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CHAPTER SIX

Solutions for Section 6.1

Exercises

1.

to

n

By the Fundamental Theorem of Calculus, we know that
s@-10= [ 1w
0

Using a left-hand sum. we estimate juz f(x)dz =~ (10)(2) = 20. Using a right-hand sum, we cstimate ]0 f(x)dr =~
(18)(2) = 36. Averaging, we have

2
/ fl(x)dr = 20+36 = 28.
Jo 2
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We know f(0) = 100, so

Similarly, we estimate

SO

Similarly,

SO

The values are shown in the table.

f(2) = f(0) + /; F(r)de = 100 + 28 = 128.
4]

/“ (o) ~ (B)) : (23)(2) _

v
F@)=7f2)+ / fl(x)dr ~ 128 + 41 = 169.

/f( )(2);( @) _ 48

6
f(6) = f(4) +/ f'(x)dx = 169 + 48 = 217
4

T 0 2 4
f(z) | 100 | 128 | 169 | 217

. The change in f(z) between 0 and 2 is equal to f f' () da. A left-hand estimate for this integral is (17)(2) = 34 and a

right hand estimate is (15)(2) = 30. Our best estimate is the average. 32. The change in f(z) between 0 and 2 is +32.
Since £(0) = 50, we have f(2) = 82. We find the other valucs similarly. The results are shown in Table 6.1.

Table 6.1
z 0] 2 4 6
fy|so|82]|107] 119

7. (1) The value of the integral is negative since the area below the x-axis is greater than the arca above the z-axis. We
count boxes: The area below the x-axis includes approximately 11.5 boxes and each box has area (2)(1) = 2, so

/d fla)dr = -23.
0

The area above the x-axis includes approximately 2 boxes, each of arca 2, so

So we have

-7
/ fla)dx = 4.
5

7 -5 -7
/ flz)dz = / flx)de + / f(z)de =~ -23 +4=-19.
o 0 5

(b) By the Fundamental Theorem of Calculus, we have

50,

F(7) - F(0) = / F(x)dz
0

F(7) = F(0) + / | Fla)da = 25 + (~19) = 6.
Jo
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8. Since dP/dt is negative for ¢ < 3 and positive for t > 3, we know that P is decreasing for ¢ < 3 and increasing for
t > 3. Between each two integer values. the magnitude of the change is equal to the area between the graph dP/dt and
the t-axis. For example, between t = 0 and £ = 1, we see that the change in P is —1. Since P = 2 at¢ = 0, we must
have P = 1 att = 1. The other values are found similarly, and are shown in Table 6.2.

Table 6.2

]
Pl1fo]-172]0]1

t

[P%]
4
7]

Problems

9. (a) Critical points of F(x) are the zerosof f: . = landz = 3.

(b) F(z) has a local minimum at z = 1 and a local maximum at ¢ = 3.

(© : z : bz
1 2 3 4

Notice that the graph could also be above or below the z-axis at £ = 3.

10. (a) Critical poinis of F(z)arex = —1,r =landr = 3.
(b) F(z) has a local minimum at z = —1, a local maximum at x = 1, and a local minimum at z = 3.

() l
t—t—1 V\ —f+ T
-21-1 1 3[4
F(z)
|
11.
F(x)
] x=1 S *

Note that since f(z1) = 0 and f'(£1) < 0, F(x)) is a local maximum; since f(z3) = 0 and f'(z3) > 0, F(z3) is
a local minimum. Also, sincc f'(:r2) = 0 and f changes from decreasing to increasing about = 2, F has an inflection
pointat r = .
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12,

Note that since f(x2) = 0. f'(z2) > 0, so F(z2) is a local minimum. Since f'(z1) = 0 and f changes from
decreasing to increasing at £ = x. F has an inflection point at z = z;.

13.

F(z)

Note that since f(a1) = 0, F(z,) is either a local minimum or a point of inflection; it is impossible to tell which from
the graph. Since f'(xa) = 0, and f’ changes sign around z = r3, F(z3) is an inflection point. Also, since f'(z2) =0
and f changes from increasing to decreasing about = z2, F has another inflection point at & = x2.

14. Between t = 0 and t = 1, the particle moves at 10 km/hr for | hour. Since it starts at x = 5, the particle isat z = 15
when ¢ = 1. Sce Figure 6.1, The graph of distance is a straight line between ¢t = () and ¢ = 1 because the velocity is
constarit then.

Between t = 1 and ¢ = 2, the particle moves 10 km to the left, ending at z = 5. Between t = 2 and ¢ = 3, it moves
10 km to the right again. See Figure 6.1.

z (km)
15 +

10 r

et t (hn)
. i 5 6
Figure 6.1

As an aside. note that the original velocity graph is not entirely realistic as it suggests the particle reverses direction
instantaneously at the end of cach hour. In practice this means the reversal of direction occurs over a time interval that is
short in comparison to an hour.

15. (a) We know that f03 f'(z)dz = f(3) — £(0) from the Fundamental Theorem of Calculus. From the graph of f' we
can sec that f03 f'(x)dx = 2 — 1 = 1 by subtracting areas between f and the z-axis. Since f(0) = 0, we find that

f(3) = 1. Similar reasoning gives f(7) = fo’ fada=2-1+2-4+1=0.
(b) We have f(0) = 0, f(2) =2, f(3) = 1, f(4) = 3. f(6) = —1, and f(7) = 0. So the graph, beginning at = = 0,
starts at zero, increases to 2 at & = 2, decreases 10 1 at & = 3, increases to 3 at = 4, then passes through a zero as
it decreases 1o —1 at = 6, and finally increases to ) at 7. Thus, there are three zeroes: x = 0,r = 5.5,andx = 7.
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(0 y

16. We can start by finding four points on the graph of F'(x). The first one is given: F(2) = 3. By the Fundamental Theorem
of Calculus, F(6) = F(2) + f; F'(x)dx. The value of this integral is —7 (the area is 7, but the graph lies below the
z-axis), so F(6) = 3 — 7 = —4. Similarly, F/(0) = F(2) — 2 = 1, and F'(8) = F(6) + 4 = 0. We sketch a graph of
F(z) by connecting these points, as shown in Figure 6.2.

(2.3)
(0.1) N (8'0)1
4 8
(6.4)
Figure 6.2

17. The critical points are at (0. 3), (2. 21), (4, 13), and (5, 13). A graph is given below.

y (2,21)

(5,15)

18. Looking at the graph of ¢’ below, we see that the critical points of g occur when z = 15 and z = 40, since g'(z) =0al
these values. Inflection points of g occur when & = 10 and z = 20, because g'(z) has a local maximum or minimum at
these values. Knowing these four key points, we sketch the graph of g(r) as follows.

We start at ¢ = 0, where g(0) = 50. Since ¢’ is negative on the interval [0. 10], the value of g(x) is decreasing there.
Atz = 10 we have

10
g(10) = ¢(0) +/ g'(x)dx
0

= 50 — (area of shaded trapezoid Ty )
- (10 + 20
=50 —

. 10) = —100.

Similarly,

15
9(15) = 9(10) +/ §(x) dz
1

o
—100 — (arca of triangle T5)

Il

100 — %(5)(20) = —150.
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Continuing, .
Y - 1. -
g(20) = g(15) + / g (zx)dr = —150 + 5(3)(10) = —125.
15
and 10 )
g{40) = g(20) +/ g'(r)der = —125+ 3(20)(10) = —25.
20 <
(20.10)
g9'(x)
T

x
40>

-10

(10, —20)

We now find concavity of g(z) in the intervals [0. 10], [10. 13], [15, 20], [20, 40] by checking whether g'(x) increases
or decreases in these same intervals. If g’ () increases, then g(xr) is concave up; if ¢’ () decreases, then g{x) is concave
down. Thus we finally have our graph of g(xr):

(0,50) N g(zx)

(15, =150)

19. Betweentimet = 0 and time t = B, the velocity of the cork is always positive, which means the cork is moving upwards.

Attime t = B, the velocity is zero, and so the cork has stopped moving altogether. Since shontly thereafier the velocity
of the cork becomes negative, the cork will next begin to move downwards. Thus when ¢ = B the cork has risen as far as
it ever will, and is riding on top of the crest of the wave.

From time ¢t = B to time ¢ = D, the velocity of the cork is negative, which means it is falling. When ¢ = D, the
velocity is again zero, and the cork has ceased to fall. Thus when t = D the cork is riding on the bottom of the trough of
the wave.

Since the cork is on the crest at time B and in the trough at time D, it is probably midway between crest and trough
when the time is midway between B and D. Thus at time ¢ = C the cork is moving through the equilibrium position on
its way down. (The equilibrium position is where the cork would be if the water were absolutely calm.) By symmetry,
t = A is the time when the cork is moving through the equilibrium position on the way up.

Since acceleration is the derivative of velocity, points where the acceleration is zero would be critical points of the
velocity function. Since point .4 (a maximum) and point C (a minimum) are critical points, the acceleration is zero there.

