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Chapter 3

COMPLEX DIFFERENTIATION

3.1. Introduction

Suppose that D ⊆ C is a domain. A function f : D → C is said to be differentiable at z0 ∈ D if the limit

lim
z→z0

f(z) − f(z0)
z − z0

exists. In this case, we write

(1) f ′(z0) = lim
z→z0

f(z) − f(z0)
z − z0

,

and call f ′(z0) the derivative of f at z0.

If z �= z0, then

f(z) =
(

f(z) − f(z0)
z − z0

)
(z − z0) + f(z0).

It follows from (1) and the arithmetic of limits that if f ′(z0) exists, then f(z) → f(z0) as z → z0, so
that f is continuous at z0. In other words, differentiability at z0 implies continuity at z0.

Note that the argument here is the same as in the case of a real valued function of a real variable. In
fact, the similarity in argument extends to the arithmetic of limits. Indeed, if the functions f : D → C

and g : D → C are both differentiable at z0 ∈ D, then both f + g and fg are differentiable at z0, and

(f + g)′(z0) = f ′(z0) + g′(z0) and (fg)′(z0) = f(z0)g′(z0) + f ′(z0)g(z0).
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If the extra condition g′(z0) �= 0 holds, then f/g is differentiable at z0, and

(
f

g

)′
(z0) =

g(z0)f ′(z0) − f(z0)g′(z0)
g2(z0)

.

One can also establish the Chain rule for differentiation as in real analysis. More precisely, suppose
that the function f is differentiable at z0 and the function g is differentiable at w0 = f(z0). Then the
function g ◦ f is differentiable at z = z0, and

(g ◦ f)′(z0) = g′(w0)f ′(z0).

Example 3.1.1. Consider the function f(z) = z, where for every z ∈ C, z denotes the complex
conjugate of z. Suppose that z0 ∈ C. Then

(2)
f(z) − f(z0)

z − z0
=

z − z0

z − z0
=

z − z0

z − z0
.

If z − z0 = h is real and non-zero, then (2) takes the value 1. On the other hand, if z − z0 = ik is purely
imaginary, then (2) takes the value −1. It follows that this function is not differentiable anywhere in C,
although its real and imaginary parts are rather well behaved.

3.2. The Cauchy-Riemann Equations

If we use the notation

f ′(z) = lim
h→0

f(z + h) − f(z)
h

,

then in Example 3.1.1, we have examined the behaviour of the ratio

f(z + h) − f(z)
h

first as h → 0 through real values and then through imaginary values. Indeed, for the derivative
to exist, it is essential that these two limiting processes produce the same limit f ′(z). Suppose that
f(z) = u(x, y) + iv(x, y), where z = x + iy, and u and v are real valued functions. If h is real, then the
two limiting processes above correspond to

lim
h→0

f(z + h) − f(z)
h

= lim
h→0

u(x + h, y) − u(x, y)
h

+ i lim
h→0

v(x + h, y) − v(x, y)
h

=
∂u

∂x
+ i

∂v

∂x

and

lim
h→0

f(z + ih) − f(z)
ih

= lim
h→0

u(x, y + h) − u(x, y)
ih

+ i lim
h→0

v(x, y + h) − v(x, y)
ih

=
∂v

∂y
− i

∂u

∂y

respectively. Equating real and imaginary parts, we obtain

(3)
∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Note that while the existence of the derivative in real analysis is a mild smoothness condition, the
existence of the derivative in complex analysis leads to a pair of partial differential equations.
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Definition. The partial differential equations (3) are called the Cauchy-Riemann equations.

We have proved the following result.

THEOREM 3A. Suppose that f(z) = u(x, y) + iv(x, y), where z = x + iy, and u and v are real
valued functions. Suppose further that f ′(z) exists. Then the four partial derivatives in (3) exist, and
the Cauchy-Riemann equations (3) hold. Furthermore, we have

(4) f ′(z) =
∂u

∂x
+ i

∂v

∂x
and f ′(z) =

∂v

∂y
− i

∂u

∂y
.

