11.1 SOLUTIONS 641

CHAPTER ELEVEN

Solutions for Section 11.1

Exercises

1. (a) (1) An island can only sustain the popuklition up to a certain size. The population will grow until it reaches this
limiting value.
(b) (V) The ingot will get hot and then cool off, so the temperature will increase and then decrease.
(c) (I) The specd of the car is constant, and then decreases linearly when the breaks are applied uniformly.
(d) (II) Carbon-14 decays exponentially.
(e) (IV) Tree pollen is seasonal, and therefore cyclical.

2. We know that at time ¢ = 0 the value of y is 8. Since we are told that dy/dt = 0.5y, we know that at time t = 0 the
derivative of y is .5(8) = 4. Thus as t goes from 0 to 1, y will increase by 4, soatt =1,y =8 +4 = 12.
Likewise, at t = 1, we get dy/dt = 0.5(12) = 6sothatatt = 2, we obtainy = 12 + 6 = 18.
Att = 2, we have dy/dt = 0.5(18) = 9sothatatt = 3, we obtainy = 18 + 9 = 27.
Att = 3, we have dy/dt = 0.5(27) = 13.5 so thatat ¢ = 4, we obtain y = 27 + 13.5 = 40.5.
Thus we get the values in the following table

oft]2[3][ 4
v |8]12]118[27]405

3. Since y = z3, we know that ' = 3z2. Substituting y = z3 and i’ = 3z? into the differential equation we get

0 =xy — 3y
= z(32%) - 3(z%)
=373 - 3:°
=0.

3

Since this equation is true for all x, we see that y = x° is in fact a solution.

4. Since y = % + k, we know that y' = 2. Substituting y = z® + k and y’ = 2z into the differential equation, we get

10 =2y — zy'
= 2(x’ + k) — z(2r)
=22 + 2k - 2¢°
= 2k.

Thus, k = 5 is the only solution.

n

. If y satisfies the differential equation. then we must have

kr
ﬂt&i—) =10-2(5+ 36“)
dz
3ke** =10 — 10 - 6e**
3ke*T = —6e*”
k=-2
So. if k = —2 the formula for y solves the differcntial equation.
6. If P = Pye'. then
dr

_4p tn_pot_
—(F—dt(Poe)—Pol, =P.
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7. Inordertoprove thaty = A + Ce*! is a solution to the differential equation

dy _ k(y — A).

dt
we must show that the derivative of y with respect to ¢ is in fact equal to k(y — A):
y=A+ Cet!
Z—’t’ =0+ (Ce™)(K)
= kCe*

=k(Ce + 4 - A)
=k ((Ce* + 4) - A)

= k(y— 4).
8. If Q = Ce**, then
‘2—? = Cke"t = k(Ce*') = kQ.

We are given that ‘%— = ~0.03Q. so we know that kQ = —0.03Q. Thus we cither have @ =0 (in which case C = 0
and k is anything) or k = —0.03. Notice that if k = —0.03, then C can be any number.

9. If y = sin 2¢, then %1:- = 2cos 2t, and ‘%4} = —4sin 2t
Thus d—}} +4y = —4sin2t +4sin 2t = 0.
10. If y = coswt, then

2
= —w"coswt.

it < ar’
Thus, if %&’- + 9y = 0. then
—w? coswt + 9coswt = 0
(9 - w?)coswt = 0.
Thus 9 — w® = 0. orw? = 9, sow = £3.
11. Differentiating and using the fact that
d . d .
a(cosht) =sinht and -d—t(smh t) = cosht.
we see that
c;—’:- = wC; sinhwt + «C2 cosh wt

d-x

T = w2Cy coshwt + w’Casinhwt

= w? (C) coshwt + Cysinhwt).

Therefore, we see that

Problems

12. (a) If y = Cz" is a solution to the given differential equation, then we must have
d (Cz") ay
T— - 3(Cz™) =0
a:(C‘nm"_l) -3(Cz") =0
Cnz" - 3Cz" =10
C(n-3)z" =0.

Thus, if ¢ = 0, we get y = 0 is a solution, for every n. If C # 0,thenn = 3, andsoy = Cx? is a solution.
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(b) Because y = 40 for z = 2, we cannot have €' = 0. Thus, by part (a), we get n = 3. The solution to the differential
cquation is

y=Cr".
To determine C if y = 40 when = = 2, we substitute these values into the equation.
0=Cc2
0=C-8
C =5

So, now both C and n are fixed at specific values.
13. (@) P=Z==(1+e)!
éﬁ -t

ac = —(1 +C_t)-2(—€—') = m

_ 1 1 _ )] et _ —t _ dP
Then P(l —P) = l4e—! (1 - 1+€—r) - (l+c") (1+,-1) - (l-:e_‘)'-’ =

(b) As t tends to 0o, e ! goes to 0. Thus lim l+’_, =1
t—oc ‘

14. () y=2sinx, dyfdr =2cosr. d’y/dz®= —2sinx
() y=sin2z. dyfdr =2cos2x, d’y/dz®= —4sin2z
am y=e>, dy/dr = 2e**, d’y/dz* = 4¢**
(V) y=e 3, dyfdc=-2e", d’yfdz?=4de"7"
and so:
(a) (V)
(b) (II)
(c) (11D, (IV)
(d) (ID
15. It is casiest to begin by writing down the first and sccond derivatives for each possible solution:
(I) y=cosz,soy’ = —sinz,and y” = —cos .
(1) y = cos(—z),s0y' =sin(—z),and y’' = —cos(—z).

() y=z".s0y =2z, andy" = 2.
(V) y=e"+e “.soy =e*—e Fandy”" = e +e77.
(V) y=vV2z,50y = %(29:)'1/2 2=1/V2z,and y"’ = —%(2;1‘)"3/"’ 22 = —(2x)"%2,
By substituting these into the given differential equations, we get following solutions:
(a) (IV)
(b) None
(c) (V)
d) (D, (D
(e) (D

Solutions for Section 11.2

Exercises

1. There are many possible answers. One possibility is shown in Figures 11.1 and 11.2.
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hecks as a solution.

1S Ci

—1,s0th

—landzr+y=z+(-x-1)

(b) The solution through (—1, 0) appears to be linear, so its equation is y = —z — 1.

() fy=—z — 1, theny’
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Problems

4. (a) See Figure 11.4,

P
: ! 1
\ \
S LR i .l
/l Y A

o~ — - < — - t
0,0

( g)“ L T O |

Figure 11.4

(b) If 0 < P < 10, the solution is increasing; if P > 10, it is decreasing. So P tends to 10,
5. (a) y

Figure 11.5

(b) We can sec that the slope lines are horizontal when y is an integer multiple of 7. We conclude from Figure 11.5 that
the solution is y = nwr in this case.
To check this, we note that if y = nm, then (sinz)(siny) = (sinz)(sinnz) =0 = y'. Thusy = nwisa
solution to ' = (sin x)(sin y), and it passes through (0. n7).

6. Notice that y' = ::+ Y is zero when z = —y and is undefined when £ = y. A solution curve will be horizontal
-y
(slope= () when passing through a point with = —y. and will be vertical (slope undefined) when passing through a

point with z = y. The only slope field for which this is true is slope field (b).
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7. (a), (b) See Figure 11.6

(c)

8. (a)

(b)

(c)
(d)

(e)

o)
(i)

. W)

Figure 11.6

Figure 11.6 shows that a solution will be increasing if its y-values fall in the range =1 < y < 2. This makes sense
since if we examine the equation ' = 0.5(1 + y)(2 — y), we will find that y’ > 0if —1 < y < 2. Notice that if the
y-value ever gets (o 2, then y' = 0 and the function becomes constant, following the line y = 2. (The same is true if
every = —1.)

From the graph, the solution is decreasing if y > 2 or y < —1. Again, this also follows from the equation, since
in either case y' < 0.

The curve has a horizontal tangent if y* = 0, which only happens if y = 2 or y = —1. This also can be seen on
the graph in Figure 11.6.
Since y' = —y, the slope is negative above the z-axis (when y is positive) and positive below the z-axis (when y is
negative). The only slope field for which this is true is 11,
Since ' = y, the slope is positive for positive y and negative for negative y. This is true of both [ and 111. As y get
larger, the slope should get larger, so the correct slope field is 1.
Since y’ = z. the slope is positive for positive z and negative for negative z. This corresponds o slope field V.

Since y' = =. the slope is positive for positive y and negative for negative y. As y approaches 0, the slope becomes

larger in magnitude, which correspond to solution curves close to vertical. The correct slope field is I11.
Since y' = y?, the slope is always positive. so this must correspond to slope field I'V.

9., (a1l (b) VI ©l1v (d1 (e) I OV
10. The slope fields in (1) and (11} appear periodic. (1) has zero siope at £ = 0, so (I) matches y' = sin x, whereas (1) matches
¥ = cosz. The slope in (V) tends to zero as * — <o, so this must match y' = e~%". Of the remaining slope fields,
only (I11) shows negative slopes, maiching y" = re™2. The slope in (IV)is zero at x = 0, so it matches y’ = z2e~%. This
leaves field (V) to maich y’ = e™~.

Solutions for Section 11.3

Exercises

1. (a)

Table 11.1  Euler’s method for
y =z +ywithy(0) =1

T |y Ay =(slope)Ax
0o [1 0.1 = (1)(0.1)
0.1]1.1 0.12 = (1.2)(0.1)

0.2 [ 1.22 | 0.142 = (1.42)(0.1)
0.3 | 1.362 | 0.1662 = (1.662)(0.1)
0.4 | 1.5282
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So y(0.4) =~ 1.5282.
(b)
Table 11.2  Euler’s method for
Y =x+ywithy(-1)=0

T Y Ay =(slope)Az
-1 Jo —0.1 = (=1){0.1)
—-0.9 | =0.1| —0.1 = (=1)(0.1)
—08 | -0.2 [ —0.1 = (-1)(0.1)
-0.7] -0.3

: : Notice that ¥
0 -1 decreases by 0.1

. : for every step
0.1 —1.4

So y(0.4) = —1.4. (This answer is exact.)

2. (a)

A

.........................

Figure 11.7

(b) y(0) =1,
y(0.1) = y(0) + 0.1y(0) =1 +0.1(1) = 1.1
¥(0.2) = »(0.1) + 0.1y(0.1} = 1.1 + 0.1(1.1) = 1.21
¥(0.3) = y(0.2) + 0.19(0.2) = 1.21 + 0.1(1.21) = 1.331
y(0.4) = 1.4641
y(0.3) =~ 1.61051
y(0.6) = 1.77156
y(0.7) =~ 1.94872
y(0.8) =~ 2.14359
¥(0.9) = 2.35795
y(1.0) = 2.59374
(c) See Figure 11.7. A smooth curve drawn through the solution points seems to match the slopetield.
(d) Fory =e*, wehave iy’ = ¢” = yand y(0) = € = 1.

Computed Solution
Zn | Approx. y(zn) | y(zn)
0o |1 1
0.1 ] 1.1 1.10517
02| 1.2 1.22140
0.3 1.331 1.34986
0.4 | 1.4641 1.49182
0.5 | 1.61051 1.64872
0.6 | 1.77156 1.82212
0.7 | 1.94872 2.01375 '
0.8 | 2.14359 2.22554
0.9 | 2.35795 2.45960
1.0 | 2.59374 2.71828
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3. (a) The results from Euler's method with Az = 0.1 are in Table 11.3.

Table 11.3
Computed Solution

zn | Approx. y{za) | y(zn)
0 0 0
0.1 0 0.000025
0.2 0.0001 0.0004
0.3 0.0009 0.002025
04 0.0036 0.0064
0.5 0.01 0.015625
0.6 0.0225 0.0324
0.7 0.0441 0.060025
0.8 0.0734 0.1024
0.9 0.1296 0.164025
10 0.2025 0.25

(b) We have
1,4
so that y(0) = 0 gives C = 0, and the required solution is therefore

4
I
y(z) =7
This is shown in the 3rd column of Table 11.3.
(¢) The computed solution underestimates the real solution since the solution is concave up and is approximated in every
interval by the tangent which is beneath the curve. See Figure 11.8.

.-

[T |

Figure 11.8
4, (a)
Table 11.4
z y Ay = (slope)Ax
0 0 0
0210 0.0016

0.4 | 0.0016 | 0.0128
0.6 | 0.0144 | 0.0432
0.8 | 0.0576 | 0.1024
1 0.1600

Atr =1,y = (0.16.



(b) y

0.25
0.16

11.3 SOLUTIONS

true answer

(¢) Our answer Lo (a) appears 10 be an underestimate. This is as we would expect, since the curve is concave up.

Problems

S. (a) ()

(ii)

Table 11.5  Euler's method for
y' = (sinx)(siny), starting at (0, 2)

T y Ay =(slope)Azx

0 |2 0 = (sin 0)(sin 2)(0.1)
0.l]2 0.009 = (sin 0.1)(sin 2){0.1)
0.2 | 2.009 | 0.018 = (sin 0.2)(sin 2.009)(0.1)
0.3 ) 2.027

Table 11.6  Euler’s method for
y' = (sinz)(siny), starting at

(0.7)
z |y Ay =(slope)Ax
0 |7 | 0= (sin0)(sin#)(0.1)
0.1 | = |0 = (sin0.1){sin 7)(0.1)
0.2 | 7 | 0= (sin0.2)(sin7)(0.1)
03| =

649

(b) The slope field shows that the slope of the solution curve through (0, ) is always 0. Thus the solution curve is the

horizontal line with equation y = =.
6. (a)

Table 11,7

t y | slope=1] Ay = (slope)at= %(0,1)
1 |0 1 0.1
.10l 0.909 0.091
1.2 ] 0.191 0.833 0.083
1.310.274 0.769 0.077
14} 0.35] 0.714 0.071
1.5 0422 0.667 0.067
1.6 | 0.489 0.625 0.063
1.7 ] 0.552 0.588 0.059
1.8 ] 0.610 0.556 0.056
1.9 | 0.666 0.526 0.053
2 0719
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(b) If %‘f = 1.theny = In|t|+ C.
Starting at (1.0) means y =0 whent = 1,so C' =Vand y = In|t|.
After ten steps. t = 2, soy = In2 = 0.693.

(c) Approximate y = 0.719, Exact y = 0.693.
Thus the approximate answer is too big. This is because the solution curve is concave down, and so the tangent lincs
are above the curve. Figure 11.9 shows the stope field of ' = 1/t with the solution curve y = In¢ plotted on top of

it.

Figure 11.9
7. (a) Az =0.5

Table 11.8  Euier’s method for

y = 2z, withy(0) =1
z y Ay =(slope)Az
0 |1 |0=(2-0)0.5)
051 |0.5=(2-0.5)0.5)
1 1.5

Ar =0.23

Table 11.9  Euler's method for
y' =2z, withy(0) =1

T y Ay =(slope)Ax
0 1 0 = (2-0)(0.23)
0.25 1 0.125 = (2-0.25)(0.25)

0.50 | 1.125 | 0.25 = (2-0.5)(0.25)
0.75 | 1.375 | 0.375 = (2- 0.75)(0.25)
1 1.75

(b) General solution is y = 2% + C, and y(0) = 1 gives C = 1. Thus, the solution is ¥ = 2 + 1. So the true value of y
whenzr=1lisy=12+1=2.

(c) When Az = 0.5. error = 0.5.
When Az = 0.25, error = 0.25.
Thus, decreasing Az by a factor of 2 has decreased the error by a factor of 2, as expected.

8. For Az = 0.2, we get the following results.
y(1.2) =~ y(1) + 0.2sin(1 - y(1)) = 1.168294
y(1.4) = y(1.2) + 0.2sin(1.2 - y(1.2)) = 1.365450
y(1.6) = y(1.4) + 0.2sin{1.4 - y(1.4)) = 1.553945
y(1.8) = y(1.6) + 0.2sin(1.6 - y(1.6)) = 1.675822
¥(2.0) = y(1.8) + 0.2sin(1.8 - y(1.8)) = 1.700779
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Repeating this with Az = 0.1 and 0.05 gives the results in Table 11.10 below

Table 11.10
Computed Solution

z-value | Az =02 | Az =0.1 | Az =0.05
1.0 1 1 1

I.1 1.084147 1.086501
1.2 1.168294 | 1.177079 1.181232
1.3 1.275829 1.280619
1.4 1.365450 | 1.375444 1.379135
1.5 1.469214 1.469885
1.6 1.553945 1.549838 1.546065
1.7 1.611296 1.602716
1.8 1.675822 | 1.650458 1.637809
1.9 1.667451 1.652112
2.0 1.700779 | 1.664795 1.648231

The computed approximations for y(2) using step sizes Az = 0.2.0.1, 0.05 are 1.700779, 1.664795, and 1.648231,
respectively. Plotting these points we see that they lie approximately on a straight line.

¥(2)
2k

- —o——®
15+
1 b
0.5 F

* : — Az
0.1 0.2 0.3
Figure 11.10

In the limit, as Az tends to zero, the results produced by Euler's method should converge to the exact value of y(2).
This limiting value is the vertical intercept of the line drawn in Figure 11.10. This gives y(2) = 1.632.

9. (a) Using one step, 22 = 0.05, s0 AB = (£8) At = 50. Therefore we get an approximation of B x 1050 after one
& At At PP

year.
(b) With two steps, At = 0.3 and we have
Table 11.11
t |B AB = (0.03B)At
0 1000 25
0.5 1 1025 23.63
1.0 | 1050.63

(c) Keeping track 1o the nearest hundredth with At = 0.23, we have

Table 11.12
t B AB = (0.05B)At
0 1000 12.5

0.25 | 10125 | 12.66
05 | 1025.16 | 12.81
0.75 | 1037.97 | 12.97
1 1050.94

(d) In part (a), we get our approximation by making a single increment, AB, where AB is just 0.055. If we think in
terms of interest, AB is just like getting one end of the ycar interest payment. Since AB is 0.05 times the balance
B. itis like getting 5% interest at the end of the year.
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(e) Part (b) is equivalent to computing the final amount in an account that begins with $1000 and eams 5% interest
compounded twice annually. Each step is like computing the interest after 6 months. When ¢ = 0.5, for example, the
interest is AB = (0.05B) - 1, and we add this to $1000 to get the new balance.

Similarly, part (¢) is equivalent to the final amount in an account that has an initial balance of $1000 and earns
5% interest compounded quarterly.

10. Assume that z > 0 and that we use n steps in Euler's method. Label the z-coordinates we use in the process

Z0,T1....,Tn. where xp = 0 and £, = z. Then using Euler’s method to find y(z), we get
Table 11,13
T y Ay = (slope)Azx
Po|0=1x0 0 f(zo)Az
P, Iy Sf(xo)Az S(x1)Az

P T2 flzo)Az + f(zy)Az flza)Az

n-1
Pn|z=2n Z flz:) Az
—

n=1
Thus the result from Euler’s method is Z f(z:)Az. We recognize this as the left-hand Riemann sum that approxi-
i=0

mates for F(t)dt.

Solutions for Section 11.4

Exercises

I. 'f,—f = (0.02P implies that d: =0.024dt.
J 42 = [0.02dt implies that In | P| = 0.02t + C.

|P| = €%9%+C implies that P = 4e®%%, where 4 = +eC.
We are given P(0) = 20. Therefore, P(0) = 4e(®92"® = 1 = 20. So the solution is P = 20e°%*.

2, Separating variables gives
/%dP=—/2dt.

In|Pj=-2t+C.

S0

Therefore ]
P(t) = £e7 %0 = e

The initial value P(0) = 1 gives 1 = A, so

P(ty=e"*.
3. Separating variables gives
/ Pep = / d
so that
P'_’
—=t+C
2 +
or
P=4+v2t+D

(where D = 2C).
The initial condition P(0) = 1 implics we must take the positive root and that 1 = D, so

P(t) =Vt +1.
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8.

10.

11.

11.4 SOLUTIONS 653
= % implies that % = d—;.
fd—QQ = [ 4 implies that In |Q| = }t + C.

So |Q| = e¥'*C = e%‘elc implies that Q = Ae3'. where A = +e€. From the initial conditions we know that
Q(0) = 50, s0 Q(0) = Ae®)® = 4 = 50. Thus Q = 30e¥*.
Separating variables and integrating both sides gives

1 1
1= /o

In|L|= %p+ C.

or

This can be writlen
L(p) = +£elM/2P+C = 4eP/2
The initial condition L(0) = 100 gives 100 = A, so

L(p) = 100e*/>.
4 + £ =0 implies %ﬁ- = —4 implies [ %fi =-[1idz
Integrating and moving terms, we have y = Ae~ 37 Since y(0) = A =10, we have y = 10e~§=.
4% = 3m. As in problems | and 4, we get
m = Ae*.
Sincem = 5 whent = 1, we have 5 = Ae3.so A = 5. Thus m = fge:" = 533,
41 — 0.27 implies that ¢ = 0.2 dz implies that [ 41 = [ 0.2dz implies that In|I| = 0.2z + C.

So I = Ae®?, where 4 = +e©. According to the given boundary condition, I(—1) = 6. Therefore. I1(—1) =
Ae®2C1 = 46792 = G implies that A = 6e%%. Thus I = 6e%2¢%27 = 6e2=+1),

14z = 5 implies & = 5dt.

