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Chapter 1

Introduction

The so-called Dirac delta function (on R) obeys δ(x) = 0 for all x 6= 0 but
is supposed to satisfy

∫ ∞
−∞ δ(x) dx = 1. (The δ function on Rd is similarly

described.) Consequently,
∫ ∞

−∞
f(x) δ(x) dx =

∫ ∞

−∞
(f(x) − f(0)) δ(x) dx+ f(0)

∫ ∞

−∞
δ(x) dx = f(0)

because (f(x)−f(0)) δ(x) ≡ 0 on R. Moreover, ifH(x) denotes the Heaviside
step-function

H(x) =

{
0, x < 0

1, x ≥ 0 ,

then we see that H ′ = δ, in the following sense. If f vanishes at infinity,
then integration by parts gives

∫ ∞

−∞
f(x)H ′(x) dx =

[
f(x)H(x)

]∞
−∞

−
∫ ∞

−∞
f ′(x)H(x) dx

= −
∫ ∞

−∞
f ′(x)H(x) dx

= −
∫ ∞

0
f ′(x) dx

= −
[
f(x)

]∞
0

= f(0)

=

∫ ∞

−∞
f(x) δ(x) dx .

Of course, there is no such function δ with these properties and we cannot
interpret

∫ ∞
−∞ f(x) δ(x) dx as an integral in the usual sense. The δ function

is thought of as a generalized function.
However, what does make sense is the assignment f 7→ f(0) = 〈δ, f〉, say.

Clearly 〈δ, αf + βg〉 = α〈δ, f〉 + β〈δ, g〉 for functions f , g and constants α
and β. In other words, the Dirac delta-function can be defined not as a
function but as a functional on a suitable linear space of functions. The
development of this is the theory of distributions of Laurent Schwartz.

1



2 Chapter 1

One might think of δ(x) as a kind of limit of some sequence of functions
whose graphs become very tall and thin, as indicated in the figure.

Figure 1.1: Approximation to the δ-function.

The Dirac δ function can be thought of as a kind of continuous version of
the discrete Kronecker δ and is used in quantum mechanics to express the
orthogonality properties of non square-integrable wave functions.

Distributions play a crucial rôle in the study of (partial) differential equa-
tions. As an introductory remark, consider the equations

∂2u

∂x∂y
= 0 and

∂2u

∂y∂x
= 0 .

These “ought” to be equivalent. However, the first holds for any function u
independent of y, whereas the second may not make any sense. By (formally)
integrating by parts twice and discarding the surface terms, we get

∫
ϕ
∂2u

∂x∂y
dx dy =

∫
u
∂2ϕ

∂x∂y
dx dy .

So we might interpret
∂2u

∂x∂y
= 0 as

∫
u
∂2ϕ

∂x∂y
dx dy = 0

for all ϕ in some suitably chosen set of smooth functions. The point is that
this makes sense for non-differentiable u and, since ϕ is supposed smooth,

∫
u
∂2ϕ

∂x∂y
dx dy =

∫
u
∂2ϕ

∂y∂x
dx dy ,

that is,
∂2u

∂x∂y
=

∂2u

∂y∂x
in a certain weak sense. These then are weak or

distributional derivatives.

Finally, we note that distributions also play a central rôle in quantum field
theory, where quantum fields are defined as operator-valued distributions.
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Chapter 2

The spaces S and S ′

Let Zn+ denote the set of n-tuples (α1, . . . , αn) where each αi is a non-
negative integer and write Z+ for Z1

+. For α ∈ In+, let |α| =
∑n

i=1 αi and let

Dα denote the partial differential operator
∂|α|

∂xα1

1 . . . ∂xαn
n

.

Finally, if x = (x1, . . . , xn) ∈ Rn, let xα denote the product xα1

1 . . . xαn
n .

Definition 2.1. The complex linear space of bounded continuous complex-
valued functions on Rn is denoted Cb(R

n). It is equipped with the norm

‖f‖∞ = sup
x∈Rn

|f(x)| .

Theorem 2.2. For any d ∈ N, Cb(R
d) is a complete normed space with respect

to the norm ‖ · ‖∞.

Proof. Suppose (fn) is a Cauchy sequence in Cb(R
d), that is, ‖fn−fm‖∞ → 0

as m,n → ∞. We must show that there is some f ∈ Cb(R
d) such that

‖fn − f‖∞ → 0 as n → ∞. To see where such an f comes from, we
note that the inequality |g(x)| ≤ ‖g‖∞ implies that for each x ∈ Rd, the
sequence (fn(x)) is a Cauchy sequence in C and therefore converges. Let
f(x) = limn fn(x).

We claim that f ∈ Cb(R
d) and that ‖fn − f‖∞ → 0. Let ε > 0 be given.

Since (fn) is a Cauchy sequence in Cb(R
d) there is N ∈ N such that

‖fn − fm‖∞ < 1
2 ε (∗)

for all n,m ≥ N . But then, for any x ∈ Rd,

|fN+k(x)| ≤ |fN+k(x) − fN (x)| + |fN (x)| < 1
2 ε+ ‖fN‖∞

by (∗). Letting k → ∞ gives

|f(x)| ≤ 1
2 ε+ ‖fN‖∞

which shows that f is bounded on Rd.
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6 Chapter 2

Next, we note that for any x ∈ Rd, |fn(x) − fm(x)| ≤ ‖fn − fm‖∞ and so
the inequality (∗) implies that

|fn(x) − fm(x)| < 1
2 ε

provided n,m ≥ N . Letting m→ ∞, we see that

|fn(x) − f(x)| ≤ 1
2 ε (∗∗)

for any x ∈ Rd, provided n ≥ N . In other words, fn(x) → f(x) uniformly
on Rd. However, each fn is continuous and so the same is true of f . But
then this means that f ∈ Cb(R

d). The inequality (∗∗) gives

‖fn − f‖∞ ≤ 1
2 ε < ε

whenever n ≥ N and so fn → f with respect to ‖ · ‖∞ and the proof is
complete.

Definition 2.3. The linear space of infinitely-differentiable bounded functions
on Rn is denoted by C∞

b (Rn). Evidently C∞
b (Rn) ⊂ Cb(R

n).

The space S (Rn) is the linear subspace of C∞
b (Rn) formed by the set of

functions f on Rn such that xαDβf(x) is bounded on Rn for each α, β ∈ Zn+.

S (Rn) is equipped with the family of norms

|||f |||α,β = sup
x∈Rn

|xαDβf(x) |

for α, β ∈ Zn+. The elements of S (Rn) are said to be rapidly decreasing
functions.

Example 2.4. Evidently, the function f(x) = xm e−x
2

belongs to S (R) for
any m ∈ Z+. Indeed, S (R) contains all the Hermite functions.
For any polynomial p(x1, . . . , xn) on Rn, the function p(x1, . . . , xn)e

−(x2
1
+···+x2

n)

belongs to S (Rn).

Definition 2.5. We say that a sequence (fn) in S (Rd) converges to f in
S (Rd) if, for each α, β ∈ Zd+, |||fn − f |||α,β → 0 as n→ ∞.

The sequence (fn) in S (Rd) is said to be a Cauchy sequence in S (Rd) if
|||fn − fm|||α,β → 0 as n,m→ ∞, for each α, β ∈ Zd+.

Theorem 2.6. S (Rd) is complete, that is, every Cauchy sequence in S (Rd)
converges in S (Rd).

Proof. First consider the case d = 1. So suppose that (fn) is a Cauchy
sequence in S (R). Fix α, β ∈ Z+. Then we know that

|||fn − fm|||α,β → 0 as n,m→ ∞.

ifwilde Notes



The spaces S and S ′ 7

In other words, the sequence xαDβfn(x) is a Cauchy sequence with respect
to the norm ‖ · ‖∞ and so converges to some function gα,β , say.

We shall show that xαDβg = gα,β . This follows from the equality

fn(x) = fn(0) +

∫ x

0
f ′n(t) dt .

Indeed, f ′n = D1fn → g0,1 on R and so, letting n→ ∞, we may say that

g0,0(x) = g0,0(0) +

∫ x

0
g0,1(t) dt .

Hence g0,0 is continuously differentiable and g′0,0 = g0,1. Repeating this

argument, we see that g0,0 is infinitely-differentiable and that Dβg0,0 = g0,β .

Now, Dβfn → g0,β = Dβg0,0 uniformly and so xαDβfn(x) → xαDβg0,0(x)
pointwise. But we also know that xαDβfn → gα,β uniformly and so it follows
that gα,β = xαDβg0,0. We note that gα,β is bounded and so g0,0 ∈ S (R).
Hence fn → g0,0 in S (R) and we conclude that S (R) is complete.

For the general d-dimensional case, suppose that (fn) is a Cauchy sequence
in S (Rd). Then for each α, β ∈ Zd+ the sequence xαDβfn is a Cauchy
sequence in Cb(R

d) and so converges; xαDβfn → gα,β uniformly on Rd,
for some gα,β ∈ Cb(R

d).
Fix x2, x3, . . . , xd. Then as in the 1-dimensional argument above, we know

that for any α1, β1 ∈ Z+, (all relevant partial derivatives exist and)

xα1

1 ∂β1

x1
fn(x1, x2, . . . , xd) → g(α1,0,...,0),(β1,0,...,0)(x1, x2, . . . , xd)

= xα1

1 ∂β1

x1
g0,0(x1, x2, . . . , xd) .

Considering now the function x2 7→ xα1

1 ∂β1
x1
fn(x1, x2, . . . , xd), we similarly

see that

xα2

2 ∂β2

x2
xα1

1 ∂β1

x1
fn(x1, . . . , xd) → g(α1,α2,0,...,0),(β1,β2,0,...,0)(x1, . . . , xd)

= xα2

2 ∂β2

x2
xα1

1 ∂β1

x1
g0,0(x1, . . . , xd)

for any α2, β2 ∈ Z+.
Repeating this for the function x3 7→ xα2

2 ∂β2
x2
xα1

1 ∂β1
x1
fn(x1, x2, . . . , xd), we

find that

g(α1,α2,α3,0,...,0),(β1,β2,β3,0,...,0)(x1, . . . , xd)

= xα3

3 ∂β3

x3
xα2

2 ∂β2

x2
xα1

1 ∂β1

x1
g0,0(x1, . . . , xd)

for α3, β3 ∈ Z+. Continuing this way, we conclude that

gα,β = xαDβg0,0

for any α, β ∈ Zd+. It follows that fn → g0,0 in S (Rd).
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8 Chapter 2

Definition 2.7. Continuous linear functionals on S (Rd) are called tempered
distributions. The linear space of tempered distributions is denoted by
S ′(Rd). Thus T ∈ S ′(Rd) if and only if T : S (Rd) → C is linear and
fn → f in S (Rd) implies that T (fn) → T (f) in C.

Example 2.8. For fixed a ∈ Rd, let δa be the map on S (Rd) given by the
prescription δa : f 7→ f(a). Evidently δa ∈ S ′(Rd). δa is called the Dirac
delta function (at a ∈ Rd).

Remark 2.9. Since T (fn) − T (f) = T (fn − f) and fn → f in S if and only
if (fn − f) → 0 in S , we see that a linear map on S is continuous if and
only if it is continuous at 0 ∈ S .

Proposition 2.10. Suppose that T : S → S is linear and that there are
α, β ∈ Zd+ such that

|T (f)| ≤ |||f |||α,β
for all f ∈ S (Rd). Then T ∈ S ′(Rd).

Proof. According to the remark above, we need only verify the continuity
of T at 0. But if fn → 0 in S , it follows, in particular, that |||fn|||α,β → 0
and so

|T (fn)| ≤ |||fn|||α,β → 0

as n→ ∞. This means that T is continuous at 0, as required.

To establish a converse, we shall introduce another family of norms on S .

Definition 2.11. For each k,m ∈ Z+ and f ∈ S (Rd), set

‖f‖k,m =
∑

|α|≤k
|β|≤m

|||f |||α,β .

These norms on S have the property of being directed, that is, for any
(k′,m′) and (k′′,m′′) there is (k,m) such that

max{ ‖f‖k′,m′ , ‖f‖k′′,m′′ } ≤ ‖f‖k,m

for all f ∈ S (Rd). (Any (k,m) with k ≥ max{ k′, k′′ } andm ≥ max{m′,m′′ }
will do).

Remark 2.12. It is clear that |||fn− f |||α,β → 0 for each α, β ∈ Zd+ if and only
if ‖fn − f‖k,m → 0 for each k,m ∈ Z+. It follows that a linear functional
T on S (Rd) is a tempered distribution if and only if T (fn) → 0 whenever
‖fn‖k,m → 0 for all k,m ∈ Z+.

ifwilde Notes



The spaces S and S ′ 9

Theorem 2.13. A linear functional T on S (Rd) is a tempered distribution if
and only if there is C > 0 and some k,m ∈ Z+ such that

|T (f)| ≤ C‖f‖k,m
for all f ∈ S (Rd).

Proof. If such a bound exists, it is clear that T ∈ S ′(Rd). For the converse,
suppose that T ∈ S ′(Rd) but that there exists no such bound. Then for
any n ∈ N, it is false that

|T (f)| ≤ n ‖f‖n,n
for all f ∈ S (Rd). In other words, there is a sequence (gn) in S such that

|T (gn)| > n ‖gn‖n,n .
Set fn = gn/n ‖gn‖n,n so that |T (fn)| > 1. However,

‖fn‖k,m =
‖gn‖k,m
n ‖gn‖n,n

≤ 1

n

whenever n ≥ max{ k,m }. It follows that fn → 0 in S (Rd). This is a
contradiction because it is false that T (fn) → 0. The result follows.

Proposition 2.14. Let g ∈ L2(Rd). Then the linear map

Tg : f 7→
∫
g(x) f(x) dx

on S (Rd) defines a tempered distribution.

Proof. For f ∈ S (Rd), we have |Tg(f)| =
∣∣∣
∫
g(x) f(x) dx

∣∣∣ ≤ ‖g‖L2 ‖f‖L2 .

But

‖f‖2
L2 =

∫
|f(x)| |f(x)| dx

≤ ‖f‖0,0

∫
|f(x)| dx

= ‖f‖0,0

∫ ( d∏

j=1

(1 + x2
j )

)
|f(x)| 1

∏d
k=1(1 + x2

k)
dx

≤ ‖f‖0,0 ‖f‖2d,0

∫
1

∏d
k=1(1 + x2

k)
dx1 dx2 . . . dxd

= πd ‖f‖0,0 ‖f‖2d,0

≤ πd ‖f‖2
2d,0 .

This leads to the estimate

|Tg(f)| ≤ ‖g‖L2 πd/2 ‖f‖2d,0

which shows that T ∈ S ′(Rd), as claimed.

November 9, 2005
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The next result indicates that polynomially bounded functions determine
tempered distributions, via integration.

Theorem 2.15. Suppose that g(x) (is measurable and) is such that for some
m ∈ N,

∏d
j=1(1 + x2

j )
−mg(x) is bounded on Rd. Then the map

Tg : f 7→
∫
g(x) f(x) dx

is a tempered distribution.

Proof. Let p(x) =
∏d
j=1(1 + x2

j ). Then the hypotheses mean that for any

f ∈ S (Rd)

|g(x) f(x)| = p(x)−m |g(x)| p(x)m |f(x)|
< Mp(x)m |f(x)|

for some M > 0. It follows that g(x)f(x) is integrable and so Tg is well-
defined on S (Rd).

To show that T ∈ S ′(Rd), we estimate

|Tg(f)| < M

∫
p(x)m |f(x)| dx

= M

∫
p(x)m+1 |f(x)| 1

p(x)
dx

≤M ‖f‖2d(m+1),0

∫
1

p(x)
dx

= M ‖f‖2d(m+1),0 π
d .

It follows that Tg ∈ S ′(Rd).

Theorem 2.16 (Cauchy Principal Part Integral).

The functional

P ( 1
x) : f 7→ lim

ε↓0

∫

|x|≥ε

1

x
f(x) dx

belongs to S ′(R).

Proof. We first show that P ( 1
x) is well-defined on S (R). For f ∈ S (R)

∫

|x|≥ε

1

x
f(x) dx =

∫ ∞

ε

f(x) − f(−x)
x

dx .

