phish, Vol. 15</title>
 <label>ELEKTRA/WEA</label>
 <date>2002-10-29</date>
 </cd>

<cd upc="602498678299">
 <artist>U2</artist>
 <title>How to Dismantle an Atomic Bomb</title>
 <price>13.98</price>
 <label>Interscope Records</label>
 <date>2004-11-23</date>

CHAPTER 10 MSXML 183

 </cd>
 <cd upc="75679244222">
 <artist>Led Zeppelin</artist>
 <title>Physical Graffiti</title>
 <price>22.99</price>
 <label>Atlantic</label>
 <date>1994-08-16</date>
 </cd>
 <cd upc="75678367229">
 <artist>Rush</artist>
 <title>Rush in Rio</title>
 <price>13.98</price>
 <label>Atlantic</label>
 <date>2003-10-21</date>
 </cd>
 <cd upc="74646938720">
 <artist>Billy Joel</artist>
 <title>Songs in the Attic</title>
 <price>10.99</price>
 <label>Sony</label>
 <date>1998-10-20</date>
 </cd>
 <cd upc="75678263927">
 <artist>Led Zeppelin</artist>
 <title>Houses of the Holy</title>
 <price>10.98</price>
 <label>Atlantic</label>
 <date>1994-07-19</date>
 </cd>
 <cd upc="8811160227">
 <artist>Jimi Hendrix</artist>
 <title>Are You Experienced?</title>
 <price>12.99</price>
 <label>Experience Hendrix</label>
 <date>1997-04-22</date>
 </cd>
 <cd upc="74640890529">
 <artist>Bob Dylan</artist>
 <title>The Times They Are A-Changin'</title>
 <price>9.99</price>
 <label>Sony</label>
 <date>1990-10-25</date>
 </cd>
</catalog>

184 XML Demystifi ed

The DOMDocument object doesn’t automatically revalidate the XML document
each time it’s altered, so no error message is displayed. Now select the Validate
Document link on the HTML page. The ValidateDocument() function validates the
XML document and displays an alert message indicating that the XML Document
is invalid. The alert message is something like:

Error validating document: Element content is invalid according to the DTD/
Schema. Expecting: price.

This is telling you that the price element was expected.

MSXML and XSLT
MSXML can be used to transform an XML document using XSLT (see Chapter 6).
Many times you’ll want to transform an XML document to an HTML page so a
browser can display it. We’ll show you how to do this with MSXML. Here’s the
table row in the HTML page that contains the XSLT stylesheet:

<tr valign="top">
<td nowrap><a href="#"
onclick="TransformDocument(document.all(
 'stylesheet').value); return false;">Transform Document:</td>
<td>
<textarea id="stylesheet" rows="20" cols="80">
<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl=
 "http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html>
 <body>
 <h2>CD Listing</h2>
 <table border="1">
 <tr>
 <th align="center">UPC</th>
 <th align="center">Artist</th>
 <th align="center">Title</th>
 </tr>
 <xsl:for-each select="catalog/cd">
 <tr>
 <td>
 <xsl:value-of select="@upc"/>
 </td>
 <td>
 <xsl:value-of select="artist"/>
 </td>
 <td>
 <xsl:value-of select="title"/>
 </td>
 </tr>

CHAPTER 10 MSXML 185

 </xsl:for-each>
 </table>
 </body>
</html>
</xsl:template>
</xsl:stylesheet>
</textarea>
</td>
</tr>

The second table cell has a text area that contains the stylesheet. We’ve provided
a default stylesheet, but you can change the default in the browser when you’re
running this example. The first cell takes the stylesheet from the text area and
passes it as an argument to the TransformDocument() function. Here’s the
TransformDocument() function:

function TransformDocument(stylesheet)
{
 var xslProcessor;
 var xslTemplate = new ActiveXObject("Msxml2.XSLTemplate.4.0");
 var xslDocument = new ActiveXObject(
 "Msxml2.FreeThreadedDOMDocument.4.0");
 xslDocument.async = false;
 xslDocument.loadXML(stylesheet);
 if (xslDocument.parseError.errorCode != 0)
 {
 var myErr = xmlDoc.parseError;
 alert("You have error " + myErr.reason);
 return;
 }
 xslTemplate.stylesheet = xslDocument;
 xslProcessor = xslTemplate.createProcessor();
 xslProcessor.input = objXML;
 xslProcessor.transform();
 window.frames.htmlresult.document.open();
 window.frames.htmlresult.document.clear();
 window.frames.htmlresult.document.write(xslProcessor.output);
 window.frames.htmlresult.close();
}

The first line declares a variable.
The second line creates an XSLTemplate object and assigns it to a variable.
The third line creates a DOMDocument object and assigns it to a variable.
The fourth line sets the async property to false so the next statement doesn’t

execute until the document is loaded.
The fifth line calls the loadXML() method and passes it the stylesheet.
The sixth line determines if there is an error. If so, then an error message is

displayed and the function returns to the statement that called it without transforming
the XML document.

The seventh line executes if there isn’t an error. This line assigns the xslDocument
to the stylesheet property of the xslTemplate.

186 XML Demystifi ed

The eighth line calls the createProcessor() method to create an xslProcessor.
The ninth line assigns the XML document to the input property of the

xslProcessor.
The tenth line calls the transform() method to transform the XML document.
Lines 11 through 14 write the transformed XML document to the browser. The

results are shown next.

CD Listing
Here is the list of CDs organized by UPC, artist, and title that is produced by using
MXSML to transform an XML document using XSLT. This is illustrated in the
previous section of this chapter.

UPC Artist Title

602498678299 U2 How to Dismantle an Atomic Bomb

75679244222 Led Zeppelin Physical Graffi ti

75678367229 Rush Rush in Rio

74646938720 Billy Joel Songs in the Attic

75678263927 Led Zeppelin Houses of the Holy

8811160227 Jimi Hendrix Are You Experienced?

74640890529 Bob Dylan The Times They Are A-Changin’

Summary
In this chapter you learned how to combine the power of XML and the MSXML
application program interface that enables you to interact with an XML document
from within an application written in one of the popular programming languages.