= dt
Integrating and moving terms, we have z = Ae®. Using the fact that z(1) = 5. we have z(1) = Ae®* =5.50 4 = .
Therefore, z = e = 3¢ 7°.

Separating variables gives

/ldm= /ds.
m .

Injm|=s+0C

Hence

which gives
m(s) = ze*¥€ = Ae’.
The initial condition m(1) = 2 gives 2 = Ae' or 4 = 2/e, s0

2 s s=1
m(s) = €= 2e*7.

/%dz:/ydy

1
Inlz) = 5y2+C

Separating variables and integrating gives

which gives
or 2
2(y) = +e/2WHC _ gov*/2
The initial condition y = 0, z = 1 gives 4 = 1. Therefore

)=t
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13.

14,

1s.

16.

17.

18.
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Separating variables gives
1 1

11
——=<t+C.
2+C

or

The initial condition gives C = —1 and so

1
W) = T

-dﬁ = P + 4 implies that 52 = dt.

P+4

= [ dt implies thatIn|P + 4| =t + C.

P+ 4 = Ae' implies that P = Ae' — 4. P = 100 when t = 0. so P(0) = Ae® — 4 =100, and A = 104. Therefore
P =104e" — 4.

%=2y—4=2(y—2).

Factoring out a 2 makes the integration easier: —L = 2dx implies that [ A = [2dzrimplies thatln |y —2| = 2z +C.
ly — 2| = €2*+C implies thaty — 2 = Ae** where A = +€€. The curve passes through (2,5), which means 3 = Ae®.
sod =3 .Thus,y='2+ 362 =2 434

Faclonng out the 0.1 gives dt =0. lm + 200 = 0.1(m + 2000).
—dm — 0.1dt implies that [ =22 = [0.1dt, soln |[m + 2000| = 0.1¢ + C. Som = Ae®* — 2000. Using the

m+2000
initial condition, m(0) = Ae!™ o 2000 = 1000, gives A = 3000. Thus m = 3000 — 2000.
48 4 2B = 50 implies 42 = —2B + 50 = —2(B — 25) implics [ 28z = — [ 24t.

After mlegraung and doing some algebra, we have B — 25 = de” 2t Using the initial condition, we have 75 = Ae~2,
s0 A = 75¢”. Thus B = 25 + Thee™*" = 25 + 75e” 7%

We know that the general solution to a differential equation of the form

Y _ o
7 = Fy—-4)

y=Ce + A.

Thus, in our case, we get
y = Ce'’? + 200.

We know that at ¢t = 0 we have y = 50, so solving for C we get

y= Ce'’? 4 200
50 = Ce®? + 200

-150 = Ce°
C = -150.
Thus we get
y = 200 — 150e*/2.
We know that the general solution to a differential equation of the form

9 _ke-a

H=Ce*"+ A.



19.

22,

23, & = (1 +¢t) implies that [ %1;(- = [(1 + t)dt implies that —i =t+ % + Cimplies thaty = -—m.
. — , _ I | _ _ - _ 1 _ _ 2
Since y = 2whent = 1,then 2 = m.So2C+3— l,andC = -2. Thusy = f;—+t-: = -y
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To get our equation in this form, we factor out a 0.3 to get
dQ 120
— =0 —-—— =0 - .
Thus, in our case, we get
Q = Ce®¥ + 100.
We know that at ¢ = 0 we have @ = 50 so solving for C we get
Q = Ce>™ + 400
50 = Ce®¥® + 400
-350 = Ce’
C = -350.
Thus we get
Q = 400 — 350e%%.
Rearrange and write
[ Zmem= [
or
—In|l-R|=r+C
which can be written as
l-R==%e%"" = de™"
or
R(r)=1-Ae™".
The initial condition R(1) = 0.1 gives 0.1 = 1 — Ae™! and so
A=0.9e.
Therefore
R(r)=1-10.9¢""".
Write
ldy = Ld!
y 3+t
and so
Injy| =3+ +C
or
Inly| =1n D|3 + ¢|
where in D = C. Therefore
=D(3+1).
The initial condition y(0) = 1 gives D = 1 and so
1
y(t) = z(3+1).
3
d: — te® implies e ~*dz = tdt implies [ e~ dz = [ tdt implies —e™* = L ic.
Since the solution passes through the origin, z = 0 when ¢ = 0, we must have - % = % +C,s0C = —1. Thus
—-e T = g —1l.orz=-In(l- %)
dy/dz = 5y/z implies [ dy/y = [ 5de/r.Soln|y| = 5ln|ef + C = 5lnz + C implies |y| = e31°%¢€, and thus

y = Az> where A = +eC. Since y = 3 when & = 1, s0 4 = 3, Thus y = 3z°.
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24, 92 = = 4 247 = 2(1 4 ¢2) implies that f d = f(l +t")dt implies thatIn|z] = t + & >+ C implies that z = 4€‘+£5'

dat
z=5whent =0, oA =5andz = 5etS.

25, f-'l—a = Hw’sin§ implies that /&% dy = [#@sin * (10 implies that —+ = —3cos6” + C. According to the initial
conditions, w(0) = 1,50 =1 = =1 + Cand C = — 3. Thus —; = —icos 6% — % implies that L = "05‘3.,2“ implics
that w = (:0_892"3'

26, r(r+ 1)3 = u® implies f S = f e i =f{- L)dr implics -+ = In |r| Injz+1|+C.

(1) =1.s0 -+ =1In|i|=In|1 +1|+C.SoC = In2 - 1. Solving for u ynclds i =hfz|-lnjz+1[+n2-1=
2]r
In =+1) —l.sou— Wu—ﬁ

27. Separating variables and integrating with respect to ¢ gives
1 2
—dw = [ cost dy.

Now set 1° = £, then this becomes

and so

or
" sin(t)+ D
-2
sing? + D’
Using the initial conditions give D = —2, so the solution is
-2

w=—-—.
sin i~ — 2

Problems

4l = LR implies that 48 = kdt which implies that [ 48 = [ kdt. Integrating gives In|R[ = kt + C. so |R| =
e tC = e¥'eC. R = Ae**, where A = xe€.
29. % - % =0so0 ‘jQ = % This is now the same problem as Problem 30), except the constant factor on the right is %
instead of k. Thus the solulion is Q = Ae*! for any consiant A.
30. ‘fl',) = P — a, implying that §= = dt so f f dt. Integrating yields In|P —a| = { + C.s0 [P —a| = ¢'*¢ =
e'e€. P =a+ Ae'. where -1 :.te or -l—()
31 -(TO;- = b — Q implies thut ﬁ— = dt which, in turn, implics fj— [ di. Integrating yields —In[b~ Q| =t + C.s
b= Q| = e~ (t+O) —c" '(.Q—b-.»ie f where 4 = 2e~ or A = 0.

32, &£ =K(P 4P — kdt.so [ AL = [ kadt. Incegrating yiclds In |P — a| = kt + C so P = a + Ae*' where

dt
1
/0P+de—/(lt.

A=z orA=0.

33, Separating variables and integrating gives
1
—lnjlaP+bj=t+C
a

lnjaP+bl=0at+ D

aP +b= 2P = A"

28.

o

)

This gives

or

P(t) = 11;(.453"‘ —b).




4.

36.

37.

38.

39.

40.

41.
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‘i—t = aR +b. If a = 0. then this is just % = b. where b is a constant. Thus in this case R = bt + C is a solution for
any constant C.
Ifa;EO then 4% = a(R + 2).

Now thns is just lhe same as Problem 32, except here we have « in place of k and — ; in place of a, so the solutions are
R = + Ae®" where A can be any constant.

1 )
/y—.zdy—/k(l+t )dt

Separaung variables and integrating gives

or 1 1
-~ =k(t+zt) +C.
Y 3
Hence,
y(t) = ’—1
M e+ Iy ¢

Separating variables and integrating gives

/R,_HdR /ada:

arctanR=azr +C

or

so that
R(x) = tan(az + C).

Separating variables and integrating gives

ln|L - b]—k( z +(11)+C.

or

Solving for L gives
L(z) = b+ Agk="+an),

4 = y(2 — y) which implics that _HT) = —dt, implying that [ rfz”)m =-[dtso-3 [(} - L)dy =
—f dt.

Integrating yields (ln |y — 2| = In|y|) = ~t + C.soln '—”Tgl—zl = -2t +2C. . .
Exponentiating both sides yields [1 — 2| = e"HtC = 2 =1~ Ae™, where 4 = +e%C. Hence y = -—2—. But
y(0) = 25 =1,s04=—-1,undy _WC%F.

tde = (1 +21nt) - = (421nt) d¢ which implies that [ £2£ dz = [(} + Z2L)dt.
Infsinz| =Int + (lnt)2 +C.

|sinz| = entHIND?HC _ y(intylat,C = y(1116)eC g6 sing = At where A = +e€. Therefore r =
arcsin( A" tF!),
‘f; = zlpz qof T A{dl—’ and thus In | Inz| = Injt| + C. so |lnz| = eCe™!*! = eC|t|. Therefore Inz = At,

where 4 +eC, 50z =e
Since ¢ = —yIn(%), we have T& —dt, so that [ —mfg— [(=dt).

Substituting w = In(%). dw = ; dy gives:
dw
/; = /(—(“)

)
Injw| =In \ln (%)’ =-t+C.



658 Chapter Eleven /SOLUTIONS

Since y(0) = 1. wehave C = In|ln 3| = In| = In 2| = In(In2). Thus In|In(4)| = -t + In(ln 2). or

[=(3)

Again, since y(0) = 1, we sce that — In(y/2) = (In2)e ™" and thus y = 2(27¢7"). (Note that In(y/2) = (In 2)e™* does

not satisfy y(0) = 1.)
1
dy= [ dt
/ 00—y~ /

— 100 —y|=t+C

— e—l+1n(ln 2) — (lng)e—t

42, (a) Scparaling variables and intcgrating gives

so that

or
y(t) =100 — de”".

(b) Sce Figure 11.11.

Figure 11.11
(¢) The initial condition y(0) = 25 gives A = 75, so Lhe solution is
y(t) =100 — 75e~".
The initial condition y(0) = 110 gives A = —10 so the solution is
y(t) =100 + 10e™".
(d) The increasing function, y(t) = 100 — 75¢™'
43, (a) The slope field for dy/dx = zy is in Figure 11.12,

Figure 11.12 Figure 11.13

(b) Some solution curves arc shown in Figure 11.13.
(¢) Scparating variables gives
1
/ —dy = / zdr
J oY

Inly| = %12 +C.

or
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44. (a) The slope field for dy/dx = y/x is in Figure 11.14.
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Figure 11.14 Figure 11.15

(b) See Figure 11.15.
(c) Separating variables gives

1 1
/;dy—/;dz

Inly|=njz|+C

or

which can be written as
Injy] = In|z| +In|D|

so that
y = Dux.
Thus, the solutions are lines through the origin, as shown in part (b).
45. (a). (b)

(c) Since % = i. we have f ydy = f;rd:l: and thus 5’,_,3 = % + C.or y* — &% = 2C. This is the equation of the
hyperbolas in part (b).
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46. (a), (b)
Yy
s
(3] f—:ff = — £ which implies that I d—y’i = — [ £, solnjy| = —In|z|+ C implies that |y| = e~ n1ZHC — (|z])~eC.
y= d. where A = +¢€.
47. By looking at the slope fields, we sce that any solution curve of y' = 3 intersects any solution curve to y' = —£,

Now if the two curves intersect at (z.,y). then the two slopes at (z,y) arc negative reciprocals of each other, because
—57y = —¥. Hence, the two curves intersect at right angles.

Solutions for Section 11.5

Exercises

L. (a) = (), (b) = AV). (c) = (I1ID). Graph (1) represents an egg originally at 0° C which is moved to the kitchen table 20°
C) two minutes after the egg in part (a) is moved.

2. (a) ()
(b) (IV)
(c) (II)and (IV)
(d) (1) and (111

3. (a) The equilibrium solutions occur where the slope y' = 0, which occurs on the slope field where the lines are horizontal,
or (looking at the equation) at y = 2 and y = —1. Looking at the slope field, we can see that y = 2 is stable, since
the slopes at nearby values of y point toward it, whereas y = —1 is unstable.

(b) Draw solution curves passing through the given points by starting at these points and following the flow of the slopes,
as shown in Figure 11.16.

ML N s
KRR .
EERTR U I

Figure 11.16
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4. (a) We know that the equilibrium solutions are the functions satisfying the differential equation whose derivative every-
where is 0. Thus we have

dy _

dt
0.2(y - 3)(y+2) =0

(v-3)y+2)=0

The solutions are y = 3and y = —2.
(b) y

Figure 11.17

Looking at Figure 11.17, we see that the line y = 3 is an unstable solution, while the linc y = —2 is a stable
solution.

5. The equilibrium solutions of a differential equation are those functions satisfying the differential equation whose derivative
is everywhere 0. Graphically, this means that a function is an equilibrium solution if it is a horizontal line that lies on the
slope field. Looking at the figure in the problem, it appears that the equilibrium solutions for this problem are at y = 1
and y = 3. An equilibrium solution is stable if a small change in the initial value conditions gives a solution which
tends toward equilibrium as t — oco. we see that y = 3 is a stable solution, while y = 1 is an unstable solution. See
Figure 11.18.

Figure 11,18

6. (1) Separating variables, we have 73— = —kdt, so [ g2 = [ —kdt, whence In|H — 200| = —kt + C, and
H — 200 = Ae™ % where A = %e®. The initial condition is that the yam is 20°C at the time t = 0. Thus
20 — 200 = A, so A = —180. Thus H = 200 — 180e™**.

(b) Using part (a), we have 120 = 200 — 180e~*®%_ Solving for k. we have e 3% = =& giving

In g

k=_—30'

= 0.027.

Note that this k is correct if ¢ is given in minutes. (If t is given in hours, k = l;é» ~ 1.62.)
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Problems

7. (a) Since the growth rate of the tumor is proportional to its size, we should have

dS

" =kS.

(b

-~

We can solve this differential equation by separating variables and then integrating:

4 [

In|S|=kt+ B
S = Ce*t.

(c) This information is enough to allow us to solve for C':
5=Ce®
¢ =a.
(d) Knowing that C' = 5, this second piece of information allows us to solve for k:
8 = 5ed*
1 -
k==-In ( = 0.1567.
3 )

| oo

So the tumor’s size is given by
S — 560.1567!
8. (a) Since we are told that the rate at which the quantity of the drug decreases is proportional to the amount of the drug

left in the body, we know the differential equation modcling this situation is

dQ

da kQ.

Since we are told that the quantity of the drug is decreasing, we know that k < 0.
(b) We know that the general solution to the differentizl equation

dQ _
@ ~ ke
is
Q = CeM'.

(¢) We are 1old that the haif life of the drug is 3.8 hours. This means that at ¢ = 3.8, the amount of the drug in the body
is half the amount that was in the body at t = 0, or, in other words,

0.5Q(0) = Q(3.8).
Solving this equation gives

0.5Q(0) = Q(3.8)
0.5Ce*® = Cet3:8)
0.5C = Ce*®¥

0.5 = ¥

In(0.5) = k(3.8)
In{0.5) _

38 k

k= —0.182.



(d)

9. (a)

(b)

10, (a)

(b)
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From part (c) we know that the formula for Q is
Q — CF—O.IRQI

We are told that initially there are 10 mg of the drug in the body. Thus at t = (), we get
10 = Ce™0-182(0)

s0

C=10.

Thus our equation becomes
Q(t) = 10e~ 2182,

Substituting ¢ = 12, we get

Q(t) — 106—0.15'1!
Q2) = 10e~0-182012)
= 107>

Q(12) =~ 1.126 mg.

Suppose Y (t) is the quantity of oil in the well at time £. We know that the oil in the well decreases at a rate proportional
10 Y(t), so

dY’

— = —kY.

dt

Integrating, and using the fact that initially ¥ = Yo = 108, we have

Y = Yoe ¥t = 10% .

In six years, ¥ = 500,000 = 5 - 10, so
5-10° = 10%*°

)
0.5 =e 5
k= -1"2'5 = 0.1135.
When }* = 600, 000 = 6 - 10°,
Rate at which oil decreasing = l%' = kY = 0.1155(6 - 10°) = 69.300 barrels/vear.

We solve the equation

5. 104 — 1066—0.1155t

0 06 = e—0.ll.’r"n?
1n0.05
t = 2209 _ 959 years.
0155 _ 20-9 yeurs

Assuming that the world’s population grows exponcntially, satisfying dP/dt = ¢P, and that the land in use for crops
is proportional to the population, we expect A to satisfy dA/dt = kA.

We have A(t) = Aoe* = (1 x 10°)e*!. where t is the number of years after 1950. Since 2 x 10° = (1 x 10%)e*3%,
we have 3% = 2, so k = ’—302 2 0.023. Thus, A = (1 x 10%)e®%23!, We want 10 find ¢ such that 3.2 x 10° =
A(t) = (1 x 10°)e%9%¢, Taking logarithms yields

_ In(3.2)
T 0.023

Thus this model predicts land will have run out by the year 2001.

= 5().6 years.
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11. (a) Leuting k be the constant of proportionality. by Newton's Law of Cooling, we have

dH
9 k(68 — H).

(b) We solve this cquation by separating variables:

dH
/GB—H = [ kdi

~n|68-H|=kt+C
68 — H = &~ "
H =68~ de” .

(c) We are told that H = 40 when ¢ = 0; this tells us that

40 = 68 — Ae *®
40=68— A
A =28

Knowing A4, we can solve for & using the fact that H = 48 whent = 1:

48 = 6§ — 28e "+

20 _,
28 "¢
20
k=— (ﬁ) = 0.33647.

So the formula is H(t) = 68 — 2823317 We calculate H when t = 3, by

H(3) = 68 — 28¢~0-3384703) _ 57 g°F,

12. (a) The rate of growth of the money in the account is proportional to the amount of money in the account. Thus

dAf
— =rM.
ar ~ 7
(b) Solving, we have dM /M = rdt.
[ fra
£
m|M|=rt+C
M=e"=4e" A=

When £ = 0 (in 2000). M = 1000, so A = 1000 and M = 1000e™*.

(c) M
20000 M = 1000e%10¢
5000 L A = 1000e0-05t
1000 ¢
t=0 t =30
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13. (a) % = 155 B- The constant of proportionality is 155
(b) Solving, we have
B _ rdl
B 7 100
dB
— = — di
B / 100 ¢
In lBl = mf +C
B = ((r/100t+C _ 4 (r/100)t A =eC.

A is the initial amount in the account, since A is the amount at time ¢ = 0.

(c) B = 100013
20,000 o B = 100““0.101
10.000 +
B = 1000e0-04
1000 ‘ ¢
15 30

14. Since it takes 6 years to reducc the pollution to 10%, another 6 years would reduce the pollution to 10% of 10%, which is
equivalent to 1% of the original. Therefore it takes 12 years for 99% of the pollution to be removed. (Note that the value
of Qo does not affect this.) Thus the second time is double the first because the fraction remaining, 0.01, in the second
instance is the square of the fraction remaining, 0.1, in the first instance.

15, Michigan:

dQ r 1538

— =—-=Q=-—-0 = -0.032

dt VQ 4.9 x 103Q 0.032Q
so

Q = Qoe-0.032t

We want to find ¢ such that
0.1Q¢ = Qoe-o.oae:

50 In(0.1
= :Fn()(_S‘;_l = T2 years.
Ontario: dQ
a Q_ 1.6 x 10?Q_ —0.131Q
0
O = Qoe™ 13",

We want to find ¢ such that

O-IQO — Qoe—O.ISIx‘
O
_ —In{0.1)
013
Lake Michigan will take longer because it is larger (4900 km* compared to 1600 km3) and water is flowing through
it at a slower rate (158 km*/year compared to 209 km3/year).

~ 18 years.

16. Lake Superior will take the longest. because the lake is largest (17 is largest) and water is moving through it most slowly
(r is smallest). Lake Eric looks as though it will take the least time because 17 is smallest and r is close to the largest. For
Erie. k = r/V = 175/460 ~ 0.38. The lake with the largest value of r is Ontario. where k = r/1" = 209/1600 ~ 0.13.
Since e~ *! decrcases faster for larger k, Lake Erie will take the shortest time for any fixed fraction of the poilution to be
removed.

For Lake Superior,
aQ v, 652

W = —-FQ = —m(‘? ~ —-0.0()53Q
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SO

(2 — (206—0.00531‘

When 80% of the pollution has been removed. 20% remains so @ = 0.2Q¢. Substituting gives us

0'2(20 — ()OB—O.OOSSL

%0 In(0.2
= - (;15)053) = 301 years.
(Note: The 301 is obtained by using the exact value of & = -2%L rather than 0.0053. Using 0.0053 gives 304 years.)
For Lake Erie. as in th v e
or Lake Erie. as in the text

dQ r. 175

o T v9T T 08
50

Q = Qoe=0%

When 80% of the pollution has been removed

0.2Q0 = Que—o.sst
_ _In(0.2)
T 038

= 4 years.

So the ratio is

Time for Lake Superior 301 5
Time for Lake Eric 4

In other words it will take about 75 times as long to clezn Lake Superior as Lake Erie.

