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CHAPTER 1

Complex Numbers and Functions

A complex number is an expression of the form a + bi (or a + ib) where
a, b ∈ R and i is a symbol satisfying the relation i2 = −1. The set of all complex
numbers will be denoted by C and we also let C∗ = C − {0}. Notice that R ⊆ C
(by letting b = 0) and the function φ : C → R2 given by φ(a + bi) = (a, b) is clearly
a bijection. We usually use this bijection to identify C with R2 (i.e., a+ bi = (a, b))
while R can be viewed as the X-axis of R2. In this note, we will regard a + bi as
the standard form and (a, b) as the vector form of a complex number.

Some Notations : For a complex number z = a + bi,

• the real part of z is Re(z) = a,
• the imaginary part of z is Im(z) = b,
• the conjugate of z is z = a− bi,
• the modulus of z is |z| =

√
a2 + b2,

• an argument of z 6= 0 is an angle between the vectors (0,1) and (a, b)
(viewing in R2) measured in the counter-clockwise direction. Notice that
arg(z) is multivalued. We usually call the argument that lies in the interval
(−π, π] the principal argument of z and denote it by Arg(z).

Other Forms of Complex Numbers: For a complex number z = a + bi,
let r = |z| and θ = arg(z). [Euler formula : eiθ = cos θ + i sin θ.]

• The polar form of z is z = r(cos θ + i sin θ).
• The exponential form of z is z = reiθ.

Notice that both polar form and exponential form of a complex number z is not
unique and we always have | cos θ + i sin θ| = |eiθ| = 1.

Complex Algebra : For two complex numbers z = a + bi and w = c + di,
we define

z + w = (a + c) + (b + d)i

and

z · w = (ac− bd) + (ad + bc)i.

It is straightforward to verify that (C,+, ·) is a field with 0 as the additive
identity, 1 as the multiplicative identity, −a − bi as the additive inverse of a + bi
and a

a2+b2 −
b

a2+b2 i as the multiplicative inverse of a + bi 6= 0. As usual, we will
denote the additive inverse and the multiplicative inverse (if exists) of z by −z and
z−1 (or 1

z ) respectively.
In terms of polar and exponential forms, if z1 = r1(cos θ1 + i sin θ1) = r1e

iθ1

and z2 = r2(cos θ2 + i sin θ2) = r2e
iθ2 , one can show that

z1z2 = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)) = r1r2e
in(θ1+θ2)
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6 Functions of A Complex Variable (2301308)

and, when z2 6= 0,
z1

z2
=

r1

r2
(cos(θ1 − θ2) + i sin(θ1 − θ2)) =

r1

r2
ein(θ1−θ2).

Exercise 1.1. Let z = r(cos θ + i sin θ) = reiθ and n ∈ N. Prove that
(1) zn = rn(cos(nθ) + i sin(nθ)) = reinθ.
(2) There are exactly n solutions of the equation wn = z which are

w = n
√

r(cos
θ + 2kπ

n
+ i sin

θ + 2kπ

n
) = n

√
rei θ+2kπ

n ,

for k = 0, 1, . . . , n− 1.

Exercise 1.2. Let z, w ∈ C. Prove that
(1) z = z.
(2) | − z| = |z| = |z|.
(3) Re(z) = z+z

2 .
(4) Im(z) = z−z

2i .
(5) zz = |z|2.
(6) z ± w = z ± w.
(7) zw = zw.
(8)

(
z
w

)
= z

w whenever w 6= 0.
(9) |z + w| ≤ |z|+ |w|. (triangle inequality).

(10) ||z| − |w|| ≤ |z − w| ≤ |z|+ |w|.
(11) |zw| = |z||w|.
(12)

∣∣ z
w

∣∣ = |z|
|w| whenever w 6= 0.

Complex Function : A complex function is simply a function f : Ω → C,
where Ω ⊆ C. For examples,

(1) id : C → C defined by id(z) = z.
(2) f : C → C defined by f(z) = z2.
(3) g : C → C defined by g(z) = z.
(4) h : C → C defined by h(z) = Re(z) + Im(z).
(5) i : C∗ → C defined by i(z) = 1

z .
(6) a complex polynomial function which is a complex function of the

form

P (z) = c0 + c1z + c2z
2 + · · ·+ cnzn =

n∑
i=0

ciz
i,

for some n ∈ N ∪ {0} and c0, c1, . . . , cn ∈ C.
Using various forms of a complex number, we may represent a complex function

f as follows :
f(x + iy) = u(x, y) + iv(x, y)

or
f(reiθ) = ρ(r, θ)eiφ(r,θ)

where u, v, ρ, φ are real-valued functions of two real variables.



CHAPTER 2

Topology of C : A Fast Glimpse

Definition 2.1. For each z0 ∈ C and r > 0, we define the open ball centered
at z0 of radius r to be the set

B(z0, r) = {z ∈ C : |z − z0| < r}.
We also let B∗(z0, r) = B(z0, r)− {z0}.

Definition 2.2. Let Ω ⊆ C. We say that Ω is
• open if for each z ∈ Ω, there is r > 0 such that B(z, r) ⊆ Ω.
• closed if C− Ω is open.
• bounded if Ω ⊆ B(0, R) for some R > 0.
• compact if it is closed and bounded.

Example 2.3. ∅ and C are both open and closed at the same time. All open
balls are clearly open as well as the following sets : {z : Re(z) > 0}, {z : Re(z) < 0},
{z : Im(z) > 0}, {z : Im(z) < 0} and C∗.

Exercise 2.4. For z0 ∈ C and 0 < r < R, we define
• an open annulus to be A(z0, r, R) = {z ∈ C : r < |z − z0| < R}.
• a closed annulus to be A[z0, r, R] = {z ∈ C : r ≤ |z − z0| ≤ R}.
• a closed ball to be B[z0, r] = {z ∈ C : |z − z0| ≤ r}.

Prove that an open annulus is always open while a closed ball and a closed annulus
are always closed (in fact, compact).

Example 2.5. C, C∗ and B(0, 1) are not compact.

Definition 2.6. A neighborhood of a point z0 ∈ C is simply an open subset
of C containing z0.

Definition 2.7. Let Ω ⊆ C.
• The interior of Ω, denoted by Ω◦, is the largest open subset of C contained

in Ω.
• The closure of Ω, denoted by Ω, is the smallest closed subset of C con-

taining Ω.
• The boundary of Ω is defined to be ∂Ω = Ω ∩ C− Ω.

Definition 2.8. A point z ∈ C is a limit point of Ω ⊆ C if for each r > 0,

B∗(z, r) ∩ Ω 6= ∅.
The set of all limit points of Ω is called the derived set of Ω and it is usually
denoted by Ω′; that is

Ω′ = {z ∈ C : ∀r > 0, B∗(z, r) ∩ Ω 6= ∅}.

Example 2.9. From the definitions above, we clearly have the followings.
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(1) B(0, 1)◦ = B(0, 1), B(0, 1) = B[0, 1] and ∂B(0, 1) = {eiθ : θ ∈ R}.
(2) B[0, 1]◦ = B(0, 1), B[0, 1] = B[0, 1] and ∂B[0, 1] = {eiθ : θ ∈ R}.
(3) A(0, 0, 1)◦ = A(0, 0, 1), A(0, 0, 1) = A[0, 0, 1] and ∂A(0, 0, 1) = {0} ∪

∂B(0, 1).

Theorem 2.10. For any Ω ⊆ C, we have

Ω = Ω◦ ∪ ∂Ω = Ω ∪ Ω′,

and hence Ω = {z ∈ C : ∀r > 0, B(z, r) ∩ Ω 6= ∅}.

Definition 2.11. Let f : Ω → C, z0 ∈ Ω′ and L ∈ C. We say that the limit
of f(z) as z approaches z0 is L, written as lim

z→z0
f(z) = L, if for each ε > 0, there

is δ > 0 such that for any z ∈ Ω with 0 < |z− z0| < δ, we must have |f(z)−L| < ε
[or equivalently, f(B∗(z0, δ) ∩ Ω) ⊆ B(L, ε)].

Remark 2.12. If lim
z→z0

f(z) = L, then f(z) approaches L as z approaches z0

in any direction. In other words, if we can find one direction in which the limit
does not exist, or at least two directions in which the limits exist but not equal,
then we can conclude that lim

z→z0
f(z) does not exist.

Theorem 2.13 (Limit Theorem). Let f, g : Ω → C and z0 ∈ Ω′. If lim
z→z0

f(z)

and lim
z→z0

g(z) exist, we have

(1) lim
z→z0

(f(z)± g(z)) = lim
z→z0

f(z)± lim
z→z0

g(z).

(2) lim
z→z0

f(z)g(z) = lim
z→z0

f(z) lim
z→z0

g(z).

(3) lim
z→z0

f(z)
g(z)

=
lim

z→z0
f(z)

lim
z→z0

g(z)
provided that lim

z→z0
g(z) 6= 0.

Proof. Exercise. �

Example 2.14. It is easy to see that lim
z→0

z = lim
z→0

z = lim
z→0

(z+z) = lim
z→0

(zz) = 0.

However, lim
z→0

z

z
does not exist because the limit along the real axis is 1 while the

limit along the imaginary axis is -1.

