Solutions for Section 7.1

7.1 SOLUTIONS

CHAPTER SEVEN

355

Exercises

1.

[ %)
H

N

(a) % sin(z® 4+ 1) = 2z cos(z” + 1): é% sin{z® + 1) = 322 cos(z® + 1)
(b) () §sin(z®+1)+C (i) §sin(z>+1)+C

(¢) () —cos(z®+1)+C (i) ~Leos(z®*+1)+C

(a) We substitute w = 1 4 2, dw = 2z dr.

r=l w=2
. l 1
/ %m:-/ Law=Ltmpw] = L2
rep 1t 2 ). W 2 .2
(b) We substitute w = cos x, dw = —sinz dzx.
=5 . w=v2/2
/ sine o _ _/ 1 duw
rep COSE w=1 w
V22
= —ln |w| =—lu£=ll 2
. 2 2

We use the substitution w = 3z, dw = 3 dr.

3z 1 w 1 w 1 3
dr = = dw = - — 1p3¢ .
/e r 3/e w 36 +C 3e +C

Check: %(%eaf +C) = 3% (3) = e*.

. We use the substitution w = —0.2t, dw = —0.2dt.

—0.2 25 _ . ‘
/25e 02ty = —1)02 /e“dw =-125* +C = —125¢ % + C.

Check: 5;(~125¢™%% + C) = —125e™%7'(-0.2) = 25¢~°*",

. We use the substitution w = 2z, dw = 2dr.

/sin(?a:)dz = %/sin(w)dw = —%cos(w) +C = —%(‘.05(21‘) +C.

Check: (-3 cos(2r) + C) = § sin(2z)(2) = sin(2z).

. We use the substitution w = 2, dw = 2t dt.

/tcos(t"’)dt = -;- /cos(w)dw = %sin(w) +C= %sin(t"’) +C.

Check: 4 (}sin(t?) + C) = § cos(t?)(2t) = t cos(t?).

. We use the substitution w = y® + 5, dw = 2y dy.

[oaran =} [w+or @y

Check: 3 (15 (3" +3)° + C) = £[9(y” + 5)*(2)] = y(v* + 5)".
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. We use the substitution w = 3 — 3, dw = 3% dt.

3 1 _1 _ 1
/fg(t -3)"%at = —/(t‘—3)‘°(3t2¢ﬂ)_ /w“’ (gdw)

lw _ 1.3 .
=377 C—33(t 3y +C.

Check: S[L(£* - 3)" + C) = (3 — 3)'°(3¢t") = *(£> - 3)*°.

. In this case, il seems easicr not to substitute.

/y2(1+y)2dy=/y2(112+2y+1)dy=/(y4+2y3+y2)dy

5 4 3
y Y Yy
==+5+T-+C
h) 2 3

5 4 4.3 p Py
Cheek: L (L 4L v ¥ s o) =yt +2° + 42 = 2w+ )%
dy\5 273

We use the substitution w = 1 + 2x®, duw = 6x° dz.

/r2(1+213)2dr=/wz(é-d‘w)— (L )+c— —(1+2:1: e

Ldarl a3 _ 1 322y _ 2 9,332
Check: o [18(1+21‘ ) +C] = 18[3(1+21 ) (62°)] = (1 + 2z7)".

We use the substitution w = 2% — 4. dw = 2z dur.

/x(:r? —4)%d1 =

K| =

/w% dw

ey +C == @ -ntsc

/(z" — )% (2zdz) =
2
9"

N —= BN —
—_

Check: %[%(;rz —4)% +C]= % [g(rz - 4)’3’] 2z = z(z? - 4)5.

We use the substitution w = z% + 3, dw = 2z dr.
2 1 1w 9
/ ( +3) dl'—/ (idlL’)‘—‘;—-!'C:g(l‘ +3) +C

Check: (% [1(1:2 +3)° + C] =1 [3(1’2 + 3)2(21')] =z(z" +3)".

We use the substitution w = 4 — z, dw =—d

—=dw=-2/w+C=-2v4-z1+C.

[ = / V540 =1
d 1

Check: E(—2\/4_£+C)_ =23 \/——I \/_—_:r

We use the substitution w = y + 5, dw = dy, 10 get

/d—y_=/d—w=ln|w|+C=ln|y+5|+C.
y+o w

d - —
Check: @(lnly-f-al +C) = et

We use the substitution w = 2t — 7. dw = 2dt.

T3 g 1 3, 1 74 T4
/(21—1) dt = /w du‘———(2)(74)w +C = 148(2t " +C.
oy - _ T30} — (2 — T2,
Check: [ 5@ -7) +C] = 48(2t 73(2) = (2t — 7)
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16. In this case, it seems easier not to substitute.

5
/(:1:2+3)2da:=/(14+6r2+9)d17= 15_+21;3+9:c+C.

5
Check: % [% +27° + 9z + C] =z + 62"+ 9= (" +3)~
17. We use the substitution w = cos 8 + 5, dw = —sin 8 d6.

/sinH(c050+5)7d9= - /u'7(1w=—%w3+c

= —%(cosﬂ+5)s +C.

Check:

d_d€ [—1(cose +5)° +c]

1 ; .
3 3 8(cos 8 + 5)" - (—sin#)

sin §(cos 8 + 5)°

18. We use the substitution w = cos 3¢, dur = —3sin 3¢ dt.

/\/cos3tsin3tdt= —%/\/Edw

= —% . %wg +C= —g((:OSBf)% +C.

Check:

d 2 3 2 3 1 .

_ = = 2 k = e — 2 .(— .
7 [ 9(cos 3t)2 + C] ) (cos3t)2 - (—sin3t)-3

= Vcos 3t sin 3¢.
19. We use the substitution w = —22, dw = =2z dx.
z= 1 -z2 1 w
zE dm:—; e’ (-2zdx)=—-< d
1 . -
=-zet s C=-e" +C

Check: J—‘;(—%e"z +C) = (—21)(—%61"2) =re .
20. We use the substitution w = sin 8. dw = cos 8 d6.

7 7
/sin69c059d0=/w6dw= uf+C= sin” 6 +C.
7

d [sin” 8
Check: T -

21, We use the substitution w = 2 + 1, dw = 322 dr, 10 get

+ C] = sin® f cos 8.

s 1 , 1.,
/-.tze‘r Hdz:g/e"dw:%e" +C=§e 3+1+C.

Check: 4 (le”s“ + C) = —em ¥ .32 = p2* 1
dz \3
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22, We usc the substitution w = sin 38. dw = 5 cos 34 d6.

/sin656c0550d0= —}-/uvﬁdw= %(%)+C= 3i_sin759+C.
3

[

d N s B zp1/= - . 6 <
Check: @(% sin’ 30 + C) = 31—5[1 sin® 58](5 cos 58) = sin® 56 cos 56.
Note that we could also use Problem 20 to solve this problem, substituting v = 58 and dw = 5d# o get:

. . 1 . 6
/sm6 58 cos30dé = = | sin” wcoswdw
5

sin” w

LAYy s = —sin 50+ C.
5 7 35

23. We use the subslitution w = sina. dw = cos a da.

A -
/sinsocosada = /wsdw = u_l +C = sm4 a +C.
d in* .
Check: — A a +C )| = l dsina-cosa = sin*acosa.
da 4 4
24. We use the substitution w = cos 2z, dw = —2sin 2r dr.

tan2zdr = .S_uﬁgdx = _l d_u_'
cos 2z 2 w

- —%lnlwl +C= —%lnlcos%l +C.

Check:
d 1 1 1 .
o [—§ln|c052z| +C] =3 osir —2sin2r
=3 2 = tan2r
cos 2r

25, We use the substitution w = In z.dw = 1 dz.
z)? 2 In z)?
‘/Qn._)dz-:‘/w2dw=u”—+C=(Il ) +C.

+C}=3~;—}(lnz)2-

o | -
~

—

=

N

~

o

d: 3
26. We use the substitution w = e’ +t, dw = (e' + 1) dt.

3
Check: L [(—hﬂ

t
/et+ldt=/ldw=ln|w|+C=ln|et+t|+C.
et +1t u

et +1
et +t
27. We use the substitution w = y* + 4. duw = 2y dy.

/ LA =l/%=lln|w|+c=%]n(y?-i-*l)-l-c.

Check: %(1{1 lef +¢t+C) =

wr1¥T 2 2
(We can drop the absolute value signs since y  +4>0forally.)
d 1 2 1 1 Y
heck: — | = T4 4 = - = 2y = —
Check T [2]11(31 + )+C] 5 F il y E
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We use the substitution w = /7, dw = 5= du.

/Cosﬁdx=/cosu:('Zdw)=25inw+C=25i“‘/‘;’:+C‘

NZS
d cosf
¢ —(2si v 2
Check dr(ZS]uﬁ+C) cos\/_(Q\/_> N
We use the substitution w = /y. dw = 7 dy.
/ dJ—2/e'”dw=‘2e“’+C=Qeﬁ+C.

d eV
Check: —(2¢Y¥ + C) = 2¢V¥ . =—.

dy( ) 2f VY

We use the substitution w = ¢ + €%, dw = (1 + €7)dz.

1+e
r =9 =9 T
1+PI \/_ Vvuw+C vr+er+C.
- 1+¢°
all z =9.2 1 _c
Check: (2\/x+e +C) (:c+e) -(1+e%) = =

We use the substitution w = 2 + %, dw = e dr.

/_ € _dr= /%=111|w|+C=111(2+eI)+C.

24 e®
(We can drop the absolute value signs since 2 4 ¢ > 0 for all 1)

Check: i[ln(2+e:)-1--C]— LI g .
" dr T 24er T 2+

. We use the substitution w = z2 + 2z + 19, dw = 2(z + 1)dxr.

(:1? +l)d1‘ 1 { dw 1 1 5
A4 ldr 1 [ew 2y _1 ‘ ‘
rt42x+19 2 w 3 njw|l +C 5 In(z® + 2z +19) + C

(We can drop the absolute value snona, since 22 + 2r +19 = (x + 1) + 18 > 0 forall z.)

1 r+1
Check: _[ lnl' +2r+19)] = 21'—_+2 +19(2I+2)=—————12+2z+19.

. We use the substitution w = 1 + 382, du: = Gt dt.

' t _ 1.1 . _]. _1 2
/det—/ w(GdlL)—Glnlll.‘|+c—glll(l+3f )+C

(We can drop the absolute value signs sincg 14+3t2>0 for all t).

d 1
-: — t —
Check (It[ In(1+3 )+C] 61+3I’( B = 1+3t2
We usc the substitution w = e* + ¢~ 7. dw = (¥ — e %) du.
e —e’ " du -z
/rﬂ:dlﬁ: —u—-_lnlwl-t-C ln(e +e )+C

(We can drop the absolute value signs since e¥ 4+ e~ > 0 for all z).
ke Linge® 4e-* -
Check: —— fln(e® +e ")+ C) =

. Tt seems easier not to substitute.

/(t 4;21)- dt:/(t-+22t+1)dt
" 2 1 !
= (1+;+t—,2) dt=t+2ljt] - +C.

d 1 2 1 (t+1)?
{0 — 2 - - N = - — e ——
Check: dt(t+..ln|t[ ; +C)=1+ ; + P I
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We use the substitution w = sin(z?), dw = 2z cos(z?) dz.

zeos(@®) 4oL [ b g = Loudy 4 ¢ = \Jem@E) + €.
\/sm(.lr2 ] 2

Check: —(\/sm(:c )+ C)=
24/sin (

Since d(sinh z)/dz = cosh z, we have

z cos(z?)

\/sin(x'-’).

/cosh rdr =sinhzr + C.

[cos(r )2x =

Since d(cosh 3t)/dt = 3sinh 3t, we have

/sinh 3tdt = -:1; cosh 3t + C.

. Since d(cosh z)/dz = sinh z, the chain rule shows that

d

7 (ecosh:) — (Sinhz)ecoshz.
dz

Thus,
/(sinh 7)€ gz = ™ 4 C.

Since d(sinh(2w + 1))/dw = 2 cosh(2w + 1), we have

/cosh(?w +1)dw= % sinh(2w + 1) + C.

The general antiderivative is f(m‘3 +4t)dt = (z/1)t* + 2> + C.

. Make the substitution w = 3z. dw = 3dzx. We have

/sinBrdr: %/siuwdw: %(—cosw)+C= —%c0531+C.

Make the substitution w = 22, dw = 2r dr. We have

/21' cos(x’)dz = /cos wdw =sinw+ C =sinz® + C.

Make the substitution w = %, dw = 3¢* dt. The general antiderivative is [ 12¢% cos(t®) dt = 4sin(t®) + C.
Mauke the substilution w = 2 — 5z, then dw = —5dz. We have

1 1 1
/sin(? - dr)dr = /sin w (_3) dw = —5(—cos wy+C = 3 cos(2 - 5z) + C.
Make the substitution w: = sin r, dw = cos r dr. We have

/es"”(os.rd:l —/e"'dw=ew+C=e“i”+C.

Make the substuu(ion w = x> + 1,dw =2z dr We have

z dw
I__,+1dr—§ —u—’——-lnlu|+C'—-ln(1' +1)+C.
{Notice that since x2 +1 > 0, |2 + 1| = 2" + 1)

Make the substitution w = 2z, then dw = 2dr. We have

R 1 1 (1
/3cos'—’21 dr—g/ cos? w (5) dw

=l ! dw_ltanw+C—1tan21+C
cos? w 6

6 6
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49. / cos(z + m)dr = sin(r + /-)[T =sin(27) —sin(7)=0-0=0

0
30. We substitute w = az. Then dw = 7 dxr.
z=-’,_,: w=r/2 1 1 w[2 1
/ coswrdr = / cos w(—= dw) = —(sinw) =—
=0 u=0 Q w 0 '
=/? /2 . 1
s1. / e cos @ sinfdf = e-cos@ — e—cos(f/l) _ e—cos(O) =1 2
0 0 e
.2 o bl 2 2] ”
52, / Ire’ dr=e¢ | =e’ —e' =e'—e=e(e - 1)
1 1
5 itwte w = Y7 = 28, Then dw = 2o~ $ dr = ——dz
53, We substitute ¥ = ¢z = 3. Then dw = ¥ T = 3{{/_2(..1.
=R =& 8
/ _d.t = / e (3dw) = 3e™ =377 =3(e* —e).
r=1 1
34, We substitute w = t + 2. so dw = dt.
t=e-2 w=e €
/ ;dt = @ =h|w|| =lhe—-Inl=1.
t=—1 t+2 w=1 U 1

1
55. We substitute w = /z. Thendw = -z V2.

=4 - w=2
/ cos /T dr = / cos w(2 dw)
z=! \/E w=1

2

= 2(sin 2 — sin 1).

= 2(sin w)

56. We substitute w = 1 + 2. Then dw = 2r dr.

= g ¥ 1/1 2
5 dr = —,_,(idu) =-3 (—v) =c.
=0 (1+ ) w=1 w u b
57.
8 1| szt |’
/(.T +5l)dl‘_— +T = 40.
-1 -1 -1
1 1
c | A _
58. /_11+y2dy—tan y—l_g.
31 3
59./ —dr=Inr| =In3.
1 z 1
3 3
60. i_"z_—l _( ) ( )
F+7)? t+7
of° 2 » 5 2
61./ vz + dz——(1-+2)3/ §[(4)"/ -(1)*?] = 3(7):%
- -1

62. 1t wrns out that -
I
way to see this is to graph the function on a calculator or computer, as has been done below:

(P . . . .
cannot be integrated using clementary methods. However, the function is decreasing on [1,2

361
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y

1
0.75
5

0.
0.25
ot 4
; ; > i

—-0.25 L

sin2 sinl

So since our function is monotonic, the error for our ieft- and right-hand sums is less than or equal to

| At =
0.61A¢. So with 13 intervals, our crror will be less than 0.05. With n = 13, the left sum is about 0.674, and the right sum

is about 0.644. For more accurate sums, with n = 100 the left sum is about 0.6613 and the right sum is about 0.6574. The
actual integral is about 0.6593.

Problems
63. (a) This integral can be evaluated using integration by substitution. We use w = 2%, dw = 2xdz.
. 2 1 . 1 1 2
zsinr dr = 5 sin(w)dw = -3 cos(w) + C = -3 cos(z®) + C.
(b) This integral cannot be evaluated using a simple integration by substitution.

(c) This integral cannot be evaluated using a simple integration by substitution.
(d) This integral can be evaluated using integration by substitution. We use w = 1 + 7?, dw = 2xdr.

T 1 1 1 -1 -1
/—(l +1"3)2d't = §/u7dw = §(T)+C— S TIES) +C.

(e) This integral cannot be evaluated using a simple integration by substitution.

(f) This integral can be evaluated using integration by substitution. We use w = 2 + cos z, dw = —sinzdxr.
‘4' - l
/—smi—dr= —/ —dw=—-Inju|+C =—In|2 +cosz|+C.
24 cosr w

64, (a) The Fundamental Theorem gives

i e
/ cos’ Bsin6df = —w; 0

B e e Gt Y

3 3 0.

ki -7

This agrees with the fact that the function f(8) = cos? @sin 8 is odd and the interval of integration is centered at
x = 0, thus we must get O for the definite integral.
{b) The area is given by

Area = / cos® @sinBdo = —
0

cos? 8
3

Bt Gt ) At ¢ D A,
E) 3 3

1]

65. Since f(r) = 1/(x + 1) is positive on the interval x = O0to x = 2. we have

*
Area = /
o T+ 1
The areais In3 = 1.0986.

66. To find the area under the graph of f(z) = 1e‘2, we need to evaluate the definite integral

42 1‘2
re’ dx.
0

This is done in Example 10, Section 7.1, using the substitution w = r?, the result being

9

=In3-Inl=In3.
0

dr = In(r + 1)

o

/ re* dz = Het - 1),
] 2
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67. The area under the curve between the given values is given by
4

4
Arca =/ %dm:-‘llnm =4(ln4 —In2) = 4In2 =~ 2.7726.
2

2

68. v
Vo 1

Vo sin(wt)
The period of VV = Vp sin(wt) is 27 /. so the area under the first arch is given by

wfw
Area = / Vo sin(wt) dt
0

‘_0 wfw
= —— cos(wt)
bt 0
Ve \'
= —'—? cos(w) + ‘Eo cos(0)
Vo Vo 2Vp
= -2+ =201) =2
(1) + 20) = =

69. If f(z) =

1 . . .
T the average value of f on the interval 0 < x < 2 is defined to be

1 ? 1 [? de
2—0/0 f(r)dr_ifo 1

We'll integrate by substitution. We let w = x + 1 and duw = dz. and we have
=In3-Inl=1In3.

/‘='-’ dr /“’=3 dw
= — =lnw
r=0 r+1 w=1 w 1

Thus, the average value of f(z)on 0 < z < 21is 3 In3 = 0.5493. See Figure 7.1.

T

3

&IF e
0.54931

—~—
— T
2
Figure 7.1

70. (a) /41:(12 +1)dz = /(4173 +4z)dz =2+ 22° + C.
(b) If w = x* + 1. then dw = 2z dx.
/41(172 +1)dz = /'dew =uw?+C=(*+1)+C.
(¢) The expressions from parts (a) and (b) look different, but they are both correct. Note that 2+ 1) +C =2+

222 + 1 + C. In other words, the expressions from parts (a) and (b) differ only by a constant, so they are both correct
antiderivatives.
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71. (a) We first try the substitution w = sin @, dw = cos § df. Then
2 sin® 6
+C.

sinfcos6do = /wdw =5 +C= >
(b) If we instead try the substitution w = cos 8, dw = — sin 8 df. we gel
2 2
sinfeosfdd =~ [wdw=-L 4c=-28, ¢

(¢) Once we note that sin 268 = 2sin 8 cos 8. we can also say

sinfcosfdd = ~ [ sin20de.

B

Substituting w = 26, dw = 2 d6. the above equals

cos w +C= _COZZO +C

(d) All these answers are correct. Although they have different forms. they differ from cach other only in terms of a
constant, and thus they are all acceptable antiderivatives. For example, 1 — cos® 8 = sin® 6. so @ = - # +3.
Thus the first two expressions differ only by a constant C.

Similarly, cos 26 = cos®6 — sin®@ = 2cos?8 — 1. so —# = —&522—9 + } and thus the second and third
expressions differ only by a constant. Of course, if the first two expressions and the last two expressions differ only
in the constant C. then the first and last only differ in the constant as well.

72. (a) If w = 2t,thendw = 2dt. Whent = 0, w = 0; when ¢ = 0.5, w = 1. Thus,

0.5 1 1
/ f2t)dt = / fiw) ldw = % / flw)dw = -21
0 0 2 < Jo 2

(b) Huw=1—¢ thendw = —dt. Whent = 0, w = 1; whent = 1, w = 0. Thus,

1
1 sinwdw = —

3 0 1
/ fa-¢8)dt = / flw) (—dw) =+ / flw)dw = 3.
0 1 Jo

(e) Ifw =23~ 2t thendw = —2dt. Whent = 1, w = 1; when t = 1.5, w = 0. Thus,

1.5

0 1 1/‘ 3
3-28)dt = w) | —=dw) = 4= ) dw = —.
f=wyde= [ g (Jaw) = +3 [ sran =

J1

73. (a) In 1990, we have P = 5.3¢%9149) = 5 3 billion people.
In 2000, we have P = 5.3¢%04(1%) = 6 1 billion peoplc.

(b) We have
10 10
Average population = ﬁ 0 5.360:014¢ gy _ % ] otr)(;:]i.; JUXJET 0
=1 /53 0.14_0)_ -
T 10 (0.014(e €)) =57

The average population of the world during the 1990s was 5.7 billion people.

74, (a) Attimet = 0, the rate of oil leakage = r(0) = 50 thousand liters/minute.
Att = 60, rate = r(60) = 15.06 thousand liters/minute.
{(b) To find the amount of oil leaked during the first hour, we integrate the rate from ¢t = 0 to t = 60:

60 50 0
Oil leaked = 50e=0-02t g — (_ e—o.ozr)
0 0.02

= —2500e™ " + 2500e° = 1747 thousand liters.

75. (a) E(t) = 1.4¢%°™
(b)

Total Consumption for the Century
100 years

1 100
=— 1.4e%%7 gy
100 f,

Average Yearly Consumption =
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_ 1 oeomn
= (0.014) [0'076

100
0 ]
= (0.014) [L(J - e")]
’ 0.07
=0.2(e" - 1) = 219 million megawatt-hours.
(c) We are looking for ¢ such that E(t) = 219:
1.4%07 =~ 219
™0™ = 156.4.
Taking natural logs,

0.07t = In156.4
5.05
x —— = 72.18.
t= Gor <18
Thus, consumption was closest to the average during 1972.
(d) Between the years 1900 and 2000 the graph of E(t) looks like

E(t)
1.4e7
E(t) = 1.4¢%-07
219 oo m oo
3
1900 1950 2000
{t=0) {t = 50) (t = 100}

From the graph, we can see the ¢ value such that E(t) = 219. It lies to the right of ¢ = 30, and is thus in the
second half of the century.

76. Since v = ((il_}tl' it follows that h(t) = /v(t)dt and h(0) = ho. Since

v(t) = 24 (1 —e-ﬁt) =09 _ '—'Ee_'%‘

& ko k ’
we have
h(t) = / u(t) dt = 1’2—9 dt - % e”wdt.
The first integral is simply %t + C. To evaluate the second integral, make the substitution w = —%t. Then
du = _k dt,
m
SO
-& = w —m vz—ﬂ w =—m -%t )

/e dt—/e ( k)du e +C € +C.

Thus

=
P

Loy
=

il

odp= 19, _mg( m -k,
/udt kt k( ke )+C

Dde-wtyC.

my
= —¢
kTR
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Since h(0) = ho.

2
ho= 2204 BEe 4 ¢
2
_ meg
C = ’l(] hd ?
Thus 2
mg T VI my
h(t) = % —t+ —-".2 e = + ho
9
h(t) = %:gt - ";c?g (1 —e‘?n"‘) + ho.
77. Since v is given as the velocity of a falling body, the height & is decreasing, so v = —— , and it follows that h(t) =
2

—/v(t) dt and h(0) = ho. Letw = e'\/g_k + e"\/"_“. Then
dw = \/gk (e"/ﬁ - e_'\/ﬁ) dt,
= et\/g_k - e"‘/g_k) dt. Therefore,

_/ /\/_(E\FH::\/,,—)
"\/%/—fﬁ_:e-f\/g—k (e‘\/y_"-e"\/g_") dt
\/—/ dw

—\/Elnlusl +C

- ln( "/—-»-e-’\/g_k)

Since n3
h(0) = ——ln(e +e)+C——nT+C ho.

we have C = ho + % Thus,

h(it)y = -= ln ( t/ok +e"‘/_) + ho = _Z In (M) + he.

78. (a) In the first case, we are given that Ro = 1000 widgets/year. So we have R = 1000e%15¢, To determine the total
number sold, we need to integrate this rate over the tirme period from 0 to 10. So the total number of widgets sold is

10 10
/ 1000%5¢ g = 1000 jousze| 6667(e'> — 1) = 23.211 widgets.
] (1]

0.15

In the second case, the total number of widgets sold is

10

10
/ 150.000.000¢ %" dt = 1,000.000.000e°'%*| = 3.5 billion widgets.
0

0

(b) We want to determine T such that

T
/ 1000e>1% gt = 2211
0 2
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Evaluating both sides, we get

6667(e” " — 1) = 11,606
6667¢>17 = 18273
O 13T = 2,740
0.15T = 1.01, so T =6.7 years.

Similarly, in the second case,

/ T 150.000.0006> 15 g = 3-900,000. 000
Q

2
Evaluating both sides, we get
(1 billion)(e* 3T — 1) = 1.75 billion
BT =275
T =~ 6.7 years

So the half way mark is reached at the same time regardless of the initial rate.
(c) Since half the widgets are sold in the last 3l years of the decade, if each widget is expected to last 3 years, their
claim could easily be true.

