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Chapter 13

MÖBIUS TRANSFORMATIONS

13.1. Linear Functions

Example 13.1.1. Consider the square {z = x + iy ∈ C : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}. The pictures
below show the images of this square under the functions f(z) = z + 1 + i, f(z) = eiφz and f(z) = 2z.
Note that the image of the square in each case is also a square.

original square image under f(z) = z + 1 + i

φ

image under f(z) = eiφz image under f(z) = 2z

The function f(z) = z + 1 + i is an example of a function of the type f(z) = z + c, where c ∈ C is fixed.
This function describes a translation on the complex plane C, where every point is shifted by a vector
corresponding to the complex number c. The function f(z) = eiφz, where φ ∈ R is fixed, describes a
rotation on the complex plane C, where every point is rotated in the anticlockwise direction by an angle
φ about the origin. The function f(z) = 2z is an example of a function of the type f(z) = ρz, where



f

magnifica tion

rotation translation
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ρ ∈ R is positive and fixed. This function describes a magnification on the complex plane C, where
the distance between points is magnified by a factor ρ, noting that |ρz1 − ρz2| = ρ|z1 − z2| for every
z1, z2 ∈ C.

It is easily seen that if we take the domain and codomain of each of the above functions to be the
complex plane C, then f : C → C is both one-to-one and onto. Furthermore, any geometric object in C

has an image under f which is similar to itself.

Definition. A linear function is a function f : C → C of the form f(z) = az + b, where a, b ∈ C are
fixed, and a �= 0.

Example 13.1.2. Let us return to the three examples earlier. For the function f(z) = z + c, we have
a = 1 and b = c. For the function f(z) = eiφz, we have a = eiφ and b = 0. For the function f(z) = ρz,
we have a = ρ and b = 0.

THEOREM 13A. Any linear function f : C → C is the composition of a rotation, a magnification
and a translation. Furthermore, it is one-to-one and onto.

Proof. Suppose that f(z) = az + b for every z ∈ C. Write a = ρeiφ, where ρ, φ ∈ R and ρ > 0. Then
f = f3 ◦ f2 ◦ f1, where

f1(z) = eiφz and f2(z) = ρz and f3(z) = z + b.

We have the picture below:

The last assertion follows from the observation that composition of functions preserves the one-to-one
and onto properties. ©

THEOREM 13B. The composition of any two linear functions is also a linear function.

Proof. Suppose that f1(z) = a1z + b1 and f2(z) = a2z + b2, where a1, b1, a2, b2 ∈ C and a1, a2 �= 0.
Then (f2 ◦ f1)(z) = a2(a1z + b1) + b2 = a1a2z + (a2b1 + b2). Clearly a1a2, a2b1 + b2 ∈ C and a1a2 �= 0.
©

Example 13.1.3. Suppose that z0 ∈ C is fixed. Consider the linear function f : C → C which rotates
the complex plane C in the anticlockwise direction by an angle θ about the point z0. We may adopt the
following strategy: Translate the point z0 to the origin, then rotate in the anticlockwise direction by an
angle θ about the origin, and then translate the origin back to the point z0. Then f = f3 ◦ f2 ◦ f1, where

f1(z) = z − z0 and f2(z) = eiθz and f3(z) = z + z0.
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We have the picture below:

f

f1(z) = z − z0 f3(z) = z + z0

f2(z) = eiθz

θ

Hence

f(z) = eiθ(z − z0) + z0 = eiθz + z0(1 − eiθ).

Alternatively, we may adopt the following strategy: Rotate in the anticlockwise direction by an angle θ
about the origin, and then translate the image of z0 under this rotation back to z0. Then f = g2 ◦ g1,
where

g1(z) = eiθz and g2(z) = z + (z0 − eiθz0).

Hence

f(z) = eiθz + (z0 − eiθz0) = eiθz + z0(1 − eiθ).

Example 13.1.4. Consider the linear function f : C → C which maps the horizontal arrow shown to
the other arrow shown.

We may adopt the following strategy: Translate the tip of the arrow from 3 + i to the origin, magnify
the arrow by a factor 1/

√
2, rotate it about its tip (now at the origin) in the anticlockwise direction by

an angle 3π/4, and finally translate its tip from the origin to the point −2+2i. Then f = f4 ◦f3 ◦f2 ◦f1,
where

f1(z) = z − (3 + i) and f2(z) =
1√
2
z and f3(z) = e3πi/4z and f4(z) = z + (−2 + 2i).