Theorem 2.15. Let f, g : Ω → C with z0 ∈ Ω′. Suppose further that
(1) f is bounded on B(z0, r) for some r > 0 and
(2) lim

z→z0
g(z) = 0.

Then lim
z→z0

f(z)g(z) = 0.

Exercise 2.16. Find the following limits (if exist).

(1) lim
z→0

Re(z)
|z|

.

(2) lim
z→0

Re(z2)
|z|2

.

(3) lim
z→0

z Re(z)
|z|

.
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Definition 2.17 (Limit at Infinity). Let f : C → C and L ∈ C. We will write
lim

|z|→∞
f(z) = L, or simply lim

z→∞
f(z) = L, if for each ε > 0, there exists M ∈ R+

such that |f(z)− L| < ε whenever |z| > M .

Remark 2.18. The limit theorem above also holds for the case z0 = ∞.

Definition 2.19 (Infinite Limit). Let f : C → C and z0 ∈ C ∪ {∞}. We will
write lim

z→z0
f(z) = ∞ if lim

z→z0
|f(z)| = ∞.

Definition 2.20. Let f : Ω → C and z0 ∈ Ω. We say that f is continuous at
z0, if for each ε > 0, there is δ > 0 such that for any z ∈ Ω with 0 < |z − z0| < δ,
we must have |f(z)−f(z0)| < ε [or equivalently, f(B(z0, δ)∩Ω) ⊆ B(f(z0), ε)]. We
simply say that f is continuous if it is continuous at each point of Ω.

Example 2.21. The function f : C → C defined by

f(z) =

{
z
z ; z 6= 0
0 ; z = 0

is not continuous at 0. However, its restriction f |C∗ is clearly continuous.

Exercise 2.22. Let f : Ω → C and z0 ∈ Ω. Prove that f is continuous at z0 if
and only if lim

z→z0
|f(z)− f(z0)| = 0.

Theorem 2.23. Let f, g : Ω → C and h : ∆ → C be complex functions with
g(Ω) ⊆ ∆, and z0 ∈ Ω.

(1) If both f and g are continuous at z0, then so are f ± g and fg.
(2) If both f and g are continuous at z0 and g(z0) 6= 0, then so is f

g .
(3) If g is continuous at z0 and h is continuous at g(z0), then g ◦ h is contin-

uous at z0.

Proof. Exercise. �

Example 2.24. A complex polynomial function is always continuous as well
as the function i : C∗ → C defined by i(z) = 1

z .

Exercise 2.25. Prove or disprove : if f : Ω → C is a continuous complex
function and A is an open [closed] subset of Ω, then f(A) is open [closed] in C.

Theorem 2.26. Let f : Ω → C be a continuous complex function and A ⊆ Ω.
(1) If A is compact [path-connected], then so is f(A).
(2) If A is compact, then |f | : A → R attains its minimum and maximum.

Definition 2.27. A path in C is simply a continuous function γ : [a, b] → C.
The image of a path γ is called a curve represented by γ. Two paths are said
to be equivalent if they represents the same curve in the same direction.

Exercise 2.28. Draw the curve represented by each one of the following paths
in C.

(1) γ1(t) = t + it; 0 ≤ t ≤ 1.
(2) γ2(t) = t2 + it2; 0 ≤ t ≤ 1.
(3) γ3(t) = t + it2; 0 ≤ t ≤ 1.
(4) γ4(t) = cos t + i sin t = eit; 0 ≤ t ≤ 2π.
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(5) γ5(t) =

{
t + it ; 0 ≤ t ≤ 1
1 + it ; 1 ≤ t ≤ 2

.

Definition 2.29. A curve C represented by γ : [a, b] → C is said to be
• a closed curve if γ(a) = γ(b).
• a simple closed curve if it is closed and γ is 1-1 on (a, b).
• a smooth curve if γ is continuously differentiable on [a, b] (i.e., γ is

smooth).
• a piecewise smooth curve or a contour if γ can be decomposed into

finitely many smooth curves.

Definition 2.30. Let Ω ⊆ C. We say that Ω is
• path-connected if each pair of points in Ω can be joined by a path in Ω.
• a domain if it is nonempty, open and path-connected.

Theorem 2.31. If Ω is a domain, then each pair of points in Ω can be joined
by a polygonal path (= a path consisting of straight lines) in Ω.

Definition 2.32. A sequence of complex numbers is a function f : N → C.
We will usually denote a sequence by (zn) where zn = f(n). We will call (zn)
Cauchy if for any ε > 0, there is N ∈ N such that |zm − zn| < ε, for all m,n ≥ N .

Definition 2.33. A sequence (zn) of complex numbers is said to converge to
z0 ∈ C, written as (zn) → z0 or lim

n→∞
zn = z0, if for any ε > 0, there is N ∈ N such

that zn ∈ B(z0, ε) for all n ≥ N , and we will call z0 the limit of (zn).

Exercise 2.34. Let (zn) be a sequence of complex numbers and z0 ∈ C. Use
the above definition to prove the following statements :

(1) (z0) → z0.
(2) (zn) → z0 if and only if (zn) → z0.
(3) (zn) → 0 if and only if (|zn|) → 0.

Theorem 2.35. Let (zn) and (wn) be sequences of complex numbers. If (zn) →
z0 and (wn) → w0, then

(1) (zn ± wn) → z0 ± w0.
(2) (znwn) → z0w0.
(3) ( zn

wn
) → z0

w0
provided that wn 6= 0 for all n = 0, 1, 2, . . .

Example 2.36. lim
n→∞

n

n + i
= lim

n→∞

1
1 + i

n

=
lim

n→∞
1

lim
n→∞

1 + lim
n→∞

i

n

= 1.

Theorem 2.37. Let f : Ω → C be a complex function and z0 ∈ Ω. Then f is
continuous at z0 if and only if, for any sequence (zn) converging to z0, the sequence
f(zn) converges to f(z0).

Example 2.38. Since the complex sine function and the complex conjugation

are continuous on C, we have lim
n→∞

sin(
i

n
) = sin( lim

n→∞

i

n
) = sin(0) = 0.

Theorem 2.39 (Completeness of C). Let (zn) be a sequence of complex num-
bers. Then (zn) converges if and only if (zn) is Cauchy.
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Theorem 2.40 (Sequence Lemma and its converse). Let Ω ⊆ C and z0 ∈ C.
Then z0 ∈ Ω if and only if there exists a sequence (zn) in Ω such that (zn) → z0.

Definition 2.41. For a sequence (zn) of complex numbers, we call the sequence
(sn), where sn =

∑n
i=1 zn, a series of complex numbers and denote it by

∑
zn or∑∞

n=1 zn or z1 + z2 + z3 + . . . .
The convergence of

∑
zn is simply the convergence of the sequence (sn). When

the series
∑

zn converges, we will also denote its limit by
∑∞

n=1 zn.
The series

∑
zn is said to converge absolutely if the series Σ|zn| of real

numbers converges.

Theorem 2.42. Let
∑

zn be a series of complex numbers.
(1) If

∑
zn converges absolutely, then

∑
zn converges.

(2) If
∑

zn converges, then lim
n→∞

zn = 0.

Remark 2.43. The converse of (2) above is not true as we can take zn = 1
n .

Theorem 2.44 (Convergence Tests). Let
∑

zn be a sequence of complex num-
bers and

∑
an a sequence of real numbers. Then the series

∑
zn converges aboso-

lutely if one of the following statements hold :
(1) Comparison Test : There exists N ∈ N such that |zn| ≤ an for all n ≥ N ,

and
∑

an converges.

(2) Ratio Test : For each n ∈ N zn 6= 0, and lim
n→∞

∣∣∣∣zn+1

zn

∣∣∣∣ < 1.

(3) Root Test : lim
n→∞

|zn|1/n < 1.

Example 2.45. The series
∑

ein

2n converges absolutely because
∣∣∣ ein

2n

∣∣∣ ≤ 1
2n for

all n ∈ N, and
∑

1
2n converges.

Example 2.46. The series
∑ (1+i)n

n! converges absolutely because (1+i)n

n! 6= 0

for all n ∈ N, and lim
n→∞

∣∣∣∣ (1 + i)n+1

(n + 1)!
· n!
(1 + i)n

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1 + i

n + 1

∣∣∣∣ = 0 < 1.

Example 2.47. The series
∑

z2n

(n+1)n converges absolutely for any z ∈ C because

for each z ∈ C, we have lim
n→∞

∣∣∣∣ (z + i)2n

(n + 1)n

∣∣∣∣1/n

= lim
n→∞

|z + i|2

|n + 1|
= 0 < 1.





CHAPTER 3

Differentiability and Analyticity

Let Ω be a domain, f : Ω → C be a complex function and z0 ∈ C.

Definition 3.1. We say that f is differentiable at z0 if the limit

lim
z→z0

f(z)− f(z0)
z − z0

exists. In this case, we will call such a limit the derivative of f at z0 and denote
it by f ′(z0) or df

dz (z0). We simply call f differentiable if it is differentiable at each
point of Ω.

