
Chapter Eleven

Argument Principle

11.1. Argument principle. Let C be a simple closed curve, and suppose f is analytic on C.
Suppose moreover that the only singularities of f inside C are poles. If fz  0 for all zC,
then   fC is a closed curve which does not pass through the origin. If

t,   t  

is a complex description of C, then

t  ft,   t  

is a complex description of . Now, let’s compute


C

f z
fz dz  




f t
ft 

tdt.

But notice that t  f t t. Hence,


C

f z
fz dz  




f t
ft 

tdt  



 t
t dt

 


1
z dz  n2i,

where |n| is the number of times  ”winds around” the origin. The integer n is positive in
case  is traversed in the positive direction, and negative in case the traversal is in the
negative direction.

Next, we shall use the Residue Theorem to evaluate the integral 
C

fz
fz dz. The singularities

of the integrand fz
fz are the poles of f together with the zeros of f. Let’s find the residues at

these points. First, let Z  z1, z2, , zK be set of all zeros of f. Suppose the order of the
zero zj is nj. Then fz  z  zjnjhz and hzj  0. Thus,
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f z
fz 

z  zjnjhz  njz  zjnj1hz
z  zjnjhz

 hz
hz 

nj
z  zj

.

Then

z  z  zj f
z
fz  z  zj h

z
hz  nj,

and

zzj
Res f



f  nj.

The sum of all these residues is thus

N  n1  n2 nK.

Next, we go after the residues at the poles of f. Let the set of poles of f be
P  p1,p2, ,pJ. Suppose pj is a pole of order mj. Then

hz  z  pjmj fz

is analytic at pj. In other words,

fz  hz
z  pjmj

.

Hence,

f z
fz 

z  pjmjhz  mjz  pjmj1hz
z  pj2mj


z  pjmj
hz

 hz
hz 

mj
z  pjmj

.

Now then,
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z  z  pjmj f
z
fz  z  pjmj h

z
hz  mj,

and so

zpj
Res f



f  pj  mj.

The sum of all these residues is

 P  m1  m2 mJ

Then,


C

f z
fz dz  2iN  P;

and we already found that


C

f z
fz dz  n2i,

where n is the ”winding number”, or the number of times  winds around the
origin—n  0 means  winds in the positive sense, and n negative means it winds in the
negative sense. Finally, we have

n  N  P,

where N  n1  n2 nK is the number of zeros inside C, counting multiplicity, or the
order of the zeros, and P  m1  m2 mJ is the number of poles, counting the order.
This result is the celebrated argument principle.

Exercises

1. Let C be the unit circle |z|  1 positively oriented, and let f be given by

11.3



fz  z3.

How many times does the curve fC wind around the origin? Explain.

2. Let C be the unit circle |z|  1 positively oriented, and let f be given by

fz  z2  2
z3

.

How many times does the curve fC wind around the origin? Explain.

3. Let pz  anzn  an1zn1 a1z  a0, with an  0. Prove there is an R  0 so that if
C is the circle |z|  R positively oriented, then


C

pz
pz dz  2ni.

4. How many solutions of 3ez  z  0 are in the disk |z|  1? Explain.

5. Suppose f is entire and fz is real if and only if z is real. Explain how you know that f
has at most one zero.

11.2 Rouche’s Theorem. Suppose f and g are analytic on and inside a simple closed
contour C. Suppose moreover that |fz|  |gz| for all zC. Then we shall see that f and
f  g have the same number of zeros inside C. This result is Rouche’s Theorem. To see
why it is so, start by defining the function t on the interval 0  t  1 :

t  1
2i 

C

f z  tg t
fz  tgz dz.

Observe that this is okay—that is, the denominator of the integrand is never zero:

|fz  tgz|  ||ft|  t|gt||  ||ft|  |gt||  0.

Observe that  is continuous on the interval 0,1 and is integer-valued—t is the
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number of zeros of f  tg inside C. Being continuous and integer-valued on the connected
set 0,1, it must be constant. In particular, 0  1. This does the job!

0  1
2i 

C

f z
fz dz

is the number of zeros of f inside C, and

1  1
2i 

C

f z  gz
fz  gz dz

is the number of zeros of f  g inside C.

Example

How many solutions of the equation z6  5z5  z3  2  0 are inside the circle |z|  1?
Rouche’s Theorem makes it quite easy to answer this. Simply let fz  5z5 and let
gz  z6  z3  2. Then |fz|  5 and |gz|  |z|6  |z|3  2  4 for all |z|  1. Hence
|fz|  |gz| on the unit circle. From Rouche’s Theorem we know then that f and f  g
have the same number of zeros inside |z|  1. Thus, there are 5 such solutions.

The following nice result follows easily from Rouche’s Theorem. Suppose U is an open set
(i.e., every point of U is an interior point) and suppose that a sequence fn of functions
analytic on U converges uniformly to the function f. Suppose further that f is not zero on
the circle C  z : |z  z0 |  R  U. Then there is an integer N so that for all n  N, the
functions fn and f have the same number of zeros inside C.

This result, called Hurwitz’s Theorem, is an easy consequence of Rouche’s Theorem.
Simply observe that for zC, we have |fz|    0 for some . Now let N be large enough
to insure that |fnz  fz|   on C. It follows from Rouche’s Theorem that f and
f  fn  f  fn have the same number of zeros inside C.

Example

On any bounded set, the sequence fn, where fnz  1  z  z2
2  zn

n! , converges
uniformly to fz  ez, and fz  0 for all z. Thus for any R, there is an N so that for
n  N, every zero of 1  z  z2

2  zn
n! has modulus  R. Or to put it another way, given

an R there is an N so that for n  N no polynomial 1  z  z2
2  zn

n! has a zero inside the
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circle of radius R.

Exercises

6. Show that the polynomial z6  4z2  1 has exactly two zeros inside the circle |z|  1.

7. How many solutions of 2z4  2z3  2z2  2z  9  0 lie inside the circle |z|  1?

8. Use Rouche’s Theorem to prove that every polynomial of degree n has exactly n zeros
(counting multiplicity, of course).

9. Let C be the closed unit disk |z|  1. Suppose the function f analytic on C maps C into
the open unit disk |z|  1—that is, |fz|  1 for all zC. Prove there is exactly one wC
such that fw  w. (The point w is called a fixed point of f .)
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