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Abstract

In this expository article, we discuss the rank-derangement prob-
lem, which asks for the number of permutations of a deck of cards
such that each card is replaced by a card of a different rank. This
combinatorial problem arises in computing the probability of winning
the game of ‘frustration solitaire’, which was the subject of a recent
column by Marilyn vos Savant. The solution by means of the method
of inclusion and exclusion is a prime example of the use of this simple
yet powerful method.

1 Frustration solitaire and rank-derangements

In the game of frustration solitaire, you shuffle a deck of cards thoroughly–at
least 13 times–so that by the time you’re done all orderings of the deck are
equally likely. Now you run through the deck, turning over the cards one
at a time as you call out, ‘Ace, two, three, four, five, six, seven, eight, nine,
ten, jack, queen, king, ace, two, three, . . . ,’ and so on, so that you end up
calling out the thirteen ranks four times each. If the card that comes up ever
matches the rank you call out as you turn it over, then you lose.

The rank-derangement problem asks for the number of permutations of a
deck of cards such that after the permutation, every card has been replaced
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by a card of a different rank. We denote this number by R13, where the
subscript 13 is there to remind us that there are 13 different ranks. More
generally, the rank-derangement problem asks for the Rn, the number of
rank-derangements of a 4n-card deck containing cards of n different ranks in
each of four suits. Of course we could generalize the problem still further by
varying the number of suits, but we won’t get into that here.

To see the connection between the rank-derangement problem and frus-
tration solitaire, imagine that the deck starts out in the order: ace through
king of spades, ace through king of hearts, ace through king of diamonds,
ace through king of clubs. Starting with this ordering, you win if the permu-
tation you do when you shuffle is a rank-derangement, which happens with
probability R13/52!.

Now of course you probably didn’t start with this particular ordering,
unless you just won at one of the more conventional kinds of solitaire. But
because we’re assuming that after the shuffle all orderings are equally likely,
your probability of winning doesn’t depend on what order the deck started
in, so your probability of winning is still going to be R13/52!.

By the way, the special ordering we’ve just been discussing is not at all the
ordering of a brand new deck of Bees or Bicycles, or practically any other
brand of top-quality playing cards. New decks come in quite a different
ordering, and the particular ordering that they come in is very important
if you are going to be playing certain special games like bore or new age

solitaire, and are only planning on shuffling the deck seven or eight times.
We’re not going to say anything more about that here. We just didn’t want
to give you the wrong impression about the order of the cards in a new deck.

2 Historical background

The roots of the rank-derangement go back to a gambling game closely re-
sembling frustration solitaire that was studied long ago by the Chevalier de
Montmort.

In 1708 Pierre de Montmort published the first edition of his book Essay

d’Analyse sur les Jeus de Hazard [3] (Analytical Essay on Games of Chance).
He was inspired by recent work of James Bernoulli in probability. Montmort
hoped that, by applying techniques developed by Bernoulli to analyze com-
mon card and dice games, he could show people that certain of their methods
of play based on superstitions should replaced by more rational behavior.
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One of the games that he analyzed was Jeu de Treize (Thirteen). This game
was played as follows:

One person is chosen as dealer and the others are players. Each player
puts up a stake. The dealer shuffles the cards and turns them up one at a
time calling out, ‘Ace, two, three,. . . , king’, just as in frustration solitaire.
If the dealer goes through the 13 cards without a match he (or she?) pays
the players an amount equal to their stake, and the deal passes to someone
else. If there is a match the dealer collects the players’ stakes; the players put
up new stakes, and the dealer continues through the deck, calling out, ‘Ace,
two, three, . . . ’. If the dealer runs out of cards he reshuffles and continues
the count where he left off. He continues until there is a run of 13 without a
match and then a new dealer is chosen.

Montmort’s ‘Problème du Treize’ was to find the expected value of this
game to the dealer. The answer, found by Peter Doyle in 1994,

26516072156010218582227607912734182784642120482136\

09144671537196208993152311343541724554334912870541\

44029923925160769411350008077591781851201382176876\

65356317385287455585936725463200947740372739557280\

74593843427478766496507606399053826118938814351354\

73663160170049455072017642788283066011710795363314\

27343824779227098352817532990359885814136883676558\

33113244761533107206274741697193018066491526987040\

84383914217907906954976036285282115901403162021206\

01549126920880824913325553882692055427830810368578\

18861208758248800680978640438118582834877542560955\

55066287892712304826997601700116233592793308297533\

64219350507454026892568319388782130144270519791882 /

33036929133582592220117220713156071114975101149831\

06336407213896987800799647204708825303387525892236\

58132301562800562114342729062565897443397165719454\

12290800708628984130608756130281899116735786362375\

60671849864913535355362219744889022326710115880101\

62859313519792943872232770333969677979706993347580\

24236769498736616051840314775615603933802570709707\

11959696412682424550133198797470546935178093837505\

93488858698672364846950539888686285826099055862710\

01318150621134407056983214740221851567706672080945\
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86589378459432799868706334161812988630496327287254\

81845887935302449800322425586446741048147720934108\

06135061350385697304897121306393704051559533731591

which as you can see is something like .8. The solution, which we will not
discuss here, involves having the computer solve something like 4 million
variations on the frustration solitaire problem.

