Solutions for Section 9.1

9.1 SOLUTIONS

CHAPTER NINE

543

Exercises
I. Yes,a = 1, ratio= —1/2.
1 /
2. No. Ratio between successive terms is not constant: % =0.66.. ., while % = 0.75.
3. Yes,a = 5, ratio= -2.
4. Yes,a = 2, ratio = 1/2.
. . 2z? . 3r8
5. No. Ratio between successive terms is not constant: ——— = 2x. while :2;; = g;r.
T 2
6. Yes,a = y°, ratio = y.
7. Yes,a = 1, ratio = —x.
8. Yes,a = 1, ratio = —y%
. . . 622 L9z 3
9. No. Ratio between successive terms is not constant: yal 2z, while 62 = 5:.
2 2
10. Yes,a = 1, ratio = 2z.
11. Sum = ly Jyl <1
12, Sum ! 2] <1
) T1l-(-2z) 1+4z'"
13. Sum = <1l
1-(-y%) 1+ i
14. Sum = 5o 2l < 1/2
15, -2+1 1+1 1+ 1 3 ( ‘2)( l)n a geometric series
. - -t === - —=) ., agec series.
2 4 8 16 vt 2 =
Leta = —2andr = — . Then
TNV 2) Tl-xr T 1-(=1) " 3
n=0 2
3 3 3 3 1 1 3(1-5m) 3(2"-1)
16.3+§+1+§“.+2W_3(1+§+‘”+2W)_ -1 = 210
17. Using the formula for the sum of an infinite geometric series,

18.

S =) @) = () (3 () ) - 2 -

1
n=4 3

Using the formula for the sum of a finite geometric series,

317 -1

n=

20 n 4 5 2 2 1 4y 17
5L (00 )= ) (b (0 o (1)) -

2.320 °
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Problems

19. Since the amount of ampicillin excreted during the time interval between tablets is 250 mg, we have

Amount of ampicillin excreted = Original quantity — Final quantity
250 = Q — (0.04)Q.
Solving for Q gives, as before,
250

Q

20. (a) The amount of atenolol in the blood is given by Q(t) = Qoe™*, where Qo = Q(0) and k is a constant. Since the
half-life is 6.3 hours, . . .
EETX ] S S L
7 =¢ . k= 53 In 3 0.11.
After 24 hours ‘ ]
Q — Qoe—k(24) ~ Qoe—o.ll(.’4) ~ QO(OOT).
Thus, the percentage of the atenolol that remains after 24 hours = 7%.
(b)
Qo = 50
@1 = 50 + 50(0.07)
Q2 = 50 + 50(0.07) + 50(0.07)°
Qs = 50 + 50(0.07) + 50(0.07)* + 50(0.07)°

50(1 — (0.07)""1)

Qn = 50 + 50(0.07) + 50(0.07) + - -+ + 50(0.07)" = T

(c)
P, = 50(0.07)

P> = 50(0.07) + 50(0.07)°
P3 = 50(0.07) + 50(0.07)% + 50(0.07)*
Py = 50(0.07) + 50(0.07)° + 50(0.07)* + 50(0.07)*

P, = 50(0.07) + 50(0.07)* + 50(0.07)° + - - - + 30(0.07)"
_0.07(50)(1 = (0.07)™)
- 1-0.07

= 50(0.07) (1 + (0.07) + (0.07)% + -+ + (0.07)"7)

21. (a)
P1 = 0

P2 = 250(0.04)
P3 = 250(0.04) + 250(0.04)°
Py = 250(0.04) + 250(0.04)” + 250(0.04)>

P, = 250(0.04) + 250(0.04)% + 250(0.04)® + - - - + 250(0.04)"~"

0.04(1 - (0.09)"71)
1-0.04

(b) Pn = 250(0.04) (1 + (0.04) + (0.04)* + (0.04)° +--- + (0.04)"7%) =250
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()
P = lim P,
. 0.04(1 - (0.04)"71)
= 2
Jim 250 1004
_(250)(0.04) i
=% - 0.04Q = 10.42

Thus, im P, = 10.42 and lim Q. = 260.42. We would expect these limits to differ because one is right

n—roo n—co

before taking a tablet, one is right after. We would expect the difference between them to be 250 mg, the amount of
ampiciilin in one tablet.

(353
~
.

q (quantity, mg)

t {time, days)

23. (a) Let hy be the height of the n*® bounce after the ball hits the floor for the n*" time. Then from Figure 9.1,
ho = height before first bounce = 10 feet,

hy = height after first bounce = 10 (g) feet,

2
ho = height after second bounce = 10 (g) feet.

Generalizing gives

Figure 9.1

(b) When the ball hits the floor for the first time, the total distance it has traveled is just D; = 10 feet. (Notice that this

is the same as ho = 10.) Then the ball bounces back to a height of h; = 10 (%) , comes down and hits the floor for
the second time. See Figure 9.1. The total distance it has traveled is

Dy =ho+2h; =104+2.10 (%) = 25 feet.
Then the ball bounces back to a height of he = 10 (%)-. comes down and hits the floor for the third time. It has
traveled

2 2
Ds = ho + 2h1 + 2hs = 10+ 2 10 (§)+2-10 (%) =2542-10 (%) = 36.25 feer.
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Similarly,

Dy = ho + 2hy + 2hs + 2h3

3 312 333
= 2.1 - . = 2. het
10+ 2 0(4)+2 10(4) + 10(4)

3 3
=36.25+2-10 (1)
=~ 44.69 feet.

(¢) When the ball hits the floor for the n'® time, its last bounce was of height h,-1. Thus, by the method used in part
(b), we get
D, =hog+2h) +2h: +2h3 +- -+ 2hn-)
3 73 2 3 3 3 n—1
=10+2-10(2) +2-10 -) 2-10(-) 2‘10(-)
0+2 w(3)+20(3) + ) 4ot i)

~

finite gcometric series

soez0 () (14 () + () e+ ()
(

24. (a) The acceleration of gravity is 32 ftsec® so acceleration = 32 and velocity v = 32t + C. Since the ball is dropped,
its initial velocity is 0 so v = 32¢t. Thus the position is s = 16t + C. Calling the initial position s = 0, we have
s = 6t. The distance traveled is h so h = 16t. Solving for t we get t = l\/71-.

(b) The first drop from 10 feet takes ; 10 seconds. The first full bounce (to 10 - (%) feet) takes é\/lﬂ . (%) seconds
to rise. therefore the same time to come down. Thus, the full bounce, up and down, takes 2(§)4/10 - (%) seconds.

. 2 n
The next full bounce takes 2(1)10- (2)* = 2(3)V10 (ﬂ) seconds. The 7*® bounce takes 2(4)v/10 ( %)
seconds. Therefore the

Total amount of time

3
1 2 3 '2 3
—:1-\/10+ 1 10 ( z) 1 V10 <\/;) + ..
Geometric series with a = '-4‘3\/-_ ,‘3 \/E,‘ and ¥ = %

1 1 3 1
==-v1i0+ =V 10\/-—- ———— | seconds.
1 2 4\1-/3/4 ’

Total amount of money deposited = 100 + 92 + 84.64 + - --
100 + 100(0.92) + 100(0.92)% + - --
100

I

(b) Credit multiplier = 1250/100 = 12.50
The 12.50 is the tactor by which the bank has increased its deposits, from $100 to $1250.
26. The amount of additional income generated directly by people spending their extra money is 3100(0 8) = $80 million.
This additional money in turn is spent, generating another ($100(0.8)) (0.8) = $100(0. 8)? million. This continues
indefinitely, resulting in

Total additional income = 100(0.8) + 100(0.8)” + 100(0.8)" +--- = %2—) = $400 million
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. The total of the spendmg and respendma of the additional income is given by the series: Total additional income =

100(0.9) + 100(0.9)% + 100(0.9)> + - - - = 2200 — $900 million.

Notice the large effect of changing the assumption about the fraction of money spent has: the additional spending more
than doubles.

Exercises

1.

Since lim z" = 0if |z} < 1 and |0.2| < 1, we have lim (0 2" =0.
n—

n—=2

2, Since 2™ increases without bound as n increases, the hmndoes not exist.
3. Since lim z” =0if |z} < 1 and | — 0.3] < 1, we have hm ( 0.3)" =0.
=220
4. Since lim #" = 0if|z] < 1and |e”7| < 1, we have lim (e")") = lim (¢~ 3" = 0,50 lim (3+e™**) = 340 =3.
n—ooc R0 n—oo n—=xc
5. Since S, = cos(wn) = 1ifnisevenand S, = cos(wn) = —1if n is odd, the values of Sy, oscillate between 1 and —1,
so the limit does not exist.
. . n . 2 . 2" . 2\"
6. Since hm z" =0if |z] < 1 and ‘—l < 1, we have lim (—) = lim (—) =0.
n—eo \ 37 n—oc \ 3
7. As n increases, the term dn is much larger than 3 and 7n is much larger than 5. Thus dividing the numerator and
denominator by n and using the fact that lim 1/n = 0, we have
n—oG
3+4n . (3/n)+4 4
lim = lim ———— =<2
nooo 3+ TN n=toc (5/11) + 7 [
8. As n increases, the term 2n is much larger in magnitude than (—1)"5 and the term 4n is much larger in magnitude than
(—1)"3. Thus dividing the numerator and denominator by n and using the fact that lim 1/n = 0, we have
n—xx
M+ (1) _ lim 24 (=1)"5/n 1
n—oc 4~ (=1)"3 " amee 4 — (—=1)%3/n "~ 2’
9

10.