A possible graph of the height of the cork is shown below. The horizontal axis represents a height equal to the average
depth of the ocean at that point (the equilibrium position of the cork).

height 5

ANV
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20. The rate of change is negative for ¢ < 5 and positive for £ > 5, so the concentration of adrenaline decreases until { = 3
and then increases. Since the arca under the z-uxis is greater than the area over the r-axis, the concentration of adrenaline
goes down more than it goes up. Thus, the concentration at ¢ = 8 is less than the concentration at { = 0. See Figure 6.3,

adrenaline concentration (p.g/mi)

L—— { (minutes)
7 8

Figure 6.3

21. (a) The total volume emptied must increasc with time and cannot decreasc. The smooth graph (1) that is always increasing
is therefore the volume emptied from the bladder. The jagged graph (11) that increases then decreases (o zero is the
flow rate.

(b) The total change in volume is the integral of the flow rate. Thus, the graph giving total change (T) shows an antideriva-
tive of the rate of change in graph (II).

22. The graph of f(z) = 2sin(x?) is shown in Figure 6.4. We sce that there are roots at ¥ = 1.77 and = = 2.51. These are
the critical points of F'(z). Looking at the graph, it appears that of the three areas marked, A; is the largest, A2 is next,
and Aj is smallest. Thus, as = increases from 0 to 3, the function F(r) increases (by 4y), decreases (by A2), and then
increases again (by A3). Therefore, the maximum is attained at the critical point £ = 1.77.

What is the value of the function at this maximum? We know that F(1) = 5, so we need to find the change in F
between £ = 1 and ¢ = 1.77. We have

L7
Change in F = / 2sin{z?) de = 1.17.
1
We see that F(1.77) = 5 + 1.17 = 6.17, so the maximum value ol F on this interval is 6.17.

2 =

23,

(a) f(z)is greatest at ;.
(b) f(x) is least at x5.

(¢) f'(x)is greatest at r3..
(d) f'(x)is least at xs.

(e) f"(z)is greatest at r;.
(0 f"(x)is least at zs.



320 Chapter Six /SOLUTIONS

24. Both F(z) and G(z) have roots at x = 0 and = = 4. Both have a critical point (which is a local maximum) atz = 2.
However, since the area under g(z) between z = 0 and 2 = 2 is larger than the arca under f(z) betwecn x = 0 and
z = 2, the y-coordinate of G{(x) at 2 will be larger than the y-coordinate of F'(z) at 2. See below.

T
25. (a) Suppose Q{#) is the amount of water in the reservoir at time ¢. Then
Q'(t) = Rate at which water ~_ Inflow Outflow
M in reservoir is changing ~ rate rate

Thus the amount of water in the reservoir is increasing when the inflow curve is above the outflow, and decreasing
when it is below. This means that Q(¢) is a maximum where the curves cross in July 1993 (as shown in Figure 6.5),
and Q(¢) is decreasing fastest when the outflow is farthest above the inflow curve, which occurs about October 1993
(see Figure 6.5).

To estimate values of @(t), we use the Fundamental Theorem which says that the change in the total quantity
of water in the reservoir is given by

t

Q(t) — Q(Jan'93) = / (inflow rate — outflow rate) dt

Jan93
t
or Q(t) = Q(Jan’93) + / (inflow rate — outflow rate) dt.
Jan93
rate of flow ) - :
(millions of gallons/day) Q(1) is decreasing most rapidly
Q(t) isincreasing Q(¢t) ismax
most rapidly Q(t) is min
Outflow
\\
Infiow
1 (] L]
Jan (93) April Jul Oct Jan{94)
Q)
miliions of gallons
1. 1 1 ]
Jan (93) Aprit July Oct Jan(94)

Figure 6.5
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(b) See Figure 6.5. Maximum in July 1993. Minimum in Jan 1994,

(c) See Figure 6.5. Increasing fastest in May 1993, Decreasing fastest in Oct 1993,

(d) In order for the water to be the same as Jan '93 the total amount of water which has flowed into the reservoir must be
0. Referring to Figure 6.6, we have

July94
/ (inflow — outflow)dt = — 4y + A2 — A3+ 45=0
3

an93

giving 41 + Az = A2 + A4

rate of flow
(miflions of gallons/day)

Inflow

Qutilow

Jan ('93) April July Oct Jan {'94) Apeit Juty

Figure 6.6

Solutions for Section 6.2

Exercises

[

H .
w
|

da W
[ E AT AT ]

(= Y}
. s .
5 owie
Jasdi
&

oe ~
|
| -

5
4. L 4y
5
15. sint + tant
£ +1
t
17. —cos 28

15 5
18. ¢' +5-5¢z t=e +e™

9

N o
=t+ -:— which has antiderivative 5 +1In|t
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19.

20.

21,

. F(r) = /(.r —1.r+()d.1—l;3
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Le+1p
h)
I3
5 2 2 3
E,IZ —§.E'

.A[‘*
Nlc\

f)—/(f + 5t - 1)d

. G(t):/ﬁdt=§t3/2+0

Gx) = /(sin;r +cosx)dr = —cosx +sinx + C

H(m):/(413—7)dm=14—71+C

P(t) = /(2+sint)dt =2t —cost+C
/—dt—zt”‘+(’

Glz) = /J%dr:——+C

.F(r):/x—l;dxz—I+C

f(z)=3,50 F(z) =3r +C. F(0) = 0 implies that 3 - 0 + C = 0, so C = 0. Thus F(x) = 3« is the only possibility.
f(x) = 2z,50 F(x) = 2% + C. F(0) = 0 implics that ¢*> + C = 0, 50 C = 0. Thus F(z) = z? is the only possibility.

flz) = =Tz, 50 F(r) = "—72‘—2- + C. F(0) = 0 implies that — - 0° + C' = 0.50 C' = 0. Thus F(r) = —72%/2is the
only possibility.
f(x) = tr.s0o F(x) = % + C. F(0) = 0 implies that § - 0° + C = 0,50 C = 0. Thus F(zr) = z*/8 is the only
possibility.

43

3
. f(z) =12 s0 F(z) = = +C' F(0) = 0 implics that 0— +C=0.50C =0.Thus F(z) = T is the only possibility.

. f(@) = 1'% s0 Fa) = 32%? + €. F(0) = 0 implies that § - 0% + C = 0,50 C = 0. Thus F(x) = 52%? is the

only possibility.

. f(x) =2 +4z +52% 50 F(x) = 22 + 227 + 32 + C. F(0) = 0 implies that C = 0. Thus F(z) = 2r + 22" + $1°

is the only possibility.

. f(z) =sinr,so F(z) = —cosx + C. F(0) = 0 implies that —cos0 + C = 0,50 C = 1. Thus F(r) = —cosxr + 1

is the only possibility.

. /51dr= gx"’+C.
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61.

=4
n

67.

68.

N

J
) - 5
‘/;(is—ﬂ.xtz)d1=(f£_1;;>

/Si110d0= —cos@+C

4
. /(113—2)11;1?: L _u+cC

. /4\/Edu‘ = 511'3/2 +C

—
/(12+5x+8)d1=%+?;—+8x+0

4
. S dt = —~
[#a=-3+c

L A2+ T+ C
. sin@+C

¢+ C

P s
;7+211/"+C
—cost+C

12

. -r+;+C

12
2 — bl 2!5/2 p— 2
/(fsl’ +t 3/-) dt = — -2t 172 +C
J

sin(r +1)+C

L1+ C

el:d-zv/‘e-:dz=—e_:+0

1'2
. y—=-) dy= | [v* -2+ =L -y-Ltic
J(om5) = (o) o=

3 3 3
/(1:2+4r+3)d:r=(%+213+31> =(9+184+9)-0=36
0 o
3 3
/ ?dt=1n|t| =In|3| - In|l] = In3 = 1.0986.
i 1
/4 w/4
2
/ sinrdzr = —cosz =-cos§-(—cosO)=—4+l=0.293.
0 o 2

2

=3e® — 3¢ = 3¢* — 3 = 19.167.
0

2
3e” dr = 3¢e*

=§22—39r~29128

2
1

sinfdf = —cosf| =1—cosl = 0.460.

1]

2 2 2N\ |2
/ “;l” dy:(ln[y|+y7>| =In2+ %~2193
1 = i <

= % +4=16/3 ~ 5.333.

6.2 SOLUTIONS

323
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o (ﬁ ﬁ)_(_

/4
69. / (sint + cost)dt = (— cost +sint)
0 0

-1
70./ —2§dr=—r_2
7

1
=2e — 2 = 3.437.
0

-1

-1+ % = —8/9 ~ —0.889.

-3

1
71. / 2e” dr = 2
0

=/4 7
=tan— —tan0 = 1.
4

1 AN
72. Since (tanz)' = ——, / ;= dr =tanz
cos?z cos?x

0

73. /2I dr = —1—2’ + C, since %2’ =1In?2-2% s0

In2
1 1 1

Tdr = — 27| | = 5o ~ 2164,
/_,2 dr 1n2[2 _1] 2tz - 210

Problems

74. We have N

4 1:3
Area = / ridr ==
1 3

75. The graph crosses the x-axis where

1

7-8x+2° =0
(z == -1)=0;

soz = 1and z = 7. See Figure 6.7. The parabola opens upward and the region is below the z-axis, so

7
Area =—/ (7— 8z +z’)dz
1

3

2 I

- | Tz -4 4+ —
(Il’ I 3)

7

1

Figure 6.7

76. The graph is shown in the figure below. Since cos 8 > sin8 for 0 < 8 < 7/4, we have

x4
Area =/ (cos @ —sin §) dé
0

=f4
= (sinf + cos )
°
1 1
==+ —-1=V2-1
V2 V2
y =cosé y =siné
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77. Since the graph of y = e” is above the graph of y = cosz (sec the figure below), we have

1
Area =/ (e" — cosz)dzx
0
1 1

=/ e’clx—/ cosx dx
0 0

i 1
—sinzx
0

T
=€

0
1 o . .
=e —e —sinl +sin0

=e¢—1-sinl.