MSXML enables you to access an XML document by using an application that
you create rather than accessing the XML document using a browser. MSXML
contains preprogrammed classes and functions that contain code necessary to access
and manipulate information in an XML document.

You need to call the appropriate classes and functions from within your application
to interact with an XML document without having to write tedious code to read and
parse the XML document. MSXML works with C, C++, Visual Basic, VBScript,
Jscript, and JavaScript.

CHAPTER 10 MSXML 187

Quiz
 1. MSXML can only be used with JavaScript.

 a. True

 b. False

 2. The async = false means

 a. Statements will continue to execute as the XML document is being
loaded.

 b. Statements will not execute until the XML document is being loaded.

 c. The XML document is synchronized to the HTML page.

 d. None of the above.

 3. firstChild is a

 a. Property containing a reference to the first child of an element

 b. Method that makes the current node the first child

 c. Method that substitutes the first node for the last node

 d. Method that substitutes the last node for the first node

 4. createElement(“title”) means

 a. Create a new HTML element

 b. Create a new XML element

 c. Create a title for a new HTML element

 d. Create an attribute called title for the current XML element

 5. “/catalog/cd[@upc=‘“ + upc + “‘] means

 a. Find the text that matches the value of the upc variable in the cd
element

 b. Find the upc attribute that matches the value of the upc variable in the
cd element

 c. Find the upc element that matches the UPC in the cd element

 d. All of the above

 6. An XML document can be validated against a DTD by calling the
validate() method.

 a. True

 b. False

188 XML Demystifi ed

 7. The appendChild() appends a node to the end of an XML document.

 a. True

 b. False

 8. The version is specified in ActiveXObject(“MSXML2
.DOMDocument.4.0”) because

 a. Versions are designed to coexist with previous versions.

 b. Only the version specified can be used with the XML document.

 c. It identifies potential conflicts in versions.

 d. None of the above.

 9. The loadXML() method is used when the document is passed as a string.

 a. True

 b. False

 10. getAttribute(“upc”) retrieves the value of the upc attribute.

 a. True

 b. False

189

Final Exam

 1. SAX can be used to build and alter XML documents.

 a. True

 b. False

 2. What does the ? qualifier mean when it’s applied to an element in a DTD?

 a. The element occurs zero or one time (optional element).

 b. The element occurs zero to many times.

 c. The element occurs one to many times.

 d. The element occurs exactly one time.

 3. What does the + qualifier mean when it’s applied to an element in a DTD?

 a. The element occurs zero or one time (optional element).

 b. The element occurs zero to many times.

 c. The element occurs one to many times.

 d. The element occurs exactly one time.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

190 XML Demystifi ed

 4. What does the * qualifier mean when it’s applied to an element in a DTD?

 a. The element occurs zero or one time (optional element).

 b. The element occurs zero to many times.

 c. The element occurs one to many times.

 d. The element occurs exactly one time.

 5. Why is DOM not suitable for reading large documents?

 a. The parser is not very efficient.

 b. DOM restricts the size of an XML document.

 c. The entire document is read into memory.

 d. None of the above.

 6. Which of the following is a valid XML comment?

 a. <-- comments go here -->

 b. <comment>comments go here</comment>

 c. <!-- comments go here --!>

 d. <!-- comments go here -->

 7. What’s the difference between CDATA and PCDATA?

 a. CDATA is only used in attributes.

 b. PCDATA is translated for entities.

 c. PCDATA is only used in elements.

 d. None of the above.

 8. A CDATA section is translated before being passed to the application.

 a. True

 b. False

 9. A CDATA section would be a suitable means of embedding binary data into
an XML document.

 a. True

 b. False

 10. Which of the following is a valid CDATA section?

 a. <![[CDATA[data goes here]]]>

 b. <!{{CDATA[data goes here }}>

 c. <[[CDATA[data goes here]]>

 d. None of the above

Final Exam 191

 11. Which of the following is a valid processing instruction?

 a. <?xml version=“1.0”>

 b. <xml version=“1.0”>

 c. <?xml version=“1.0”?>

 d. None of the above

 12. Processing instructions that start with “xml” are reserved for current and
future standards.

 a. True

 b. False

 13. An entity can be used to set default values in an XML document.

 a. True

 b. False

 14. What character or word is used for a logical OR operation?

 a. OR

 b. |

 c. &

 d. None of the above

 15. What does <!ELEMENT address (mailing|billing|delivery)> tell you about
the XML document?

 a. The address element has three child elements for mailing, billing, and
delivery.

 b. The mailing, billing, and delivery elements are optional.

 c. The address element has one child element that can be mailing, billing,
or delivery.

 d. None of the above.

 16. What does <!ELEMENT address (mailing, billing, delivery)> tell you
about the XML document?

 a. The address element has three child elements for mailing, billing, and
delivery.

 b. The mailing, billing, and delivery elements are optional.

 c. The address element has one child element that can be mailing, billing,
or delivery.

 d. None of the above.

192 XML Demystifi ed

 17. What does <!ELEMENT address (mailing?, billing?, delivery?)> tell you
about the XML document?

 a. The address element has three child elements for mailing, billing, and
delivery.

 b. The mailing, billing, and delivery elements are optional.

 c. The address element has one child element that can be mailing, billing,
or delivery.

 d. None of the above.

 18. What does <!ELEMENT address (mailing, billing, delivery+)> tell you
about the XML document?

 a. The address element has three child elements for mailing, billing, and
delivery.

 b. The mailing, billing, and delivery elements are optional.

 c. The address element has one child element that can be mailing, billing,
or delivery.

 d. None of the above.

 19. What does the declaration <!ENTITY % format “(PDF|TXT)”> tell you
about the XML document?

 a. The format entity has two child elements.

 b. The allowable values for format are PDF and TXT.

 c. The format entity contains a group of values.

 d. None of the above.

