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Chapter 8

ISOLATED SINGULARITIES

AND LAURENT SERIES

8.1. Removable Singularities

Suppose that a function f is analytic in the punctured disc {z : 0 < |z− z0| < R}. Observe that it is not
necessary for f to be defined at the point z0. We say that the function f has an isolated singularity at z0.
Our purpose is to show that there are only three possible ways in which f(z) can behave in a punctured
neighbourhood of z0. To illustrate the first of these, let us first consider the following examples.

Example 8.1.1. The function

f(z) =
sin z

z

is analytic in the punctured disc {z : 0 < |z| < R}. However, the quotient is not defined at z = 0.
However, note that the function sin z is entire. By Theorem 7C, we can write

sin z = z + z3g(z),

where g is an entire function. It follows that for z �= 0, we have

f(z) =
sin z

z
= 1 + z2g(z).

Note that the function 1 + z2g(z) is entire. It follows that if we make the further definition f(0) = 1,
then f is now analytic at z = 0, and we have removed the isolated singularity.
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Example 8.1.2. Suppose that a function f is analytic in a domain D, and that z0 ∈ D. We define
the function g in D by writing

(1) g(z0) = f ′(z0),

and writing

(2) g(z) =
f(z) − f(z0)

z − z0

if z �= z0. It is easily seen from Theorem 7C that g is analytic in D. However, note that the function
g, defined by (2), is analytic in the domain D \ {z0}. It also has an isolated singularity at z0, which is
removed by the definition (1).

Definition. Suppose that a function f is analytic in the punctured disc {z : 0 < |z − z0| < R}.
Suppose further that by assigning a suitable value for f(z0), the function f can be made to be analytic
in the disc {z : |z − z0| < R}. Then we say that f has a removable singularity at z0.

THEOREM 8A. (RIEMANN’S THEOREM ON REMOVABLE SINGULARITIES) Suppose that
a function f is analytic in the punctured disc {z : 0 < |z − z0| < R}. Suppose further that

(3) lim
z→z0

(z − z0)f(z) = 0.

Then f has a removable singularity at z0.

Proof. Suppose that z is a point in the punctured disc {z : 0 < |z − z0| < R}. Then 0 < |z − z0| < R.
Let r1 and r2 satisfy 0 < r1 < |z − z0| < r2 < R, and let C1 and C2 denote two circles in the positive
(anticlockwise) direction, centred at z0, and of radius r1 and r2 respectively.

The function g, defined by g(z) = f ′(z) and for ζ �= z by

(4) g(ζ) =
f(ζ) − f(z)

ζ − z
,

is clearly analytic in the punctured disk {ζ : 0 < |ζ − z0| < R}. Then it can be shown, as in the proof
of Theorem 6A, that

∫
C1

g(ζ) dζ =
∫

C2

g(ζ) dζ.
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Combining this with (4), we have

(5)
∫

C1

f(ζ)
ζ − z

dζ − f(z)
∫

C1

dζ

ζ − z
=

∫
C2

f(ζ)
ζ − z

dζ − f(z)
∫

C2

dζ

ζ − z
.

Note now that the function

1
ζ − z

is analytic in the star domain {ζ : |ζ − z0| < |z − z0|} which contains the contour C1. It follows that

(6)
∫

C1

dζ

ζ − z
= 0.

On the other hand, by Cauchy’s integral formula as given by Theorem 6A, we have

(7)
∫

C2

dζ

ζ − z
= 2πi.

Furthermore, in view of the condition (3), we have, given any ε > 0, there exists δ > 0 such that
|(ζ − z0)f(ζ)| < ε whenever |ζ − z0| < δ. Without loss of generality, we may assume that

(8) δ <
1
2
|z − z0|.