! 3

78. The area under f(z) = 8z between ¢ = 1 and & = b is given by jlb (8x)dx. Using the Fundamental Theorem to evaluate

the integral:
b

Area = 47| = 4p? — 4.

Since the area is 192, we have

462 - 4 =192
4b* =196

b’ =49
b= 7.

Since b is larger than 1, we have b = 7.

79. The graph of ¥ = £ — ¢? has z-intercepts of x = =c. See the figure below. The shaded area is given by

Area = — (£ - dx

—c
< 9
= —'2/ («* = ?)dr
0
’,3 ¢

3
_ A _ c _ 3 _és
= 2<3 c.r)o_ 2(3 c)—sc.

We want ¢ to satisfy (4¢®)/3 = 36,s0¢ = 3.
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80. We have
10 3
-1 (-1%4-10—0) _ 108

1]

1 10 ) | (2
Average value = ﬁ—_()/o (2% + 1)dz = o (? + z)

We see in Figure 6.8 that the average value of 103/3 = 34.33 for f(z) looks right.

1oy fz) =22 +1
50 -
34.33 |—m—mm el
i 1 T
5 10
Figure 6.8

81. The average value of v(x) on theinterval 1 <z < ¢is
c
L[ e (Y
c=1/, «° c—1 T

L4
/ %dx:l.wehave§= 1,s0¢ = 6.
. T ¢

1
c—1
82. (a) The average value of f(¢)} = sint over0 < ¢t < 2x is given by the formula

Since

1 2n
Average sint dt
b 27 -0 o

2%

= Zi_(—— cost)
" 0

1
= %(—cos 27 — (—cos0)) =0.
We can check this answer by looking at the graph of sint below. The area below the curve and above the f-axis

over the interval 0 < t < &, .4), is the same as the area above the curve but below the ¢-axis over the interval
7 £t < 27, Az. When we take the integral of sin ¢ over the entire interval 0 < ¢ < 2w, we get 4 — A> = 0.

(b) Since

T

/ sintdt = —cost| = —cosw—(—cos0)=—(-1)—-(-1)=2.
0 0

the average valuc of sint on 0 < t < = is given by

]

1 v
Average value = —/ sintdt =
T Jo

)
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83. Since C'(x) = 4000 + 10z we want to evaluate the indefinite integral
/(4()()() + 10x)dr = 4000z + 52" + K

where K is a constant. Thus C(x) = 52" + 4000z + K, und the fixed cost of 1,000,000 riyal means that cy =
1.000,000 = K. Therefore, the total cost is
C(x) = 5z + 4000z + 1,000.000.

Since C(x) depends on z?, the square of the depth drilled, costs will increase dramaticalty when z grows large.

84. (1) CCl dumped
16

|

i

| ,

3 7

(b) 7 years, because #2 — 14t + 49 = (¢ — 7)? indicates that the rate of low was zero after 7 years.
(c)

o7
Area under the curve = 3(16) +/ (2 — 141 +49) dt
3

=48+ (%t" -7+ 49:)

3
=48+¥—343+343—9+63—147
2
= % = 69% cubic yards.

Solutions for Section 6.3

Exercises

i
1. y=/(z3+5)dr=%+5r+c

| ]

. y=/(8x+%) dz =4z +Injr| + C
. 8 372
W= [avide= 2t 4 C

4. r=/35inpdp=—3cosp+c

n
‘

Since y = ¢ +sin x — #, we differentiate to see that dy/dx = 1 + cos x, so y satisfies the ditferential equation. To show
that it also satisfies the initial condition, we check that y(=) = 0:

y=rc+sinr—w
y(m) =rn+sinm—7=0.
6. y= /(Gz'-’ +4r)dr = 20 + 227 + C. 11 y(2) = 10, then 2(2)* + 2(2)’ + C = 10and C =10 — 16 — 8 = —14.
Thus, y = 2z° + 227 — 14,

7. P= / 10et dt = 10e* + C. 1f P(0) = 25, then 10e° + C = 25 50 C = 15. Thus, P = 10e' + 15.

8, s= /(—32t +100) dt = —16t> + 100t + C. If s = 50 when ¢ = 0, then —=16(0)* + 100(0) + C = 50. so C' = 50.
Thus s = =16t + 100t + 50.
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9. Integrating gives

/Z—qdz = /(2+siuz)dz='2z—cosz+C.
If ¢ = 5 when z = 0, then 2(0) — cos(0) + C = 5s0C = 6. Thus g = 2z — cosz + 6.
10. We differentiate y = ze™" + 2 using the product rule to obtain

W = (e (1) + (e +0

=—ze “+e

= (1 -z ",

T

and so y = ze™® + 2 satisfies the differential equation. We now check that y(0) = 2:

y=wxe " +2
y(0) = 0e® +2 =2,

Problems

11. (a) Acceleration = a(t) = —9.8 m/sec?
Velocity = v(t) = —9.8( + 40 m/sec
Height = h(t) = —4.9t2 + 40t + 25 m

(b) At the highest point,
v(f) = -9.8{ + 40 = 0,

% 40

t= 98 = 4.08 seconds.
At that time, h(4.08) = 106.6 m. We see that the tomato reaches a height of 106.6 m, at 4.08 seconds after it is
thrown.

(¢) The tomato lands when h(t) = 0, so
—4.9t* + 40t + 25 = 0.

The solutions are t = —0.58 and t = 8.75 seconds. We see that it lands 8.75 seconds after it is thrown.

12. (a) y = /(2:1: + 1) dz, so the solution is y = 2°> + z + C.

(b) (] y
C=2 L y(1)=5
C=0 \
T _— T
C==2

(¢) Aty(l) = 5. wehave1” +1 4+ C = 5 and so C = 3. Thus we have the solution y = 22 + = + 3.
13.

Z—Zt’ = kvt = kt'/?
y= %kt“” +C.
Since y = 0 when t = 0, we have C = 0, so
o = -2-kt3/2
Y 3 .
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14. (a) To find the height of the balloon, we integrate its velocity with respect 1o time:

h(t) = / v(t) dt

= /(—32t +40) dt

{2
= —323 + 40t + C.
Since at ¢t = 0, we have i = 30, we can solve for C 1o get C' = 30, giving us a height of
h(t) = —16t* + 40t + 30.
(b) To find the average velocity between ¢ = 1.5 and ¢t = 3, we find the total displacement and divide by time.
h(3) - h(1.5) _6—054

Average velocity = 15 - 13 - —32 ft/sec.

The balloon’s average velocity is 32 ft/sec downward.
(¢) First, we must find the time when h(t) = 6. Solving the equation —16¢% + 40t + 30 = 6, we get
6 = —16t* + 40t + 30
0 = —16t> + 40t + 24
0=2"-5-3
0= (2t +1)(t - 3).

Thus,t = —1/2 ort = 3. Since t = —1/2 makes no physical sense, we use ¢ = 3 to calculate the balloon’s
velocity. At¢ = 3, we have a velocity of v(3) = —32(3) + 40 = —56 fsec. So the balloon’s velocity is 56 fi/sec
downward at the time of impact.

15. Since the car’s acceleration is constant, a graph of its velocity against time ¢ is linear, as shown below.

v (mph)

80

t {seconds)
The acceleration is just the slope of this line:
dv _ 80—0mph 40 _ mph
dt —  Gsec 3 13.33 sec
To convert our units into fUsec?,
@ m ] 5280 ft 1 hour 55 ft
3 sec | mile 3600sec  sec?

16. Since the acceleration a = dv/dt, where v is the velocity of the car, we have

dv
— = —-0.6¢ .
T 0.6t + 4

Integrating gives

+2
v=-0.6 +4t + C.
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The car starts from rest, so v = 0 when { = 0, and therefore C = 0. If  is the distance from the starting point, v = dz /dt

and —1v
& 0.3t + 41,
dt
50 0.3 4
r= —?‘ﬁ + 5{’-’+ C=-018 22 + C.

Since £ = 0 when = 0, we have C = (), so '
=012 + 2%,
We want 1o solve for £ when r = 100:
100 = —0.1¢* + 27,

This equation can be rewritten as
0122 =2t + 100 =0
2 —206* + 1000 = 0.
The equation can be solved numerically, or by tracing along a graph, or by factoring

(t — 10)(t* = 10t — 100) = 0.

The solutions are t = 10 and t = %— Y500 _— _§.18, 16.18. Since we are told 0 < ¢ < 12, the solution we want is
t = 10 sec.
17. (a) v
80 fsec |

t

5 sec

(b) The total distance is represented by the shaded region A, the area under the graph of v(t).
(¢) The area A, a triangle, is given by

A= L(base)(height) = %(55&)(80 ft /sec) = 200 f.

(d) Using integration and the Fundamental Theorem of Calculus, we have 4 = fos v(t)dt or A = 3(3) — s(0). where
s(t) is an antiderivative of v(t).