Solutions for Section 7.2

Exercises

1 .
1. Letu = arctanz,v' = L. Thenv = zand v/ = . Integrating by parts, we get:
1+ 22 £ 2 DYy P g

1
/1 carctanrdr = z -arctanx — /;r . — dx.

1+ 2

To compute the second integral use the substitution, z = 1 + x?,

" T 1 dZ 1 1 2
dr==> | £ =Zllz|+C==In(1 +s)+C.
/1+x'1 2 z 2ln|| 21(1 )

Thus,
/arctan.nd.t = r-arctanz — %ln(l +z*)+C.

. Letu=tandv =€, sou —landu—ge
st 1,5t 15¢ 14 i 5t
Thenfte dt = gte f dt = zte —ge +C.
3. Letu =% and v’ —e"’.sou —thmdu—ge
Thenft eStdt = e%t ')ftem dt.

Using Problem 2, we haw Jtietdt = 117e™ — 3(Lte™ - =e*)+C

_125t_z 5t L 2 o5t
= zt%e te mse” +C.

4. Letu=pand ' = e( 0P 4 = 1. Thus, v = fe('o’l)" dp = —10e{~%YP_ With this choice of u and v, integration
by parts gives:

/pc("o'l)” dp = p(—lOe(“o'l)”) — /(—10e(_0'”p)(1p

-10pe(‘°~””+10/e“"-”" dp

—10pe' =%V _ 1006 "%1P 4 C.

Il
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5. Letu=1t,v" =sint. Thus,v = —cos t and u’ = 1. With this choice of u and v, integration by parts gives:

/tsintdt = —tcost - /(—cost) dt

—tcost+sint + C.

9 1 .
6. Letu =Iny.v' =y. Then, v = % y” and v’ = =, Integraling by parts, we get:
Y

1 : 9
/ylnydy=;y’lny—/%y‘~§dy
1, 1

=gy lny- §/ydy

= %yzlny—iy2+c.

7. Letu=Inzxand ¢ = x°

Then

sou' =Landv =%

1 3 1 4
3 I xr T I
/1' nrdr 1 nr / 1 dr x) Inx 16+C

2s

8 Letu==z+1,v =e*. Thus, v = ,’se *and u' = 1. Integrating by parts, we get:
9. 2. 1 o
/(z +1)e“d:=(z+1)- %ez“ - / 56“ dz

e’ +C

1 -
= §(z+1)e?’ -

e | —

1 T
= i(2z + 1) +C.

9. Letu=t* o' =sint implying v = —cost and «’ = 2¢. Integrating by parts, we get:

/t"’sintdtz—tzcost—/Qt(—cost)dt.

Again, applying integration by parts with u = ¢, ¢’ = cost, we have:

/tcostdt =tsint +cost + C.

/tgsintdt = —t?cost + 2¢sint + 2cost + C.

10. Letu = 6% and v’ = cos 38, sou’ = 20 and v = % sin34.
Then f 6% cos36db = %‘-02 sin 36 — é f 6 sin 36 d6. The integral on the right hand side is simpler than our original
integral, but to evaluate it we need to again use integration by parts.
To find [@sin36df.letu = Hand v’ =sin36, 504’ = landv = — 1 cos 36.
This gives

/Hsin 3646 = —%9c0530+ %/cos39d9 = —:1—‘9('0530 + %sin 360+ C.

Thus, i
/ 6’ cos 36d8 = %9’-’ sin 36 + ge cos 30 — % sin 36 + C.
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11, Letu =sind and v’ = sind, so u’ = cos 6 and v = — cos 6. Then
/sin20d0 = —sin0c056+/c0520d9
= —sinfcosf + /(l —sin* ) do
= ~sinfcosfh + /ldB - /Sing(}dG.
By adding [ sin” 8 d6 to both sides of the above equation, we find that 2 [ sin® #d6 = —sinfcost + 6 + C., so
Jsin®0d6 = —4sinfcosf+ &+ C'.
12. Let u = cos(3a + 1) and v = cos(3a + 1), so v’ = —3sin(3a + 1). and v = } sin(3a + 1). Then
/c052(3a + 1)da = / (cos(3a + 1)) cos(3a + 1) da
= %cos(i’;a +1)sin(3a +1) + /sin"’((ia + 1)da
= %cos(3a +1)sin(3a +1) + / (1 - cos*(3a +1)) da

= %cos(iia +1jsin(3a+1)+a— /cos"’(Ba + 1) da.

By adding [ cos?(3a + 1) da 10 both sides of the above =quation, we find that
1 .
2/0:052(30 + 1)da = 3 cos(3a + 1)sin(3a + 1)+ a + C,
which gives
/cosz(Ba +1)da = (1—5005(301 +1)sin(3a + 1) + % +C.

1 .
13. Letu =1n3gq, v' = ¢*. Thenv = }¢® and v’ = s Integrating by parts, we gel:

5 ls, . . 1y 1g
lndgdg = =q%lnag — B W
/q n5qdy = zq"lndq /(0 5q) &7 dq

1l 6. . 1 ¢
= >-q’lndg - = .
6q 5q 36q +C

14. Letu =yandv' = (y+3)/% sou’' = land v = %/(y+3)3/2.
372

Sy +3dy=2y(y+3)** - [3(y+3)*?dy = Zy(y+3)*° - L(y+3)** + C.

()
15. Letu = (Int)?and v’ = 1,504’ = -1:1t and v = ¢t. Then

/(lnt)2dt =t(lnt)* — 2/lntdt =t(lnt)’ — 2tint + 2t + C.
(We use the fact that / Inzdr = zrlnz — & 4+ C, aresult which can be derived using integration by parts.)
16. Letu =t +2andv’ = VZ+3t,s0u’ = Land v = 3(2 + 3t)*% Then
2 2 2 :
/(t +2)V2 +3tdt = S+ + 3t)3/% — 5 /(2 +3t)* 2 dt

2 sz 4 5/2
=—(t+2 : - — L
2+ D@43 = @+ 4 C
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17.

18.

19.

20.
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Letu =60+ 1andv’ =sin(f + 1).sou’ = 1land v = - cos(8 + 1).

/(9+1)sin(0+1)d€= —(t?+l)cos(9+l)+/cos(6+1)d9
=—(@+1)cos(@+ 1) +sin(6 +1)+ C.

Letu =z, v' = e *. Thusv = —e™* and v’ = 1. Integration by parts gives:
/:e': dz= —ze™" - /(—e_:)d:
=-—ze " —e*+C
=—(z+1)e *+C.
Letu=Inz,v' =2 % Thenv = —r 'and v’ =~ Integrating by parts, we get:

/r'”nxdr: —;lt_llll.’lf—/(—.’l'-])‘l‘—ldf[«'

=—z'lmz-2""+0C.

Letu =yandv' = =, s0u’ = land v = —2(5 — y)'/%.

y PP 12 . - V2 o - 12 4 372,
dy = -2y(5 - +2 (- Iy = —2y(5 — - C.
/\/5Ty y y(d-y) /( y) dy y(G - y) 30-97" +
t+7 t Y N
—dt = —_—d+ T a—t “dt.
Vo -t / vVi—1t /( )
To calculate the first integral, we use integration by parts. Letu = tand v’ = 731?. sou’ =luandv = —-2(5—-1)"/2.

Then

t oy 1/2 . 1/2 . iz 4 3/2
dt = =2{(5 - ¢ 2 d—t dt = =2i(d -t —=(5-1t .
/ T G-t + ‘/(3 ) (b—1t) 3(5 YU+ C

We can calculate the second integral directly: 7 /(5 577 = 145 = 1)'? 4+ €. Thus

4

il 36 =07 - 146 -0 + G

—dt
Vo -t

=-2(-1)7 -

4(lnz)3
s

Letu =(Inr)'and v’ =z, 50’ = and v = Z-. Then

2 4 ‘
/.r(luz)" dr = J(IITII) -2 /.r(lu;r)“‘d:c.

J #(Inx)®dz is somewhat less complicated than [ w(lnz)? dz. To calculite it, we again try integration by parts, this
time letting # = (In £)” (instead of (Inx)*) and ¢’ = x. We find

2
& 3 3
/1’(1111)3 dr = —‘)—(ln ) - 3 /JT(]II r)dz.
Once again, express the given integral in terms of a less-complicated one. Using intcgration by parts two more times, we

find that .
/I(lnr)zdr = %(mz)? - /af(lur)dx

and that R R
o xr

rinrdr = I - — S

/1 nxdr 21111 ] +C

Putting this all together, we have

/:r(ln x) dr = g(lur)‘l —2%(lnz)* + gz?(lu x)? — %1‘2 Inz+ %1‘2 +C.



7.2 SOLUTIONS n

23, Letu = arcsinwand ¢’ = 1,50 u’ = \/'_2 and v = w. Then
1=w

. . w .
/arcsm w dw = waresin w — / \/% dw = warcsinw + /1 — w? + C.
— s

24, Letu = arctan7z and v’ = 1,50 v’ = H_%.; and v = z. Now '%g can be evaluated by the substitution

w=1+49z2 dw = 98z dz. so

- |
Tzdz - [ smdw 1 dw 1 l 2
/1+4gz2 ) e T w Tl = i)+ C

So
/arctan'izdz = carctan 7z — -113 In(1 + 492°) + C.

25, This integral can first be simplified by making the substitution w = %, dw = 2z dx. Then
2 1
/xarctanz dr = 5 /arctan wdw.

To evaluate [ arctan w dw, we'll use integration by parts. Letu = arctanw and v’ = L,so v’ = Ay and v = w.
Then

w 1 .
/arctan wdw = warctan w — / T+ w2 dw = warctanw - 3 In|l +w’|+C.
+w”

Since 1 + w? is never negative, we can drop the absolute value signs. Thus, we have

/:r arctanz’dz = % (a:? arctan x® — %lu(l + () + C)

2 1
= %172 arctanz” — 3 In(1+z") +C.

2
26. Letu =2 and v’ = ze* ,sou’ = 2z and v = Le* . Then
2 1 2 2 1 5 .2 1 .2
%™ dr = -1°e® — [ ze¥ dr = —1%" — —¢* +C.
2 2 2
Note that we can also do this problem by substitution and integration by parts. If we let w = «2, so du = 2z dz. then

1 . . . -
/ Pe* dr = 3 / we" dw. We could then perform integration by parts on this integral to get the same result.

27, To simplify maters, let us try the substitution w = x3, dw = 32% dzx. Then

/zscoszsd.r:%/wcoswdw.

Now we integrate by parts. Let u = wand v’ = cosw, so ' = 1 and v = sin w. Then

1 weoswdw = l{wsin w— [ sinwdw]
3 3
L.
= §[w sinw + cos w] + C
_ 1l 3. 3,1 3
= 3T sinz +§C0b.l? +C

Intdt = (llut—t)l =5Ind —4 = 4.047
1

28.

5
=c0s5+ Hsind — cos 3 — 3sin3 &~ —3.944.
3

29,

S T

zrcoszdr = (cost + xsinz)
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30. We use integration by parts. Letu = zand v’ = e™ . sou' = land v = ~e™".
10 10 10
Then / ze” "dz = —ze” +/ e *dz
) 0 0

=107 + (—e7 %)

=117 +1
~ 0.9995.

= g]n3 — 2= 2.94.

3 1 1 3
31./ tlntdt:(—tglnt——t)
1 2 2 1

32. We use integration by parts, Let u = arctany and v’ = 1,s0u' = T_}_Lyg and v = y. Thus

1 1
Y
- dy
0 _/0 1442

1

1
/ arctan y dy = (arctan y)y
0

_7T 1 2
=1 2lnll-i-yl
0
=T _Lli0x 0430
—Z—in ~ U. .

5
=6In6 - 5 = 5.751.

33, /“ln(1+t)dt=((1+t)ln(1+t)—(1+t))
0 4]

. . . : 1
34, We use integration by parts. Let u = arcsinzand ¢’ = 1,so v’ = - and v = z. Then

V31— 2z

1
/ arcsin z dz = zarcsin z
0

1—/1—2—112—3-/];&
AT, A

1
To find / ;2 dz, we substitute w = 1 — 2%, s0 dw = -2z dz.
0 4

Vi-=z
Then

=1

. 1 w=0 1 1 w=l1 1 %
;dz=—_—/ w"-ﬂlw:-/ w ldw=w
=0 V 1-22 2 w=1 2 w=0

Thus our final answer is 2 — 1 ~ 0.571.
2

1
=1
0

35. To simplify the integral, we first make the substitution z = 12, so dz = 2udu. Then

u=1 z=}
.2 1 .
varcsinu” du = = aresin z dz.
_ 2 4._
u=0 =0

From Problem 34, we know that fol arcsin zdz = % — 1. Thus,

1
/ warcsin u® dy = l(i —1) = 0.285.
o 2'2

Probiems

36. (a) This integral can be evaluated using integration by parts withu = z, v’ = sin z.
(b) We evaluate this integral using the substitution w = 1 + 2.
(¢) We evaluate this integral using the substitution w = z°.
(d) We evaluate this integral using the substitution w = 2%,
(e) We cvaluate this integral using the substitution w» = 32 + 1.
(P This integral can be evaluated using integration by parts with u = z°, v’ = sinz.
(g) This integral can be evaluated using integration by parts withu = Inz, v’ = 1.
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37. 27 F f(z) =zxsinr

=27
The graph of f(z) = z sin z is shown above. The first positive zero is al z = , 50. using integration by parts,

k.
Arca = / zsinrdr
0

+ / cosrdr
0 0

= —ICosZT

™
+sinzx

0 0

= —nwcosm — (—0cos0) +sinw —sin 0 = 7.

= —rcosr

38. From integration by parts in Problem 11, we obtain
.2 1. 1
sin“ 8df = —351n0c059 + §0+ C.
Using the identity given in the book, we have

/sin?odé):/l'—‘_’,o”—edo: %o— isin‘29+C.

Although the answers differ in form, they are really the same, since (by one of the stundard double angle formulas)

—%sin?ﬁ = —%(QSin()cosG) = —%siu&cos&.

39. Integration by parts: let u = cos# and v’ = cosf,sou’ = —sinf and v = sin 6.
/00529d9 = sinfcosf — /(— sin 8)(sin 8) d@
=sinfcosd + /sin2 8ds.
Now use sin?8 = 1 — cos® 6.
/cos2 0df = sinfcosf + /‘(1 — cos” ) df
= sin § cos§ + / dé - /«:052 g.de.
Adding [ cos? 6 d6 to both sides, we have
2/cos?0d€ =sinfcosf+6+C
/cos? 8do = %sin@cosH + %9 +C'.
Use the identity cos® § = 1ege26,

/c0520d0=/lic;iedf)=%0+%sin29+0.

The only difference is in the two terms %sinGcosB and isin 26. but since sin26 = 2sinfcosf. we have
1sin26 = $(2sinfcosf) = §sinfcos . so there is no real difference between the formulas.
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40. First, letu = e*andv’' =sinz,sou’ =e* andv = —cos .
Thus fe’ sinzdr = —ecosz + f e* cos r dz. To calculate f e” cos r dr, we again nced to use integration by parts.
Letu=¢" and v’ = cosx,sou’ =e” and v = sinz.
Thus
/ e“cosrdr = e sinx — / e* sinzx dr.
This gives

/e‘r sinrdr =e“sinr —e“cosr — /e’sinxdr.
By adding [ e* sin z dx to both sides, we obtain

2 / e“sinrdr = e*(sinx —cosz) + C.
P 1 ...
Thus /e sinxdzr = 3¢ (sinx —cosz)+ C.
This problem could also be done in other ways; for example, we could have started with ¢ = sinr and ¢’ = €” as well.
41, Letu=¢® and v’ = cosd, so v’ = € and v = sin 8. Then f e®cosBdf = e sind — fea sin 8 d#.
In Problem 40 we found that /er sinzdr = %e’(siu r—cosr)+C.
/ee cosfdf = e’ sing - [%eg(sinﬁ ~ cos 6)] +C

1 .
= 569(51119 +cos ) + C.
42, We integrate by parts. Since in Problem 40 we found that f e*sinxde = le*(sinz — cosr), we let u = r and
v' = e®sinz,sou’ = 1and v = Je*(sinx — cos x).

i 1
Then /:ve’ sinzdr = 315’(sinr —cosz) — 3 /CT(SiDI —cosz)dr

1
= l;w‘”(sinz —cosz) — H e“sinrdr+ = [ e’ coszdz.
2 2 2
Using Problems 40 and 41, we see that this cquals
. 1 . 1 .
%.rez(sm I —cosz)— Ie’(smr —cosz) + zc’(smx +cosz)+C
1

= %mez(sinr —cosx)+ ier cosz + C.

43, Again we use Problems 40 and 41. Integrate by parts, letting u = 6 and v = e’cosf,sou’ =landv = %ee(sin 0+
cos 8). Then

/Beo cosfdf = %Gea(sin() +cos @) — % /eo(sin() + cos §) dé

= %Beo(sim9+cosﬁ)— ;— /e"sin()(l()— %/eecosﬁde
1,6,. 1 -(, . 1 .

= 59«5 (sinf + cos ) — 1€ (sin@ — cos ) — _—1(51110-}-(:050) +C

= %Oee(sing +cos8) — %eo sinf + C.

44. We integrate by parts, Since we know what the answer is supposed (o be, it's easier to choose  and v'. Let u = =" and
v' =e*,sou’ =ne™ ! and v = €. Then

/1'"43r dr =a"¢" - n/r""c’ dr.



7.2 SOLUTIONS 375

45. We integrate by pants. Let u = «" and v’ = cosax.so «’ = nz"~ ! and v = 1 sinax. Then

/;r." cosazdr = —1‘ ‘sinar — /(n.z - -sm az)dx

1 n-
—-r sinar — = [ 2" 'sinaxdz.
a

46. We integrate by pans. Let u = x™ and v = sinaxz, so v’ = nr" 'and v = —% cos ax.

1 _
Then /x" sinazdr = —Er" cosar — /(nl‘" l)(—lcosar)d.r
a

1 n _
—~z"cosar+ — | 2" cosaxdr.
a a

47. We integrate by parts. Since we know what the answer is supposed to be, it’s easier 1o choose u and v.Letu =cos” '

-2 . .
and v’ = cosx.sou’ = (n—1)cos" ~ r{—sinz) and v = sin x.
Then

— . -2 .
/cos" rdr =cos" ' xsinr 4+ (n— 1)/cos" rsin rdr
=cos" 'zsine+ (n-1) /cos z(1 — cos® &) dx

= cos" ' zsinx — (n - 1)/cosn rdr+(n- 1)/cos"_2 rdz.
Thus, by adding (n — 1) [ cos” x dz to both sides of the equation, we find

- . -2
n /(:os“ rdr =cos" ' rsinz +(n—1) / cos" " rda,

1 -1 . n-—1 _
S0 /cos" dr = —cos" " rsinr + R
n n

48. (a) One way to avoid integrating by parts is to take the derivative of the right hand side instead. Since fe'” sinbr dz is
the antiderivative of e®* sin b,

e sinbr = %[e“(.&l sinbz + Bcosbr) + C)|

= ae®* (Asinbr + Bcosbz) + €™ (Abcos br — Bbsin br)
“[(aA — bB)sinbx + (aB + bA) cos bx].

Thusad — bB = 1and aB + bA = 0. Solving for 4 and B in terms of a and b, we get

a b
A= a’ + b’ B= @b

Thus

/euz sinbr = eaz (G"L.Fb) sinbr — % cos b.T) + C.
2 1 B2 a?
(b) I we go through the same process, we find

ae®*[(ad - bB)sinbz + (aB + bA) cosbr] = €** cos br.
Thus ad — bB = 0. and aB + b4 = 1. In this case, solving for 4 and B yields

b a
A=—— B= ——.
a’ +b?’ a2+ bh?

Thus f e** cosbr = e“(—;_—ﬁ;-_r sinbr + ;% cosbr) + C.
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49, Since f'(r) = 2z, integration by parts tells us that

/ J@g ) dr = f(gie)|

/ F(2)g

= f(10)9(10) — f(0)g(0) - 2/ zg(z)dr.

0
We can use left and right Ricmann Sums with Az = 2 to approximate fow zg(z)dz:

Leftsum = 0- g(0)Az + 2 - g(2)Ar + 4 - g(4)Az + 6 - g(6)Azr + 8 - g(8)Ax
= (0(2.3) + 2(3.1) + 4(4.1) + 6(5.5) + 8(5.9)) 2 = 205.6.
Right sum = 2 - g(2)Ar + 4 - g(4) Az + 6 - g(6)Az + 8- g(8)Axr + 10 - g(10)Ax
= (2(3.1) + 4(4.1) + 6(5.5) + 8(5.9) + 10(6.1)) 2 = 327.6.

A good estimate for the integral is the average of the lefi and right sums, so

10 . B
/ ro()dz ~ w = 266.6.
0

Substituting values for f and g, we have

10 10
/ f(2)g'(x) dz = F(10)9(10) - £(0)g(0) - 2 / colx)dz
0 0

=~ 10%(6.1) — 0°(2.3) — 2(266.6) = 76.8 =~ 77.

50. Using integration by parts we have

1 1
/ zf'(x)dx = —/ f'(z)dz
0 0

0
=1-f(1) = 0- £(0) - [f(1) - £(0))
=2-0-5+6=3

51, (a) We have

F(a)=/ e % dr
o

a u
+/ 2ze T dz
0 0

a a
+‘2/ e Tdr
[¢] 0

a

DL -
= —zxe °

= (—z’e™* — 2ze™7)

(—z%e ™ = 27e” " = 2¢77)

0
= —a’e " — 2" — 27" +2.

(b) F(a) is increasing because z”e ™% is positive, 5o as a increases, the area under the curve from 0 to a also increases
and thus the integral increases.
(¢) We have F'(a) = a®e™", so
F''(a) =2ae™ —a’e™® =a(2 —a)e™"

We sce that F”(a) > 0 for 0 < a < 2,50 F is concave up on this interval.
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52. We have R
Bioavailability = / 15te™ % dt.
0
We first use integration by parts to evaluate the indefinite integral of this function. Let » = 151 and v = e %24t so

u' = 15dt and v = —5e~ %2, Then.
/1ste'°-'-"dt= (15:)(—5e'°"-")-/(-5e‘°'2‘)(15d1)

= —Tste™ "% + 75 / e %*dt = —T5te™*? — 375¢ "% + C.

Thus,
3
= =329.29 + 375 = 45.71.
0
The bioavailability of the drug over this time interval is 45.71 (ng/ml)-hours.

3
/ 15te ™% dt = (~75te” " — 373¢™*%)
0

(71}
17
<

(a) Increasing V5 increases the maximum value of V', since this maximum is 1. Increasing w or ¢ does not affect the
maximum of V',
(b) Since
dV
dt
the maximum of dV/dt is wVo. Thus, the maximum of dV’/dt is increased if Vo or w is increased, and is unaffected
if @ is increased.
(¢) The period of V" = Vg cos(wt + @) is 27 /w, so

= —wlysin(wt + ¢).

2rfw
1
Average value = CEym / (Vo cos(wt + ¢))* dt.
2afw [,

Substituting r = wt + ¢, we have dr = wdt. Whent = 0,z = ¢, and when t = 27 /w, £ = 27 + ¢. Thus,

2r+0 1
/ Vé(cos )’ — dr
o w

- 2140 .
= - / (cos x)* dz.
[~

Using integration by parts and the fact that sin® £ = 1 — cos” z, we sce that

Average value =

]

._
O

o

Vo [l e
Average value = —- [-(cos rsinr + 1')]
27 12 ®

[cos(27 + @)sin(27 + &) + (27 + &) — cos @ sin ¢ — @]
!

O!‘J

= A =

5
v

Thus, increasing Vp increases the average value; increasing w or ¢ has no effect.
However, it is not in facl necessary to compute the integral to sce that w does not affect the average value, since all
w’s dropped out of the average value expression when we made the substitution r = wt + ¢.

dE . T
54, (a) We know that x =" so the total energy E used in the first T hours is given by E = / te™*' dt. We use
: 0

integration by pants. Let u = ¢, ¢’ = e *. Theno' = 1. v = —Le ",
g Y P a

r
/ te” dt
0
T

E




378 Chapter Seven /SOLUTIONS

T
= _lT —aT+l —“dl
a a f,
- 1 —a
=_Lg of p Ly ememy
a a-

(b)

1 T 1
i L () 3 (1=t o)
T a 7151;0 eeT + a? ! Tl-l-?gc eeT
Since a > 0, the second limit on the right hand side in the above expression is 0. In the first limit, although both the
numerator and the denominator go to infinity, the denominator e*T goes to infinity more quickly than T does. So in

T

the end the denominator e is much greater than the numerator T'. Hence lim ——= = 0. (You can check this by
Tooc €47
. T . - . 1
graphing y = — on a calculator or computer for some values of @) Thus lim E = —.
eeT T—oo [

55. (a) We want to compute Cy, with Cy > 0. such that
1 ., 1 1
/ (T1(x)) dxr = / (Cisin(wz))’ dr = CIZ/ sin’(wzx)dz = 1.
o 0 0

We use integration by parts with u = v’ = sin(#z).
Sou’' = mcos(nz) and v = —21 cos(xr). Thus

1 . 1
1 1 .
/ sin®(rz)dz = —— sin(nx) cos(n';r)\ + / cos” (nz) dz
o ™ o o

1 1
=1 sin(7z) cos(m:)l +/ (1 - sin’(xz)) dz.
T 0 o

Moving fol sin®(wz) dx from the right side to the left side of the equation and solving, we get

1 . 1 1
2/ sin’(rz)dr = _L sin(mz) cos(7r.r)| + / ldz=0+1=1,
0 w o Jo

! 1
sin’(wr)dr = -.
/ 2
%

1 1
/ (¥:(x))° dz = c;-’/ sin’(rz)dz = -
0 0 -
So, to normalize ¥, we take C; > 0 such that
a
2
(b) To normalize ¥,,, we want to compute Cy. with Cp, > 0, such that

SO

Thus, we have

=1 so C=V2.