. We use the integral test to determine whether this series converges or diverges. We determine whether the corresponding
o

improper integral / r—sda: converges or diverges:

1
> +3
/ —da: = lun / —dz = lim A—
1 p—roc 222
=

x<
. . 1 . . 1
Since the integral / —dx converges, we conclude from the integral rest that the series E —5 converges.
I n
1

b lim (_—l-l-l)—l
_b-mo %2/ 2

n=1
We use the integral test to determine whether this series converges or diverges. We determine whether the corresponding

20
improper integral / mdr converges or diverges:
1

oc . b z b
/l P bliflclo/l Fres 31;2 ua’ + )1

1 2 1
= i - “ P — 2] =
bli:);c (2 In(b” 4+ 1) 3 In -) 0.

o< 20
. . X . X . . n .
Since the integral / c ld:r diverges, we conclude from the integral test that the series Z 11 diverges.
z? n®
1

a=1
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11. We use the integral test to determine whether this series vonverges or diverges. We determine whether the corresponding

=<3
2
improper integral / ze” © dr converges or diverges:
0

=) b .
_22 . _gl . 1 _,2
ze © dr = lm ze™* dr = lim -5e
0

b=+oc o oo 2 0
oo s x
2
Since the integral / ze™ " dz converges, we conclude from the integral test that the series E ne~" converges.
0
n=0

12. We use the integral test to determine whether this series converges or diverges. We determine whether the corresponding
o0

improper integral —————=dxz converges or diverges:
prop = /: z(lnx)*? = g

(214 LY=L
b= \Inb  In2/ 7 In2’

= b -1/
/z‘ z(lnx)? de = bll{l:)o/,; x(lnr)?drzbli?;c lnz|, -

oo o
Since the integral ——— dx converges, we conclude from the integral test that the series E —-—— converges.
.  x(lnz)? . n(ln n)?
n=

Problems
oo

i$ a convergent geometric series, but E — 18 the divergent harmonic series.
n

[

~—~

|

S )= N—’
E}

13. The series
n=1

3\" 1 3\" _ 1
(( ) converged, then E (( :—1) + ;) - E (1) = E - would converge by Theorem 9.2.

n=1 n=1 n=1 =l

3\* 1y ..
((—) + —) diverges.
4 n

14. Writing an = nf(n + 1), we have lim,_,» a» = 1 so the scries diverges by Property 3 of Theorem 9.2.

el a

|M8
Ss— |l

A
+

gk

Therefore

3
1
-

b

15, Using the integral test, we compare the series with

00 3 b 3
/ —dr = lim / dr=3In|z + 2|
o TH+2 b—oo fo T+ 2 0

Since In(b + 2) is unbounded as b — oc, the integral diverges and therefore so does the series.

16. The series can be written as

in-&-?" _i(l +1)
nan VA A
n=1 n=1
— (1 1 =1 1
If this serics converges, then E (2—n + _z) - E = E — would converge by Theorem 9.2. Since this is the
T T n
n=1 n=] n=1
= -1
harmonic series, which diverges, then the series E diverges.

n=1

17. We use the integral test and calculate the corresponding improper integral, f 1°° 3/(2¢ - 1)%dz:

a b b
3dr Sde =32 | -3/2 3\ _3
/1 (2:c—1)2‘e,11?3q/l (21-1)2‘-9“_?30(21-1)l‘b'i”io((zb—l)“Lz)‘z‘
0

. . . 3
Since the integral converges, the series E (9—1‘, converges.
2n - 1)?
n=1

)
18. We use the integral test and calculate the corresponding improper integral, f 0°° 2//2 + zdz:
b

= lim 4 ((2+b)'/7 - 2'7%).
= i ((2+b) )

= 2 * 2ds /
———=dz = lim = lim 42+ 2)'/?
_/(; V2+x b—mc/o V24 x  betoo ( )

oc
. . 2 .
Since the limit does not exist (it is oc), the integral diverges, so the series E o diverges.
n

n=1
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19. Leta, = (lnn)/n and f(z) = (Inzr)/z. We use the integral test and consider the improper integral

Efdl
z

Since

/ '“—’dz— (nz)’|® = 2 ((nR)* ~ (n0)?),
.md In R grows without bound as R — oo, the m(egral dwergcs. Therefore, the integral test tells us that the series,
Z lnTr also diverges.

n=1

20. We use the integral test and calculate the corresponding improper integral, f3°°(;c +1)/(x? + 2z + 2) dz:

/°c 2+l = fim /b —FFl = lim il 42 +2| b = lim S(In(6® + 26+ 2) — In 17).
3 2420+ 2 b—roc 3 r2 42z 42 booc 2 b—bao?

- n+1
Since the limit does not exist (it is oc), the integral diverges. so the series E m diverges.

n=3
21, Using left-hand sums for the integral of f(2) = 1/(4z — 3) over the interval 1 < x € n + 1 with uniform subdivisions
of length 1 gives a lower bound on the partial sum:

el n+l

1 1 dr
Sn=1+%+—+--~+ >/ z =§ln(4r—3)
1 1

1
9 in-3 ir-3 = jlnlin+1).

Since In(4n + 1) increases without bound as n — oc, the partial sums of the series are unbounded. Thus, this is not
a convergent series.

22. Using right-hand sums for the integral of f(z) = e

I gives:

over the interval 1 < x < n with uniform subdivisions of length

1 1 YR -1/2
‘237+'“+NT/§<\/\ T dr = —2(n -1).
Adding | to both sides gives an upper bound on the partial sum

Sn =1+271/2-+-~+n3% <1-2m"Y'-1)
Thus, as n — oc, the sequence of partial sums is bounded. Each successive partial sum is obtained from the previous one
by adding one more term in the series. Since all the terms are positive, the sequence of partial sums is increasing. Hence
the series converges.

< o0
23. (a) We compare Z 1/n” with the integral / (1/z")dz. For p # 1, we have
1

oo —p+1 [P —p+1
.oox? LT -1
—dl = lim dr = lim = lim ——.
1 [ b= —p+ 1 . b —p+1
If p > 1, the power of b is negative. so this limit exists. Thus the integral converges, so the series converges.

(b) If p < 1, then the power of b is positive and the limit does not exist. Thus, the integral diverges, so the series diverges.

We have to look at the case p = | separately, since the form of the antiderivative is different in that case. If
o

p = 1, we compare Z 1/n mlh/ (1/z)dx. Since

n=1

n=1

= ! ’
/ —dz = lim =dr = lim In|z|]] = lim Inb,
1 T s b—oe b— oo

b—oc ) T 1

and since lim Inb does not exist, the integral diverges, so the series diverges. Combining these results shows that
b—oc
o

Z 1/n? diverges if p € 1.

n=1
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o a2 e =
3%+ 5 3\" 3 . .
24. Z yramie (1) +Z o asum of two geometric series.
n=0 n=0 =0
2
n
1
> (%) =13
n=0 4
ii_ 520
n _ 1= Y
n=04 1-3 3
—3"+5 _, 20 _ 32
qn T 33

n=l

25. We want to define lim S, = L sothat S, is as close 10 L as we please for all sufficiently large 7. Thus, the definition

n—+rxo

says that for any positive ¢, there is a value IV such that

[Sn — L] <€ whenever n> N.

26. Let S, be the n*® partial sum for 3~ a, and let T, be the n*" partial sum for 3 bn. Then the n'™ partial sums for
Y (an+bn) Y (an—bn),and Y kay are Sp + T, Sn— Ty and kS., respectively. To show that these series converge,
we have to show that the limits of their partial sums exist. By the properties of limits,

lim (Sn +Tw) = lim Sn+ lim Ty
n—o0 n—oC n—oc

lim (S, = Tx) = lim S, — lim T,
n—0C n—o0 n—oo
lim kS, =k lim S,.
n—2o0 -3 0C

This proves that the limits of the partial sums exist, so the series converge.
27. Let Sy be the n-th partial sum for ) a, and let T, be the n-th partial sum for Y bn. Suppose that Sy = T + k. Since
ap = by forn > N, we have S, = T, + k for n > N. Hence if S,, converges to a limit, so does T, and vice versa.
28. Wehavea, = Sn — Sn_1. If Z an converges, then S = limn o0 S exists. Hence lim,,—, o Sp— exists and is equal
to S also. Thus
lim ap = lim (Sp — Sn-1)= lim Sy — lim S, =§5-5=0.
n—=x n—oc

n-—+0s Ho— 00

29. From Property 1 in Theorem 9.2, we know that if 3~ @, converges, then so does Y kan.
Now suppose that ) a, diverges and 3 ka, converges for k # 0. Thus using Property 1 and replacing " an by
Z kan, we know that the following series converges:

) %(kan) =3 an

Thus, we have arrived at a contradiction, which means our original assumption, that Z ka, converged, must be wrong.
n=1
30. (a) Show that the sum of each group of fractions is more than 1/2.
(b) Explain why this shows that the harmonic series does not converge.

