10.1 SOLUTIONS

CHAPTER TEN

575

Solutions for Section 10.1

Exercises

1. Let —— = (1 +2)~". Then f(0) = 1.

l+=x

fl(z) = -11(1+z)? £{0) = -1,
') =21 +2)7° oy =2,
fi@)y=-3(1+x2)* f(0) = =3,
fMzy=401+2)" FON0) = 4
fz) = -51(1+1)"° N0y = -3
fO ) =611 +2)" @) =6,
f )= -1 +2)~8 FOy = -7,
f®(r) =8(1+z)"° FB) = 8.

Piz)y=1-z+2" -2 +2*
Ps(:r)=l—r+1¢2—x3+r"—z5+10,
&

Ps(r):1—z+rj—r3+x4—x5+zﬁ—17+z .

2 Let f(z) = Ii_r = (1 —2)~1. Then £(0) = 1.

fi(r) =11 -x2)? F(0) =1,
'@y =2(1-x)7° oy =2,
f'x)y=31-2* 77'(0) = 31,
) =20-27"  fU0) =4
Oy =s(1-2"°  fO0) =3l
FO) =61 —2)7 £19(0) = 6!,
f@y=11-97" [P0 =71

P3(z) = 144z +2°
P5(1)=l+a:+:r?+x3+:lt"+15,
P;(x):l+:r+1t?+173+;1:4+15+1'6+1:7.

3. Let f(z) = V1+ = (1 +2)"% Then £(0) = 1, and

f@) =1+ £1(0) = 3.
fl@) = —3(1+2)7%? S0y = -5
fa) =0 ) =3
fO) =~ B+ ) = -1,
Thus,
1 1.
PQ(JZ)—1+§.’C—§I .
N4ty Ltz 1os
P3(.l.)—l+2£ 3° +16.I ,

1 1, 1. 5
Py(z) =1+ 5%~ gr” + 1—61‘" - 1_—)8-1"



EFe 18 6 g iF
l);1:0—[(’ - cw? - sz -z 1= rzS—S‘T —(1)8g = (2)'d
?x%s 6.17% - z% —I=2 (S—“I:) 1I§ - (a:)zc[ = (z)ed
a?)% —1:% — =~:rz—zg% —x% —1=(x)eg
‘uay
f)—g (0) gy)f ¢/11— ( 1) = (I)(y)!
- =07 S C r>f~— =(2),4
_aZE (0)//1[ 9/5—(1 - [)&o— (I)u!
% (0)/3{ s/z—['r— T)%_ = (I),f
pue ‘1 = (0} uyL o, (T-1) =T~ 1 =(2)f 2T L
L= @u=(0)u
oL
‘snyp
0=(0)f  (,500/a mspg) + (2 $00 fzmsgr) = (),,f
T =10),.f (T 500 [ misg) + (800 /7) = (2),.f
0=A(0),f T 803 Jruisg = (w)”,[
‘1=1(0)f T 500 /1 = (2),f
pue ‘0 = Quel = (0)f 0§ ‘Twer = (z){ 197 ‘9
- _
smf -z =(T)g = (T)8d
'210J019Y |,
0= (0) ¢/ Tile-(,T+ )T+
'ngg—(z'I + I)iz + g:thp—(zz + I)ig_ = (x)(fv)!
= =(0)uf 2e-(T+D(I-)+ 22e_(;T+ Dig = (2) .4
0= (O)Ilf $Zz_(z$ + I)(I—) = (x);/j
I=(0),; [—(z$+1)=(zz+1)/l=(x),f
pue ‘g = gueidre = (0)f uayL 'z uere = (z)f 197 °§
- —2 -1= (@
b
; —-1=(2)%d
- T 1=(@)4d
‘snyg
= (0)(q)f T$00 — = () oyf
= (0)(q)f zus — = (2) ) f
(())(f)j r$00 = (1)(‘_);'
"D = (0)”1}' zus = (x),f
( )//J[ I8 — = (x)//j
=4 zws— = (2) f

pue ‘T = (0)s02 = (0)f uayL T s0d = (7)§ 197 *p
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10.1 SOLUTIONS

8. Let f(z) = In(1 + z). Then f(0) =In1 = 0, and

fl@)=0+2)! ) =1
2= (=11 +2)7° (o) =~
f"(2) =201+ )7 £(0) =2,
9@ =-3+n"t 00 = -
) =41 +2)7° F19(0) = 41,
fO@) = -8 1+2)7° SO0 =5
fO)=6(1412)7 £0) = 6.
@) = -1 +2)8 &) =-
FO(z) =81 +z)7° £0) =8l
So,
2 3 4 5
P5(1)=I—%'+x‘3_—%+%a
2 2 o 2 8 27
P7(1)=I—’§-+—3-—T+—5——F+7,
22 22 & b 2 7 P2 <P
PB)=e-+3-3+3 5t 7 379
9, Let f(z) = \/1175 =(14z) "2 Then f(0) = 1.
fl@)= -1 +2)7%"? £(0) =3,
f(z) = -7(1 +z)72 0y = 5.
f”l(I) (1 +.’IZ) 7/2 fm(o) = _%55_?
fO@) = B0 fO0) = 3
Then
1 13 1 3
P‘_)(Il‘)=1—-2-I+§—2—"2=1—§11+§I2, )
P3(z) = Px(z) — 3 323313 =1- %1’ + g;t2 - %:1:3.
13-5-7
Py(z) = Ps(z) + 5—204—{ —1—%r+g:c2—-1%133+%08 N

10. Let f(z) = (1 + x)*.
(a) Suppose that p = 0. Then f(z) = 1 and f%) () = 0forany k > 1. Thus Pa(z) = Pa(z) = Pi(z) = 1.
(b) fp=1then f(z) =1+1z.50
f(0)y=1,
f'().') =1,
M y=0 k>2
Thus Pa(z) = Ps(z) = Pu(z) = 1 + =,
(c) In general:
fz) =1 +z)
flz)=p(1+2)P7".
f'(z) =plp - DA +2)P%
@) =plp-1)E -0 +2)"70
fO) = plp - D -2 -3 +2)""

f(O) =1,

51
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() =p,

f1(0) = p(p - 1),

10 =plp-1)(p-2).
F0) = plp - D - 2)(p - 3).

Py(r)=1+pr+ Ii(p;—l)z?,
Py(x) =14 pr+ P(PQ— 1)12+ pip— lé(p— 2)13.
Pi(z)=1+pr+ p(b?— 1)1,:: + pip - 1()5(p_ 2) 3
plp=1(p-2)p-3) 4
+ 7 x’.
11, Let f(x) =sinz. f(3)=1.
fi(r) =cosz fl(3)=0
f'(z) = —sinz f"({-;) = -1,
F(x) = —cosx (%) =0,
fM(x) =sinz 3 =1

So,

12. Let f(z) =cosz. Thencos § =sin§ = 4
Then f'(z) = —sinx, f’'(x) = —cosz, and f”'(x) = sin z, so the Taylor polynomial for cos = of degree three about

r=mxfdis
_ T LT _f. —cos% o® 2 sin% _E)3
P“(x)‘°°s4+( 5”‘4)(1 ) R (" 4) T3 (’ 1
V2 T 1 T\? 1 w\3
=5 (- (G-7)-36-3) +5(-9) )

13. Let f(z) = €. Since f*)(x) = e* = f(x) for all k > 1, the Taylor polynomial of degree 4 for f(x) = e aboutr = 1
is

et . ! ¢!
Piz)=e +elx -1+ 5 -1+ ’3—1(1 )+ (-
1

=e[l+(x—l)+%(z—l)2+é(r—l)3+ (r—l)“].

24
4, Let f(z) = VT +z = (1+2)%
Then f'(x) = l(I +z)" V% () = —&(1 + )32 and f' (x) = g(l + 2)~5/2, The Taylor polynomial of degree

three about £ = 1 is thus

_1 -3/2
Py(z) = (1+ 1)/ + %(1 + 1) V@ -1+ 1l B ;l) (z —1)?
3 ~5/2
+_5(L3%)_(1~ - 1)3

_ .r—l_(.z:—])'2 (r-1)°
“/5(” 1 32 1 128 )



Problems

15.

16.

17.

18,

1

R

20.

Since P.(z) is the second degree Taylor polynomial for f(z) about x = 0, P2(0)

“P(:r)

[¢

= £(0).

z=0
b = f'(0); and since
= f"(0).

=0

d'.’
azr 2
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= f(0), which says a = f(0). Since

2¢ = f"(0). In other words, a is the y-intercept of f(x). b is the slope of the tangent line to f{x) at z = 0 and ¢ tells us
the concavity of f(z) near z = 0. So ¢ < 0 since f is concave down: b > 0 since f is increasing; a > 0 since f(0) > 0.

As we can sce from Problem 15, a is the y-intercept of f(x), b is the slope of the tangent line to f(x) at z = 0 and c tells

us the concavity of f(z) near x = 0.
Soa>0.b<0andc <.

As we can see from Problem 15, a is the y-intercept of f(z), b is the slope of the tangent line to f(x) at z = 0 and ¢ tells

us the concavity of f(z) near 2 = 0.
Soa<0,b>0andc>0.

As we can see from Problem 15, a is the y-intercept of f(x), b is the slope of the tangent line to f(z) at z = 0 and ctells

us the concavity of f(z) nearx = 0.
Soa<0,b<0andc>0.

Using the fact that

F(2) = Po(z) = £(0) + £ (0)z + f”(O) f”;§0) f“j'(ﬂ) f“;w) f‘*z'w),_,ﬁ
and identifying coefficients with those given for Ps(x), we obtain the following:
(a) f(0) = constant term which equals 0, so  f(0)y=0.
(b) f'(0) = coefficient of x which equals 3. so  f'(0) =3.
(©) LS9 = coefficient of z° which equals — so f(0)= -
(d) L—-)- = coefficient of > which equals 0, so f3(0) =0.
(e) Lﬂ = coefficient of z® whichequals 5,  so  f®(0) = 5(6!) = 3600.
(a) We have . "

o) = 9(3) + ¢ (5)r —3) + L r = 5+ Dz — 50

Substituting gives

g(r)=3—2(.‘r—5)+%(r—5)2 - %(1—5)3«..

The degree 2 Taylor polynomial, P>(z), is obtained by truncating after the (z — 5)? term:

Py(r) =38 -2z~ 5) + 3 (= = 5)".

The degree 3 Taylor polynomial, Ps(z). is obtained by truncating after the (z — 5)* term:

Py(z)=3-2x—3)+ ~(zx—3)° — 5

(b) Substitute r = 4.9 into the Taylor polynomial of degree 2:

L

Py(4.9) =3 -2(4.9-3) + %(4.9 —5)? = 3.205.

From the Taylor polynomial of degree 3, we obtain

P3(4.9) =3 — 2(4.9 - 5) + %(4.9 -5)° - %(4.9 - 5)% = 3.2055.



580 Chapter Ten /SOLUTIONS

21.
f@)y =42 -7z +2 f(0)=2
f(x) =8z -7 () = -
f'(z)=8 F'(0) =8,

50 Po(z) = 2+ (—T)z + §2° = 42° — Tz + 2. We notice that f(z) = P2(x) in this case.
22, f'(z) =327 + 14z — 5, f’(z) = 6z + 14, f'"(z) = 6. Thus, about @ = 0,
14
Pi(z)=1+ —1‘+ ?m + :%13

=1-5z4+72° +2°

= f(@)

23, (a) We'll make the following conjecture:
“If f(z) is a polynomial of degree n. i.e.

f@)=ao+arx+ x4+ an12" "+ anz™.

then P, (z), the n'® degree Taylor polynomial for f(x) about x = 0, is f(z) itself”
(b) All we need to do is to calculate P, (x), the n*® degree Taylor polynomial for f about = 0 and see if it is the same

as f(z).
£(0) = ao;
F0) = (a1 + 2a2z +--- + naﬂz"")|z=0
= ai;
f'(0) = (202 +3 203+ +n{n— l)a,-.;zr"'2)|I=O
= 2la,.
If we continue doing this, we’ll see in general
FR0) = klax, k=1.2,3,---.n
Therefore,
Pa(z) = F(0) + %1 +1 ';(!O)f PR (':'(0)
=ao+ a1z + a2z’ + -+ + aya”
= f(z).
24,
3 3
b 250 = iy 25 = (1 5 ) =
25,
lim 05T l_(1_§+§)=lixn<l—£)=l.
x>0  1? -0 z? =0\ 2 4! 2

h R n® pt
26. Forf(h.)=6 'P4(h)=l+h+7+— o+ —.So

3! 4!
(a)
h p— p— —— —
lim & 1} h - Jim Pi(h)-1-h
h—=0 < h—=0 h?
AR S
= lim =2 + 3_: t
h—0 h?
= lim ! + Ll + s
Tako\z 3T
1
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(b)
h h? h?
e —1-h-4  Ph)-1-h-%
L
h:i "4
o Tt o (1 h)
=fm e S lmigt g
_1_1
T3 6

Using Taylor polynomials of higher degree would not have changed the results since the terms with higher powers of h
allgotozeroash — 0.

27. (a) We use the Taylor polynomial of degree two for f and h about x = 2.

@ = 1@+ 102+ LB 2y = 3z oy
n'(2) 7

W) = h(2) +H )z -2) + 5= (e - 2)? = 5‘(: -2y
Thus, using the fact that near z = 2 we can approximate a function by Taylor polynomials
3y — 2)?
lim flz) = lim E(g—)— = g
z=2 gz =2 5(x — 2)? 7

(b) We use the Taylor polynomial of degree two for f and g about z = 2.

f@) = f@) + F @ -2+ E2 @ -2y = 3@ -0y

g(z) = g(2)+ ¢’ (2)(x - 2) + g—l}'z—)-(a, -2)? =22z - 2) + %(x —2)%.

i

Cf@) S -2 - o
lﬁ’%;@i_lﬂ(‘zz(z-z)m(x—-z)ﬁ) _lﬂqz(m)—ﬁ—o-

28. Let f(z) be a function that has derivatives up to order n at z = a. Let

Thus,

Pa(@)=Co+Ci(x—a)+---+ Cn(z —a)"

be the polynomial of degree n that approximates f(a) about = a. We require that Pn(x) and all of its first n derivatives
agree with those of the function f(z) atx = a, i.e., we want

fla) = Pr(a).
f'(a) = Py{a).
f(a) = Pyl(a),

F™(a) = P (a).

When we substitute £ = a in P (z), all the terms except the first drop out, so

f(a) = Co.

