Solutions for Section 3.1

3.1 SOLUTIONS

CHAPTER THREE
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Exercises
1. The derivative, f'(x). is defined as
ooy — e @+ h) = f(2)
fle)= '{131[. h )
If f(z) =7, then
oy e T=T 0
fz)= lim == = lim = =0
2. The definition of the derivative says that
oy = i J(@ER) = f(z)
fz) = lim h :
Therefore, [ [ |
oy M@+ h)+ 1) - (1Te+11] _  17h
F =i h =
3y =112
4y =120
5y =114
6. y =3.2z72
7.y = -120713
1
8 ¥ = iz!2
9.y =374
10, y' = =377
It, f'(z) = —4z~5
12. f'(z) = %1_3/4.
13, fi(zx) =ex* ™ .

.y =6zt - 2T

L f (1) =6t -4

.y =17+ 1227 Y5,

. Dividing gives g(t) = t* + k/t so g'(t) = 2t — _};2
. The power rule gives f'(z) = 202% — %

. R (w)=6wt + gw—l/e

.y =18z +8zr - 2.
2Ly =15t = Mo T

. y'=6t—t—3%+£;.

y':?;—,,—fg.
cy=r+isoy =1- 4.

g=Z 1 _1 TR { ' 1 -2 1(z°-1
'f(")—’§+§~ —§(a+~ ).SOf(Z)—g(l—.. )_5( p )
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26.f(t)—t_2+?_t_4=t +t -1
fl(y=-2t"3—t72 4 447°,

- € 1 _ 1
My=FH-5n=-V-5%
yl 1

29, Since 4/3, 7, and b arc all constants, we have

Sy

Vo

7(2r)b = %m‘b.

&l
3
L) e

<

30. Since w is a constant times ¢, we have dw/dgq = 3ab®.

31. Since a, b, and ¢ are all constants, we have
Y _ a(20) +b(1) +0 = 20z + b
= x = 2ax +b.
32. Since a and b are constants, we have
dP 1 _1/0 b
— =0+b=t"r = —.
dt +03 PN/

33 g'(x) = —%(5# +2),
M,y = —122° — 1222 - 6.

35 g(z) = 2 +52 -2
g'(z) =52 +20z° - 1.

Problems

36. So far, we can only take the derivative of powers of £ and the sums of constant multiples of powers of z. Since we cannot
write v/ + 3 in this form, we cannot yet take its derivative.

37. The z is in the exponent and we haven’t learned how to handle that yet.
38, g'(z) = 7z + 7z~ "+ by the power and sum rules.
39, ' =6z. (power rule and sum rule)

40. We cannot write 53— as the sum of powers of z multiplied by constants.

41, y = -2/32%.  (power rule and sum rule)
2. f[(t)=6t>-8+3 and  f'(t) =12t -8.
43,

fliz)=122"+12r - 23> 1
1222+ 122 - 24> 0
12(z°+2x-2)>0
12(z + 2)(z = 1) 2 0.

Hencez >1 or < -2.

44, Decreasing means f'(z) < O: ' '
f'(z) = 42° — 1227 = 427 (x - 3),

so f'(z) < 0 when z < 3 and = # 0. Concave up means f(z) > 0:

f(z) =122 — 24z = 12z(x — 2)
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so f"(x) > 0 when
12z(z - 2) > 0

r<0 or z>2.
So, both conditions hold forz < 0or2 <z < 3.
The graph increases when dy/dz > G:

dy

— st _
dz—ax 5>0

5(z'-1)>0 so z'>1 so z>lorzx<-1.
The graph is concave up when d’y/dz* > 0:

2
Y 202350 so z>0.
dz?
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We need values of r where {x > 1 orz < —1} AND {z > 0}, which implies x > 1. Thus. both conditions hold for all

values of z larger than 1.

46. Since f(z) = r* — 622 — 15z + 20, we have f'(z) = 3z% — 12z — 15. To find the points at which f'(z) = 0, we solve

47.

48.

49.

50.

3z -12r—15=0
(P-4 -3)=0
3(x+ 1)(z—3)=0.

We see that f'(z) = 0at z = —1 and at 2 = 5. The graph of f(z) in Figurc 3.1 appears to be horizontal at r = —1 and

at £ = 5, confirming what we found analytically.

f(x)
TN 5 I
¥
-1 i
|
\/
Figure 3.1

fl(z)=-8+2V2z
flir)=-8+2V2r =4

r=£=3\/§.
2v2

7

{a) Since the power of  will go down by one every time you take a derivative (until the exponent is zero after which the

derivative will be zero), we can see immediately that f&)(z) = 0.
®) f(zr)=7-6-5-4-3-2-1-2°=35040.

Differentiating gives
flzx)=6x>—d4z so f(1)=6-4=2.

Thus the equation of the tangent linc is (y — 1) = 2(zx — 1) ory = 2z — 1.

(a) We have f(2) = 8, so a point on the tangent line is (2. 8). Since f'(z) = 322, the slope of the tangent is given by

m=f(2) =3(2)% = 12.

Thus, the equation is
y—8=12(r-2) or y=12z - 16.
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(b) See Figure 3.2. The tangent line lies below the function f(z) = =3, so estimates made using the tangent line are
underestimates.

Figure 3.2

51. The slopes of the tangent lines to y = z° — 2¢ + 4 are given by ' = 2z — 2. A line through the origin has equation
y = mau. So, at the tangent point, % — 22 + 4 = me where m = ' = 2o — 2.
2t =2 +4=(2x-r

-2 +4=2:2 -2

-’ +4=0
—(z+2)(z-2)=0
r =2 -2

Thus, the points of tangency are (2.4) and (—2.12). The lines through these points and the origin are y = 2r and
y = —6x, respectively. Graphically, this can be seen in Figure 3.3:

(-2,12) y=z2-2r+4
y=2z
y=—6z
(2.4)
fe s
Figure 3.3

52, If f(x) = z”. then f'(z) = nz™~'. This means f'(1) = n- 1"~ = n -1 = n, because any power of | equals 1.
53. Since f(z) = az”, f'(z) = anz™~'. We know that f'(2) = (an)2"~! = 3. and f'(4) = (an)4"~! = 24. Therefore,

f4) 24

(2 3
(an)4"~' 4l
(an)2n-1 ~ (5) =8

2*~1 = 8, and thus n = 4.

Substituting n = 4 into the expression for f'(2), we get 3 = a(4)(8). or a = 3/32.
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. . . d ‘ ‘ _
84, Yes. To see why. we substitute y = z" into the equation 131:d—y = y. We first calculate % = %I-(x") = nz""!. The
x d dz
differential equation becomes
13z(nz" ") = "

But 13z(nz”"') = 13n(z - "~ ') = 13nx", so we have
n(x")=2"

This equality must hold for all x, so we get 13n = 1, so n = 1/13. Thus, y = «'/"* is a solution.
55. Since f(t) = 700 — 3t%, we have f(5) = 700 — 3(25) = 625 cm. Since f'(f) = —6¢. we have f'(3) = —30 cm/year.
In the year 2000, the sand dune was 625 cm high and it was eroding at a rate of 30 centimelters per year.
56. (a) Velocity v(t) = % = £(1250 — 16t*) = —32t.
Since t > 0, the ball’s velocity is negative. This is reasonable, since its height y is decreasing.
(b) Acceleration a(t) = 3¢ = £(-32t) = -32.
So its acceleration is the negative constant —32.

(c) The ball hits the ground when its height y = 0. This gives

1250 — 16" = 0
t = +8.84 seconds

We discard ¢t = —8.84 because time ¢ is nonnegative. So the ball hits the ground 8.84 seconds after its release, at
which time its velocity is

v(8.84) = —32(8.84) = —282.88 feet/sec = —192.84 mph.
57. (a) The average velocity between t = 0 and ¢ = 2 is given by

£(2) - f(0) _ —4.9(27y+25(2)+3-3 _334-3

Average velocity = =0 2-0 3 = 15.2 mfsec.
(b) Since f'(t) = —9.8t + 25, we have
Instantaneous velocity = f'(2) = —9.8(2) + 25 = 5.4 m/sec.
(c) Acceleration is given f”(t) = —9.8. The acceleration at ¢ = 2 (and all other times} is the acceleration due to gravity,

which is —9.8 m/sec?.

(d) We can use a graph of height against ime to estimate the maximum height of the 1omato. See Figure 3.4. Alternatcly,
we can find the answer analytically. The maximum height occurs when the velocity is zeroand v(t) = —9.8t+25 = (
when ¢t = 2.6 sec. At this time the tomato is al a height of £(2.6) = 34.9. The maximum height is 34.9 meters.

height {m)
3.9 F———~=

t (sec)
2.6 5.2

Figure 3.4

(e) We sce in Figure 3.4 thal the tomato hits ground at about ¢ = 5.2 seconds. Aliernately, we can find the answer
analytically. The tomato hits the ground when

F(t) = =49t + 235t +3=0.
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We solve for ¢ using the quadratic formula:

(o -25+/(25)2 — 4(—4.9)(3)
- 2(—4.9)
_ —25+ /6838,

-9.8
t=-0.12 and ¢t =35.2.

We use the positive values, so the tomato hits the ground at { = 5.2 seconds.
dF _ 2GMm
dr r3

! 2r /) dT 27 1 w
w 7 mm [T 2 (1) T L 25 (Ld) =
9 Vi dl /g \2 Vi

dT
(b) Since — is positive, the period T increases as the length [ increases.

13|

dl
(a) A=ar
A — 9y,

dr
(b) This is the formula for the circumference of a circle.

(©) A'(r) = M,),L“'l for small k. When h > 0, the numerator of the difference quotient denotes the area of the
region contained between the inner circle (radius r) and the outer circle (radius r + h). Sce figure below. As h
approaches 0, this area can be approximated by the product of the circumference of the inner circle and the “width”
of the region, i.c., h. Dividing this by the denominater, k, we get A" = the circumnference of the circle with radius r.

h

We can also think about the derivative of - as the rate of change of area for a small change in radius. If the radius
increases by a tiny amount. the arca will increase by a thin ring whose area is simply the circumference at that radius
times the smalf amount. To get the rate of change, we divide by the small amount and obtain the circumference.

V = 3mr®. Differentiating gives 3 = 47r? = surface area of a sphere.

The difference quotient M is the volume between two spheres divided by the change in radius. Further-
more, when h is very small, the difference between volumes, V(r + h) — V'(r), is like a coating of paint of depth h
applied 1o the surfacc of the sphere. The volume of the paint is about k - (Surface Area) for small h: dividing by h gives
back the surface area.

Thinking about the derivative as the rate of chunge of the function for a smali change in the variable gives another
way of secing the result. I you increase the radius of a sphere a small amount, the volume increases by a very thin layer

whose volume is the surface arca at that radius multiplied by that small amount.

. (a)
] -1 _ -1
(G N € L) Ml N [ — - l]
dr k=0 I asohlr+h o
= lim Tleza+h) e+h)] _ lim Tl_=h
T h=oh | r(z+h) | T kook |x(z+h)
= lim —] -1 —1272

h—v x(x + h) -
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dz™®) . (z+h)3-2"8
dr fim, h
0 [ 11
Y [ (z+ 1) 28
1 ’J:3—(1'+h)3]

= lim - | =T
5o h | 2z +h)?

3.2 SOLUTIONS

= lim =
h—0

3(xr + h)3
= i -
e ] r3(x + h)?
-3z — 3zh — h*
3z + h)?

= lim
h—0

he ]

—3x~

~4
= & = =3z ".
T

(b) For clarity, let n = —k, where k is a positive integer. So £" = r .

dz™%) . (@+h)yE-zF
2 L= g —— 2 &
dr h=0 h

= lim 1 ___ 1
T a0 h | {x+h)F 2k
1 [1:" - (.r+h)"']

lim
k(z + h)*

h—0 h

1 [-3h2? = 3zh® - hg]

1 {23 («® +3hz® + 30z + 113)]

terms involving k2 and higher powers of h

— e,
1[z* =2 — ghae*t - o RF
= lim — :
h—0 h zk(z + h)*
—krk-t —k —(k+1) —k-1
= Gy T gwer = R = ke
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Exercises
1. f'(z) = 2" + 2z.
2. y' =10t + 4de'.
3. ¥ = (In5)5°.
4 F'(z) = (In2)2* + 2(In 3)3°.
5.y =10r + (In2)2%.
6. f'(r) = 12¢* + (In11)11%.
dy — T _ 2
7. = 4(In 10)10° - 3z".
dy _ o _ N
8. Ir =3 - 2(ln4)4".
dy 1 z 33, -3
9. Iz = 3(1113)3 5 (x™2).
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10. f'(x) = ez,
11, f(z) =e'™® =e' . ¢*. Then, since e is just a constant,
fl(x) =€ -e® =e'*+*,
12. f(t) = e’ - €’. Then, since €” is just a constant, f'(t) = £ (e'e?) = ¢’ det=eel =e¢

13 y=ee”? y = d%(eoc_]) =e! %eg =ele! =71,

= (In4)e”.
15. z' = (In4)*4%.
16. f'(t) = (In(ln 3))(ln 3)*.
17. f'(x) =3z +3In3
dy

18, -2 =5-5'In5+6-6'lu6
dz
19. % =="Inw
20. 7' (2} = (In(in 2))(In 2)>.
21 f'(z) = (ln=)z".
22. This is the sum of an exponential function and a power function, so f'(z) = In(x)7® + 7™~
23, y(z) =e®lna +az®" "

(]
e

. flz) ==z =1 4 (7?)* In(x?)

25. f(2) = (2In3)z + (In 4)e*.
d
26. ! = —(2z - -1/3 - =2 L .
g (x) d:c(I T +3 —¢e) +3$%+3 In3
27. ' + (In2)2°%.
By = % —ln3(4)F = g +n2(d)".

29. We can take the derivative of the sum z° + 2%, but not the product.

30. Once again, this is a product of two functions, 2% and %, cach of which we can take the derivative of; but we don’t know
how to take the derivative of the product.

31. Sincey = %,y = e"e® = 73,

32, y=¢€" = (%)%, 50y =In(e®)- (¢°)® = 5¢™
33. The exponent is z°. and we haven't learned what to do about that yet.

34, £(2) = (In VIV = (ln2)2*.

35. We can’t use our rules if the exponent is V.

Problems

36.
‘;1: = 35,000 - (In 0.98)(0.98%).

Att = 23, this is 35,000(In 0.98)(0.98%3) =~ —444. 39%5-'— {Note: the negative sign indicates that the population is
decreasing.)
37. Since P =1-(1.05)*, 4 = In(1.05)1.05. When t = 10,
dP

—r =(n 1.05)(1.05)'® = $0.07947/vear & 7.95¢/year.

38, We have f(t) = 5.3(1.018)" so f'(¢) = 5.3(In 1.018)(1.018)" = 0.095(1.018)¢. Therefore
f(0) = 5.3 billion people

and
£'(0) = 0.095 billion people per year.



39.
40.

41,

42,

43.

4.
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In 1990. the population of the world was 3.3 billion people and was increasing at a rate of (.095 billion people per year.
We also have
£(30) = 5.3(1.018)*° = 9.1 billion people,
and
f'(30) = 0.095(1.018)*® = 0.16 billion people per year.
In the year 2020, this model predicts that the population of the world will be 9.1 billion people and will be increasing at
a rate of 0.16 billion people per year.

% = 75(1.35)" In 1.35 = 22.5(1.33)".
(a) V(4) = 25(0.85)* = 25(0.522) = 13,050. Thus the value of the car after 4 years is $13,050.

(b) We have a function of the form f(t) = Ca'. We know that such functions have a derivative of the form (Cln a) - a’.
Thus, V' (t) = 25(0.85)"-In 0.85 = —4.063(0.85)". The units would be the change in value (in thousands of dollars)
with respect to time (in ycars), or thousands of dollars/year.

(¢) V'(4) = —4.063(0.85)" = —4.063(0.522) = —2.121. This means that at the end of the fourth year, the value of
the car is decreasing by $2121 per year.

(d) V' (t) is a positive decreasing function, so that the value of the automobile is positive and decreasing. V7' (t) is a
negative function whose magnitude is decreasing. meaning the value of the automobile is always dropping. but the
yearly loss of value is less as time goes on. The graphs of /() and V' (¢) confirm that the value of the car decreases
with time. What they do not take into account are the cosrs associated with owning the vehicle. At some time, ¢, it
is likely that the costs of owning the vehicle will outweigh its value. At that time, it may no longer be worthwhile to
keep the car.

(a) The rate of change of the population is P’(¢t). If P’(#) is proportional to P(t}, we have
P'(t) = kP(t).
(b) If P(t) = Ae*' then P'(t) = kAe** = kP(t).

(@) f(z) =1 — e~ crosses the z-axis where 0 = 1 — €*, which happens when e = 1, so z = 0. Since f'(z) = —e”,
f(0) = —e" = -1
(b) y=-—z
(¢) The negative of the reciprocal of —1 is I, so the equation of thc normal linc is y = x.
Since y = 2%, 3" = (In2)2%. At (0, 1), the tangent line has slope In 2 so its equation is y = (In2)x + 1. At e, y = 0, s0
= (In2)c+1, thusc = — 5.
glz) = ax’ +br+c flz)=¢€"
g(z) =2az+b fliz)=¢*
g"(_t) — 2(l f”(m) = eI

So, using g"(0) = f"(0), etc., we have 2 = 1.b = 1, and ¢ = 1. and thus g(z) = §z° + z + 1, as shown in the
figure below.

eI

%12+I+1

S

The two functions do look very much alike near = 0. They both increase for large values of x, but e” increases
much more quickly. For very negative values of r, the quadratic goes to oo whereas the exponential goes to 0. By choosing
a function whose first few derivatives agreed with the exponentiul when = 0, we got a function which looks like the
exponential for z-values near 0.

z
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45. The derivative of e” is & (e®) = e*. Thus the tangent line at = = 0, has slope €® = 1, and the tangent line is y =  + 1.
A function which is always concave up will always stay above any of its tangent lines. Thus e® > z + 1 for all r, as
shown in the figure below.

Yy=e?
/ y=z+1
/s

/

46. The equation 2° = 2z has solutions r = 1 and x = 2. (Check this by substituting these values into the equation). The
graph below suggests that these are the only solutions, but how can we be sure?

Let’s look at the slope of the curve f(z) = 2%, whichis f'(z) = (In2)2*¥ = (0.693)27, and the slope of the line
g{z) = 2z which is 2. At £ = 1, the slope of f(z) is less than 2; at = 2, the slope of f(z) is more than 2. Since the
slope of f(z) is always increasing, there can be no other point of intersection. (If there were another point of intersection,
the graph f would have to “turn around™.)

Here’s another way of secing this. Suppose g(z) represents the position of a car going a steady 2 mph, while f(z)
represents a car which starts ahead of g (because the graph of f is above g) and is initially going slower than g. The car f
is first overtaken by g. All the while, however, f is speeding up until eventually it overtakes g again. Notice that the two
cars will only meet twice (corresponding to the two intersections of the curve): once when g overtakes f and once when
f overtakes g.

47. Forx = 0,wehave y = a’ =1land y = 1 + 0 = 1, so both curves go through the point (0, 1) for all values of a.
Differentiating gives

d I
d(a”) =d"lna|,_y=a’lna=Ina
dr =
=0
d(1 + )
Tdr L
z z=0
The graphs are tangent at z = 0 if
Ina=1 S0 a=e.

