Chapter Four

Integration

4.1. Introduction. If γ : $D \rightarrow C$ is simply a function on a real interval $D = [\alpha, \beta]$, then the integral \int α β $\gamma(t)dt$ is, of course, simply an ordered pair of everyday 3^{rd} grade calculus integrals:

$$
\int_{\alpha}^{\beta} \gamma(t)dt = \int_{\alpha}^{\beta} x(t)dt + i \int_{\alpha}^{\beta} y(t)dt,
$$

where $\gamma(t) = x(t) + iy(t)$. Thus, for example,

$$
\int_{0}^{1} [(t^{2}+1) + it^{3}]dt = \frac{4}{3} + \frac{i}{4}.
$$

Nothing really new here. The excitement begins when we consider the idea of an integral of an honest-to-goodness complex function $f: D \to \mathbb{C}$, where *D* is a subset of the complex plane. Let's define the integral of such things; it is pretty much a straight-forward extension to two dimensions of what we did in one dimension back in Mrs. Turner's class.

Suppose *f* is a complex-valued function on a subset of the complex plane and suppose *a* and *b* are *complex* numbers in the domain of *f*. In one dimension, there is just one way to get from one number to the other; here we must also specify a path from *a* to *b*. Let *C* be a path from *a* to *b*, and we must also require that *C* be a subset of the domain of *f*.

(Note we do not even require that $a \neq b$; but in case $a = b$, we must specify an *orientation* for the closed path *C*.) Next, let *P* be a **partition** of the curve; that is, $P = \{z_0, z_1, z_2, \ldots, z_n\}$ is a finite subset of *C*, such that $a = z_0$, $b = z_n$, and such that z_j comes immediately after z_{i-1} as we travel along *C* from *a* to *b*.

A Riemann sum associated with the partition *P* is just what it is in the real case:

$$
S(P) = \sum_{j=1}^n f(z_j^*) \Delta z_j,
$$

where z_j^* is a point on the arc between z_{j-1} and z_j , and $\Delta z_j = z_j - z_{j-1}$. (Note that for a given partition *P*, there are many *S*(*P*)—depending on how the points z_i^* are chosen.) If there is a number *L* so that given any $\varepsilon > 0$, there is a partition P_{ε} of *C* such that

$$
|S(P)-L|<\varepsilon
$$

whenever $P \supset P_{\varepsilon}$, then *f* is said to be integrable on *C* and the number *L* is called the **integral of** *f* on *C*. This number *L* is usually written \int *C* $f(z)dz$.

Some properties of integrals are more or less evident from looking at Riemann sums:

$$
\int_C cf(z)dz = c \int_C f(z)dz
$$

for any complex constant *c*.

$$
\int_C (f(z) + g(z))dz = \int_C f(z)dz + \int_C g(z)dz
$$

4.2 Evaluating integrals. Now, how on Earth do we ever find such an integral? Let $\gamma : [\alpha, \beta] \to \mathbb{C}$ be a complex description of the curve *C*. We partition *C* by partitioning the interval $[\alpha, \beta]$ in the usual way: $\alpha = t_0 < t_1 < t_2 < ... < t_n = \beta$. Then $\{a = \gamma(a), \gamma(t_1), \gamma(t_2), \ldots, \gamma(\beta) = b\}$ is partition of *C*. (Recall we assume that $\gamma'(t) \neq 0$ for a complex description of a curve *C*.) A corresponding Riemann sum looks like

$$
S(P) = \sum_{j=1}^n f(\gamma(t_j^*)) (\gamma(t_j) - \gamma(t_{j-1})).
$$

We have chosen the points $z_j^* = \gamma(t_j^*)$, where $t_{j-1} \leq t_j^* \leq t_j$. Next, multiply each term in the sum by 1 in disguise:

$$
S(P) = \sum_{j=1}^n f(\gamma(t_j^*)) \left(\frac{\gamma(t_j) - \gamma(t_{j-1})}{t_j - t_{j-1}} \right) (t_j - t_{j-1}).
$$

I hope it is now reasonably convincing that "in the limit", we have

$$
\int_C f(z)dz = \int_{\alpha}^{\beta} f(\gamma(t))\gamma'(t)dt.
$$

(We are, of course, assuming that the derivative γ' exists.)