Now differentiate Py (z):

Piz)=C1 +2C:(x —a)+3Ca{z —a)* +- -+ nCu(z —a)""".
Substitute z = a again, which yields

f'(a) = Pia) = C1.
Differentiate P, (z):

Pz} =2C243-2Cs(z —a)+--- + n(n - 1)Cu(z — a)"_?
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30. (a)

(b)

3. (a) S

(b)

32, (a)

(b)

(©

10.1 SOLUTIONS 583

The equation sin z = 0.2 has one solution near z = ) and infinitely many others, one near cach multiple of 7. Sce

. . T . .
Figure 10.1. The equation & — 3= 0.2 has three solutions, one near z = 0 and two others. See Figure 10.2.

v Yy
/’\"L_N_J N_J ;’y=0“2 NN U S G y =02
* T
Figure 10.1; Graph of y = sinz and y = 0.2 Figure 10.2: Graph of y = x — 2—3 and y = 0.2

Near r = 0, the cubic Taylor polynomial & — 23 /3! % sin . Thus, the solutions to the two equations near x = 0 are
approximately equal. The other solutions are not close. The reason is that x — 23/3! only approximates sin z near
x = 0 but not further away. See Figure 10.3.

VAY,

m—x3/3!
Figure 10.3
3
Nmt~l‘—t3—! 1—£—2-
A G
1 1 2 3|
t
/“‘ntdtz/ (1--) dt=t——| =0.94444---
0 t 0 1 0
3 5 5 )
sint _t-gtyg £t
t t - 6 ' 120

= (0.94611 ---
0

1 . ! 2 4 3 5
sint t f t t

dt =~ l-—+—|dt=t—- =+ -—

/0 { /0 ( 6" 120) 18 * 600

Since the coefficient of the z-term of each f is 1, we know f1(0) = f3(0) = £4(0) = 1. Thus, each of the fs slopes
upward near 0, and are in the second figure.

The coefficient of the z-term in g and in ga is 1. so g} (0) = g5(0) = 1. For g however, g5(0) = —1. Thus,
g1 and g2 slope up near 0. but g3 slopes down. The gs are in the first figure.
Since g1 (0) = g2(0) = ga(0) = 1. the point 4 is (0.1).
Since f1(0) = £2(0) = f3(0) = 2, the point B is (0, 2).

Since g3 slopes down, g3 is L. Since the coefficient of z” for g, is 2, we know
"
g1 (0)
'2! =2 ) g1 (0) =4.
By similar reasoning g5 (0) = 2. Since g; and g» are concave up, and g; has a larger second derivative, gy is I and

g2 is I1.
Calculating the second derivatives of the fs from the cocfficients z?, we find

AFOy=4 f£O=-2 f0)=2

Thus, f1 and f3 are concave up, with fi having the larger second derivative, so fi is IIl and f3 is II. Then f is
concave down and is L.
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1=(0).f I =D=(1-),(t-1)—=(2)f
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10.2 SOLUTIONS

L VB VR T\ Vi(E-3) Vi@-3)°
5“-7*7(“1)‘7 2 3
V2 V2 0w V2 m\2 V2 7\3
=T+_2'(’“—Z)_T( ‘z) ‘ﬁ(f‘z) -
£(8) = cos b 13) =%,
f(8) =-sing  f(§)=—%.
f) =—cos§  f(3)=-E,
FU0)y=sing  fU(E)= L2,
IR VZ-32)  VZ(e-3)
st = F-F(0-7)- Tt T
V2 V2 7 V2 7\, V2 7
=E-F -0 -F0E-1) +50-3) -
F(6) = sinf f(-2)=-%.
f@)=cos6 [~} =2,
f'(®) = -sing  f(-2)= 2,
F(8) = —cos8  fU(-3) =%
. Vi V2 VZ+2)? e+
sinf = -5+ T( 4)+T TR
V2 V2 V2, m\2 V2 3
=-3 F T(9+ )+T(9+Z) i7) (9+4) o
f(@) = tanz f3) =1
f (z) = cos? x fl(%) =2
f(x) = # = 2spe (3 =4,
f'”(z') —6512:5(4 :smx) + cog2 fm(ﬁ) = 16.
T2 _13
tan.z:—l+2( %)H(x_?,?) 164 3,*) 4o
T

f@ =t  j=1
fllmy=-3 F)y=-
foy=%  fra)y=2
f@) =~ (1) = -6
31;_1—(Jc--1)+2("”,2-!1)2 - 6(.1;;1)3 .

=1-(z-D)+(@-1 -(x-1)>%+---.

585



0 =(0),.f
‘021— = (0)(0)f z=1(0).f
0 =0 0=1(0).f
0 = (0)(n)f 0= (0)f
‘05
021(,Ts02 =) + zzoa(agr us) +  7O8p(. T s09) + gartg(zz uls —) =
081( 7500 —) + wopg(, = uis)+
TOSF( T UIS) + 2076 (w0 500) +  209T(,F500) + Tpo( wws —) = (T) o f
mozt(z;z:soo -)+ Cz()g{(;:r urs) + g;zrgg(am s00) =
rre(, 500 —) + Igs(zm §0D — )+
(Z96(,& ws) + FPY(,T Ws) + we(,T500) = (2),,f
er( xms —) + 28p(, 2500 —) + x91( T wWS) =
e1( zuts =) + xpg( 500 —) + TPe(, 2800 =) + zg7(_zus) = (z)(,.)f
TgI( Tws —) + 28(, 7500 —) =
Tp(wuts —) + zg( ruts —) + gzg(éx 500 =) = (), §
2,7 509) + TH( T s =) = (2),.f
ag( @ s00) = () 4
Lus = (x)f
(®) 07

swajqoid
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Thus

f(z) =sinz’ =

As we can see, the amount of calculat
fact, the next non-zero term in the Tay
of work to get.

(h)

10.2 SOLUTIONS 587

o

2 » 120

P i —

6
2 ot T T

ion in order to find the higher derivatives of sin z* increases very rapidly. In
lor expansion of sin 2?2 is the 10" derivative term, which really requires a lot

. 1 1
snnx=1—513+§$5—-~

The first couple of coefficicnts of the above expansion are the same as those in part (a). If we substitute 2 forr in

the Taylor expansion of sin z, we should get the Taylor expansion of sin

2

sinz® = 2% - %(12)3 + %(12)5 -
Y %1‘6+$z10—~-
21, (@ f(z) = In(1+ 2x) fo)y=o0
f'(@) = o5 floy=2
fl@)y=—ga [0 =4
@)= s 0 =16

ln(l+2:r)=21:—‘23;2+§1;3+...

(b) To get the expression for lu(1 + 2z) from the series for ln(1 + z), substitute 2z for x in the scries

In(l +2z) =2z —

9
2
1+‘L)-—-2—7+

IS

] il
n( 3

LN
4

(2)° , @) _ ()’

2 3 4
2 .l'3 4
=2I—2.’£'+T—4I + -

+ .-

(¢) Since the interval of convergence for In(1 + z) is —1 < z < 1, substituting 2r for z suggests the interval of

convergence of In(1 + 2x) is =1 < 2

:c<1,or—%<.7:< -,1;

22. By looking at Figure 10.4, we see that the Taylor polynomials are reasonable approximations for the function f(zr) =
V1 + z between £ = —1 and @ = 1. Thus a good guess is that the interval of convergence is—l<r<l.

@) = Va1

Pa(z)

Figure 10.4
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23. By looking at Figure 10.5 we can that the Taylor polynomials are reasonable approximations for the function f(z) =
71;3 between £ = —1 and £ = 1. Thus a good guess is that the interval of convergence is —1 <z < 1.

Figure 10.5

24. The graph suggests that the Taylor polynomials converge to f(z) = on the interval —1 < r < 1. See Figure 10.6.

. 1—x
Since
1 2, .3
———=1l4z+r’+2*...
l-=z
the ratio test gives
n+1
lim lans1] = 1 i = |z|.
n—oo |a..,| n—oc Il‘"l
Thus, the series converges if |zf < 1; thatis, -1 <z < 1.
I
Figure 10.6
25, The Taylor series for In(1 — z) is
2 3 n
z r x
h(l-z)=-r->%>-Z"—--- - =— —... )
( ) 2 3 n
S0
. n+ . 1 .
tim 1l gy YO D Ll =|z}.
n—ooc |Qp n—oc l/n n—too |71 4+ 1

Thus the series converges for |z < 1, and the radius of convergence is 1. Note: This series can be obtained from the series
for In(1 + z) by replacing = by —z and has the same radius of convergence as the series for In(1 + ).

26. (a) We have shown that the series is

pe—1) . pp=-Dp=-2) 5

1+ pxr+ 3 3

so the general term is
pe-1).. . (p=(n=1) ,

n!




27.

29.
30.
31.
32.

33.

10.2 SOLUTIONS

(b) We use the ratio test

pp=1)...p—(n=-1))p—n)-n!
(n+Dpp-1...p—(n-1))

T LUEIT = |z| lim ”_—"|
noo  |an| n—oc n—oo [N +1

Since p is fixed, we have
-n

i
i I +1

n—oc

=1, so R=1.

This is the series for e* with x replaced by 2, so the series converges to e,
This is the series for sin z with z replaced by 1, so the series converges to sin 1.
This is the series for 1/(1 — z) with z replaced by 1/4, so the series converges to 1/(1 — (1/4)) = 4/3.
This is the series for cos r with z replaced by 10, so the series converges to cos 10.
This is the series for In(1 + ) with £ replaced by 1/2, so the series converges to In(3/2).
The Taylor series for f(z) = 1/(1 +x) is
1

=l-z+z2’—2>+---.
T+z r+z r +

Substituting = 0.1 gives

1 1
1-01+(01)2 - 01)°+--- = = —.
+(0.1) 01"+ 1+0.1 1.1
Alternatively, this is a geometric series witha = 1,z = —0.1.
This is the serics for e™ with = 3 substituted. Thus
9 27 81 32 3 3 3
1434 g+ =143+ 5745+ T4 =eb,
. This is the series for cos © with z = 1 substituted. Thus
1,1 1 o
—E+E—a+~-~—cosl.
. This is the series for e® with —0.1 substituted for z, so
0.01  0.001 —01
1—0.1+T—T+---=e .

. 1 . . . .
Sincel+z+z°+r¥+---= , a geometric series. we solve = 5 givin l =]l-irsozr= :l—
giving
1-—=zx 1-=z b) 5

Since r — -;-12 + %13 + .- =In{1 +z).wesolveln(l + ) =0.2, giving 1 + z = e®%, 50z = %% — 1.
(a) From the coefficients of the (x — 1) terms of the fs, we see that

A =1 fH)=-1  fi(1)=-2
From the (z — 1)° terms of the fs, we see that
(1) _ 1 2 (1) _ 3 (1) _
91

2 ’ 2! =L 2 =L

so fi(1) ==-2.fr(1) =2 f5(1) =2.

589

Thus, fi slopes up at x = 1 and f> and f3 slope down; f3 slopes down more steeply than fa. This means that

the fs are in the first figure, since graphs II and III in the second figure have the same negative slope at point B.
By a similar argument, we find

@) =-1, ¢p(4)=-1, g¢3(49)=1 andg/(d) =-2. g () =2 g5(4)=2

Thus, two of the gs slope down, one of which is concave up and one is concave down; the third g slopes up and is

concave up. This confirms that the gs are in the second figure.
(b) Since f1(1) = f2(1) = fa(1) = 3, the point 4 is (1. 3).
Since g1(4) = g2(4) = gs3(4) = 3, the point B is (4, 3).

(c¢) In the first figure, graph [ is fi since it slopes up. Graph Il is f2 since it slopes down, bul less steeply than graph 111,

which is f3.

In the sccond figure, graph [ is ga, since it slopes up. Graph II is g» since it slopes down and is concave up.

Graph 111 is gy since it slopes down and is concave down.
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39. Let C,, be the coefficient of the n*® term in the series. Note that

0=C = %(ﬁe”)
=0
and since
3 2
X %(1‘281 )
-_= = :=0
3 =Ce 6 ’
we have &
2 22 6!
——(x7e") = — = 3060.
dr =0 2

40. Let Cp be the coefficient of the nt® term in the series. C, = f/(0)/1l, so f/(0) =1IC;y =1-1=1.
Similarly, f"(0) =2!Ca=2!- 3 =1
f0)=31Cs =3 =21=2
FU9(0) = 10!1Cro = 10! - 5 = 3% = 9! = 362880.

41. We define e'® o be
+ PR

i o @07 (@@ @8 | i8)° | (i0)°
e’ =140+ -+ -+ -+ 5 g

Suppose we consider the expression cos 8 + i sin 8, with cos 8 and sin # replaced by their Taylor series:

. 62 o' 6° : 9> 6
c039+ism0=(1—2—!+I—a+--')+1<9—§+-§—-"

Reordering terms, we have

. ¢ ie® e i® 8°
c059+ism0=1+i0—§—13—!+-_ﬁ+g—!—a—~~~

Using the fact that i2 = =1, % = —i,i* = 1,i® = i,- -+, we can rewrite the series as
(i)’ (18)°  (6)' . (8)°  (i6)°

T T - I TR
Amazingly enough, this series is the Taylor series for €* with i8 substituted for x. Therefore, we have shown that

cosé +isinf =e”.

cosf +isinf =1++i6 +

Solutions for Section 10.3

Exercises

1. We'll use

o= i 1 1y (-1y o
I+y=(01+y) ”1+(2)”+(2)(2)2'
B (F) D) g+
2)\2 7 )3
2 3
_ y_ ¥ .y _
'1+2 8+16

Substitute y = —2r.
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10.3 SOLUTIONS 593

15. Using the Binomial theorem:

1
Vi-z

=(1-z)""
=1+ (_%) (-z) + (-1/2)(—23!/2)(‘1')-

— (_1/2)(—3/‘2)"'51'—% —n+ 1)(—z)"

-+ -

+---forn > 1.

Substituting 3 for z:

1 2y —1/2
vV1-y?
, 1/2)(3/2) -+ (3 +n = 1)y
=1+%y'+%y4+'~+(/)(/) ,_E( n =Ly +---forn2>1.