Montmort first considered the problem of finding the probability that
there would be a match before getting through the first 13 cards. He started
by assuming that the deck had only 13 cards all of the same suit and showed
that the probability of getting no match is very close to 1/e = .3678 . . ., so
the probability of getting a match is very close to .6321. . . . He used the
method of recursion to derive this result, thus giving the first solution to
the problem we now call the ‘derangement problem’, or ‘hat-check problem’,
which we will discuss below.

In later correspondence with Nicholas Bernoulli, Montmort found that,
for a normal 52 card deck, the probability of getting through 13 cards without
a match is .356. . . , so the dealer wins the first round of Treize with probability
.643. . . . (Note that the dealer does a little better on the first round with a
52 card deck than with a 13 card deck.) Thus Montmort showed that the
dealer has a significant advantage even without considering the additional
winnings from further rounds before giving up the deal.

The game of Treize is still mentioned in some books on card games, but
in forms not so advantageous to the dealer. In one version, the dealer deals
until there is a match or until 13 cards have come up without a match. If
there is a match on card n, he or she wins $n from each player.

The current interest in the problem came from a column of Marilyn vos
Savant [9]. Charles Price wrote to ask about his experience playing frustra-
tion solitaire. He found that he he rarely won and wondered how often he
should win. Marilyn answered by remarking that the expected number of
matches is 4 so it should be difficult to get no matches.

Finding the chance of winning is a harder problem than Montmort solved
because, when you go through the entire 52 cards, there are different patterns
for the matches that might occur. For example matches may occur for two
cards the same, say two aces, or for two different cards, say a two and a
three.

We learned about the more recent history of the problem from Steven
Landfelder. Steven was introduced to this form of solitaire by his gypsy
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grandmother Ernestine Landfelder who had named it ‘frustration solitaire’.
He was 15 in 1956 when he learned of the game and tried to find the chance
of winning, but he found it too hard for him.

Steven became obsessed with finding this probability. As he grew older
he became better able to read math books but this was certainly not his
specialty. He found references that solved the problem, but the authors left
out too many steps for him to follow their solutions. He persevered and, with
hints from his reading, was finally able to carry out the computations to his
satisfaction ending a lifelong obsession with this problem.

The most complete discussion that Steven found was in Riordan [6], who
found the solution using the method of rook polynomials. Riordan also
showed that Rn approaches 1/e4 as n tends to infinity.

3 The derangement problem

As noted above, the rank-derangement problem is a variation on the well-
known derangement problem, which asks for the number Dn of permutations
of an n-element set such that no object is left in its original position. The
derangement problem is also known as the hat-check problem, for reasons
that will suggest themselves.

In the current context, the derangement problem arises as follows: Again
you shuffle the deck, and turn the cards over one at a time, only now you call
out, ‘Ace of spades, two of spades, three of spaces, . . . , king of spades, ace of
hearts, two of hearts, three of hearts, . . . ,’ and so through the diamonds and
clubs. If you ever name the card exactly, you lose. The problem of winning
this game is D52/52!.

4 The principle of inclusion and exclusion

The derangement problem can be solved using a standard method called the
principle of inclusion and exclusion. The method is nothing more than a
systematic application of the notion that if you want to know how many stu-
dents belong to neither the French Club nor the German Club, you take the
total number of students, subtract the number in the French Club, subtract
the number in the German Club, and add back in the number who belong
to both clubs.
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The principle of inclusion and exclusion, together with its application to
the derangement problem, is beautifully discussed in Ryser’s Carus Mono-
graph [8]. (This series also includes the critically acclaimed monograph of
Doyle and Snell [5] on the fascinating connection between random walks and
electric networks.)

5 Solution of the derangement problem

Applied to the derangement problem, the principle of inclusion and exclusion
yields the following for the number of derangements:

D(n) = total number of permutations of {1,2,. . . ,n}

−
∑

{i}

number of permutations fixing i

+
∑

{i,j}

number of permutations fixing i and j

− . . .

= n! − n(n − 1)! +

(

n

2

)

(n − 2)! − . . .

= n!

(

1 −
1

1!
+

1

2!
− . . . +

(−1)n

n!

)

.

We write the formula in this way to emphasize that the ratio D(n)/n!,
which represents the probability that a randomly selected permutation of
{1, 2, . . . , n} turns out to have no fixed points, is approaching

1 −
1

1!
+

1

2!
−

1

3!
+ . . . =

1

e
.

6 Solution of the rank-derangement problem

The derangement problem is tailor-made for applying the method of inclusion
and exclusion. In the case of rank-derangements, a little care is needed in
applying the principle, but we maintain that with sufficient experience you
can pretty much just write down the answer to problems of this sort.

