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The problem

One of the main achievements of 19th century

mathematics was to carefully analyze concepts

such as the continuity and differentiability of

functions. Recall that f is differentiable at x,

and its derivative is f ′(x) = L, if the limit

lim
h→0

f(x+ h) − f(x)

h

exists, and is equal to L.

While it was always clear that not every con-

tinuous function is differentiable, e.g. the func-

tion f : R → R given by f(x) = |x| is not dif-

ferentiable at 0, it was not until the work of

Bolzano and Weierstrass that the full extent of

the problem became clear: there are nowhere

differentiable continuous functions.



Let u be the saw-tooth function: u(0) = 0,

u(1/2) = 1/2, u is periodic with period 1, and

linear on [0,1/2] as well as on [1/2,1]. Then

let

f(x) =
∞∑
j=0

cju(q
jx),

for suitable cj and q – e.g. q = 16, cj = 2−j

work. Then the sum converges to a continuous

function f , but the difference quotients do not

have limits. In fact, u could be replaced even

by u(x) = sin(2πx).

However, one can make sense of f ′ and even

the 27th derivative of f for any continuous f if

one relaxes the requirement that f ′ be a func-

tion. So, for instance, we cannot expect f ′ to

have values at any point – it will be a distribu-

tion, i.e. a ‘generalized function’, introduced

by Schwartz and Sobolev.



Why care?

• PDE’s: most PDE’s are not explicitly solv-

able. Related techniques play a crucial role

in analyzing PDEs.

• Another PDE example: take the wave equa-

tion on the line:

utt = c2uxx,

u a function on Rx×Rt, utt =
∂2u
∂t2

, etc. The

general solution of this PDE, obtained by

d’Alembert in the 18th century, is

u(x, t) = f(x+ ct) + g(x− ct),

where f and g are ‘arbitrary’ functions on

R. Indeed, it is easy to check by the chain

rule that u solves the PDE – as long as we

can make sense of the differentiation. So,

in the ‘classical sense’, f, g twice continu-

ously differentiable, written as f, g ∈ C2(R),

suffice.



But shouldn’t this also work for rougher

f, g? For instance, what about the step

function f : f(x) = 1 if x ≥ 0, f(x) = 0 for

x < 0?

• Limits of familiar objects are often distri-

butions. For example, for ε > 0, define

fε : R → C by

fε(x) =
1

x+ iε
.

What is limε→0 fε? For x 6= 0, of course the

limit makes sense directly – it is f(x) = 1
x.

But what about x = 0? For instance,

does
∫ 1
−1 f(x) dx make sense, and what is

it? Note that this integral does not con-

verge due to the behavior of the integrand

at 0!

However, we can take

lim
ε→0

∫ 1

−1
fε(x) dx = lim

ε→0
log(x+ iε)|1−1



= log(1) − log(−1) = 0 − (iπ) = −iπ.

So, the integral of the limit f on [−1,1]

should be −iπ. Can we make sense of this

directly?

• Idealization of physical problems often re-

sults in distributions. For instance, the

sharp front for the wave equation discussed

above, or point charges (the electron is

supposed to be such!) are good examples.



I will usually talk about functions on R, but

almost everything makes sense on Rn, n ≥ 1

arbitrary.

Notation:

• We say that f is C0 if f is continuous.

• We say that f is Ck, k ≥ 1 integer, if f is

k times continuously differentiable, i.e. if f

is Ck−1 and its (k−1)st derivative, f (k−1),

is differentiable, and its derivative, f (k) is

continuous.

• We say that f is C∞, i.e. f is infinitely

differentiable, if f is Ck for every k.

Motivation: to deal with very ‘bad’ objects,

first we need very ‘good’ ones.



Example of an interesting C∞ function on R:

f(x) = 0 for x ≤ 0, f(x) = e−1/x for x > 0.

An even more interesting example: g(x) =

f(1 − x2). Note that g is 0 for |x| ≥ 1.

Our very good functions then will be the (complex-

valued) functions φ which are C∞ and which

are 0 outside a bounded set, i.e. there is R > 0

such that φ(x) = 0 for |x| ≥ R. The set of such

functions is denoted by C∞
c (R), and its ele-

ments are called ‘compactly supported smooth

functions’ or simply ‘test functions’.

There are other sets of very good functions

with which analogous conclusions are possible:

e.g. C∞ functions which decrease faster than

Ck|x|
−k at infinity for all k, and analogous es-

timates hold for their derivatives. Such func-

tions are called Schwartz functions.