16.
1 __1__1(1+£)“
2+z 20+2) 2 2
1 1%, (% 2 r\?
=3 ‘5*(5) "(5) +e
17.
-1
8 - a_ _(,=
Vel +2? o1+ 5)} a
1\ 17 1 1 3 2 2
=1+ (~5) 7+3 (-3) (-3) <“>
1/ 1 3 5y (222
w35 D) (%) +-
1 /2z\?> 3/2\Y 5 fz\®
=1-3(5) +:(0) -5 () -
Problems

18. (a) Writing

and using the Binomial expansion, we have

f(x)zPZ(x)zb(l——a—:> =bh- —

(b) A graph of the upper half the ellipse is shown in Figure 10.7. Since the graph has a horizontal tangent at x = 0, the
coefficient of z is 0.
(c) The parabola is

Its z-intercepts are £ = +v2a.
(d) The graphs of
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are shown in Figure 10.8. The maximum ditference occurs at x = 0.1 orx = —0.1, so
Maximum error = 2 — % - 2\/ 1— (0'91)- ~3-107".
T&y"of polynomial: Ellipse:

y — 9 _ 2
y=2=9 o, T

b
l 3

—a a *
-3v2 -3 3
Figure 10.7: Graph of V2
y=by/1—-22/a? Figure 10.8
19. The Taylor expansion about § = 0 for sin 8 is
9—§-+5—7!-+-~.
So 3 5 -
. 8 g o
1+5m9=1+9—3—!+5—!—ﬁ+-~-.
The Taylor expansion about § = 0 for cos § is
e'_’ 94 06
c059=l—i+4—!—§+---

The Taylor expansion for -]%6' about § = 0 is

— 1 _ 2 _ 3 -l_”‘
1+0_1 0+6°—6"+8 .

So, substituting —8° for §:

1 e VLI ENPT I S N B
o = 1= (<6 + (=07) — (=6°)° + (=67)" +

=140 +60" +0°+6°+-...

For small 8, we can neglect the terms above quadratic in these expansions, giving:

1+sinfx~1+8

02
cost ~1— 7
1 2
—_— 1 +6°
-~
For all 8 # 0. we have
0'..‘

1—— <146
5 <
Also, since 8% < 6 for 0 < 6 < 1, we have
6 )
1—T<1+9 <1486

So, for small positive 8, we have

<1+siné.

1
cosf < T
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20. From the series for In(1 + y),
g gty
In(1 -—y — Lo 2 ey
n(l+y)=y 3 + 3 1 + -,
we get
4 6 8
D=L LY,
In(l+y )=y Tt T +
The Taylor series for sin y is
3 5 7
. y Y
smy=y—§+-§-—%+-
So 6 10 14
iyt =L LYY L
sy =y -yt owt
The Taylor series for cos y is
2 4 6
oS = y ¥ ¥ L.
(,osy—l—g+.u 6!+
So
2 4 6
= g Y y
1—-cosy= ?—:'—’1"6—"?'
Near y = 0. we can drop terms beyond the fourth degree in cach expression:
4
In(1+ )=y - y?
siny’ = v
y? oy
l-—cosy= TR
(Note: These functions are all even, so what holds for negative y will hold for positive y.)
Clearly 1 — cosy is smallest, because the y* term has a factor of . Thus, for small y,
2 4 4
¥ Y 2 _ Y 2
P T
So ] B
1 =-cosy < In(1 + y°) < sin(y’).
21. The Taylor serics about 0 for y = =2 is
y=1+z"+r' +2°%+---.
The series for y = (1 + z)'/* is, using the binomial expansion,
‘ _1+5I+1(_§) r_‘*’+1(_§) (_Z) 2
VEITETIUI) Ty '
The series fory = /1 + -:;i =(1+ ;)1/2 is, again using the binomial expansion,
1 £ 101y 2 1/1 3y
R (I8 S [
y=l+g-9+5\73) 7273/ \72) T
1 —(1/2
Similarly for y = =(1-z)" W3,
3

595
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Near 0, let’s truncate these series after their z2 terms:

1_1T2z1+z2.
1 3 .
1 Y2 1 3 »
(1+x) 1+4r 7%
r 1 1
J1+2 =1+ 20— =2t
+2 1+41: 321
1 1 .3,
1_I~1+51781‘.

Thus -1_#:-; looks like a parabola opening upward near the origin, with y-axis as the axis of symmetry, so (a) = 1.
Now 7;_—: has the largest positive slope (3), and is concave up (because the coefficient of x? is positive). So (d) =

IL.
The last two both have positive slope (%) and are concave down. Since (1 + x)'} has the smallest second derivative

(i.c., the most negative coefficient of z?), (b) = IV and therefore (c) = IIL

22, v
1
— 1
V=17
y=e*
i 1 T
-1 1
(a)
4 (3}
-z _ 2 I z
e =l-=z +§—§+~--
1

_ 2 4 6
il A kR R

Notice that the first two terms are the same in both series.

(b) is greater.
1+ z2
(c) Even. because the only terms involved are of even degree.
(d) The coefficients for e~ become extremely small for higher powers of z, and we can “counteract” the effect of these

powers for large values of . The series for ﬁg has no such coefficients.

23. (a) The Taylor approximation to f(z) = cosh z about z = 0 is of the form

" 2 n) n
-——f (;')I +...+——f( (O)I .

cosh r = cosh(0) + f'(0)z + .

We have the following results:
f(z) = coshz so f(0)=1,
flix) =sinhz so f'(0)=0.
fliz) = Zd;(sinha:) =coshz so f'(0) =1,
(%) =sinhz so f(0) =0.

The derivatives continue to alternate between cosh x and sinh z, so their values at 0 continue to alternate between 0

and 1. Therefore 2 3 4
z” T T
cosh:czl+0-z+1-5!-+0-§+1‘3+“',
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26. Using the binomial expansion we have

oy 1/2
val+z?=a (1+z—,_,-)
Y (1 + 1z° N (1/2);—1/2) ot + (1/2)(—13{!2)(—3/2) x_:+)

2 a? at a

122 1z 1 z°

=“(1+§¥‘§a—4+réa—s+"')-

Similarly, we have

Combining gives

5 oo1xf 1 x8 2 18
z=\/a2+:c2—\/a'-'—;r-=a(2-——+24——T-'-> =;+§Eg+"‘

27. This time we are interested in how a function behaves at large values in its domain. Therefore, we don’t want to expand

V' = 270(V/R? + a2 — R) about R = 0. We want to find a variable which becomes small as R gets large. Since R > a,

it is helpful to write
. a®
i =R27ro( 1+§—1>.
We can now expand a series in terms of (%)2. This may seem strange, but suspend your disbelief. The Taylor series for
\/l + %; is

Ly lal, @REY2) (_>+

2 R? 2 R?
So V' = R2ro (1 + %;—22 - % (;—i—) ) + = 1). For large R, we can drop the —%%} term and terms of higher
order, so .,
woa”
V= R

Notice that what we really did by expanding around (%)") = 0 was expanding around R = oc. We then get a series that
converges for large R,

28. (a) Ifp =0,

lefuside =b(1+1+1)=3b=0

so the cquation is almost satisfied and there could be a solution near @ = 0.

(b} We have
3 5
si11¢=¢—ﬁ—!+(§—!—--~
2 4
cos¢=1—(;—!+%—
So

2 4 2 4
cos‘¢=<l-g—!+%—---) (1_2—!4.1_...).

Neglecting terms of order ¢ and higher. we get
sing = ¢
cosg 1

2,
cos“ ¢ = 1.

So¢+b(1 +1+1)=0. whence ¢ = —3b.
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(c)

1 ” 1 ) 1_.; 15
/e"'dzz/ (1—12-0-7——)(11
2 6
0 o

A
- 310 42/

(d) We can improve the left and right sum values by averaging them to get 0.74439 or by increasing the number of
subdivisions. We can improve on the estimate using the Taylor approximation by taking more terms.

34. (a) The Taylorseriesfor 1/(1 —x)=1+a+a?+23+... 50

= 0.74286.

1 1 2 3
_—_— =] . U2) 02)7 + ...
098 = T=o00m +(0.02) + (0.02)" + (0.02)
1.020408 ...

(b) Since d/dz(1/(1 — z)) = (1/(1 - z))?, the Taylor series for 1/(1 — z)? is
.c%(l+r+zg+13+---)= 1+2r+322 +408 +---

Thus

1
Q ;9)2 = Toory = !+ 2001) +3(0.0001) + 4(0.000001) + -

= 1.0203040506 . ..

Solutions for Section 10.4

Exercises

L. Let f(z) = (1—-x)/3 50 £(0.5) = (0.5)'/%. The error bound in the Taylor approximation of degree 3 for £(0.5) = 0.5%
about r = 0 is:

MAjos -0 A(0.5)*}

1! T
where | ()] < M for0 < z < 0.5. Now, f(}(x) = -80(1 - )~ (/3 By looking at the graph of (1 — z)~(1/3),
we see that | f™(z)] is maximized for z between 0 and 0.5 when « = 0.5. Thus,

. -(11/3) g
{4) <§_Q(l) _ 80 Suys
171 81 \2 81 2 !

|E3| = |£(0.5) — Pa(0.5)| €

SO
80 - 2113 . (0.5)"

23| <
sl < 81-24

=~ 0.033.

[

Let f(x) = In(1 + z). The error bound in the Taylor approximation of degree 3 about = 0 is:

M-j05-0"  AM(0.5)*
4! -

|Ea] = |£(0.5) ~ P3(0.5)] < 27

where | f* ()] € M for 0 < = < 0.5. Since f () = (‘4%)‘ and the denominator attains its minimum when r = 0,
we have | f (r)] €350

1 =y4
|Ea| < &?;’)— ~ 0.016.
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. Laf(z)y =1+ r)‘{’ = 713_“_—; The error bound for the Taylor approximation of degree three for f(2) = 715 about

r=0is:

M-[2-0"  M-2¢

4! oo
where | F®] < M for 0 < z < 2. Since f®(x) = 12 (14+2)7(9/?), we sce that if z is between 0 and 2, | f ()| < 132,
Thus,

|Es| = [£(2) — Ps(2)] <

105 2* 105
< —+ —=— =4.375.
Bl < T6 31 = 23 =9
Again, this is not a very helpful bound on the error, but that is to be expected as the Taylor series does not converge at
x = 2. (At = 2, we are outside the interval of convergence.)

. Let f(x) = tan r. The error bound for the Taylor approximation of degree three for f(1) = tan 1 about z = 0 is:

MA1-of _ M

|E3| = |f(1) — P3(x)| < 1 24

where | f)(z)] < M for0 < r < 1. Now, fU¥)(z) = 18sip= 4 2:—05;'5‘—13 From a graph of f¥)(z), we see that f*)(z)
is increasing for x between 0 and 1. Thus,

17 @) < 1FM (1) = 396,

¥ 396

|Es| < 57 = 16.5.
This is not a very helpful error bound! The reason the crror bound is so huge is that z = 1 is getting near the vertical
asymptote of the tangent graph, and the fourth derivative is enormous there.

Problems

5. (a) The Taylor polynomial of degree 0 about ¢ = () for f(t) = e* is simply Po(x) = 1. Since ' > 1 on [0,0.5}, the

approximation is an underestimate.
(b) Using the zero degree error bound, if | f'(t)] < M for 0 < ¢ < 0.5, then

|Eo| < M - |i] < M(0.5).
Since |f'(t)| = |e'| = e' is increasing on [0. 0.5).
IF<e®® <vVi=2.

Therefore
|Eo| < (2)(0.5) = 1.

(Note: By looking at a graph of f(2) and its 0" degree approximation, it is easy to see that the greatest error occurs
when t = 0.5. and the error is €% — 1 = 0.65 < 1. So our error bound works.)

6. (a) The second-degree Taylor polynomial for f(t) = e is Pa(t) = 1 + ¢ + t2/2. Since the full expansion of €' =

14+t+2/2+3/6 + /24 + - - - is clearly larger than Pa(t) for ¢ > 0, 2(t) is an underestimate on [0. 0.3].
(b) Using the second-degree error bound, if [ f(®(¢)] < M for 0 < ¢ < 0.5, then

i M 5 M(05)2
|E2| < 3 e < —5

Since [f)(t)] = e, and ¢ is increasing on [0, 0.5],
A <e®™ <Va=2.

So .3
< DO o7
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(a) 8 is the first degree approximation of f(#) = sin 8: it is also the second degree approximation, since the next term in
the Taylor expansion is 0.
Py (8) = @ is an overestimate for 0 < 8 < 1, and is an underestimate for —1 < 6 < 0. (This can be seen easily from
a graph.)

(b) Using the second degree crror bound, if | f*(8)] < M for =1 < 6 < 1, then

MO M
Eql < < —.
ol € —5— <5
For what value of M is | f9(8)] < M for —1 < 8 <12 Well, |f®(8)] = | — cosf| < 1.S0 |E2| < L = 0.17.

6 . . S P
(a) 6 — 7 is the third degree Taylor approximation of f(6) = sin ; it is also the fourth degree approximation, since the
next term in the Taylor expansion is 0.
P3(6) is an underestimate for 0 < 6 < 1, and is an overestimate for —1 < 8 < 0. (This can be checked with a

calculator.)
(b) Using the lourth degrec error bound, if | f(®)(8)] < AMf for —1 < 6 < 1, then
M-8 M
E4 < < —.
IBal < == < 13

For what value of M is | f®)(8)| < M for —1 < 6 < 1?2 Since f*°)(#) = cos 8 and | cos 8] < 1, we have
1
< — < 0.0084.
|Ea] < g S 0.0084

(a) The vertical distance between the graph of y = cos z and y = Pjo(z) at £ = 6 is no more than 4, so
|[Error in Pio(6)| < 4.

Since at z = 6 the cos z and Pao () graphs are indistinguishable in this figure, the error must be less than the smallest
division we can see, which is about 0.2 so,

[EITOI' in on(ﬁ)l < 0.2.

(b) The maximum error occurs at the ends of the interval, thatis,atx = =9,z = 9. Atz = 9, the graphs of y = cosr
and y = Pao() are no more than 1 apar, so

Maximum error in Pag(z) <1
for-9<r<9 =

(c) We are looking for the largest z-interval on which the graphs of y = cosz and y = Pyo(z) are indistinguishable.
This is hard to estimate accurately from the figure, though —4 < = < 4 certainly satisfies this condition.

The maximum possible error for the n*" degree Taylor polynomial about £ = 0 approximating cosz is |Ex| <
ntl S . .
%ﬂ—'ﬂ-—, where |cos("‘“) z| € M for 0 € r € 1. Now the derivatives of cos r are simply cos ,sin x. — cos r, and

n4l
< 1 The same

— sin . The largest magnitude these cver take is 1, so | cos™+1 ()| < 1, and thus |Ey] < o < oo

argument works for sin .

By the results of Problem 10, if we approximate cos 1 using the nt degree polynomial, the error is at most ﬁ
For the answer to be correct to four decimal places, the error must be less than 0.00005. Thus, the first n such that
ety < 0-00005 will work. In particular, when n = 7. L = 35 < 0.00005. so the 7** degree Taylor polynomial
will give the desired result. For six decimal places, we need (n_:—TV < 0.0000005. Since n = 9 works, the 9" degree

Taylor polynomial is sufficient.

