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Abstract

We introduce a pair of isospectral but non-isometric compact flat
3-manifolds called Tetra (a tetracosm) and Didi (a didicosm). The
closed geodesics of Tetra and Didi are very different. Where Tetra
has two quarter-twisting geodesics of the shortest length, Didi has
four half-twisting geodesics. Nevertheless, these spaces are isospectral.
This isospectrality can be proven directly by matching eigenfunctions
having the same eigenvalue. However, the real interest of this pair—
and what led us to discover it—is the way isospectrality emerges from
the Selberg trace formula, as the result of a delicate interplay between
the lengths and twists of closed geodesics.

Introducing Tetra and Didi

A platycosm is a compact flat 3-manifold. Simplest among platycosms are the
torocosms (the artifacts formerly known as ‘3-dimensional tori’). Torocosms
come in various shapes and sizes. Among these, we distinguish the cubical
torocosm R3/Z3, and the two-story torocosm TwoTall = R3/(Z × Z × 2Z).
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All other platycosms arise as quotients of torocosms. There are 10 distinct
types in all, of which 6 (torocosm; dicosm; tricosm; tetracosm; hexacosm;
didicosm) are orientable. The spaces themselves are well known, but the
naming scheme, due to Conway, is new. The naming scheme and the spaces
themselves are described in great detail by Conway and Rossetti in [2]. The
spaces are described under different names by Weeks [17], and Weeks (see
[18]) has also produced software which allows you to ‘fly around’ inside these
spaces, and many others as well.

Here we are concerned with two specific platycosms: Tetra, a tetracosm,
and Didi, a didicosm. Please note that the prefix ‘didi-’ is a doubling of
the prefix ‘di-’, and not some exotic Greek root. The word ‘didicosm’ is
pronounced ‘die-die-cosm’, but Didi is pronounced ‘Dee-dee’. Tetra and Didi
turn out to be, up to scale, the unique pair of cosmic spectral twins (non-
isometric platycosms with identical Laplace spectrum).

Tetra and Didi are both 4-fold quotients of TwoTall. Tetra is the quotient
of TwoTall by a fixed-point-free action of Z/4Z, while Didi is the quotient
by a fixed-point-free action of Z/2Z× Z/2Z. To get Tetra, we adjoin to the
translation group Z×Z×2Z in (x, y, z)-space the quarter-turn screw motion

τ : (x, y, z) 7→ (−y, x, z + 1/2).

To get Didi, we adjoin instead the two half-turn screw motions

ρx : (x, y, z) 7→ (x + 1/2,−y,−z)

and
ρy : (x, y, z) 7→ (−x, y + 1/2, 1 − z),

which together with the translations generate a third half-turn screw motion

ρz : (x, y, z) 7→ (1/2 − x, 1/2 − y, z + 1).

Both Tetra and Didi have as a fundamental domain the box

[−1/2, 1/2] × [−1/2, 1/2] × [0, 1/2],

and in both cases the four vertical sides are glued up in parallel in the usual
way, front to back and left to right, yielding a stack of square tori. The
difference comes in the glueings of the top and bottom. (See Figure 1.) To
get Tetra, you use τ to glue the bottom to the top with a quarter-turn. To
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Figure 1: Tetra and Didi. The sides of the box glue back to front and left to
right in the usual way; the tops and bottoms glue as indicated. Note that in
the case of Didi, the top and bottom glue not to each other but each to itself,
yielding two Klein bottles embedded in the quotient (which is nonetheless
orientable!).

get Didi, you use ρx to glue the bottom to itself via a glide reflection, and
ρy to glue the top to itself via a glide reflection. These glueings produce two
Klein bottles embedded in Didi. There is also a third, ‘vertical’ Klein bottle,
associated to ρz.

Note. We have described Tetra and Didi as quotients of a common 4-fold
cover. In fact they have a common 2-fold cover, the ‘cubical dicosm’, and a
common 2-fold orbifold quotient. While both of these related spaces have a
role to play in explaining the relationship between Tetra and Didi, we won’t
have any further occasion to discuss them here.

Non-isometric

Tetra and Didi are not isometric. In fact, since they have different fundamen-
tal groups, they are not even homeomorphic. (Tetra has first Betti number
1, while Didi has first Betti number 0.)