A natural question to ask is whether the Cauchy-Riemann equations are sufficient to guarantee
the existence of the derivative. We shall show next that we require also the continuity of the partial
derivatives in (3).

THEOREM 3B. Suppose that f(z) = u(x, y) + iv(x, y), where z = x + iy, and u and v are real
valued functions. Suppose further that the four partial derivatives in (3) are continuous and satisfy the
Cauchy-Riemann equations (3) at z0. Then f is differentiable at z0, and the derivative f ′(z0) is given
by the equations (4) evaluated at z0.

Proof. Write z0 = x0 + iy0. Then

f(z) − f(z0)
z − z0

=
(u(x, y) − u(x0, y0)) + i(v(x, y) − v(x0, y0))

z − z0
.

We can write

u(x, y) − u(x0, y0) = (x − x0)
(

∂u

∂x

)
z0

+ (y − y0)
(

∂u

∂y

)
z0

+ |z − z0|ε1(z)

and

v(x, y) − v(x0, y0) = (x − x0)
(

∂v

∂x

)
z0

+ (y − y0)
(

∂v

∂y

)
z0

+ |z − z0|ε2(z).

If the four partial derivatives in (3) are continuous at z0, then

lim
z→z0

ε1(z) = 0 and lim
z→z0

ε2(z) = 0.

In view of the Cauchy-Riemann equations (3), we have

(u(x, y) − u(x0, y0)) + i(v(x, y) − v(x0, y0))

= (x − x0)
(

∂u

∂x
+ i

∂v

∂x

)
z0

+ (y − y0)
(

∂u

∂y
+ i

∂v

∂y

)
z0

+ |z − z0|(ε1(z) + iε2(z))

= (x − x0)
(

∂u

∂x
+ i

∂v

∂x

)
z0

+ (y − y0)
(
−∂v

∂x
+ i

∂u

∂x

)
z0

+ |z − z0|(ε1(z) + iε2(z))

= (x − x0)
(

∂u

∂x
+ i

∂v

∂x

)
z0

+ i(y − y0)
(

∂u

∂x
+ i

∂v

∂x

)
z0

+ |z − z0|(ε1(z) + iε2(z))

= (z − z0)
(

∂u

∂x
+ i

∂v

∂x

)
z0

+ |z − z0|(ε1(z) + iε2(z)).

Hence

f(z) − f(z0)
z − z0

=
(

∂u

∂x
+ i

∂v

∂x

)
z0

+
( |z − z0|

z − z0

)
(ε1(z) + iε2(z)) →

(
∂u

∂x
+ i

∂v

∂x

)
z0
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as z → z0, giving the desired results. ©

3.3. Analytic Functions

In the previous section, we have shown that differentiability in complex analysis leads to a pair of partial
differential equations. Now partial differential equations are seldom of interest at a single point, but
rather in a region. It therefore seems reasonable to make the following definition.

Definition. A function f is said to be analytic at a point z0 ∈ C if it is differentiable at every z in
some ε-neighbourhood of the point z0. The function f is said to be analytic in a region if it is analytic
at every point in the region. The function f is said to be entire if it is analytic in C.

Example 3.3.1. Consider the function f(z) = |z|2. In our usual notation, we clearly have

u = x2 + y2 and v = 0.

The Cauchy-Riemann equations

2x = 0 and 2y = 0

can only be satisfied at z = 0. It follows that the function is differentiable only at the point z = 0, and
is therefore analytic nowhere.

Example 3.3.2. The function f(z) = z2 is entire.

Example 3.3.3. Suppose that the function f is analytic in a domain D. Suppose further that f has
constant real part u. Then clearly

∂u

∂x
= 0 and

∂u

∂y
= 0.

Since f is analytic in D, it is differentiable at every point in D, and so the Cauchy-Riemann equations
hold in D. It follows that

∂v

∂x
= 0 and

∂v

∂y
= 0.

Hence f must have constant imaginary part v, and so f must be constant in D.

Example 3.3.4. Suppose that the function f is analytic in a domain D. Suppose further that f has
constant imaginary part v. A similar argument shows that f must have constant real part u. Hence f
must be constant in D.