 20. A DTD can be used to define a subset of the XML document.

 a. True

 b. False

 21. Which of the following is a valid XML schema date field?

 a. 2007-11-17

 b. 11/17/2007

 c. November 17, 2007

 d. 17 November 2007

 22. An XML schema is built on top of a DTD.

 a. True

 b. False

Final Exam 193

 23. In the schema tag <xs:element name=“format” type=“xs:string”
fixed=“PDF”/>, which of the following is a valid XML fragment?

 a. <string>PDF</string>

 b. <format value=“PDF” />

 c. <format>TXT</format>

 d. <format>PDF</format>

 24. In the schema tag <xs:element name=“format” type=“xs:string”
default=“PDF”/>, which of the following is a valid XML fragment?

 a. <format>HTML</format>

 b. <format>PDF</format>

 c. <format>TXT</format>

 d. All of the above

 25. What is the type attribute used for in an XML schema element declaration?

 a. Specifies the type of element

 b. Specifies whether the element is optional or required

 c. Specifies the type of data contained by the element

 d. None of the above

 26. In the schema tag <xs:element name=“amount” type=“xs:decimal”/>,
which of the following is a valid XML fragment?

 a. <amount>23.67</amount>

 b. <amount value=“23.67” />

 c. <element amount=“23.67” />

 d. None of the above

 27. In the schema tag <xs:attribute name=“size” type=“xs:string”
default=“small”/>, which of the following is a valid XML fragment?

 a. <soda size=“medium”>

 b. <soda size=“large”>

 c. <soda size=“extra large”>

 d. All of the above

 28. How do you specify in the schema that an attribute is required?

 a. value=“required”

 b. attribute=“required”

194 XML Demystifi ed

 c. use=“required”

 d. None of the above

 29. What is the restriction tag used for in the schema?

 a. Assigning security restrictions to the data

 b. Placing restrictions on the values of elements or attributes

 c. Restricting where the tag can be placed in the XML document

 d. None of the above

 30. The schema restriction tag must be followed by one to many
enumeration tags.

 a. True

 b. False

 31. What is the equivalent of saying “greater than or equal to 50” in XML
schema?

 a. <xs:minimum value=“50”/>

 b. <xs:minExclusive value=“50”/>

 c. <xs:min value=“50”/>

 d. <xs:minInclusive value=“50”/>

 32. What is the equivalent of saying “greater than 50” in XML schema?

 a. <xs:minimum value=“50”/>

 b. <xs:minExclusive value=“50”/>

 c. <xs:min value=“50”/>

 d. <xs:minInclusive value=“50”/>

 33. An enumeration can be used to define multiple discrete values for an
attribute.

 a. True

 b. False

 34. Restrictions can only be used with complex types.

 a. True

 b. False

 35. What is the base attribute used for with a restriction?

 a. Defining the base schema reference

 b. Defining the data type for the restriction

Final Exam 195

 c. Referencing the base restriction

 d. None of the above

 36. What are three options for dealing with whitespace in an XML schema?

 a. retain, replace, remove

 b. preserve, replace, delete

 c. preserve, replace, collapse

 d. retain, replace, collapse

 37. Replace tells the parser to replace all whitespace characters with a space.

 a. True

 b. False

 38. Which of the following restricts the length of the value of an element to
40 characters?

 a. <xs:length value=“40”/>

 b. <xs:maxLength value=“40”/>

 c. <xs:length max=“40”/>

 d. <xs:string length=“40”/>

 39. In an XML schema, what attributes are used to define the number of
occurrences?

 a. minOccurs, maxOccurs

 b. min, max

 c. minimum, maximum

 d. You can’t define the number of occurrences in an XML schema.

 40. What are the two types of XLinks?

 a. Simple and extended

 b. Simple and complex

 c. Single and multiple

 d. None of the above

 41. xlink:show=“replace” causes what kind of behavior?

 a. Replaces one link with another link

 b. Replaces the resource with another resource

 c. Invalidates the resource

 d. None of the above

196 XML Demystifi ed

 42. xlink:show=“embed” is used to insert a resource at a specified location.

 a. True

 b. False

 43. Which xlink:actuate attribute is used to load a resource immediately
without any interaction?

 a. onRequest

 b. onLoad

 c. Other

 d. None

 44. Which xlink:actuate attribute is used by an event to load a resource after the
XML document has loaded?

 a. onRequest

 b. onLoad

 c. Other

 d. None

 45. Which xlink:actuate attribute is used when the link is not used to load a
resource?

 a. onRequest

 b. onLoad

 c. Other

 d. None

 46. What do you use to select all the children elements of the context node?

 a. Child::All

 b. Child*

 c. Child::All()

 d. Child::*

 47. The child axis contains all the descendants of the context node.

 a. True

 b. False

 48. The attribute axis contains attributes for the context node and all the child
nodes.

 a. True

 b. False

Final Exam 197

 49. Which axis contains only the context node?

 a. current

 b. context

 c. self

 d. implied

 50. What function returns the last node in a node list?

 a. end()

 b. lastIndex()

 c. last()

 d. None of the above

 51. What is returned by the number function when a Boolean
true is passed in?

 a. 1

 b. 0

 c. NaN

 d. error

 52. What is returned by ceiling(7.15)?

 a. 8

 b. 7.2

 c. 7.1

 d. 7

 53. What is returned by floor(7.15)?

 a. 8

 b. 7.2

 c. 7.1

 d. 7

 54. What is returned by round(8.5)?

 a. 8

 b. 9

 c. NaN

 d. None of the above

198 XML Demystifi ed

 55. What is returned by round(8.2)?

 a. 8

 b. 9

 c. NaN

 d. None of the above

 56. What is returned by contains(‘abc’, ‘abcdef’)?

 a. True

 b. False

 57. What is returned by contains(‘abcdef’, ‘abc’)?

 a. True

 b. False

 58. What is returned by substring(‘Bellevue’, 3, 3)?

 a. ‘lev’

 b. ‘lle’

 c. ‘l’

 d. ‘vue’