17, (a)

(b)
(c)

18. (a)

(b)
(0)

Qo

Q = Qoe=0-0187t

d_Q_z_kQ

Since 25% = 1/4, it takes two half-lives = 74 hours for the drug level to be reduced to 25%. Alternatively, Q@ =
Qoe™*t and } = e %7 we have
9
k= - A2 G o1,
37
Therefore @ = Qoe~ %%, We know that when the drug level is 25% of the original level that Q = 0.25Qo.

Setting these equal, we get
0.25 = ¢~ 00187t

giving
In(0.25)
= - ~ 74 = 3 days.
0.0187 hours % 3 days
We know that the rate at which morphinc leaves the body is proportional to the amount of morphine in the body at
that particular instant. If we let Q be the amount of morphine in the body, we get that

Rate of morphine leaving the body = k@,

where k is the rate of proportionality. The solution is @ = Qoe** (ncglecting the continuously incoming morphine).
Since the half-life is 2 hours, we have

1 .2
§Q0 = Qoek -

and so
in($)

k= = ~0.347.

92 = —0.347Q + 2.5
Equilibrium will occur when 32 = 0, i.c., when 0.347Q = 2.5 or Q = 7.2 mg.
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19. (a) % = —k(T — A), where A = 68°F is the temperature of the room, and ¢ is time since 9 am.

(b)
/ Td_Tj =— / kdt
In|T-Al=-kt+C
T =A+Be ™,
Using 4 = 68, and T(0) = 90.3, we get B = 22.3. Thus
T = 68 + 22.3¢~**.

Att =1, we have

89.0 = 68 + 22.3e™*

21 = 22.3¢*

k=-ln 21

2.3 =~ 0.06.

Thus T = 68 + 22.3¢~%%°".
We want to know when T was equal to 98.6°F, the temperature of a live body, so

98.6 = 68 + 22.3¢ 206

30.6
In 23 = -0.06¢
t = (— —1—) In ﬁ
0.06 22.3
t = —5.27.

The victim was killed approximately 5% hours prior to 9 am, at 3:45 am.

20. (a) The differential cquation is
dT
= = KT - A).
2 (T - A4)

where 4 = 10°F is the outside temperature.

Integrating both sides yields
dT
= =— [ kdt.
[ 7= [k

ThenIn|T — A| = —kt + C.s0T = A + Be™*'. Thus
T = 10 + 58¢~*".

(b

~—

Since 10:00 pm comresponds tot = 9,
57 = 10+ 58¢™%*

7w
58 ¢
47
2 gk
1“58 9

k

1, 47
—=In — = 0.0234.
3 In 53 023
At 7:00 the next morning (¢ = 18) we have

T 7 10 + 58¢!3(-0.928
= 10 + 58(0.66)
=~ 48°F,

so the pipes won't freeze.

(c) We assumed that the temperature outside the house stayed constant at 10°F. This is probably incorrect because the
temperature was most likely warmer during the day (between | pm and 10 pm) and colder after (between 10 pm and
7 am). Thus, when the temperature in the house dropped from 68°F to 57°F between | pm and 10 pm, the outside
temperature was probably higher than 10°F, which changes our calculation of the value of the constant k. The house
temperature will most certainly be lower than 48°F at 7 am, but not by much—not enough to freeze.



668 Chapter Eleven /SOLUTIONS

21. The rate of disintegration is proportional to the quantity of carbon-14 present. Let ¢} be the quantity of carbon- 14 present
attime ¢, with¢ = 0in 1977. Then
Q= Qoe™",

where Qg is the quantity of carbon-14 present in 1977 when ¢ = 0. Then we know that

0 ~k(57
(g Qoe k(5730)
s0 that

In(1/2)
k= ——=L=2 = 0.000121.
5730 0.000

Thus
—0.000121¢
Q = Ooe 00121 .

%

The quantity present at any time is proportional to the rate of disintegration at that time so
Qo = 8.2 and Q@ =cl135
where ¢ is a constant of proportionality. Thus substituting for Q and Qo in
Q = Qe 0000121t
gives
c13.5 = c8.2¢ 00017

SO
In(13.5/8.2)
= ———1 " 2~ —4120.
0.000121 (
Thus Stonehenge was built about 4120 years before 1977, in about 2150 B.C.
. (a) IfC' = —kC. and then C = Coe~**. Since the half-life is 5730 years, 2Co = Coe~573%, Solving for &, we have
—5730k = In(1/2) so k = =12 ~ 0.000121.
(b) From the given information, we have 0.91 = e~ " where t is the age of the shroud. Solving for t, we have ¢ =
=1n0.81 . ~%9 4
=522 & 779.4 years.

[
[

23. (a) Since speed is the derivative of distance, Galileo’s mistaken conjecture was ‘fi—’f =kD.

(b) We know that if Galileo’s conjecture were true, then D(1) = Dge**, where Dg would be the initial distance fallen.
But if we drop an object, it starts out not having traveled any distance, so Do = 0. This would lead to D(t) = 0 for
all t.

Solutions for Section 11.6

Exercises

1. Since mg is constant and a = dv/dt. differentisting ma = mg — kv gives

Ida _ kdv - —ma
T T a T
Thus, the differential equation is
da _ _k
a ~ m
Solving for a gives
a = age /™,

Att = 0, we have a = g, the acceleration due to gravity. Thus, ag = g, so

a= gc—-kt/m.

2. (a) If B = f(t), where t is in years,

dB Lo .
i Rate of money carned from interest + Rate of money dcposited

d
— =0.10B 0.
ai 0B + 100
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{b) We use separation of variables to solve the differential equation

dB
e 0.1B + 1000.

' 1
/ 01B + 10000 = /dt

Inf0.1B +1000| =t + C,

Z|
-

1
0.1B + 1000 = C»e®!*
B = Ce™!'' - 10,000

Fort = 0. B =0, hence C = 10.000. Thercfore, B = 10.000e°!* — 10.000.
3, (a) There are two factors that are affecting B3: the money leaving the account, which is at a constant rate of —2000 per
year, and the interest accumulating in it, which accrues at a rate of (0.08)B. Since

Rate of change of balance = Ratein — Rate out,

the differential equation for B is

dB
— =0.08B8 - 2000.
7 0.08 200

(b) We solve the differential equation by separating variables and then integrating:

48 _ [
0.08B — 2000 ~

12.51n{0.08B — 2000] = t + C

In}0.08B — 2000| = ég +C

0.08B — 2000 = £e%%+C
B = 25.000 + 4e*%".
(¢) (i) If the initial deposit is 20,000, then we have B = 20.000 when t = 0, which leads to 4 = —5000. Knowing
A, we can find B(5) as:
B(5) = 25,000 — 5000e*%%") = $17.540.88.
(i) Now B = 30.000 when t = 0 leads to 4 = 5000, giving B(5) = $32.459.12.
4. (a) By Newton’s Law of Cooling, we have -
[¢

for some k. Furthermore, we know the juice’s original temperature H(0) = 90.

(b) Separating variables, we get
dH
= [ kdt.
/ (H - 30) /

In|H - 50| =kt +C
H-30=¢".4
H =50 + Ae*.

We then intcgrate:

Thus, H(0) = 90 gives 4 = 40, and H(5) = 80 gives

50 + 40e%* = 80
sk _ 30
T 10
5k = In(0.75)

€

1
k= 2In(0.75) = —0.05754.

Therefore
H(t) = 50 + 40~ 205753
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(c) We now solve for ¢t at which H(t) = 60:

60 = 50 + 40e %0573

1 _o.05754¢
—1' =€

In(0.25) = ~0.05754¢

t = 24 minutes.

Problems

5. Let D(t) be the quantity of dead leaves, in grams per square centimeter. Then ‘f,—? =3 - 0.75D, where t is in years. We
factor out —0.75 and then separate variables.

dD .
E = —0.7D(D 4)
dD
_—= —0.75 dt
D1 / 0.75 d

In|D - 4] = -0.75t + C
ID - 4| = e OTHHC _ =0.75t ,C

D=4+ _46_0'75', where 4 = e€.

If initially the ground is clear, the solution looks like the following graph:

t

The equilibrium level is 4 grams per square centimeter, regardless of the initial condition.
6. (a) Sincc the rate of change of the weight is equal to

3510 5 (Intake — Amount to maintain weight)
we have AV 1
— = —— (I — 201V).
dt 3500( 0W)
(b) Starting off with the equation
daw 2 W I

T = 30" T ag)

dw 2
=— | =dt.
/ W- £ / 350

we separate variables and integrate:

Thus we have
I 2

We—|=—-—t¢ ‘
In|i¥ 20] 350t+C
so that I
f_ L = g T

& 3 Ae™ 356

or in other words 7
2
1= -mt'
W 20 + Ae

Let us call the person’s initial weight ¥ at ¢t = 0. Then Wy = .21—0 +Ce%s50C =Wy — :,’5. Thus

I Iy _ =2,
f = Wo — — 350°,
W=+ ( 20) ¢
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(c¢) Using part (b). we have W = 150 + 10e” 385 This means that 1§ — 150 as  — oc. See the following figure.

W
160
150
¢
100 days
7. Let the depth of the water at time ¢ be y. Then ‘l_,t/ = —k+/y, where k is a positive constant. Separating variables,
ot
dy
— =- [ kdt.
/%
O
2/y=—kt+C.

Whent =0.y=36:2v36=-k-0+C.s0C =12
Whent =1.y=352vV35 = -k + 12, s0 k = 0.17.
Thus, 2,/y = —0.17t + 12. We are looking for ¢ such that y = 0: this happens when ¢ = % = 71 hours, or about 3
days.
8. We are given that the rate of change of pressure with respect to volume, dP/dV is proportional to P/V/, so that

dP P

a =k
Using separation of variables and integrating gives

dP dV

— =k | —.

P ./ ‘}f

Evaluating these integral gives
mP=klnV +c¢

or equivalently,

P=AVE
9. We are given that
BC = 20C.
If the point 4 has coordinates (z,y) then OC = z and AC = y. The slope of the tangent line, i, is given by
y =3¢ v
Y= BC T BC'
)
Bc=4%
Substitution into BC' = 20C gives
¥ _»5,.
y—' = 2z.
3]
y_
y 2z
Separating variables to integrate this differential equation gives
dy _ [ de
y 2r

In |y| —;—ln gl + C =In/jz| +1n 4
lyl = Ay/l=z|
y = £(AVT).

Thus, in the first quadrant, the curve has equation y = 4/7.
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10. Let C(t) be the current flowing in the circuit at time £, tken

dc
dt

where a > 0 is the constant of proportionality between the rate at which the current decays and the current itsclf.

The general solution of this differential equation is C(t) = Ae™ " but since C(0) = 30, we have that A = 30, and
so we get the particular solution C(t) = 30e ™.

When t = 0.01, the current has decayed to 11 amps so that 11 = 30e~2%®" which gives @ = —100In(11/30) =
100.33 so that,

= —-aC

C(t) = 30~ 100-33t

11. (a) Since the rate of change is proportional to the amount present, dy/dt = ky for some constant k.
{b) Solving the differential equation, we have y = Ae**, where A is the initiat amount. Since 100 grams become 54.9
grams in one hour, 54.9 = 100e*, so k = In(54.9/100) =~ —0.5997.
Thus, after 10 hours, there remains 100e{~%-%99710 ~ §.2486 grams.

12. (a) Il P = pressure and h = hmghl. dh =-37x10""P,so P = Poe'a'“w-sh. Now Py = 29.92, since pressure
at sea level (when h = 00)i5§29.92, 50 P = 29.92¢~7X107%h A ine top of Mt. Whitney, the pressure is

P = 29.92¢~37X107°(14500) . 17 50 inches of mercury.

At the top of Mt. Everest, the pressure is

P = 20.92¢~37x107°(29000) . 10 93 inches of mercury.

(b) The pressure is 15 inches of mercury when
15 = 20.92¢™37%107°H

Solving for h gives h = 7e=x In(z355) ~ 18,661.5 feet.

3Tx10-
13. (a) If I isintensity and [ is the distance traveled through the water, then for some k > 0.
dl
i —kI.

(The proportionality constant is negative because intensity decreases with distance). Thus I = Ae™*!. Since I = A
when ! = 0, A represents the initial intensity of the light.

(b) If 50% of the light is absorbed in 10 feet, then 0.50.4 = de™'%,soe™!% = 1 giving

“nf 2
100 ~ 10°

k=

In 20 feet, the percentage of light left is

e-%&zo — 22 (elnz)-z —9-2

|-

SO - or 75% of the light has been absorbed. Similarly, after 25 feet,
e M3 = o282 — (Mn?y~F 9% 5 177,

Approximately 17.7% of the light is left, so 82.3% of the light has been absorbed.
14. (a) If A is surface area, we know that for some constant K

dv

E = —I\.‘{.

If  is the radius of the sphere, V' = 4713/3 and A = 4mr?. Solving for r in terms of V' gives r = (3V/47)!/3, so

d\’

av 3V ) dVv
dt

= —R(4ar?) = — o Vo e
= —K(4wr") K4rw (4 o — ki

™

where k is another constant, k = K (4x)'/%3%/3
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(b) Separating variables gives

()

15. (a)

(b)

dv’
/-‘-_,—/3- =—/kdt

VY3 = —kt + C.
Since V7 = Vp when t = 0, we have 3\"’01/ S=C,s0
3V = —kt 431,72
Solving for 1 gives
V= k /s 8
=(-3t+%") -
This function is graphed in Figure 11.19.

v
Vo

— ¢
3vy 3k

Figure 11,19

The snowball disappears when V* = 0, that is when
k
—5t+ Vg7 =0
giving
t

3V,/°
= k .
Quantity of A present at time ¢ equals {2 — ).
Quantity of B present at time ¢ equals (b — z).

So
Rate of formation of C = k(Quantity of 4)(Quantity of B)
gives
dr
i k(a - z)(b— 1)

Separating gives

./m_-z.gﬁ:/“"

673

Rewriting the denominator as (@ — )(b—x) = (z — a)(x ~ b) enables us to use Formula 26 in the Table of Integrals

provided a # b. For some constant K, this gives
1 .
’m(lﬂll—ﬂl—hl'r—bn = }\.f"'}\

Thus

r—a

-b

In

‘ =(a—b)kt+ K(a—-0)

r—=b

r—a C(a— -
|= K a=b) (a=b)kt

T —a _ .
I_——Tl = Me @95 where M = teff(e78,
- — b
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Since £ = 0 when t = 0, we have M = ¢. Thus
r—a — ge(a—b)kl‘
r—b b
Solving for x, we have
br — ba = ae " (z - b)
2(b — ae ¥ty = ab — abel® P!

(lb(l _ e(a—b)kt) _ ub(cbkl _eak!)
b — gela—b)kt T pebkt — geakt ’

Ir =

16. Quantity of A left at time ¢ = Quantity of B left at time t equals (a — x).

Thus
Rate of formation of C = k(Quantity of .1)(Quantity of B)
gives
% = k(a — 2)(a — 1) = k(a — 2)°.

Separating gives
dx
[ = [k

—(x—a) ' =kt+K.

Whent =0, r = 0so A =a~'. Solving for z:

Integrating gives, for some constant K,

~(z-a) ' =kt+a?

_ 1
toe= “kt+a-!
_ a _ a’kt
=a- akt +1  akt+1

17. (a) The quantity and the concentration both increase with time. As the concentration increases, the ratc at which the
drug is excreted also increases, and so the rate at which the drug builds up in the blood decreases; thus the graph of
concentration against time is concave down. The concentration rises until the rate of excretion exactly balances the
rate at which the drug is entering; at this concentration there is a horizontal asymptote. (See Figure 11.20.)

¢ (mg/mi)
0015 F-—-—————=====

¢ = 0.015(1 — e~ 0-052¢)

: . S
20 40 60

Figure 11.20

(b) Let’s start by writing a differential equation for the quantity, Q(t).

Rate at which quantity of drug changes = Rate in — Rate out

dQ
— = 43.2 — 0.082¢
dt 2
where Q is measured in mg. We want an equation for concentration ¢(t) = Q(¢)/v. where ¢(t) is measured in mg/ml

and v is volume, so v = 35. 000 ml.

I( 43.2
14O _ 432 059,
v dt v P
giving
dc 43.2

ﬁ = m — (.082¢.
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(c) Factor out —0.082 and separate variables 1o solve.

d_c —0.082(c — 0.013)
dt

de .
/-:m = —0.082/ dt

Inle — 0.015] = —0.082t + B

c—0.015 = A %%?  where A= +ef

Since ¢ = 0 when ¢ = 0, we have A = —0.0153, so
e =0.015 — 0.015e~ 2% = 0.015(1 — e~ %),
Thus ¢ — 0.015 mg/ml as t — oc.

18. (a) 3—!: = —k(y — a), wherc k > 0 and a are constants.

d —k . .
(b) y—-_y—a = /—k dt,soln|y—a| =In(y—a) = =kt+C.Thus,y—a = Ae ¥ where A = ¢ . Initially nothing
has been forgotten, so y(0) = 1. Therefore, ] —a = Ae® = A, soy —a = (1 - a)e Mory=(1-a)e * +a.
(©) Ast o 00. ™" 50,50y = a.
Thus, a represents the fraction of material which is remembered in the long run. The constant k tells us about the rate
at which material is forgotten.
19. (a) We have
dp _ . .
5 = k=)

where k is constant. Notice that k > 0. since if p > p~ then dp/dt should be negative, and if p < p° then dp/dt

should be positive.
(b) Separating variables, we have
b _ / —kdt.
p—-p
, where pg is the initial price.

Solving, we find p = p* + (po — p~)e™**

(c) See Figure 11.21.

po>p°

po <p’

Figure 11.21

(d) Ast = oo, p — p". We see this in the solution in part (b), since as t — x, e~ %t — 0. In other words, as t —+ o0, P
approaches the equilibrium price p~.

20. (a)
Lo ra@=-a@-1
dQ
/Q—_T/;———(l/dl
In Q—1 =—al+C
«

Q _ ’_ = ‘4e—ul
a
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r

Whent =0,Q = 0,50 4 = -~ and

_1 —-at
Q=s(1-e"
So,
Qw—tlim Q=-—
Q

Q=L(1-ect)

(b) Doubling r doubles Qoo. Since Qoo = r/c, the time to reach Qo is obtained by solving

r r -at
1 —-at
5 =1—-e€
—at _ 1
T2
_In(1/2) _In2
= —T = _Q_

So altering r doesn’t alter the time it takes to reach %Qx. See Figure 11.22.

Q
oo
Q=%1-eY
D o
i
i/ Q=L(1-e")
l
I
. t
In2
Figure 11.22

In

(¢) Qe is halved by doubling a, and so is the time, ¢ = %=, to reach %Qw.

21. (a) Concentration of carbon monoxide = W#m
If Q(t) represents the quantity of carbon monoxide in the room at time £, ¢(t) = Q(t)/60.

Rate quantily of
carbon monoxide in room = rate in — rate out
changes

Now
Rate in = 5%(0.002m®/min) = 0.05(0.002) = 0.0001m* /min.
Since smoky air is leaving at 0.002m® /min, containing a concentration ¢(t) = Q(t)/60 of carbon monoxide

Q)

Rat = 0.002——
ate out 002 60
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Ths dQ 0.002
Tf? = 0.0001 — WQ

Since ¢ = @/60, we can substitute @ = 60c, giving

d(60c) 0.002
o = 00001 — === (60c)

dc _ 0.0001 0'0020
dt 60 60
(b) Factoring the right side of the differential equation and separating gives

dc 0.0001 _s
i 3 {c —0.05) =3 x 107°(c — 0.05)

de _ -5

Inle—0.05] = -3x 107t + K

c—0.05 = Ae—axm'-"e whered = +e¥.

Since ¢ = 0 when t = 0, we have 4 = —0.03, so

e =005 — 0.0573%1977

(©) Ast = 00,e"¥197t 4 050c — 0.05.
Thus in the long run, the concentration of carbon monoxide tends to 5%, the concentration of the incoming air.

2. ¢ = 0.05 — 0.05¢™3%1°7"
We want to solve for ¢t when ¢ = 0.001
0.001 = 0.05 — 0.05e~3%10™"¢
~0.049 = —0.05¢™3% 10"t
e™3%197% = (.08

_ —1In(0.98)

= 3105 = 673 min = 11 hours 13 min.

23. (a) Now
ég = (Rate at which salt enters the pool) — (Rate at which salt leaves the pool).

dt
and, for example,
Rate at which salt _{ Concentration of N Flow rate of
enters the pool - salt solution salt solution
(grams/minute) = (grams/liter) x (liters/minute)

S0

Rate ar which salt enters the pool =
(10 grams/liter) x (60 liters/minute) = (600 grams/minute)

The rate at which salt leaves the pool depends on the concentration of salt in the pool. Attime ¢, the concentration is

S(t . S
;MJT%GE’ where S(t) is measured in grams.