Solutions for Section 3.3

Exercises
1. By the product rule, f'(x) = 2z(z® + 5) + r2(3z%) = 22% + 3r* + 10z = 5z* + 10r. Altematively, f'(z) =
(z® + 32%) = 32% + 10z. The two answers should, and do, match.
2, Using the product rule,
f'(z) = (In2)2737 + (In3)273% = (In2 +1n3)(27 - 37) = In(2 - 3)(2 - 3)" = (In6)6"
or, since 2% - 3* = (2 - 3)* = 6%,
fl{x) = (6°)" = (In6)(67).
The two answers should, and do, match.
3. fllzry=z-e+e" -1 =¢e"(x +1).
4. ¥ =2 +z(In2)2* =2"(1 + xIn2).
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5.y = 722 + VE(n )2,
6. f'(z) = (z2 — z%)-3°(ln3) + 3 ( z— 51-%) =3 [(ms)(xz—z%n (u - -—)]

2z
7. Itis casier to do this by multiplying it out first, rather than using the product rule first: z = st—s =45 -1.
8. ‘;‘t’ et + (¢ + 3)e =l (t2 + 2t + 3).
9. y = (3t> — 14t)e' + (3 — Tt + 1)e' = (13 — 4t — 14t + 1)e’.
ef-l—-x-ef €e(1-z) 11—z
0. f = = = .
10. f'(z) (e7)? (e7)? pe
20rp® _ 2.z = — 95 2
1. ¢'(z) = 30zxe q251 e’ _ 50r — 25z
e-r el‘
9 2.2/-wy _ ‘,3.'.’ w 2 12.'2 _ ¥3.2 5
12 ¢'(w) = 3.2w**(5Y) -a(ln5)(u )3 _ 3.2u - w™(In ))'
a-w ou'
roy_ 3(3r+2)—3r(5) _ 15r +6 —15r _ 6
Ba)=""Grmr = " Grro?  Grede
t+4)—-(t-4) 8
14, g'(t) = {
A () (e
15 dz _ 3(5t+2)—(3t+1)5 _15t+6—-15t -5 _ 1
todt (5t +2)2 - (5t +2)2 T (5t +2)?
16. = 2+t +3) - (P +5t+2) 7 +6t413
®= (t+3)2 (t+3)2
dz (2t +3)(t+1)—(+3t+1 dz P 4+2t42
17. Using the quotient rule gives — i ( ( T _)’_ 2 ) or = —(—H_—l),_,—
18. Divide and then differentiate 3
fl@y=r+~
Fay=1-3.

19. w=y’-6y+7. w =2y—-6.y#0.
T (t + 1) - Vi(2t)

20y = (2 +1)2
d {22+1 d 3. -3y _31_1_3 vz _a
9 —_ = —(22 z = —22 — =2 = a— - =
'l'dz(\/z) dz( + ) 5% 5 2(32)
F p— - 2 2
2. g0 = ~43+ v (5077) =
VEBE+ V)2
2 — -
3. W (r )_ d r (2r)(2r+l)ﬁ 2r? _ 2r(r = 1).
2r+1 (2r +1)? (2r +1)?
24. Notice that you can cancel a z out of the numerator and denominator to get
f&)= = =20
Then
oy = 82+ T7)3 — 32(5)
f') = (52 +7)°
_ 15:+21 - 152
T (bz+7)?
21
(Gz+T7)2"" # 0.

[If you used the quotient rule correctly without canceling the z out first. your answer should simplify to this one, but
it is usually a good idea to simplify as much as possible before differentiating.)
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—Ir).t_ '7.’12:)1‘ ~ ol [OT - 9 -,T - 9
25. w'(z) = 17¢*(27) (ll)nQ)(lae )2 _ 1772 )'(1 In2) _ 17e (1 ln-).
22 92z 9z
%6, Kip)= ZOHW) —dpQ+p") _Gp+dp’ -~ dp-4p %
- (3 +2p?)? (3+2p%)° (3+2p%)%’
27.
243z +422)(1) = (1 + 2)(3 + 8«
Fx) = ( )(1) = (1 +z) )

(2 + 3z + 42?)?
_ 243z +42° —3—1lr — 827
(2 + 3z + 422%)?
_ —4x2 -8z -1
(2 + 3z +422)2°

28. We usc the quotient rule. We have

Flo) = (cx + k)(a) — (ax + b){(¢) _acx+ak—acx —be _ ak—be

(cx + k)2 (cx + k)2 T (cz+ k)2

29, w' = (37 +3)(t2 = T+ 2) + (£ + 5t)(2t = 7).

Problems

30.
Fx)=3(2x-5)+2(3x+8)=12r +1
f'z) =12

31. Using the product rule, we have

f(x)y=e*—ze™™
ffla)y=—-e"—e " +xe " = (2 —2).
Since e™* > 0, for all x, we have f"(z) < 0ifz — 2 < 0, thatis, z < 2.
32. Using the quotient rule, we have
0—1(2z -2z
90 = i = G
—2(2? +1)% + 2z(42° + 4x)
(z?+1)¢
—2(z? + 1)? + 827 (x? + 1)
(2 + 1)
—2(x® +1) + 8z°
(1.? + 1)3
2(3z% - 1)
(z* +1)3 7

g'(z) =

Since (z” + 1)® > 0 for all z, we have g (z) < 0if (32> — 1) < 0. or when

<1
1 1
-—— < r < —.

V3 V3

33. Since F(0) = —5/1 = =5, the tangent linc passes through the point (0. —5), so its vertical intercept is —5. To find the
slope of the tangent line, we find the derivative of f(x) using the quotient rule:

C{r+1)-2-(2r-35)-1 _ 7

- (x+1)? C{z+ 1)

f'(z)

At z = 0, the slope of the tangent line is m = f'(0) = 7. The equation of the tangent line is y = 7x — 3.
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3.
1
0=
iy € 0—e'-1
[ty = e
=;—3——e_t

36. ,
f(.’l') — eze.’x
F(@) = (™) +(e)e
= 2¢%e”* + e%e>* (from Problem 35)
= 3¢,

H d 2r _ o, 21 4 ,3x _ q_.3r . d 4z _ 4.4z
37. Since F-e™* = 2¢°* and F-e”* = 3e7, we might guess that az€ 4e™,

119

38. (a) Although the answer you would get by using the quotient rule is equivalent, the answer looks simpler in this case if

you just use the product rule:

i(i)_i(er l)_i_i
dr\z/) dz )z 2
i(ﬂ)_i(: L)_i_w
dr \2) " daz \¢ 22/ 7 z2? 3
i(‘i)_i(er L)_ﬂ_%r
dr \z2%/) ~ dzx z3) " xt
d e* e* ne*
R
39.
d(z?) _d, d(xs) _d, s
dz _H(I z) dr —H(T +7)
_ d@) , d() _ed(@) | d?)
—Id.’l: +Id1‘ =T dzx te dr
= 2r.
) [ @), d@)
= i "'"[” e " dr
_ 2d(z) 2d(x) 2d(x)
=7 dr +z dx tr dr
= 37°
40. Since
PR VE I V- .

we differentiate to obtain

Now solve for d(z'/?) dx:
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41.

43.

46.
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(a) Wehave A'(2) = f'(2)+4g'(2)=5-2=3.
(b) We have h'(2) = f/(2)g(2) + f(2)g9'(2) = 5(4) +3(-2) = 14.

N W teon 1oy - £ 42)9(2) — f(2)g'(2) _ 5(4) -3(=2) _ 26 _ 13
(¢) We have h'(2) = W) = » =6=3

. (a) G'(2) = F'(:)H(z)+ H'(z)F(z). 50

G'(3) = F'(3)H(3) + H(3)F(3) =4-1+3-5=10.
ooy Flwo)H(w) - H'(w)F(w)

® 6wy = HToT
f'(x) = 10z%" + £'% is of the form g'h + h'g, where

.50G'(3) = 4—(1)%3(5—) = —-11.

g(z) =", ¢'(z) = 102°

and
h(z)=¢€", h'(z) = €.
Therefore. using the product rule. let f = g - h. with g(z) = z'° and h(z) = €. Thus

f(z) = "%,

(a) f(140) = 15.000 says that 15,000 skateboards are sold when the cost is $140 per board.
f(140) = —100 means that if the price is increased from $140, roughly speaking, every dollar of increase will

decrease the total sales by 100 boards.

dR _ d d '
by =0 = 5 Py = fp) +pf (D)

So,

‘(’i—R = (140) + 1404’ (140)
D |p=140

= 15.000 + 140(—100) = 1000.

(¢) From (b) we sce that ﬂ

= 1000 > 0. This means that the revenue will increase by about $1000 if the price
p=140

is raised by $1.
We want dR /dr,. Solving for R:

1 2 1 Lo
1 = 1 +—= uA which gives R = SLELER
R ri ro rIT2 rz2+nr
So, thinking of r2 as a constant and using the quotient rule,
dR _ ra(ro+r) —rir2(l) _ r3
dry (r2 +11)? T (ri+ra)?

(a) If the muscum sells the painting and invests the proceeds P(t) at time ¢, then ¢ years have clapsed since 2000, and
the time span up to 2020 is 20 — . This is how long the proceeds P(t) are earning interest in the bank. Each year the
money is in the bank it earns 5% interest, which means the amount in the bank is multiplied by a factor of 1.05. So,
at the end of (20 — t) years, the balance is given by

B(t) = P(t)(1 +0.05)°" = P(£)(1.05)°"".
(b)

o P(t)

B(t) = P(1)(1.05)(103) ™" = (1.05) 5.

(c) By the quotient rule,
P'()(1.05)" — P(t)(1.05)" In 1.05
(1.05)2

B'(t) = (1.053)™° [
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So,

- 2110 _ 1: 2110 :
B'(10) = (1.05)® 5000(1.05) 150,000(1.03)"" In 1.05

(1.03)20
= (1.05)"(5000 — 150.000 In 1.03)
= —3776.63.
47. Note first that f (v)isin “;:’:”. and v is in h':mr
@) g(v) = ,(v) (This is in &2 "‘“ -.) Differentiating gives
g = =L
(f(v))
So,
1
(80) 05 20 {iter'
—0.000: 1
g'(80) = ﬁ =3 =B for each 152 increasc in speed.

(b) h(v) = v- f(v).(This is in k& . liters — liters ) pyiffereniiating gives

)= fv)+v- fv).

SO

h(80) = 80(0.05) = 4liters
1'(80) = 0.05 + 80(0.0005) = 0.09 5 for each 152 increase in specd.

“hr
(c) Part (a) tells us that at 80 km/hr, the car can go 20 km on 1 liter. Since the first derivative cvaluated at this velocity
is ncgative, this implies that as velocity increases, fuel efficiency decreases. i.c., at higher velocities the car will not
go as far on | liter of gas, Part (b) tells us that at 80 kmv/hr, the car uses 4 liters in an hour. Since the first derivative
evaluated at this velocity is posilive, this means that at higher velocities, the car will use more gas per hour,

48. Assume for g(z) # f(x), ¢'(+) = g(z) and g(0) = 1. Then for
g(=)

61‘

h(z) =

W (z) = L~ g@)e” _ e¥(g'(@) —o(x)) _ ¢'(x) ~ glz)

(ez )2 (ez)z - e

But. since g{x) = ¢'(x). h'(x) = 0, so h(x) is constant. Thus, the ratio of g(z) 10 € is constant. Since 2~
gi z) must equal 1 for all . Thus g(x) = e® = f(x) forall £, so f and g arc the same function.
49. (a) f(z)=(x-2)+ (- 1).
(b) Think of f as the product of two factors, with the firstas (x — 1)(z — 2). (The rcason for this is that we have already
differentiated (z — 1)(x — 2)).
f@) =z -z - 2)j(z - 3).
Now fl(z) =[(z - )z - 2] (x - 3) + [(z - {z - )| (x - 3)
Using the result of a):
f@=z-2+@-D(z-)+[{r-)x~-2)]-1
=(r-2(x—-3)+(x -1z —3)+ (= 1)(xr—2).
(€) Because we have already differentiated (r — 1)(x — 2)(x — 3), rewrite f as the product of two factors, the first being
(r = 1)(x = 2)(x - 3):
J(x) = [tz = Iz = 2)(x = 3)](x = 4)
Now f'(x) = [(z = D(z = 2}z = 3)]'(x — 1) + [(z = 1)(z = 2)(x = 3)}(x — 9)'.
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@O =lc- -3+ -Dr=-3)+ (-1 -2)(z-4)
+(z — 1)z - 2}z - 3)]- 1
=(z-2)(x=-3)(z-d+(x-D(x-3)(z-4)
Fa - D@ -2) -2+ (xr - (e —-2)(x—3).
From the solutions above, we can observe that when f is a product, its derivative is obtained by differentiating each
factor in turn (leaving the other factors alone). and adding the results.

50. From the answer (o Problem 49, we find that

fllay=(r-r)z—r2)-(x—razs)- 1
ez -r)x—r)-(x—rae)-1-(x—rn)
(= )@ = 12 (@ = ) - 1 (2 = Tae1)(@ = 1)
F+eoeedl-(r—ra){r—ra)---(x=ry)

= @) (o e ).

I —nr r—r2 I —7Tn

51. (a) We can approximate ﬁ {F(z)G(x)H (x)] using the large rectangular solids by which our original cube is increased:
Volume of whole — volume of original solid = change in volume,

F(z + h)G(x + h)H(z + h) — F(z)G(x)H(z) = change in volume.

The volume of this slab is F'(2)G(z)H (x)h

As in the book, we will ignore the smaller regions which are added (the long, thin rectangular boxes and the
small cube in the corner.) This can be justified by recognizing that as A — 0, these volumes will shrink much faster
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than the volumes of the big slabs and will therefore be insignificant. (Note that these smaller regions have an h? or
k3 in the formulas of their volumes.) Then we can approximate the change in volume above by:
F(z +h)G(x + h)H(z + h) — F(z)Giz)H(z) =~ F'(z)G(z)H(z)h (top slab)
+ F(z)G'(z)H(z)h (front slab)
+ F(z)G(z)H'(z)h (other slab).
Dividing by A gives
F(z + h)G(z + h)H(x + k) — F(z)G(z)H(z)
h
~ F'(2)G(z)H (z) + F(2)G' (z)H (z) + F(2)G(z)H'(z).

Lettingh — 0
(FGHY = F'GH + FG'H + FGH'.
(b) Verifying,

LUF@) - G)) - Hz)) = (F-GY(H) + (F- G)HY
=[F'G+ FG'|H + FGH'
=F'GH+ FG'H + FGH'

as before.
(c) From the answer to (b), we observe that the derivative of a product is obtained by differentiating each factor in turn
(leaving the other factors alone), and adding the results. So, in general,

(fr-fo-fa-oo o) = fifefa--fat frfafso fad-od freofuoifo.

Since z = a is a double zero of a polynomial P(x), we can write P(z) = (z — a)’Q(z), so P(a) = 0. Using the
product rule, we have

wn
9
_—
»

~

P'(z) = 2(z — a)Q(z) + (z — a)’Q' ().
Substituting in £ = a, we see P’'(a) = 0 also.
(b) Since P(a) =0, we know z = a is a zero of P, so that x — a is a factor of P and we can write

P(z) = (z - 2)Q(z).

where  is some polynomial. Differentiating this expression for P using the product rule, we get
P'(z) = Q(z) + (z - a)Q'(x).
Since we are told that P'(a) = 0, we have
P'(a) = Q(a)+ (a — a)Q'(a) =0

and so ()(a) = 0. Therefore £ = a is a zero of @, so again we can write

Q(z) = (z — a)R(x).
where R is some other polynomial. As a result,

P(z) = (z - a)Q(2) = (z — a)*R(2).

so that z = « is a double zero of P.

Solutions for Section 3.4

Exercises

—

. Fix) =99(x + 1)%% - 1 = 99(x + 1)%.

. fiz) = %(1 - 1:2)_%(_21.) - -r

3. 0’ =100(t* +1)°(2t) = 200£(t° +1)*.

[
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. w' = 100(2° + 1)°°(3¢2) = 300£2 (2 + 1)°°.
. w' = 100(vE +1)% (2—1\/—?) = %(\/E-&- 1)%.

- (1) = (€2)(3) = 3¢,
. R (w) = 5(w* — 2w)* (4w - 2)
. We can write w(r) = (r* + 1)¥/2, 50

2r3
T+l

) = Lt 1) =

. g(z) = we™.
10.
11.
12,
13.
14.

F6) =27 =(3)° s0 f'(6) = (In })27°.

y = (nm)a=+3),

g'(z) = 2(In 3)3C3=+7),

K (x) = 4(z% + €7)3(32% + 7).

f(x) = 2e**[2® + 57} + e**[2z + (In 5)57) = e**[22® + 27 + (In 5 + 2)57).

15. Using the product rule gives v'(t) = 2te™%" — ce 4 = (2t — ct®)e™°.
16. p'(t) = 4e¥*2,
17. %e“”‘)’ = g1+30° %(1 +3t)2 = 13 L 9(1 4 38) - 3 = 6(L + 3¢)e1T*
‘) T
18, 2'(z) = 22
33/(2° +5)°
19. 2/ =5-n2. 2578,
20, w' = g\/x'z 57 [22(5%) + (In5)(22)(5%)] = gm‘z\/ssz(z +2z1n5).
2L y' = 3e?v.
22, ¢ E R
2
23 3s
2ved +1
1 vs
24, w = —=e¥".
u 2\/36
25. 4 =1 et +te_'2(-—2t)
1
9 ) — - -z
26. f'(2) ——2‘/:;6 Vze .
27. We can write this as f(z) = /ze ™7, in which case it is the same as problem 26. So f'(z) = 51753" —ze ™ .
Z
. w2~ (DW2)(2)  1-92:1m2

30.

31.

32.

3.y =

92z

*2:—!1\/2 .

¥
L F(E) = 1057 4 1ePT(=2) = €57 (1 - 21).

(= +2)

P[22 (2_x)_gx
v=AT3 3/°9

z2+9 1z
We can write h(z) = ( =73 > . S0

R(z)=

DO =

249\ (22 +3) -2 +9)] 1 [z+3 [£2+6c-9
z+3 (z+3)2 T2V x2+9 | (z+3)2 |
dy _ 2e(2° +1) — e’ (2z) _ 2¢ (2’ +1-2)

dzr (22 +1)° N CEENVE

' —(3e* + 2z)
(631' + x'_’)'_’ °
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vy —8b*z
34. }l (..) = (—a+72)5
35 h'(z) = (In2)(3e3)2¢™ = 3¢%225°" n2.

‘ G L - o —2¢°
36 fl(z)=-20 +1)" e = T

-8

3. £1(0) = 10 +e7) () D) =
38, f/(z) = 6(e%)5) + (e )(~2z) = 30e% — 2zwe™=".

F(w) = (€ )(10w) + (5w” + 3)(e®” )(2uw)
= 2we"” (5 + 5w® + 3)
= 2uwe"” (5u® +9).
40. ' = (2t +3)(1 - ™) + (7 +3t)(27*).
1L f(y) = [106-)F = 1084
f'(y) = (In10) (10 ’"’) (—%) = —%(Inl(])(l()%‘%v)
42. f'(.’L‘) = e—(l-l)2 . (_2)(1‘. —1).
B f) = [(@)w)] = 2pele 0,

Wi
R

4 F(8) = 2e77 ) (—2e%)2 = —8(e7 2 ),

45. Since a and b are constants, we have f'(t) = ac®*(b) = abe®.

46. Since a and b are constants, we have f'(z) = 3(ax? + b)*(2az) = 6ax(az® + b)%.
47. We use the product rule. We have

£ (x) = (az)(e P (=b)) + (a)(e™ ) = —abze™" + ae™,

48. f'(z) = 6z(e® — 4) + (3z° + n)e” = 6we™ — 24x + 3r°e” + me®.

Problems

49. We have f(2) = (2 - 1) = 1,50 (2, 1) is a point on the tangent line. Since f'(x) = 3(z — 1)?, the slope of the tangent
line is
m=Ff(2)=32-1)°=3.
The equation of the line is
y—1=3(z-2) or y=3z-5.