 59. What does the position() function return?

 a. The current position within an XML document

 b. The position of a node within a node set

 c. The position of a child node

 d. None of the above

 60. How do you match the root of an XML document?

 a. <xsl:template match=“root”>

 b. <xsl:template match=““>

 c. <xsl:template match=“*”>

 d. <xsl:template match=“/”>

 61. <xsl:choose> is used in conjunction with:

 a. <xsl:if>

 b. <xsl:when> and <xsl:otherwise>

 c. <xsl:else>

 d. None of the above

Final Exam 199

 62. The default sort order when using <xsl:sort> is:

 a. Ascending

 b. Descending

 63. What attribute is used with <xsl:sort> to define the type of data
being sorted?

 a. datatype

 b. dataType

 c. type

 d. data-type

 64. What attribute is used with <xsl:sort> to tell the processor what data
is being sorted?

 a. select

 b. data

 c. set

 d. None of the above

 65. An XSL template defines a reusable piece of XSL code.

 a. True

 b. False

 66. A fatal error stops the SAX parser from continuing.

 a. True

 b. False

 67. Which SAX event is called for the text nodes in the document?

 a. startElement()

 b. endElement()

 c. characters()

 d. startDocument()

 68. Which SAX event is called for a closing element tag?

 a. startElement()

 b. endElement()

 c. characters()

 d. startDocument()

200 XML Demystifi ed

 69. An error stops the SAX parser from continuing.

 a. True

 b. False

 70. A warning stops the SAX parser from continuing.

 a. True

 b. False

 71. What is the DTD Handler used for in SAX?

 a. Assigning a DTD to an XML document

 b. Providing the DTD definition

 c. Validating the XML document using the DTD

 d. None of the above

 72. If an XML tag violates the DTD, the parser will not continue.

 a. True

 b. False

 c. Depends on the violation

 73. What is the Entity Resolver used for?

 a. Assisting the parser in locating external resources

 b. Resolving entities in the DTD

 c. Identifying entities in the XML document

 d. Locating entities in the XML document

 74. DOM cannot be used to build or alter XML documents.

 a. True

 b. False

 75. DOM is best suited for reading large documents.

 a. True

 b. False

 76. Given the XML fragment <title>Singing in the Rain</title> how would you
extract the name of the title element using DOM?

 a. getAttributes()

 b. getNodeName()

 c. getNodeValue()

 d. getNodeType()

Final Exam 201

 77. Given the XML fragment <title>Singing in the Rain</title> how would you
extract the XXXX between the title tags?

 a. getAttributes()

 b. getNodeName()

 c. getNodeValue()

 d. getNodeType()

 78. How do you get a list of all the child elements of the current element?

 a. getChildren()

 b. getChildElements()

 c. getChildNodes()

 d. None of the above

 79. How do you get the parent of the current node?

 a. parent()

 b. getParentNode()

 c. getParentElement()

 d. None of the above

 80. How do you get the grandparent of the current node?

 a. getParents()

 b. getGrandparent()

 c. getAncestors()

 d. None of the above

 81. How do you get the node to the right of the current node?

 a. getRight()

 b. getNextSibling()

 c. moveRight()

 d. None of the above

 82. How do you get the node to the left of the current node?

 a. getLeft()

 b. getPreviousSibling()

 c. moveLeft()

 d. None of the above

202 XML Demystifi ed

 83. Which of the following will link a node to the current node?

 a. appendChild()

 b. linkNode()

 c. addNode()

 d. None of the above

 84. The transformer must have a stylesheet in order to perform its
transformation.

 a. True

 b. False

 85. With RSS, which of the following are valid child elements?

 a. location, link, type

 b. title, link, description

 c. name, description, type

 d. None of the above

 86. Which of the following are valid child elements for an RSS image element?

 a. url

 b. title

 c. link

 d. All of the above

 87. The <ttl> element specifies the number of milliseconds the document will
remain in cache.

 a. True

 b. False

 88. What RSS element provides a point of contact if something goes wrong
with the feed?

 a. <contact>

 b. <owner>

 c. <webMaster>

 d. None of the above

 89. What is contained in the RSS author element?

 a. Name of the author

 b. E-mail address of the author

Final Exam 203

 c. Web site of the feed

 d. Phone number of the author

 90. What is contained in the RSS item comments element?

 a. General comments about the feed

 b. URL to a document containing comments

 c. Rating for the feed

 d. Usage statistics

 91. What element is used to include a media file with an item?

 a. <attach>

 b. <include>

 c. <media>

 d. <enclosure>

 92. The RSS source element is used to identify third-party content.

 a. True

 b. False

 93. XQuery is to XML what SQL is to a relational database.

 a. True

 b. False

 94. The let clause is used to assign variable values.

 a. True

 b. False

 95. What XQuery function do you use to extract text from between the
element tags?

 a. data()

 b. text()

 c. extract()

 d. value()

 96. What is the xs:date() function used for?

 a. Returning the current date

 b. Returning the creation date of the document

 c. Converting a string to a date

 d. None of the above

204 XML Demystifi ed

 97. Which of the following is a valid XQuery date format?

 a. 2007-03-06

 b. 3/6/2007

 c. None of the above

 d. All of the above

 98. The XQuery concat() function is used to concatenate two strings together.

 a. True

 b. False

 99. What XQuery function returns the length of a string?

 a. length()

 b. string-length()

 c. strLength()

 d. len()

 100. XML is fun.

 a. True

 b. False

205

Answers to
Quizzes and
Final Exam

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

206 XML Demystifi ed

Chapter 1
 1. b. False

 2. d. All of the above

 3. d. An XML parser

 4. b. An XML element that contains parsed character data

 5. c. Is an XML parser

 6. b. False

 7. b. False

 8. a. SGML

 9. a. True

 10. a. True

Chapter 2
 1. b. False

 2. a. Name/value pair

 3. c. The DTD contains zero to many of this element

 4. b. Passes the data to the application that uses the XML document without
any translation or interpretation

 5. c. Identify the DTD for an XML document

 6. a. True

 7. b. False

 8. b. A UNICODE value

 9. b. False

 10. b. False

 Answers to Quizzes and Final Exam 207

 1. b. False

 2. c. Parsed character data

 3. b. The child element is optional.