Thus
Rate a1 which salt leaves the pool =
S(t) grams 9 60 liters _ 35(t) grams
2 x 108 liters © minute ~ 10% minutes ’
Ths ds 38
— =600 —

dt 100,000
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(b) % = _F%W(S - 20,000.000)

f __d5 ___ _ f 3 __ it
§-20,000,000 100,000
In IS - 20000,000' = —ﬁmt +C

S = 20.000.000 — Ae ™~ TO0.005¢
Since § = 0 att = 0. A = 20.000.000. Thus S(¢) = 20.000,000 — 20,000,000¢ ~ 0000 ¢,

(c) Ast — oo, e~ T 5 0. 50 S (t) — 20.000.000 grams. The concentration approaches 10 grams/liter. Note that
this makes sense; we’d expect the concentration of salt in the pool to become closer and closer to the concentration
of salt being poured into the pool as { — oc.

24, (a) Newton's Law of Motion says that
Force = (mass) x (acceleration).

Since acceleration, du/d¢, is measured upward and Lhe force due to gravity acts downward,

myR? _ mdv
(R+h)? dt
SO
dve _ ___9R
dt = (R+h)?
(b) Sincev = ‘%, the chain rule gives

dv _dv dh_dv
dt — dh dt ~ dh
Substituting into the differential equation in part (a) gives

-V,

J_ 9B
dh - T (R+h)?

wdo— _ [ _9R°
/UdL— /(R-f-h)?dh

(¢) Separating variables gives

P gR’ ,
> " mam
Since v = vo when h = 0, . R
w o 9 o oges 0=
3 —(R+0)-rC gives C = 3 gR.
so the solution is
v _gR | w’
7 "+ T2 R
2 2 'ZQR?
n = vy’ — " _9gR
CEw Tt Ren Y
. 2 . . s . QQRQ
(d) The escape velocity vo ensures that v° > 0 for all h > 0. Since the positive quantity R+H) —0ash o oo, to

ensure that »> > 0 for all &, we must have
vo > 2gR.

When vo? = 2gR so vo = +/2gR. we say that vy is the escape velocity.
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Solutions for Section 11.7

679

Exercises

1. A continuous growth rate of (1.2% means that

Separating variables and integrating gives

ap
/?_/o.oo“ﬁ

P = Ppe®%% = (6.6 x 10°)e% %0,

2. (a) P

(b) The value P = 1 is a stable equilibrium. (See part (d) below for a more detailed discussion.)

(¢) Looking at the solution curves, we see that P is increasing for 0 < P < 1 and decreasing lor P > 1. The values of
P =0, P =1 are equilibria. In the lon° run, P tends to 1, unless you start with P = 0. The solution curves with

initial populations of less than P = § have inflection points at P = 3. (This will be demonstrated algebraically in
part (d) below.) At the inflection ponm the population is growing fastcsl
(d) ar
dt
0.75

—

Since ‘f“;’ =3P -3P° = 3P(1 — P), the graph of & — against P is a parabola, opening downwards mth P

intercepts at 0 and 1. The quanmy P is positive for0 < P < 1, negative for P > 1 (and P < 0). The quamm

isQat P=0and P =1, and mzmmum at P = L. The fact that ‘“’ =0at P =0and P =1 tells us that tth‘.
are equilibria. Further, since 22 > 0 for0 < P < 1 we see that soluuon curves starting here will increase toward

P=1

If the population starts at a value P < l, it mcrc.zmcs at an increasing rate up lo P = L. After this. P continucs
to increase, but at a dccrcamng rate. The fact that 42 dt has a maximum at P = lclls us that there is a point of

dP

inflection when P = 3 L. Similarly, since £+ < 0for P > 1, solution curves slamnn with P > 1 will decrease to

P=1.Thus, P =1 is a stable equilibnum
3. (a) Att =0, which corresponds to 1935, we have
P= ! =0.252
= 1+ 2.968e-002ms(0) " 0°

showing that about 25% of the land was in use in 1935.
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(b) This model predicts that as ¢ gets very large, P will approach 1. That is, the model predicts that in the long run, all
the land will be used for farming.

(c) To solve this graphicaily, enter the function into a graphing calculator and trace the resulting curve until it reaches a
height of 0.3, which occurs when ¢ = 39.6. Since ¢ = 0 corresponds to 1933, t = 39.6 corresponds t0 1935+ 39.6 =
1974.6. According to this model, the Tojolobal were using half their land in 1974. Alternatively, we solve for ¢:

1
1 + 296800275
1+2.968e %™ =2

—-0.02
2.968¢ 0.0275¢ —

=0.5

e-0.0275f — 1
2.968
_ In(1/2.968) )
t= 0025 39.6 years.
(d) The inflection point occurs when P = L/2 or at one-half the carrying capacity. In this case, P = 1 in 1974, as

shown in part (c).

Problems

4, The US population in 1860 was 31.4 million. If between 1860 and 1870 the population had increased at the same rate as

previous decades, 34.7%, the population in 1870 would have been (31.4 million)(1.347) = 42.3 million. In actuality the
US population in 1870 was only 38.6 million. This is a shortfall of 3.7 million people.

History records that about 618.000 soldiers died (total, both sides) during the Civil War (according to Collier’s
Encyclopedia, 1968). This accounts for only % (roughly) of the shortfall. The rest of the shortfall can be attributed to
civilian deaths and a decrease in the birth rate caused by absent males and an unwillingness to have babics under harsh
economic conditions and political uncertainty.

Table 11,14
aP . PU+10)- P(i-10}
Year P g —55
1790 39
1800 53 (7.2 - 3.9)/20 = 0.165
1810 7.2 (9.6 - 5.3)/20 = 0.215

1820 96 {12.9 — 7.2)/20 = 0.285
1830 | 129 (17.1 — 9.6)/20 = 0.375
1890 | 17.1 [ (23.2-12.9)/20 = 0.515
1850 | 232 (31.4 - 17.1)/20 = 0.715
1860 | 304 | (38.6 — 23.2)/20 = 0.770
1870 | 386 | (30.2 - 31.4)/20 = 0.940
1880 | 502 | (62.9 - 38.6)/20 = 1.215
1890 | 629| (76.0 - 50.2)/20 = 1.290
1900 | 76.0 | (92.0 — 62.9)/20 = 1.455
1910 | 920 (105.7 - 76.0)/20 = 1.485
1920 | 105.7 | (122.8 — 92.0)/20 = 1.540
1930 | 122.8 | (131.7 — 105.7)/20 = 1.300
1940 | 131.7 | (150.7 - 122.8)/20 = 1.395
1950 | 150.7

According 1o these calculations, the largest value of dP/dt occurs in 1920 when the rate of change is ‘fi—f = 1.540
million people/year. The population in 1920 was 105.7 million. If we assume that the limiting vatue, L, is twice the
population when it is changing most quickly, then L = 2 x 105.7 = 211.4 million. This is greater than the estimate of
187 million computed in the text and closer to the actual 1990 population of 248.7 million.

Rewriting the cquation as % -‘i—f; = Sl—?%l‘ we see that this is a logistic equation. Before looking at its solution, we
explain why there must always be at least 100 individuals. Since the population begins at 200, ‘;—f is initially ncgative,

so the population decreases. It continues to do so while P > 100. If the population ever reached 100, however, then %
would be 0. This means the population would stop changing - so if the population ever decreased to 100, that’s where it
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would stay. The fact that ‘% will always be negative also shows that the population will always be under 200, as shown
below.

7. (a)

(b)

(c)

100 F-—-—-—====

The solution, as given by the formula derived in the chapter, is

20000

P = 86— 100e-1710

We know that a logistic curve can be modeled by the function

L

P= 1+ Ce~*

where C = (L — Po)/(FPo) and P is the number of people infected by the virus at a particular time ¢. We know that
L is the limiting value, or the maximal number of people infected with the virus, so in our case

L = 5000.
We are also told that initially there are only ten people infected with the virus so that we get
Py = 10.

Thus we have

L-P
Py
3000 — 10
10
= 499.

C=

We are also told that in the early stages of the virus, infection grows exponentially with k = 1.78. Thus we get that

the logistic function for people infected is
5000

T T+ 499e- 178t

5000 F------>

2500 fF~—-

t
i
!
|
!

3.5

Looking at the graph we sce that the the point at which the rate changes from increasing to decreasing, the inflection
point, occurs at roughly ¢ = 3.5 giving a value of P = 2500. Thus after roughly 2500 people have been infected, the
rate of infection starts dropping. See above.
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8. (a)

(b)

(c)

9. (a)

(b)

The logistic model is a reasonable one because at first very few houses have a VCR. As movie rentals become popular
and as VCRs get cheaper, more people will buy VCRs. However, we know that the rate of VCR buying will start
slowing down at some point as it is impossible for more than 100% of houses to have VCRs.

To find the point of inflection, we must find the year at which the rate of VCR buying changes from increasing to
decreasing. The following table shows the rate of change in the years from 1978 to 1990.
Year 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984
% Changeperyear | 02| 06| 07| 13| 24| 5.1 10.2
Year 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991
% Change peryear | 15.2 { 12.7| 93| 66| 7.3 0

Looking at the table, we see that the rate of percent change per year changes from increasing to decreasing in
the year 1986. At this time 36% of households own VCRs giving P = (1986. 36). Since at the inflection point we
expect the vertical coordinate to be L/2, we get

L/2 =36
L =72%.
Thus we expect the limiting value to be 72%. This fits in well with the data that we have for 1990 and 1991.
Since the general form of a logistic equation is

L
1+ Ce—kt
where L is the limiting value, we have that in our case L = 73 and the limiting value is 75%.

P=

Let I be the number of informed people at time ¢. and Jo the number who know initially. Then this model predicts
that % = k(A — I) for some positive constant k. Solving this, we tind the solution is

I=M— (M- I)e™ ™.

We sketch the solution with Io = 0. Nolice that % is largest when I is smallest. so the information spreads fastest in

the beginning, at ¢ = 0. In addition, the graph below shows that I — Af as t —» oo, meaning that everyone gets the
information eventually.

Mp=—mmmmmm——— oo

t

In this case, the model suggests that % = KkI(M - I) for some positive constant k. This is a logistic model with
carrying capacity Af. We sketch the solutions for three different values of Iy below.

I

N
lop = 0.73M

0.5M

Io = 0.05M/

t

(i) If Io = 0 then J = 0 for all ¢. In other words, if nobody knows something, it doesn’t spread by word of mouth!

(i) 1f Ip = 0.05M{, then ‘;—’ is increasing up to I = 2L. Thus, the information is spreading fastest at J = £

3 5 -
(iti) If Jo = 0.75M, then % is always decreasing for I > % S0 5;—:— is largest when ¢ = 0.

—
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10. (a) Let the population at time ¢ be P(t) and the relative growth rate be G = a — P. When P = 600,G =35 - 15 =
20%, and when P = 800, G = 30 — 20 = 10% so

a — 6003 = 0.20

a — 8008 = 0.10.

1

Eﬁﬁa.hcnce

Therefore, @ =  and 8 =
1dP 1 1

Pd 3 2000
(b) The differential equation is a logistic equation

P 1

— = ——P(1000 - P
dt 2000 (1000 )
and so the equilibrium population is P = 1000. We expect the population of 900 to increase 1o the equilibrium value
of 1000.
(c) If the additional elk are added, the population of 1350 elk is above the equilibrium value, and the population will

decrease to about 1000.
(d) y

1350 | '
K——
__________ P P

1988 |

. t
elk added

Importing more elk would be ecologically unsound, as the new population is in excess of the equilibrium popu-
lation that Reading Island can support.
1. (a) %‘f = kp(B - p), wherc k > 0.
(b) To find when “—'f} is largest, we notice that %“3 = kp(B — p). as a function of p, is a parabola opening downwards with

the maximum at p = £ i.e. when % the tin has turned to powder. This is the time when the tin is crumbling fastest.

o]

0|t

(c) If p = 0 initially, then %{’— = 0. so we would expect p to remain O forever. However, since many organ pipes get tin
pest, we must reconcile the model with reality. There are two possible ideas which solve this problem. First. we could
assume that p is never 0. [n other words, we assume that all tin pipes, no matter how new, must contain some small
armount of tin pest. Assuming this means that all argan pipes must deteriorate due to tin pest eventually. Another
explanation is that the powder forms at a slow rate even if there was none present to begin with. Since not all organ
pipes suffer, it is possible that the conversion is catalyzed by some other impurities not present in all pipes.

12, (a) By the chain rule
dP _d 1\ _d 1\ du 1 du
dt T odt (u)_du (;)E—_FI

(b) Substituting for P = 1/« in the equation

—

dP P
E‘“’(l"f)

1 du 1 1
75—";(1‘5)'

gives
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Simplifying leads to

and separating variables gives

1
Injlu—-=|=-k
nlu- | kt+C
u— % = de™* where A = £e€
1 -
u = Z + de ke
(c) Since u = 1/P, we have
11 —ke _ 1+ LAe™
P-I + de = I
so L
P= T+ LA™ where A is an arbitrary constant.
13.
@ P )
/ S A ’
’ VAV SV AV A /
ST A A G ~ .
St
- t t
L0 20 30 40 50
(c) There are two equilibrium values, P = 0, and P = 4. The first, representing extinction, is stable. The cquilibrium
value P = 4 is unstable because the populations increase if greater than 4, and decreasc if less than 4. Notice that the
equilibrium values can be obtained by setting dP/dt = (:
% = 0.02P% — C.08P = 0.02P(P —4) =0
0
P=0orP =4
14. (a) dapP
dt
] f P
3 6
-9 }
Figure 11.23

(b) Figure 11.23 shows that for 0 < P < 6, the sign of dP/dt is negative. This means that P is decreasing over the
interval 0 < P < 6. As P decreases from P(0) = 5, the value of dP/d? gets more and more negative until P = 3.
Thus the graph of P against ¢ is concave down while P is decreasing from 5 to 3. As P decrcascs below 3, the slope
of dP/dt increases toward 0, so the graph of P against ¢ is concave up and asymptotic o the ¢-axis. At P = 3, there
is an inflection point. See Figure 11.24.
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(¢) Figure 11.23 shows that for P > 6, the slope of dP/dt is positive and increases with P. Thus the graph of P against
t is increasing and concave up. See Figure 11.24.

P

threshold

Figure 11.24

(d) For initial populations greater than the threshold value P = 6, the population increases without bound. Populations
with initial value less than P = 6 decrease asymptotically towards 0, i.e. become extinct. Thus the initial population
P = 6 is the dividing line, or threshold, between populations which grow without bound and those which die out.

15, (a) lﬁt_lf
0 t P
b b
2a a
Figure 11.25
(b) r
b threshold
a
£ inflection point
t

Figure 11.26

Figure 11.25 shows that dP/dt is ncgative for P < g‘ making P a decreasing function when P(0) < g. When
P> ; the sign of dP/dt is positive so P is an increasing function. Thus solution curves starting above g are
increasing, and those stamng below 2 are decreasing. See Figure 11.26.
For P > &, the slope, ¢ dt . 1ncrease§ with P, so the graph of P dgdmst tis concave up. For0 < P < &, the
value of P decreases with time. As P decreases, the slope 57 d‘p decreases for & < P <¢ b ‘and increases lowards 0O for
0 < P < 5~. Thus solution curves starting just below the lhushold value of 9 are concave down for - < P<z "
and concave up and asymptotic to the ¢-axis for0 < P < ,,“ See Figure 11. 76
() P = %is called the threshold populanon because for populations greater than , the population will increase without

bound For populations less lhan . the population will go to zcro, i.e. to extmcuon
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Solutions for Section 11.8
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Exercises
1. Since
Z—f = —aSI,
% = aSI - bl,
% =1
we have dS dI dR
I+I+E = —aSI +aSI - bl +bI =0.

6.

Thus a‘i‘(S+]+R) =0,505 + ] + R = constant.

This is an example of a predator-prey relationship. Normally, we would expect the worm population, in the absence of
predators, 1o increase without bound. As the number of worms w increases, so would the rate of increase duw /dt; in other
words, the relation dw/dt = w might be a reasonable model for the worm population in the absence of predators.

However, since there are predators (robins), dw/dt won't be that big. We must lessen dw/dt. It makes sense that
the more interaction there is between robins and worms, the more slowly the worms are able to increase their numbers.
Hence we lessen dw/dt by the amount wr to get dw/dt = w — wr. The term —wr reflects the fact that more interactions
between the species means slower reproduction for the worms.

Similarly, we would expect the robin population to decrease in the absence of worms. We’d expect the population
decrease at a rate related to the current population, making dr/dt = —r a reasonable model for the robin population in
absence of worms. The negative term refiects the fact that the greater the population of robins, the more quickly they are
dying off. The wr term in dr/dt = —r + wr reflects the fact that the more interactions between robins and worms, the
greater the tendency for the robins to increase in population.

If there are no worms, then w = 0, and j—: = —r giving 7 = rge”", where 7 is the initial robin population. If there are
no robins, then r = 0, and ‘fi—‘;’ = w giving w = woe', where wy is the initial worm population.

There is symmetry across the line r = w. Indeed, since % = &((—';:—3 if we switch w and r we get % = ‘r"((l'_':,;
& = ;((lr'_"l'; . Since switching w and r changes nothing, the slope field must be symmetric across the line r = w. The
slope field shows that the solution curves are either spirals or closed curves. Since there is symmetry about the line r = w,
the solutions must in fact be closed curves,

. SO

If w=2and r = 2, then gﬁ = —2and dd—: = 2, so initially the number of worms decreases and the number of robins

increases. In the long run, however, the populations will oscillate; they will even go back tow = 2 and r = 2.

(2500 robins)

2

w (worms in millions)

Sketching the trajeclory through the point (2, 2) on the slope ficld given shows that the maximum robin population is
about 2500, and the minimum robin population is about 500. When the robin population is at jts maximum, the worm
population is about 1,000,000.
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8. It will work somewhat; the maximum number the robins reach will increase. However, the minimum number the robins
reach will decrease as well. (Sce graph of slope field.) In the long term, the robin-worm populations will again fall into
a cycle. Notice, however, if the extra robins are added during the part of the cycle where there are the fewest robins, the

new cycle will have smaller variation. See Figure 11.28.

Note that if too many robins are added, the minimum number may get so small the model may fail, since a small

number of robins are more susceptible to disaster.

7 (robins in thousands)

3
' New irajectory
2 |: Old trajectory
1
1

ur (worms in millions)

Figure 11.28

9. The numbers of robins begins to increase while the number of worms remains approximately constant. See Figure 11.29.
The numbers of robins and worms oscillate periodically between 0.2 and 3, with the robin population lagging behind

the worm population.

P S ——

Figure 11.29
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10. Estimating from the phase plane, we have
0.18<r<3

so the robin population lies between 180 and 3000. Similarly
0.2 < w<3,

so the worm population lies between 200,000 and 3,000,000.
When the robin population is at its minimum r = 0.2, then w = (.87, so that there are approximately 870,000
worms.

Robins

Worms

Figure 11,30

11. Here x and y both increasc at about the same ratce.

12. Initially ¢ = 0. so we start with only y. Then y decreases while r increases. Then r continues to increase while y starts
to increase as well. Finally y continues to increase while r decreases.

13. z decreases quickly while y increases more slowly.

14. The closed trajectory represents populations which oscillate repeatedly.

Problems

15. (a) Symbiosis, because both populations decrease while alone but are helped by the presence of the other.
(b) y

Both populations tend to infinity or both tend Lo zero.

16. (a) Competition. because both populations grow logistically when atone, but are harmed by the presence of the other.
(b) y

In the long run. x — 2, y — 0. In other words, y becomes extinct.
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17. (a) Predator-prey, because x decreases while alone, but is helped by y. whereas y increases logistically when alone, and
is harmed by z. Thus z is predator, y is prey.
(b) y

Provided neither initial population is zcro, both populations tend o about . If z is initially zero, but y is not,
then y — oo. If y is initially zero, but z is not, then z — 0.
18. (a) Thinking of y as a function of x and r as a function of ¢, then by the chain rule: (;—": = :_y dl—f SO/
T«

dy _dyfdt —0.0lr =z
dr ~ dz/dt T —0.05y ~ 5y

y (thousand Japanese troops)
30 0. o e

P I

20 |

e e

10

« (thousand US troops)

(b) The figure above shows the slope field for this differential equation and the trajectory starting at xo = 54, yo = 21.5.
The trajectory goes to the z-axis, where y = (), meaning that the Japanese troops were all killed or wounded before
the US troops were, and thus predicts the US victory (which did occur). Since the trajectory meets the r-axis at
= 25, the differential equation predicts that about 25.000 US troops would survive the battle.

(¢) The fact that the US got reinforcements, while the Japanesc did not. does not alter the predicted outcome (a US
victory). The US reinforcements have the effect of changing the trajectory, altering the number of troops surviving
the battle. See the graph below.

y (thousand Japanese troops)
30 | _ . ___ _ o
P R
U
e

x (thousand US troops)
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19. (a) Thinking of y as a function of x and x as a function of ¢, then by the chain rule: —
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iy _dyis
dt ~ dr di”T
dy _ dyfdt _ —br bz

de  defdl  —ay ay
(b) Scparating variables,
/uydy = /b;rd.l‘
y? 2
a‘? = b—?__ + k

20. (a) Lanchester’s square law for the battle of Iwo Jima is

(b

21, (a

(b

(c

d

(e

)

)

)

)

~—

0.05y> — 0.012% = C.