Example 3.3.5. Suppose that the function f is analytic in a domain D. Suppose further that f has
constant modulus. In other words, u2 + v2 = C for some non-negative real number C. Differentiating
this with respect to x and to y, we obtain respectively

2u
∂u

∂x
+ 2v

∂v

∂x
= 0 and 2u

∂u

∂y
+ 2v

∂v

∂y
= 0.

In view of the Cauchy-Riemann equations, these can be written as

2u
∂u

∂x
− 2v

∂u

∂y
= 0 and 2v

∂u

∂x
+ 2u

∂u

∂y
= 0.
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In matrix notation, these become

(
u −v
v u

) 


∂u

∂x

∂u

∂y


 =

(
0
0

)
.

Note now that

det
(

u −v
v u

)
= u2 + v2 = C.

If C > 0, then we must have the unique solution

∂u

∂x
= 0 and

∂u

∂y
= 0,

so that the real part u is constant. It then follows from Example 3.3.3 that f is constant in D. On the
other hand, if C = 0, then clearly u = v = 0, so that f = 0 in D.

3.4. Introduction to Special Functions

In this section, we shall generalize various functions that we have studied in real analysis to the complex
domain. Consider first of all the exponential function. It seems reasonable to extend the property
ex1+x2 = ex1ex2 for real variables to complex values of the variables to obtain

ez = ex+iy = exeiy, where x, y ∈ R.

This suggests the following definition.

Definition. Suppose that z = x + iy, where x, y ∈ R. Then the exponential function ez is defined for
every z ∈ C by

(5) ez = ex(cos y + i sin y).

If we write ez = u(x, y) + iv(x, y), then

u(x, y) = ex cos y and v(x, y) = ex sin y.

It is easy to check that the Cauchy-Riemann equations are satisfied for every z ∈ C, so that ez is an
entire function. Furthermore, it follows from (4) that

d
dz

ez =
∂u

∂x
+ i

∂v

∂x
= ex cos y + iex sin y = ex(cos y + i sin y) = ez,

so that ez is its own derivative. On the other hand, note that for every y1, y2 ∈ R, we have

ei(y1+y2) = cos(y1 + y2) + i sin(y1 + y2) = (cos y1 + i sin y1)(cos y2 + i sin y2) = eiy1eiy2 .

Furthermore, if x1, x2 ∈ R, then

ex1+x2ei(y1+y2) = (ex1ex2)(eiy1eiy2) = (ex1eiy1)(ex2eiy2).

Writing z1 = x1 + iy1 and z2 = x2 + iy2, we deduce the addition formula

ez1+z2 = ez1ez2 .
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Finally, note that

|ez| = |ex(cos y + i sin y)| = ex| cos y + i sin y| = ex.

Since ex is never zero, it follows that the exponential function ez is non-zero for every z ∈ C.

Next, we turn our attention to the trigonometric functions. Note first of all that if z = x+iy, where
x, y ∈ R, then iz = −y + ix. Replacing z in (5) by iz and by −iz gives respectively

eiz = e−y(cos x + i sinx) and e−iz = ey(cos x − i sinx).

The special case y = 0 gives respectively

eix = cos x + i sinx and e−ix = cos x − i sinx.

It follows that

cos x =
eix + e−ix

2
and sinx =

eix − e−ix

2i
.

This suggests the following definition.

Definition. Suppose that z ∈ C. Then the trigonometric functions cos z and sin z are defined in terms
of the exponential function by

(6) cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i
.

Since the exponential function is an entire function, it follows easily from (6) that both cos z and
sin z are entire functions. Furthermore, it can easily be deduced from (6) that

d
dz

cos z = − sin z and
d
dz

sin z = cos z.

We can define the functions tan z, cot z, sec z and cosec z in terms of the functions cos z and sin z as in
real variables. However, note that these four functions are not entire. Also, we can deduce from (6) the
formulas

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2 and sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2,

and a host of other trigonometric identities that we know hold for real variables.

Finally, we turn our attention to the hyperbolic functions. These are defined as in real analysis.