Theorem 3.2. If f, g are differentiable at z0, then we have

(1) (f ± g)′(z0) = f ′(z0)± g′(z0).
(2) (fg)′(z0) = f(z0)g′(z0) + f ′(z0)g(z0).
(3) ( f

g )′(z0) = f ′(z0)g(z0)−f(z0)g
′(z0)

[g(z0)]2
provided that g(z0) 6= 0.

Definition 3.3. We will say that f is analytic at z0 if f is differentiable on
some neighborhood of z0, and simply call f analytic if it is analytic at each point
of Ω.

In general, analyticity is stronger than differentiability. However, since we are
assuming Ω is open, both terms are equivalent.

Definition 3.4. A function f is said to be entire if it is analytic on C.

Theorem 3.5. If f is differentiable at z0, it is continuous at z0.

Proof. Since f is differentiable at z0, we have

lim
z→z0

|f(z)− f(z0)| = lim
z→z0

|f(z)− f(z0)
z − z0

| lim
z→z0

|z − z0| = 0.

�

Theorem 3.6. If f(z) = f(x, y) = u(x, y) + iv(x, y) is differentiable at z0 =
(x0, y0), then ux, uy, vx, vy exist and satisfy the so-called Cauchy-Riemann equations
at z0 :

ux = vy and uy = −vx.

Moreover, we have

f ′(z0) = ux(x0, y0) + ivx(x0, y0) = vy(x0, y0)− iuy(x0, y0).

Proof. Since f(z) = f(x, y) = u(x, y) + iv(x, y) is differentiable at z0 =
(x0, y0), the limits in following directions must exist and are equal to f ′(z0.

13
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(1) Along the set S1 = {z ∈ Ω : Im(z) = y0}, we have

lim
S1

f(z)− f(z0)
z − z0

= lim
x→x0

(u(x, y0)− u(x0, y0)) + i(v(x, y0)− v(x0, y0))
x− x0

= ux(x0, y0)+ivx(x0, y0).

(2) Along the set S2 = {z ∈ Ω : Re(z) = x0}, we have

lim
S2

f(z)− f(z0)
z − z0

= lim
y→y0

−i(u(x0, y)− u(x0, y0)) + (v(x0, y)− v(x0, y0))
y − y0

= −iuy(x0, y0)+vy(x0, y0).

Therefore, we have
ux(x0, y0) = vy(x0, y0),

vx(x0, y0) = −uy(x0, y0),
and

f ′(z0) = ux(x0, y0) + ivx(x0, y0) = vy(x0, y0)− iuy(x0, y0).
�

Theorem 3.7. If ux, uy, vx, vy exist in a neighborhood of z0, continuous at z0

and satisfy the Cauchy-Riemann equations at z0, then f is differentiable at z0.

Example 3.8. The function f(z) = z is not differentiable at any point in C.
Let z = (x, y) ∈ C. By Cauchy-Riemann equations at z, we have

∂u

∂x
(x, y) = 1 6= −1 =

∂v

∂y
(x, y).

Hence, f is not differentiable at z.

Exercise 3.9. Prove that f(z) = |z| is continuous, but not differentiable at
any point in C.

Exercise 3.10. Prove that the function f(z) = z2 is differentiable only at 0.

Example 3.11. Let f = u + iv be an analytic function on Ω. Suppose u is
constant on Ω. Then, by Cauchy-Riemann equations, we have ∂v

∂y = 0 = − ∂v
∂x on

Ω which clearly imples that v is also constant on Ω (since Ω is path-connected).
Hence, f is constant on Ω.

Example 3.12. Let f = u + iv be an analytic function on Ω. Suppose f is
analytic on Ω. Then, by Cauchy-Riemann equations of f and f , we have

∂u

∂x
=

∂v

∂y
,
∂u

∂y
= −∂v

∂x
,
∂u

∂x
= −∂v

∂y
and

∂u

∂y
=

∂v

∂x
on Ω.

It follows that ∂u
∂x = ∂u

∂y = ∂v
∂x = ∂v

∂y = 0 on Ω which implies that u, v and f are
constant on Ω (since Ω is path-connected).

Exercise 3.13. Let f = u + iv be an analytic function on Ω. Prove that :
(1) If v is constant on Ω, so if f .
(2) If |f | is constant on Ω, so if f .
(3) If |f | are analytic on Ω, then f is constant on Ω.
(4) If Re(f) = Im(f) on Ω, then f is constant on Ω.



CHAPTER 4

Elementary Functions

Definition 4.1. The complex exponential function is exp : C → C∗ de-
fined by

exp(z) = ex(cos y + i sin y),
where z = x + iy.

The complex exponential function is clearly an extension of the real exponential
function. Moreover, for z, w ∈ C and θ ∈ R, we have

• exp(z + w) = exp(z) exp(w),
• exp(−z) = 1

exp(z) ,
• | exp(z)| = ex > 0,
• exp(iθ) = cos θ + i sin θ.

We usually write ez instead of exp(z).
Using the complex exponential function defined above, we can define the com-

plex sine and cosine functions as follows.

Definition 4.2. The complex sine function sin : C → C and the complex
cosine function cos : C → C are defined by

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2
,

for any z ∈ C.

It is clear that the complex sine and cosine functions are extensions of the real
sine and cosine functions, respectively. Moreover, for z, w ∈ C, we have

• sin(−z) = − sin z,
• cos(−z) = cos z,
• sin(z ± w) = sin z cos w ± cos z sinw,
• cos(z ± w) = cos z cos w ∓ sin z sinw,
• sin2 z + cos2 z = 1.

Exercise 4.3. Let z = x + iy. Prove that

sin z = sinx cosh y + i cos x sinh y,

cos z = cos x cosh y − i sinx sinh y,

and use the results to conclude that sin z and cos z are not bounded as functions of
z.

Theorem 4.4. The functions exp, sin and cos are entire with
• dez

dz = ez,
• d sin z

dz = cos z,
• d cos z

dz = − sin z.

15
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Proof. Since ez = u + iv with u = ex cos y and v = ex sin y, and all partial
derivatives of u and v exist and continuous on C, it follows that ez is differentable
on C and dez

dz = ux + iuy = ex cos y + iex sin y = ez. The other two formulas can
be shown similarly. �

Example 4.5. sin i = i
2 (e− 1

e ) and cos i = 1
2 (e + 1

e ).

Definition 4.6. For each α ∈ [0, 2π) and z ∈ C− {0}, we define

log(α)(z) = ln(r) + i(θ + 2nπ) ; n ∈ Z

where z = reiθ, r > 0 and α ≤ θ < α + 2π. That is log(α) is multi-valued. By
letting n = 0 in the above formula, we obtain the principal value of log(α) :

Log(α)(z) = ln(r) + iθ.

Now, Log(α) : C∗ → C now becomes a function, but unfortunately, it is not
continuous at each point of Rα = {z : z = reiα, r ≥ 0}. Therefore, we can avoid
this problem by restricting the domain of Log(α) to C−Rα.

Theorem 4.7. For each α ∈ [0, 2π), the function Log(α) : C−Rα → C defined
by

Log(α)(z) = ln(r) + iθ

where z = reiθ, α < θ < α + 2π is analytic and

Log′(α)(z) =
1
z
.

Definition 4.8. For each α ∈ [0, 2π), the analytic function Log(α) defined as
above is called a branch of the complex logarithm function. We will call Log(−π)

the principal logarithm function and simply denote it by Log; i.e.,

Log(z) = ln(|z|) + iArg(z),

for all z ∈ C such that z 6= 0 and Arg(z) 6= −π.

Example 4.9. For each a ∈ R+, Log(a) = ln(a). Also, Log(i) = π
2 i and

Log(1 + i) = ln(
√

2) + π
4 i.

Remark 4.10. Notice that exp maps C onto C∗ while Log(α) maps C − Rα

onto the strip Sα := {x + iy : α < y < α + 2π}. Moreover, exp ◦Log(α) = idC−Rα

and (Log(α) ◦ exp)|Sα = idSα .



CHAPTER 5

Line Integrals

Let Ω denote a domain throughout.

Definition 5.1. For a path γ : [a, b] → C, we define∫ b

a

γ(t)dt =
∫ b

a

Re(γ(t))dt + i

∫ b

a

Im(γ(t))dt.

From the definition above, we have the followings :

(1) Re(
∫ b

a
γ(t)dt) =

∫ b

a
Re(γ(t))dt and Im(

∫ b

a
γ(t)dt) =

∫ b

a
Im(γ(t))dt.

(2)
∫ b

a
γ′(t)dt = γ(b)− γ(a).

(3) |
∫ b

a
γ(t)dt| = e−iθ

∫ b

a
γ(t)dt = Re(e−iθ

∫ b

a
γ(t)dt) =

∫ b

a
Re(e−iθγ(t))dt ≤∫ b

a
|e−iθγ(t)|dt =

∫ b

a
|γ(t)|dt where θ = arg(

∫ b

a
γ(t)dt).

Theorem 5.2. If C be a smooth curve represented by a smooth path γ : [a, b] →
C, then the length of C is

∫ b

a
|γ′(t)|dt.

Theorem 5.3. Let f : Ω → C be a continuous function. If γ : [a, b] → Ω and
ω : [c, d] → Ω are equivalent smooth paths, then∫ b

a

f(z(t))z′(t)dt =
∫ d

c

f(ω(t))ω′(t)dt.