 4. a. A group

 5. c. References a shared DTD

 6. a. True

 7. b. False

 8. d. All of the above

 9. b. False

 10. a. True

Chapter 3

Chapter 4
 1. a. True

 2. c. Only integers can be used in the corresponding element

 3. c. Identify the XML schema specifications used in the XML schema

 4. a. Specifies the sequence in which elements must appear in an XML
document

 5. d. Identify the location of the XML schema

 6. a. True

 7. a. True

 8. a. |

 9. a. True.

 10. a. True.

208 XML Demystifi ed

Chapter 5
 1. a. True

 2. a. Associates a local resource with a remote resource

 3. d. The link to be loaded into a new window or frame

 4. b. At specified times by specifying an attribute to the xlink:actuate element.

 5. a. An HTML hyperlink

 6. b. False

 7. b. False

 8. a. The name of the element

 9. a. True

 10. a. True

Chapter 6
 1. b. False

 2. a. XSL stylesheet

 3. c. For each customer element of the source document that’s a child of
customers

 4. b. Extract text from the source document

 5. b. Select the id attribute

 6. b. False

 7. b. False

 8. a. data-type=“number”

 9. b. False

 10. b. False

 Answers to Quizzes and Final Exam 209

 1. b. False

 2. d. None of the above

 3. c. startElement()

 4. d. All of the above

 5. d. All of the above

 6. b. False

 7. a. True

 8. a. Reads a block of an XML document at a time

 9. a. True

 10. a. True

Chapter 7

Chapter 8
 1. a. True

 2. c. image

 3. c. Tell the aggregator when to find a document that contains comments

 4. b. Tell the aggregator days that you don’t want the aggregator to update its
copy of your RSS document.

 5. c. Don’t update at 9 p.m.

 6. b. False

 7. a. True

 8. d. All of the above

 9. a. True

 10. a. True

210 XML Demystifi ed

Chapter 9
 1. b. False

 2. c. where clause

 3. d. Variable

 4. c. Places all return values in ascending order by default

 5. c. Specifies the filter criteria

 6. b. False

 7. a. True

 8. a. Converts information contained in an XML document to another
data type.

 9. a. True

 10. b. False

Chapter 10
 1. b. False

 2. b. Statements will not execute until the XML document is being loaded

 3. a. Property containing reference to the first child of an element

 4. b. Creates a new XML element

 5. b. Find the upc attribute that matches the value of the upc variable
in the cd element

 6. a. True

 7. a. True

 8. a. Versions are designed to coexist with previous versions.

 9. a. True

 10. a. True

 Answers to Quizzes and Final Exam 211

 1. b. False

 2. a. The element occurs zero or one time (optional element)

 3. c. The element occurs one to many times

 4. b. The element occurs zero to many times

 5. c. The entire document is read into memory

 6. d. <!-- comments go here -->

 7. b. PCDATA is translated for entities

 8. b. False

 9. a. True

 10. a. <![[CDATA[data goes here]]]>

 11. c. <?xml version=“1.0”?>

 12. a. True

 13. a. True

 14. b. |

 15. c. The address element has one child element that can be mailing, billing,
or delivery.

 16. a. The address element has three child elements for mailing, billing,
and delivery.

 17. b. The mailing, billing, and delivery elements are optional.

 18. d. None of the above.

 19. b. The allowable values for format are PDF and TXT.

 20. a. True

 21. a. 2007-11-17

 22. a. True

 23. d. <format>PDF</format>

 24. d. All of the above

Final Exam

212 XML Demystifi ed

 25. c. Specifies the type of data contained by the element

 26. a. <amount>23.67</amount>

 27. d. All of the above

 28. c. use=“required”

 29. b. Placing restrictions on the values of elements or attributes

 30. b. False

 31. d. <xs:minInclusive value=“50”/>

 32. b. <xs:minExclusive value=“50”/>

 33. a. True

 34. b. False

 35. b. Defining the data type for the restriction

 36. c. preserve, replace, collapse

 37. a. True

 38. b. <xs:maxLength value=“40”/>

 39. a. minOccurs, maxOccurs

 40. b. Simple and complex

 41. b. Replaces the resource with another resource

 42. a. True

 43. b. onLoad

 44. a. onRequest

 45. d. None

 46. d. Child::*

 47. a. True

 48. b. False

 49. c. self

 50. c. last()

 51. a. 1

 52. a. 8

 53. d. 7

 54. b. 9

 55. a. 8

 Answers to Quizzes and Final Exam 213

 56. b. False

 57. a. True

 58. b. ‘lle’

 59. b. The position of a node within a node set

 60. d. <xsl:template match=“/”>

 61. b. <xsl:when> and <xsl:otherwise>

 62. a. Ascending

 63. d. data-type

 64. a. select

 65. a. True

 66. a. True

 67. c. characters()

 68. b. endElement()

 69. b. False

 70. b. False

 71. c. Validating the XML document using the DTD

 72. c. Depends on the violation

 73. a. Assisting the parser in locating external resources

 74. b. False

 75. b. False

 76. b. getNodeName()

 77. c. getNodeValue()

 78. c. getChildNodes()

 79. b. getParentNode()

 80. d. None of the above

 81. b. getNextSibling()

 82. b. getPreviousSibling()

 83. a. appendChild()

 84. b. False

 85. b. title, link, description

 86. d. All of the above

214 XML Demystifi ed

 87. b. False

 88. c. <webMaster>

 89. b. E-mail address of the author

 90. b. URL to a document containing comments

 91. d. <enclosure>

 92. b. False

 93. a. True

 94. a. True

 95. a. data()

 96. c. Converting a string to a date

 97. a. 2007-03-06

 98. a. True

 99. b. string-length()