2

flz) = 6™ +e7% F(z) = 306 — 2ze™%"
f1) =66 +e! F 1) = 30e° —2(1)e”!

y—y =mz—mn)
y—(6e® +e7') = (30e® =27z~ 1)
y— (6e” +e71) = (30e® — 2¢7 1)z — (30e® — 2¢71)
y = (30¢® — 2¢7 )z — 30e® + 27! +6e° + 7!
~ 4451.66z — 3560.81.
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51. The graph is concave down when f”(x) < 0.
fx) = e (~22)
£'(@) = [ (20| (20) + e (-2)

_ 4x® 2
et o=t
42 -2

=== <0

The graph is concave down when 4x° < 2. This occurs when z° < 4, or -5 << %
52.

f'{e) = 102z + 1)°()][(3z — 1)] + [(2z + 1)'°)[7(3z - 1)°(3)]
= (2z + 1)°(3z - 1)°[20(3z — 1) + 21(2z + 1)}
= [(2z + 1)°(3x — 1)°)(102z + 1)
f(z) = [9(2z + 1)3(2)(8z — 1)® + (22 + 1)°(6)(3z — 1)%(3)](102z + 1)
+(2z + 1)°(3z — 1)%(102).

53. (a) H(z) = F(G(x))
H(4) = F(G({)) = F(2) = 1
(b) H(z) = F(G(z))
H'(z) = F'(G(2))- G'(z)
H'(4) = F/(G(4)) G'(4) = F'(2) -6 =56 =30
H(z) = G(F(z))
H(4) = G(F(4)) = G(3) = 4
(d) H(z) = G(F(z))
H'(z) = G'(F(z)) - F'(z)
H{#)=G'(FQ)-F(4)=G'(3)-7=8-T=56
() H(z)= 52

"(z) = GE)F ()= F(z)-G'(z)
Hle) = P
; G(4)-F'(4)~ F(4)-G' (4 2-7-3. -
H'(4) = €1 ([40)(4)12(4) ) = 27536 - 18

54. (a) Differentiating g(z) = /f(z) = (f())/?, we have

(c

~—

— =4 _
=31=-1

I@) = 30N S @) = R
e SO _ 3 3
g = 2/7() 2v32 4
(b) Differentiating h(z) = f(+/T), we have
K@) = £ (V3 ﬁ
() = £(VD)- %ﬁ— -3

wn
th

- (a) Since k'(z) = f'(g(x)) - ¢'(2), we have
R'(2) = f'(9(2))-4'(2) = f'(3) - g'(2) = mV2.
(b) Since h'(z) = ¢'(f(x)) - f'(x), we have
R(2) =g (f2)- F(2)=4'(3) f'(2) = Te.
(c) We have h'(z) = f'(f(2))- f'(x). 50
R'(2) = f(f(2)-F(2) = F(3)- F(2) = me.
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56. (a) If
p(z) = k(2z),
then
p'(z) = k' (2x)- 2.
Whenr = ,
/ 1 ! 1
» (5) =k (2-5)(2)=2-2=4.
(b) If
q(z) = k(z + 1).
then
d©)=K(z+1)-1.
Whenz = 0),
JOY=KFO+1)1)=2.-1=2.
(c) If )
r(z) =k (Z:r) ,
then 1 |
r{z)=k (Zl) T
When r = 4,

e (L)1)
r(4) = k (44 =277

57. Yes. To see why, simply plug x = /2t + 5 into the expression 3z” dz and cvaluate it. To do this, first we calculate d—I

dt dt
By the chain rule,
dr d 2 2 PY
— = —(2t é:—' '—§=—‘, 5)3]°°.
r dt( +5) 3(2t+o) 3[(.2t+a) ]
But since z = (2f + 5)5 , we have (by substitution)
dr_2
dt 3

i 2dz _ 2(2 -2) _
It follows that 3z it =3z 33: =2

58. We see that m'(z) is nearly of the form f'(g(x)) - g'(x) where

flo)=¢* wmd g(z)=2"

but g'(z) is off by a multiple of 6. Therefore, using the chain rule, let

fg(z)) _ e
6

m(r) = 5

59. We can find the rate the balance changes by differentiating B with respect to time: B’ (t) = 5000e%°%t.0.08 = 400e%-08¢,
Calculating B’ attime ¢ = 5, we have B'(5) = $596.73/yr. In 5 years, the account is generating $597 per year of interest.

60. The concentration of the drug in the body after 4 hours is
f(4) = 27¢7 %4 = 154 ng/ml.
The rate of change of the concentration is the derivative
F(t) = 27e7 %14 (~0.14) = —3.78¢ 0%,
At t = 4, the concentration is changing at a rate of

f'(3) = =3.78¢~ "1™ = _216 ng/ml per hour.
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61. We have f(0) = 6 and f(10) = 6e%9'3(!®) — 6,833, The derivative of f(¢) is
F(t) = 6™ . 0.013 = 0.078e%91%,

and so f'(0) = 0.078 and f'(10) = 0.089.

These values tell us that in 1999 (at t = 0), the population of the world was 6 billion people and the population was
growing at a rate of 0.078 billion peopic per year. In the year 2009 (at £ = 10), this model predicts that the population of
the world will be 6.833 billion people and growing at a rate of 0.089 billion peoplc per year.

62. (a)

4Q _ 4 -o.00021
dt  dt
= —0.000121¢ %01

(b) - ! Lot
60000

—0.00002

—0.0000+

@ _ —0.000121¢~9-000121¢
—0.00006 at

~0.00008

—0.0001

—0.000121 ~

63. (a)

% = %(40 +30e™%") = 30(—2)e”"" = —60e” .

. TN .. dH . . . .
(b) Since e~2* is always positive, — < 0; this makes sense because the temperature of the soda is decreasing.
ys p at P g

(c) The magnitude of T is
N -2 dH
= |-60e” *<60= |
’ I dt =0
since e™% < 1forallt > 0and €® = 1. This is just saying that at the moment that the can of soda is put in the

refrigerator (at ¢ = 0), the temperature difference between the soda and the inside of the refrigerator is the greatest,
so the temperature of the soda is dropping the quickest.

dB r dB
4. —_— = — ( _) . The expression — ¢ ; i oy i < i
64. (a) 7t P (1 + 100) In{1+ 100 The expression 7 tells us how fast the amount of money in the bank is

changing with respect to time for fixed initial investment P and intcrest rate r.

t-1
(b) cff Pt (1 + m) 1(1J 0 The expression (:'l,—? indicates how fast the amount of money changes with respect

to the interest rate r , assuming fixed initial invesiment P and time ¢.

65. The ripple’s area and radius are related by A(t) = =[r(t)]®. Taking derivatives and using the chain rule gives
dd . 2rdr
di dt’

We know that dr/dt = 10 cmfsec, so when r = 20 cm we have

d4

P 220 - 10cm? /sec = 400xem” /sec.



66.

67.

(a)

dm
dv

|
: =
—
-
-
S
~—
—
|
Glﬁ
b 1o
N—
|
-
Y
)
—

_ mav 1
c? 213
(1- %)
dm .
(b) T represents the rate of change of mass with respect to the speed v.
(@) Fort < 0./ = % =0.
dQ Qo __1/re
F === =~-—= .
ort >0 T RCe
(b) Fort > 0,t — O (that is, as t — 07),
Qo __i/re Qo
I=-—=— - —=.
RC® RC
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Since I = 0 justto the leftof ¢ = 0 and I = —Qo/RC just 10 the right of £ = 0, it is not possible to define I at

t=20.
(¢) Q is not differentiable at t = 0 because there is no tangent line at ¢ = 0.

68. The time constant for Q is the time. Tq, such that @ = Qo/e. Thus, Tg satisfies

@ = Qoe~Te/RC,

Canceling Qo and taking natural Jogs gives

e—TelRC _ 1 _ -1
€
“To _ 4
RC
To = RC.

To find I = d@/dt, differentiate Q:
I= Q _ __Qoe—t/RC

T dt  RC
Since the exponent of e is unchanged, so is the time constant. We know that the initial current is
Ip= -2
RC

If T} is the time constant for I, we know

1 (—QO) _ _QOP—-TI/RC
e \ RC RC ™ )

1 - :
1 _ ~Ti/RC,
e

This is the same equation as the onc we solved for Tq, so

Canceling —Qo/RC gives

T; = RC.
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69.

70.

71,

Solutions for Section 3.5
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Recall that v = dir /dt. We want to find the acceleration, dv/df, when x = 2. Diffcrentiating the expression for v with
respect to ¢ using the chain rule and substituting for v gives

dv _d_

Y39 P o e = (20 3?4 3y —
m_d:r('r +3r—-2) di—(?J +3)e=(2¢+3)(z" + 32 -2).

Substituting . = 2 gives

Acceleration = % = (2(2) +3)(2° + 32 — 2) = 56 cm/sec’.

(a) The population is increasing if dP/dt > 0, that is, if
kP(L-P)>0.

Since P > 0 and k, L > 0, we musthave /> > 0 and L — P > 0 for this to be true. Thus, the population is increasing
if0< P <L.
The population is decreasing if dP/dt < 0, thatis, if P > L.
The population remains constant if dP/dt = 0.so P =0or P = L.
(b) Differentiating with respect to t using the chain rule gives

£r _ d

d o dP VPl
5T = g7 (FP(L = P)) = =5 (kLP — kP*)- = = (kL — 2kP)(kP(L - P))

=k’P(L -2P)(L - P).
Let f have a zero of multiplicity m at r = a so that
flz) = (x - a)"h(z), h{a) #0.
Differcntiating this expression gives
fi(@)=(z—a)™h'(x) + m(z — )™ Vh(z)
and both terms in the sum are zero when = = a so f'(a) = 0. Taking another derivative gives
@)= (@ =a)™h"(x) +2m(z — )"~ V0 (2) + m(m = 1)(x = o)™ ().

Again, each term in the sum contains a factor of (x — @) to some positive power, so at = a this will evaluate 1o 0.
Differentiating repeatedly, all derivatives will have positive integer powers of (z — a) until the '™ and will therefore
vanish. However,

F™(a) = m'h(a) # 0.

Exercises

1.

Table 3.1

I cosx | Difference Quotient —sinx

0 1.0 -0.0005 0.0
0.1 0.995 -0.10033 —0.099833
0.2 | 0.98007 -0.19916 —0.19867
0.3 ] 0.95534 -0.296 —0.29552
0.4 | 0.92106 -0.38988 —0.38942
0.5 | 0.87758 -0.47986 —0.47943
0.6 | 0.82534 -0.56506 —0.5646:
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2. 7'(#) = cosd —sinb.
3. §'(8) = —sinBsinf + cos cos§ = cos® f — sin® § = cos 26.
4, 2’ = —4sin(48).
5, f'(z) = cos(3x) - 3 = 3cos(3z).
d d
—si —3r)= 2 —32)—(2 - 3r) = —3cos(2 - 3x).
6. = sin(2 — 3z) = cos( h)da: (2-3x) 3cos(2 - 3x)
7. Using the chain rule gives R'(x) = 37 sin{wx).
8. ¢'(P) = 2sin(28) cos(26) - 2 — = = 4sin(28) cos(20) — =
9. f'(z) = 2z)(cosx) + 22 (—sinz) = 2zcosz — 2’ sinz.
10. w' = e cos(e').
11. f'(z) = (e°***)(—sinz) = —sin £e***.
12. f'(y) = (cosy)e¥™¥.
13, ' = ¢ — f(sinh)e"’.
14. Using the chain rule gives R'(8) = 3 cos(39)e" ™39,
- 1., _ cos(tané)
15. g(0) = cos?f
’ _ 2r
16. wiz) = cos?(x?)
17.
f@)=(Q1- cos.r)’-"'
£ = 31 = cosz)"H(~(= sin))
_ sinr
T ay/T—cosr
18. f'(z) = [~ sin(sinz)](cos z).
;o\ COST
1. fila) = cos?(sinz)’
20. k'(z) = 2/sin(2r)(2 cos(2z)) = 3cos(2x)/sin(2z).
21. f'(z)} = 2 - [sin(3z)] + 2z[cos(3x)] - 3 = 2sin(3z) + 6z cos(3x)
22. ¢ = €% sin(260) + 2¢° cos(28).
23, f'(x) = (e"®)(-2)(sinz) + (¢~ ") (cos ) = —2 sinz(e”) + (¢7*)(cosx) = e~ **[cosz — 2sinz).
2, o= SSL
2Vsint
25. ' = 3sin’ fcosh.
96 )= & .
2. 9(2) cos2(e?)
27. &' = ﬂ.
cos?(e~39)
28. w' = (—cosf)e”"I"°,

=33

— Cos8.r

- s.iny;)"/2 —cosz(l —cosz) — (1 —sinz)sinx
(1 — cosz)?

. R(t) = 1-(cost) +t(—sint) + —l; = cost — tsint + g
. f'(a) = —sina + 3cos a
. K'(a) = (5sin” acosa) cos® a + sin® a(3 cos? a(—sina)) = 5sin* acos'a — 3 sin® a cos’ o
L 1(0) = —sinBsin‘B - cosfcosf _ _ (sin® G'tcos?(i) - 19 ‘
sin” @ sin® @ sin® 8
. Using the power and quotient rules gives

131
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1 [1=cosx |—cosz(l —cosr)— (1 —sinr)sinr
T2V 1-sinz (1 —cosz)?

_ 1 f1—cosx |1 —cosec—sinx

- 1 ~-sinz (1-cosz)? |’

2sinx cos (cos? & + 1) + 2sin z cos x(sin” z + 1)
(cos?z + 1)?

0|

34, The quotient rule gives G'(z) =

or, using sin® r + cos” r = 1.
6sinrcoszr
G)= —————.
() (cos®>z +1)?

15 d ( y >_cosy+a—y(—siuy)_cosy+a+ysiny

dy \cosy +a (cosy + a)? (cosy +a)?
36, h'(x) = (In2)2¥*% cos .
37 w' = (In2)(2%5* 2+ )(2cos & + €7).
38, f'(x) = 2cos(2x)sin(3x) + 3sin(2r) cos(3x).
39. f'(0) = 205sin8 + 6% cosf + 2cosf — 20sind ~ 2cos 6 = 6° cos b.
40, f'(z) = cos(cos T + sin x)(cosx — sinr)

41, f'(w) = —-2coswsinw — sin(w”)(2w) = —2(cos wsin w + wsin(w?))

Problems

th

42, The pattern in the table below allows us to generalize and say that the (4n)'" derivative of cos r is cos ., i.e.,

d-ly dSy (14 ny
S = ——— = ... = —= = (COST
drt  dx® drin
Thus we can say that d"mg,:/d;r48 = cos z. From there we differentiate twice more 1o obtain d*°y/dz®® = — cos z.
n 1 2 3 4 ---| 48 49 50
ntb derivative | —sinz [ —cosz | sinz | cosz cosx | —sinz | —cosz

43, We see that ¢'(z) is of the form
9a) 1'(0) = () - g'(x)
(g(x))?
with f(r) = e and g(z) = sin z. Therefore, using the quotient rule. let
flx) _ ef

(](;L') = s—]m = snz

44, Since F”'(x) is of the form sin u, we can make an initial guess that
F(x) = cos(4z),

then
F'(z) = —4sin(4x)

so we're off by a factor of —4. To fix this problem, we modify our guess by a factor of —4, so the next try is
F(r) = —-(1/4) cos(4x).

which has
F'(x) = sin(4z).
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We begin by taking the derivative of y = sin(z*) and evaluating at z = 10:
dy = cos(x?) - 4.
dr

Evaluating cos(10,000) on a calculator (in radians) we see cos(10,000) < 0, so we know that dy/dx < 0, and therefore
the function is decreasing.
Next, we take the second derivative and evaluate it at z = 10:

2

p l,{ = cos(z?) - (1227) + 42 - (= sin(z?))(42?).
X3 N ~ 2

negative positive, but much
larger in magnitude

From this we can see that d>y/dx?® > 0, thus the graph is concave up.

46. (a) v(t) = % = %(15 +sin(27t)} = 27 cos(2xt).
(b) y
16 v
15
14 y=15+sin2nt
L
1 2 3
47. (a) Differemiating gives

49.

50.

@ _ 497w sin (Zt)
dr 6 '

The derivative represents the rate of change of the depth of the water in feet/hour.

(b) The derivative, dy/dt, is zcro where the tangent line to the curve y is horizontal. This occurs when dy/dt =
sin(3t) = 0,oratt = 6, 12, 18 and 24 (6 am, roon, 6 pm, and midnight). When dy/dt = 0, the depth of the
water is no longer changing. Therefore, it has cither just finished rising or just finished falling, and we know that the
harbor’s level is at a maximum or a minimum.

(a) Differentiating, we find

Rate of change of voliage _ dl”

with time == —1207 - 156 sin(120xt)

= —187207 siu(120xt) volts per second.

(b

~—

The ratc of change of voltage with time is zero when sin(120=t) = 0. This occurs when 120=¢ equals any multiple
of =. For example, sin(120=t) = 0 when 1207t = &, or at + = 1/120 seconds. Since there are an infinite number of
multiples of , there arc many times when the rate of change dV'/dt is zero.

(¢) The maximum value of the rate of change is 18720x = 58810.6 volis/sec.

(a) When / -r%t = % the spring is farthest {rom the equilibrium position. This occurs at time t = 3 %
= X & H elociiv : -
v=:Ay/ miE cos (\/ mt), so the maximum velocity occurs when t = 0
a=—-A%sin (\/ %t). so the maximum acceleration occurs when 1/ ;E t = 32, whichisattime ¢ = 3, /%2

(b)T:ﬁ:?w o
dT 27 1 -L__=

(c) — I e— — =
dm \/l: 2™ vikm

. dT . . . .
Since I > 0, an increase in the mass causes the period to increase.
dm

The tangent lines to f(z) = sin x have slope %(sin x) = cosx. The tangent line at = 0 has slope f(0) = cos0 =1
and goes through the point (0, 0). Consequently, its equation is y = g(x) = z. The approximate value of sin & given by

this equation is then g(§) = ¥ = 0.524.
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has slope f'(§) = cos § = % and goes through the point (3. -‘f_—s). Con-
sequently, its equation is y = h(z) = 5z + %‘—1. The approximate value of sin % given by this equation is then
h(Z) = 83=7 » 0.604.

The actual value of sin % is % 50 the approximation from 0 is better than that from . This is because the slope of
the function changes less between x = O and r = £ than it does between z = £ and = = 3. This is illustrated below.

Similarly, the tangent linc at z =

-l

- y=9g(z)

y
1% -y =sinz

y=hiz) -

/rﬁr
|€§

51. If the graphs of y = sinz and y = ke~ arc tangent, then the y-values and the derivatives, Zl = cosr and —— =
I

—ke™7, are equal at that point, so

sinz =ke™®  and cosz = —ke™".
Thus sinr = — cos z 5o tan z = —1. The smallest z-value is r = 37/4, which leads to the smallest k value
_ sin{3w/4) _ _
A = —F;"—/“_ -_ 1‘46.