2

1 1
/ (Y. (x)) dz =C; / sin®(nwx)dr = 1.
0 0
The solution to part (a) shows us that
/sin2(rr!)dt = —qi sin(wt) cos(wt) + l/ldt.
&7 2

In the integral for ¥,,, we make the substitution ¢ = nx, sodr = -,l;df. Since t = 0 when = = 0 and ¢t = n when

r =1, we have
1 1 n "
/ sin®(nwr)ds = —/ sin”(wt) dt
o nJy
1.
(— 7 sin(wt) cos(mt)

n 1
(0+3) =5

+l/ 1(1f)
o 2/,

Q= I~
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Thus, we have

1 ) 1 02
/ (o (2))? dz = C,i/ sin*(nwr)de = ==,
0 0 2
So to normalize ¥, we 1ake C,, such that
Ca

T=l SO C’n=\/§.

Exercises

W

1

. ﬁe('”)(—Ii cosf +sin8) + C.

(Leta = -3,b=1in1i-9.)
16 1

- 57 Inr — —2® +C. (Let n = 5inMI-13.)

36
The integrand, a polynomial, z*, multiplied by sin 3z, is in the form of I11-15. There are only three successive derivatives
of £ before O is reached (namely, 322, 6z, and 6), so there will be four terms. The signs in the terms will be —++—, as
given in I1I-15, so we get

1 1 5 1 1
3 N [t e — 3 — - 1 — A — —— 1 [
/x sindzrdr = 51‘ cos 5x + % 3z sin bz + % 6z cos dr 525 6sindz + C.

. Formula I1I-13 applies only to functions of the form ™ In z, so we’ll have to multiply out and separate into two integrals.

/(:r"’+3)lllatdm=/a:21nmdr+3/lna:dm.

Now we can use formula III-13 on each integral separately, to get

3

3 P
,/(12+3)1na;d.1; =L hs-% +3(zlnz—z)+C.

3 9

Note that you can’t use substitution here: letting & = £ +5 doesn’t work, since there is no dw = 3z dr in the integrand.
What will work is simply multiplying out the square: (2 + 5)% = 2% + 102> + 25. Then use I-1:

/(I3+5)2(11:=/rsdx+10/.r3d.r+‘25/1dx=%IT+10-§I4+251+C.

1
. —gcosswﬁ-C

(Let £ = cos w, as suggested in IV-23. Then — sin w dw = dx, and f sinwcos® wdw = — f ridr.)

1 3 3 . 3
. —=sin xcosx——smrcosx+§x+C.

(Use IV-17.)

1
. —_ arctan - +C.

V3 V3
(Let @ = V3 in V-24).

. Letm = 3inlV-2].

| dr = 1 sing +
cos3r  2cos’z

1
2
_ 1 sinzx 1
T 2cos?z 4

/ ! dx
cos T

sinx + 1
sinr—1

In | ‘ + C by 1V-22,
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13 32,3 _3) 2 -~
(21 it +4.’L‘ 7)€ +C.
(Leta = 2. p(z) = % inTI-14.)

11. li sin 36 sin 56 + li cos 38 cos 58 + C.

12,

13.

14.

15,

16.

17.

18.

19.

20.

(Leta =3,b=5inll-12)

% cos 30'sin 58 — — sin 30 cos 50 + C.
(Leta = 3,b=5in1I-10.)

)
(lmz - =z <+ 1) e +C.

3F "9t T a7/
(Leta = 3.p(z) = z” inlll-14.)
%e’s + C.

(Substitute w = 23, dw = 32" dz. It isn't necessary 1o use the iable.)

1 4 4 3 4 2 8 i) 3z
(31: —651: +9z 27m+81 e +C.
(Leta = 3, p(z) = z? in 1I-14.)

Substitute w = 5u. dw = 5du. Then

/u5 In(5u) du = %/wf' Inwdw

= %(%wslnw - %w6+0)

_ls _ 15
= 6u. In 5u 36u +C.

Oruselndu =Ind5+Inu.

/u.51n5udu=1n5/u5du+/u51nudu

= “—eln’ + - L 40 (using 11L13)
=% TG '~ 36 Sing

‘u6 6
=—6—lnou———u +C

Use long division to reorganize the integral:

[5a= [ (e gty) a= [ar [ o

To get this second integral, leta = 1.5 = —1in V-26, so

/%dt=t+ln|t—1|—ln|t+ll+0.

. 1 .
Substitute w = z2. dw = 2z dz. Then /13 sinz’dr = 3 / wsin wdw. By I1I-15, we have

1 1, 1 - s 1,
/wsin wdw = 5w cosw + 5 sinw +C= —51‘ cosz” + 3 sinz’ + C.

%(7005 2ysin Ty — 2sin 2y cos 7y) + C.
(Leta=2b=7inll-11.)

2 2 1 . 1
/y' sin 2y dy ——;-y‘ cos 2y + —(2y)sin 2y + g(?)cos 2+ C

1
1 » | 1
= -5y cos2y+ ysin2y + Jeos2y + C.

(Usea = 2,p(y) = y® inI-15.)



21. %iesr(5 sin3z — 3cos 3z) + C.
(Leta=5,b=3inll-8)
22. Use IV-21 wwice to get the exponent down to 1:

1
—dr =
/C08517(1

_lsinx +l 1 dr
T 2¢os?z 2/ cosz

/ ! dr
cos.r

1
cosdz

Now use IV-22 to get

Putting this all together gives

1 sinx

7.3 SOLUTIONS

1sinz 3 1
= - d
jcosiz T 1 / costr

(sinz) +1

P (sinz) -1 +C

3 sinx 3 n (sinz) +1

1
/cos%:dx_ 4

4cosx

|+c

8cosz @ 16 |(sinz)—1

23, Substitute ur = 28, dw = 2df. Then use IV-19, letting m = 2.

1 1 1 1
=i ——dw=:
/51112 260 2/sin"w(u 2

Substitute w = 30. dw = 3d#. Then use IV-19, letting m = 3.

o
e

1 1 1
=114
/ sin® 36 3 / sndw

. Substitute w = 7z. dw = 7dzx. Then use IV-21.

[}
h

1 1 1
lr=2 [ ——d
/cos4 7z 7/(:os4w “

/1: +4x+3

(Leta = —1and b = -3 in V-26).

/( +1)(r He

cosw
sin w

(240 = -

1 1
2tanw +tC= T 2tan2d

l COs " l 1 dw
2sinw 2 ) sinw

i

lcosw 1|1, jeos(w)—1

————t - | = — ; V-2
6sin>w 6 [‘2 cos(w)+1l+c] by IV-20
1 cos 30 1 cos(36) — 1
Gsn236 12 cos(39) + 1 +C.

=L [inn_w-+z/;dw]
7|3cosdw 3/ cosPw
1 sinw sin w
- cos3w 21 [cosw ]
_ 1 tanw
T 21 cos? w + ﬁ
1 tan7zx 2

= 21 ———COS" = + ﬁ tan 7z + C.

tanw + C

%(lnl;lr+1| “lnje+3)+C

381

27. Using the advice in 1V-23, since both m and n are even and since n is negative, we convert everything to cosines, since

cos r is in the denominator.

4
sin®r

tanzdz = ry dr
cosir

(1 = cos® x)?

B / cos*z

costzx dz

dz —2/;,,d1:+/1d1.
cos~



382 Chapter Seven /SOLUTIONS

By IV-21

Substituting back in, we get

1 sinz 4 si
tan'zder = = Sny _ Zang +z+C.
3cos*r  3cosz

28. p
z 1
/m = —5(1D|3| —hll.?. -3') +C.

(Leta = 0,b = 3 in V-26.)

1
= __1 o ) |
/4 y— /(J+2 y_z) 4(lnly 2| 11|y+ |)+C

(Leta = 2,b = —21in V-26.)

30. arctan(z +2)+ C.
(Substitute w = z + 2 and use V-24, letting a = 1.)

31.

1 1
-  dy= — = t i 2 .
/y2+4y+5 y /1+(y+2)2dy arctan(y +2) + C.
(Substitute w = y + 2, and let a = 1 in V-24).

32.
dz=-——+C
x2 +41‘+4 (+2)"‘ TS

33. We use the Pythagorean Identity to change the integrand in the following manner:

You need not use the table.

. 3 . n . 3 . . 2 .
sin®z = (sin’z)sinz = (1 - cos’x) sinz = sinz — cos” zsinz.

Thus, we have

/sin3 zdr = / (sinx - cos? z sin z)dz

. b .
=/smmdz-/cos rsinzdz.

The first of these new integrals can be easily found. The second can be found using the substitution w = cosz so

dw = — sin z dx. The second integral becomes
/c052 zsinzdr = —/ufdw
= —%wa +C
1 3
=-3 cos"z+C

and so our final answer is

. . 2 .
/smaxdx=/smmdz—/cos zsinzdx

= —cosx + (1/3) cos® = + C.



7.3 SOLUTIONS
34.
/ sin® 36 cos® 30 d6 = /(sin 36)(cos” 30)(1 — cos® 38) d0
= / sin 36(cos” 36 — cos” 30) do.

Using an extension of the tip given in rule [V-23, we let w = cos 30, dw = —3sin 36 df.

/(lu2 —u'}dw

(cos3 36) + %(('055 36) + C.

Ol W= Wl

/ sin 30(cos” 3 — cos* 30) d@

£
w

s
£

o &,

—~

w|
e
O

35. If we make the substitution w = 227 then dw = 4z dz, and the integral becomes:

0:2 1 .
/ze“ cos(2z7)dz = I/e" cos wdw

Now we can usc Formula 9 from the table of integrals to get:

%/e“" coswdw = :11- [—;—e“’(cos w+sinw) + C]
1. .
= ge (cosw +sinw) + C

= %e?’z (cos 22° +5in22°) 4+ C

Problems

36. Using [1-10 in the integral table, if m # %n, then

T

[m cos mfsin nf — n sin mb cos né)

n2—m

/ sin mné sin nf d6

= ———[(mcos mmsin nw — nsin mwcos nw) —
n? — m?

(m cos(—mm) sin(—nw) — nsin(—mw) cos(—nx)))

But sin k7 = 0 for all integers k. so each term reduces to 0, making the whole integral reduce to 0.
37. Using formula lI-11, if m # =n. then

k4

x
1 . .
/ cos mé cos nf df = ————(n cos m@ sin nd — m sin mo cos nf)
n? — m?

™

We see that in the evaluation, each term will have a sin kw term, so the expression reduces to 0.
38. (a)

! . 1
ﬁ | Vo cos(120=t)dt = 1;8’_. sin(1207t)

Vo (. .. .
= m[bm(lmﬂ’) — sin(0)]
= oo -0 =0

0

383
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(b) Let’s find the average of V"2 first.

1
— D 1 2
Vo = Averageof Vi= —— [ V3 at
rage o 1-0 A C

1
L (Vo cos(120xt)) dt
1-0J,

1
=Vy / cos” (1207t )dt
o

dz
Now, let 12 =gz, and dt = .
ow, let 1207t = z, an 1207 So
. V2 1207
Vo= 1‘781' / cos” zdz.
LU O
9 120=
Vo (1 . 1
= Toom (5 (,os.rsmr+§a:) . 1I-18
f02 1702
~ 120~ 60 = 2
So. the average of V? is E and V = y/average of V2 = Y
2 V2

(©) Vo =v2-V =110v/3 = 156 volts.
39. (a) Since R(T) is the rate or production, we find the totzl production by integrating:

N N
/ R(t)dt = / (4 + Be™!sin(2wt)) dt
0 0

~N
=NA+ B/ e sin(27t) dt.
0

Leta = —1and b = 27 in II-8.

B o

=N4
N+ 1+ 472

e”*(—sin(2t) — 27 cos(2nt))

[¢]

Since N is an integer (50 sin 27V = 0 and cos 2z N = 1),

N
2% ; ~-N
R(t)dt =NA —(l—e"").
Thus the total production is NA + :2225 (1 — e~ ") over the first NV years.
{(b) The average production over the first N years is

YV R(t)dt 4y B (1-e¥
o N T 144m? N )

(€ As N — 00,4+ 358 l‘f\,-‘\ — 2. since the second term in the sum goes to 0. This is why A is called the
average!

(d) When ¢ gets large, the term Be™* sin(2nt) gets very small. Thus, R(¢) = A for most ¢, so it makes sense that the
average of fo'N R(t)dtis Aas N = oc.

(¢) This model is not reasonable for long periods of time, since an oil well has finite capacity and will eventually “run
dry.” Thus, we cannot expect average production to be close 1o constant over a long period of time.

40. We want to calculate .
/ Cusin(nwe) - Cm sin(mma) dx.
0

We usc I1-11 from the table of integrals with @ = na, b = ma. Since n # m, we see that
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1 1
/ U, (z) - ¥m(z)dr = ChCnm / sin(nwz)sin(mnz)dr
0 0

Cn. Crn

mem? —
CnCn

(m? — n)rw

=0

since sin(0) = sin(nw) = sin(m=) = 0.

Solutions for Section 7.4

1
o (nn cos(nwz) sin(mmmx) — mrsin(nrz) cos(mzz)) ’

ST 0
S (nwcos(mr) sin(mw) — mx sin(nw) cos(rnm)

—n= cos(0) sin(0) + mw sin(0) cos(O))

385

Exercises

1. Since 25 — 2 = (5 — z)(5 + z), we take

So,

giving

Thus 4 = B =2 and

2. Since 6z + ¢ = z(6 + ), we take

So,

giving

Thus A =1/6,and B = 5/6 so

20 = A(G+1) + B( - 2)
20 = (A~ B)z + 54+ 5B,

A-B=
54+5B =20
20 2 2
= 5 = % -
25 — x? d—zx S+4+r

r+1 A B
6x + x2 ;+

r+1=A(6+1z)+ Br
r+1=(41+B)r+64.

A+B=1
64 =1.

z+1 1/6  5/6
Ox + 2 T ’
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3. Since y* — 4y = y(y — 2)(y + 2). we take

8 A B C
wB-4dy oy y-2 y+2
So,
8=A(y—2(y+2)+ Byly+2) + Cyly — 2)
8=(4+ B+C)y’ + (2B - 2C)y - 44,
giving
A+B+C=0
29B-2C =0
—44 =38.
Thus A =-2,B=C =150
8 -2 1 1

+ ——+
-4y y y—-2 y+

~

4

b

Since y® —y> +y — 1= (y — 1)(y* + 1), we take

2 _ 4 By+cC
P-yr+y—-1 y-1 y2+1

So,
2y =AW’ + 1)+ (By+C)y—-1)
2y=(A+ By’ +(C-By+4-C,
giving
A+B=0
-B+C=2
A-C=0.
Thus A=C=1,B=-1s0
2y 1 1-y

= + — .
yoyty-to y-1 0 P41

5. Using the result of Problem 1, we have

20 2 "9
= : =2In}5—z|+2n[5+z :
/20—$2dT /D_Idx-l- e Inls —z|+ 25+ 2|+ C

6. Using the result of Problem 2, we have

/‘$+3dz=/jmd +/ ”de=%amﬂ+5mm+mn+c

6xr + 2 6+

7. Using the result of Problem 3, we have

8 -2 1
—°  dy=| ZLdy+ | —=d
/y3—4y Y /y yT/y—2ty+

8. Using the result of Probiem 4, we have

1-
- =y -1+ -3 1| +C.
/y -y +y—] dy = / dy + / +1d'/ nlJ | + arctany 11|J 4+ |+C

1
T3 =-2Inly|+Inly—2|+Inly+2|+C.




9.

10.

11.

7.4 SOLUTIONS

(a) Yes,use z = 3siné.
(b) No; better to substitute w = 9 — z2, so dw = —2z dz.
We let
3z -8r+1 _ A + B . C
3 —da?4+r4+6 -2 41 z-3
giving
32° -8z +1=A(z+1)(z -3} + Bz - 2)(z = 3) + C(z - 2)(z + 1)
32 -8z +1=(A+B+C)r* - (24+5B+C)x - 34 +6B - 2C
SO

Thus, A=B=C=1,s0

322 -8z +1 dz dz
_  —dzr = +
3 —-412+1+6 r—2 r+1

We let

giving

SO

A+B+C=3
-24-53B-C=-8
-3A+6B-2C=1.

3

C

r—1

T2z -1) -

+ 5+

1 1 i
x

%l

3 — g2

l=dz(z-1)+B(z-1)+Cxz®
1=(A+C)2*+(B-A)z-B

Thus, A =2,B=-2,C =0, so

10z + 2
3 —-5r24+1r-5

A+C=0
B-4=0
-B=1.
Thus, A=B=-1,C=1,5s0
dr dz dr dr -1 .
/m— /1‘ /I2+/.’t—l_ Injz|+ 7 +Inj|z - 1|+ K.
. We let
10z + 2 _ 10z +2 4 Br+C
w8 —3z2+zr -5 (z-5)(x*+1) x-5 z2+4+1
giving
10z +2 = A(x° +1) + (Br + C)(z — 5)
10z +2=(A+B)t’+(C-5B)z+ A-5C
)

A+B=0
C-5B=10
A-3C =2

dz::/ 2,
)

2z . 2 .
dm—/zz+ldm=21n|x—a|—ln|z +1|+I\.

+/rdf =ln|zr-2|+Injz+1|+In|z - 3|+ K.

387
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13. Division gives
g +122% + 150% + 250 +11 4z® + 25z + 11
2+ 1222 + 11z TP e vl
Since 2% + 1222 + 11z = z(z + 1)(z + 11), we write

45> +25z+11 A B C

3 +1222 4 11z a:+1:+1+:c+11

giving
42® + 25z +11 = A(e + 1)(x + 11) + Bz(z + 11) + Cz(z + 1)
422 + 25z +11 = (A+ B+ C)z* + (124 + 11B + C)z + 114

SO

A+B+C=4
124+11B4+C =25
114 =11.

Thus, A=B=1,C =2s0

z + 1203 + 1522 + 25z + 11 e dr d.B 2dzx
3 +1222 + 11x + 1+1 z+11

='7+ln|;r|+ln|:r+l|+21n|rr+11|+K.

14. Division gives
I"+3$3+21?2+1_T2+ 1
22+3z+2 7 r24+3r+2
Since 2% + 3z + 2 = (z + 1)(z + 2), we write
1 1 __4 B
2+3z+2 (z+D{z+2) 41 z+2
giving
1=A{c+2)+ Bz +1)
1=(A+D)z+24+B
$0
A+B=0
244+ B =1.

Thus, A =1, B=—-1s0

'+ 322 +227 +1 dr — 'Tg dx+ dz dx
2+ 3z +2 Y z+1 r+2
3

4
3

Injz+1|—In|z+ 2|+ C.

15. Since x = (3/2) sint, we have dz = (3/2) cos t dt. Substituting into the integral gives

1 2r
—dt = —t+C—2arcsm(3)+C

/m /m(“’“) / 2

16. Completing the square gives z° + 4z + 5 = 1 + (z + 2)°. Since x + 2 = tant and dz = (1/ cos® t)dt, we have

1 1
- - = —_— . dt= t =1 = t 2 R
/J:i’-{--ia:—l-fidm /1+tan-’t cos’t /d +C =arctan(z +2) +C



17.

18.

7.4 SOLUTIONS 389

Since z = sint + 2, we have
4r — 3 —r® = A(sint +2) —3 — (sint + 2)° = 1 —sin’t = cos’ ¢

and dr = cost dt, so substitution gives

1 1
= costdt = [ dt =t+ C = arcsin(zr — 2) + C.
/\/433—3—1:2 / Vcos?t / ( )
(a) Substitute w = r* + 10, so dw = 2z dx.
(b) Substitute £ = V10tan 6.

Problems

19.

(%]
=]
.

21,

22.

25.

26.

Since z° + 62 + 9 is a perfect square, we write

/fl—.dx= - ! dz=/——-l—d:r.
2?2 +6z+25 (z? +6x+9) + 16 (z+3)2+16
We use the trigonometric substitution z + 3 = 4tanf,sor = 4tané — 3.

Since y? + 3y + 3 = (y + 3/2)% + (3 — 9/4) = (y + 3/2)* + 3/4, we have

/1/ +3y+3 /(1/+3/2)2+3/~1
Substitute y + 3/2 = tan 4, so y = (tanf) — 3/2.
Since 2 + 2z 4+ 2 = (z + 1)? + 1, we have

/1‘ +2:r+2 /( +1)°+1

Substitute z + 1 = tan 8, soz = (tan§) — 1.
Since 22 + 2x 4+ 2 = (z + 1)% + 1, we have

a+1 iz = z+1 dx
242 +2 [ (z+1)2+1 7

Substitute w = (z + 1), sodw = 2(z + 1) dz.
This integral can also be calculated without completing the square, by substituting w = 2+ 22 + 2,50 dw =
2(z +1)dz.

Since 2z — 22 = 1 — (z — 1)?, we have

4 1
—_—dz =4 | —————d2
/V“-”'«’-Z2 / 1-(z-1)?
Substitute z — 1 = sinf, 50 z = (sin ) + 1.

Since 2z — 2% = 1 — (z — 1)?, we have

z2—-1
\/'Zz——? / 1-(z- 1)”’
Substitute w = 1 — (z — 1)%, so dw = =2(z — 1) d=.
Since t? + 41 + 7 = (t + 2)° + 3, we have
/(t +2)sin(t* + 4t + T)dt = /(t + 2)sin((t + 2)? + 3) dt.

Substitute w = (t + 2)° + 3, so dw = 2(¢ + 2) dt.
This integral can also be computed without completing the square, by substituting w = 2 +4+7,s0dw =
(2t + 4) dt.

Since 8% — 49 = (8 — 2)> — 4, we have

/(2 — ) cos(8® — 46) df = /—(9 — 2)cos((8 — 2)* — 4) d6.

Substitute w = (8 — 2)” — 4, so dw = 2(6 — 2) db.
This integral can also be computed without completing the square, by substituting w = 6% —46, so dw = (20—4) db.
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27. We write

1 A + B
(z-3)(z-3) -5 z-3
giving
1=A(z-3)+B(x-53)
1=(A+B)x—-(34+5B)
o
A+B=10
-34-5B=1.

Thus, 4 =1/2, B = —1/2,s0
1 _ /2 1/2 _1 T _
/(x—5)(w—3)dx_/z—5dr /—z_sdr—anlr 5] anlx 3 +C.

28. Since 2y% + 3y + 1 = (2y + 1)(y + 1), we wrile

y+2 4 + B
2 +3y+1 2y+1  y+1

giving
y+2=Ay+1)+ B2y +1)
y+2=(A+2B)y+ A+ B
SO
A+2B =1
A+B=2.

Thus, 4 =3, B = —1,50
y+2 3 1 3
eI = dy— | ——dy=2in|2y+1-nl; :
/2y2+3y+1dy /2y+1 Y /y+l y=ghn|2y+1| nly+1/+C

29. Since 2% + £ = z(z” + 1) cannot be factored further, we write

z+1 A4  Bz+C

#+r z  r2+1°

Multiplying by z(x® + 1) gives

r+1=A(*+1)+(Bz+C)z
ct+1=(4+B)z* +Cr+ 4,

SO
A+B=0
C =
A=1

Thus, 4 = C =1, B = —1, and we have

z+1 _ (_1_ —:r+l)_ dz zdr dz
/a:3+mdz_/ ;r+.r'-’+1 _/x 2:2+1+ 2 +1

=In|z| - %ln |132+1| + arctanz + K.
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30. Since r® + ' = £?(1 + x*) cannot be factored further, we write
r—-2 A B Cz+D

r?+xd 2 1+zx2°

Multiplying by £2(1 + ¢?) gives
r~2=Az(1+ %)+ B(1 + z°) + (Cz + D)«?

r-2=(A44+C)®+(B+ D)r’ + Ar + B.

SO

A+C=0

B+D=0
4=1
B = -2

s.A=1,DB=-2,C=-=1,D =2, and we have

r—2 1 2 —z+2 dr dzr rdz dr
/ d.v—/‘(———+—'2)d1:—/?—2/z /l+.L /1+132

a2+t r £ l+4a
2 1 -
—ln|z|+; - 51n|1+1‘|+2arctan.r+1\,

31. Letz = 3sin@ sodr = 3 cos 8 db, giving
(9sin® 6)(3 cos 8) ,

I 9sin’ @ ——— 7 3cosfdf = [ LEL TRICOST) 1y 9 [ sin?@ 48,
3cos b

—dr =
V9 —x? V9 —9sin%8

Integrating by parts and using the identity cos? 8 + sin® 8 = 1 gives

/sin29d0= —sinBcosG+/cos'20dl9= —sin6c050+/(1 — sin” 8) d§

/Sill29(10 = —-%sin()('OSG-{- g +C.