 100. a. True

215

symbol, 80
& symbol, 28
@ symbol, 136, 138

AA
absolute path, 74
aggregators, 109
angled brackets, 24
ANY element, 45
appendChild() method, 166
arrays, 142
ASCII numbers, 62
async property, 160
at symbol (@), 136, 138
attributes, 25–26

declarations, 46–47
default values, 57–58
defining, 57–58
facets, 58–59
fixed, 57
forms of attribute values, 46
name, 57
retrieving the value of an attribute,

136–138
retrieving the value of an attribute

and the attribute name, 138–140

type, 57
and the xs:schema tag, 55

<author> element, 116
axes, 75–76

forward axis, 76
reverse axis, 76, 77
self-axis, 76

BB
Berglund, Anders, 2
Berners-Lee, Tim, 2
block at a time, 97

CC
CD listing, 186
CDATA, 29

sections, 29–30
Character Data. See CDATA
child elements

optional, 42–43
in RSS, 111–112

child tags, 6
collapsing whitespace characters, 62
comments, 27
<comments> element, 116

INDEX

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

216 XML Demystifi ed

complex elements, 63–65
See also elements

conditional expressions, operators, 131
conditional statements, 131–135
constructors, 128–131
Content Handler, 98
CreateAndAppendNode() function,

174–175
createElement() method, 175

DD
data types, 128–129
declaring attributes, 46–47
declaring elements, 40–41
DeleteNodes() function, 180–181
DisplayTitles() function, 179
<!DOCTYPE> tag, 54
Document Object Model (DOM) parser,

11, 95, 100–104
methods, 102–103
SAX parser errors, 104

document type definitions. See DTDs
DTD Handler, 99–100
DTDs

creating, 22–23, 152
external, 34, 35–38
internal, 34–35
overview, 6–8
shared, 38–40
where to place, 8–10
vs. XML schema, 53–55

EE
element nodes, 20
elements, 8

adding, 161–162
ANY, 45
<author> element, 116

channel elements, 111–114
child elements in RSS, 111–112
<comments> element, 116
complex elements, 63–65
creating new elements

programmatically, 173–176
declarations, 40–41
default values, 56–57
EMPTY, 45
<enclosure> element, 116–117
grouping, 43–44
<guid> element, 117
image element, 45, 113
item element, 112, 116–117
linking, 71
naming, 45
optional child elements, 42–43
<pubDate> element, 114, 117
ranges, 59–60
restricting the number of characters

in, 62–63
simple, 56–57
<skipDays> element, 114
<skipHours> element, 114–115
<source> element, 117
specifying the number of occurrences

in, 41–42
<ttl> element, 115
<webMaster> element, 116

EMPTY element, 45
<enclosure> element, 116–117
entities, 28–29

declarations, 47
parsed and unparsed, 47

Entity Resolver, 100
Error Handler, 99
errors

SAX parser, 104
types of, 99

INDEX 217

exam, 189–204
answers, 211–214
See also quizzes

Extensible Hypertext Markup Language.
See XHTML

Extensible Markup Language. See XML
Extensible Stylesheet Language. See XSL
Extensible Stylesheet Language

Transformation. See XSLT
external DTDs, 34, 35–38

FF
facets, 58–59
filtering XML documents, 177–179
final exam, 189–204

answers, 211–214
See also quizzes

fixed attributes, 57
fixed-length rows, 12
forward axis, 76
function calls, 127
function declaration statements, 141–142
functions

in XPath, 77–80
in XQuery, 141–145

GG
Generalized Markup Language. See GML
global variables, 159–160
GML, 2
Goldfarb, Charles, 2
grouping elements, 43–44
<guid> element, 117

HH
HTML, 2

compared to XML, 1
creating files, 152–158

II
identifying information, 18–19
if statements, 160
if...then...else if...else statements, 132, 133
if...then...else statements, 131–132
image element, 45, 113
information, identifying, 18–19
InsertAfter() method, 161, 171–173
InsertBefore() method, 161, 168–170
InsertFirst() method, 161, 163–165
InsertLast() method, 161, 166–168
internal DTDs, 34
item element, 112, 116–117

JJ
Java and parsing, 104–105

LL
linking elements, 71
links, 71
LoadDocument() function, 159–161
LoadNewNode() function, 162–163, 164
loadXML() method, 163
local variables, 160
Location Path statement, 73–75
locators, 71
Lorie, Ray, 2
Losher, Ed, 2

MM
markup tags

creating, 19–20
open and closed, 24

maxOccurs, 65–66
methods, 98

in the Document Object Model (DOM)
parser, 102–103

in the SAX parser, 98

218 XML Demystifi ed

Microsoft’s XML Core Services.
See MSXML

minOccurs, 65–66
MSXML

adding a new element, 161–162
API, 150
creating a DTD, 152
creating a new element

programmatically, 173–176
creating an HTML file, 152–158
creating an XML document, 150–151
defined, 149–150
DeleteNodes() function, 180–181
DisplayTitles() function, 179
filtering an XML document, 177–179
InsertAfter() method, 161, 171–173
InsertBefore() method, 161, 168–170
InsertFirst() method, 161, 163–165
InsertLast() method, 161, 166–168
LoadDocument() function, 159–161
loading a document, 158–159
LoadNewNode() function, 162–163
ValidateDocument() function, 181–184
and XSLT, 184–186

NN
name attributes, 57
name/value pairs, 25

See also attributes
naming elements, 45
Netscape, 110
node test, 75
nodes, 41, 101

OO
operators, 131

PP
parent tags, 6
parent/child relationships

identifying, 20
parent ... parent/child ... child

relationships, 20–22
Parsed Character Data.