Definition. Suppose that z ∈ C. Then the hyperbolic functions cosh z and sinh z are defined in terms
of the exponential function by

(7) cosh z =
ez + e−z

2
and sinh z =

ez − e−z

2
.

Since the exponential function is an entire function, it follows easily from (7) that both cosh z and
sinh z are entire functions. Furthermore, it can easily be deduced from (7) that

d
dz

cosh z = sinh z and
d
dz

sinh z = cosh z.
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We can define the functions tanh z, coth z, sech z and cosech z in terms of the functions cosh z and sinh z
as in real variables. However, note that these four functions are not entire. Also, we can deduce from
(7) a host of hyperbolic identities that we know hold for real variables. Note also that comparing (6)
and (7), we obtain

cosh z = cos iz and sinh z = −i sin iz.

3.5. Periodicity and its Consequences

One of the fundamental differences between real and complex analysis is that the exponential function
is periodic in C.

Definition. A function f is periodic in C if there is some fixed non-zero ω ∈ C such that the identity
f(z + ω) = f(z) holds for every z ∈ C. Any constant ω ∈ C with this property is called a period of f .

THEOREM 3C. The exponential function ez is periodic in C with period 2πi. Furthermore, any
period ω ∈ C of ez is of the form ω = 2πki, where k ∈ Z is non-zero.

Proof. The first assertion follows easily from the observation

e2πi = cos 2π + i sin 2π = 1.

Suppose now that ω ∈ C. Clearly ez+ω = ez implies eω = 1. Write ω = α + iβ, where α, β ∈ R. Then

eα(cos β + i sinβ) = 1.

Taking modulus, we conclude that eα = 1, so that α = 0. It then follows that cosβ + i sinβ = 1.
Equating real and imaginary parts, we conclude that cosβ = 1 and sinβ = 0, so that β = 2πk, where
k ∈ Z. The second assertion follows. ©

Consider now the mapping w = ez. By (5), we have w = ex(cos y + i sin y), where x, y ∈ R. It
follows that

|w| = ex and arg w = y + 2πk,

where k ∈ Z. Usually we make the choice arg w = y, with the restriction that −π < y ≤ π. This
restriction means that z lies on the horizontal strip

(8) R0 = {z ∈ C : −∞ < x < ∞,−π < y ≤ π}.

The restriction −π < arg w ≤ π can also be indicated on the complex w-plane by a cut along the negative
real axis. The upper edge of the cut, corresponding to arg w = π, is regarded as part of the cut w-plane.
The lower edge of the cut, corresponding to arg w = −π, is not regarded as part of the cut w-plane.
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It is easy to check that the function exp : R0 → C \ {0}, defined for every z ∈ R0 by exp(z) = ez,
is one-to-one and onto.

Remark. The region R0 is usually known as a fundamental region of the exponential function. In
fact, it is easy to see that every set of the type

(9) Rk = {z ∈ C : −∞ < x < ∞, (2k − 1)π < y ≤ (2k + 1)π},

where k ∈ Z, has this same property as R0.

Let us return to the function exp : R0 → C\{0}. Since it is one-to-one and onto, there is an inverse
function.

Definition. The function Log : C \ {0} → R0, defined by Log(w) = z ∈ R0, where exp(z) = w, is
called the principal logarithmic function.

Suppose that z = x + iy and w = u + iv, where x, y, u, v ∈ R. Suppose further that we impose the
restriction −π < y ≤ π. If w = exp(z), then it follows from (5) that u = ex cos y and v = ex sin y, and so

|w| = (u2 + v2)1/2 = ex and y = Arg(w),

where Arg(w) denotes the principal argument of w. It follows that

x = log |w| and y = Arg(w).

Hence

(10) Log(w) = log |w| + iArg(w).

In many practical situations, we usually try to define

log w = log |w| + i arg w,

where the argument is chosen in order to make the logarithmic function continuous in its domain of
definition, if this is at all possible. The following three examples show that great care needs to be taken
in the study of such “many valued functions”.