3 3 1 3= 1
When £ = —, we have y = sin (—) = — sothe pointis | —, — ).
1 Y TR A (4 ﬁ)

52. Differentiating with respect to ¢ using the chain rule and substituting for dx /dt gives
d*r d (d;r)

Ta\dr

— —i(rs‘iu;r) d—z—(qinr+rcos:r)rqin;r
dr2 "~ dt Tdrt T dt T YT T

§3. (a) If f(z) = sinz, then

sin(z + h) —sinz

f(z) = lim

h—0 h

. (sinzcosh +sinhcose) —sinz
= lim

h—0 h

. siux{cosh —1) +sinhcosz
= lim

h—0 h

. . cosh—1 . sinh
=sinz lim ——— 4+ cosz lim ——.

h—o0 h h—0

(b) €=l 5 0and sink _y1,ash — 0. Thus, f'(x) =sinz-0+cosz-1=cosz.
(c) Similarly,

. . cos(z+Nh)—cosx
r) = lim —=> T T
g (z) Lo i’

(cos2cosh —sinzsinh) — cosz

= lim
h—0 h
. cosx(cosh —1) —sinrsinh
= lim
h—0 h
. cosh—1 . . sinh
=cosr lim ——— —sinx lim
h—0 h h—0

—sinax.
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. (a) Sector OAQ is a sector of a circle with radius
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c_ols_e and angle A@. Thus its area is the left side of the inequality.
Similarly. the area of Sector OBR is the right side of the equality. The area of the triangle OQR is %A tan # since it
is a triangle with base A tan 8 (the segment QR) and height 1 (if you wrn it sideways, it is easier to see this). Thus,
using the given fact about areas (which is also clear from looking at the picture), we have

Af 1\ _1 Ag 1 ’
= . < . <22 ol — ] .
o (COSG) -2 Aleanf) < o (cos(0+A¢9)>

(b) Dividing the inequality through by AT" and canceling the ='s gives:

1 \* /Atanf 1 i
/ <
(cos@) = A~ (cos(8+A0)>

Then as AG — 0, the right and left sides both tend towards (co‘%e)z while the middle (which is the difference
quotient for tangent) tends to (tan8)’. Thus, the derivative of tangent is “squeezed” between two values heading
towards the same thing and must, itself, also tend to that value. Therefore, (tan6)' = (2 )’

(¢) Take the identity sin® @ + cos® @ = 1 and divide through by cos’ 8 to get (tan 8)* + 1
with respect to 8 yields:

(z=5)’. Differentiating

2(tand) - (tan8)’ = (Col ) (059)
2 (528) (w0) =2 (aa) 9 (mg) (o0
: Cs;;ee = ("1)2cosae(“’59)'
—sinf = (cos 6)'.
()
4 (5?6 + cos” ) = (1)

2sinf - (sinB)’ + 2cosf - (cosf) =0
2sinf - (sinf) +2cos8 - (—sind) =0
(sinB) — cos® =0

(sin8) = cosé.

Exercises
L f (t) —t +1
2. fillz) = 1—: = z—l—l

3.
4

n

6.
7.

8,
9.

Since In(e?*) = 2z, the derivative f'(z) = 2.

. 2:743 2 L. S
. Since ' Y = 25743 he derivative f'(x) = 4re® T2

. f(z)=-1(Inz)"7- 1= ﬁg‘

f(8) = =2nf = _tang,

cos @
fi@) =z —eT(~1) = {==
fi(a) = sma ccosa = £22,
fl(x)= £,+l -et.
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10, d—y=lnz+r(£) —-1=lax
dr T

11, j'(z) =

e
(e"—+b)
12. Using the product and chain rules gives A’ (w) = 3w* In(10w) + wsli)—ow = 3w’ In(10w) + w?.
13. fl(z)= = ()T = 1

(Note also that ln( ) 7r implies f'(z) = 7))

14. Note that f(x) = ™% -e! = r-e = ex. So f'(xr) = e. (Remember, e is just a constant.) You might also use the chain

rule to get:
f (.'L) - C(lnr)+l l.
[Are the (wo answers the same? Of course they are, since

plinz)+1 (l) =, (l) = re (l) —e)
T T T

15, fl(w) = m[ sin(w — 1)) = — tan(w — 1).
| This could be done easily using the answer from Problem 6 and the chain rule.]

16. f(t) = Int (because Ine™ = r or because et =150 f(t) = 3

’ 2y
17. f(y) = —11—4
-y
3
18. g/(f) = m?_-l-l

19, gla) =a,s0g'(a)=1.

342 1 a2y f Of
20. ' — arctan(3t-) — arctan(3t”) )
g =e T @me ) 0 =e (e

Int
21 g(1) = _52(_11_)
22, K'(z) = (In z):“"?-‘).
23. h'(w) = arcsinw + —
() V1—w?
24, Note that f(r) = kz so. f'(z) = k.
2
25, Using the chain rule gives r'(t) = ——=——.
1 T
26. j'(x) = —sin (sin™'z) - = -
J() 5 ( ) |i\/1_x2] \/1_1,2
. 1 —3sin(arctan 3z)
- 4 = _5 _— = —
27. f(x) sin(arctan 3r) (1 7 (3x)?) (3) T+ 022
28. Note that g(r) = arcsin(sinwr) = 7.
Thus. ¢'(z) = #.
29, Using the quotient rule gives
1+Inz—z(L)
4 —_ T
P = =y
_ Inx
T (L+Inx)?’

30. :_y =2(nz+1n2)+ 2z (é) —2=2(lnz +1n2) =2In(2z)
xI
N . s =cos.r—sin1:
31. Using the chain rule gives f' () Snrteocz
1 1

1
R fii)=——+ > = —
£ Int ¢ tint
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33. Using the chain rule gives

) = 1 (1+u)—u
e [HLL)*H ]

_ (1+u)? 1

T (14 u)?+u? [(l+u)?]
_ 1

Tl 2u+2u?

Cenc iy d e
34. Since In (w) =4In [(E—&St)] we have
1 4+ cost 1+ cost

¢ 1+costy |sint(1 + cost) +sint(l — cost)
a'(t) = 4( ) .
1 —cost (1 +cost)?
_ [1 +cost] 8sint
" L1 —cost] | (1 +cost)?
_ 8sint
T 1-cos?t
_ 8
~ sint’
' . . —(z+1
35. f'(z) = —sin(arcsin(z + 1) ! = (= 1)

=iy ieerr
Problems

36. Differentiating

) = ;;% or = 22(z® + 1)~
iz =22+ 1) - 2r(z®+1)7% 2
2 42> 2r*+2 4r®
@) @ @417 @41
2(1 - z?)
= (;[‘2—-}-1)_2.

Since (x2 +1)* > 0 for all z, we see that f'(0)>0forl— z? > 0orz? < 1. Thatis, In(z? + 1) is concave up on the
interval =1 <z < L.

37. Let
g{x) = arcsinzx
SO
sinfg(z)] = =.
Differentiating,

coslg(2)] - g'(z) = 1
Yy 1
) = oyt
Using the fact that sin” § + cos® 8 = 1. and cos[g(x)] > 0, since —F < g(z) < §, we get

cosfg(x)] = /1 — (sinfg(z)])*-

Therefore,
' 1
P R —
V1 - (sin[g(z)])?
Since sin{g(z)] = z, we have
g'(r) = ——1——, -l<z<l.

vV1-1?
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38, Let
glz) = logx.

Then
100 = 7.
Differentiating,
(In 10)[10°)g'(z) = 1
1

9@ = Gy [iee]
oy 1
9 = Goye

39. (a) From the second figure in the problem, we see that § = 3.3 when ¢ = 2. The coordinates of P are givenby z = cos ¥,

y = sin 8. When t = 2, the coordinates of P are
(z.y) = (cos 3.3.5in 3.3) = (—0.99. —0.16).
(b) Using the chain rule, the velocity in the z-direction is given by
dé

de _dr df = _sing. ¥
= I

i AT :
From Figure 3.5, we estimate that when ¢ = 2,
dé
— ~ 2
dt =2
So .
dz
= — x~—(-0.16) - (2) = 0.32.
v = (—0.16) - (2) = 0.32
Similarly, the velocity in the y-direction is given by
dy dy db da
-4 _ 4 = 9. —.
dt

T T de

Whent = 2 d
—
T

~(—0.99) - (2) = —1.98.

Y/

/
3.3 /

NI

Figure 3.5

40. (a) The definition of the derivative of In(1 + z) atz =0 is

lim In(l1+h)—Inl - lim In(1+ h) __1 _
h h—0 h 1+z| _,

h—0

(b) The rules of logarithms give
lim m+h) _ lim 1 In(1 + h) = lim In(1 + R)}/* = 1.
K0 h h=0h hes0
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Thus, taking e to both sides and using the fact that e™* = 4, we have
; /8 . 1/h
glimano n(1+m)A _ o n(emt/h
h—0
lim(1+ h)'/" =e.
h~0

This limit is sometimes used as the definition of e.
(¢) Letn = 1/h. Thenas h = 0%, we have n — oco. Since

lim 1+~ =1lim(1+h)"/" =e
h—0+ k—0

we have
1 n
lim (1 + —) =e
n—oc n
This limit is also sometimes used as the definition of e.
41. pH=2 = —logz meanslogr = —2s0z = 10~ 2. Rate of change of pH with hydrogen ion concentration is

d 1 1

i _
£ pH = —a(log T) = z(n10)  (10-H) 10

—434
dr

42. The closer you look at the function, the more it begins to look like a line with slope equal to the derivative of the function
at z = 0. Hence, functions whose derivatives at & = 0 are equal will look the same there.

The following functions look like the line y = z since, in all cases, y=laz=0.

y=r y =
y=sin1 y':cosx
y=tanzr v = g
=lIn(zr +1) Yy = :i%
The following functions look like the line y = 0 since, in all cases, y=0atz=0.
y=zx" y =2z
y=zsinz y =zcosz+sinz
y =z y =3
y=3iln(z"+1) y=22 % Z5=7
y=1-coszx y =sinz

The following functions look like the line = = 0 since, in all cases, as x —= 0%, the slope y' — co.
y=VE y = o
_ /= LS T S R G2
¥y=va ¥ = "Gaz "2 Ve~ z(zl-n)'I z
—-T

= +/ — 2 g - 1. 1 =
y=Vv2r—-r y (2 21:)2 \/2?—172 V2z-z22

43. (a)
' 1 1 1
fla) = 1+x2+1+;‘§'(_?)
1 1
= 1+x2_r(_2:2+1)
1 1
T 1422 1422

=0

(b) f is a constant function. Checking at a few values of z,

Table 3.2
x| arctanz | arctanz—! | f(z) = arctan  + arctanz ™!
I | 0.785392 | 0.7853982 1.5707963
2| 1.1071487 | 0.4636476 1.5707963
31 1.2490458 | 0.3217506 1.5707963
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44, (a)

)

(©

45. (a)

(b)

(©)

y=hzy=%4f1)=1=1

y—ypi=mlz—x)y-0=lz-1)iy=g(z)=z-1.
g(l.1)=11-1=0.1;9(2)=2-1=1.
f(1.1) and £(2) arc below g(z) = £ — 1. £(0.9) and £(0.5) arc also below g{x). This would be true for any
approximation of this function by a tangent line since f is concave down (f"(zx) = —;’5 < 0 forall z # 0). See
figure below. Thus, for a given z-value, the y-value given by the function is always below the value given by the
tangent line.

D 4 O

Let g(z) = ax® + bz + ¢ be our quadratic and f(z) = Inz. For the best approximation, we want to find a
quadratic with the same value as Inz at = 1 and the same first and second derivatives as Inz atr = 1. ¢'(z) =
2ax +b.g"(z) = 2a, f'(x) = L. f"(z) = - .
g(1) =a(1)’ +b(1)+¢ f(1)=0
g (1) =2a(1)+b f'(1)=1
g'(1)=2a f'(1)=-1

Thus, we obtain the equations

a+b+e=0
2a+b=1
2a = -1

We finda = —%, b=2andc= —g. Thus our approximation is:

1 - 3
g(x) = _EI + 2r — 5
From the graph below, we notice that around = = 1, the value of f(z) = In z and the value of g(z) = —3z° +2r -2
are very close.

Y flz)=Inzx

We)=-122+2r -3

g(1.1) =0.095 g(2) =0.5
Compare with f(1.1) = 0.0953. £(2) = 0.693.
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46. We differentiate F = k/ r? with respect to ¢ using the chain rule to give

dF _ 2% dr

dat - B at
We know that & = 102 newton - km?® and that the rocket is moving at (.2 km/sec when r = 10* km. In other words,
drfdt = 0.2 km/sec when r = 10*. Substituting gives

C1pld
% = 'g(l(JlTo)s - 0.2 = —4 newtons/sec.

47. (a) Assuming that T(1) = 98.6 — 2 = 96.6, we get

96.6 = 68 + 30.6e %"
28.6 = 30.6e*
0.935 = e™*.
So
k= — In(0.935) ~ 0.067.
(b) We’re looking for a value of ¢ which gives 77(t) = —1. First we find T’ (¢):

T(t) = 68 + 30.6¢ %"
T'(t) = (30.6)(—0.067)e ™% ~ —2e=0087,

Setting this equal to —1°F per hour gives

_1 = —9g—0-067t
In(0.5) = —0.067¢
_  In(0.5) _
=067 ~ 103

Thus, when ¢ = 10.3 hours, we have T'(t) ~ —1°F per hour.
(c) The coroner’s tule of thumb predicts that in 24 hours the body temperature will decrease 25°F, to about 73.6°F. The
formula predicts a temperature of

T(24) = 68 + 30.6e~"%°"** =~ 74.1°F.

48. (a) Since P =1 when V" = 20, we have
E=1-(20"%) = 66.29.
Thus, we have
P = 66.201 714,

Differentiating gives
% = 66.29(—1.4V ~%*) = —92.81"~** wmospheresficm®.

(b) We are given that dV/dt = 2 cm®/min when V' = 30 cm3. Using the chain rule, we have

dP _dP dV _ o op-—2.4 atM _cm?
dt — dV  dt _( 92.81 cm3) (25)

~92.8 (30721) 220
min

—0.0529 atmospheres/min

Thus, the pressure is decreasing at 0.0529 atmospheres per minute.



142 Chapter Three /SOLUTIONS

49, If V" is the volume of the balloon and r is its radius, then

3
wro.

Vo=

XIS

We want to know the rate at which air is being blown into the balloon, which is the rate at which the volume is increasing,
dV/di. We are told that

Z: =2cm/sec when 7 =10cm.
Using the chain rule, we have
dv _dV dr o odr
dt — dr dt dt’

Substituting gives

v o
%t— =47 (10)"2 = 8007 = 2513.3 cm3/sec.
50. We are given that thc volume is increasing at a constant rate dt = 400. The radius r is related to the volume by the
formula 1° 3 =r3. By implicit differentiation, we have
dvi 4 .dr odr
r7ie §1r3r & =dzr p
Plugging in $¥ = 400 and r = 10, we have
dr
400 = 4007 —
00 007 7
s0 & = 1 =~ 0.32um/day.
51. Let r be the radius of the raindrop. Then its volume V = £77% cm® and its surface area is § = 4712 em?. Itis given that
dv
d—f 28 = 8’[‘7‘ .
Furthermore,
dv 2
— = dar’,
dr
so from the chain rule,
ﬂ v dr and thus dr _ dvjdt 2
dt  dr dt ° Todt dVijdr T T
Since dr/dt is a constant, dr/dt = 2, the radius is increasing at a constant rate of 2 cnv/sec.
52, The volume, V', of a cone of height h and radius r is
V= %71’7‘2]1.

Since the angle of the cone is #/6, so r = htan(n/6) = h//3

2
1 h 1 3
‘/2-1 —r— h=—nv.
3'r<\/§) grh

Differentiating gives

E 3 wh
To find dh/dt, use the chain rule to obtain
dV. _ dV dh
dt ~ dh dt”
So,
dh _ dV/dt _ 0.1metersthour _ 0.3 meters/hour.
dt ~ dv/dh ~ wh? /3 rh® )
Since r = htan(#/6) = h/V/3, we have
dr _ dh 1 1 03 meters/hour.

dit ~dt 3 Jauh?
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53. (a) Using Pythagoras’ theorem, we see
2

-2 2
z°=0.5

+z”

z =1/0.25 + 22,

(b) We want to calculate dz/d¢. Using the chain rule, we have
dz dz dr 2z dz

dt ~dz &t 2025 teRdt
Because the train is moving at 0.8 km/hr, we know that

SO

dzx

— = 0.8 km/hr.

dt 8
At the moment we are interested in z = 1 km so

1 =025 +2°
giving

z = vV0.75 = 0.866 km.

Therefore

dz _ _ 2(0.866)
dt ~ 2/0.25+0.75

(c) We want to know df/d¢, where 8 is as shown in Figure 3.6. Since

-0.8 = 0.866 - 0.8 = 0.693 km/min.

5—5 = tané
we know
f = arctan (i)
0.5/
)
de 1 1 dx

a1+ (z/05)% 05dt
We know that dz/dt = 0.8 km/min and, at the moment we are interested in, z = +/0.75. Substituting gives

de 1 1 . A
— = ———————— — - (0.8 = 0.4 radians )
&~ 1+075/025 05 08 0dradians/min
0 Tkm Train
0.5 e
7]
' Camera
Figure 3.6

54, Using the triangle OSL in Figure 3.7, we label the distance z.

L
4

W ¢

O T
Figure 3.7
We want to calculate dx/d8. First we must find z as a function of . From the triangle, we sce
% =tanf so xr=2tané.

Thus,

143
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55. (a) Since the elevator is descending at 30 fUsec, its height from the ground is given by h(t) = 300 — 30¢,  for
t <10.
(b) From the triangle in the figure,

h(t) =100 _ 300 —30¢f — 100 _ 200 — 30¢

tanf =

150 150 150
Therefore
0 — wretun (200 - 30f)
- 150
and

d6 _ 1 (—30) _ 1 150?
dt 14 (2ozm)® "\ 150 T 5 \ 1507 + (200 = 301)2 )

Notice that g—f— is always negative, which is reasonable since 8 decreases as the elevator descends.

(c) If we want to know when 8 changes (decreases) the fastest, we want to find out when d8/dt has the largest magnitude.
This will occur when the denominator. 150° + (200 — 30¢), in the expression for df/dt is the smallest, or when
200 — 30t = 0. This occurs when ¢ = 22 seconds, and so /1(222) = 100 feet, i.c., when the elevator is at the level

30 30

of the observer.,

Solutions for Section 3.7

Exercises
1. We differentiate implicitly both sides of the equation with respect to r.
dy
204 2y—=0.
T+ 2y ar
dy  2xr _ x

dr Z—I/ Ty
2. We differcntiate implicitly both sides of the equation with respect to r.

2r + (y+1‘iq-) —-3y2£1—‘2 =y +;r(2y)%.

dr dr
1 ad () ;
Iﬂ - Z&;/‘fﬁ - 2.1'1/ﬂ = _/') —y—2r,
dr dr “dx

dy _ y*-y-2r

de  x-3y* -2ry’

3. We differentiate implicitly both sides of the equation with respect to r.

Re =5y"/2

1 _y0 8 _yjod

SV = 2_,, 12ty

2 2 dr
dy _ 327 _ 1\/7_ 1
dr ~ 2y "5V 25

We can also obtain this answer by realizing that the original equation represents part of the line .« = 25y which has slope 1/25.

4. We differentiate implicitly both sides of the equation with respect to r.
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5. We differentiate implicity with respect to z.

ey Sdy _
y+:Ld 1 e =0
dy
(1—3)E—1—y
dy _1-y
dr -3
6.
dy
12z +8y =0
d_y_—l?;r_—3a:
de = 8y 2y
7.

dy
2ax — 2 =
Qx byd;v 0

d_y _ —2ar _ az
de ~ —2by = by

8. We differentiate implicitly both sides of the equation with respect to z.

Inx +In(y’) =

1 1 dy
- — (2= =10
1,+y2( W, =
dy _ -i/x y

9. We differentiate implicitly both sides of the equation with respect to x.

e + Iny=0
2re® + Ldy _ ]
- ydr
% = ~2zye”

10. We differentiate implicitly both sides of the equation with respect to z.

a;rctan(r.?y) = ;1:y2

1 2 dy 2 dy
— = _@ey+2 Yy = 2y
L = e
Quy + 2° :dy —[1+zy][u2+‘2zyd—y]
dr ’ “dzx

dy 24 2
ﬁ[ - (142" (2zy)] = (1 + 2'y%)y® — 20y
dy _ Y+ 2ty — 2oy

dr ~ x2? = 2xy — 225y

11. We differentiate implicitly both sides of the equation with respect to x.

1dy |, ady 1
e

Iny +£yd dx =z

145
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z dy 2 dy 1
=29 Lg,22 =
ydz + dr :

dy (= 2 _1-zrlny
dz<y+3y)_ T

dy z+3y°\ _ 1l-zlny
dr -

y z
dy _(Q-ziny) y
de T (z + 3y3)

12. We differentiate implicitly both sides of the equation with respect to z.

cos(zy) (y + 1%) 2

ycos(zy) + x cos(q:y)g—g 2

dy _ 2 —ycos(zy)

dz z cos(xy)
9 : L—1/3 173
13, Sp713 4 gy-l/f’. dy _ 0, dy _ =77 _ vy
3 3 dz dz y-s /3
14. We differentiate implicitly both sides of the equation with respect to x.
. 1 d
e“** ¥ (—sin y)% = 3% arctany + z° I -:y? ﬁ
dy Sy s x® 2
E (_eco Vsﬂly - T y2> =3z arctany
dy _ 3z” arctan y
dr — —e®s¥siny — 23(1 + y2)-1"

15. Using the relation cos® y + sin® i = 1, the equation becomes:
dy
1=y+2ory=—1. Hence, == =0.
Y ) dr
16. Differentiating z° + »* = 1 with respect to x gives
2+ 2y =0

so that

At the point (0, 1) the slope is 0.

