Chapter Four

Integration

4.1. Introduction. If y : D —» C is simply a function on a real interval D = [a, ] , then the
B

integral jy(t)dt is, of course, simply an ordered pair of everyday 3¢ grade calculus

integrals:
B B B
[r@de = [xydr +i [ yoyr,

where y(¢) = x(¢) + iy(¢). Thus, for example,

1
2 B = 4 L L
.([[(t +1)+ir]dt = 3Tt

Nothing really new here. The excitement begins when we consider the idea of an integral
of an honest-to-goodness complex function f : D - C, where D is a subset of the complex
plane. Let’s define the integral of such things; it is pretty much a straight-forward extension
to two dimensions of what we did in one dimension back in Mrs. Turner’s class.

Suppose f'is a complex-valued function on a subset of the complex plane and suppose a
and b are complex numbers in the domain of f. In one dimension, there is just one way to
get from one number to the other; here we must also specify a path from a to b. Let C be a
path from a to b, and we must also require that C be a subset of the domain of /.

b

ﬂ/\/
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(Note we do not even require that a # b; but in case a = b, we must specify an orientation
for the closed path C.) Next, let P be a partition of the curve; that is, P = {z0,z1,22,...,2Zn}
is a finite subset of C, such that a = zo, b = z,, and such that z; comes immediately after
z;-1 as we travel along C from a to b.

A Riemann sum associated with the partition P is just what it is in the real case:

S(P) = D fz))Az;,

J=1

where z; is a point on the arc between z;-1 and z; , and Az; = z; — z;-1. (Note that for a
given partition P, there are many S(P)—depending on how the points z; are chosen.) If
there is a number L so that given any € > 0, there is a partition P, of C such that

IS(P)—L| < ¢

whenever P D Pg, then f is said to be integrable on C and the number L is called the
integral of fon C. This number L is usually written I fz2)dz.
c

Some properties of integrals are more or less evident from looking at Riemann sums:

j f2)dz = ¢ j A2)dz
C C

for any complex constant c.
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[(f2) + @)z = [ f2)dz + [ g(2)az
c c c

4.2 Evaluating integrals. Now, how on Earth do we ever find such an integral? Let
y : [a, ] = C be a complex description of the curve C. We partition C by partitioning the
interval [a,f] in the usual way: a=ty<t; <ty<..<t,=pf.  Then
{a = y(a),y(t1),y(t2),...,y(B) = b} is partition of C. (Recall we assume that y'(¢) + 0
for a complex description of a curve C.) A corresponding Riemann sum looks like

S(P) = D My N @) — y(t1).
j=1

We have chosen the points z7 = y(¢), where ;1 < ¢ < ;. Next, multiply each term in the
sum by 1 in disguise:

Sy = S pry =Ly,

Jj=1

I hope it is now reasonably convincing that in the limit”, we have
B
[ o)z = [ fyepy .
C a
(We are, of course, assuming that the derivative y' exists.)

Example

We shall find the integral of f{z) = (x*> +y) +i(xy) from a = 0 to b = 1 +i along three
different paths, or contours, as some call them.

First, let C; be the part of the parabola y = x?

description of Cyis y1(f) = t+it?2, 0 <t < 1:

connecting the two points. A complex
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Now, v1() = 1+2ti,and f{ y1(£)) = (> +?) +itr> = 2> +it’. Hence,

1

[ oyt = [y @ar

Cy 0
1-

= | Q2t2 + i) (1 + 2ti)dt

0

1

= .(2t2 =214+ 5630)dt
0

_ 4 5.
15 T 4!

Next, let’s integrate along the straight line segment C; joining 0 and 1 + i.

1
0.8
0.6]
0.4

0.2]
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Here we have y,(¢) = t+it,0 < ¢t < 1. Thus, y5(¢) = 1 +1i, and our integral looks like
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1

[ oz = [Rr20)rswyar
G

= |[(£? + 1) +ir*](1 +i)dt

1

= | [t+i(t+2¢%)]dt

o ¢

1.7
27 %!

Finally, let’s integrate along C3, the path consisting of the line segment from 0 to 1
together with the segment from 1 to 1 + .

1
0.8
0.6]
0.4

0.2

0 0.2 04 0.6 0.8

We shall do this in two parts: Cs3, the line from 0 to 1 ; and Cs,, the line from 1 to 1 + .
Then we have

J fz2)dz = I fz2)dz + J. fz2)dz.
C;

Cs Cx

For C3; we have y(¢) = ¢,0 <t < 1. Hence,

1
If(z)dz = Idt = %

Cs 0

For C3; we have y(¢) = 1 +it,0 <t < 1. Hence,

1
. O - __L i
jﬂ@&—jﬂ+mwmm— L3
Csy 0
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Thus,

jf(z)dz = j‘j’(z)dz+ Iﬂz)dz
C3 C31 (&3]
5

= =I.

6

Suppose there is a number M so that |[f{(z)| < M for all zeC. Then

I fz2)dz
c

B
[ 1@y 0a

B
Wy @)y (D)]dt

a

IA

B
< M [Jy'(t)|dt = ML,

a

B
where L = [|y'(¢)|dt is the length of C.

Exercises

1. Evaluate the integral I?dz, where C is the parabola y = x2 from 0 to 1 + i.
c

2. Evaluate J.%dz, where C 1is the circle of radius 2 centered at 0 oriented
c
counterclockwise.

4. Evaluate _[ fz)dz, where Cis the curve y = x3 from -1 —ito 1 +i,and
C

1 for y<O
flz) = .
4y for y>0

5. Let C be the part of the circle y(¢) = e" in the first quadrant from a = 1 to b = i. Find as
small an upper bound as you can for”c(z2 -Zz4+5)dz | .
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6. Evaluate _[ fz)dz where f(z) =z+2Z and C is the path from z=0 to z=1+2{
c

consisting of the line segment from 0 to 1 together with the segment from 1 to 1 + 2i.

4.3 Antiderivatives. Suppose D is a subset of the reals and y : D — C is differentiable at 7.
Suppose further that g is differentiable at y(#). Then let’s see about the derivative of the
composition g(y(#)). Itis, in fact, exactly what one would guess. First,

gy () = ulx(®),y(®) +iv(x(2),y(?)),
where g(z) = u(x,y) + iv(x,y) and y(¢) = x(¢) + iy(¢). Then,

d _ Oudx , Oudy -(@@ @ﬂ)
arf0 D) = o ar ey ar T axar Vo dr )

The places at which the functions on the right-hand side of the equation are evaluated are
obvious. Now, apply the Cauchy-Riemann equations:

d _ _
a8 ) = e T e ar T\ e T ox ar
_(ou ,;ov ([ dx -ﬂ)
(8x “ax)(dr 7

=g'(r@®)y' (.

S qude_pedr(Ovde, qudh)

The nicest result in the world!

Now, back to integrals. Let F : D - C and suppose F'(z) = f(z) in D. Suppose moreover
that a and b are in D and that C < D is a contour from a to 5. Then

B
[100dz = [ fr @y a,
C o

where 7 : [a, ] » C describes C. From our introductory discussion, we know that
LFGy©0) = F @)y () =fr@®)y' (). Hence,
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B
[ 100z = [ fr@yy' e
c o

B
= [ LFy@)dr = FG(B) - F(y(@)
= F(b) - F(a).

This is very pleasing. Note that integral depends only on the points a and b and not at all
on the path C. We say the integral is path independent. Observe that this is equivalent to
saying that the integral of f around any closed path is 0. We have thus shown that if in D

the integrand fis the derivative of a function F, then any integral _[ fz)dz for C < D is path
c

independent.
Example

Let C be the curve y = x% from the point z = 1 + i to the pointz = 3 + é Let’s find

jzzdz.
C

This is easy—we know that F'(z) = z* , where F(z) = +z°. Thus,

260 _ 728
27 2187

Now, instead of assuming f has an antiderivative, let us suppose that the integral of f
between any two points in the domain is independent of path and that f is continuous.
Assume also that every point in the domain D is an interior point of D and that D is
connected. We shall see that in this case, f has an antiderivative. To do so, let z¢p be any
point in D, and define the function F by

Fz) = [ flo)de,
C;

where C; is any path in D from zo to z. Here is important that the integral is path
independent, otherwise F(z) would not be well-defined. Note also we need the assumption
that D is connected in order to be sure there always is at least one such path.
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Now, for the computation of the derivative of F:

Fz+Az) - F(z) = j As)ds,

La-

where L. is the line segment from z to z + Az.

F+AZ

Zpg

Next, observe that I ds = Az. Thus, f(z) = i I f(z)ds, and we have
La-

L,

F(z+ AAz; —F@) _ oy - . I (f(s) —A(z) )ds.

La:

Now then,

< | & [1Az| max {fs) — f(z)] : seLxc}

L [ (fts) - fiz))ds
La:
< max{|f(s) —f(z)| : s€eLa:}.

We know f'is continuous at z, and so lim max<{|f(s) — f(z)| : seLa-} = 0. Hence,
Az—0

lim
Az—0

F(Z+AA22—F(Z) —fz) =lim (t J.(f(s) f(z))dS)

Az—0 L

= 0.
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In other words, F'(z) = f(z), and so, just as promised, f/ has an antiderivative! Let’s
summarize what we have shown in this section:

Suppose f : D - C is continuous, where D is connected and every point of D is an interior
point. Then f'has an antiderivative if and only if the integral between any two points of D is
path independent.

Exercises

7. Suppose C is any curve from 0 to 7 + 2i. Evaluate the integral

[ cos(£ )az.

C

(SN

8.a)Let F(z) = logz, 0 < argz < 27. Show that the derivative F'(z) = L.
b)Let G(z) = logz, —% < argz < Z-. Show that the derivative G'(z) = +.

c)Let C; be a curve in the right-half plane D = {z : Rez > 0} from —i to i that does not
pass through the origin. Find the integral

d)Let C, be a curve in the left-half plane D, = {z : Rez < 0} from —i to i that does not
pass through the origin. Find the integral.

9. Let C be the circle of radius 1 centered at 0 with the clockwise orientation. Find
1
J. 70’2
c

10. a)Let H(z) = z¢,—r < argz < n. Find the derivative H'(z).
b)Let K(z) = z¢,—4 < argz < %’. What is the largest subset of the plane on which
H(z) = K(2)?
c)Let C be any path from —1 to 1 that lies completely in the upper half-plane. (Upper
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half-plane = {z : Imz > 0}.) Find

j F(z)dz,
C

where F(z) = z/,-n < argz < .

11. Suppose P is a polynomial and C is a closed curve. Explain how you know that
jP(z)dz =0.
c
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