Definition 5.4. For a continuous function f : Ω → C and a smooth curve C
in Ω, we define ∫

C

f(z)dz =
∫ b

a

f(z(t))z′(t)dt,

where z : [a, b] → Ω is a smooth path representing C. Note that this definition is
independent of a path representing C by the previous theorem.

If C is a contour, says C = C1 ∪ C2 ∪ · · · ∪ Cn where each Ci is smooth, we
simply let ∫

C

f(z)dz =
n∑

i=1

∫
Ci

f(z)dz.

When C is closed contour in the counterclockwise direction, we usually write
the integral as

∮
C

f(z)dz.

Theorem 5.5. If −C is the contour in the opposite direction of C, we have∫
−C

f(z)dz = −
∫

C

f(z)dz.

17
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Example 5.6. Let C be a curve represented by γ(t) = t + it; 0 ≤ t ≤ 1. Then∫
C

z2dz =
∫ 1

0

(t + it)2(1 + i)dt = (1 + i)3
∫ 1

0

t2dt = (1 + i)3
[
t3

3

]1
0

=
(1 + i)3

3
,

and hence,
∫
−C

z2dz = − (1+i)3

3 .

Exercise 5.7. Let C = {eit : 0 ≤ t ≤ 2π}. Show that∮
C

1
z
dz = 2πi.

Theorem 5.8. For a continuous function f : Ω → C and a contour C in Ω,
we have ∣∣∣∣∫

C

f(z)dz

∣∣∣∣ ≤ ML,

where let L is the length of C and M = max{|f(z)| : z ∈ C}.

Proof. WLOG, we may assume that C is smooth. Let z : [a, b] → C be a
smooth path representing C. Note that

M = max{|f(z)| : z ∈ C} = max{|f(z(t))| : t ∈ [a, b]}
exists since |f ◦ z| : [a, b] → R is continuous and [a, b] is compact. We also have
L =

∫ b

a
|z′(t)|dt and hence∣∣∣∣∫

C

f(z)dz

∣∣∣∣ =
∣∣∣∣∣
∫ b

a

f(z(t))z′(t)dt

∣∣∣∣∣ ≤
∫ b

a

|f(z(t))z′(t)|dt ≤ M

∫ b

a

|z′(t)|dt = ML.

�

Definition 5.9. Let f : Ω → C be a complex function. We say that F : Ω → C
is an antiderivative of f on Ω if F ′(z) = f(z) for all z ∈ Ω. Note that F must be
analytic on Ω.

Theorem 5.10. Let f : Ω → C be a continuous function. TFAE :
(1) For any contour C in Ω,

∫
C

f(z)dz depends only on the endpoints of C.
(2) For any closed contour C in Ω,

∮
C

f(z)dz = 0.
(3) f has an antiderivative on Ω.

Moreover, if F is an antidervative of f on Ω and C ⊆ Ω is a contour from z1

to z2, we have ∮
C

f(z)dz = F (z2)− F (z1).

Proof. (1) ⇔ (2) : Easy.
(3) ⇒ (1) : Assume (3) and let F be an antiderivative of f on Ω; i.e., F ′(z) =

f(z). Let C be a contour in Ω. WLOG, assume that C is smooth and represented
by z : [a, b] → Ω. It follows that∫

C

f(z)dz =
∫ b

a

f(z(t))z′(t)dt =
∫ b

a

d

dt
F (z(t))dt = F (z(b))− F (z(a)).

This also proves the last statement of the theorem.
(1) ⇒ (3) : Assume (1), fix z0 ∈ Ω and define F : Ω → C by

F (z) =
∫ z

z0

f(w)dw
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along any polygonal path in Ω from z0 to z. This is certainly well-defined by (1).
Now, we will show that for each z ∈ Ω,

f(z) = lim
∆z→0

F (z + ∆z)− F (z)
∆z

.

Let z ∈ Ω and ε > 0. By the continuity of f , there exists δ > 0 such that
|f(ξ)− f(z)| < ε whenenver |ξ − z| < δ. Since Ω is open, we may assume that δ is
small enough so that B(z, δ) ⊆ Ω. Let ∆z ∈ C be such that |∆z| < δ. Therefore
there is a straight line C ⊆ Ω joining z and z + ∆z. Hence, along C, we clearly
have

M = max{|f(w)− f(z)| : w ∈ C} < ε, LC = |∆z|,
and ∣∣∣∣∣ 1

∆z

∫ z+∆z

z

(f(w)− f(z))dw

∣∣∣∣∣ ≤ 1
|∆z|

MLC < ε.

It follows that∣∣∣∣F (z + ∆z)− F (z)
∆z

− f(z)
∣∣∣∣ =

∣∣∣∣∣ 1
∆z

∫ z+∆z

z

f(w)dw − f(z)

∣∣∣∣∣ =
∣∣∣∣∣ 1
∆z

∫ z+∆z

z

(f(w)− f(z))dw

∣∣∣∣∣ < ε.

Therefore, f(z) = lim
∆z→0

F (z + ∆z)− F (z)
∆z

= F ′(z). �

Example 5.11. From the above theorem, we clearly have
∮

C
z2dz = 0 for any

closed contour C ⊆ C because f(z) = z3

3 is an antidervative of f(z) = z2 on C.

Hence, if C is any contour from 0 to 1 + i, we immediately have
∫

C
z2dz = (1+i)3

3 .

Example 5.12. Let Ω = C∗ and consider f(z) = 1
z for all z ∈ Ω. Clearly, f is

continuous on Ω. For each r > 0, let Cr be the closed curve in Ω represented by
z(t) = reit where t ∈ [0, 2π]. It is also easy to verify that

∮
Cr

f(z)dz = 2πi 6= 0.
Hence, by the above theorem, f does not have an antiderivative on C∗ which is
possible since a branch of the complex logarithm function cannot be defined on C∗.
However, if C is any contour in C− R−

0 , we immediately have
∮

Cr
f(z)dz = 0.





CHAPTER 6

Cauchy Integral Theorem and Applications

Theorem 6.1 (Green’s Theorem). Let C be a simple closed curve in R2 and
R the closed region inside and on C. If P (x, y) and Q(x, y) are two real-valued
functions whose all their first-ordered partial derivatives exist and are continuous
on R, then we have ∮

C

Pdx + Qdy =
∫∫

R

(Qx − Py)dxdy.

Theorem 6.2 (Cauchy Integral Theorem). Let C be a simple closed contour
in C and R the closed region inside and on C. If f is analytic on R and f ′ is
continuous, then ∮

C

f(z)dz = 0.

Proof. WLOG, assume that C is smooth. Write f(z) = f(x, y) = u(x, y) +
iv(x, y) and let z(t) = x(t) + iy(t); a ≤ t ≤ b be a smooth path representing C.
Then, by Cauchy-Riemann equations, we have ux = vy and uy = −vx on R, and
hence ∮

C

f(z)dz =
∫ b

a

f(z(t))z′(t)dt

=
∫ b

a

f(x(t) + iy(t))(x′(t) + iy′(t))dt

=
∫ b

a

(u(x, y) + iv(x, y))(x′ + iy′)dt

=
∫ b

a

[(ux′ − vy′) + i(vx′ + uy′)]dt

=
∮

C

(udx− vdy) + i

∮
C

(vdx + udy)

=
∫∫

R

(vx + uy)dxdy + i

∫∫
R

(ux − vy)dxdy

= 0.

�

Remark 6.3. From the theorem above, we can replace the simple closed con-
tour by any closed countour and drop the continuity of f ′ (See [1] for details) to
obtain a more general theorem.

21
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Theorem 6.4 (Cauchy-Goursat Theorem). Let C be a closed contour in C and
R the closed region inside and on C. If f is analytic on R, then∮

C

f(z)dz = 0.

Corollary 6.5. If f is analytic on a simply connected domain Ω and C is a
simple closed contour in Ω, then ∮

C

f(z)dz = 0.

Corollary 6.6. Let C be a simple closed contour and let C1, C2, . . . , Cn be
simple closed contours in the region interior to C such that the regions interior to
each Ci have no points in common. Let R be the closed region inside and on C
except for points interior to each Ci. If f is analytic on R, then∮

C

f(z)dz = Σn
i=1

∮
Ci

f(z)dz.

Proof. See [1] Section 36. �

Theorem 6.7 (Cauchy Integral Formula). Let C be a simple closed contour in
C and R the closed region inside and on C. If f is analytic on R, then for any
w ∈ Int(R), then for each n = 0, 1, 2, . . . , we have

f (n)(w) =
n!
2πi

∮
C

f(z)
(z − w)n+1

dz.

In particular,

f(w) =
1

2πi

∮
C

f(z)
z − w

dz

and

f ′(w) =
1

2πi

∮
C

f(z)
(z − w)2

dz.

