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Chapter 10

RESIDUE THEORY

10.1. Cauchy’s Residue Theorem

If we extend Cauchy’s integral theorem to functions having isolated singularities, then the integral is in
general not equal to zero. Instead, each singularity contributes a term called the residue. Our principal
aim in this section is to show that this residue depends only on the coefficient of (z−z0)−1 in the Laurent
expansion of the function near the singularity z0, since all the other powers of z − z0 has single valued
integrals and so integrate to zero.

Definition. By a simple closed contour or Jordan contour, we mean a contour ζ : [A, B] → C such
that ζ(t1) �= ζ(t2) whenever t1 �= t2, with the one exception ζ(A) = ζ(B).

THEOREM 10A. Suppose that a function f is analytic in a simply connected domain D, except for
an isolated singularity at z0, and that

f1(z) =
−1∑

n=−∞
an(z − z0)n

is the principal part of f at z0. Suppose further that C is a Jordan contour in D followed in the positive
(anticlockwise) direction and not passing through z0. Then

1
2πi

∫
C

f1(z) dz =
{

a−1 if z0 lies inside C,
0 if z0 lies outside C.
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Proof. Suppose first of all that z0 is outside C. Then z0 is in the exterior domain of C which also
contains the point at ∞. It follows that z0 can be joined to the point at ∞ by a simple polygonal curve
L, as shown in the picture below.

The Jordan contour C is clearly contained in the simply connected domain obtained when L is deleted
from the complex plane. In fact, it is contained in a simply connected domain which is a subset of D \L,
as shown by the shaded part in the picture above. Clearly f is analytic in this simply connected domain,
so it follows from Theorem 9B that

∫
C

f(z) dz = 0.

Suppose next that z0 is inside C. Then there exists r > 0 such that the closed disc {z : |z − z0| ≤ r} is
inside C. Let γ denote the boundary of this disc, followed in the positive (anticlockwise) direction.

We now draw a horizontal line through the point z0. Following this line to the left from z0, it first
intersects γ and then C (for the first time). Draw a line segment joining these two intersection points.
Similarly, following this line to the right from z0, it first intersects γ and then C (for the first time).
Again draw a line segment joining these two intersection points. Note that these two line segments are
inside C and outside γ. We now divide C into two parts by cutting it at the two intersection points
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mentioned. It can be shown that one part of this, together with the part of γ above the horizontal line
and the two line segments, gives rise to a simple closed contour C+ followed in the positive direction
and which can be shown to lie in a simply connected domain lying in D but not containing z0. Clearly
f is analytic in this simply connected domain, so that

∫
C+

f(z) dz = 0,

in view of Theorem 9B.

Similarly, the other part of C, together with the part of γ below the horizontal line and the two line
segments, gives rise to a simple closed contour C− followed in the positive direction and which again can
be shown to lie in a simply connected domain lying in D but not containing z0. Clearly f is analytic in
this simply connected domain, so that

∫
C−

f(z) dz = 0.

It is easily seen that
∫

C

f(z) dz −
∫

γ

f(z) dz =
∫

C+
f(z) dz +

∫
C−

f(z) dz,

so that
∫

C

f(z) dz =
∫

γ

f(z) dz.

By Theorem 8E, we have
∫

γ

f(z) dz = 2πia−1.

It follows that
∫

C

f(z) dz = 2πia−1.

Finally, note that f2(z) = f(z) − f1(z) is analytic in D, so that

∫
C

f2(z) dz = 0,
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whence
∫

C

f(z) dz =
∫

C

f1(z) dz.

The result follows. ©

Definition. The value a−1 in Theorem 10A is called the residue of the function f at z0, and denoted
by res(f, z0).

We are now in a position to state and prove a simple version of Cauchy’s residue theorem.

THEOREM 10B. Suppose that the function f is analytic in a simply connected domain D, except
for isolated singularities at z1, . . . , zk. Suppose further that C is a Jordan contour in D followed in the
positive (anticlockwise) direction and not passing through z1, . . . , zk. Then

1
2πi

∫
C

f(z) dz =
k∑

j=1
zj inside C

res(f, zj).

Proof. For every j = 1, . . . , k, let fj(z) denote the principal part of f(z) at zj . By Theorem 8D, fj

is analytic in C except at zj . It follows that the function

g(z) = f(z) −
k∑

j=1

fj(z)

is analytic in D, so that
∫

C

g(z) dz = 0

by Theorem 9B, and so

∫
C

f(z) dz =
k∑

j=1

∫
C

fj(z) dz.