However,
f(x) − f(−x)

x
→ 2f ′(0) as x→ 0 and therefore

f(x) − f(−x)
x

is

integrable on [0,∞) and P ( 1
x) is indeed well-defined.

ifwilde Notes



The spaces S and S ′ 11

Clearly P ( 1
x) is linear and so we need only verify its continuity on S (R).

To do this, we observe that for x > 0

∣∣∣ f(x) − f(−x)
x

∣∣∣ =
∣∣∣ 1

x

∫ x

−x
f ′(t) dt

∣∣∣

≤ 1

x

∫ x

−x

∣∣f ′(t)
∣∣ dt

≤ 2 ‖f ′‖∞ .

Therefore

∣∣P ( 1
x)(f)

∣∣ =
∣∣∣

∫ 1

0

f(x) − f(−x)
x

dx+

∫ ∞

1

f(x) − f(−x)
x

dx
∣∣∣

≤
∫ 1

0
2 ‖f ′‖∞ dx+

∫ ∞

1
{ |f(x)| + |f(−x)| } x dx

x2

≤ 2 ‖f ′‖∞ + 2 ‖xf(x)‖∞
∫ ∞

1

dx

x2

= 2 |||f |||0,1 + 2 |||f |||1,0 .

The result follows.

Definition 2.17. A sequence (Tn) in S ′(Rd) is said to converge in S ′(Rd)
if Tn(f) → T (f) for each f ∈ S (Rd). One also says that Tn converges to T
in the sense of distributions.

Example 2.18. Lebesgue’s Dominated Convergence Theorem implies that (if
each gn is measurable and) if gn(x) → g(x) pointwise and if |gn(x)| ≤ ϕ(x)
for some integrable function ϕ, then

∫
gn(x)f(x) dx →

∫
g(x)f(x) dx for

each f ∈ S . In other words, the sequence Tgn of tempered distributions
converges to Tg in S ′(Rd).

We wish to discuss the well-known formula

lim
ε↓0

1

x− x0 + iε
= P ( 1

x−x0
) − iπ δ(x− x0) .

We will see that this holds with convergence in the sense of distributions.

Theorem 2.19. Let gε(x) =
x

x2 + ε2
. Then Tgε → P ( 1

x) in S ′(R) as ε ↓ 0.

Proof. Let f ∈ S (R) and let δ > 0. Then

∣∣∣ P ( 1
x)(f) − Tgε(f)

∣∣∣ =
∣∣∣ P ( 1

x)(f) −
∫ ∞

−∞

x f(x)

x2 + ε2
dx

∣∣∣

=
∣∣∣

∫ ∞

0

f(x) − f(−x)
x

dx−
∫ ∞

0

xf(x) − xf(−x)
x2 + ε2

dx
∣∣∣

November 9, 2005
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=
∣∣∣

∫ ∞

0

ε2

(x2 + ε2)

(
f(x) − f(−x)

)

x
dx

∣∣∣

≤
∣∣∣

∫ δ

0

ε2

(x2 + ε2)

(
f(x) − f(−x)

)

x
dx

∣∣∣

+
∣∣∣

∫ ∞

δ

ε2

(x2 + ε2)

(
f(x) − f(−x)

)

x
dx

∣∣∣

≤
∫ δ

0

∣∣∣ f(x) − f(−x)
x

∣∣∣ dx

+

∫ ∞

δ

ε2

δ2

∣∣∣ f(x) − f(−x)
x

∣∣∣ dx .

Now, f(x)−f(−x)
x → 2f ′(0) as x ↓ 0 and so the first term on the right hand

side can be made arbitrarily small by choosing δ sufficiently small. But for
fixed δ > 0, the fact that f(x)−f(−x)

x is integrable means that the second term
approaches 0 as ε→ 0. [Alternatively, one can set δ =

√
ε in the discussion

above. Another proof is to use Lebesgue’s Monotone Convergence Theorem
together with the fact that ε2

x2+ε2

∣∣f(x)−f(−x)
x

∣∣ ↓ 0 on (0,∞) as ε ↓ 0.]

The next theorem tells us that the Dirac delta function is the limit, in
the sense of distributions, of a sequence of functions whose graphs become
thin, tall peaks around x = 0.

Theorem 2.20. Let (ϕn) be a sequence of functions on R such that

(i) ϕn(x) ≥ 0 for all x ∈ R.

(ii)
∫
ϕn(x) dx = 1 for all n.

(iii) For any a > 0,
∫
|x|≥a ϕn(x) dx→ 0 as n→ ∞.

Then ϕn → δ in S ′(R) as n→ ∞ (that is, Tϕn → δ in S ′(R)).

Proof. Fix f ∈ S (R) (with f 6≡ 0). To show that
∫
ϕn(x) f(x) dx → f(0)

as n→ ∞, let ε > 0 be given. Then, for any η > 0,

∣∣∣
∫
ϕn(x) f(x) dx− f(0)

∣∣∣ =
∣∣∣
∫
ϕn(x) (f(x) − f(0)) dx

∣∣∣

≤
∫ η

−η
ϕn(x) |f(x) − f(0)| dx

+

∫

x≥η
ϕn(x) |f(x) − f(0)| dx .

ifwilde Notes
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Fix η > 0 such that |f(x) − f(0)| < 1
2 ε for all |x| ≤ η. Then we can estimate

the first term on the right hand side by

∫ η

−η
ϕn(x) |f(x) − f(0)| dx ≤ 1

2 ε

∫ η

−η
ϕn(x) dx

≤ 1
2 ε

∫ ∞

−∞
ϕn(x) dx

= 1
2 ε

for all n. Furthermore, by hypothesis, there is N ∈ N such that if n > N
then ∫

|x|≥η
ϕn(x) dx <

ε

4‖f‖∞
.

So for n > N , the second term on the right hand side above is estimated
according to

∫

x≥η
ϕn(x) |f(x) − f(0)| dx ≤ 2‖f‖∞

∫

x≥η
ϕn(x) dx

≤ 1
2 ε .

Hence, for all n > N , we find that

∣∣∣
∫
ϕn(x) f(x) dx− f(0)

∣∣∣ < ε

as required.

Remark 2.21. If we replace (iii) by the requirement that
∫
|x−x0|≥a

ϕn(x) dx→
0 as n→ ∞, then one sees that ϕn → δx0

in S ′(R).

Corollary 2.22. For ε > 0, let gε =
ε

(x− x0)2 + ε2
. Then gε → π δx0

in

S ′(R) as ε→ 0.

Proof. Clearly gε(x) ≥ 0 for all x ∈ R and
∫
gε(x) dx = π. Also, for any

a > 0,

∫

|x−x0|≥a
gε(x) dx = 2

∫ ∞

a

ε

x2 + ε2
dx

= 2
[
tan−1 x

ε

]∞
a

= 2
(
π
2 − tan−1 a

ε

)

→ 0

as ε→ 0. The result now follows from the theorem (applied to 1
π gε).
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Theorem 2.23. For ε > 0, let hε =
1

x− x0 + iε
. Then

hε → P ( 1
x−x0

) − iπ δx0

in S ′(R), as ε→ 0.

Proof. We have

hε(x) =
1

x− x0 + iε
=

x− x0 − iε

(x− x0)2 + ε2

=
(x− x0)

(x− x0)2 + ε2
− i ε

(x− x0)2 + ε2

→ P ( 1
x−x0

) − iπ δx0

in S ′(R) as ε→ 0, by the previous theorems.

To motivate the next definition, consider the integral
∫
g′(x) f(x) dx

where f, g ∈ S (R). Integrating by parts, we find that

∫
g′(x) f(x) dx = −

∫
g(x) f ′(x) dx .

Using our notation introduced earlier, identifying a function g with the
distribution Tg, this equality becomes

Tg′(f) = −T (g)(f ′) .

If we think of Tg′ as the derivative of Tg, then the following definition is
quite natural.

Definition 2.24. Let T ∈ S ′(Rd) and α ∈ Zd+. The weak derivative DαT
(or the derivative in the sense of distributions) is defined by

(DαT )(f) = (−1)|α| T (Dαf)

for f ∈ S (Rd).

This corresponds to DαTg = TDαg. Note that a distribution always has
a weak derivative. Of course, we should verify that the weak derivative of a
tempered distribution is also a tempered distribution. We do this next.

Theorem 2.25. For any α ∈ Zd+, Dα : S (Rd) → S (Rd) is continuous. In
particular, for any T ∈ S ′(Rd), DαT ∈ S ′(Rd) .

Proof. Suppose that fn → 0 in S (Rd). Let γ, δ ∈ Zd+. Then

|||Dαfn|||γ,δ = ‖xγDδDαfn‖∞
= ‖xγDδ+αfn‖∞

ifwilde Notes
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= |||fn|||γ,α+δ

→ 0

as n→ ∞. Hence Dα : S (Rd) → S (Rd) is continuous.

Now let T ∈ S ′(Rd). Evidently DαT is well-defined and is a linear map on
S (Rd). If fn → 0 in S (Rd), then Dαfn → 0 in S (Rd), by the first part.
Hence

(DαT )(fn) = (−1)|α| T (Dαfn) → 0

and so DαT ∈ S ′(Rd), as required.

Examples 2.26.

1. We find that δ′a(f) = −δa(f) = −f ′(a).

2. Let g(x) =

{
x, x > 0

0, x ≤ 0.

Then we know that Tg ∈ S ′(R) and

T ′
g(f) = −Tg(f ′)

= −
∫ ∞

0
x f ′(x) dx

= −[xf(x)]∞0 +

∫ ∞

0
f(x) dx

=

∫ ∞

0
f(x) dx

=

∫ ∞

−∞
H(x) f(x) dx

where H(x) =

{
1, x ≥ 0

0, x < 0
is the Heaviside step-function.

So T ′
g = TH . Moreover,

T ′
H(f) = −TH(f ′)

= −
∫ ∞

0
f ′(x) dx

= −[f(x)]∞0

= f(0)

= δ(f)

and so T ′
H = δ. Therefore T ′

g = TH and T ′′
g = TH = δ. We say g′ = H

and g′′ = H ′ = δ, in the sense of distributions.
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Remark 2.27. We notice that although δ is not a function, it is the second
distributional derivative of a continuous function, namely g. We will see
that every tempered distribution is the weak derivative (of a suitable order)
of some continuous function.

Definition 2.28. The support of a function f on Rd, denoted by supp f , is
the closure of the set where f does not vanish;

supp f = {x ∈ Rd : f(x) 6= 0 } .

Let C∞
0 (Rd) denote the linear subspace of C∞(Rd) of those functions with

compact support. Clearly C∞
0 (Rd) ⊂ S (Rd).

Example 2.29. For x ∈ R, let

h(x) =

{
e−1/(1−x2), |x| ≤ 1

0, |x| > 1 .

Then h is infinitely-differentiable and one finds that its nth derivative has
the form h(n)(x) = pn(x, 1/(1 − x2))h(x) for some polynomial pn(s, t) and
therefore h ∈ C∞

0 (R).

Let g(x) =
∫ x
−∞ h(t) dt. Then g is infinitely-differentiable, g(x) = 0 for

x < −1 and g is constant for x > 1. Evidently g /∈ S (R).

Let gλ(x) = g(λx), where λ > 0. Then gλ is zero for x < −1/λ and constant
for x > 1/λ. Now let gλ,a(x) = g(λ(x−a)). Then gλ,a vanishes for x < a− 1

λ
and is constant when x > a+ 1

λ .

Let a < b and suppose that λ, µ are such that a < a + 1
λ < b − 1

µ < b. Let
f(x) = gλ,a(x) gµ,−b(−x). Then f ∈ C∞(R) and we see that f(x) = 0 for
x < a− 1

λ , f(x) = 0 for x > b+ 1
µ and f is constant for a+ 1

λ < x < b− 1
µ .

Evidently f ∈ C∞
0 (R) and supp f ⊂ [a− 1

λ , b+ 1
µ ].

−1 1

g(x)

a− 1
λ b+ 1

µ

f(x)

Figure 2.1: The functions g(x) and f(x).

In d-dimensions, set f(x1, . . . , xd) = g(|x|2) where g ∈ C∞(R) is such that
g(t) = 1 for 0 ≤ t ≤ a and g(t) = 0 for x ≥ b, where 0 < a < b. Then
f ∈ C∞

0 (Rd), supp f ⊂ {x ∈ Rd : |x|2 ≤ b2 } and f(x) = 1 for |x|2 ≤ a2.
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In particular, if Nr(x0) denotes the open ball of radius r, centred at x0

in Rd, then there exist functions f ∈ C∞
0 (Rd) such that f = 1 on Nr/2(x0)

and f vanishes outside Nr(x0).

Theorem 2.30. Let K be compact and let A be an open set in Rd with
KsubsetA. Then there exists a C∞-function ϕ such that 0 ≤ ϕ(x) ≤ 1
for all x ∈ Rd, ϕ(x) = 1 for all x ∈ K and ϕ(x) = 0 for x /∈ A.

Proof. For each x ∈ K, there is r(x) > 0 such that Nr(x)(x) ⊂ A. The
collection {Nr(x)/2(x) : x ∈ K } is an open cover of the compact set K and
so has a finite subcover, that is, there is x1, . . . , xm ∈ K such that

K ⊂ Nr1/2(x1) ∪ · · · ∪Nrm/2(xm)

where ri = r(xi).
Let ϕi ∈ C∞(Rd) be such that 0 ≤ ϕi(x) ≤ 1, ϕi(x) = 1 for x ∈ Nri/2(xi)

and ϕi(x) = 0 if x /∈ Nri(x). (Such functions can be constructed as in the
previous example.)

Set
ϕ(x) = 1 − (1 − ϕ1(x))(1 − ϕ2(x)) . . . (1 − ϕm(x)) .

Then ϕ ∈ C∞(Rd) and obeys 0 ≤ ϕ(x) ≤ 1 for all x ∈ Rd. Furthermore,
for any x ∈ K, there is some 1 ≤ i ≤ m such that x ∈ Nri/2(xi) and so
ϕi(x) = 1 and therefore ϕ(x) = 1.

On the other hand, for any x /∈ A, it is true that x /∈ Nri(xi) for all
1 ≤ i ≤ m (since Nri(xi) ⊂ A). Hence ϕi(x) = 0 for all 1 ≤ i ≤ m and so
ϕ(x) = 1 − 1 = 0. Therefore ϕ satisfies the requirements and the proof is
complete.

Theorem 2.31. C∞
0 (Rd) is dense in S (Rd).

Proof. Let ϕ ∈ S (Rd) and let fn ∈ C∞
0 (Rd) be a sequence of functions

such that supp fn ⊂ {x ∈ Rd : |x| < n + 1 }, fn(x) = 1 for |x| ≤ n − 1
and such that the shape of the graph of fn for |x| between n− 1 and n+ 1
is independent of n. This means that for any given multi-index γ ∈ Zd+,
Dγfn(x) is bounded uniformly in n. (Such functions can be constructed as
in example 2.29).

Let ϕn = ϕfn. Then ϕn ∈ C∞
0 (Rd) and

|||ϕn − ϕ|||α,β = |||ϕ(fn − 1)|||α,β
= sup

x≥n−1
|xαDβ(ϕ(x)(fn(x) − 1)) | .

But for each γ ∈ Zd+, ‖Dγ(fn(x)− 1)‖∞ is bounded uniformly in n and so it
follows by Leibnitz’ formula and the fact that ϕ ∈ S that |||ϕn −ϕ|||α,β → 0
as n→ ∞ for each α, β ∈ Zd+.
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Definition 2.32. Let G be an open set in Rd. We say that a distribution T
vanishes on G if T (ϕ) = 0 for each ϕ ∈ S (Rd) with suppϕ ⊂ G.

If g ∈ S vanishes on G (as a function) then evidently
∫
g(x)ϕ(x) dx = 0

for all ϕ ∈ S with suppϕ ⊂ G, that is, Tg vanishes on G as a distribution.

Remark 2.33. Suppose that T ∈ S ′(Rd) vanishes on the open sets G1 and
G2 where G1 ∩G2 = ∅. Then T also vanishes on G1 ∪G2. To see this, let
ϕ ∈ S with suppϕ ⊂ G1 ∪G2.

Now suppϕ ∩ G1 is a closed set in G1 and so there is an infinitely-
differentiable function f1 such that f1 = 1 on suppϕ ∩ G1 and f1 = 0
outside some closed set F1 containing suppϕ ∩G1. Hence f1ϕ has support
in G1. Similarly, there is some f2 such that f2ϕ has support in G2.

But ϕ = f1ϕ+ f2ϕ and therefore T (ϕ) = T (f1ϕ) + T (f2ϕ) = 0 since the
distribution T vanishes on both G1 and G2.

This result has a satisfactory generalization, as follows.

Theorem 2.34. Suppose that T ∈ S ′(Rd) vanishes on each member of a
collection {Gα } of open sets. Then T vanishes on

⋃
αGα.

Proof. A proof of this result may be found in Rudin’s book1.

Thanks to this theorem, the following (desirable) definition makes sense.

Definition 2.35. For any T ∈ S ′(Rd), let W denote the union of all open
sets on which T vanishes. The support of T is defined to be suppT = W c,
the complement of W in Rd.

Examples 2.36.

1. One sees that supp δa = { a }, for any a ∈ Rd.

2. If H is the Heaviside function, then we see that suppH = [0,∞).

1[Functional Analysis, by Walter Rudin, Tata McGraw-Hill, 1973]
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Chapter 3

The spaces D and D ′

In this section, we consider another space of functions and the associated
collection of continuous linear functionals.

Definition 3.1. Let Ω ⊆ Rd be an open subset of Rd. C∞
0 (Ω) denotes the

linear subset consisting of those functions in C∞
0 (Rd) which have support

in Ω. Suppose that (ϕn) is a sequence in C∞
0 (Ω) and let ϕ ∈ C∞

0 (Rd). We
say that ϕn → ϕ in C∞

0 (Ω) if

(i) there is some compact set K ⊂ Ω such that suppϕn ⊂ K for all n,
and

(ii) Dαϕn → Dαϕ uniformly as n→ ∞, for each α ∈ Zd+.

Note that it follows immediately that suppϕ ⊂ K.

D(Ω) is the space C∞
0 (Ω) equipped with this notion of convergence and we

say that ϕn → ϕ in D(Ω).

Example 3.2. Let ψ ∈ C∞
0 (R) be such that ψ(x) = 0 for |x| > 1. For each

n ∈ N, let ψn(x) = ψ(x − 1) + 1
2 ψ(x − 2) + · · · + 1

n ψ(x − n) (so that ψn
comprises n smaller and smaller smooth “bumps”).

Evidently, ψn ∈ C∞
0 (R) and (ψn) is a Cauchy sequence with respect to

the norm ‖ · ‖∞. Indeed, ‖ψn − ϕ‖∞ → 0 where ϕ(x) =
∑∞

k=1
1
k ψ(x − k).

Clearly ϕ ∈ C∞(R) but ψ does not converge to ϕ in D(R) because the
supports of the ψn are not all contained in a compact set (and ϕ /∈ C∞

0 (R),
anyway).

Continuing with this notation, let hn(x) = 1
n ψ(x−n). Then hn ∈ C∞

0 (R)
and ‖hn‖∞ → 0 but (hn) does not converge to 0 in D(R) (because there is
no compact set K such that supphn ⊂ K for all n).

The notion of convergence in D ensures its completeness, as we show next.

Definition 3.3. We say that (ϕn) is a Cauchy sequence in D(Ω) if there is
some compact set K ⊂ Ω such that suppϕn ⊆ K for all n and such that
‖Dα(ϕn − ϕm)‖∞ → 0 as n,m→ ∞ for every α ∈ Zd+.

19



20 Chapter 3

Theorem 3.4. D(Ω) is complete.

Proof. Exactly as in the proof of the completeness of S , we see that if (ϕn)
is a Cauchy sequence in D(Ω), then there is some f ∈ C∞(Rd) such that
‖Dα(ϕn − f)‖∞ → 0 for all α ∈ Zd+. But if suppϕn ⊂ K for all n, then it
follows that supp f ⊂ K also. Hence f ∈ C∞

0 (Ω) and ϕn → f in D(Ω).

Definition 3.5. A linear functional u : D(Ω) → C is said to be continuous
if u(ϕn) → u(ϕ) whenever ϕn → ϕ in D(Ω) as n → ∞. Such a continuous
linear functional is called a distribution. The linear space of distributions is
denoted D ′(Ω).

The derivatives of a distribution are defined as for tempered distributions,
namely by the formula

Dαu(ϕ) = (−1)|α| u(Dαϕ)

for ϕ ∈ D(Ω) and α ∈ Zd+.

Example 3.6. Clearly the map δa : ϕ 7→ ϕ(a) (Dirac delta “function”) is a
distribution (i.e., belongs to D ′(Rd)) for any a ∈ Rd.

Example 3.7. Suppose u is a locally integrable function (that is, u ∈ L1(K)
for each compact set K ⊂ Rd). Then the map Tu : ϕ 7→

∫
Rd u(x)ϕ(x) dx is

a distribution. (In particular, u(x) = ex
2

defines a distribution, Tu ∈ D ′(R)
but Tu /∈ S ′(R). Indeed, Tu is not defined on every element of S (R).)

To see this, we first note that Tu is well-defined because ϕ has compact
support if it belongs to D(Rd). Furthermore,

|Tu(ϕ)| =
∣∣
∫
u(x)ϕ(x) dx

∣∣

≤
∫

K
|u(x)| |ϕ(x)| dx , where K = suppϕ,

≤ ‖ϕ‖∞
∫

K
|u(x)| dx .

From this, we see that if ϕn → ϕ in D(Rd), then certainly Tu(ϕn) → Tu(ϕ)
so that Tu ∈ D ′(Rd), as claimed.

Remark 3.8. It is sometimes convenient to identify u with Tu and to consider
the function u as being a distribution (namely that given by Tu).

The next result tells us that every tempered distribution is a distribution.
(If this were not true then the terminology would be most inappropriate.)
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Theorem 3.9. Let T ∈ S ′(Rd). Then T ↾ C∞
0 (Rd) ∈ D ′(Rd).

Proof. Suppose that ϕn → ϕ in D(Rd). Then there is some compact set
K ⊂ Rd such that suppϕn ⊂ K for all n. So for any α, β ∈ Zd+

|||ϕn − ϕ|||α,β = ‖xαDβ(ϕn − ϕ)‖∞
= sup

x∈K
|xαDβ(ϕn − ϕ) |

≤ Cα sup
x

|Dβ(ϕn − ϕ) |

→ 0 , as n→ ∞,

where Cα is some constant such that |xα| < Cα for all x ∈ K. It follows that
ϕn → ϕ in S (Rd) and so T (ϕn) → T (ϕ). Hence ϕ 7→ T (ϕ) is continuous
on D(Rd).

Theorem 3.10. A linear functional u on C∞
0 (Ω) is a distribution if and only

if for each compact subset K ⊂ Ω there is a constant C and an integer N
such that

|u(ϕ)| ≤ C |||ϕ|||N , for all ϕ ∈ C∞
0 (K),

where |||ϕ|||N ≡ ∑
|β|≤N ‖Dβϕ‖∞.

Proof. Clearly u is continuous on D(Ω) if such bounds hold. Conversely,
suppose that u ∈ D ′(Ω) but that no such bounds exist. Then there is some
compact set K0 ⊂ Ω and a sequence (ϕn) in C∞

0 (K0) such that

|u(ϕj)| > j |||ϕj |||j , for all j ∈ N.

Set fj = ϕj/u(ϕj) so that u(fj) = 1 for all j. However, for any β ∈ Zd+,

‖Dβfj‖∞ =
‖Dβϕj‖∞
|u(ϕj)|

≤ |||ϕ|||j
|u(ϕj)|

, for all j > |β|,

< 1
j → 0 , as j → ∞.

Hence fj → 0 in D(Ω) which forces u(fj) → 0. This contradicts the fact
that, by construction, u(fj) = 1 for all j. The result follows.

Remark 3.11. Note that the same proof works if the norm |||ϕ|||N above is
redefined to be max|β|≤N ‖Dβϕ‖∞.

Definition 3.12. If the integerN in theorem 3.10 can be chosen independently
of K, then the distribution u is said to of finite order. The smallest such N
is called the order of u.
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Example 3.13. Let u ∈ D ′(R) be given by u = δ′, that is, u : ϕ 7→ ϕ′(0).

Then we see that u has order 1. On the other hand, if u =
∑∞

n=0 δ
(n)
n

(where δ
(n)
n (ϕ) = (−1)nϕ(n)(n)), then u is an element of D ′(R) but its order

is infinite.
Note that in this latter case, suppu = { 0, 1, 2, . . . }. We show next that

distributions with compact support must have finite order.

Theorem 3.14. Suppose that u ∈ D ′(Ω) and that suppu is compact. Then u
has finite order. In fact, there is C > 0 and N ∈ Z+ such that

|u(ϕ)| ≤ C |||ϕ|||N

for all ϕ ∈ C∞
0 (Ω) (i.e., C does not depend on ϕ nor on suppϕ).

Proof. Suppose that u ∈ D ′(Ω) and that suppu is compact. Let W be an
open set with suppu ⊂ W and let ψ ∈ C∞

0 (Ω) be such that ψ = 1 on W .
For any ϕ ∈ C∞

0 (Ω), we have

u(ϕ) = u(ψ ϕ+ (1 − ψ)ϕ) = u(ψ ϕ) + u((1 − ψ)ϕ) .

But (1−ψ)ϕ = 0 on W and so u((1−ψ)ϕ) = 0 and therefore u(ϕ) = u(ψ ϕ)
for all ϕ ∈ C∞

0 (Ω). It follows by theorem 3.10 that there is some C ′ > 0
and N ∈ Z+ such that

|u(ϕ)| = |u(ϕψ)| ≤ C ′ |||ϕψ|||N

for all ϕ ∈ C∞
0 (Ω) (since suppϕψ ⊆ suppψ). Note that C ′ does not depend

on ϕ nor suppϕ but may depend on suppψ. An application of Leibnitz
formula implies that

|u(ϕ)| = |u(ϕψ)|
≤ C ′ |||ϕψ|||N
≤ C |||ϕ|||N

for all ϕ ∈ C∞
0 (Ω) for some C > 0 which may depend on ψ but does not

depend on ϕ nor on suppϕ. The result follows.

Remark 3.15. The converse is false. Indeed, suppose that u(x) is a non-zero
constant, say u(x) = c 6= 0, for all x ∈ R. Then suppu = R which is not
compact. However, for any compact set K, and any ϕ ∈ C∞

0 (K), we have

|u(ϕ)| =
∣∣
∫
c ϕ(x) dx

∣∣

≤ |c| diamK ‖ϕ‖∞ .

So u has order zero but its support is not compact.
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Theorem 3.16. Let T ∈ S ′(Rd). Then T ↾ D(Rd) is a distribution of finite
order.

Proof. We have already seen that T ↾ D(Rd) is a distribution, so we need
only show that it has finite order. Since T ∈ S ′(Rd), there is C0 > 0 and
integers n, k ∈ Z+ such that

|T (f)| ≤ C0 ‖f‖n,k for all f ∈ S (Rd).

But if K ⊂ Rd is compact, there is M > 0 such that |xα| ≤M for all α ∈ Zd+
with |α| ≤ n and all x ∈ K. Hence there is C ′ > 0 such that

|T (f)| ≤ C ′ ‖f‖n,k , for all f ∈ C∞
0 (K).

It follows that
|T (ϕ)| ≤ C ′ |||ϕ|||k

for all ϕ ∈ C∞
0 (K), where k does not depend on K and so we see that the

order of T on D(Rd) is finite (no larger than k).

Remark 3.17. Again, the converse is false. For example, the linear map
ϕ 7→

∫
ex

2

ϕ(x) dx defines an element of D ′(R) which does not extend to a
continuous functional on S (R). However, for any compact set K ⊂ R,

|u(ϕ)| ≤ C |||ϕ|||0

for all ϕ ∈ C∞
0 (K) so that u has order 0. There is no T ∈ S ′(R) such that

T ↾ D(R) = u.

Theorem 3.18. Let u ∈ D ′(Rd) and suppose that suppu is compact. Then
u ∈ S ′(Rd), that is, there is a unique T ∈ S ′(Rd) such that T ↾ D(Rd) = u.

Proof. LetW be an open ball in Rd with suppu ⊂W and let ψ ∈ C∞
0 (Rd) be

such that W ⊂ suppψ and ψ = 1 on W . For any f ∈ S (Rd), fψ ∈ C∞
0 (Rd)

and so we may define the linear map T on S (Rd) by

T (f) = u(fψ) for f ∈ S (Rd).

Now, for any ϕ ∈ C∞
0 (Rd), ϕψ = ϕ on W and so supp(ϕψ − ϕ) ⊆ W c and

therefore u(ϕψ) = u(ϕ). It follows that T (ϕ) = u(ϕ) for any ϕ ∈ C∞
0 (Rd).

Suppose that fn → 0 in S (Rd). Then (using Leibnitz’ formula) it follows
that fnψ → 0 in S (Rd). But supp fnψ ⊆ suppψ for all n and so fnψ → 0
in D(Rd). This means that T (fn) = u(fnψ) → 0 as n → ∞ and so T is
continuous on S (Rd), that is, T ∈ S ′(Rd).

To see that T is unique, suppose that S ∈ S ′(Rd) and S ↾ D(Rd) = u.
Then S − T ∈ S ′(Rd) and vanishes on C∞

0 (Rd) which is dense in S (Rd).
By continuity, it follows that S = T on S (Rd).
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We know that δ and all its derivatives are distributions whose support is
the singleton set { 0 }. The next theorem gives a precise converse.

Theorem 3.19. Let u ∈ D ′(Rd) be such that suppu = { 0 }. Then there is
N ∈ Z+ and constants aj such that

u =
∑

|j|≤N

aj D
jδ .

Proof. We will only give the proof for d = 1. The general case is similar.
So suppose that u ∈ D ′(R) with suppu = { 0 }. Since { 0 } is compact, it

follows that u has finite order, N , say. Then there is C > 0 such that

|u(ϕ)| ≤ C |||ϕ|||N , for all ϕ ∈ D(R).

Claim: if the derivatives ϕ(j)(0) = 0 for all 0 ≤ j ≤ N , then u(ϕ) = 0.

Proof of Claim. Let h ∈ C∞
0 (R) be such that h(x) = 1 for |x| ≤ 1 and

such that h(x) = 0 if |x| ≥ 2. Set hn(x) = h(nx) so that hn(x) = 1 if
|x| ≤ 1

n but hn(x) = 0 if |x| ≥ 2
n . Let ϕn(x) = hn(x)ϕ(x). Evidently,

suppϕn ⊆ {x : |x| ≤ 2 }.
We will show that |||ϕn|||N → 0 as n→ ∞. Let k ∈ Z+ be fixed such that

0 ≤ k ≤ N and let ε > 0 be given. Since ϕ(k)(0) = 0, there is ρ > 0 such
that |ϕ(k)(x)| < ε for all |x| < ρ. But then

|ϕ(k−1)(x) | =
∣∣∣

∫ x

0
ϕ(k)(t) dt

∣∣∣ ≤ |x| ε

for all |x| < ρ. Continuing in this way, we obtain

|ϕ(k−2)(x)| ≤ |x|2
2!

ε

...

|ϕ(k−r)(x)| ≤ |x|r
r!

ε

for all |x| < ρ. Using Leibnitz’ formula, we find that

|Dkϕn(x) | = |Dk(hn(x)ϕ(x)) |

=
∣∣∣

k∑

r=0

(
k

r

)
Drhn(x)D

k−rϕ(x)
∣∣∣

=
∣∣∣

k∑

r=0

(
k

r

)
nr h(r)(nx)ϕ(k−r)(x)

∣∣∣

≤
k∑

r=0

(
k

r

) |nx|r
r!

|h(r)(nx)| ε .
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Hence

sup
x

|Dkϕn(x) | = sup
|x|≤2/n

|Dkϕn(x) |

≤ C ′ ε

for some constant C ′ > 0 (which may depend on k but not on ϕn) provided
2/n < ρ, that is, n > 2/ρ. It follows that supx |Dkϕn(x) | → 0 as n → ∞
for each 0 ≤ k ≤ N and so |||ϕn|||N → 0, as required.

To complete the proof of the claim, we note that the bound for u implies
that u(ϕn) → 0. However, ϕ(x) − ϕn(x) = 0 if |x| < 1/n, and therefore
supp(ϕ − ϕn) ⊂ {x : |x| ≥ 1/n }. Since suppu = { 0 }, it follows that
u(ϕ−ϕn) = 0 so u(ϕ) = u(ϕn) for all n which forces u(ϕ) = 0 and the claim
is proved.

To continue with the proof of the theorem, let ϕ ∈ C∞
0 (R) be given and

define ψ by

ϕ(x) = ϕ(0) + xϕ′(0) + x2

2! ϕ
(2)(0) + · · · + xN

N ! ϕ
(N)(0)︸ ︷︷ ︸

=p(x)

+ ψ(x) .

Then ψ is infinitely-differentiable and ψ(k)(0) = 0 for all 0 ≤ k ≤ N . Note,
however, that ψ /∈ C∞

0 (R) — indeed, ψ is not even bounded.
Let g ∈ C∞

0 (R) be such that g(x) = 1 if |x| ≤ 1. Then u(ϕ) = u(ϕg) and

ϕg = p g + ψ g .

Now, ψ g ∈ C∞
0 (R) and (by Leibnitz’ formula) we see that (ψ g)(k)(0) = 0

for all 0 ≤ k ≤ N and so u(ψ g) = 0, according to the claim above. Hence

u(ϕ) = u(ϕg)

= u( p g ) + u(ψ g)

= u( p g )

= ϕ(0)u(g) + ϕ′(0)u(xg) + · · · + ϕ(N)(0)u(xNg/N !)

=
N∑

k=0

akD
kδ(ϕ)

where ak = (−1)k u(xk g)/k!.

Definition 3.20. For any ψ ∈ C∞
0 (Ω) and u ∈ D ′(Ω), the product ψ u is the

linear functional

ψ u : ϕ 7→ u(ψ ϕ) , for ϕ ∈ D(Ω).
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Theorem 3.21.

(i) For any ψ ∈ C∞
0 (Ω), the product ψ u ∈ D ′(Ω).

(ii) Suppose that ψ and its derivatives are polynomially bounded, that
is, for each multi-index α ∈ Zd+, there is some integer Nα ∈ N and

constant Cα > 0 such that |Dαψ(x) | ≤ Cα (1+ |x|2)Nα for all x ∈ Rd.
Then for any f ∈ S (Rd), the function ψ f ∈ S (Rd) and the map
ψ T : f 7→ T (ψ f) defines a tempered distribution.

Proof. (i) For any ϕ ∈ C∞
0 (Ω), the product ψ ϕ ∈ C∞

0 (Ω) also and so ψ u is
a well-defined linear functional on D(Ω). Now if ϕn → ϕ in D(Ω), it follows
from Leibnitz’ formula that ψ ϕn → ψ ϕ in D(Ω) and so ψ u ∈ D ′(Ω), as
claimed.

(ii) If ψ and its derivatives are polynomially bounded, then ψ f ∈ S (Rd)
for any f ∈ S (Rd). Furthermore, again by Leibnitz’ formula, we see that if
fn → f in S (Rd), then also ψ fn → ψ f in S (Rd) and so ψT ∈ S ′(Rd).
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Chapter 4

The Fourier transform

We begin with the definition of the Fourier transform and the inverse Fourier
transform for smooth functions.

Definition 4.1. The Fourier transform of the function f ∈ S (Rd) is the
function Ff given by

Ff(λ) = 1
(2π)d/2

∫

Rd

e−iλ x f(x) dx

where λ ∈ Rd and λx =
∑d

j=1 λj xj for x ∈ Rd.

The inverse Fourier transform of f ∈ S (Rd) is the function F−1f given by

F
−1f(λ) = 1

(2π)d/2

∫

Rd

eiλ x f(x) dx .

It is often convenient to also use the notation f̂ for Ff .

Of course, the terminology must be justified, that is, we must show that
these transforms really are inverses of each other.

Proposition 4.2. Let f ∈ S (Rd). Then f̂ ∈ C∞(Rd) and for any α, β ∈ Zd+

(
(iλ)αDβ f̂

)
(λ) = (Dα((−ix)β f(x)) )̂ (λ) .

In particular, iλj f̂ (λ) = (Djf )̂ (λ) and (Dj f̂ )(λ) = (−ixj f(x))̂ (λ).

Proof. Let e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed = (0, 0, . . . , 0, 1)
denote the standard basis vectors for Rd. For f ∈ S (Rd) and h 6= 0,

∣∣∣ f̂ (λ+ h ej) − f̂ (λ)

h
+ 1

(2π)d/2

∫

Rd

i xj e
−iλ x f(x) dx

∣∣∣

=
∣∣∣ 1

(2π)d/2

∫

Rd

{ (e−i(λ+hej)x − e−iλ x)

h
+ i xj e

−iλ x
}
f(x) dx

∣∣∣

→ 0 as h→ 0

27



28 Chapter 4

since f ∈ S (Rd). In other words, differentiation under the integral sign is
justified. Repeated differentiation (since xjf(x) ∈ S (Rd)) shows that

(Dβ f̂ )(λ) = 1
(2π)d/2

∫

Rd

(−ix)β e−iλ x f(x) dx =
(
(−ix)β f(x)

)̂
(λ) .

Furthermore,

(λαDβ f̂ )(λ) = 1
(2π)d/2

∫

Rd

λα (−ix)β e−iλ x f(x) dx

= 1
(2π)d/2

∫

Rd

(−i)−α (Dα
x e

−iλ x ) (−ix)β f(x) dx

= (−1)α

(2π)d/2

∫

Rd

(−i)−α e−iλ x Dα
x

{
(−ix)β f(x)

}
dx

(integrating by parts)

= (−i)α

(2π)d/2

∫

Rd

e−iλ x Dα
x

{
(−ix)β f(x)

}
dx

so that

( (iλ)αDβ f̂ )(λ) = ( Dα( (−ix)β f(x) ) )̂ (λ)

and the proof is complete.

Remark 4.3. Clearly, similar formulae also hold for the inverse Fourier
transform F−1f (replacing i by −i).

Theorem 4.4. Both F and F−1 are continuous maps on S (Rd).

Proof. We first show that if f ∈ S (Rd), then so are Ff and F−1f . For any
α, β ∈ Zd+, we have

| (λαDβ f̂ )(λ) | =
∣∣∣ (−i)α

(2π)d/2

∫

Rd

e−iλxDα
(
(−ix)β f(x)

)
dx

∣∣∣

≤ 1
(2π)d/2

∫

Rd

|Dα
(
xβ f(x)

)
| dx .

It follows that |||f̂ |||α,β = supλ∈Rd | (λαDβ f̂ )(λ) | is finite for each pair of

multi-indices α, β ∈ Zd+ and therefore f̂ ∈ S (Rd). A similar proof holds for
F−1f (or one can simply note that (F−1f)(λ) = (Ff)(−λ)).

To show that F : S (Rd) → S (Rd) is continuous, we use the estimate
obtained above. We have

|||f̂ |||α,β ≤ 1
(2π)d/2

∫

Rd

|Dα
(
xβ f(x)

)
| dx

≤ 1
(2π)d/2

∫

Rd

x2
1 x

2
2 · · · x2

d

(1 + x2
1)(1 + x2

2) · · · (1 + x2
d)

|Dα
(
xβ f(x)

)
| dx
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≤ sup
x

|x2
1 · · ·x2

dD
α
(
xβ f(x)

)
| 1

(2π)d/2

( ∫

R

1

(1 + t2)
dt

)d

≤ C ‖f‖m,n

by Leibnitz’ formula, for some constant C > 0 and integers m,n ∈ Z+

depending on α and β. (In fact, we can take m = |β| + 2d and n = |α|.)
From this, it follows that if fn → f in S (Rd), then f̂n → f̂ in S (Rd), that
is, the map F : S (Rd) → S (Rd) is continuous.

Similarly, one sees that F−1 is continuous on S (Rd).

The next theorem justifies the terminology.

Theorem 4.5 (Fourier Inversion Theorem). For any f ∈ S (Rd),

F
−1(Ff) = f = F(F−1f)

(so that the Fourier transform F is a linear bicontinuous bijection of S (Rd)
onto S (Rd) with inverse F−1).

Proof. For any f, g ∈ S (Rd), we have

∫

Rd

g(λ) f̂ (λ) eiλy dλ =

∫

Rd

g(λ)
{

1
(2π)d/2

∫

Rd

e−iλx f(x) dx
}
eiλy dλ

= 1
(2π)d/2

∫

Rd

{ ∫

Rd

g(λ) e−iλ(x−y) dλ
}
f(x) dx

=

∫

Rd

ĝ (x− y) f(x) dx

=

∫

Rd

ĝ (x) f(y + x) dx .

Let gε(λ) = g(ελ), so that

ĝε (x) = 1
(2π)d/2)

∫

Rd

e−ixλ g(ελ) dλ

= 1
(2π)d/2)

ε−d
∫

Rd

e−ixu/ε g(u) du

= ε−d ĝ (x/ε) .

Therefore
∫

Rd

g(ελ) f̂ (λ) eiλy dλ =

∫

Rd

ĝε (x) f(y + x) dx

=

∫

Rd

ĝ (x/ε) f(y + x) dx/εd

=

∫

Rd

ĝ (x) f(y + εx) dx .
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Letting ε ↓ 0, we obtain

g(0)

∫

Rd

f̂ (λ) eiyλ dλ = f(y)

∫

Rd

ĝ (x) dx .

Now set g(x) = e−x
2/2. Then g(0) = 1 and one knows that ĝ (u) = e−u

2/2

and
∫

Rd ĝ (u) du = (2π)d/2. Substituting this into the equation above gives

(F−1f̂ )(y) = f(y) ,

that is, F−1(Ff) = f . Similarly, one shows that F(F−1f) = f and the
result follows.

Remark 4.6. We see that

(F 2f)(x) = (Ff̂ )(x) = (F−1f̂ )(−x) = f(−x) .

It follows that F 4f = f so that F and F−1 have period 4.

Furthermore, writing the identity iλj f̂ (λ) = (Djf )̂ (λ) obtained earlier as
iλj (Ff)(λ) = (FDjf)(λ) and replacing f by F−1f , we get the formula
iλj f(λ) = (FDjF

−1f)(λ). This gives the identity

iλj = FDjF
−1

as operators on S (Rd).
We also find that F−1(iλj)F = Dj and F(iλj)F

−1 = F2DjF
−2 = −Dj

on S (Rd).

Corollary 4.7 (Parseval’s formula). For any f, g ∈ S (Rd)

∫

Rd

f̂ (x) ĝ (x) dx =

∫

Rd

f(x) g(x) dx .

In particular, ‖f̂ ‖L2 = ‖f‖L2 (Plancheral’s formula).

Proof. We have seen that
∫

Rd

g(λ) f̂ (λ) eiyλ dλ =

∫

Rd

ĝ (x) f(y + x) dx .

Setting y = 0, we get
∫

Rd

g(λ) f̂ (λ) dλ =

∫

Rd

ĝ (x) f(x) dx .

Replacing f by F−1f and using the identity F−1f(x) = f̂ (−x), we obtain

∫

Rd

g(x) f(x) =

∫

Rd

ĝ (x) f̂ (−x) dx .
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However, f̂ (x) = (f )̂ (−x), so putting h = f , we see that f̂ (−x) =

(h)̂ (−x) = ĥ (x). Hence

∫

Rd

g(x)h(x) dx =

∫

Rd

ĝ (x) ĥ (x) dx ,

as required.

It is now easy to see that the Fourier transform is a unitary operator on
the Hilbert space L2(Rd).

Theorem 4.8 (Plancherel). The Fourier transform F extends from S (Rd)
to a unitary operator on L2(Rd).

Proof. We have seen above (Plancherel’s formula) that the Fourier transform
F : S (Rd) → S (Rd) is isometric with respect to ‖ · ‖2 (and maps S (Rd)
onto S (Rd)). However, S (Rd) is dense in L2(Rd) and so the result follows
by standard density arguments.

[ The details are as follows. Let h ∈ L2(Rd). Then there is a sequence (fn) in S (Rd)
such that ‖fn − h‖2 → 0. In particular, (fn) is L2-Cauchy. But ‖ϕ̂ ‖2 = ‖ϕ‖2 for

ϕ ∈ S (Rd) and so f̂n is also L2-Cauchy and therefore converges to some element,
F , say, in L2(Rd). We define Fh = F . Then

‖Fh‖2 = lim
n

‖f̂n ‖2 = lim
n

‖fn‖2 = ‖h‖2 .

To see that that F is independent of the particular sequence (fn), suppose that
(gn) is any sequence in S (Rd) such that ‖gn − h‖2 → 0. Define a new sequence
(ϕn) in S (Rd) by setting

ϕn =

{
fn, n odd

gn, n even.

Arguing as above (but with ϕn rather than fn), we see that the sequence (ϕ̂n )
converges in L2(Rd). But then

Fh = L2- lim
n
f̂n = L2- lim

n
ϕ̂n = L2- lim

n
ĝn

so that Fh is well-defined and ‖Fh‖2 = ‖h‖2.

A similar argument holds for the inverse Fourier transform F−1. Moreover,

FF−1 and F−1F are both equal to the identity operator on S (Rd) which is dense

in L2(Rd) and so FF−1 = F−1F=1l on L2(Rd). ]

Corollary 4.9. For any f, g ∈ L2(Rd), we have

∫

Rd

f̂ (x) g(x) dx =

∫

Rd

f(x) ĝ (x) dx .
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Proof. The fact that F is unitary on L2(Rd) means that
∫

Rd

f̂ ĝ dx =

∫

Rd

f g dx .

Replacing f by f and g by ĝ and using the facts that (Ff)(x) = (Ff)(−x)
and (FFg)(x) = g(−x) we see that

∫

Rd

f̂ (−x) g(−x) dx =

∫

Rd

f(x) ĝ (x) dx

and the result follows.

Remark 4.10. The unbounded self-adjoint operator −iDj on the Hilbert
space L2(Rd) is unitarily equivalent to the operator of multiplication by xj .
This follows because F(−i)DjF

−1 = xj on S (Rd) which is a core for the
multiplication operator xj .

Definition 4.11. The Fourier transform FT of the tempered distribution
T ∈ S ′(Rd) is given by

FT (f) = T (Ff) for f ∈ S (Rd).

We often write T̂ for FT . Similarly, the inverse Fourier transform F−1T is
given by

F
−1T (f) = T (F−1f) for f ∈ S (Rd).

Remark 4.12. Note that F:S (Rd) → S (Rd) is continuous and so the Fourier
transform F maps S ′(Rd) into S ′(Rd). Similarly, F−1T ∈ S ′(Rd) for
every T ∈ S ′(Rd). Evidently, F−1FT = T = FF−1T .

If T is given by some element g of L2(Rd), so T = Tg, then

FTg(f) = Tg(f̂ ) =

∫

Rd

g(x)f̂ (x) dx =

∫

Rd

ĝ (x) f(x) dx = Tbg (f) .

This means that we can think of the Fourier transform on S ′(Rd) as an
extension of that on L2(Rd).

Examples 4.13.

1. We compute δ̂b for b ∈ Rd. For any ϕ ∈ S (Rd)

δ̂b (ϕ) = δb(ϕ̂ )

= ϕ̂ (b)

= 1
(2π)d/2

∫

Rd

e−ibx ϕ(x) dx

=

∫

Rd

e−ibx

(2π)d/2
ϕ(x) dx

so that δ̂b = Tψ where ψ(x) = e−ibx/(2π)d/2. In particular, with b = 0,

we find that δ̂ = (2π)−d/2.
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2. We shall determine the Fourier transform F(δ′b). As above,

(̂δ′b) (ϕ) = δ′b(ϕ̂ )

= δb(−ϕ̂ ′)

= −ϕ̂ ′(b)

=

∫

Rd

ix e−ibx

(2π)d/2
ϕ(x) dx

and therefore δ̂′b = ix e−ibx/(2π)d/2.

Theorem 4.14. F and F−1 are continuous on S ′(Rd).

Proof. Suppose that Tn → T in S ′(Rd). Then Tn(ϕ) → T (ϕ) for every
ϕ ∈ S (Rd). Hence

T̂n (ϕ) = Tn(ϕ̂ ) → T (ϕ̂ ) = T̂ (ϕ)

so T̂n → T̂ in S ′(Rd). A similar argument holds for the inverse Fourier
transform.

Theorem 4.15. For any T ∈ S ′(Rd) and multi-indices α, β ∈ Zd+,

(ix)α T̂ = (DαT )̂ and DβT̂ = ( (−ix)βT )̂ .

In general, (ix)αDβT̂ = {Dα( (−ix)βT )}̂ .

Proof. Let ϕ ∈ S (Rd). Then

(ix)α T̂ (ϕ) = T̂ ( (ix)α ϕ )

= T
(
((ixα)ϕ)̂

)

= T
(
(−D)αϕ̂

)

= DαT (ϕ̂ )

= (DαT )̂ (ϕ) .

Similarly,

DβT̂ (ϕ) = T̂ ( (−D)βϕ )

= T ( ((−D)β ϕ)̂ )

= T ( (−ix)β ϕ̂ )

= (−ix)β T (ϕ̂ )

= ( (−ix)β T )̂ (ϕ) .

The general case is proved in the same way.
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Convolution

Definition 5.1. Let f, g ∈ S (Rd). The convolution of f and g, denoted by
f ∗ g, is the function

(f ∗ g)(y) =

∫

Rd

f(y − x) g(x) dx .

Theorem 5.2. f ∗ g ∈ S (Rd) for any f, g ∈ S (Rd). Moreover,

(2π)d/2 f̂ g = f̂ ∗ ĝ and (2π)d/2 f̂ ĝ = f̂ ∗ g .

Furthermore, f ∗g = g∗f and f ∗(g∗h) = (f ∗g)∗h for any f, g, h ∈ S (Rd).

Proof. We have

(2π)d/2 f̂g (y) =

∫

Rd

e−iyx f(x) g(x) dx .

But we know that
∫
ϕ̂ ψ dx =

∫
ϕ ψ̂ dx, for any ϕ ,ψ ∈ S (Rd). If we let ϕ̌

denote F−1ϕ, then, replacing ϕ by ϕ̌, we get
∫
ϕψ dx =

∫
ϕ̌ ψ̂ dx.

Now, for fixed y ∈ Rd, let ϕ(x) = e−iyx f(x) and set ψ(x) = g(x). Then
we have

∫

Rd

ϕ(x)ψ(x) dx =

∫

Rd

ϕ̌(x) ψ̂ (x) dx

=

∫

Rd

{
(2π)−d/2

∫

Rd

eixt e−iyt f(t) dt
}
ĝ (x) dx

=

∫

Rd

f̂ (y − x) ĝ (x) dx

= (f̂ ∗ ĝ )(y)

giving

(2π)d/2 f̂g (y) = (f̂ ∗ ĝ )(y) ,

as required.
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Replacing f by F−1f and g by F−1g in this identity, we find that

(2π)d/2 F(F−1f F
−1g) = f ∗ g

which shows that f ∗ g ∈ S (Rd) (because this is true of the left hand side).
The left hand side is unaltered if we interchange f and g and therefore

f ∗ g = g ∗ f .

Next, taking the Fourier transform once again gives

F(f ∗ g)(y) = (2π)d/2 FF((F−1f)(F−1g))(y)

= (2π)d/2 ((F−1f)(F−1g))(−y)
= (2π)d/2 F

−1f(−y)F
−1g(−y)

= (2π)d/2 Ff(y)Fg(y)

and so F(f ∗ g) = (2π)d/2 (Ff)(Fg), as claimed.

Finally, we have

F(f ∗ (g ∗ h)) = (2π)d/2 f̂ ĝ ∗ h
= (2π)d f̂ ĝ ĥ

= F((f ∗ g) ∗ h)

and therefore (taking the inverse Fourier transform) f ∗(g∗h) = (f ∗g)∗h.

Corollary 5.3. If ϕ,ψ ∈ C∞
0 (Rd), then ϕ ∗ ψ ∈ C∞

0 (Rd). Moreover,

suppϕ ∗ ψ ⊆ suppϕ+ suppψ .

Proof. It follows from the theorem that ϕ ∗ ψ ∈ S (Rd) for ϕ,ψ ∈ C∞
0 (Rd).

Now

(ϕ ∗ ψ)(y) =

∫

Rd

ϕ(y − x)ψ(x) dx

which certainly vanishes if it is false that y−x ∈ suppϕ for some x ∈ suppψ,
that is, if it is false that y = x1 + x2 for some x1 ∈ suppϕ and x2 ∈ suppψ.
Hence suppϕ ∗ ψ ⊆ suppϕ+ suppψ, as required.

Moreover, each of suppϕ and suppψ is compact and so therefore is
suppϕ ∗ ψ. We conclude that ϕ ∗ ψ ∈ C∞

0 (Rd).

Corollary 5.4. For fixed f ∈ S (Rd), the mapping g 7→ f ∗ g is continuous
from S (Rd) into S (Rd).

Proof. Fix f ∈ S (Rd) and suppose gn → 0 in S (Rd). Then also ĝn → 0
in S (Rd) and so (by Leibnitz’ formula) f̂ ĝn → 0 in S (Rd). But then
f ∗ gn = (2π)d/2 F−1(f̂ ĝn ) → 0 in S (Rd) and the result follows.
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Definition 5.5. For any function u on Rd, we define the translation τxu and
the inversion ũ by the formulae

(τxu)(y) = u(y − x) and ũ (y) = u(−y) .

Then (τxũ )(y) = ũ (y − x) = u(x− y) and for u, v ∈ S (Rd), we have

(u ∗ v)(y) =

∫

Rd

u(x) v(y − x) dx =

∫

Rd

u(x) (τyṽ )(x) dx .

One readily checks that for fixed x ∈ Rd, τx and˜ are continuous maps from
D(Rd) onto D(Rd) and from S (Rd) onto S (Rd).

Definition 5.6. For u ∈ D ′(Rd) and ϕ ∈ D(Rd), the convolution u ∗ ϕ is the
function

(u ∗ ϕ)(x) = u(τxϕ̃ ) = u(ϕ(x− · )) .
For T ∈ S ′(Rd) and f ∈ S (Rd), the convolution T ∗ f is the function

(T ∗ f)(x) = T (τxf̃ ) = T (f(x− · )) .

Note that u(ϕ) can be expressed as a convolution. Indeed, we see that
ϕ = (ϕ̃ )̃ = τ0((ϕ̃ )̃ ). Hence u(ϕ) = u(τ0((ϕ̃ )̃ )) = (u ∗ ϕ̃ )(0). Similarly,
T (f) = (T ∗ f̃ )(0).

Lemma 5.7. For f ∈ S (Rd) and κ 6= 0, set fκ(x) =
f(x+ κej) − f(x)

κ
where e1 = (1, 0, . . . , 0), . . . , ed = (0, 0, . . . , 0, 1) are the standard basis
vectors of Rd. Then fκ → ∂jf in S (Rd) as κ→ 0.

Proof. We shall show that |||fκ − ∂jf |||α,β → 0 for each α, β ∈ Zd+. Since
Dβ(fκ − ∂jf) = gκ − ∂jg where g = Dβf , we may assume that β = 0.

For notational simplicity, let h = ∂jf ∈ S (Rd) and let ‖x‖1 ≡ ∑d
i=1 |xi|

for x ∈ Rd. Let |κ| < 1. By the Mean Value Theorem, for each x ∈ Rd there
is some θ ∈ R (depending on x) with |θ| < 1 such that fκ(x) = h(x+ θκej)
and so

sup
x∈Rd

|xα(fκ(x) − ∂jf(x)) | = sup
x∈Rd

|xα(h(x+ θκej) − h(x)) |

≤ sup
‖x‖1≤M

|xα(h(x+ θκej) − h(x)) |

+ sup
‖x‖1>M

|xαh(x+ θκej) |

+ sup
‖x‖1>M

|xαh(x) | . (∗)

We shall estimate each of the three terms on the right hand side. Let ε > 0
be given. Since h ∈ S (Rd), the third term on the right hand side is smaller
than 1

3 ε for all sufficiently large M .
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To estimate the middle term, note that |xj | ≤ |xj + θκ|+|θκ| ≤ |xj + θκ|+1
and so

|xα | ≤
( ∏

i6=j

|xi|αi

)
(1 + |xj + θκ| )αj .

Furthermore, if ‖x‖1 > M , then ‖x + θκej‖1 > M − 1. Combining these
remarks, it follows that

sup
‖x‖1>M

|xα h(x+ θκej) |

≤ sup
‖x‖1>M

( ∏

i6=j

|xi|αi

)
(1 + |xj + θκ| )αj |h(x+ θκej) |

≤ sup
‖x‖1>M−1

( ∏

i6=j

|xi|αi

)
(1 + |xj | )αj |h(x) |

< 1
3 ε

provided M is sufficiently large (again because h ∈ S (Rd)).

Fix M sufficiently large (according to the discussion above) so that each of
the second and third terms on the right hand side of the inequality (∗) is
smaller than 1

3 ε. The function h is uniformly continuous on the compact
set {x ∈ Rd : ‖x‖1 ≤M } and so the first term on the right hand side of (∗)
is smaller than 1

3 ε for all |κ| sufficiently small. The result follows.

Lemma 5.8. For any f ∈ S (Rd), τaf → f in S (Rd) as a→ 0 in Rd.

Proof. Fix α ∈ Zd+ and suppose that ‖a‖1 < 1. Then

sup
x

|xα (f(x− a) − f(x)) | ≤ sup
‖x‖1≤M

|xα (f(x− a) − f(x)) |

+ sup
‖x‖1>M

|xα f(x− a) |

+ sup
‖x‖1>M

|xα f(x) |

Since f ∈ S (Rd), for any given ε > 0, we may fix M sufficiently large that
the second and third terms on the right hand side are each smaller than 1

3 ε.
But then for all sufficiently small a, the first term is also smaller than 1

3 ε
because f is uniformly continuous on {x ∈ Rd : ‖x‖1 ≤M }. It follows that
supx |xα (f(x− a)− f(x)) | → 0 as a→ 0. Replacing f by Dβf , we see that
|||τaf − f |||α,β → 0 as a→ 0 for any α, β ∈ Zd+, that is, τaf → f in S (Rd) as
a→ 0.
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Corollary 5.9. Suppose that ϕ ∈ D(Rd). Then

(i) ϕκ → ∂jϕ in D(Rd) as κ→ 0, and

(ii) τaϕ→ ϕ in D(Rd) as a→ 0.

Proof. We have seen that ϕκ → ∂jϕ in S (Rd) as κ→ 0 and that τaϕ→ ϕ in
S (Rd) as a→ 0. However, for all |κ| < 1, say, there is some fixed compact
set K such that each suppϕκ ⊂ K (and supp ∂jϕ ⊂ K) which means that
ϕκ → ∂jϕ in D(Rd) as κ→ 0.

Similarly, for all ‖a‖1 < 1, say, the supports of ϕ and τaϕ all lie within
some fixed compact set and so τaϕ→ ϕ in D(Rd) as a→ 0.

Theorem 5.10. Let u ∈ D ′(Rd) and let ϕ ∈ D(Rd). Then u ∗ ϕ ∈ C∞(Rd)
and

Dα(u ∗ ϕ) = (Dαu) ∗ ϕ = u ∗ (Dαϕ)

for any α ∈ Zd+. Furthermore, supp(u ∗ ϕ) ⊆ suppu+ suppϕ.

Proof. By the corollary, it follows that τyϕ̃ → τxϕ̃ in D(Rd) if y → x in Rd.
Hence u(τyϕ̃ ) → u(τxϕ̃ ), that is, (u ∗ ϕ)(y) → (u ∗ ϕ)(x) if y → x which
shows that u ∗ ϕ is continuous on Rd.

Again, using the corollary, we see that for fixed x ∈ Rd,

(u ∗ ϕ)(x+ κej) − (u ∗ ϕ)(x)

κ
=

u( τx+κej ϕ̃ − τxϕ̃ )

κ

= u
( τx (τκej ϕ̃ − ϕ̃ )

κ

)

→ u( τx(−Djϕ̃ ) ) , as κ→ 0,

= u( τx(D̃jϕ ) )

= (u ∗Djϕ)(x) .

Hence the partial derivative Dj(u ∗ ϕ)(x) exists at each x ∈ Rd and it is
equal to (u ∗Djϕ)(x). Furthermore, for fixed x,

u( τx(−Djϕ̃ ) ) = −u(Djτxϕ̃ )

= (Dju)(τxϕ̃ )

=
(
(Dju) ∗ ϕ

)
(x)

and therefore

Dj(u ∗ ϕ) = u ∗Djϕ = (Dju) ∗ ϕ ,

as required. The general case follows by induction.
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For the last part, we note that (u∗ϕ)(x) = 0 if suppu∩ supp τxϕ̃ = ∅, that
is to say, if suppu ∩ suppϕ(x− · ) = ∅. Hence

supp(u ∗ ϕ) ⊆ {x ∈ Rd : suppu ∩ suppϕ(x− · ) 6= ∅ }
= {x : there is y ∈ suppu such that x− y ∈ suppϕ }
= {x : x ∈ suppu+ suppϕ }

and the proof is complete.

Corollary 5.11. For u ∈ D ′(Rd) and ϕ ∈ D(Rd), u ∗ ϕ ∈ D ′(Rd).

Proof. The function u∗ϕ belongs to C∞ and so is bounded on each compact
subset of Rd. Hence ψ 7→

∫
Rd(u ∗ ϕ)(x)ψ(x) dx is a continuous linear map

on D(Rd), that is, it is a distribution.

There is an analogous result for S and S ′.

Theorem 5.12. Let u ∈ S ′(Rd) and f ∈ S (Rd). Then u ∗ f ∈ C∞ and

Dα(u ∗ f) = (Dαu) ∗ f = u ∗ (Dαf)

for any α ∈ Zd+. Furthermore, u ∗ f is polynomially bounded and hence
determines a tempered distribution.

Proof. The first part is just as for D(Rd). We need to show that u ∗ f
is polynomially bounded. Since u ∈ S ′(Rd), it follows that there is some
constant C > 0 and integers k, n such that

|u(g)| ≤ C ‖g‖k,n

for all g ∈ S (Rd). Hence, for x ∈ Rd,

|(u ∗ f)(x)| = |u(τxf̃ ) |
≤ C ‖τxf̃ ‖k,n
= C

∑

|α|≤k
|β|≤n

sup
y

|yα| |Dβ
y f(x− y) |

= C
∑

|α|≤k
|β|≤n

sup
y

|(−y + x)α| |Dβf(y) |

which is polynomially bounded in x.
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Proposition 5.13. Let T ∈ S ′(Rd) and suppose that fn → f in S (Rd) as
n→ ∞. Then (T ∗ fn)(x) → (T ∗ f)(x) uniformly on compact sets in Rd.

Proof. By replacing fn by fn − f , we may assume that f = 0. Now, since
T ∈ S ′(Rd), there is C > 0 and k, n ∈ Z+ such that

|T (g) | ≤ C
∑

|α|≤k
|β|≤n

|||g|||α,β

for all g ∈ S (Rd). Therefore

| (T ∗ fn)(x) | = |T (τxf̃n ) | ≤ C
∑

|α|≤k
|β|≤n

|||τxf̃n |||α,β .

However, if ‖x‖1 ≤M , say, then

|||τxf̃n |||α,β = sup
y

| yαDβ
y fn(x− y) |

≤ sup
y

|(−y + x)α| |Dβfn(y)|

≤ sup
y

( d∏

i=1

(M + |yi|)αi

)
|Dβfn(y)|

→ 0

as n → ∞ (because fn → 0 in S (Rd)). It follows that (T ∗ fn)(x) → 0
uniformly on {x : ‖x‖1 ≤ M } for any fixed M > 0 which establishes the
result.

Theorem 5.14. Let u ∈ D ′(Rd) and let ϕ,ψ ∈ D(Rd). Then

(u ∗ ϕ) ∗ ψ = u ∗ (ϕ ∗ ψ) .

Proof. We first observe that the statement of the theorem makes sense
because u ∗ ϕ ∈ C∞ and ϕ ∗ ψ ∈ C∞

0 (Rd).
Let ε > 0 and consider the Riemann sum

fε(x) = εd
∑

κ∈Zd

ϕ(x− κε)ψ(κε) .

This is always a finite sum because the functions ϕ and ψ have compact
support. Furthermore, supp fε ⊆ suppϕ + suppψ and fε ∈ D(Rd). Now,
using the uniform continuity of Dαϕ, we see that

Dαfε(x) = εd
∑

κ∈Zd

Dαϕ(x− κε)ψ(κε) → ( (Dαϕ) ∗ ψ )(x) = Dα(ϕ ∗ ψ)(x)
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uniformly as ε → 0. Hence fε → ϕ ∗ ψ in D(Rd) as ε → 0 and therefore

τxf̃ε → τx(ϕ̃ ∗ ψ ) in D(Rd) as ε→ 0. It follows that

u ∗ (ϕ ∗ ψ)(x) = u( τx(ϕ̃ ∗ ψ ) )

= lim
ε→0

u(τxf̃ε )

= lim
ε→0

εd
∑

κ∈Zd

u(ϕ(x− · − κε)ψ(κε) )

= lim
ε→0

εd
∑

κ∈Zd

(u ∗ ϕ )(x− κε)ψ(κε)

= ( (u ∗ ϕ) ∗ ψ )(x)

and the proof is complete.

Corollary 5.15. Let T ∈ S ′(Rd) and let f, g ∈ S (Rd). Then

(T ∗ f ) ∗ g = T ∗ ( f ∗ g ) .

Proof. Since C∞
0 (Rd) is dense in S (Rd), there are sequences (ϕn) and (ψn)

in C∞
0 (Rd) such that ϕn → f and ψn → g in S (Rd). Furthermore, since

T ↾ C∞
0 (Rd) ∈ D ′(Rd), it follows from the theorem that

(T ∗ ϕn ) ∗ ψk = T ∗ (ϕn ∗ ψk ) .

However, we know that (T ∗ϕn)(x) → (T ∗ f)(x) uniformly on compact sets
in Rd and so, for fixed y ∈ Rd,

( (T ∗ ϕn) ∗ ψk )(y) = (T ∗ ϕn)(τyψ̃k )

=

∫

Rd

(T ∗ ϕn)(x)ψk(y − x) dx ,

since T ∗ ϕn ∈ C∞(Rd) (and is polynomially bounded),

→
∫

Rd

(T ∗ f)(x)ψk(y − x) dx ,

since suppψk is compact,

= (T ∗ f) ∗ ψk(y) .

On the other hand, ϕn ∗ ψk → f ∗ ψk as n→ ∞ in S (Rd) and so

(T ∗ ϕn) ∗ ψk = T ∗ (ϕn ∗ ψk) → T ∗ (f ∗ ψk) .
It follows that (T ∗ f) ∗ψk = T ∗ (f ∗ψk) for each k. But ψk → g in S (Rd),
so

(T ∗ f) ∗ ψk(y) = (T ∗ f)(τyψ̃k ) → (T ∗ f)(τy g̃ ) = (T ∗ f) ∗ g(y)
and

T ∗ (f ∗ ψk)(y) = T ( τy(f̃ ∗ ψk ) ) → T ( τy(f̃ ∗ g ) ) = T ∗ (f ∗ g)(y) .
Hence (T ∗ f) ∗ g = T ∗ (f ∗ g), as required.
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Theorem 5.16. Let g ∈ S (Rd) be such that
∫

Rd g(x) dx = 1 and for ε 6= 0
set gε(x) = ε−dg(x/ε). Then for any f ∈ S (Rd), gε ∗ f → f in S (Rd),
as ε→ 0.

Proof. It is enough to show that (gε ∗ f )̂ → f̂ in S (Rd) (the result then
follows by taking the inverse Fourier transform). However, we know that

(gε ∗ f )̂ = (2π)d/2 ĝε f̂ so we must show that ((2π)d/2 ĝε − 1) f̂ → 0 in
S (Rd), as ε→ 0.

Using Leibnitz’ formula together with the fact that λαDβ f̂ (λ) ∈ S (Rd)
for any α, β ∈ Zd+, it is enough to show that

(
Dα( (2π)d/2 ĝε − 1 )

)
ϕ→ 0 uniformly on Rd, as ε→ 0,

for any ϕ ∈ S (Rd) and α ∈ Zd+. Note that

ĝε (λ) = 1
(2π)d/2

∫

Rd

e−iλx g(xε )
1
εd dx = ĝ (ελ) .

(So we see that ĝε (λ) → ĝ (0) = (2π)−d/2 as ε→ 0.)

We consider two cases.

(i) Suppose |α| = 0. Fix ϕ ∈ S (Rd). Then

| ( (2π)d/2 ĝε (λ) − 1 )ϕ(λ) | = | ( (2π)d/2 ĝ (ελ) − 1 )ϕ(λ) |

=
∣∣
∫

Rd

g(x) ( e−iελx − 1 ) dx ϕ(λ)
∣∣

≤
∫

Rd

|g(x)| |ελx| dx |ϕ(λ)|

= ε

∫

Rd

|xg(x)| dx |λϕ(λ)|

< εM

for some constant M > 0 independent of λ. So ( (2π)d/2 ĝε (λ)−1 )ϕ(λ) → 0
uniformly in λ, as ε→ 0.

(ii) Suppose that |α| > 0. For fixed ϕ ∈ S (Rd), we have

∣∣ (
Dα( (2π)d/2 ĝε − 1 )

)
(λ) ϕ(λ)

∣∣ = | (2π)d/2 ε|α| (Dαĝ )(ελ) ϕ(λ) |
< ε|α|M ′

for some constant M ′ > 0, since both Dαĝ and ϕ are bounded on Rd.

The result follows.
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Theorem 5.17. Let T ∈ S ′(Rd) and let g ∈ S (Rd) with
∫

Rd g(x) dx = 1.
Then T ∗ gε → T in S ′(Rd) as ε ↓ 0, where gε(x) = ε−d g(x/ε).

If u ∈ D ′(Rd) and ϕ ∈ D(Rd) with
∫

Rd ϕ(x) dx = 1, then u ∗ ϕε → u in
D ′(Rd) as ε ↓ 0, where ϕε(x) = ε−d ϕ(x/ε).

Proof. Fix f ∈ S (Rd). Then

(T ∗ gε)(f) = (T ∗ gε) ∗ f̃ (0)

= T ∗ (gε ∗ f̃ )(0)

→
ε→0

T ∗ f̃ (0) , by the previous theorem,

= T (f)

which proves the first part.
Next, we note that for given ψ ∈ C∞

0 (Rd) and 0 < ε < 1, say, the supports
of ϕε ∗ψ and ψ all lie in some fixed compact set (independently of ε). Hence
ϕε∗ψ → ψ in D(Rd) as ε ↓ 0. Arguing now as above, we deduce that for any
u ∈ D ′(Rd) and ψ ∈ D(Rd), (u ∗ϕε)(ψ) → u(ψ) as ε ↓ 0, that is, u ∗ϕε → u
in D ′(Rd).

Remark 5.18. The infinitely-differentiable function T ∗ gε is called the regu-
larization of T . This is easier to deal with than T itself, but of course, one
must eventually take the limit ε ↓ 0 in order to recover the distribution T .

Theorem 5.19.

(i) C∞
0 (Rd) is dense in D ′(Rd), that is, for any u ∈ D ′(Rd) there is

some sequence (fn) in D(Rd) such that fn → u in D ′(Rd).

(ii) C∞
0 (Rd) is dense in S ′(Rd), that is, for any T ∈ S ′(Rd) there is

some sequence (fn) in S (Rd) such that fn → T in S ′(Rd).

Proof. (i) Fix u ∈ D ′(Rd) and let ϕ ∈ C∞
0 (Rd) be such that

∫
ϕ(x) dx = 1

and set ϕε(x) = ε−dϕ(x/ε). For n ∈ N and t ≥ 0, let the function λn(t) be
as shown in the diagram.

0 n n+ 1
t

1

λ(t)

Figure 5.1: The function λ(t).
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For x ∈ Rd, let γ
n
(x) = λn(|x|). Evidently, γ

n
∈ C∞

0 (Rd) and γ
n
(x) = 1 for

|x| ≤ n and γ
n
(x) = 0 when |x| ≥ n + 1. Now, γ

n
u has compact support

and so γ
n
u ∗ ϕ1/n ∈ C∞

0 (Rd). We claim that γ
n
u ∗ ϕ1/n → u in D ′(Rd) as

n→ ∞.

Indeed, for ψ ∈ D(Rd), we have

(γ
n
u ∗ ϕ1/n)(ψ) = (γ

n
u ∗ ϕ1/n) ∗ ψ̃ (0)

= γ
n
u ∗ (ϕ1/n ∗ ψ̃ )(0)

= γ
n
u(ϕ̃1/n ∗ ψ))

= u(γ
n
(ϕ̃1/n ∗ ψ))

= u(ϕ̃1/n ∗ ψ) , for all sufficiently large n,

= u( (ϕ1/n ∗ ψ̃ )˜ )

→ u((ψ̃ )˜ )

= u(ψ) ,

as required.

(ii) The functions λn are supposed to be smooth and obey the requirements
that λn(t) = 1 when 0 ≤ t ≤ n, λn(t) = 0 for t ≥ n + 1 and λn+1(t) =
λn(t− 1) for n+ 1 ≤ t ≤ n+ 2. As n increases, so the graph of λn extends
out but maintains its general shape as it decreases from 1 to 0. The point is
that the λns and any derivatives are bounded independently of n. That is,

for any k = 0, 1, 2, . . . , there is Mk > 0 such that supn supt≥0 |λ
(k)
n (t)| < Mk.

Let T ∈ S ′(Rd) and let f ∈ S (Rd). Then, with notation as in part (i), we
note that γ

n
T ∗ ϕ1/n ∈ C∞

0 (Rd). We claim that γ
n
T ∗ ϕ1/n → T in S ′(Rd)

as n→ ∞.

To see this, first we observe that γ
n
(ϕ1/n ∗ f) → f in S (Rd). This follows

from the inequalities

‖γ
n
(ϕ1/n ∗ f) − f‖α,β ≤ ‖γ

n
(ϕ1/n ∗ f − f)‖α,β + ‖γ

n
f − f‖α,β

for α, β ∈ Zd+, together with (Leibnitz’ formula and) the bounds on ‖Dτγ
n
‖∞

for each fixed τ ∈ Zd+ uniformly in n.

Similarly, γ
n
(ϕ1/n ∗ f̃ )˜ → f in S (Rd) and therefore

(γ
n
T ∗ ϕ1/n)(f) = T (γ

n
(ϕ1/n ∗ f̃ )˜ ) , as in part (i),

→ T (f) ,

as n→ ∞, that is, γ
n
T ∗ϕ1/n → T in S ′(Rd) and the proof is complete.
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Remark 5.20. This result ties up the approach to distributions taken here
with the “generalized function” approach in which distributions are defined
via sequences of functions in S (Rd). If T ∈ S ′(Rd) and fn ∈ S (Rd) is
such that fn → T in S ′(Rd), then the generalized function approach would
be to consider T to be the sequence (fn) (or strictly speaking, equivalence
classes of such sequences so as to allow for different sequences in S (Rd)
which converge in S ′(Rd) to the same distribution). This is in the same
spirit as defining real numbers via Cauchy sequences of rational numbers.

The next result tells us that, under the Fourier transform, convolution
becomes essentially multiplication.

Theorem 5.21. For any T ∈ S ′(Rd) and f ∈ S (Rd),

(i) F(T ∗ f) = (2π)d/2 Ff FT and

(ii) FT ∗ Ff = (2π)d/2 F(f T ).

Proof. (i) We know that there is a sequence (ϕn) in C∞
0 (Rd) such that

ϕn → T in S ′(Rd). So for given g ∈ S (Rd), we have

(T ∗ f)̂ (g) = (T ∗ f)( ĝ ) = (T ∗ f) ∗ ˜̂g (0)

= T ∗ ( f ∗ ˜̂g )(0) = T ( ( f ∗ ˜̂g )̃ )

= T ( f̃ ∗ ĝ )

= lim
n
ϕn( f̃ ∗ ĝ ) = lim

n
ϕn ∗ ( f ∗ ˜̂g )(0)

= lim
n

(ϕn ∗ f )( ĝ ) = lim
n

(ϕn ∗ f )̂ (g)

= (2π)d/2 lim
n

(ϕ̂n f̂ )(g) = lim
n

∫

Rd

ϕ̂n(x) f̂ (x) g(x) dx

= lim
n

∫

Rd

ϕn(x) (f̂ g)̂(x) dx

= (2π)d/2 T ( (f̂ g)̂ ) = (2π)d/2 T̂ ( f̂ g )

= (2π)d/2 (f̂ T̂ )(g) ,

that is, (T ∗ f)̂ = (2π)d/2 f̂ T̂ , as required.

The second part can be established in a similar way.
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Fourier-Laplace Transform

We have seen that any tempered distribution has a Fourier transform which
is also a tempered distribution. We will see here, however, that the Fourier
transform of a distribution with compact support is actually given by a
function. By way of motivation, we note that the Fourier transform of an
integrable function u, say, is given by

û (y) = (2π)−d/2
∫

Rd

ey(x)u(x) dx

where ey denotes the function x 7→ e−iyx for x ∈ Rd. We cannot write this in
the distributional sense as Tu(ey) because the function ey does not belong to
D(Rd) (or S (Rd)). However, if u has compact support, then we can write

û (y) = (2π)−d/2
∫

Rd

ey(x)u(x) dx = (2π)−d/2
∫

Rd

ey(x)ψ(x)u(x) dx

where ψ ∈ C∞
0 (Rd) is chosen such that ψ = 1 on some open set containing

suppu. In this case, we see that

û (y) = (2π)−d/2 Tu(ey ψ) .

This formula makes sense if y ∈ Rd is replaced by any z ∈ Cd. The following
definition seems appropriate.

Definition 6.1. Suppose that u ∈ D ′(Rd) and that u has compact support.
The Fourier-Laplace transform of u is the function û (·) on Cd given by

û (z) = (2π)−d/2 u(ez ψ)

where ez(x) = e−izx and ψ ∈ C∞
0 (Rd) is such that ψ = 1 on some open

set W with suppu ⊂W .
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We note straightaway that ezψ ∈ D(Rd) and that if W1 and W2 are
open sets with suppu ⊂ W1 and suppu ⊂ W2 and if ψ1 ∈ C∞

0 (Rd) and
ψ2 ∈ C∞

0 (Rd) are such that ψ1 = 1 on W1 and ψ2 = 1 on W2, then it
follows that u(ez ψ1) = u(ez ψ2) so that û is a well-defined function on Cd.
Furthermore, if u is given by an integrable function, then, as discussed above,
û (y) is the Fourier transform of u.

Now, any element of D ′(Rd) with compact support determines a tempered
distribution and for any u ∈ S ′(Rd) we have already defined its Fourier
transform as the tempered distribution û : f 7→ u(f̂ ). We can then ask
whether there is any relationship between the tempered distribution û and
the function û (x), x ∈ Rd. If u is given by a square-integrable function, then
by Plancherel’s Theorem, Corollary 4.9, we find that for any f ∈ S (Rd),

u(f̂ ) =

∫
u(x) f̂ (x) dx =

∫
û (x) f(x) dx .

This shows that in this case, the tempered distribution û is indeed given by
the function û (x). This is true in general, as we now show.

Theorem 6.2. Let u ∈ D ′(Rd) and suppose that u has compact support. Then
the Fourier-Laplace transform û (z) is an entire function whose restriction
to Rd determines the tempered distribution û , that is, û ∈ S ′(Rd) is given
by the function û (·) ↾ Rd.

Proof. Let ψ ∈ C∞
0 be such that ψ = 1 on some open set W ⊂ Rd with

suppu ⊂W . Then û (z) = (2π)−d/2 u(ez ψ) for z ∈ Cd and

ez(y)ψ(y) = e−izy ψ(y) =
∑

α∈Z
d
+

(−i)α

α! zα yα ψ(y)

for any y ∈ Rd. Since suppψ is compact, it follows that for fixed z ∈ Cd

the partial sums converge uniformly in y and the same is true of any partial
derivatives (with respect to y). In other words, the partial sums converge
in D(Rd) and so

u(ez ψ) =
∑

α∈Z
d
+

(−i)α

α! zα u(gα)

where gα ∈ D(Rd) is the function gα(y) = yα ψ(y).

Moreover, u has finite order by Theorem 3.14, so that |u(ϕ)| ≤ C |||ϕ|||N
for some constants C > 0 and N ∈ Z+ and any ϕ ∈ D(Rd). It follows that
|u(gα)| ≤ C ′R|α| for constants C ′ and R (depending, of course, on u and
suppu). The series above for u(ez ψ) therefore converges absolutely for all
z ∈ Cd and so u(ez ψ) is entire.
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We must now show that û , the tempered distribution, is given by the
function û (x), x ∈ Rd.

Now, u = uψ as distributions, that is,

u(ϕ) = (ψ u)(ϕ) = u(ψ ϕ)

for all ϕ ∈ S (Rd) and so

û = (ψ u)̂ = (2π)−d/2 û ∗ ψ̂ .

It follows that

û (ϕ) =

∫
(2π)−d/2 (û ∗ ψ̂ )(y)ϕ(y) dy ,

that is, û is determined by the C∞-function (2π)−d/2 (û ∗ ψ̂ )(x). Our aim
is to show that (2π)−d/2 (û ∗ ψ̂ )(x) = û (x). To see this, let ϕ ∈ S (Rd) be
such that ϕ̂ = ψ. Then

(û ∗ ψ̂ )(x) = (û ∗ ̂̂ϕ )(x)

= (û ∗ ϕ̃ )(x)

= û (τxϕ)

= u( (τxϕ)̂ )

= u(exϕ̂ )

= u(exψ)

= (2π)d/2 û (x)

and the result follows.

Next we consider the relationship between the support of u and growth
properties of the function û (z). We need a preliminary result.

Lemma 6.3. Suppose that f is analytic on Cd and vanishes on Rd. Then
f = 0 everywhere.

Proof. Let z1, z2, . . . , zd ∈ Cd. Fix a2 ∈ R, . . . , ad ∈ R and consider the
map z 7→ f(z, a2, . . . , ad). This is entire and vanishes on R and so vanishes
everywhere on C, by the Identity Theorem. Since a2 ∈ R is arbitrary,
we may say that f(z1, a2, . . . , ad) = 0 for all a2 ∈ R. But then the map
z 7→ f(z1, z, a3, . . . , ad) is entire and vanishes on R and so vanishes on C. In
particular, f(z1, z2, a3, . . . , ad) = 0 for any a3 ∈ R.

Continuing in this way, we see that f(z1, z2, . . . , zd) = 0 and the result
follows.

For the following, let Kr denote the closed ball Kr = {x ∈ Rd : |x| ≤ r }.
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Theorem 6.4.

(a) Suppose that ϕ ∈ C∞
0 (Rd) and that suppϕ ⊆ Kr.

Then

(1) f(z) = (2π)−d/2
∫

Rd

e−izt ϕ(t) dt, for z ∈ Cd, is entire

and there are constants γ
N

such that

(2) |f(z)| ≤ γ
N

(1 + |z|)−N er |Im z| for z ∈ Cd and N = 0, 1, 2, . . . .

(b) Conversely, if an entire function f satisfies (2), then there is some

ϕ ∈ C∞
0 (Rd) with suppϕ ⊆ Kr such that (1) holds.

Proof. (a) First note that if z = x+ iy ∈ Cd, then

|e−izt| = eyt ≤ e|y| |t| ≤ er| Im z|

for all t ∈ Rd with |t| ≤ r (and where | Im z| = (y2
1 + · · · + y2

d)
1/2). It

follows that e−izt ϕ(t) is integrable for each z ∈ Cd. Moreover, for each fixed
z ∈ Cd, the power series expansion for e−izt converges uniformly for t ∈ Kr

and therefore

f(z) = (2π)−d/2
∫

Rd

ϕ(t)
∑

α∈Z
d
+

(−iz)αtα
α!

dt

=
∑

α∈Z
d
+

(2π)−d/2
∫

Rd

ϕ(t)
(−iz)αtα

α!
dt .

Now

∣∣∣
∫
ϕ(t) tα dt

∣∣∣ ≤
∫

|ϕ(t)| rα1 . . . rαd dt

= r|α| ‖ϕ‖L1

and so we see that the series expression for f(z) converges absolutely for all
z ∈ Cd and so f is analytic on the whole of Cd.

Next, integrating by parts, we find that

iα zα f(z) = (2π)−d/2
∫
ϕ(t) (iz)α e−izt dt

= (2π)−d/2
∫

(Dαϕ)(t) e−izt dt

and so

|zα| |f(z)| ≤ (2π)−d/2 ‖Dαϕ‖L1 er| Im z| .
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This, together with the inequality (1+ |z|)N ≤ (1+ |z1|+ · · ·+ |zd|)N implies
that

(1 + |z|)N |f(z)| ≤ γ
N
er| Im z|

for a suitable constant γ
N

, which is (2).

(b) Suppose that f is entire and satisfies the inequalities (2). For t ∈ Rd, let

ϕ(t) = (2π)−d/2
∫

Rd

f(x) eitx dx .

Since (1 + |x|)Nf(x) is bounded on Rd for any N (by (2)), it follows that ϕ
is a well-defined function and that ϕ ∈ C∞(Rd).

We wish to show that it is possible to replace x by x+ iy in this formula
for ϕ without any other changes. To see this, let

I(η) =

∫ ∞

−∞
f(x+ iη, z2, . . . , zd) e

(t1(x+iη)+t2z2+···+tdzd) dx

where t1, . . . , td ∈ R, z2, . . . zd ∈ C and η ∈ R.
We shall show that I(η) = I(0) which shows that, in fact, I does not

depend on η. Let Γ be the (closed, simple) rectangular contour in C with
vertices at the points ±X and ±X + iη, where X > 0. Since the function
ζ 7→ f(ζ, z2, . . . , zd) e

(t1ζ+t2z2+···+tdzd) is analytic, it follows that
∫

Γ
f(ζ, z2, . . . , zd) e

(t1ζ+t2z2+···+tdzd) dζ = 0 , (∗)

by Cauchy’s Theorem. Now we use (2) to estimate the integrand along the
vertical sides of the rectangular contour Γ.
We have, with z = (±X + iy, z2, . . . , zd),

∣∣ f(±X + iy, z2, . . . , zd) e
i(t1(±X+iy)+t2z2+···+tdzd)

∣∣

≤
γ
N
er| Im z| e−t1y e−t2| Im z2| · · · e−td| Im zd|

(
1 + ( | ±X + iy|2 + |z2|2 + · · · + |zd|2 )1/2

)N

≤
γ
N

( 1 + | ±X + iy| )N
er| Im z| e−t1y e−t2| Im z2| · · · e−td| Im zd|

≤
γ
N

(1 +X)N
er| Im z| e−t1y e−t2| Im z2| · · · e−td| Im zd|

≤
γ
N

(1 +X)N
er| Im z| e−t1y e−t2| Im z2| · · · e−td| Im zd|

→ 0

as X → ∞ for all |y| ≤ |η|. It follows that the part of the contour integral
along the vertical sides of Γ converges to zero, as X → ∞ and so from (∗)
we conclude that I(0) − I(η) = 0, as required.

November 9, 2005



52 Chapter 6

Repeating this argument coordinate by coordinate, we deduce that

ϕ(t) = (2π)−d/2
∫ ∞

−∞
. . .

∫ ∞

−∞
f(x) eitx dx1 dx2 . . . dxd

= (2π)−d/2
∫ ∞

−∞
. . .

∫ ∞

−∞
f(x+ iy) eit(x+iy) dx1 dx2 . . . dxd

for any y ∈ Rd.

Now, let N ∈ N be such that (1 + |x| )−N ∈ L1(Rd). Then, using (2),
together with the inequality (1 + |x+ iy| )−N ≤ (1 + |x| )−N , we find that

|ϕ(t)| ≤ (2π)−d/2 γ
N

∫

Rd

(1 + |x|)−N er|y| e−ty dx

≤ (2π)−d/2 γ
N
e(r|y|−ty)

∫

Rd

(1 + |x|)−N dx

for all y ∈ Rd. That is, there is some constant C > 0 such that

|ϕ(t)| ≤ C er|y|−ty

for any y ∈ Rd. We shall show that this implies that suppϕ ⊆ Kr. Indeed,
let t ∈ Rd be fixed such that |t| > r. Setting y = λt with λ > 0, it follows
that ty = λ |t|2 and we see that

|ϕ(t)| ≤ C eλ|t|(r−|t|)

for any λ > 0. Letting λ → ∞, it follows that ϕ(t) = 0 and so we conclude
that suppϕ ⊆ Kr, as claimed.

By the Fourier inversion theorem, we have

f(x) = (2π)−d/2
∫
ϕ(t) e−ixt dt .

It follows that the entire function z 7→ g(z) ≡
∫
ϕ(t) e−izt dt agrees with f

on Rd and so, by the Lemma, f = g on Cd, that is, f is given as in (1) and
the proof is complete.

There is a version of this result for distributions, as follows.

Theorem 6.5.

(a) Suppose that u ∈ D ′(Rd) and that suppu ⊆ Kr. Then the Fourier-
Laplace transform f(z) = û (z) is entire, its restriction to Rd is the
Fourier transform of u, and there is a constant γ > 0 such that

|f(z)| ≤ γ (1 + |z| )N er|Im z| (∗)

where N is the order of u.
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(b) Conversely, if f is entire and satisfies (∗) for some N ∈ N, some γ > 0
and r > 0, then f(z) = û (z) for some u ∈ D ′(Rd) with suppu ⊆ Kr.

Proof. (a) We have already proved everything except for the estimate (∗).
Let h ∈ C∞(R) be such that h(s) = 1 when s ≤ 1 and h(s) = 0 for all s ≥ 2.
For given z ∈ Cd (with z 6= 0), let

χ(x) = h( |x| |z| − r |z| ) .

Then χ ∈ C∞(R) and χ(x) = 0 whenever |x| |z|−r |z| > 2, that is χ vanishes
whenever |x| > 2

|z| +r. So χ ∈ C∞
0 (R) with suppχ ⊆ Kr+2/|z|. Furthermore,

if |x| < r + 1
|z| , then χ(x) = 1 and so û (z) = u(ezχ) (since χ = 1 on some

open set W with supu ⊂W ).
By hypothesis, suppu is compact and so u has finite order, say N . Then

there is C > 0 such that

|u(ezχ) | ≤ C
∑

|α|≤N

‖Dα(e−izxχ(x))‖∞ .

Now ∂h/∂xj = |z| xj|x| h
′(|x| |z| − r |z|) and so for any α, β ∈ Zd+, we have

∣∣ (Dαe−izx)(Dβχ(x))
∣∣ =

∣∣ (−iz)αe−izx |z||β| xβ

|x||β|
D|β|

∣∣

≤ |z||α|+|β| ‖D|β|h ‖∞ e|Im z|(r+2/|z|)

(since |zαj

j | ≤ |z|αj and if x ∈ suppχ then |x| ≤ r + 2/ |z|)
≤ |z||α|+|β| ‖D|β|h ‖∞ er|Im z|+2

(since |Im z| ≤ |z|) .

Hence, by Leibnitz’ formula, we conclude that

|û (z)| ≤ γ (1 + |z| )N er|Im z|

for a suitable constant γ.

(b) Suppose that f satisfies |f(x)| ≤ γ(1 + |x| )Ner Im z for some constants
γ, r > 0 and some N ∈ N. Then the map from S → C given by

ϕ 7→ f(ϕ) =

∫
f(x)ϕ(x) dx

is a tempered distribution. Hence there is some T ∈ S ′(Rd) such that
T̂ = f (namely, T = F−1f). We will show that suppT ⊆ Kr and that
f(z) = T̂ (z). The idea is to regularize T and apply the Paley-Wiener
theorem for functions.
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Let g ∈ C∞
0 (Rd) be such that supp g ⊂ K1 and

∫
g(x) dx = 1. For ε > 0,

set gε(x) = e−d g(x/ε). Then supp gε ⊂ Kε and we have seen that for any
tempered distribution S ∈ S ′(Rd), it is true that S ∗ gε → S in S ′(Rd) as
ε ↓ 0. Now

T ∗ gε = (F−1f) ∗ gε = F
−1((2π)d/2ĝε f)

since (S ∗ ϕ)̂ = (2π)d/2ϕ̂ Ŝ , for any ϕ ∈ S (Rd) and S ∈ S ′(Rd). Since
supp gε ⊆ Kε, the Paley-Wiener Theorem implies that ĝε is entire and that
for any integer k there is a constant γ

k
such that

| ĝε (z) | = | (2π)−d/2
∫
gε(y) e

−izy dy |

≤ γ
k
(1 + |z| )−k eε |Im z|

for any z ∈ Cd. But, by hypothesis,

|f(z)| ≤ γ (1 + |z| )N er |Im z|

and so, for any integer m,

| ĝε (z) f(z) | ≤ γ
N+m

γ (1 + |z| )−N−m (1 + |z| )N e(r+ε) |Im z|

= γ
N+m

γ (1 + |z| )−m e(r+ε) |Im z|

for z ∈ Cd.
Again, by the Paley-Wiener Theorem, it follows that there is ϕε ∈ C∞

0 (Rd)
with suppϕε ⊆ Kr+ε such that

ĝε (z) f(z) = (2π)−d/2
∫
e−izt ϕε(t) dt .

In particular, ĝε (x) f(x) ∈ S (Rd) and is the Fourier transform of ϕε. That
is, F−1(ĝε f) = ϕε as functions and so therefore as tempered distributions.

Now, let ψ ∈ S (Rd) be such that suppψ ∩Kr = ∅. Then, for all ε > 0
sufficiently small, suppψ ∩Kr+ε = ∅ and therefore

∫
ϕε(x)ψ(x) dx = 0 for

small ε. It follows that

T (ψ) = lim
ε↓0

T ∗ gε(ψ)

= lim
ε↓0

(2π)d/2
∫
ϕε(x)ψ(x) dx

= 0

and so suppT ⊆ Kr, as required.
It remains to verify that T̂ (z) = f(z) on Cd. However, T̂ is entire and

T̂ (x) is the Fourier transform of T , T̂ (x) = f(x) for x ∈ Rd. But, by
hypothesis, f is entire and so T̂ = f on Rd means that T̂ = f on Cd and
the proof is complete.
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Structure Theorem for Distributions

Any polynomially bounded continuous function certainly determines a tem-
pered distribution. It turns out that such functions, together with their
distributional derivatives exhaust S ′(Rd), as we discuss next.

Theorem 7.1. Let T ∈ S ′(Rd). Then there is a continuous polynomially
bounded function F (x) and a multi-index α ∈ Zd+ such that T = DαF .

Proof. For notational convenience, we shall only consider the one-dimensional
case, d = 1. So let T ∈ S (R) be given. Then we know that there exist
k,m ∈ N and C > 0 such that

|T (f)| ≤ C‖f‖k,m = C
∑

α≤k
β≤m

|||f |||α,β

for all f ∈ S (R). It follows that there is C ′ > 0 such that

|T (f)| ≤ C ′
∑

β≤m

sup
x

| (1 + x2)kDβf(x) |

for all f ∈ S (R). Now, if ϕ ∈ C∞
0 (R), then ϕ(x) =

∫ x
−∞ ϕ′(t) dt and so

|ϕ(x)| ≤
∫ x

−∞

∣∣ϕ′(t)
∣∣ dt ≤

∫ ∞

−∞

∣∣ϕ′(t)
∣∣ dt = ‖ϕ′‖L1 .

Hence, for any ϕ ∈ C∞
0 (R), supx |ϕ(x)| ≤ ‖ϕ′‖L1 and so

|T (ϕ)| ≤ C ′
∑

β≤m

‖D
(
(1 + x2)kDβϕ(x)

)
‖L1

since (1 + x2)kDβϕ ∈ C∞
0 (R). Using the inequality

D(1 + x2)k = k 2x(1 + x2)k−1 ≤ k(1 + x2)k

we get

|D
(
(1 + x2)kDβϕ(x)

)
| ≤ k | (1 + x2)kDβϕ(x) | + | (1 + x2)kDβ+1ϕ(x) |
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and so there is C ′′ > 0 such that

|T (ϕ)| ≤ C ′′
∑

j≤m+1

‖ (1 + x2)kDjϕ(x) ‖ (∗)

for ϕ ∈ C∞
0 (R).