(a)
Table 10.1 Table 10.2
E, =sinr — =z E, =sinr -z
T sinx E T sinzx E
—0.5 | —0.4794 | 0.0206 0 0 0
—0.4 | -0.3894 | 0.0106 0.1 | 0.0998 | —0.0002
—0.3 | —0.2955 | 0.0045 0.2 | 0.1987 | —0.0013
—0.2 | —0.1987 | 0.0013 0.3 [ 0.2955 | —0.0045
—0.1 | —0.0998 | 0.0002 0.4 103894 | —0.0106
0.5 | 0.4794 | —0.0206
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(b) See answer to part (a) above.
@ === 0.03 +--==-----
N

1 R e

The fact that the graph of Ej lies between the horizontal lines at £0.03 shows that |Ey| < 0.03 for —0.5 <

r <0.5.
13. (a) y

N 0.01 T y=2?

\\ // El
\\ /,
— =+ =
-0.1 0.1
-0.01 +

The graph of E; looks like a parabola. Since the graph of E) is sandwiched between the graph of y = z” and

the z axis, we have
2
|Ev| €27 for |z] £0.1.
(b) y
y=23/
/
-0.1 -
' _ ;/..-/4# T
et 0.1
7/
/
/
4 —-0.001

The graph of E3 looks like a cubic, sandwiched between the graph of y = z3 and the x axis, so

|E2| < 2* for |z] <0.1.

(c) Using the Taylor expansion
2 3
T = r .z
e =ltr+r+ 0+
we see that
. - 14
Ei=c'-(+a)=5+5+ 5+
Thus for small z, the £2/2! term dominates, so
II
El ~ i,

and so E; is approximately a quadratic.

Similarly
2 3 e}
E,=e" —(1 Ty . .
sz - (L4t )=+

[~

Thus for small z, the z3/3! term dominates, so
T

and so E, is approximately a cubic.
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0.01 4+

} ol 4
-0.1/ Nl
Eq
-0.01 +
The graph of Eo looks like a parabola. and the graph shows
|Eo| < 0.01 for x| <0.1.
(In fact | Eg| < 0.005 on this interval.) Since
- 22zt 2®
COST = | —i-i'?!'—a-l—'
2 4 6
I S xI
EO:COSI_1=_2_!+I—E+“"
So, for small =,
2
EO ~ -?,

and therefore the graph of Ey is parabolic.

Since f(x) = e, the (n + 1)* derivative ") (ir) is also €%, no matier what n is. Now fix a number z and let M = €®,
then |f{"+D(2)| < e' < €* on the interval U < ¢ < z. (This works for z > 0; if z < 0 then we can take M = 1.) The
important observation is that for any  the same number A bounds all the higher derivatives f (n+1) (),

By the error bound formula, we now have

Mz
{n+1)!

To show that the errors go to zero, we must show that for a fixed x and a fixed number A,

|En(z)] = |€* — Pa(z)| < for every n.

A“[ Ln+l
G

Since M is fixed, we need only show that

=0 as n—oc.

1 n+1

—

iy -0 as n—oc.

This was shown in the text on page 456. Therefore, the Taylor series 1 4 z + £°/2! + - - - does converge 1o e*.

o 2
.sm.r—.r.—g-i-ﬁ
Write the error in approximating sin = by the Taylor polynomial of degree n = 2k + 1 as E,, so that
3 5 2k+1
nr=r— — 2 (e
sinr ==z 3!+5! (-1) (2k+1)!+E"'
(Notice that {(—1)* = 1 if k is even and (—1)¥ = —1if kis odd.) We want to show that if z is fixed, E, — O as k — oo.

Since f(x) = sinr, all the derivatives of f(x) arc £ sin x or & cos ., so we have for all  and all =
lF* ) <.
Using the bound on the error given in the text on page 456, we see that

1 |2k+2
|En| < mm .

By the argument in the text on page 456, we know that for all r,
Iz|2k+2 I-'17|n+]
= -
2k+2)  (n+1)

Thus the Taylor series for sin x does converge to sin x for every z.

0 as n=2k+1—0c.



606 Chapter Ten /SOLUTIONS

Solutions for Section 10.5

Exercises

1. No, a Fourier series has terms of the form cos nz. not cos™ z.

2,
3.

Yes. Terms are of the form sin nz and cos nx.

Not a Fourier series because terms are not of the form sin nz.

4. Yes. This is a Fourier series where the cos n terms all have coefficients of zero.
5.

1 [T 1
Go—g/—xf(l‘)dl'—%

ay = 71_/ f(x)cosxdx =

Similarly, a2 and a3 are both 0. _
(In fact, notice f(x) cosnz is an odd function, so f_T f(z)cosnz =0.)

b2

1 [" . 1| [°
by == f(r)sinzdz = —

7 ) 7| J _
1
—|cosz
T

% / f(x)sin2zdz

i/: f(z)sin3rdz
T -

H =

N |-

3 |

w

A~

/.

—sinz

cos 2z

cos 3z

1t] -
/ -—1dx+/ ldr} =0
- [¢]

n
—cosmd;r+/ cosxd;r]
0

0 n
0

—sinzdr + / sinzdz]
0
0 ﬂ] 4
0

—sin2zdr + / sin 2x dz‘]
0

0 1 =
+ (—5 cos 2z)

+sinzr = 0.

-

+ (—cos )

-7

=0.

0J

—sin3zrdr + / sin 3z dx]
0

0 ES
+ (—l cos 3z)
- 3 0

|.|““

w

Thus, Fi(z) = Fa(z) = 4 sinz and F3(z) = Lsinz + 3L sin3z.

Fi(z) = Fa(z) = ﬁsinx

1
-7
\/\-/J'_l
!

F3(x) = 2

n

sinz + 3= sin3z
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)
[ —z cos(nz) dz +/ mcos(n:r)dr]
0

10

+ <— sin(n.a) + i Cos(n:z:))

6. First,

T
2

|

1 [" 1]/ - L] 22
0=§/_ﬂf(m)d:c=5;[/_x—zdz+/o rdw]=§[—7_-

To find the a;’s, we use the integral table. For n > 1,

= %/j: f(z) cos(nz)dx =

S =

[

H |-

3IH

sin(nr) — -—1— co;(n.t))

1 J

1
== ( st cos(—mr) + = cos(nr) - %:)

kg

= _r—(cosnn -1)

7

Thus, 4y = —2.a = 0, and a3 = —g-. To find the b;’s, note that f(x) is even, so for n > 1, f(x)sin(nz) is odd.

us,/ f(z)sin(nz) = 0,s0all the b;’s arc 0. Fy = F, = 5 — 4 cosx. F3 =

4 .. .
- COST — 5 cos 3z,

:o|.l

L -+
—n T -7 T
il —_—t T Il i T
Fi(z) = F(z)= 5 — &cos @ Fa(x) =5 - écosr - -9—'- cos 3z
7. The energy of the function f(z) is
1 [ s 1 {7, 1 L7
E=- r)) dr = — r°dr = —=z
2 [ veyae= L[ saes s
2'73 2 5
=— - (- = = 7% = 6.57974.
(7' (-7%) 3 =3 3797
From Problem 6, we know all the b;’s are 0 and ap = §,a1 = % ar =0,a3 = —9%. Thercfore the energy in the

constant term and first three harmonics is

A2+ AT+ A+ AY =24l +al +4al + 4}

2
=2(L)+16+0+ 18— 657506

4 817
which means that they contain g ;;;?i = 0.99942 = 99.942% of the total energy.
8. First, we find ao.
1 i 2 1 (2 w?
= —— " de = — | — = —
= o _”r * 27r<3 . 3

To find @,.n > 1, we use the integral table (I11-15 and i11-16).

b4

1 [, 1[z? | 2r 2 .,
a, = — rfcosnrdr = — Fsm(nr) + 3 cos(nr) — —; sin{nr)
= - n

w

-%

[—: cos(nm) + 2—” COS(—H‘E)]
3 e
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Again, cos(nw) = (—1)" for all integers n, so a, = (—1)"7—}5. Note that

L7 5.
bp = — T~ sinnzdr.
T

k3
z” is an even function, and sin nz is odd, so % sin n is odd. Thus [~ z*sinnzdz =0, and b, = 0 for all n.
We deduce that the n*" Fourier polynomial for f (where n > 1) is

n

—2 ;o
Fa(x) = % + ) (-1) 1i° cos(iz).

i=1
In particular, we have the graphs in Figure 10.9.
F3(z)
- flz)=2*
Fa(x)
Fi(z)
|~ e
Figure 10.9
9. i
1 [ 1 T
a0 = 5 _vh(x)dr— E/o zdr = 1
As in Problem 10, we use the integral table (III-15 and [11-16) to find formulas for a» and b,,.
k. ™ T
an = l/ h(zx)cos(nz)dz = ! / xcosnrdr = 1 (£ sin(nz) + iz cos(nz))
TJ_. T Jo T n 0

I~

n
1
= %(—, cos(nw) — 7%)

1
= (cos(mr) - 1).

Note that since cos(n@) = (—=1)".a. = 0if nisevenand an = — 5= if n is odd.

br = %/ h(r)cos(nz)dz = %/ zsinzdz
T = 0

1| =

&x 1 .
( - cos(nz) + el blﬂ(ﬂl))

( -z cos(mr))
n

1
—dr CO ]
=-= s(nm)

n

[

R

=Ly i
n
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We have that the n*! Fourier polynomial for h (for n > 1)is
R ey ' _ o (=1)*singi)
Ha(z) = 3 + 2. (m (COS(IA) - l) - cos(ir) + — .

This can also be written as

Halz) = @i- 1=

1 1 1 . . [%]
g + Z (-1) +ism(1a:) + Zl -2 cos((2i - 1))

where [%] denotes the biggest integer smaller than or equal to 3. In particular, we have the graphs in Figure 10.10.

h(x)
Hs(z)

Hoa(z)
H, (1')

Figure 10.10

10. To find the n*® Fourier polynomial. we must come up with a general formula for a,, and b,,. First, we find ag.

1 [ 1 [T 1 [z2]"
ao=§/ g(m)dm=2—_/ :cd:c=§[% ]:0

Now we use the integral table (I1I-15 and 111-16) to find a, and by, for n > 1.

1 [7 . 1
an = — / zcosnrdr = (E sin(nz) + — cos(nx))
. n n

T -

[

1
(? cos(nm) — ”Lz cos(—mr)) =0

{Note that since x cos nz is odd, we could have deduced that f; rcosnr =0.)

x

| b

1 [7 .
bn = = / rsinnrdr = (— :—;(tos(nz) + Lﬁ sin(m:))
- n-

I

-7

( -z cos(nrw) — z COS("""))
n n

A=

9
= ——Ccos(innw
- cos(nm)

Notice that cos(nm) = (—1)" for all integers n. so b, = (—1)"*!(2).
Thus the n** Fourier polynomial for g is

Cafr) = 3 (1) % sin(iz).

i=1

In particular, we have the graphs in Figure 10.11,
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g(x)

G3(xr)
Ga(x)
G{x)

- T

Figure 10.11

Problems

11. (a) The graph of g(z) is

- -7 /2 Tf2 L

First find the Fourier coefficients: ag is the average value of g on [~ 7] so from the graph, it is clear that

1 1
aozﬂ(wxl)=§,

or analytically,

/2 w/2
1" 1 1 1 (= m
i [ & [ 2] (D)
a0 = 53— /-#9(1:) T=o /_T/zldx 5T T 5
1 1
- E(T‘.) - 57
1 3 1 /2 1 x/2
ar = :/ g(x)coskxrdr = :/ coskrdr = —sinkz
n _x n _=/2 w =2
=L (sink—Tr —sin (—k—ﬂ)) =L ("siuﬁ)
Tkx T2 2 T ke 7 2/
- 1 [ 1 i
by = —/ g(z)sinkzdr = —/ sinkrdr = o cos kr
—x TJ_ap2 —n/2
k

So,

I
|
bl
H
N
C
g
o F
|
"
=]

.
VaanmnN
|
(\.’)l =i

—~ SN’
N’
Il
|

Tl
E
1N
o]
N’
Il
[em)
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57\ 3
[ ! (7 sin 37{) 2
13 = — |2 — ) =—-—,
SR 2 3n’
which gives
F(")'-l+g 0si& — — cos 3T
slr) = 5 o COS & 3T :08 .
. F3(z)
i . 9(7)
| |
| ]
- o P 1
-7 wf2 w/2 El

(b) There are cosines instead of sines (but the energy spectrum remains the same).

12, We have f(z) = 2.0 < £ < 1. Lett = 2wx — =. Notice that as r varies from 0 to 1, { varies from —x to 7. Thus
if we rewrite the function in terms of t, we can find the Fourier series in terms of ¢ in the usual way. To do this, let
g(t) = f(z) =z = 5= on —w < t < 7. We now find the fourth degree Fourier polynomial for g.

1 7 1 [T t+nw 1 t+
ao—ﬂ/;:g(t)dt—E/;’?dt—w(g-(“ut)

Notice, ag is the average value of both f and g. Forn > 1,

”

| —

1 [Tt+x 1 i
an = ~ ./_,, 5 cos(nt)dt = _le/-n(tcos(m) + 7 cos(nt))dt

1 ft . 1 T .
7.z [; sin(nt) + 2 cos{nt) + ~ sm(nt)]

=0

bn = 1 t+w siu(nt) dt = L, (t sin(nt) + msin(nt)) dt
_x 2m 27

-7

1 t 1 . T
5.3 [ - cos(nt) + - sin(nt) - cos(nt)] B
1, 4x 2 _ 2 e
= 271-‘-’( - cos(mn)) = — cos(mn) = _7rn( Htr.

We get the integrals for a, and by using the integral table (formulas 111-15 and III-16).
Thus, the Fourier polynomial of degree 4 for g is:

1 2, 1. 2 ., 1 .
G4(t)=§+;_-smt—;sm2t+§;sm3t—2?sm4t.

Now, since g(t) = f(z), the Fourier polynomial of degree 4 for f can be found by replacing t in terms of x again. Thus,

Fy(z) = % + %sin(?mz: —7)— Tlrsin(47rz -27) + 3% sin(6rz — 3n) — % sin(8nz — 4n).

