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Chapter 5

CAUCHY’S INTEGRAL THEOREM

5.1. A Restricted Case

Cauchy’s integral theorem states that in a simply connected domain, the integral of an analytic function
over a closed contour is zero. The proof of this general result is rather involved. Here we first study a
special case of the theorem in order to develop the basic properties of analytic functions.

THEOREM 5A. Suppose that a function f is analytic in a domain D. Suppose further that the
closed triangular region T lies in D, and that C denotes the boundary of T in the positive (anticlockwise)
direction.

Then ∫
C

f(z) dz = 0.
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We shall give two proofs of this result, usually known as Cauchy’s integral theorem for a triangular
path. The first of these proofs, given next, is based on an additional assumption that the derivative
f ′(z) is continuous in D.

Proof of Theorem 5A. Write f(z) = u(x, y) + iv(x, y), where u and v are real valued. Since f ′

exists and is continuous, the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x

hold, and the four partial derivatives are continuous. On the other hand, we can write

∫
C

f(z) dz =
∫

C

(u + iv)(dx + idy) =
∫

C

(u dx − v dy) + i
∫

C

(v dx + u dy).

Suppose that C = C1 ∪ C2 ∪ C3, a union of the three straight directed edges.

Consider the integral ∫
C

u dx.

We can write ∫
C

u dx =
∫

C1

u dx +
∫

C2

u dx +
∫

C3

u dx.

For each of the three integrals on the right hand side, y can be represented as a linear function of x,
unless the edge is vertical, in which case the integral vanishes. Suppose that the projection of the triangle
T on the x-axis is the line segment X1 ≤ x ≤ X2. Suppose also that the vertical line with abscissa x
intersects the triangle in h1(x) and h2(x), where h1(x) ≤ h2(x) (in the diagram, h1(x) describes C1 and
C2, while h2(x) describes C3). Then

∫
C

u dx =
∫ X2

X1

u(x, h1(x)) dx +
∫ X1

X2

u(x, h2(x)) dx = −
∫ X2

X1

(u(x, h2(x)) − u(x, h1(x))) dx

= −
∫ X2

X1

(∫ h2(x)

h1(x)

∂u

∂y
(x, y) dy

)
dx = −

∫
T

∂u

∂y
dxdy.

Note that the third equality above follows from the continuity of ∂u/∂y. Similarly

∫
C

v dy =
∫

T

∂v

∂x
dxdy.
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Hence ∫
C

(u dx − v dy) = −
∫

T

(
∂u

∂y
+

∂v

∂x

)
dxdy = 0.

We can also show that∫
C

v dx = −
∫

T

∂v

∂y
dxdy and

∫
C

u dy =
∫

T

∂u

∂x
dxdy,

so that ∫
C

(v dx + u dy) =
∫

T

(
∂u

∂x
− ∂v

∂y

)
dxdy = 0.

The result follows. ©

5.2. Analytic Functions in a Star Domain

In this section, we shall use Theorem 5A to establish the existence of an indefinite integral and the
Cauchy integral theorem for analytic functions in a certain class of domains.

Definition. A domain D ⊆ C is called a star domain if there exists a point z0 ∈ D such that for every
point z ∈ D, the line segment joining z and z0 also lies in D. In this case, the point z0 is called a star
centre of the domain D.

Example 5.2.1. The disc {z : |z| < 1} is a star domain. Every point in this domain is a star centre.

Example 5.2.2. The complex plane C is a star domain. Again, every point in this domain is a star
centre.

Example 5.2.3. The complex plane C with the non-negative real axis {x + iy : x ≥ 0, y = 0} deleted
is a star domain. Every point on the remaining part of the real axis is a star centre.

Example 5.2.4. The set {x + iy : |xy| < 1} is a star domain. The point 0 is the only star centre.

Example 5.2.5. The interior of the set shown below is a star domain, with a star centre z0 as shown.

THEOREM 5B. Suppose that a function f is analytic in a star domain D. Then there exists a
function F , analytic in D and such that F ′(z) = f(z) for every z ∈ D.
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Proof. Suppose that z0 ∈ D is a star centre. For every z ∈ D, define

(1) F (z) =
∫

[z0,z]

f(ζ) dζ,

where, for every z1, z2 ∈ D, [z1, z2] denotes the directed line segment from z1 to z2. Since z ∈ D, there
exists an ε-neighbourhood of z which is contained in D. Furthermore, for every h ∈ C satisfying |h| < ε,
the point z+h lies in this ε-neighbourhood of z. It follows that the closed triangular region with vertices
z0, z and z + h lies in D.