The result now follows from Theorem 10A. ©

10.2. Finding the Residue

In order to use Theorem 10B to evaluate the integral
∫

C

f(z) dz,

we need a technique to evaluate the residues at the isolated singularities.

Suppose that f(z) has a removable singularity at z0. Then f(z) has a Taylor series expansion which
is valid in a neighbourhood of z0. The residue is clearly 0.

Suppose that f(z) has a simple pole at z0. Then we can write

f(z) =
a−1

z − z0
+ g(z),
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where g(z) is analytic at z0, so that (z − z0)g(z) → 0 as z → z0. It follows that the residue is given by

a−1 = lim
z→z0

(z − z0)f(z).

Suppose that f(z) has a pole of order m at z0. Then we can write

f(z) =
a−m

(z − z0)m
+

a−m+1

(z − z0)m−1
+ . . . +

a−1

z − z0
+ g(z),

where g(z) is analytic at z0, so that

(z − z0)mf(z) = a−m + a−m+1(z − z0) + . . . + a−1(z − z0)m−1 + (z − z0)mg(z)

is analytic at z0. Differentiating m − 1 times gives

dm−1

dzm−1
((z − z0)mf(z)) = a−1(m − 1)! +

dm−1

dzm−1
((z − z0)mg(z)).

Since g(z) is analytic at z0, we have

lim
z→z0

dm−1

dzm−1
((z − z0)mg(z)) = 0.

It follows that the residue is given by

a−1 =
1

(m − 1)!
lim

z→z0

dm−1

dzm−1
((z − z0)mf(z)).

Definition. A function is said to be meromorphic in a domain D if it is analytic in D except for poles.

Example 10.2.1. The function

f(z) =
e2iz

1 + 4z2

has simple poles at z = ±i/2, with residues

res
(

f,
i
2

)
= lim

z→i/2

(
z − i

2

)
f(z) = lim

z→i/2

e2iz

4(z + i/2)
=

e−1

4i

and

res
(

f,− i
2

)
= lim

z→−i/2

(
z +

i
2

)
f(z) = lim

z→−i/2

e2iz

4(z − i/2)
= − e

4i
.
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It follows from Cauchy’s residue theorem that if C = {z : |z| = 1} is the circle with centre 0 and radius
1, followed in the positive (anticlockwise) direction, then

∫
C

e2iz

1 + 4z2
dz = 2πi

(
e−1

4i
− e

4i

)
=

π

2

(
1
e
− e

)
.

Example 10.2.2. The function

f(z) =
ez

z4

has a pole of order 4 at z = 0, with residue

res(f, 0) =
1
3!

lim
z→0

d3

dz3
(z4f(z)) =

1
3!

lim
z→0

d3

dz3
ez =

1
6
.

It follows from Cauchy’s residue theorem that if C is any Jordan contour with 0 inside and followed in
the positive (anticlockwise) direction, then

∫
C

ez

z4
dz = 2πi

(
1
6

)
=

πi
3

.

Example 10.2.3. Suppose that a function f is analytic in a simply connected domain D, and that
z0 ∈ D. Suppose further that C is a Jordan contour in D, followed in the positive (anticlockwise)
direction and with z0 inside. If f(z0) �= 0, then the function

F (z) =
f(z)

z − z0

has a simple pole at z0, with residue

lim
z→z0

(z − z0)F (z) = f(z0).

Applying Cauchy’s residue theorem, we obtain Cauchy’s integral formula

1
2πi

∫
C

f(z)
z − z0

dz = f(z0).

If f(z0) = 0, then F (z) has a removable singularity at z0. The same result follows instead from Cauchy’s
integral theorem.

10.3. Principle of the Argument

In this section, we shall show that the residue theorem, when applied suitably, can be used to find the
number of zeros of an analytic function, as well as the number of zeros minus the number of poles of a
meromorphic function.

The main idea underpinning our discussion can be summarized by the following two results.