17. Differentiating sin(xy) = = with respect to x gives

.

(y +zy')cos(zy) =1

or
zy’ cos(xy) = 1 — ycos(zy)

so that
1 _ 1 —ycos(zy)
v = zcos(zy)

As we move along the curve to the point (1. ), the value of dy/dx — oo, which tells us the tangent to the curve at (1, §)
has infinite slope: the tangent is the vertical line z = 1.
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19.
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The slope is given by dy/dz, which we find using implicit differentiation. Notice that the product rule is needed for the
second term. We differentiate (o obtain:

a2 =24y Ly dy
3" + 5z T -+ lO:cy+4ydf-$ = 4_dz
(.5.1'2 + 4y — 4)d—u = —3z% — 10zy
1 dz L

dy —3z2 — 10zy
dr ~ 5r2+4y—4°
At the point (1.2), we have dy/dz = (=3 — 20)/(5 + 8 — 1) = —23/9. The slope of this curve at the point (1.2) is
-23/9.
Differentiating with respect to x gives
3r° + 22y +2y+2yy =0

so that )
r_ _3-7:- =+ 2y
T 2+ 2y
At the point (1,1) the slope is — 3.
First, we must find the slope of the tangent, i.e. d—z . Differentiating implicitly, we have:
(1.-1)
o dy
- )= =10,
y +z(2y) o =0,
dy __V __y
dz 2y 2z’
U dy -1 1 .. . . .
Substitution yiclds == =-— =3 Using the point-slope formula for a linc, we have that the equation for the

Tla.-n 2
T

tangent lineisy + 1 = (x — 1 ory = jz - 3

3-

. dy . T
First we must find the slope of the tangent, d_J’ at (1.€?). Differentiating implicitly, we have:

1 .dy iy
ry (l dr +y) =2

dy _2zy—y
dr z
Evaluating dy/dz at (1,e”) yiclds (2(1)e” — e*)/1 = e”. Using the point-slope formula for the equation of the line, we

have: ' ‘
y—e =e(z—1),

or )
y=er.
First, we must find the slope of the tangent, dy . Implicit differentiation yields:
@
de_y _ 2r(zy —4) — z° (.r%f- + y)
dr (zy — 4)2

Given the complexity of the above equation, we first want to substitute 4 for x and 2 for y (the coordinates of the point

. . . d R
where we are constructing our tangent line), then solve for ﬁ Substitution yields:

Jdy (2 )(E-2-4) -4 (43 +2) () ~ 16(4§E +2) _
dr — (1-2-4)2 - 16 T dx’

dy dy
4= = 4=,
dx dx
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Solving for % we have:

The tangent is a horizontal line through (4. 2}, hence its equation is y = 2.

1
23. First, we must find the slope of the tangent, ﬂ . We differentiate implicitly, obtaining:
(a.0)

2 1.2 4 dy

= 3 = = =0

37 TR T T

2 _1
dy _ 378 WY
P

A . dy
bstitut 5= =
Substitution yields iz

(a,0)

S

= 0. The tangent is a horizomal line through (a, 0), hence its equation is y = 0.

Problems

24, (a) By implicit differentiation, we have:

dy _

dy
I+ Q=2 — 4 = =
2J-‘_y(la: 4+‘d;1: 0
d
(2y+7)—y=4—2:c
dr
@_4—‘21
dr ~ 2y+ 7’

(b) The curve has a horizontal tangent line when dy/dr = 0, which occurs when 4 — 2z = 0 or z = 2. The curve has a
horizontal 1angent line at all points where x = 2.
The curve has a vertical tangent line when dy/dx is undefined, which occurs when 2y + 7 = 0 or when y = —7/2.
The curve has a vertical tangent line at all points where y = —7/2.
25. (a) Taking derivatives implicitly, we get
2 L2 dy _

5 0% = °
cI_y _ =9
dr ~ 25y

(b) The slope is not defined anywhere along the line y = 0. This ellipse intersects that line in two places, (—5.0) and
(5, 0). (These are. of course. the “ends”™ of the ellipse where the tangent is vertical.)

i
26. (a) [f x = 4then 16 + y° = 25, so y = £3. We find ;‘Tq implicitly:
&L

2m+‘2y3—¥ =0
dy _ =z
dr ~ Yy

So the slope at (4, 3) is —% and at (4. =3) is }. The tangent lines are:
4 4
(y=3)=-z@-4) and (y+3)=3(c—4)
(b) The normal lines have slopes that are the negative of the reciprocal of the slopes of the tangent lines. Thus,

3 3
(y=-3)=4(x-4) so y=1z

and 3
(y+3)=-3—4) so y=-1z
are the normal lines.
(c¢) These lines meet at the origin. which is the center of the circle.
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27. (a) Solving for g—g by implicit differentiation yiclds
D 2 2 Ll
3z° + 3y‘@ -y - 2;z:y—y =0
dr dr
dy  y° —3z°
dz ~— 32 - 2xy’

(b) We can approximate the curve near z = 1, y = 2 by itstangent line. The tangent line will have slope 3((22))2:23((:)(22) =
% = 0.125. Thus its equation is
y = 0.125z + 1.875

Using the y-values of the tangent line to approximate the y-values of the curve, we get:

T 0.96 | 0.98 1 1.02 1.04
approximate y | 1.995 | 1.9975 | 2.000 | 2.0025 | 2.005

(¢) When z = 0.96, we get the equation 0.96° + ¢* — 0.96y° = 5. whose solution by numerical methods is 1.9945,
which is close to the one above.

(d) The tangent line is horizontal when :—5 is zero and vertical when % is undefined. These will occur when the numerator
is zero and when the denominator is zero, respectively.

Thus, we know that the tangent is horizontal when y? - 32° = 0 = y = ++/3z. To find the points that satisfy
this condition, we substitute back into the original equation for the curve:

1'3+1;3—J,'y2 =35
2 +3v3: -3 =

=

|
ot

5
+3v3-2
Soxr =~ 1.1609 or z =~ —0.8857.

Substituting,
y=%£V3r so yx20107 or y=1.334L

Thus, the tangent line is horizontal w (1.1609, 2.0107) and (—0.8857, 1.5341).

Also, we know that the tangent is vertical whenever 3y — 2xy = 0, thatis, when y = §:c or y = 0. Substituting
into the original equation for the curve gives us 2° + (31)® — (3)%2® = 5. This means z° = 5.8696, so z ~ 1.8039,
y =~ 1.2026. The other vertical tangent is at y = 0, ¢ = /5.

28. The slope of the tangent to the curve y = z¥atz = 1is 2 so the equation of such a tangent will be of the form y = 2z +c.
As the tangent must pass through (1, 1), ¢ = —1 and so the required tangent is y = 2z — 1.

Any circle centered at (8.0) will be of the form

(z-8)Y+y’' = R
The slope of this curve at (x, y) is given by implicit differentiation:

2Ax-8)+2yy’ =0

or
y S—=r
y =
Yy
For the tangent to the parabola to be tangential 1o the circle we need
8—-1r =9
y

so that at the point of contact of the circle and the line the coordinates are given by (r, ) when y = 4 — /2. Substituting
into the equation of the tangent line gives # = 2 and y = 3. From this we conclude that R? = 45 so that the equation of
the circle is

(z-8)°+y° =45.
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29. Let the point of intersection of the tangent line with the smaller circle be (1. y1) and the point of interxection with the
Luger be (l‘o y2). Let the tangent line be 4 y = m + ¢ Then at (x1,41) and (zo, y2) the slopes of 2 + y =1 and
y*+(z—3)? = 4 arc also m. The slope of x* +y = 1is found by implicit differentiation: 2z +2yy’ = 0soy’ = —z/y.
Similarly, the slope of y* + (z ~ 3)2 = 4is y’ = —(z — 3)/y. Thus.

y2— 1 T (2 —3)

m=———— = —— = —
T2 — I n Y2

where y; = m and y2 = \/m The positive values for y; and y» follow from Figure 3.8 and from
our choice of m > 0. We obtain
Iy _ T2—-3
\/1 —x? - \/4— (2 —3)?
#f  _ (z2-3)
1—af  4—(x2-3)?
il = (22 = 3)) = (1 - 2{)(z2 - 3)°
— (2})(x2 = 3)° = (12— 3)° ~ 2{(x2 - 3)°
423 = (12 — 3)
2|z} = |z2 - 3.

From the picture £1 < 0 and x; < 3. This gives 2 = 22, + 3 and y» = 2y,. From

y2—tn _ Ty

ro —ua N

substituting y1 = /1 — 22, y2 = 2y, and > = 2y + 3 gives

r =--.

3

From x> = 2zy + 3 we get z2 = 7/3. In addition, y1 = /1 — &% gives y1 = 2v/2/3, and finally y2 = 2y gives
y2 = 4V/2/3.

Figure 3.8

30. y = . Taking n*® powers of both sides of this expression yields (y)" = (z %)™ ory® = z™.
d d

=W = )
ny"'l% =ma™"!

dy me™!

dr — ny* v
_m zm!
= T
_m ™!
- 71;’"—'7?'
= n-ny-(m-2) _ M @y

n n
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Solutions for Section 3.8

Exercises

1. Between times¢t = O and ¢t = 1, = goes at a constant rate from 0 to 1 and y goes at a constant rate from 1 to 0. So the
particle moves in a straight line from (0. 1) to (1, 0). Similarly, between times £ = 1 and ¢ = 2, it goes in a straight line
to (0. —1), then to (—1,0), then back to (0. 1). So it traces out the diamond shown in Figure 3.9.

Figure 3.9

2. This is like Example 2, except that the z-coordinate goes all the way to 2 and back. So the particle traces out the rectangle
shown in Figure 3.10.

y
t=3 “ t=2
Y
t=0¢t =14 t=1
- z
1 2
Figure 3.10

3. Betweentimest = 0andt = 1, x goes from —1 to 1, while y stays fixed at 1. So the particle goes in a straight line from
(=1.1) to (1.1). Then both the z- and y-coordinates decrease at a constant rate from 1 to —1. So the particle goes in a
straight line from (1, 1) to (—1. —1). Then it moves across to (1, —1), then back diagonally to (—1.1). See Figure 3.11.

~ .

[}

t=1

-1

Figure 3.11
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4. As the z-coordinate goes at a constant rate from 2 to 0, the y-coordinate goes from 0 to 1, then down to —1, then back

5. The particle moves clockwise: For 0

10 0. So the particle zigs and zags from (2, 0) to (1.5. 1) to (1.0) to (.5. —1) 10 (0. 0). Then it zigs and zags back again,
forming the shape in Figure 3.12.

Figure 3.12

t < Z.we have z = cos t decreasing and y = — sin ¢ decreasing. Similarly, for

<
< 37’ and % < i < 2w, we see that the particle moves clockwise.

the time intervals £ <t < wm,w <t

6. For 0 <t < %, we have r = sint increasing and y = cost decreasing, so the motion is clockwise for 0 < ¢ < 3.

Similarly, we sce that the motion is clockwise for the time intervals § <t <#wm. 7 <t < 37" and 37" <t <27

7. Let £(t) = t2. The particle is moving clockwise when f(¢) is decreasing, that is, when f'(¢) = 2t < 0, 50 when ¢ < 0.
2

The particle is moving counterclockwise when f’(t) = 2t > 0, so when ¢ > 0.

8. Let f(t) = 3 — t. The particle is moving clockwisc when f(f) is decreasing, that is, when f'(t) = 3P -1<0,

and counterclockwise when f'(t) = 3t — 1 > 0. That is, it moves clockwisc when —\/g <t< -%' between

(cos((—\/g)3 + \/%_).sin((-\/g)3 + \/g)) and (('os((\/g)"’ - \/g).sin((\/g)s - \/—g) and counterclockwise

when t < —-\/Eort> 3

9. Let f(t) = Int. Then f'(t) = 1. The particle is moving counterclockwise when f'(t) > 0, that is, when ¢ > 0. Any

other time, when ¢ < 0, the position is not defined.

10. Let f(t) = cost. Then f'(t) = —sint. The particle is moving clockwise when f'(f) < 0, or —sin¢ < 0, that is, when

2kw <t < (2k + 1)w.
where k is an integer. The particle is otherwise moving counterclockwise, that is, when
(2k - V)w <t < 2km,

where & is an integer. Actually, the particle does not fully trace out a circle. The range of f(t) is [~1.1] so the particle
oscillates between the points (cos(—1),sin(—1)) and (cos 1,sin 1).

11, One possible answer is & = 3cost,y = =3sint. 0 <& < 27,

12. Onc possible answeris & = =2,y = ¢.

13. Onc possible answeris o = 2 + 5cost, y =1+ 5sint. 0 <t < 2m.

14. The parameterization & = 2cost, y = 2sin!, 0 < t < 2w, is a circle of radius 2 traced out counterclockwise starting at

the point (2, 0). To start at (—2, 0), put a negative in front of the first coordinate
r=—-2cost y=2sint, 0<t<2m.

Now we must check whether this paramelterization traces out the circle clockwise or counterclockwise. Since when t
increases from 0, sin ¢ is positive. the point (r, y) moves from (=2, 0) into the second quadrant. Thus, the circle is traced
out clockwise and so this is one possible parameterization.
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The slope of the line is
3—-(-1)
m= -3 = —4.

The equation of the line with slope —4 through the point (2, —1) is y — (—1) = (—4){z — 2). so onc possible parame-
terizationisz =landy = -4 + 8- 1= -t + 7.
The ellipse £2/25 + y* /49 = 1 can be parameterized by ¥ = 5cost. y = Tsint.0 < t < 27,
The parameterization £ = =3cost, y = 7sint, 0 < t < 2, starts at the right point but sweeps out the ellipse
in the wrong direction (the y-coordinate becomes positive as t increases). Thus, a possible parameterization is r =
—3cos(—t) = —3cost.y = Tsin(—t) = —7sint. 0 <t < 27,
We have

dy _ dyfdt 2t

dr ~ dzfdt ~ 32 -1
Thus when ¢ = 2, the slope of the tangent line is 4/11. Also when ¢ = 2, we have

r=2-2=6. yp=2"=4.

Therefore the equation of the tangent line is

(y-4 = 77 (z - 6).

We have

dy _ dyfdt  dcos(4t)

dz  drfdt ~ 3cos(3t)
Thus when ¢t = m, the slope of the tangent line is —4/3. Since x = 0 and y = 0 when t = =, the equation of the tangent
lineisy = —(4/3)z.

. We have

dy _ dyfdt 242

dr ~ drjdt ~ -2
When ¢ = 1, the denominator is zero and the numerator is nonzero, so the tangent line is vertical. Since r = —1 when
t = 1, the equation of the tangent line is r = —1.

We have dz /dt = 2t and dy/dt = 3t>. Thercfore. the speed of the particle is

o= /(%) + (%) = V@ + @R = - VT o).

The particle comes to a complete stop when its speed is 0. that is, if tv/4 + 9% = 0, and so when t = 0.

. We have dz/dt = —2tsin(t?) and dy/dt = 2t cos({?). Therefore, the speed of the particle is given by

v = /(=2tsin(t?))? + (2t cos(t?))?
= 482 (sin(t2))? + 4¢2(cos(t2))?

= ‘2|t|\@n?(t2) + cos?(t2)
= 2{t|.

The particle comes to a complete stop when speed is 0, that is, if 2|t] = 0. and so whent = 0.

23. We have . )
% = —2sin 2¢, (;l—'t/- = cost.
The speed is
n = \/4sin%(2t) + cos? 1.
Thus, v = 0 when sin(2¢) = cost = 0, and so the particle stops when t = +7/2, £37/2,...0rt = (2n +1) Z, for any
integer n.
24, We have

dr dy 2
— =(2t=2), 2 = [~ - 3).
dt (2t ) dt (3" =3)

The speed is given by:

v = /(20 = 2)2 + (312 — 3)2.
The particle stops when 2t — 2 = 0 and 3t* — 3 = 0. Since thesc are both satisfied only by ¢ = L, this is the only time
that the particle stops.
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25. Alt = 2, the position is (22.23) = (4, 8), the velocity in the z-direction is 2 - 2 = 4, and the velocity in the y-direction
is 3. 2% = 12. So we want the line going through the point (4, 8) at the time ¢ = 2, with the given z- and y-velocities:

z=4+4(t-2), y=8+12(t—2).

Problems

26. (a) Eliminating ¢ between
r=2+t y=4+3t

gives
y-4=3z-2),
y=3r-2.
Eliminating t between
r=1-2t. y=1-06t¢

gives

y—1=3(z-1),
y=3r-2.
Since both parametric equations give rise to the same equation in x and y, they both parameterize the same line.
(b) Slope =3, y-intercept = —2.
27. (a) We get the part of the line with z < 10 and y < 0.
(b) We get the part of the line between the points (10, 0) and (11. 2).

28. (a) Ift > 0, wehave x > 2,y > 4, so we get the part of the line to the right of and above the point (2. 4).
(b) Whent = 0. (z,y) = (2.4). Whent = —1,(z,y] = (-1, —3). Restricting ¢ 10 the interval =1 < ¢ < 0 gives the
part of the line between these two points.
(c) Ifx < 0,giving2 + 3t < Oort < —2/3. Thus t < —2/3 gives the points on the line to the left of the y-axis.

29. (a) The curve is a spiral as shown in Figure 3.13.

Nl

Figure 3.13: The spiral
r=tcost y=tsintfor0 <t <4m

(b) Att = 2, the position is (2 cos 2, 2 sin 2) = (—0.8323. 1.8186), and at ¢ = 2.01 the position is (2.01 cos 2.01, 2.01sin 2.01) =
(—0.8546, 1.8192). The distance between these points is

V/(—0.8546 — (—0.8323))? + (1.8192 ~ 1.8186)2 = 0.022.

Thus the speed is approximately 0.022/0.01 =~ 2.2,



30.

3L

32.

34.
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Figure 3,14: The spiral @ = t cost.y = tsin{ and three velocity vectors

(c) Evaluating the exact formula

v = \/(cost — tsint)? + (sint + t cos t)?

gives :

v(2) = /(—2.233)2 + (0.077)2 = 2.2363.

() In order for the particle to stop, its velocity both dz/dt and dy/dt must be zero,
dr 2
€ =3 -3=3t-1)({+1)=0,
dy
—= =2t-2=2(t-1)=0.
p (t-1)

The value ¢ = 1 is the only solution. Therefore, the particle stops when ¢ = 1 at the point (t3 — 3¢, t2 — 2t)|=1 =
(-2.-1).

(b) In order for the particle to be traveling straight up or down, the velocity in the r-direction must be 0. Thus, we
solve dz/dt = 3t> — 3 = 0 and obtain t = =%1. However, at { = 1 the particle has no vertical motion, as we
saw in part (a). Thus, the particle is moving straight up or down only when £ = —1. The position at that time is
(t3 =3t t2 — 20)}=—1 = (2.3).