Hence

f(z) =
e3πi/4

√
2

(z − 3 − i) − 2 + 2i =
(
−1

2
+

i
2

)
(z − 3 − i) − 2 + 2i =

(
−1

2
+

i
2

)
z + i.
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13.2. The Inversion Function

Consider the inversion function

w = f(z) =
1
z
.

This function can be considered a function of the type f : C → C, where C denotes the extended complex
plane, so that C = C ∪ {∞}. We write formally f(0) = ∞ and f(∞) = 0.

Let us first study some geometric properties of this function. For our purposes, the point at ∞ is
considered to belong to every line on the extended complex plane.

Remarks. (1) A line passing through the origin contains all points of the form z = reiθ, where θ ∈ R

is fixed and r ∈ R. The images of these points under the inversion function are of the form

w =
1
z

=
1
r
e−iθ.

They form a line through the origin. Note that the point at ∞ and the origin change roles under the
inversion function.

(2) A line not passing through the origin consists of all points of the form z = x + iy, where
x, y ∈ R and Ax + By = C, where A, B, C ∈ R are fixed and C �= 0. The images of these points under
the inversion function are of the form w = u + iv, where u, v ∈ R and w = 1/z. It is easy to see that

z =
1
w

=
1

u + iv
=

u − iv
u2 + v2

,

so that

(1) x =
u

u2 + v2
and y = − v

u2 + v2
.

It follows that

Au

u2 + v2
− Bv

u2 + v2
= C.

This can be rewritten in the form

u2 + v2 − A

C
u +

B

C
v = 0,

the equation of a circle passing through the origin.

(3) Note now that the inverse of the inversion function is the inversion function itself. It follows
from the previous observation that a circle passing through the origin becomes a line not passing through
the origin under the inversion function.

(4) A circle not passing through the origin consists of all points of the form z = x + iy, where
x, y ∈ R and x2 + y2 + Ax + By = C, where A, B, C ∈ R are fixed and C �= 0. The images of these
points under the inversion function are of the form w = u + iv, where u, v ∈ R and w = 1/z. In view of
(1), we have

u2

(u2 + v2)2
+

v2

(u2 + v2)2
+

Au

u2 + v2
− Bv

u2 + v2
= C.
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This can be rewritten in the form

u2 + v2 − A

C
u +

B

C
v =

1
C

,

the equation of a circle not passing through the origin.

We now state a result which includes these four remarks.

THEOREM 13C. The inversion function f : C → C, given by f(z) = 1/z for every non-zero z ∈ C,
and f(0) = ∞ and f(∞) = 0, is one-to-one and onto. On the other hand, its inverse function is itself.
Furthermore, the image under this function of a line or a circle in C is also a line or a circle in C.

Remarks. (1) We have in fact shown the following: Under the inversion function, the image of a
line through the origin is a line through the origin, the image of a line not through the origin is a circle
through the origin, the image of a circle through the origin is a line not through the origin, and the
image of a circle not through the origin is a circle not through the origin.

(2) If we think of a line as a circle of infinite radius, then we can think of circles and lines as
belonging to the “same” class. The inversion function therefore maps members of this class to members
of this class.

13.3. A Generalization

If we extend any linear function discussed in §13.1 to a function of the type f : C → C by writing
f(∞) = ∞, then it is easy to see that this extended function f : C → C is also one-to-one and onto, and
that its inverse function f−1 : C → C is also a linear function.

Note also that the class of all circles and lines in C is carried to itself by all linear functions as well
as the inversion function. We now try to generalize these two types of functions.

Definition. A Möbius transformation, or a bilinear transformation, is a rational function T : C → C

of the form

(2) T (z) =
az + b

cz + d
,

where a, b, c, d ∈ C are fixed and ad − bc �= 0. We write formally

(3) T

(
−d

c

)
= ∞ and T (∞) =

a

c
.

Remarks. (1) Note that if ad − bc = 0, then

T ′(z) =
ad − bc

(cz + d)2
= 0,

so that T (z) is constant. Hence the requirement ad − bc �= 0 is essential.

(2) To justify (3), note that the function T (z) has a simple pole at z = −d/c, and that

lim
|z|→∞

T (z) =
a

c
.
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(3) Since

T ′(z) =
ad − bc

(cz + d)2
�= 0

for every z ∈ C satisfying z �= −d/c, it follows that a Möbius transformation is conformal at every point
in C where it is analytic.