By Theorem 5A, we have
∫

[z0,z]

f(ζ) dζ +
∫

[z,z+h]

f(ζ) dζ +
∫

[z+h,z0]

f(ζ) dζ = 0.

In other words, ∫
[z0,z+h]

f(ζ) dζ −
∫

[z0,z]

f(ζ) dζ =
∫

[z,z+h]

f(ζ) dζ.

It follows from (1) that

F (z + h) − F (z) =
∫

[z,z+h]

f(ζ) dζ.

If h �= 0, then

(2)
F (z + h) − F (z)

h
− f(z) =

1
h

∫
[z,z+h]

(f(ζ) − f(z)) dζ.

Since the function f is continuous at z, it follows that given any ε > 0, there exists δ > 0 such that
|f(ζ)− f(z)| < ε whenever |ζ − z| < δ. This means that if |h| < δ, then |f(ζ)− f(z)| < ε holds for every
ζ ∈ [z, z + h]. Theorem 4B now gives

(3)

∣∣∣∣∣
∫

[z,z+h]

(f(ζ) − f(z)) dζ

∣∣∣∣∣ ≤ ε|h|.

Combining (2) and (3), we have ∣∣∣∣F (z + h) − F (z)
h

− f(z)
∣∣∣∣ ≤ ε.
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This gives

lim
h→0

F (z + h) − F (z)
h

= f(z),

and completes the proof of the theorem. ©

If we examine our proof carefully, then it is not difficult to see that we have in fact established the
following result.

THEOREM 5C. Suppose that a function f is continuous in a star domain D. Suppose further that∫
C

f(z) dz = 0

for every closed triangular contour C lying in D. Then there exists a function F , analytic in D and
such that F ′(z) = f(z) for every z ∈ D.

We can also deduce the Cauchy integral theorem for a star domain.

THEOREM 5D. Suppose that a function f is analytic in a star domain D. Suppose further that C
is a closed contour lying in D. Then ∫

C

f(z) dz = 0.

Proof. By Theorem 5B, there exists a function F , analytic in D and such that F ′(z) = f(z) for every
z ∈ D. The result now follows from Remark (1) immediately after Theorem 4A. ©

Example 5.2.6. Consider the contour integral∫
|z|=3

ez + sin z

z2 − 16
dz,

where the contour of integration is the circle centred at 0 and with radius 3, followed in the positive
(anticlockwise) direction. Note that the function in question is analytic in the disc D = {z : |z| < 4},
clearly a star domain. It follows from Theorem 5D that the integral is 0.

Example 5.2.7. Suppose that 0 < r < R. Consider the contour integral∫
|z|=r

R + z

(R − z)z
dz,

where the contour of integration is the circle centred at 0 and with radius r, followed in the positive
(anticlockwise) direction. For every z ∈ C, note that using partial fractions, we have

R + z

(R − z)z
=

1
z

+
2

R − z
.

It follows that ∫
|z|=r

R + z

(R − z)z
dz =

∫
|z|=r

1
z

dz +
∫
|z|=r

2
R − z

dz.

Next, note that the function

2
R − z
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is analytic in the star domain D = {z : |z| < R}. It follows from Theorem 5D that the last integral is 0,
so that

(4)
∫
|z|=r

R + z

(R − z)z
dz =

∫
|z|=r

1
z

dz = 2πi,

in view of Example 4.4.2. On the other hand, the contour can be described by z = reiθ, where θ ∈ [0, 2π].
This formal substitution leads to the expression dz = ireiθ dθ = iz dθ and

∫
|z|=r

R + z

(R − z)z
dz =

∫ 2π

0

R + reiθ

R − reiθ
i dθ.

Next, note that

R + reiθ

R − reiθ
=

(R + reiθ)(R − re−iθ)
(R − reiθ)(R − re−iθ)

=
R2 − r2 + 2iRr sin θ

R2 − 2Rr cos θ + r2
,

so that

(5)
∫
|z|=r

R + z

(R − z)z
dz =

∫ 2π

0

R2 − r2 + 2iRr sin θ

R2 − 2Rr cos θ + r2
i dθ.

Combining (4) and (5) and equating imaginary parts, we obtain

1
2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos θ + r2
dθ = 1.

5.3. Nested Triangles

In this section, we shall give a second proof of Theorem 5A, without the additional assumption that
the derivative f ′(z) is continuous in D. This proof is based on the following well-known result in real
analysis: Suppose that

a1 ≤ a2 ≤ a3 ≤ . . . and b1 ≥ b2 ≥ b3 ≥ . . . .