Sincesin@ = z/3 and cos f = /1 — 22/9 = /9 — 27/3, and 8 = arcsin(z/3), we have

r = 9/si1120d0= —gsinecoso+ §0+C

'/-——IL dzx
V9 —x2
“—9—Ih+ Zarcsm (3) +C——%\/9-r’-’+ga.rcsin (%) +C

=9z
T 23

32, Lety = 5tun@ sody = (3/cos> 8) df. Since 1 + tan’ 6 = 1/ cos® 8, we have

v’ 25tan” 4 N
—2  __dy = 16 = an” .
/ 25 4+ y2 dy / 25(1 + tan2 @) cos? 0 d6 = a/tm 8dé

Using 1 + tan® 8 = 1/ cos® 8 again gives
Y ay=5 [ ran’0ds = ( .
By T - - cos? 6

In addition, since 8 = arctan(y/5). we get

0
/ -y ,_,dy:y—c'xarctan(

20+ y

1) d6 = 5tanf - 38+ C.

e

)+C.
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33, Lett = tan @ sodt = (1/cos® 8)dh. Since V1 + tan? 8 = 1/ cos , we have

dt 1/ cos* @ cos § cosé
- o= [ —059  gg— [ 50 4.
_/ 21 4 ¢ _/ tan2 8v/1 + tan? 8 / tan? fcos2 @ / sin’ 8

The last integral can be evaluated by guess-and-check or by substituting w = sin 8. The result is

dt cos 1
B LA SR S,
/ lre / sin28 sng T C

Since t = tan @ and 1/ cos” 6 = 1 + tan® 6, we have

1 1
Vi+tani8 I+

cosf =

In addition, tan @ = sin 6/ cos 8 so
t

Vi+iz

sin® = tanfcosf =

Thus

dt 1482
=- +C.
/ t2y/1 + 2 t
34, Since (4 — z3)%? = (V4 = 22)3, we substitute z = 2sin 9, so dz = 2cos § df. We get

dz _ 2cos 6 dé _ [ 2cosfdd 1 de —ltan0+C
(4—22)32 7 | (4—4sin®0)3/2 ~ J 8cos38 ~ 4 J cos?28 4
Since sinf = z/2, we have cos 8 = \ﬁ— (2/2)2 = (V4 - 22)/2, 50
dz 1 1siné 1 z[2 z
——— = — ] = = — = e — = — h
/(4_22)3/? 3 tan +C 4cos€+c 17 ,__4_22)/2+C 1 ,___4_22+C

35. The denominator £ — 3z + 2 can be factored as (x — 1)(x — 2). Splitting the integrand into partial fractions with
denominators (x — 1) and (z — 2), we have
T T A B

2-3r+2 (1?—1)(1:—2)=1—1+2:—2'

Multiplying by (x — 1)( — 2) gives the identity

r=A(r-2)+ B{z-1)
S0

r=(A+Bxr-24-B.

Since this equation holds for all , the constant terms on both sides must be equal. Similarly, the coefficient of x on both
sides must be equal. So

—24-B=190
A+B =1
Solving these equations gives A = —1, B = 2 and the integral becomes

I 1 1
L dr=- d e —lalr— 1+ 2l le — 2+ C.
/:1""—3z+2d‘T /1_1 $+2/x_2d1 Injz -1+ 2|z -2|+C

36. Completing the square, we get )
e +4r+13=(z+2)* +9.

We use the substitution z + 2 = 3tan ¢, then dz = (3/ cos?t) dt. Since tan? t +1 = 1/ cos? t, the integral becomes

1 1 3 1 1 r+2
/—(1+2)2+9dz_/9tan2t+9'cosztdt_/gdt_§arcmn( 3 )+C.
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Notice that becausc F%TT-T) is negative for2 < # <3,

3

3z
Area = —/2 md.&
Using partial fractions gives
3z _ A + B (44 B)x-B-44
(r—D@-4 2-1 z-4  (z-1(z-4)
Multiplying through by (z — 1)(z — 4) gives
3x=(A+B)r—B-44
soA=—-1and B =4 Thus
3

8 3z S 4
—/ (x—_m —/ (z—_—l'—i- )dz=(1n|r-l| 4111'1‘—4’) =3n2.

o

38. We have . .
3z°+x
Area = ———dz.
e /0 DT
Using partial fractions gives
3224+ Az +B +C
(z2+1)(z+1)  22+1  r+1
_ (Az+ B)(x+1)+C(z° +1)
B (2 + 1) (z+1)
_(4+C)2*+(A+B)z+B+C
B (2 +1)(z+1)
Thus )
3 +r=(A+C)2* +(A+B)x+B+C,
giving
3=4A+C, 1=A+B, and 0=B+C.
with solution
A=2B=-1,C=1.
Thus
_ 3’ +z I
- (22 + 1)z +1)
1 1
/ e 2+1+1-+1) d
|
= In(z® 4+ 1) — arctanz + In |z + 1
0
=2In2 - 7/4
39. We have

1
22
Arca = —dz
/0 v1—2z2

393

Letz = sinfsode = cos@df and /1 — 22 = /1 —sin® @ = cos§. Whenz = 0.6 = 0. Whent = 1/2.6 = = /6.

. 2
sin” 8

z’ '
__dw=/ _sintf
»/(: V1-z? 0 V1—sin?6

_ (6 sinfcosh
- (3 - o)

/6
cos@db = / sin’ 6 dd
0

=/6

V3
.

)

0
The integral f sin” 8 d@ is done using parts and the identity cos® 0 + sin® 8 = 1.



394 Chapter Seven /SOLUTIONS

40. We have

Let # = 2sin@ so dx

= 2cos0df and V4 —z2 = /4 —4sin?d = 2cosf. When x =

| x
Area = —dx
/0 V4 —x?

0.8 = 0 and when

z=v2,0=nr/4.
A (2sin 9)°
d.r— ———————2cos ¢ df
/ v / \/ —(2sin 8)?
=/4
=8/ sin 0d0=8/ (sin @ — sin 6 cos” 8) df
0 0
3 =/4
cos” 6 2 5
=8 —cosf+ =8{z--—=).
( ) ) <3 m)
41. We have
P
Area = —dr.
[, Vi 49
Let z = 3tan 8 so dz = (3/ cos” §)d@ and
~—=_ [esin®6 3
TV oz e +g_cos0‘
Whenz = 0,60 = 0 and when z = 3,6 = =/4. Thus
/4 n/4
/ ;:Lr=/ L 3 d0=/ ;‘Lﬂw:/ NP
o VIZ+9 o VOtanZ@ + 9cos’d o 3/cosf cos?d o cosé
_ Ly [sin6+1 ‘_1 Yva+1l 1, (1+V2
T2 7 |sing -1 T3t veo| T 2 \VE

This answer can be simplified to ln(1 4 v/2) by multiplying the numerator and denominator of the fraction by (V2 + 1)
and using the propertics ol logarithms. The integral ](1/ cos #)df is done using the Table of Integrals.

42, We have

Let z = 3tané so dr = (3/ cos” 6)dé and

When r = V3,6 = 7/6 and when = = 3,0 = /4. Thus

e

vz +9

3
1
Area = ——dz.
/ﬁx\/12+9
5o _ .sinf [9sin?4 9sin 8
IVEFI=3 50V cos?0 " cos28°
1 3, 1 [
¢ 9siné/ cos? 6 cos?6 3 J.s6 sinb
_l'lln|c059—1 1|12 - |32
3 2 lcosf+1 6 1/f+1 V321
_1 \/_+2
T 6 \/' -2|)"

This answer can be simpliticd by multiplying the first fraction by (1 — v/2) in numerator and denominator and the second

onc by (V3 + 2). This gives

Arca = —(ln(3 —2V2) + In(7 + 4V3)) =

ln(3 2V2)(7 + 4V3)).

The integral f(l/ sin 8)d@ is done using the Table of Integrals.
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43. (a) We differcntiate:

d (_ 1 ) 11 1 11
dé \ tané tan?é cos?#@ ‘S:ZT!;',‘_;% cos?f  sin?@’
Thus,

1 1
/sinzédo_ " tanf +C

(b) Lety = VBsinfsody = V5 cos 8 df giving

/ / V5 cos8 d9 /' V5 cosd
\/5 y? 5sin? 6

sin? 8v/5 cos 8

1
= = —_—df = -
'/sm 29 tan9+c
Since sin @ = y/V/5, we have cos § = \/1 — (y/V3)2 = \/5 — y2/V/5. Thus,

1 \/a- NE _ 5—y?
P “Stand TCT @) T T O

44. Using partial fractions, we write

1 4 + B
1-22 14z 1-=r

1=4(1-2)+B(l+z)=(B-A)z+ 4+ B.
So,B—A=0and A+ B =1,giving A = B =1/2.Thus

dz 1 1 1 1
/1_—1.'—2_5/(1+J:+1—:c) dx—5(1n|1+x|—ln|l—r|)+C.

Using the substitution £ = sin §, we get dz = cos 6 df, we have

dz cosé cosf 1
/1—12 _/l—sin'zﬂde_/cosi‘ﬁde_/cosf)do'

The Table of Integrals Formula IV-22 gives

dr 1 1
/1—1:2 —/0056d9_§

The propertics of logarithms and the fact that [z — 1]

(sin@) +1

_ 1. Jz+1
(sinG)—1‘+C_21n|I—l|+C‘

= |1 — x| show that the two results are the same:

1
”1|= (It +z|—Inf1 - z)).

a/2 kdr
T=/O (a—z)b-1)

k _c oD
(a—z)b-z) a-z b-=x

k=Cb—-=z)+D(a-x)
—(C+ D)r+Cb+ Da

1
51

45. (a) We want to cvaluate the integral

Using partial fractions, we have

SO

0=—(C+D)
k= Cb+ Da,

395
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giving

Thus, the time is given by

po [ kde & "’2( 11 )d.
B o (a—z)b-2) b-a o a-z b-z)

2

k af2
= m(—lnla—r|+ln|b—x|)o
k b—z|°/?
= In
b—a a—zxllg

=i (0 (55) -1 (2)

_ k l(‘Zb—a)
=iaml—)

(b) A similar calculation with o instead of a/2 leads to the following expression for the time

o kdz k
T: =
/0 @-o0b-2 b-a® 0
k b— zo b
== (ln —-l—]n (-))
b—a a—zTg a

As zo — a, the value of |a — zo| = 0, 50 |b — x| /|a — To| = 00. Thus, T — oc as zo — a. In other words, the
time taken tends to infinity.

zo

b—=z
a—zx

46. (a) We calculate the integral using partial fractions with denominators P and L — P:

k A B
PL-P) PTI-P
k= A(L-P)+BP
k=(B—-A)P+ AL

Thus,

B-4=0
AL =k.

s0 A = B = k/L, and the time is given by

Ly2 L2

kdP k 1 1 k

T:/ _z_/ (_+_) dP = —(IH|P|—111|L"P|)
v PA-P) L), \P L-P L

£ (2(3) -1 (5)-n(5)+= ()

= %ln (%) = %111(3).

2>

L/
L/4

(b) A similar calculation gives the following expression for the time:
k ok
T= z—(ln |P| —In{L - P|)’ =7 (In|P2} —In|L — Pl —In|Pi|+1n|L - P1}).
Py

P, — L,then L ~ Py = 0,s0ln P, = In L, and In(L — P;) = —o0. Thus the time tends to infinity.
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Solutions for Section 7.5

Exercises

1. (a) The approximation LEFT(2) uses two rectangles, with the height of each rectangle determined by the left-hand
endpoint. See Figure 7.2. We see that this approximation is an underestimate.

a b
Figure 7.2

(b) The approximation RIGHT(2) uses two rectangles, with the height of each rectangle determined by the right-hand
endpoint. See Figure 7.3. We see that this approximation is an overestimate.

a b
Figure 7.3

(¢) The approximation TRAP(2) uses two trapezoids, with the height of each trapezoid given by the secant line connect-
ing the two endpoints. See Figure 7.4. We see that this approximation is an overestimate.

a b
Figure 7.4

(d) The approximation MID(2) uses two rectangles, with the height of each rectangle determined by the height at the
midpoint. Alternately, we can view MID(2) as a trapezoid rule where the height is given by the tangent line at
the midpoint. Both interpretations are shown in Figure 7.5. We see from the tangent line interpretation that this
approximation is an underestimate

T

Figure 7.5
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2. (a) The approximation LEFT(2) uses two rectangles, with the height of each rectangle determined by the left-hand
endpoint. See Figure 7.6. We see that this approximation is an overestimate.

a b

Figure 7.6

(b) The approximation RIGHT(2) uses two rectangles, with the height of each rectangle determined by the right-hand
endpoint. See Figure 7.7. We see that this approximation is an underestimate.

a b

Figure 7.7

(¢) The approximation TRAP(2) uses two trapezoids, wilh the height of cach trapezoid given by the secant line connect-
ing the two endpoints. See Figure 7.8. We sce that this approximation is an underestimate.

a b

Figure 7.8

(d) The approximation MID(2) uses two rectangles, with the height of each rectangle detcrmined by the height at the
midpoint. Alternately. we can view MID(2) as a trapczoid rule where the height is given by the tangent line at
the midpoint. Both intcrpretations are shown in Figure 7.9. We see from the tangent line interpretation that this
approximation is an overestimate.

AR,

_;-..;_‘7(

Figure 7.9
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3. (a) The approximation LEFT(2) uses two rectangles, with the height of cach rectangle determined by the lefi-hand
endpoint. See Figure 7.10. We sce that this approximation is an underestimate.

T

I

a b

Figure 7.10

(b) The approximation RIGHT(2) uses two rectangles, with the height of each rectangle determined by the righi-hand
endpoint. See Figure 7.11. We see that this approximation is an overestimate.

— T
a b

Figure 7,11

(c) The approximation TRAP(2) uses two trapezoids, with the height of each trapezoid given by the secant line connect-
ing the two endpoints. Sec Figure 7.12. We sce that this approximation is an underestimate.

|

Figure 7.12

(d) The approximation MID(2) uses two rectangles, with the height of each rectangle determined by the height at the
midpoint. Alternately, we can view MID(2) as a trapezoid rule where the height is given by the langent line at
the midpoint. Both interpretations are shown in Figure 7.13. We see from the tangent linc interpretation that this
approximation is an overestimate.

T

Figure 7.13
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4. (a) The approximation LEFT(2) uses two rectangles, with the height of cach rectangle determined by the left-hand
endpoint. See Figurc 7.14. We see that this approximation is an overestimate.

Figure 7.14

(b) The approximation RIGHT(2) uses two rectangles, with the height of each rectangle determined by the right-hand
endpoint. See Figure 7.15. We see that this approximation is an underestimate.

Figure 7.15

(c) The approximation TRAP(2) uses two trapezoids, with the height of each trapezoid given by the sccant line connect-
ing the two endpoints. Sce Figure 7.16. We see that this approximation is an overestimate.

a b

Figure 7.16

{(d) The approximation MID(2) uses two rectangles, with the height of each rectangle determined by the height at the
midpoint. Alternately, we can view MID(2) as a trapezoid rule where the height is given by the tangent line at
the midpoint. Both intcrpretations are shown in Figure 7.17. We see from the tangent line interpretation that this
approximation is an underestimate.

Figure 7.17
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5. (a) Since two rectangles are being used, the width of cach rectangle is 3. The height is given by the left-hand endpoint
so we have '
LEFT(2) = f(0) -3+ f(3)-3=0"-3+3*.3=27.
(b) Since two rectangles are being uscd, the width of each rectangle is 3. The height is given by the right-hand endpoint
50 we have .
RIGHT(2) = f(3) -3+ f(6)-3=3%-3+6"-3 =135.
(¢) We know that TRAP is the average of LEFT and RIGHT and so
27+ 135
2

(d) Since two rectangles are being used, the width of each rectangle is 3. The height is given by the height at the midpoint
so we have

TRAP(2) = = 81.

MID(2) = f(1.5) -3+ f(4.5) -3 = (1.53)° - 3+ (4.5)* - 3 = 67.5.

6. (a)
LEFT(2) = 2- f(0) + 2 f(2)
=2:142-3
=12
RIGHT(2) =2- f(2) +2- f(4)
=2-342-17
=44
(b)
( f(z) =2>+1 fz)=2"+1
Area shaded Area shaded
=LEFT(2) =RIGHT(2)
x T
2 4 2 |
LEFT(2) is an underestimate, while RIGHT(2) is an overestimate.
7. (a)
MID(2) =2 f(1} +2- f(3)
=2:-242-10
=2
) 2
TRAP(2) = LEFT(_)-:RIGHT(-)
12 + 44
= > (see Problem 6)
=28
(b)
(flz) =22 +1 Jz)y=22+1
Area shaded Area shaded
=MID(2) =TRAPQ2)
I et xT
2 4 2 4

MID(2) is an underestimate, since f(x) = z” + 1 is concave up and a tangent linc will be below the curve.
TRAP(2) is an overestimate, since a secant line lies above the curve.
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Problems

8. (a) (i) Let f{z) = ﬁg‘ The lefi-hand Riemann sum is

ORI O I0)
8 8/ 8 8
1 /764 64 64 64 64 64 64 64
‘5(&+E+@+ﬁ+%+@+ﬁ+m)

~ 8(0.1020) = 0.8160.

(ii) Let f(z) = ﬁg The right-hand Riemann sum is

()01 ()01 ()20
_ly6d 64 64 64 64 64 |, 64 64
(R R S )

8 \65 7378 T80 Tlo0 1137 128
]
~ 0.8160 — - = 0.7535.
0.8160 — - = 0.7535

(iii) The trapezoid rule gives us that

LEFT(8) + RIGHT(8)
2

~ (.7847.

TRAP(8) =

is decreasing over the interval. Thus

(b) Since 1+ 27 is increasing for z > 0, so ——;

- I

1
1472

)
RIGHT(8) < / dx < LEFT(8)
Jo

i

7

0.7535 < — < 0.8160
3.01d < 7 < 3.264.

Ll

9. Let s(t) be the distance traveled at time ¢ and v(#) be the velocity at time . Then the distance traveled during the interval
0<t<8Bis
6

5(6) — 5(0) = s(¢)

0

]

6
/ s'(t}dt (by the Fundamental Theorem)
0

6
=/ v(t) dl.
o

We estimate the distance by estimating this integral.
From the table, we find: LEFT(6) = 31, RIGHT(6) = 39, TRAP({6) = 35.

10. Since the function is decreasing, LEFT is an overestimate and RIGHT is an underestimate. Since the graph is concave
down, secant lines lie below the graph so TRAP is an underestimate and tangent lines lie above the graph so MID is an
overestimate. We can sce that MID and TRAP are closer Lo the exact value than LEFT and RIGHT. In order smallest to
largest, we have:

RIGHT(n) < TRAP(n) < Exact value < MID(n) < LEFT(n).

11. For a decreasing function whose graph is concave up. the diagrams below show that RIGHT < MID < TRAP < LEFT.
Thus,

(a) 0.664 = LEFT, 0.633 = TRAP. 0.632 = MID. and 0.601 = RIGHT.
(b) 0.632 < true value < (0.633.
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RIGHT = 0.601 MID = 0.632 TRAP = 0.633 LEFT = 0.664

12. f(x) isincreasing, so RIGHT gives an overestimate and LEFT gives an underestimate.
13. f(x) is concave down. so MID gives an overestimate and TRAP gives an underestimate.
14. f(z) is decreasing and concave up, so LEFT and TRAP give overestimates and RIGHT and MID give underestimates.
15. f(z)is concave up, so TRAP gives an overestimate and MID gives an underestimate.
16. (a) Since f(z) is closer to horizontal (that is, | f'| < |g']), LEFT and RIGHT will be more accurate with f(z).
(b) Since g(x) has more curvature, MID and TRAP will be more accurate with f(z).
17. (a) TRAP(4) gives probably the best estimate of the integral. We cannot calculatc MID(4).

LEFT(4) = 3-100 ~3-97+ 390 + 3- 78 = 1095
RIGHT(4) = 3-97 +3-90 + 3 - 78 + 3 - 55 = 960
1095 + 960 e

R 1027.5.

TRAP4) = 5

(b) Because there arc no points of inflection, the graph is either concave down or concave up. By plotting points, we sec
that it is concave down, So TRAP(4) is an underestimate.
2 2n
18. (a) / sinfdf = — cosf =0.
0

0
(b) MID(1) is 0 since the midpoint of 0 and 2 is 7, and sin w = 0. Thus MID(1)

use for MID(2) are w/2 and 37/2, and sin(7/2) = — sin(37/2). Thus MID(2)

2x(sin w) = 0. The midpoints we
= mwsin(m/2) + wsin(37/2) = 0.

(¢) MID(3) =0.

In general, MID(n) = 0 for all n, even though your calculator (because of round-oftf error) might not return
it as such. The reason is that sin(r) = — sin{2= — z). If we use MID(n), we will always take sums where we are
adding pairs of the form sin(z) and sin(2w — x}, so the sum will cancel to 0. (If n is odd, we will get a sin = in the
sum which doesn’t pair up with anything — but sin « is already 0.)

19. (a) R




404 Chapter Seven /SOLUTIONS

The graph of y = /2 — z? is the upper half of a circle of radius V2 centered at the origin, The integral
represents the area under this curve between the lines z = 0 and & = 1. From the picture, we see that this area can
be split into 2 parts, 4; and 4. Notice since OQ = QP = 1, AOQP is isosceles. Thus ZPOQ = LROP = %,
and A; is exactly § of the entire circle. Thus the total area is

Area=A; + 4o = %71’(\/5)24- 1—1- = g +

| —

(b) LEFT(5) ~ 1.32350, RIGHT(5) = 1.24066, T
TRAP(5) ~ 1.28208, MID(5) = 1.28705

Exact value =~ 1.285398163

Left-hand error & —0.03810, Right-hand error &~ 0.04474,
Trapezoidal error = 0.00332, Midpoint error =~ ~0.001656

Thus right-hand etror > trapezoidal error > 0 > midpoint error > left-hand error, and |midpt error| < |trap error| <
|lleft-error| < |right-ervor|.
20. We approximate the area of the playing field by using Riemann sums. From the data provided,

LEFT(10) = RIGHT(10) = TRAP(10) = 89.000 square fect.

Thus approximately

89,000 sq. ft.
200 sq. ft./lb.

= 445 Ibs. of fertilizer

should be necessary.
21.

a=2=Iy z) I2 Tn-1 In=b

From the diagram, the diffcrence between RIGHT (n) and LEFT(n) is the area of the shaded rectangles.
RIGHT(n) = f(z1)Az + f(z2)Az + -+ + f(za)Ax
LEFT(n) = f(zo)Az + f(z1)Az + - -+ + f(za-1)Az
Notice that the terms in thesc two sums are the same, cxcept that RIGHT(n) contains f(za)Az (= f(b)Ax), and
LEFT(n) contains f(ze)Az (= f(a)Az). Thus

RIGHT(n) = LEFT(n) + f(z.)Az — f(z0)Ax
= LEFT(n) + f(b)Az — f(a)Az

22.
LEFT(n) + RIGHT(n)
2
LEFT(n) + LEFT(n) + f(b)Az — f(a)Ar
2

TRAP(n)

LEFT(n) + %( £(b) - f(@))Az
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23. ¥

!

I
| |
i |
1 |
| |
H |
| |
| |
| |
| |
| i

,_______.___.

a=1tot; t2 tz ts tan=b
Zo T) z2 Tn
Divide the interval [a.b] into n picces, by xo,T1.T2,..., I, and also into 2n pieces, by fo, t1.t2,...,t2n. Then
the z's coincide with the even £'s, s0 xg = tg, 1 =2, Ta = t4. ..., Tn = toy and At = %Ar

LEFT(n) = f(xo)Az + f(r1)Az + -+ + f(zn-1)Az
Since MID(n) is obtained by evaluating f at the midpoints ¢, £3.t5. ... of the x intervals, we get
MID(n) = f(t.)Az + f(ta)Az + - - + f(ten—1)Az

Now
LEFT(2n) = f(to)At + f(t1)At + f(t2)At + -+ + f(lan-1) AL
Regroup terms, putting all the even ¢'s first, the odd t's last:
LEFT(2n) = f(to)At + f(t2)At + - + f(tan_2) At + f(81) A + f(t3) At + -+« + f(tan—1) At
A A A A Al Azx
= f20) 5 + f@1) 5+ + f@n-) S+ F) 50+ T () 50+ 4 fltn) T

" )

LEFT(n)/? MID(n)/2
So )
LEFT(2n) = S(LEFT(n) + MID(n))

24. Whenn = 10, wehavea = 1:b = 2: Az = &5 f(a) = 1; f(b) = 3.
LEFT(10) &~ 0.71877, RIGHT(10) = 0.66877, TRAP(10) = 0.69377
We have
RIGHT(10) = LEFT(10) + f(b)Az — f(a)A
LEFT(10) + 42(f(b) — f(a)) = 0.71877 + 53
so the equations are verified.

z = 0.71877 + 75(3) = (1) = 0.66877, and TRAP(10) =
(3 —1) = 0.69377.

25, First, we compute:

o

(f(6) - fl@)Az = (f(b) - f(a))( ;")
= (f(5) - £(2)) (3)
= (21— 13) (%)

_u
_Yl

=
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RIGHT(10) = LEFT(10) + 24 = 3.156 + 2.4 = 5.556.
TRAP(10) = LEFT(10) + 3(2.4) = 3.156 + 1.2 = 4.356.
LEFT(20) = 4(LEFT(10) + MID(10)) = 3(3.156 + 3.242) = 3.199.

RIGHT(20) = LEFT(20) + 2.4 = 3.199 + 1.2 = 4.399.
TRAP(20) = LEFT(20) + (1.2) = 3.199 + 0.6 = 3.799.

Solutions for Section 7.6

Exercises

1. We saw in Problem 5 in Section 7.5 that, for this definite integral, we have LEFT(2) = 27, RIGHT(2) = 135, TRAP(2) =
81, and MID(2) = 67.5. Thus,

2MID(2) + TRAP(2) _ 2(67.5) + 81 _

SIMP(2) =
MPQ) 3 3

72.

Notice that

o
and so SIMP(2) gives the exact value of the integral in this case.