(a) Notice that

1,11, 1 2.1

3 44 4 4 2

b} 6 7 8 8§ 8 8 8 8 2
11 1 1 1 18 _1
R T TR TA TS TR T &

In the same way, we can see that the sum of the fractions in each grouping is greater than 1/2.
(b) Since the sum of the first n groups is greater than n/2, it follows that the harmonic series does not converge.
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100000
31. We want to estimate Z T using left and right Riemann sum approximations to f(z) = 1/z on the interval 1 <
k=1
x < 100.000. Figure 9.2 shows a left Riemann sum approximation with 99,999 terms. Since f(x) is decreasing, the Icft
Riemann sum overestimates the arca under the curve. Figure 9.2 shows that the first term in the sum is f(1) - 1 and the
last is £(99,999) - 1. so we have

100000
/ —dr < LHS = f(1) 1+ f(2) - 1+ + (99,999) - 1.

Since f(r) = 1/x. the left Riemann sum is

99999

1 1
LHS = =14+ =1+~
TR R +99999 ZL
SO
1000001 99999
td b

Since we want the sum to go & = 100,000 rather than k = 99,999, we add 1/100,000 to both sides:

100000 1 99900 100000
- d
/ * 00,000 000 Z * 100.000 000 Z k

= k=1

The left Riemann sum has therefore given us un underestimate for our sum. We now use the right Ricmann sum in
Figure 9.3 to get an overestimate for our sum.

1 1 1

"

!
: . 1 r
Ty Tz e 100.000 1 &1 T2 e 100.000

Figure 9.2 Figure 9.3

The right Ricmann sum again has 99,999 terms. but this time the sum underestimates the area under the curve.
Figure 9.3 shows that the first rectangle has area f(2) - 1 and the last £(100.000) - 1, so we have

100000 1
RHS =f(2)-1+f(3)v1+---+f(100,000)-1</ ;d.r.
l

Since f(z) = 1/, the right Riemann sum is

100000

B
1()0000 Z E

100000
- < / —dJ:

Since we want the sum to start at k = 1, we udd I 10 both sides:

RHS = --1+

rul-—a
WL —

So
1 00000

100000 100000

1 1 1 1000001
;=T+ZI<1+/1 -;(11‘.
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Putting these under- and overestimates together, we have

100000 1 1 100000 1 100000 1
—-d — - —dz.
/, zx+100,000<;k<1+/1 ¥

100000
Since / o dr =1n100.000 —In1 = 11.513, we have
1

100000 )
11.513 < ; 5 < 12513
100000 )
Therefore we have Z; % ~12.

32. Using a right-hand sum, we have

E S S P A
2 3 4 n . z ’

If a computer could add a million terms in one second, then it could add

GOS;C,C .60 min ‘24hour ‘365days .1 million terms
min hour day year sec
terms per ycar. Thus,
1 1 1 - 6
1+§+§~-+; <l4Inn=1+In(60-60-24-365-10°) =~ 32.082 < 33.
So the sum after one year is about 32.
kel
33. (a) Let N an integer with N > ¢. Consider the serics Z a;:. The partial sums of this series are increasing because all
i=N+1

the terms in the series are positive. We show the partial sums are bounded using the right-hand sum in Figure 9.4. We
see that for each positive integer k

Nk
FINF 1)+ f(IN+2)+- + f(N+k) S/ f(z)dz.

N

Since f(n) = an forall n, and ¢ < N, we have
Ntk
ax+i1+ang2+ -+ anvek < / f(z)dz.
[

Since f(z) is a positive function, [*** f(x)dz < [ f(z)dz for all b > N + k. Since f is positive and
fc°° f(z)dz is convergent, fc‘w—k f(z)dz < [~ f(z)dx, so we have

o0
ax+1 +ang2+ o+ onvgr < / f(z)dz forall k.

o
Thus, the partial sums of the series E a; arc all bounded by the same number, so this series converges. Now use

i=N+1
o0

Theorem 9.2, property 2, to conclude that E a; converges.

i=1
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f(z) f(=)
Area = f(N)
/
Area = f(N + 1) / Aea = f(N +1)
Area = f(N +2) Aea = f(N +2)
Area = f(N +3) 7 /
M
0 z . .
c N N+1 ¢ N N+1
Figure 9.4 Figure 9.5

ac
(b) We now suppose / f(z) dr diverges. In Figure 9.5 we see that for each positive integer k

Ntk+1
[ s < 0+ S 4 7R,

Since f(n) = an for all n, we have

N4kl
/ f(x)dr <axy +ans1+- -+ ay+x.
N

Since f(x) is defined forallx > ¢, iff:o f () dx is divergent, then J;’o f(z)dz is divergent. So as k — oc, the the

o0 ==
. N4k+1 - . . . . .
integral L N + f(x) dz diverges, so the partial sums of the series E a; diverge. Thus, the senes E a; diverges,
i=N i=)

More precisely, suppose the series converged. Then the partial sums would be bounded. (The partial sums would
be less than the sum of the series, since all the terms in the series are positive.) But that would imply that the integral
converged, by Theorem 9.1 on Convergence of Increasing Bounded Sequences. This contradicts the assumption that
f\x f(z)dz is divergent.

Solutions for Section 9.3

Exercises
1. Letan = 1/(n® + 2). Since n* + 2 > n®, we have 1/(n” + 2) < 1/7°, s0
1
0 <an < ﬁ

o0

oo
. 1 . .
The series E —; converges, so the comparison test tells us that the series E
n®

1
- also converges.
n%+2 =

n=1 n=1

2. Leta, =1/(n —3).forn 2 4. Sincen —3 < n,wehave 1/(n — 3) > 1/n, so
1
an > —.
n

< x

. . 1 . . .
The harmonic series E — diverges, so the comparison test tells us that the series E
n

1 .
also diverges.
n—3

n=4 n=4
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-

- p . - [4
Leta, = e™"/n®.Sincee™" < 1.for n > Lwe have — < =, 50
n< n
1
0 < An < — -
n-<
> 1 > e—n
The series E —; converges, so the comparison test tells us that the series E - also converges.
n? n
n=1 n=1

. Since n® > n?, we have 1/n® < 1/n®. Hence the scries converges by comparison with 1/n°. which we showed

converges on page 415 of the text.

. Since Inn < nforn > 2, we have 1/Inn > 1/n, so the series diverges by comparison with the harmonic series,

S 1/n.
1

Letan = 1/(3" +1). Since 3" + 1> 3", wehave 1/(3" + 1) < 1/3" = (5) . 50
1 n
0 n =) .
<< (3)

<
. . . . \" .. . . .
Thus we can compare the series E with the geometric series E ( 5) . This geometric series converges since

1
3" +1

n=1 n=1

[e <]
[1/3] < 1, so the comparison test tels us that Z also converges.

n=1

1
3r 41

. Leta, = 1/(n* 4+ e"). Since n* + €™ > n*, we have

1 < 1
nt+er ~pt’

SO

1
0<an, < —.
“ nt
Since the series Ew L converges, the comparison test tells us that the series §°° ——— also converges.
ni e nd 4 en <
n=1 n=1
_o-n(n+1)  n+1 1 . (n+1) . 1 /1\*
Lctan_Q m— n+2) (2—" . Since (n+2) <1dnd2—n—(§) . we have
1 n
0 < ap < (E) .
= (n+1) >\ /1\"
. ; are cor -n H 1 0 1 1 - 4
o that we can compare the series E l 2 (n+2) with the convergent gcometric series 5 (2) . The comparison test
n= n=1

tells us that

i p-n(n+1)
e~ (n+2)

also converges,

— a2 4 H i 4 s have J—
Leta, = n*/(n' +1). Since n* +1 > n*, we have Tl S

therefore
1
0<an < —=

7

o0 9

x
. . 1 . . ne
Since the serics E —; converges, the comparison test tells us that the series E T 1 converges also.
n® n

n=1 n=1
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Letan, = (2" +1)/(n2" — 1). Since n2" — 1 < n2" +n = n(2" + 1), we have

2" 4+ 1 2" +1 1

n2" —1° n(2"+1) =n

:2"+— 1l with the divergent harmonic scries Z % The comparison test tells

n=l1 n=1

Therefore, we can compare the series E

x n
: 1 .
us that Z "+ 1 also diverges.

We know that | sinn| < L, so

nsinn n_ N _ 1
n3+l Snd3+1 " nd3 a?’
in n nsin
Since : 1 converges. Thus, by Theorem 9.5, Z — 1 converges.
n=
Since a, = 1/{2n)!, replacing n by n + 1 gives ans41 = 1/(2n + 2)L. Thus
1
ansr) _ @n+2)t  (@u)! (2n)! _ 1
lan| 1 T @2rn+2)! @n+2)@2n+1)(2n) " (2n+2)2n+1)
(2n)!
so
L= lim ‘“"“l ! =0.

= 1i [P —
nome an]  nase (2n+2)(2n+1)

Since L = 0, the ratio test tells us that Z (Zn) comerges
n=1

Since a, = (n!)*/(2n)!, replacing n by n + 1 gives ans1 = ((n + 1)!1)*/(2n + 2)L. Thus,

((n+1)1)2
lansrl _ @D _ ((n+1))* (@n)!
Jaa] @) @+l @)
(2n)!

However, since (n 4+ 1) = (n -+ 1)n! and (20 + 2)! = (2n + 2)(2n + 1)(2n)!, we have

lan+1] _ (n+ 1)*(n!)*(2n)! _ (n+1)° _ntl
lan| ~ (@n+2)@2n+1)(2n)(n!))2 ~ 2n+2)(2n+1) 4dn+2’
* ansi] _ 1
An41] _ 1
L=lm 20T =7

n! 2
Since L < 1, the ratio test tells us that Z 2 ))| converges.