We have that a(t), the acceleration, is constant: a(t) = k for some constant k. Therefore 1(t) = kt+C for some
constant C. We have 80 = v(0) = k(0}+C = C, sothat v(t) = kt +80. Putting in ¢t = 5,0 = »(5) = (k)(3)+80,
ork = -80/5 = —16.

Thus v(t) = —16t + 80, and an antiderivative for »(t) is s(t) = —8t7 + 80t + C. Since the total distance
traveled at ¢+ = 0 is 0, we have s(0) = 0 which means C = 0. Finally, 4 = f05 v(t)dt = s(3) — 3(0) =

(—8(5)° + (80)(5)) — (—8(0)* + (80)(0)) = 200 ft, which agrees with the previous part.

18. Since the acceleration is constant, a graph of the velocity versus time looks like this:

v (mph)

-t (sec)
0
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The distance traveled in 30 seconds, which is how long the runway must be, is equal 1o the area represented by A
We have 4 = %(base)(height). First we convert the required velocity into miles per second.

200 mph = 200 miles ( 1 hour ) ( 1 minute )
hour 60 minutes 60 seconds

200 miles

3600 second

1.
18 miles/second.

Therefore .4 = £(30 sec)(200 mph) = 3(30 sec) (& miles/sec) = £ miles.
19. (a) Since the velocity is constantly decreasing, and v(6) = 0, the car stops after 6 seconds.

t (sec) 005
v(t) (f'sec) || 30 | 27.

—

15 | 2|25 [3 35| 4|45
225120|175|15|125|10| 7.5

(4]

t
[
ot

Gt

b
| o
[=2 R=2}

(b) Over the interval @ < t < a + 3, the left-hand velocity is v(a), and the right-hand velocity is v(a + 3). Since we

are considering half-second intervals, At = -i_- and n = 12. The left sum is 97.5 ft., and the right sum is 82.5 ft.
(c) Area 4 in the figure below represents distance traveled.

A= %(beme)(height) = % -6-30 =90 ft.

velocity (ft'sec)

30

Deceleration
= 5 t/sec”

== £ (seconds)
6

(d) The velocity is constantly decreasing at a rate of 5 ft/sec per second, i.e. after each second the velocity has dropped
by 3 units. Therefore v(t) = 30 — 5¢.

An antiderivative for v(t) is s(t), where s(t)_ = 30t — gtz. Thus by the Fundamental Theorem of Calculus,
the distance traveled = s(6) — s(0) = (30(6) — 3{6)*) — (30(0) — 2(0)*) = 90 ft. Since v(t) is decreasing, the
left-hand sum in part (b) overestimates the distance traveled, while the right-hand sum underestimates it.

The area 4 is equal to the average of the left-hand and right-hand sums: 90 ft = $(97.5 f¢ + 82.5 ft). The
left-hand sum is an overestimate of .4; the right-hand sum is an underestimate.

u(t)
160

20. (a)

A highest point ground
- {(sec)
0

5

—160 =~

(b) The highest point is at £ = 3 seconds. The object hits the ground at ¢ = 10 seconds, since by symmetry if the object
takes 5 seconds to go up, it takes 3 seconds to come back down.

(c) The maximum height is the distance traveled when going up, which is represented by the area 4 of the triangle above
the time axis.
1 . . .
Area = ;2-(160 fifsec)(5 sec) = 400 feet.

(d) The slope of the line is —32, so v(t} = —32¢ + 160. Antidifferentiating, we get s(¢) = —16¢° + 160t + so. so = 0,
s0 5(t) = —16t° + 160t. Att = 5, s(1) = —400 + 800 = 400 ft.
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The equation of motionisy = — 5;—2+vot+yo = —16¢? +128¢+320. Taking the first derivative, we get v = —32t+128.
The second derivative gives us ¢ = —32.
(a) At its highest point, the stone’s velocity is zero:

v=0=—-32t+ 128,50t = 4.
(b) Att = 4, the height is y = —16(4)® + 128(4) + 320 = 576 fi
(c) When the stone hits the beach.

y=0=—16t> + 128¢ + 320
0=—t>+8+20=(10—1)(2+1).

So t = 10 seconds.
(d) Impactis att = 10. The velocity, v, at this time is v(10) = —32(10) + 128 = —192 ft/sec. Upon impact, the sione’s

velocity is 192 ft/sec downward.

(a) a(t) = 1.6, so v(t) = 1.6t + vo = 1.6¢, since the initial velocity is 0.

(b) s(t) = 0.8¢” + sq, where sg is the rock’s initial height.

(a) s = vot — 167, where vg = initial velocity, and v = s’ = wp — 32¢. At the maximum height, v = 0, so vg = 32timax.-
Plugging into the distance equation yields 100 = 321« — 16tmax = 16tax, S0 tmax = & seconds, from which we
getvo = 32 () = 80 fusec.

(b) This time g = 5 fi/sec”, so s = wot — 2.5t = 80t — 2.5t>, and v = &’ = 80 — 5t. At the highest point, v = 0, so
tmax = 85—0 = 16 seconds. Plugging into the distance equation yields s = 80(16) — 2.5(16)* = 640 ft.

The height of an object above the ground which begins at rest and falls for ¢ seconds is

s(t) = —16t° + K.
where K is the initial height. Here the flower pot falls from 200 ft, so K' = 200. To see when the pot hits the ground,
solve —16¢ + 200 = 0. The solution is
200
t= ~
16 3.54 seconds.
Now, velocity is given by s'(t) = v(#) = —32¢. So, the velocity when the pot hits the ground is

v(3.534) = —113.1 fusec,

which is approximately 77 mph downwards.

. The first thing we should do is convert our units. We'll bring everything into feet and seconds. Thus, the initial speed of

the car is

hour \ 3600 sec 1 mile
We assume that the acceleration is constant as the car comes to a stop. A graph of its velocity versus time is given in
Figure 6.9. We know that the area under the curve represents the distance that the car travels before it comes to a stop,
157 feet. But this area is a triangle, so it is easy to find £o, the time the car comes to rest. We solve

. /- -
70 nules( 1 hour ) (0280 teet) ~ 102.7 fisec.

%(102.7)&) = 157,
which gives
= 3.06 sec.

Since acceleration is the rate of change of velocny, the car’s acceleration is given by the slope of the line in Figure 6.9.
Thus. the acceleration, k, is given by

102.7
k= —"—"—— ~ —33.56 fi/sec’.
0-3. 06
Notice that & is negative because the car is slowing down.
y
102.7 ft/sec
y=1(i)
t
to

Figure 6.9: Graph of velocity versus time
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Solutions for Section 6.4

Exercises

1. Fiz)

I

By the Fundamental Theorem, f(z) = F'(x). Since f is positive and increasing, F is increasing and concave up.
Since F(0) = foa f(t)dt = 0, the graph of F must start from the origin.

2. F(z)

x

Since f is always positive, F is always increasing. F' has an inflection point where f° = 0. Since F(0) =
foo f(t)dt = 0, F goes through the origin,

3. F(x)

I

Since f is always non-negative, F is increasing. F is concave up where f is increasing and concave down where f is
. . . . . . . 0
decreasing; F has inflection points at the critical points of f. Since F(0) = fo F(#)dt = 0, the graph of F' goes through
the origin.

4. Table 6.3

r |0] 05 1 1.5 2
I(x) 01050 109203365

5. Using the Fundamental Theorem, we know that the change in F between o = 0 and x = (.5 is given by
0.5
F(0.5) - F(0) = / sint cos tdt = 0.115.
0

Since F(0) = 1.0, we have F(0.3) = 1.115. The other values arc found similarly, and are given in Table 6.4.

Table 6.4

b 0 0.5 1 1.5 2 2.5 3
F(b) | 1| 1.11492 | 1.35404 | 1.4975 | 1.41341 | 1.17908 | 1.00996

6. (a) Again using 0.00001 as the lower limit, because the integral is improper, gives Si(4) = 1.76, Si(5) = 1.35.
(b) Si(z) decreases when the integrand is negative, which occurs when 7 < r < 2.

7. If f'(z) = sin(z?), then f(x) is of the form
fx)=C+ /: sin(£?) dt.

Since f(0) = 7, wetakea = 0 and C = 7, giving

fl@)y=7=+ /zsin(lz)d!.
1]
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8. If f'(z) = % then f(x) is of the form
fx)= C+/ — dt.
e t
Since f(1) = 5, we take a = 1 and C = 5, giving
z
fx) = 5+/ e
N t
9. If f'(z) = Si(z). then f(z) is of the form
T
flzy=C+ / Si(t) dt.
a
Since f(0) = 2, we take @ = 0 and C = 2, giving

flay=2+ / Si(t) dt.
0

Problems
10. ‘
\ T2 F(z)
: e
t I I3
|
11, F'
20
10 S
! N ‘
i T T
| AN
=10 ~

We know that F'(z) increases for < 50 because the derivative of F is positive there. See figure above. Similarly,
F(x) decreases for x > 50. Therefore, the graph of F rises until z = 50, and then it begins to fall. Thus, the maximum
value attained by F is F(50). To evaluate F(50), we use the Fundamental Theorem:

50
F(50) — F(20) = / F'(z)dz.

0

which gives
50

F(50) = F(20) + / F(z)dr = 150 + / F'(z)dz.

20 20
The definite integral equals the area of the shaded region under the graph of F’, which is roughly 350. Therefore, the
greatest value attained by F is F(50) = 150 + 350 = 500.