See PCDATA
parsed character data, 29
parsed entities, 47
parsers, 33, 95, 96
parsing, 6, 10–11, 96

and Java, 104–105
passing variables, 160
PCDATA, 23, 41
predicates, 75, 76–77
preserving whitespace

characters, 62
processing instructions, 29
proximity position, 76
<pubDate> element, 114, 117

QQ
quizzes

answers, 206–210
Chapter 1, 14–15
Chapter 2, 31–32
Chapter 3, 48–49
Chapter 4, 67–68
Chapter 5, 81–82
Chapter 6, 93–94
Chapter 7, 106–107
Chapter 8, 118–120
Chapter 9, 146–147
Chapter 10, 187–188
See also final exam

INDEX 219

RR
reading XML documents, 10–11
Really Simple Syndication. See RSS
regular expressions, 60–61
relative path, 74–75
replacing whitespace characters, 62
result documents, 85
reverse axis, 76, 77
RSS, 109

aggregators, 109
<author> element, 116
category element, 112
channel elements, 111–114
child elements, 111, 112
<comments> element, 116
communicating with the aggregator,

114–116
copyright element, 113
documents, 110–112
<enclosure> element, 116–117
feed, 110
<guid> element, 117
image elements, 113
item element, 112, 116–117
overview, 110
<pubDate> element, 114, 117
<skipDays> element, 114
<skipHours> element, 114–115
<source> element, 117
<ttl> element, 115
<webMaster> element, 116

SS
SAX parser, 11, 95, 96–97

Content Handler, 98
DTD Handler, 99–100
Entity Resolver, 100
Error Handler, 99
errors, 104

events, 98
methods, 98

Saxon-B version 8 processor, 122
testing, 122–125

schemas. See XML schemas
SelectArtist() function, 177–179
selectNodes() method, 169, 178, 180
self-axis, 76
setAttribute() method, 175
SGML, 2–3
shared DTDs, 38–40
Simple API for XML parser. See SAX parser
simple elements, 56–57
<skipDays> element, 114
<skipHours> element, 114–115
source documents, 85
<source> element, 117
special characters. See entities; UNICODE
Standard Generalized Markup Language.

See SGML
standards, 33
stylesheets, 83
subtrees, 73
syndication. See RSS

TT
templates, 92
text nodes, 20, 41
transformation, 83, 96

and XPath, 84–85
TransformDocument() function, 185
transformers, 104–105
<ttl> element, 115
type attributes, 57

UU
UNICODE, 28–29
unparsed entities, 47

220 XML Demystifi ed

VV
ValidateDocument() function,

181–184
value, 160
variables, 159

passing, 160

WW
web browser support for XSLT, 85
web services, 13
<webMaster> element, 116
whitespace characters, 62

<xsl:value-of> instruction, 89
ignoring, 38
restricting the length of a field, 62–63

Winer, Dave, 110
World Wide Web Consortium (W3C), 3

XX
XHTML, 84, 87
XLink, 69

linking elements, 71
links, 71
locators, 71
overview, 70
xline:show, 71–72
xlink:actuate, 72–73
xlink:type, 71

XML
benefits for corporations using, 12
compared to HTML, 1
creating documents, 23–25, 150–151
creating markup tags, 19–20
development of, 2–3
flexibility of, 6
overview, 3–5
parser, 33

reading documents, 10–11
standards, 33

XML schema definition (XSD), 52
XML schemas, 52–53

complex elements, 63–65
defining attributes, 57–58
defining simple elements, 56–57
vs. DTDs, 53–55
facets, 58–59
ranges, 59–60
regular expressions, 60–61
setting the number of occurrences,

65–66
structure of, 55–56
whitespace characters, 62–63

XML-DEV mailing list, 96
XPath, 69

absolute path, 74
axes, 75–76
forward axis, 76
functions, 77–80
Location Path statement, 73–75
node test, 75
overview, 73–75
predicates, 75, 76–77
proximity position, 76
relative path, 74–75
reverse axis, 76, 77
self-axis, 76
statement structure, 75

XPointer, 69, 80
XQuery, 121

catalog.xq, 127–128
conditional expressions, 126
conditional statements, 131–135
constructors, 128–131
FLWOR expressions, 126
for, let, and order by clauses, 126
function calls, 127

INDEX 221

function declaration statements,
141–142

functions, 141–145
processors, 122
retrieving the value of an attribute,

136–138
retrieving the value of an attribute

and the attribute name, 138–140
Saxon-B version 8 processor,

122–125
where and return clauses, 126–127

xs:attribute tag, 57–58
xs:complexType tag, 64
xs:enumeration tag, 59
xs:include tag, 66
XSL, 84

case insensitivity, 91
xs:length tag, 63
XSLT, 83

creating XSL stylesheets, 86–87
and MSXML, 184–186
result documents, 85
source documents, 85

structure of XSL stylesheets, 87–92
web browser support, 85
and XPath, 84–85
<xsl:apply-templates>, 92
<xsl:choose> instruction, 90–91
<xsl:for-each> instruction, 90
<xsl:if> instruction, 90
<xsl:sort> instruction, 91–92
<xsl:template> instruction, 88–89
<xsl:value-of> instruction, 89

xs:maxExclusive tag, 60
xs:maxInclusive tag, 59
xs:maxLength tag, 63
xs:minExclusive tag, 60
xs:minInclusive tag, 59
xs:minLength tag, 63
xs:pattern tag, 60–61
xs:restriction tag, 58–59
xs:schema tag, 54, 55
xs:sequence tag, 64
xs:simpleType tag, 59, 60
xs:string tag, 59
xs:whiteSpace tag, 62

www.osborne.com

	Contents
	Introduction
	Chapter 1 XML: An Inside Look
	XML: In the Beginning
	What Is XML?
	Why Is XML Such a Big Deal?
	Document Type Definitions
	Where to Place the DTD

	Reading an XML Document
	Why Are Corporations Switching to XML?
	Web Services
	Looking Ahead
	Quiz

	Chapter 2 Creating an XML Document
	Identifying Information
	Creating XML Markup Tags
	Parent ... Parent/Child ... Child

	Creating a Document Type Definition
	Creating an XML Document
	Attributes
	Comments
	Entities
	Processing Instructions
	CDATA Sections
	Looking Ahead
	Quiz

	Chapter 3 Document Type Definitions
	Types of Document Type Definition
	External Document Type Definition