Suppose further that ak ≤ bk for every k ∈ N, and that bk − ak → 0 as k → ∞. Then there exists a
unique number � ∈ R such that ak → � and bk → � as k → ∞. This is a special case of the Cantor
intersection theorem. In other words, if the intervals

[a1, b1] ⊇ [a2, b2] ⊇ [a3, b3] ⊇ . . .

are nested, so that each contains all subsequent ones, and if their lengths decrease to 0, then the intervals
collapse to a unique point.

We shall now prove Theorem 5A by the method of bisection.

Suppose that a function f is analytic in a domain D. Suppose further that the closed triangular
region T lies in D, and that C denotes the boundary of T in the positive (anticlockwise) direction. Write

I(T ) =
∫

C

f(z) dz.
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We now divide T into four triangular regions by joining the midpoints of the three sides of T as shown
in the diagram.

Suppose that the four triangular regions so obtained are denoted by T (j), where j = 1, 2, 3, 4, with
boundaries C(j) in the positive (anticlockwise) direction. Then since integrals over the common sides
cancel each other, we have

I(T ) = I(T (1)) + I(T (2)) + I(T (3)) + I(T (4)),

where for j = 1, 2, 3, 4,

I(T (j)) =
∫

C(j)
f(z) dz.

Since the maximum is never less than the average, at least one of these four triangular regions T (j) must
satisfy

(6) |I(T (j))| ≥ 1
4
|I(T )|.

We denote this triangular region by T1, with the convention that if more than one of the four triangular
regions T (j) satisfies (6), then we choose one under some fixed rule. This process can now be repeated
indefinitely, so that we obtain a sequence of nested triangles

T = T0 ⊇ T1 ⊇ T2 ⊇ T3 ⊇ . . . ⊇ Tk ⊇ . . .

with the property

|I(Tk)| ≥ 1
4
|I(Tk−1)|,

so that

(7) |I(Tk)| ≥ 4−k|I(T )|.

Note now that the sequence of nested triangular regions must collapse to a point z∗ ∈ D. Suppose now
that ε > 0 is chosen. Since D is open and the function f is analytic at z∗, there exists a δ-neighbourhood
{z : |z − z∗| < δ} of z∗, contained in D and such that

(8)
∣∣∣∣f(z) − f(z∗)

z − z∗
− f ′(z∗)

∣∣∣∣ < ε

whenever |z − z∗| < δ. Furthermore, we can choose k so large that

(9) Tk ⊂ {z : |z − z∗| < δ}.
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Note that since ∫
Ck

dz = 0 and
∫

Ck

z dz = 0,

we have

I(Tk) =
∫

Ck

f(z) dz =
∫

Ck

(f(z) − f(z∗) − (z − z∗)f ′(z∗)) dz.

In view of (8) and (9), we have

|f(z) − f(z∗) − (z − z∗)f ′(z∗)| ≤ ε|z − z∗| ≤ εdk,

where dk denotes the diameter of Tk. It follows from Theorem 4B that

(10) |I(Tk)| ≤ εdkLk,

where Lk denotes the perimeter of Tk. Observe now that

(11) dk = 2−kd and Lk = 2−kL,

where d and L denote respectively the diameter and perimeter of T . Combining (7), (10) and (11), we
obtain

|I(T )| ≤ εdL.

Since ε > 0 is arbitrary, we must have I(T ) = 0. This completes the proof of Theorem 5A.

5.4. Further Examples

Example 5.4.1. Suppose that C is any contour. For any z ∈ C not lying on C, consider the integral

I(z) =
∫

C

dζ

ζ − z
.

We shall show that the function I(z) is continuous at z. Since z �∈ C, there exists ε > 0 such that the
ε-neighbourhood of z does not meet C. Suppose that h ∈ C satisfies |h| < ε/2.

Then

I(z + h) − I(z) =
∫

C

(
1

ζ − z − h
− 1

ζ − z

)
dζ = h

∫
C

dζ

(ζ − z − h)(ζ − z)
.
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Note next that for any ζ ∈ C, we have

|ζ − z| > ε and |ζ − z − h| >
ε

2
,

and so it follows from Theorem 4B that

|I(z + h) − I(z)| ≤ 2L|h|
ε2

,

where L is the length of C. This clearly tends to 0 as h → 0.

The final example in this chapter exhibits the possibility of defining a continuous logarithm.

Example 5.4.2. Consider the domain obtained by deleting from C the origin 0 and a half-line starting
from 0. This is a star domain in which the function 1/z has a continuous derivative. Suppose that C is
a closed contour that does not meet this half-line.

Then ∫
C

dζ

ζ
= 0.

Furthermore, the integral ∫ z

z0

dζ

ζ

is independent of the path joining z0 to z in this domain, and can therefore be used to define a continuous
logarithm.