Since anp = 2" /(n® + 1), replacing n by n+1gives anss = 2" /((n + 1) +1). Thus

2n+1
longs] _ (n+1)2+1 gn! ‘n3+l _ n® +1
lan] 2" T m+1)B+1 20 T T(n+1)2+1°
nd+1

so
L= lim lan+1} -9
el
o

Since L > 1 the ratio test tells us that the series Z
n=0

n

) diverges.
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15. Since a, = 1/(ne™), replacing n by n + 1 gives an41 = 1/(n + 1)e™*+". Thus

1
fans1] _ (n+1)ert! ne® _ ( n )l
lan] — 1 T+ Dertt T \n+1/¢€
net

Therefore

. : 1
L= lim M=—<1.
n—0o |{1."| €

o
. . 1
Since L < 1, the ratio test tells us that E — converges.
ne
n=1

16. Letan = 1/(2n + 1). Then replacing n by n + 1 gives ¢n41 = 1/(2n + 3). Since 2n + 3 > 21 + 1, we have
1 1

0<a = ——— < —— = ay.
T on +3 2n+1 "
(=)
We also have limn— s an = 0. Therefore, the alternating series test tells us that the series Z STy converges,
n
n=1

17. Letae, = 1//n. Thenreplacing n by n+1 we have an41 = 1/v/n + 1. Since VR + 1 > /n, we have
(___1)11

n

1 1
< —=.
v+l n

o0
hence an41 < an. In addition, lim, o an = 0 so E

n=0

converges by the alternating series test.

Problems

18. The partial sums look like: 5y = 1, S2 = 0.9. 53 = 0.91, S3 = 0.909, S5 = 0.9091, Ss = 0.90909. The series appears
to be converging t0 0.909090 . .. or 10/11.

Since a, = 107* is positive and decreasing and lim 107" = 0, the alternating series test confirms the convergence
n—oC

of the series.

19. The partial sums are S} = 1, S2 = -1, S3 = 2, S10 = =5, S11 = 6, S100 = —50. S101 = 51. Sioep = —3500,
S1001 = 501, which appear to be oscillating further and further from 0. This series does not converge.

20, The partial sums look like: S; = 1, 852 = 0, 53 = 0.5, 81 = 0.3333, S5 = 0.375. S0 = 0.3679, S20 = 0.3679, and
higher partial sums agree with these first 4 decimal places. The series appears to be converging to about 0.3679.
Since an = 1/n! is positive and decreasing and lima o 1/n! = 0, the alternating series test confirms the conver-
gence of this series.

21. The first few terms of the sceries may be written

T+et+e e+
this is a geometric series witha = 1l and z = e™! = 1/e. Since || < 1, the gecometric series converges to
1 1 e
S = = = )
l-z 1-e1! -1
22. We use the ratio test and calculate

n+t 1 '
lim lansa| _ lim O /(n + 1)t lin =
n—oo |an| n—oo (0.1)n /n! n—oo N+

Since the limit is less than 1, the series converges.
23. We use the ratio test and calculate

. lan41] . onlf(n+1)? . n! n? . n?
l —_— = l e —— l . = l 77+ — .
noe Jan|  nbe (m-DJnE  nas\(m=1) m+1Z)  amm \ GEIE

Since the limit does not exist (it is 00), the series diverges.

w2

The first few terms of the serics may be written
e+e2+e3+~-=e+e-e+e-e'“'+---;

this is a gcometric series witha = e and z = e. Since |z| > 1, this geometric series diverges.
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25. Leta, =1//3n — 1. Then replacing 1 by n + 1 gives anqy = 1/4/3(n+1) — 1. Since

\/3(n+1)—1 >V3n -1,

we have
Ape1 < Qp.

(=

In addition, lim, . @, = 0 so the alternating series test tells us that the series Z

- V3n—-1

26. Since the exponential, 2™, grows faster than the power, n?, the terms are growing in size. Thus, lim a, # 0. We conclude
n—+ oo

converges.

that this series diverges.
27. Leta, = n(n + 1)/V/n3 + 2nZ. Since n® + 2n® = n’(n + 2). we have

- n(n+1) n+1

nvn+2 \/n+2

_n(n+1)

\/W
28, Letan = 1/v/n2(n + 2). Since n®(n + 2) = n® + 2n” > n®, we have

s0 an grows without bound as n — oo, therefore the series E diverges.

0<0n<nsT.

fe =]
Since the series E

n=1

Y converges, the comparison test tells us that

also converges.

29, (a) Assume that n is even. Then

11 1 1 1 1 1 1 1
44 m=(1-2 - _— =
! 2+3 -1+ n ( 2)+(3 1) +(11.—1 n)
R N S !
1.2 3.4 (n-1)
1 1 1 . .
(b) The given sencs—+3—4+5—6+ - - is term by term less than the series
R U EA S L N
1 33 12 33

Since this second series, Y 1/ n2. converges by the integral test, the first series converges.

(c) By parts () and (b). the sequence of partial sums for even n converges. The partial sum for odd n equals 1/n plus
the partial sum for even n — 1. Thus the partial sums for odd n approach the partial sums for even n, as n — oo.
Therefore the sequence of all partial sums converges, and hence the serics converges,

30. The argument is false. Property 1 of Theorem 9.2 only applies to convergent series. Furthermore, since n(n + 1) > n®
oc o0
. . 1 .
we can compare E _(Tl) with the convergent series E — and deduce that it converges.
n(n n
n=1 n=1

31. Suppose we let ¢, = (—1)"a,. (We have just given the terms of the series 3 (—1)"a. a new name.) Then

lenl = [(=1)"an| = |an]-

Thus 5 |cn| converges, and by Theorem 9.5,

Z Cn = Z(—l)"an converges.
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32. (a) Since bp, = a4 if a, is positive or zero and b, = 0 if a, is negative, we have

0 < by < |ax] for all n.
Thus, by the comparison test, Y b, converges.
(b) Since c, = 0if a, is positive or zero and ¢, = —a, if a, is negative, ¢, is never negative and
0 < ¢qn < an| for all n.

Thus, by the comparison test, Y ¢ converges.
(c) The bys are the positive terms in Z an, and the cgs are the negative terms. For each n, either b, or ¢, is 0, and

an =bp — cn.

Thus, Y- a. =Y bn — Y cn is the difference of convergent sequences and hence converges.

Solutions for Section 9.4

Exercises

1. Yes.
2. No, because it contains negative powers of r.
3. No, each term is a power of a different quantity.
4. Yes. It's a polynomial, or a series with all coefficients beyond the 7th being zero.
. 1-3:5---(2n-1
. The general term can be writlen as 3 a% ( 'n )1:” forn > 1.
27 . n!
—“Dp—=2)---(p—
Pe-Vp=2)-p-n+1) o >1.

6. The general term can be written as ' T
n!

i

7. The general term can be written as (—1)*(r — 1)*/(2k)! for k > 0.
8. The general term can be written as (—1)*(z — 1)*¥73/(2k)! for k > 0.
9. The general term can be written as é_z'—!_a))' forn > 1.
n=tenl
(k + 2)(x + 5)%k*3
k!

10, The general term can be written as fork > 0.

11. This series may be written as
1+ 52+ 2522 + -

so Cy, = 5". Using the ratio test, with a, = 5"z, we have

mndl
lim Jansi] = |zf lim [Cns1] = |z| lim = 5{x|.
n—oo |a,.| n—oc |C'n| n—oc

Thus the radius of convergence is R = 1/5.
12. Since Cn = n®, replacing n by n + 1 gives Cryy = (n + 1). Using the ratio test, with an = n3z", we have

jan+1] _ IrllCn+l| _ :L‘I("+1)3 — el (n+1)3
lan] 1Cx| nd ’ n ’

We have
lim Iaﬂ+ll

aim 'anl = I.’El

Thus the radius of convergence is R = 1.
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Since C, = (n + 1)/(2" + n), replacing n by n + 1 gives Cnyt = (n + 2)/(2"%1 4 « + 1). Using the ratio test. we
have

|an+t] _ |"'||Cn+l| = o] (n +2)/(2" +n+1) = || n+2 24 lJ'I‘“ +2 2"+
Jan| 1 Ch| - (n+1)/(2% +n) Mt 4+l a4l Va4l 2244417
Since
n+2
nsscn+1 -
and

lim( 2" +n )—llun 2" +n 1
noroc \20* 4 1) T 2amo \2n+(n+1)/2) T 2

because 2" dominales n as n = 0o, we have

Thus the radius of convergence is R = 2.

Since Cr, = 2™ /n, replacing n by n + 1 gives Catr = 2" /(n + 1). Using the ratio test, we have

M:II—HM:lx—llw:lr—ll-ﬂ-i='2|r- |( n )
|au| Icnl 2n /71 (‘n + l) PAL n+1/’°
)
T T

n—oc |('ln|
Thus the radius of convergence is R = L.

th

To find R, we consider the following limit, where the coefficient of the n'" term is given by C, = ne.

. An41 .
lim |—|- = lim
n—oo |t n—+oc

lim |z} =
n—oo n-

(n +1)%e"*! | 4 2n+1
n2en

|z| lim
=400

14 (2/n) + (1/n%)
n = |z|.
Thus, the radius of convergence is R = 1.