Proof. We will prove only the case n = 0. Let ε > 0. Since w ∈ Int(R) and f

is continuous at w, there exists r > 0 such that B(w, r) ⊆ R and |f(w)−f(z)| < ε
2π

for all z ∈ B(w, r) (can you see why?).
Let C ′ = ∂B(w, r) be represented by z(t) = w + reit, 0 ≤ t ≤ 2π. Then we

have ∮
C′

f(w)
z − w

dz = f(w)
∮

C′

1
z − w

dz = f(w)
∫ 2π

0

(
1

reit

)
ireitdt = 2πif(w),



Phichet Chaoha 23

and hence∣∣∣∣∮
C

f(z)
z − w

dz − 2πif(w)
∣∣∣∣ = ∣∣∣∣∮

C′

f(z)
z − w

dz − 2πif(w)
∣∣∣∣ (by the previous corollary)

=
∣∣∣∣∮

C′

f(z)
z − w

dz −
∮

C′

f(w)
z − w

dz

∣∣∣∣
=
∣∣∣∣∮

C′

(
f(z)− f(w)

z − w

)
dz

∣∣∣∣
=
∣∣∣∣∫ 2π

0

(
f(w + reit)− f(w)

reit

)
ireitdt

∣∣∣∣
≤
∫ 2π

0

|(f(w + reit)− f(w))i|dt

<
ε

2π

∫ 2π

0

dt = ε.

Since ε is arbitrary, we must have
∮

C
f(z)
z−wdz = 2πif(w). �

Remark 6.8. From the previous theorem, we observe that if f is analytic on
a domain Ω, then f ∈ C∞(Ω).

Example 6.9. By letting f(z) = 1 for all z ∈ C, w = 0 and C = ∂B(0, 1) in
the above theorem, we immediately obtain

∮
C

1
z dz = 2πi and

∮
C

1
zn dz = 0 for all

n > 1.

Exercise 6.10. Show, by example, that Cauchy Integral Formula is not gener-
ally true for any closed contour.

Exercise 6.11. Let C be a simple closed curve such that 0 is inside C and 1
is outside C. Compute the following integrals.

(1)
∮

C
ez

z dz.
(2)

∮
C

sin z
z2(z−1)dz

(3)
∮

C
z7−z5+3z+1

z2−2z+1 dz.

Corollary 6.12 (Mean Value Theorem). If f is analytic on the closed disk
B(z0, r), we have

f(z0) =
1
2π

∫ 2π

0

f(z0 + reit)dt.

Proof. Let C = ∂B(z0, r) be represented by z(t) = z0 + reit; 0 ≤ t ≤ 2π.
Then, by the above theorem, we have

f(z0) =
1

2πi

∮
C

f(z)
z − z0

dz =
1

2πi

∫ 2π

0

f(z0 + reit)
reit

ireitdt =
1
2π

∫ 2π

0

f(z0 + reit)dt.

�

Corollary 6.13 (Cauchy Estimate). Let f : Ω → C be an analytic function,
z ∈ Ω and r > 0 be such that B(z, r) ⊆ Ω. If f is bounded by M on ∂B(z, r), then
for any n = 0, 1, 2, . . . , we have

|f (n)(z)| ≤ n!M
rn

.

In particular, |f ′(z)| ≤ M
r .
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Proof. Let C = ∂B(z, r) ⊆ Ω. Then by CIF, we have

|f (n)(z)| =
∣∣∣∣ n!
2πi

∮
C

f(ξ)
(ξ − z)n+1

dξ

∣∣∣∣ = ∣∣∣∣ n!
2πi

∮
C

f(ξ)
rn+1

dξ

∣∣∣∣ ≤ n!
2π

M

rn+1
(2πr) =

n!M
rn

.

�

Example 6.14. If f : B(0, 1) → B(0, 1) is analytic, then f is bounded by
M = 1, B(0, 1

2 ) ⊆ B(0, 1) and hence |f ′(0)| ≤ 1!1
(1/2) ≤ 2.

Exercise 6.15. If f : B(0, 1) → B(0, 1) is analytic, prove that |f ′( 1
2 )| ≤ 4.

Corollary 6.16 (Liouville’s Theorem). A bounded entire function must be
constant.

Proof. Suppose f is bounded by M on Ω = C. Then for any r > 0, the
Cauchy estimate implies that

|f ′(z)| ≤ M

r
for any z ∈ C. Since r can be arbitrarily large, we must f ′ = 0 on C; i.e., f is
constant. �

Example 6.17. sin, cos and exp are all unbounded.

Example 6.18. Is the function f(z) = z2 sin z bounded on C? Justify your
answer.

Corollary 6.19 (Fundamental Theorem of Algebra). Every non-constant
complex polynomial P (z) must have a root in C.

Proof. Suppose P (z) is a non-constant complex polynomial that has no root
in C. Then f(z) = 1

P (z) is entire. Moreover, it is easy to see that f is bounded
on C because lim

|z|→∞
f(z) = 0. It follows from Liouville’s Theorem that f must be

constant and so is P . This is a contradiction. �

Corollary 6.20 (Maximum Modulus Principle). Let f be an analytic function
on a domain Ω. If f attains the maximum modulus at some point in Ω, then f must
be constant on Ω.

Fact : If an analytic function is not constant on a domain Ω, then it is not
constant on any open disk in Ω. [See [1] Section 103 Corollary 2]

Proof. Let f be an analytic function on a domain Ω. Suppose |f | attains its
maximum at z0 ∈ Ω. From the above fact, it suffices to find r > 0 so that f is
constant on B(z0, r). Since Ω is open, there is r > 0 such that B(z0, r) ⊆ Ω.

Now, for 0 < ρ < r, from f(z0) = 1
2π

∫ 2π

0
f(z0 + ρeit)dt, we have

|f(z0)| ≤
1
2π

∫ 2π

0

|f(z0 + ρeit)|dt ≤ 1
2π

∫ 2π

0

|f(z0)|dt = |f(z0)|,

and hence

|f(z0)| =
1
2π

∫ 2π

0

|f(z0 + ρeit)|dt.

It follows that ∫ 2π

0

(|f(z0)| − |f(z0 + ρeit)|)dt = 0.
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Since |f(z0)| is maximum, the integrand is nonnegative and we must have

|f(z0)| = |f(z0 + ρeit)|
for all 0 ≤ t ≤ 2π. Therefore, |f(z)| = |f(z0)| for all z ∈ B(z0, r). Finally,
the analyticity of f implies that f(z) is the constant f(z0) for all z ∈ B(z0, r) as
desired. �

Corollary 6.21. Let K be a compact subset of C. If f : K → C is a non-
constant analytic function, then f attains the maximum modulus on ∂K.

Proof. Since |f | is continuous on a compact set K, it attains a maximum.
However, since f is non-constant and analytic on K◦, the maximum cannot occur
in (any path component of) K◦ and hence it must be on the boundary of K. �

Corollary 6.22 (Minimum Modulus Principle). Let f be an analytic function
on a domain Ω. Suppose further that f(z) 6= 0 for all z ∈ Ω. If f attains the
minimum modulus at some point in Ω, then f must be constant on Ω.

Proof. Apply the maximum modulus principle to 1
f . �

Corollary 6.23. Let K be a compact subset of C. If f : K → C is a non-
constant analytic function with f(z) 6= 0 for all z ∈ K◦, then f attains the minimum
modulus on ∂K.

Example 6.24. Consider f : A[0, 1, 2] → C defined by f(z) = ez

z . Then f

attains its maximum and minimum modulus (can you see why?) on ∂A[0, 1
2 , 1].

Let z ∈ ∂A[0, 1
2 , 1] = {reiθ : (r = 1 or 2) and 0 ≤ θ ≤ 2π}, then

|f(z)| = |f(reiθ)| =
∣∣∣∣er(cos θ+i sin θ)

reiθ

∣∣∣∣ = ∣∣∣∣ercosθ

r

∣∣∣∣ ,
where (r = 1 or 2) and 0 ≤ θ ≤ 2π. Clearly, |f(z)| attains its maximum when θ = 0
(z = 1 or 2) and its minimum when θ = −1 (z = −1 or -2). Since

|f(−2)| = 1
2e2

< |f(−1)| = 1
e

< |f(1)| = e < |f(2)| = e2

2
,

then |f | has the maximum value at z = 2 and the minimum value at z = −2.

Example 6.25. Find the maximum and minimum moduli of f(z) = ez

z on
A[0, 1

2 , 1].





CHAPTER 7

Sequences and Series of Complex Functions

In this chapter, we extend the notions of sequences and series to complex func-
tions. However, for convenience, we will start our sequence from 0-th term.

Definition 7.1. A sequence of complex functions is a function from N0 =
N∪ {0} to the set of all complex functions. As usual, a sequence will be written as
f0, f1, f2, . . . or (fn).

Definition 7.2. A sequence (fn) of complex functions converges (point-
wise) to a complex function f on A ⊆ C, written as (fn) → f , if (fn(z)) → f(z)
for all z ∈ A. Also, we say that (fn) converges uniformly to f on A if for any
ε > 0, there is N ∈ N0 such that |f(z)− fn(z)| < ε for any n ≥ N and z ∈ A.

Example 7.3. For each n ∈ N0 and z ∈ C, let fn(z) = z
n+1 and f(z) = 0.

Then the sequence (fn) clearly converges pointwise to f . However, the convergence
is not uniform on C because, for example when ε = 1, |fn(n + 1)| ≥ ε each n ∈ N.

Exercise 7.4. With (fn) and f as above, prove that (fn) converges uniformly
to f on B[0, 1].