12. Since F'(z) = e~ and F(0) = 2, we have

I xr
F(x):F(0)+/ e“’dt=2+/ et dt.
1] ]

50

Substituting £ = 1 and evaluating the integral numerically gives
.1
F(l)=2+ / e dt = 2.747.
Jo
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13. Since G'(x) = cos(r”) and G(0) = —3. we have

G(z) =G(0) + /T cos(t®)dt = =3 + /I cos(t?) dt.
0 0

Substituting x = —1 and cvaluating the integral numerically gives
-1
G(-1)=-3 +[ cos(t*)dt = —3.905.
0

14. cos(z?).
15. (1 + z2)%0.
16. arctan(z?).

17 4 nco<(~3)dz=i - tcos(za)dz = — cos(t?)
tdt f, dt - e

T
18, — lntdt = — —/ lntdt) =—Inur.
z ) 1

19. Considering Si(x?) as the composition of Si(u) and u(z) = r°. we may apply the chain rule to obtain
d _ d(Si(u)) du

dr = du " dr
sin u
= -4
u
2sin(z?)

x

20. (a) The definition of g gives g(0) = f: f@)dt=0.
(b) The Fundamental Theorem gives g'(1) = f(1) = -2.
(¢) The function g is concave upward where g is positive. Since g = f’. we sce that g is concave up where f is
increasing. This occurs on the interval 1 <z < 6.
(d) The function g decreases from z = 0 to x = 3 and increases for 3 < x < 8. and the magnitude of the increase is
more than the magnitude of the decrease. Thus g takes its maximum value atz = 8.
(1-1)=0.

21. (a) Since %(cos(‘Zl)) = —2sin(2t), we have F(7) =/ sin(2t)dt = —% cos(2t)] =-—
0

=

0
(b) F(x) = (Area above t-axis) — (Area below f-axis) = 0. (The two areas are equal.)

\ sin 2

-1

(¢) F(zx) > 0 everywhere. F(z) = 0 only at integer multiples of 7. This can be seen for r > 0 by noting F(z) =
(Area above t-axis) — (Area below t-axis), which is always non-negative and only equals zero when x is an integer
multiple of 7. Forx > 0

F(-x)= / sin 2¢ dt
o

0
=—/ sin 2t dt
-

=/ sin 2t dt = F(x).
0

since the arca from —z to 0 is the ncgative of the area from 0 to z. So we have F(z) > 0 forall r.
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22. (a) F'(z) = -1— by the Construction Theorem.
1

_— x> 2,th h ) i
Z(nz)? < 0 for x > 2, the graph of F(x) is

(b) Forz > 2. F (z) > 0, so F(z) is increasing. Since F"'(z) = -

concave down.
(¢)
F(x)

(M

23,
%[w erf(z)] = erf (w)di,(z) + xi[erf(x)]

—erf(:c)+.r (\/_/ -t dl)

= erf(z) + —:re ==

VT

24, If we let f(x) = erf(z) and g{z) = /=, then we are looking for %[f(q(:::))] By the chain rule, this is the same as

g'(z) ' (g(z)). Since
' d {2 e
f(z)= i (—ﬁ[) e (1[)

2 gt
= —¢
™
and ¢'(z) = L we have
and g =57 .
2
fg(z)) = ﬁe '
and so d . |
E[Cff(\/;)] = _,—57 = 7=¢

~
7]

. If we let f(z) = j: e~ dt and g(z) = &2, then we use the chain rulc because we are looking for %f(g(r)) =

f(g(x)) - ¢'(x). Since f/(a) = e=*", we have

23 Y
5; (/ e (1[) =f(£% 32" = e U™ 327 = 32% %",
0

.r3 2 . . . .
26. We split the integral jz e~ ! dt into two pieces, say at t = 1 (though it could be at any other point):

3 3 3

"z 2 = 2 ! 2 ’ 2 ’ 2
/ et dt=/ ¢! dt+/ e’ dt:/ et dt—/ e dt.
v 1 T 1 1

We have used the fact that f; et dt = — flt e~ dt. Differentiating gives

3 3
) R W L B I
e (/, e dt)—dr (/1 e dt) T (/: e di

For the first integral. we use the chain rule with g(x) = z* as the inside function, so the final answer is

3
d o2 (332 _.2 5 _ .6 _.2
Zl“(/ et dl):e G732 o7 =327 —e " .
T
T
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Exercises

1.

2
2

(a) The object is thrown from an initial height of 5 = 1.5 meters.

(b) The velocity is obtained by differentiating, which gives © = —9.8t + 7 m/sec. The initial velocity is v = 7 m/sec
upward.

(¢) The acceleration due to gravity is obtained by differentiating again, giving ¢ = —9.8 m/sec’, or 9.8 m/se¢” down-
ward.

Since height is measured upward, the initial position of the stone is /1(0) = 250 meters and the initial velocity is v = —20

m/sec. The acceleration due to gravity is g = —9.8 nv/sec?. Thus, the height at time ¢ is given by h(t) = —4.9t% — 20t +

250 meters.

Problems

3.

The velocity as a function of time is given by: v = v 4 at. Since the object starts from rest, vo = 0, and the velocity
is just the acceleration times time: v = —32¢. Integrating this, we get position as a function of time: y = —16t% + yo,
where the last term, yg, is the initial position at the top of the tower, so yo = 400 feet. Thus we have a function giving
position as a function of time: y = —16¢ + 400.

To find at what time the object hits the ground, we find ¢ when y = 0. We solve 0 = —16t> + 100 for ¢, getting
t> = 400/16 = 25, so t = 5. Therefore the object hits the ground after 5 seconds. At this time it is moving with a
velocity v = —32(5) = ~160 feet/second.
In Problem 3 we used the equation 0 = —16t* -+ 400 to learn that the object hits the ground after 5 seconds. In a more
general form this is the equation y = —9-t + vot + yo. and we know that vg = 0. yo = 400 f1. So the moment the object
hits the ground is given by 0 = —ﬂt + 400. In Problem 3 we used g = 32 ftsec?, but in this case we want to find a ¢
that results in the object hitting the ground after only 5/2 seconds. We put in 5/2 for { and solve for g:

_ 2(400)

= 128 fusec’.
T G2

—‘g(gf +400. sog

a(t) = —32. Since v(t) is the antiderivative of a(t), v(t) = —32t + ve. But vg = 0, so v(t} = —32¢. Since s(t) is
the antiderivative of v(t), s(t) = —16t” + so, where sq is the height of the building. Since the bail hits the ground in 5
seconds, s(5) = 0 = —400 + sp. Hence so = 400 feet, so the window is 400 feet high.

. Let time t = 0 be the moment when the astronaut jumps up. If acceleration due to gravity is 5 ft/sec” and initial velocity

is 10 ft/sec, then the velocity of the astronaut is described by
v(t) = 10 — 5t.

Suppose y(t) describes his distance from the surface of the moon. By the Fundamental Theorem,

¢
y(t) — y(0) =/ (10 — 5x) dx
0

2

y(t) = 10t —

- ot

lvl'-‘

since y(0) = 0 (assuming the astronaut jumps off the surface of the moon).
The astronaut reaches the maximum height when his velocity is 0, i.e. when

d dy _

o =r=10-5=0.

Solving for ¢, we get { = 2 sec as the time at which he reaches the maximum height from the surface of the moon. At this
time his height is

y(2) = 10(2) - %5(2)'-’ =10 fi.
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When the astronaut is at height y = 0. he either just landed or is about to jump. To find how long it is before he comes
back down, we find when he is at height y = 0. Set y(¢) = 0 to get

=10t — %5{—‘
0 =20t — 5t°
D=4t -t
0 =t(t —4).

So we have t = 0 sec (when he jumps off) and ¢ = 4 scc (when he lands, which gives the time he spent in the air).

. Let the acceleration due Lo gravity equal —k meters/sec®, for some positive constant k, and suppose the object falls from

an initial height of s(0) meters. We have a(t) = dv/dt = —k, so that
v(t) = —kt + vo.
Since the initial velocity is zero, we have
e(0) = =k{(0) +vo =0,

which means vg = 0. Our formula becomes
ds

u(t) = T = —kt.

This means R
s(t)y = —];t + s0.
Since R
—k(0)°
S(O) = ( ) + so,
we have sp = 8(0), and our formula becomes
—kt?
S(f) = 2 + 8(0).

Suppose that the object falls for £ seconds. Assuming it hasnt hit the ground. its height is

2

—kt®
2

s(t)y =

+ s(0),

so that the distance traveled is ,

s(0) —s(t) = % meters,

which is proportional to ¢2.

+—— where # is the time it takes for an object 10 travel the distance s, starting from rest with uniform

5 Umax
acceleration a. vmax 15 the highest velocity the object reaches. Since its initial velocity is 0, the mean of its highest
velocity and initial velocity is %L‘max.

(b) ByProblem7.s = % gt2, where g is the acceleration duc to gravity. so it takes /200/32 = 5/2 seconds for the body
to hit the ground. Since v = gt, tmax = 32(2) = 80 fusec. Galileos statement predicts (100 f1)/(40 fisec) = 5/2
scconds, and so Galilco's result is verified.