2. (a) From Problem 7 on page 401, for f:(mg + 1) di, we huve MID(2)= 24 and TRAP(2)= 28. Thus,

9 b)
SIMP(2) = 2MID(2) -; TRAP(2)
_2(24) + 28
h 3
=16
=7
(b) .
4 3 -
2 x 64 76
r’"+1)der=|—+=z =|— 4) - = —
/o(r+)z (3+1)0 (3+ 0+0)= %

(¢) Error= 0. Simpson’s Rule gives the exact answer.
Problems

3. () Table 7.1 Errors for the left and right rule
approximations 10 f; % dr = 0.6931471806 ...

n LEFT(n) | Lefterror || RIGHT(n) | Right error
2 0.83:3333 | -0.14019 || 0.583333 0.10981
1
8

0.759524 | —0.06638 || 0.634524 | 0.05862
0.725372 | —0.03222 || 0.662872 | 0.03028
16 || 0.709016 | —0.01587 || 0.677766 | 0.01538
32 || 0.701021 | —0.00787 || 0.685396 | 0.0077d
64 || 0.697069 | —0.00392 || 0.689256 | 0.00389
128 || 0.695104 | —0.00196 || 0.691198 | 0.00195

{(b) The left errors are negative and the right errors are positive. This occurs because f(x) = 1/z is decreasing, meaning
that the left sums are overestimates and the right sums are underestimates. Doubling n approximately halves the error.
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Table 7.2 Errors for the trapezoid and midpoint rule
approximations to fl? % dr = 0.6531471806 ...
n TRAP(m Trap error MID(n) Mid error
2 0.708333 | —0.01518 0.685714 | 0.00743
4 0.697024 -0.00387 0.691220 | 0.00193
8 0.694122 | —0.00097 0.692661 | 0.00049
16 || 0.6933912 | —0.000244 || 0.6930252 | 0.000122
32 || 0.6932082 | —0.000061 || 0.6931166 | 0.000031
64 || 0.6931624 | —0.000015 || 0.6931396 | 0.000008
128 || 0.6931510 | —0.000004 || 0.6931453 | 0.000002

(d) The trapezoid errors are negative because f(r) = 1/r is concave up, and thus. the trapezoids overestimate. The

(e)

2 ! )
4. (a) / (z* + 32")dx = (LT + 1-3)

(b)

3. (a

(b

(c

(d

)

~—

)

—

midpoint errors are positive. Doubling n approximately quarters the error.
Table 7.3  Errors for Simpson’s rule
for {7 Ldr =0.6931471806 ...

n SIMPin) error

2 || 0.69325396825 | —0.000106788
4 [ 0.69315453065 | —0.000007350
& || 0.69314765282 | —0.000000472
16 || 0.69314721029 | —0.000000030
32 || 0.69314718242 | —0.000000002

The error is multiplicd by approximatcly 1/16 when » is doubled.
=12.
0

0
SIMP(2) = 12.
SIMP(4) = 12.
SIMP(100) = 12.
SIMP(n) = 12 for all n. Simpson’s rule always gives the exact answer if the integrand is a polynomial of degree
less than 4.

4
/ efdr =e*
0

0
Computing the sums directly, since Ax = 2, we have
LEFT(2)=2-¢e% 4+ 2-e” = 2(1) + 2(7.389) = 16.778: error = 36.820.
RIGHT(2)=2- € + 2- &' = 2(7.389) + 2(54.598) = 123.974: crror = —70.376.
TRAP(2)= 16.778 + 123.974 _ 70.376:

MID(2)=2-e! +2-€® = 2(2.718) + 2(20.086) = 15.608;

SIMP(2)= 2(4"'608):3* 70376 _ 53.864; error = —0.266.
Similarly, since Ar = 1, we have LEFT(4)= 31.193;
RIGHT(4)= 84.791: crror = —31.193
TRAP(4)= 57.992: error = —4.394

MID(d)= 51.428: ermor = 2.170

SIMP(4)= 53.616: ecrror = —0.018

4
=e' - % x53.598....

error = 16.778.

error = 7.990.

error = 22.405

For LEFT and RIGHT, we expect the error 1o go down by 1/2, and this is very roughly what we see. For MID and
TRAP, we expect the crror 1o go down by 1/4, and this is approximately what we see. For SIMP, we expect the error
1o go down by 1/2% = 1/16, and this is approximately what we see.

6. Here, the crror in the approximation using n = [0 is 4 — 2.346 = 1.654.

(a) Since the crror in the LEFT approximation is proportional 1o 1/n, when we triple n from 10 to 30 the error is divided

by 3, so the error here is 1.654/3 = 0.551333, giving LEFT(30) = 4 — 0.551333 = 3.449,
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{b) The procedure here is identical 10 part (a), except that the TRAP error is proportional to 1/n, so the eror in
TRAP(30) will be 1.654/3% = 0.183778, giving TRAP(30) = 4 — 0.183778 =~ 3.816.
(¢) For SIMP, the crror will be 1.634/3* = 0.0204198, giving SIMP(30) = 4 — 0.0204198 = 3.980.

7. (a) For the left-hand rule, error is approximately proportional to 2. If we let n, be the number of subdivisions needed
for accuracy to p places, then there is a constant k such that

5x 107 = 2 x 1070 &
2 g
5x10'9=}-x10'8z-’i
2 ng
5x 107 = % X 10712
¥4 mni12
5x 107 = L1070~ k
2 120

Thus the ralios na : ng : 1112 © 7o = 1 : 10% : 108 : 10'®, and assuming the computer time necessary is proportional
10 np, the computer times are approximately

4 places: 2 seconds

8 places: 2 % 10% seconds == 6 hours

12 places: 2 x 108 seconds ~ 6 years

20 places: 2 x 10'® seconds 2 600 million years

(b) For the trapezoidal rule, error is approximately proportional to ;1-; If we let IV, be the number of subdivisions needed
for accuracy to p places, then there is a constant C' such that

5x10"5=%x10_4zﬁc—2
- 4
5%x107°% = % x 1078 = 7\?2
iVE
5x 10718 = % x 1077 = NC,
12
< —o_ 1 -20 c
==-x1 ]
ax 10 5 % 0 Noo?

Thus the ratios N4? : Ng? : Ni2? 1 Nag® 2 1: 10" : 10% : 10'9, and the ratios Ny : Ns : Nia : Npo & 1: 107 :
10* : 108, So the computer times are approximately

4 places: 2 seconds

8 places: 2 x 10” seconds = 3 minutes
12 places: 2 x 10" seconds = 6 hours
20 places: 2 x 10® seconds = 6 years

8. We assume that the error is of the same sign for both LIEFT(10) and LEFT(20); that is, they are both underestimates or
overestimates. Since LEFT(20) < LEFT(10), and LEFT(20) is more accurate, they must both be overestimates.

| | I
I I {
actual LEFT(20) LEFT(10)

We assume that LEFT(10) is twice as far from the acwal value as LEFT(20). Thus
Actual — LEFT(20) = LEFT(20) — LEFT(10)
Actual = 2 LEFT(20) — LEFT(10)
= 0.34289.
Thus the error for LEFT(10) is 0.04186.
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9. Since the midpoint rule is sensitive 1o f”, the simplifying assumption should be that f does not change sign in the
interval of integration. Thus MID(10) and MID(20) will both be overestimates or will both be underestimates. Since the
larger number, MID(10) is less accurate than the smaller number, they must both be overestimates. Then the information
that ERROR(10) = 4 x ERROR(20) means that the the value of the integral and the two sums are arranged as follows:

ERROR(10) -

| ERROR(20) | 3 ERROR{20) |

| ] |
actual MID(20) MID(10)

Thus
3 x ERROR(20) = MID(10) — MID(20) = 35.619 — 35.415 = 0.204,
so ERROR(20) = 0.068 and ERROR(10) = 4 x ERROR(20) = 0.272.
10. Since TRAP(n) seems to be decreasing as n increases, we can assume that TRAP(10) and TRAP(30) are both overes-
timates. We know that the error in the trapezoid rule is approximately proportional 10 1/n?. In going from 1 = 10 to
n = 30, n is multiplied by 3 and so we expect the error to go down roughly by a factor of 1/3"’, or 1/9. Therefore, if we
let d = [error(30)], then we have 9d = |error(10}].

r— 9d >
pod— 8 =
exact TRAP(30) TRAP(10)

We see from the figure above that the difference between TRAP(10) and TRAP(30) is 8d, so

8d = TRAP(10)—TRAP(30)
8d = 12.676 — 10.420
d = 0.282.

Since d is the magnitude of the error for TRAP(30), and since the exact value is less than TRAP(30), we have

Exact = TRAPQ30) —d
= 10.420 — (0.282
= 10.138.

The exact value' of the integral is about 10.138.
11, (a) If f(x) = 1, then

b
/ f(x)dzr = (b - a).

3(]‘((1) +2f(m) + f(b))___b-_“(%+2+%>=(b—a).

Also,

3

So the equation holds for f(r) = 1.
If f(x) = z, then

9

b —a
T

/ f(z)dzr = "7

[

Also,

3<f(a)+‘7f(m)+f()) !);a(g+2a;b+g)

'This method of improving numerical estimates is essentially equivalent to Richardson’s h? extrapolation, also called extrapolation to the
limit. See. for instance, Survey of Numerical Analysis, ed. John Todd, (New York: McGraw-Hill, 1962).
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S5 (g
b—a (3 3
=73 (§b+ 5")
_(b=a)(b+a)
B 2
B —a
2
So the equation holds for f(z) = .
a z° R
If f(z) = z°. then / f(x)dr = 3| = . Also,

h (f(a)+9f( )+f(b)) _b-a

b—a {a® a®+2ab+b* 2
3 (?+—2—+7)

_b-a ('2a‘ +2ab+2b"’)

|
w
N
| B,
[}
—
2
5 rof4
o
——
[~
+
N'le:‘o
S i

i
[
l

3 2

= b;u (a-‘)+ub+b?)

b& _ (13

3

So the equation holds for f(z) = z°.
{(b) For any quadratic function, f(x) = Az® + Ba + C, the “Facts about Sums and Constant Muliiples of Integrands™

give us:
b b LI b b
/ f(if)d]?:/ (.4;r'+B.r+C)d1:=A/ x’dm—l—B/ .‘l'd:l‘+C/ ldr.
a a a a Ja

Now we use the results of part (a) to get:

b Y o
h {a° 5 b h fa b h /1 1

; = A= — +2m- + — — = m-+4 — (= . hut
-/nf(.v)da, .43(2+m+2>+83(2+2 +2)+03(2+2 1+2)

2 432
—g(—-—AG +9Bu+c+2(.-1m?+Bm+C)+——Ab +2Bb+C>

fla) Q)
-3( R+ T)

12. (a) Suppose ¢i(x) is the quadratic function approximating f(x) on the subinterval [r;, xi4.1], and m; is the midpoint
of the interval, m; = (x; + xi41)/2. Then, using the equation in Problem 1, witha = z; and b = x;41 and
h=Ar= Iigl — Tt

/Ii“ flz)dr =~ /‘“+l qilw)de = == (q.(x,) + 2gi (i) + M) .

3 2

(b) Summing over all subintervals gives

n-1 {1 n=1 N
/f dr:—.Z/ o= 5 32 (D 4y 4 2l

=0

Splitting the sum into two parts:

3Zq,(m.m +1 Z um

i=0

% MID(n) + 3 TRAP(n)
SIMP(n).

I
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Solutions for Section 7.7

Exercises

1. (a) See Figure 7.18. The area extends out infinitely far along the positive z-axis.

¥ Y

T T

Figure 7.18 Figure 7.19

(b) See Figure 7.19. The area extends up infinitely far along the positive y-axis.

2. We have b
/ e %%dr = lim / e %4y = lim (—2.5¢7%47)|5 = lim (—2.5¢7 %% + 2.5).
0 b—~c ° b= b0

-0.4b

As b = o0, we know e — 0 and so we see that the integral converges 1o 2.5. See Figure 7.20. The area continues

indefinitely out to the right.

Figure 7.20

3. (a) We use a calculator or computer to evaluate the integrals.
When b = 5, we have [ ze™*dz = 0.9596.

When b = 10, we have [° ze™?dz = 0.9995.
When b = 20, we have [° ze™*dx = 0.99999996.
(b) It appears from the answers to part (a) that [~ z¢”*dz = 1.0.
4. (a) See Figure 7.21. The total area under the curve is shaded.

1

-4 -3 -2 -1 1 2 3 4

Figure 7.21

(b) When a = 1, we use a calculator or computer to see that [_ll e‘IQd.t = 1.49365.
Similarly, we have:

When a = 2, the value of the integral is 1.76416.

When a = 3, the value of the integral is 1.77241.

When a = 4, the value of the integral is 1.77245.

When a = 5, the value of the integral is 1.77245.

(c) It appears that the integral ffow e~ dx converges to approximately 1.77245.
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5. We have
| ! 1 b 1 1
/ ! 4z = tim / ! _dr= lim (7111(5”2))' = lim (:ln(5b+2) - :m(7)).
, 9T +2 b—oo J, ST +2 b—oc \D ;. b=oc \D 5
As b « oc, we know that In (5b + 2) —+ oo, and so this integral diverges.
6. We have

oo b b
- - - 1
/ L = lim/ — ! dr= lm ( ! )I = lim (—1__1)=o+_=1.
v (z+2)° b—oo f, (2 4+2)° booc \T+2/1; booc \b+2 3 3 3
This integral converges to 1/3.
7. We have

oo b . _ b _ o
/ Ie_’zd:r = lim :re"’zd.r = lim (-z—lc"z)l = lim (—le-b - —) =0+ % =
0

b—roc 0 b—oo 0 b—oo
This integral converges to 1/2.

b

o0 b 6—21:
- . -2 .
e **dr = lim e Tdr = lim ——
1 b— oo 1 b= oo 2 1

= blim (—e™®/24e72/2)=0+€e72/2= e ?/2.

where the first limit is 0 because lim, . ™% = 0.
9. Using integration by parts with v = z and v’ = ¢~ *, we find that

/:re_’ dr = —ze™ % - / —e fdr=-(1+z)e "
o
/ —d.r— llm/ —dr
0 b—oo

lun -11+z)e”™

50

= llm [l -1+ b)e_b]
= l.

10.
b

= x b x 1
— = i — _dr= lim -1 :
[ m=in ) wme ol g |

Asb = oo, In |4 + b*| = 00, so the limit diverges.

1L
0 r 0 r

/ S _dr= lim / — dz
_e 1 e bo—co f, 1+e

0

.1 2 1
=bh—f§o§lnl4+b |—§ln5.

im In|l+ e
bo—cc

b
Jm in 1+ e’ —In|1 + €%|)

ln(l +1)=In(14+0)=1In2.
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12, First, we note that 1/(2% + 25) is an even function. Therefore,

o dz 0 d= oo dz oc .
d = ~— + — =2 _—
/_ooz"’-i-?:') /_w22+25 A 22+ 25 /0 22+ 25

We'll now evaluate this improper integral by using a limit:

N e lim (1 arctan(b/3) — larctan(O)) Llr_=r
o 2425 o= \5 5 T5 210

So the original integral is twice that, namely /3.
13. This is an improper integral because /16 — 22 = 0 at z = 4. So

/'4 dz — lim /b dr
o V16 —x2  b=4- J, V16— 22
b

= lim (arcsin zf4)
b=~

0
blix}x_ [arcsin(b/4) — arcsin(0)] = 7/2 — 0 = 7 /2.

14.

dx

lim

/ sinzx dr = sinz
=14 cos bax/2— =74 Vecoszx

b
lim —/ ((tosz)_lle(—sinx)dr
x/4

]

b= f2=
b
= lim -2(cosz)'/?

b—xm/2—

=/4
= lim [-2(cosb)/? + 2(cos w/4)'/?]

ban/2—

\/5%
=2(T) =%

15. This integral is improper because 1/v is undefined at v = 0. To evaluate it, we must split the region of integration up into
two pieces, from 0 to 1 and from —1 to 0. But notice,
1
= —Inb.
b

' "1
/ —dv = lim / —~dv= lim [Ilnv
o V b—o+ [, U b0t

As b — 07, this goes to infinity and the integral diverges, so our original integral also diverges.

16. .

= uli’%l+[1/4 - (a*/4+1na)),

1 4 4

' +1 . T
i =1 — +1
lim / p dr im ( Tt nx)

a—0t a-+0F

"

which diverges as a — 0, since Ina — —o0.

17.
00 b
1 . 1
/, m‘“—,}i‘i/, T

b

lim arctan(zx)
b

1
lim [arctan(b) — arctan(1))
b— oo

72 -wfd=n/4
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18.

= lim

b4~

b—>°¢/ Vi +1

b
lim In|z + V2% + 1
b—roc 1

blim In(b+ Vb2 +1) —In(1 + V2).

As b — oo, this limit does not cxist, so the integral diverges.
19, We use V-26 witha =4 and b = —4:

o
du= 1i
/; u’ - 16 ! b—lgl‘

X

i
u—4)(u+4) ‘

b

du

u2 — 16

1

b= 4~

8

b
lim (ln]u — 4] —Inlu + 4])

o

blim %(ln[b—4|+ln4—]n|b+4| -1In4).
—4~

Asb = 47, ln|b — 4| = —oo. so the limit does not exist and the integral diverges.

20.

*
dy =
/1 yi+1

21, With the substitution w = Inz, dw = 1dz.

/ dr =/%duv=ln|w|+C=]n|lnII+C

SO

As b — oo, the limit goes to oo and hence the integral diverges.

rlnzx

< dz
2 zlnx

22. With the substitution w = Inz, dw = ldr,

SO

Asa = 0%,lna —

Lm,7

bl«]-vn;o 2/ (v? )2 +1

bll)nolo i[arctan(b ) -

arctan 1]

= (1/2)[=/2 — = /4] = =/8.

lim In|inz|
b—00

2

= blim (In|Ind| - In|In2j).

a—0

—dz = lnn+ 5[111

1
]Z
a

/m;t_dx—/wdw—%w2+c= %(lnr)2+c

/I—Il—gcl:r- llm/ Inz
a—0+

—o0, so the integral diverges.

— L -1 2
= i@l
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23. This is a proper integral; use V-26 in the integral table witha = dand b = —4.

20 1 20 1
dy = —_—d
/16 v-16"" /,6 -9+

luly — 4| —lnfy +4{ "

8 16

_In16—1n24 — (In12 — In 20)

a 8

_ 1n320-In288 _ lln(m/g) =0.01317.

8 8
. dz
24. As in Problem 21, =In|lnz|+C,s0
zlnzx

2y : oy
dx ) dx

= lim
1 rinz  p=1+ b zlnzx

2

lim In]lnz|

b—1+

b
lim In(in2) = In(Inb).
b—=17

As b — 17 In(Inb) = —oo, so the integral diverges.

. - 1 -
25. Using the substitution w = —z?, —2dw =r $ dr,

/e-’éx_§ dr = —‘2/6"' dw = —Qeq% +C.

So
) L VFar = lim i A oVEar
0 ﬁ b0t J, \/E
= lim -2 V%
b—o0+
b
=92 -2 V",

26. Leting w = Inz, dw = 1dz,

/i— = /w—zdw= —w '+ C = —L‘ +C,

z(lnx)? Inx

®_dx _ . [ _dr
5 z(lnz)? e 5 c(luzx)?

= lim (—L + -1—)
b0 Inb  Ind

1

— mv

SO

/2—1—(11:— lim /b;dr
o Vi—z2 b2 Jo VA-22

b

lim arcsin 3

b—2-

0

. .ob .
lim arcsin = = arcsinl =
b—2— 2

5

|

= lim ——l—+l] !
4—6—000 b—1 3 - ’

= dr . ' dr . 1
28'/4 W-JE&A G- T

415
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d .
29./ dz =/ dz (ln]:r—l[ 1n|:c+1|)+C=_;.<ln|; 1()+C’SO

r? -1 (I—l)(r+l)
/°° dr . /b dr
- lim —_
i -1 b~poo 4 r2 -1

b
lim (221
b—on l.‘l:+1[ 4

= lim [1111(1’"1) sins]
booc L2 b+1 2 5
1.3 1.5

oc b
/ dy_ _ lim dy
7 \/y—5 b—oc 7 Vy—9

= lim 24/y -3
b—oc

7

= bl_ifg(?x/b —5 - 2V2).

As b = oc, this limit goes to oo, so the integral diverges.
31. The integrand is undefined at y = —3 and y = 3. To consider the limits one at a time, divide the integral aty = 0;

3 b

b
_ydy / y . 2\1/2
= lim —=dy = lim (-(9-y")
,/9 y? T emam fo Jo— ¥ b=s3- ( ) .
= lim (3-(9-0")"?) =3.
Jm (3-89
A similar argument shows that
0
ydy : . 23172
—= = lim = lim (-(9-y")
_3 /99— y? b-o-3t \/9 y- b -3+ ( ) .
= lim_ (-3+(9-5)"?) =-3.
b— -3+
Thus the original integral converges to a value of 0:
ydy  _ [° _ydy P _ydy = —343=0

-3 \/9—.1/2— 3v9-9 Jo \/9—y"_

32, The integrand is undefined at § = 4, so we must split the integral there.

6 6
d6 . d6 . b _ 1 1
—_— =] —e = ] 1-46 =1 (—— - ) .
/ (4 - 9)2 a—l::l'*' / (‘l - 9)2 a—lrl‘%n"’( ) a a—lgil'i' -2 4—a
Since 1/(4 — a) — —oo as a — 4 from the right, the mtugral does not converge. It 15 not necessary (o check the

conv;.roence of f3 (47)' However, we could have started with fa (4_57"' instead of f_‘ - 9) . and arrived at the same
conclusion

Problems

33, Since the graph is above the z-axis for x > 0, we have

o 17
Area = / re “dr = lim re T dx
°

b= o0 0



3,

36.
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b b
= lim (—ze" +/ e ” dx)
b=—toc 0 0

b
= lim (—be"’ —e7F

b o 0

lim (—be™® — e? + €%)
b— oo

=1
The curve has an asymptote at ¢ = %, and so the area integral is improper there.
5 b
7 qdt . dt .
Area = — = lim 7> = lim tant
o COs?t bz J, cosPt b3

which diverges. Therefore the arca is infinite.
We let t = (x — a)/v/b. This means that dt = dz/v/b, and that t = too when z = +00. We have

/ e (Eal*/b g _ / e (Vhdt) = Vb / e dt = Vb7 = Vom.

b

0

The factor In x grows slowly enough not to change the convergence or divergence of the integral, although it will change
what it converges or diverges to.
Integrating by parts or using the table of integrals, we get

=
baoe

oo b
/ PInzrdr = lim rPinxdzx
[

I
=
g5

—
3
|
N
©
*
=)

N
)

+
_
hrd

H

h-]

*

| EE—]

If p> —1, then (p + 1) is positive and the limit does not exist since b*** and In b both approach oc as b does.

If p < —1, then (p + 1) is negative and both b**! and b In b approach 0 as b — oo. (This follows by looking
at graphs of zP*!In z (for different values of p), or by noting that In x grows more slowly than zP*! tends to 0.) So the
value of the integral is —pe?¥/(p + 1)°.

The case p = —1 has to be handled scparately. Forp = —1,

b 2
- (2221,
. b—o0 2

2

o0 b
/ h;—m dr = lim l_n_l' dr = lim (ln_:c)
€

b—oo . e b— 00 2

As b = oc, this limit does not exist, so the integral divergzs if p = —1.
To summarize, fe * 2P ln z dx converges for p < —1to the value —pe?™! /(p + 1)°.

The factor In z grows slowly enough (as xr — 0F) not to change the convergence or divergence of the integral, although
it will change what it converges or diverges to.
The integral is always improper, because In x is not defined for z = (. Integrating by parts (or, alternatively, the

integral table) yields
[4 €
/ 2P lnzdr = lim / flnzdx
° e=0t f,

i
E
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If p < —1.then (p + 1) is negative. 50 as @ — 0%, aP™! — oc and Ina = —o0, and therefore the limit does not
exist.

If p > —1, then (p + 1) is positive and it's easy to sce that a®*' — 0 as a — 0. Looking at graphs of 2P Inz (for
different values of p) shows that @®*!Ina — 0 as a — 0. This isn’t so casy 1o see analytically. IU’s true becausc if we let

t =1 then
p+1
lim a®*'lna = lim (%) In (%) = lim _Int

a—0t t—oo e

This last limit is zero because In ¢t grows very slowly, much more slowly than tP*!, Soif p > —1, the integral converges
and equals e®™[1/(p + 1) — 1/(p + 1)*] = pe?* /(p + 1)°.
What happens if p = —1? Then we get

/'ln_rdl_= lim/lu—I-dJJ
0 o a—0+ a r

2 e
= lim (In 7)
a-+0+ 2

Since Ina — —oc as a — 0, this limit does not exist.
To summarize, foe 27 In x converges for p > —1 to the value pe?*' /(p + 1)°.

38. (a)

(1)

>
/ e tdt
0
b
lim/e"dl
b—roo 0

b

. ~t
= lim —e
b~ 00

1]
=lim[l-e?] =1
=G
Using Problem 9,
o
r'(2) =/ te”dt = 1.
1]
-t

t Thenu =nt" 'andv=—-e"'. 50

(b) We integrate by parts. Let u = ", v =e

/l"e_'dt =—t"e""' + n/t"'le"dt.
20
/ t"e ! dt
0

b
= lirn/ t"e dt
b—oc 0

b b
+ n/ t""le! dt]
0 0

b
= lim —b"e'b+blim n/ t" et dt
0

b—oo — oG

So

F(n+1)

= lim [— the”"
b=

-]
=0+ n./ "letdt
0

= nl'(n).
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(c) We already have I'(1) = 1 and I'(2) = 1. Using I'(n + 1) = al'(n) we can get
r(3)y=2r(2)=2
r[4)=3r(3)=3-2
r(5) =40(4) = 4-3-2.