Example 3.5.1. Consider the logarithmic function in the disc {w : |w+2| < 1}, an open disc of radius 1
and centred at the point w = −2. Note that this disc crosses the cut on the w-plane along the negative real
axis discussed earlier. In this case, we may restrict the argument to satisfy, for example, 0 ≤ arg w < 2π.
The logarithmic function defined in this way is then continuous in the disc {w : |w + 2| < 1}.



 u

v

1

u

v
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Example 3.5.2. Consider the region P obtained from the w-plane by removing both the line segment
{u + iv : 0 ≤ u ≤ 1, v = 0} and the half-line {u + iv : u = 1, v > 0}, as shown below.

Suppose that we wish to define the logarithmic function to be continuous in this region P . One way to
do this is to restrict the argument to the range π < arg w ≤ 3π for any w ∈ P satisfying u ≥ 1, and to
the range 0 < arg w ≤ 2π for any w ∈ P satisfying u < 1.

Example 3.5.3. Consider the annulus {w : 1 < |w| < 2}. It is impossible to define the logarithmic
function to be continuous in this annulus. Heuristically, if one goes round the annulus once, the argument
has to change by 2π if it varies continuously. If we return to the original starting point after going round
once, the argument cannot therefore be the same.

It should now be quite clear that we cannot expect to have

Log(w1w2) = Log(w1) + Log(w2),

or even

log w1w2 = log w1 + log w2.

Instead, we have

log w1w2 = log w1 + log w2 + 2πik for some k ∈ Z.

Let us return to the principal logarithmic function Log : C \ {0} → R0. Recall (10). We have

Log(z) = log |z| + iArg(z).

Recall from real analysis that for any t ∈ R, the equation tan θ = t has a unique solution θ satisfying
−π/2 < θ < π/2. This solution is denoted by tan−1 t and satisfies

d
dt

tan−1 t =
1

1 + t2
.
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It is not difficult to show that if we write

(11) v(x, y) =




− tan−1

(
x

y

)
− π

2
if y < 0,

− tan−1
(y

x

)
if x > 0,

− tan−1

(
x

y

)
+

π

2
if y > 0,

then Arg(z) = v(x, y). Hence Log(z) = u(x, y) + iv(x, y), where

(12) u(x, y) =
1
2

log(x2 + y2).

It now follows from (12) that

∂u

∂x
=

x

x2 + y2
and

∂u

∂y
=

y

x2 + y2
,

and from (11) that

∂v

∂x
= − y

x2 + y2
and

∂v

∂y
=

x

x2 + y2
.

Clearly the Cauchy-Riemann equations are satisfied, and so

d
dz

Log(z) =
∂u

∂x
+ i

∂v

∂x
=

x − iy
x2 + y2

=
1

x + iy
=

1
z
.

Power functions are defined in terms of the exponential and logarithmic functions. Given z, a ∈ C,
we write za = ea log z. Naturally, the precise value depends on the logarithmic function that is chosen,
and care again must be exercised for these “many valued functions”.

3.6. Laplace’s Equation and Harmonic Conjugates

We have shown that for any function f = u + iv, the existence of the derivative f ′ leads to the Cauchy-
Riemann equations. More precisely, we have

(13)
∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Furthermore,

(14) f ′(z) =
∂u

∂x
+ i

∂v

∂x
.

Suppose now that the second derivative f ′′ also exists. Then f ′ satisfies the Cauchy-Riemann
equations. The Cauchy-Riemann equations corresponding to the expression (14) are

(15)
∂

∂x

(
∂u

∂x

)
=

∂

∂y

(
∂v

∂x

)
and

∂

∂y

(
∂u

∂x

)
= − ∂

∂x

(
∂v

∂x

)
.
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Substituting (13) into (15), we obtain

(16)
∂2u

∂x2
+

∂2u

∂y2
= 0 and

∂2v

∂x2
+

∂2v

∂y2
= 0.

We also obtain

∂2v

∂y∂x
=

∂2v

∂x∂y
and

∂2u

∂y∂x
=

∂2u

∂x∂y
.

Definition. A continuous function φ(x, y) that satisfies Laplace’s equation

∂2φ

∂x2
+

∂2φ

∂y2
= 0

in a domain D ⊆ C is said to be harmonic in D.

We have in fact proved the following result.

THEOREM 3D. Suppose that f = u + iv, where u and v are real valued. Suppose further that f ′′(z)
exists in a domain D ⊆ C. Then u and v both satisfy Laplace’s equation and are harmonic in D.

Definition. Two harmonic functions u and v in a domain D ⊆ C are said to be harmonic conjugates
in D if they satisfy the Cauchy-Riemann equations.

The remainder of this chapter is devoted to a discussion on finding harmonic conjugates. We shall
illustrate the following theorem by discussing the special case when D = C.

THEOREM 3E. Suppose that a function u is real valued and harmonic in a domain D ⊆ C. Then
there exists a real valued function v which satisfies the following conditions:
(a) The functions u and v satisfy the Cauchy-Riemann equations in D.
(b) The function f = u + iv is analytic in D.
(c) The function v is harmonic in D.

Clearly, parts (b) and (c) follow from part (a). We shall now indicate a proof of part (a) in the
special case D = C, and shall omit reference to this domain.

Suppose that u is real valued and harmonic. Then we need to find a real valued function v such
that

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

Let X0 + iY0 ∈ D be chosen and fixed. Integrating the second of these with respect to x, we obtain

(17) v(X, y) = −
∫ X

X0

∂u

∂y
(x, y)dx + c(y),

where c(y) is some function depending at most on y. Differentiating with respect to y, we obtain

∂v

∂y
(X, y) = − ∂

∂y

∫ X

X0

∂u

∂y
(x, y)dx + c′(y).

Clearly the first of the Cauchy-Riemann equations requires

∂u

∂x
(X, y) = − ∂

∂y

∫ X

X0

∂u

∂y
(x, y)dx + c′(y).
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Changing the order of differentiation and integration, we obtain

∂u

∂x
(X, y) = −

∫ X

X0

∂

∂y

(
∂u

∂y

)
(x, y)dx + c′(y) = −

∫ X

X0

∂2u

∂y2
(x, y)dx + c′(y).

Since u is harmonic, we obtain

∂u

∂x
(X, y) =

∫ X

X0

∂2u

∂x2
(x, y)dx + c′(y) =

∂u

∂x
(X, y) − ∂u

∂x
(X0, y) + c′(y),

so that

c′(y) =
∂u

∂x
(X0, y).

Integrating with respect to y, we obtain

(18) c(Y ) =
∫ Y

Y0

∂u

∂x
(X0, y)dy + c,

where c is an absolute constant. On the other hand, (17) can be rewritten in the form

(19) v(X, Y ) = −
∫ X

X0

∂u

∂y
(x, Y )dx + c(Y ).

Combining (18) and (19), we obtain

(20) v(X, Y ) = −
∫ X

X0

∂u

∂y
(x, Y )dx +

∫ Y

Y0

∂u

∂x
(X0, y)dy + c.

It is easy to check that this function v satisfies the Cauchy-Riemann equations. Indeed, we have

∂

∂X
v(X, Y ) = − ∂

∂X

∫ X

X0

∂u

∂y
(x, Y )dx +

∂

∂X

∫ Y

Y0

∂u

∂x
(X0, y)dy = −∂u

∂y
(X, Y ).

On the other hand, we have

∂

∂Y
v(X, Y ) = − ∂

∂Y

∫ X

X0

∂u

∂y
(x, Y )dx +

∂

∂Y

∫ Y

Y0

∂u

∂x
(X0, y)dy = −

∫ X

X0

∂2u

∂y2
(x, Y )dx +

∂u

∂x
(X0, Y )

=
∫ X

X0

∂2u

∂x2
(x, Y )dx +

∂u

∂x
(X0, Y ) =

∂u

∂x
(X, Y ) − ∂u

∂x
(X0, Y ) +

∂u

∂x
(X0, Y ) =

∂u

∂x
(X, Y ).

This completes our sketched proof.