(¢) If the acceleration is a constant a, then s = La#”, und Ve = at. Thus

s %(ll‘.2 ¢
Svmax  3at
(a) Since s(t) = —% +2. the distance a body falls in the first second is
s(1)=-5-9-1"=-%

In the second second. the body travels

s(2) - s(1) = —3
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In the third second, the body travels

1

@) -s@)=-5(98-9-2) = 2(99—49)=—%g,

r ) =

and in the fourth second. the body travels

s(4) - s(3) = —% (g.-12 —9‘32) = —%(169—99) = ——%‘q.

(b) Galileo seems to have been correct. His observation follows from the fact that the differences between consecutive
squares are consecutive odd numbers. For, if n is any number, then n? — (n — 1)® = 2n — 1, which is the n'* odd
number (where 1 is the first).

If s the distance from the center of the earth,

so at 2 meters

GM
M= Gax 1o r 2

At 100 meters above the ground,
GAf

(6.4 x 105 + 100)?

Gnew =

SO

Goew GM GM
9.8 ~ (6.4 x 106 +100)2/ (6.4 x 105 + 2)?

6,400,002\° _ __ R
Gnew = 9.8 (m) =9.79969... m/sec .

Thus, to the first decimal place, the acceleration due to gravity is still 9.8 m/sec? at 100 m above the ground.
At 100,000 meters above the ground.

2
6,400,002\ _ ..,
gnew = 9.8 (m) = 9.0111/5(3( .

Exercises

(7]

10.
11.

. %:r"’+7.r+C

/(41+ %)dt=2t2+ln|!|+C
/(2+cost)dt=‘2t+sint+C

'/7(5:t dr=7¢"+C

. /(3e’ +2sinx)dr = 3e" —2cosr +C

3
/(r+3)2d1:=/(z?+641:+9)(lr= %+3:c2+913+C'

. /%dr=16z1/2+0

3lnlt|+§+C

e +or+C

%1‘5/2 -2ln|z|+C
tanr +C
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12, 52‘ +C, since —(2*) =(In2)-2°
n

13. /(z+1) dz (1-31)3+C

Another way to work the problem is to expand (x + 1) 1o z° + 2z + 1 as follows:
/(I+1)2d1‘= /(12+2;t+1)dr= % +f+x+C.

3 3 3
. 1
These two answers are the same, since (= 4{—3 b = 2’ +327 3+ 3z + 1:; +22+z + 3 , which is — 3 +z2 41z,

plus a constant.
4
14, /(.r+l)3 (I“) +C.

Another way to work the problem is to expand (z + 1)* to 2% + 327 + 3z + 1:

/(m+1)3dr= /(ms+3x?+3r+1)d1= I—l + 4+ gz2+$+C.
4
It can be shown that these answers arc the same by expanding (i-:;)
15, 5z + ne+c
1
16. Since f(z) = I:

1
=1+ e the indefinite integral isz + Injz| + C

17, Since f(z) =z + 1+ % the indefinite integral is -21-12 +z+hnjz|+C

18, 3sint + 28%2 + C
19. 3sinz + 7cosz +C
20. 2In|z| = wcosz +C
21, 2¢¥ — 8sinz +C

2. P(t)=/%df=1n|t|+C
23, F(z):/coszdz sinz+C
24, F(x):/i,,d:c=—£+c
z? T

25, G(x):/sinrdr:—cos;r+C
26. F(m):/Se‘dx=5e’+C
27, H(t):/%dt=51n|t|+0

1 12
8, F(1) = (r+?) dt=% +lnlt +C
29, F(z):/(e‘—l)dr:ez—r+c

3 3

30. F(z) = f(z)dx=/x?dx=%+C.1fF(0)=4.menF(0)=0+C=4andmusc=4.50p(x)=%+4.
31. We have F(z) = ——+22: —4r+ C. Since F(0) = 4, wehave 4 =0+ C,s0C = 4.50 F(z) = —+21 —4r+4.
32, F(;r):/\/_dx— 2312 £ C.1F F(0) = 4. then F(0) = 0+ C = 4 and thus C = 4. So F(z) = =2¥/% + 4.

33 F(x)=/erd:c:e’+C.IfF(0)=4.than(O)=1+C=4andlhusC=3.SoF(x)=e’+3.
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3, F(z‘):/sinxd:r:—cosx+C.IfF’(0)=4,thenF(0)=—1+C=4andthusC=5.SoF(a:)=—cos.r+5.

35, F(z)=/cosa:da:=sinx+C.IfF(0)=4,lhenF(())=0+C=4andthusC=4.SoF(x)=sin:r+4.
36. We have

3
/ (6z® + 8z + 5)dz = (22° +4z2+sz)|f =(54+36+15) — (2+4+5) =94.
1
Problems

3 2L‘3
37. / dr = =
o 3

38. Sincey = 2 —z = z(x — 1)(z + 1). the graph crosses the axis at the three points shown in Figure 6.10. The two regions
have the same area (by symmetry). Since the graph is below the axis for0 < x < 1, we have

1
Area:?(—/ (zs—x) dm)
0
4 271!
N EAR =_2(1_1)=1_
4 2 0 4 2 2

y
|

3

0

Figure 6.10

39, The area we want (the shaded area in Figure 6.11) is symmetric about the y-axis and so is given by

=/3 2
Arca = 2/ (cosz -k (éz) ) dr
o 2 \w

Yy =coszT

Figure 6.11
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40, Sincey < Ofromzx =0tz =1andy > O0fromx = 1toxr = 3, we have

1 3
Arca = —/ (31"“’ - 3) dx + / (33'2 — 3) dx
0 1

{

+ (13 - 31)
0 1
—(-2-0)+(18-(-2))=2+20=22.

3

- (1‘3 - 31)

41, (a) See Figure 6.12. Since f(z) > 0for 0 < o < 2 and f{z) < Ofor2 < z < §, we have

Area = /ﬁf(:r) dr — /"’ flz)dr
0 2

2 5
= / (2% — 72° + 10z) dx — / (2 = 727 +10z) dx

0

= E_E_;.’I? 2._ f._l_ﬁ.a.k{u;z
“\3 T3 YT . \T773 ,

= [(4—%+20)—(0—0+0)]- [(GT%-—{EE+125)—(4—@+20)]

-1

3 3
_ %3

N

Figure 6.12: Graph of f(r) = r* - 7% + 10z

o

{(b) Calculating f: f(x) dr gives
5 5
/ f(x)dz = / (® — 7% +10z) dr
0 0
4

-3 3
= (L -2 45
4 3 ‘

0
625 875
= (T_T+125) -{(0-0+0)
_ 125
ST

This integral measures the difference between the area above the x-axis and the area below the z-axis. Since the
definite integral is ncgative, the graph of f(x) lies more below the x-axis than above it. Since the function crosses

the axisatz = 2, s \ \
—1925
/f(r)dr=/ f(r)dxr+/ flayde =18 03 _ 2125
0 0 2 3 4

R s
; 16 64 253
Area —/0 flz)dz —/2 flz)de = 3 + T 12

whereas

42, Since the arca under the curve is 6, we have

d[lf_!['/h
1 9. 1/2
/1 \/— T

b

=2/ ~2(1) = 6.
1

Thus b'/? = $and b = 16.
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43. The graph of y = ¢(1 — z*) has z-intercepts of £ = 1. Sce Figure 6.13. Since it is symmetric about the y-axis, we have

o1 1
Arca =/ c(l -12)d1-=2c/ (1-2%)dr
-1 0
L
T 4¢
= 2¢ (r - —) = —.
3 o 3
We want the areato be 1, so
‘—IE =1, giving ¢= 3
7 =L ¢ 2 =7

Figure 6.13

44. The curves intersect at (0, 0) and (&. 0). At any x-coordinate the “height” between the two curves is sinx — x(z — 7).

y height= sinc — x(x — w)

vl ==

Thus the total arca is

sinr — £ + wz)dr

A
(cona-2 0 28)]
(

/"[Smf ~z(x —w)]dr ==
0

L, | M,

+
5 %)—w

0
Another approach is to notice that the area between the two curves is (area A) + (arca B).
ArcaB = —/ x(x — ) da since the tunction is negativeon 0 < r < 7
0
_ (13 7:1‘2) i A
3 2 o 2 3 6
b 4
Area A = / sinrdr = —cosr| =2.
0 0

773
Thus the area is 2 + 5
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45, Scc Figure 6.14. The average vatue of f(z) is given by

1 [ 1 {2 4
Avcrage = 9—_—0-/0 Vzdr = 5 (51‘3/-

9
172 3/ ) 1
== (= -0} ==18=
) 9(39 9

0

)=z
——— Average value

2

"

Figure 6.14

46. The total amount of discharge is the integral of the discharge rate fromt =010t = 3:

3
Total discharge = / (t* — 141 + 49) dt
0

3 s
= (3 -7+ 49t>

=(9-63+147) -0

= 93 cubic melers.

3

0

47. (a) Since f'(t) is positive on the interval 0 < ¢ < 2 and negative on the interval 2 < t < 3, the function f(t) is
increasing on 0 < ¢ < 2 and decreasing on 2 < ¢ < 5. Thus f(¢) attains its maximum at ¢ = 2. Since the area
under the #-axis is greater than the area above the t-axis, the function f(t) decreases more than it increases. Thus, the

minimum isat{ = 5.
(b) To estimate the value of f at ¢ = 2, we see that the arca under f'(t) between t = 0 and ¢ = 2 is about 1 box, which
has area 5. Thus,

f2) = F(0) + / f(t)dt = 50 + 5 = 5.
0

The maximum valuc attained by the function is f(2) = 55.
The area between f'(#) and the f-axis between ¢ = 2 and t = 5 is about 3 boxes, each of which has an area of
5. Thus .
fG)=f(2)+ | F(t)dt =55+ (-15) = 40.
Jo

The minimum value attained by the function is f(5) = 40.