The coefficient of the n'" term is Cn = (—1)™*! /n*. Now consider the ratio

"‘Zrn—il
(n+ 1)’z

An41l
an

= |z] as n = oc.

Thus, the radius of convergenee is R = 1.
Here the coefficient of the n'® term is Cr = (27 /n!). Now we have

@ /(n+ 1))z !
(2n/nl)z

_ 2|
T+l

An+)
Qn

= 0asn o x.

Thus, the radius of convergence is R = oo, and the series converges for all x.

Here the coefticient of the n*® term is C, = n/(2n + 1). Now we have

An+1
an

[r] = x| as n = <.

((n+1)/(2n + 3))x"+* _ (n+1)2n+1)
(n/(2n + 1))zm n(2n + 3)

Thus, by the ratio test, the radius of convergence is B = 1.

Here C, = (20)!/(n!)*. We have:

An+1 l _|@m+ )+ )2 @2+ 1)) () I2]
a. |~ 2n)!/(n!)22 (@2 ((n+1)H2"

_@n4+2)(2n 4+ 1)«

- (n+1)?

= 4]r] as n = 2.

Thus, the radius of convergence is R = 1/4.



560 Chapter Nine /SOLUTIONS

20. Here the coefficient of the n'!" term is C,, = (2n + 1)/n. Applying the ratio test, we consider:

Qn+1
an

(()n+3)/(n+l))x"+‘ _|1'|2n+3‘ n
((2n +1)/n)x T+l n+1

— |z] as n = oc.

Thus, the radius of convergence is R = 1.

21. We wrile the series as

3 5 7 -1
T r € L
e e 44 (=1
i v s SRR A Y A g
$0
_ I?n-l
o= DT
Replacing n by n + 1, we have
2(n41)—1 I'_’n+l
= (-1 n4l-1 I = (=] n .
a1 = (=1) TS AT
Thus
janta| _ (=¥ ! 2n —1 _2n-1 )
lan] ~ | 2n+1 (21| 21"
S0 5
L= lim Iﬁ"—t‘—l: im 11—12=12.
n~—+o0 l”n n—%x 2n+1

By the ratio test. this series converges if L < 1, that is, ifz? < lLsoR=1.

Problems

22, (a)

(b)

The general term of the series is ™ /n if nis odd and —x" /n if n is even, so C, = (—1)"~!/n, and we can use the
ratio test. We have

lim |a,,+1| = |z| lim 11" /(e + 1)) = |z}

_— i L .
R P Rl T  ERY Y i =

nox 1+ 1

Therefore the radius of convergence is R = 1. This tells us that the power series converges for |z} < 1 and does not
converge for |x| > 1. Nolice that the radius ol convergence does not tell us what happens at the endpoints, r = £1.
The endpoints of the interval of convergence are r = 1. Atz = 1, we have the series

1 1 1 (-1)"!
) P A
2 + 3 4 + + n +
This is an alternating scrics with a, = 1/n, so by the alternating series test, it converges. At r = —1, we have the
serics
1o [ O | 1
2 3 4 n

This is the negative of the harmonic series, so it does not converge. Therefore the right endpoint is included. and the
lett endpoint is not included in the interval of convergence, whichis -1 < x < 1.

23. Let C, = 2" /n. Then replacing n by n + 1 gives Cny1 = 2"+ /(n + 1). Using the ratio test. we have

Ian+1| l ||Cn+1| x|2”+l/("+l) "‘l1'| 2n+| 1 —-2|_L-| __" )
|ar] = |Cal = 2 /r T T )

Thus

lim lani] 2|z|.

n—oc |tln|

The radius of convergence is R = 1/2.

oc
. . . 1
For x = 1/2 the series becomes the harmonic scries E — which diverges
n
a=l1
Forr = —1/2 the series becomes the alternating series E
=1

which converges. See Example 7 on page 421.

="
n
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24. The coefficient of the n*® term of the binomial power series is given by

- p(p—1)(p—'2)---(p—(n—1))‘

n!

To apply the ratio test, consider

An41

plp=1)p-2)-- (p—("—l))(p—n)/(n+1)!

=lal pp-DE=2 - (p=(n D)/

n

p n
— — —— | o |r|asn = x.
n+l n+1l

= Il ln +1 =l
Thus, the radius of convergence is R = 1.

25, The k*® coefficient in the series > kCy z* is D) = k-Cy. We are given that the series Y C.x* has radius of convergence
R by the ratio test, so

Thus, applying the ratio test to the new series, we have

k+1

Dk.',.l.'l? (k+ 1)Ck+1

KCy

_ =l

= lim |Il = _ﬁ-

k—oc

lim
k—oc

Dy ¥

Hence the new series has radius of convergence It.
26. The radius of convergence of the series, R, is at least 4 but no larger than 7.

(a) False. Since 10 > R the series diverges.
(b) True. Since 3 < R the series converges.
(¢) False. Since 1 < R the series converges.
(d) Not possible to determine since the radius of convergence may be more or less than 6.

Solutions for Chapter 9 Review.

Exercises
1. Letan, = n?/(3n® + 4). Since 3n* + 4 > 3n®, we have - < -1- SO
3n +4 3
l n
0< an < (5) .
1 n x n:} n
The geometric series (-) converges, so the comparison test tells us that the series —_— also con-
. > (5 : p : > (3,,.»+4) ;

verges. "= "=

2. Letan = 1/(nsin? n). Since 0 < sin® n < 1, for any integer n, we have n sin®n < n,so > 1 , thus

n SlIl n n

1
an > —.
n
=1 = 1
The harmonic series E — diverges, so the comparison test tells us that the series E —— also diverges.
n nsin” n
n=1 n=1
o
. R . 1-n
3. The first few terms of this series E e are
n
n=1
3 2 1 1
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Note that we cannot use the comparison test directly since a, = is negative for n > 4. However

n+1

= 4 3 2 1 @ w— 4

{—-n n—-

—_ === - - —
er3+1 2 ‘)+ 28 Zn3+1
n=1 n=>5

Since n® + 1 > n?, we have
1 1
B +1 < nd’

therefore

n—4 n—- n 1 form > 4

L —— <K == -, n .

nd 41 nd nd  n?’

. n—4 . . .
50 we can compare the serics E w1 with E —, which converges. The comparison test tells us that the scries
n n-
=5

n=
5 i
nd+1
n=1

also converges.

The series can be written as

> <1
3nl+n+1 n 1
Sl =S (g ¢ )

n=1 n=l

To show that the original scries converges we show that each of the series 5 E and E
‘ 5417 n5 +1° . n5 +1
n= n=

converges. (See Property | of Theorem 9.2.)
o<

2
. . . n n .
Firstly, consider the serics E ——-Letan = ———. then since n® + 1 > n® we have
n®+1 n® 4+ 1
n=1
n® < n- 1
nf+1 " n% a3
x0

. . . . 1 . .
so we can compare the first series with the convergent serics E — - The comparison test tells us that the series
n

n=1l
o0
n?
E ——— converges.
nd+1
n=1
oc
. . n n
Now consider the series, E ———.Letan = - then we have
n® 41 nd+1
n=1
n < no_ 1
nw+1 b ad
O ] o<
. . . . . . n
so we can compare this series with the convergent scries E —; - The comparison test tells us that the serics E ooy
n n’ -
n=1 n=1
converges.
= 1 1
Finally, consider the series E —— Letan = ———. then
ns +1 nd® 41
! <
nd+1 " nd
2
. . . . 1 . . 1
s0 we can compare this serics with the convergent serics E — - The comparison test tells us that the series 5 wrl
n n
n=1 n=1

also converges.
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==}

. . 1 .
From Property 1 of Theorem 9.2, since the series Z TT1 Z n5 1 and Z ] converge, the series

nd

n=1 n=1

x<

3n° 3n”+n+1 1

E also converges.
Tav+l

n=1

o o
- . . 3\ 1 N
To show that the original series converges, we show that the series (1) and E —; converge. The first of these
E ; nz
n=1.

n=l
0

is a convergent geometric series, since [3/4| < 1. The integral test tells us that scries E —5 converges by comparing it
T
n=1
(3", 1
. . 1l p .
with the convergent integral j o ! /22dz. Theorem 9.2 then tells us that the series E (1 + 7) also converges.
. n2

n=1

. The series can be written as

oo

LS (24 8) -5 ()< (1)),

n=0

o0 >
. 1I\N". . . . _— . . 3\"
The series E (-5—) is a geometric series which converges because |%| < 1. Likewise, the geometric series E (:
n=0 n=0

+ 3"

also

20
2
converges because [%l < 1. Since both series converge. Property | of Theorem 9.2 tells us that the series Z

n=0
converges.

7. Writing an = 1/(2 + sin n), we have linin— oo @n # 0 so the series diverges by Property 3 of Theorem 9.2.

o
.

Since an, = 3" /(2n)!, replacing n by n + 1 gives an41 = 37+1 /(20 + 2)!. Thus

anci _ 3°TH/@n+2)! 3" (20)!
an 3 /(2n) T (2n+2)! 3

Since (2n + 2)! = (2n + 2)(2n + 1)(2n)!, we have

Qp+1 - 3
an (Zn+2)2n+1)

SO

. Gp4l
lim =+ =o.

n—oc dn

The ratio test tells us that the series E W converges.
anj.

