Chapter Eleven

Argument Principle

11.1. Argument principle. Let C be a simple closed curve, and suppose f'is analytic on C.
Suppose moreover that the only singularities of f'inside C are poles. If f{z) # 0 for all zeC,
then I' = f{C) is a closed curve which does not pass through the origin. If

y(t),a<t<p

is a complex description of C, then

CO =fy@®), a<t<p

is a complex description of I'. Now, let’s compute
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f(Z) — m /
5 = vy 70

But notice that {'(¢) = /' (y(¢))y'(¢). Hence,
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= J‘%dz = n2mi,
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where |n| is the number of times I" ”winds around” the origin. The integer n is positive in
case I is traversed in the positive direction, and negative in case the traversal is in the
negative direction.

Next, we shall use the Residue Theorem to evaluate the integral I %dz. The singularities
=

of the integrand ’;((TZ)) are the poles of f'together with the zeros of /. Let’s find the residues at

these points. First, let Z = {z;,z2,...,zx} be set of all zeros of f. Suppose the order of the
zero z; is n;. Then f(z) = (z —z;)"h(z) and h(z;) # 0. Thus,
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fiz) (- z))"h'(2) + nj(z — z;))V ' h(z)
7o) (- 2)"h()

h'@)

hz)  (z-z)

Then
z z—z & z—z; M .
¢(z) = ( j) ) h(z) + 1y,
and
Res & =

The sum of all these residues is thus

N=ny+ny+...+ng.

Next, we go after the residues at the poles of f. Let the set of poles of f be
P ={p1,p2,...,psr. Suppose p; is a pole of order m;. Then

h(z) = (z-p)"if2)

is analytic at p;. In other words,

5~ _h@)
&=

Hence,

[@) _ E=p)"h'(@)—miz=p)"'h(z)  (z=p)™

f2) (z=pj)*" h(z)

_ e my
h(z)  (@E-p)™~

Now then,
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h' ()
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¢(z) = (z-p)) =(z-p)) h(z) mj,
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and so
Res Lo = ¢(p)) = —m;.

The sum of all these residues is
—P=-mi—my—...—my

Then,

@ 4 in_ py
£ e = 2mi(N - P);

and we already found that

J‘f(z) dz = n2ri,
C

where n is the “winding number”, or the number of times I' winds around the
origin—n > 0 means I winds in the positive sense, and » negative means it winds in the
negative sense. Finally, we have

n=N-P,

where N = n; + ny +...+ng is the number of zeros inside C, counting multiplicity, or the
order of the zeros, and P = m; +m3 +...+m is the number of poles, counting the order.
This result is the celebrated argument principle.

Exercises

1. Let C be the unit circle |z| = 1 positively oriented, and let f be given by
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fAz) = 2.
How many times does the curve f{C) wind around the origin? Explain.

2. Let C be the unit circle |z| = 1 positively oriented, and let /' be given by

fle) = ££2.

z

How many times does the curve f{C) wind around the origin? Explain.

3. Letp(z) = a,z" + a,1z"" +...+a1z + ao, with a,, # 0. Prove there is an R > 0 so that if
C is the circle |z| = R positively oriented, then

p'(2)

dz = 2nri.
p(2)

O —

4. How many solutions of 3e* —z = 0 are in the disk |z] < 1? Explain.

5. Suppose f'is entire and f{z) is real if and only if z is real. Explain how you know that f’
has at most one zero.

11.2 Rouche’s Theorem. Suppose f and g are analytic on and inside a simple closed
contour C. Suppose moreover that |f(z)| > |g(z)| for all zeC. Then we shall see that f'and
f+ g have the same number of zeros inside C. This result is Rouche’s Theorem. To see
why it is so, start by defining the function W(¢) on the interval 0 < ¢ < 1 :

_ 1 [(f@+tg®
Y@ = 2mi l Az) + tg(z) dz.

Observe that this i1s okay—that is, the denominator of the integrand is never zero:

[fz) + 1g(2)| = (D] = 4g(D)]] = [[D)] — [g@)]] > 0.

Observe that V¥ is continuous on the interval [0,1] and is integer-valued—W(?) is the
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number of zeros of f+ tg inside C. Being continuous and integer-valued on the connected
set [0, 1], it must be constant. In particular, W¥(0) = W(1). This does the job!

_ 1 [f@
Yo = 27i J; f2) dz

is the number of zeros of finside C, and

Wy = L [ L@@,

2ri . fz) +g(2)

is the number of zeros of f+ g inside C.

Example

How many solutions of the equation z® — 5z° +z° —2 = 0 are inside the circle |z| = 1?
Rouche’s Theorem makes it quite easy to answer this. Simply let f{z) = —5z° and let
g(z) =z°+2z>—2. Then |f(z)] =5 and |g(2)| < |z|/® +|z> +2 = 4 for all |z = 1. Hence
|fiz)| > |g(z)| on the unit circle. From Rouche’s Theorem we know then that fand f+ g
have the same number of zeros inside |z| = 1. Thus, there are 5 such solutions.

The following nice result follows easily from Rouche’s Theorem. Suppose U is an open set
(i.e., every point of U is an interior point) and suppose that a sequence (f,) of functions
analytic on U converges uniformly to the function f. Suppose further that f'is not zero on
the circle C = {z : |z—zo| = R} < U. Then there is an integer N so that for all n > N, the
functions f,, and f'have the same number of zeros inside C.

This result, called Hurwitz’s Theorem, is an easy consequence of Rouche’s Theorem.
Simply observe that for zeC, we have |f(z)| > € > 0 for some €. Now let N be large enough
to insure that |f,(z) —f(z)| <& on C. It follows from Rouche’s Theorem that f and
f+ (f» —f) = f» have the same number of zeros inside C.

Example

On any bounded set, the sequence (f,), where f,(z) = 1+z+ % +...+%, converges

uniformly to f(z) = e, and f{z) # 0 for all z. Thus for any R, there is an N so that for
n > N, every zero of 1 +z + % +...+% has modulus > R. Or to put it another way, given

an R there is an N so that for » > N no polynomial 1 +z + % +... +% has a zero inside the
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circle of radius R.

Exercises
6. Show that the polynomial z° + 4z — 1 has exactly two zeros inside the circle |z| = 1.
7. How many solutions of 2z* — 223 + 2z — 2z + 9 = 0 lie inside the circle |z| = 1?

8. Use Rouche’s Theorem to prove that every polynomial of degree n has exactly » zeros
(counting multiplicity, of course).

9. Let C be the closed unit disk |z| < 1. Suppose the function f analytic on C maps C into
the open unit disk |z| < 1—that is, |f{z)| < 1 for all zeC. Prove there is exactly one weC
such that f{(w) = w. (The point w is called a fixed point of /")
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