(c) For horizontal motion we need dy/dt = 0. That happens when dy/dt = 2t — 2 = 0, and so ¢ = 1. But from part (a)
we also have dz/dt = 0 also at t = 1, so the particle is not moving at all when ¢ = 1. Thus, there is no time when
the motion is horizontal.

In all three cases, y = x°, so that the motion takes place on the parabola y = z2.

In case (a), the T-coordinate always increases at a constant rate of one unit distance per unit time, so the equations
describe a particle moving to the right on the parabola at constant horizontal speed.

In case (b), the r-coordinate is never negative, so the particle is confined to the right half of the parabola. As ¢t moves
from —oo to +00, T = t2 goes from oo to 0 to oc. Thus the particle first comes down the right half of the parabola,
reaching the origin (0. 0) at time ¢ = 0, where it reverses direction and goes back up the right half of the parabola.

In case (c), as in case (a), the particle traces out the entire parabola y = ? from left to right. The difference is that
the horizontal speed is not constant. This is because a unit change in ¢ causes larger and larger changes in r = t3ast
approaches — oo or 0o. The horizontal motion of the particle is faster when it is farther from the origin.

(I) has a positive slope and so must be {1 or [2. Since its y-intercept is negative, these equations must describe la. (IT)
has a negative slopc and positive z-intercept, so these equations must describe 3.

. (a) C) has center at the origin and radius 3,s0 0 = b =0.k =3 or —5.

{b) C: has center at (0, 3) and radius 3,s0a = 0,b = 5.k = 5 or —5.

(¢) Cj has center at (10. —10), so a = 10,b = —10. The radius of Cj is 1/10% + (=10)2 = /200, so k = /200 or
k = —/200.

It is a straight line through the point (3, 3) with slope —1. A linear parameterization of the same line is x = 3 + ,

y=5—-1t.

35. (a) To find the equations of the moon’s motion relative to the star, you must first calculate the equation of the planet’s

motion relative to the star, and then the moon’s motion relative to the planet, and then add the two together.
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The distance from the planet to the star is R, and the time to make one revolution is one unit, so the parametric
equations for the planet relative to the star are t = Rcost, y = Rsint.

The distance from the moon to the planet is 1, and the time to make one revolution is twelve units, therefore, the
parametric equations for the moon relative to the planet are r = cos 12t, y = sin 12¢.

Adding thesc together, we get:

r = Rcost + cos12t.
y = Rsint +sin 12t

(b) For the moon to stop completely at time ¢, the velocity of the moon must be equal to zero. Therefore,

% = —Rsint — 12sin12¢ = 0.
% = Rcost + 12cos 12t = 0.

There are many possible values to choose for R and ¢ that make both of thesc equations equal to zero. We choose
t =m,and R =12
(c) The graph with R = 12 is shown below.

o

A

VAl
VAV

36. For0 <t <2m

37. For0 <t < 2n

/

y
Ao/ J
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\ /
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38. For0<t<2m

39. This curve never closes on itself. The plot for 0 < ¢ < 8 is in Figure 3.15.

Figure 3.15

40. (a) Sincex = 3 + t and y = t°, we have

dy _dy/dt 2t

Y dr Tdzjdt T 3EF1

Differentiating w with respect to ¢, we get

dw _ (3 +1)2 - (2)(6t)  —6t>+2

dt — (3t2+1)2 T3tz +1)2

S0
d’y _dw _ dw/dt _ -6t>+2
dz? ~ dz ~ dz/dt ~ (32 +1)3°
When t = 1, we have d®y/dz® = —1/16 < 0, so the curve is concave down.
(b) We have

_dy dy/dt

dr ~ dz/dt’

To find dw/dt, we use the quotient rule:

dw _ (dz/dt)(d°y/dt’) — (dy/dt)(d’z/dt?)
dt (dz/dt)? )

We then divide this by dr/dt again to get the required formula, since

@ dw  dw/dt

dz? ~ dz ~ dzjdt’

157
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Solutions for Section 3.9

Exercises

1. With f(z) = VT + z, the chain rule gives f'(x) = 1/{2/T + z). so f(0) = 1 and f'(0) = 1/2. Therefore the tangent
line approximation of f nearx =0,
f(z) = f(0) + f'(0)(z - 0),

\/1+zzl+§.

This means that, near z = 0, the function v/1 + z can be approximated by its tangent line y = 1 + /2. (See Figure 3.16.)

becomes

Y y=1+z/2

Figure 3.16

2. With f(z) = e*, the tangent line approximation to f near z = 0 is f(z) =~ f(0) + f'(0)(x — 0) which becomes
e = e’ +e% =141z =1 + z. Thus, our local linearization of ¢* nearz = 0ise” = 1+ 1.

3, With f(z) = 1/, we see that the tangent line approximation to f near x = 1is
flz) = f(1) + f' ()= - 1),
which becomes 1
—x1+ F)-1.

Since f'(z) = —1/x?%, f'(1) = —1. Thus our formula reduces to
lzl—(al:—1)=2—:::.
I

This is the local linearization of 1/x near r = 1.
4, With f(x) = 1/(v/1 + ). we see that the tangent line approximation to f nearz = 0 is

f@) = f(0) + f(0)(z - 0),

which becomes 1

Vitzr
Since f'(x) = (=1/2)(1 + x)~%2, f(0) = —1/2. Thus our formula reduces to
1
1+z

=1+ f'(0)z.

~1-zx/2

- . L. 1
This is the local linearization of —— near z = 0.

Vi+z
5. Let f(x) = e™*.Then f'(z) = —e~%. S0 f(0) = 1, j(0) = —e® = ~1. Therefore,e™ =~ f(0) + f(0)r =1 — x.

6. With f(x) = e, we get a tangent line approximation of f(x) = f(1) + f'(1)(z — 1) which becomes e e+
(2::6’2) (z — 1) =e+ 2e(xr — 1) = 2exr — e. Thus, our local linearization of e"g nearxr = 1is e”? ~ 2er —e.

r=1
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Problems

7.

=

10.

11.

(a) Let f(z) = (1 + z)*. Then f'(z) = k(1 + z)* . Since
f@) = F(O) + f(0)(z - 0)
is the tangent line approximation, and £(0) = 1, f'(0) = k, for small z we get
f(z) =1+ kz.

(b) Since V1.1 = (1+0.1)*/2 = 1 + (1/2)0.1 = 1.05 by the above method, this estimate is about right.
(c) The real answer is less than 1.05. Since (1.05)? = (1+0.05)% = 1+ 2(1)(0.05) + (0.05)* = 1.1+ (0.05)> > 1.1,
we have (1.05)? > 1.1 Therefore
V1.1 < 1.05.

Graphically, this because the graph of /1 + z is concave down, so it bends below its tangent line. Therefore the true
value (v/1.1) which is on the curve is below the approximate value (1.05) which is on the tangent line.

The local linearization of e necarz = 0is 1 + 1z so
e =14z

Squaring this yields, for small x,
e =(e") = (1+z)" =1+2z+u°
Local linearization of e>* directly yields
e =1+ 2
for small z. The two approximations are consistent because they agree: the tangent line approximation to 1 + 2z + z%is
just 1 + 2z,

The first approximation is more accurate. One can see this numerically or by noting that the approximation for e**
given by 1 + 2z is really the same as approximating e¥ at y = 2. Since the other approximation approximates e¥ at
y = x, which is twice as close 1o 0 and therefore a better general estimate, it's more likely to be correct.

(a) Let f(x) = 1/(1 +z). Then f'(x) = —1/(1 + x)? by the chain rule. So f(0) = 1, and f'(0) = —1. Therefore, for
rnear0,1/(1 +z) = f(0)+ f'(0)z =1 ~1=z.
(b) We know that for small y, 1/(1 + y) = 1 — y. Let y = z”; when z is small, so is y = z°. Hence, for small z,

1/ +z%) ~1-2%

(c) Since the lincarization of 1/(1 + z?) is the line y = 1, and this line has a slope of 0, the derivative of 1/(1 + %) is

zeroatx = 0.

The local linearizations of f(z) = e and g(z) = sin z near z = () arc
f(x)=e" =14z

and
g(z) =sinr = x.

Thus, the local linearization of €™ sin z is the local lincarization of the product:
efsinzx(l+z)z=z+ri =z

We therefore know that the derivative of e” sin x at £ = 0 must be 1. Similarly, using the local linearization of 1/(1 + x)
nearz = 0,1/(1 + ) =~ 1 — x, we have

T = @) () D@0 -0 =2 -2
so the local linearization of the triple product e Sin: at x = 0 is simply z. And therefore the derivative of e;s% at
r=10isl.
(a) Suppose
o= =L
Then
£r) = —2GM'

r3
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So

2G M
for+Aan) = f(r) -
Since f(r + Ar) — f(r) = Ag,and g = GM/r?, we have
g -2 (ary -2qﬂ

(b) The negative sign tells us that the acceleration duc to gravity decreases as the distance from the center of the earth
increases.
(c) The fractional change in g is given by

29 =~ —237:.
g r
So, since Ar = 4.315 km and r = 6400 km, we have
Ag (4.315)__ _ G
i 2 5100 ) = 0.00135 = -0.135%.
12, (a) Suppose g is a constant and
l
T=f({)=2r—-.
"V
Then 2 1
™ B
Fly =250 = 2
N E
Thus, local linearity tells us that
FU+A) = F() + —=
\/_

Now T = f(I) and AT = f(I + Al) — f(I),s0

T I 1Al TAI
AT =~ —=Al = 2= —_t—— = = —
T Al r\/; s =3

(b) Knowing that the length of the pendulum increases by 2% tells us that

ﬁll =0.02.
Thus,
AT = %(O 02) = 0.017.
So AT
T ® =~ 0.01.

Thus, T increases by 1%.
13. (a) Considering [ as a constant, we have

ey — o 1

=flg)=2 \/;
—onvi(—tg ¥} = —n /L

£y =2mvi(~307) = ==\ 5.

flg+2g) = f(g) - w\/gzg,(Ag)'

Since T = f(g) and AT = f(g + Ag) — f(g). we have

—‘r” Ag -2 \/‘ —TAg‘

=T A«/
2 g

Then,

Thus, local linearity gives

AT = —
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(b) If g increases by 1%, we know

Thus,
— = —%(0.01) = —0.005.

So, T decreases by 0.5%.

14. Since f has a positive second derivative, its graph is concave up, as in Figure 3.17 or 3.18. This means that the graph of
f(z) is above its tangent line. We see that in both cases

F(L+A2) 2 f(1) + f'(1)Az.

(The diagrams show Ax positive, but the result is also true if Az is negative.)

! f(@)
SA+Ar) e .
(YA e ¢ Tangent line
) F F(1)AT ! e 0
! (1)
I
f(l) __________ ' : f(l + AI‘] f(l‘)

| \ F)+ (DA Tangent line

! ' Slope = f'(1)

! L« @

1 1+ Az 1+ Az

Figure 3.17 Figure 3.18

15. (a) Since f' is decreasing, f'(5) is larger.
(b) Since f' is decreasing, its derivative. f", is negative. Thus, " (5) is negative, so 0 is larger.
(c) Since f"(x) is negative for all z, the graph of f is concave down. Thus the graph of f(z) is below its tangent line.
From Figure 3.19, we see that £(5 + Axz) is below £(5) + f'(3)Az. Thus, £(5) + f'(5)Ax is larger.

—— 4 Tangentline
Slope = f'(5)

— f(z)

5 5+ Ax

Figure 3.19

16. Note that

v flz+h)g(e+h)— f(z)g(x)
[f(z)g(x)] = lim 5 .

We use the hint: For small h, f(z + h) = f(z) + f'(z)h, and g{x + h) = g(x) + ¢ (x)h. Therefore
f(z +h)g(z +h) — f(z)g(x) = [f(z) + hf (2)][g(z) + hg'(z)] - f(z)g(2)
= f(2)g(z) + hf'(z)g(z) + hf(z)g (2)
+1P f (2)g' (z) — f(z)g(z)
= hf'(z)g(x) + hf(2)g' (z) + h* f' (x)g ().
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Therefore

flz +h)gx+ h) = flx)g(x) _ . hf(x)g(x) + hf(z)g'(z) + K f (x)g' ()
11:1-% h - P_% h

i @) + () (2) + S (2)g' (@)
- h—=0 h

= Jim (£(2)9(@) + f(2)g' (@) + hf (@)g' ()
= f'(x)g(x) + f(2)g'(2).

A more complete derivation can be given using the crror term discussed in the section on Differentiability and Linear
Approximation in Chapter 2. Adapting the notation of that scction to this problem, we write

fle+h) = F@) + F @h+ E;(h) and gz +h) = g(x) + g (2)h + Ey(h),

where )l'L_LH) E—f’f—h—) = ’llga Eg}—fh) = 0. (This implies that ,lln_'mo E4(h) = }111_’11.:) Eq (h)y=10)
We have
S+ Mote 1) = Fo(e) _ I gy ) 4 parge) + 10y E2LD 4 0y LD

Es(h)Eg(h) _ f(z)g9(z)
h h

The terms f(x)g(z)/h and ~ f(z)g(x)/h cancel out. All the remaining terms on the right, with the exception of the
second and third terms, go to zero as h — 0. Thus, we have

@) = lim LEXVITED = J@IE@) _ 10)1(2) 4 f @)g(a).

+f(x)g (@) + f'(2)Eg(h) + g'(x) Ef(h) +

Note that

[f(g(x))] = ,%-L_% flg(z+ h)})l - f(g(a:))

Using the local linearizations of f and g, we get that
fg(z +R)) = fg(2)) = f (g(x) + ¢'(x)h) — f(g(x))

= f(9(x)) + f'(9(x))g' (z)h — f(g(x))
= f(g(x))g (x)h.

Therefore,

gle + 1)) = f(g(z))

[Flo@)] = lim L

h—0 h
= i L 0(@))g ()R
h—0 h

= lim f'(g(2))g'(2) = £ (9(2))g'(2).

A more complete derivation can be given using the crror term discussed in the section on Differentiability and Linear
Approximation in Chapter 2. Adapting the notation of that section to this problem, we write

flz+k)=f(z)+ ' (2)k+ Eg(k) and g(z + h) = g(z) + g'(z)h + E4(h),
E(W) _ . B _,
h k )

= lim
k=0

where Hm
h—=0

Now we let = = g(x) and k = g{(x + k) — g(x). Then we have k = g’ (z)h + Eg(h). Thus,

gz + 1)) - flg(=)) _ fz+K) —f(2)
h h
_ f@)+ @R+ Efk) — £(z) _ 2k + Eg(k)
h h




3.10 SOLUTIONS 163

_ () (@)h+ f(2)Eg(h) | Ef(k) (k
= 3 = (E)

= f'(2)g'(x) + f'(z)Ey(h) + Eith) [g'(:l.‘)h + Eg(h)]

h k h

= P + LB | d @B | B0 Eyh

Now, if h = 0 then & — 0 as well, and all the terms on the right except the first go to zero, leaving us with the term
F (2)g'(z). Substituting g(x) for z, we obtain

ot = fim TIELD=LIED gy’
18. We want to show that
o 1@ = 1@ _
z—a r—a
Substituting for f(z) we have
fim 12 = f@) _ . fla) + Lz —a) + E(z) ~ f(a)
r—a Ir—a .r—m r—a
= lim (L+EL(T)>=L+lim-E—"(-£l=L.
rz=a I a =0 T —a

Thus, we have shown that f is differentiable at z = a and that its derivative is L, that is, f'(a) = L.

Solutions for Section 3.10

Exercises

1. Since f'(a) > 0 and g'(a) < 0, I'Hopital’s rule tells us that

 f@) _ fla)
) - g

< 0.

1~
.

Since f'(a) < 0and g'(a) < 0, I'Hopital's rule tells us that

f@) _ f@
e g@

3. Here f(a) = g(a) = f'(a) = ¢'(a) = 0,and f"(a) > 0and g"(a) < 0.

@) _ . f=@) _ f'(e)
e " =@ <°

4. Note that £(0) = g(0) = 0 and f(0) = g'(0). Since z = 0 looks like a point of inflection for each curve, f”(0) =
g"(0) = 0. Therefore, applying I’Hopital's rule successively gives us

@) F@ e )

:—»o g(x) :-»o g (:c) =0 g (x) 2530 g’ (x)’

Now notice how the concavity of f changes: for z < 0, it is concave up, so f"(z) > 0, and for £ > 0 it is concave
down, so f'(x) < 0. Thus f"'(x) is a decreasing function at 0 and so f'(0) is negative. Similarly, for ¢ < 0, we see g
is concave down and for > 0 it is concave up, so g’ (z) is increasing at 0 and so g’ (0) is positive. Consequemly,

f@) )
) r g(0)

< 0.
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5.

6.

7.

8.

9.

10.

11,
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The denominator approaches zero as  goes 1o zero and the numerator goes to zero even faster, so you should expect that
the limit to be 0. You can check this by substituting several values of r closc to zero. Alternatively, using 1'Hopital’s rule,
we have
9
. x* . 2z
lim = lim
r—=0SINT r—0 COST

=0.

The numerator goes to zero faster than the denominator, so you should expect the limit to be zero. Using I'Hopital’s rule,
we have )
. sin‘r . 2sinzcosr
lim = lim ———— =10.
=0 X z—0 1
The denominator goes to zero more slowly than x does, so the numerator goes to zero faster than the denominator, so you
should expect the limit to be zero. With I"Hopital’s rule,
sinx cos T . 2/
lim = lim = lim 3z*/% cosz = 0.
z0 T 1/3 z—=0 -1‘ 2/3 r—0

The denominator goes to zero more slowly than z. Therefore, you should expect that the limit to be 0. Using I’ Hopital's
rule,

s \2/3

= lim ——1—— = lim M—

m ————— =0.
x=0 (sinz)}/3  :>0 L(sinr)=2/3cosr z-0  cosT

since sin0 =0 and cos 0 = 1.

The larger power dominates. Using 1'Hopital's rule
lim ——-Is =k —5I4 = lim 20z
= 0.1177 - r—=x 0.71’6 - raoc 4.225
60z 120 . 120
= lim = lim — = lim =

=00 911‘4 =X 8‘4.1'3 oo 25217?
50 0.1z7 dominates.

We apply 1'Hopital’s rule twice to the ratio 50z /0.01x%:

lim 50z° o 100z 100
r=soc 0.0123 - z—o 0.0312 - r-+oc 0.062 -

Since the limit is 0, we see that 0.01z3 is much larger than 50x° as £ — oc.
&

The power function dominates. Using 1"Hopital's rule
1
1 . 3 — 0.8
lim _n(r_-}:)_ lim =) _ i e
T=oC 02 r—oc 0.27-0-8 z—roo 0. 2( + 3)
Using I’Hopital’s rule again gives
0.8 ,.—0.2

t—nm 0.2(r + 3) T=400 02

s0 22 dominates.

12. The exponential dominates. After 10 applications of I'Hopital's rule

10 9

x 10z’ 10!
Jm oy = M e =T i, e =
so %! dominates.
Problems

13. Let f(z) = Inz and g(x) = 1/z so f'(x) = 1/x and g'(z) = —1/z* and

LA 7 CN T Y

r—0+ 1/1' r—vO"‘ —1/1?2 r=0+ —1



14.

15,

16.

17.

18.

19.
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(a) Since f'(z) = 3cos(3z), we have f'(0) = 3.

(b) Since g'(z) = 3, we have g'(0) = 5.