Theorem 7.5. Suppose (fn) is a sequence of continuous complex functions
converging uniformly to f on A ⊆ C. Then f is also continuous on A.

Proof. Let z ∈ A and ε > 0. By uniform convergence, there is N ∈ N0 such
that |fn(w)−f(w)| < ε

3 for any n ≥ N and w ∈ A. In particular, |fN (w)−f(w)| < ε
3

for any w ∈ A. Now, since fN is continuous at z, there exists δ > 0 such that
|fN (z) − fN (w)| < ε

3 whenever |z − w| < δ. Hence, for any w ∈ A such that
|z − w| < δ, we have

|f(z)−f(w)| ≤ |f(z)−fN (z)|+ |fN (z)−fN (w)|+ |fN (w)−f(w)| < ε

3
+

ε

3
+

ε

3
= ε.

Therefore, f is continuous at z. �

Example 7.6. For each n ∈ N0 and z ∈ [0, 1], let f0(z) = 1, fn(z) = zn for
n ≥ 1 and

f(z) =

{
0 if 0 ≤ z < 1,

1 if z = 1.

Then (fn) clearly converges to f on [0, 1]. However, the convergence is not uniform
since f is not continuous.

Theorem 7.7. Let C be contour in C and suppose (fn) is a sequence of con-
tinuous complex functions converging uniformly to f on C. Then

lim
n→∞

∫
C

fn(z)dz =
∫

C

lim
n→∞

fn(z)dz =
∫

C

f(z)dz.

27
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Proof. Let L > 0 be the length of C and ε > 0. By uniform convergence,
there exists N ∈ N0 such that |f(z) − fn(z)| < ε

L for all n ≥ N and z ∈ C; i.e.,
M = max{|f(z)− fn(z)| : z ∈ C} < ε

L whenever n ≥ N . Thus, for each n ≥ N , we
have ∣∣∣∣∫

C

f(z)dz −
∫

C

fn(z)dz

∣∣∣∣ = ∣∣∣∣∫
C

(f(z)− fn(z))dz

∣∣∣∣ ≤ ML < ε.

Therefore, (
∫

C
fn(z)dz) →

∫
C

f(z)dz as desired. �

Theorem 7.8. Suppose (fn) be a sequence of analytic functions converging
uniformly to f on any compact subset of a domain Ω. Then f is analytic on Ω and

f (k)(z) = lim
n→∞

f (k)
n (z),

for each k ≥ 0 and z ∈ Ω.

Proof. Let z0 ∈ Ω. Since Ω is open, there is r > 0 such that B(z0, r) ⊆ Ω. Let
C be any closed contour in B(z0, r). Since C is compact, (fn) converges uniformly
to f on C by assumption. Now for each n, since fn is analytic on Ω, we also have∮

C
fn(z)dz = 0 by CIF. Hence, it follows from the previous theorem that∮

C

f(z)dz = lim
n→∞

∮
C

fn(z)dz = 0.

Since C is arbitrary, f has an antiderivative on B(z0, r), says F , by Theorem 5.10.
Therefore, f must be analytic at z0.

Now, for each k ≥ 0, it is not difficult to verify that the sequence
(

fn(z)
(z−z0)k+1

)
converges uniformly to f(z)

(z−z0)k+1 on the simple closed curve ∂B(z0,
r
2 ), and hence

by CIF and the previous theorem, we have

lim
n→∞

f (k)
n (z0) =

k!
2πi

lim
n→∞

∮
∂B(z0, r

2 )

fn(z)
(z − z0)k+1

dz =
∮

∂B(z0, r
2 )

f(z)
(z − z0)k+1

dz = f (k)(z0)

as desired. �

Definition 7.9. For a sequence (gn) of complex functions, we call the sequence
(sn), where sn =

∑n
i=0 gn, a series of complex functions and denote it by

∑
gn or∑∞

n=0 gn or g0 + g1 + g2 + . . . . The convergence of
∑

gn is simply the convergence
of the sequence (sn).

Theorem 7.10. Let (gn) be a sequence of continuous complex functions on a
domain Ω.

(1) If the series Σgn converges uniformly to a complex function g on a contour
C ⊆ Ω, then g is continuous on C and

∞∑
n=0

∫
C

gn(z)dz =
∫

C

g(z)dz.

(2) If each gn is analytic and the series Σgn converges uniformly to a complex
function g on each compact subset of Ω, then g is analytic and

∞∑
n=0

g(k)
n (z) = g(k)(z)

for any z ∈ Ω and k ∈ N.
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Proof. Follows directly from the previous theorems. �

Theorem 7.11 (Weierstrass M-test). Let (gn) be a sequence of complex func-
tions on A. If there is a sequence (Mn) of nonnegative real numbers such that

(1) |gn(z)| ≤ Mn for all z ∈ A and n ∈ N and
(2) the series

∑
Mn converges,

then
∑

gn converges uniformly on A. Moreover, for each z ∈ A, the series
∑

gn(z)
converges absolutely.

Proof. Let ε > 0. Since ΣMn converges, it is Cauchy and there is N ∈ N
such that for any n ≥ m ≥ N ,

n∑
i=m+1

Mi =

∣∣∣∣∣
n∑

i=m+1

Mi

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=0

Mi −
m∑

i=0

Mi

∣∣∣∣∣ < ε.

Then for any z ∈ A and n ≥ m ≥ N , we clearly have∣∣∣∣∣
n∑

i=0

gi(z)−
m∑

i=0

gi(z)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=m+1

gi(z)

∣∣∣∣∣ ≤
n∑

i=m+1

|gi(z)| ≤
n∑

i=m+1

Mi < ε . . . (∗)

It follows that (
∑

gn(z)) is Cauchy and hence converges, says to g(z). With ε
and N as above, by letting m →∞ in (*), we also have∣∣∣∣∣

n∑
i=0

gi(z)− g(z)

∣∣∣∣∣ < ε

for all z ∈ A and n ≥ N . Therefore, the convergence is uniform. Moreover, for each
z ∈ A,

∑
gn(z) converges absolutely by both conditions above and the comparison

test. �

Definition 7.12 (Power Series). A power series is a series of the form
∞∑

n=0

an(z − z0)n = a0 + a1(z − z0) + a2(z − z0)2 + . . .

where z0, a0, a1, a2, · · · ∈ C. We will call z0 the center and a0, a1, a2, . . . the
coefficients of the series.

Clearly
∑∞

n=0 an(z−z0)n converges at z = z0. In fact, two obvious possibilities
for the convergence of the power series are

(1) the series converges only at z = z0, or
(2) the series converges for all z ∈ C.

Lemma 7.13. Let
∑∞

n=0 an(z − z0)n be a power series.
(1) If the series converges at z1, it also converges at each z ∈ B(z0, |z1− z0|).
(2) If the series diverges at z2, it also diverges at each z /∈ B[z0, |z2 − z0|].

Proof. For (1), suppose the series converges at z1. Let z ∈ B(z0, |z1−z0|) and
r =

∣∣∣ z−z0
z1−z0

∣∣∣ < 1. Since
∑∞

n=0 an(z1 − z0)n converges, we have (|an(z1 − z0)n|) → 0
and hence is bounded, says by M . Then,

|an(z − z0)n| = |an(z1 − z0)n|
∣∣∣∣ z − z0

z1 − z0

∣∣∣∣n ≤ Mrn
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for all n. Since
∑

Mrn converges, the series
∑∞

n=0 an(z − z0)n converges by com-
parison test.

For (2), suppose the series diverges at z2. If the series converges at some
w /∈ B[z0, |z2 − z0|], then by (1), the series

∑∞
n=0 an(z − z0)n converges for all

z ∈ B(z0, |w − z0|). This clearly implies the convergence of the series at z2 which
is a contradiction. �

Theorem 7.14. For a power series
∑∞

n=0 an(z−z0)n, if it does not satisfy any
of the above possibilities of convergence, then there exists R > 0 such that the series
converges for each z ∈ B(z0, R) and diverges for each z /∈ B[z0, R].

Proof. By assumption, there exist z1 ∈ C − {z0} and z2 ∈ C such that the
series converges at z1 and diverges at z2. Then, by the previous lemma, the series
also converges at each z ∈ B(z0, |z1 − z0|) and diverges at each z /∈ B[z0, |z2 − z0|].

Now, the set

S = {s :
∞∑

n=0

an(z − z0)n converges for all z ∈ B(z0, s)} ⊆ R+
0

is a nonempty (since |z1 − z0| ∈ S). It is also easy to see that S is bounded above
(since s /∈ S for all s > |z2 − z0|). Let R = supS. It is easy to verify that∑∞

n=0 an(z − z0)n converges for all z ∈ B(z0, R). Moreover, for z /∈ B[z0, R], we
must have

∑∞
n=0 an(z−z0)n diverges because otherwise

∑∞
n=0 an(ξ−z0)n converges

for all ξ ∈ B(z0, |z − z0|) and hence |z − z0| ∈ S. This is certainly a contradiction
since |z − z0| > R. �

Definition 7.15. The real number R in the above theorem is called the radius
of convergence of the power series. We can extend the definition of R to include
the other 2 possibilities of convergence as well by letting

• R = 0 if the series converges only at z = z0, and
• R = ∞ if the series converges for all z ∈ C.