THEOREM 10C. Suppose that a function f is analytic in a neighbourhood of z0. Suppose further
that f has a zero of order m at z0. Then the function f ′/f is analytic in a punctured neighbourhood of
z0, with a simple pole at z0 with residue m.
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THEOREM 10D. Suppose that a function f is analytic in a punctured neighbourhood of z0. Sup-
pose further that f has a pole of order m at z0. Then the function f ′/f is analytic in a punctured
neighbourhood of z0, with a simple pole at z0 with residue −m.

Proof of Theorem 10C. We can write f(z) = (z − z0)mg(z), where g(z) is analytic in a neighbour-
hood of z0 and g(z0) �= 0. Then

f ′(z)
f(z)

=
m(z − z0)m−1g(z) + (z − z0)mg′(z)

(z − z0)mg(z)
=

m

z − z0
+

g′(z)
g(z)

.

Since g(z) is analytic in a neighbourhood of z0 and g(z0) �= 0, the function g′(z)/g(z) is analytic in a
neighbourhood of z0. The result follows. ©

Proof of Theorem 10D. We can write f(z) = (z − z0)−mg(z), where g(z) is analytic in a neigh-
bourhood of z0 and g(z0) �= 0. Then

f ′(z)
f(z)

=
−m(z − z0)−m−1g(z) + (z − z0)−mg′(z)

(z − z0)−mg(z)
=

−m

z − z0
+

g′(z)
g(z)

.

Since g(z) is analytic in a neighbourhood of z0 and g(z0) �= 0, the function g′(z)/g(z) is analytic in a
neighbourhood of z0. The result follows. ©

The main result in this section is the Principle of the argument, as stated below.

THEOREM 10E. Suppose that a function f is meromorphic in a simply connected domain D. Sup-
pose further that C is a Jordan curve in D, followed in the positive (anticlockwise) direction, and that
f has no zeros or poles on C. If N denotes the number of zeros of f in the interior of C, counted with
multiplicities, and if P denotes the number of poles of f in the interior of C, counted with multiplicities,
then

1
2πi

∫
C

f ′(z)
f(z)

dz = N − P.

Proof. Note that by Theorems 10C and 10D, the poles of the function f ′/f are precisely at the zeros
and poles of f . Furthermore, a zero of f of order m gives rise to a residue m for f ′/f , so that the residues
of f ′/f arising from the zeros of f are equal to the number of zeros of f counted with multiplicities, and
this number is N . On the other hand, a pole of f of order m gives rise to a residue −m for f ′/f , so
that the residues of f ′/f arising from the poles of f are equal to minus the number of poles of f counted
with multiplicities, and this number is P . It follows that the sum of the residues is equal to N −P . The
result now follows from Theorem 10B applied to the function f ′/f . ©

Remarks. (1) Note that

1
2πi

∫
C

f ′(z)
f(z)

dz =
1

2πi
var(log f(z), C) =

1
2πi

var(i arg f(z), C) =
1
2π

var(arg f(z), C).

It follows that the conclusion of Theorem 10E can be expressed in the form

N − P =
1
2π

var(arg f(z), C),

in terms of the variation of the argument of f(z) along the Jordan curve C.

(2) Note also that

1
2πi

∫
C

f ′(z)
f(z)

dz =
1

2πi

∫
f(C)

dw

w
= n(f(C), 0).
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(3) Theorem 10E can be generalized in the following way. Suppose that a function f is meromor-
phic in a simply connected domain D, and that all its zeros and poles in D are simple. Suppose further
that C is a Jordan curve in D, followed in the positive (anticlockwise) direction, and that f has no zeros
or poles on C. If a1, . . . , aN denote the zeros of f in the interior of C, and if b1, . . . , bP denote the poles
of f in the interior of C, then

(1)
1

2πi

∫
C

f ′(z)
f(z)

g(z) dz =
N∑

j=1

g(aj) −
P∑

k=1

g(bk)

for every function g analytic in D. To see this, simply note that any simple zero or simple pole z0 of f ,
where g(z0) �= 0, gives rise to a simple pole of (f ′/f)g with residue

lim
z→z0

(z − z0)
f ′(z)
f(z)

g(z) = g(z0) lim
z→z0

(z − z0)
f ′(z)
f(z)

=
{

g(z0) if z0 is a simple zero of f ,
−g(z0) if z0 is a simple pole of f ;

on the other hand, if g(z0) = 0, then (f ′/f)g has a removable singularity at z0. In fact, (1) remains
valid if the zeros and poles of f are of higher order, provided that all zeros and poles are counted with
multiplicities. Note also that the choice g(z) = 1 in D gives Theorem 10E again. A particular useful
choice of f is given by the entire function f(z) = sinπz, with simple zeros at every n ∈ Z. Since

f ′(z)
f(z)

=
π cos πz

sinπz
= π cot πz,

it follows from (1) that

(2)
1

2πi

∫
C

g(z)π cot πz dz =
∑

n inside C

g(n)

for every function g analytic in D. This may be used to obtain a variety of infinite series expansions.
See Chapter 16.

Example 10.3.1. To find the number of zeros of the function f(z) = z4 + z3 − 2z2 +2z +4 in the first
quadrant of the complex plane, we use the Jordan curve C = C1 ∪ C2 ∪ C3, where C1 = [0, R] is the
straight line segment along the real axis from 0 to R, C2 is the circular path ζ : [0, π/2] → C, given by
ζ(t) = Reit, and C3 = [iR, 0] is the straight line segment along the imaginary axis from iR to 0. Here R
is taken to be a large positive real number.

On C1, we have z = x > 0, so that

f(z) = f(x) = x4 + x3 − 2x2 + 2x + 4 ≥
{

x4 + x3 + 4 if 0 ≤ x ≤ 1
2x + 4 if x ≥ 1

is clearly positive, so that var(arg f(z), C1) = 0. Next, note that

f(z) = z4

(
1 +

z3 − 2z2 + 2z + 4
z4

)
.
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On C2, we have |z| = R, so that

∣∣∣∣z
3 − 2z2 + 2z + 4

z4

∣∣∣∣ ≤ R3 + 2R2 + 2R + 4
R4

<
2R3

R4
=

2
R

whenever R > 8, say. It follows that on C2 when R is large enough, we have f(z) = R4e4it(1+w), where
|w| < 2/R, so that var(arg f(z), C2) = 2π + ε1, where ε1 → 0 as R → ∞. Finally, on C3, we have z = iy,
where y > 0, so that

f(z) = f(iy) = (y4 + 2y2 + 4) + i(2y − y3) = (y2 + 1)2 + 3 + i(2y − y3).

Note that Ref(iy) > 0, so that f(iy) is in the first or fourth quadrant of the complex plane. In fact,
when R > 0 is large, f(iR) is much nearer the real axis than the imaginary axis, while f(0) = 4 is on the
positive real axis. It follows that var(arg f(z), C3) = ε2, where ε2 → 0 as R → ∞. We now conclude that
var(arg f(z), C) = 2π + ε1 + ε2, where ε1, ε2 → 0 as R → ∞. On the other hand, C is a closed contour,
so that var(arg f(z), C) must be an integer multiple of 2π. It follows that var(arg f(z), C) = 2π. Note
now that the function f has no poles in the first quadrant. It follows from the Argument principle that
f has exactly one zero inside the contour C for all large R. Hence f has exactly one zero in the first
quadrant of the complex plane.

To find the number of zeros in a region, the following result provides an opportunity to either bypass
the Argument principle or at least enable one to apply the Argument principle to a simpler function.
Needless to say, the proof is based on an application of the Argument principle.

THEOREM 10F. (ROUCHÉ’S THEOREM) Suppose that functions f and g are analytic in a sim-
ply connected domain D, and that C is a Jordan contour in D. Suppose further that |f(z)| > |g(z)| on
C. Then f and f + g have the same number of zeros inside C.

We shall give two proofs of this result. The first is the one given in most texts.

First Proof of Theorem 10F. Consider the function

F (z) =
f(z) + g(z)

f(z)
.

The condition |f(z)| > |g(z)| on C ensures that both f and f + g have no zeros on C. On the other
hand, note that

(3) |F (z) − 1| =
∣∣∣∣ g(z)
f(z)

∣∣∣∣ < 1

for every z ∈ C. By Remark (2) after Theorem 10E, we have

1
2πi

∫
C

F ′(z)
F (z)

dz =
1

2πi

∫
F (C)

dw

w
= n(F (C), 0).

In view of (3), the closed contour F (C) is contained in the open disc {w : |w − 1| < 1} with centre 1
and radius 1. This disc does not contain the point 0, so that n(F (C), 0) = 0. Hence

1
2πi

∫
C

F ′(z)
F (z)

dz = 0.

It follows from the Argument principle that the function F has the same number of zeros and poles
inside C. Note now that the poles of F are precisely the zeros of f , and the zeros of F are precisely the
zeros of f + g. ©
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Second Proof of Theorem 10F. For every τ ∈ [0, 1], let

N(τ) =
1

2πi

∫
C

f ′(z) + τg′(z)
f(z) + τg(z)

dz.

The condition |f(z)| > |g(z)| on C ensures that

|f(z) + τg(z)| ≥ |f(z)| − τ |g(z)| ≥ |f(z)| − |g(z)| > 0

on C, so that f + τg does not have any zeros (or poles) on C. In fact, there is a positive lower bound
for |f(z)+ τg(z)| on C independent of τ . It follows easily from this that N(τ) is continuous in [0, 1]. By
the Argument principle, N(τ) is an integer for every τ ∈ [0, 1]. Hence N(τ) must be constant in [0, 1].
In particular, we must have N(0) = N(1). Clearly, N(0) is the number of zeros of f inside C, and N(1)
is the number of zeros of f + g inside C. ©

Example 10.3.2. To determine the number of solutions of ez = 2z + 1 with |z| < 1, we write

f(z) = −2z and g(z) = ez − 1,

so that f(z) + g(z) = ez − 2z − 1. We therefore need to find the number of zeros of f + g inside the unit
circle C = {z : |z| = 1}. Clearly, f has precisely one zero, at z = 0, inside C. On the other hand, note
that

ez − 1 =
∫

[0,z]

eζ dζ =
∫ 1

0

eztz dt.

If z ∈ C, then |ezt| ≤ et, and so

|g(z)| = |ez − 1| ≤
∫ 1

0

|eztz|dt ≤
∫ 1

0

et dt = e − 1.

Since |f(z)| = 2 whenever z ∈ C, it follows that |f(z)| > |g(z)| on C. By Rouché’s theorem, f + g has
precisely one zero inside C.

Problems for Chapter 10

1. a) Write down the Taylor series for ew about the origin w = 0.
b) Using the substitution w = 1/z2 in (a), find the Laurent series for the function e1/z2

about the
origin z = 0.

c) Find the residue of the function e1/z2
at the origin z = 0.

d) What type of singularity does the function e1/z2
have at the origin z = 0?

2. Suppose that f(z) = g(z)/h(z), where the functions g(z) and h(z) are analytic at z0. Suppose
further that g(z0) �= 0 and h(z) has a simple zero at z0. Use l’Hopital’s rule to show that

res(f, z0) = lim
z→z0

g(z)
h′(z)

=
g(z0)
h′(z0)

.
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3. For each of the functions f(z) given below, find all the singularities in C, find the residues at these
singularities, and evaluate the integrals

∫
C′

f(z) dz and
∫

C′′
f(z) dz,

where C ′ and C ′′ are circular paths centred at the origin z = 0, of radius 1/2 and 2 respectively,
followed in the positive (anticlockwise) direction:

a) f(z) =
1

z(z − 1)
b) f(z) =

z

z4 + 1
c) f(z) =

z3 + 2
(z4 − 1)(z + 1)

4. Suppose that C is a circular path centred at the origin z = 0, of radius 1, followed in the positive
(anticlockwise) direction. Show each of the following:

a)
∫

C

eπz

4z2 + 1
dz = πi; b)

∫
C

ez

z3
dz = πi.

5. Find the number of zeros of f(z) = z4 +z3 +5z2 +2z +4 in the first quadrant of the complex plane.
Find also the number of zeros of the function in the fourth quadrant.

6. Consider the equation 2z5 + 8z − 1 = 0.
a) Writing f(z) = 2z5 and g(z) = 8z − 1, use Rouché’s theorem to show that all the roots of this

equation lie in the open disc {z : |z| < 2}.
b) Writing f(z) = 8z − 1 and g(z) = 2z5, use Rouché’s theorem to show that this equation has

exactly one root in the open disc {z : |z| < 1}.
c) How many roots does this equation have in the open annulus {z : 1 < |z| < 2}? Justify your

assertion.

7. Show that the equation z6 + 4z2 = 1 has exactly two roots in the open disc {z : |z| < 1}.
[Hint: Use Rouché’s theorem. You will need to make a good choice for f(z) and g(z). Do not give
up if your first guess does not work.]


