
INTRODUCTION TO COMPLEX ANALYSIS

W W L CHEN

c© W W L Chen, 1996, 2003.

This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990.

It is available free to all individuals, on the understanding that it is not to be used for financial gains,

and may be downloaded and/or photocopied, with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system without permission

from the author, unless such system is not accessible to any individuals other than its owners.

Chapter 2

FOUNDATIONS OF COMPLEX ANALYSIS

2.1. Three Approaches

We start by remarking that analysis is sometimes known as the study of the four C’s: convergence,
continuity, compactness and connectedness. In real analysis, we have studied convergence and continuity
to some depth, but the other two concepts have been somewhat disguised. In this course, we shall try
to illustrate these two latter concepts a little bit more, particularly connectedness.

Complex analysis is the study of complex valued functions of complex variables. Here we shall
restrict the number of variables to one, and study complex valued functions of one complex variable.
Unless otherwise stated, all functions in these notes are of the form f : S → C, where S is a set in C.

We shall study the behaviour of such functions using three different approaches. The first of these,
discussed in Chapter 3 and usually attributed to Riemann, is based on differentiation and involves pairs
of partial differential equations called the Cauchy-Riemann equations. The second approach, discussed in
Chapters 4–11 and usually attributed to Cauchy, is based on integration and depends on a fundamental
theorem known nowadays as Cauchy’s integral theorem. The third approach, discussed in Chapter 16
and usually attributed to Weierstrass, is based on the theory of power series.

2.2. Point Sets in the Complex Plane

We shall study functions of the form f : S → C, where S is a set in C. In most situations, various
properties of the point sets S play a crucial role in our study. We therefore begin by discussing various
types of point sets in the complex plane.

Before making any definitions, let us consider a few examples of sets which frequently occur in our
subsequent discussion.
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Example 2.2.1. Suppose that z0 ∈ C, r, R ∈ R and 0 < r < R. The set {z ∈ C : |z − z0| < R}
represents a disc, with centre z0 and radius R, and the set {z ∈ C : r < |z − z0| < R} represents an
annulus, with centre z0, inner radius r and outer radius R.

Example 2.2.2. Suppose that A, B ∈ R and A < B. The set {z = x + iy ∈ C : x, y ∈ R and x > A}
represents a half-plane, and the set {z = x + iy ∈ C : x, y ∈ R and A < x < B} represents a strip.

Example 2.2.3. Suppose that α, β ∈ R and 0 ≤ α < β < 2π. The set

{z = r(cos θ + i sin θ) ∈ C : r, θ ∈ R and r > 0 and α < θ < β}

represents a sector.

We now make a number of important definitions. The reader may subsequently need to return to
these definitions.
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Definition. Suppose that z0 ∈ C and ε ∈ R, with ε > 0. By an ε-neighbourhood of z0, we mean a
disc of the form {z ∈ C : |z − z0| < ε}, with centre z0 and radius ε > 0.

Definition. Suppose that S is a point set in C. A point z0 ∈ S is said to be an interior point of S
if there exists an ε-neighbourhood of z0 which is contained in S. The set S is said to be open if every
point of S is an interior point of S.

Example 2.2.4. The sets in Examples 2.2.1–2.2.3 are open.

Example 2.2.5. The punctured disc {z ∈ C : 0 < |z − z0| < R} is open.

Example 2.2.6. The disc {z ∈ C : |z − z0| ≤ R} is not open.

Example 2.2.7. The empty set ∅ is open. Why?

Definition. An open set S is said to be connected if every two points z1, z2 ∈ S can be joined by the
union of a finite number of line segments lying in S. An open connected set is called a domain.

Remarks. (1) Sometimes, we say that an open set S is connected if there do not exist non-empty
open sets S1 and S2 such that S1 ∪ S2 = S and S1 ∩ S2 = ∅. In other words, an open connected set
cannot be the disjoint union of two non-empty open sets.

(2) In fact, it can be shown that the two definitions are equivalent.
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(3) Note that we have not made any definition of connectedness for sets that are not open. In
fact, the definition of connectedness for an open set given by (1) here is a special case of a much more
complicated definition of connectedness which applies to all point sets.

Example 2.2.8. The sets in Examples 2.2.1–2.2.3 are domains.

Example 2.2.9. The punctured disc {z ∈ C : 0 < |z − z0| < R} is a domain.

Definition. A point z0 ∈ C is said to be a boundary point of a set S if every ε-neighbourhood of z0

contains a point in S as well as a point not in S. The set of all boundary points of a set S is called the
boundary of S.