If we now take r1 = δ, then
∣∣∣∣
∫

C1

f(ζ)
ζ − z

dζ

∣∣∣∣ =
∣∣∣∣
∫

C1

(ζ − z0)f(ζ)
(ζ − z0)(ζ − z)

dζ

∣∣∣∣ ≤ ε

δ(|z − z0| − δ)
2πδ =

2πε

|z − z0| − δ
≤ 4πε

|z − z0|
,

in view of Theorem 4B and (8). Since ε > 0 is arbitrary, we conclude that

(9)
∫

C1

f(ζ)
ζ − z

dζ = 0.

Combining (5)–(7) and (9), we obtain

(10) f(z) =
1

2πi

∫
C2

f(ζ)
ζ − z

dζ.

Note now that (10) holds for every z in the punctured disc {z : 0 < |z − z0| < r2}. Note also that the
integral on the right hand side of (10) represents an analytic function in the disc {z : |z − z0| < r2} (see
the proof of Theorem 6B). It follows that if we define

f(z0) =
1

2πi

∫
C2

f(ζ)
ζ − z0

dζ,

then the function f is analytic in the disc {z : |z − z0| < r2}. ©

Remarks. (1) Note that condition (3) will be satisfied if f(z) is continuous at z0, or if |f(z)| is
bounded.

(2) Since an analytic function is continuous, it follows that removable singularities at z0 can be
overcome by defining

f(z0) = lim
z→z0

f(z).
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8.2. Poles

Definition. Suppose that a function f is analytic in the punctured disc {z : 0 < |z − z0| < R}.
Suppose further that

(11) f(z) =
g(z)

(z − z0)n
,

where n ∈ N and the function g is analytic in some neighbourhood of z0, with g(z0) �= 0. Then we say
that f has a pole of order n at z0. Furthermore, if n = 1, then we say that f has a simple pole at z0.

THEOREM 8B. Suppose that a function f is analytic in the punctured disc {z : 0 < |z − z0| < R}.
Then f has a pole at z0 if and only if

(12) lim
z→z0

|f(z)| = ∞;

in other words, given any E > 0, there exists δ > 0 such that |f(z)| > E whenever 0 < |z − z0| < δ.

Proof. Note first of all that (12) follows immediately from (11), since g(z0) �= 0. Suppose now that
(12) holds. Then f(z) �= 0 in some punctured disc {z : 0 < |z − z0| < r}, where r ≤ R. It follows that
the function

F (z) =
1

f(z)

is analytic in {z : 0 < |z − z0| < r}, and has an isolated singularity at z0. On the other hand, it follows
from (12) that F (z) → 0 as z → z0. Hence by Theorem 8A, F has a removable singularity at z0. If we
define F (z0) = 0, then F is now analytic in the disc {z : |z − z0| < r}. Clearly F (z) is not identically
zero in {z : |z − z0| < r}. It follows from Theorem 7F that there exists n ∈ N such that

F (z) = (z − z0)nh(z),

where the function h is analytic in {z : |z − z0| < r}, with h(z0) �= 0. Hence

g(z) =
1

h(z)

is analytic in some neighbourhood of z0, and (11) holds. Clearly g(z0) �= 0. ©

Remark. Note that a function f has a pole of order n at z0 if and only if the function 1/f has a zero
of order n at z0.

8.3. Essential Singularities

Definition. Suppose that a function f is analytic in the punctured disc {z : 0 < |z − z0| < R}.
Suppose further that the isolated singularity at z0 is neither removable nor a pole. Then we say that f
has an essential singularity at z0.

Example 8.3.1. The function e1/z is analytic at every z �= 0. It has an isolated singularity at z = 0.
Let us restrict z to be real numbers, and consider e1/x, where x > 0. Clearly

lim
x→0+

e1/x = lim
y→+∞

ey = ∞,
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so that the singularity is not removable. On the other hand, for every n ∈ N,

lim
x→0+

xne1/x = lim
y→+∞

ey

yn
= ∞,

so that the singularity is not a pole of order n. Hence e1/z has an essential singularity at z = 0.