If we measure £ and y in thousands, ro = 54 and yo = 21.5, 50 0.05(21.5)7 —0.01(34)° = C giving C = —6.0475.
Thus the equation of the wrajectory is
2 2 —~—
0.05y~ — 0.01x" = —6.0475
giving
- 2 —
r’ - 5y° = 604.75.
Assuming that the battie did not end until all the Japanese were dead or wounded, that is. y = 0. then the number
of US soldicrs remaining is given by £2 — 5(0)” = 604.75. This gives r = 24.59, or about 25,000 troops. This is
approximately what happencd.
Since the guerrillas are hard 1o find, the rate at which they are put out of action is proportional to the number of chance
encounters between a guerrilla and a conventional soldier, which is in turn proportional to the number of guerrillas
and to the number of conventional soldiers. Thus the rate at which guerrillas are put out of action is proportional to
the product of the strengths of the two armies.

dr _ -
dt ~ Y
dy _
dt
s C . . dy dydzx
Thinking of y as a function of z and r a function of of t, then by the chain rule: o drdl s0:
I
dy _ dyjdt  —x 1
dr ~ drjdt ~ —ry  y
Separating variables:
/ydy = / dr
y?
'2— =xr+C
The value of C is detcrmined by the initial strengths of the two armies.
%

The sign of C determines which side wins the battle. Looking at the gencral solution T =T + C, we see that if

C > 0 the y-intercept is al V2C, so y wins the battle by virtue of the fact that it still has troops when = = 0. If
C < 0 then the curve intersects the axes atr = —C, so @ wins the battle because it has troops wheny = 0. 1f C = 0.
then the solution goes 1o the point (0. 0), which represents the case of mutual annihilation.

We assume that an army wins if the opposing force goes to 0 first. Figure 11.31 shows that the conventional force
wins if € > 0 and the guerrillas win if C < 0. Neither side wins if C' = 0 (all soldiers on both sides are killed in
this case).
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y {conventional)
4 ‘/
c>0
31— conventional wins y7 = z(ie.C =0)
2
1 - c<ao
guerrilia wns
. - £ (guerrilla)
1 2 3
Figure 11.31
22. (a) Taking the constants of proportionality to be a and b, with a > 0 and b > 0, the equations are
dr _ —ar
a - T
dy
jul U S
dt Ty
t - . . . .
(b) dy = dy/dt _ —bzy b. Solving the differential equation gives y = éar + C, where C depends on the initial
dr ~ drjdt ~ —azy a a

sizes of the two armies.

(c)

691

b
The sign of C determines which side wins the batte. Looking at the general solution y = —.r + C, we see that if

C > 0 the y-intercept is at C. so y wins the battle by virtue of the fact that it still has troops vxhcn z=01fC<0
then the curve intersects the axes at ¢ = —$C, so r wins the battle because it has troops when y = 0.1fC =0, then
the solution goes to the point (0, 0), which represents the case of mutual annihilation.

(d)

v (guerrilla)

We assume that an army wins if the opposing force goes to 0 first.

b
y=—-z(ieC =10
a

2 -
c<0
x wins
1 /
: - T (guenilla)
3 4
23. (a) We have ‘
i dy _—3y—zy _ y{z +3)
dz — — ’
& dr  —2z-zy z(y+2)
Thus,
9
(y+-)dy= (z+3)dx
y T
)
/(1+g)dy=/(l+§)d:n.
y z
So,

y+2lnjyl=2+3Injz|+C.

Since x and y are non-negative,

y+2lny=z+3nc+C.

This is as far as we can go with this cquation — we cannot solve for y in terms of r, for example. We can, however,

put it in the form

ey+‘.‘lny — e:r+3lnz+C. )

Bl
or yle¥ = Azte”
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(b) An equilibrium state satisfies

dr . _ dy _ _
E——Zx zy =0 and E——3y—1y—0.

Solving the first equation, we have
-z(y+2)=0, so £=0 or y=-2

The second equation has solutions
y=0 or r=-3.

Since z.y > 0, the only equilibrium point is (0, 0).
(c) We can use either of our forms for the solution. Looking at

2
yle¥ = Arde”

we see that if z and y are very small positive numbers, then

Thus,

A, aconstant.

Ql‘
2
L
]
w
g
|
2

Looking at
y+2lny=r+3lnz+C,
we note that if 2 and y arc small, then they are negligible compared to In y and In z. Thus,

2lny=3lmz+C.

giving '
Iny“ —In = C.
$0 ,
¥y o
In g C

and therefore

3/_3 ~ ec, a constant,
T
@ 1If
z(0) =4 and y(0) =8,
then
8+2In8=4+3n4+C.
Note that
2In8 =3Iud =1in64d,
giving

4=_C.

So the phase trajectory is
y+2hny=r+3inr+4.

(Or equivalently, ye¥ = e'z’e® = z%***)

(e) If the concentrations are equal, then
y+2lny=y+3lny+4
giving
—lny=4 or y=e
Thus, they are equal wheny = x = e™ 2 0.0183.
() Using part (c), we have that if = is small,

10

Since z = e~V is certainly small,

e

—30 ?

o
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Solutions for Section 11.9

Exercises

1. (a) dS/dt = 0 where S = 0 or I = 0 (both axcs).
dI/dt = 0.00261(S — 192), so dI/dt = ) where I = 0 or § = 192.
Thus every point on the S axis is an equilibrium point (corresponding to no one being sick).

(b) Inregion I, where S > 192, ‘fi—f < 0 and iil—f > 0.
In region II, where S < 192, % < 0and % < 0. See Figure 11.32.
I I
il I

s / : s

192 192

Figure 11.32 Figure 11,33

(c) If the trajectory starts with So > 192, then I increases to a maximum when S = 192. If Sp < 192, then I always
decreases. See Figure 11.32. Regardless of the initial conditions, the trajectory always goes to a point on the S-axis
(where I = (). The S-intercept represents the number of students who never get the disease. See Figure 11.33.

2. The nullclines arc where % =0or % = 0.

d‘:’ =0whenw —wr=0,so0w(l —r)=0givingw =0o0rr =1.
9 — Qwhen —r+rw =0,s0r(w —1)=0givingr =0orw = 1.

dt

r r

| 1 w=1 :

| I~ drjat=0 L

! I / AN

. i . ‘ 1 )
- »—*—tw— -~ 1= .

| 4

': E r=1

: E dw/dt =0 il (h 1 (l/ll)

R w L w
1 1
Figure 11.34: Nullclines and equilibrium points (dots) Figure 11.35

The equilibrium points are where the nullclines intersect: (0, 0) and (1, 1). The nullclines split the first quadrant into
four sectors. See Figure 11.34. We can get a feel for how the populations interact by secing the direction of the (rajectories
in each sector. See Figure 11.35. If the populations reach an equilibrium point, they will stay there. If the worm population
dies out, the robin population will also dic out, too. However, if the robin population dies out, the worm population will
continue to grow.

Otherwise, it seems that the populations cycle around the equilibrium (1. 1). The trajectory moves from sector to
sector: trajectories in sector (I) move to sector (11); trajectories in sector (II) move 1o sector (IIT); trajectorics in sector
(I11) move to sector (IV); trajectories in sector (IV) move back to scctor (T). The robins keep the worm population down
by feeding on them, but the robins need the worms (as food) to sustain the population. These conflicting needs keep the
populations moving in a cycle around the equilibrium.



694 Chapter Eleven /SOLUTIONS
3. (a) To find the equilibrium points we set
20r — 10zy =0
25y — 5zy = 0.

So, z = 0, y = 0 is an equilibrium point. Another one is given by

10y = 20

Therefore, z = 5, y = 2 is the other eguilibrium point.
(b) Atr =2,y =4,

dz = 20z - 10xy = 40 — 80 = —40
dt
% = 25y — 5y = 100 — 40 = 60.

Since these are not both zero, this point is not an equilibrium point.

Problems

4, We first find the nullclines. Again, we assume z, y > 0.
Vertical nullclines occur where dz /dt = 0, which happens when ‘fi—f =x(2-z-y)=0,
ie.whenr =0orz+y=2.
Horizontal nullclines occur where dy/dt = 0, which happens when % =y(l-z—y)=0,i.e.wheny=0orz+y = 1.
These nullclines are shown in Figure 11.36.
Equilibrium points (also shown in Figure 11.36) occur where both dy/dt and dz /dt are 0, i.c. at the intersections of
vertical and horizontal nullclines. There are three such points {or these equations: {0, 0), (0. 1), and (2. 0).

&
o

»- T
1 2
Figure 11.36: Nullclines and equilibrium points Figure 11.37: General directions of trajectories
(dots) and equilibrium points (dots)

Looking at sectors in Figure 11.37, we see that no matter in what sector the initial point lies, the trajectory will head
toward the equilibrium point (2. 0).

We first find the nullclines. Vertical nullclines occur where 92 = 0, which happens when £ = Qor y = %(2 - z).

(24}
B

dt
Horizontal nullclines occur where % = y(1 — 2r) = 0, which happens wheny = Qorz = % These nullclines are
shown in Figure 11.38.

Equilbrium points (also shown in Figure 11.38) occur at the intersections of vertical and horizontal nullclines. There
are three such points for this system of equations; (0,0), (3. 3) and (2.0).

The nullclines divide the positive quadrant into four regions as shown in Figure 11.38. Trajectory directions for these
regions are shown in Figure 11.39.
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Figure 11.38: Nullclines and Figure 11.39: General dircctions of
equilibrium points (dots) trajectories and equilibrium points
(dots)
6. We first find nullclines. Vertical nullclines occur where ‘;—f = x(2 — z — 2y) = 0. which happens when & = 0 or

y= %(2 — z). Horizonuwl nullclines occur where ‘;‘{‘f = y(1 — 2& — y) = 0, which happens wheny =0 ory = 1 — 2z.
These nullclines are shown in Figure 11.40.

Equilibrium points (also shown in the figure below) occur at the intersections of vertical and horizontal nullclines.
There are three such points for this system; (0.0). (0. 1), and (2, 0).

The nullclines divide the positive quadrant into three regions as shown in the figure below. Trajectory directions for
these regions are shown in Figure 11.41.

Yy
L 1y
! 43 : r'd
1 1
i [}
' |
% 1 11 :
| AR
'v ___________ ) 4 *S—r——" . 4 T
0.5 2 0.5 2
Figure 11.40: Nullclines and equilibrium Figure 11.41: General directions of
points (dots) trajectories and equilibrium points (dots)
7. We first find the nullclines. Vertical nuliclines occur where ‘;—f = (1l — y — 3) = 0, which happens when z = 0 or

y = 1 — £. Horizontal nullclines occur where % = y(1 - 4 — ) = 0, which happens wheny = 0 ory = 2(1 — ).
These nullclines are shown in Figure 11.42,

Equilibrium points (also shown in Figure 11.42) occur at the intersections of vertical and horizontal nullclines. There
are four such points for this system: (0, 0), (0.2), (3.0).and (3, 3).

The nullclines divide the positive quadrant into four regions as shown in Figure 11.42. Trajectory directions for these
regions are shown in Figure 11.43.

. E
3 1 3
Figure 11.42: Nullclines and Figure 11.43: General dircctions
equilibrium points (dots) of trajectories and equilibrium

points (dots)
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8. We first find the nullclines. Again. we assume r, y > 0.

2 —zr(l-r—4)=0whenz=00rr+y/3=1
%{,ﬂ =y(l-y—-5)=0wheny=0ory+zr/2=1
These nullclines are shown in Figure 11.44. There are four equilibrium points for these equations. Three of them are the
points,s(O. 0), (0, 1), and (1, 0). The fourth is the intersection of the two lines z + y/3 = 1 and y 4+ z/2 = 1. This point
is (4

505

T

Figure 11.44: Nullclines and equilibrium points Figure 11.45: General directions of trajectories
(dots) and equilibrium points (dots)

Looking at sectors in Figure 11.45, we see that no matter in what sector the initial point lies, the trajectory will head
toward the equilibrium point (g, %) Only if the initial point lies on the - or y-axis, will the trajectory head towards the
equilibrium points at (1,0), (0,1), or (0. 0). In fact, the trajectory will go to (0.0) only if it starts there, in which case
z(t) = y(t) = 0 for all ¢. From direction of the trajectories in Figure 11.45, it appears that if the initial point is in sectors
(1) or (II1), then it will remain in that sector as it heads towards the equilibrium.

9. We assume that z, y > 0 and then find the nullclines. % =r(l-3-y)=0whenz=0o0ry+35=1.
%%:y(l— £ —z)=0wheny=0o0rz+ §=1
We find the equilibrium points. They are (2,0), (0. 3), (0.0), and (#. ). The nullclines and equilibrium points are shown
in Figure 11.46.

Figure 11.46: Nuliclines and equilibrium points Figure 11.47: General dircctions of trajectories
(dots) and equilibrium points (dots)

Figure 11.47 shows that if the initial point is in sector (1), the trajectory heads towards the equilibrium point (0. 3).
Similarly, if the trajectory begins in sector (1), then it heads towards the equilibrium (2, 0) over time. If the trajectory
begins in sector (I1) or (IV), it can go to any of the three equilibrium points (2.0), (0, 3). or (3. 2).
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10. (a) If B were not present, then we'd have A’ = 2.4. so company A's net worth would grow exponentially. Similarly,
if A were not present. B would grow exponentially. The two companies restrain each other’s growth, probably by
competing f{or the market.

(b) To find equilibrium points, find the solutions of the pair of equations

A'=24-4B=0
B =B-AB=0

The first equation has solutions .4 = 0 or B = 2. The second has solutions B = 0 or .4 = 1. Thus the equilibrium
points are (0,0) and (1,2).

(c) Inthe long run, one of the companies will go out of business. Two of the trajectories in the figure below go towards the
A axis: they represent A surviving and B going out of business. The trajectories going towards the B axis represent
A going out of business. Notice both the equilibrium points are unstable.

11. (a) The nuliclinesare P = 0 or Py+3P> = 13 (wheredP,/dt = 0)and P = Q or P2 +0.4P, = 6 (where dP;/dt = 0).
(b) The phase plane in Figure 11.48 shows that P> will eventually exclude P regardless of where the experiment starts
so long as there were some P originally. Consequently, the data points would have followed a trajectory that starts
at the origin, crosses the first nullcline and goes left and upwards between the two nullclines to the point Py = 0,
P, =6.

Py +0.4P =6
dP>/dt =0

<

} P +3P, =13
dP [dt =0

Figure 11.48: Nullclines and equilibrium points (dots) for
Gauses’s yeast data (hollow dots)

12. (a) In the equation for dx/dt, the term involving r, namely —0.2:r, is negative meaning that as r increases, dz/dt
decreases. This corresponds to the statement that the more a country spends on armaments, the less it wants to
increase spending.

On the other hand, since +0.13y is positive, as y increases, dxz /dt increases, corresponding to the fact that the
more a country’s opponent arms, the more the country will arm itself,

The constant term, 20, is positive means that if both countries are unarmed initially, (so = y = 0), then dr/d!t
is positive and so the country will start to arm. In other words, disarmament is not an equilibrium situation in this
model.
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{(b) The nullclines are shown in Figure 11.49. When dz /dt = 0, the trajectorics are vertical (on the line —0.2x +0.15y +
20 = 0); when dy/dt = 0 the trajectories are horizontal (on 0.1x — 0.2y + 40 = 0). There is only one equilibrium
point, z = y = 400.

(c) Inregion I, ry r = 400, y = 0, giving

% = -0.2(400) + 0.15(0) + 20 < 0
dy i
& = 0.1(400) — 0.2(0)+4-0>0
In region II, ry £ = 500, y = 300, giving
% = —0.2(500) + 0.15(500) +20 < 0
dy .
i 0.1(500) — 0.2(500) +40 < 0
In region IIL try z = 0, y = 400, giving
Z—; = ~0.2(0) + 0.15(400) + 20 > 0
z—"{ = 0.1(0) — 0.2(400) + 40 < 0
Inregion IV, ry = 0, y = 0, giving
‘;—7 = ~0.2(0) + 0.15(0) + 20 > 0
dy

= = 0:1(0) = 0.2(0) +40 > 0

See Figure 11.49.
(d) The one equilibrium point is stable.

Y
(biion$) —0.2r +0.15y +20 =0 Region 11

600

Region HI }/‘; ; 1

; 0.lr—02y+40=0
400 % dy/dt =0
= / Region |
200 p
Region IV /(/ j ]
/ L x (billion S)
100 H40C 0

Figure 11.49: Nullclines and equilibrium point(dot) for arms race

(e) Hf both sides disarm, then both sides spend $0. Thus initially z = y = 0, and dz/d¢t = 20 and dy/dt = 40. Since
both dr/dt and dy/dt are positive, both sides start arming. Figure 11.49 shows that they will both arm until each is
spending about $400 billion.

(f) If the country spending Sy billion is unarmed, then y = () and the corresponding point on the phase planc is on the
T-axis. Any trajectory starting on the z-axis tends towards the equilibrium point £ = y = 400. Similarly, a trajectory
starting on the y-axis represents the other country being unarmed; such a trajectory also tends to the same equilibrium
point.

Thus, if either side disarms unilaterally, that is, il we start out with one of the countries spending nothing, then
over time, they will still both end up spending roughly $400 billion,

(g) This modet predicts that, in the long run, both countries will spend near to $400 billion, no matter where they start.
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(a)
dr 10.5
_—_ = c = = '2 .
0t 0 when z 045 3.3
d_y =0when82z — 0.8y — 142 =0
dt
¥ (US) Region 11
| /] —
/
|
dr _ dy _
ar =0 — _ZL =0
|
Region I | Region I
l
NN
61.7
|
!
f | Region IV
‘Z L T (Soviet)
23.3
Figure 11.50: Nullclines and equilibrium point (dot) for US-Soviet arms race
There is an equilibrium point where the trajectories cross at z = 23.3, y = 61.7
. dz dy
L— >0 —
In region d} > ‘ilt <0
. dz Y
,— <0, — <0.
In region IL (g < %t <
. T y
1, — , — > 0.
In region é“ <0 7t >
In region IV, T >0, T >0
(b) y(us)
61.7

T (Soviet)
23.3

Figure 11.51: Trajectories for US-Soviet arms race.
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(c) All the trajectories tend towards the equilibrium point r = 23.3, y = 61.7. Thus the model predicts that in the long
run the arms race will level off with the Soviet Union spending 23.3 billion dollars a year on arms and the US 61.7

billion dollars.

(d) As the model predicts, yearly arms expenditure did tend towards 23 billion for the Soviet Union and 62 billion for

the US.
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Solutions for Section 11.10

Exercises

L Ify = 2cost + 3sint, theny’ = —2sint + 3cost and y” = —2cost — 3sint. Thus, y”’ +y = 0.
2. If y(t) = 3sin(2t) + 2 cos(2t) then
y' = 6cos(2t) — 4sin(2t)
y" = —12sin(2t) - 8 cos(2t) = —4(3sin(2t) + 2cos(2t)) = —4y
as required.
3. Ify = Acost + Bsint, theny’ = —Asint + Beostand y”’ = —Acost — Bsint. Thus, y" +y = 0.
4. If y(t) = Asin(2t) + B cos(2t) then
y' = 24 cos(2t) — 2B sin(2t)
y" = —44sin(2t) — 4B cos(2t)
therefore
y" +dy = —44sin(2t) — 4B cos(2t) + 4(Asin(2t) + Bcos(2t)) = 0
for all values of 4 and B, so the given function is a solution.
5. If y(t) = Asin(wt) + B cos(wt) then
¥ = wAcos(wt) — wBsin(wt)
y" = —w® Asin(wt) - w’B cos(wt)
therefore
¥ +wly = —w’ Asin(wt) — w’ B cos(2t) + w’(Asin(wt) + B cos(wt)) =0

for all values of A and B, so the given function is a solution.

6. y = Acosat
y' = —adsinat
y' = —a’Acosat

Ify" + 5y = 0. then —a”Acosat + 5Acosat = 0, so A(5 — a®) cosat = 0. This is true for all ¢t if A = 0, or if

a = /5.

We also have the initial condition: y'(1) = —a.4sin a = 3. Notice that this equation will not work if 4 = 0. If @ = /3,
then
— 3 ~ -1 7

Similarly, if @ = —v/5, we find that A ~ —1.705. Thus, the possible values are 4 = —755?“—‘/3 ~ —1.705 and
a=+V5.
7. (a)

s
]'—w
s=4dcost +3sint ‘

AANS
—on \/ \/m

_10-1_

(b) Trace along the curve to the highest point; which has coordinates of about (0.66. 5), so A = 3. If s = 5sin(t + ¢),
then the maximum occurs where ¢ % (.66 and ¢ + ¢ = 7/2, that is (.66 + ¢ = 1.57, giving ¢ =~ 0.91.

(c) Analytically
A=v/42+32=5

and 4 4
tan¢ = 3 50 ¢ = arctan (§) =0.93.
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8. We want to find A and ¢ such that
cost —sint = Asin(t + ¢).
We know that 4 = /12 + (=1)2 = V2. Also, tan¢ = 1/(-1) = —1.s0¢ = —7/dord = 37/4.Since C: =1 >0,
we take ¢ = 3w /4, giving

s(t) = V2sin (t + Q'Tn)

as our solution. The graph of s(¢) is in Figure 11.52.
s(t)

\ SN S

i T t

—27 2n

ENE]

-1

Figure 11.52: Graph of the function
s(t) = V2sin(t + 2¢)

9. The amplitude is 32 + 72 = V/38.
10. If we write y = 3sin 2t + 4 cos 2¢ in the form y(¢) = Asin(2t + ¢), then A = /32 +42 = 5.