So it appears that ['(n) is just the first n — 1 numbers multiplied together, so
T'(n) = (n-1)L
39. (a) Using a calculator or a computer, the graph is:

r

2000 |

r = 1000te—9-3¢

(b) People are getting sick fastest when the rate of infection is highest, i.e. when r is at its maximum. Since
' = 1000e™>%* — 1000(0.3)te >
= 500e~%%(2 — 1)
this must occur at ¢ = 2. o
(¢) The total number of sick people = / 1000te~ %% dt.
0

Using integration by parts, withu = ¢, v = e 05t
—t b b -1
Total = lim 1000 | v e _/ =105y,
oo 0.2 0.5
0 o
5 b
= lim 1000 (—2be’°'5" _ ;'6—0..%)

b— o0 0.5 .

= lim 1000 (—2be™*"" — 4¢7%% + 4)
b—ro0

= 4000 people.

40. The energy required is

=} 1|’

:q1G2

E = / —%dr=kqlqg lim —=
J1

b T

1
= (9 x 10%)(1)(1)(1) = 9 x 10° joules

Solutions for Section 7.8

419

Exercises

1. For large x, the integrand behaves like 1 /x? because
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= *)
. dr . . .
Since / — converges, we expect our integral to converge. More precisely, sincc 1+ 1> r*, we have
E
1

[=*] oo
, dr . .
Since / — is convergent, the comparison lest tells us that da: converges also.
T
1 1

i+ 1
For large z, the integrand behaves like 1/ because

s s 1
~ ==
-1 " =z

o0
. 1 . - .
Since / = dix does not converge, we expect our integral not to converge. More precisely, since % -1 < z% we have
z
2

20 3

£x

r— dz does not converge either.
i —

The integrand is continuous for ail £ > 1. so whether the integral converges or diverges depends only on the behavior of
the function as £ — co. As £ — 00. polynomials behave like the highest powered term. Thus, as £ — oo, the integrand
" +1 :

3 +3c+2

The integrand is continuous for all > 1, so whether the integral converges or diverges depends only on the behavior of

the function as £ — o0. As T — oo, polynomials behave like the highest powered term. Thus, as £ — oo, the integrand
1 N . Lo .

o ——) behaves like el Since /l o dx converges, we predict that the given integral will converge.

The integrand is continuous for all x > 1, so whether the integral converges or diverges depends only on the behavior of

the fusiction as £ — 0c. As & = 00, polynomials behave like the highest powered term. Thus, as z — oo, the integrand
T Lo 1 .. 1 . . oo oy g

Tror i behaves like o or = Since /l p dz diverges, we predict that the given integral will diverge.

The integrand is continuous for all z > 1, so whether the integral converges or diverges depends only on the behavior of

the function as £ — oc. As £ — 00, polynomials behave like the highest powered term. Thus, as z — oc, the integrand

2 o0

rf-6z+1 s . . . L o
i behaves like — or 1. Since 1 dr diverzes, we predict that the given integral will diverge.
z? T

1

The integrand is continuous for all z > 1, so whether the inicgral converges or diverges depends only on the behavior of

the function as  — oo. As T — oo, polynomials behave like the highest powered term. Thus, as £ — oo, the integrand
Sz +2

'+ 82+ 4

[~}
. 1 .
Since / — dr does not converge, the comparison test tells us that /
x
2

2

NS 1, . . R I
behaves like 1_3 or et Since / o dr diverges, we predict that the given integral will diverge.
z 1

- = = <]
. 9T 5 . . L .
behaves like — or —. Since / —; dz converges, we predict that the given integral will converge.
T T T
1

For large t. the 2 is negligible in comparison to €. so the integrand behaves like e~ 5, Thus

1 1 -5t
—— R == .

More precisely, since e° + 2 > €%, we have

1 1 st
Py Ty :

o
Since floo e~ dt converges, by the Comparison Theorem / P dt converges also.
€ 2
1

The integrand is continuous for all x > 1, so whether the integral converges or diverges depends only on the behavior of

the function as £ = oc. As £ — oo, polynomials behave like the highest powered term. Thus, as  — oo, the integrand
2

z°+4

LT 1 . = . Lo .
33711 behaves like % or - Since /1 e dax converges, we predict that the given integral will converge.
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It converges:

oc b b
o4 . dz . 1 -2
— = lim = = lim | -3z

50 F4 b oo 50 z b= o0 2

1 00

Since ! > — and 1 1 dx diverges, we have that
1+ = 22 2/, T .

r

p diverges.
dr
3
The integrand is unbounded as ¢t — 5. We substitute w = t — 5, so dw = dt. Whent = 5, w = 0 and when t = 8§,

w=3. 8 3
6 6
—_—dt = — duw.
/ Vit—5 /0 Vvw v
3

3
6 . ! . NE .
/(; ﬁdw = GE’I&’GA ﬁdw = 601—1»1(1314- 2w'/? . =12 lim (\/§— Va) = 123,

a0+
our integral converges.

1 1 . = . . =
If z > 1. we know that =1 < 2 and since /l converges, the improper integral /1 e converges.

Since

The integral converges.

1
= lim 20 (1 - a'/**) = 20.

a

1 1
1 . 1 o 1720
/0 oy 12 =l | oy = Jum, 200

This integral diverges. To see this, substitute t + 1 = w, dt = dw. So,
/"=5 at /'u'=6 dus
r=mr (E+1)° w=o W

we can use the Fundamental Theorem of Calculus to evaluate the intcgral.

which diverges.

Since we know the antiderivative of >
14+u

Since the integrand is even, we write

x 20 b
/ du2=2/ du,,:?lim/ duq
o LU o 1t+u” boo fo 14 u?

=2 lim arctanbh =2 (E) =T.
b=toc 2

Thus, the integral converges o 7.

1 < du " du
Since —— < — foru > 1, and since —; converges, = CONverges.
ut+u? " u? , , wtu?
This improper integral diverges. We expect this because, for large 8 ! v~ =1 and / ” 9 diverges. More
prope g ges. s . TRl Ve 6 @ ges. !
precisely, for6 > 1
1 1 1 1 1

> —_ = e— e -
VEE+1 T V/eiEseE Jover V2 8

o
and / d6 diverges. (The factor 7‘: doesn’t affect the divergence.)
1

6

oc

1 1 1

=
df . . dé
Forf > 2, wehave¢ —== < —= = , and —— converges (check by integration), so ———— con-
= VB +1 - VBB g / g3/2 . VB +1
verges. 2 h

(X1

L df converges,

1 1 !
This inte is improper at @ = 0. For0 € 8 < 1, we have —— < —, and since
gral is imprope =7 = V&6 - Vo /0 Vo

/l df converges
y—— 2% YCTgcCs.,
o VB +0

1

1 [= ] x
Since < —=e"¥and e ¥ dy converges, the integral
1+ev ~ e ° o

dy
1+ev

converges.
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22. This integral is convergent because, for @ > 1,
2+ (osqﬁ < i,, -
¢z ¢-
* 3 !
and —dé =3 — d¢ converges.
/1 ¢? L ¢
l o = o] .
23. Since < —=¢ “forz>0.and e~ “dz converges, converges.
e*+2° g - /0 ¢ /0 e +2° &
. T kil .
- 1 . 2-5 , .
24, Since —1-— < uin_qb for 0 < ¢ < . and since / —d¢ diverges, / +wd¢p must diverge.
¢ ¢ o ¢° o &
o o0 .
i . . 2 . 3+s .
25, Since 3+sina > 2 for o > 4, and since / —da diverges, then / dtsina da diverges.
«a a PR 4 a
26. If we integrate e==" from 1 to 10, we get 0.139. This answer doesn’t change noticeably if you extend the region of
integration to from 1 to 11, say, or even up to 1000. There’s a reason for this; and the reason is that the tail, choo e % dz,
is very small indeed. In fact
o0 2 o
/ e” " dz < / e fdr=e'0
10 10
which is very small. (In fact, the tail integral is less than e~'% /10. Can you prove that? [Hint: e™® < e7197 for
z 210D
27. Approximating the integral by f 01 e-=" cos? x dz yields 0.606 to two decimal places. This is a good approximation to
the improper integral because the “tail” is small:
] Y o
/ e " coslzds < / e Tdr=e""
10 10
which is very small.
Problems
28. (a) The area is infinite. The area under 1/ is infinitc and the area under 1/z” is 1. So the area between the two has to
be infinite also.
(b) Since f(z) is bounded between 0 and 1/x2, and the area under 1/2? is finite, f(z) will have finite arca by the
comparison test. Similarly, h(z) lies above 1/z, whose area is infinite, so h(z) must have infinite area as well. We
can tell nothing about the area of g(z), because the comparison test tells us nothing about a function larger than a
function with finite area but smaller than one with infinite area. Finally, k(z) will certainly have infinite area, because
it has a lower bound m, for some m > 0. Thus, f 0° k{x) de > ma, and since the latter does not converge as a — oc,
neither can the former.
29. First let’s calculate the indefinite integral d—m Letlnz = w, then dz _ dw. So
z(lnz)? T

|

dz du
r(lnz)r = | wr

In|w| +C. ifp=1
={ﬁw‘-"+c, ifp#1

In|lnz]+C. ifp=1
= { =(n2)!'P+C, ifp#l

Notice that lim lnz = +oco.

T=0C

(a) p=1:

* dr
/ = lim (Inlln b — ln|ln2|> = +oc.
, Tz o
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(b) p<:

* dx _
/ ——x(ln‘lx) 111)(11m(1nb) P_(In2)! ”)=+oo.

(c) p>1:

T (g - ')
/.2 z(lnz)»  1-p (bll:go(ln b) (In2)

— _1_ ,___1_ _ i-p
T 1l-p (blibnolo (Inb)P-t (in2) )
l

= (m 2)!-P,

o<
dz
Thus. ———  is convergent for p > 1, divergent forp < 1.
/2 Z(lnz)? 1 get p ’ g P

30. The indefinite integral —dT— is computed in Problem 29. Let In x = w, then dz _ = dw. Notice that lim Inx = 0,
x(lnz)r z z—1
and lim Inxr = -x.
z—0+
For this integral notice thatIn 1 = 0, so the integrand blows upatz = 1.
(a) p=1.

/ o _ lim (In|ln2| —Injinal)
1 a—1+

rinz

Since Ina — 0asa — 1, In|lna|l =+ —oc as b — 1. So the integral is divergent.

by p<1:
2 dr 1 . . L
- =P _ »
/1 z{lnz)y  1-p ah_f}]+ ((]“ 2) (Ina) )
= 1—i—p(ln2)1"’,
©p>L
Yoda 1 - -
_wr =P _ »
/1 z(lnz)? ~ 1-p alif?? ((111 2) (Ina) )
As lim (Ina)'™® = lim _t +0oc, the integral diverges.
a1t am1+ (Ina)?-1

9

Thus, _dz is convergent for p < 1, divergent for p > 1.
. z(lnz)?

31. To find a, we first calculate fol e” T dz Since T 2 2 for x > 10, this will differ trom f =~ dr by at most

0 o = =]
PR — -
/ e »‘dJ:S/ e fdr=e10,
410 j31)

which is very small. Using Slmpson s rule with lOO intervals (well more than necessary), we find foo - dT =
72
1.253314137. Thus, since e T is even, f o€ =% dr =~ 2.506628274. and this is extremely close loJ e ¥ dr.

To find a. we need f_w e “F dr=1.

a= —1— 2 0.399 (o three decimal places.

[
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SOLUTIONS to Review Problems for Chapter Seven

Solutions for Chapter 7 Review.

425

Exercises

. d .
I. Since — cost = —sin ¢, we have

dt

/sin tdt = —cost +C. where C is a constant.

!\)

Let 2t = w, then 2dt = dw, so dt = %dw, S0

/cos?tdt =/ %cos wdw = %Sinw+C = %sin2t+C,

where C is a constant.

3. Let 3z = w, then 3d: = dw, which means dz = %dw. S0

. 1
/es' dz = /e“’ c=duw =
5

4. Using the power rule gives ng +Tw+C.

LA

/e"’dw= %e"’+C= %65:+C.

where C is a constant.

n

. Since /sin wdf = — cosw + C, the substitution w = 26, dw = 2 d# gives /sin 20d6 = — % cos28 +C.
6. Letw = r* — 1, then dw = 3z”dr so that
(z° - 1)*2ide = ! -ll‘4du‘ = st +C = —1-(313 -1 +cC
7. The power rule gives %1:5/"' + 315/3 +C
)

8. From the rule for antidifferentiation of exponentials, we get

x T . L.z
/(e +3%)dr=e +]113 3F+C.

9. Either expand (r + 1) or use the substitution w = r + 1. If w = r + 1, then dw = dr and

/(r+1)3dr=/w3dw= §w4+C= %(r+1)4+0.

10. Rewrite the integrand as

/ (i2 - %) dr =4 /.r'zda:— 3/.1:_3 dr = —4z7' + 21_2 +C.
xr T 2

11. Dividing by z” gives

3
/(L’_T,H)(hr:/<z+l+i,,)dx=lr2+ln]1-|—l+c.
z- r z? 2 I

12, Letw =1+ Inr, then dw = dx/x so that

2 1.
/mdl':/lll?du'=§lvd+0=%(l+lnx)3+C.

I
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13. Substitute w = #2, so dw = 2t di.

/te'? dt = ;

1~

Cotdt = -
/e d 3

d (1 ;2 )_ 12y e
dt(?e +C‘_2t(e)—te.

[\
\
o

[
&
R
Il

| —
m-a
+
Q
I
NI
mﬁ
+
9]

Check:

14. Integration by parts with « = x, v’ = cos z gives
/a:cosxd;zt =zsinr — /sinmdx +C=zsinr+cosz +C.

Or use I11-16 with p(z) = x and a = 1 in the integral table.
15, Integration by parts twice gives

. 2 2r 2
2 2z re 2z T 9 T oap 1 g,
T [T = — | 22 ir = — _z 22
/T e " dx 5 / ve " dx 7€ 25 +4e +C

Or use the integral table, IT1-14 with p(r) = z® and a = 1.
16. Using substitution with w; = 1 — z and duw = —dz, we gel

2 9 p 9 y 579
/1?\/1 —rdr = - /(1 — whwdw = gu,f’/- - %11:3/' +C= g(l —-z)¥? = %(1 -z)*? 1.

17. Integration by parts withu = Inz, v’ = x gives
z? "1 1, 1,
lnrdr==lnzr - [ czdr=<zlnz— —2°+C.
/r nxdz 3 Inx / 2Td::: 5% Inz il +C
Or use the integral table, II1-13, with n = 1.
18. We integrate by parts, with w = y. v’ = siny. We have «’ = 1, v = — cos y, and

/ysinydy=—ycosy—/(—cosy)dy=—yc05y+siny+C.

Check: 4
d—y(—ycosy +siny+C)=—cosy+ ysiny +cosy = ysiny.

19. We integrate by parts, using v = (Inz)” and v’ = 1. Then o’ = 222 and v = z, 50
/(ln:v)2 dr = z(lnz)® - 2/lnrdz.
But, integrating by parts or using the integral table, f Inrdr =2zlnz — 2 + C. Therefore,
/(lnz)? dr =zr(nz)® —2zlnz+2z+C.

Check:
2lnzx

d [:zt(ln o) = 2zlnz + 2r + C'] =(nz) +z -2Ine - 29:% +2 = (Inz)

dr
20. Remember that In(2?) = 21n . Therefore,

/In(r%dz:?/]na:d:n:’z.rlna:—?r-{-c.

Check: d 5
—(2rlnzr -2r+C) =2lne + 2 _9=2mmz= In(z?).
dx x
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21. Using the exponent rules and the chain rule, we have

_ 60.5 eD.S—().St
'/30‘5—0,3t dt = eO.a /C—O.Bt dit = — e—O.St + C=-— -+ C.

0.3 0.3

22, Letsind = w, then cos 8§ d8 = dw, so
2 2 1 3 1 .3
sin“fcosfdf = [ w dw=§w +C=§51n 8+C.

where C is a constant.

23. Substitute w = 4 — 22, dw = —2z dz:
2 e — 1 L a3 _ 1 2,372
z\/4-2tde=—3 \/Edu,——-gw +C——§(4—I) +C.
Check d | 113
- [—5(4—x2)3/2+C] =-3 [5(4-12)1/2(—23:)] N

24, Expanding the numerator and dividing, we have

3 3 2
/———(u+,,1) du = (v’ + 3u :-3u+1)du=/(u+3+§+i,,) du
u? u u o u?

2
1
=% +3u+3nfu-=-+C.
2 u

Check: ) 3
«% (%‘ +3u+3n|u| - % +C) =u+3+3/ut+lfu’ = (L;i

[}
wm

. Substitute w = /¥, dw = 1/(2,/¥) dy. Then

/Cos\/ydy=2/coswdw=2Siﬂw+C=25m\/g+C'

427

Vi
Check: d 2cos /7 Vi
. 2cos /Yy COS /Y
—2sin/y+C= = .
e N
. d 1
26. Since —(tan z) = ——s—, we have
dz cos? z
/ l,, dz=tanz+C.
cos? z
check d dsins _ (cosz)(cos ) = (sinz)(=sinz) _ 1
sin z cos z)(cos z) — (sin z)(—sin z
d—z(tanz+C) T dzcosz cos? z T costz
27. Denote /cosz 9dfby A.Let u = cos 6, v’ = cosf. Then, v = sinf and u’' = — sin 6. Integrating by parts, we get:

A =cosfsinf - /(—sin@)sin@de.
Employing the identity sin? @ = 1 — cos? 6, the equation above becomes:

A=cos€sin9+/(19—/cos'20d9
=cosfsinf+6—-A+C.
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Solving this equation for 4, and using the identity sin 26 = 2 cos §sin § we get:
2 1. 1
A= [ cos"0dd = i sin 26 + ;,—0 +C.

[Note: An alternate solution would have been to use the identit cos28 = Lcos20 + L]
y ] ]

28. Multiplying out and integrating term by term:

/t1°(t—10)dz,=/(z“ - 10t‘°)dt=/t”dt-10/t’°dt= %t”’—%t“ +C.
29, Substitute w = 22 — 6. Then dw = 2dx and
/tan(?x—ﬁ)dx: l/tanwdw: l‘/ MY
2 2 cos w

1
2

= -—% In|cos(2z — 6)[ + C.

In | cos w| + C by substitution or by [-7 of the integral table.

30. Using integration by parts, we have
3 3 3
/ In(z%)dr = 3/ Inrdr =3(xInr —z)| =9In3 — 6= 3.8875.
! 1 1
This matches the approximation given by Simpson’s rule with 10 intervals.

31. In Problem 19, we found that

/(lnx)ed:rz r(lnz)* - 2zlnzx + 2z + C.

Thus
€ (4
/ (nz)’de = [z(lnz)* — 2xlnz +2z]| =e—2=0.71828.
1 1
This matches the approximation given by Simpson’s rule with 10 intervals.
32, Inicgrating by parts, we take u = %, u’ = 2¢°%, v’ = sin 2z, and v = — cos 2z, 50

2z
2z . e 2
/e"smhdz = —Tcos21+/e ? cos 2z dzx.

Z

Integrating by parts again, with u = e**.u' =2e¢®, v =cos2r,andv = é sin 2z, we get
2r
2z § € . 2F .
/e cos2zdzr = = sin 2r — /e sin 2z dx.

Substituting into the previous equation, we obtain

i

2r . e?r e” . ar .
e sin2zdr = —-—2—-c052:r + Tsm‘)r — | e sin 2z dz.
Solving for [ €* sin 2z dz gives
o . 1 2 .
/e" sin2r dz = Ze"(sm 2r — cos2z) + C.

This result can also be obtained using II-8 in the integral table. Thus

k4
Qe

_ %(6--“ —¢¥) = —133.8724.

/ e’ sin 2z = [%e""'(sin 2z — cos 2x)]

T

We get —133.37 using Simpson’s rule with 10 intervals. With 100 intervals, we get —133.8724. Thus our answer matches
the approximation of Simpson’s rule.
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33.
10 10 10
/ ze T dz =[-ze7]| - / —e “dz (letz=u,e” " =v'.—e"* =v)
o 0 o
o
=-10e7'" - [e77)

34, Letsinf = w, cos8df = dw. So, if§ = —E,Lhen w =—§.und iff = %.Lhenw = g.So we have

3
R (RGN

/4 VZ/2 1

/ sin® B cos6df = / wdw = Sw?
-=/3 SRVETE ‘

35. This integral is 0 because the function 2° cos(z?) is odd (meaning f(—x) = — f(x)). and so the negative contribution to

the integral from —% < x < 0 exactly cancels the positive contribution from 0 < z < 3. See figure below.

e | —

3

2
rYcosr”

=4

] ==

36. Let /T = w, %w"*dr = dw, % =2dw.llz=1thenw =1, and if z = 4 so w = 2. So we have

1 VE 2 Wl? )
d:r=/ e - 2dw = 2e¥| =2(e” —e) = 9.34.
/; vz ! 1

37.

! dr 1 ! 1
5 =tan_ r\ =tan !1—tan"'0 =
o IT*H 1 0

[ 3
N

38. Letlnz = w, then L dz = dw, so

/ (ln;rxl dr = /w2 dw = _:1;_“‘.3 +C= %(lnr)3 + C. where C is a constant.

39, Multiplying out, dividing, and then integrating yields

(t+2)? ,  [+4+4, [1 " 4 4 . 4 2
/ 3 dt = —T—'(H— ;dt-i- ﬁ“d1+‘ t—sdt—llllﬁl—?—;g'l'c.

where C is a constant.

40. Integrating term by term:
1 2
/(1:2+‘21‘+—) dr = :—13-1:3+:1:' + In|z| + C,

where C is a constant.

41, Dividing and then integrating, we obtain

/t+1dt=/%dl.+/ ! dt=ln|t|—;+C’. where C is a constant.

t? 2
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42,

43.

46.

47.

48.
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Let 2 + 1 = w, then 2t dt = dw. tdt = § dw, s0

2 1
/tet +1dt=/e"’-§dw=

where C is a constant.

K| -

Let cos @ = w, then —sin8df = du:, so

.w _lw __lt"’+1
/E dw—§e +C—§e +C,

/tanodo=/s‘—“9da=/"—ldw
cos @ w

=—ln|w|+C = —In|cosf| +C,

where C is a constant.

. If u = sin(58), du = cos(58) - 5 d#@, so

—t

/ sin(56) cos(56)d6 = / sin(56) - 5 cos(56)d8 = % / wdu

S = O

v
2

or

/sin(;’;ﬁ) cos(50)df = %/QSin(.’Jﬂ) cos(58)do = %/Sill(loe)da (using sin{2r) = 2sinz cos )

-1

. Using substitution,

1 .2,
> C—iﬁsm 36)+C

/ T _dr = / %2 dw (2} +1=w 2eds = dw,zdz = %dw)

241

1
2

where C is a constant.

. d 1
Since -d—z(arctan z)= {732 we have

1 1 1 2
——/Edw—aln|w|+C—§ln|:c +1]+C.

dz ,
/ = arctan z + C, where C is a constant.

1+ z2

Let w = 2z, so dw = 2d=z. Then, since i arctan w = 7 +1

dw

Rl

we have

dz Ldw 1 1
= = _;arctanw+C=§arctan‘2z+C.

1+ 422

Let w = cos 26. Then dw = —2sin 26 d6. hence

/C0532051n20d9= —%/wsdw:

Check:

w-l

8

cos? 26

3 +C.

+C=-—

dg 8

8

d (_ cos® 29) - _ (4 cos® 26)(— sin 28)(2)

= cos® 20 sin 26.
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49, Let cos 30 = w, then —3sin 98 df = dw, sin 38 df = — %du So

/mmhm%mw=/wfpimw=—i/w%w=—lw+c
b b) 20

=—%uﬁw+a

where C is a constant.
50.

. . 2 :
/sm3 zcos® zdz = /sm z(1 — cos” z)cos” zdz

= /sin zeos® zdz — /siu zcos” zdz

/w3 (—dw) - /‘u.?5 (-dw) (let cosz = w, so —sinzdz = dw)

= —/wsduv-}-/u:5 dw

. 1
-3 + Euwﬁ +C

1 A 1 6
—-cos z+ =cos :+C,
1 6

where C is a constant,

Sl. fu=1t-10,t = u+ 10 and dt = 1 du, so subslituting we get

/(u +10)u'’du

/('u” +10u'%) du = 11—_)1112 + %u“ +C

1 1z, 10 1 ’
—(t— —(f - A
(= 10)2 4+ (- 10) 4 C

32, Letsind = w. then cos @ df = dw, so

/c059v1+si119d9=/v1+wdw

(1 +w)’?

_2 o032
32 +C-—3(1+51110) +C,

where C is a constant.

n
@

/xe’dr:re‘—/e’dr (letr = u,e* = v',e* = v)

=z’ — e +C,
where C is a constant.
54,
/taet dt = 3’ - /St?e' dt (let B=ue =037 =u', e =v)
=t -3 /tze' dt (lett’ = u.e' =)

= 3! = 3(1%c' = /Qte‘ dt)

=%’ - 3t%e' + 6/ te' dt (lett = u,et =)

an
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= 3" — 317" +6(te’ — /e' dt)

= 3" — 3t%e' + 6te’ — 6e' + C,
where C is a constant,

85. Letr’ = wun then2zdr =dw.x=1=2w=1,r=3= w=29. Thus,

3 9 1
/ o(r® +1)%dr = / (w+1)70—9- dw
. 2

1
9

11 7
_:)--ﬁ(w+1) 1

1 71 nTl
(107 2™,

56. Letw = 3z + 5 and dw = 3dz. Then

/(3.‘:—&-5)3 := %/u:sdwz ll_)-u"‘+C=1—l_2(3:+5)4+C.