By analogy with the solution of the derangement problem, where we used
inclusion and exclusion on the set of fixed points, here we will use inclusion
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and exclusion on the set of rank-fixed points, that is, cards that get replaced
by cards of the same rank. However in the present case, instead of classifying
a set of cards only according to its size, we must keep track of how the set
intersects the 13 different ranks.

Specifically, we associate to a set S of cards the parameters m0, m1, m2, m3, m4,
where m0 tells how many ranks are not represented at all in the set S, m1

tells how many ranks are represented in the set S by a single card, and so on.
For example, the set S = {AKQJ♠, AKQ♥, A♦, A♣} has parameters m0 =
9, m1 = 1, m2 = 2, m3 = 0, m4 = 1. Evidently m0 +m1 +m2 +m3 +m4 = 13,
and |S| = m1 + 2m2 + 3m3 + 4m4.

For any set S of cards, denote by n(S) the number of permutations having
S as its set of rank-fixed points, and denote by N(S) =

∑

T⊃S n(T ) the
number of permutations whose set of rank-fixed points includes S. We are
trying to determine n(∅), the number of permutations whose rank-fixed set
is empty. According to the principle of inclusion and exclusion,

n(∅) =
∑

S

(−1)|S|N(S).

The parameters m0, m1, m2, m3, m4 that we’ve chosen have two key prop-
erties. The first is that we can easily determine the number s(m0, m1, m2, m3, m4)
of sets S having specified values of the parameters:

s(m0, m1, m2, m3, m4) =

(

13

m0, m1, m2, m3, m4

)

1m04m16m24m31m4 .

(For each of the 13 ranks, decide whether there will be 0, 1, 2, 3, or 4
rank-matches, and then decide which specific cards will be rank-matched.)
The crucial second property of these parameters is that they are enough to
determine N(S):

N(S) = 1m04m1(4 · 3)m2(4 · 3 · 2)m3(4 · 3 · 2 · 1)m4(52 − |S|)!.

(Choose how the |S| rank-matches come about, and then distribute the re-
maining 52 − |S| cards arbitrarily.)

Plugging into the inclusion-exclusion formula yields

R13 =
∑

m0+m1+m2+m3+m4=13

(−1)|S|s(m0, m1, m2, m3, m4)N(S)

=
∑

m0+m1+m2+m3+m4=13

(−1)|S|
(

13

m0, m1, m2, m3, m4

)

· 16m172m296m324m4(52 − |S|)!,
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where |S| = m1 + 2m2 + 3m3 + 4m4. Substituting in for |S| gives

R13 =
∑

m0+m1+m2+m3+m4=13

(−1)m1+m3

(

13

m0, m1, m2, m3, m4

)

· 16m172m296m324m4(52 − (m1 + 2m2 + 3m3 + 4m4))!.

In the more general case of n ranks we have

Rn =
∑

m0+m1+m2+m3+m4=n

(−1)m1+m3

(

n

m0, m1, m2, m3, m4

)

· 16m172m296m324m4(4n − (m1 + 2m2 + 3m3 + 4m4))!.

7 Exact values and asymptotics

Evaluating the expression we have obtained for R13 gives

R13 = 1309302175551177162931045000259922525308763433362019257020678406144

and

R13/52! =
4610507544750288132457667562311567997623087869

284025438982318025793544200005777916187500000000

= 0.01623272746719463674 . . . .

Looking at what happens when n gets large, we find by a straight-forward
analysis that

lim
n→∞

Rn/(4n)! = e−4

= 0.01831563888873418029 . . . .

This makes good sense, since the expected number of rank-fixed cards is 4,
and we would expect that when n is large the number of rank-matches would
be roughly Poisson-distributed. Probably the current situation is covered by
the theory of asymptotically independent events developed by Aspvall and
Liang [1] in their analysis of the dinner table problem, but we haven’t checked
into this yet.

Evidently pn = Rn/(4n)! is still pretty far from its asymptotic value when
n = 13. Checking larger values of n, we find that

p20 = 0.01695430844136377527 . . .

p50 = 0.01776805714328362582 . . . .
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8 Other problems of the same ilk

The rank-derangement problem is a prime example of the use of the principle
of inclusion and exclusion. We referred earlier to Ryser’s book [8] as a good
place to read about inclusion-exclusion. Further examples can be found in
the beautifully-written and thought-provoking article ‘Non-sexist solution of
the ménage problem’, by Bogart and Doyle [2], and the references cited there.

A key feature of the application of inclusion-exclusion to the rank-derangement
problem is that the quantity N(S) does not depend solely on |S|, and a little
care is needed to identify the parameters to sum over. Other problems of
this kind are the dinner-table problem (see Aspvall and Liang [1] and Robbins
[7]), and the problem of enumerating Latin rectangles (see Doyle [4]).
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