To illustrate the wild behaviour of an analytic function near an essential singularity, we mention
Picard’s theorem that such a function assumes all values except possibly one in any neighbourhood of
an essential singularity. The following result is somewhat weaker, and shows that such a function comes
arbitrarily close to any given complex number in any neighbourhood of an essential singularity.

THEOREM 8C. (CASORATI-WEIERSTRASS) Suppose that a function f is analytic in the punc-
tured disc {z : 0 < |z − z0| < R}, with an essential singularity at z0. Then given any w ∈ C and any
real numbers ε > 0 and δ > 0, there exists z in the punctured disc satisfying

0 < |z − z0| < δ and |f(z) − w| < ε.

Proof. Suppose on the contrary that the conclusion does not hold. Then there exist w ∈ C and real
numbers ε > 0 and δ > 0 such that |f(z)−w| ≥ ε whenever 0 < |z− z0| < δ. It follows that the function

g(z) =
1

f(z) − w

is analytic and bounded in the punctured disc {z : 0 < |z − z0| < δ}, with an isolated singularity at z0

which is removable, in view of Theorem 8A. It follows that by defining g(z0) appropriately, the function
g is analytic in the disc {z : |z − z0| < δ}. On the other hand, the function g is clearly not identically
zero in {z : |z − z0| < δ}. Furthermore, note that

f(z) = w +
1

g(z)
.

If g(z0) �= 0, then f is analytic at z0. If g(z0) = 0, then f has a pole at z0. In either case, the conclusion
contradicts the assumption that f has an essential singularity at z0, and this completes the proof. ©

8.4. Isolated Singularities at Infinity

The behaviour of a function f(z) at z = ∞ can be studied via the behaviour of the function f(1/ζ) at
ζ = 0. A punctured neighbourhood {ζ : 0 < |ζ| < R−1} of 0 then plays the same role as the “punctured”
neighbourhood {z : R < |z| < ∞} of ∞.

Suppose now that a function f(z) is analytic in the domain {z : R < |z| < ∞}. Then by using
z = 1/ζ and considering ζ = 0, we see that the function f(z) has an isolated singularity at z = ∞. This
may be a removable singularity, a pole or an essential singularity.

Corresponding to Theorem 8A, suppose that |f(z)/z| → 0 as |z| → ∞. Then the singularity is
removable by defining f(∞) suitably to make f(z) continuous at z = ∞. In other words, we need to
define

f(∞) = lim
ζ→0

f

(
1
ζ

)
.
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In the special case that f(∞) = 0, then we say that f has a zero at z = ∞. Furthermore, if f is not
identically zero, then, corresponding to Theorem 7F, there exists n ∈ N such that

f(z) =
h(z)
zn

,

where h(z) is analytic in {z : R < |z| < ∞}, and h(∞) �= 0. In this case, we say that f has a zero of
order n at z = ∞.

Corresponding to Theorem 8B, suppose that |f(z)| → ∞ as |z| → ∞. Then f has a pole at z = ∞,
and there exists n ∈ N such that

f(z) = znh(z),

where h(z) is analytic in {z : R < |z| < ∞}, and h(∞) �= 0. In this case, we say that f has a pole of
order n at z = ∞.

Corresponding to Theorem 8C, suppose that the isolated singularity at z = ∞ is neither removable
nor a pole. Then it is an essential singularity. In this case, given any w ∈ C and any real numbers ε > 0
and N > 0, there exists z in the domain {z : R < |z| < ∞} satisfying

|z| > N and |f(z) − w| < ε.

In other words, the function f(z) comes arbitrarily close to any given complex number in any neigh-
bourhood of z = ∞.