57. Rewrite 9 + u® as 9[1 + (u/3)?] and let w = /3, then dw = du/3 so that

| _du 1 dw ldl(tdn v+ C ! arctan (u) +C
—_—= | —— = —arctanw + (C = an | — .
94+u2 3 l+uw? 3 3 3

58. Let u = sin w, then du = cos w du: so that

: d
_coséu‘) dw = ‘ > = arctan u + C = arctan(sin w) + C.
1+sin"w 14 u®

59, Letw = Inx, then dw = (1/z)dx which gives

/% tan(lnx)de = /tan wdw = / S g = — In(jcosw|) + C = —In(]| cos(In x}) + C.

cos w

60. Let w = Inx, then dw = (1/x)dz so that

/ %sin(ln r)dr = /sin wdw = —cosw+ C = —cos(lnx) + C.

61. Let u = 2x, then du = 2 dz so that
dr 1 du 1 1
—_— = - | ——— = - arcsinu + C = - arcsin(2z) + C.
/\/1—412 2/\/1—119 2 2 (22)
62. Letu = 16 — w?>. then du = —2w dw so that

wdw 1 du
e = . — =—Vu+C=—-y16-uw?+C.
J V16 —w? 2] Vu vu

63. Dividing and then integrating term by term, we get

e +1, e 1 _ _2y _ 1 -2y, .
/ e dy_/(eTy-f-:,;) dy—/(l+e )dy—/dy+(-§)/e (—2)dy

=y- %8_2’ +C.

64. Letu =1 — cos w, then du = sin w dw which gives

sin w dw du
—— = | —==2/u+C=2V1—-cosw+C.
V1 —cosw \/-l; \/_
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65. Let w = Inx. Then dw = (1/z)dz which gives

d ;
/ u =/%=ln|uﬂ|+c=ln|lxxr|+C.

rzinzx

66. Let w = 3u + 8, then dw = 3du and
du dw 1

xdr
67. Letw = Vz? + 1, then dw = ———= so that
vz +1

z " . . ;
————cosVz?*+1ldr= [ coswdw =sinw+C =sin\/z? +1+C.
Vz?+1 /
68. Integrating by parts using u = t* and dv = % gives du = 20 dt and v = /1 + £2. Now

¢ 2
—dt=t'/1+12 - [ 2t\/1+ 824t
/x/l-i-t'-’
> 2
=f”\/1+t2—§(1+t2)3’2+c
=1+t - %(1 +N+C
2
-2
=\/1+t2¥+0.

69. Using integration by parts, let r = u and dt = e**du.sodr = duand t = (1/k)e**. Thus

. 3 1 ] 1 ¢
/uek" du = %e’”‘ -z /ek"du = %ek“ - Fe“‘ +C.

70. Let u = w + 5, then du = dw and noting that w = u — 5 we obtain

/(w+5)4wdw = /u*(u —5)du
=/(u5_5u4) du

= %ua—un+c

= %(w+5)6 - (w+5)°+C.

71. /e‘/i’+3dr = %/eﬁ’+3\/§dz. If u = v2zr + 3,du = V2dz. so

1 © 1 ] 1 V2z+3
_ dy = — +C = — + C.
\/‘i/e ! \/‘Ee \/56

72. Integrate by parts letting u = (Inr)? and dv = rdr. then du = (2/7) Inrdr and v = 7% /2. We get

/r(lnr)2 dr = %rz(lnr)‘2 —/rlnrdr.

Then using integration by parts again with = Iny and dv = rdr,sodu = dr/randv = r2/2, we get

2 _ 12 2 |1 _1 d_12 2 1 » 1 s
/rln rdr = 37 (Inr) [Qr Inr 2/rd7:| =3r (Inr) 5" lnrw-_lr +C.

433



434 Chapter Seven /SOLUTIONS

73. /(eI +1)dr = /(('2" + 2re® + z”)dy. Separating into three integrals, we have

/euda: = %/62:2 dr = %ch +Ch.

/QIIBIdJJ = ‘2/ zedr = 2re™ — 2¢T + Ca

from Formula 11-13 of the integral table or integration by parts, and

3
tie=2 4
/r dr 3 + Cs.

Combining the results and writing C = C; + C2 + C3, we get

1 2r r x I3
5€ +2ze - 2e +?+C‘.

74. Integrate by parts. r = Inu and dt = u® du. so dr = (1/u) du and t = (1/3)u*. We have
/u"’lnudu = %uslnu - % /u"’ du = %uslnu - -é-u3 +C.

75. The integral table yields

/:ﬁ:gdr = %lnh” +4[+ garctan§+c
5 P L '
=5 Inz” + 4| + arctan 3 +C.

Check:

d (5 ) 6 . N
T.r(§l"|'r‘ +»1|+§arctan§+c) -

SV R

1 1 1
(m(?’””ma)

dx + 6 _5r+6
44 244 244

76. Using Table IV-19, let ;mn = 3. w = 2z, and dw = 2dx. Then

1 1 1

———dr == | ——duw
/sin3(‘2;z:) 'Z/Sinaw *

-1 cosw +1 1 duw
(3-1)sin’w 4/ sinw

1 1 suw — 1
/. dw=‘—ln|&—l+C.

sinw 2 cosw+ 1

1 dr = cos 2r . l In cos2r — 1
sind(2r) ~ ~  4sin®2z 8

cos2r + 1
77. We can factor r* — 100 = (r — 10)(r + 10) so we can use Table V-26 (witha = 10 and b = —10) to get

and using Table 1V-20, we have

Thus,

|+c.

dr 1
- = - — 10 . T
/ =100 — 20 [In]r =10 +1n|r+ 10} + C
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78. Integration by parts will be used twice here. First let ¥ = y* and dv = sin(cy)dy, then du = 2ydy and v =
—(1/¢) cos(cy). Thus

? 2
/y2 sin{cy) dy = _y? cos{cy) + p /ycos(cy) dy.
Now usc integration by parts to evaluate the integral in the right hand expression. Here let v = y and dv = cos(cy)dy
which gives du = dy and v = (1/¢) sin(cy). Then we have

/y? sin(cy) dy = —y—c- cos(cy) + % (% sin(cy) — % / sin(cy) dy)

2 .
-_¥ ) + _2_'2 i 3 C
- cos(cy) + = sin(cy) + < cos(ey) + C.

79. Integration by parts will be used twice. First let u = €™ and dv = sin(kt)dt. then du = —ce ™ “dt and v =
(—1/k) cos kt. Then

/e'“ sinktdt = —%e_” coskt — % /e“" cos kt dt

__l—nt s _ & l—c!-. < —ct s .
= ke cos kt k(ke 51nkt+k/e smkt(lt)

1 _ —el . 2 —ct .
=—z¢ C‘coskt—ée °’s1nkt—;f—2/e “ gin kt dt

—ct

Solving for [ e sin kt dt gives

.2 2 —ct
R +e /e_“ sinktdt = — & (k cos kt + esin kt) .

k'_’ k?

SO
—ct

e sinktdt = ———— (kcoskt + csinkt) + C.
K2 +¢?

80. Using I1-9 from the integral table, with a = 5 and b = 3, we have

‘/e52 cos(3z)dz = =— ! €°* [5 cos(3r) + 3sin(3z)] + C
25+9

= iez” [5 cos(3z} + 3sin(3x)] + C.
81. Since /(xﬁ + (VE))dx = /xﬁdz + /(\/E)" dz. for the first integral, use Formula I-1 with n = V/k. For the

second integral, use Formula I-3 witha = Vk. The result is

(VR z
E - oz (VE) )
/(a» +(\/Z))d::_(\/E) 1+ln\/E+C'

82. Factor v/3 out of the integrand and use V1-30 of the integral table with u = 2z and du = 2d:r to get

/\/3+121‘2da:=/\/3\/1-}-4:1:'-’(1:1:
=\/T§/\/1+u2du

=?(u\/1—+_u_3+/ﬁdu),
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Then from VI-29, simplify the integral on the right to get

[ VEETE s = YR (/T e al VT O
= ? (Qx\/l +(2z)2 +1In|2z + /1 + (2$)2|) +C.

83. We know 2 + 51 + 4 = (z + 1)(z + 4), so we can use V-26 of the integral table witha = —1 and b = —4 to write

dx

/

84. By completing the square, we get

2450 +4

%(lnlz+1| “njz+4)) +C.

2 = (7 —3p 4 (=32 9 _(z-3e_1
' —3x+2=(z" - 3r+( _2))+2 4—(.1: 2) e
Then
/+d1=/+da
V2 —3r+2 \/(I_g)z_é
Let w = (z — (3/2)), then dw = dr and @® = 1/4. Then we have
1 1
—_——dr = | ———dw
/\/z'-’—3x+2 /\/14,""—02
and from VI-29 of the integral table we have
1
——————dw =In|uw+ w2 —-a?|+C
3 3\2 1
=t|(z-3)+\/(z-3) ~3|*¢
3
=In (x—§)+\/m2—3:c+2|+0.
85. First divide z° + 3z + 2 into z° to obtain
3 -
x z+6
12+3I+2_I_3+z2+3z+2'

Since 2 + 3z + 2 = (z + 1)(z + 2), we can use V-27 of the integral table (withe = 7.d = 6,a = —1, and b = -2)t0

get
T+6
2 +3z +2

/

dr =

—In|lz+1]+8In|z+2|+C.

Including the terms x — 3 from the long division and integrating them gives

1:3
/:2+3z+2’1”‘/(1_3+

86. First divide % + 1 by z° — 3z + 2 to obtain
22 +1

z+6
r? +3r

15
+6) d1:_§:r —3r—Injz+1|+8ln|z+2|+C.

3z -1

-3z +2

1 .
+-J:3—3:1:+2

Factoring 22 — 3z + 2 = (z — 2)(z — 1) we can use V-27 (withc = 3,d = —=1,a = 2 and b = 1) 10 write

3z -1
7? -3z +2

/

dr=5In|r—2|~2ln|z - 1|+ C.

Remembering to include the extra term of +1 we got when dividing, we get

z2 41
2 —-3x+2

[z

3r-1
2 —3r+2

) dr=z+5In|z —2|-2ln|z - 1| +C.



87.

89.

91.

92.

93.

94

&

SOLUTIONS to Review Problems for Chapter Seven

We can factor the denominator into ax(z + g), S0

dz_ _ 1 1
ar?+br  a x(x+§)

Now we can use V-26 (with 4 =0 and B = —‘-ﬁ'- to give

1 1 1 a b 1
E/m_;-—b-(ln|.l(|—ln|1'+;|)+0— Z(IHIIl_]"

Let w = az? + 2bz + . then dw = (2azx + 2b)dz so that

z+g|)+C.

ar+b 1 dw 1 1 2
— T dr=- ] = =} — 22 : :
/a:r?+2ba:+cd:r 2 w2 nlwl+C anlax %zt +C

This can be done by formula V=26 in the integral table or by partial fractions

dz dz 1 1
= = - - z=1 —Injz \
/22+z /z(z+l) /(: z+1) nlzl —lnl: +11+C

d 1 1 1
— (1 — z = - — = .
dz(n|z| Injz+ 1|+ C) plosr s e

Check:

Multiplying out and integrating term by term,

r  3\? 2 .9 1(° z7! T 9
/(’54‘;) dx—/(?+2+ﬁ)da:—§<?)+2:c+9(j +C—2—7+21‘—;+C.

fu=2"+1,du=2(n2)dt so

2! 1 2'In2 1 11 1 ¢
2 g L2y L 1oLy = — |2 .
1 1n2/2r+1d' 1112/11 Ml +C= gzl +1+C

fu=1-z,du=-1dz,s0

l-z __ -z, ) — u — _ 10" — _ 1 1-zx
/10 dr = 1/10 (—1dz) = 1/10 du = l——ln10+C— lnlO10 +C.

Multiplying out and integrating term by term gives

/(m2 +5)%dz

—'7:3

)

5
/(1:6 + 152" + 75x% 4+ 125)dx = Ly 15% +75— +1252+C
i

1 - -
—z' +3z° +252° +125: + C.
{

437

Integrate by parts letting r = v and dt = arcsin v dv then dr = dv and to find ¢ we integrate arcsin v dv by parts letting

z = arcsin v and dy = dv. This gives

t=varcsinv—/(1/\/l —vvdv =varcsinv + /1 — 12,

Now, back to the original integration by parts, and we have

. 2 . .
/varcsmvdu =v arcsinv + vy/1 —v? — / [v arcsinv + /1 — v?{ dv.
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Adding f v arcsin v du (o both sides of the above linc we obtain

Q/Uarcsiuvdv=v2mcsixlv+v\/1—v3—/ 1—v2dy
9 , O | 5 1 R
= v arcsinv + v/ 1 —v? - iv\/l —v? - §arcsmv +C.

Dividing by 2 gives

2 1 .
/varcsin vde = (% - %) arcsinv + Iv\/l —-v2+ K.

where K = C/2.
95, By VI-30 in the table of integrals, we have

/‘/‘—“" 2T /\/——x

The same table informs us in formula VI-28 that

dx = drcsm + C.

[ 7=

Thus
/_—2
/,/ 4—x2 Ir— +2arcsm5+C
3 o=
96. By long division, —— = z° + 5z + 25 + 120 » 50
z - s —3J
3 3 3 527
2z 2 12 1
_dz= [ (P+3:+254 °,) a= L 2 40524125 _dz
z—5 z—5 3 2 zZ—0

+%z + 252+ 125In|z — 5| + C.

97. If u = 1 + cos® w, du = 2(cos w)' (- sin w) dw, so

sin w cos w 1 [ —2sinwcosw 111 1
sinweosw 1 [ 2simweosw 1Ly Ly
/1+c052w “ '2/ 1+costw Q/M u 2ln|u|+

1 .
-3 In |1 + cos” w| + C.

1 _ 1 [ cos(39) C o .
98. /—t‘an(30) dg = / ——-( — ) dg = / ET) df. If u = sin(38), du = cos(36) - 3d6, so

oa(36)
cos(36) 3 cos(36) 11 1 _1 .
/ Sn(30) dé = 3/ S (30) df = 3 udu =3 Injul +C = 3 In |sin(36)| + C.

I 1 S . . 1
99. / —dr = /1: —dx. Using integration by parts with u = x. du = dz and dv = -—dz. v = tanz, we
cos? cos?x cos?z

1
/17( < dz) =1rtanx—/tanzd.r.
cos*r

Formula I-7 gives the final result of rtanz — (—In|cosz|}) + C = ztanz + In|cosz| + C.

have

100. Dividing and integrating term by term gives

o1 A dr e [t e 12yag = B0 8 o 2o
\/_d:c—/<\/_ \/_)(u /(I Ydzx 3 %+C—3x +2Vz+C.
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101, Ifu = Vz + L, w? =z + 1 withz = ©® — 1 and dr = 2udu. Substituting, we get

_I+ /(u —1)2udu /(l - du—Z/(u"‘—l)du
2u? SCERR Y s S

=5 -2u+C=—©p—=

2/x

)+C—; 3/’+C=%(\/E+1)3""+C'.

vVve+1l »
102. /——\{/I_EL=/(\/5+1)1/'%dz:ifu=\/:?+l,du= —1—d1~,sowehave

2/(ﬁ+ 1)‘“%«11-

I
[~
54
~
i3
£
=
Il
N
TN
=
ST
13

103. If u = e’ + 1, then du = e*¥2dy, so
e 1 2% 1 f1, 1 1 gy ‘
/ezy_l_ldy—-2-/mdy—5/;du—§ln|u|+C—§ln|e +1ITC

104, Ifu =22 -5, du=2zdz, then

/(Z'— /(3 —D) zdz—7/(2;—5)_3‘2:d¢=%/u*”dy,:%(%) +C‘

105. Letting u = z — 3, z = u + 5, dz = du, and substituting, we have

- . 3 . _ -1 Rattd
/(3;4—5)3 z=/u;jd'u=/(‘u“+5'lt 3)du=u_—+5<u_—2)+c
-3

106, f u =1+ tana thendu = dz' and s0

3 g L4 3
/(1+tan1.) /(1+tdn1 1? dr = /uzd‘u= +C=M+C.

v
cos? 4 4

107. / %d:p = /ezz—r(Qz ~ Ddz. Ifu=2" =z, du = (2z ~ 1)dr, s0

/632_3(21—1)(11‘. = /eud“

=e"+ec
=" T4 C.

108. We use the substitution w = 2> + z. dw = (22 + 1) d.

/(‘21r + 1)czge’” dz = /(21? + 1)er2+” de = /e"' dw

e +C=c" T4 C

Check: ;;i:(e’z*" +0) =T 2z 1) = (22 + 1) e

439
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109. Let w = 2 + 3cosz.so dw = —=3sinx dr. giving — % dw = sinz dz. Then
/sinr(\/2+3cosz) dr = /\/E(—%) dw:—%/\/ﬁdw
1\ wi 2. . 3
= (_§) - +C = —§(2+3coszzr)2 +C.

110. Using Table III-14, with ¢ = —4 we have

/(rf" -3r+2)e Vdr= _}T(mz -3z +2)e™*

1 ~dz 1 -4z
16 (2z - 3)e o1 (2e™™ +C.
1 —d4r 2
= —e - 20x — 8x .
3¢ (=11 +20x —8x°)+ C

111, Let & = 26, then dz = 2d6. Thus
/Si112(20) cos>(260)d = % /sinz rcos® rdz.

We let w = sin x and dw = cos z dr. Then

%/sin?zcossa:dr = % /si112.1?cos2r(:osxclw
1 .2 .2
=3 [ sin z(1 —sin” z)cos zdx
=1 w(l - w¥)dw = 1 (w® - w')dw
2 2
1 fuw® wh 1.3 1 .5
—2<3 ?)+C—gsm z—losm z+C
1
6

sin®(26) — % sin®(28) + C.

112, If u = 2sinz, then du = 2 cos x dz, so
1
/cos(2 sinz)cosrdr = 3 /cos(z sinz)2coszdr = -;—/cosudu

= %sinu+C= %sin(?sin:c)+C.

113, Letw = z + sin z, then dw = (1 + cos z) dz which gives

L

4(:z: +sinr)* +C.

/(.r +sinz)*(1 +cosr)dr = /w3 dw = 3104 +C=

114, Using Table I11-16,
/ (2.7:3 + 3z + 4) cos(2z)dr = -21-(2:1:3 + 3r + 4) sin(2z)
+%(612 + 3) cos(2x)
—%(121) sin(2z) — % cos(2z) + C.

2
= 2sin(2r) + r°sin(2z) + 3% cos(2z) + C.
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115. Splitting the integrand into partial fractions with denominators (2 — 2) and (x + 2), we have

1 __4 ,.B
(x-2)z+2)  z-2 z+2

Multiplying by (z — 2)(x + 2) gives the identity
1=A(x+2)+ B(z - 2)

SO
1= (A+B)r+24-2B.

Since this equation holds for all x, the constant terms on both sides must be equal. Similarly. the coefficient of - on both
sides must be equal. So

24-2B=1
A+B=0.
Solving these equations gives A4 = 1/4, B = —1/4 and the integral becomes

1 1 1 i 1 1
/mdl‘—z/T_QdI—I/de—Z(]n|1—2|—1n|1+2|)+c

116. Let xr = 5sint. Then dr = 5cost dt, so substitution gives

Scost _ dt:H_C:arcsin(f-)+C~
b

- =
= dt
/ 25 —1? 25 — 25sin ¢ .

117. Splitting the integrand into partial fractions with denominators z and (z + 5), we have
1 A B
—_— = —
z(x+3) =z x+5

Multiplying by @ (x + 3) gives the identity

1=4A(x+35)+ Bz
50

1=(4+ B)r+54.

Since this equation holds for all r, the constant terms on both sides must be equal. Similarly, the coefficient of = on both
sides must be equal. So

34=1
A=-B=0.

Solving these equations gives A = 1/5, B = —1/5 and the integral becomes

1 1 1 1 1 1 -
/mdl—g/;dr—3/1+5dl—g(llllrl—lll|1’+0|)+C.

118. We use partial fractions and write

1 A B

3P-3P2 3P 1-P
multiply through by 3P(1 — P), and then solve for A and B. getting A = 1 and B = 1/3. So

dr 1 1 1 fdP 1 [ dP
/3P—3P'»"/(ﬁ+3(1—P))dP“§/T+§/1—P
1 1 1 P ,
—§111IP|—5111|1—P|+C—gllllrp + C.
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119. We use the trigonometric substitution 3z = sin 8. Then dz = 3 cos 8 d6 and substitution gives

1 cosé

/'—l—dx - /; ! a8
V1 —922 1—sn6 3 J Vcos?@

1 f 1 1.
= 3/1(16—50“‘0—5&[‘(15111(31’)‘}’0.

. %cosﬂdﬁ =

120. Splitting the integrand into partial fractions with denominators z, (z + 2) and (x — 1), we have

2r + 3 A B C
r(x+2)(z-1) _:z_:+r+2 +m—1'

Multiplying by z(x + 2)(x — 1) gives the identity
2r+3=Ar+2)(x - 1)+ Br(c - 1)+ Cz(z +2)

SO
20 +3=(A+B+C)x’ + (4 - B+2C)z — 24.

Since this equation holds for all . the constant terms on both sides must be equal. Similarly, the cocfficient of z on both
sides must be equal. So

—24=3
A-B+20=2
A+B+C=0.

Solving these equations gives A = —3/2, B = --1/6 and C = 5/3. The integral becomes

2z +3 3 (1 1 1 5 1
—_—  dr=-2 gz -2 —— &2
/ar(;r+2)(x—l)d1 2/1 * 6/x+‘2+3/r—ldI

3 1 )
= —Eln|1‘|—aln|£+2|+§ln|£—l|+C.

121. The denominator can be factored to give z(z — 1)(x + 1). Splitting the integrand into partial fractions with denominators

z,z — 1, and x + 1, we have 1 c
3r+1 P B ;
rz—-1)(z+1)  z-1 it

Multiplying by x(x — 1)(x + 1) gives the identity

x+l1=Ar(r+ 1)+ Bz(z - 1)+ C(z — 1)(z + 1)
SO
3r+1=(A4+B+C)r* +(4-B)z-C.

Since this equation holds for all z. the constant terms on both sides must be equal. Similarly, the coefficient of z and =
on both sides must be equal. So

-C=1
4A-B=3
A+B+C=0.
Solving these equations gives 4 = 2, B = —1 and C = —1. The integral becomes

3r+1 2 1 1
—_—  —dr = dr — —dr - —-d
/I(I+1)(I—l)(1 /J:—l * /£+1 ¥ /I(x

=2z -1l-Inje+1]-In[r|+C.
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122. Splitting the integrand into partial fractions with denominators (1 + z), (1 + z)” and z. we have

1+ 2? : B
+z - 1 + _*_g'
z(l+x)* 1+z2z (1422 =z

Multiplying by (1 + z)* gives the identity
14+2° = Az(1 +z) + Bz + C(1 + z)°

SO
1+ =(A+C)z” + (44 B+2C)z + C.

Since this equation holds for all z, the constant terms on both sides must be equal. Similarly, the coefficient of z and z?
on both sides must be equal. So

C=1
A+B+2C=0
A+C=1.

Solving these equations gives A = 0, B = —2 and C = 1. The integral becomes

1+ 2? 1 1 2
——dr=-2 | ——d —dr = —— +1 .
(1+ )z * /‘(1+1)2 I+/x ’ 1+J:+ nlel+C

123. Completing the square, we get . _
42 +2=(x+1)° +1

We use the substitution z + 1 = tant, so dz = (1/ cos” t)dt. Since tan” t 4+ 1 = 1/ cos® ¢t, the integral becomes

1 1 1
T dr = | = —dt= [ dt =t = '
/ (z+1)2 + % / tan?t + 1 costt ¥t / t+C =arctan(z +1) +C

124, Completing the square in the denominator gives

dr _ dr
?+4r+5 ) (x+2)2+1°
We make the substitution tan 8 = z + 2. Then dr = 7 d6.
dz _ dé
(z+2)2+1 " | cos?8(tan®0 + 1)
_ / dé
cos? B( 28,8 1 1)

_ )
sin® 8 + cos? §

=/d9=0+C

Butsince tan @ = x 4 2, 6 = arctan(z + 2), and so 6§ + C = arctan(z + 2) + C.
125. Using partial fractions, we have:

3z +1 dr +1 A B

3242 (@-D-2 I-1Tz-3%

Multiplying by (¢ — 1) and (x — 2), this becomes

3r+1=A(x-2)+B(z - 1)
=(4+B)x-24-B
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which produces the system of equations
A+B=3
—-24-B=1.

Solving this system yields A = —4 and B = 7. So,
Jz+1 4 7
/:1:9—3:1'+2d$_/(—1:—1+z—2)dm
dr - dr
__4/1—1-‘-‘/1—2

=—dlnfz -1+ 7|z -2/ +C.

126. We use the trigonometric substitution bx = asin §. Thendx = § cos 8 d@, and we have

/ ! / cosOdG—/——— 2 cos 6 df
,/a?-(bx)’ (asm9)2 b 1_sin?8

cos @ 1 1 bz
9 = 1d8—-0+C'——arcsm( )+C
VCOS" b

o

dt . * ,
127. B should converge, since /1 . converges forn > 1.

We calculate its value,

= dt g 1P 9
/ 375 = A / =324t = lim -2t7/?| = lim (1- —> =1
4 372 b—oc 4 b=oc . b—oc \/5

128. / dz = In|lnz| + C. (Substitute w = Inz. dw = L dz).
zlnz z

Thus
b
® dz . dx .
= lim = lim In|lnz|
10 zlnzr  b-00 f, Tlnz b

As b — oc.In(In b) = 20, so this diverges.

b
= lim In(lnb) — In(In 10).
10 b—oo

-y

129 Tofind / we™" dw. integrate by parts, with u = w and v=e Y. Thenu' =1landv = —e
Then
/we—w dw = —we™" +/e_“" dw=—-we ¥ —e ¥+C.