Since an = (2n)!/(n!)”, replacing n by n + 1 gives ans1 = (2n + 2)!//((n + 1)!)%. Thus

(2n +2)!
ans1 _ (n+1))? ~ (2n+2)! nln!
an  @n)! +D(m+1) @)
(n)?

Since (2n +2)! = (2n + 2)(2n + 1){2n)l and (n + 1)! = (n + 1)n!l, we have

angr _ (2n+2)(2n+1)
an (n+1)(n+1) "’

therefore a
L= lim = =4,

n=ac Q

As L = 4 the ratio test tells us that the serics Z I dweraes.
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10. This is an alternating series. Let an = 1/(v/n + 1). Then limn_oc an = 0. Now replace n by n + 1 10 give an41 =

1/(vn+1+1).Since /n+1+1> /n+1, we have

1
< , SO
Va+T1+4+1 o+l
4] = ! < ! =a
T Vari4l  Vasl v
o n-1
. . . . (-1)

Therefore, the alternating series test tells us that the series Z 7—1— converges.

pyt n+

11. Since In(1 + 1/k) = In((k + 1)/k) = In(k + 1) — Ink, the nth partial sum of this series is

Sp = i:ln(l-f%)
k=1
= Zln(k+ 1) - Zlnk
k=1 k=1

=(Im2+n3+---+In(n+1))—(Inl+In2+---+1nn)
=lIn(n+1)-Inl
=In(n +1).

Thus, the partial sums, Sp, grow without bound as n — ¢, so the series diverges by the definition.
12. Since Cy = n, replacing n by n + 1 gives Cy1 = n + 1. Using the ratio test with a, = nz™, we have

im 19 g i (Gl gy i 2L
n—oo |(1n| n—oo ICnI hd
Thus the radius of convergence is R = 1.
! ! ]
13. LetC,, = Ef:'l)),_, . Then replacing n by n + 1, we have Cpyy = (Eirl-q-—+l)2'))" Thus, with a, = (2n)!z"/(n!)?, we have
lan+1| _ 2| [Cntrl _ 12| (2n +2)Y/((n + 1)Y? _ |x|(2n +2)! ()’
|an] |Cnl (2n)!/(n!)? (o)t ((n+1))*

Since (2n + 2)! = (2n 4+ 2)(2n + 1)(2nr)! and (n + 1), = (n + 1)n! we have

[Cntr| 204+ 2)(2n+1)
ICal — (a+D(n+1) "

SO
X ,
im Botil ) gy oty QoD@ DL el

n—+oco |an| n—oo  |Chy| nase (n41)(n+41) n—co N+

y

so the radius of convergence of this series is R = 1/4.
14, Let Cp = 2" + n”. Then replacing n by n + 1 gives Crny1 = 2" + (n + 1)2. Using the ratio test, we have

lant1] _ 2] [Crsr] _ IIITH +(n+1)" el 2" 4+ L(n+1)?
lax| |C| 2% +n? 2" + n? :

Since 2" dominates n® as n — oc. we have

lim 12n41l _ 2|z|.

n—oc Ia,‘l

Thus the radius of convergence is R = :

o=
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15. Let Cn = 1/(n! + 1). Then replacing n by n + 1 gives Cr=; = 1/((n + 1)! + 1). Using the ratio test, we have

Y({n+1)!+1) _ nl+1

[ans1] _  |Cn+il
= Izl yea+n - Eer e

lanl ICul

= |z

Since n! and (n + 1)! dominate the constant term 1 as n = oc and (n + 1)! = (n + 1) - n! we have

|an+l| —

lim 0.
n—oc ]anl
Thus the radius of convergence is R = oc.
Problems
16. (a) 0.232323... = 0.23 +0.23(0.01) + 0.23(0.01)* + --- which is a geometric series with a = 0.23 and = = 0.01.

023 023 23
1-0.01 099 99

17. The amount of cephalexin in the body is given by Q(¢) = Qoe™**, where Qo = Q(0) and k is a constant. Since the
half-life is 0.9 hours,

(b) The sum is

1 —0.9%
1 om0k

=~ 0.8.
2 8

N =

1
A——@]ﬂ

(a) After 6 hours '
Q = Qoe™"® = Qe ™*® = (y(0.01).

Thus, the percentage of the cephalexin that remains after 6 hours = 1%.

(b)
Q: = 250
Q2 = 250 + 250(0.01)
Q3 = 250 + 250(0.01) + 250(0.01)*
Q1 = 250 + 250(0.01) + 250(0.01) + 250(0.01)*
(c)
Qs = 250(1 — (0.01)%)
T TS0
= 2325
Qs = 250(1 — (0.01)*)
T TS o0m
=~ 252.5

Thus, by the time a patient has taken three cephalexin tablets, the quantity of drug in the body has leveled off to 252.5
mg.
(d) Looking at the answers to part (b) shows that

Qn = 250 + 250(0.01) + 250(0.01)* + - - - + 250(0.01)" !
_250(1 = (0.01)™)
- 1-0.01
(e) In the long run, n = o0. So,
250
= l = ——— = .’.
Q= lim Qn =157 =225

18. (a) (i) On the night of December 31, 1999:

First deposit will have grown to 2(1.04)7 million dollars.
Second deposit will have grown to 2(1.04)® million dollars.

Most recent deposit (Jan.1, 1999) will have grown 10 2(1.04) million dollars.
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Thus

Total amount = 2{1.04)7 + 2(1.04)® 4+ - - - + 2(1.04)
= 2{1.04)(1 + 104 + - - + (1.04)%)

-

finite geometric series
. 1-(1.04)7
=2{1.04) | ———
w0 )( 1-1.04 )
= 16.43 million dollars.
(ii) Notice that if 10 payments are made, there are 9 years between the first and the last. On the day of the last
payment:

First deposit will have grown to 2(1.04)® million dollars.
Second deposit will have grown to 2(1.04)® million dollars.

Last deposit will be 2 million dollars.
Therefore
Total amount = 2(1.04)° + 2(1.04)* + -+ + 2

=2(1 + 1.04 + (L.04)* +--- + (1.04)%)

)

~~

finite geometric series
_ (1109
T\ 1-1.04
= 24,01 million dollars.

(b) In part (a) (ii) we found the future value of the contract 9 years in the future. Thus

24.01

Present Value = W = 16.87 million dollars.
Aliernatively, we can calculate the present value of each of the payments separately:
2 2 2
Present Value = 2 4+ —— +

Tod "o T moap

_, (1 —(1/1.04)"°

1-1/1.04 ) = 16.87 million dollars.

Notice that the present value of the contract ($16.87 million) is considerably less than the face value of the contract,
$20 million.

19.
Total present value, in dollars = 1000 + 1000e~%% + 1000e %24 4 100013 + ...
= 1000 + 1000(e %) + 1000(e~%%*)* + 1000(e " ***)* + - --
This is an infinite geometric series witha = 1000 and ¢ = 4720 and sum

Total present value, in dollars = lj_(;(i(;ﬁ = 25.,503.

20. A person should expect to pay the present value of the bond on the day it is bought.

e 10
Present value of first payment = 101
Present value of second payment = (Tl(—)(jl_)l’ etc
Therelore,
Total present value = ﬂ-{- 10 +___1l) +
P = T0d T 109 T (103 '
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10 1
. =10 dr= s
This is a geometric series witha 103 and 7 = o S0
o
Total present value = —84— = £250.
T.04
21
Present value of first coupon = 30
¢ POl = 106
Present value of second coupon = (1—%%—)-2- ete.
50 30 50 1000
: S alle = — + —— - - -
Towl presentvalue = =50+ ez " [Toey© + (1.06)10
N - . ,
coupons principal
50 1 1 1000
- 14 — +---
1.06 ( o Tt (1.06)9> * ooy
10
50 (1= (15s) L _looo
~ 1.06 1- 165 (1.06)10
= 368.004 + 558.395
= §926.40
22,
P t value of firstcoupon = S0
resent vi ; pon = 100
Present valuc of second coupon = (IOT[-)I)'Z- etc.
50 50 50 1000
1 t Vi = —_— —_— e
Total present value 103 + (1.09)° +---+ (Lonm + (1.05)10
N - RN .
coupons principal
30 1 1 1000
10 (l timt T (1.0»1)9> * oo
10
_ 50 (1-(gem) ), 1000
T 104 1- (1.04)!0
= 405.545 + 675.564
= $1081.11
23. (a)
N 50)
Present value of first coupon = ——
1.05
50

Present value of second coupon = m,elc.

Total present value —50 + —-——50 i + o0 + 1000
o . = ...
P 1.05 * (1.05)° (1.05)10 * (1.05)'0
~ ~ - Se——
coupons principal

_ a0 1+1++1 +1000
T 1.05 1.05 (1.05)9 (1.05)10

567
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10
_ 50 (1-(v) ), 1000
T 1.05 - i (1.05)10

1.05
= 386.087 + 613.913
= $1000

(b) When the interest rate is 5%. the present value equals the principal.

{c) When the interest rate is more than 5%. the present value is smaller than it is when interest is 5% and must therefore
be less than the principal. Since the bond will sell for around its present value, it will sell for less than the principal;
hence the description trading at discount.

(d) When the intercst rate is less than 5%, the present value is more than the principal. Hence the bound will be selling
for more than the principal, and is described as trading ar a premium.