Example

We shall find the integral of $f(z) = (x^2 + y) + i(xy)$ from $a = 0$ to $b = 1 + i$ along three different paths, or **contours**, as some call them.

First, let C_1 be the part of the parabola $y = x^2$ connecting the two points. A complex description of *C*₁ is $\gamma_1(t) = t + it^2$, $0 \le t \le 1$:

Now, $\gamma'_1(t) = 1 + 2ti$, and $f(\gamma_1(t)) = (t^2 + t^2) + itt^2 = 2t^2 + it^3$. Hence,

$$
\int_{C_1} f(z)dz = \int_0^1 f(\gamma_1(t))\gamma'_1(t)dt
$$

=
$$
\int_0^1 (2t^2 + it^3)(1 + 2ti)dt
$$

=
$$
\int_0^1 (2t^2 - 2t^4 + 5t^3i)dt
$$

=
$$
\frac{4}{15} + \frac{5}{4}i
$$

Next, let's integrate along the straight line segment C_2 joining 0 and $1 + i$.

Here we have $\gamma_2(t) = t + it$, $0 \le t \le 1$. Thus, $\gamma'_2(t) = 1 + i$, and our integral looks like

$$
\int_{C_2} f(z)dz = \int_0^1 f(\gamma_2(t))\gamma'_2(t)dt
$$
\n
$$
= \int_0^1 [(t^2 + t) + it^2](1 + i)dt
$$
\n
$$
= \int_0^1 [t + i(t + 2t^2)]dt
$$
\n
$$
= \frac{1}{2} + \frac{7}{6}i
$$

Finally, let's integrate along *C*3, the path consisting of the line segment from 0 to 1 together with the segment from 1 to $1 + i$.

We shall do this in two parts: C_{31} , the line from 0 to 1; and C_{32} , the line from 1 to $1 + i$. Then we have

$$
\int_{C_3} f(z)dz = \int_{C_{31}} f(z)dz + \int_{C_{32}} f(z)dz.
$$

For C_{31} we have $\gamma(t) = t, 0 \le t \le 1$. Hence,

$$
\int_{C_{31}} f(z) dz = \int_{0}^{1} dt = \frac{1}{3}.
$$

For C_{32} we have $\gamma(t) = 1 + it, 0 \le t \le 1$. Hence,

$$
\int_{C_{32}} f(z)dz = \int_{0}^{1} (1 + t + it)t dt = -\frac{1}{3} + \frac{5}{6}i.
$$

Thus,

$$
\int_{C_3} f(z)dz = \int_{C_{31}} f(z)dz + \int_{C_{32}} f(z)dz
$$

$$
= \frac{5}{6}i.
$$

Suppose there is a number *M* so that $|f(z)| \leq M$ for all $z \in C$. Then

$$
\left| \int_C f(z)dz \right| = \left| \int_a^\beta f(\gamma(t))\gamma'(t)dt \right|
$$

$$
\leq \int_a^\beta |f(\gamma(t))\gamma'(t)|dt
$$

$$
\leq M \int_a^\beta |\gamma'(t)|dt = ML,
$$

where $L = \int$ α β $|\gamma'(t)|dt$ is the length of *C*.

Exercises

1. Evaluate the integral *C* \overline{z} *dz*, where *C* is the parabola $y = x^2$ from 0 to $1 + i$.

2. Evaluate *C* $\frac{1}{z}$ *dz*, where *C* is the circle of radius 2 centered at 0 oriented counterclockwise.

4. Evaluate *C* $f(z)dz$, where *C* is the curve $y = x^3$ from $-1 - i$ to $1 + i$, and

$$
f(z) = \begin{cases} 1 & \text{for } y < 0 \\ 4y & \text{for } y \ge 0 \end{cases}.
$$

5. Let *C* be the part of the circle $\gamma(t) = e^{it}$ in the first quadrant from $a = 1$ to $b = i$. Find as small an upper bound as you can for $\left| \int_C (z^2 - \overline{z}^4 + 5) dz \right|$.