(4) The case c = 0 and d = 1 reduces to T (z) = az + b, a linear function.

(5) The case a = d = 0 and b = c = 1 reduces to T (z) = 1/z, the inversion function.

(6) If c �= 0, then it is easy to check that

(4)
az + b

cz + d
=

a

c
+

(
b − ad

c

)
1

cz + d
.

(7) Writing w = T (z), then (2) can be written in the form cwz − az + dw − b = 0, and this is
linear in both z and w. This is the reason for calling such a function a bilinear transformation.

The following result is a generalization of Theorems 13A and 13C.

THEOREM 13D. Suppose that T : C → C is a Möbius transformation. Then
(a) T is the composition of a sequence of translations, magnifications, rotations and inversions;
(b) T : C → C is one-to-one and onto;
(c) the inverse function T−1 : C → C is also a Möbius transformation;
(d) T maps the class of circles and lines in C to itself; and
(e) for every Möbius transformation S : C → C, S ◦ T : C → C is also a Möbius transformation.

Proof. (a) Suppose that

T (z) =
az + b

cz + d
,

where ad − bc �= 0. If c = 0, then we must have ad �= 0, so that

T (z) =
az + b

d
=

a

d
z +

b

d
.

In this case, T is a linear function, and the result follows from Theorem 13A. On the other hand, if
c �= 0, then we use the identity (4). We can write T = T3 ◦ T2 ◦ T1, where

T1(z) = cz + d and T2(z) =
1
z

and T3(z) =
(

b − ad

c

)
z +

a

c
.

It is easy to check that T1 and T3 are linear functions, while T2 is the inversion function. The result now
follows from Theorem 13A.

(b) and (d) follow from (a) on noting that translations, magnifications, rotations and inversions all
have the properties in question, and that composition of functions preserves these properties.

(c) and (e) are left as exercises. ©
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Example 13.3.1. Suppose that a ∈ C is fixed and |a| < 1. Consider the Möbius transformation
T : C → C, given by

T (z) =
a − z

1 − az
,

where a ∈ C denotes the complex conjugate of a. Note that

|T (z)|2 =
|a − z|2
|1 − az|2 =

|a|2 − 2Re(az) + |z|2
1 − 2Re(az) + |a|2|z|2 .

It is easy to see that if |z| = 1, then |T (z)| = 1. It follows from Theorem 13D(d) that the image under
T of the unit circle {z : |z| = 1} is the unit circle itself. On the other hand, the inequality |T (z)| < 1 is
equivalent to the inequality

|a|2 + |z|2 < 1 + |a|2|z|2,

which is equivalent to the inequality

(1 − |a|2)(1 − |z|2) > 0,

which is equivalent to the inequality |z| < 1, in view of the assumption |a| < 1. It now follows from this
observation and Theorem 13D(b) that the interior {z : |z| < 1} of the unit circle must be mapped onto
itself by T .

Definition. A fixed point z ∈ C of a Möbius transformation T : C → C is a solution of the equation
T (z) = z.

THEOREM 13E. A Möbius transformation T : C → C has at most two distinct fixed points in C

unless T (z) = z identically.

Proof. Suppose that

T (z) =
az + b

cz + d
,

where ad − bc �= 0. If c = 0, then ad �= 0, so that T is a linear function. In this case, the equation
T (z) = z becomes az + b = dz. If T (z) is not identically equal to z, then a �= d or b �= 0, so that this
equation has at most one solution in C. Suppose next that c �= 0. Then clearly ∞ is not a fixed point.
The equation T (z) = z is now a quadratic equation, and so has at most two distinct roots in C. ©

It follows from Theorem 13E that a Möbius transformation must be the identity function if it has
three fixed points. Suppose now that S and T are Möbius transformations, and that there exist distinct
z1, z2, z3 ∈ C such that S(zj) = T (zj) for j = 1, 2, 3. By Theorem 13D(c)(e), the composition S−1 ◦ T is
also a Möbius transformation. Clearly (S−1 ◦ T )(zj) = zj for j = 1, 2, 3, so that S−1 ◦ T has three fixed
points, and so must be the identity function. In other words, (S−1 ◦ T )(z) = z, and so S(z) = T (z), for
every z ∈ C. We summarize this observation below.

THEOREM 13F. Suppose that two Möbius transformations S : C → C and T : C → C are equal at
three distinct points in C. Then S(z) = T (z) for every z ∈ C.

Next, we show that three points determine uniquely a Möbius transfomation.