24. The series converges for |x — 2| = 2 and diverges for jz — 2| = 4. thus the radius of convergence of the series, R, is at
least 2 but no larger than 4.
(a) False. If z = 7 then |z — 2| = 5, so the scries diverges.
(b) False. If £ = 1 then |z — 2| = 1, so the series converges.
(¢) True. If z = 0.5 then jx — 2| = 1.5, so the series converges.
(d) If r = 5 then |z — 2| = 3 and it is not possible to determine whether or not the series converges at this point.
(e) False. If x = —3 then |z — 2| = 3, so the scries diverges.

25. (a) Since

lan] = an ifan 20
lan| = —an ifan <0,
we have
an =+ |an| = 2|ay,| ifa, >0
an +las| =0 ifan < 0.

Thus, for all n,
0 <an + |an| £ 2|an|.

(b) If 3_ |an| converges, then 3 2|ax| is convergent, so, by comparison, 3 (an + |aa|) is convergent. Then

Y (an+laa)=las) =) an

is convergent, as it is the difference of two convergent series.

CAS Chalienge Problems

26. (a) Using a CAS, we get

Six) () =z(l+z)=z+z°

2 " », 82t 4
Sa(z)Te(z) = (z +217) 1+r+7 =r+3r +— +=z

2 3 3 = 4 5 6
_ 2 3 I T . 2 11z 2z 11z T
Sa(r)Ta(z) = (2 + 2z +31?)(1+J,+—2—-+?) =r+3zr° + 5 + 5 + 6 +?
R s . P
S4(I)T4(1‘)=(I+2I +3r +4;r) 1+I+?+F+ﬁ
. 112 49zt 47r® 312% 1927 2B
=x+3r + 5 + 6 + 8 + 5 + 21 +F

(b) The coefficient of z is always the same, namely 1. The coefficient of 2 is 1 in the first line, and then 3 thereafter.
The coefficient of ® changes twice, but then remains at 11/2 for the last two lines.
(c) Following the same pattern, we expect that the coefficient of * to remain the same after n = 4, and indeed we find
that
11z° 49" N 872° + 9112°  397z7  412° 29z £

SvT5,=A3.2 o4
s(2)Ts(2) =2+ 327" + —— + 6 8 120 V20 Y0 Yo T

so the coefficient of z* stays at 49/6.



27.

CHECK YOUR UNDERSTANDING 569 ‘

d

—

In general, the coefficient of ¥ in the product can vary in STy, 2T, ..., Si T and then stays the same after that.
This is because the coefficient of ¥ in the product depends on the coetticients of 1, z, 2. ... 2% in S, (z) and T ().
and these remain the same forn > k.

(a) Using a CAS, we get

T (Si(z)) =1+~

- .72

To(Sa(r)) =14z + 22

‘

+2.r‘1‘+?.r4

= 2 1,13 1 ‘5 - ,6 T 9
T3(53(I))=]+.r+%+361 +62° + 921 +'IGI +212I +915+QTI

(b) The coefficicnt of r stays the same, namely 1. The coefficient of 22 is 0 in the first line. but after that stabilizes at 5/2.
(¢) Thus we predict that the coefficient of x* will stabilize after n. = 3 and will be 31/6 in T3(S;()). This is confirmed
by

5r°  31x% 241x' 832%  702%  T1xT 599x%  1272°
TSN =1+2x e e,
1(Sa(xr)) +x+ ) + 6 + 21 + 6 + 3 + 2 + 12 + 2 + l

(d) In general, the coefficient of =* in the composite can vary in T1(S1(x)). Ta(S2(x)), ... Tx(Sk(z)) and then stays
the same afier that. This is because the cocfficient of z* in the composite depends on the coefficients of 1, z, z°,
...z%¥ in S,.{x) and T, (2}, and these remain the same for n > k. |

(a) Both p and g are geometric series. The radius of convergence of p is 1 and that of g is 1/2.
(b) Using a CAS, we get

Pq=(1—I+1’2—1?3+1?4—15+16-177+.ts-1'9+1'l°—--.)

(I+2z+42" +82° + 160" +322° + 6425 + 12827 +2562% +5122° + 102420+ ..)
=1+z+327 +50% + 112" + 21 2° + 4325+ 8507 + 17122 + 341 2° + 683210 + - .

(c) The following table gives the ratio Crny1 /Cn forn =0,. . ., 9, where pg = ) Caz".

n 0 1 2
Car1/Cn | 1]3.000 | 1,667 | 2.

(9 )
IR
w
[=,)
-]

7 9
191012048 | 1.977 | 2.012 | 1.994 | 2.003

Ig)

The ratios look like they are approaching 2 so we guess that the radius of convergence is 1/2.
(d) A reasonable conjecture is that the radius of convergence of a product is the smaller of the radii of convergence of
the two original serics.

CHECK YOUR UNDERSTANDING

. True. A geometric series. a + ax + axr® + - - -, is a power serics about r = 0 with all coefficicnts equal 10 a.

Falsc. Writing out terms, we have
(c-D)+ (-2 +x-3>+---.

A power series is a sum of powers of (z — a} for constant a. In this case, the value of a changes from term to term, so it
is not a power scries.

. True. This power series has an interval of convergence centered on & = 0. If the power serics converges for z = 2, the

radius of convergence is 2 or more. Thus, » = 1 is well within the interval of convergence, so the series converges at
r=1.

. False. This power series has an interval of convergence centered on z = 0. Knowing the power series converges forr = 1

does not tell us whether the series converges for .+ = 2. Since the series converges at r = 1, we know the radius of
convergence is at least 1. However. we do not know whether the interval of convergence extends as far as r = 2. so we
cannot say whether the series converges at x = 2. Since this statement is not true for all C,. the statement is false.
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o

. True. This power series has an interval of convergence centered on z = 0. If the power serics does not converge forz = 1,
then the radius of convergence is less than or equal to 1. Thus, z = 2 lies outside the interval of convergence, so the series
does not converge there.

6. False. It does not tell us anything 10 know that b, is larger than a convergent series. For example, if an = 1/n* and
bp =1L then0 < a, < b, and Z a,, converges, but E b,. diverges. Since this statement is not true for all a, and b,,
the statement is false.

7. True. This is one of the statements of the comparison test.
8. Truc. Consider the series Y (—by) and Y~ (—a.). The series Y~ (—bn) converges, since ) b converges, and

0< —a, € —bx.

By the comparison test, Y (—an) converges, so Y an converges.
9. False. It is true that if 3 |aa| converges, then we know that 3 ay converges. However, knowing that 3 an converges
does nor tell us that Y || converges.
For example, if a, = (=1)""!/n, then Z an converges by the allernating series test. However, > |an| is the
harmonic series which diverges.
10. False. For example. if an = 1/n and b, = —1/n, then |an + ba| = 0,50 ¥ |an + ba| converges. However 3 |an| and
3" |br| are the harmonic series, which diverge.

11. False. For example. if a,, = 1/n”, then

. a4+ . Um4+1)? . n?
lim laweal _ lix A—q)- = lim —= =1
n— oo |an| n—+oo l/n- n—00 (n+1)
However. 3~ 1/n” converges.
12, False, since if we write oul the terms of the series, using the fact that cos 0 = 1,cos 7 = —1,cos(27) = 1, cos(37) = —1,

and so on, we have

(-1)%cos 0 + (1) cos T + (—1)% cos 27 + (—1)% cos 3w + - - -
=)+ (DD + W) + (=D(-1) + -
=1+1+1+1+---.

This is not an alternating series.

13. True. Writing out the terms of this series, we have

A+ (-DHY+ A+ (-1 + A+ D)+ @+ (D)) +--
=(1-D+Q+D)+0-D+(Q+1)+--
=0+2+0+2+---.

14, False. This is an alternating series, but since the terms do not go to zero, it does not converge.

15, Falsc. The terms in the series do not go to zero:

_n! _1y? _13 ! ~1)8 - - -
A L T L S S o I B R PSR

=1/242+1/2+2+1/24---.

16. False. Forexample, if an = (=1)" "' /n.then }_ a, converges by the alternating series test. But (—1)"a, = - (-1)""Yn=
(-1)°"7!/n = —1/n. Thus, 3_(—1)"a, is the negative of the harmonic series and does not converge.

17. True. Let ¢y, = (—1)"*lan|. Then |en| = lan]| so Y |eq| converges, and therefore Y cn = ) {—1)"|ax| converges.
4 . 4

18. True. Since the series is alternating. Theorem 9.8 gives the error bound. Summing the first 100 terms gives Sigo, and if
the true sum is S.

1
[S = S0 < a1 = o1 < 0.01.
19. True. The radius of convergence, R.is given by lim |Cr41]/|Cr| = 1/R. if this limit exists, and since these series have
n—oC

the same coefticients, C',,, the radii of convergence are the same.
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20, Falsc. Two series can have the same radius of convergence without having the same coefficients. For example, 3~ 2" and
Z nx" both have radius of convergence of 1:
Casy .1 B, n+1

. . 1 .
lim = lim - =1 and lim = lim
n—oo ‘n n—=o0 n—-os n n=—toc n

=1

21. False. Consider the power series

, @-1°  (@=1)° net(@=1)"
(l—l)— 5 + 3 +'+(—1) 1—1

whose interval of convergence is 0 < r < 2. This series converges at one endpoint, z = 2, bul not at the other, x = 0.

oo,

22, True. If the terms do not tend 1o zero, the partial sums do not tend to a limit. For example, if the terms are all greater than
0.1, the partial sums will grow without bound.
o0

23. False. Consider the series Z 1/n. This series does not converge, but 1/n — 0 as n — .

n=1

. False.Ifan, = b, = 1/n, then Z a, and Z b do not converge. However, a..b, = 1/n°, so Z anby does converge.

g

Y

False. If anbn, = 1/n? and an = bn = 1/n, then Z anbn converges, but Z a, and Z b, do not converge.

