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Chapter 1

COMPLEX NUMBERS

1.1. Arithmetic and Conjugates

The purpose of this chapter is to give a review of various properties of the complex numbers that we shall
need in the discussion of complex analysis. As the reader is expected to be familiar with the material,
all proofs have been omitted.

The equation x2 +1 = 0 has no solution x ∈ R. To “solve” this equation, we have to introduce extra
numbers into our number system. To do this, we define the number i by i2 +1 = 0, and then extend the
field of all real numbers by adjoining the number i, which is then combined with the real numbers by the
operations addition and multiplication in accordance with the Field axioms of the real number system.
The numbers a + ib, where a, b ∈ R, of the extended field are then added and multiplied in accordance
with the Field axioms, suitably extended, and the restriction i2 + 1 = 0. Note that the number a + 0i,
where a ∈ R, behaves like the real number a.

What we have said in the last paragraph basically amounts to the following. Consider two complex
numbers a + ib and c + id, where a, b, c, d ∈ R. We have the addition and multiplication rules

(a + ib) + (c + id) = (a + c) + i(b + d) and (a + ib)(c + id) = (ac − bd) + i(ad + bc).

These lead to the subtraction rule

(a + ib) − (c + id) = (a − c) + i(b − d),

and the division rule, that if c + id �= 0, then

a + ib
c + id

=
ac + bd

c2 + d2
+ i

bc − ad

c2 + d2
.
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Note the special case a = 1 and b = 0.

Suppose that z = x+iy, where x, y ∈ R. The real number x is called the real part of z, and denoted
by x = Rez. The real number y is called the imaginary part of z, and denoted by y = Imz. The set
C = {z = x + iy : x, y ∈ R} is called the set of all complex numbers. The complex number z = x − iy is
called the conjugate of z.

It is easy to see that for every z ∈ C, we have

Rez =
z + z

2
and Imz =

z − z

2i
.

Furthermore, if w ∈ C, then

z + w = z + w and zw = z w.

1.2. Polar Coordinates

Suppose that z = x + iy, where x, y ∈ R. The real number

r =
√

x2 + y2

is called the modulus of z, and denoted by |z|. On the other hand, if z �= 0, then any number θ ∈ R

satisfying the equations

(1) x = r cos θ and y = r sin θ

is called an argument of z, and denoted by arg z. Hence we can write z in polar form

z = r(cos θ + i sin θ).

Note, however, that for a given z ∈ C, arg z is not unique. Clearly we can add any integer multiple of
2π to θ without affecting (1). We sometimes call a real number θ ∈ R the principal argument of z if θ
satisfies the equations (1) and −π < θ ≤ π. The principal argument of z is usually denoted by Arg z.

It is easy to see that for every z ∈ C, we have |z|2 = zz. Also, if w ∈ C, then

|zw| = |z||w| and |z + w| ≤ |z| + |w|.

Furthermore, if

z = r(cos θ + i sin θ) and w = s(cos φ + i sinφ),

where r, s, θ, φ ∈ R and r, s > 0, then

zw = rs(cos(θ + φ) + i sin(θ + φ)) and
z

w
=

r

s
(cos(θ − φ) + i sin(θ − φ)).

1.3. Rational Powers

De Moivre’s theorem, that

(2) cos nθ + i sin nθ = (cos θ + i sin θ)n for every n ∈ N and θ ∈ R,
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is useful in finding n-th roots of complex numbers.

Suppose that c = R(cos α + i sin α), where R, α ∈ R and R > 0. Then the solutions of the equation
zn = c are given by

z = n
√

R

(
cos

α + 2kπ

n
+ i sin

α + 2kπ

n

)
, where k = 0, 1, . . . , n − 1.

Finally, we can define cb for any b ∈ Q and non-zero c ∈ C as follows. The rational number b can
be written uniquely in the form b = p/q, where p ∈ Z and q ∈ N have no prime factors in common.
Then there are exactly q distinct numbers z satisfying zq = c. We now define cb = zp, noting that the
expression (2) can easily be extended to all n ∈ Z. It is not too difficult to show that there are q distinct
values for the rational power cb.

Problems for Chapter 1

1. Suppose that z0 ∈ C is fixed. A polynomial P (z) is said to be divisible by z − z0 if there is another
polynomial Q(z) such that P (z) = (z − z0)Q(z).
a) Show that for every c ∈ C and k ∈ N, the polynomial c(zk − zk

0 ) is divisible by z − z0.
b) Consider the polynomial P (z) = a0 + a1z + a2z

2 + . . . + anzn, where a0, a1, a2, . . . , an ∈ C are
arbitrary. Show that the polynomial P (z) − P (z0) is divisible by z − z0.

c) Deduce that P (z) is divisible by z − z0 if P (z0) = 0.
d) Suppose that a polynomial P (z) of degree n vanishes at n distinct values z1, z2, . . . , zn ∈ C, so

that P (z1) = P (z2) = . . . = P (zn) = 0. Show that P (z) = c(z − z1)(z − z2) . . . (z − zn), where
c ∈ C is a constant.

e) Suppose that a polynomial P (z) of degree n vanishes at more than n distinct values. Show
that P (z) = 0 identically.

2. Suppose that α ∈ C is fixed and |α| < 1. Show that |z| ≤ 1 if and only if
∣∣∣∣ z − α

1 − αz

∣∣∣∣ ≤ 1.

3. Suppose that z = x + iy, where x, y ∈ R. Express each of the following in terms of x and y:

a) |z − 1|3 b)
∣∣∣∣z + 1
z − 1

∣∣∣∣ c)
∣∣∣∣ z + i
1 − iz

∣∣∣∣
4. Suppose that c ∈ R and α ∈ C with α �= 0.

a) Show that αz + αz + c = 0 is the equation of a straight line on the plane.
b) What does the equation zz + αz + αz + c = 0 represent if |α|2 ≥ c?

5. Suppose that z, w ∈ C. Show that |z + w|2 + |z − w|2 = 2(|z|2 + |w|2).

6. Find all the roots of the equation (z8 − 1)(z3 + 8) = 0.

7. For each of the following, compute all the values and plot them on the plane:
a) (1 + i)−1/2 b) (−4)3/4 c) (1 − i)3/8