Moreover, in contrast to many of the known examples of spectral twins,
their closed geodesics are markedly different. In a platycosm, when you go
around a closed geodesic you come back twisted through some angle θ. In a
torocosm, this twist angle is always 0. But in Tetra, the shortest geodesics
have twist θ = π/2: We call such geodesics quarter-twisting geodesics, or
quarter-twisters. In Didi, the shortest geodesics have twist θ = π: We call
such geodesics half-twisting geodesics, or half-twisters. (See Figure 2.)
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Figure 2: Twisted geodesics in Tetra and Didi. Solid thick segments close up
into quarter-twisting geodesics of length 1/2; dashed thick segments close up
into half-twisting geodesics of length 1/2; dashed thin segments join together
in pairs to form half-twisting geodesics of length 1. Note that in the case of
Didi, if you start up one of the dashed thin vertical segments, you continue
down the segment ‘kitty-corner’ to it.

The fact that the shortest geodesics in Tetra are quarter-twisters while
those in Didi are half-twisters already shows that these spaces are non-
isometric. (Indeed, Didi has no quarter-twisting geodesics at all; this is
an aspect of the fact that Tetra and Didi have different ‘holonomy groups’,
namely Z/4Z versus Z/2Z × Z/2Z.)

Let us count the short geodesics in Tetra and Didi.
Warning. When counting geodesics, we count each pair of oppositely-

oriented geodesics only once.
In Tetra there are two quarter-twisting geodesics of length 1/2, one run-

ning up the middle of the box along the line x = y = 0, and one running up
the four identified edges of the box. The vertical midlines of the four sides
of the box combine to give a third geodesic, but this one is a half-twisting
geodesic of length 1.

In Didi, there are four half-twisting geodesics of length 1/2, two associated
with ρx sitting in the Klein bottle gotten by glueing the bottom of the box,
and two associated with ρy sitting in the Klein bottle gotten by glueing the
top. (See Figure 2.) In addition, there are two half-twisting geodesics sitting
in the ρz Klein bottle, but these have length 1.

Let’s call a geodesic twisted if it has a nontrivial twist. We’ve located 3
twisted geodesics in Tetra, and 6 in Didi. These are all primitive, which
means that they don’t arise by going more than once around a shorter
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geodesic. In fact these are the only primitive twisted geodesics in Tetra
and Didi. Of course there are also imprimitive twisted geodesics, which
come from going around a half-twister an odd number of times, or around a
quarter-twister a number of times not divisible by 4.

Note. To verify that we have identified all the twisted geodesics, ob-
serve that any twisted geodesic in Tetra (or Didi) unwraps to a straight line
in R3. Translating-with-a-twist along this straight line will be a ‘covering
transformation’—that is, one of the symmetries of R3 consistent with all
patterns obtained by unwrapping patterns in the quotient Tetra (or Didi).
The translation is by the length of the geodesic, and the twist is equal (and
opposite) to the twist of the geodesic. In the case of Tetra, the line must
be vertical, because all covering translations-with-a-nontrivial-twist run ver-
tically. In the case of Didi, the line can run in any of the three coordinate
directions. Look carefully at the possibilities, and you’ll see that in listing
twisted geodesics we’ve accounted for all of them.

Isospectral

While Tetra and Didi are not isometric, they are isospectral. By definition,
two spaces are isospectral if there exists some way of matching up the eigen-
functions of the Laplacian of the two spaces so that corresponding eigenfunc-
tions have the same eigenvalue. In this section, we will show that Tetra and
Didi are isospectral by describing such a correspondence.

We are giving this explicit proof because it is entirely elementary—it relies
only on linear algebra and Fourier series—and because it is illuminating in its
own way. Other, more ‘conceptual’ proofs are available. Further along, we
will outline one such proof, by way of the Selberg trace formula. A third proof
can be obtained using the general machinery for flat manifolds developed by
Miatello and Rossetti in [10], and a fourth using the ‘dual’ approach of [11].
A close relative of this fourth proof emerges naturally in the proof that Tetra
and Didi are the unique pair of cosmic spectral twins [14], discussed briefly
below.

A function on Tetra corresponds to a function f on TwoTall that is in-
variant under τ , in that

f = f ◦ τ.