Example 7.16. The radius of convergence of the power series
∑∞

n=0
zn

n! is ∞.

Exercise 7.17. Prove that the radius of convergence of the power series
∑∞

n=0 zn

is 1 and
∞∑

n=0

zn =
1

1− z

for all z ∈ B(0, 1).

Theorem 7.18. Let
∑∞

n=0 an(z−z0)n be a power series converging to a function
f on some open ball B(z0, r). Then for each 0 < r′ < r, the series converges
uniformly to f on B[z0, r

′].

Proof. Pick z1 ∈ B(z0, r) such that |z1 − z0| > r′. Since
∑∞

n=0 an(z1 − z0)n

converges, the sequence (an(z1 − z0)n) is bounded and hence there exist M ∈ R+

and N ∈ N0 such that |an(z1 − z0)n| ≤ M whenever n ≥ N . Let ρ =
∣∣∣ r′

z1−z0

∣∣∣ < 1.
Now, for each z ∈ B[z0, r

′], we clearly have

(1) |an(z−z0)n| = |an(z1−z0)n|
∣∣∣ z−z0
z1−z0

∣∣∣n ≤ M
∣∣∣ r′

z1−z0

∣∣∣n = Mρn for all n ≥ N ,

(2)
∑∞

n=0 Mρn converges.
Then, by Weierstrass M-test, the series converges uniformly on B[z0, r

′]. �
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Exercise 7.19. Let
∑∞

n=0 an(z−z0)n be a power series converging to a function
f on some open ball B(z0, r). Prove that f also is analytic on B(z0, r) and for each
k ∈ N0 and z ∈ B(z0, r), we have

f (k)(z) =
∞∑

n=k

n(n− 1) . . . (n− k + 1)an(z − z0)n−k.

Corollary 7.20. Let
∑∞

n=0 an(z − z0)n be a power series converging to a
function f on some open ball B(z0, r). Then, for each n ∈ N0, we have

an =
f (n)(z0)

n!
.

Proof. By the previous exercise, for each k ∈ N0, we have

f (k)(z0) =
∞∑

n=k

n(n− 1) . . . (n− k + 1)an(z0 − z0)n−k = k!ak.

Hence, an = f(n)(z0)
n! for all n ∈ N0 as desired. �

Corollary 7.21 (Uniqueness). If the power series
∑∞

n=0 an(z − z0)n and∑∞
n=0 bn(z − z0)n converge to the same function f some open ball B(z0, r), then

the two series must be the same; i.e., an = bn for all n ∈ N0.

Proof. By the previous corollary, we immediately have an = f(n)(z0)
n! = bn for

all n ∈ N0. �

Exercise 7.22. Let z0, z, ξ ∈ C be such that |z − z0| < |ξ − z0|. Then we have

1
ξ − z

=
∞∑

n=0

(z − z0)n

(ξ − z0)n+1
.

Theorem 7.23 (Taylor Theorem). If f is an analytic function on some open
ball B(z0, r), then f can be uniquely represented by the power series (so-called the
Taylor series of f around z0)

∞∑
n=0

f (n)(z0)
n!

(z − z0)n

on B(z0, r).

Proof. Suppose f is an analytic function on some open ball B(z0, r). Let
z ∈ B(z0, r) and r′ > 0 such that z ∈ B[z0, r

′] ⊆ B(z0, r). Then, by using the pre-
vious exercise, it is not difficult to verify that the series

∑∞
n=0

f(ξ)(z−z0)
n

(ξ−z0)n+1 converges
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uniformly to f(ξ)
ξ−z for ξ ∈ ∂B(z0, r

′). Hence, by CIF and Theorem 7.10(1), we have

f(z) =
1

2πi

∮
∂B(z0,r′)

f(ξ)
ξ − z

dξ

=
1

2πi

∞∑
n=0

∮
∂B(z0,r′)

f(ξ)(z − z0)n

(ξ − z0)n+1
dξ

=
∞∑

n=0

(
1

2πi

∮
∂B(z0,r′)

f(ξ)
(ξ − z0)n+1

dξ

)
(z − z0)n

=
∞∑

n=0

fn(z0)
n!

(z − z0)n.

�

Remark 7.24. If f(z) =
∑n

i=0 aiz
i is a complex polynomail, then

∑n
i=0 aiz

i

itself is the Taylor series of f(z) on any open ball around 0.

Exercise 7.25. Find the Taylor series around 1 of f(z) = z.

Example 7.26. Some well-known Taylor series around z0 = 0 :

(1) ez =
∑∞

n=0
zn

n! = 1 + z + z2

2! + z3

3! + . . . ; z ∈ C.

(2) sin z =
∑∞

n=0
(−1)nz2n+1

(2n+1)! = z − z3

3! + z5

5! − . . . ; z ∈ C.

(3) Log(z + 1) =
∑∞

n=0
(−1)n

n+1 zn+1 ; |z| < 1.
(4) 1

1−z =
∑∞

n=0 zn = 1 + z + z2 + z3 + . . . ; |z| < 1.

Example 7.27. Find the Taylor series of f(z) = 1
z2 around 1.

First, notice that f(z) = 1
z2 is analytic on B(1, 1) and hence it be represented

by a unique Taylor series on that ball.
Since

1
z

=
1

1− (1− z)
=

∞∑
n=0

(1− z)n =
∞∑

n=0

(−1)n(z − 1)n

for all z ∈ B(1, 1), then by differentiation, we obtain

f(z) =
1
z2

= − d

dz
(
1
z
) =

∞∑
n=1

(−1)n−1n(z − 1)n−1

for all z ∈ B(1, 1), which is certainly the desired Taylor series of f(z) around 1.

Example 7.28. Find the Taylor series of f(z) = z
z2−z−2 around 1.

First, notice that f(z) = z
z2−z−2 = 1/3

z+1 + 2/3
z−2 is analytic on B(1, 1) and hence

it be represented by a unique Taylor series on that ball.
Since

1
z + 1

=
1

2− (1− z)
=

1
2

(
1

1− ( 1−z
2 )

)
=

1
2

∞∑
n=0

(
1− z

2
)n =

1
2

∞∑
n=0

(−1
2
)n(z − 1)n

for all z ∈ B(1, 2), and

1
z − 2

=
1

−1− (1− z)
= − 1

1− (z − 1)
= −

∞∑
n=0

(z − 1)n
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for all z ∈ B(1, 1), then we have

f(z) =
z

z2 − z + 2
=

∞∑
n=0

[
(
1
6
)(−1

2
)n − 2

3

]
(z − 1)n

for all z ∈ B(1, 1), which is certainly the desired Taylor series of f(z) around 1.

Exercise 7.29. Find the Taylor series of the following functions :
(1) f(z) = ez around 1.
(2) f(z) = sin z around i.
(3) f(z) = 1

z2+z+1 around 0.
(4) f(z) = ez

1−z sin z around 0.

Definition 7.30. A Laurent series is a series of the form
∞∑

n=−∞
an(z − z0)n =

∞∑
n=1

a−n

(z − z0)n
+

∞∑
n=0

an(z − z0)n.

The above series converges if both
∑∞

n=1
a−n

(z−z0)n and
∑∞

n=0 an(z − z0)n converges.

Theorem 7.31 (Laurent Theorem). If f is an analytic function on some open
annulus A(z0, r1, r2), then f can be uniquely represented by a Laurent series

f(z) =
∞∑

n=−∞
an(z − z0)n

on A(z0, r1, r2), where

an =
1

2πi

∮
C

f(ξ)
(ξ − z0)n+1

dξ ; n ∈ Z

and C is any simple closed contour (positively oriented) around z0 in A(z0, r1, r2).
Moreover, the convergence is uniform on any closed annulus A[z0, r

′
1, r

′
2] where

r1 < r′1 < r′2 < r2. Hence, on A(z0, r1, r2), differentiation and contour integration
of the Laurent series of f can be done term by term.

Proof. See [1]. �

Example 7.32. The Laurent series of f(z) on A :
(1) f(z) = z

z−1 on A = A(1, 0,∞).
Notice that

f(z) =
z

z − 1
=

z − 1 + 1
z − 1

= 1 +
1

z − 1
for all z ∈ A(0, 0,∞). Then 1 + 1

z−1 is the Laurent series of f(z) on
A(1, 0,∞).

(2) f(z) = e
1
z on A = A(0, 0,∞) = C∗.

Since

ez =
∞∑

n=0

zn

n!

for all z ∈ C, then

e
1
z =

∞∑
n=0

1
n!zn

is the Laurent series of f(z) on A(0, 0,∞).
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(3) f(z) = 1
1−z on A = A(0, 1,∞).

Notice that

f(z) =
1

1− z
=

1
z( 1

z − 1)
= −1

z

(
1

1− 1
z

)
= −1

z

∞∑
n=0

1
zn

=
∞∑

n=1

−1
zn

whenever
∣∣ 1
z

∣∣ < 1. Then
∑∞

n=1
−1
zn is the Laurent series of f(z) on

A(0, 1,∞).
(4) f(z) = 1

(1−z)2 on A = A(0, 1,∞).
By differentiating the Laurent series of 1

1−z from the previous exam-
ple, we have

f(z) =
1

(1− z)2
= − d

dz
(

1
1− z

) = −
∞∑

n=1

−n

zn+1
=

∞∑
n=1

n

zn+1

on A(0, 1,∞).