In practice, we may use the following technique. Suppose that u is a real valued harmonic function
in a domain D. Write

(21) g(z) =
∂u

∂x
− i

∂u

∂y
.

Then the Cauchy-Riemann equations for g are

∂

∂x

(
∂u

∂x

)
= − ∂

∂y

(
∂u

∂y

)
and

∂

∂y

(
∂u

∂x

)
=

∂

∂x

(
∂u

∂y

)
,

which clearly hold. It follows that g is analytic in D. Suppose now that u is the real part of an analytic
function f in D. Then f ′(z) agrees with the right hand side of (21) in view of (3) and (4). Hence f ′ = g
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in D. The question here, of course, is to find this function f . If we are successful, then the imaginary
part v of f is a harmonic conjugate of the harmonic function u.

Example 3.6.1. Consider the function u(x, y) = x3 − 3xy2. It is easily checked that

∂2u

∂x2
+

∂2u

∂y2
= 0,

so that u is harmonic in C. Using X0 = Y0 = 0 in (20), we obtain

v(X, Y ) = −
∫ X

0

∂u

∂y
(x, Y )dx +

∫ Y

0

∂u

∂x
(0, y)dy + c = 6

∫ X

0

xY dx − 3
∫ Y

0

y2dy + c = 3X2Y − Y 3 + c,

where c is any arbitrary constant. On the other hand, we can write

g(z) =
∂u

∂x
− i

∂u

∂y
= 3(x2 − y2) + 6ixy = 3(x2 + 2ixy − y2) = 3(x + iy)2 = 3z2.

It follows that u is the real part of an analytic function f in C such that f ′(z) = g(z) for every z ∈ C.
The function f(z) = z3 + C satisfies this requirement for any arbitrary constant C. Note that the
imaginary part of f is 3x2y − y3 + c, where c is the imaginary part of C.

Example 3.6.2. Consider the function u(x, y) = ex sin y. It is easily checked that

∂2u

∂x2
+

∂2u

∂y2
= 0,

so that u is harmonic in C. Using X0 = Y0 = 0 in (20), we obtain

v(X, Y ) = −
∫ X

0

∂u

∂y
(x, Y )dx +

∫ Y

0

∂u

∂x
(0, y)dy + c = −

∫ X

0

ex cos Y dx +
∫ Y

0

sin ydy + c

= cos Y − eX cos Y − cos Y + 1 + c = c′ − eX cos Y,

where c′ is any arbitrary constant. On the other hand, we can write

g(z) =
∂u

∂x
− i

∂u

∂y
= ex sin y − iex cos y = −iex(cos y + i sin y) = −iez.

It follows that u is the real part of an analytic function f in C such that f ′(z) = g(z) for every z ∈ C.
The function f(z) = C − iez satisfies this requirement for any arbitrary constant C. Note that the
imaginary part of f is c′ − ex cos y, where c′ is the imaginary part of C.

Problems for Chapter 3

1. a) Suppose that P (z) = (z − z1)(z − z2) . . . (z − zk), where z1, z2, . . . , zk ∈ C. Show that

P ′(z)
P (z)

=
1

z − z1
+

1
z − z2

+ . . . +
1

z − zk
for every z ∈ C \ {z1, z2, . . . , zk}.

b) Suppose further that Rezj < 0 for every j = 1, . . . , k, and that Rez ≥ 0. Show in this case that
Re(z − zj)−1 > 0 for every j = 1, . . . , k, and deduce that P ′(z) �= 0.

[Remark: Polynomials all of whose roots have negative real parts are called Hurwitz polynomials.
We have shown here that the derivative of a non-constant Hurwitz polynomial is also a Hurwitz
polynomial.]
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2. For each of the following functions f(z), determine whether the Cauchy-Riemann equations are
satisfied:
a) f(z) = x2 − y2 − 2ixy b) f(z) = log(x2 + y2) + 2i cot−1(x/y)
c) f(z) = x3 − 3y2 + 2x + i(3x2y − y3 + 2y) d) f(z) = log(x2 − y2) + 2i tan−1(y/x)

3. Show that a real valued analytic function is constant.

4. We are required to define an analytic function f(z) such that f(x + iy) = exf(iy) for every x, y ∈ R

and f(0) = 1. Suppose that for every y ∈ R, we write f(iy) = c(y) + is(y), where c(y), s(y) ∈ R for
every y ∈ R.
a) Show by the Cauchy-Riemann equations that c′(y) = −s(y) and s′(y) = c(y) for every y ∈ R.
b) For every y ∈ R, write g(y) = (c(y) − cos y)2 + (s(y) − sin y)2. Show that g′(y) = 0 for every

y ∈ R. Deduce that g(y) = 0 for every y ∈ R.
c) Comment on the above.