Now, using the fact that sin(z — #) = —sin x and sin(z — 27) = sin z, etc., we have:
Fy(x) = 1.2 sin(27r) — 1 sin(4nr) — 2 sin(67z) 1 sin(8xr)
BN T ‘ = 77 3w " 27 il
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13. Since the period is 2, we make the substitution ¢ = #x ~ =. Thus, z = “£=. We find the Fourier coefficients. Notice

that all of the integrals are the same as in Problem 12 except for an extra factor of 2. Thus, ao = 1, an = 0, and
b, = 7.—n( 1)"‘1"1,

¢

Gi(t) =1+ il-sint - Esin‘Zt + isin?xt - lsin-lt.
w T 3% T

Again, we substitute back in to get a Fourier polynomial in terms of z:
4 2 .
Fa(z) =1+ —sin(nrz —7) — = sin(27z — 2m)
4 1
+3— sin(3rz — 3w) — = sin(drz — 4m)
7 w

=1- 4 sin(wz) - 2 sin(2wa) — isin(37rr) 1 sin(4drz).
T 17 3r T

-1

Notice in this case, the terms in our series are sin(nwx), not sin(27nz), as in Problem 12. In general, the terms will
be sin(n3Ez), where b is the period.

14. The signal received on earth is in the form of a periodic function 2(t), which can be expanded in a Fourier series

h(t) = ap+a)cost +arcos2t +ascos3t +---
+bysint+basin2t +bysin3t+---

If the periodic noise consists of only the second and higher harmonics of the Fourier scries, then the original signal
contributed the fundamental harmonic plus the constant term, i.e.,

aycost + bysint =  Acost
ap + aycost + by ; A

constant term  fundamental harmonic  original signal

In order to find A4, we need to find ag. a;. and b;. Looking at the graph of h(t). we see

ag = average value of h(¢ L Area above the z-axis — Arca below the r-axis
© 2

3 0(5) - (0(5) v 5) +20(3) +0 ()]
217 [so( )—80(%)] =2_ﬂ.07=0

SYP

ay = / h(t)costdt

—3n/4 —-n/2 -nf4
[/ —50Costdt+/ Ocostdt+/ —30costdt
- ~3 /4 -nf2

wid xf2 3w /4 e
+/ 80costdt+/ —30costdt+/ Ocostdt+/ —50costdt]
—7/4 /4 =12 3=/4

3|

-3=/4
— 30sint

—/4

|

= I:—SO sint
—a/2
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=/2
— 30sint — 50sint

= % [—50 (_;i?— 0) - 30 -(/ig‘ (_:)"Sl 80 (? - (_§>)
—30 <1 - ?) - 50 (0 - g)]

= é[?f’\/ﬁ*‘ 15\/5—304-4(]\/5-{—40\/-—_30_'_15\/§+25\/§]

+80sint

= %[160\/5 - 60] = 52.93,

T

b = l/ h(t)sintdt

—3=/4 —nf2 —-/4
[/ —5()sintdl+/ Om'ntdt+/ —30sintdt
- -3=/4 -=/2

w/4 w/2 3=/4 "
+/ 805iu£dt+/ —305intdt+/ Osintdt+/ —505intdt]
n 3

) |

—w/4 Jrtd /2 w4
-3=/4 —nf4 w/4 =/2 E
= — [50 cost + 30 cost — 80cost + 30cost + d0cost ]
! - —=/2 —z/4 =/4 3z/4

1| -

50 (-2 —(cn)) +30 (L0} -s0 (L -2
o (-7 - c0) v (5 -0) - (£ -7)

w0 (o- L) s (- D)

[-25V2 + 50 + 15v2 - 0 — 15V2 - 50 + 25V2] = Lo =0

} | =

Also, we could have just noted that by = & f_-’_ h(t)sint dt = 0 because h(t)sint is an odd function.

Substituting in, we get
ap+aycost+bysint =0+ 52.93cost +0 = Acost.

So A = 52.93.

15. The energy spectrum of the flute shows that the first two harmonics have equal energies and contribute the most energy
by far. The higher harmonics contribute relatively littie energy. In contrast, the energy spectrum of the bassoon shows the
comparative weakness of the first two harmonics to the third harmonic which is the strongest component.

16. Let f(z) = ax cos kz + by sin kz. Then the energy of f is given by

2 | (f(@))?dz =

1| -

/ (ax cos kz + by sin kl‘)? dr

k4

N

/ (af cos® kx — 2axby cos kx sin kz + by sin® kx)dz

BN

[ai / cos® kr dx — 2axby, / cos kz sin kz dz + b} / sin’ kz dr]

-

y | =

[aiﬂ' — 2axbi -0 +bi?r] = ai +b3.

17, Since each squarc in the graph has area (%) - (0.2),

ap = —211—7/ f(x)dx
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= L.z - (0.2) [Number of squares under graph above z-axis
27 4 9
— Number of squares above graph below z axis)
1 T
~—-(5)-(0.2)-[13+ 11 - 14] = 0.25.
or (1) (02)- 13+ 11- 14 = 0.25

Approximate the Fourier coefficients using Riemann sums.
l kid
a; = :/ f(z)coszdz
~ 2 [femeos-m+ £ (-3) e (=3) + 1@ cos@ + 1 (5) os (3)]
=~ m)cos(—= 5 ) cos {—3 s 5 )cos 3

= %[(0.92)(-1) + (1) + (~L7)V) + (O.1)0)] - §
= -1.31

N

Similarly for b;:
= %/—- f(z)sinzdz
~ }r [f(_7.-) sin(—w) + f (—g) sin (—'22) + f(0)sin(0) + f (%) sin (g)] )

= 210.9)(0) + (=1 + (~1.D)O) + (O.7)1)] - §
= —-0.15.

[T |

So our first Fourier approximation is

Fi(r) =0.25-131cosz — 0.15sinz.

Similarly for as:

*|I'-'

/ f(z)cos2xrdr
% [f w)cos(—=27) + f (—E) cos{—7w) + f(0) cos(0) + f (72—'_) cos(—w)] .

b3

= ~[(0.92)(1) + (1)(=1) + (~L7)(1) + (0.7)(- -3
=—124

Similarly for b,:
= %/—: f(z)sin2z dr
~ 1 [f(—-rr) sin(—27) + f (—g) sin(—=) + f(0)sin(0) + f (l )sm( rr)] %

~ [(0.92)(0) + (1)(0) + (=1.7)(0) + (0.7)(0)] - -725

.c>41~
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So our second Fourier approximation is

Fa(x) = 0.25 — 1.31cosz — 0.15sinz — 1.24 cos 2r.

615

As you can see from comparing our graphs of Fy and F5 to the original, our eslimates of the Fourier coefficients are

not very accurate.

There are other methods of estimating the Fourier coefficients such as taking other Riemann sums, using Simpson’s
rule, and using the trapezoid rule. With cach method, the greater the number of subdivisions, the more accurate the

estimates of the Fourier coefficients.
The actual function graphed in the problem was

sin(%) . 2 cosl
sinr — — cos 2r —

T m

sin 2z

@
Il

1
—~—13cosz —
i cosr

=0.25 - 1.3cosr — 0.18sinx — 0.63 cos 2 — 0.057 sin 2r.

18. The Fourier series for f is

o oc
f(x) =uao+ Z ajcos kz + Z by sin k.
k=1 k=1
Pick any positive integer m. Then multiply through by sin ma, to get

o o
f(z)sinmx = apsinmz + E ag cos kx sin mzx + E by sin kx sinmz.
k=1 k=1

Now, integrate term-by-term on the interval [—m. 7] to get

= T x e
/ f(z‘)sinmrd;r:/ apsinme + E ag cos krsinmx + E bi sinkrsinmaz | dz
- -

* k=1 k=1

kg ad T
ap / sinmardr + Z (ak / cos kx sin mzx dm)
-1 k=l -
x T
+ (bk / sin ki sin ma dz) .
k=1 -

Since m is a positive integer, we know that the first term of the above expression is zero (because f " sinmrdr = 0).

Since f cos kz sin mxz dx = 0, we know that everything in the first infinite sum is zero. Since f sinkzsin mr dr =

0 where k # m, the second infinite sum reduces down to the case where k = m so

ks
/ f(z)sin mrdr = bm / sinmrsinmrdr = b7,
- -

Divide by 7 to get _
1"
by = p / f(zr)sinmzrdzx.
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19. (a)

Chapter Ten /SOLUTIONS

i
i

|
g

|
3

-3

The energy of the pulse train f is

| =

D
S~
©

—

1X]

a.

]

I
A
SN
N =

|
VS

|
o —
SN—’
N’

I

2| =

E= i/_i(f(r))” dr =

T

Next, find the Fourier coefficients:

1
wo = average value of f on [-7. 7] = 2—1—( Area) = %(1) =50
s T

1 S 1 1/2 1 1/2
ax = —/ f(z)coskrdx = :/ coskrdr = —sinkz
T -= a1y kx -1/2
=L (qin (ﬁ) - sin (—é)) =L ("sin (E))
T kn \ 2 2)) " ka \" 2/)
1 = 1 172 1 1/2
by = —/ f(x)sinkzxdr = —/ sinkrdr = —-— coskz
TJ oz T J 1y ke —1/2

() [5) - oo

The energy of f contained in the constant term is

which is R .
A _ 1t _

E ™ 1/ " 2
The fraction of energy contained in the first harmonic is

= 0.159155 = 15.9155% of the total.

. (2sin —é )2
A2 4 w p =

The fraction of encrgy contained in both the constant term and the first harmonic together is

2 2
4 + % = 0.159155 + 0.292653 = 0.451808%.

(b) The formula for the energy of the k*™® harmonic is

2
2sin £\ ° . 4sin? &
2 2 s =
- I 0 P 3
kx

.4z=a:+b:=(

By graphing it as a continuous function for k > 1. we see its overall behavior as & gets larger. See Figure 10.12. The
energy spectrum for the first five terms is graphed below as well in Figure 10.13.
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AL
0.1 a1 -
0.08 0.08 -
0.06 0.06 - 1
0.04 2m7
0.02 |
k y k
| 5 10 15 20 6t 2 3 4 5
Figure 10.12 Figure 10,13

{¢) The constant term and the first five harmonics are needed to capture 90% of the energy of f. This was determined by
adding the fractions of energy of f contained in each harmonic until the sum reached at least 90% of the total energy

of f: . R
Ao AT A3 .-13 , .—14 As ~ .
2 D 2P+ T+ P~ 001005%.
(d) Fs(z) =~ + ﬂ(j— cosz + 81 cos 2z + === 'sm(g) cos 3z + 822 cos 4z + M cos 5r
I
20. (a)
n n
1 f(=) L
(l "
(W] 13
vl (]
1 [N}
I [}
[ 11 T
-3 —2% -7 = 2r 37

The energy of the pulse train f is

=1 [ vy H_izlzm LA_(-iy-2

Next, find the Fourier coefficients:

9
ap = average value of fon [—7. 7] = i( Area) = — (;) = _L
27 2w \3 am
1 4 1 /5 1 1/5
ar = :/ f(z)coskrdxr = —/ coskrdr = —sinkr
TJ_s ko _1/5 km —1/s

& (5) - (4)) = & (o (4),

/6

=|I-*

by = / f(x)sinkedxr =

/ sinkrdr = — RN cos kzx
/5 kw

(o)D) e

—1/8
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The energy of f contained in the constamt term is

s s 1\? 2
X = 2as = _— =
1o =2 ({'m) 2572
which is )
A8 _2/%7 10063662 = 6.3662% of the total.
E 2/{)1« Ny

The fraction of energy contained in the first harmoniz is

i ()

T

At _at N T 0192563,

E " E~ 5"’;
The fraction of energy contained in both the constant term and the first harmonic together is
A 4 . -
f + Vol 0.06366 + 0.12563 = 0.18929 = 18.929%.

(b) The formula for the energy of the k** harmonic is

2 2 4 g2 2sin % 2 +0? 4sin® %
A =a = = e—
* kK krw k272

By graphing this formula as a continuous function for k > 1, we see its overall behavior as k gets larger in Fig-

ure 10.14. The energy spectrum for the first five terms is shown in Figure 10.15.

¥ EH
0.02 0.02 +
0.015 0.015 ¢
0.01 0.01  ,

5x
0.005 0.005
k > k
20 30 40 0 1 2 3 4 3
Figure 10.14 Figure 10.15
(c) The constant term and the first five harmonics contain
A2 43 x'-Z A3 A?, cos
9 ! - 3 4 + =2 ~61.5255%

2
1
—_— 4 — —_ —_—
ETETETEYE
of the total energy of f.
(d) The fifth Fourier approximation to f is
F5(z) = ;7 } ﬂ-(—*—) cos + s—'—(i- cos2r + 2“—n%—)cos&r + 2';—i?lcos—'l:r + 2’;—:‘cos-5z‘

N ——— .

3 ===
&

3
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. (a)

f(z)

e — - ————

— r——— e ——

-3= -2n - -1 |
The energy of the puise train f is

Ez,li./ (f(m))'zdx=l/ 12=%(1—(—1))=%,

TJo

Next, find the Fourier coefficients:

ao = average value of fon[-7=.7] = 21—”( Area) = 21?(‘.) = %,
1 (" 1 ! 1 !
ap = :/ f(z)coskxdx = ;/ coskxrdzr = . sin kx
" - _1 " _1

_Lﬁ(sin k —sin(—k)) = kl—ﬁ(Q sin k).

1
by,

1 [ . 1 [ 1
- f(x)sinkzrdr = p sinkzxdzr = e cos kzr

- . e

I
. -1

= —é(cosk - cos(—k)) = -kl—ﬂ_(O) =0

The energy of f contained in the constant term is

which is . / \
A0 _ 2fm* 1 B
E " 2n w 0.3183 = 31.83% of the total.

The fraction of energy contained in the first harmonic is

E E

2 2 2sin1)2
A _d () ~ 0.4508 = 45.08%.

3 o]

The fraction of energy contained in both the constant term and the first harmonic together is

Ad A3 o
&+ 5~ 07691 = 76.91%.

(b) The fraction of energy contained in the second harmonic is

(22)’

A3
22 =2 =250 ~0.1316 = 13.16%

E

&)

e

so the fraction of energy contained in the constant term and first two harmonics is

A5 AL L AT 07601 40,1316 = 0.9007 = 90.07%
EETE"T e E A I

Therefore, the constant term and the first two harmonics are needed 10 capture 90% of the energy of f.

619
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(c)

22, As c gets closer and closer to 0, the energy of the pulse train will also approach 0, since

et [uora=t [ ve-t (- (5) -2

-c/2

The energy spectrum shows the relative distribution of the energy of f among its harmonics. The fraction of energy carried
by each harmonic gets smaller as ¢ gets closer to 0, as shown by comparing the k" terms of the Fourier series for pulse
trains with ¢ = 2.1, 0.4. For instance, notice that the fraction or percentage of energy carried by the constant term gets

smaller as c gets smaller; the same is true for the energy carried by the first harmonic.