Given any function f on TwoTall, we can symmetrize under τ to get a τ -
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invariant function

σTetra(f) =
1

4
(f + f ◦ τ + f ◦ τ ◦ τ + f ◦ τ ◦ τ ◦ τ),

which we think of as a function on Tetra. Similarly, we can get functions on
Didi via the symmetrization

σDidi(f) =
1

4
(f + f ◦ ρx + f ◦ ρy + f ◦ ρz).

Now any function f on TwoTall can be written as a Fourier series:

f(x, y, z) =
∑

(a,b,c)∈Z×Z×
1

2
Z

f̂(a, b, c) exp(2πi(ax + by + cz)).

Note that the sum runs over the lattice Z × Z × 1
2
Z, which is ‘dual’ to the

original lattice Z×Z×2Z: The frequencies a and b in the x and y directions
are integers, but the frequency c in the z direction is allowed to be a half-
integer, because the scale of the lattice in that direction is twice the scale in
the x and y directions.

The Fourier basis functions φa,b,c = exp(2πi(ax+ by + cz)), (a, b, c) ∈ Z×
Z× 1

2
Z are eigenfunctions of the (positive) Laplacian ∆ = −( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ):

∆φa,b,c = 4π2(a2 + b2 + c2)φa,b,c.

Symmetrizing these Fourier basis functions under τ yields a spanning set
σTetra(φa,b,c) for the functions on Tetra. This spanning set is far from being
a basis. For one thing, symmetrization lumps the basis functions together in
groups, generally of size four. More important, symmetrizing a basis function
can kill it off altogether. For example,

σTetra(φ0,0,1/2) = σTetra(φ0,0,1) = σTetra(φ0,0,3/2) = 0.

However, by eliminating such redundancies, we can prune down to a basis of
(unnormalized) eigenfunctions σTetra(φai,bi,ci

) on Tetra, with corresponding
eigenvalues 4π2(a2

i + b2
i + c2

i ).
Similarly, we can get a basis of eigenfunctions σDidi(φa′

i,b′
i,c′

i
) on Didi,

with corresponding eigenvalues 4π2(a′2
i + b′2i + c′2i ). If we can arrange that

a2
i + b2

i + c2
i = a′2

i + b′
2
i + c′

2
i
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for all i, then we will have verified that Tetra and Didi are spectral twins.
To find such a correspondence, we will take advantage of the fact that

our two symmetrization mappings lump the basis functions together in two
different but very nearly compatible ways. This leads to a correspondence be-
tween eigenfunctions which is for the most part very straight-forward. There
are only two exceptional cases that must be treated carefully.

Let
Va,b,c = 〈φ±a,±b,±c, φ±b,±a,±c〉,

where we’re using angle brackets to denote linear span. Please observe that
Va,b,c = Vb,a,c, Va,b,c = V−a,b,c, etc. In the generic case, namely when a, b, c 6=
0 and |a| 6= |b|, the vector space Va,b,c is 16-dimensional, and both σTetra

and σDidi lump the 16 basis functions together in groups of 4. In this case
σTetra(Va,b,c) and σDidi(Va,b,c) are both 4-dimensional, and we can clearly take
bases of these spaces and match them up.

If it were true that dim σTetra(Va,b,c) = dim σDidi(Va,b,c), for all (a, b, c) ∈
Z × Z × 1

2
Z, we would be all set. In fact this equality holds as long as no

two of the parameters a, b, c vanish, because in these cases σTetra and σDidi

continue to lump the basis functions together in groups of 4. Of course
dim σTetra(V0,0,0) = dim σDidi(V0,0,0) = 1, so that case is no problem. And if c
is a half integer, then dim σTetra(V0,0,c) = dim σDidi(V0,0,c) = 0.

So the question comes down to how to handle the cases Vn,0,0 and V0,0,n,
with n a non-zero integer, which we may assume is positive. (Remember
that negating any of a, b, c does not change the space Va,b,c.) To extend
the correspondence between eigenfunctions, we must take these remaining
exceptional cases in combination. Here is how it goes.

Odd exceptional case. When n is a positive odd integer,

σTetra(Vn,0,0) = 〈cos 2πnx + cos 2πny〉;
σTetra(V0,0,n) = 0;

σDidi(Vn,0,0) = 0;

σDidi(V0,0,n) = 〈cos 2πnz〉.

Taken together, these cases contribute a single eigenfunction of eigenvalue
4π2 · n2 to the spectra of both Tetra and Didi.