Example 2.2.10. The annulus {z ∈ C : r < |z − z0| < R}, where 0 < r < R, has boundary C1 ∪ C2,
where

C1 = {z ∈ C : |z − z0| = r} and C2 = {z ∈ C : |z − z0| = R}

are circles, with centre z0 and radius r and R respectively. Note that the annulus is connected and hence
a domain. However, note that its boundary is made up of two separate pieces.

Definition. A region is a domain together with all, some or none of its boundary points. A region
which contains all its boundary points is said to be closed. For any region S, we denote by S the closed
region containing S and all its boundary points, and call S the closure of S.

Remark. Note that we have not made any definition of closedness for sets that are not regions. In
fact, our definition of closedness for a region here is a special case of a much more complicated definition
of closedness which applies to all point sets.

Definition. A region S is said to be bounded or finite if there exists a real number M such that
|z| ≤ M for every z ∈ S. A region that is closed and bounded is said to be compact.

Example 2.2.11. The region {z ∈ C : |z−z0| ≤ R} is closed and bounded, hence compact. It is called
the closed disc with centre z0 and radius R.

Example 2.2.12. The region {z = x + iy ∈ C : x, y ∈ R and 0 ≤ x ≤ 1} is closed but not bounded.

Example 2.2.13. The square {z = x + iy ∈ C : x, y ∈ R and 0 ≤ x ≤ 1 and 0 < y < 1} is bounded
but not closed.
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2.3. Complex Functions

In these lectures, we study complex valued functions of one complex variable. In other words, we study
functions of the form f : S → C, where S is a set in C. Occasionally, we will abuse notation and simply
refer to a function by its formula, without explicitly defining the domain S. For instance, when we
discuss the function f(z) = 1/z, we implicitly choose a set S which will not include the point z = 0
where the function is not defined. Also, we may occasionally wish to include the point z = ∞ in the
domain or codomain.

We may separate the independent variable z as well as the dependent variable w = f(z) into real
and imaginary parts. Our usual notation will be to write z = x + iy and w = f(z) = u + iv, where
x, y, u, v ∈ R. It follows that u = u(x, y) and v = v(x, y) can be interpreted as real valued functions of
the two real variables x and y.

Example 2.3.1. Consider the function f : S → C, given by f(z) = z2 and where S = {z ∈ C : |z| < 2}
is the open disc with radius 2 and centre 0. Using polar coordinates, it is easy to see that the range of
the function is the open disc f(S) = {w ∈ C : |w| < 4} with radius 4 and centre 0.

Example 2.3.2. Consider the function f : H → C, where H = {z = x + iy ∈ C : y > 0} is the upper
half-plane and f(z) = z2. Using polar coordinates, it is easy to see that the range of the function is the
complex plane minus the non-negative real axis.

Example 2.3.3. Consider the function f : T → C, where T = {z = x + iy ∈ C : 1 < x < 2} is a strip
and f(z) = z2. Let x0 ∈ (1, 2) be fixed, and consider the image of a point (x0, y) on the vertical line
x = x0. Here we have

u = x2
0 − y2 and v = 2x0y.

Eliminating y, we obtain the equation of a parabola

u = x2
0 −

v2

4x2
0

in the w-plane. It follows that the image of the vertical line x = x0 under the function w = z2 is this
parabola. Now the boundary of the strip are the two lines x = 1 and x = 2. Their images under the
mapping w = z2 are respectively the parabolas

u = 1 − v2

4
and u = 4 − v2

16
.

It is easy to see that the range of the function is the part of the w-plane between these two parabolas.
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Example 2.3.4. Consider again the function w = z2. We would like to find all z = x + iy ∈ C for
which 1 < Rew < 2. In other words, we have the restriction 1 < u < 2, but no rectriction on v. Let
u0 ∈ (1, 2) be fixed, and consider points (x, y) in the z-plane with images on the vertical line u = u0.
Here we have the hyperbola

x2 − y2 = u0.

The boundaries u = 1 and u = 2 are represented by the hyperbolas

x2 − y2 = 1 and x2 − y2 = 2.

It is easy to see that the points in question are precisely those between the two hyperbolas.

2.4. Extended Complex Plane

It is sometimes useful to extend the complex plane C by the introduction of the point ∞ at infinity. Its
connection with finite complex numbers can be established by setting z +∞ = ∞+ z = ∞ for all z ∈ C,
and setting z · ∞ = ∞ · z = ∞ for all non-zero z ∈ C. We can also write ∞ ·∞ = ∞.