(¢) Since f(z) = sin3x and g(z) = 5z are both 0 at = 0, we apply 1'Hopital’s rule to obtain
sin(3z) f(0) 3

lim

-

=0 5T 7(0) 5
Let f(z) = sin(2z) and g(z) = x. Observe that (1) =sin2 # 0 and g(1) = 1 # 0. Therefore I'Hopital’s rule does
not apply. However, . .
lim SR2Z _ SI2 909997,
z=1 T 1
Let f(z) = cosx and g(z) = . Observe that since f(0) = 1, I'Hopital’s rule does not apply. But since g(0) = 0,
. COST .
Him does not exist.
=0 T

Let f(z) = e~% and g(x) = sin x. Observe that as z increases, f(z) approaches 0 but g(z) oscillates between —1 and
1. Since g(z) does not approach 0 in the limit, I’Hopital’s rule does not apply. Because g{z) is in the denominator and
oscillates through 0 forever, the limit does not exist.

We want to find lim f(z), which we do by three applications of I'Hopital's rule:
o de ]
i 2204827 Gl 12410 g, 122
z00 323 —1 e 92 T roee 18z T 18 37

So the line y = 2/3 is the horizontal asymptote.
Observe that both f(4) and g(4) are zero. Also, f'(4) = 1.4 and g'(4) = —0.7, so by I'Hopital’s rule,

. f(z) _f@) 14,
m S =~ o@ = <07 %

ot

Exercises
oy _ 4 t_ L —_ 9t ¢ 1
. f@®)= 7 (Zte \/f) =2 +2te’ + TR

dw _ (=3)(5+32) = (5~ 32)(3)

dz ~ (G +32)
_ —15-92-15+9z _ =30
N (5 +32)2 T (5+32)?

1 1 3

3. % Inln(2y%) =

2 —
w2 27~ s

2 3 2 2 )
4. fl(z) = 3%(3ln1:— 1)+ % (%) =a‘lnxr— I— +Z =2’z

3 3

5. ¢'(z) = :—z (2 +57) = k2" + K Ink.

% =3sin’fcos b

d

f'(£) = 2cos(3t + 5) - (—sin(3t + 5))3
= —6cos(3t + 3) - sin(3t + 5)
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1

cos?(2 + 3a) 3

M'(a) = 2tan(2 + 3a) -

_ tan(2 + 3a)
cos?(2 + 3a)

§(6) = die sin?(36 — ) = 6.cos(36 — ) sin(36 — =).

h(t) = = (—e"' - 1) .
d (sin(5-0)\ _ cos(5 — 8)(—1)6° —sin(5 — 8)(26)
dé e B g+
_ Bcos(5—8) + 2sin(5 — 0)
= - o3 .
' (6) = 1 26 cos @

sin? 6 sin® 6

(CEPY CLEFAE ) LSS
g(z)—dI(I tz +z ) =52 § 2
! d = _l

s'(z) = o (arctan(2 - r)) = 1+ (2-12)%

rl(g) - % (e !_9+,—0)) - e(:9+e'9) (eﬁ _ e—9) .
Using the chain rule, we get:

m'(n) = cos(e™) - (e)

Using the chain rule we get:

K (a) = e tan(sin a})’ = e'*"Cine) . - cos a.

cos?(sin )

Here we use the product rule, and then the chain rule, and then the product rule.
g'(t) = cos(Vite') + t(cos Vie') = cos(Vie') + t(—sin(Vie') - (Vie')')

= cos(Vte') — tsin(Vie') - (\/Zet + 2%/28‘)

f'(r) =e(tan2 + tanr) ~'(tan2 + tanr)’ = e(tan?2 + tanr)* ™’ (co; r)

y=0

irc(an x = e'an z + Ielan I lo .

dr cos’r

% = 2¢** sin*(3x) + €°*(2sin(3r) cos(3z)3) = 2e** sin(3z)(sin(3z) + 3 cos(3x))
"(z) = 6z _ 6z

I T F B2+ 1)? 93 + 622+ 2
‘w) = 4 ( 1 ) _ 2In2+4e”

g - dw \ 2w + ew - (2w + ew)g .

:—g = (In2)2"* cosx - cosx + 2°" 7 (—sinr) = 2°"° ((In2) cos” z — sin .r)

h(zr)=azr-lne =az,soh'(z) =a.

H(x)=a

1'(8) = ke**

Using the product rule and factoring gives f'(#) = e~**(cost — 4ksint).
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Using the chain rule gives f'(x) = 5In(a)a™.
Using the quotient rule gives

(=22)(a® + 22) - (22)(a® — 27)

! —_—
fz)= (a + 22)?
—4a’z
(a (aZ + 22
Using the quotient rule gives
W () = 2ar(b + r3) = 3r¥(ar?)
(b+r3)?
_ 2abr - art
To(b+rd)?
Using the quotient rule gives
—2sva? 7 _ s 2 _ g2
f’(s) B sva<+ s m(a )

(a? + 5?)
_ —2s(a? + 5*) — s(a® - 8%)
- (a® + 32)3/:'
~2a%s - 25% —a’s + s°
(a® + s2)3/7
3

~3as — s
(a2 + s2)3/2°

. Using the product rule gives

H'(1) = 2ate™"" — c(at® + b)e™*
= (—cat® + 2at - bc)e™*

4 - g
8 Ja? —sin?8 = 1 (—2sinBcos) = sinfcos @
de 2 —

a? —sin2 @ a? —sin%f
d_y__l__(‘_?)_ -2
dz 14 (2)°\2 T r?+4

Using the chain rule gives r'(t) = COSE ; (%)
si

uu

g'(u) = @+ b2

20w

Since g(w) = 5(a® - w?) 72 ¢'(w) = =10(a® — w?) "3 (—2w) = @ =
dy _(eF+e ") e +e ") —(ef —e ") (e —e7)
dz (e +e~7)?
(6 +c—z)2 (f, —_e x)’.’ _ (€,2r+2+e—?x)_(823_2+e—2x)
(e’~ + e-:) - (er + e—z)’.’
4

T te )2

167
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Using the quotient and chain rules, we have
gg _ (aeax +ae—ar)(ea: +E~uz) _ (eaz _ e—a:)(aeaz _ae—az)
dr (eax + e-az)?
a(ea: +e—ar)2 _ a(ens _ e-a:)2
(e%* + e—a7)?
_ a[(e:.’az +24 e-'_‘az) _ (e'.’a:r -2+ e—‘)ax)]
(ea* + e-ux)2

_ da
- (eo + e—a:)‘.’

% = %(605(59))_ b (= sin(36) - 5) + 2sin(66) cos(66) - 6
= 2 S0 | 126in(68) cos(68)
2., [cos(56)

r'(8) = % sin[(30 — 7)°] = cos[(30 — =)*] - 2(30 — «) - 3 = 6(368 — =) cos[(36 — =)?).

gi{ = 3(z? +5)°(22) (3 — 2)® + (7 + 5)%[2(32® - 2)(97)]
= 3(2z)(z” + 5)*(3z° - 2)[(32> - 2) + (=* + 5)(32)]

= 6z(z” + 5)*(3z> - 2)[6z> + 152 — 2

Since tan(arctan(k6)) = k@, because tan and arctan are inverse functions, we have N'(6) = k.

Using the product rule gives () = ke**(sin at + cos bt) + e**(a cos at — bsin bt).

fr) = %(2 — 47 — 32%)(6x" — 37) = (—4 — 61)(62° — 37) + (2 — 4z — 3z7)(6ez* ).

SES
(o)

48. f'(t) = 4(sin(2t) — cos(3t))3(2 cos(2t) + 3sin(3t)]
49, Since cos®y +sin’y = 1, we have s(y) = /1 + 3 = V4. Thus s’ (y) = 0.
50.
F(z) = (=22 + 62°)(6 — 4z + £) + (4 — 2 + 22°)(—4 + 72%)
= (=122 + 442% — 242% — 22% 4+ 62°) + (—16 + 42° — 82° + 282° — 72° + 142°)
= —16 — 12z + 482" — 32¢° + 282" — 92° + 202°
51,
' 1 2 ' 1 1 2
hi(z) = (_F + I—") (21.‘ +4) + (; - :12_2) (Gz )
4
=—2I+4~—7+%+61—6
xTr- T~
=4z -2-dz77 +8°
52. Note: f(z) = (52)/2 +52"2 + 5272 — 5272 + V5,50 f'(2) = %(53)‘1/2 + gz'l/2 - %Z—-a/'z +
53. We wish (o find the slope m = dy/dz. To do this, we can implicitly differentiate the given formula in terms of z:
2 +3t =7
dy d
2r + 6y— = —(7) =
T+l = 5N =0
dy _2r _ -z
dr — 6y ~ 3y’

Thus, at (2,-1). m = ~(2)/3(-1) = 2/3.

-4

-3/2
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54, Taking derivatives implicitly, we find

dy dy
- —= +2
dz +cosydm + 2z

I
o

Q -2z
dx 1+cosy

So, atthe point z = 3.y =0,
dy _ (=2)(3) _ -6

d.‘IJ—l-l-COSO_T:-g
35.
oyt 2% oW _
2ey Iz dz_o
di
2 Y
—_92E — ¢
Ca ) 2zy
dy _  -2zy
dr ~ (22 -2)
56.

3z2+3y2% —8xy—412% =0

(3y° - 41’2)% = 8zy — 3z

dy _ 8ry— 3z?

dr = 3y? — 4z2

57. Differentiating implicitly on both sides with respect to z,

N peintbr) = y+ 2 3Y
acos(ay)dz bsin(bz) =y + T
(acos(ay) — z)% = y + bsin(bz)

dy _ y+bsin(bz)
dr ~ acos(ay) —z’
58. First, we differentiate with respect to r:

dy dy
I« —= . 2y—-<L =
T da:+y 1+ U 0

dy
= 2y) = —
dx(z+ )] ]

dy _ vy
dr 42y
Atz = 3, we have
y+y' =4
Y +3y—4=0

(y-Dy+4)=0.
Our two points, then, are (3. 1) and (3, —4).

dy —1 1l psentline: (v — 1) = —(z —
At(3.1), =332 - 5 Tangent line: (y — 1) = 5(:c 3).
dy —(—4) 4 . 4
A . —=4). = = - Tz - g - 3).
1(3. —4), pe Ty 3 angent line: (y + 4) 5(a: 3)

169



170 Chapter Three /SOLUTIONS
Problems

59. Since W is proportional to r*, we have W = kr? for some constant k. Thus, dW/dr = k(3r®) = 3kr?. Thus, dW/dr
is proportional to r2,

60. Taking the values of f, f’, g, and g’ from the table we get:

(a) h(4) = f(g(4)) = f(3) = L.

(b) h'(4) = f'(9())g'(4) = f'(3)- 1 =2

(©) h(4) = g(f(4)) = g(4) = 3.

@ K'(4) =g'(FANf (4 =9'(4)-3=3.

(€ W(4) = (f(4)g'(4) - g(1)f'(4)) / f*(4) = -5/16.
(O K(4) = f(4)g'(4) + g(4)f'(4) = 13.

61. (a) H'(2) = r'(2)s(2) + r(2)s'(2) = —1-1+4-3 = 11.
b H(@) =& _ =L _ 1

2/r(2) 2V4 1
() H'(2) =r'(s(2))s'(2) = r'(1) - 3, but we don’t know r'(1).
(d) H'(2) =s'(r(2))r'(2) = s' () (2) = -3.
62. (a) f(z)=z* - 4g(x)
f(@) = 22 - 4¢'(x)
F(2)=22)-4(-4) =4+16=20
b) f(z) = ;55
f(z) = L2l2202)
F = stea
(©) f(z) = z3g(x)
f'(z) = 2zg(x) + £%¢'(x)
F(2)=22)3) + (2)*(-4) =12 - 16 = —4
(d) f(z) = (9(z))°
F(z) =29(z) - ' (x)
£1(2) = 2(3)(-4) = -4
(e) f(x) = zsin(y(x))
f'(x) = sin(g(x)) + z cos(g(z)) - ¢'(x)
f(2) = sin(g(2)) + 2 cos(9(2)) - ¢'(2)
=sin3 + 2cos(3) - (—4)
=sin3 — 8cos3
® o) =27 ligx)
f'() = 2zIn(g(z)) + =*(£))

9(z)
F(2) =2(2)In3 +(2)%(F)
=4In3- %
63. (a) f(z)=r* — 4g9(x)
7(2) = 4-4(3) = -8
fl(2y=20
Thus, we have a point (2. —8) and slope m = 20. This gives
—8=2(20)+b
b=—-48. so
y = 20z — 48.
xr
(b) f(zr)= —
f(z) g(z)
f(2)y= 511
re=g
Thus, we have point (2, %) and slope m = 19—1. This gives
2 11
3= (32 +b
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2 22 _-16

b= § - ? = T‘ SO
_u, 16
Y=gt g
(© f(z)=a"g(x)
f(2) =4-9(2) =4(3) = 12
72 = -1
Thus, we have point (2, 12) and slope m = —4. This gives
12=2(-4) +b
b=20. so
y = —4z 4+ 20.
@ f@)= (=)
Q) =2y =@ =9
f(2)=-24
Thus, we have point (2. 9) and slope m = —24. This gives
9=2(-24)+b
b=237, so
y = —24z + 57.

(e) f(x) = rsin(g(r))
f(2) = 2sin(g(2)) = 2sin3
f(2) =sin3 - 8cos3
We will use a decimal approximation for £(2) and f'(2), so the point (2, 2sin 3) = (2. 0.28) and m = 8.06. Thus,
0.28 = 2(8.06) + b
b=-1584, so
y = 8.06z — 15.84.

0 f(z) = Ing(x)

f(2)=4Ing(2) =41n3 =~ 4.39
f(2)=4In3 - % ~ —0.94.
Thus, we have point (2, 4.39) and slope m = —0.94. This gives
439 =2(-0.94) +b
b=6.27. so
y = ~0.94z + 6.27.

When we zoom in on the origin, we find that two functions are not defined there. The other functions all look like straight
lines through the origin. The only way we can teil them apart is their slope.

The following functions all have slope 0 and are therefore indistinguishable:

sinz — tanz, -5 7.z —sinz. and locosz,

These functions all have slope 1 at the origin, and are thus indistinguishable:
l:‘;":x .arctanr.e® — 1, 3y, and 5.

Now, 2% — 1 and —z In z both are undefined at the origin, so they are distinguishable from the other functions. In
addition, while 222 — 1 has a slope that approaches zero near the origin, —z In z becomes vertical near the origin, so
they are distinguishable from each other.

Finally, z'® + Y/Z is the only function defined at the origin and with a vertical tangent there, so it is distinguishable
from the others,

arcsin .,

It makes sense to define the angle between two curves to be the angle between their tangent lines. (The tangent lines are

the best linear approximations to the curves). See Figure 3.20. The functions sin x and cos x are equal atx = 3.

V2

For fi(z) = sinz, f{(%) = cos(-}) ==

7T)=_

For fa(z) = cosz, fé(g) = —sin(z
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Using the point (%, —‘?) for cach tangent line we get y = %x + ﬁ(l —Z%)andy = —‘./751:-1‘- —?(1 + %), respectively.

2
y v Y
- _ Y3 2 = v2 .4
4(”'2) NN /,’U—JQC‘”"‘%C(“I) 2(‘*4) ML
\\\ /// =sinzx 3 \\\
S P y=5 8 AN
38 1 -’
1qa P
a u CRpY N A
= ,/).‘
7 N 4 e ~
// \\ /,
iy O 3 VA -7
2 = N y=—%* = -,
%:(1—4), ., y=cosx v T3 (+4) ‘/TE(I—i) L
T 3
i
Figure 3.20 Figure 3.21

There are two possibilities of how to define the angle between the tangent lines, indicated by o and 3 above. The
choice is arbitrary, so we will solve for both. To find the angle, @, we consider the triangle formed by these two lines and
the y-axis. See Figure 3.21.

tan (La) = 228 _ 2

2 xf4 T 2
%n = 0.61548 radians
a = 1.231 radians, or 70.5°.
Now let us solve for 3, the other possible measure of the angle between the two tangent lines. Since a and 3 are

supplementary, 8 = m — 1.231 = 1.909 radians, or 103.4°.

The curves meet when 1 + £ — 22 = 1 — z + 22, thatis when 2z(1 — x) = O sothatz = 1 orz = 0. Let
y(r)=1+z-2° and p(z)=1-z+z°

Then
y'=1-2r and gy’ =-1+2z.
Atz =0,y1' = 1,52’ = —1sothaty,’ - y2’' = —1 and the curves are perpendicular. Atz = 1,31’ = —1,32" = 1
sothat 1’ - y2' = —1 and the curves are perpendicular.

The curves meet when 1 — 23/3 = z — 1, that is when z* 4 37 — 6 = 0. So the roots of this equation give us the z-
coordinates of the intersection point. By numerical methods, we see there is one solution near x = 1.3. Sec Figure 3.22.

Let
3

ni{z)=1- % and yo(z) =2 —1.

So we have
’ 2 ’
y =-—x and y2 = 1.
However, y2'(z) = +1, so if the curves are to be perpendicular when they cross, then y,’ must be —1. Since yy' = —z°,
y1’ = —1 only at z = *1 which is not the point of intersection. The curves are therefore not perpendicular when they
Cross.

—-201

Figure 3.22
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68. Differentiating gives dy =hz+1-0
To find the point at which the graph crosses the z-axis, set y = 0 and solve for x:

O0==zlnz —bzx

=z(lnz - b).
Since z > 0, we have
Inzx-b=0
z=e.

At the point (e”, 0), the slope is
dy
dx
Thus the equation of the tangent line is

=ln(eb)+l—b=b+1—b=l.

y—O:l(a:—e")

b
y=xr—e.

dg d (1) d [ _» -3 2GM
: Y_omE(=)=GM— = GM(- =— .
69. (a) 22 =GM— () =GM (r7?) = GM(-2)r =
(b) dg is the rate of change of acceleration due to the pull of gravity. The further away from the center of the earth, the

weaker the pull of gravity is. So g is decreasing and therefore its derivative, Z—q is negative.
r
(c) By part (a).

2GM
3

_2(6.67 x 107°°)(6 x 10*") B _6
= 610073 ~ —3.05 x 107°.

dg
dr

r=06400 r=6400

(d) Itis reasonable to assume that g is a constant near the surface of the earth.
70. The population of Mexico is given by the formula

M = 84(1 +0.026)" = 84(1.026)" million

and that of the US by
U = 250(1 + 0.007)" = 250(1.007) million,

where ¢ is measured in years (¢ = 0 corresponds to the year 1990). So,

AN g4y 006)f = 84(1.026) u(1.026)| =~ 2.156
dt dt
t=0 1=0 t=0
and W o0l 007 = 25001.007) 1n(1.007)]  ~ 1744
dt dt
=0 t=0 t=0
Since -dﬂ du , the population of Mexico was growing faster in 1990.

dt

t=0 dt =0
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71, (a) If the distance s(t) = 20e ¥, then the velocity, v(t). is given by

o(t) = §'(¢) = (20e%)' = (%) (20e%) = 10e*.

(b) Observing the differentiation in (a), we note that

Substituting s(t) for 20e%, we obtain s (t) = 1s(t).
72. (a) P
30

P = 30e-3-28x107%4

h
(b) 4P
ar -3.23%x1078h -5
o =30 (~3.23 x 107°%)
50
P _ —30(3.23 x 107%) = —-9.69 x 107*
dh|, _o

Hence, at h = 0, the slope of the tangent line is —9.69 x 10™*, so the equation of the tangent line is

y—30 = (~9.69 x 107*)(h — 0)
y = (-9.69 x 10~ *}h + 30.
(c¢) The rule of thumb says

Drop in pressure from \ _ &
sea level o height h ~ 1000

But since the pressure at sea level is 30 inches of mercury, this drop in pressure is also (30 — P). so

h
0= P = 1000
giving
P =30 -0.001h.

(d) The equations in (b) and (c) are almost the same: both have P intercepts of 30, and the slopes are almost the same
(9.69 x 10™* = 0.001). The rule of thumb calculates values of P which are very close to the tangent lines, and
therefore yields values very close to the curve.