Even exceptional case. When n is a positive even integer,

σTetra(Vn,0,0) = 〈cos 2πnx + cos 2πny〉;
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σTetra(V0,0,n) = 〈exp(2πinz), exp(−2πinz)〉;
σDidi(Vn,0,0) = 〈cos 2πnx, cos 2πny〉;
σDidi(V0,0,n) = 〈cos 2πnz〉.

Taken together, these cases contribute three independent eigenfunctions of
eigenvalue 4π2 · n2 to both spectra.

By matching up these exceptional cases as indicated, we finish the job of
matching up eigenfunctions of Tetra and Didi, and thus concretely demon-
strate that these spaces are spectral twins.

Note that our scheme for matching eigenfunctions involves some arbitrary,
symmetry-breaking choices. This shows up clearly in the even exceptional
case above, but it is an issue even in the ‘generic’ case. We will see this same
kind of symmetry-breaking again when we look at the proof of isospectrality
by way of the Selberg trace formula.

Unique

Tetra and Didi are, up to scale, the only pair of non-isometric isospectral
platycosms: They are the two-and-only cosmic spectral twins. The proof,
due to Rossetti, involves a case-by-case analysis of all possible spectral co-
incidences among and between platycosms of the 10 possible types. In [14],
Rossetti and Conway give a streamlined version of this proof, using Conway’s
theory of lattice conorms as an organizing principle. As you would expect,
the techniques used in proving uniqueness yield another proof that Tetra and
Didi are spectral twins.

A key ingredient in the uniqueness proof is Schiemann’s theorem [15]
that there are no spectral twins among torocosms: If R3/Λ1 and R3/Λ2 are
isospectral, then they (and the lattices Λ1 and Λ2) are isometric. Milnor’s
original example of spectral twins was a pair of 16-dimensional tori [12].
Subsequently, lower-dimensional pairs of isospectral tori were found, culmi-
nating with the discovery of a 4-dimensional pair by Schiemann, simplified
and extended to a 4-parameter family of pairs by Conway and Sloane [3].
Schiemann showed that as far as tori are concerned, dimension 4 is the end
of the line. By opening the field up to other flat manifolds, we can get down
to dimension 3—but just barely!
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Selberg

Here, as promised above, we outline a proof of isospectrality by way of the
Selberg trace formula. The version of the trace formula that we want to
use expresses the Laplace transform of the spectrum (or properly speaking,
of the spectral measure) as the sum of contributions attributable to fam-
ilies of closed geodesics. To show that Tetra and Didi are isospectral, we
will examine the closed geodesics of each, and check that the total spectral
contribution of Tetra’s geodesics is just the same as that of Didi’s.

The relevant computations are indicated in Table 1. Here we will explain
informally what lies behind the computations in the table. The discussion
is contrived in such a way as to allow us to put off actually writing down
Selberg’s formula until after we have put it to use. Our reason for preferring
this inverted approach is that (in the present case, at least) the Selberg
formula is easier to apply than to state.

Recall that when it comes to the shortest geodesics, which have length
1/2, Tetra has two ‘quarter-twisters’, while Didi has four ‘half-twisters’. Now
it happens that, in a flat 3-manifold, the spectral contribution of any prim-
itive quarter-twisting geodesic is just twice that of a primitive half-twisting
geodesic. (This is an aspect of a general phenomenon: ‘The more the twist;
the less the contribution.’) So as far as the shortest geodesics go, the contri-
butions to the spectrum are the same.

Next come geodesics of length 1. Both Tetra and Didi have two 2-
dimensional families of non-twisting geodesics, which they inherit from the
common cover TwoTall. These common families of non-twisting geodesics
make identical contributions to the spectrum. In general, the non-twisting
geodesics in Tetra and Didi are all inherited from the common cover, and
consequently contribute equally to their spectra. So we don’t have to worry
about non-twisting geodesics.