Note that it is not possible to define ∞ + ∞ and 0 · ∞ without violating the laws of arithmetic.
However, by special convention, we shall write z/0 = ∞ for z 	= 0 and z/∞ = 0 for z 	= ∞.

In the complex plane C, there is no room for a point corresponding to ∞. We can, of course,
introduce an “ideal” point which we call the point at infinity. The points in C, together with the point
at infinity, form the extended complex plane. We decree that every straight line on the complex plane
shall pass through the point at infinity, and that no half-plane shall contain the ideal point.

The main purpose of this section is to introduce a geometric model in which each point of the
extended complex plane has a concrete representative. To do this, we shall use the idea of stereographic
projection.

Consider a sphere of radius 1 in R
3. A typical point on this sphere will be denoted by P (x1, x2, x3).

Note that x2
1 +x2

2 +x2
3 = 1. Let us call the point N(0, 0, 1) the north pole. The equator of this sphere is

the set of all points of the form (x1, x2, 0), where x2
1 + x2

2 = 1. Consider next the complex plane C. This
can be viewed as a plane in R

3. Let us position this plane in such a way that the equator of the sphere
lies on this plane; in other words, our copy of the complex plane is “horizontal” and passes through the
origin. We can further insist that the x-direction on our complex plane is the same as the x1-direction
in R

3, and that the y-direction on our complex plane is the same as the x2-direction in R
3. Clearly a

typical point z = x + iy on our complex plane C can be identified with the point Z(x, y, 0) in R
3.
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Suppose that Z(x, y, 0) is on the plane. Consider the straight line that passes through Z and the
north pole N . It is not too difficult to see that this straight line intersects the surface of the sphere at
precisely one other point P (x1, x2, x3). In fact, if Z is on the equator of the sphere, then P = Z. If Z is
on the part of the plane outside the sphere, then P is on the northern hemisphere, but is not the north
pole N . If Z is on the part of the plane inside the sphere, then P is on the southern hemisphere. Check
that for Z(0, 0, 0), the point P (0, 0,−1) is the south pole.

On the other hand, if P is any point on the sphere different from the north pole N , then a straight
line passing through P and N intersects the plane at precisely one point Z. It follows that there is a
pairing of all the points P on the sphere different from the north pole N and all the points on the plane.
This pairing is governed by the requirement that the straight line through any pair must pass through
the north pole N .

We can now visualize the north pole N as the point on the sphere corresponding to the point at
infinity of the plane. The sphere is called the Riemann sphere.

2.5. Limits and Continuity

The concept of a limit in complex analysis is exactly the same as in real analysis. So, for example, we
say that f(z) → L as z → z0, or

lim
z→z0

f(z) = L,

if, given any ε > 0, there exists δ > 0 such that |f(z) − L| < ε whenever 0 < |z − z0| < δ.

This definition will be perfectly in order if the function f is defined in some open set containing
z0, with the possible exception of z0 itself. It follows that if z0 is an interior point of the region S of
definition of the function, our definition is in order. However, if z0 is a boundary point of the region S
of definition of the function, then we agree that the conclusion |f(z) − L| < ε need only hold for those
z ∈ S satisfying 0 < |z − z0| < δ.

Similarly, we say that a function f(z) is continuous at z0 if f(z) → f(z0) as z → z0. A similar
qualification on z applies if z0 is a boundary point of the region S of definition of the function. We also
say that a function is continuous in a region if it is continuous at every point of the region.
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Note that for a function to be continuous in a region, it is enough to have continuity at every point of
the region. Hence the choice of δ may depend on a point z0 in question. If δ can be chosen independently
of z0, then we have some uniformity as well. To be precise, we make the following definition.

Definition. A function f(z) is said to be uniformly continuous in a region S if, given any ε > 0, there
exists δ > 0 such that |f(z1) − f(z2)| < ε for every z1, z2 ∈ S satisfying |z1 − z2| < δ.

Remark. Note that if we fix z2 to be a point z0 and write z for z1, then we require |f(z)− f(z0)| < ε
for every z ∈ S satisfying |z − z0| < δ. In other words, δ cannot depend on z0.

Example 2.5.1. Consider the punctured disc S = {z ∈ C : 0 < |z| < 1}. The function f(z) = 1/z is
continuous in S but not uniformly continuous in S. To see this, note first of all that continuity follows
from the simple observation that the function z is continuous and non-zero in S. To show that the
function is not uniformly continuous in S, it suffices to show that there exists ε > 0 such that for every
δ > 0, there exist z1, z2 ∈ S such that

|z1 − z2| < δ and
∣∣∣∣ 1
z1

− 1
z2

∣∣∣∣ ≥ ε.