THEOREM 13G. Suppose that z1, z2, z3 ∈ C are distinct, and that w1, w2, w3 ∈ C are also distinct.
Then there exists a unique Möbius transformation T : C → C such that T (zj) = wj for j = 1, 2, 3.
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Proof. To establish the existence of such a function, note that T1 : C → C, given by

T1(z) =
(z − z1)(z2 − z3)
(z − z3)(z2 − z1)

,

is a Möbius transformation, with T1(z1) = 0, T1(z2) = 1 and T1(z3) = ∞. Similarly, T2 : C → C, given
by

T2(w) =
(w − w1)(w2 − w3)
(w − w3)(w2 − w1)

,

is a Möbius transformation, with T2(w1) = 0, T2(w2) = 1 and T2(w3) = ∞. Clearly T = T−1
2 ◦ T1 is a

Möbius transformation such that T (zj) = wj for j = 1, 2, 3. The uniqueness follows from Theorem 13F.
©

Example 13.3.2. To find a Möbius transformation T : C → C such that T (0) = 2, T (1) = 3 and
T (6) = 4, note that T1 : C → C, given by

T1(z) =
(z − 0)(1 − 6)
(z − 6)(1 − 0)

=
−5z

z − 6
,

is a Möbius transformation, with T1(0) = 0, T1(1) = 1 and T1(6) = ∞. Similarly, T2 : C → C, given by

T2(w) =
(w − 2)(3 − 4)
(w − 4)(3 − 2)

=
−w + 2
w − 4

,

is a Möbius transformation, with T2(2) = 0, T2(3) = 1 and T2(4) = ∞. We now have to calculate
T = T−1

2 ◦ T1. Note that

T−1
2 (z) =

4z + 2
z + 1

,

so that

T (z) =
4

( −5z

z − 6

)
+ 2

( −5z

z − 6

)
+ 1

=
−20z + 2(z − 6)
−5z + (z − 6)

=
−18z − 12
−4z − 6

=
9z + 6
2z + 3

.

13.4. Finding Particular Möbius Transformations

Recall that a Möbius transformation T : C → C, given by

T (z) =
az + b

cz + d
,

where ad− bc �= 0, maps the class of circles and lines in C to itself. Suppose that a circle or line contains
the pole z = −d/c of T , then its image under T is unbounded, and is therefore a line rather than a
circle. Suppose, on the other hand, that a circle or line does not contain the pole z = −d/c of T , then
its image under T cannot contain the point at ∞, and is therefore a circle rather than a line.

Note next that a circle or line splits the extended complex plane into two domains. Here we adopt
the convention that a line contains the point at ∞, whereas a half plane not including its boundary line
does not contain the point at ∞. Since T : C → C is one-to-one and onto, and since an analytic function



z0 w0
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-1

r1

T1(z)=z-z0 T4(z)=z+w0

T3(z)=r1r2zT2(z)=
1
z

1

T
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maps domains to domains, it follows that the image of any domain arising from a circle or line must be
mapped onto a domain arising from the image of this circle or line under T .

Remark. Strictly speaking, the function

T (z) =
az + b

cz + d

is one-to-one, onto and analytic if we take the domain of T to be C \ {−d/c} and the codomain of T to
be C \ {a/c}.

Example 13.4.1. Suppose that z0, w0 ∈ C and r1, r2 > 0 are fixed, and that we are required to
find a Möbius transformation T : C → C which maps the disc {z : |z − z0| < r1} to the annulus
{w : |w − w0| > r2}. This can be achieved by taking T = T4 ◦ T3 ◦ T2 ◦ T1, where

T1(z) = z − z0 and T2(z) =
1
z

and T3(z) = r1r2z and T4(z) = z + w0.

We have the picture below:

Note that T1 is a translation which takes the centre of the disc {z : |z−z0| < r1} to the origin. Then the
inversion T2 turns a disc into an annulus. We now apply a magnification T3 and then use the translation
T4 to position the disc so that its centre is at w0. It is easy to see that

T (z) =
r1r2

z − z0
+ w0 =

w0z + (r1r2 − w0z0)
z − z0

.