The set C∞
c (R) is a vector space with the usual

pointwise addition of functions and pointwise

multiplication by scalars c ∈ C. Since this is an

infinite dimensional vector space, we need one

more notion:

Suppose that φn, n ∈ N, is a sequence in C∞
c (R),

and φ ∈ C∞
c (R). We say that φn → φ in C∞

c (R)

if

1. there is an R > 0 such that φn(x) = 0 for

all n and for all |x| ≥ R,

2. and for all k, maxx∈R | d
k

dxk
(φn − φ)| → 0 as

n→ ∞, i.e. for all k and for all ε > 0, there

is N such that

n ≥ N, x ∈ R ⇒ |
dk

dxk
(φn − φ)| < ε.



Now we ‘dualize’ C∞
c (R) to define distribu-

tions:

A distribution u ∈ D′(R) is a continuous linear

functional u : C∞
c (R) → C. That is:

1. u is linear:

u(c1φ1 + c2φ2) = c1u(φ1) + c2u(φ2)

for all cj ∈ C, φj ∈ C∞
c (R), j = 1,2.

2. u is continuous: if φn → φ in C∞
c (R) then

u(φn) → u(φ), i.e. limn→∞ u(φn) = u(φ), in

C.

The simplest example is the delta distribution:

for a ∈ R, δa is the distribution given by δa(φ) =

φ(a) for φ ∈ C∞
c (R).

Another example: for φ ∈ C∞
c (R), let u(φ) =

φ′(1) − φ′′(−2).



Why is this a generalization of functions?

If f is continuous (or indeed just locally inte-

grable), we can associate a distribution ι(f) =

ιf to it:

ιf(φ) =

∫
R
f(x)φ(x) dx.

Note that ι : C0(R) → D′(R) is injective, i.e.

ιf1 = ιf2 implies f1 = f2, or equivalently ιf = 0

implies f = 0, so we can think of C0(R) as a

subset of D′(R), identifying f with ιf .

Here we already used that D′(R) is a vector

space: u1 + u2 is the distribution given by

(u1 + u2)(φ) = u1(φ) + u2(φ), while cu is the

distribution given by (cu)(φ) = cu(φ) (c ∈ C).



Convergence: suppose that un is a sequence of

distributions and u ∈ D′(R). We say that un →
u in D′(R) if for all φ ∈ C∞

c (R), limn→∞ un(φ) =

u(φ).

Example: Suppose that un ≥ 0 are continu-

ous functions (i.e. un = ιfn, fn continuous),

un(x) = 0 for |x| ≥ 1
n, and

∫
R un(x) dx = 1.

Then limn→∞ un = δ0.

Example: Suppose uε(x) = 1
x+iε. Then for

ε > 0, φ ∈ C∞
c (R),

∫
uε(x)φ(x) dx =

∫
1

x+ iε
φ(x) dx

= −
∫

log(x+ iε)φ′(x) dx,

But the last expression has a limit as ε → 0,

for log is locally integrable; the limit is

u(φ) = −
∫

log(x+ i0)φ′(x) dx,

where log(x+ i0) = log |x| + iπH(−x), with H
the step function H(x) = 1 if x > 0, H(x) = 0,

if x < 0.



If one wants to, one can integrate by parts

once more to get

u(φ) = lim
ε→0

∫
uε(x)φ(x) dx

=

∫
(x+ iε)(log(x+ iε) − 1)φ′′(x) dx

=

∫
x(log(x+ i0) − 1)φ′′(x) dx,

with the integrand continuous now even at ε =

0.

The distribution u is called (x+ i0)−1.

A simple and interesting calculation gives

(x+ i0)−1 − (x− i0)−1 = −2πiδ0.



This is all well, but has the goal been achieved,

namely can we differentiate any distribution?

Yes! We could see this by approximating distri-

butions by differentiable functions, whose deriva-

tive we thus already know, and show that the

limit exists. But this requires first proving that

every distribution can be approximated by such

functions. So we proceed more directly.

If u = ιf , and f is C1, we want u′ = ιf ′. That

is, we want

u′(φ) = ιf ′(φ) =

∫
f ′(x)φ(x) dx

= −
∫
f(x)φ′(x) dx = −ιf(φ

′) = −u(φ′).

So for any u ∈ D′(R), we define u′ ∈ D′(R) by

u′(φ) = −u(φ′).



It is easy to see that u′ is indeed a distribution.