8.5. Further Examples

Example 8.5.1. The function

f(z) =
ez − 1

z(z − 1)

is analytic at every z ∈ C except for isolated singularities at z = 0, 1. At z = 1, it has a simple pole;
note that we can write

f(z) =
g(z)
z − 1

with g(z) =
ez − 1

z
,

and g(1) �= 0. At z = 0, it has a removable singularity, since

lim
z→0

ez − 1
z(z − 1)

= lim
z→0

ez

2z − 1
= −1

by l’Hopital’s rule. It follows that if we define f(0) = −1, then f is analytic at z = 0. The function f(z)
also has an isolated singularity at z = ∞. To study the isolated singularity at z = ∞, note first of all
that

lim
|z|→∞

ez − 1
z(z − 1)

does not exist. To see this, note that

lim
x→+∞

ex − 1
x(x − 1)

= +∞ and lim
x→−∞

ex − 1
x(x − 1)

= 0.



Chapter 8 : Isolated Singularities and Laurent Series 8–7

Hence the singularity is not removable. Suppose next that n ∈ N is given and fixed. Then

h(z) =
f(z)
zn

=
ez − 1

zn+1(z − 1)

is not analytic at z = ∞, since

lim
|z|→∞

ez − 1
zn+1(z − 1)

does not exist. To see this, note that

lim
x→+∞

ex − 1
xn+1(x − 1)

= +∞ and lim
x→−∞

ex − 1
xn+1(x − 1)

= 0.

Hence the singularity is not a pole. It follows that f(z) has an essential singularity at z = ∞.

Example 8.5.2. The function

f(z) =
(z2 − 4)(z − 1)4

(sinπz)4

is analytic at every z ∈ C except for isolated singularities at z = 0,±1,±2, . . . , where the denominator
vanishes. Note also that the numerator vanishes at z = 1,±2. Note that the function sinπz has simple
zeros at z = 0,±1,±2, . . . . It follows that f has poles of order 4 at z = 0,−1,±3,±4,±5, . . . . Next, note
that the function (z2 − 4)(z − 1)4 has simple zeros at z = ±2. It follows that f has poles of order 3 at
z = ±2. To study the isolated singularity at z = 1, note that by Theorem 7C, we have

sin πz = −π(z − 1) + g(z)(z − 1)2,

where g is entire. It follows that

lim
z→1

(z2 − 4)(z − 1)4

(sinπz)4
= lim

z→1

z2 − 4
(π − g(z)(z − 1))4

= − 3
π4

,

and so f has a removable singularity at z = 1. Finally, the singularity at z = ∞ is not isolated, since
there does not exist any R > 0 such that the function f(z) is analytic in the domain {z : R < |z| < ∞}.

8.6. Laurent Series

Example 8.6.1. Suppose that the function f is analytic in the punctured disc {z : 0 < |z − z0| < R},
with a pole of order m at z0. Then

f(z) =
g(z)

(z − z0)m
,

where the function g is analytic in {z : |z − z0| < R}, with g(z0) �= 0. By Theorem 7C, we have

g(z) = g(z0) + g′(z0)(z − z0) +
g′′(z0)

2!
(z − z0)2 + . . . +

g(m−1)(z0)
(m − 1)!

(z − z0)m−1 + gm(z)(z − z0)m,

where gm(z) is analytic in the disc {z : |z − z0| < R}. It follows that

f(z) =
g(z0)

(z − z0)m
+

g′(z0)
(z − z0)m−1

+
g′′(z0)

2!(z − z0)m−2
+ . . . +

g(m−1)(z0)
(m − 1)!(z − z0)

+ gm(z).
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The expression

g(z0)
(z − z0)m

+
g′(z0)

(z − z0)m−1
+

g′′(z0)
2!(z − z0)m−2

+ . . . +
g(m−1)(z0)

(m − 1)!(z − z0)

is called the principal part of f at z0. If we use Theorem 7A instead, then we can show that

f(z) =
∞∑

n=−m

an(z − z0)n

for suitable choices of the coefficients an.

Our main task in this section is to generalize this example. The first step in this direction can be
summarized by the following result.

THEOREM 8D. Suppose that a function f is analytic in the punctured disc {z : 0 < |z − z0| < R},
with an isolated singularity at z0. Then there exist unique functions f1 and f2 such that
(a) f(z) = f1(z) + f2(z) in {z : 0 < |z − z0| < R},
(b) f1 is analytic in C except possibly at z0,
(c) f1(z) → 0 as |z| → ∞, and
(d) f2 is analytic in the disc {z : |z − z0| < R}.

Proof. We begin the proof in the same way as for Theorem 8A. Suppose that z is a point in the
punctured disc {z : 0 < |z − z0| < R}. Let r1 and r2 satisfy 0 < r1 < |z − z0| < r2 < R, and let C1

and C2 denote two circles in the positive (anticlockwise) direction, centred at z0, and of radius r1 and
r2 respectively. On combining (5)–(7), we obtain

(13) f(z) =
1

2πi

∫
C2

f(ζ)
ζ − z

dζ − 1
2πi

∫
C1

f(ζ)
ζ − z

dζ.

Write

(14) f1(z) = − 1
2πi

∫
C1

f(ζ)
ζ − z

dζ and f2(z) =
1

2πi

∫
C2

f(ζ)
ζ − z

dζ.

Part (a) follows immediately. For part (d), note that the second integral in (14) represents an analytic
function in the disc {z : |z − z0| < r2} (as in the proof of Theorems 6B and 8A). For part (b), note that
the first integral in (14) represents an analytic function in the annulus {z : |z − z0| > r1} (similar to
the proof of Theorem 6B). Note next that f2(z) and f(z) are independent of the choice of r1, so that it
follows from (a) that f1(z) is also independent of the choice of r1. Similarly, f2(z) is independent of the
choice of r2. It is easy to see that

lim
|z|→∞

∫
C1

f(ζ)
ζ − z

dζ = 0.

Part (c) follows immediately. To show that the functions f1 and f2 are unique, suppose that g1 and g2

are functions having the same properties as f1 and f2 respectively. Then

f1(z) − g1(z) = g2(z) − f2(z)

in the punctured disc {z : 0 < |z − z0| < R}. Let

F (z) =
{

g2(z) − f2(z) if |z − z0| < R,
f1(z) − g1(z) if |z − z0| > 0.

Then F is entire. On the other hand, it follows from part (c) that F (z) → 0 as |z| → ∞. Hence F is
bounded. It follows from Liouville’s theorem that F is constant in C, and so we must have F (z) = 0 for
every z ∈ C. This completes the proof. ©
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We can now state our generalization of Example 8.6.1.

THEOREM 8E. Suppose that a function f is analytic in the punctured disc {z : 0 < |z − z0| < R},
with an isolated singularity at z0. For every n ∈ Z, let

(15) an =
1

2πi

∫
C

f(z)
(z − z0)n+1

dz,

where C is a circle in the positive (anticlockwise) direction centred at z0 and of radius r, where 0 < r < R.
Then the series

(16) f(z) =
∞∑

n=−∞
an(z − z0)n

is convergent in the punctured disc {z : 0 < |z − z0| < R}. Furthermore, this convergence is uniform in
any annulus {z : r1 < |z − z0| < r2}, where 0 < r1 < r2 < R.

Remark. To say that the series converges uniformly to f(z) in the annulus {z : r1 < |z − z0| < r2},
we mean given any ε > 0, there exists N0 = N0(ε, r1, r2), independent of the choice of z, such that

∣∣∣∣∣f(z) −
N2∑

n=−N1

an(z − z0)n

∣∣∣∣∣ < ε

for every z in the annulus {z : r1 < |z − z0| < r2} whenever N1 > N0 and N2 > N0.

Definition. The series (16) is called the Laurent series for the function f at z0.

Proof of Theorem 8E. The first step in our proof is to show that if the series in (16) converges to
f(z) uniformly on the circle C centred at z0 and of radius r, where 0 < r < R, then the coefficients an

are given by (15). Suppose that n ∈ Z is chosen and fixed. For any ε > 0, we can choose N1 and N2 so
large that −N1 ≤ n ≤ N2 and

∣∣∣∣∣∣f(z) −
N2∑

j=−N1

aj(z − z0)j

∣∣∣∣∣∣ < ε

for every z ∈ C. Then it follows from Theorem 4B that

(17)

∣∣∣∣∣∣
1

2πi

∫
C


f(z) −

N2∑
j=−N1

aj(z − z0)j


 dz

(z − z0)n+1

∣∣∣∣∣∣ ≤
ε

rn
.

Since

1
2πi

∫
C

(z − z0)k dz =
{

1 if k = −1,
0 if k �= −1,

we have

1
2πi

∫
C


 N2∑

j=−N1

aj(z − z0)j


 dz

(z − z0)n+1
= an,

so that (17) can be simplified to
∣∣∣∣ 1
2πi

∫
C

f(z)
(z − z0)n+1

dz − an

∣∣∣∣ ≤ ε

rn
.
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Since ε > 0 is arbitrary, (15) follows immediately. It now remains to show that f(z) can be represented
in the form (16) in the punctured disc {z : 0 < |z− z0| < R}, and that the convergence is uniform in any
annulus {z : r1 < |z − z0| < r2}, where 0 < r1 < r2 < R. Suppose that 0 < r1 < r < r2 < R. Following
Theorem 8D, we can write

(18) f(z) = f1(z) + f2(z),

where f1(z) and f2(z) are uniquely determined and satisfy conditions (b)–(d) of Theorem 8D. Since f2

is analytic in the disc {z : |z − z0| < R}, it follows from Theorem 7A that the Taylor series

(19) f2(z) =
∞∑

n=0

An(z − z0)n

converges in the disc {z : |z − z0| < R}, uniformly in the closed disc {z : |z − z0| ≤ r2}. To study f1(z),
write

w =
1

z − z0
or z =

1
w

+ z0.

Then

f1(z) = f1

(
1
w

+ z0

)

is an entire function of w, and so it follows from Theorem 7A that the Taylor series

(20) f1

(
1
w

+ z0

)
=

∞∑
m=1

Bmwm

converges in C, uniformly in the closed disc {w : |w| ≤ 1/r1}. Note that the constant term B0 in the
Taylor series is missing, since B0 corresponds to the value of the function at w = 0, or z = ∞, and this
is 0 in view of condition (c) in Theorem 8D. However, (20) is equivalent to saying that the series

(21) f1(z) =
∞∑

m=1

Bm(z − z0)−m

converges in C \ {0}, uniformly in {z : |z − z0| ≥ r1}. The result now follows on combining (18), (19)
and (21). ©

Definition. The series

f1(z) =
−1∑

n=−∞
an(z − z0)n,

where an is given by (15), is called the principal part of the function f at z0.

The next result highlights the relationship between the principal part of a function and the nature
of the isolated singularity.

THEOREM 8F. Suppose that a function f is analytic in the punctured disc {z : 0 < |z − z0| < R},
with an isolated singularity at z0. Suppose further that the Laurent coefficients an are given by (15).
(a) The function f either is analytic or has a removable singularity at z0 if and only if an = 0 for every

n < 0.
(b) The function f has a pole at z0 if and only if a positive but finite number of coefficients an with

n < 0 are non-zero.
(c) The function f has an essential singularity at z0 if and only if an infinite number of coefficients an

with n < 0 are non-zero.
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Proof. Note first of all that if f has a removable singularity at z0, then f can be made analytic at z0

by a suitable choice of f(z0). Part (a) now follows on observing that an analytic function has a Taylor
series, and that a Laurent series with no principal part is a Taylor series. To prove part (b), note first
of all that if a positive but finite number of coefficients an with n < 0 are non-zero, then there exists
m > 0 such that a−m �= 0 but an = 0 for every n < −m. In this case, we have

f(z) =
∞∑

n=−m

an(z − z0)n,

so that

f(z) =
g(z)