Thus
b

=1
0

o b
we “dw = lim we “dw = lim (—~we™ ¥ —e™")
° 0 b—oc

b+ oo

130. The wouble spot is at z = 0, so we write

1 0 1
1
/ %dm:/ 7dr+/ %dr.
LT o 0o T

However, both these integrals diverge. For example,

1
. 1 1
a-a%(m—aw)‘

Since this limit does not exist, / — dz diverges and so the original integral diverges.
T
0

1 -3

T
—4d;r— lim —dx— lim ———
I a0+ o z? a—0+
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131. Since the value of tan @ is between —1 and 1 on the interval —%/4 < § < /4, our integral is not improper and so
converges. Moreover, since tan € is an odd function, we have

Y 0 I
/ tanéd df = / tan?d6 + / tan 8 d6
-3 -3 0

0 ks
= —/ tan(—0) d9+/ tan 8 d6
- 0

T
tan9d0+/ tan8d6 = 0.
0

FRE] &l

I
|
o~

132, It is easy to see that this integral converges:

o oo
! ,,<l,, and so ! = dz < —I;dz=l
4427 2 ., 4422 . % 2

We can also find its exact value.

Il
Ca
1
8
—

I
R | = o)
L

N =
o] 3
|

Note that § < 17

133. We find the exact value:

Rl | e 1
dz=/ ———dz
/10 22 —4 o (F+2)(z-2)
b

1
= lim ———dz
b_.:o/m z+2)(z -2

1 ‘ ~
bll_:gcz(lnL—Z] In|z +2|)

b

10

i Jins [(nfo— 2] = b +2]) - (in8 = 1n12)]

1 b-2
‘Eb“_it‘o[(lnb 2)“ ]

1 _In3/2
= z(lnl+ln3/2)— 1

- - . - B dw S . ® dw
134, Substituting w = t + 3, we see that our integral is just —=. This will converge, since — converges for
Vw w
o 0
0 < p < 1. We find its exact value:

15

* dw 15 dw
— = lim / — = lim 2w&
e Vvu a—0+ u

= 2V13.

135. Sincesing < ¢ for ¢ > 0,

/0 sin d) / 3%
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The integral on the right diverges, so the integral on the left must also. Alternatively, we use IV-20 in the integral table to

get
: d 1 : 1
/0 a|n¢(¢_b_l,1(l)l-+/b n¢(¢

1 cos¢p—1

= bm o se 1

cosb -1
MMeosh+ 1l

——-1

2 b—>0+

Asb—0%.cosb—1 - 0andcosb+1 — 2,s0ln |§gzg+} | = —o0. Thus the integral diverges.
136, Let ¢ = 26. Thend¢ = 2d#8, and

wf4 wf2
1 1 sing
tan 20 df = / —tan¢dg = / d¢
~/0 o 2 0 2c os ¢

b oo

1sin¢ 1 .

= lim - ~d¢= lim —=lInjcos .
b—i(ﬂ/').)-/o 2cos¢ ¢ b (x/2)- 2 lcos ] 0

b

Asb = /2, cos 6 —+ 0, 501n|cos @] = —oc. Thus the integral diverges.
One could also sce this by noting that cosz =~ 7/2 - z and sinz = 1 for z close to 7/2: therefore, tanz =
1/(5 — ), the integral of which diverges.

dz can converge.

oo
137. The integrand - lasz— oc.sothere’s no way ud
r+1 . T+l

138. This function is difficult to integrate, so instcad we try to compare it with some other function. Since i‘{,‘+—l > 0, we see

that 0°° sin® 9 d0 > 0. Also. since sin® 8 < 1,

* sin?@ <1 x
/ S df < / =——— df = lim arctanf| = .
o &7 +1 o 2 +1 b—+00 2
Thus [ ’f’ 9 40 converges, and its value is between D and Z z

139. / tan® #dé = tan 8 — 8 + C, by formula IV-23. The integrand blows up at § = 3.0
°

.4

~ ’ ” k3 o
/ tan® d6 = / tan” 6d6 + / tan’ 8df = lim [tan6 — 6] + lim [tand — 4]]
0 0 = b—'% a—?%
z
which is undefined.
140, Since 0 <sinz < 1for0 < r <1, we have

(sin.r)% < (sinz)
o b 51
" (sinz)¥ 7 (sinz)
or (sin.v)'% > (sinz)”’

1 1

. which is infinite.
a—0

1
Thus/ (sinz)”'dr = lim In
o

sinx tanx N

Hence, fol (sinz)” % dz is infinite.
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Problems

141.

142,

143.

Since the definition of f is differenton 0 < ¢ < 1 thanitison 1 <t < 2, break the definite integral at £ = 1.

/f t)dt = /ft)df+/ff)dt
/tdt+/(’)—t)d
0

3 1
= f ‘)t——
3
= 1/3+1/)= 6=0
1 ]
X €T
z 9=
E] 4

As is evident from the accompanying figure of the graphs of y = sina and y = cosz, the crossings occur at
r = 3., QT". ..., and the regions bounded by any two consecutive crossings have the same area. So picking twe
consecutive crossings, we get an area of
%
=
Area = (sinx — cosz)dx
El

= 2V/2.

(Note that we integrated sin x — cos z here because for § <z < 'T_ sinx > cosur.)
The point of intersection of the two curves y = z%and y = 6 — z is at (2.4). The average height of the shaded area is the
average value of the difference between the functions:

2

2

! ’ 2 S AN S
(2_—0)/0((6—I)—1‘)JI=(3¢.-_4—_E) =3

0

144, The average width of the shaded area in the figure below is the average value of the horizontal distance between the two

functions. If we call this horizontal distance h(y). then the average width is

1 6
m/o h(y) dy

We could compute this integral if we wanted to, but we don’t need to. We can simply note that the integral (without
the 1 & term) is just the area of the shaded region; similarly, the integral in Problem 143 is also just the area of the shaded
region. So they are the same. Now we know that our average width is just 3 L as much as the average height, since we
divide by 6 instead of 2. So the answer is
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145, (a) i. O i, 2 iii. %
(b) Average value of f(t) < Average value of k(t) < Averdée value of g(t)
We can look at the three functions in the range —3 < z < 3T since they all have periods of 27 (] cos ¢| and

(cos t)? also have a period of =, but that doesn’t hurt our cah.ulauon) Itis clear from the graphs of the three functions
below that the average value for cost is 0 (since the area above the z-axis is equal to the area below it), while the
average values for the other two are positive (since they are everywhere positive, except where they are 0).

o) o) .

It is also fairly clear from the graphs that the average value of g(t) is greater than the average value of k(t); it is
also possible to see this algebraically, since

-~

|
e )
R A
2 -
s

(cost)® = |cost]’ < |cost]
because | cost| < 1 (and both of these <'s are <’s at all the points where the functions are not 0 or 1).

146. Since f(x) is decreasing on [a,b], the left-hand Riemann sums are all overestimates and the right-hand sums are all
underestimates. Because increasing the number of subintervals generally brings an approximation closer to the actual
value, LEFT(10) is closer to the actual value (i.e., smaller, since the left sums are overestimates) than LEFT(5), and
analogously for RIGHT(10) and RIGHT(5). Since the graph of f(z) is concave down, a secant line lies below the curve

and a tangent line lies above the curve. Therefore, TRAP is an underestimate and MID is an overestimate. Pulting these
observations together, we have

RIGHT(5) < RIGHT(10) < TRAP(10) < Exact value < MID(10) < LEFT(10) < LEFT(5).

147. Let’s assume that TRAP(10) and TRAP(50) are either both overestimates or both underestimates. Since TRAP(50) is
more accurate, and it is bigger than TRAP(10), both are underestimates. Since TRAP(50) is 25 times more accurate.
we have

I — TRAP(10) = 25(I — TRAP(50)),

where [ is the value of the integral. Solving for 7. we have

25 TRAP(50) — TRAP(10)
24

I~ =~ 4.6969

Thus the error for TRAP(10) is approximately 0.0078.
148. If I(t) is average per capita income ¢ years after 1987, then I'(t) = r(#).
(a) Sincet = 8 in 1995, by the Fundamental Theorem,

8 8
I1(8) - I(0) = / r(t)dt = / 480(1.024)" dt
D 0

8
= 4228
0

_480(1.024)"
~ In(1.024)

50 1(8) = 26,000 + 4228 = 30.228.
(b)

I(t) - 1(0) = /Ar(t)dtz/ 480(1.024)" dt
42 0

480(1.024)¢ |'

T In(1.024)

480 o

= (029 ((1.029)" —1)

20.239 ((1.024)° — 1)

(]

Thus, since I1(0) = 26,000,
I(t) = 26,000 + 20.239(1.024° — 1) = 20,239(1.024)° + 5761.
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149. (a) Since the rate is given by #(t) = 2te™** mi/sec, by the Fundamental Theorem of Calculus, the total quantity is given
by the definite integral:

—> 00

= b
Total quantity ~ / e dt = 2 llm / te™2t dt.
0 0

Integration by parts with u = t, v’ = e~ ** gives

. t - -7
Total quantity = 2 lim (—§e 2 %e ")

— 00 0
. 1 b1\ s _ . 1.
-%‘ﬂ(r(f&)e )-2'1—0”‘"

(b) At the end of 5 seconds,

5

Quantity received = / 2te™ 2 dt =~ 0.49975 ml.
0

Since 0.49975/0.5 = 0.9995 = 99.95%, the patient has reccived 99.95% of the dose in the first 5 seconds.

150. The rate at which petroleum is being used ¢ years afier 1990 is given by
r(t) = 1.4 - 10%°(1.02)" joules/ycar.

Between 1990 and M years later

o (1 ) N
In(1.02) |,

oM
Total quantity of petroleum used / 1.4-10%°(1.02)" dt = 1.4-10°
0

1.4-10%° . '
= oz (102" — 1) joules.

Setting the total quantity used cqual to 10°? gives

1.4 - 10% ; 29
oo ((ro2) —1) =10
(1.02)" = w 1=2.41
_n(241) _
= In(1.02) = 15 years.

So we will run out of petroleum in 2035.

CAS Challenge Problems

151. (a) A CAS gives

/lnx (ln r)?

(Inz _ (ln:l.‘)3

T

/(1nz)3 dr — (Inzx)!
T 4

(nz)" . (lnz)**!
/ b = n+1 +C.

(b) Looking at the answers to part (a).

(¢) Letw = Inz. Thendw = (1/x)dz, and
)P n1 n+1
/.UnTrJ_(imz/1u"duv=w +C_M_+C'

n+1 n
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152, (a) A CAS gives

/lnrd.r =-r+zinr
/(ln )l dr = 2r = 2z Inx + x(Inx)?
/(ln )¥dr = —6r + 6zinzx — 3z(Inx)* + r(lnz)®

/(ln 2)dz = 24r — 24z Inz + 12z(In z)* - 4z(lnz)® + z(ln r)*

(b) In each of the cases in part (a), the expression for the integral f(ln x)" dz has two parts. The first part is simply a
multiple of the expression for f(ln x)" ! dx. For example, f(ln x)? dir starts out with 2z —2x Inx = —2 f Inzder.
Similarly. f(]n 1) dr starts out with =6z + 6z Inz — 3(Inz)* = -3 f(ln z)* dz, and f(lu z)* dz starts out with
—4f(ln z)® dr. The remaining part of each antiderivative is a single term: it’s a(In r)? inthe case n = 2, it's
z(inz)3 for n = 3, and it’s z(lu x)* for n = 4. The general pattern is

/(ln.r)" dr=-n /(ln Y " 'dr + x(lnz)".
To check this formula, we use integration by parts. Let v = (lnx)" so ' = n(lnz)""'/zandv' = 1sov = 1.
Then
An—-1
/(Inz)" dr = z(lnz)" - /n% cxdr
/(ln.t)" dr = z{lnz)" —n </(|n;r)"_l dr.

This is the result we obtained before.
Alternatively, we can check our result by differentiation:

}d— (—-n/(lux)"'ld;z?+1-(lu .L')") =—n(lur)""' + j—r(z(lnz)")

ar

—a(luz)*~' + (nz)" + z-n(ln r)"_]%

—n(lnr)*"' 4+ (loz)* + n(lnr)""' = (lnz)".

Therefore,
/(ln )%dr = -n /(ln )" 'dr + z(lnz)".

153, (a) A possible answer from the CAS is

/ sind gy = 2 c0x37),

(b) Differentiating

d (—9 cos(x) + cos(3 x)) _ 9sin(r) - 3sin(3x) _ 3sinz —sin(3z)
dx 12 12 4 )
(¢) Using the identities, we get
sin(3z) = sin(x + 2x) = sinz cos 2r + cos rsin 2x

= sinz(1 — 2sin” ) + cosz(2sinrcos 1)

=sgnr — 2sin’r + 2sinz(1 — sin® 1)

= 3sinz — 4sin’ r.

Thus,
3sinz — sin(3z) = 3sina — (3sinae — 4 sin® r) =+ sin® .

0
3sinx — sin(3z)

4

.3
=Ssin r.
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(a) A possible answer is
_ cos{4z)
i6

/ sin z cos x cos(2z) du =
Different systems may give the answer in a different form.
(b)
d [ cos(dz)\ _ sin(4z)
dz % /4

(¢) Using the double angle tormula sin 24 = 2 sin A cos A twice, we get

sin(4zr) _ 2sin(2zx) cos(2x) _ 2 - 2sin x cos x cos(2x) = sin z cos 7 cos(2x).
4 4 4
(a) A possible answer from the CAS is

! dr = 2 < T 3
(_I—W x—rrm—iarctan(r).

Different systcms may give the answer in different form.
(b) Differentiating gives

9y = Porctan(z)) =1- —2 - L
dr 2(1+zx2) 2 - (1+22)% 1+z%

(¢) Putiing the result of part (b) over a common denominator, we get

2 1 (1+12)?—rg—(1+12)
—(1+17'2)?—1+;11'3_ (1 +22)?
_l+‘2.’c?+m4—1:2—1—.r?_ P
(14 z2)? (1 +x2)?

CHECK YOUR UNDERSTANDING

1.

False. The subdivision size Az = (1/10)(6 — 2) = 4/10.

2. True, since Az = (6 — 2)/n = 4/n.

w

dn

21}

. False. If f is decreasing, then on each subinterval the value of f(x) at the left endpoint is larger than the value at the right

endpoint, which means that LEFT(n) >RIGHT(n) for any n.

. False. As n approaches infinity, LEFT(n) approaches the value of the integral f; f(x)dzx. which is generally not 0.
. True. We have

LEFT(n) — RIGHT(n) = (f(xo) + f(z1) + -+ + flzn-1))Ar = (f(z1) + f(z2) + -+ - + f(za))Ar.
On the right side of the equation, all terms cancel except the first and last, so:
LEFT(n) — RIGHT(n) = (f(z0) — f(zx))Az = (f(2) - f(6))Az.

This is also discussed in Section 5.1,

. True. This follows from the fact that Ax = (6 — 2)/n = 4/n.

7. False. Since LEFT(n) — RIGHT(n) = (f(2) — f(6))Az, we have LEFT(n) = RIGHT(n) for any function such that

F(2) = £(6). Such a function, for example f(x) = (z — 4)?, need not be a constant function.

. Falsc. Although TRAP(n) is usually a better estimate, it is not always better. If f(2) = f(6). then LEFT(n) = RIGHT(n)

and hence TRAP(n) = LEFT(n) = RIGHT(n), so in this case TRAP(n) is no better.
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Falsc. This is true if f is an increasing function or if f is a decreasing function, but it is not true in general. For example,
suppose that f(2) = f(G). Then LEFT(n) = RIGHT(n) for all n, which means that if f: f(z)dx lies between LEFT(n)
and RIGHT(n), then it must equal LEFT(n), which is not always the case.

For example, if f(x) = (z — 4)% and n = 1, then £(2) = f(6) = 4, s0

LEFT(1) = RIGHT(1) = 4 - (6 — 2) = 16.

6 3|6 3 3
. (z - 4) 2 2 16
-4V dpr = ~¥———_ = — — Fp— = —,
/2(Jc ) ds 3|, 3 3 3

In this example, since LEFT(n) = RIGHT(n), we have TRAP(n) = LEFT(n). However trapezoids overestimate the
area, since the graph of f is concave up. This is also discussed in Section 7.5.

True. Let w = f(z), sodw = f'(z)dr, then

However

/f'(r)cos(f(r))dr = /cos wdw =sinw + C =sin(f(x)) + C.

False. Differentiating gives
d 1 '
—1 =—" ).
22 @ =55 (@)
so0, in general

1
/mdr#ln|f(r)|+a

True. Let w = 5 — %, then dw = —2t dt.

True. Rewrite sin” 6 = sin@sin®@ = sin (1 — cos® ). Expanding, substituting w = cos ., dw = —sin#d§, and
integrating gives a polynomial in w, which is a polynomial in cos 8.

False. Completing the square gives

dr dr
/r'-’+4z+5 "/(z+2)?+1 = arctan(r +2) + C.

False. Factoring gives

dr dr 1 F1 1 I .
/:t'-’+4:::—5_/(1:+5)(1'.—l)—6/(~;r—1_:r+5) dr—6(111|J,—-1|—ln|1.'+o|)+C.

True. Let w = Inx,dw = 2~ ' dz. Then

3 R 3 4
/r-'((mx)2 +(Inz)®)dr = /(w? +ul)du = "? + “T +C= (lnsz) + @31 +C.

True. Let u = t,v’ = sin(3 —t). 5o u' = 1,v = cos(5 — t). Then the integral [ 1 - cos(5 — t)dt can be done by
guess-and-check or by substituting w = 5 — ¢.

True. Since

b a b
lim/ f(I)dl‘:/ flz)dz + lim/ f(x)dz.
b— oo 0 0 b—oo o

the limit on the left side of the equation is finite exactly when the limit on the right side is finite. Thus, if fow f(z)dz
converges, then so does f‘m f(z)dz.
diverges.

True. Suppose that f has period p. Then fop f(x)dz, f;p f(x)dx, f:pp f(x)dz,...are all equal. If we let k =
I3 f(z)dz, then [*F f(x)dz = nk. for any positive integer n. Since f(z) is positive, so is k. Thus as n approaches

00, the value of j;;" f(x)dx = nk approaches co. That means that limy— e fob f(x)dx is not finite; that is, the integral
diverges.
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False. Let f(x) = 1/{x + 1). Then

B b
/ ! gz = lim ln|x+1|‘ = lim In(b+ 1),
o T+ 1 b—oo 0 b—noo

but limp— oo In(b + 1} does not exist.

. False.Let f(z) = x + 1. Then

oo b
/ ! dr = lim Injz+ 1|| = lim In(b+1).
o T +1 b—oc 0 b—oc

but limp_y o In(b + 1) does not exist.

True. By properties of integrals and limits.

b b b
lim / (f(z) + g(x))dr = lim / f(z)dz + lim / g(z)dzr.
b= oo 0 b—oxc 0 b—oc °

Since the two limits on the right side of the equation are finite, the limit on the left side is also finite, that is,f(;’c (f(x) + g(z))dzx
converges.

. False. For example, let f(x) = z and g{z) = —z. Ther f(z) + g(z) = 0. s0 fum(f(.‘lf) + g(z))dx converges, even

though [ f(x)dz and [;° g(z)dx diverge.

. True. By propertics of integrals and limits.

b—ox

b b
lim / af(r)dr =a blim / f(x)dz.
0 —>Jo

Thus, the limit on the left of the equation is finite exactly when the limit on the right side of the cquation is finite. Thus
L=} g =]
fo a f(x)dx converges if fu f(z) dx converges.

True. Make the substitution #' = az. Then dw = adr, so

b L fe
/ flaz)ydr = - / fw)dw.
0 aJo

where ¢ = ab. As b approaches infinity, so does ¢, since a is constant. Thus the limit of the left side of the equation as b
approaches infinity is finite exactly when the limit of the right side of the equation as ¢ approaches infinity is finite. That
is, fox f(az) dx converges cxactly when f0°° J(x) dx converges.

True. Make the substitution w = a + &, sodw = dx. Thenw = a whenz = 0, and w = a + b when z = b, so

b b+a c
| ttasayas = / fw)du= [ Sy
0 a a

where ¢ = b+ a. As b approaches infinity, so does c. since a is constant. Thus the limit of the left side of the equation as b
approaches infinity is finite exactly when the limit of the right side of the equation as ¢ approaches infinity is finite. Since
fooc f(x) dz converges, we know that lime_ f(; f(w) duw is finite, so lime o f: f(w) du: is finite for any positive a.

Thus, fow f(a + x) dx converges.
b b b
/ (a+f(;t))d.r=/ adr+/ f(z)dz.
0 0 0

Since f ox f(x) dx converges, the second integral on the right side of the equation has a finite limit as b approaches infinity.
But the first integral on the right side has an infinite limit as b approaches infinity, since a # 0. Thus the right side all
together has an infinite limit, which means that fooo (a + f(z)) dr diverges.

. False. We have

1. (a) Ife! > 1+, then

T
e’:l—i—/ et dt
Jo

I 1‘)
21+/(1+t)dt:1+1‘+3m'.
o 2
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We can keep going with this idea. Since e' > 1+ ¢ + 12,

x
e‘=1+/ etdt
0
13

x 1 .
1+/ (1+t+—t2)dt:l+.17+l;1:'+—1:.
0 2 6

v

2
We notice that each term in our summation is of the form ’,7 Furthermore, we see that if we have a sum

1+I+g_2+.--+‘n—?suchthat

then

r
eI=1+/ el di
0

x t‘l n
Zl+/ (1+l‘+—+"'+—>dt
0 2 n!

1+ +1"?+r3+ + i
= T —_ PR _—
276 (n+1)!

Thus we can continue this process as far as we want, so
1 1 "
e‘21+z+§.r?+---+—'x"= —7 forany n.
n! pr ¥
(In fact, it turns out that if you let n get larger and larger and keep adding up terms, your values approach
exactly e*.)
I T
(b) We note thatsinz = / costdtandcosx =1 — / sin ¢ dt. Thus, since cost < 1, we have
0 0

I
sinz S/ ldt = 1.
0

Now using sint < ¢. we have
k4
1.
cosr < 1—/ tdt =1- -z
o 2

sinx < /z 1 11‘2 dt lr:’
& 3 - = =r—-=-xI".
~Jo 2 6

Then we just keep going:

Therefore . .
1 3 1 2 4
cosrgl—/o (t—gt>dt—1—§z +§Jf.
2. (@) () 1
sm{!t!
=37 27 - ™~—"07 3

14

(i) Si(z) neither always decreases nor always increases, since its derivative. #~! sin r, has both positive
and negative values for & > 0. For positive x, Si(x) is the area under the curve % and above the
t-axis from ¢ = 0 to t = x, minus the area above the curve and below the ¢-axis. Looking at the graph

above, one can see that this difference of areas is going to always be positive.
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It scems that the limit exists: the curve drawn in the slope field,
. T sint
y = Silr) = / dt.
o t

seems to approach some limiting height as z — oc. (In fact, the limiting height is 7 /2.)

y (ii)
50 F F(.r):/ ' dt
0
40
30 ¢
2 F yzzsiuz
10t j\ /
T Jk l“ ) T
5 10 13 20
gros z .
(III) 50 L. - . F(I)=/ tsmtdt
AR / 0
40 £ L P S
30F -- Lo
0p =
10{ - ”'j "::'
z e

The most obvious feature of the graph of y = sin(2?) is its symmetry about the y-axis. This means

the function g(x) = sin(x?) is an even function, i.e. for all z, we have g(x) = g(-zx). Since
sin(z?) is even, its antiderivative F must be odd, that is F(—r) = —F(—z). To see this, set F(t) =

fot sin(z?) dr, then

—t 0 t

F(-t) = / sin(x?) dr = —/ sin(x?)dr = -/ sin(z?) dr = - F(t).

0 —t 0

since the arca from —¢ to 0 is the same as the area from 0 to L. Thus F(t) = —F(—t) and F is odd.
The second obvious feature of the graph of y = sin(x?) is that it oscillates between —1 and 1 with

a “period” which goes 10 zero as |x| increases. This implies that F'(x) alternatcs between intervals
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(ii)

where it is positive or negative, and increasing or decreasing, with frequency growing arbitrarily
large as |z| increases. Thus F(z) itself similarly alternates between intervals where it is increasing or
decreasing, and concave up or concave down.

Finally. since y = sin(z?) = F’(z) passes through (0,0), and F'(0) = 0, Fis tangent to the
x-axis at the origin.

[ IO ) BRI R I

Figure 7.22

F never crosses the r-axis in the region > 0, and lim F(x) exists. One way to see these facts
Ir—oC

is to note that by the Construction Theorem.
F(z) = Fiz) - F(0) = / F(t)dt.
0

So F(x) is just the area between the curve y = sin(¢?) and the t-axis for 0 < t < x (with area
above the t-axis counting positively, and area below the t-axis counting negatively). Now looking at
the graph of curve, we see that this area will include alternating pieces above and below the ¢-axis.
We can also see that the area of these pieces is approaching 0 as we go further out. So we add a piece,
take a piece away, add another piece. take another piece away. and so on.

It turns out that this means that the sums of the pieces converge. To see this, think of walking
from point A to point B. If you walk almost to B, then go a smaller distance toward A, then a yet
smaller distance back toward B, and so on. you will eventually approach some point between A and
B. So we can see that lm;C F(r) exists. Also, since we always subtract a smaller piece than we just

added. and the first piece is added instead of subtracted. we see that we never get a negative sum: thus
F(x) is never negative in the region > 0, so F'(x) never crosses the x-axis there.