6. Evaluate $\int f(z) dz$ where $f(z) = z + 2\overline{z}$ and *C* is the path from $z = 0$ to $z = 1 + 2i$ *C* consisting of the line segment from 0 to 1 together with the segment from 1 to $1 + 2i$.

4.3 Antiderivatives. Suppose *D* is a subset of the reals and $\gamma : D \to \mathbb{C}$ is differentiable at *t*. Suppose further that *g* is differentiable at $\gamma(t)$. Then let's see about the derivative of the composition $g(y(t))$. It is, in fact, exactly what one would guess. First,

$$
g(\gamma(t)) = u(x(t),y(t)) + iv(x(t),y(t)),
$$

where $g(z) = u(x, y) + iv(x, y)$ and $\gamma(t) = x(t) + iy(t)$. Then,

$$
\frac{d}{dt}g(\gamma(t)) = \frac{\partial u}{\partial x}\frac{dx}{dt} + \frac{\partial u}{\partial y}\frac{dy}{dt} + i\left(\frac{\partial v}{\partial x}\frac{dx}{dt} + \frac{\partial v}{\partial y}\frac{dy}{dt}\right).
$$

The places at which the functions on the right-hand side of the equation are evaluated are obvious. Now, apply the Cauchy-Riemann equations:

$$
\frac{d}{dt}g(\gamma(t)) = \frac{\partial u}{\partial x}\frac{dx}{dt} - \frac{\partial v}{\partial x}\frac{dy}{dt} + i\left(\frac{\partial v}{\partial x}\frac{dx}{dt} + \frac{\partial u}{\partial x}\frac{dy}{dt}\right)
$$

$$
= \left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right)\left(\frac{dx}{dt} + i\frac{dy}{dt}\right)
$$

$$
= g'(\gamma(t))\gamma'(t).
$$

The nicest result in the world!

Now, back to integrals. Let $F: D \to \mathbb{C}$ and suppose $F'(z) = f(z)$ in *D*. Suppose moreover that *a* and *b* are in *D* and that $C \subset D$ is a contour from *a* to *b*. Then

$$
\int_C f(z)dz = \int_{\alpha}^{\beta} f(\gamma(t))\gamma'(t)dt,
$$

where $\gamma : [\alpha, \beta] \to C$ describes *C*. From our introductory discussion, we know that $\frac{d}{dt}F(\gamma(t)) = F^{\dagger}(\gamma(t))\gamma'(t) = f(\gamma(t))\gamma'(t)$. Hence,

$$
\int_{C} f(z)dz = \int_{\alpha}^{\beta} f(\gamma(t))\gamma'(t)dt
$$
\n
$$
= \int_{\alpha}^{\beta} \frac{d}{dt}F(\gamma(t))dt = F(\gamma(\beta)) - F(\gamma(\alpha))
$$
\n
$$
= F(b) - F(a).
$$

This is very pleasing. Note that integral depends only on the points *a* and *b* and not at all on the path *C*. We say the integral is **path independent**. Observe that this is equivalent to saying that the integral of *f* around any closed path is 0. We have thus shown that if in *D* the integrand *f* is the derivative of a function *F*, then any integral $\int f(z)dz$ for $C \subset D$ is path *C*

independent.

Example

Let *C* be the curve $y = \frac{1}{x^2}$ from the point $z = 1 + i$ to the point $z = 3 + \frac{i}{9}$. Let's find

$$
\int_C z^2 dz.
$$

This is easy—we know that $F'(z) = z^2$, where $F(z) = \frac{1}{3}z^3$. Thus,

$$
\int_{C} z^{2} dz = \frac{1}{3} \left[(1+i)^{3} - \left(3 + \frac{i}{9} \right)^{3} \right]
$$

$$
= -\frac{260}{27} - \frac{728}{2187}i
$$

Now, instead of assuming *f* has an antiderivative, let us suppose that the integral of *f* between any two points in the domain is independent of path and that *f* is continuous. Assume also that every point in the domain *D* is an interior point of *D* and that *D* is connected. We shall see that in this case, f has an antiderivative. To do so, let z_0 be any point in *D*, and define the function *F* by

$$
F(z) = \int\limits_{C_z} f(z) dz,
$$

where C_z is any path in *D* from z_0 to *z*. Here is important that the integral is path independent, otherwise $F(z)$ would not be well-defined. Note also we need the assumption that *D* is connected in order to be sure there always is at least one such path.