If each harmonic contributes less energy, then more harmonics are nceded to capture a fixed percentage of energy.
For example, if ¢ = 2, only the constant term and the first two harmonics are needed to capture 90% of the total energy of
that puise train. If ¢ = 1, the constant term and the first five harmonics are needed to get 90% of the energy of that pulse
train. If ¢ = 0.4, the constant term and the first thirteen harmonics are needed 10 get 90% of the energy of that pulse train.
This means that more harmonics, or more terms in the series, are needed 1o get an accurate approximation. Compare the

graphs of the fifth and thirteenth Fourier approximations of f in Problem 20.
23. By formulaIl-11 of the integral table,

/ cos kz cos mrdr = -m_—l_k—,_,- (m cos(kz)sin(max) — ksin(kz) cos(m:r))

Again, since sin(nw) = 0 for any integer n, it is easy to see that this expression is simply 0.
24, We make the substitution u = mz, dr = ﬁdu. Then

kg l u=mi
2
/ cos” mrdr = — cos® u du.

T
* u=—mn

By Formula I'V-18 of the integral table, this equals

1 1 ) mrx 11 mT 1 mn mm
— |=cosusinu + —= ldu=04+ —u = —u
m|2 m2 _ 2m 2m
-mT -mw —m= —mw
1
= m(??‘llu) =T.

25. The easiest way to do this is to use Problem 24.

® . LS v
/ sin> mzdr = / a- cos® me)dr = / dr — / cos” mr dz
-n - -7 -

= 27 — « using Problem 24

= 7.
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26. By formula lI-12 of the integral table,

T
/ sin kx cos mx dx
-T

= 'n_°l_p (m sin(kz) sin(mz) + kcos(kx)cos(mz))
m? — k2

-

= m_’-’l—T [m sin(kw)sin{(m=) + k cos(kw) cos(mmw)

—msin(—kn)sin(—mn) — k cos(—k7) COS(—""UT)] .

Since k and m are positive integers, sin(kw) = sin(m=) = sin(—kw) = sin(—m=) = 0. Also, cos(kw) = cos(—km)
since cos T is even. Thus this expression reduccs to 0. [Note: since sin Az cos mz is odd, so f _: sin kr cos mx dx must
be 0.]

27. Using formula II-10 in the integral table,

/ sinkzsinmzdr = ﬁ; [k cos(kz)sin(mz) — msin(kz) cos(nur)]

Again, since sin{(nw) = 0 for all integers n, this expression reduces to 0.

28. (a) To show that g(t) is periodic with period 27, we calculate

g(t+277)=f(’i(t-;727‘)) =f(§—ll_. +b) =f(%) = g(t).

Since g(t + 27m) = g(t) for all #, we know that g(¢) is periodic with period 2. In addition

o(Z5) =5 (—"(2’2';’;/ ”’) = ().

(b) We make the change of variable t = 2wz /b, dt = (27/b)dz in the usual formulas for the Fourier cocfficients of

g(t), as follows:
k2 b/2
1 7T T
ap = — g(t)dt = 2—_—/ g (ZTI) 2Tda: = % f(x)dzx
“Jt=—n " z=b/2 —,‘_}
- ~bf2 _ .
ar = %/ g(t)cos(kt)dt = %/ g (m-) cos (27“'1) 2_7rd1
fJt=—n “Jr=~bf2 b b b
5 b2
2 =k
=2 [ fwyeos (2 b") dz
-b/2

x 1 b/2 27 2rkr\ 2%
b = l/ g(t)sin(kt) dt = —/ g (-ZB) sin (Zﬂr) 2_7'(1I
7 J, T f b b b b

=—x

2 [¥? . [27kx
5,/5/2 f(:c)sm( 7 ) dzr

(c) By part (a), the Fourier series for f(x) can be obtained by substituting t = 27z /b into the Fourier series for g{t)
which was found in part (b).



622 Chapter Ten /SOLUTIONS

Solutions for Chapter 10 Review.

Exercises
L e‘.~.1+e(x—1)+§(z—1)'-’
2 =2+ 2(z—2) - %(x—'z)'-’

3 sinm~—L+—1—- 1'—I-Zr- -i-L 1—!-E 2
A VAN VAN

4. Differentiating f(z) = tanx, we get f'(z) = 1/ cos” z, f(z) = 2sinz/ cos® .

Since tan(w/4) = 1, cos(n/4) = sin(n/4) = 1/V2, we have f(z/4) = 1, f'(z/4) = 1/(1/V2)* = 2

e
f'(=14) = (§; Dsa = 4,50

7 4 m\? o 7 m\2?
—1+2(I—I)+’2—!(I—I) =1+-(‘I—1)+2(1—1) .

5. f'(z) = 3z° + 14z - 5, f"(x) = 6x + 14, f"'(z) = 6. The Taylor polynomial about z = 1 is
12 20
Pa(:c)—4+1( 1|+2'( -1)° +—(.L‘—l)
=44 12(x = 1)+ 10(x = 1)* + (z — 1)*.

Notice that if you multiply out and collect terms in P3(x), you will get f(r) back.

6.
2 a2 2 (G N Cld S b N
0" cosf” =46 (1— 5 + T 6 +---
Y 96 910 014
= -t T et
¥ 5T
7. Substitutingy = t¥ insiny = y — = + ‘1{— - = o4 .. gives
3! ! 7!
8 t“’ At
2=t - - — -
sin 3 + T +
8.

=l-y+y’ -y +-- gives

1
9. Substituting y = —422 into Ty

1

T =1+42° +16:" +642° + -
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10. .
T S (O T A
a+b a(l+?t - a a a) *
11.
%
r\ 2
—r = 1= —
R+ m( R)
1 r 1/1 1 r\?
(11 (5 () (D )
‘/—(+2 R +21(2) 2/\"R
1 /1 1 3 ry\3
O )
1r 1r2 13
-‘/ﬁ<1‘§§‘g—z‘ﬁ—e‘ )
Problems
12. (a) Factoring out 7(1.02)% and using the formula for the sum of a finite geometric series with a = 7(1.02)* and r =
1/1.02, we see
Sum = 7(1.02)° + 7(1.02)> + 7(1.02 S SO O
um = 7(1.02)" + 7(1.02)° + 7(102) + T+ s + g 0 oo
i 1 1
=7102° [1+ —+ ——= + + ——e
A )(+(1.02)+(1.02)2+ +(1‘02)103)

1- 1
e2)o?

1
- 1.02

_ s £(1.02)'9 —11.02
=17(1.02) ( (1.02)104  0.02
_ 7102 -1
T 0.02(1.02)100 °

= 7(1.02)°

(b) USiﬂg the Iaylor expansion for e* witha = (0.1)2. we see
7(0.1 4 7(0.1 6

Sum = 7+ 7(0.1)* + o R
- >, 0. (0.1)°
=7 <1+(0.1)'+(—2!—)-+%+...)

= 78(0'1)2
= 7",
13. Infinite geometric series witha = 1,z = —1/3, 50

1 3

Sum= — =,

M= =13 1

14. Finite geometric series which can be rewritlen as

11 1 1 1-1/24 1
14t ot ogertd—1)= —— 1" )= - —.
s(1+3+5 g+ ) 8(1—1/2 16 (1 - o)
15. This is the series for e® with z = —2 substituted. Thus
4 8 16 _ (-2 | (=2® _(=2)" -2
=24 - g S+ g+ g r =T
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16. This is the serics for sin @ with & = 2 substituted. Thus

. 8 32 128 53 98 o7 e
2_5—‘-5-T-I-”'—?_ﬁ"'g_ﬁ"““—&n).

17. Factoring out a 3, we see

1 1 1,1 )
3(1+1+;2—!+3—!+z+§+~-~)=3e, = 3e.

18. Factoring out a 0.1, we see

0.1 (0‘1 - ©.1)° + (0.1)° - (01)° + ) = 0.1sin(0.1).

3! 5! 7!

19. The second degree Taylor polynomial for f(x) around & = 3 is
£"(3)
2!

. 10 . _
=1+o(1—3)—§(m—3) =1+3(z-3)-5(x-3).

>

fa) = £3) + f Bz = 3) + (e = 3)°

Substituting x = 3.1, we get

F(3.1) = 1+5(3.1 —3) — 5(3.1 — 3)* = 1+ 5(0.1) — 5(0.01) = 1.45.

20. Write out series expansions about x = 0, and compare the first few terms:

22 2f
smt_z—¥+g!-+..
. 3
ln(l-l-g;):l-_‘l‘_.}.‘%_.
2 4 2 4
T x T z
1—cosx=l—(l—i+4—!—~->=§—I—,-.-
2 3
* _ T r
e —l—z+i+§+...
dr 2 4
arctana;:/l_‘_l‘z =/(1—:r +x'— .- )dx
1?3 ;Z?. .
=I—?+?+-'- (note that the arbitrary constant is ()

IVl—;Z:I(l—I)l/;):‘L: (]—%£+M§ﬂ£2+.)

_ 22 28
—z-S T+

So. considering just the first term or two (since we are interested in small )

l—cosr<zvVl—z<In(l+z)<arctanz <sinz <z <e” —1.

21. The graph in Figure 10.16 suggests that the Taylor polynomials converge to f(z) = I _'1_ —on the interval (—1.1). The

Taylor expansion is
1 2 3 4
Y= —— =1 - R Tt -,
f(z) Ttz T+ "+ .

so the ratio test gives
lans] _ o J(=1)"

li = |r).
B o R o T

Thus, the series converges if || < 1:thatis —1 <z < 1.
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Figure 10.16

22. First we use the Taylor series expansion for In(1 + ¢),

1

2 1
T Y S IR
H L L

In(l1+¢t)=1t- L

to find the Taylor scries expansion of In(1 + z + z2) by putting ¢ = z + r*. We get

ln(l+z+;1:2)=m+%xa—§rs+3—lur4+---

Next we use the Taylor series for sin z 1o get

sin2:13=(sin;r)2=(r—-(1;13+117Oa:"‘—.-.)2=12_%ﬁ.}...._
Finally,
Inl+x+z’)-=r SRR T SR P 1
—5 = > T3 =+ =. as =0
sin® r° — 3Tt 4. 2
23. (a) The serics for 232 s
[ 3 9913 2 4
020 1 (0 00, @ \_, ' s
¢ 7 3! 5! 3 15
s ;in}) sin 24 —9
(b) Near # = 0, we make the approximation
Sin29~ —302
8 ~ " 3

50 the parabola is y = 2 — 36°.

24, (a) f(t) =te'.

Use the Taylor expansion for ' :

2 3
f(t):t(l+t+%!-+;_!+,,.>

, 13 1!
LR TR TR
(b)

* N * . 3 !
f(ydi= | te'dt= t+t 4+ =4 —+--- | dt
o o o 2! " 3!
r
2 .

625
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(¢) Substituter =1:

2 3 4 5-3!

In the integral above, to intcgrate by parts, let u = ¢, dv = €' dt. so du = dt, v = €.

1
/ te' dt = te'
0

273 L5

Since V4 — r2 = 24/1 — £2/4. we use the Binomial expansion

i
1 1 1 1
/tetdt=—+—+7—o;+—+"‘
o 2!

1

'l
—/ eldt=e—(e-1)=1
0

0
Hence
+ oo =1.

[ )
wn
—_
=

-

(b) Substituting the Taylor serics in the integral gives

1 1 2 4 3 51

/ \/4—1:'-’d.tz/ (2-?—"—) dr=2r-= - 2| =1.9135.
o o 4
(¢) Since £ = 2sint, we have dr = 2costdt; in addition t = 0 when z = 0 and t = 7/6 when x = 1. Thus
1 z/6
/ Vi —z22dr = / V4 —4sin®t - 2costdt
0 Jo
w/6 =/6
=/ 2-2\/1—sin2tcos!df=4/ cos” t dt.
° 0

Using the table of integrals, we find

=/6 . 1 =/6
4/ cos"tdt=4-§(cost.sini+t)
0 o

=2(cos%sing+%)=\/§ E

(d)

—

Using a calculator, (v/3/3) + (7/3) = 1.9132, so the answers to parts (b) and (c) agree to three decimal places.

26. (a) Since [(1 —z%)7"/*dx = arcsin r. we use the Taylor series for (1 — %) ~"/* o find the Taylor serics for arcsin :

- 1,,.3 5 35
looy-vroyyd2 34,9 6, 35 8,
( %) +21 +8.r +101 +1281'+
S0

2y -1/ 1 3 5 35
sinz= l(0=-z)"Ydr=o+-04+ 20+ L o7+ 2L 2%4...
arcsin x /( ) ki x+6.r + 10" + 2% + Ti53° +
(b

~—

From Example 4 in Section 10.3, we know

12 15 1 -
arctanr =r— -r + -r —c-r +---
3 )
so that L 3
arctanr _ r— 31+

1
= 5
arcsine  r+ Lrd 4+ Sad + 11T+ a2t +

-1, as 0.
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27. (a) The Taylor polynomial of degree 2 is

. . o v 9
Vi) = V(0) + V' (0)x + -—2(0—)1'.
Since £ = 0 is a minimum, V'(0) = 0 and V""(0) > 0. We can not say anything about the sign or valuc of 17(0).
Thus -
V(r) = V(0) + 2(0) 2>

(b) Differentiating gives an approximation ta V"'(z) at points ncar the origin
V() = V" (0)r.
Thus, the force on the particle is approximated by —17(0)z.
Force = ~V'(z) = —V"(0)z.

Since V"'(0) > 0, the force is approximately proportional to x with negative proportionality constant, — V" (0). This
means that when z is positive, the force is negative, which means pointing toward the origin. When z is negative, the
force is positive, which means pointing toward the origin. Thus, the force always points toward the origin.

Physical principles tell us that the particle is at equilibrium at the minimum potential. The direction of the force
toward the origin supports this, as the force is tending to restore the particle to the origin.

28. (a) Since the expression under the square root sign, 1 — ‘;-:r must be positive in order to give a real value of m, we have

1-—=>0

c:
2
1

—;(1

¢

2 2
ve <,

so —c<v<ec

In other words, the object can never travel faster that the speed of light.
(b) m

[ S U

Y
2
. v . 2 /2
(¢) Notice that m = mg (l - —q) . If we substitute u = — %, we get m = mo(l + u) 1/? and we can use the
P

binomial expansion to get:

m=mg (1— %u+t1-/2—)2(!_—3/—21112+...>
mo (l+

vt
ET+... .

(d) We would expect this series to converge only for values of the original function that exist, namely when |v} < c.

[ ARV

ﬁlﬁ
(-3 IR

ro| =
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29, (a) To find when V" takes on its minimum values, set % = 0. So
d o 6 ( To ) 12
- - = =0
‘odr (2 ( r ) r
-V (—1‘2r07 + 12r 21"]3) =0

12r0r'7 = 121'(],21‘"3

rg=r6
r =Tro.