PROJECTS FOR CHAPTERNINE

1. (a) (i) p°
(ii) There are two ways to do this. One way is to compute your opponent’s probability of winning two in
a row, which is (1 — p)*. Then the probability that neither of you win the next points is:

1 — (Probability you win next two + Probability opponent wins next two)
=1-(@ +(1-p)*)
=1-("+1-2p+p°)
=2p° - 2p
=2p(1 - p).

The other way to compute this is to observe either you win the first point and lose the second or vice
versa. Both have probability p(1 — p). so the probability you split the points is 2p(1 — p).
(iii)
Probability = (Probability of splitting next two) - (Probability of winning two after that)
= 2p(1 - p)p’
(iv)
Probability = (Probability of winning next two) + (Probability of splitting next two,

winning two after that)

= p"’ +2p(1 — p)p"'
(v) The probability is:

w = (Probability of winning first two)
+ (Probability of splitting first two)-(Probability of winning next two)
+ (Prob. of split. first two)-(Prob. of split. next two)-(Prob. of winning next two)
+ “ee
=p* +2p(1 - p)p” + (2p(1 = p))’ P’ + .
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(vi)

() @)

(i)

This is an infinite geometric series with a first term of p? and a ratio of 2p(1 — p). Therefore the

probability of winning is
2

e
w=—————-—-s.
1=2p(1 -p)
Forp=05,w = ﬁi?ﬁwﬁ = ().5. This is what we would expect. If you and your opponent

are equally likely to score the next point, you and your opponent are equally likely to win the next
game.

Forp=06.w = 1_._,(%'2?0.4) = 0.69. Here your probability of winning the next point has been
magnified to a probability 0.69 of winning the game. Thus it gives the better player an advantage to
have to win by two points, rather than the “sudden death™ of winning by just one point. This makes
sense: when you have to win by two, the stronger player always gets a second chance to overcome the

weaker player's winning the first point on a “fluke.”

Forp = 0.7, w = 1_,_,(%"'.’,))2(0_3) = 0.84. Again, the stronger player’s probability of winning is
magnified.
Forp=04,w = 1_._,(%:‘1));0.6) = (.31. We already computed that for p = 0.6, w = 0.69. Thus

the value for wr when p = 0.4, should be the same as the probability of your opponent winning for
p = 0.6, namely 1 — 0.69 = 0.31.

S = (Prob. you score first point)
+(Prob. you lose first point, your opponent loses the next,
you win the next)
+(Prob. you lose a point, opponent loses, you lose,
opponent loses, you win)
4.
= (Prob. you score first point)
+(Prob. you lose)-(Prob. opponent loses)-(Prob. you win)
+(Prob. you lose)-(Prob. opponent loses)-(Prob. you lose)
-(Prob. opponent loses)-(Prob. you win)+ - - -
=p+(1-p)1-gp+ (1 -p(1-q))’p+---
p
T 1-(1-p(-q)

Since § is your probability of winning the next point, we can use the formula computed in part (v) of (a)
for winning two points in a row, thereby winning the game:
5‘.’
W= ——m—m——.
1-25(1-15)
e Whenp=0.5and g = 0.5,
0.5
S§= ——w—— = 0.67.
1 — (0.5)(0.5) 61
Therefore ) .
S (0.67)?

= 0.80.

u

T1-25(1-5)  1-2(0.67)(L - 0.67)
e When p =0.6andg = 0.5,

0.6 (0.75)?

= Toaos %7 "™ ST G a o0 -

0.9.




2. (a)

(b)

()

(d)
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Let k by the relative ratc of decay, per minute, of quinine. Since quinine’s half-life is 11.5 hours, we have

1 . :
2 = ek(11.5)(60)

(3%

S0 2

nz

k= ————= = 0.001.
(11.5)(60)

Hence, & = 0.1%/min.
Just prior to 8 am of the first day the patient has no quinine in her body. Assuming the drug mixes rapidly in
the patient’s body, she has about 50/70 = 0.714 mg/kg of the drug soon after 8 am. Suppose we represent
the concentration of quinine in the patient (in mg/kg) by « and represent time since 8 am (in minutes) by
t. Then

z = Ae~000L

where A is the initial concentration and & = —0.001 is the rate at which quinine is metabolized per minute.
There are 24 - 60 = 1440 minutes in a day. On the first day, the patient begins with 0.714 mg/kg in her
system, so just before 8 am of the second day the patient’s system holds

0.71470-001:1440 () 169 mg/kg.

After the patient’s second dose of quinine, her system contains 0.714 + 0.169 = 0.883 mg/kg of quinine.
By continuing in a similar manner, we see that just prior to 8 am on the third day, she has 0.883¢~0-001'1440 »
0.209 mg/kg: just after 8 am. she has 0.209 + 0.714 = 0.923 mg/kg. Just prior to 8 am on the fourth day,
she has 0.923e~0-001-1440 ~ 0 218 mg/kg: just after 8 am, she has 0.228 + 0.714 = 0.932 mg/kg. We can
keep going with these calculations: just prior to 8 am on the fifth day, the concentration is 0.221 mg/kg:
on the sixth day, it is 0.222 mg/kg: on the seventh day, it is 0.222 mg/kg. and so on forever.

We find a formula for the concentration just after the nt? dose as follows. The last dose contributes
0.714 mg/kg. The previous dose contributes 0.714e 00011440} ;mo/ko The dose before that contributes
0.714€~0-001(2)(1440) mo/ks and so on, back to 0.714e 001 {n=1)(1420) mo/ko from the initial dose. So

Concentration just

Ao I = 0714+ 07146714 1+ 0,714 (7)o 4 0,714 (74T

We notice that this is a geometric series. with sum given by

Concentration just _  _ 1—e tMny e
after n doses 0.714 (m =0.936(1 — ¢ ™,

Although the concentration of quinine does not reach an equilibrium it does fall into a steady-state
pattern which repeats over and over again. This makes sense; at some point the patient must metabolize
the daily dosage exactly. If we let n — oo in our formula. we have e~!#4® — 0, which means that the
concentration just after the n'® dose gets very close to 0.936. So the concentration just before the n*® dose
is 0.936 — 0.714 = 0.222, as we found in our calculations for the first few days.

Figure 9.6

If we keep setting the clock back to 0 minutes each day at 8 am, then we have that at t = 0 each day.
the concentration (starting on the fifth day or so) is 0.936 mg/kg. As the day progresses, we have

z = 0.936¢0-001¢,
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(e) The average concentration of quinine in the patient is given by the integral of the concentration over a day,
divided by the time in a day:

1440 1440
Average concentration = @ A rdt = 1206 /0 0.936e—0-001¢ 3y
_ 0936 (—em000\ M0 0,936 (1= ety
1440 0.001 o 1.44

~ 0.496 mg/kg.

(f) Since the average concentration is 0.496 mg/kg and the minimum effective average concentration is 0.4
mg/kg, this treatment is effective. It is also sate—the highest concentration (0.936 mg/kg, achieved shortly
after 8 am) is less than the toxic concentration of 3.0 mg/kg.

(g) Each dose of 25 mg corresponds to 25/70 = 0.357 mg/kg. Let x4 be the steady-state concentration just
before each 0.357 mg/kg dose. Then &5 + 0.357 will be the concentration just after the dose. Since we are
in a steady-state, this concentration decays to exactly z, just before the next dose. So

x5 = (s +0.357) 0001 (12)(E0),

This means
0.3576_0‘001(12)(60)

Ls = 7 o—0001(12)(60)

~ 0.339 mg/kg,

$0 T + 0.357 = 0.696 mg/kg is the concentration just after each dose. At # minutes after a dose, for
0 <t < (12)(60), there is a steady-state concentration of

r = 0.696e 0001 mg/kg.

This means
720 1 [T
Average concentration = — Tdt 8 — / 0.696e~0-001! g
720 Jq 720 Jo
0.696 [—e=000117 7% g 696
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=~ 0.496 mg/kg.

This treatment is also effective and safe. The average concentration of 0.496 mg/kg is greater than 0.4
mg/kg, and the highest concentration of 0.696 mg/kg is less than 3 mg/kg.

(h) For an exponentially decaying function, the average value between two points (o, yo) and (z3,1) is

%’fzy—o‘));, where r is the relative rate of decay and Ay is the initial concentration. The reason is as follows.
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(i) Since a steady state has been reached, yq is the concentration right after a dose and y; is the concentration
just prior to a dose. Thus, yo — y1 represents the increase in concentration from each dose. Furthermore,
Ty — Zg is the time between doses. When we go to the new protocol, we halve both the numerator and
the denominator of the equation for the average concentration, and so the average remains unchanged.
Similarly, if we were to double the dose to 100 mg and give it every 48 hours we would simply be doubling
both the numerator and the denominator; again the average concentration would not change.

(J) We want the final concentration to be 107!° kg/kg = 10~* mg/kg. We therefore need to solve for ¢ in
10~* = 0.883 . ¢79:9017 Doing so yields t ~ 9086 min = 6.3 days.