Looking at twisted geodesics of length 1, the only kind that arise are half-
twisters. In Tetra we already identified one primitive half-twister running
vertically up the midlines of the sides of the box we have chosen as our fun-
damental domain; in Didi, we have two primitive half-twisters sitting in the
vertical Klein bottle. That’s it, as far as primitive geodesics are concerned.
However, in Tetra, we also have two imprimitive half-twisters, gotten by run-
ning twice around those two primitive quarter-twisters of length 1/2. In the
Selberg formula the spectral contribution of an imprimitive geodesic must be
divided by its degree of imprimitivity or exponent, which is the number of
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Tetra Didi

l wl n t k w n t k w n t k w n t k w
1
2

4 2 1
4

1 2 · 2
1

4 1
2

1 4 · 1
1

1 2 2 1
2

2 2 · 1
2

1 1
2

1 1 · 1
1

2 1
2

1 2 · 1
1

3
2

4
3

2 1
4

3 2 · 2
3

4 1
2

3 4 · 1
3

2 0
5
2

4
5

2 1
4

5 2 · 2
5

4 1
2

5 4 · 1
5

3 2
3

2 1
2

6 2 · 1
6

1 1
2

3 1 · 1
3

2 1
2

3 2 · 1
3

7
2

4
7

2 1
4

7 2 · 2
7

4 1
2

7 4 · 1
7

4 0
9
2

4
9

2 1
4

9 2 · 2
9

4 1
2

9 4 · 1
9

. . . . . . . . . . . . . . .

Table 1: Balancing geodesics. This table shows the balancing of the spec-
tral contributions from the twisted geodesics in Tetra and Didi. Here l is
length, and wl the total spectral contribution (weight) of geodesics of length
l, measured in units of the spectral contribution of a primitive half-twisting
geodesic of length l. The point of this table is to demonstrate that wl is the
same for Tetra and Didi. For geodesics of a specific kind, n tells the number
of geodesics; t the twist (either 1

4
or 1

2
); k the imprimitivity exponent; and

w the aggregate spectral weight for geodesics of this kind. An individual
geodesic with imprimitivity exponent k has weight 1/k if it is half-twisting,
and 2/k if it is quarter-twisting. Weights do not depend on the handedness
of the twist, so we do not distinguish between 1/4-twisting and 3/4-twisting
geodesics.
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times it runs around its primitive ancestor. So the spectral contribution of
Tetra’s one new half-twister and two recycled quarter-twisters just matches
that of Didi’s two brand new half-twisters.

Next among twisted geodesics are those of length 3/2. Here we are back
to balancing Tetra’s two quarter-twisters, now thrice-imprimitive, against
Didi’s four half-twisters, also thrice-imprimitive.

At length 2, there are no non-twisting geodesics.
Length 5/2 is like 1/2 and 3/2: Tetra has two quarter-twisters and Didi

four half-twisters, all now five-times-imprimitive
Length 3 is like length 1: We are back to balancing Didi’s two half-

twisters, now thrice-imprimitive, against Tetra’s one half-twister, now thrice-
imprimitive, and two quarter-twisters, now recycled as six-times-imprimitive
half-twisters.

And so it goes on up the line. Thus Tetra and Didi are isospectral.

Formula

We have chosen to describe the geodesic balancing act between Tetra and Didi
in words, rather than symbols, in order to put off having to state explicitly
Selberg’s formula for platycosms. The goal was to show how you can use the
formula without having to know precisely what the formula is. Now, here
comes the formula.

Let M = R3/Γ be a platycosm with covering group Γ, and let Λ ⊂ Γ be
the lattice subgroup of Γ. Let 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . be the sequence
of eigenvalues of the Laplacian on M , where as usual multiple eigenvalues
are listed multiple times in the sequence. For a geodesic g, let l(g) be its
length, θ(g) its twist (in radians), and k(g) its imprimitivity exponent. Let
G be the set of (nontrivially) twisted closed geodesics of M . Here again, we
take no notice of orientation: oppositely-oriented geodesics are considered to
be the same.

The version of the Selberg trace formula we need relates the spectrum
of M to the geometry of M , by giving two separate ways to compute a
certain function K(t), the ‘trace of the heat kernel’. The first way is in
terms of the spectrum, while the second way is in terms of the geometry. For
present purposes, we don’t need to know just what K(t) is—just that the
two expressions are equal.
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Here’s the formula:

K(t) =
∑

n

e−λnt =
∫

∞

0

1

(4πt)
3

2

e−
s
2

4t dN(s),

where

N(s) = Vol(M) |{γ ∈ Λ : |γ| ≤ s}| + 2
∑

g∈G

1

k(g)
Vl(g),θ(g)(s),

where

Vh,θ(s) =







0, 0 ≤ s < h

hπ s2−h2

(2 sin θ

2
)2

, h ≤ s .