(¢) Using part (b), we have f(5) — f(0) = 40 — 50 = —10. Alternately, we can use the Fundamental Theorem:
f(3) = f(U) = / fl(t)dt =5 —15 = —10.
Jo
48. (a) Starting at £ = 3. we are given that £(3) = 0. Moving to the left on the interval 2 < z < 3, we have f'(z) = -1,

so f(2) = f(3) — (1)(=1) = 1. Onthe interval ) < = < 2, we have f'(z) = 1,50
) =f2)+1(-2)=-1

Moving to the right from z = 3. we know that f'(z) = 20n 3 < x < 4. So f(4) = f(3) + 2 = 2. On the interval
4<r<6, fl(x)=-2s0
f(6) = f(4) +2(-2) = -2.

On the interval 6 < x < 7, we have f'(r) = L. s0

A =f6)+1=-2+1=-1.



49.

50.
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(b) In part (a) we found that f(0) = —1and f(7) = -1.
(¢) The integral [ f'(z)dux is given by the sum

7
/ Flx)dr = (1)(2) + (=1)(1) + (2)(1) + (=2)(2) + (1)(1) = 0.
0

Alternatively, knowing f(7) and f(0) and using the Fundamental Theorem of Calculus, we have

/' F(@)dz = £(7) = £(0) = =1 = (1) = 0.
0

Point of
inflects

‘ f(z)

T —T T I
x) Ag I3 T4

/

Inflection point

Local min I

|

Local max

BN

345

51. F(x) represents the net area between (sint)/t and the t-axis from t = 5 to ¢ = x, with area counted as negative for

A= / Sltﬂdt.
=f2 "

Figure 6,15

(sint)/t below the ¢-axis. As long as the integrand is positive F'(x) is increasing. Therefore, the global maximum of
F(z) occurs atx = = and is given by the area

Atz = = /2, F(x) = 0. Figure 6.15 shows that the arca 4 is larger than the area A2. Thus F(z) > O0for § < r < %’
Therefore the global minimum is F(5) = 0.
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52. Since B is the graph of a decrcasing function, the graph of its derivative should fall below the x-axis. Thus, f’ could be C
and f could be B. Since the graph of B is above the z-axis and rcpresents a decreasing function, the function foz f(t)de

should be increasing and concave down. Thus, 4 could be the graph of fot f(t)dt.

53. A function whose derivative is e*~ is of the form
I
flr)=C+ / !t for some value of C.
a
(a) To ensure that the function goes through the point (0.3), we takea = 0 and C = 3:

flx)=3+ /r e dt.
0

(b) To ensure that the function goes through (-1,5), wetakea = -l and C = 3:

Fx) =5+ / et dt.

1
54. We know the height is given by
s = —256° + 72t + 40,

so the velocity is given by

and the acceleration is given by
a = -350.

The acceleration due to gravity is ~30 fUsec® downward. Since v(0) = 72, the object was thrown at 72 ftsec. Since
5(0) = 40, the object was thrown from a height of 40 fi.

n
wn
‘

The graph of h(t) must slope downwards most steeply when h’(t) has its minimum. The graph of h(t) shouid have its
minimum about two-thirds of the way through the time interval (when the graph of /’(t) intersects the z-axis), and have
its final value about half-way between its maximum and minimum values. A possible graph of h(#) is given in Figure 6.16,
The placement of the horizontal axis below the graph is arbitrary.

h(t)

1 i | t

Figure 6.16

§6. Let v be the velocity and s be the position of the particle at time ¢. We know that a = duv/dt, so acceleration is the slope
of the velocity graph. Similarly, velocity is the slope of the position graph. Graphs of v and s are shown in Figures 6.17
and 6.18, respectively.

S

Figure 6.17: Vclocity against time Figure 6.18: Position against time
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57. (a) Since 6 sec = 1/10 min,

2500 — 1100
1/10

(b) We know angular acceleration is the derivative of angular velocity. Since

Angular acceleration = = 14.000 revs/min®.

Angular acceleration = 14.000,

we have
Angular velocity = 14,000t + C.

Measuring time from the moment at which the angular velocity is 1100 revs/min, we have C' = 1100. Thus,
Angular velocity = 14.000¢ + 1100.

Thus the total number of revolutions performed during the period from t = 0 to { = 1/10 min is given by

1/10 1/10
= / (14000t + 1100)dt = 7000¢% + 1100t = 180 revolutions.
0 0

Number of
revolutions

38. (a) Since the rotor is slowing down at a constant rate,
260 — 350

~ = —60 revs/min”.
1.5

Angular acceleration =

Units are revolutions per minute per minute, or revs/min®.
(b) To decrease from 350 to 0 revs/min at a deceleration of 60 revs/min®,

-

Time needed = 3;’—.? =~ 5.83 min.

(c) We know angular acceleration is the derivative of angular velocity. Since
Angular acceleration = —60 revs/min®.

we have
Angular velocity = —60t + C.

Measuring time from the moment when angular velocity is 350 revs/min, we get C = 350. Thus
Angular velocity = —60¢ + 350.
So. the total number of revolutions made between the time the angular speed is 350 revs/min and stopping is given
by:
5.83
Number of revolutions = / (Angular velocity) dt
0

5.83 5.83
= / (—60¢ + 350)dt = —30t” + 350¢
0 0
= 1020.83 revolutions.

59. (a) Using g = —32 fsec®, we have

t (sec) oJ1 2] 3 415
v(t) (fUsec) | 80 | 48 | 16 | —16 | —48 | —80

(b) The object reaches its highest point when v = 0, which appears 10 be at ¢ = 2.5 scconds. By symmetry, the object
should hit the ground again at ¢t = 5 seconds.
(c) Leftsum = 80(1) + 48(1) + 16(3) = 136 {1, which is an overestimate.
Right sum = 48(1) + 16(1) + (—16)(3) = 56 ft, which is an underestimate.
Note that we used a smaller third rectangle of width 1/2 to end our sum at t = 2.5.
(d) We have v(t) = 80 — 32¢, so antidifferentiation yields s(t) = 80t — 16¢* + so.
But so = 0. so s(t) = 80t — 16¢°.
Att = 2.5, 5(t) = 100 {1, so 100 ft. is the highest point.
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60. The velocity of the car decreases at a constant rate, so we can write: dv/dt = —a. Integrating this gives v = —at + C.
The constant of integration C' is the velocity when ¢ = 0, so C' = 60 mph = 88 fU/sec, and v = —at + 88. From this
equation we can see the car comes to rest at time ¢ = 88/a.

Integrating the expression for velocity we get s = -—%l"’ + 88t + C, where C is the initial position, so C = 0. We
can use fact that the car comes to rest at time t = 88/a afier traveling 200 fcet. Start with

a 2
= —=t t.
3 3 + 88t,

and substitute ¢ = 88/a and s = 200:

2 2
mo=-3 (%) (%) - 3

2\a a 2a
88"

a= m = 19.36 ft/sec”

61. (a) In the beginning, both birth and death rates are small; this is consistent with a very small population. Both rates begin
climbing, the birth rate faster than the death rate, which is consistent with a growing population. The birth rate is then
high, but it begins to decrease as the population increases.

(b) bacteriafhour
bacteriahour

: B-D
|
! s

~— ~ time {hours)
13 20

time (nours) I 6 1'0

Figure 6.19: Difference between B and D is greatest at ¢ = 6

The bacteria population is growing most quickly when B — D. the rate of change of population, is maximal;
that happens when B is farthest above D, which is at a point where the slopes of both graphs are equal. That point is
t = 6 hours.
(c) Total number born by time # is the area under the B graph from ¢ = 0 up to time t. See Figure 6.20.
Total number alive at time ¢ is the aumber born minus the number that have died, which is the arca under the B
graph minus the area under the D graph, up to time ¢. Sec Figure 6.21.

bacteria
bacteria
B
D
4 time (hours) time (hours)
3 10 15 20 5 ~ 11 15 20
Figure 6.20: Number born by time ¢ is Figure 6.21: Number alive at time ¢ is
J; B(z)dx [, (B(z) - D(z))dz

From Figure 6.21, we see that the population is al a maximum when B = D, that is, after about 11 hours. This
stands to reason, because B — D is the rate of change of population, so population is maximized when B — D = 0,
that is, when B = D.
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62. H (height)

— L L £ (time)
th 2 t3

Suppose t; is the time to fill the left side to the top of the middle ridge. Since the container gets wider as you go up,
the rate d H/dt decreases with time. Therefore, for 0 < t < ¢y, graph is concave down.

At t = ty, water starts to spill over to right side and so depth of left side doesn’t change. It takes as long for the right
side to fill to the ridge as the lefi side. namely ¢;. Thus the graph is horizontal for ¢; < ¢t < 2t;.

For t > 2t;, water level is above the central ridge. The graph is climbing because the depth is increasing, but at a
slower rate than for t < t; because the container is wider. The graph is concave down because width is increasing with
depth. Time ¢3 represents the time when container is full.

