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Abstract

We claim to give the definitive theory of what we call the ‘knee-
jerk mapping’, which is the basis for a class of optimization algorithms
introduced by Baum, and promoted by Dempster, Laird, and Rubin
under the name ‘EM algorithm’.

Introduction

We give the definitive theory of the knee-jerk mapping, to be defined below.
This mapping has been investigated by many people, most notably Baum
([2], [3], [5], [4], [1] ).

We begin with an example, taken from [6]. Suppose you want to locate
the maximum of the function

Z(x, y) = x34y38(1 + 2x)125

on the 1-simplex (a fancy name for a line segment)

Σ = {x, y > 0; x + y = 1}.

∗Copyright (C) 1990, 1998 Peter G. Doyle. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation License,
as published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts.

1



One way you can find it is by iterating the knee-jerk mapping

(x, y) 7→
1

xZx + yZy

(xZx, yZy) = . . . .

This maps the simplex Σ to itself, and what is notable about the mapping is
that it increases the value of the objective function Z.

The one true explanation of this ratcheting property of the knee-jerk map,
the explanation that lays bare once and for all what is going on here, is as
follows: Like any polynomial with only positive coefficients, the function Z

is log-log-convex; that is, log Z is convex as a function of (log x, log y); that
is,

W (u, v) = log Z(eu, ev)

is convex as a function of (u, v). We’re trying to find the maximum of W on
the set

T = {eu + ev = 1}.

Since W is convex, if we fix a point (u, v), the graph of W lies above its
tangent plane at (u, v, W (u, v)):

W (ū, v̄) ≥ Wu(u, v)(ū− u) + Wv(u, v)(v̄ − v).

Now ideally we’d like to move from (u, v) directly to the point of T where
W (u, v) is greatest. What the knee-jerk mapping does is move instead to the
point where the lower bound on the right hand side of the inequality above
is maximized. This can’t help increasing the objective function, right?

One remarkable fact should be pointed out, though it won’t be gone into
below: While the function Z is log-log-convex, it is nevertheless log-concave;
that is, log Z is concave as a function of (x, y). (This is true because Z is a
product of homogeneous linear functions with positive coefficients.) Because
Z is log-concave, it has a unique maximum on the simplex Σ. While all
polynomials with positive coefficients are log-log-convex, only very special
polynomials are simultaneously log-concave.

A class of log-concave examples fundamentally more exciting than prod-
ucts of linear functions can be obtained as follows: Take a connected graph
G, think of its edges as variables, form for each spanning tree of G a mono-
mial (of degree one smaller than the number of vertices of G), and form a
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polynomial DG—the discriminant of G—by adding up the monomials cor-
responding to all spanning trees of G. For example, if G is a triangle with
edges x, y, z,

DG(x, y, z) = xy + xz + yz.

Discriminants of graphs are always log-concave. (If you know what a matroid
is, let me add that the discriminant of a regular matroid is log-concave, but
I don’t know if the discriminant of a general matroid always is; my guess is
that it isn’t.)

Discriminants of graphs are particular cases of the diagonal discriminants

of Bott and Duffin; these are always log-concave (because the determinant
function is log-concave when restricted to the set of positive-definite matrices)
as well as being log-log-convex (because they are polynomials with positive
coefficients).

Knee-jerk functions

In real n-space, we will denote the positive orthant by Π and the closed
standard simplex by Σ:

Π = {x1, . . . , xn > 0},

Σ = {x1, . . . , xn > 0; x1 + . . . + xn = 1}.

We denote their closures by Π̄ (the non-negative orthant) and Σ̄ (the closed
standard simplex).

We say that a function Z(x1, . . . , xn) from Π to the positive real numbers
is log-log-convex if log Z is a convex function of u1 = log x1, . . . , un = log xn.
The name comes from the fact that in the case n = 1 a log-log-convex function
is one whose graph appears convex when drawn on log-log graph paper. We
say that Z is a knee-jerk function if Z is increasing (which we take to mean
what some would call ‘non-decreasing’) and log-log-convex. For pedantry’s
sake we require in addition that Z be smooth, and extend continuously to Π̄.

Properties and examples.