In particular, it can be differentiated again, etc.

It is also easy to check that if un → u in D′(R)

then u′n → u′ in D′(R).

Example: u = δa. Then u′(φ) = −u(φ′) =

−φ′(a), i.e. δ′a is the distribution φ 7→ −φ′(a).

Example: u = ιH, H the step function. Then

u′(φ) = −u(φ′) = −
∫ ∞

−∞
H(x)φ′(x) dx

= −
∫ ∞

0
φ′(x) = φ(0) = δ0(φ)

by the fundamental theorem of calculus, so

H ′ = δ0.

Now it is easy to check that u(x, t) = H(x− ct)
solves the wave equation!

Another good feature is that all standard iden-

tities hold for distributional derivatives, e.g.
∂2u
∂x∂y = ∂2u

∂y∂x, since they hold for test functions

φ.



The downside: multiplication does not extend

to D′(R), e.g. δ0 · δ0 makes no sense. To

see this, consider a sequence un of continuous

functions converging to δ0, and check that u2
n

does not converge to any distribution. Actu-

ally, there are algebraic problems as well: the

product rule gives an incompatibility for differ-

entiation and multiplication when applied to

‘bad’ functions.

This is why solving non-linear PDE’s can be

hard: differentiation and multiplication fight

against each other: e.g. utt = u2
xx.

However, one can still multiply distributions by

C∞ functions f : (fu)(φ) = u(fφ), motivated

as for differentiation. Thus, distribution the-

ory is ideal for solving variable coefficient linear

PDE’s: e.g. utt = c(x)2uxx.



Also note that

(x+ i0)−1 · (x+ i0)−1 = (x+ i0)−2

makes perfectly good sense, as does (x−i0)−2.

The problem is with the product (x + i0)−1 ·

(x−i0)−1. A more general perspective that dis-

tinguishes (x+ i0)−1 and (x− i0)−1, by saying

that they are both singular at 0 but in different

‘directions’, is microlocal analysis.



As an application, consider the fundamental

theorem of calculus.

Suppose that u′ = f , and f is a given distribu-

tion. What is u?

Since f(ψ) = u′(ψ) = −u(ψ′), we already know

what u is applied to the derivative of a test

function. But we need to know what u(φ) is

for any test function φ.

So let φ0 be a fixed test function with
∫
R φ0(x) dx =

1. If φ ∈ C∞
c (R), define φ̃ ∈ C∞

c (R) by

φ̃(x) = φ(x) − (
∫
R
φ(x′) dx′)φ0(x).

Then
∫
R φ̃(x) dx = 0, hence φ̃ is the derivative

of a test function ψ, namely we can let

ψ(x) =
∫ x

−∞
φ̃(x′) dx′.

Thus, φ(x) = ψ′(x) + (
∫
R φ(x

′) dx′)φ0(x), so



u(φ) = u(ψ′) + (

∫
R
φ(x′) dx′)u(φ0)

= −f(ψ) +

∫
R
cφ(x′) dx′

with c = u(φ0) a constant independent of φ.

Thus, u is determined by u′ = f , plus the

knowledge of u(φ0).

In particular, if f = 0, we deduce that u = ιc,

i.e. u is a constant function!

This is a form of the fundamental theorem of

calculus: if u is C1, a, b ∈ R, a < b, we can take

φ0 approach δa, φ approach δb, in which case

ψ will approach a function that is −1 between

a and b, 0 elsewhere, so we recover u(b) =

u(a) +
∫ b
a f(x) dx.



More examples: electrostatics. The electro-

static potential u generated by a charge den-

sity ρ satisfies

−∆u = ρ, ∆u = uxx + uyy + uzz.

If ρ = δ0, i.e. we have a point charge, what is

u? We need conditions at infinity, such as u→

0 at infinity, to find u. In fact, u = 1
4πr, r(X) =

|X|, X = (x, y, z), as a direct calculation shows:

to evaluate −∆u, consider

−∆u(φ) = u(−∆φ) = −
∫
R3

1

4π|X|
∆φ(X) dX

= lim
ε→0

∫
|X|>ε

1

4π|X|
∆φ(X) dX,

and use the divergence theorem to show that

the right hand side converges to φ(0) = δ0(φ)!



This also solves the PDE −∆u = f for any f

(with some decay at infinity), by

u(x) =
∫
E(X − Y ) f(Y ) dY, E(X) =

1

4π|X|
;

this integral actually makes sense even if f is

a distribution (with some decay at infinity).