5. a) Suppose that P (z) = a0 + a1z + a2z
2 + . . . + anzn, where a0, a1, a2, . . . , an ∈ C are constants.

Show that for every k = 0, 1, . . . , n, we have

ak =
P (k)(0)

k!
.

b) Apply the result to the polynomial (1 + z)n = c0 + c1z + c2z
2 + . . . + cnzn and show that for

every k = 0, 1, . . . , n, we have

ck =
n!

k!(n − k)!
.

6. a) Show that for every z ∈ C, we have eiz = cos z + i sin z.
b) Show that for every z, w ∈ C, we have

cos(z + w) + i sin(z + w) = (cos z + i sin z)(cos w + i sinw)

and

cos(z + w) − i sin(z + w) = (cos z − i sin z)(cos w − i sinw).

c) Express sin(z + w) and cos(z + w) in terms of sin z, sinw, cos z and cos w.

7. Suppose that a1, a2, . . . , an ∈ C are distinct, and consider the polynomial

Q(z) = (z − z1)(z − z2) . . . (z − zn).

Suppose further that P (z) is a polynomial of degree less than n. Follow the steps below to show
that there exist a1, a2, . . . , an ∈ C such that

P (z)
Q(z)

=
a1

z − z1
+

a2

z − z2
+ . . . +

an

z − zn
.

a) We shall first of all show that the expression above is possible by multiplying it by Q(z) and
then determining a1, a2, . . . , an so that the resulting equation between polynomials of degree
less than n holds when z = z1, z2, . . . , zn.
[Hint: Recall Problem 1 in Chapter 1.]

b) Show that for every k = 1, . . . , n, we have

ak = lim
z→zk

(z − zk)
P (z)
Q(z)

=
P (zk)
Q′(zk)

.

[Hint: Note that Q(zk) = 0 for every k = 1, . . . , n.]
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8. Suppose that a ∈ C is non-zero. Show that for any fixed choice of value for log a, the function
f(z) = az = ez log a satisfies f ′(z) = f(z) log a.

9. For each expression below, compute all possible values and plot their positions in the complex plane:
a) log(−i) b) log(1 + i)
c) (−i)−i d) i2

e) 2πi f) (1 + i)i(1 + i)−i

10. For each of the following equations, find all solutions:
a) Log(z) = πi/3 b) ez = 2i
c) sin z = i d) sin z = − cos z
e) tan2 z = −1

11. For each of the functions below, determine whether the function is harmonic. If so, find also its
harmonic conjugate:
a) x2 − y2 + y b) ex sin y
c) x3 − y3 d) xex cos y − yex sin y
e) 3x2y − y3 + xy f) x4 − 6x2y2 + y4 + x3y − xy3

g) ex2−y2
sin 2xy

12. a) Suppose that the functions f(z) and g(z) both satisfy the Cauchy-Riemann equations at a
particular point z ∈ C. Show that the functions f(z) + g(z) and f(z)g(z) also satisfy the
Cauchy-Riemann equations at the point z.

b) Show that the constant function and the function f(z) = z both satisfy the Cauchy-Riemann
equations everywhere in C.

c) Deduce that every polynomial P (z) with complex coefficients satisfies the Cauchy-Riemann
equations everywhere in C.

13. A real valued function u(x, y) which is continuous and satisfies the inequality uxx + uyy ≥ 0 in a
region D is said to be subharmonic in D. Show that u = |f(z)|2 is subharmonic in any region where
f(z) is analytic.