Here Vh,θ(s) is the volume of a cylinder of height h and θ-twisted height s,
which we define as follows: If the sides of a cylinder of height h are replaced
with parallel segments, and the top is twisted through an angle θ relative
to the bottom, the segments stretch to form (part of) a hyperboloid of one
sheet; their stretched length is what we’re calling the θ-twisted height. (See
Figure 3.)

Note the factor of 2 in front of the sum over G in the formula for N(s).
This arises because of our lumping together oppositely-oriented geodesics.
When it comes to doing explicit computations using this formula, this lump-
ing appears unnatural, because translating one way around a geodesic is not
at all the same thing as translating the other way. But for us to try to enforce
a distinction between oppositely-oriented geodesics would only cause confu-
sion, because it would run counter to established practice. Nobody is going
to be comfortable with the notion that Tetra has four geodesics of length 1

2
.

Now, what makes Selberg’s formula so useful is the fact that the function
K(t) =

∑

n e−λnt determines the spectrum: In fact, it is the Laplace transform
of a mass distribution with a unit mass placed at every eigenvalue, so we can
recover the spectrum by inverting a Laplace transform. The trace formula
thus shows that the Laplace spectrum is determined by the function N(s),
which is computed directly from geometrical data.

The use we made above of the trace formula depended essentially on only
two of its properties. First is the amazing fact that the contribution of a
twisted geodesic to N(s) depends on the twist θ only through the factor

1
sin2 θ

2

. For a half-twisting geodesic (θ = π), this factor is 1; for a quarter-

twisting geodesic (θ = π/2), this factor is 2. Second is the way recycled
geodesics get only partial credit in N(s), because of the factor 1

k(g)
.
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Please observe that, since we are only using this formula to show that
the two spaces Tetra and Didi are isospectral, it isn’t crucial that we have
the formula exactly right. If the formula as written were off by a constant
factor here or there, say a stray factor of 2 or

√
π, it would do us no harm,

as long as the error applied equally to Tetra and Didi. That’s good, of
course. Working only with ‘higher-level’ properties of the formula means
that we’re approaching things in a ‘conceptual’ way, and insulating ourselves
from possible bugs in the formula. The drawback is that we haven’t given
the formula a real workout.

Exercise. Give the formula a real workout by using it to compute ex-
plicitly the heat trace for TwoTall, and then Tetra. (No need to check Didi,
since we’ve already checked that the answer will be the same for Didi as for
Tetra.) Observe that

KTetra −
1

4
KTwoTall = K

R/ 1

2
Z
− 1

4
KR/2Z.

Explain this remarkable ‘effective 1-dimensionality’ of the relationship be-
tween Tetra and TwoTall.

Derivation

So that’s the Selberg trace formula for platycosms, or rather, one particular
form of it. As for the derivation, equivalent formulas are derived in the papers
of Gangolli [5] and Berard-Bergery [1]. The formula can also be derived by
adapting the classical Poisson summation formula, which was the original
inspiration for the Selberg formula: This is the approach of Sunada [16] and
Miatello and Rossetti [11].

More mundanely, the formula can also be written down by identifying the
Laplace transform of the spectrum with the trace of the heat kernel in the
usual Selbergian way, and evaluating the diagonal of the heat kernel using
the ‘method of images’ from sophomore physics. Pairs of images lying within
a given distance of each other fall into cylinders of given ‘twisted height’.
Measuring the volume of these cylinders requires only the Pythagorean the-
orem and the usual formula for the volume of a cylinder. The fact that a
quarter-twisting geodesic contributes twice as much to the spectrum as a
half-twisting geodesic boils down to the fact that a cylinder of given height
h and quarter-twisted height s has twice the volume of a cylinder with the
same h and half-twisted height s. (See Figure 3.)
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Figure 3: Volume of cylinders with given height h and twisted height s.
Vol 1

4

= πr2h; Vol 1

2

= πr′2h. By the Pythagorean theorem, h2 + 2r2 = s2 and

h2 + 4r′2 = s2. So Vol 1

4

= 2Vol 1

2

.

A similar hands-on approach to Selberg’s formula works for hyperbolic 2-
and 3-manifolds (or orbifolds), with the hyperbolic law of cosines taking the
place of the Pythagorean theorem.