(e) The tangent line is slightly below the curve, and the rule of thumb line, having a slightly more negative slope, is
slightly below the tangent line (for h > 0). Thus, the rule of thumb values are slightly smaller.

73.

% = —7.5(0.507) sin(0.507t) = —3.80sin(0.507¢)

(a) Whent =6, %% = —3.805sin(0.507 - 6) = —0.38 meters/hour. So the tide is falling at 0.38 meters/hour.

(b) Whent =9, %{- = —3.805in(0.507 - 9) = 3.76 meters/hour. So the tide is rising at 3.76 meters/hour,

(c) Whent =1 ‘f—} = —3.80sin(0.507 - 12) = (.75 meters/hour. So the tide is rising at 0.75 meters/hour.
1

t
(d) Whent =

)

2
8, ‘f—# = —3.80sin{0.507 - 18) = —1.12 meters/hour. So the tide is falling at 1.12 meters/hour.
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74. Since we're given that the instantaneous rate of change of T at ¢ = 30 is 2, we want 1o choose a and b so that the derivative
of T agrees with this value, Differentiating, T'(t) = ab - e~ Then we have
2=T'(30) = abe *® ore™3% = ib
a

We also know that at t = 30, T = 120, so

120 = T(30) = 200 — ae *® ore 3% = ga_“

Thus %O =e %% = % sob = & =0.025 and « = 169.36.

75. (a) Differentiating, we see

dy

v=or = —2mwyo sin(2wwt)
a= @ = —4772w2y0 cos(2mwt).
dt
(b) We have
y = yo cos(2mwt)
v=—2m wyo sin(2rwt)
a = —4nuw’? yo cos(2rwt).
So

Amplitude of y is |yol,
Amplitude of v is |2rnwye| = 2rw|y0|.
Amplitude of a is |[47°w?yo| = 47w |yol.

The amplitudes are different (provided 2mw # 1). The periods of the three functions are all the same, namely 1/w.
(¢) Looking at the answer to part (a), we sec

d?y
W =a=—47 w (yo (,05(21«».‘."))
= —41r2w2y.
So we scc that
d2 2
dt?
76. (a) Since llm e~ %! = 0, we see that lim —IMOO— = 1000000. Thus, in the long run, close to 1.000,000

t—+oo0 1 + 500091
peoplc wﬂl have had the discase. This can be seen in the figure below.

1.000,000 N(t)

(b) The rate at which people fall sick is given by the first derivative N (t).
N'(t) = 5, where At = 1 day.

N'(t) = 500,000.000 _ 500.000.000
77 e0-1t(1 4 5000e-0-1¢)2 T 01t + 25,000.000e 01t + 10%
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Graphing this we sce that the maximum value of N'(t) is approximately 25.000. Therefore the maximum
number of people to fall sick on any given day is 25,000.

dN

dt
25,000 -

20,000
15,000
10,000 r N'(8)

5,000 +

. - : ~—
50 100 130 200

77. Let r be the radius of the balloon, Then its volume, 1, is
4
V== .
3 Tr

We need to find the rate of change of V7 with respect to time, that is dV7/dt. Since V7 = V(r).

i‘; - 4""1'2
dr ~
so that by the chain rule,
dV dVdr 2
-(IT = IE =47r° -1

When r = 5, dV//dt = 1007 cm3/sec.

78. The radius r is related to the volume by the formula V' = %m's. By implicit differentiation, we have

dV’ 4 2dr »dr
— = -w3r — =dar —.
T TR
The surface area of a sphere is 47r”. so we have
d\’ dr
=g —,
e dt’
but since d_t = §s was given, we have
dr 1
dt = 3

79. (a) Since df/dt represents the rate of change of 8 with time, ¢8/dt represents the angular velocity of the disk.
(b) Suppose P is the point on the rim shown in Figure 3.23.

I)

Figure 3.23
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Any other point on the rim is moving at the same speed, though in a different direction. We know that since 6 is

in radians,
s =ab.
Since a is a constant, we know
ds _ o
dat — T dt’
But ds/dt = v. the speed of the point on the rim, so
v=all
r=ao

80. Using Pythagoras® theorem, we see that the distance = between the aircraft’s current position and the point 2 miles directly
above the ground station are related to s by the formula r = (s — 2%)'/2, See Figure 3.24. The speed along the aircraft’s

constant altitude flight path is
dz 1 2 i-1/2 (ds) sds
— == -4 28—} = —-——.
a (2)(3 PN w) T ra

dx 16

When s = 4.6 and ds/dt = 210,

—210
dt v/ (4.6)? — 4

966
Vv21.16 - 4

966
= — x= 233. i 2
i1 33.2 miles/hour.

I A (Aircraft)

G (Ground station)

Figure 3.24

81. We want to find dP/dV. Solving PV" = k for P gives

P=k/V
50,
ar _ _k
av - v

82. (a) Since V' = k/P, the volume decreases.
(b) Since PV = kand P = 2 when V" = 10, we have k = 20, so

20
V==,
P
We think of both P and V" as functions of time, so by the chain rule
dv _ dvdp
dt — dP dt’
dv _ _20dp
dt ~  P2dt’
We know that dP/dt = (.05 atm/min when P = 2 atm, so
dv. 20

— = = —0.95 em3/mi
T 2 (0.05) 0.25 cm’/min.
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83. (a) fy =lnz, then

/-1
V=
y"=—lﬂ

7
117—1
L —'I3
‘IIII__Q
g =

and so
g = (=) (= 1)
(b) If y = xe”, then
y =ret +e
y' = xe’ + 27
Yy = xe® 4 3e*
so that
g = we® + ne”.

(¢) If y = e® cos, then

y =e (cosx —sinx
J T

"= 2% sinr

y" =" (=2cosx — 2sinz)

y('” = —4¢"cosr

y® = eT(—4cosz + dsinx)

y(G) = 8¢°sin r.

Combining these results we get

g™ = (=)'~ 4T (cosx - sinr), n=4m+1,
g’ = —2(—4)("'2"/"0" sina, n=4m+2,
Y = (=)t (cos r + sin 1), n=4m+3.
Yy = (=) e cos, n=4m.

84. (a) We multiply through by A = f - g and cancel as follows:

oo _ K

FYe T

I d _

fl g' _h'
7 fg+ 7 fa= W h

f,'g"'.’/l’f:’llﬂ

which is the product rulc.
(b) We start with the product rule, multiply through by 1/(fg) and cancel as follows:

Iog+g-f=¥

' , (I
(f'9+y~f)-E—h Ta
: Lo VI §
(g rlg- N =h-m
o _r
FTeTh

which is the additive rule shown in part (a).

m=20.1,2,3....
m=0.1.23....
m=20.1,2,3,...
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85. This problem can be solved by using cither the quotient rule or the fact that

f? = Tci(lnf) and % = %(lng).

We use the second method. The relative rate of change of f/gis (f/g) /(f/g). so

(Y _d (£ 24 — Ly -Lmg=L -2

Thus, the relative rate of change of f/g is the difference between the relative rates of change of f and of g.
CAS Challenge Problems
86. (a) Answers from different computer algebra systems may be in different forms. One form is:

5—1(1 +1) =2 +1)"" '+ (@ +1)%In(z + 1)

;—I (sinx)® = zcosz(sina)* ™! + (sinx)” In(sin z)
{b) Both the answers in part (a) follow the gencral rule:

g;f(x)"" =zf' (@) (F@)*™" + (f(£))" In(f ().
(c) Applying this rule to g(x), we get

dix(hl )® = z(1/z)(lnz)* "' 4+ (lnz)* In(lnx) = (Inz)*~! + (lnz)* ln(ln z).

This agrees with the answer given by the computer algebra system.
(d) We can write f(z) = e'"/N S0

(f(z))* = (eln(i(r)))z = T Inli(2)),
Therefore, using the chain rule and the product rule,

(F@) = & @n(f@)) - = (in(f@) + 2 3 (@) eI

4
dz dx

@)
= zf'(2) (f(2))*" + (F(2))* In(f(2)).

= (m(f(2) + 2L "“”’) (F(2)* = n(f() (f(2))* + 27 () (F(z))""

87. (a) A CAS gives f'(z) = 1.
(b) By the chain rule,

. . 1
x) = cos(arcsinz) - ———.
f'(@) = coslaresinz) - —est
Now cost = ++/1 — sin® t. Furthermore, if —7/2 < ¢ < #/2 then cost > 0, so we take the positive square
and get cost = /1 — sin®t. Since —m/2 < arcsinz < 7/2 for all z in the domain of arcsin, we have

cos(arcsin ) = /1 - (sin(arcsin z))? = /1 — 22,
$0

% sin(arcsin{z)) = /1 -2? ——= =1

(¢) Since sin(arcsin(z)) = =, its derivative is 1.

88. (a) A CASgivesg'(r) =0.
(b) Using the product rule,

’ d —-2r - —2r d r =247 —2r r
) = 2 . 4 — (4 = — . . 4
g'(r) dr( ) 4 42 dr(4) 2In2-27%4" +27 % In4 .4
=-In4-2774" +1n4-27%74 = (—ln4+n4)27%74 =0-2"74" = 0.

(¢) By the laws of exponents, 47 = (2%)" = 27", 5027 274" = 27272%" = 9% = 1. Therefore, its derivative is zero.

179

root
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89. (a) ACASgivesh'(t) =0
(b) By the chain rule

d 1 d t 1 1 t
/ all-7 ot \r—T = T o?
h (t)= dl( ‘t) +dt (f—l) - [7_'-’1 +t 1 l(r 1)
-+ = - =1
1 (t-1)—-t 1 -1
rERy S rEar S

(c) The expression inside the first logarithm is 1 — (1/¢) = (¢ — 1)/t. Using the property log A + log B = log(AB).

we get
1 t 1-1 t
'"(1_?)+l“(t—1)_l"( t )+1n(t—1)

=|n("1-L)=lnl=0.
t 1-1

Thus A(t) = 0.so h'(t) = 0 also.

CHECK YOUR UNDERSTANDING

True. Since d(x™)/dr = nx" 1. the derivative of a power function is a power function, so the derivative of a polynomial
is a polynomial.

—
.

2. False, since

‘ —1 —_ _—
ddr (:-’) = (;1. (re™?) = —2m27% = %
3. True, since cos @ and therefore cos® 8 are periodic, and

d 1
@(taﬂ 8) = (X)S_Je

4. False. Since R
d 2 1 2 d- 2 d (2 2
- )= —=-2r== ad -l ~=—(—)=——.:
dx In(x") PR dz? u(z’) dr \x x?
we see that the second derivative of In{z?) is negative for r > 0. Thus, the graph is concave down.
5. True. Since f'(z) is the limit
1oy = o J@ ) = f(x)
R
the function f must be defined for all z.
6. True. The slope of f(z) + g(x) at x = 2 is the sum of the derivatives. f'(2) + ¢'(2) = 3.1 + 7.3 =10.4.
7. False. The product rule gives
(f9)' = fg'+f'9.

Differentiating this and using the product rule again, we get
(f9)' =fd +fd"+Fg +1"9=Ffg"+2fd +f"9g.
Thus. the right hand side is not equal to f¢'' + f” g in general.
8. True. If f(zx) is periodic with period c. then f(r + ¢) = f(x) for all x. By the definition of the derivative, we have

['(@) = lim fﬁ%ﬂ

nd £ h) - f(z +0)
' _ oo jlzte+h)—Jlx+c
fleto = fim i -

Since f is periodic, for any i # 0, we have

fle+h)—flx)  flr+c+h)— flz+c)
h - h
Taking the limit as h — 0, we get that f'(x) = f'(z + ¢). so f is periodic with the same period as f(z).
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True; differentiating the equation with respect to z, we get

dy dy
2y—= — =0.
Yar +y+ T 0
Solving for dy/d=z, we get that
dy _ v
dr 2y+zx’
Thus dy/dz exists where 2y + z # 0. Now if 2y + r = 0. then £ = —2y. Substituting {or z in the original equation,

y:+ry—1=0, we get
y2 - 2y? -1=0.
This simplifies to 4> + 1 = 0, which has no solutions. Thus dy/dx exists everywhere.

False. The slope is given by
dy _ dyjdt _ 2tcos(t’) _  cos(t?)

dz ~ dz/dt ~ —2sin(£2) ~ sin(t?)’

False. If f(z) = ||, then f(z) is not differentiable at # = 0 and f'(z) does not exist at r = 0.
False. If f(z) = Inz, then f'(z) = 1/z, which is decreasing for z > 0.

False; the fourth derivative of cost + C, where C is any constant, is indeed cos ¢. But any function of the form cos t +p(#),
where p(t) is a polynomial of degree less than or equal to 3, also has its fourth derivative equal to cost. So cos t + t7 will
work.

. False; For example, the inverse function of f(x) = x® is '/2, and the derivative of z'/3 is (1/3)x /3, which is not

1/f'(z) = 1/(3%).

False; for example, if both f(z) and g(z) are constant functions, such as f(z) = 6. g(z) = 10, then (fg)'(z) = 0. and
f'(z)=0and g'(z) = 0.

True; looking at the statement from the other direction, if both f(«) and g(x) are differentiable at z = 1, then so is their
quotient, f(z)/g(x), as long as it is defined there, which requires that g(1) # 0. So the only way in which f(z)/g(z)
can be defined but not differentiable at x = 1 is if either f{z) or g(z), or both, is not differentiable there.

False; for example, if both f and g are constant functions, then the derivative of f(g(x)) is zero, as is the derivative of
f(z). Another example is f(z) = 5z + Tand g(z) = v+ 2.

True. Since f”(x) > 0 and g"(z) > 0 for all x, we have f'(z) + g"(z) > 0 for all z, which means that f(z) + g(z) is
concave up.

False. Let f(z) = z* and g(z) = z° — 1. Let h(z) = f(z)g(z). Then k" (z) = 122% — 2. Since h"”(0) < O, clearly
is not concave up for all z.

. False. Let f(z) = 222 and g(x) = z°. Then f(r) — g(z) = x%, which is concave up for all z.

False. Let f(z) = e~* and g(z) = z°. Let h(x) = f(g(z)) = e=7* . Then h(z) = —2re™*" and Ki(z) = (-2+

4z%)e™*". Since h"(0) < 0, clearly h is not concave up for all r.

(a) False. Only if k = f'(a) is L the local lincarization of f.

(b) False. Since f(a) = L{a) for any k, we have lim;_o(f(z) — L(z)) = f(a) — L(a) = 0. butonly if k = f'(a) is
L the local linearization of f.

(a) This is not a counterexample. Although the product rule says that (fg)' = f'g + fg'. that does not rule out the
possibility that also (fg)' = f'g’. In fact, if f and g are both constant functions, then both f'g + fg’ and f'g’ are
zero, so they are equal to each other.

(b) This is not a counterexample. In fact, it agrees with the product rule:

L) = (L) 1@ +22 @) = @) + 27 (@) =27 () + (@)
(c) This is not a counterexample. Although the product rule says that
L (1) = 1@ - 1) = F @) + f@) &) = 20 (=),

it could be true that f'(z) = 1, so that the derivative is also just 2f(x). In fact, f(z) = x is an example where this
happens.
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(d) This would be a counterexample. If f'(a) = g'(a) = 0, then
(1 !
@) = f'(a)g(a) + f(a)g'(a) = 0.

So fg cannot have positive slope at x = a. Of course such a counterexample could not exist, since the product rule
is true.

PROJECTS FOR CHAPTER THREE

1. Let r = i/100. (For example if i = 5%, r = 0.03.) Then the balance, $B, after t years is given by
B=P(1+r),

where $ P is the original deposit. If we are doubling our money, then B = 2P, so we wish to solve for ¢ in the
equation 2P = P(1 + r)*. This is equivalent to

2=(1+1)".
Taking natural logarithms of both sides and solving for ¢ yields

In2 =tIn(l+r),
‘= In2
T In(l1+r)
We now approximate In(1 + r) near 7 = 0. Let f(#) = In(1 + r). Then f'(r) = 1/(1 +r). Thus, f(0) = 0
and f'(0) = 1. s0
fr) = f(0) + f(O)r
becomes
In(l+7r)=r.
Therefore,
_ _Im2  In2 100ln2 70
TWm(l+ry ¢ i 0

as claimed. We expect this approximation to hold for small values of i; it turns out that values of i up to 10
give good enough answers for most everyday purposes.

2. (a) (i) Set f(z) =sinz, so f'(z) = cosz. Guess rg = 3. Then

no=3- 203 31495
053
vy = 1) — ontl % 31415926533,

Ccos I

which is correct to one biilionth!

(ii) Newton's method uses the tangent line at z = 3, i.e. y — sin3 = cos(3)(z — 3). Around r = 3,
however, sin z is almost linear, since the second derivative sin”(x) = 0. Thus using the tangent line
10 get an approximate value for the root gives us a very good approximation.

f(x) =sinr

tangent line
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(iii) For f(x) = sinx, we have

£(3) =0.14112
f(4) = —0.7568,

so there is a root in 3, 4). We now continue bisecting:

[3,3.5] : f(3.5) = —0.35078 (bisection 1)
[3,3.25] : f(3.25) = —0.10819 (bisection 2)
[3.125,3.25] : f(3.125) = 0.01659 (bisection 3)
[3.125.3.1875] : f(3.1875) = —0.04584 (bisection 4)
We continue this process; after 11 bisections, we know the root lies between 3.1411 and 3.1416. which
still is not as good an approximation as what we get from Newton's method in just two steps.
(b) (i) Wehave f(z) =sinz — 3z and f'(x) = cosz — 2.
Using xg = 0.904,
sin(0.904) — 2(0.904)

= 0.904 — ~ 1.704,
o c05(0.904) — 2 e
in(4.704) — 2(4.704
2 = 4704 = SRET0) — 50D oy
cos(4.704) - 3
sin(—1.423) — 2(—1.423) i
r3 = —-1.433 - 5 ~ —1.501.
cos(—1.423) - 3
sin{—1.501) — g( 1.501)
4= —1.499 — ~ —1.496,
T cos(=1.501) — 2 %,
in(~1.496) — 2(—1.496
£ = —1.496 — S(-1496) - 5( ) ~ —1.496.

cos(—1.496) — 2
Using 2o = 0.905,
sin(0.905) — £(0.905)

=0.905 — ~ 1.643,
i c0s(0.905) — 2 '
sin(4.643) — (4 643)
Ty = 4.643 — ~ —0.918,
cos(4.643) - 3
sin(—0.918) — 2(-0.918)
= —-0.918 - 3 ~ —3.996,
8 0s(—0.918) - 2
sin(—3.996) — 2(—3.996)
-y = —3.996 — i ~ —1.413,
B cos(—3.996) — 2 ‘
= 1413 sin(—1.413) — 2(-1. 413) ~ —1.502
T = cos(—1413) =2 %
sin(—1.502) — 2(-1.502)
6 = —1.502 — ~ —1.196.
Te ? cos(—1.502) — 3
Now using g = 0.906,
in(0.906) — 2(0.906
sin(0-906) — 5(0.906) _ , 54,

= 0.906 —
. cos(0.906) — 2
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sin(4.584) — %(4.584) N

To = 4.584 — 7 ~ —0.509.
2 0 cos(4.584) — 3 °
sin(—=0.509) — 2(-0.509
25 = 0510 - Sn(=0.509) - 5(=0509) .
cos(—0.509) — 5
in(.207) — 2(.207
2y = —1.300 — 50200 = 5(200) 6009
cos(.207) — 3
in(—0.009) — 2(-0.009
25 = — 1513 _ n(=0:009) — 5( ) %0

cos(—0.009) — 2

(ii) Starting with 0.904 and 0.905 yields the same value, but the two paths to get to the root are very
different. Starting with 0.906 leads to a different root. Our starting points were near the maximum
value of f. Consequently, a small change in 2o makes a large change in z;.