2617
Rewriting V'(r) as &r‘i‘ﬂ 1- (ro
7

6
7) ) . we see that V/(r) > 0 forr > ro and V'(r) < 0 for r < ro. Thus,

Vo= —15(2(1)% — (1)'?) = =9 is a minimum.
(Note: We discard the negative rool —rg since the distance r must be positive.)
(b)
V() = Vo (2 ()~ (Lo)”) V(ro) = ~Vo
r r V’(T‘u) =0
VI(r) = —Vo(—12r§r~7 +12r3°r713) V" (ro) = 72Vory?

V'(r) = —Vo(84rfr=% — 156r5°r='%)
The Taylor series is thus:
.o 1
V(r) = =Vo+ 72Vorg - (r = r0)? - 5 oo
(c) The difference between V and its minimum value — V5 is

Vo~ (=Vo) = 36\.’0(’”__:"l 4.
s
which is approximately proportional to (r — ro)? since terms contzining higher powers of (r — ro) have relatively
small values for r near ro.
(d) From part (a) we know that dV'/dr = 0 when r = 7o, hence F = 0 when r = ro. Since, if we discard powers of

(r — ro) higher than the second.
V(r) = -Vo ( 36ﬂ)
To

giving
i - -
F’——d_ oro ) - ‘)“'07 oro-
dr 5 rs
So F is approximately proportional to (r — ro).
GM

30. (a) F= -1-+m

c:u
(b) F = + _"TW
Since £ < 1, use the binomial expansion:

L RIS s

PG [i-a(3) o () ‘--]-

(¢) Discarding higher power terms, we get

Fx GM + @1 _ 2Gmr
~ R? R? R3

_GWM+m) 2Gmr

R? R3
Looking at the expression, we see that the term (—(—"-%"L') is the field strength at a distance R from a single particle

of mass Af + m. The correction term, — %’5‘—” is negative because the field strength exerted by a particle of mass

(M + m) atadistance R would clearly be larger than the ficld strength at P in the question.
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31. Since expanding f(r + h) and g(x + h) in Taylor series gives

f(x+h) = f(z)+ f()h + f”(r)hz +
f"( ), 2

gz +h) = g(z) + g'(x)h + Z5—=h° +.
we substitute to get
flz +h)g(z + ) — f(z)g(x)
_ ) +f'(l‘)’,ll+ $71(@R% + ) (9(2) + ¢'(@)h + 3¢" (2)h? + ...) — f(z)g(z)
_ f@)g(@) + (f'(x)g(x) + f(x)g'(x))h -’-l Terms in h” and higher powers — f(x)g(z)
_ S (2)g(z) + f(z)g'(z) + Termsin h &ﬂ’; higher powers)

h
= f'(z)9(z) + f(x)g'(z) + Terms in h and higher powers.

Thus, taking the limit as h — 0, we get

%(f(:c)g(x)) = lim [z +h)g(x +hh) - f(z)g(z)

= f'(2)g9(z) + f(2)g'(z).

32. Expanding f(y + k) and g(z + h) in Taylor series gives
f+R) = 1)+ Fk+ L0
(:)
gz +h) =glx)+ g (@) + LZp? 4.
Nowlety = g(z)and y + k = g(z + h). Then k = g(z + k) — g(x) so
k=g (a)h+9 (@ )h
Substituting g(x + h) = y + k and y = g(«) in the series for f(y + k) gives

£la@ + ) = F(o(a)) + F (gl + L8

Now, substituting for k, we get

£aa+m) = f(g(@) + £/ (o)) (9 2+ L2 4 4 LSO iy g2
= flg(2)) + (f'(9(2))) - g’ (x)h + Ternn in h? and higher powers.

So, substituting for f(g(z + h)) and dividing by h, we get
flg(z + 1)) - f(g(x))
h

= f'(9(x)) - g'(x) + Terms in h and higher powers,

and thus, taking the limitas h — 0,

%f(y(z)) = tim f(y(x+h)’3 — f{g(x))

= f'(9(2)) - ¢' ().

629
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33. (a) Notice g'(0) = () because g has a critical point at x = (. So, for n > 2,

g(z) =

Po(z) = 9(0) + ——

g0 s, g0 .
+ 3 r 4+ = o

g'(0) (0)

(b) The Second Derivative test says that if g’ (0) > 0, taen 0 is a local minimum and if ¢’ (0) < 0, 0is a Jocal maximum.

(¢©) Letn=2.Then Py(z) =g g (0)

g(x)

L2732 So, for = near 0,

) "(0) -
- g(0) = g—)%-ll

If g”(0) > 0, then g(x) — g(0) > 0, as long as x stays near 0. In other words, there exists a small interval around
z = 0 such that for any z in this interval g(x) > g{0). So g(0) is a local minimum.
The case when g”(0) < 0 is treated similarly; then g(0) is a local maximum.

34. The situation is more complicated. Let’s first consider the case when g’ (0) # 0. To be specific let g’ (0) > 0. Then

1"
0
9(z) = Py(a) = g(0) + 3(, )2
g"(0) 2 . g"(0) . .
So. g(z) — g(0) = ST . (Notice that 3 > 0 is a constant.) Now, no matter how small an open interval J
) "
around = = 0 is, there are always some z, and x» in I such that z; < 0 and x2 > 0, which means that 4 ('0) :r‘I’ <0

"
and 2 (0) 22223 5 0, ie g(z1) — g(0) < 0 and g(x2) — g(0) > 0. Thus, g(0) is neither a local minimum nor a local

max1mum (If g"'(0) < 0, the same conclusion still holds. Try it! The rcasoning is similar.)
Now let’s consider the case when ¢’ (0) = 0. If J‘”(()) > 0, then by the fourth degree Taylor polynomial approxi-

mation to g at r = (), we have

g{(x) —

“’(0)

9(0) = T >0

lor @ in a small open interval around x = 0. So g(0) is a local minimum. (If y“)(()) < 0, then ¢(0) is a local maximum.)
In general, suppose that g/¥?(0) # 0, k > 2. and all the derivatives of g with order less than k are 0. In this case

g looks like cz* near z = 0, which determines its bzhavior there. Then g(0) is neither a local minimum nor a local

maximum if k is odd. For & even, g(0) is a local minimum if g**)(0) > 0, and g(0) is a local maximum if g*)(0) < 0.

w
Sll

Thus a; = 0 for all i > (. On the other hand,

1 [ .
= ;/ﬂf(z)smnrdr

Let us begin by finding the Fourier coefficients for f(z). Since f is odd, f_ﬂ f(x)dzr =0and f-« f(z)cosnrdzr =0.

) .
/ —sin{nz)dr + / sin(nr) d;r]
- 0
0 s
|
c0s 0 — cos(—nw) — cos(nw) + cos 0]

2 (1 - cos(lm)) .
nw

. cos(nz)
n

cos(nz)

-

Since cos(nw) = (—1)™. this is 0 if n is even, and == if n is odd. Thus the n*" Fourier polynomial (where n is odd) is

Fofz) =

As n — ¢, the n'P
is not continuous). In particular, if r = 3,

EEESN

I 4
F”(].) SHE 3

4
- s\u r 4 —sin3r +-
3

2) | ke
N
Ld
|
W) =
+

—
~u»—-

4
-+ Esm(na‘).

Fourier polynomial must approach f(.r) on the interval (—=, 7), except at the point z = 0 (where f

+4'mo‘+451n7n+ +4S1n &
5 — — — sin —
5w 2 ks 2 nw
» 1
.. -1 In4l .
+(=1) 2n+1)
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But F,(1) approaches f(5) = 1as n — 2c, so

7 1 1 1
2 ()=1—-24--2 an+l
1 =1 3+5 7-i- -+ (-1}

1
"n+l

»L-I=i

-l=£.
4

36. Lett = 2wz — m. Then, g(t) = f(z) = 2™ = ¢'+™. Notice that as x varies from 0 to 1, # varies from —m to 7. Thus,
we can find the Fourier coefficients for g(¢):

+ 1 b3 ; CZﬂ -1
ao=—/ g(tdt——/- ¢ tlt=§‘_—re'+ _,,_ o
n = ;/ e T cos(nt)dt = —/ e’ cos(nt)dt
Using the integral table, Formula I1-8, yields:
~¢< 1 e’ (cos(nt) + nsin(nt)) )
T ornt+1 A .
= € (e ~ e cos(n))
T +1
_ @)
7 n?+1
1" tm . i A
bn = - e "7 sin(nt)dt = — e’ sin(nt)dt.
Again, using the integral table, Formula 11-9, yields:
— L sin(at) - neos(nt))]
wn?+1 -
= -E (e — e ) cos(nm)
- s n? +1 n
_ (e‘?fr - 1) (_1)u+ln
- 7 n?+1
Thus, after factoring a bit, we get:
dm
-1/1 1 1 1 2
Ga(t) = e—ﬁ- (5 -3 cost + 3 sin t + = cos2t — 3 sin 2t — Ecos?t + l%bmélt)
Now, we substitute z back in for ¢
e ~-1.1 1 1. 1
F(z) = T-(; -3 cos(2mr — ) + 3 sin(2rz — 7) + 3 cos(4mx — 27)

2, 1 3
-z —2r) - — - . -
z sin(dwx — 2m) 10 cos{brr —3mw) + — 0 sin(6xx — 3w)).

Recalling that cos(x — 7) = — cos 1, sin{xr — ) = —sinr, cos(xr — 27) = cosr, and sin(r — 27) = sin x, we have:

2w

Fa(z) = >

< <

1/1 1 1
— + —cos27r — lsin 27 + - cosdnr — gsin Arnr
2 2 3 b

1 3 .
+ 10 cos 6w — 10 sin 677::7).

300
200

100
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37. (a) Expand f(z) into its Fourier series:
f(z) =ag+aicosr+azcos2r +azcos3xr +---+arcoskr +---
+bysinz + bzsin2r + b3sin3z + -+ + besinkr + -+
Then differentiate term-by-term:
f(x) = —arsinz - 2aysin2r — 3azsin3x —--- — kagsinkz — - --
+by cosx + 2by cos 2z + Jbzcos 3x + - -+ + kbpcoskr 4 -+
Regroup terms:
f'(x) = +b1 cosx + 2b2 cos 2z + 3bzcos 3 + - - - + kb coskz + - - -
—aysinz — 2azsin2r - 3azsindz — -+ — kagsinkr —---

which forms a Fourier series for the derivative f'(z). The Fourier coefficient of cos kz is kbx and the Fourier coeffi-
cient of sin kx is —kay. Note that there is no constant term as you would expect from the formula kax with k = 0.
Note also that if the &*" harmonic f is absent, so is that of f'.

(b) If the amplitude of the &*" harmonic of f is

Ak=\/ai+b';:. k> 1.
then the amplitude of the k** harmonic of f’ is
V(kbR)? + (=kai)? = \/k2(b} + a?) = ky/a} + b2 = kAs.

(¢) The energy of the k" harmonic of f’ is k* times the energy of the k'™ harmonic of f.
38. Let ri and sy be the Fourier coefficients of A f + Bg. Then

T

= 21_77 [.4)‘(1:) + Bg(x)} dz

=4 [% /_i f(r)dr] +B[%T- /—7 g(a:)d:c]

= Aaog + Bco.

ro

Similarly,

%/ﬁ [Af(;t) + Bg(z)] cos(kz)dzx

A [é [ stwrcosti) dx] +B [; | g(z)cos(kx)dz]

= Ada + Bey.

Tk

And finally,

1]

Sk

/: [.»1}'(1) + Bg(z)] sin(kz)dz

4 [% /: f(x) Sin(kx)dr] + B[% /f g(m)sin(kx)da:]
Acg + B;lk. i

39, Since g(z) = f(z + ¢), we have that [g(x)]? = [f(x + ¢)]". so g% is £ shifted horizontally by c. Since f has period 27,
so does f2 and g°. If you think of the definite integral as an arca, then because of the periodicity, integrals of f 2 over any
interval of length 27 have the same value. So

L

mergyor f= [ (de= [ (e,

- =T



SOLUTIONS to Review Problems for Chapter Ten

! / T (9(@)) dz

‘/‘4 (f(x + ) du.

Now we know that

1

Encrgy of g

) o=

Using the substitution { = z + ¢, we see that the two energies are equal.

CAS Challenge Problems
40. (a) The Taylor polynomials of degree 10 are

4 6 8 10
s I 2r T 2z
For sin? z. Pyolz)=2" - 4=+ —"— - — + ——
orsin” o(r) ==z 3 + 45 315 * 14175
4 6 8 3 .10

. T 2z r 2z
. . V=122 _ L= So
Forcos’z Quo(x) L S T TERRE VY

633

(b) The coefficients in Pyo(x) are the negatives of the corresponding coefficients of @10(x). The constant term of Pyo(z)

is 0 and the constant term of Qho(z) is 1. Thus, Pio(z) and Q10(z) satisfy
Qio(z) =1 — Pio(x).
This makes sense because cos” x and sin? a sutisfy the identity
cos®r=1-sin’r.

41. (a) The Taylor polynomials of degree 7 are

@,

6 120 5040

. 253 22 447
For sin x cos ., Q’(x)_I_T-l-E—_m

For sin z, Py(z)=x—

(b) The coefficient of z° in Q7(x) is —2/3. and the coefficient of z° in Pr(x) is —1/6, so the ratio is

-2/3
-1/6
The corresponding ratios for > and 27 are
2/15 —4/315
=16 and —F—— =64
1/120 ne 175040

(c) It appears that the ratio is always a power of 2. For 3, itis 4 = 2%; for 2%, itis 16 = 2*; for 27, it is 64 = 2. This

suggests that in general, for the coefficient of =™, it is 2771

(d) From the identity sin(2x) = 2sinx cos r, we expect that Pr(2x) = 2Q+(x). So. if a, is the coefficient of " in
Pz(x), and if by, is the coefficient of ™ in Q+(x). then, since the ™ terms P;(2z) and 2Q+(x) must be equal, we

have
a,(2z)" = 2b,2".

Dividing both sides by " and combining the powers of 2, this gives the pattern we observed. For a, # 0,
2 Y g p g p

bn

an

= gn—1
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42, (a) For f(z) = z? we have f'(z) = 2z so the tangent line is

y=fQ+FDr-2)=4+4(z-2)
y=+dr -4

For g(z) = £ — 42 4+ 8z — 7. we have g'(z) = 3z” — 8z + 8, 50 the tangent line is

y=g)+g )z -1)=-2+3@x-1)

y=3x -3
For h(x) = 22 + 4% — 3¢ + 7, we have k' (z) = 6z° + 8z — 3. So the tangent line is
y=h(-D)+h(-D(z+1)=12-5(z+1)

y=-—-d+7.