Let ε = 1. For every δ > 0, choose n ∈ N such that n > δ−1/2, and let

z1 =
1
n

and z2 =
1

n + 1
.

Clearly z1, z2 ∈ S. It is easy to see that

|z1 − z2| =
∣∣∣∣ 1
n
− 1

n + 1

∣∣∣∣ =
1

n(n + 1)
< δ and

∣∣∣∣ 1
z1

− 1
z2

∣∣∣∣ = 1.

Problems for Chapter 2

1. For each of the following functions, find f(z + 3), f(1/z) and f(f(z)):

a) f(z) = z − 1 b) f(z) = z2 c) f(z) = 1/z d) f(z) =
1 − z

3 + z

2. Which of the sets below are domains?
a) {z : 0 < |z| < 1} b) {z : Imz < 3|z|} c) {z : |z − 1| ≤ |z + 1|}
d) {z : |z2 − 1| < 1} e) {z : 0 < Rez ≤ 1}

3. Find the image of the strip {z : |Rez| < 1} and of the disc {z : |z| < 1} under each of the following
mappings:

a) w = (1 + i)z + 1 b) w = 2z2 c) w = z−1 d) w =
z + 1
z − 1

4. A function f(z) is said to be an isometry if |f(z1)− f(z2)| = |z1 − z2| for every z1, z2 ∈ C; in other
words, if it preserves distance.
a) Suppose that f(z) is an isometry. Show that for every a, b ∈ C with |a| = 1, the function

g(z) = af(z) + b is also an isometry.
b) Show that the function

h(z) =
f(z) − f(0)
f(1) − f(0)

is an isometry with h(0) = 0 and h(1) = 1.
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c) Suppose that k(z) is an isometry with k(0) = 0 and k(1) = 1. Show that Rek(z) = Rez, and
that k(i) = ±i.
[Hint: Explain first of all why |k(z)| = |z| and |1 − k(z)| = |1 − z|.]

d) Suppose that in (c), we have k(i) = i. Show that Imk(z) = Imz and that k(z) = z for all
z ∈ C.

e) Suppose that in (c), we have k(i) = −i. Show that Imk(z) = −Imz and that k(z) = z for all
z ∈ C.

f) Deduce that every isometry has the form f(z) = az + b or f(z) = az + b, where a, b ∈ C with
|a| = 1.

5. In the notation of Section 2.4, let the point z = x + iy on the complex plane C correspond to the
point (x1, x2, x3) of the sphere under stereographic projection, so that the three points (0, 0, 1),
(x1, x2, x3) and (x, y, 0) are collinear. Note that (x1, x2, x3 − 1) = λ(x, y,−1) for some λ ∈ R, and
that x2

1 + x2
2 + x2

3 = 1.

a) Show that (x1, x2, x3) =
(

2x

|z|2 + 1
,

2y

|z|2 + 1
,
|z|2 − 1
|z|2 + 1

)
.

b) Note that a circle on the sphere is the intersection of the sphere with a plane ax1+bx2+cx3 = d.
By expressing this equation of the plane in terms of x and y, show that a circle on the sphere
not containing the pole (0, 0, 1) corresponds to a circle in the complex plane. Show also that a
circle on the sphere containing the pole (0, 0, 1) corresponds to a line in the complex plane.

c) Suppose that (x1, x2, x3) and (x′
1, x

′
2, x

′
3) are two points on the sphere corresponding to the com-

plex numbers z and z′ respectively. Show that the distance between (x1, x2, x3) and (x′
1, x

′
2, x

′
3)

is given by

d(z, z′) =
2|z − z′|√

1 + |z|2
√

1 + |z′|2
.

[Remark: The number d(z, z′) is known as the chordal distance.]

6. Each of the following functions is not defined at z = z0. What value must f(z0) take to ensure
continuity at z = z0?

a) f(z) =
z − z0

z − z0
b) f(z) =

z3 − z3
0

z − z0

c) f(z) =
1

z − z0

(
1
z
− 1

z0

)
d) f(z) =

1
z − z0

(
1
z3

− 1
z3
0

)

7. Suppose that

f(z) =
a0 + a1z + a2z

2

b0 + b1z + b2z2
,

where a0, a1, a2, b0, b1, b2 ∈ C. Examine the behaviour of f(z) at z = 0 and at z = ∞.