There are many characterizations of convex functions, but for our purposes
the most important is that a function is convex if and only if its graph lies
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above all of its tangent planes. Thus a smooth function Z is log-log-convex
if and only if for any two points x = (x1, . . . , xn) and x̄ = (x̄1, . . . , x̄n),

log Z̄ − log Z ≥ (log Z)u1
(ū1 − u1) + . . . + (log Z)un

(ūn − un)

=
x1Zx1

Z
log

x̄1

x1

+ . . . +
xnZxn

Z
log

x̄n

xn

,

where Z̄ = Z(x̄) and (log Z)u1
denotes the derivative of log Z with respect

to u1, etc.
Using this characterization of log-log-convexity and Jensen’s inequality—

which states that for a concave function like log the weighted average of the
values is littler than the value of the weighted average—we get a proof that
the function Z(x1, . . . , xn) = x1 + . . . + xn is log-log-convex, and hence a
knee-jerk function:

x1Zx1

Z
log

x̄1

x1

+ . . . +
xnZxn

Z
log

x̄n

xn

=
x1

x1 + . . . + xn

log
x̄1

x1

+ . . . +
xn

x1 + . . . + xn

log
x̄n

xn

≤ log
(

x1

x1 + . . . + xn

x̄1

x1

+ . . . +
xn

x1 + . . . + xn

x̄n

xn

)

= log
x̄1 + . . . + x̄n

x1 + . . . + xn

= log
Z̄

Z
.

Once we know that x1 + . . . + xn is a knee-jerk function, we can easily
produce a wealth of other examples by observing that the class of knee-
jerk functions is closed under a variety of operations. The coordinate func-
tions x1, . . . , xn are knee-jerk functions, as is any positive constant function.
Products, positive scalar multiples, and positive (possibly fractional) pow-
ers of knee-jerk functions are knee-jerk functions. So is the composition
Z(Z1, . . . , Zk) of a knee-jerk function Z(x1, . . . , xk) with knee-jerk functions
Z1(x1, . . . , xn), . . . , Zk(x1, . . . , xn), because the composition of increasing con-
vex functions is increasing and convex. And since x1 + . . .+xn is a knee-jerk
function, it follows that sums of knee-jerk functions are knee-jerk functions.
Thus any non-zero polynomial with non-negative coefficients is a knee-jerk
function.
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The knee-jerk mapping

If Z(x1, . . . , xn) is a knee-jerk function, we define the knee-jerk mapping

TZ(x) =
1

x1Zx1
+ . . . + xnZxn

(x1Zx1
, . . . , xnZxn

)

=
Z

x1Zx1
+ . . . + xnZxn

(x1(log Z)x1
, . . . , xn(log Z)xn

)

=
1

(log Z)x1
+ . . . + (log Z)xn

((log Z)u1
, . . . , (log Z)un

).

(If Zx1
= . . . = Zxn

= 0, we define TZ(x1, . . . , xn) = 1

x1+...+xn
(x1, . . . , xn)—or

just pretend we didn’t notice.) Note that when Z is homogeneous of (possibly
fractional) degree d, Euler’s identity

x1Zx1
+ . . . xnZxn

= dZ

implies that

TZ(x) =
1

dZ
(x1Zx1

, . . . , xnZxn
).

TZ maps the positive orthant Π to the closed simplex Σ̄, and thus restricts
to a mapping of Σ to Σ̄. It is easy to see that a point x ∈ Σ is fixed by TZ if
and only if it is a critical point of Z on Σ. The great thing about the knee-
jerk mapping is that if x is not a critical point of Z on Σ then Z(TZ(x)) > Z;
this will be proven in the next section. This makes the knee-jerk mapping a
natural to iterate if you are interested in finding the maximum of Z on Σ.
The name ‘knee-jerk’ is partly meant to suggest the automatic way in which
the mapping increases the objective function Z.

The knee-jerk inequality

Write
x′ = TZ(x)

and
Z ′ = Z(x‘).
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The knee-jerk inequality.

log
Z ′

Z
≥

x1Zx1
+ . . . + xnZxn

Z

(

x′

1 log
x′

1

x1

+ . . . + x′

n log
x′

n

xn

)

.

Proof. From the characterization of log-log-convexity above, we have

log Z̄ − log Z ≥
x1Zx1

Z
log

x̄1

x1

+ . . . +
xnZxn

Z
log

x̄n

xn

.