11. Take w = 2. The amplitude is 4 = /57 + 122 = /169 = 13. The phase shift is 1y = tan™" E

5
12. The amplitude is 4 = V72 + 242 = /625 = 25.
The phase shift, ¢, is given by tan¢ = &, so ¢ = arctan £ = 1.287 or ¢ ~ —1.835.
Since C1 = 24 > (), we want ¢ = 1.287, so the solution is 25 sin{wt + 1.287).

Problems

13. Att = 0, we find that y = 2, which is clearly the highest point since —1 < cos 3t < 1. Thus, at £ = 0 the mass is at its
highest point. Since y' = —6sin 3¢, we see ' = 0 when ¢ = 0. Thus, at ¢ = 0 the object is at rest, although it will move
down aftert = 0.

14. Att = 0, we find that y = 0, Since —1 < sin 3t £ 1, y ranges from —0.5 to 0.5, so at ¢ = 0 it is starting in the middle.
Since y’ = —1.5cos 3t, we see ¥y’ = —1.5 when ¢ = 0, so the mass is moving downward.

k.
tnh

. Att = 0, we find that y = —1, which is clearly the lowest point on the path. Since y' = 3sin 3¢, we see that y’ = 0
when t = 0. Thus, at £ = 0 the object is at rest, although it will move up after t = 0.

16. (a) Since w? = 9,w = 3, und so the general solution is of the form
y(t) = Asin(3t) + B cos(3t).

(by () y(0) =0, gives Asin(0) + B cos(0) = 0sothat B = 0.

y'(t) = 3A cos(3t)
y'(0) = 1 gives 34 = 1 and so

y(t) = Zlisiu(St).

(ii) y(0) = 1, gives Asin(0) + Bcos(0) = 1sothat B = 1.

v (t) = 34 cos(3t) — 3sin(3t)

y'(0) = 0 gives 3.4 = 0 and so
y(t) = cos(3t).
(iii) y(0) = 1, gives Asin(0) + Bcos(0) = 1 sothat B = 1. y(1) = 0 gives Asin(3) + cos(3) = 0 and so
_ —cos(3) ‘©
T sin(3) T
—cos(3
oty = =20

n(3) sin(3t) + cos(3t).
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Note that using the trigonometric identities, we can write this as:

—cos(3) .

y(t) = _ST in(3t) + cos(3t)
== (3) ———(sin(3) cos(3t) — cos(3) sin(3t))
1.
= S G- 30,
(iv) y(0) = 0, gives Asin(0) + Bcos(0) = 0sothat B = 0. y(1) = 1 gives 4sin(3) = 1 andso A = 5i111(3) )
() = —=sin(3t)
v = sin(3) e
()
(0] v i
1
l . l t
—ﬁ\‘/ \-A v / \/
M7 N
3
" Y ™ y
1 . -
sin(3) sin(3)
_ t my —— ¢
VAVAVARS ,,
— 1
sin(3) s

17. First, we note that the solutions of:
@z +z=0arcz = Acost + Bsint;
(yz" + 4z = D are z = A cos 2t + Bsin 2t;
(©)x" 4+ 16z = Gare z = Acos 4t + Bsin 4t.
This foliows from what we know about the general solution to "/ + w?z = 0.
The period of the solutions to (a) is 27, the period of the solutions to (b) is 7, and the period of the solutions of (c) is 3
Since the t-scales are the same on all of the graphs, we sec that graphs (1) and (1V) have the same period, which is lwxce
the period of graph (IIT). Graph (IT) has twice the period of graphs (I) and (1V). Since each graph represents a solution, we
have the following:
e cquation (a) goes with graph (II)
equation (b) goes with graphs (I) and (IV)
equation (c) goes with graph (11)
o The graph of (I) passes through (0.0), s0 0 = A cos0 + Bsin 0 = A. Thus, the equation is z = Bsin 2¢. Since the

amplitude is 2, we see that x = 2sin 2t is the equation of the graph, Similarly, the equation for (IV) is x = —3sin 2¢.
The graph of (11} also passes through (0. 0), so, similarly, the equation must bc x = B sin t. In this case, we see that
B = -1,s0z = —sint.

Finally, the graph of (II1) passes through (0. 1), and 1 is the maximum value. Thus, 1 = Acos0+ Bsin0,s0 4 = 1.
Since it reaches a local maximum at (0, 1), 2’(0) = 0 = —4Asin 0 + 4B cos0, so B = 0. Thus, the solution is
T = cosdt.

18, All the differential equations have solutions of the form s(t) = C1 sinwt + Ca coswt. Since for all of them, s'(0) = 0.
we have §'(0) = 0 = Ciwcos0 — Cawsin 0 = 0, giving Chw = 0. Thus, either C; = 0 orw = 0. If w = 0. then s(t)
is a constant function, and since the equations represent oscillating springs, we don't want s(t) to be a constant function.
Thus, C; = 0, so all four equations have solutions of the form s(¢) = C coswt.
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i)s” +4s = 0,50 w = V4 = 2. 5(0) = Ccost) = C = 5. Thus, s(t) = 5cos 2¢.

iy s” + %s =0,50w = \/; = 1.5(0) = Ccos0 = C = 10. Thus, s(t) = 10 cos .
iii) 8" 4+ 65 = 0, sow = V6. s(0) = C = 4, Thus, s{t) = 4cos V6!.

iv) 8" + Ls=0,s0w =/} $(0) = C = 20. Thus, s(t) = 20 cos \/gt.

(a) Spring (iii) has the shortest period, :"7’3 (Other periods are m, b, 27v/6)
(b) Spring (iv) has the largest amplitude, 20.
(c) Spring (iv) has the longest period, 27v/6.

(d) Spring (i) has the largest maximum velocity. We can se¢ this by looking at v(t) = s'(¢) = —Cuw sinwt. The velocity
is just a sine function, so we look for the derivative with the biggest amplitude, which will have the greatest value.
The velocity function for Spring i) has amplitude 10, the largest of the four springs. (The other velocity amplitudes
are 10 3 =5,4v6 ~ 9.8, 2 ~ 8.2)

{a) We are given £ = —4u, 50z = C) cos /2t + Casin y/#1. We use the initial conditions to find C; and Ca.
£ diz ] 1 ]

z(0)=Crcos0+ Casin0=C, =0

' (0) = —Cl\/?sinO-i—Cg\/?cosO = Cgﬂ: vo
Thus, Cy =0and Cs = vo\/g, sor = ‘uo\/%_sin ﬂt.

(b) Again, z = C cos \/_,-‘Zl + Cssin \/_;5(, but this time, (0) = 2y, and 2’ (0) = 0.
Thus, as before, 2(0) = C1 = zo, and x'(0) = C'z\/;I = 0. In this case. C; = zo and C; = 0. Thus, £ =
T COS ﬁt.

. (a) If zo is increased, the amplitude of the function r is increased, but the period remains the same. In other words, the
pendulum will start higher, but the time to swing back and forth will stay the same.

(b) Iflisincreased, the period of the function x is increased. (Remember, the period of xo cos ﬁt is ﬁ =2mw+\/l/g.)

: )

In other words, it will take longer for the pendulum to swing back and forth.

. (a) Sincc a mass of 3 kg stretches the spring by 2 cm, the spring constant k is given by

3g=2k so k= 339

See Figure 11.53.

———{—;- equilibrium
rem

3kg
Figure 11.53

Supposc we measure the displacement @ {rom the equilibrium; then, using
Mass - Acceleration = Force

gives
RS S
* + _2x =0

Since at time ¢ = 0, the brick is 5 cm below the equilibrium and not moving, the initial conditions are 2(0) =  and
!
'(0) =0.
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(b) The solution to the differential equation is
r = Acos (\/_gt) + Bsin (\/gt) .

z=Acos(0) + Bsin(0) =5 so 4=05.

z'(t) = -5 gsin (\/gt) + B\/—gcos (\/gt)

Since £(0) = 5, we have

In addition,

SO
2(0) = -5\/%_5111(0) + B\/gcos(O) —0 so B=0.
Thus,
= g
r = 5cos 215.

[ 33
[
—
»

-~

General solution
z(t) = Acos4t + Bsin4t.
Thus,
5= Acos0+ Bsin0 sod =35.

Since z'(0) = 0, we have

0=—-4Asin0+4Bcos( soB =0.
Thus,

z(t) = Scos 4t

so amplitude = 5, period = 27
(b) General solution

Il
MK

z(t) = Acos (i) + Bsin (é) .
5 5
Since z(0) = —1. we have 4 = -1.
Since z'(0) = 2, we have
A B
2= —gsmO -+ gcoso so B =10.

Thus,
z(t) = —cos ;) + 10sin (;) .
< )
2
So, amplitude = /{=1)% + 102 = /101, period = — = 10x.

1/5
23. (a) Letr = wtand y = ¢. Then
Asin(wt + ¢) = A(sinwt cos ¢ + coswt sin ¢)
= (Asin ¢) coswt + (A cos @) sin wi.
(b) If we want A sin{wt + ¢) = C) coswt + Ca sinwt to be true for all £, then by looking at the answer to part (a), we
must have C; = Asin¢ and C» = 4 cos é. Thus,

Ci _ Asing _
Co  Acos¢

tan ¢,

and

VCZ+C2 = /A?sin® g+ A2cos? ¢ = Av/sin? ¢ + cos? ¢ = A,

so our formulas are justified.

12 d?

b __Q _Q = . Q = __Q

24, (a) 36 %) 9 0 so FTE 1
Thus,

1 .1
Q = Cicos ﬁt+C~gsml—8L

Q(0) = 0= Cicos0 +C,sin0 = Cy,
50 Cl=0



11.10 SOLUTIONS 705

.1
So,Q = Cosin Et' and

Q=1= ngcos it

18 18
Q'(0) = I(0) =2 = ~C. cos (l .o) -Lle,
18 °° 18 18 7
so C:=36.
Therefore, @ = 36 sin %t.
) 1 1
(b) Asinpan (a), Q@ = C) cos 18t + Cosin 18t‘

According to the initial conditions:

Q(0) =6 =Cycos0+ Cssin0) = Cp,

so (7 =6.
SoQ—Gcoslt+C sin-l—t
- 18 g
Thus,
P SN SRR IPR 1
Q=I= 3sm 18t+ 1802cos 18t'
"0y = I(0) = 0 = —Lgi (l) 1 (L.)_L
Qy=I10)=0= 390 (13 0 +1802(‘.os 18 0 —1803.
so Co2=0.
Therefore, ) = 6 cos ll_St'
25. The equation we have for the charge tells us that:
€9 __Q
de2 — LC”

where L and C are positive.
If we letw = /7=, we know the solution is of the form:

Q = C coswt + Crsinwt.

Since Q(0) = 0, we find that C; = 0,50 Q = Casinwt.

4 E
Since Q'(0) = 4,and Q' = wC> coswt, we have C2 = —, 50 Q = — sinwt.
w w

. . 4 .
But we want the maximum charge, meaning the amplitude of @, o be 24/2 coulombs. Thus, we have — = 2v/2, which
w
gives us w = V2.
. , . _ 1 - _1 _ 1
So we now have: /2 = 7 = T Thus, C' = 55 farads.
26. We know that the general formula for Q will be of the form:

Q =Cicoswt + Casinut.

and
1 =Q = —Csinwt + Cacoswt

Thus, as ¢ — oo, neither one approaches a limit. Instead, they vary sinusoidally, with the same frequency but out of phase.
We can think of the charge on the capacitor as being analogous to the displacement of a mass on a spring, oscillating from
positive 1o negative. The current is then like the velocity of the mass, also oscillating from positive to negative. When the
charge is maximal or minimal, the current is zero (just like when the spring is at the top or bottom of its motion). and
when the current is maximal, the charge is zero (just like when the spring is at the middle of its motion).
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Exercises

1. The characteristic cquation is 7> + 4r + 3 = 0. so7 = =1 or 3.
Therefore y(t) = Cre™' 4 Coe™%.

2. The characteristic equationis 72 + 4r +4 = 0, sor = 2.
Therefore y(t) = (Cit + Ca)e™ .

3. The characteristic equation is 7> +4r +5 =0,s0r = -2+ i.
Therefore y(t) = Cie~ % cost + Cze ™' sint.

4. The characteristic equation is 7> — 7 = 0,507 = +7.

7.

10.

11

12.

13.

Therefore s(t) = Cre¥™ + Cae™ VT,

. The characteristic equation is 72 + 7 = 0, s0 7 = £+/7i.

Therefore s(t) = C) cos /7t + Ca sin V/Tt.

. If we try a solution y(t) = Ae™ then

rP=3r+2=0

which has the solutions r = 2 and r = 1 so that the general solution is of the form

y(t) = Ae™ + Be'

The characteristic equation is 47 + 8r + 3 = 0.sor = —1/2 or —3/2.
Therefore =(t) = Cre™ "% 4 Cae™3/7,

The characteristic equation is r” + 4r + 8 = 0, s0r = —2 £ 2i.
Therefore r(t) = Cre™* cos 2t + Cae™ ™ sin 2t.

. The characteristic equation is r* + r + 1 =0,s0r = -4 & @,
Therefore p(t) = Cre™ '/ cos Y21 + Cae™"/?sin L1,
If we try a solution z(t) = Ae™ then
2
T +2=0

50 that the general solution is of the form:

y(t) = Asin V2t + Bcos V2t

If we try a solution z(t) = Ae™ then
P 4+2r=0

which has solutions r = 0 and r = —2 so that the general solution is of the form

y(t) = A+ Be™™

If we try a solution P(t) = Ae™ then
rPH2r+1=0

which has the repeated solution r = —1 so that the general solution is of the form

y(t) = (At + B)e™"

The characteristic equation is
2 -
ri+dr+6=0

which has the solutions 7 = —2 and » = —J so that

y(t) = Ae ¥ 4+ Be ¥



14,

15,

16.

17.

11.11 SOLUTIONS
The initial condition y(0) = 1 gives
4+B=1

and y'(0) = 0 gives
-34-2B=0

sothat A = —2 and B = 3 and
y(t) = =273 4 3¢~

The characteristic equation is ‘
P +ar+6=0
which has the solutions r = —2 and r = —3J so that
y(t) = Ae™* 4 Be™ ¥
The initial condition y(0) = 5 gives
A+B=5

and y'(0) = 1 gives
—-34-2B=1

sothat A = —11 and B = 16 and
y(t) = —11e73 + 16~

The characteristic equation is
2 —8r-4=0

which has the solutions r = 4 and r = —1 so that
y(t) = Ae* + Be™'

The initial condition y(0) = 1 gives

A+B=1
and y'(0) = 0 gives
44 -B =0
sothat 4 =} and B = } and
g 4
t)==: =
y(t) = ze" + e

The characteristic equation is
P —3r—4=0
which has the solutions r = 4 and r = —1 so that

y(t) = de* + Be™*

The initial condition y(0) = 0 gives

A+B=0
and y'(0) = 0.5 gives
4A-B=0.5
sothat 4 = & and B = — 5 and
1l 1
¥t =5 e
The characteristic equation is 1> + 6r + 5 = 0,50 r = —1 or —5.

Therefore y(t) = Cre~" + Coe™%.
y'(t) = —Cre™" = 5C2e™™
¥ (0)=0=-C, - 5Ca
y(0)=1=Ci +C:
Therefore C2 = —1/4, C1 = 3/4 and y(t) = 3e~' — Le75.

707
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18. The characteristic equation is 72 + 6r + 3 = 0,s0r = —1 or —5.
Therefore y(t) = Cre™" + Cae™%".
y'(t) = —Cie™" = 5Cze™™
y'(0)=5=-C —5C:
y(0)=5=C) + Cq
Therefore C; = —5/2, Cy = 15/2 and y(t) = Ye~"

z
=-34

|
~. (X4
o

19. The characteristic equation is 2+ 6r+10=0,s07
Therefore y(t) = Cre™ cost + Cae ™ sin .
¥ (t) = Chle 3 (=sint) + (=3¢~ ) cost] + Cafe ¥ cost + (—3e*)sin ]
y’(O) =2=-3C,+C,

y(0)=0=C
Therefore C; = 0,C2 = 2 and y(t) = 2e > sint.
20. The characteristic equation is r> + 6r + 10 = 0,s0r = -3 £ i.

Therefore y(t) = Cie™* cost + Cre™ > sin t.
y'(t) = Cile 3 (—sint) + (=3e~¥)cos t] + Cale ™ cost + (—3e ") sin t]
y'(0)=0=-3C, + C»
y(0)=0=0C
Therefore Cy = C: = 0 and y(t) = 0.

21. The characteristic equation is
P +5r+6=0

which has the solutions r = —2 and r = —3 so that
y(t) = Ae™* + Be™

The initial condition y(0) = 1 gives
A+B=1
and y(1) = 0 gives
Ae+Be™* =0

sothat 4 = -1— and B = — i and
l1-—e 1-
1 —92¢ —€ _3
t) = 2y T e
y(t) 1- ee + 1- ee
22, The characteristic equation is
r’+or+6=0
which has the solutions r = —2 and r = —3 so that

y(t) = Ae™?" + Be™™
The initial condition y(—2) = 0 gives
Ae* + Be® =0

and y(2) = 3 gives
Ae”*+Be =3

5 6
sothat A = F&~ and B = — 3 and
3e®  _u 3e®

t)= 2 —
y(t) e4—le e“—l"3

23. The characteristic equation is r*> + 2r +2 = 0,s0r = -1 % i.
Therefore p(t) = Cre™ ' cost + Coe™ ' sint.
p(0) = 0= C, sop(l) = Cae 'sint
p(7/2) = 20 = Cae™ "% sin 2s50Cy= 20e7/2
Therefore p(t) = 20e¥e~!sint = 20e3 ~*sint.
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The characteristic equation is r> + 4r +5 = 0,507 = ~2 £ .
Therefore p(t) = Cie~ > cost + C2e~* sint.
p(0) =1=C1sop(t) =e *cost + Cae™* sint
p(7f2) =5 =Cae™" s0Ca = 5e".
Therefore p(t) = e ™%

cost+5e”e 2 sint = e *eost + 5" *sint.

Problems

25,

26.

27.

30.

31.

32.

33.

4.

(a) =" + 4z = 0 represents an undamped oscillator, and so goes with (1V).

(b) 2" — 4z = 0 has characteristic equation > —4 = 0 and so 7 = =2. The solution is Cye ™' + Cae®'. This represents
non-oscillating motion, so it goes with (11).

(© 7" —0.22' + 1.012 = 0 has characteristic equation r° — 0.2 + 1.01 = 0s0b? — 4ac = 0.04 — 4.04 = —4, and
r = 0.1 £ ¢. So the solution is

Crel® 0t 4 Coe® 170 = %M Asint + Beost).

The negative coefficient in the ' term represents an amplifying force. This is reflected in the solution by €%t which
increases as ¢ increases, so this goes with ().
(d) =" + 0.22' + 1.01z has characteristic equation 72 4 0.2r + 1.01 = 0 so b> — 4ac = —4. This represents a damped
oscillator. We have r = —0.1 % { and so the solutionis £ = e~%**(Asint + B cost), which goes with (II1).
We solve the characteristic equation in each case to obtain solutions to the differential equation.
@ rP+3r+6=0,s0r = —2o0r —3. Then, y = Cre~** + Coe™ .
) rP+r—6=0,s0r =2o0r —3.Then, y = Cie* + Cae ™%,
(€ r®+4r+9=0,s0r = =2 % /5i. Then, y = Cre~ % cos(V/5t) + Coe™? sin(v/5t).
(d) r* = —9,s0r = £3i. Then, y = C cos(3t) + C>sin(3t).
Since (d) is undamped oscillations, it must be graph (I). Similarly, (c) is damped oscillations and so must be graph
(I1). Equation (a) is exponential decay, and so must be (IV). This leaves (1IT) 1o match with (b), which could be exponential
growth or decay.
0= ;—:-_r ) =54 () +ke™ = 4e*' —10e™ + ke* = e**(k—6). Since e** 3 0, we must have k — 6 = 0. Therefore
k=6.
The characteristic equation is r> — 5r + 6 = 0, so 7 = 2 or 3. Therefore y(t) = C1e** + Cse®.
In the underdamped case, b° — 4¢ < 050 4¢ — b” > 0. Since the roots of the characteristic equation are
—bE Vb —4c —btivic—b?
2 - 2
we have @ = —b/2 and 8 = (V4c — b2} /2 or f = —(V4c — b%) /2. Since the general solution is
y = Cre® cos Bt + Cre® sin ft

atid=

and since o is negative, y — 0 ast — oco.

. Recall that Fyrag = —c%. so to find the largest coefficient of damping we look at the coefficient of s’. Thus spring (iii)

has the largest coefficient of damping.

The restoring force is given by Fypring = —ks, so we look for the smallest coefficient of s. Spring (iv) excrts the smallest
restoring force.