Problems for Chapter 5

1. Give an example to show that the conclusion of Theorem 5D may not hold if D is not a star domain.

2. Suppose that R > 0 is fixed. By integrating the function (R−z)−1 over the circle C = {z : |z| = r},
where 0 < r < R, and referring to Example 5.2.7, show that

1
2π

∫ 2π

0

R cos θ

R2 − 2Rr cos θ + r2
dθ =

r

R2 − r2
.
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3. a) Suppose that C is the rectangle with vertices at ±b and ±b + ia, where a, b > 0. Explain why∫
C

e−z2
dz = 0.

b) Let C = C1 ∪ C2 ∪ C3 ∪ C4, where C1, C2, C3, C4 represent the four edges of C followed in the
positive (anticlockwise) direction, with initial point z = −b. Show that∣∣∣∣

∫
C2

e−z2
dz

∣∣∣∣ ≤ e−b2
∫ a

0

ey2
dy and

∣∣∣∣
∫

C4

e−z2
dz

∣∣∣∣ ≤ e−b2
∫ a

0

ey2
dy.

c) Explain why

∫ b

−b

e−(x+ia)2 dx −
∫ b

−b

e−x2
dx → 0 as b → ∞.

Deduce that the integral ∫ ∞

−∞
e−(x+ia)2 dx

is independent of the choice of a > 0.

4. Suppose that a function f(z) is analytic in {z : |z| < R} and continuous in {z : |z| ≤ R}, where
R > 0 is fixed. Suppose further that C denotes the circle {z : |z| = R}.
a) Suppose that r < R. Explain why

∫
C

f(z) dz =
∫ 2π

0

f(Reiθ)Reiθi dθ −
∫ 2π

0

f(reiθ)reiθi dθ.

b) The function f(z)z is continuous in {z : |z| ≤ R}, and so uniformly continuous in {z : |z| ≤ R}.
This implies that given any ε > 0, there exists δ > 0 such that |f(Reiθ)Reiθ − f(reiθ)reiθ| < ε
whenever R − δ < r < R. Use this to show that∣∣∣∣

∫
C

f(z) dz

∣∣∣∣ < 2πε.

c) Explain why it follows that ∫
C

f(z) dz = 0.

d) Explain also why this result does not follow directly from Theorem 5D.

5. Suppose that a function f(z) is continuous on a closed contour C. Suppose further that f(z) can be
uniformly approximated with arbitrary precision by a polynomial; in other words, given any ε > 0,
there exists a polynomial P (z) such that |f(z) − P (z)| < ε for every z ∈ C. Prove that∫

C

f(z) dz = 0.

6. Suppose that a function f(z) is analytic in {z : |z| ≤ 1}. By considering a suitable integral over the
unit circle {z : |z| = 1}, show that

max
|z|=1

∣∣∣∣1z − f(z)
∣∣∣∣ ≥ 1.
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7. Suppose that C is a closed contour, and that D is a domain not containing any point of C. By
noting Examples 4.4.2 and 5.4.1, show that the integral

n(C, z0) =
1

2πi

∫
C

dz

z − z0

is independent of the choice of z0 ∈ D.
[Remark: The value n(C, z0) is called the winding number of the contour C round the point z0,
and measures the number of times the contour winds round the point z0.]

8. Suppose that C is a contour z = r(θ)eiθ for θ ∈ [0, 2π], where r(θ) > 0 for every θ ∈ [0, 2π]. Suppose
further that r(0) = r(2π), so that C is a closed contour. Let D be the domain containing the origin
z = 0 and with boundary C.
a) Show that D is a star domain with the origin z = 0 as a star centre.
b) Suppose that z0 �∈ D ∪C. Explain why the half line L = {λz0 : λ ∈ [1,∞)} satisfies L∩C = ∅.

Show also that C \ L is a star domain with star centre z = 0.
c) Explain why

1
2πi

∫
C

dz

z − z0
=

{
0 if z0 �∈ D ∪ C,
1 if z0 ∈ D.

[Hint: For the case z0 ∈ D, refer to Problem 7 if necessary.]
d) Suppose that P (z) is a polynomial with no roots on the contour C. By referring to Problem 1

in Chapter 3 if necessary, show that the number of roots of P (z) in D is given by

1
2πi

∫
C

P ′(z)
P (z)

dz.

9. Suppose that P (z) is a polynomial of degree k and with distinct roots z1, . . . , zk. Suppose further
that C is a closed contour which does not contain any of these roots. By referring to Problem 7 if
necessary, show that

1
2πi

∫
C

P ′(z)
P (z)

dz = n(C, z1) + . . . + n(C, zk).

10. Suppose that two star domains D1 and D2 both have the point z0 as star centre. Show that D1∩D2

and D1 ∪ D2 are both star domains with star centre z0.