Substituting x̄ = x‘ yields the knee-jerk inequality. ♠
Recall (if you don’t already know) that for probability vectors x ∈ Σ,y ∈

Σ̄ the I-divergence I(y;x) is defined to be

I(y;x) = y1 log
y1

x1

+ . . . + yn log
yn

xn

.

This quantity is always ≥ 0, with equality if and only if x = y. (This follows
from an application of Jensen’s inequality similar to that used above to show
that x1 + . . . + xn is a knee-jerk function.)

Corollary. If x ∈ Σ then

log
Z ′

Z
≥

x1Zx1
+ . . . + xnZxn

Z
I(x′;x) ≥ 0.

In particular, Z ′ > Z unless the point x is fixed by TZ , which happens if and

only if x is a critical point of Z on Σ. ♠

What is going on here?

Say our goal is to maximize Z over Σ. We’re sitting at some point x, and we
want to pick a new point x̄ ∈ Σ̄ so as to increase the objective function Z as
much as possible. Since Z is log-log-convex we know that

log Z̄ − log Z ≥ (log Z)u1
(ū1 − u1) + . . . + (log Z)un

(ūn − un).

The knee-jerk idea is to choose x̄ ∈ Σ̄ so as to make the lower bound on the
right of this inequality as large as possible. That is, we want to do as well as
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possible using only the value of Z and its derivatives at x and the knowledge
that Z is a knee-jerk function. So we want to choose x̄ so as to maximize

F (ū1, . . . , ūn) ≡ (log Z)u1
(ū1 − u1) + . . . + (log Z)un

(ūn − un)

subject to the constraint

G(ū1, . . . , ūn) ≡ eū1 + . . . + eūn = 1.

The maximum occurs where

∇ūG = (x̄1, . . . , x̄n)

is proportional to

∇ūF = ((log Z)u1
, . . . , (log Z)un

),

that is, where
x̄ = TZ(x).

Ruminations. When x ∈ Σ, the fact that x′ = TZ(x) maximizes the
lower bound for Z̄ implies right away that Z ′ ≥ Z, independently of the
hocus-pocus with the I-divergence. Indeed, the positivity of the I-divergence
can now be seen as a consequence of the fact that x1 + . . .+xn is a knee-jerk
function. This is not so surprising, perhaps, since both facts followed from
very similar applications of Jensen’s inequality. But now it appears that
x1 + . . . + xn is somehow the most important of all knee-jerk functions. And
why should it be so distinguished? Because it crops up in the definition of
the simplex Σ.

Generalizations

Given a = (a1, . . . , an), a1, . . . , an > 0, define

Σa = {x1, . . . , xn > 0; a1x1 + . . . anxn = 1}

and define
TZ,a : Π → Σ̄a,
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x′ = TZ,a(x) =
1

x1Zx1
+ . . . + xnZxn

(
x1Zx1

a1

, . . . ,
xnZxn

an

).

Then the knee-jerk inequality becomes

log
Z ′

Z
≥

x1Zx1
+ . . . + xnZxn

Z

(

a1x
′

1 log
x′

1

x1

+ . . . + anx′

n log
x′

n

xn

)

.

When x ∈ Σ this becomes

log
Z ′

Z
≥

x1Zx1
+ . . . + xnZxn

Z
I((a1x

′

1, . . . , anx′

n); (a1x1, . . . , anxn)) ≥ 0.

More interesting, we can replace the simplex Σ with a product of sim-
plices: Let

Z = Z(x1,1, . . . , x1,n1
, . . . , xk,1, . . . , xk,nk

).

Let
T = {xi,j > 0;

∑

j

xi,j = 1},

and define
TZ : Π 7→ T̄

by

x′

i,j =
xi,jZxi,j

∑

j xi,jZxi,j

.

Then

log
Z ′

Z
≥
∑

i

∑

j xi,jZxi,j

Z





∑

j

x′

i,j log
x′

i,j

xi,j



 ,

and when x ∈ T ,

log
Z ′

Z
≥
∑

i

∑

j xi,jZxi,j

Z
I((x′

i,1, . . . , x
′

i,ni
); (xi,1, . . . , xi,ni

)) ≥ 0.
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