(b) Division by a CAS or by hand gives

f(z) z’ dr—4

= =1 () = 4 — 4.
(x=-22 (z-2)2 +(w—2)‘3 so r(z) =4z
g(z) 2 —4r’ 482 -7 3z —5 _

= —p— 24 =9 —37—5.
(x—1)2 z—17 z -%-(1__1),2 so r(z)=3x-35
h(z) 20 +4a’ -3z +7T _, —5r+7 _ L
(z+1)? (z +1)? =2+ x+12 so r{z)=-5r+7.

(¢) In each of these three cases, y = r(z) is the equation of the tangent line. We conjecture that this is true in general.
(d) The Taylor expansion of a function p(z) is

p(z) = p(a) +p'(a)(z —a) + pl;—-(!gl(x -a)’ + p__";(!a)

(x—a)®+--
Now divide p(z) by (& — a)”. On the right-hand side, all terms from p”(a)(z — a)*/2! onward contain a power of
(z—a)? and divide exactly by (z—a)” to give a polynomial g(z), say. So the remainder is 7(x) = p(a) +p' (e}(z~a),
the tangent line.

43. (a) The Taylor polynomial is

Prolz) =1+ z? ! z® z® " z'°

ot} = 12 720 + 30240 1209600 = 47900160

(b) All the terms have even degree. A polynomial with only terms of even degree is an even function. This suggests that
f might be an even function.

{c) To show that f is even, we must show that f(—zx) = f(z).

- +—.’E_ x
e-r—1 2 1-%

f(-x)

ze® — ta(e® - 1)

et —1
_ ze® — fze' + v ize*+ir  lu(e®-1)+z
- ez —1 T oer—1 et —1
1 T T T
=§l+ex—1_ef—1+§_f(m)



44.

CHECK YOUR UNDERSTANDING

L.

W

CHECK YOUR UNDERSTANDING 635

(a) The Tavlor polynomial is
3 7 1
z T I
P =7 -5
(b) Evaluating, we get
13 lT 1l I
Pu(l) = T oV Gm = 0.310281

1
S(l):/ sin(t?) dt = 0.310268.
o]

We need to take about 6 decimal places in the answer as this allows us to see the error. (The values of P;1(1) and
5(1) start to differ in the fifth decimal place.) Thus, the percentage error is (0.310281 — 0.310268)/0.310268 =
0.000013/0.310268 = 0.000042 = 0.0042%. On the other hand,

23 -27 211

PL(2)= 3 @t 1.17056

S(2) = / sin(?) dt = 0.804776.
0

The percentage error in this case is (1.17056 — 0.804776)/0.804776 = 0.365784/0.804776 = 0.454517, or about
45%.

False. For example, both f(z) = z” and g(x) = z* + 23 have P2(z) = z°.
False. The approximation sin 8 =~ 8 — 8% /3! holds for 8 in radians, not degrees.
False. Pa(z) = f(5) + f'(5)(z — 3) + (f"(5)/2)(z - 5)* = & + e°(z — 5) + (°/2)(z — 5)*.

. False. Since —1 is the coefficient of 2 in Py(x), we know that " (0)/2! = —1, so f”(0) < 0, which implies that f is

concave down near r = 0.

False. The Taylor serics for sin z about = w is calculated by taking derivatives and using the formula

' f'(a) 2
f@)+ f@e-a)+ I —a) + .
The series for sin x about r = 7 turns out to be
(-7} (z=7)°
—le—m+ 35 +o
True. Since f is even, f(—z) = f(z) for all r. Taking the derivative of both sides of this equation, we get f'{—z)(-1) =

f'(x), which at x = 0 gives — f'(0) = £'(0), so f'(0) = 0. Taking the derivative again gives f"(—z) = f"(z).i.c.. f"
is even. Using the same reasoning again, we get that £/ (0) = 0, and, continuing in this way, we get f((0) = 0 for all
odd n. Thus, for all odd n. the coefficient of £™ in the Taylor series is f(")(O)/n! = 0, so all the terms with odd exponent
are zero.

7. True. Since the Taylor series for cos z has only cven powers, multiplying by z2 gives only odd powers.

8. True. The coefficient of z7 is —8/7!, so

10.
11.

M0 _ -8

7! 7!

giving f(7(0) = —-8.

. False. The derivative of f(z)g(zx)is not f'(x)g (). If this statement were true, the Taylor series for (cos £)(sin z) would

have all zero terms.
True. Since the derivative of a sum is the sum of the derivatives. Taylor series add.

False. For example the quadratic approximation to cosz for « near 0 is 1 — z”/2, whereas the lincar approximation
is the constant function 1. Although the quadratic approximation is better near 0, for large values of z it takes large
negative values, whereas the lincar approximation stays equal to |. Since cos x oscillates between | and —1, the linear
approximation is better than the quadratic for large x (although it is not very good).
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12,

13.

14,
15.
16.

17.

18.

19.

20.

21.

Chapter Ten /SOLUTIONS

False. The Taylor series converges on its interval of convergence, whercas f may be defined outside this interval.
For cxample, the series

l4z+2° +2%+--- comergcstol for|1|<1

But 1/(1 — «) is defined for |x| > 1.
True. For large z, the graph of Pyo(z) looks like the graph of its highest powered term, £'°/10!. But e* grows faster than
any power. so e¥ gets further and further away from 2'°/10! & Pyo(z).
False. For example, if @ = 0 and f(z) = cosz, then Py(r) = 1, and Py(z) touches cosx at r = 0. 27w 47w, ...
False. If f is itself a polynomial of degree n then it is equal to its n*® Taylor polynomial.
True. By Theorem 10.1, |En(z)] < 10]z[**!/(n + 1)L Since liman oo |2]" 1 /(n + 1)! = 0. En(z) =+ 0as n — o,
so the Taylor series converges to f(x) for all r.
True

True. Since f is even, f(x)sin(mz) is odd for any m, so
= %/ f(x)sin z(mz)dx = 0.

False. Since f(—1) = g(—1) the graphs of f and g interscct at £ = —1. Since f'(—1) < g'(—1). the slope of f is less
than the slope of g at.z = —1. Thus f(x) > g(z) for all r sufficiently close to —1 on the lefi, and f(x) < g(z) forall z
sufficiently close to —1 on the right.

True. If

f'(=1

5 (x+1)°

Pa(z) = Quadratic approximation to f = f(=1) + f'(=1}{z + 1) +

"
Q2(z) = Quadratic approximation to g = g(—1) + g'(=1)(z + 1) + %1—)(91: +1)?

then Po(z) — Qalx) = (f(=1) = g"(-1))(z + 1)*/2 < O for all z # ~1. Thus Pa(z) < Q2(a) for all x # —1. This
implies that for z sufficiently close to —1 (but not equal to —1), we have f(z) < g(z).

True. We have
Li(z) + La(z) = (f1(0) + f1(0)2) + (f2(0) + £2(0)7) = (£1(0) + £2(0)) + (f1(0) + f2(0))z.

The right hand side is the linear approximation to fi + fe near z = 0.
Faise. The quadratic approximation to fi(z)f2(x) nearz = 01is

1(0)£2(0) + 2f1(0)fo(0) + f1(0)f2(0) 2

F1(0) £2(0) + (£1(0) f2(0) + £1(0) f2(0))= +

On the other hand. we have
Li(z) = fi(0) + fi(0)z.  La(z) = f2(0) + f2(0)z,

SO
Li(@)La(z) = (f1(0) + f1(0)2)(£(0) + f2(0)z) = f1(0)£2(0) + (£1(0)£2(0) + £3(0)f1(0))= + f1 (0) f2(0)=™.

The first two terms of the right side agree with the quadratic approximation to fi(z) fz(x) near x = 0, but the term of
degree 2 does not.
For example, the lincar approximation to e is 1+, but the quadratic approximation to (¢*)* = €°% is 142z +222,
not (14 z)% =14 2r+x°.
}C’?]se. The Taylor series for f near x = 0 always converges at x = 0, since Z:‘;O Cnz" at z = 0 is just the constant
0.

True. Whenz = 1,
(n)

20« Mo
Z ST _Z n' )

n=0

Since f(")(0) > n!, the terms of this series are all greater than 1. So the series cannot converge
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24, False. For example, if f(")(0) = n!, then the Taylor series is

(g x .
Z f n‘( ) _n ZI
n=0

n=0

which converges at x = 1/2.

PROJECTS FOR CHAPTER TEN

1. (a) A calculator gives 4tan~1(1/3) —tan~'(1/239) = 0.7853981634, which agrees with 7 /4 to ten decimal
places. Notice that you cannot verify that Machin’s formula is exacrly true numerically (because any cal-
culator has only a finite number of digits.) Showing that the formula is exactly true requires a theoretical
argument.

(b) The Taylor polynomial of degree 5 approximating arctan x is

o 8,

T
arctanz x r — ? +

e () o) o
(330 1) (B3 ) 4 ()))

== 3.141621029.

Thus,

The true value is # = 3.141592653 ... ..

(c) Because the values of . namely x = 1/5 and = 1/239. are much smaller than 1, the terms in the series
get smaller much faster.

(d) (i) If 4 = arctan(120/119) and B = — arctan(1/239), then

tan A = ﬁg and tanB = —3%
Substituting
tan(A + B) = 1‘["2{;3?1;’9;{_ 1](/’";53) -1
Thus
A+ B = arctanl,
)

arctat 120 —arct 1 = tan 1
1 1o ctan 239 = arctan].

(ii) If A = B = arctan(1/5), then

_ )+ _ 5
tan(A + B) = 1 (/5) 1)) - 12
Thus _
A+ B = arctan (10—2) .
S0

2 arctan l = arctan i
- . 5 -_ e 12 .
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(iii) Expanding each term in the numerator is a Taylor series, we have
4 .
f(xo + 2h) = f(xy) + 2f'(zo)h + 2" (wo)* + gf"'(;z:o)h."

+2 19 (zo)ht + i_f(‘s)(wa)hs o
f"( r0) o f o)

f(xo + h) = fxo) + f'(zo)h +
f(d)(l-o)h N f( ) iEo)I,

+

4!
f(zo — h) = f(zo) — f'(xo)h + f”gxo h? — fl”éf:o)lﬂ
OG0, ),
4! 5!

f(zo = 2h) = f(wo) — 2f'(xo)l + 2" (o) ® f"’(:c )h?
+31W(@o)h! - 1’—5f<5’(mo)h° =
Combining the expansions in pairs. we have
8f(xo + h) — 8f(zo —h) = 16f"(zo)h + 3 f’“ o)h* + 5f“s’(xo)h5 + -

f(zo +2h) = flzo = 2h) = 4f'(zo)h + 3 f”’(a:(,)h,3 + 13 f‘f’)(zo)h:” +
Thus.

—f(zo + 2Rh) + 8f(xo + h) — 8f(wo — h) + f(zo — 2h) = 12f'(z0)h — %f‘s)(zn)h5 +

SO
—flxo + 2h) + 8f(xg + h) — 8f(xzo — h) + f(xo — 2h) _ f’(l‘ = f (Io)}4 CL
12h 0 30
This suggests the following bound for small »,
—fxo + 2h) + 8f(xg + 1) — 8f(zo — W) + f(zo — 2h) Uh
. - f'(x0)| £ ,
12h
where | f®)(2)| € M for |z — zo| < |h].
(b) () h (f(xo) — flzo — M) /R Error
10~1 0.951626 4.837 x 1072
1072 0.995017 4.983 x 107
1073 0.9995 4.998 x 10~
10~ 0.99995 5x 1078
The errors are roughly proportional to h. agreeing with part (a).
(i1) A | (f(zo+h) — f(zo — 1))/ (2h) Error
10~! 1.00167 1.668 x 1073
1072 1.00001667 1.667 x 1073
1073 1.0000001667 1.667 x 107
10~* 1.000000001667 1.667 x 10~

The errors are roughly proportional to h?, agreeing with part (a).
prop P

639



640 Chapter Ten /SOLUTIONS

(i) k| (—f(zo +2k) + 8f(za + 11| — 8f(z0 — h) + f(zo0 — 2h))/(12h) Error
10~ 0.99999667 3.337 x 107
1072 0.9999999999667 3.333 x 10710
1073 0.99999999999999667 3.333 x 1071
10~ 0.999999999999999999667 3.333 x 10718
The errors are roughly proportional to A%, agreeing with part (a). This is the most accurate formula.
(© (@ h (f(zo) — f(zo — h))/k Error
107! 1.0001 x 10° 1.00 x 10*°
1077 1.0001 x 107 1.00 x 10'°
1073 1.0101 x 10° 1.01 x 10'°
107* 1.11111 x 10° 1.11 x 10*°
1073 Undetined Undefined
106 —111111 x 10'° —1.11 x 10°
1077 —1.0101 x 10'° -1.01 x 10°
10-° —1.001 x 10'° —1.00 x 107
10°° —1.0001 x 10'° -1.00 x 10°
(i) R | (F(zo+ 1)~ flzo — h))/(2h) Error
10-? 1 x 10? 1 x 10*°
1072 1 x 10* 1 x10%°
1073 1.0001 x 108 1.0001 x 10%°
1071 1.0101 x 108 1.0101 x 10°
1075 Undefined Undefined
10~ -1.0101 x 10%® —1.01 x 108
10-7 -1.0001 x 10%° —1.00 x 108
1078 —1.000001 x 10%° —1.00 x 10*
107° —1.00000001 x 10'° —1.00 x 10®
(i) h | (—f(zo+ 2k) + 8f(zo + h) — 8f(z0 — ) + f(zo — 2h))/(12h) | _ Esror
107! 1.25 x 10° 1.00 x 10%°
1072 1.25 x 10* 1.00 x 10%°
103 1.25013 x 108 1.00 x 10'°
1074 1.26326 x 108 1.01 x 10
1073 Undefined Undefined
10°¢ -9.99579 x 10° 4.21 x 108
10”7 —9.9999995998 x 10'° 1.00 x 10°
10-8 —9.99999999996 x 10'° 4.00 x 1072
10°° —9.999999999999996 x 10'° 4.00 x 1078

For relatively large values of h, these approximation formulas fail miserably. The main reason is that
f(x) = 1/x changes very quickly at xo = 107>, In fact, f(x) = +oo as » — 0. So we must use very
small values for h when estimating a limit (involving f and xp = 107°) as h — 0. Here, & > 107% is too
big. since the values of &g — h cross over the discontinuity at x = 0. For smaller values of h, that make
sure we stay on the good side of the abyss. these formulas work quite well. Alrcady by & = 1075, formula
(c) is the best approximation.