Let J : C∞
0 (R) → L1(R) ⊕ · · · ⊕ L1(R) (with (m+ 2) terms) be the map

given by

J(ϕ) = (1 + x2)kϕ(x) ⊕ (1 + x2)kDϕ(x) ⊕ · · · ⊕ (1 + x2)kDm+1ϕ(x) .

Note that J is one-one, because if J(ϕ) = J(ψ), then, in particular, the
first components agree and so (1 + x2)kϕ(x) = (1 + x2)kψ(x) which means
that ϕ = ψ. It is also clear that J is a linear map. Now we define the map
Λ : J(C∞

0 (R)) → C by setting

Λ(J(ϕ)) = T (ϕ) .

Then Λ is well-defined, since J(ϕ) is uniquely determined by ϕ, and is linear.
Moreover, the bound (∗) implies that Λ is a bounded linear functional on
J(C∞

0 (R)) when considered as a subspace of (L1(R))m+2.
By the Hahn-Banach theorem, Λ has an extension to a bounded linear

functional on the whole of (L1(R))m+2. But then Λ must have the form

Λ(f0 ⊕ f1 ⊕ · · · ⊕ fm+1) =
m+1∑

j=0

∫

R

gj(x) fj(x) dx

for suitable g0, . . . , gm+1 ∈ L∞(R). Hence

T (ϕ) = Λ(Jϕ) =
m+1∑

j=0

∫

R

gj(x) (1 + x2)kDjϕ(x) dx .

and so, as distributions,

T =
m+1∑

j=0

(−1)jDj
(
(1 + x2)kgj(x)

)

on C∞
0 (R). But C∞

0 (R) is dense in S (R) and therefore T has this same
form on S (R).

For each j, set

hj(x) =

∫ x

0
(1 + t2)k gj(t) dt .

Evidently hj is continuous and polynomially bounded (because gj is bounded)
and

T =

m+1∑

j=0

(−1)jDj+1hj .
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To obtain the stated form for T , define fj by

fj(x) =

∫ x

0
dtm+1−j . . .

∫ t2

0
dt1 hj(t1)

i.e., by integrating hj (m+1−j) times. Then fj is continuous, polynomially
bounded and Dm+2fj(x) = Dj+1hj and so

T =
∑

j≤m+1

(−1)jDm+2fj .

Set F (x) =
∑

j≤m+1(−1)jfj(x). Then F is continuous, polynomially bounded

and T = Dm+2F .

Theorem 7.2. Let u ∈ D ′(Ω). Then for any compact set K ⊂ Ω, there exists
a continuous function F and a multi-index α such that u = DαF on C∞

0 (K).

Proof. Let u ∈ D ′(Ω) and let K ⊂ Ω with K compact. Let χ ∈ C∞
0 (Ω)

be such that K ⊂ W ⊂ suppχ for some open set W with χ = 1 on W .
Then u = χu on C∞

0 (K). However, χu has compact support and so defines
a tempered distribution and therefore has the form χu = DαF for some
continuous function F and α ∈ Zd+. Hence, for all ϕ ∈ C∞

0 (K),

u(ϕ) = χu(ϕ) = DαF (ϕ) ,

as required.
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Chapter 8

Partial Differential Equations

We will make a few sketchy remarks in this last chapter. We have seen that
every distribution is differentiable (in the distributional sense) and so we can
consider (partial) differential equations satisfied by distributions. Indeed, we
might expect a differential equation to have a distribution as solution rather
than a function.

Example 8.1. Consider the differential equation u′ = H where

H(x) =

{
0, x < 0

1, x ≥ 0

is the Heaviside step-function. For x < 0, u′(x) = 0, so u(x) = a and
for x > 0, u′(x) = 1 giving u(x) = x + b, for suitable constants a and b.
However, continuity of u at x = 0 would require u(0) = a = b and so

u(x) =

{
a, x < 0

1, x+ a ≥ 0.

But such u is not differentiable at x = 0 and so cannot satisfy the original
differential equation at this point. However, for any ϕ ∈ S (R), we see
that u′(ϕ) = H(ϕ), that is, u is a distributional solution to the differential
equation. Indeed, integrating by parts, we get

u′(ϕ) = −u(ϕ′) = −
∫ ∞

−∞
u(x)ϕ′(x) dx

= −
∫ 0

−∞
aϕ′(x) dx−

∫ ∞

0
(x+ a)ϕ′(x) dx

= −aϕ(0) + aϕ(0) −
∫ ∞

0
xϕ′(x) dx

=

∫ ∞

0
ϕ(x) dx

=

∫ ∞

−∞
H(x)ϕ(x) dx

= H(ϕ) .
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Notation. Suppose that P (x1, . . . , xd) is a polynomial in d-variables. Then
the symbol P (D) denotes the partial differential operator obtained after the
substitution Dj = ∂

∂xj
for xj in the polynomial expression P (x, . . . , xd). For

example, if P (x1, . . . , xd) = x3
1 + x3x4, then P (D) = ∂3

∂x3
1

+ ∂2

∂x3∂x4
.

For a given function g on Rd and polynomial P , a distributional solution
u ∈ D ′(Rd) to the partial differential equation P (D)u = g is called a weak
solution. We have seen above that a partial differential equation may possess
a weak solution but no solution in the classical sense. Notice that a partial
differential equation such as P (D)u = g is meaningful even if g ∈ D ′(Rd).
Of particular interest is the case for which g = δ.

Definition 8.2. A distribution E ∈ D ′(Rd) satisfying the partial differential
equation P (D)E = δ is said to be a fundamental solution for the partial
differential operator P (D).

The importance of fundamental solutions is their part in the solution of
inhomogeneous partial differential equations of the form P (D)u = g, with
g ∈ C∞

0 (Rd). Indeed, if we set u = E ∗ g, where E is a fundamental solution
for P (D), then u ∈ C∞

0 (Rd) and we find that

P (D)u = P (D)(E ∗ g)
= (P (D)E ) ∗ g
= δ ∗ g
= g ,

that is, P (D)u = g. So E ∗ g is a solution in the classical sense.

Example 8.3 (Poisson’s Equation). Consider ∆u = g (in R3).
We claim that a fundamental solution for ∆ is E = − 1

4π|x| . To see this,

let ϕ ∈ C∞
0 (R3). Then

(∆E)(ϕ) = E(∆ϕ)

= −
∫

R3

1

4π
√
x2

1 + x2
2 + x2

3

∆ϕ dx1 dx2 dx3

= −
∫

R3

1

4πr
∆ϕ r2 cos θ sinφ dr dθ dφ

= lim
ε↓0

−
∫

r≥ε

1

4πr
∆ϕ r2 dr dS

where dS = cos θ sinφdθ dφ. Integrating by parts with respect to r, one
finds (after some manipulation) that

∫

r≥ε
E(r) r2 ∆ϕ dr =

∫

r≥ε
∆E(r)ϕ r2 dr − r2E(r) ∂rϕ

∣∣∣
r=ε

+ r2ϕ∂rE(r)
∣∣∣
r=ε

.
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But ∆E = 0 for x 6= 0, so the first term on the right hand side above
vanishes and we have

(∆E)(ϕ) = lim
ε↓0

{ ∫ ∫

r=ε
E(r) ∂rϕ r

2 dS −
∫ ∫

r≥ε
ϕ∂rE(r) r2 dS

}
.

Now, the first term in brackets gives zero in the limit ε ↓ 0 (∂rϕ is bounded)
and the second can be written as

lim
ε↓0

∫ ∫

r=ε
ϕ(r, θ, φ)

1

4πr2
r2 dθ dφ

=

∫ ∫
ϕ(0) 1

4π dθ dφ+ lim
ε↓0

∫ ∫ (
ϕ(ε, θ, φ) − ϕ(0)

)
1
4π dθ dφ

= ϕ(0) + 0

since ϕ is continuous at 0. We have shown that (∆E)(ϕ) = ϕ(0) for any
ϕ ∈ C∞

0 (R3), so that ∆E = δ as required.

Example 8.4. The heat operator (or diffusion operator) is P (D) = ∂t − ∆
where ∆ is the Laplacian in Rd (so we are working with (x, t) ∈ Rd × R).
One checks that

E(x, t) = H(t)
1

2d
1

(πt)d/2
e−|x|2/4t

satisfies P (D)E = 0 on Rd × (R \ { 0 }). We claim that E is a fundamental
solution for P (D).

To see this, let ϕ ∈ C∞
0 (Rd × R). Then

(P (D)E)(ϕ) = ( (∂t − ∆)E )(ϕ)

= −E((∂t + ∆)ϕ)

= −
∫
E(x, t) (∂tϕ+ ∆ϕ) dx dt

noting that E is locally integrable,

= − lim
ε↓0

∫

t≥ε
E(x, t) (∂tϕ+ ∆ϕ) dx dt

= lim
ε↓0

∫

t≥ε
E(x, ε)ϕ(x, ε) dx

integrating by parts and using P (D)E = 0

on Rd × (R \ { 0 }),

=
1

πd/2
lim
ε↓0

∫
ϕ(2ε1/2y, ε) e−|y|2 dy

changing variable, x = 2ε1/2y,
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=
1

πd/2

∫
ϕ(0, 0) e−|y|2 dy

= ϕ(0) ,

so P (D)E = δ, as claimed.

Of course, one might enquire as to the existence of fundamental solutions.
We state the following theorem, without proof.

Theorem 8.5 (Malgrange-Ehrenpreis). For every constant coefficient partial
differential operator P (D) on Rd, there is a distribution E ∈ D ′(Rd) such
that P (D)E = δ.

Suppose now that we can show that a particular partial differential equation
has a weak solution. Is it possible to show that under certain circumstances
this solution is actually a solution in the classical sense? A result in this
vein is the following.

Theorem 8.6. Let Ω ⊂ Rd be an open set and suppose that u and f are
continuous on Ω and that Dju = f as distributions. Then Dju = f in the
classical sense, that is, Dju exists (as a function) and is equal to f on Ω.

Proof. Let W be any open ball in Ω and let χ ∈ C∞
0 (Ω) be such that χ = 1

on W . Then χu is continuous and has compact support. Also, for any
ϕ ∈ C∞

0 (Ω),

(Dj(χu))(ϕ) = −(χu)(Djϕ)

= −u(χDjϕ)

= −u(Dj(χϕ)) + u(Djχ ϕ)

= (Dju)(χϕ) + u(Djχ ϕ)

= (χDju)(ϕ) + ((Djχ)u)(ϕ) ,

that is, Dj(χu) = (Djχ)u+ χ(Dju), as distributions.
Let v = χu and g = Djv = (Djχ)u + χ(Dju). Then g = (Djχ)u + χf

since Dju = f . So g is continuous, as is v and both v and g have compact
support. We have shifted the problem to the case of compact support.

Let ϕ ∈ C∞
0 (Rd) be such that ϕ ≥ 0 and

∫
ϕ(y) dy = 1. For ε > 0 let

vε(x) =

∫
v(x− εy)ϕ(y) dy

= 1
εd

∫
v(y)ϕ

(x−y
ε

)
dy .

Then vε ∈ C∞(Rd) and vε → v uniformly as ε ↓ 0. Also,

Djvε(x) = 1
εd

∫
v(y)Dxjϕ(x−yε ) dy
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= − 1
εd

∫
v(y)Dyjϕ(x−yε ) dy

= 1
εd

∫
(Djv)(y)ϕ(x−yε ) dy

integrating by parts,

= 1
εd

∫
g(y)ϕ(x−yε ) dy

≡ gε .

It follows that gε = Djvε → g uniformly as ε ↓ 0. Let e1, . . . , ed denote the
usual orthonormal basis vectors for Rd (so that ej = (0, 0, . . . , 0, 1, 0, . . . , 0),
with the 1 in the jth coordinate position). Then

vε(x+ λej) − vε(x) =

∫ xj+λ

xj

Djvε(y) dyj

=

∫ xj+λ

xj

gε(y) dyj .

Letting ε ↓ 0, we deduce that

v(x+ λej) − v(x) =

∫ xj+λ

xj

g(y) dyj

and hence Djv exists and Djv(x) = g(x). But for any x ∈ W , we have
v(x) = χ(x)u(x) = u(x) and Djv(x) = Dju(x) and g(x) = f(x). It follows
that Dju exists on W and Dju = f on W . Since W is arbitrary, the result
follows.

Definition 8.7. Let P (D) =
∑

|α|≤m aαD
α be a linear differential operator

of order m, with constant coefficients, defined on Rd. Then the polynomial
P (ξ) =

∑
|α|≤m aαξ

α is called the symbol of P . The sum of those terms of
order m in P (ξ) is called the principal symbol of P , denoted σP , that is,

σP (ξ) =
∑

|α|=m

aαξ
α .

Note that σP is homogeneous of degree m. The differential operator P (D)
is said to be elliptic if σP (ξ) 6= 0 for all 0 6= ξ ∈ Rd.

Examples 8.8.

1. ∆ is elliptic on Rd.

2. ∂1 + i∂2 is elliptic on R2.
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Theorem 8.9 (Elliptic Regularity). Let Ω ⊆ Rd be an open set and let P (D)
be an elliptic differential operator (constant coefficients). If v ∈ C∞(Ω) and
u ∈ D ′(Ω) is a weak solution to P (D)u = v, then u ∈ C∞(Ω).

In particular, every weak solution to the homogeneous partial differential
equation P (D)u = 0 belongs to C∞(Ω).

We will not prove this here.

Example 8.10. Suppose that P (D) is elliptic (constant coefficients) and that
E is a fundamental solution: P (D) = δ. Then P (D)E = 0 on Rd \ { 0 },
that is (P (D)E)(ϕ) = 0 for all ϕ ∈ C∞

0 (Rd \ { 0 }). So E ∈ C∞
0 (Rd \ { 0 }).

Example 8.11. Let Ω be an open set in R2 and suppose that u ∈ D ′(Ω)
satisfies (∂1 + i∂2)u = 0 on Ω. Since ∂1 + i∂2 is elliptic, the theorem tells
us that u ∈ C∞

0 (Ω). But then (∂1 + i∂2)u = 0 is just the Cauchy-Riemann
equations and so we conclude that u is analytic in Ω. (Note that ∂1u and ∂2u
are continuous because u ∈ C∞.) In other words, an analytic distribution
is an analytic function.

Definition 8.12. For s ∈ R, the Sobolev space Hs(R
d) is defined to be the

set of tempered distributions T ∈ S ′(Rd) such that T̂ is a function with the
property that

∫
|T̂ (λ)|2 (1 + |λ|2)s dλ <∞. Evidently, Hs ⊇ Ht if s ≤ t.

Hs is a Hilbert space with respect to the inner product

(T1, T2) =

∫
T̂1 (λ) T̂2 (λ) (1 + |λ|2)s dλ .

Definition 8.13. Let Ω ⊆ Rd be an open set. The local Sobolev space Hs(Ω),
for s ∈ R, is the set of distributions u ∈ D ′(Ω) such that ϕu ∈ Hs(R

d) for
all ϕ ∈ C∞

0 (Ω).

The Sobolev spaces are used in the proof of the elliptic regularity theorem.
In fact, one can prove the following stronger version.

Theorem 8.14 (Elliptic Regularity). Let Ω ⊆ Rd be open and let P (D) be an
elliptic operator of order N . Suppose that P (D)u = v where v ∈ Hs(Ω) for
some s ∈ R. Then u ∈ Hs+N (Ω).

The theorem says that u is “better behaved” than v (by order N).
If v ∈ C∞(Ω), then ϕv ∈ C∞

0 (Ω) for all ϕ ∈ C∞
0 (Ω). Hence ϕv ∈ S (Rd)

and so (ϕv)̂ ∈ S (Rd) and therefore ϕv ∈ Hs(Ω) for all s. Hence u ∈ Hs(Ω)
for all s. One then shows that this implies that u ∈ C∞(Ω) (Sobolev’s
Lemma).
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