Example 7.33. Find the Laurent series of f(z) = 3
(1+z)(2−z) = 1

1+z + 1
2−z on

each of the following annuli : A(0, 0, 1), A(0, 1, 2) and A(0, 2,∞).
First, notice that
(1) On B(0, 1) : 1

1+z = 1
1−(−z) =

∑∞
n=0(−1)nzn.

(2) On A(0, 1,∞) : 1
1+z = 1

z

(
1

1−(− 1
z )

)
= 1

z

∑∞
n=0(−

1
z )n =

∑∞
n=0

(−1)n

zn+1 .

(3) On B(0, 2) : 1
2−z = 1

2

(
1

1− z
2

)
= 1

2

∑∞
n=0(

1
2 )nzn =

∑∞
n=0(

1
2 )n+1zn.

(4) On A(0, 2,∞) : 1
2−z = − 1

z

(
1

1− 2
z

)
= − 1

z

∑∞
n=0(

2
z )n =

∑∞
n=0

−2n

zn+1 .

Hence,
(1) On A(0, 0, 1) ⊆ B(0, 1) :

f(z) =
∞∑

n=0

(−1)nzn +
∞∑

n=0

(
1
2
)n+1zn =

∞∑
n=0

[(−1)n + (
1
2
)n+1]zn.

(2) On A(0, 1, 2) :

f(z) =
∞∑

n=0

(−1)n 1
zn+1

+
∞∑

n=0

(
1
2
)n+1zn =

∞∑
n=1

(−1)n−1 1
zn

+
∞∑

n=0

(
1
2
)n+1zn.

(3) On A(0, 2,∞) :

f(z) =
∞∑

n=0

(−1)n

zn+1
+

∞∑
n=0

−2n

zn+1
=

∞∑
n=1

(−1)n−1 − 2n−1

zn
.

Exercise 7.34. Find the Laurent series of the following functions :

(1) f(z) = e
1
z

z2 on A(0, 0,∞).
(2) f(z) = Log(1 + 1

z ) on A(0, 1,∞).
(3) f(z) = 1

(z−3)(z−4) on A(0, 0, 3).
(4) f(z) = 1

(z−3)(z−4) on A(0, 3, 4).
(5) f(z) = 1

(z−3)(z−4) on A(0, 4,∞).



CHAPTER 8

Singularity

Definition 8.1. Let z0 ∈ C and f a complex function. We say that z0 is a
singularity of f if f is not defined or not differentiable at z0. A singularity z0 is
said to be isolated if f is analytic on an annulus A(z0, 0, r) for some r > 0.

Definition 8.2. Let z0 be an isolated singularity of f . Suppose the Laurent
series f(z) on some annulus A(z0, 0, r) around z0 is

∑∞
n=−∞ an(z − z0)n. We say

that z0 is
• a removable singularity if an = 0 for all n < 0,
• a pole of order N ∈ N if a−N 6= 0 and an = 0 for all n < −N ,
• an essential singularity if for any n < 0, there is m < n such that

am 6= 0.
A pole of order 1 is always called a simple pole.

Example 8.3. Each of the following functions has only one isolated singularity
at 0, however

(1) f(z) = sin z
z has a removable singularity at 0,

(2) f(z) = 1
z has a pole of order 1 at 0,

(3) f(z) = e
1
z has an essential singularity at 0.

Lemma 8.4. If f has a removable singularity at z0, then f can be extended to
an analytic function on some open ball around z0.

Proof. Suppose f has a removable singularity at z0. Then, we have

f(z) =
∞∑

n=0

an(z − z0)n

on some annulus A(z0, 0, r). By defining g : B(0, r) → C by

g(z) =
∞∑

n=0

an(z − z0)n,

it is clear that g is the desired analytic extension of f on B(0, r). �

Theorem 8.5. Let z0 be an isolated singularity of f . TFAE :
(1) z0 is a removable singularity of f .
(2) f is bounded on some annulus A(z0, 0, r).
(3) lim

z→z0
f(z) exists.

Definition 8.6. Suppose f is analytic at z0 and f(z0) = 0. We say that
z0 is a zero of order N of f if the Taylor series of f around z0 is of the form∑∞

n=N an(z − z0)n with aN 6= 0.

35
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Example 8.7. 0 is a zero of order 2 of f(z) = sin2 z because

f(z) = (z − z3

3!
+

z5

5!
+ . . . )(z − z3

3!
+

z5

5!
+ . . . ) = z2 − 2

3!
z3 + . . .

for all z ∈ C.

Theorem 8.8. Let z0 be an isolated singularity of f . TFAE :
(1) z0 is a pole of order N > 0 of f .
(2) f(z) = g(z)

(z−z0)N where g is analytic at z0 and g(z0) 6= 0.
(3) lim

z→z0
f(z) = ∞ and lim

z→z0
(z − z0)Nf(z) 6= 0.

(4) z0 is a zero of order N of 1
f .

Example 8.9. Let f(z) = ez

(z−1)2(z−3)4 . Then 2 is a pole of order 2 while 3 is a

pole of order 4 of f . Also note that f(z) = g(z)
(z−1)2 where g(z) = ez

(z−3)4 is analytic
at 1 and g(1) 6= 0.

Example 8.10. Since 0 is a zero of order 2 of sin2 z, then by the previous
theorem, f(z) = 1

sin2 z
has a pole of order 2 at 0.

Theorem 8.11. Let z0 be an isolated singularity of f . If z0 is an essential
singularity of f , then for any w ∈ C, there exists a sequence (zn) → z0 such that

lim
n→∞

f(zn) = w.

Definition 8.12. Let z0 be an isolated singularity of f , says f is analytic
on some annulus A(z0, 0, r). Suppose the Laurent series of f on A(z0, 0, r) is∑∞

n=0 an(z − z0)n. We define the residue of f at z0 by

Res(f, z0) = a−1.

Theorem 8.13. If z0 is a pole of order N of f , then

Res(f, z0) =
1

(N − 1)!
lim

z→z0

dN−1

dzN−1
[(z − z0)Nf(z)].

In particular, if z0 is a simple pole of f , we have

Res(f, z0) = lim
z→z0

(z − z0)f(z).

Proof. Suppose f(z) =
∑∞

n=−N an(z − z0)n where aN 6= 0 on some annulus
A(z0, 0, r). Then, it is easy to verify that

lim
z→z0

dN−1

dzN−1
[(z − z0)Nf(z)] = (N − 1)!a−1

and hence

Res(f, z0) = a−1 =
1

(N − 1)!
lim

z→z0

dN−1

dzN−1
[(z − z0)Nf(z)].

�

Example 8.14. Let f(z) = ez

(z2+1)z2 . Clearly, 0, i and −i are poles of order 2,1
and 1, respectively, of f . Hence,

Res(f, 0) = lim
z→0

d

dz
[z2f(z)] = lim

z→0

d

dz
[

ez

z2 + 1
] = lim

z→0

(z2 + 1)ez − 2zez

(z2 + 1)2
= 1,
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Res(f, i) = lim
z→i

[(z − i)f(z)] = lim
z→i

ez

(z + i)z2
= − ei

2i

and

Res(f,−i) = lim
z→−i

[(z + i)f(z)] = lim
z→−i

ez

(z − i)z2
=

e−i

2i
.

Exercise 8.15. Show that f(z) = ez

sin2 z
has poles of order 2 at 0,±π,±2π, . . .

and Res(f, π) = eπ.

Suppose f has an isolated singularity at z0. Then Laurent theorem guarantees
that f has the Laurent series, says

∑∞
n=−∞ an(z−z0)n, on some annulus A(z0, 0, r)

where f is analytic. Then, for any (positively oriented) simple closed contour
C ⊆ A(z0, 0, r) around z0, we clearly have∮

C

f(z)dz = 2πia−1 = 2πiRes(f, z0).

In fact, we have a more general theorem whose proof is straightforward.

Theorem 8.16 (Residue Theorem). Let C be a (positively oriented) simple
closed contour in the domain of f and R the region inside and on C. Suppose f
has singularities at z1, z2, . . . , zn ∈ Int(R) and f is analytic on R−{z1, z2, . . . , zn}.
Then we have ∮

C

f(z)dz = 2πi
n∑

k=1

Res(f, zk).

Proof. By assumption, we can write∮
C

f(z)dz =
n∑

k=1

∮
Ck

f(z)dz

where Ci is a (positively oriented) simple closed contour in Int(R) such that zk is
the only singularity of f inside Ck. Then, by the previous observation, we have∮

Ck
f(z)dz = 2πiRes(f, zk) and hence the theorem follows. �

Example 8.17. Let C = ∂B(π, 1) (positively oriented). Since π is the only
singularity of f(z) = ez

sin2 z
in B(π, 1), we have∮

C

f(z)dz = 2πiRes(f, 0) = 2πieπ.

Exercise 8.18. Find the following integrals :
(1)

∮
∂B(0,10)

ez

sin2 z
dz.

(2)
∮

∂B(0,2)
ez

(z2+1)z2 dz.
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