Now, for the computation of the derivative of *F*:

$$
F(z+\Delta z)-F(z)=\int\limits_{L_{\Delta z}}f(s)ds,
$$

where $L_{\Delta z}$ is the line segment from *z* to $z + \Delta z$.

Next, observe that
$$
\int_{L_{\Delta z}} ds = \Delta z
$$
. Thus, $f(z) = \frac{1}{\Delta z} \int_{L_{\Delta z}} f(z) ds$, and we have

$$
\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)=\frac{1}{\Delta z}\int_{L_{\Delta z}}(f(s)-f(z))ds.
$$

Now then,

$$
\left|\frac{1}{\Delta z}\int_{L_{\Delta z}}(f(s)-f(z))ds\right|\leq \left|\frac{1}{\Delta z}\right||\Delta z|\max\{|f(s)-f(z)|: s\in L_{\Delta z}\}\leq \max\{|f(s)-f(z)|: s\in L_{\Delta z}\}.
$$

We know *f* is continuous at *z*, and so $\Delta z \rightarrow 0$ $\lim \max\{|f(s) - f(z)| : s \in L_{\Delta z}\} = 0$. Hence,

$$
\lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) = \lim_{\Delta z \to 0} \left(\frac{1}{\Delta z} \int_{L_{\Delta z}} (f(s) - f(z)) ds \right) = 0.
$$

In other words, $F'(z) = f(z)$, and so, just as promised, f has an antiderivative! Let's summarize what we have shown in this section:

Suppose $f : D \to \mathbb{C}$ is continuous, where *D* is connected and every point of *D* is an interior point. Then *f* has an antiderivative if and only if the integral between any two points of *D* is path independent.

Exercises

7. Suppose *C* is any curve from 0 to $\pi + 2i$. Evaluate the integral

$$
\int_C \cos\left(\frac{z}{2}\right) dz.
$$

8. a)Let $F(z) = \log z$, $0 < \arg z < 2\pi$. Show that the derivative $F'(z) = \frac{1}{z}$. b)Let $G(z) = \log z$, $-\frac{\pi}{4} < \arg z < \frac{7\pi}{4}$. Show that the derivative $G'(z) = \frac{1}{z}$.

c)Let C_1 be a curve in the right-half plane $D_1 = \{z : \text{Re } z \ge 0\}$ from $-i$ to *i* that does not pass through the origin. Find the integral

$$
\int\limits_{C_1}\frac{1}{z}dz.
$$

d)Let C_2 be a curve in the left-half plane $D_2 = \{z : \text{Re } z \le 0\}$ from $-i$ to *i* that does not pass through the origin. Find the integral.

$$
\int\limits_{C_2}\frac{1}{z}dz.
$$

9. Let *C* be the circle of radius 1 centered at 0 with the *clockwise* orientation. Find

$$
\int\limits_C \frac{1}{z} \, dz.
$$

10. a)Let $H(z) = z^c, -\pi < \arg z < \pi$. Find the derivative $H'(z)$.

b)Let $K(z) = z^c, -\frac{\pi}{4} < \arg z < \frac{7\pi}{4}$. What is the largest subset of the plane on which $H(z) = K(z)$?

c)Let *C* be any path from -1 to 1 that lies completely in the upper half-plane. (Upper

half-plane = $\{z : \text{Im} z \ge 0\}$.) Find

$$
\int_C F(z)dz,
$$

where $F(z) = z^i, -\pi < \arg z \leq \pi$.

11. Suppose *P* is a polynomial and *C* is a closed curve. Explain how you know that ſ *C* $P(z)dz = 0.$