Subtle isospectrality

The remarkable Selbergian interplay between the geodesics in Tetra and Didi
is what we were looking for when we discovered this pair. Originally, we
were interested in finding (or ruling out) an analogous pair of hyperbolic 3-
manifolds. There are plenty of examples of spectral twins among hyperbolic
3-manifolds, but the standard methods for producing spectral twins yield
pairs whose geodesics have matching lengths and twists. Selberg’s formula
seems to allow the possibility of twins that are subtly isospectral, meaning,
‘isospectral, but not merely by virtue of having geodesics with matching
lengths and twists’.

After some fruitless attempts to find such a pair among hyperbolic 3-
manifolds, we tried looking among flat 3-manifolds instead.

Now, the precise definition of ‘subtle isospectrality’ for flat manifolds is
a subtle business, because various of the geodesics in flat manifolds come in
parallel families, and you have to be careful to choose the right definition for
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the ‘multiplicity’ of such geodesics, which you will need in order to decide
whether a give pair of manifolds have geodesics with ‘matching’ lengths and
twists. Of course, you could make any definition you want, and then inves-
tigate it. But to be interesting, the definition of multiplicity should end up
meaning that two manifolds are subtly isospectral just if they are isospectral,
but not merely because of some straight-forward way of matching contribu-
tions to Selberg’s formula.

We don’t need to fuss about this here, because however you decide to mea-
sure multiplicity, Tetra and Didi will have different multiplicities of geodesics
of the shortest length. That’s because these shortest geodesics are all isolated,
on account of their twisting. Thus Tetra and Didi are subtly isospectral—and
no other pairs of non-isometric platycosms are isospectral, whether subtly or
not.

The possibility of subtly isospectral hyperbolic 3-manifolds remains open.

Remarks

Misconception about Selberg for hyperbolic 3-manifolds. Some peo-
ple mistakenly believe that, for a hyperbolic 3-manifold, Selberg’s formula
allows you to read off from the spectrum the lengths and twists of the closed
geodesics. For example, Reid [13] cites Gangolli [5] and Berard-Bergery [1] in
support of this assertion. Neither Gangolli nor Berard-Bergery makes such a
statement, and Gangolli in particular is explicit about the fact that the Sel-
berg formula leaves open the possibility of an example of the kind we were
(and still are) looking for.

This misconception most likely stems from conflicting uses of the term
length spectrum, which we have been studiously avoiding here.

Hyperbolic surfaces. In another attempt to work up to hyperbolic 3-
manifolds, we looked at hyperbolic surfaces. We were disappointed to find
[4] that no subtly isospectral pairs exist among hyperbolic surfaces. The
question only becomes interesting in the case of non-orientable surfaces, be-
cause the Selberg formula immediately implies that for hyperbolic surfaces,
spectral twins always have matching lengths. For non-orientable surfaces, it
is possible to construct a plausible scenario for matching the contributions
of the geodesics of a pair of surfaces in a way similar to that of Tetra and
Didi, where geodesics don’t have matching lengths. But in the end it proves
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impossible to make this work: We show that to balance the spectral contri-
butions of geodesics on a pair of surfaces whose geodesics can’t be matched
so as to preserve length and orientability class, you would frequently need
the number of geodesics with length exactly l to be ≥ Cel/l for C > 0. But
as a consequence of results of Huber [7, 8, 9] and others, this number must be
o(el/l). (Huber’s results are stated only for orientable surfaces, but they hold
as well in the non-orientable case.) This rules out the possibility of subtly
isospectral hyperbolic surfaces: Even disconnected surfaces, which turn out
to be more interesting than one might imagine.

Laplacian on forms. While Tetra and Didi are isospectral for the usual
Laplacian acting on functions, they are not isospectral for the Laplacian
acting on 1-forms or 2-forms. This is a simple consequence of the techniques
of Miatello and Rossetti (see Theorem 3.1 of [10]). However, this can also be
seen immediately because the Betti number bk equals the multiplicity of the
eigenvalue 0 of the Laplacian acting on k-forms. Tetra and Didi have distinct
b1, and hence distinct spectrum on 1-forms. Since they are both orientable
3-manifolds, they have b1 = b2, so they have distinct b2 and distinct spectrum
on 2-forms. Examples of manifolds which are isospectral but have distinct
first Betti numbers, or which are isospectral on functions but not on 1-forms,
were previously known only in higher dimensions (see [6] and the references
therein).
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