(z − z0)m
,

where m ∈ N and the function g is analytic in some neighbourhood of z0, with g(z0) = a−m �= 0. This
shows that f has a pole of order m at z0. The converse is given in Example 8.6.1. Part (b) follows. Part
(c) follows immediately from (a) and (b). ©

Example 8.6.2. The observation that a Laurent series is unique enables us to use different methods
to find the coefficients apart from the formula (15). Consider, for example, the function e1/z. Using the
substitution z = 1/w on the Taylor series

ew =
∞∑

n=0

wn

n!
,

we obtain the Laurent series

e1/z =
∞∑

n=0

1
n!zn

= . . . +
1

3!z3
+

1
2!z2

+
1
z

+ 1.

We conclude this chapter by making a remark on various equivalent definitions of analyticity in a
domain D. The reader is advised to check the following theorem very carefully.

THEOREM 8G. For any function f and any domain D, the following statements are equivalent:
(a) f(z) is analytic in D.
(b) f(z) has continuous derivatives of all orders in D.
(c) f ′(z) exists and is continuous in D.
(d) f ′(z) exists in D.
(e) f ′(z) exists in D except possibly at a finite number of points in D, and f(z) is continuous at these

exceptional points.
(f) f(z) can be represented uniformly by its Taylor series in the neighbourhood of every point in D.

Problems for Chapter 8

1. For each of the functions below, classify all the singular points in C:

a) f(z) = ez b) f(z) =
cos z

z
c) f(z) =

z2 + 1
z2 − 1

d) f(z) =
z4

z3 + z
e) f(z) =

z

cos z

2. Show that the principal parts of the function f(z) = 8z3(z + 1)−1(z − 1)−2 at z = −1 and z = 1
are respectively −2(z + 1)−1 and 4(z − 1)−2 + 10(z − 1)−1.
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3. For each of the functions below, find the principal part at the given points:

a) f(z) =
ez

z4
at the point z = 0 b) f(z) =

z6

(1 − z)3
at the point z = 1

c) f(z) =
sin z

(z − 2π)2
at the point z = 2π

4. Expand the function (z − 1)/(z + 1) in powers of 1/z.

5. For each of the functions below, use partial fractions if appropriate and find the principal part at
each of its singular points in C:

a) f(z) =
12

z2(z2 + 4)
b) f(z) =

z4 + 1
z(z2 + 1)2

c) f(z) =
48z6

(z − 1)2(z − 2)
d) f(z) =

z9 + 1
(z − 1)3(z2 + 4)2

6. Suppose that f(z) = b−mz−m + b−m+1z
−m+1 + . . .+ b0 + b1z + . . .+ bkzk, where m, k ∈ N. Suppose

further that f(z) has Laurent series

∞∑
n=−∞

anzn

at the point z = 0. Show by direct calculation that an = bn whenever −m ≤ n ≤ k and an = 0
otherwise.

7. a) Consider the function f(z) = e1/z. Note that for every k ∈ Z, the coefficient for the term zk in
the Laurent series of f(z) at z = 0 is given by

ak =
1

2πi

∫
C

e1/ζ

ζk+1
dζ,

where C is the circle {z : |z| = 1} followed in the positive (anticlockwise) direction. Show that

ak =
1
2π

∫ π

−π

ecos θ cos(sin θ + kθ) dθ.

b) Find the Laurent series for the function f(z) = e1/z at z = 0 without using part (a).
c) Deduce that for every n ∈ N ∪ {0},

1
π

∫ π

0

ecos θ cos(sin θ − nθ) dθ =
1
n!

.