63. o For[0.%1], the acceleration is constant and positive and the velocity is positive so the displacement is positive. Thus,

the work done is positive.

e For {t,, ¢»], the acceleration, and therefore the force, is zero. Therefore, the work done is zero.

e For [t2,13], the acceleration is negative and thus the force is negative. The velocity, and thus the displacement, is
positive: therefore the work done is negative.

o For [t3. t4]. the acceleration (and thus the force) and the velocity (and thus the displacement) are negative. Thus, the
work done is positive.

e For [, t4]. the acceleration and thus the force is constant and negative. Velocity both positive and negative; total
displacement is (). Since force is constant, work is 0.

CAS Chalienge Problems
(b—a)

n

64. (a) Wehave Ar =

and x; = a + i(Az) =a+i( a),so, since f(z:) = z:°,

n

Riemann sum = if(z;);.&zzz [a+i(b;a)]3 (},;ﬂ) .

=1 i=1

(b) A CAS gives

n n 4in?

i [a L - a)]3 b—a) _ _(a=b)a(n=1)> + (b +ab’)(n> — 1) + b3(n + 1)%)
i=1
Taking the limit as n — oo gives

n

e ()] ) - et

=1

4 4 4
(¢) The answer to part (b) simplifies to l—;— - % Since % (T—l> = z*, the Fundamental Theorem of Calculus says
that . .
4 4 4
3 I b a
ridr = —| = — — —,
/a TEET|TIOA




350 Chapter Six /SOLUTIONS

/62’ dr = :1-622 /e"’ dz = %e‘” /33"""5 dr = %e3:+5.

(b) The three integrals in part (a) obey the rule

65. (a) A CAS gives

vl

1
/eax+de — _eaz+b.
a

(¢) Checking the formula by calculating the derivative

d (leaz+b) = _];iear-ﬂh

dr \a adr’

by the constant multiple rule

_1_ az+bii_
dr

[43
1
_ea:+b ca= €°t+b.
a

(az +b) by the chain rule

66. (a) A CAS gives
) 1 . 1 . 1 ‘
/sm(&t) dr = —3 cos(3zr) /5111(417) dzx = —3 cos(4r) /5111(31 —2)dz = -3 cos(3z — 2).
(b) The three integrals in part (a) obey the rule
/ sin(ax + b)dz = —% cos(az + b).
(¢) Checking the formula by calculating the derivative
d

1 1d .
— (== cos(ar +b) —=—cos(az 4+ b) by the constant multiple rule
dr \ a adx

1 d
— (=i + b)) — + chai
a( slu(ﬂI ))d:I: (a:r b) by the chain rule

_2(_ sin(az + b)) - a = sin(az + b).

67. (a) A CAS gives

/m_idw:m—lulx—n

/z_?d1=1—21n|1—-1|

T —

/w—})d1:=r+ln|.r—2|

r—z

Although the absolute values are needed in the answer, some CASs may not include them.
(b) The three integrals in part (a) obey the rule

r—b

/‘”‘”dz=x+(b-a)1n|z-b|.

(¢) Checking the formula by calculating the derivative

1
r-b
(@=b)+(b-a) _z-a
- z—b T zr-b

;—I(z+(b-—a)ln|z—b|)=1+(b—a)

by the sum and constant multiple rules
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68. (a) A CAS gives

/md":%(l"lx—iﬂ—lnp_”)
/rl)l(x—_T)du (In]z — 4] — Injz - 1))

1
/(w—l)(m+3)‘“=~

Although the absolute values are needed in the answer, some CASs may not include them.
(b) The three integrals in purt (a) obey the rule

= W —

(Injz +3| = Infx - 1)).

b

1 1
/(I—a)(lf—b)dxzb—u(mlz_bl_lnl't_“n'

(c¢) Checking the formula by calculating the derivative
d 1 1 1 1
E(b—a(lnlz—bl—lnu_ﬂl)) b—a (z—b—x-a)
1 (z—a)—(z-0b)
T b-ua (z—a)(z-0)

1 ( b—a )_ 1
Tb—a\(z—a)r-b))  (z—a)(z-b)

CHECK YOUR UNDERSTANDING

1. True. A function can have only one derivative.

2. True. Check by differentiating 4 (2(z +1)*?) =2 3(z+ 1)"/* =3/x ¥ L.
3. True. Any antiderivative of 3z is obtained by adding a constant to z°.

4. True. Any antiderivative of 1/ is obtained by adding a constant to In |z|.

5. False. Differentiating using the product and chain rules gives

d (-——le_’?) = ;e_ze +e T,
2x d

dr

6. False. It is not truc in general that f.rf(:r)d:z: = rf f(x)dz, so this statement is false for many functions f(z). For
example, it f(z) = 1, then [zf(z)dz = 22/2 + C, but :Lf f(xYdz = z(c + C).
7. True. Adding a constant to an antiderivative gives another antiderivative.

8. True. If F(x) is an antiderivative of f(z), then F'(x) = f(z). so dy/dx = f(z). Therefore, y = F(z) is a solution to
this differential equation.

9. True. If y = F(z) is a solution to the differential equation dy/dr = f(z). then F'(z) = f(x).so F(z) is an antideriva-
tive of f(x).
10. True. If acceleration is a(t) = k for some constant k, & # 0, then we have

Velocity = v(t) = /a(t)dt = /kdl =kt + C,
for some constant C. We integrate again to find position as a function of time:
. kt?
Position = s(t) = [ v(t)dt = | (kt + Cy)dt = 5 + Cit + Cs,

for some constant C'2. Since & # 0, this is a quadratic polynomial.
11. True, by the Second Fundamental Theorem of Calculus.
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12. True. We see that

5 3 5
F(3)- F3) = / ftidt — / F()dt = / F(t)dt.
0 1] 3

13, False. If f is positive then F' is increasing, but if f is negative then F is decreasing.

14. True. Since F and G are both antiderivatives of f, they must differ by a constant. In fact, we can see that the constant C
2
is equal to fo_ F(#)dt since

z r 2
F(z)= / f(t)dt = / f(t)dt + / f)dt = G(z) + C.
0 2 0

15. False. Since F and G are both antiderivatives of f, we know that they differ by a constant, but they are not necessarily
equal. For example, if f(t) = 1 then F(z) = fox 1dt =z but G(z) = ff ldt =r-2.

16. True, since f; (F(t) + g(t))dt = for flt)dt + fot g(t)dt.

PROJECTS FOR CHAPTER SIX

1. (a)
(b)

(c)

If the poorest p% of the population has exactly p% of the goods, then F(r) = z.

Any such F is increasing. For example, the poorest 50% of the population includes the poorest 40%, and
so the poorest 50% must own more than the poorest 40%. Thus F'(0.4) < F(0.5), and so. in general. F' is
increasing. In addition, it is clear that F(0) = Oand F(1) = 1.

The graph of F' is concave up by the following argument. Consider F'(0.05) — F'(0.04). This is the
fraction of resources the fifth poorest percent cf the population has. Similarly, F(0.20) — F(0.19) is the
fraction of resources that the twentieth poorest percent of the population has. Since the twentieth poorest
percent owns more than the fifth poorest percent. we have

F(0.05) — F(0.04) < F(0.20) — F(0.19).
More generally, we can see that
F(zy; + Ar) — Fizy) < F(za + Az) — F(z2)

for any x; smaller than z» and for any increment Az. Dividing this inequality by Ax and taking the limit
as Az — 0, we gel
F'(z1) < F'(x»).

So, the derivative of F is an increasing function, i.e. F is concave up.

G is twice the shaded area below in the following figure. If the resource is distributed evenly, then G is
zero. The larger G is, the more unevenly the resource is distributed. The maximum possible value of G is
1.
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2. (a) InFigure 6.22, the area of the shaded region is F(M ). Thus, F(M) = OM y(t) dt and, by the Fundamental
Theorem. F'(AM) = y(M).

y (annual yield)

t (time in years)

Figure 6.22

(b) Figure 6.23 is a graph of F(AM). Note that the graph of y looks like the graph of a quadratic function.
Thus, the graph of F' looks like a cubic.

F (total yield)
20000

L

F(M)
15000

T

10000
5000 1

! 1 t 1 i

M (time in years)
10 20 30 40 50

Figure 6.23

(¢) We have
1 1 M
a(M) = ]TIF(M) = -A—]-/O y(#) dt.

(d) If the function a(A{) takes on its maximum at some point M. then a’'(M) = 0. Since
1
MY = —=F(Al).
a(M) = 7 F(3)

differentiating using the quotient rulc gives

MF'(M) - F(M) _
A2 -
so M F'(M) = F(A). Since F'(M) = y(AM), the condition for a maximumn may be written as

a'(M) =

0.

My(M) = F(M)

or as
y(M) = a(M).

To estimate the value of Al which satisfies My(M) = F(Al), use the graph of y(). Notice that
F(Af) is the area under the curve from 0 to M. and that My(Af) is the area of a rectangle of base A and
height y(Af). Thus. we want the area under the curve to be equal to the arca of the rectangle, or 4 = B
in Figure 6.24. This happens when Al & 50 years. In other words, the orchard should be cut down after
about 50 years.
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y (annu

al yield) AreaB

Area A -

Figure 6.24

— ¢ {time in years)