The frictional force is Fypy = —cz—j. Thus spring (iv) has the smallest frictional force.

All of these differential equations have solutions of the form C)e®! cos 8t + C2e*! sin Bt. The spring with the longest

period has the smallest 3. Since 3 is the complex part of the roots of the characteristic equation, = %(\/4c — b2). Thus
spring (iii) has the longest period.

The stiffest spring exerts the greatest restoring force for a small displacement. Recall that by Hooke’s Law Fypring = —ks,
so we look for the differential equation with the greatest coefficient of s. This is spring (ii).
Recall that s” + bs' + ¢ = 0 is overdamped if the discriminant b2 — 4¢ > 0. critically damped if b2 — 4¢ = 0, and

underdamped if b2 — 4¢ < 0. Since b2 — 4¢ = 16 — e, the circuit is overdamped if ¢ < 4, critically damped if ¢ = 4,
and underdamped if ¢ > 4.
Recall that s + bs' + es = 0 is overdamped if the discriminant b2 — 4¢ > 0, critically damped if b2 — 4¢ = 0, and
underdamped if b” — 4¢ < 0. Since b2 — 4¢ = 8 — 4e, the solution is overdamped if ¢ < 2, critically damped if ¢ = 2,
and underdamped if ¢ > 2.
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36. Recall that 8” + bs' + ¢s = 0 is overdamped if the discriminant 2 — d¢ > 0, critically damped if b* — 4¢ = 0, and
underdamped if b — 4¢ < 0. Since b* — 4¢ = 36 — 4c, the solution is overdamped if ¢ < 9, critically damped if ¢ = 9,
and underdamped if ¢ > 9.

37. The characteristic equation is 7% 4+ 1 — 2 = 0, so 7 = 1 or —2. Therefore z(t) = Cie' + Cae™?'. Since €' — oo as
t = oo, we must have Cy = 0. Therefore z(¢) = Cae™*. Furthermore, 2(0) = 3 = Ca, 50 z(t) = 3¢~ *,

(a) If ry = bﬁ then ry < 0 since both b and /b? — 4e are positive.
3 P
If rp = ﬂ@, then r» < 0 because

b= Vb > /b2 —de.

(b) The general solution to the differential equation is of the form

38

y - Clerlt + Czergt
and since ry and r2 are both negative, y must goto 0 as ¢ = oc.
39. The differential equation is Q" + 2Q" + $Q = 0, so the characteristic equation is r* + 2r + } = 0. This has roots

—2£V3 _ V3

-1+ — 5 . Thus, the general solution is

2
Q(t) = Cret~ 1+ B 4 Cre-1- .
Q) =0 (—1 + ?) 1N L o, (_1 _ ?) JUR
We have
(a)

QO)=C1+Ca=0
and Q’(O):( l+£)Cl+< 1-£)02—2

Using the formula for Q(t), we have Cy = —C5. Using the formula for @' (t), we have:

2=( l+£)( Co)+( ?)C'z:—\/ng
2
SO, C'.Z - —%.
Thus, C; = \/....md Q@) = \/_ ( (-1+3)e _ e(—l—‘/Ts)t) )
(b) We have

Q) =Ci1+Ca=2
and Q'(O)z( l+£)c1+(—l—\/T§)Cz=0.

Using the first equation, we have Cy = 2 — C». Thus,

(—1+£) (Q—Cz)-l-( l—ﬁ)Ch—O

2
-V3C:=2-V3
2-3
C:=—
V3

Thus, Q(t) = ( 2+ \/_)e( 1+4)1 _ ﬂ)e(‘l-’zé)t) '

SI



40.

41.

11.11 SOLUTIONS 71

In this case, the differential equation describing the charge is Q" + Q' + 3Q = 0. so the characteristic equation is
rP+r+ } = 0. This equation has one root, r = — %, so the equation for charge is

Q) = (Ci + Czt)e—%l,
Q1) = —1(Cr + Cat)e™H 4 Cae ¥

1l
—
9
|
|

|<\
—

|

T

(a) We have

Q) =C =0,
Qm:a-%:z
Thus, C, = 0.C2 = 2, and
Q(t) = 2te™ %",
(b) We have

QUO)=Ci =2,
C
Qm:cy_§=u
Thus, C1 = 2. Co = 1, and
1
Q)= (2+1t)e™2".
(¢) The resistance was decreased by exactly the amount to switch the circuit from the overdamped case (o the critically
damped case. Comparing the solutions of parts (a) and (b) in Problems 39, we find that in the critically damped case
the net charge goes to 0 much faster as ¢t — oo.
In this case, the differential equation describing charge is 8Q" + 2Q" + %Q = 0, so the characteristic cquation is
8r +2r + % = 0. This quadratic equation has solutions
-2+ 4/4-4-8-3 1 1

r= ——gIgl

Thus, the equation for charge is

Qt) = e %t (.4sin é + Bcos £) .

8
Q(t) = —%e'%' (ASin é + Bcos é) +e & (-é—Acosé—' - %Bsin é)
= %e-él ((A — B)cos é +(—A — B)sin %) .
(a) We have
Q)= B =10,

1
Q) = gi-B)=2
Thus, B =0, 4 = 16, and
Q)= 16¢™ 4 sin é
(b) We have
Q0)=B=2.
Q) = 3(4- By =0.
Thus, B =2. 4 =2, and
Q) = 2¢™ & (sin é + cos é) .
(¢) By increasing the inductance, we have gone from the overdamped case 1o the underdamped case. We find that while

the charge still tends 10 0 as t = oo, the charge in the underdamped case oscillates between positive and negative
values. In the over-damped case of Problem 39, the charge starts nonnegative and remains positive.
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SOLUTIONS to Review Problems for Chapter Eleven
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Exercises
1. (a) Yes (b) No
(d) No (e) Yes
(g) No (h) Yes
) Yes (k) Yes
2. This equation is separable, so we integrate, giving

[ ar=[ra

P(t) = % +C.

. This equation is separable, so we integrate. giving

1
=] =

SO |
03 Inj0.2y — 8| =z +C.
Thus .
y(z) = 40 + Ae®*.
This equation is separable, so we integrate, giving

1
/m.—zp‘”’—/‘“

L21n|10-2p|=r+c.

SO

Thus

-2t

P=35+4e

. This equation is separable, so we integrate, giving

1
/md”—/d‘

1
0.

SO

1]

In|10 + 0.5H] =t + C.

Thus
H = Ae™% - 20,

1
/mdﬂ—Z/dt

1 3 4
/7?-(11?+/1—_3—R(1R—2/ dt

SO
In|R|-nj{l-3R|=2t+C

(c)
]
4y
1))

Yes
Yes
No
No

. This equation is separable, so we integrate, using the table of integrals or partial fractions, to get
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15. This equation is separable and so we write it as

1 4
z2(z—1) dt

1
[ e
/ ! —/ldz=/dt
z - z

Injz-1|-Inlz|=t+C

=1.

We integrate with respect to t, giving

so that .
= j =e!tC = ket
Solving for z gives
1
t pu—
()= Tt
The initial condition z(0) = 10 gives
1
=%~ 10
or k = 0.9. The solution is therefore ;
)= ————.
) = T=gge

16. Using the solution of the logistic equation given on page 520 in Section 11.7, and using y(0) = 1, we gei y = l—_i_g-i%m.

17. iz = 1’:(—(1,_?00—_':)1 gives f(z"—y—k)m = ('—001"—1) dz. Thus, 20 In |y| — y = 100 In |z| — = + C. The curve passes through
(1,20),50 201020 —20 = —1 4+ C giving C = 201n 20 — 19. Therefore. 201n |y| —y = 100In |z] - £+ 20In 20 - 19.

We cannot solve for y in terms of z, so we leave the equation in this form.

18. L = /zf(x aivesf% = [Vzdr.so2\/f(z) = %T% +C.Since f(1) =1, wehave2 =2 +CsoC = 1.
Thus, 2/ f( I§+3.80f(1‘)—(313§+2)2
(Note: this is only defined for z > 0.)

19. ¢ = "7V giving [eVdy = [e"dzsoe¥ = €* +C. Since y(0) = 1, we have e’ = €” + C 50 C = e — 1. Thus,
eV=e"+e—1,s0y=In(e"+e—1).
[Note: e + e — 1 > 0 always.]

20. & = " = e"e¥ implies [e ¥ dy = [e*dz implics —e™¥ = e* + C. Since y = 0 when z = 1. we have
—1 =e+C, givingC = —1 — e. Therefore —e™¥ =e¢” — 1 —eand y = — In(1 + e — €%).

21, e 04z = /T—2%5in 0 implies [ T;‘iaj = [¢°*?5in 6 df implies arcsinz = —°*? + C. According to the

initial conditions: 2(0) = 3. so aresini = —e“*? + C. therefore £ = —e+ C. and C = £ +e. Thus z =
sin(—e®*’ + I +e).

22. (1+87)y% =1~ ylmphesthatf—! J 725 impliesthat [ (-1 + 1£) dy = [ ;2. Therefore —~y—In|1-y| =
arctant + C.y(1) = 0,500 = arctan1 + C.andC = —%,s0 ~y — ln rl — y| = arctant — £. We cannot solve for

yintermsof t.
23. 9 = 2¥sin® ¢ implies [ 27¥ dy = [ sin® ¢ dt. Using Integral Table Formula 17, we have

1 1 5 2
__2—y=__-2‘ ST — — CO8 .
. 3 sin tcost 3(,ost+C
According to the initial conditions: y(0) =0so -}z = =2 + C,and C = § — 5. Thus,
1 2
—m2 ¥ = —%sm tcost — §cost % - é.
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Solving for y gives:

- 2 .
27V = -lnTsm’)tcost+ 21;2cosi§—— 21;2 + 1
Taking natural logs, (Notice the right side is always > 0.)
2 2
yln2=—-1In (ln—Qsin'tcosf+2—ln—cost - M-4-1) ,
3 3 3
)
_ —1In (%82 sin®tcost + 222 cost — 222 4 1)
y In2
24. The characteristic equation is
P4+t =0

so that r = +i7 and
2(t) = Acosnt + Bsinnt

25, The characteristic equation of 92" ~z=0is
9r* —1=0.

If this is written in the form 72 + br + ¢ = 0, we have that 2 — 1/9 = § and
b’ —4c=0—-(4)(-1/9) =4/9 >0

This indicates overdamped motion and since the roots of the characteristic equation are r = %1/3, the general solution is

y(t) = Cre3' + Cae™ 34,

26. The characteristic equation of 92" + z = 0 is
9r*+1=0
If we write this in the form r2 + br + ¢ = 0, we have that r* + 1/9 = 0 and

b2 —4c=0- (4)(1/9) = -4/9 < 0

This indicates underdamped motion and since the roots of the characteristic equation are r = i%i. the general equation
is

y(t) = Cicos (%t) + Casin (%t)

27. The characteristic equation of y" + 6y’ + 8y = 0 is
r +6r+8=0.
We have that )
B —dc=6"-4(8) =4>0.

This indicates overdamped motion. Since the roots of the characteristic equation are 7, = —2 and 72 = —4, the general
solution is
-2t —it
yt)=Cre " + Cae™ .

28. The characteristic equation is
P+ +3=0
which has the solution

,.=__2*___ ";'4'3=_1¢\/_2

so that the general solution is
y(t) = e H(Asin V2t + B cos V2t)
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29, The characteristic equation of = + 27 +10z =0is
P +2r+10=0

We have that

b2 —dc=2"-4(10) = -36 <0
This indicates underdamped motion and since the roots of the characteristic equation are r = — 1234, the general solution
is

y(t) = Cre” " cos 3t + Cae™ " sin 3t

Problems

30. (a) To find the equilibrium solutions, we must set
dy/dz = 0.5y(y —4)2 +y) =0

which gives three solutions: y = 0,y = 4, andy = —2.
(b) From Figure 11.54, we see thaty = O isstableand y = 4 and y = —2 are both unstable.

/
/

SN R
o~ N e -

I
N
i
|
Figure 11.54
31, (a) Az =1 =02
Atr =0
yo =17 =450 Ay = 4(0.2) = 0.8. Thus, y» =1+ 0.8 = 1.8.
Atz =0.2:
y1 = 1.8,y = 3.2;s0 Ay = 3.2(0.2) = 0.64. Thus, y» = 1.8 + 0.64 = 2.44.
Atz =0.4:
y2 = 2.44,y' = 2.56; so Ay = 2.56(0.2) = 0.512. Thus, y3 = 2.44 + 0.512 = 2.952.
Atz = 0.6:
ys = 2.952, y' = 2.048; so Ay = 2.048(0.2) = 0.4096. Thus, y; = 3.3616.
Atr =08
ys = 3.3616,y' = 1.6384; so Ay = 1.6384(0.2) = 0.32768. Thus, ys = 3.68928. So y(1) = 3.689.
(b) y
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32.

33,

34.

35,
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Since solution curves are concave down for 0 < y < 5, and y(0) = 1 < 5, the estimate from Euler’s method
will be an overestimate.
(c) Solving by separation:
Ay
S5-y
Then 5 — y = Ae ™% where A = e~ C. Since y(0) = 1. wehave 3 — 1 = 4e%,s0 4 = 1.
Therefore, y = 5 — 4e~%, and y(1) = 5 — 4e~! = 3.528.
(Note: as predicted, the estimate in (a) is too large.)
(d) Doubling the value of n will probably halve the error and, therefore, give a value half way between 3.528 and 3.689,
which is approximately 3.61.

=/dx, so —Inls—yl=z+C.

Recall that s + bs’ + ¢s = 0 is overdamped if the discriminant &% — 4c > 0, critically damped if b — 4c = 0, and
underdamped if b> — 4c¢ < 0. Since b — 4c = b® — 20, the solution is overdamped if b > 2v/3 or b < —2+/5, critically
damped if b = £2/5, and underdamped if —2v/5 < b < 2V/5.

Recall that s” + bs’ + ¢s = 0 is overdamped if the discriminant b — 4¢ > 0. critically damped if b* — 4¢ = 0, and
underdamped if b2 — 4¢ < 0. This has discriminant b2 — 4c = b% 4+ 64. Since b + 64 is always positive, the solution is
always overdamped.

{a) A very hot cup of coffee cools faster than one near room temperature. The differential equation given says that the
rate at which the coffee cools is proportional to the difference between the temperature of the surrounding air and the
temperature of the coffee. Since ‘fi—f < 0 (the coffee is cooling) and T — 20 > 0 (the coffee is warmer than room

temperature), k must be positive.
(b) Separating variables gives
1
———dT = | —kd
/ T—20" / '
I|T -20|=-kt+C

and so

and
T(t) = 20 + Ae” .

If the coffee is initially boiling (100° C), then A = 80 and so
T(t) = 20 + 80e™*",

When t = 2, the coffee is at 90°C and so 90 = 20 + 80e~** so that k = ilni.
Let the time when the coffee reaches 60°C be Ty, so that

60 = 20 + 80e " *T¢
kg _ 1
(4 2

2 10 minutes.

Therefore, Ty = 1 In2 = 2 rl‘u_ 2

1
According to Newton’s Law of Cooling, the temperature, T, of the roast as a function of time, ¢, satisfies
T'(t) = k(350 — T)

T(0) =40.

Solving this differential equation, we get that T = 350 — 310e~** for some k > 0. To find k, we note that at £ = 1 we
have T = 90, so

90 = 350 — 310~ %V

260 _ -
310
260
k = —-]ll (m)
=~ 0.17589.

Thus, T = 350 — 310e~175%%_ Solving for t when T' = 140, we have

140 = 350 — 31001758
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& — 017589t
310
[ = In(210/310)
T —0.17589

t &~ 2.21 hours.

36. (a) Since the amount leaving the blood is proportional to the quantity in the blood,

d .
d—(;) = —k@ for some positive constant k.

Thus Q = Qoe™**, where (Qp is the initial quantity in the bloodstream. Only 20% is lcft in the blood after 3 hours.
Thus 0.20 = e~%*, s0 k = 12220 ~ 0.5365. Therefare Q = Qoe™ 3%,

(b) Since 20% is left after 3 hours, after 6 hours only 20% of that 20% will be left. Thus after 6 hours only 4% will be
left, so if the patient is given 100 mg, only 4 mg will be left 6 hours later.

37. Let V(¢) be the volume of water in the tank at time ¢, then

dv _
- = EVV

This is a separable equation which has the solution
kt
V(t)= (5 +0)’
Since 17(0) = 200 this gives 200 = C? so
. kt 2
Vit) = (? +v200)".
However, V(1) = 180 therefore
180 = (§ +v200)".
so that k = 2 (V180 — v200) = —1.45146. Therefore.
V(t) = (—0.726t + V200)".
The tank will be half-empty when V(i) = 100, so we solve
100 = (—0.726t + v/200)?

to obtain t = 5.7 days. The tank will be half empty in 5.7 days.
The volume after 4 days is V" (4) which is approximately 126.32 liters.

38. Since the rate at which the volume. V', is decreasing is proportional to the surface area, 4, we have
dv
— = —k4.
dt

where the negative sign reflects the fact that 17 is decreasing. Suppose the radius of the sphere is r. Then | = %ﬁra and,

. V . — 2
using the chain rule, 9 4mr? % The surface area of a sphere is given by A = 47r°. Thus
2 dr 2
drr”— = —kdw
nr dt r
SO i
r
— = -k
di

Since the radius decrcases from 1 cm to 0.5 ¢m in 1 month, we have & = 0.5 c/month. Thus

dr

E = —0.5
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SO
r = -0.5t 4+ rg.

Sincer =1 whent = 0, we have rg = 1, so

r=-0.5¢t + 1.
We want to find ¢ when 7 = 0.2, so
0.2=-051+1
and 0.8
t = — = 1.6 months.
0.5

39. (a) For this situation,

Rate money added \ [ Rate money added + Rate money
to account - via interest deposited

Translating this into an equation yields
dB

— =0. 200.
7t 0.1B + 1200

(b) Solving this equation via separation of variables gives

dB
7 =01B+1200
= {0.1)(B + 12000)

dB
—_—_— 0.1d1
/ B + 12000 / T

In|B + 12000] = 0.1t + C

So

and

solving for B,
|B + 12000] = (O1*C = (o000

or
B = 4% —12000. (where A = €)

We may find A using the initial condition Bp = f(0) =0
A—-12000=0 or A=12000
(c) After 5 years, the balance is

B = f(5) = 12,000(e* " — 1)
~ 7784.66 dollars.

40. (a) The balance in the account at the beginning of the month is given by the following sum
balance in _ previous month’s + interest on . monthly deposit
account - balance previous month's balance of S100
Denote month ¢'s balance by B;. Assuming the interest is compounded continuously, we have

previous month's . interest on previous \ Bi_, 0112
) - = M
balance month’s balance

Since the interest rate is 10% = (.1 per year, intercst is 0—12-21- per month. So at month i, the balance is
Bi = Bisie™ 4100

Explicitly, we have for the five years (60 months) the equations:
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Bo=0

By = Boe T + 100
B2 = Bie¥ +100
Bs = Bee™ 4100

Bgo = Bsge%* + 100

In other words,

By = 100
B = 1001 + 100
Bs = (100e ¥ +100)e$? + 100
0.1)2 .
= 100e 37 +100e ¥ 4 100

0.1 (0.1)
3

i (0.1)3 )2
B; =100e 2 +100e 2 4 100e7T

+ 100

{0.1)569 {0.1)58 (0.1
Beo = 10015 4 10063 + --- + 100e T + 100
59
0.1)k
Beo = Z 100e 12

k=0
59 (0.1)k 59 (0.1)k l
(b) The sum Bgp = z 100e 17 can be written as Bgg = Z 1200e 12 (1—2-) which is the left Riemann sum for
k=0 k=0

5
1200€% ' dt, with At = % and N = 60. Evaluating the sum on a calculator gives Bgo = 7752.26.

(c) T?\e situation described by this problem is almost the same as that in Problem 39, except that here the money is being
deposited once a month rather than continuously; however the nominal yearly rates arc the same. Thus we would
expect the balance after 5 ycars to be approximately the same in each case. This means that the answer to part (b)
of this problem should be approximately the same as the answer to part (c) to Problem 39. Since the deposits in this
problem start at the end of the first month, as opposed to right away, we would expect the balance after 5 years to be
slightly smaller than in Problem 39, as is the case.

Alternatively, we can use the Fundamental Theorem of Calculus to show that the integral can be computed
exactly

5
/ 1200e% " dt = 12000(e'®"® — 1) = 7784.66
0

Thus fos 1200e% *dt represcnts the exact solution to Problem 39. Since 1200e® " is an increasing function, the left
hand sum we calculated in part (b) of this problem undercstimates the integral. Thus the answer to part (b) of this
problem should be less than the answer to part (c) of Problem 39.

41. Let I be the number of infected people. Then, the number of healthy people in the population is A/ — I. The rate of
infection is

.o ._0o1 .
Infection rate = N M- DI.

and the rate of recovery is

Recovery rate = 0.0097.

Therefore,

dI _ 0.01 ,
o= = M = D1 = 0.000]
dI I
= = 0.0017(1 - 107).

This is a logistic differential equation, and so the solution will look like the following graph:
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L
Ly

-
<

The limiting value for I is T16M~ s0 1/10 of the population is infected in the long run.

42. (a) The cquilibrium population will be reached when d°/dt approaches zero. Solving 1-0.0004 = 0 gives P = 2500

fish as the equilibrium population.

(b) The solution of the differential cquation is

(c)

43. (a)

(b)

(c)

2500

PO= T aeo)

subject to P(—10) = 1000 if ¢ = 0 represents the present time. So we have

2500
1000 = =155

from which 4 = 0.123127 and 9300
d
P0) = ——————— =~ 2230.
) (L + 0.123127) 30

Therefore. the current population is approximately 2230 fish.

The effect of losing 10% of the fish each year gives the revised differential equation
P
lidt— = (0.25 — 0.0001P})P - 0.1P
or P
‘d_f = (0.15 — 0.0001P) P,

The revised equilibrium population is therefore about 1500 fish.

When Juliet loves Romeo (i.e. j > 0), Romeo’s love for her decreases (i.c. z—: < 01). When Juliet hates Romeo
(j < 0), Romeo's love for her grows (‘% > 0). So j and % have oppositc signs, corresponding to the fact that
—B < 0. When Romieo loves Juliet (r > 0), Juliet’s love for him grows (g{- > 0). When Romeo hates Juliet (r < 0),
Juliet’s love for him decreases (g{- < 0). Thus r and % have the same sign, corresponding to the fact that 4 > 0.
Since dd—; = —Bj, we have X
jtg = %(—Bj) = —BZ—’t = —ABr.

Rewriting the above cquation as r’’ + ABr = 0, we sec that the characteristic equation is R? + AB = 0. Thercfore
R = ++/ ABi and the general solution is

r(t) = Crcos VABt + Casin VABL.

Using “d—; = — Bj. and differentiating r to find j, we obtain
j(t)y = —%Z—; = ——E—B(—Cx sin VABI + Cacos VABL).

Now, j(0) = 0 gives C2 = 0 and r(0) = 1 gives € = 1. Therefore, the particular solutions are

r(t) =cos VABt and j(t) = %sin vV ABt

(d) Consider one period of the graph of j(t) and r(t):
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46, (a)

(b)

(c)

We can find the limits using a computer algebra system. Alternatively, setting u = e, we can use the limit laws to
calculate

Therefore, we have

lim P(t)=1-1=0
t=soc

lim Pg(t) =141=2.

t=oco
To predict these limits without having a formula for P, looking at the original differential equation. We see if 0 <
P < 1,then P(P-1)(2— P) < 0,50 P’ < 0. Thus, if 0 < P(0) < 1, then P'(0) < 0, so P is initially decreasing,
and tends toward the equilibrium solution P = 0. On the other hand, if 1 < P < 2, then P(P — 1)(2 — P)> 0,50

P' > 0.80,if 1 < P(0) < 2,then P'(0) > 0,50 Pis initially increasing and tends towards the equilibrium solution
P=2

Using the integral equation with n + 1 replaced by n, we have
a
ynfa) = b+ / (Yno1(t)? +£3)dt =b+0=b.
a
We have a = 1 and b = 0. so the integral equation tells us that
i) = [ )+
1

With n = 0, since yo(s) = 0, the CAS gives

¢ 2 1 53
y1(8)=‘/1 D+t df=—§+§.
Then s 17 3 4 7
yz(s)=/l @+ )i =g+ o+ T -+ 5
and

ys(s) = / (gt + %) dt

_ _lo7847  289s 175°  826° 175 L8 s 1S +
T 374220 ' 1764 378 243 252 42 486 63 1764
559 9gl 412 At
6802 T 2079 ~ 6804 T 50535
The solution y, and the approximations y;, y2., ys are graphed in Figure 11.55. The approximations appear to be
accurate on the range 0.5 < 3 € 1.5.
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Figure 11,55

47. (a) See Figure 11.56.
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Figure 11.56

(b) Different CASs give different answers, for example they might say y = sin z, or they might say

™ T
=sinr, —-——-<zr<-—-.
y=sinr 7 ST
(c) Both the sample CAS answers in part (b) are wrong. The first one, y = sin z, is wrong because sin r starts decreasing
al z = /2, where the slope field clearly shows that y should be increasing at all times. The second answer is better,
but it does not give the solution outside the range —n/2 < x < m/2. The correct answer is the one sketched in
Figure 11.56, which has formula

-1 r<-3
y=4¢sinr -3<r<3
1 r<3<«z
CHECK YOUR UNDERSTANDING
1. False. Suppose k = —1. The equation ¥ — y = O or y”’ = y has solutions y = e’ and y = e™* and general solution
y= Ciet + Cae™".
2. True. The general solution to y' = —ky is y = Ce~*!.
3. False. The function y = ¢? is a solution to " = 2.

4. True. Specifying z(0) and y(0) corresponds to picking a starting point in the plane and thereby picking the unique solution
curve through that point.

5

False. This is a logistic equation with equilibrium values P = 0 and P = 2. Solution curves do not cross the line P = 2
and do not go from (0, 1) to (1. 3).

6. True. This is a logistic differential equation. Any solution with P(0) > 0 tends toward the cartying capacity, L, ast — oo.
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14.

15.

16.

17.

18.

25,
26.

27
28.
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Faise. Competitve exclusion, in which one population drives out another, is modeled by a system of differential equations.
False. If y(0) < 0. thenlimz o y = —20.

True. No matter what initial value you pick, the solution curve has the r-axis as an asymptote.

Fulse. There appear to be two equilibrium values dividing the planc into regions with different limiting behuvior,

False. Euler’s method approximates y-values of points on the solution curve.

False. In order to be solved using separation of variables, a differential equation must have the form dy/dx = f(x)g(y).
so we would need £ 4+ y = f(z)g(y). This certainly does not appear to be true. If it were, setting r = 0 and y = 0, we
would have f(0)g(0) = 0 so cither f(0) = 0 or g(0) = 0. If f(0) = 0, then substituting in x = 0 and y = 1, we have
0+ 1 = f(0)g(1) = 0, which is absurd. We get the same contradiction if we assume g(0) = 0.

Truc. Rewrite the equation as dy/dz = ry + x = x(y + 1). Since the equation now has the form dy/dz = f(z)g(y). it
can be solved by separation of variables.

False. We can find such a differential equation simply by differentiating the equation implicitly:

2 d d
3z +y+r—y +3_1/2-—y = 0.

dx dx

Solving for dy/dx we get our differential equation:

dy _ -3z -y

dr ~ r+3y?
In fact, one way computers sketch a curve like this is to use Euler's method on the differential equation, rather than to try
to sketch the curve directly.
True. Just as many elementary functions do not have elementary antiderivative, most differential equation do not have
cquations for solution curves. For example, the differential cquation in this problem cannot be solved by separation of
variables and it is not linear.
False. It is true that y = £ is a solution of the differential equation. since dy/dz = 3z* = 3y*/3, but it is not the only
solution passing through (0. 0). Another solution is the constant function y = 0. Usually there is only one solution curve
to a differential equation passing through a given point, but not always.
True. Since f'(z) = g(z), we have f'(z) = ¢'(x). Since g(x) is increasing, ¢'(z) > 0 for all z, so f'(z) > 0 for all z.
Thus the graph of f is concave up for all z.
False. We just need an example of a function f(x) which is decreasing for > 0, but whose derivative f'(z) = g(z) is
increasing for £ > 0. An example is f(r) = 1/x. Clearly f(r) is decreasing for x > 0 but its derivative f'(z) = —1/2*
is clearly increasing for x > 0.
True. Since g(z) is increasing, g(x) > g(0) = 1 for all z > 0. Since f'(x) = g(z), this means that f'(x) > 0 for all
z > 0. Therefore f(z) is increasing forall z > 0.
False. If g(z) > 0 for all z, then f(z) would have to be increasing for all z so f(z + p) = f(r) would be impossible.
For example, let g(z) = 2 + cos z. Then a possibility for f is f(z) = 2z + sin z. Then g(z) is periodic, but f(z) is not.
False. Let g(x) = 0 for all x and let f(z) = 17. Then f'(x) = g(x) and limz 00 g(x) = 0, but lim: 500 f(x) = 17.
True. Since limz -0 g{(x) = oc. there must be some value z = a such that g(x) > 1 for all z > a. Then f'{z) > 1 for
all z > a. Thus, for some constant C, we have f(x) > = + C for all z > a. which implies that lim: 5 f(z) = o0.
More precisely, let C = f(a) — a and let h(x) = f(z) — =z — C. Then h(a) = O and h'(z) = f'(z) — 1 > O forall
x > a. Thus h is increasing so h(x) > 0 for all r > a, which means that f(x) > = + C forall x > a.
False. Let f(x) = z° and g{x) = 3z°. Then y = f(z) satisfies dy/dx = g(z) and g(z) is even while f(z) is odd.
Falsc. The example f(z) = z* and g(z) = 3z~ shows that you might expect f(z) to be odd. However, the additive
constant C can mess things up. For example, still let g(x) = 3x2. but let f(r) = =3 + 1 instead. Then g(z) is still even,
but f(z) is not odd (for example, f(—1) = 0 but — f(1) = —2).
True. The slope of the graph of f is dy/dr = 2¢ — y. Thus when z = a and y = b, the slope is 2a — b.
True. Saying y = f(z) is a solution for the differential equation dy/dx = 2z — y means that if we substitute f(x) for y,
the equation is satisfied. That is, f'(x) = 2r — f(z).
False. Since f'(x) = 2x — f(x), we would have 1 = 2z — 5 so z = 3 is the only possibility.

True. Differentiate dy/dz = 2x — y, 10 get:

dy
1Y _ S ar-y=2-EL =2_(2r -y
S 2z 1) il )
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False. Since f'(1) = 2(1) — 5 = —3, the point (1, 5) could not be a critical point of f.

True. Since dy/dz = 2x — y, the stope of the graph of f is negative at any point satisfying 2x < y, that is any point
lying above the linc y = 2z. The slope of the graph of f is positive at any point satisfying 2 > y, that is any point lying
below the line y = 2z.

True. When we differentiate dy/dz = 2z — y, we get:
dy dy
—= =2-==2-(2r—y).
da® dr ( y)

Thus at any inflection point of y = f(z). we have d’yfdr’ =2 — (2 — y) = 0. That is, any inflection point of f must
satisfy y = 2o — 2.

. False. Suppose that g(x) = f(z) + C. where C' # 0. In order 10 be a solution of dy/dx = 2z — y we would nced

g'(x) = 2z ~ g(x). Instead we have:
gx)=f(z) =22 — f(z) =2z — (g(2) - C) = 2r — g(x) + C.

Since C # 0. this means g(z) is not a solution of dy/dx = 2z — .
True. We will usc the hint. Let w = g(x) — f(x). Then:

W =@ - (&) = (20 = g(2)) - (22 = [(2)) = (&) = 9(a) = —w.

Thus dw/dr = —w. This equation is the equation for exponential decay and has the general solution w = C'e™ ™. Thus,

lim (g(x) — f(z)) = lim Ce " =0.
r—ro0 T,

An example is dy/dx = e®. In fact, if f() is any increasing positive function, then the solutions of dy/dx = f(z) are
increasing since f(z) > 0 and concave up since d®y/dz” = f'(z) > 0.

. We want to have dy/dr = 0 wheny — 2 = 0, so let dy/dx = y — 1°.
. This family has f'(z) = 2z, so letdy/dx = 2.
. If we differentiate implicitly the equation for the family, we get 2 —2ydy/dx = 0. When we solve, we get the differential

equation we want dy/dx = = /y.

PROJECTS FOR CHAPTER ELEVEN

1,

Note: Your estimates for a, b, ¢ are highly dependent on the type of approximations and line fitting you use, so
your estimates may differ significantly from those presented here.

IE 1dE
(a) In order to generate the necessary plots we need (d_t Ear E and t. For 1912, we approximate
¢
E_SE_Bo1 .
dt At 5 '
for 1917,
dE.  AE  39-25 4
R = ———— 47

dt ~ At T3
and so on. All the other values of the following chart can then be directly computed.
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Table 11.15
N . AME _dE | 1AE _1dE
Year(t) Electricity Consumption (E) = x T T Ar = Bdt
1912 12 2.6 0.217
1917 25 4.7 0.187
1920 39 59 0.151
1929 92 24 0.026
1936 109 12.6 0.115
1945 222 325 0.146
1955 547 41.6 0.076
1960 755 60.0 0.079
1965 1055 95.2 0.090
1970 1531 75.5 0.049
1980 2286 24.1 0.011
1987 2455
We rewrite equation (i) as
(Z—f =cE.

In Figure 11.57 we plot % versus E. The best line through these data points that passes through the origin
(which can be found, for instance, by the least squares method) has a slope of about 0.036, so ¢ = 0.036.

Equation (ii) is of the form

dE
—(F—(I—bE,

so we use the same plot, but allow lines which do not go through the origin. The slope of the best fitting

line in this case is about 0.024, so b = —0.024 and the % intercept is 18.1. s0 a = 18.1.

dE

t

100

25

5300 1000 1500 2000 2500

Figure 11.57
Since equation (iii) is
1dE
———=a-bE,
E dt “ '
to check equation (iii) we plot %‘L—f versus E, as in Figure 11.58. The line shown has slope m = —6.1 -

1072 and ,i;% intercept at 0.14. So b = 6.1 - 1072 and a = 0.14.
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&~
m

=)
[
(1)

eT O T

t

500 1000 1500 2000 2500

Figure 11.58
Since equation (iv) is
1 dE bt
—— =a-bt.
E dt
for equation (iv) we graph IE % versus ¢, where ¢ is measured since 1900; we get Figure 11.59. The best

line has a slope of —0.002 and a %‘fi—f intercept of 0.2. So a = 0.2 and b = 0.002.

S S, 2
'10°20'30°40°50°60 '70°80'90

t (years since 1900)

Figure 11.59

(by (i) We have IE
T = 0.036E.

SO we get
E = E060.036t

This is exponential growth at a continuous rate of 3.6%. To estimate E in the year 2020, we measure
time from 1987, and so Ey = 2455 and

E = 2453036433} »; 8054.

This model predicts that growth will continue at 3.6% forever. This is not reasonable. For instance, it
predicts that in the year 2920 the US energy consumption will equal the entire encrgy output of the
sun.

(i1) We have

%?— =18.1 + 0.024E.

dE
—— = [ 0.024d1.
/ E + 754 /

Separating variables. this is
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(iii)

(iv)

Solving, we get
E = Ae%9 1 754,

Again assuming that we measure time from 1987, this becomes
E =1701%0 4+ 754,
So this model predicts that in the year 2020,
E = 17010269 4 754 = 4509.

Again, this growth pattern does not seem reasonable because, although it is a slower growth (2.4%
versus 3.6%) than the last example, it is still forever exponential. This model predicts that it will
take longer for US consumption to reach the total output of the sun. but it is still predicted to happen
(sometime around 3400).

The third equation is
1dE

—— =014~ (6.1-107)E.
E dt 0 (6 )
This is solved by partial fractions:

%dE =6.1.107%(2295 — E)dt

1 -
—————dE = .1-107°dt
/E(2295— E) /6

1 1
/ (E + m) dFE = /O.l-ldf

ln|E| - In|2295 - E| = 0.14t + C
|E]
|E — 2295]

= el

Solving for E, this is
—-2295 K €011t
E= —r
1 — K19t
Measuring time from 1987. we get K = 2455/(2455 — 2295) = 15.3, so

_ —35,1006%14
"7 1 - 15.3¢0-14t”

Thus the predicted consumption in the year 2020 is

—35,100€0-133)

E= T 53e0miem ©

2295.
This model predicts logistic growth leveling off at 2295 billion kilowatt hours per ycar. In some
ways this model is more satisfactory than the previous ones because it acknowledges that energy
consumption will not grow indefinitely. However, this model is problematic in that the 1987 value for
E of 2455 is bigger than the leveling off value of 2295. (Your numerical values may differ, depending
on your cstimating method.)
The equation here is B
1d
Edr = 0.2 — 0.002¢.
Integrating this gives
In|E| = 0.2t — 0.001£° 4+ C

or
E = Je0-2t—0.001¢%
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Since ¢ is measured from 1900 we know that £ = 2455 when ¢ = 87. This gives K = 0.132, so the
predicted consumption in the year 2020 is

E = U_132€f3.‘.>[120)—0.001(120)2 ~ 1950.

This model predicts that energy consumption reaches a maximum in the year 2000 (this is when the
maximum of 0.2¢ — 0.001z2 occurs).

2. (a)
p(z) = the number of people with incomes > z.

p(x + Ax) = the number of people with incomes > z + Ax.
So the number of people with incomes between xr and x + Az is
p(x) — p(z+ Az) = =Ap.

Since all the people with incomes between = and = + Az have incomes of about z (if Az is small),
the total amount of money earned by people in this income bracket is approximately x(—Ap) = —zAp.
(b) Pareto’s law claims that the average income of all the people with incomes > z is kx. Since there are p(z)
people with income > z. the total amount of money earned by people in this group is kzp{z).
The total amount of money earned by people with incomes > (z + Az) is therefore k(z + Az)p(x +
Ar). Then the total amount of money earned by people with incomes between x and z + Az is

kxp(z) — k(z + Az)p(z + Az).

Since Ap = p(z + Az) — p(x). we can substitute p(z + Ar) = p(z) + Ap. Thus the total amount of
money earmned by people with incomes between z and « + Az is

kxp(r) — k(z + Az)(p(x) + Ap).
Multiplying out, we have
kzp(z) — kaxp(x) — k(Ax)p(z) — kxAp - kAzAp

Simplifying and dropping the second order term Az Ap gives the total amount of money earned by people
with incomes between x and £ + Az as

—kpAz — kxAp.

(¢

—

Setting the answers to parts (a) and (b) equal gives
—rAp = —kpAz — kxAp.
Dividing by Az. and letting Az — 0 so that %f — p', we have
Ap _Ap
JE = kp + }h.l.‘ﬂ
xp' = kp + kap'
50
(1= k)zp' = kp.
(d) We solve this equation by separating variables
dp _ / k dr
p J (Q-k=z
k

Inp= Inz + C (no absolute values needed since p, z > 0)

(1-k)
Inp=Inzf0=% 414 (writing C = In A)
Inp = In[Azr*/=%¥]  (using In(4B) =In A + In B)

p= Ak -k)
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(d) For small z, we discard the quadratic term in part (c). giving

The acceleration is d*x/dt>. Thus, using Newton’s Second Law:

Force = Mass - Acceleration

we get
—bx d*z
=m—
2 di?
So
Pz + —b z=0
a2 a2m”

This diftferential equation represents an oscillation of the form z = C) coswt + Cs sin wt. where w? =

b/(a®m) sow = 1/b/(a?m). Thus, we have

Period = = 27a

€

m
=

4. (a) Equilibrium values are N = ( (unstable) and N = 200 (stable). The graphs are shown in Figures 11.61

and 11.62.
& N
100 f 220
; — N
100 20 300
40
-300 F ¢
Figure 11,61: dN/dt = 2N — 0.01N? Figure 11.62: Solutions to

dN/dt = 2N — 0.01N?

(b) When there is no fishing the rate of population change is given by % = 2N - 0.01N2. If fishermen

remove fish at a rate of 75 fish/year, then this results in a decrease in the growth rate, %, by 75 fish/year.
This is reflected in the differential equation by including the —75.

(c) % (@ P

170 [
150 |---

[=Xv]lerY
oCco
75

=375

Figure 11.63: dP/dt = 2P — 0.01P® - 75 Figure 11.64
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Figure 11.65: Solutions 10 X
dP/dt = 2P — 0.01P* — 75 Figure 1165

g) The two equilibrium populations are P = 350, 150. The stable equilibrium is P = 150, while P = 50 is
unstable.

(h @

(ii)

(iii)

(iv)

Notice that P = 50 and P = 150 are solutions of dP/dt = 0:

dP — ;
= = 2P~ 0.01P® — 75 = ~0.01(P ~ 200P + 7500) = ~0.01(P ~ 50)(P ~ 150).

For H = 75, the equilibrium populations (where dP/dt = 0) are P = 50 and P = 150. If the
population is between 50 and 150, dP/dt is positive. This means that when the initial population
is between 50 and 150, the population will increase until it reaches 150. when dP/dt = 0 and the
population no longer increases or decreases. If the initial population is greater than 150, then dP/dt is
negative, and the population decreases until it reaches 150. Thus 150 is a stable equilibrium. However,
50 is unstable.

For H = 100, the equilibrium population (where d?/dt = 0) is P = 100. For all other pop-
ulations, dP/df is negative and so the population decreases. If the initial population is greater than
100, it will decrease to the equilibrium value, P = 100. However, for populations less than 100, the
population decreases until the specics dies out.

For H = 200, there are no equilibrium points where dP/dt = 0, and dP/dt is always negative.

Thus, no matter what the initial population, the population always dies out eventually.
If the population is not to die out, looking at the three cases above. there must be an equilibrium value
where dP/dt = 0, i.e. where the graph of dP/dt crosses the P axis. This happens if H < 100. Thus
provided fishing is not more than 100 fish/ycar, there are initial values of the population for which the
population will not be depleted.

Fishing should be kept below the level of 100 per year.