	Shared Document Type Definition
	Element Declarations
	Specifying the Number of Occurrences in an Element
	Optional Child Elements
	Grouping Elements
	EMPTY and ANY Elements
	Naming Elements

	Attribute Declarations
	Entity Declarations

	Looking Ahead
	Quiz

	Chapter 4 XML Schema
	Inside an XML Schema
	Document Type Definition vs. XML Schema

	An Inside Look at an XML Schema
	Defining Simple Elements
	Defining Attributes
	Facets

	Working with Whitespace Characters
	Complex Elements
	Setting the Number of Occurrences

	Looking Ahead
	Quiz

	Chapter 5 XLink, XPath, XPointer
	An Inside Look at XLink
	Speaking the XLink Language

	XPath
	A Closer Look at XPath
	Predicates
	Functions

	XPointer
	Looking Ahead
	Quiz

	Chapter 6 XSLT
	What Is XSLT?
	XPath and the Transformation
	Source and Result Documents
	XSLT in Action
	A Closer Look at XSL Stylesheet
	Looking Ahead
	Quiz

	Chapter 7 XML Parsers and Transformations
	Parsing an XML Document
	The Simple API for XML (SAX)
	Components of a SAX Parser
	The DTD Handler

	The Document Object Model
	Java and Parsing an XML Document
	Looking Ahead
	Quiz

	Chapter 8 Really Simple Syndication (RSS)
	What Is Really Simple Syndication (RSS)?
	Inside an RSS Document
	More About the channel Element
	Communicating with the Aggregator

	More About the item Element
	Looking Ahead
	Quiz

	Chapter 9 XQuery
	Getting Started
	Testing Saxon-B

	How XQuery Works
	For, Let, and Order By Clauses
	The Where and Return Clauses
	A Walkthrough of an XQuery

	Constructors
	Conditional Statements
	Retrieving the Value of an Attribute
	Retrieving the Value of an Attribute and the Attribute Name

	Functions
	Looking Ahead
	Quiz

	Chapter 10 MSXML
	What Is MSXML?
	Getting Down and Dirty with MSXML
	Loading a Document
	The LoadDocument() Function
	Adding a New Element
	The LoadNewNode() Function
	The InsertFirst() Method
	The InsertLast() Method
	The InsertBefore() Function
	The InsertAfter() Function

	Create a New Element Programmatically
	Select, Extract, Delete, and Validate
	The SelectArtist() Function—Filtering an XML Document
	The DisplayTitles() Function
	The DeleteNodes() Function
	The ValidateDocument() Function

	MSXML and XSLT
	CD Listing
	Summary
	Quiz

	Final Exam
	Answers to Quizzes and Final Exam
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Copyright © 2005 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Introduction:
	Chapter 1 XML: An Inside Look:
	XML: In the Beginning:
	What Is XML?:
	Why Is XML Such a Big Deal?:
	Document Type Definitions:
	Where to Place the DTD:
	Reading an XML Document:
	Why Are Corporations Switching to XML?:
	Web Services:
	Chapter 2 Creating an XML Document:
	Identifying Information:
	Creating XML Markup Tags:
	Parent :
	 Parent/Child :
	 Child:

	Creating a Document Type Definition:
	Creating an XML Document:
	Attributes:
	Comments:
	Entities:
	Processing Instructions:
	CDATA Sections:
	Looking Ahead:
	Quiz:
	Chapter 3 Document Type Definitions:
	Types of Document Type Definition:
	External Document Type Definition:
	Shared Document Type Definition:
	Element Declarations:
	Specifying the Number of Occurrences in an Element:
	Optional Child Elements:
	Grouping Elements:
	EMPTY and ANY Elements:
	Naming Elements:
	Attribute Declarations:
	Entity Declarations:
	Chapter 4 XML Schema:
	Inside an XML Schema:
	Document Type Definition vs:
	 XML Schema:

	An Inside Look at an XML Schema:
	Defining Simple Elements:
	Defining Attributes:
	Facets:
	Working with Whitespace Characters:
	Complex Elements:
	Setting the Number of Occurrences:
	Chapter 5 XLink, XPath, XPointer:
	An Inside Look at XLink:
	Speaking the XLink Language:
	XPath:
	A Closer Look at XPath:
	Predicates:
	XPointer:
	Chapter 6 XSLT:
	What Is XSLT?:
	XPath and the Transformation:
	Source and Result Documents:
	XSLT in Action:
	A Closer Look at XSL Stylesheet:
	Chapter 7 XML Parsers and Transformations:
	Parsing an XML Document:
	The Simple API for XML (SAX):
	Components of a SAX Parser:
	The DTD Handler:
	The Document Object Model:
	Java and Parsing an XML Document:
	Chapter 8 Really Simple Syndication (RSS):
	What Is Really Simple Syndication (RSS)?:
	Inside an RSS Document:
	More About the channel Element:
	Communicating with the Aggregator:
	More About the item Element:
	Chapter 9 XQuery:
	Getting Started:
	Testing Saxon-B:
	How XQuery Works:
	For, Let, and Order By Clauses:
	The Where and Return Clauses:
	A Walkthrough of an XQuery:
	Constructors:
	Conditional Statements:
	Retrieving the Value of an Attribute:
	Retrieving the Value of an Attribute and the Attribute Name:
	Functions:
	Chapter 10 MSXML:
	What Is MSXML?:
	Getting Down and Dirty with MSXML:
	Loading a Document:
	The LoadDocument() Function:
	Adding a New Element:
	The LoadNewNode() Function:
	The InsertFirst() Method:
	The InsertLast() Method:
	The InsertBefore() Function:
	The InsertAfter() Function:
	Create a New Element Programmatically:
	Select, Extract, Delete, and Validate:
	The SelectArtist() Function„Filtering an XML Document:
	The DisplayTitles() Function:
	The DeleteNodes() Function:
	The ValidateDocument() Function:
	MSXML and XSLT:
	CD Listing:
	Summary:
	Final Exam:
	Answers to Quizzes and Final Exam:
	Index:

