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CHAPTER TWO

Solutions for Section 2.1

Exercises

1. For t between 2 and 5, we have

. As 400 -135 _ 265
Average velocity = - 3.2 T~ 31 km/hr.
The average velocity on this part of the trip was 265/3 km/hr.
2. (a) Lets = f(f).

(i) We wish to find the average velocity betweenf = 1 and t = 1.1. We have

FL1) - f(1) _ 3.63-3

age velocity = = = 6.3 m/sec.
Average velocily 1-1 01 6.3 m/sec
(ii) We have
. .o f(Lo1 - f(Q1) _ 3.0603 -3 _ .
Average velocity = 10l =1 = 001 = 6.03 m/sec.
(iii) We have
1.001) — . -
Average velocity = fa.001) - f(1) _ 3.006003 -3 = 6.003 m/sec.

1.001-1 ~  0.001
(b) We see in part (a) that as we choose a smaller and smaller interval around ¢ = 1 the average velocity appears to be
getting closer and closer to 6, so we estimate the instantaneous velocity at ¢ = 1 to be 6 m/sec.

Slope [ -3 |-1]0[1/2]1 |2
Pom | F | C |E| A | B

o

. The slope is positive at 4 and D; negative at C and F'. The slope is most positive at A4: most negative at F.

5. Using h = 0.1, 0.01, 0.001, we see
(340.1)* -27
—_— e =12791
0.1 w9
(3+0.01°-27 __
—_— =27.
0.01 r09
(3+0.001)° —27 ___
0.001 = 27.009.
3 _ 9~
These calculations suggest that rl,imo Gﬂ’-)—i =27.
- ¢
6. Using radians,
h | (cosh— 1)/h
0.01 -0.005
0.001 —0.0005
0.0001 —0.00005
These values suggest that lim cosh -1 =0.

h—=0
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7. Using h = 0.1, 0.01, 0.001, we see

=1
=214
(.1 8
o165
001 T T
=0.001
7 -1
— - =104
0.001 948
70.0001 _ 4
——— = 1.946.
0.0001 946
-h _ 1
This suggests that lim ~19...
h—0 h
8. Using h = 0.1, 0.01, 0.001. we sec
h (eIt —e)/h
0.0] 2.7319
0.001 2.7196
0.0001 27184
el¥h _ o
These values suggest that Ilimo = 2.7....In fact. this limitis e.
in(26) . - . sin(2
9. For —0.5 <6 <0.5,0 <y <3, the graphof y = M is shown in Figure 2.1. Thercfore, gm}] sin (26) =2.
—
y= siu(GQB)
[
Figure 2.1
cosf—1 . - . cosf—1
10, For—-1<8<1,-1<y< 1, thegraphof y = — is shown in Figure 2.2. Therefore,;m(l) — = 0.
-
91 1
— COS0—
Y=
\\ _ 9
—14
Figure 2.2

11, For —90" € 8 <€ 90°.0 < y € 0.02, the graph of y =

. . sinf -
curve, we see that in degrees, lim - = 0.01745....
8—0

sin @

8

6 (degree)
0

Figure 2.3

is shown in Figure 2.3. Therefore, by tracing along the
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12. For —0.5 < 8 <0.5.0 < y £ 0.5, the graph of y = F?aei is shown in Figure 2.4. Therefore, by tracing along the
\ 2
curve, we see that 31_1'1(1) m =0.3333....
0.5 _ 8
tan(36)
S S — 0
-0.5 0 0.5
Figure 2.4
Problems
13. distance
: time
14. distance
time
15. distance
time
16. 0 < slope at C < slope at B < slope of AB < 1 < slope at . (Note that the line y = r, has slope 1.)
17. Between 1804 and 1927, the world’s population increased 1 billion people in 123 years, for an average rate of change of
1/123 billion people per year. We convert this to people per minute:
1,000, 000. 000 1 . - .
—0—123— people/year - 5021365 years/minute = 15.47 people/minute.
Between 1804 and 1927, the population of the world increased at an average rate of 15.47 people per minute. Similarly,
we find the following:
Between 1927 and 1960, the increase was 57.65 people per minute.
Between 1960 and 1974, the increase was 135.90 people per minulc.
Between 1974 and 1987, the increase was 146.35 people per minute.
Between 1987 and 1999, the increase was 138.55 people per minute.
18. Since f(t) is concave down betweent = 1 and ¢ = 3, the average velocity between the two times should be less than the

instantancous velocity at ¢ = 1 but greater than the instantaneous velocity attime t = 3, so D < A < C. For analogous
reasons, F' < B < E. Finally, note that f is decreasing at = 5 so £ < 0, but increasing at { = 0. s0 D > (. Therefore,
the ordering from smallest to greatest of the given quantities is

F<B<E<0<D<AKC.
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19. One possibility is shown in Figure 2.5.

i)

t
Figure 2.5
20, The limit appears to be |; a graph and table of values is shown below.
Y
1.4
1.2 T o
1 p
0.8 0.1 0.79-_13
0.6 0.01 0.9550
0.4 r 0.001 [ 0.9931
0-3 [ ‘ 0.0001 | 0.9990
0.02 0.04 0.06 0.08 0.1 _0.00001 | 0.9999

Solutions for Section 2.2

Exercises

1. (a) Asx approaches —2 from either side, the values of f(x) get closer and closer to 3. so the limit appears to be about 3.
(b) As zx approaches 0 from either side, the values of f(wx) get closer and closer to 7. (Recall that to find a limit, we are
interested in what happens to the function near = but not at z.) The limit appears to be about 7.
(c) Asr approaches 2 from either side. the values of f{u:) get closer and closer to 3 on one side of r = 2 and get closer
and closcr to 2 on the other side of x = 2. Thus the limit does not exist.
(d) As r approaches  from either side. the values of f(x) get closer and closer to 8. (Again, recall that we don’t care
what happens right at z = 4.) The limit appears to be about 8.

2. From the graphs of f and g, we estimate im f(x) = 3, linl] g(z) =5,
r—1- r=1=
lim f(z})=4, im g(z)=1.
z—1+ r—1*
@ lim (f(x)+g(@) =3+5=8
(b) ‘]im+(f(.r) + 29(x)) = linl] flr)+2 “Hll+ gle)=4+2(1) =6
x—1 P =
© lim (£(z)g(x) = (lm f)(lim_g() = G)5) = 15
@ lim (f(2)/g@) = (lim f0)) / ( lim, o)) =4/1 =4

3. From Table 2.1. it appears the limit is 1. This is confirmed by Figure 2.6. An appropriate window is —0.0033 < = <
0.0033, .99 < y < 1.01.
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1.01
Table 2.1
z f(z) T f(a) |
0.1 1.3 —0.0001 | 0.9997 Q
0.01 1.03 ~0.001 | 0.997 0.99 “— ‘
0.001 | 1.003 -0.01 | 0.97 —0.0033 0.0033
0.0001 | 1.0003 -0.1 0.7 Figure 2.6
4. From Table 2.2, it appears the limit is —1. This is confirmed by Figure 2.7. An appropriate window is —=0.099 < z <
0.099, —1.01 < y < —0.99.
—-0.99
Table 2.2 : i
| i
< /(=) « f(z) ‘ |
0.1 —-0.99 —0.0001 | —0.99999999
0.01 ~0.9999 —0.001 | —0.999999 —-1.01
0.001 | —0.999999 ~0.01 -0.9999 —0.099 0.099
0.0001 | —0.99999999 —0.1 -0.99 Figure 2.7

5. From Table 2.3, it appears the limit is 0. This is confirmed by Figure 2.8. An appropriate window is —0.005 < 2 < 0.003,
—0.01 < y < 0.01.

0.01
Table 2.3
z f(z) z fz)
0.1 0.1987 -0.0001 | -0.0002
2 —0. —0.002 -0.01
0.01 (0.0 ‘00 0.001 0.0020 —0.005 0.005
0.001 | 0.0020 —-0.01 | -0.0200
0.0001 | 0.0002 —-0.1 | -0.1987 Figure 2.8
6. From Table 2.4, it appears the limit is 0. This is confirmed by Figure 2.9. An appropriate window is —0.0033 < = <
0.0033, -0.01 < y < 0.01.
0.01
Table 2.4 :
z f(=) x f(z) |
0.1 0.2955 —-0.0001 | —0.0003
0.01 | 0.0300 -0.001 | —0.0030 —0.01 ¥— ' .
0.001 | 0.0030 -0.01 | —0.0300 ~0.0033 00033
0.0001 | 0.0003 —-0.1 —0.2935

Figure 2.9
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7. From Table 2.5, it appears the limit is 2.

0.0865,1.99 < y < 2.01.

Table 2.5
z fx)
0.1 |1.9867
0.01 | 1.9999
0.001 | 2.0000
0.0001 | 2.0000

8. From Table 2.6, it appears the limit is 3. This is confirmed by Figure 2.11. An appropriatc window is —0.047 < z <

0.047, 2.99 < y < 3.01.

Table 2.6
T f(=)
0.1 2.9552
0.01 | 2.9996
0.001 | 3.0000
0.0001 | 3.0000

9. From Table 2.7, it appears the limit is 1.

0.0198,0.9 <y <1

Table 2.7

T
0.1
0.01
0.001
0.0001

10. From Table 2.8, it appears the limit is 2. This is confirmed by Figure 2.13. An appropriate window is —0.0049 < z <

01,

f(z)
1.0517
1.0050
1.0005

1.0001

0.0049, 1.99 < y < 2.01.

Table 2.8

—0.000

—0.001
-0.01
-0.1

f(z)
1 [ 2.0000
2.0000
1.9999
1.9867

fz)

—0.0001

—-0.001
—-0.01

-0.1

This is confirmed by Figure 2.12. An appropriate window is —0.0198 < z <

3.0000
3.0000
2.9996

2.9552

—0.0001
—0.001
-0.01
—0.1

f=)

1.0000

0.9995
0.9950

0.9516

This is confirmed by Figure 2.10. An appropriate window is —0.0865 < z <

2.01

1.99
—0.0865

Figure 2.10

3.01

2.99
—0.047

0.047

Figure 2,11

1.01

0.99
—0.0198

0.0198
Figure 2,12

2.01

0.0865

T
0.1
0.01
0.001

f(=)
2.2140
2.0201
2.0020

0.0001

2.0002

—0.0001

-0.001
-0.01
-0.1

fz)
1.9998
1.9980

1.9801

1.8127

1.99
—0.0048

0.0049

Figure 2.13
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11. From Table 2.9. it appears the limit is 4. Figure 2.14 confirms this. An appropriate window is 1.99 < = < 2.01,

3.99 < y < 4.01.
Table 2.9

x

f(z)

2.1
2.01
2.001
2.0001
1.9999
1.999
1.99

1.9

4.1
4.01
4.001
4.0001
3.9999
3.999
3.99
3.9

y = 4.01
y = 3.99
xr =199

Figure 2.14

z =2.01

12. From Table 2.10, it appears the limit is 6. Figure 2.15 confirms this. An appropriatc window is 2.99 < z < 3.01,

5.99 < y < 6.01.
Table 2.10
T f(2)
3.1 6.1
3.01 6.01
3.001 | 6.001
3.0001 | 6.0001
2.9999 | 5.9999
2.999 | 5.999
2.99 5.99
2.9 5.9

y=6.0
y=5.99
x =299

Figure 2.15

T = 3.01

13. From Table 2.11, it appears the limit is 0. Figure 2.16 confirms this. An appropriate window is 1.535 < z < 1.39.

—0.01 < y < 0.01.
Table 2.11
T f(z)
1.6708 | —0.0500
1.5808 | —0.0050
1.5718 | —0.0005
1.5709 | —0.0001
. 13707 | 0.0001
I 1.5698 | 0.0005
1.5608 | 0.0050
1.4708 | 0.0500

14. From Table 2.12, it appears
1.99 < y < 2.01.

Table 2.1

T

1.l

1.01
1.001
1.0001
0.9999
0.999
0.99

0.9

y =0.01

y=-0.01

r=1.55

Figure 2.16

the limit is 2. Figure 2.17 confirms this. An appropriate window is 0.995 < z < 1.004,

2

/(=)
2.2140
2.0201
2.0020
2.0002
1.9998
1.9980
1.9801

1.8127

y=2.01

y = 1.99

= 0.995
Figure 2.17

r = 1.004
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2 __ y 2 _
s, qim GFN 24 AR o iy =4
h—0 h L0 h R—0
101 1-(1+h) -1
t6. fim 5 (57 1) = -
e\t Y T e iR = !
.1 1 . 1—=(1+2h+n?) . —2—h
17. lim = (| ——— - = lim = -
hl—loxt)h((l+h)2 1) o0 h(1 + h)? l{l—m(l-{-h)"’ 2
N’ — N 9 . —4
Vit h+2 Vi+h+2 VA+R+2
Therefore lim Vi+h-2 = lim ! =l
h—=0 h hs0vV/i+h+2 4
19 1 _1_2-\/4+h_(2—\/4+h)(‘2+\/4+h)_ 41— (4+h)
ViEh 2 2VaA+h 2V +Rh(2+ Vit h) WVEF 2+ VI+R)
Therefore hm 1. lim 1 =L
nsoh \VA+h 2) w=02/ixh(2+vVith) 16
z-d r>4
0. fa)= A aod ={1 z>4
-4 - r<4d -1 r<4
Figure 2.18 confirms that lim f(x) = 1. lim f(z) = —1so lim f(z) docs not exist.
E r—4- z—4
1 — f(@)
0——F—+——
2 1 6 8
- 3
Figure 2.18
J;Q. r>?2
2 I
2. flo) = B2 -
=2
- , r<?

I
Figure 2.19 contirms that lim f(z) = lim f(z) = lim f(z) = 0.
2+ T2~ T2

—

Figure 2.19

-2 0<a<3
22, f(z)=¢ 2 =3
2r+1 I<
Figure 2.20 confirms that lim f(z) = lim (z® - 2) = Tandthat lim f(z) = lim (22 + 1) = 7,50 lim f(z) =
=3~ r—3- =3+ T34 z—3

7. Note, however, that f(x) is not continuous at z = 3 since f(3) = 2.
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‘ ok I(z)
| 8 I
| 6T
| 4,
2 .
0 Tt
_2./{2345
Figure 2,20

|
23. The graph in Figure 2.21 suggests that

if —0.05 <6 <005 then 0.999 < (sin8)/8 < 1.001.

Thus, if 8 is within 0.05 of 0. we see that (sin ) /6 is within 0.001 of 1.

y = 1.001

TN

|
\
T =—0.05 z=0.05
i
1

Figure 2.21: Graph of (sin 8) /6 with
—0.05 <8 <0.05

24, The statement

lim g(h) = K
| —a

means that we can make the value of g(h) as close to K as we want by choosing h sufficiently close 10, but not equal to,
a.
In symbols,‘ for any € > 0, there is a4 > 0 such that

lg(h) — K| <e forall0 < |h—a|<d.

Problems

25. The only change is that, instead of considering all x near c, we only consider x near to and greater than c. Thus the phrase
“lx — ¢| < 8" must be replaced by ¢ < r < ¢ + 4." Thus, we define
1im+ fz)=L

I—rC

to mean that forjany € > 0 (as small as we want), there is a 8 > 0 (sufficiently small) such that if ¢ < = < ¢ + 4, then
[f(z) — L| < el

26. The only change is that, instead of considering all x near ¢, we only consider z near to and less than ¢. Thus the phrase
“l — ¢| < " must be replaced by “c — & < 2 < ¢.” Thus, we define

lim f(z)=1L

r—c~

to mean that forlany € > 0 (as small as we want), there isa § > 0 (sufficiently small) such thatif ¢ - § < z < ¢, then
|f(z) = L] <]
1
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27,

30.

31.

32.

34,

35
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Instead of being “sufficiently close 10 ¢, we want x to be “sufficiently large.” Using N to measure how large = must be,
we define
lim f(x)=1L

T
1o mean that for any ¢ > 0 (as small as we want), there is a N > 0 (sufficiently large) such that if x > N, then
If(z) - L] < e.
If x > 1 and r approaches 1, then p(x) = 535. If r < 1 and z approaches 1, then p(x) = 34. There is not a single number
that p(x) approaches as z approaches 1, so we say that 1131l p(x) does not exist.

. We use values of h approaching, but not equal to, zero. If we let & = 0.01, 0.001, 0.0001, 0.00001, we calculate the values

2,7048, 2.7169, 2.7181, and 2.7183. If we let i = —0.01 —0.001, —0.0001, —0.00001, we get values 2.7320, 2.7196,
2.7184, and 2.7183. These numbers suggest that the limit is the number e = 2.71828. ... However, these calculations
cannot tell us that the limit is exactly e; for that a proof is needed.

Divide numerator and denominator by x:
z+3 143/z

f(w)=2—1‘=2/1'—1’
3/ _ limsmn (1+3/2)
: oy 1+3/r limeoo(14+3/x) 1
Jm f=) =t T S fmom@fe—D o1 ¢

Divide numerator and denominator by z°, giving

2 +2x-1 _ 1+2/r-1/7°

1@ = =357 = " 3/253

SO

. 142/ —1/2? limpase(l+2/x-1/2%) 1
1 ) = | = = -.
Jin f(z) = Jim — 513 Tlime o (3/22 + 3) 3

Divide numerator and denominator by z, giving

2

L_r+4 _z+dfz
&)= = T

SO
lim f(z) = +oc.
Tr—oc

. Divide numerator and denominator by z3, giving

203 — 1627 2 -16/x
flay = ot 216/
4r? + 3z 1/ +3

0
2—16/x _ limzsoeo(2 = 16/x) _ 2

M : = 1‘ - - '
1'1_1:1;: flz) x]—II::c 4/13 +3 lim: oo (4/ + 3) 3

Divide numerator and denominator by z°, giving

' +3z 1/z +3/z"
xt 4225 1fr+2

flx) =

SO
. _limgoeo(l/z+3/z%) 0 _
Jm @) = e 2 0.

Divide numerator and denominator by e*, giving

3e*+2 _3+27F
2t +3  24+3e-%

flx) =

50
. limgoo(3+2e77) 3
h = = -
S f() = @ F e 2




36.

37.

38.

39.

40.

41.

43.
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2e” " +3 . lim 27" +3) 3
fe) = 3e-* :2 s0 xllflc}o fle) = lim:::ESB" + 2; )y
Because the dcnéminalor cquals O when £ = 4, so must the numerator. This means &% = 16 and the choices for k are 4
or —4. 1
Because the denominator equals ) when z = 1, so must the numerator. So 1 — k 4+ 4 = 0. The only possible valuc of k

is 5. ‘

Because the denominator equals 0 when £ = —2, so must the numerator. So 4 — 8 4 & = 0 and the only possible value
of kis4.
Division of numerator and denominator by z? yields

2 +3x+5 _ 1+3/x+5/x°
4r+1+1% " dfz+1/x? + k-2

As £ — oc, the limit of the numerator is 1. The limit of the denominator depends upon k. If k& > 2, the denominator
approaches oo as x — ©0, so the limit of the quotient is 0. If & = 2, the denominator approaches 1 as z — o0, so the
limit of the quotient is 1. If & < 2 the denominator approaches 0% as z — oc, so the limit of the quotient is co. Therefore
the values of k we are looking for are k > 2.

For the pumerator, lim (e22 - 5) = =51fk >0, lim (e""t + 3) = 3, so the quotient has a limit of —5/3.
I— =00 Z—r—02C

Ifk =0, lim (e¥ +3) = 4, so the quotient has limit of —3/4. If k < 0, the limit of the quotient is given by
T—H—-0C
lim (e** —5)/(e** +3) = 0.
z—-oC

By tracing on a calculator or solving equations, we find the following values of §:
Fore =0.2,8 <0.1.

Fore = 0.1,4 < 0.05.

Fore = 0.02, § < 0.01.

For e = 0.01, § < 0.005.

For e = 0.002, § < 0.001.

For e = 0.001, § < 0.0005.

By tracing on a ¢alculator or solving equations, we find the following values of §:
Fore = 0.1, 8 £ 0.46.

Fore = 0.01,4 < 0.21.

For e = 0.001, 4 < 0.1. Thus, we can take § < 0.09.

The results of Problem 42 suggest that we can choose & = €/2. For any € > 0, we want to find the & such that
[f(z)-3|=|-22+3-3|=|2z| <e.

Then if |z| < § = €/2, it follows that | f(z) — 3| = |2z < €. So lim,o(—2x + 3) = 3.

(a) Since sin(nw) = 0forn = 1,2.3.... the sequence of r-values

|-
||"‘

[
gl

T

works. These x-values = 0 and are zeroes of f(z).
(b) Since sin(nw/2) =1forn =1.5,9... the sequence of x-values

2 2 2
® 5% 9
works.
(¢) Sincesin(nm)/2 = —1forn = 3,7 11,... the sequence of z-values
| 22 2
! In 7w w7
works. |

(d) Anytwo ol‘ilhcsc sequences of z-values show that if the limit were to exist, then it would have to have two (different)
values: 0 and 1, or 0 and —1, or 1 and —1. Hence, the limit can not exist.
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46. (a) Ifb = 0, then the property says lim,—. 0 = 0, which is casy to see is true.

(b) If | f(z) — L| < g5, then multiplying by |b] gives
bl f(z) - LI <e.
Since
1Bl f(z) — LI = b(f(x) = L)| = [bf(x) - bL|,
we have
[bf(x) = bL] < e.
(c) Suppose that lim f(x) = L. We want to show that lim bf(x) = bL. If we are to have
T—C =
1bf(x) - bL| <,

then we will need

, €
flr) - L] < —.
|fix) o
We choose 4 small enough that
|z —cf <& implies |f(x)—L|< I%I

By part (b), this ensures that
[bf(x) —bL| < €.
as we wanted.

47. Suppose lim f(z) = L, and lim g(x) = L2. Then we need to show that
r—c r—c

lim (f(z) = g(=)) = L1 + L.

Let € > 0 be given. We need to show that we can choose § > 0 so that whenever |z — ¢| < 8, we will have
[(f(x) + g(zx)) — (L1 + L2)] < ¢. First choose 8 > (1 so that fr — ¢| < &1 implies | f(:) — L] < §; we can do this
since lim f(x) = L. Similarly, choose d> > 0 so that |z — ¢} < 82 implies |g(z) — L2| < §. Now, set § equal to the

T -

[
smaller of 6, and 2. Thus |z — ¢| < & will make both |z — ¢| < 4y and | — ¢| < &2. Then, for |r — ¢| < 4. we have

|f(x) + g(z) = (L1 + L2)| = [(f(x) = L) + (9(z) — L2)|

<(f(x) = L)l + [(g(=x) - L2)|
€ €
< 3 + 3 =e.

This proves limz—..(f(z) + g(z)) = limz . f(z) + lime e g(x), which is the result we wanted to prove.

. (a) We need to show that for any given ¢ > 0, there isad > 0 so that jx — ¢| < § implies |f(z)g(r)] < e lfe >0

is given, choose 6, so that when |z — ¢} < &, we have |f(z)| < /€. This can be done since limz o f(z) = 0.
Similarly, choose d; so that when |z — ¢ < 2, we have |g(z)] < /e Then, if we lake & to be the smaller of §;
and 83, we'll have that |z — ¢| < & implies both | f(z)| < e and |g(x)] < V/e. So when |z — ¢] < 4, we have
If(@)a(e) = 1f (@) lg(a)] < Ve - Ve = e Thus lim f(x)g(z) = 0.

(b) (f(z) = L1)(g(x) — L2) + Lig(x) + Lo f(x) = L1 L2
= f(x)g(z) — Lig(x) = L2 f(x) + LiLa + Lig(x) + Lo f(x) = L1 L2 = f(x)g(r).

(©) i‘-l-.l}: (f(z) - L) = li_ng(r)—li_’mc Ly, = L,—L, = 0, using the second limit property. Similarly, lanC (g(z)— L») =

(d) Since lim (f(z) = L1) = lim (g(x) — Lz) = 0. we have that lim (f(x) ~ L1) (9(z) — L2) = 0 by part (a).
x—=c r—c r—c
(e) From part (b), we have

lim f(z)g(r) = lim ((f(z) = L1} (g(2) = L2) + Lr1g(x) + L:f(x) - L1 L)

lim (f(r) = L) (g(z) = L2) + lim Lyig(z) + lim L2 f(x) + lim(—L\ L>)
r—c r—c r—c T+

(using limit property 2)
=0+ Ly lim g(x) + L2 lim f(x) — L1 L2
r—c F i 2
(using limit property 1 and part (d))
=LiLs+LoLy — LiL>=L;L..
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Solutions for Section 2.3

Exercises

L. The derivative, f](2), is the ratc of change of 2" atr = 2. Notice that cach time x changes by 0.001 in the table, the value
of x3 changes by 0.012. Therefore, we estimate
‘ Rate of change _ 0.012

| ! = ~N— =12
AL of farr=2 " 0.001 12.

The function values in the table look exactly linear because they have been rounded. For example, the exact value of
73 when r = 2.001 is 8.012006001, not 8.012. Thus, the table can tell us only that the derivative is approximately 12.
Example 5 on page 82 shows how to compute the derivative of f(x) exactly.

(%]
«

y=sinz

1}

Since sin xiis decreasing for values near x = 3, its derivative at x = 3 is negative.

3. (a) Using a calgulator we obtain the values found in the table below:

T 1 1.5 2 2.5 3
e | 272448 | 7.39 | 12.18 | 20.09

(b) The average rate of change of f(z) = ™ betweenx =1 andx = 3 is

fB) - f(1) _e*—e _ 20.09 —2.72

31 =37~ 5 = 8.69.

[ Average rate of change =
|
(c) First we find the average rates of change of f(z) = e* betweenr = 1.5 and z = 2, and betweenz = 2and r = 2.5:

_ (- fi15) e —e'®  739-448

. hange = = =~ = 5.82
Average rate of change 15 =13 05

, R _f(23)—f(2) et -€’ 1218-739 .
Average rate of change = 55 =9 =559 © 05 = 9.58.

Now we approximate the instantaneous rate of change at £ = 2 by averaging these two rates:

) 3.82+9.58 _ _
Instantaneous rate of change ~ — =T
4. (a)
Table 2.13
T 113 2 25 3

|
| logr |0 018 030 040 048
\
|

(b) The average rate of change of f(z) = logx betweenzr = land r = 3 is

F(3) - f(1) _log3—logl _ 048 -0 - 094
3-1 3-1 = 2
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(c) First we find the average rates of change of f(x) = logx between £ = 1.5 and r = 2, and between z = 2 and

T =2.5.
log2 —logl5 _ 0.30-0.18
2-15 0.5 ~0.24
log2.5 —log2  0.40 —0.30
= =~ 0.20
25-2 0.5 0

Now we approximate the instantancous rate of change at x = 2 by finding the average of the above rates, i.e.

the instantaneous rate of change 0.24 4+ 0.20
. ~ ——— =0.22.
of f(r) =logratx =2 2

- log(1+ h) —log1 = lim log(1 + k)

5 ff()=1
h=20 h h—=0
Evaluating lﬂ(},il for h = 0.01,0.001. and 0.0001, we get 0.43214, 0.43408, 0.43427, so f'(1) ~ 0.43427. The
corresponding secant lines are getting steeper. because the graph of log z is concave down. We thus expect the limit to be

more than 0.43427 . Il we consider negative values of b, the estimates are too large. We can also see this from the graph
below:

""“,l‘—*'").r forh<0 - f(1)x
- ————

\ /”" R ——
. Eﬂ%iﬁr forh>0

6. We estimate f'(2) using the average rate of change formula on a small interval around 2. We use the interval z = 2 to
z = 2.001. (Any small interval around 2 gives a reasonable answer.) We have

f(2.001) — £(2) _ 3% —3° _ 9.00989 — 9

'
2} =~ = =
£ 2.001 -2 2.001 — 2 0.001

= 9.89.

7. Since f'(x) = 0 where the graph is horizontal, f’(z) = 0 at z = d. The derivative is positive at points b and ¢, but the
graph is steeper at ¢ = ¢. Thus f'(z) = 0.5 at x = band f'(z) = 2 at £ = c. Finally, the derivative is negative at points
a and e but the graph is steeper at £ = e. Thus, f'(z) = —0.5atx = aand f'(z) = -2 at z = e. See Table 2.14.
Thus, we have f'(d) =0, f'(b) = 0.5, f'(c) = 2. f'(a) = —0.5. f'(e) = —2.
Table 2.14

f'(z)

|m 80 e-::.|h
o
jo 1)

8. One possible choice of points is shown below.
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9. (a) The average rate of change from x = a to x = b is the slope of the line between the points on the curve withz = a
and r = b. Since the curve is concave down, the line from r = 1 to x = 3 has a greater slope than the line from
z =3tz =5,andso the average rate of change between x = 1 and = = 3 is greater than that between x = 3 and
r=3.
(b) Since f is increasing, f(5) is the greater.
(€) Asin part (a), f is concave down and f' is decreasing throughout so f'(1) is the greater.
10. Using the definition of the derivative, we have

. 10 + h) — £(10)
(10} = 1 f(—
£a0) hll»l}) h
‘ = lim 5(10 + h)* - 5(10)°
\ e h
‘ 500 + 100/ + 5h* — 500
= lim
h—0 h

100h + 3h°
n — 9
L—=0 h

h(100 + 5h)
m ——————
h—=0 h

= lim 100 + 3h
h—=0

= 100.

11, Using the definition of the derivative, we have

f(=2+h) = f(=2)
o — i L
F=2) hl-% h
- 3 _ (=93
= lim (=2+h) (=2)
h—=0 h
= iy (812 60" + h?) ~— (-8)
h—0 h
12h — Bh" + h*
= i ———
h—=0 h
9 _ 2
= lim h(12 — 6h + h7)
h—=0 h

= lim (12 — 6h + k°).
h—=0

which goes to 12 as h = 0. So f'(=2) = 12.
12. Using the definition of the derivative
g(=1+1h) —g(-1)

! —_ 1
g(-1)= IPE}) h
- (B(=1+h)° +5(=1+ 1) - (3(=1)* +5(~1))
= lim
h—0 h
- N s sy (o
= lim B =2k +h%) -5 +5h) — (-2)
h=—0 h
. 3 —Gh+3n"=3+5h
= lim
h—0 h
h—=0 h h—0
13.
— 3 =y _ (13 4 =
f’(l) = lim M = lim ((L+h)" +5) —(1° +3)
h—0 h A—0 T
14343+ +5-1-5  3h+3h + 03
= lim = lim
h—0 h h=0 h

lim (3 + 3k + 1) = 3.
h—0
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14,
: . g2+h)-g(?) _ . mE 3
o) = i T = S
= lim 2-(Q+h) = lim —h
h=o h(24Nh)2 h—0 (2 + h)2
= lim —_1— = -:—l-
h—o (2+h)2 4
15,
: g4k —g(2) _ . R T
A N
- lim 22 - (2+ h)? T ok ks (. e h?
=0 22(24+h)2h ka0 AN(2+A)?
= lim —dh - 17 = lim il
w0 Th(Z 12 1o 12 )2
=4 1
BETCIEE S

16. As we saw in the answer to Problem 10, the slope of the tangent line to f(z) = 5z atx = 10 is 100. When z = 10,
f(x) = 500 so (10. 500) is a point on the tangent line. Thus y = 100(x — 10) + 500 = 100z — 500.

17. As we saw in the answer to Problem 11, the slope of the tangent line to f(x) = z% atx = —2is 12. Whenz = -2,
f(r) = —8 so we know the point (—2. —8} is on the tangent line. Thus the equation of the tangent line is y = 12(z +
2)-8=12r +186.

18, We know that the slope of the tangent line to f(z) = x when x = 20 is 1. When x = 20, f(z) = 20 so (20. 20) is on
the tangent line. Thus the equation of the tangent linc is y = 1(x — 20} + 20 = z.

19. First find the derivative of f(z) = 1/r>atxr = 1.

1 1
= i L0 8) - Q) ey — 17

4 .
£ = lim h = hm
- lim 1"’-(1+Ah)'3 - im 1 —(1+2h+h%
h=0 h(lL+ h)? h—0 h(1 + h)?
—2h - I . —2—-h

SRR AT

Thus the tangent line has a slope of —2 and goes through the point (1, 1), and so its equation is

y—1=-2(x—-1) or y=-2x+3.

Problems

20, The statements f(100) = 35 and f'(100) = 3 tell us that at £ = 100, the value of the function is 35 and the function is
increasing at a rate of 3 units for a unit increase in z. Since we increase x by 2 units in going from 100 to 102, the value
of the function goes up by approximately 2 - 3 = 6 units, so

f(102) = 35+2-3=35+6 = 41.

21. The coordinates of A are (4. 25). See Figure 2.22. The coordinates of B and C are obtained using the slope of the tangent
line. Since f'(4) = 1.5, the slope is 1.5



Tangent ine
'%
I
i

1.5(0.2) = 0.3

Figure 2.22
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From A to B, Ar = 0.2, so Ay = 1.5(0.2) = 0.3. Thus, at C we have y = 25 + 0.3 = 25.3. The coordinates of

B are (4.2,25.3).

From 4 1o C, Ar = =0.1, so Ay = 1.5(—0.1) = —0.15. Thus, at C we have y = 25 — 0.15 = 24.85. The

coordinates of C are (3.9. 24.853).
22. (a) Since the point B = (2. 5) is on the graph of g, we have g(2) = 5.
(b) The slope of the tangent line touching the graph at r = 2 is given by

Rise  3-5.02 =002 _

Slope = g = 5795 ~ 005 ~ 4
Thus, ¢'(2) = —0.4.
23. (@) sope= f'(3) f(@)
|
— B f4) - f(2)
_______ __
_ f(5)=f(2)
{c) slope = -%
@ f(4)
1 s i [} I
1 2 3 4 3

(a) f(4) > f(3) since f is increasing.
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(b) From the figure, it appears that f(2) — f(1) > f(3) — f(2).

2) —
(c) M represents the slope of the secant line connecting the graph at r = 1 and x = 2. This is greater than
| . - fQ1
the slope of the secant line connecting the graph at r = 1 and x = 3 which is %fu

(d) The function is steeper at r = 1 thanatx = 4 so f'(1) > f'(4).

25, Figure 2.23 shows the quantities in which we are intcrested.

" Slope = f'(2)
{
= (3
____________ J
l
l
f(z) ! Slope = ﬂ:’;—:_‘& ?
L =rm-fe
b ¢
| {
L ! ! T
2 3

Figure 2.23

The quantities f'(2), f'(3) and £(3) — f(2) have the following interpretations:
o f'(2) = slope of the tangent line at z = 2
e f'(3) = slope of the tangent line at z = 3
o f3)-Ff(2)= !L;:gf—(ﬁ = slope of the secant line from f(2) 1o £(3).
From Figure 2.23, it is clear that 0 < £(3) — f(2) < f'(2). By extending the secant line past the point (3, £(3)), we can
see that it lies above the tangent line at x = 3.
Thus
0< f1(3) < f3) - f(2) < f'(2).

26. (a) f(4)/4 is the slope of the line connecting (0,0) to (4, f(4)). (See Figure 2.24.)
(b) [tis clear from the picture for part (a) that f(3)/3 > f(4)/4.

27.

i
|
|
|
| | S
c

Figure 2.25
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(a) For the line from A to B, (
f(b) — f(a)
SI = —t
ope b —a
(b) The tangent line at point C appears to be parallel to the line from A to B. Assuming this to be the case, the lines have
the same slope.
(¢) There is only one other point, labeled D in Figure 2.26, at which the tangent linc is parallel to the line joining A and

B.

Figure 2.26

28. Using a difference quotient with h = .001, say, we find

1.001 In(1.001) — 11n(1)

()= 1001 =1 = 1.0005
sooy . 2.0011n(2.001) = 2In(2) _ ‘
f2)= 2001 —2 = 1.6934

The fact that f' is larger at & = 2 than at = = 1 suggests that f is concave up on the interval [1, 2],

29. (a)
Jvin degrees 0
inl in0Q inh
£(0) = lim sinh —sinQ _ sin

N h h

To four decimal places,

sin0.2 sin .1 - sin 0.01 - sin (0.001

02 S To1 T oot < ooor T O0ITs

so f'(0) =~ 0.01745. )
(b) Consider the ratio sgj:h . As we approach 0, the numerator, sin h. will be much smaller in magnitude if & 15 in degrees
than it would be if h were in radians. For examgple, iff &1 = 1° radian, sinh = 0.8415, but it h = 1 degree,
sin h = 0.01745. Thus, since the numerator is smaller for i measured in degrees while the denominator is the same,

we expect the ratio S22 10 be smaller.

30. We want f’(2). The exact answer is

2 2th
= lim 2+h) 4.
h—0 h

£) = im f(2 +h’3 - /(2

but we can approximate this. If A = 0.001. then

(2.001)%%0" — ¢

~ T7¢
0.001 % 6.779

and if h = 0.0001 then .
(2.0001)%9001 _ ¢

0.0001 = 6.773,
so f'(2) = 6.77.

31. Notice that we can’t get all the information we want just from the graph of f for 0 < z < 2, shown on the left in
Figure 2.27. Looking at this graph, it looks as if the slope at & = 0 is 0. But if we zoom in on the graph ncar x = 0, we
get the graph of f for 0 < x < 0.03, shown on the right in Figure 2.27. We see that f does dip down quile a bit between
z = 0 and z = 0.11. In fact, it now looks like f'(0) is around —1. Note that since f(z) is undefined for z < 0, this
derivative only makes sense as we approach zero from the right.
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Y y

t ; ) : — T
0.01 0.02 0.03 0.04 0.05

—0.0025
—0.005
-0.0075 ;
—-0.01
-0.0125
-0.015
~0.0175

flz)y=3c32 ¢

-

Figure 2,27

We zoom in on the graph of f near x = 1 1o get a more accurate picture from which to estimate f'(1). A graph of
f for 0.7 < z < 1.3 is shown in Figure 2.28. (Keep in mind that the axes shown in this graph don’t cross at the origin!]
Here we see that f'(1) = 3.5.

 J(z) =322 — 2

E—t—————
0.7 0.8 0.9 1.1 1.2 1.3
Figure 2.28
32,
£(1) = lim F(L+h)— f(1) = lim In(cos(1 + h)) — In{cos 1)
h—0 h h—0 h

=l
[<]]
o

For h = 0.001, the difference quotient = —1.55912; for /i = 0.0001, the difference quotient = —1.53
The instantancous rate of change of f therefore appears to be ubout —1.558 atx = 1.
Atz = I, if we ry h = 0.0001. then

. In[cos(§ + 0.0001)] — In(cos §)
differe ient = ~ —1. 1.
difference quotient 50001 000

The instantaneous rate of change of f appears to be about —1 atr = 7.

33, We want to approximate P'(0) and P'(2). Since for small h
Py 2= PO

if we take h = 0.01, we get

1.15(1.014)%°" — 1.15
0.01

P(0) = = 0.01599 billion /year

= 16.0 million people/year

_ L13(1.014)%% —1.15(1.014)°

'
P 0.01

= 0.0164 billion/year

= 16.4 million people/ycar



2.3 SOLUTIONS 73

f() = be?

~ 7

(a) From the figure above. it appears that the slopes of the tangent lines to the two graphs are the same at cach z. For
z = 0, the slopes of the tangents to the graphs of f(z) and g(x) at 0 are

Forxz =
oy — g 0+ R) — f(0) oy _ e 9(0+ R) —g(0)
£(0) = fim, h g(0) = lim h

= qiy £ 20 iy 40 = 9(0)

h—0 hes0 )

L 1n4+3-3

= lim Z— — p 2
=AM H L —
—n l B %h?
~ et = Jim 4

=0, 1
= lim -

hl-xpo ‘2"
=0.

2, the slopes of the tangents to the graphs of f(z) and g(x) are

f2+h) - f(2) g2+ 1) - g(2)

¢ IR e —_ 1
Fe= = =T
. 3(2+h) - 42y . 22+ R)+3-(3(2)° +3)
= lim = lim =
h—0 h h—0 h
_ Ya+dhn?) -2 e+ h)?-12)?
= lim = lim ~—————
h—0 h k=0 h
24 2h+int -2 C fa+dh+n®) -2
=l ——— = lim =
h—0 h h—=0 h
2h + Lh? 242+ inA) -2
= lim ——— = lim =
h—0 h ) h
1 2
= lim (2+ lh) = lim 2h + 5(07)
h—0 2 h—=0 h
=2. 1
= lim (2 + 711)
h=0 2
= 2.

For x = o, the slopes of the tangents to the graphs of f(z) and g(z) are
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flzo+ h; - f(zo) g'(z0) = ,{iﬂg g{ro + hlz — g(x0)
Hazo+h)? +3 - (5(z0)" +3)

f(zo) = Jim

%(:co +h)? - %If,

= Jim h = fim A
. (x5 +2zoh + h?) - Laj . Hzo+h)? - I(z0)®
= lim = = lim
h—0 h h=0 h
. xoh+ iR’ . Mk +2z0h + h?) - izd
= lim ——— = lim =
h—0 h =0 h
. 1 h+ Lih?
= lim (Io-i--h) = lip o0 T
h—=0 2 ’!1_1)].}) h
= Tg. 1
= lim (.ro + —h)
h—t0 2
= Zo.
(b)
. h) - g(x)
, - glz +
)= Jim == ——
I flz+hm)+C—-(f(x)+C)
= lim
h=0 h
= Jipy LR — f(=)
h—0 h
= f'(a).

35. As h gets smaller, round-off error becomes important. When h = 1072, the quantity 2° — 1 is so close to 0 that the
calculator rounds oft the difference to 0, making the difference quotient 0. The same thing will happen when h = 10720,

Solutions for Section 2.4

Exercises

1. The graph is that of the line y = —2z + 2. The slope, and hence the derivative, is —2.

Il !
—4—3—§—j1__ N2 3 4
—24
-3+




4
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4. The slope of this curve is approximately —1 at & = —4 and at ¢ = 4, approximately 0 at £ = =2.5 and + = 1.3, and

approximately 1 at r = 0.

6.

-3

—4

-2 _.l

4 —_—
3_.—
24

1 —_
2+
—3-
—gL

W,

i iy
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v 1 T ; T ‘Jl I
—4-3 \-1/[ | 2 34
—2 -
-3
"y
8. y
4
_L | ]
| 1a
| L
]
z
NP
[ \ \
I \
—4
9,
—
4
10. z Inz z Inz z Inz T Inz
0998 | —0.0020 1.998 | 0.6921 4.998 | 1.6090 9.998 | 2.3024
0.999 | -0.0010 1.999 | 0.6926 4.999 | 1.6092 9.999 | 2.3025
1.000 | 0.0000 2.000 | 0.6931 5.000 | 1.6094 10.000 | 2.3026
1.001 0.0010 2.001 | 0.6936 5.001 | 1.6096 10.001 | 2.3027
1.002 | 0.0020 2.002 | 0.6941 5.002 | 1.6098 10.002 | 2.3028

Atz = 1, the values of In z are increasing by 0.001 for each increase in z of 0.001, so the derivative appears to be 1.
At z = 2, the increase is 0.0003 for each increase of .001, so the derivative appears to be 0.5. At & = 3, In z increases
by 0.0002 for each increase of 0.001 in z, so the derivative appears to be 0.2. And at = 10, the increase is 0.0001 over
intervals of 0.001, so the derivative appears to be 0.1. These values suggest an inverse relationship between r and f'(x).
namely f'(x) = 1.
11. (a) We use the interval to the right of £ = 2 to estimate the derivative. (Alternately, we could use the interval to the left
of 2, or we could use both and average the results.) We have
f(4) - f(2) _24-18

’ 6
2) ~ = = - = 3.
AL 4-2 4-2 2 3

We estimate f'(2) =~ 3.
(b) We know that f'(x) is positive when f(x) is increasing and negative when f(x) is decreasing, so it appears that
f/(x) is positive for 0 < x < 4 and is negative for 4 < z < 12.
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12. Forz = 0, 5, 10, and 15, we use the interval to the right to estimate the derivative. For r = 20, we usc the interval 1o the
left. For = 0, we have

reon o F(8) — f(0) _ 70—100 _ -30 _
fFO>==—F =50 -3 - ¢
Similarly, we find the other estimates in Table 2.15.
Table 2.15
T 0 5 10 15 20
fx)|—6]-3|-18]-12]-12
13, Since 1/z = x !, using the power rule gives
d , - 1
E(T l) = (—1).17 2 = —F‘
Using the definition of the derivative, we have
1 1
. k(z+h)—Kk) . i . x—(z+h)
K(z)=1 = lim £ L = lim ———~=
(2) heso h K30 h hes h(z + h)z
—h -1 1
= lim = i =—-—.
r=0 h(z + h)x hed (x+ h)z x?
14. Since 1/2® = 27, using the power rule gives
d -2 o - 2
E(I y=-2"%= -
Using the definition of the derivative, we have
1 _ 1 s 2
z+h)2 =% . T =
U(zy =K (r+h) = lim = (e +,,h?,
h—=0 h r=0 h(z + h)’x?
2= (2 +2zh + hY) . =2zh—h?
= hm ) = lm ———
A0 h(z + h)*x* h—0 h{z + h) x?
— tim “2r-h _ -2z _ 2
T koo (x4 h)22? T zPz® Tz

15. Using the definition of the derivative,

¢'(x) = lim LEFH = gz) _ . 2z+h)’ -3 (2 -3)
h—0 h

R0 h
o Az?+2ch+ AN -3-22"+3 | dzh+ 207

= lim = lim —————
h=0 h h—0 h

= lim (42 + 2h) = 4z.
h—0

16. Using the definition of the derivative, we have
m'(z) = lim mz+h) = mz) m(z) = lim = ( ; - )

h—0 h rmoh\z+h+1 z+1

_ l<m+1—z—h-l)=hm —h
r=oh \(z+1)(z+h+1) k=0 h{zc+ 1) (z+h+1)
= lim —1
h—o (z + 1)(z+h+1)
-1

- (x+1)2°
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17.
4 =
/() ‘
2T f'(x)
t t t + T
-2 -1 1 2
—9 4
] S T
2 —4 -
18, q -|r f'(z)
3 2T /
I
+ } } T
f(z) ) | 3
l__
2
} x -
-1 1 2 —4+

19. 17 f(z) 11
N S e
i 1 - d -~ L [ I

20. e

-1+

1 f'(=)
T

Problems

21. We know that f'(r) = M’E_ﬂ For this problem, we’ll take the average of the values obtained for h = 1

and b = —1; that’s the average of f(z + 1) — f(x) and f(x) — f(z ~ 1) which equals fla+1) ;f(m - 1) . Thus,

f(0) = f(1) — f(0) = 13 — 18 = -3.
(1) = [£(2) - f(0))/2 = [10 - 18]/2 = —4.
1@ =[f(3) - f(1))/2 =9 - 13]/2 = 2.
F13) = [f(4) - f(2))/2 =[9 - 10)/2 = —0.5.
(9 = [f6) - f@))/2=[11-9)/2=1
(3) = [£(6) - f(}))/2 =[15-9]/2 = 3.
(6) = [£(7) — f(3)]/2 = [21 - 11}/2 = 5.
(7) = [f(8) — f(6)]/2 = [30 — 15]/2 = T.5.
@)= f(8) - f()=30-21=9
T

he rate of change of f(x) is positive for 4 < r < 8, negative for 0 < = < 3. The rate of change is greatest at about

f
f
f
f
f
T
I
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22. The value of g(z) is increasing at a decreasing rate for 2.7 < x < 4.2 and increasing at an increasing rate for z > 4.2.
Ay _ 74-60 _

= —=2. tw =4, z =952
A, " 52-47 2.8 betweenr = 4.7andz = 5
Ay 90-74 -
Az " 57°53° 3.2 betweenr = 5.2 and z = 5.7
Thus g'(x) should be close to 3 near r = 5.2.
23,
1 f(z)
i i i E] L] L T
-3 -2 - 1 2 3
24. This is a line with slope —2, so the derivalive is the constant function f'(x) = —2. The graph is a horizontal line at
y = —2. See Figure 2.29.
l -
f -z
1 2

2 f2)
Figure 2.29

25, This function is decreasing for r < 2 and increasing forz > 2 and so the derivative is negative for z < 2 and positive
for £ > 2. One possible graph is shown in Figure 2.30.

Figure 2.30

26.

€T

[
28

f'(=z)
27. This function is increasing for approximately z < 1 and > 4.5 and is decreasing for approximately 1 < x < 4.5. The

derivative is positive for z < 1 and z > 4.5 and negative for 1 < x < 4.5. One possible graph is shown in Figure 2.31.
f'(z)

Figure 2.31
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28. \ ' f'(x)
= z

30. This function is increasing for z < 1 and is decreasing for x > 1 so the derivative is positive for z < 1 and negative for
z > 1. In addition, as x gets large, the graph of f(x) gets more and more horizontal. Thus, as r gets large, f'(x) gets
closer and closer to 0. One possible graph is shown in Figure 2.32.

2 3
Figure 2,32
31
J'(z)
' T : T e
-1 4 5 6
32, '
{ (=)
z
33. From the given information we know that f is increasing for values of x less than —2, is decreasing between r = —2 and
x = 2, and is constant for > 2. Figure 2.33 shows a possible graph—yours may be different.
y
e .
-4 =2 2 4

Figure 2.33
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34. Figure 2.34 shows a possible graph — yours may be differant.
Yy

]
: ‘
-7 /2 =/2 =

Figure 2.34

35. @xs B)xy (c)xs (d)xs

36. The derivative is zero whenever the graph of the original function is horizontal. Since the current is proportional to
the derivative of the voltage, segments where the current is zero alternate with positive segments where the voliage is
increasing and negative segments where the voltage is decreasing. See Figure 2.35. Note that the derivative does not exist
where the graph has a corner.

current
; time
Figure 2,35
37. (a) Graph Il
(b) Graphl
(¢) Graph il
38. (a) t=3
(b)y t=9
(e) t =14
(d) 1 V(1)
/ \ 15 18
f } } } } i ¢
3 6 9 12 \_/ \._J u

39. (a) The population varies periodically with a period of 1 year. See below.

4500 +
4000 -/—\
3500 - Py

— L (in months)
J FMAMUJ JASONDI
t=20 t=1

(b) The population is at a maximum on July 1**. At this time sin(27¢ — 3} = 1, so the actual maximum population is
4000 + 500(1) = 4500. Similarly, the population is at a minimum on January 1**. At this time, sin{2rt — I)=-1
so the minimum population is 4000 + 500(—1) = 3500.

(c) The rate of change is most positive about April 1% and most negative around October 1%,

(d) Since the population is at its maximum around July 1%, its rate of change is about 0 then.
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40. (a) The function f is increasing where f’ is positive, so for r1 < r < z3.
(b) The function f is decreasing where f’ is negative, so for0 < r < @y orz3 < r < zs.

41. If f(x) is even, its graph is symmetric about the y-axis. So the tangent line to f at x = zg is the same as that at = —xo
reflected about the y-axis.

y Y
y=f(z)
N\ y=f(x)
N/ T - T
So the slopes of these two tangent lines are opposite in sign, so f'(z¢) = — f'(—z0), and ' is odd.
42. 1f g(x) is odd. its graph remains the same if you rotate it 180° about the origin. So the tangent linc to ¢ at & = xo is the
tangent line to g at x = —xg, rotated 180°.
Y Y
y = g(x) v=9'(2)
/
Z Va T - T
/

But the slope of a line stays constant if you rotate it 180°. So g'(xg) = g’'(—x0): g is cven.

Solutions for Section 2.5

Exercises

[y

. (a) Asthe cup of coffee cools, the temperature decreases, so f'() is negative.
(b) Since f'(t) = dH/dt, the units are degrees Celsius per minute. The quantity f'(20) represents the rate at which the
coffee is cooling, in degrees per minute, 20 minutes after the cup is put on the counter.
2. (Note that we are considering the average temperature of the yam, since its temperature is different at different points
inside it.)
(a) Itis positive, because the temperature of the yam increases the longer it sits in the oven.
(b) The units of f'(20) are *F/min. f'(20) = 2 means that at time ¢ = 20 minues, the temperature T increases by
approximately 2°F for each additional minute in the oven.

3. (a) The statement f(200) = 350 means that it costs $350 to produce 200 gallons of ice cream.
(b) The statement f'(200) = 1.4 means that when the number of gallons produced is 200, costs are increasing by about
$1.40 per gallon. In other words, it costs about $1.40 to produce the next (the 201%*) galion of ice cream.

4. (a) The statement f{5) = 18 means that when 5 milliliters of catalyst are present, the reaction will take 18 minutes.
Thus, the units for 5 are ml while the units for 18 arz minutes.
(b) As in part (a), 5 is measured in ml. Since f' tells how fast T changes per unit a, we have f' measured in minutes/ml.
If the amount of catalyst increases by 1 ml (from 5 t0 6 mi), the reaction time decreases by about 3 minutes.



S.

N

o
b

9.

10.

2.5 SOLUTIONS 83

Since B is measured in dollars and ¢ is measured in years, dB/dt is measured in dollars per year. We can interpret d B
as the extra money added to your balance in dt years. Therefore dB/dt represents how fast your balance is growing, in
units of dollars/year.

. (a) This means that investing the $1000 at 5% would yield $1649 after 10 ycars.

(b) Writing ¢'(r) as dB/dt. we see that the units of dB/dt are dollars per percent (interest), We can interpret dB as
the extra money carned if interest rate is increased by dr percent. Therefore ¢'(5) = ‘fi—’fl,:., = 165 means that
the balance, at 5% interest, would increase by about $163 if the interest rate were increased by 19%. In other words.
g(6) = g(5) + 162 = 1649 + 165 = 1814.

Units of C’(r) are dollars/percent. Approximately. C'(r) means the additional amount nceded to pay off the loan when

the interest rate is increased by 1%. The sign of C’(r) is positive, because increasing the interest rate will increase the

amount it costs to pay off a loan.

Units of P’(t) are dollars/year. The practical meaning of P'(t) is the rate at which the monthly payments change as the
duration of the mortgage increases. Approximately, P’'(t) represents the change in the monthly payment if the duration is
increased by one year. P’(t) is negative because increasing the duration of a mortgage decreases the monthly payments.
The units of f'(x) are fect/mile. The derivative, f'(x), represents the rate of change of elevation with distance from the
source, so if the river is flowing downhill everywhere. the elevation is always decreasing and f'(x) is always negative. (In
fact, there may be some stretches where the elevation is more or less constant, so f'(x) = 0.)

(a) If the price is $150, then 2000 items will be sold.

(b) If the price goes up from $150 by S1 per item. about 25 fewer items will be sold. Equivalently, if the price is decreased
from $150 by $1 per item, about 25 more items will ke sold.

Problems

il

(a) Since W = f(c) where ¥ is weight in pounds and ¢ is the number of Calories consumed per day:

consuming 1800 Calorics per day

f(1800) =155 means that results in a weight of 155 pounds.

consuming 2000 Calories per day causes

ot -
f£(2000) =0 means that neither weight gain nor loss.

a weight of 162 pounds is caused by

-1 — ans
f7(162) = 2200 means that a consumption of 2200 Calorics per day.

(b) The units of dI¥/dc are pounds/(Calories/day).

12. The graph is increasing for 0 < t < 10 and is decreasing for 10 < ¢ < 20. One possible graph is shown in Figure 2.36.

The units on the horizontal axis are years and the units on the vertical axis are people.

people

Bty

! : ~ years
10 20

Figure 2.36

The derivative is positive for 0 < t < 10 and negative for 10 < t < 20. Two possible graphs are shown in

Figure 2.37. Thc units on the horizontal axes are years and the unils on the vertical axes are people per yeur.
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(3)  peoplefyear

-—

b)  people/year

() (0

years + years
10 20 10 20

Figure 2.37

13. Since f(t) = 1.15(1.014)", we have

14.

16.

1

~

18.

£(6) = 1.15(1.014)® = 1.25.

To estimate f’(6). we use a small interval around 6:

F(6.001) - £(6) _ 1.15(1.014)%%° — 1.15(1.014)®

’
f6) = 6.001 — 6 0.001

= 0.0174.

We see that f(6) = 1.25 billion people and f'(6) = 0.0174 billion people per year. This model tells us that the population
of China was about 1,250.000,000 people in 1999 and was growing at a rate of about 17.400.000 people per year at that

time.

(2) The statement f(140) = 120 means that a patient weighing 140 pounds should receive a dose of 120 mg of the
painkitler. The statement f'(140) = 3 tells us that if the weight of a patient increases by about one pound (from 140
pounds). the dose should be increased by about 3 mg.

(b) Since the dose for a weight of 140 Ibs is 120 mg and at this weight the dose goes up by 3 mg for each pound, a 145
1b patient should get an additional 3(5) = 15 mg. Thus, for a 145 Ib patient, the correct dose is approximately

F(145) = 120 + 3(3) = 135 mg.

(a) Whent = 10, that is, at 10 am. 3.1 cm of rain has fallen,

(b) We are told that when 10 cm of rain has fallen, 16 hours have passed (¢ = 16); that is, 10 ¢cm of rain has fallen by 4
pm.

(c) The rate at which rain is falling is 0.4 crvhr at t = §, that is, at 8 am.

(d) The units of (f~*)’(5) are hours/cm. Thus, we are being told that when 5 cm of rain has fallen, rain is falling at a
rate such that it will tuke 2 additional hours for another centimeter to fall.

(a) The pressure in dyncs/cm'2 at a depth of 100 meters.

(b) The depth of water in meters giving a pressurc of 1.2 - 10® dynes/cm®.

(c) The pressure at a depth of k meters plus a pressure of 20 dynes/cm?.

(d) The pressure at a depth of 20 meters below the diver.

(e) The rate of increasc of pressure with respect to depth. at 100 meters. in units of dynes/cm?® per meter. Approximately.
p'(100) represents the increase in pressure in going from 100 meters to 101 meters.

(f) The depth, in meters, at which the rate of change of pressure with respect to depth is 20 dynesfcm? per meter.

Units of ¢'(55) are mpg/mph. The statement g'(55) = —0.54 means that at 55 miles per hour the fuel efficiency (in miles

per gallon, or mpg) of the car decreases at a rate of approximately one hall mpg as the velocity increases by one mph.

(@ velocity

termipal| .
velocity [~ 7777 T A== T 7
t

(b) The graph should be concave down because wind resistance decreases your acceleration as you speed up. and so the
slope of the graph of velocity is decreasing.

(c) The slope represents the acceleration due to gravity.
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20.
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(a) The company hopes that increased advertising always brings in more customers instead of turning them away. There-
fore, it hopes f’(a) is always positive.

(b) If f/(100) = 2, it means that if the advertising budget is $100.000, each extra dollar spent on advertising will bring
in $2 worth of sales. If f/(100) = 0.5, each dollar above $100 thousand spent on advertising will bring in $0.50
worth of salcs.

(c) If f/(100) = 2, then as we saw in part (b}, spending slightly more than $100,000 will increase revenue by an amount
greater than the additional expense, and thus more should be spent on advertising. If f(100) = 0.5, then the increase
in revenue is less than the additional expense, hence too much is being spent on advertising. The optimum amount
to spend is an amount that makes f'(a) = 1. At this point, the increases in advertising expenditures just pay for
themselves. If f'(a) < 1, too much is being spent; if f'(a) > 1, more should be spent.

Since w is an estimate of P'(66), we may think of P'(66) as an estimate of P(67) — P(66), and the latter is the

number of people between 66 und 67 inches tall. Alternatively, since % is a better estimate of P'(66). we
may regard P’'(66) as an estimate of the number of people of height between 63.5 and 66.5 inches. The units for P'(x)
are people per inch. Since there were 250 million people at the 1990 census, we might guess that there are about 200
million full-grown persons in the US whose heights are distributed between 60" (3") and 75" (6'3"). There are probably
quite a few people of height 66" ~perhaps 1 l, what you'd expect from an even, or uniform, distribution-because it’s nearly
average. An even distribution would yield P'(66) = "—0%’2 ~ 13 million per inch-so we can expect P'(66) to be
perhaps 13(1.3) = 20.

P'(x) is never negative because P(x) is never decreasing. To see this, let’s look at an example involving a particular
value of r, say = 70. The value P(70) represents the number of people whose height is less than or equal to 70 inches,
and P(71) represents the number of people whose height is less than or equal to 71 inches. Since everyone shorter than
70 inches is also shorter than 71 inches, P(70) < PP(71). In general, P(x) is O for small z, and increases as @« increases,
and is eventually constant (for large enough ).

(a) The units of compliance are units of volume per units of pressure, or liters per centimeter of water.
(b) The increase in volume for a 5 cm reduction in pressure is largest between 10 and 15 cm. Thus, the compliance
appears maximum between 10 and 15 cm of pressure reduction. The derivative is given by the slope, so
0.70 — 0.49

Compliance = T - 0.042 liters per centimeter.

(¢) When the lung is nearly full, it cannot expand much more to accommodate more air.

Exercises

1.

3.

(a) Since the graph is below the z-axis at x = 2, f(2) is negative.

(b) Since f(z) is decreasing at x = 2, f'(2) is negative.

(¢) Since f(r) is concave up at z = 2, f”(2) is positive.

By noting whether f(z) is positive or negative, increasing or decreasing, and concave up or down at each of the given
points, we get the completed Tuble 2.16:

Table 2,16
Point | f | f' | f"
1 | -]o+
B +{0 | -
¢ [+]-1-
D -1+ 4+

At B both dy/dz and d®y/dx? are positive because at B the graph is increasing, so dy/dr > 0, and concave up, so
d*y/dz* > 0.
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4. The velocity is the derivative of the distance. that is, v(#) = s'(t). Therefore, we have

lim slt+h) = s(t) s()

hs0 h

. B+ R)? +3) - (57 +3)
lim

h-+0 h

. 10th + 5%
lim ————
k-0 Il

lim h(10t + 5h)

h—0

v(t) =

= '{in})(lﬂt + 5h) = 10t km/minute.

The acceleration is the derivative of velocity, so a(t) = v'(#):

m 10(t + h) — 10¢

alt) = r&l—po h
= lim &li = 10 km/(minute)?.
h—0 ft

5. The function is everywhere increasing and concave up. One possible graph is shown in Figure 2.38.

Figure 2.38

6. The graph must be everywhere decreasing and concave up on some intervals and concave down on other intervals. One
possibility is shown in Figure 2.39.

Figure 2.39

7. Since velocity is positive and acceleration is negative, we have f* > 0 and f” < 0, and so the graph is increasing and
concave down. See Figure 2.40.

hewght

lime

Figure 2.40
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18. (a) utility

quantity

(b) As a function of quantily, utility is increasing but at a decreasing rate; the graph is increasing but concave down. So
the derivative of utility is positive. but the second derivative of utility is negative.

19. Since all advertising campaigns are assumed to produce an increase in salcs, a graph of sales against time would be

20. (a)

expected to have a positive slope.

A positive second derivative means the rate at which sales are increasing is increasing. If a positive second derivative
is observed during a new campaign, it is reasonablc to conclude that this increase in the rate sales are increasing is caused
by the new campaign—which is therefore judged a success. A negative second derivative means a decrease in the rate at
which sales are increasing, and therefore suggests the new campaign is a failure.

(b) Exactly one. There can’t be more than one zero because f is increasing everywhere. There does have to be one zero
because f stays below its tangent line (dotted line in above graph), and therefore f must cross the z-axis.

(¢) The equation of the (dotted) tangent linc is y = %;r - % and so it crosses the z-axis at £ = 1. Therefore the zero of
f must be betweenx =1 and r = 3.

(d) lim f(r) = —co, because f is increasing and concave down. Thus, as x - —o00, f(z) decreases, at a faster and
=t =0C

faster rate.
(e) Yes.
(f) No. The slope is decreasing since f is concave down, so /(1) > f'(5),i.e. f/(1) > 3.

21. (a) The EPA will say that the rate of discharge is still rising. The industry will say that the rate of discharge is increasing

less quickly. and may soon level off or even start to fall.
(b} The EPA will say that the rate at which pollutants are being discharged is levelling off, but not to zero — so pollutants
will continue to be dumped in the lake. The industry will say that the rate of discharge has decreased significantly.

22. Since f’ is everywhere positive, f is everywhere increasing. Hence the greatest value of f is at 2 and the least value of

f is at &1. Directly from the graph, we see that f' is grealest at z3 and least at x». Since f” gives the slope of the graph
of f'. f" is grcatest where f' is rising most rapidly, namcly at 76, and " is least where f” is falling most rapidly, namely
at xy.

23, (a) B (where f', f” > 0) and E (where f', f’ < 0)

Solutions for Section 2.7

(b) A (where f = f = 0)and D (where f' = f" =)

Exercises

(a) Function f is not continuous atx = 1.
(b) Function f appears not differentiable at z = 1,2, 3.
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2. (a) Function g appears continuous at all z-values shown.
(b) Function g appears not differentiable at @ = 2. 4. Atz = 2, the curve is vertical, so the derivative does not exist. At
x = 4, the graph has a corner, so the derivative does not exist.
3. (a) The absolute value function is continuous everywhere. See Figure 2.42.
{b) The absolute value function is not differcntiable at x = 0. The graph has a corner at x = 0, which suggests f is not
differentiable there. (See Figure 2.42.) This is confirmed by the fact that the limit of the difference quotient
. flz+h) - flx)
lim —8—————=
h—0 h

does not exist for x = 0, since the following limit does not exist:

lim “—’l
k=0 h

J(z) = |zl

Figure 2.42

4. No, there are sharp turning points.
5. Yes.

Problems

6. We want to look at

lim (h® 4+ 0.0001)1/2 - (0.00()[)‘/2‘
hA—0 h
As h — 0 from positive or negative numbers, the difference quotient approaches 0. (Try cvaluating it for » = 0.001,
0.0001, etc.) So it appears there is a derivative at z = 0 and that this derivative is zero, How can this be if f has a corner
atr =0?
The answer lies in the fact that what appears to be a corner is in fact smooth—when you zoom in, the graph of f
looks like a straight line with slope 0! See Figure 2.43.

fz) f(z)

2_—

; , : : T ; . ; I
-2 -1 0 1 2 -0.2 -0.1 0 0.1 0.2

Figure 2.43: Close-ups of f(z) = (x? + 0.0001)'/* showing differentiability at r = 0

7. Yes, f is differentiable at x = 0), since its graph does not have a “corner™ at 2 = (). Scc below.

1.64 —
e

—0.1 0.4
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Another way to sce this is by computing:

i L0 =10 _ (1 1)

h—=0

= lim

h% + 2h|h| + |h|?
a0 h h—0 h ’

Since |h|? = h®, we have:

- 2 +2
lim f(h) - f(O) _ lim h +h hlh| _

i hl)=0.
h=0 h h—0 ’{er})2(h+| D 0

So f is differentiable at 0 and f'(0) = 0.

. As we can see in Figure 2.4, f oscillates infinitely often between the z-axis and the line y = 2z near the origin. This

means a linc from (0, 0) to a point (h. f(h)) on the graph of f alternates between slope 0 (when f(h) = 0) and slope 2
{when f(k) = 2h) infinitcly often as h tends to zero. Therefore, there is no limit of the slope of this line as h tends to
zero, and thus there is no derivative at the origin. Another way to sce this is by noting that

lim J0 = SO _ E@’L—h = lim (sin (%) +1)

h—0 h h=0 h=o

does not exist, since sin(%) does not have a limit as h tends to zerc. Thus, f is not differentiable at z = 0.

Figure 2.44

We can see from Figure 2.45 that the graph of f oscillates infinitely often between the curves y = z? and y = —z” near
the origin. Thus the slope of the line from (0. 0) to (h. f(h)) oscillates between h (when f(h) = h? and -L(,:'_)—Eo =h)

and —h (when f(h) = —h? and -’1,:'_)—30 = —h) as h tends to zero. So, the limit of the slope as h tends to zero is 0, which
is the derivative of f at the origin. Another way to see this is to observe that

lim M = lim (M@)
hoo h h—0 h

1
=l gl
= lim h sm(h)
=0,

since }l‘inth = 0and -1 < sin(}) < 1 forany h. Thus f is differentiable at £ = 0, and f'(o)=o.

Figure 2.45
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10. (a) The graph is concave up everywhere, except at x = 2 where the derivative is undefined. This is the casc if the graph
has a corner at z = 2. One possible graph is shown in Figure 2.46.

fiz)

2
Figure 2.46

(b) The graph is concave up for z < 2 and concave down for z > 2, and the derivative is undefined at x = 2. This is the
case if the graph is vertical at * = 2. One possible graph is shown in Figure 2.47.

flz)
- T
2
Figure 2.47
11. (a) The graph of @ against ¢ does not have a break at ¢ = 0, so () appears to be continuous at £ = 0. See below.
Q
1
1 ! i t
-2 -1 1 2

(b) The slope dQ/dt is zero for t < 0, and negative for all > 0. At ¢ = 0, there appears to be a comer, which does not
disappear as you zoom in, suggesting that I is defined for all times ¢ except ¢ = 0.

12. (a) Notice that B is a linear function of r for r < r¢ and a reciprocal for r > rg. The constant By is the value of B at
r = ro and the maximum value of B,

B

By

o

(b) B is continuous at r = ry because there is no break in the graph there. Using the formula for B, we have

. ro . To
lim B= —By=Bp and lim B = —By = By.
rery r'o rord ro

(¢) The function B is not differentiable at 7 = »o because the graph has a corner there. The slope is positive for 7 < rg
and the slope is negative for r > ro.
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13. (a) Since

lim E=kro
T=ry
and ,
lim F = Iﬂ = kro
r—>r;’ ro
and
E(ro) = kro.

we see that E is continuous at ro.

(b) The function E'is not differentiable at r = rq because the graph has a comer there. The slope is positive for r < rg
and the slope is negative for r > rg.

(c) E

krg

14. 2

(a) The graph of g(r) does not have a break or jump at r = 2, and so g(r) is continuous there. This is confirmed by the
fact that

9(2) =1+ cos(n2/2) =1+ (-1)=0
so the value of g{r) as you approach r = 2 from the left is the same as the value when you approach r = 2 from the
right.
The graph of g(r) does not have a corner at 7 = 2, cven after zooming in, so g(r) appears to be differentiable at
r = 0. This is confirmed by the fact that cos(wr/2] is at the bottom of a trough at r = 2, and so its slope is 0 there.
Thus the slope to the left of 7 = 2 is the same as the slope to the right of r = 2.

(b)

~—

15. (a) The graph of ¢ does not have a break at y = 0, and s0 ¢ appears to be continuous there. See figure below.

@
1

(b) The graph of ¢ has a corner at y = 0 which dees not disappear as you zoom in. Therefore ¢ appears not be
differentiable at y = 0.
16. We will show f(z) = « is continuous at = ¢. Since f{¢) = ¢, we need to show that
lim f(z)=¢
£
that is, since f(x) = x, we need to show
limz =e.
r—=e

Pick any € > 0, then take § = e. Thus,

[flx)—cl=|r—cj<e forall |z—¢c|<d=ce
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17. Since f(z) = z is continuous, Theorem 2.2 on page 95 shows that products of the form f(z)- f(z) = z? and f(z)-z° =

z3. etc., are continuous. By a similar argument, z" is continuous for any n > 0.

18. If ¢ is in the interval, we know lim f(zx) = f(c) and limz_. g(z) = g(c). Then,
r—c

lim (f(z) + g(z)) = lim f(x) + lim g(z) by limit property 2
r—tc r—c r—ec

f(c) +g(c), so f+ giscontinuous atz = c.

Il

Also,

lim (f(x)g(x)) = lim f(z)lim g(x) by limit property 3
T—C r—c T—re
= f(c)g(c) so fgiscontinuous atxr = e.

Finally,

f(x) _ limec f(x)

lim

by limit property 4

e g(z) ~ limzc glz)
= LC) SO i is continuous atx = c.
g(c) g
Solutions for Chapter 2 Review
Exercises
1.
f'(z)
xr
2.
xr
-1.5
f'(z)
3
; \J\" —
-1 2 3
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4. -
(=)
5 o) —
T
o S
6.
f'{(x)
/ I
7. Using the definition of the derivative
. r+h) — f(x)
oy = i R
fi) hosd L
N 2 (a2
- lim {r+h) +x+h—(0z"+1x)
h—0 h
. P+ 22mh4+ )+ +h -5t -1
= lim
h—+0 h
. 10zh+35h° +h
= lim ————MM8M8
h—0 h

'llin%(l()z +5h+1) =10 + 1

8. Using the definition of the derivative, we have

n(z - k) = n(x)
h

.1 1 1
=t 7 [+ 1) - (G 1))
Iim l (—1 - l)
raoh \z+h =
.z —(r+h)
llzl—»n}) hz(z + h)
= lim ___h_

T o ha(z 4+ 1)

. -1 -1

—IP%I(I-F’I) T

1 — .
n'(r) = ,{1_%
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9. From Table 2.17, it appears the limit is 0. This is confirmed by Figure 2.48. An appropriatc window is —0.015 < z <

0.015, -0.01 < y

< 0.01.

Table 2.17
z f(z)
0.1 0.0666
0.01 | 0.0067
0.001 | 0.0007
0.0001 0

0.01
T f(z)
—0.0001 | —0.0001
—o0.001 | —o. —-0.01
0.0007 Z0.015
—0.01 —0.0067
-0.1 —0.0666

Figure 2.48

0.015

10. From Table 2.18, it appears the limit is 0. This is confirmed by Figure 2.49. An appropriate window is —0.0029 < z <
0.0029, -0.01 < y < 0.01.

Table 2.18

z

0.1

0.01
0.001

f(z)
0.3365
0.0337
0.0034

0.0001 | 0.0004

0.01
‘t
w f(z)
-0.0001 | —0.0004
- ~0.003: -0.01
0.001 | —0.0034 05,0029
-0.01 | —0.0337
—0.1 | -0.3365

Figure 2.49

0.0029

11. From Table 2.19, it appears the limit is 0. Figure 2.50 confirms this. An appropriate window is 1.570 < x < 1.5715,

-0.01 < y < 0.01.

Table 2.19

T [(z)

1.6708 | ~1.2242

1.5808 | —0.1250
1.5718 | —0.0125
1.5709 | —0.0013
1.5707 | 0.0012
1.5698 | 0.0125
1.5608 | 0.1249

1.4708 | 1.2241

12. From Table 2.20, it
0.49 < y < 0.51.

y:

y = —0.01

0.0]

r = 1.570

Figure 2,50

appears the limit is 1/2. Figure 2.51 confirms this. An appropriate window is 1.92 < = < 2.07.

Table 2.20
z /()
2.1 |0.5127
2.01 |0.5013

2.001 | 0.5001
2.0001 | 0.5000
1.9999 | 0.5000

1.999 | 0.4999
1.99 | 0.4988
1.9 0.4877

y = 0.51
y = 0.19
r = 1.92

Figure 2.51
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2_ 2 2 2 _ 2
13, i OFR a2 T 9a ) = 2
hoo0 h b0 h h—0
1 1 1 . a—(a+h) , -1 -1
14. i ————)— Y lim——— = —
o T (a +h a ){l—ao (a + h)ah P (a+ h)a @
1 1 LY @’ —(a®+2ah+h%) (=2a—h) =2
15. h—lg) h ((a + h)? az) - ’Ill—rblo (a + h)2a?h N lll-lﬂ) (@ +h)2a? ~ a3
16. \/a-l-_h—\/E (\/a+ \/-)(\/ﬂ+ +\/_) at+h—-a h
Va+h+a \/a+h+\/_ Va+h+Va
Therefore lim Y2~ V@ +h \/— = lim 1 = 1
=0 h h=0a+h+a 2va

17. We combine terms in the numerator and multiply top and botiom by /a + va + h.

1 1 va—-vet+h (Va-+Va+h)(/a+Va+h)

Vath a  Jathva  JathJa(Ja+Jath)
_ a-(a+h)
Ve + hy/e(va+ Va+ h)
Therefore hm ! ! ! lim -1 -
< —— = = = =
hvoh \Vath va) h-0Va+thya(Ja+vath) 2Ja)
232 -6 :
3|2z — 6 (—3)' = 2r", r>3
18. f(z) = -3 13(1—51: +6)
I—s = —2.1'3, r< 3
Figure 2.52 confirms that lim f(z) = 54 while hm f(z) = —54; thus lim3 F(z) does not exist.
r—3t r—

100 |- / e
50

0 + 1 1 -

1 3 {
=30
-100 r
Figure 2.52
e’ -l<zr<
19. f(z)=<1 r=0

cosz O<z<l1
Figure 2.53 confirms that lim f(z) = lim e =% =1, and that lun f(z) = lim cosz =cos0 =1, so
=0~

r—0" =0+ r—0+4
lim f(z)=1.
z—0

f(=)

N

-1 0

—

Figure 2.53
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Problems

20. (a) A possible example is f(z}) = 1/|x — 2| as lim 1/lx — 2| = .
(b) A possible example is f(x) = —1/(x — 2)% as liu;)—l/(;r -2) = —x.
T—=2

21. Since f(2) = 3and f(2) = 1, ncar z = 2 the graph looks like the segment shown in Figure 2.54.

Siope = 1
ey

|
|
|
|
|
!
T
2
Figure 2.54

(a) If f(z) is even, then the graph of f(r) near x = 2 and x = —2 looks like Figure 2.55. Thus f(—2) = 3 and

r(=2)=-1.
(b) If f(z) is odd, then the graph of f(z) near z = 2 and £ = —2 looks like Figure 2.56. Thus f(—-2) = -3 and
f(-2)=1

! : t + T
| | -2 . 9
I : ! i
1 1 T . —_—
-2 2 / -3
Figure 2.55: For f even Figure 2.56; For f odd

22. The slopes of the lines drawn through successive pairs of points are negative but increasing, suggesting that f"(x) > 0
for 1 < r < 3.3 and that the graph of f(z) is concave up.

23. Using the approximation Ay = f'(z) Az with Az = 2, we have Ay~ f'(20)-2=6-2, 50

£(22) = f(20) + £/(20) -2 = 345 + 6 - 2 = 357.

24, (a) 6 (
= b . Student B's answer
2 Student Cs mr =slope of this line
=slope of this fine
Student A's answer
=slope of this line
4 -
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(b) The slope of f appears to be somewhere between student A's answer and student B’s, so student C’s answer, halfway

in between. is probably the most accurate.
(¢) Student A’s estimate is f'(x) =~ M while student B's estimate is f'(z) = M Student C’s

estimate is the average of these two, or

Floyx L[ f@Eh) Zf@)  f@) - f@ —h)] _flath)—fz—h)
72 h ‘ h - 2h :

This estimmate is the slope of the chord connecting (= — h, f(x — h)) 1o (z + h, f(x + h)). Thus, we estimate that
the tangent to a curve is nearly parallel to a chord connecting points h units to the right and left, as shown below.

/

—

25. (a) Since the point A = (7, 3) is on the graph of f, we have f(7) = 3.
{b) The slope of the tangent line touching the curve at.x = 7 is given by
Risc  38-3 0.8
Slope = — = — — = =4
P = R T 72-7 o2
Thus, f(7) = 4.
26. Atpoint A, we are told that z = 1 and f(1) = 3. Since A = (a2, y2). we have T2 = 1 and y» = 3. Since k = 0.1, we
knowri =1-01=09%and2z3=1+0.1 =1.1.
Now consider Figure 2.57. Since f'(1) = 2, the slope of the tangent line AD is 2. Since AB = 0.1,
Rise = BD 5
Run ~ 0.1 ~

so BD = 2(0.1) = 0.2. Therefore y; =3 - 0.2=28and y3 =3 + 0.2 = 3.2

Figure 2.57
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27. A possible graph of y = f(x) is shown in Figure 2.58.

Figure 2.58

28. (a) The yam is cooling off so T is decreasing and f'(#) is negative.
(b) Since f(t) is measured in degrees Fahrenheit and ¢ is measured in minutes, df /df must be measured in units of
°F/min.
29, £(10) = 240.000 means that if the commeodity costs $10, then 240,000 units of it will be sold. f(10) = —29.000 means
that if the commodity costs $10 now, each $1 increase in price will cause a decline in sales of 29.000 units.
30. The rate of change of the US population is P’(t), so

P'(t) = 0.8% - Current population = 0.008P(¢).

£(0.8) - f(06) _ 40-39 _

o o F06) = F04) 04
3L @ fee) s IS0 == =05 f(O.a)~———-, S ==
7 _ - = _ o9 —15

(b) Using the values of £’ from part (a). we get f(0.6) = f (0(')6; — ({5(0'0) =00-2 Olij = -15.

. 1 .
(¢) The maximum value of f is probably near x = 0.8. The minimum value of f is probably near & = 0.3.

32. By uracing on a calculator or solving equations, we find the following values of §:
Fore =0.1,4 < 0.1
Fore = 0.03,0 < 0.05.
For ¢ = 0.0007, § < 0.00007.
33. By tracing on a culculator or solving equations, we find the following values of 4:
Fore = (.1, 6 < (0.45.
Fore = 0.001, § < 0.0447.
For e = 0.00001, § < 0.00447.
34, (a) Slope of tangent line = limp—o =YL Using h = 0.001, ¥EML=VE — .249984. Hence the slope of the
tangent line is about 0.25.

(b)
y-—y=mx—mn)
y—2=025(x—4)
y—2=0.25z -1
y=025r+1
(©) f(r) =kr*

>

If (4, 2) is on the graph of f, then f(4) = 2,s0k -4’ = 2. Thus k = },and f(z) = 32°.
(d) To find where the graph of f crosses then line y = 0.25x + 1, we solve:
%.1:2 = 0.25z +1
= 2r+8
2’ -22-8 =0
(x—-4)(z+2) =0

r=4 or xr = -2

f-2) = g4 =03

Therefore, (—2.0.5) is the other point of intersection. {Of course, (4, 2) is a point of intersection; we know that from
the start.)



100 Chapter Two /SOLUTIONS

35, (a) The slope of the tangent line at (0, v/19) is zero: it is horizontal.
The slope of the tangent line at (v/19, 0) is undefined: it is vertical.
(b) The slope appears to be about % (Note that when z is 2, y is about —4, but when r is 4, y is approximately —3.)

(¢) Using symmetry we can determine: Slope at (-2, V15): about % Slope at (-2, —v/15): about —%. Slope at
(2. V15): about — 1.
36. (@) IV, (W) L, () I (DI, (e) IV, (H 1]
37. (a) The population varics periodically with a period of 12 months (i.e. onc year).

50007

4000

ALY
\\

3 6 9 12 15 18 21 24
Aprit  July Oct Jan April  July Oct Jan April

{b) The herd is largest about June 1** when there are about 4500 deer.

(c) The herd is smallest about February 1¥' when there are about 3500 deer.

(d) The herd grows the fastest about April 1**. The herd shrinks the fastest about July 15 and again about December 15.
(e) It grows the fastest about April 1** when the rate of growth is about 400 deer/month, i.e about 13 new fawns per day.

38. (a) The graph looks straight because the graph shows only a small part of the curve magnified greatly.

(b) The month is March: We see that about the 21®' of the month there are twelve hours of daylight and hence twelve
hours of night. This phenomenon (the length of the day equaling the length of the night) occurs at the equinox, midway
between winter and summer, Since the length of the days is increasing, and Madrid is in the northern hemisphere, we
are looking at March, not September.

(c) The slope of the curve is found from the graph to be about 0.04 (the rise is about 0.8 hours in 20 days or 0.04
hours/day). This means that the amount of daylight is increasing by about 0.04 hours (about 2% minutes) per calendar
day, or that each day is 2% minutes longer than its predecessor.

39. (a) A possible graph is shown in Figure 2.59. At first. the yam heats up very quickly. since the difference in temperature
between it and its surroundings is so large. As time goes by, the yam gets hotter and hotter, its rate of temperature
increase slows down, and its temperature approaches the temperature of the oven as an asymptote. The graph is thus
concave down. (We arc considering the average temperature of the yam, since the temperature in its center and on its
surface will vary in different ways.)
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temperature
200°C

time

Figure 2,59

(b) If the ratc of temperature increase were to remain 2°/min, in ten minutes the yam's temperature would increase 20°,
from 120° 10 140°. Since we know the graph is not linear, but concave down, the actual temperature is between 120°
and 140°.

{c) In 30 minutes, we know the yam increases in temperature by 45° at an average rate of 45/30 = 1.5°/min. Since the
graph is concave down, the temperature at t = 10 is therefore between 120 + 1.5(10) = 135° and 140°.

(d) If the temperature increases at 2°/minute, it reaches 130° after 15 minutes, at ¢ = 45. If the temperature increases at
1.3°/minute, it reaches 150° after 20 minutes, at t = 50. So ¢ is between 45 and 50 mins.

40. (a) We construct the difference quotient using erf(0}) and each of the other given values:

erf(1) — erf(0)

erf’(0) = = = 0.84270079
erf’(0) = wo—) = 1.1246292
erf’ (0) = L(Og%i:aﬂ = 1.128342.

Based on these estimates, the best estimate is erf'(0) = 1.12; the subsequent digits have not yet stabilized.
(b) Using erf(0.001), we have
erf(0.001) — erf(0)

£'(0) = = 1.12838
erf(0) 0001 — 0
and so the best estimate is now 1.1283.
41. (a)
Table 2.21
inh(z+0.001)—sinh sinh(z-+0.0001)—sinh(r '
sinh{z 00.()01) sinh(z) inh(z -+ 0030(;; inh(r) i (0) ~ cosh(J:)
0 1.00000 1.00000 1.00000 1.00000
03 1.04549 1.04533 1.04535 1.04534
0.7 1.25555 1.25521 1.25521 1.25517
1 1.54367 1.54314 1.54314 1.54308

(b) ki seems that they are approximately the same, i.c. the derivative of sinh(z) = cosh(z) for £ =0, 0.3, 0.7, and 1.
CAS Challenge Problems

42. The CAS says the derivative is zero. This can be explained by the fact that f(z) = sin” ¢ + cos®x = 1, so f(z)is the
derivative of the constant function |, The derivative of a constant function is zero.

43. (a) The CAS gives f'(z) = 2cos® z — 2sin® . Form of answers may vary.
(b) Using the double angle formulas for sinc and cosine. we have

f(z) = 2sinz cosr = sin(2z)

f'(z) = 2cos* z — 2sin’ z = 2(cos’ z — sin’z) = 2 cos(2x).

Thus we get

(% sin(2z) = 2 cos(2r).
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44, (a) The first derivative is g'(r) = —2azxe™ ", so the second derivative is
") = &’ _.2 _ =2a  4d’c?
g x)= dIQe - ear” esz? '

Form of answers may vary.
(b) Both graphs get narrow as a gets larger; the graph of g” is below the z-axis along the interval where g is concave

down, and is above the z-axis where g is concave up. See Figure 2.60.

a"(2)  AJe()

—~6+

a=1

Figure 2.60

(c) The second derivative of a function is positive when the graph of the function is concave up and negative when it is
concave down.

45. (a) The CAS gives the same derivative, 1/x, in all three cases.
(b) From the properties of logarithms, g(z) = In{2r) = In2 + Inz = f(r) + In2. So the graph of g is the same
shape as the graph of £, only shifted up by In 2. Sothe graphs have the same slope everywhere, and therefore the two
functions have the same derivative. By the same reasoning, h(z) = f(x) +1n 3. so h and f have the same derivative

as well.

46, (a) The computer algebra system gives
d 2 2 2
—(z" + 1) =dz(x” +1)
dx

%(xu +1)* =6x(z” +1)°
d

T

d
d—-(;lr2 + 1) =8z(z*+1)°

(b) The pattern suggests that
:—x(.r"' +1)" =2nx(z” + 1)" 7.

Taking the derivative of (z” + 1)™ with a CAS confirms this.
47. (a) Using a CAS, we find

—sinx =cosux

d .
—cosax = —sinr
dr
d . 4 £ 2 ‘ -2
—(sinzcoswr) =cos”x —sin“xr =2cos" x — 1.
dr
{b) The product of the derivatives of sin x and cos x is cos #(—sin r) = — cos rsin x. On the other hand, the derivative

of the product is cos® & — sin? x, which is not the same. So no. the derivative of a product is not always equal to the
product of the derivatives.
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CHECK YOUR UNDERSTANDING

1.

b

10.

11.

13.

14.

17.

18.

19.

False. For example, the car could slow down or even stop at one minute after 2 pm, and then speed back up to 60 mph at
one minute before 3 pm. In this case the car would travel only a few miles during the hour. much less than 50 miles.

. False. lts average velocity for the time between 2 pm and 4 pm is 40 mph, but the car could change its speed a lot during

that time period. For example, the car might be motionless for an hour then go 80 mph for the second hour. In that case
the velocity at 2 pm would be 0 mph.

. True. During a short enough time interval the car can not change its velocity very much, and so it velocity will be nearly

constant. It will be nearly equal to the average velocity over the interval.
True. The instantaneous velocity is a limit of the average velocities. The limit of a constant equals that constant.
True. By definition, Average velocity = Distance traveled/Time.

False. Instantaneous velocity equals a limir of difference quotients.

. False. All we know is that it } is close enough to zero then f(h) will be as close as we pleasc to L. We do not know how

close would be close enough to zero for f(k) to be closer to L than is £(0.01). It might be that we have to get a lot closer
than 0.0001. It is even possible that £(0.01) = L but £(0.0001) # L so f(h) could never get closer to L than £(0.01).

. Truc. This is scen graphically. The derivative f'(«) is the slope of the line tangent to the graph of f at the point P where

r = a. The difference quotient (f(b) — f(a))/(b — a) is the slope of the secant line with endpoints on the graph of f

at the points where x = a and x = b. The tangent and secant lines cross at the point P. The secant line goes above the

tangent line for x > « because f is concave up, and so the secant line has higher slope.

True. The derivative of a function is the limit of difference quotients. A few difference quotients can be computed from

the table, but the limit can not be computed from the table.

False. If f'(x) is increasing then f(x) is concave up. However, f(xr) may be either increasing or decreasing. For example,

the exponential decay function f(x) = e™7 is decreasing but f/ () is increasing because the graph of f is concave up.

False. A counterexample is given by f(r) = 5 and g(z) = 10, two different functions with the same derivatives:
! !

fz)=g(z)=0.

. True. The graph of a linear function f(z) = mx + b is a straight line with the same slope m at every point. Thus

f'(z) =mforallz,
True. Shifting a graph vertically does not change the shape of the graph and so it does not change the slopes of the tangent
lines to the graph.

0ifz <0

False. The function f(z) may be discontinuous at x = 0. for instance f(z) = { Lifr >0

The graph of f may have a
vertical tangent line al z = 0, for instance f(z) = ='/3.

True. The two sides of the equation are different frequently used notations for the very same quantity. the derivative of f
at the point a.

. True. The derivative f'(10) is the slope of the tangent line to the graph of y = f() at the point where x = 10. When

you zoom inon y = f(x) close enough it is not possible to see the difference between the tangent line and the graph of f
on the calculator screen. The line you see on the calculator is a little picce of the tangent line, so its slope is the derivative
f(0).

True. The second derivative f”(x) is the derivative of f'(z). Thus the derivative of f'(z) is positive. and so f'(x) is
increasing.

True. Instantaneous acceleration is a derivative, and all derivatives are limits of difference quotients. More precisely,
instantaneous acceleration a(t) is the derivative of the velocity ¢(t), so

a(t) = ’l'i_% ﬁti—hz_—v(t)

True. The derivatives f'(t) and g'(t) measure the same thing, the rate of chemical production at the same time £, but they
measure it in different units. The units of f'(t) are grams per minute, and the units of g’(#) arc kilograms per minute. To
convert from kg/min to g/min, multiply by 1000.

Falsc. The derivatives f'(t) and g'(t) measure different things because they measure the rate of chemical production at
different times. There is no conversion possible from one to the other.

True. Let f(x) = |z — 3|. Then f(x) is continuous for all x but not differentiable at = = 3 because its graph has a corner
there. Other answers are possible.
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22,

29.
30.

'~
[
.

33.

34,
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True. If a function is differentiable at a point, then it is continuous at that point. For example, f(z) = z? is both differ-
entiable and continuous on any interval. However, one example does not establish the truth of this statement; it merely
illustrates the statement.

. False. Being continuous does not imply differentiability. For example, f(x) = |z| is continuous but not differentiable at

r=0.

. True. If a function were differentiable, then it would be continuous. For example,

1 220, . . . . ;
flx) = { ) <0 is neither differentiable nor continuous at 2 = (. However, one example does not establish the
-1 =z

truth of this statement; it merely illustrates the statement.
False. For example, f(x) = |z| is not differentiable at z = 0, but it is continuous at r = (.

False. For example. let f(x) = 1/x and g(z) = —1/x, then f(z)} + g(x) = 0. If e = 0, lim__ o+ (f(z) + g(z)) exists
(itis 0), but im,_, o+ f(z) and lim,_ ¢+ g(z) do not exist.

True, by Property 3 of limits in Theorem 2.1, since lim.3 2 = 3.
False. If lim; .3 g(x) does not exist, then lim; 3 f(x)g(x) may not even exist. For example, let f(z) = 2z + 1 and
define g by: 1/(x—3) ifex#3

9l=) = {4 ifz =3
Then lim, 3 f(z) = 7 and g(3) = 4, but limz 3 f(x)g(x) # 28, since lim,_,3(2z + 1)/(z — 3) does not exist.
True, by Property 2 of limits in Theorem 2.1.
True, by Properties 2 and 3 of limits in Theorem 2.1.

lim g(z) = lin (f(z) + 9(z) + (=1)f(2)) = lim (f(z) + g(x)) + (=1) lim f(z) =12+ (-1)7 =5.

. False. For example, define f as follows:

_f2r+1 ifx#299
=)= { 1000 ifz = 2.99.
Then f(2.9) = 2(2.9) + 1 = 6.8, whercas £(2.99) = 1000.
False. For example, define f as tollows:
_f2z+1 ifx#3.01
f) = { ~1000 ifz = 3.01.
Then f(3.1) = 2(3.1) + 1 = 7.2, whereas f(3.01) = —1000.
True. Suppose instead that lim -, 3 g(x) does not exist but limz—3( f(x)g(x)) did exist. Since limz 3 f(x) exists and is
not zero, then lim - - 3((f(z)g(x))/ f(z)) exists, by Property 4 of limits in Theorem 2.1. Furthermore, f(z) # 0forall z
in some interval about 3, so (f(z)g(z))/ f(z) = g(«) for all & in that interval. Thus limz -3 g(x) exists. This contradicts
our assumption that limz_3 g(x) does not exist.
False. For some functions we need to pick smaller values of 4. For example, if f(z) = £ +2andec=0and L = 2,
then f(x) is within 1073 of 2 if |#}/3| < 1073, This only happens if z is within (107%)® = 107 of 0. If = 102 then
2% = (10733 = 1072, which is too large.
False. The definition of a limit guarantees that, for any positive €, there is a 4. This statement, which guarantees an ¢ for
a specific 6 = 1073, is not equivalent 10 limz—,, f(z) = L. For example, consider a function with a vertical asymptote
within 1073 of 0, suchas ¢ = 0, L = 0. f(z) = z/(x — 107%).

True. This is equivalent to the definition of a limit.

. False. Although z may be far from ¢, the value of f(x) could be close to L. For example, suppose f(z) = L, the constant

function.

False. The definition of the limit says that if  is within d of ¢, then f(xz) is within € of L, not the other way round.

. (a) This is not a counterexample, since it does not satisfy the conditions of the statement, and therefore does not have the

potential to contradict the statement.

(b) This contradicts the statement, because it satisfics its conditions but not its conclusion. Hence it is a counterexample.
Notice that this counterexample could not actually exist, since the statement is true.

(¢) This is an example illustrating the statement; it is not a counterexample.

(d) This is not a counterexample, for the same reason as in part (a).
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1. (a) S(0) = 12 since the days are always 12 hours long at the equator.
(b) Since S(0) = 12 from part (a) and the formula gives 5(0) = a, we have a = 12. Since S(z) must be
continuous at * = g, and the formula gives S(zg) = a + baresin(1) = 12+ 5 (Z) and also S(xg) = 24.
we musthave 12+ 6 (Z) = 24s0b(5) = 12andb = 2 ~ 7.64.
(¢) $(32°13') =~ 14.12 and S(46°4') ~ 15.58.

(d) hours of sunlight
24 Tj S(z)
184
127
6 -
g t — x(°)

30 60 90
Figure 2.61
(e) The graph in Figure 2.61 appears to have a corner at zg = 66°30'. We compare the slope to the right of

and to the left of xg. To the right of Sp. the functicn is constant. so S'(z) = 0 for z > 66°30'.
We estimate the slope immediately to the left of . We want to calculate the following:

lim Soth) - S(IO).
h—0~ h
We approximate it by taking rp = 66.5 and h = -0.1. - 0.01. — 0.001:
5(66.49) — 5(66.5)  22.3633 — 24
-0.1 N1 109
5(66. — $(66.5 23.4826 — 24
(66.499) — 5(66.5) ~ 6 — 51.83,
—0.01 -0.01
5(66.4999) - S(66.5)  23.8370 —24 _ 163.9
—0.001 o —0001 T
These approximations suggest that, for 229 = 66.5,
Ilixg S(eo + hlz = S(zo) does not exist.
11—

This evidence suggests that S(x) is not differentiable at x¢. A proof requires the techniques found in

Chapter 3.
2. (a) (i) Estumating derivatives using difference quotients (but other answers are possible):
P'(1900) ~ P(1910) l-OP(IS)()O) = 92'01_076'0 = 1.6 million people per year
P'(1945) ~ P(1950) 1—;)P(1940) = 107 1_0 1317 _ 1.9 million people per year
P'(1990) ~ P{1990) I_OP(IOSO) = 248‘71—0226'5 = 2.22 million people per year

(ii) The population growth was maximal somewhere between 1950 and 1960.

(iii) P'{1950) = 1’(1960) P(IQJO)

179.0-150.7
10

= 2.83 million people per year, so P(1936) =~

P(1950)+

P'(1950)(1956 — 1‘)90) = 1:)0 7+ 2.83(6) ~ 167.7 million people.

(iv) If the growth rate between 1990 and 2000 was the same as the growth rate from 1980 to 1990, then
the total population should be about 271 million people in 2000.
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(by ()

f71(100) is the point in time when the population of the US was 100 million people (somewhere
between 1910 and 1920).

(ii) The derivative of f~'(P) at P = 100 represents the ratio of change in time to change in population.

(iii)

(iv)

(e) ()

(i1)

(iii)

and its units are years per million people. In other words, this derivative represents about how long it
took for the population to increase by | million, when the population was 100 million.

Since the population increased by 105.7 — 92.0 = 13.7 million people in 10 years, the average rate
of increase is 1.37 million people per year. If the rate is fairly constant in that period, the amount of
time it would take for an increase of 8 miilion people (100 million — 92.0 million) would be

8 million people
1.37 million people/year

~ 5.8 years =~ 6 years

Adding this to our starting point of 1910. we estimate that the popufation of the US reached 100
million around 1916, i.e. f~1(100) =~ 1916.

Since it took 10 years between 1910 and {920 for the population to increase by 105.7 — 92.0 = 13.7
million people, the derivative of f~!(P) at P = 100 is approximately

10 years
13.7 million people

= 0.73 years/million people

Clearly the population of the US at any instant is an integer that varies up and down every few seconds
as a child is born, a person dies, or a new immigrant arrives. So f{t} has “jumps;” it is not a smooth
function. But these jumps are small relative to the values of f, so f appears smooth unless we zoom
in very closely on its graph (to within a few seconds).

Major land acquisitions such as the Louisiana Purchase caused larger jumps in the population,
but since the census is taken only every ten years and the territories acquired were rather sparsely
populated, we cannot see these jumps in the census data.

We can regard rate of change of the population for a particular time ¢ as representing an estimate of
how much the population will increase during the year after time ¢.

Many economic indicators are treated as smooth, such as the Gross National Product, the Dow Jones
Industrial Average, volumes of trading. and the price of commodities like gold. But these figures only
change in increments, not continuously.