Example 13.4.2. Suppose that we are required to find a Möbius transformation T which maps the
unit disc {z : |z| < 1} to the right half plane {w : Rew > 0}.
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Our first step is to find a Möbius transformation S : C → C which maps the unit circle {z : |z| = 1} to
the imaginary axis {w : Rew = 0}. For

S(z) =
az + b

cz + d

to map the unit circle to a line, the unit circle must contain the pole z = −d/c of S. Suppose that we
choose the point z = 1 to be this pole. In this case, we may take, for example, c = 1 and d = −1. Next,
some point on the unit circle must have image 0 under S. Suppose that we choose z = −1 to be this
point. In this case, we may take, for example, a = 1 and b = 1. Note that ad− bc �= 0, and these choices
give

S(z) =
z + 1
z − 1

.

Note that S(1) = ∞ and S(−1) = 0. We also know that the image of the unit circle under S is a line
through the origin, but at this point, we do not know whether this line is the imaginary axis. To check
what this line is, we use a third point on the unit circle, the point z = i, say. It is easy to check that
S(i) = −i, on the imaginary axis. We therefore conclude that S maps the unit circle to the imaginary
axis. It follows that S maps the unit disc {z : |z| < 1} to one of the half planes arising from the imaginary
axis, but at this point, we do not know whether it is {w : Rew < 0} or {w : Rew > 0}. To check which
half plane this is, we can use the point z = 0. It is easy to check that S(0) = −1. Unfortunately, this
is in {w : Rew < 0} instead of {w : Rew > 0}. This little problem can be eradicated by rotating S(z)
about the origin by an angle π. In other words, the Möbius transformation

T (z) = eiπS(z) = −S(z) =
−z − 1
z − 1

satisfies our requirements.

Example 13.4.3. Suppose that we are required to find a Möbius transformation S which maps the
half plane {z = x + iy : y < x} to the annulus {w : |w − 3| > 5}.

Our first step is to find a Möbius transformation S : C → C which maps the line {z = x + iy : y = x} to
the circle {w : |w − 3| = 5}. Consider first of all the transformation

S1(z) =
√

2e−iπ/4z = (1 − i)z

(the magnification here by
√

2 serves only to simplify the arithmetic), where we attempt to map the line
{z = x + iy : y = x} to the real axis {z : Imz = 0}. Next, we shall find a Möbius transformation S2

which maps the real axis {z : Imz = 0} to the circle {w : |w − 3| = 5}. To do this, we shall use the
Möbius transformation S2 which maps the points 0, 1,∞, say, on the real axis to the points 8, 4i,−2,
say, on the circle. From the proof of Theorem 13G, the inverse Möbius transformation S−1

2 is given by

z = S−1
2 (w) =

(w − 8)(4i + 2)
(w + 2)(4i − 8)

=
w − 8

2i(w + 2)
.
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Simple calculation gives

w = S2(z) =
4z − 8i
−2z − i

,

and so the Möbius transformation S = S2 ◦ S1, given by

S(z) = (S2 ◦ S1)(z) =
4(1 − i)z − 8i
−2(1 − i)z − i

,

maps the line {z = x + iy : y = x} to the circle {w : |w − 3| = 5}. It follows that S maps the half plane
{z = x + iy : y < x} to the disc {w : |w − 3| < 5} or the annulus {w : |w − 3| > 5}. To check which
this is, we can use the point z = 1. It is easy to check that S(1) = −4 + 4i. This is in the annulus
{w : |w − 3| > 5}. It follows that

S(z) =
4(1 − i)z − 8i
−2(1 − i)z − i

satisfies our requirements.

13.5. Symmetry and Möbius Transformations

Definition. We say that two points z1, z2 ∈ C are symmetric with respect to a line L if L is the
perpendicular bisector of the line segment joining z1 and z2.

Suppose that z1, z2 ∈ C are symmetric with respect to a line L. Then it is easy to see that every
circle or line passing through both z1 and z2 intersects L at right angles.

Using this observation, we make the following definition.

Definition. We say that two points z1, z2 ∈ C are symmetric with respect to a circle C if every circle
or line passing through both z1 and z2 intersects C at right angles.
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Remarks. (1) Consider the circle C = {z : |z − z0| = r} with centre z0 and radius r. Then it can be
shown that two points z1 inside C and z2 outside C are symmetric with respect to C if and only if there
exist ρ, θ ∈ R satisfying 0 < ρ < r and such that

z1 = z0 + ρeiθ and z2 = z0 +
r2

ρ
eiθ;

in other words, if and only if (z1 − z0)(z2 − z0) = r2.

(2) We also say that the centre of a circle C and the point at ∞ are symmetric with respect to
the circle C.

(3) Note that a line can be interpreted as a circle of infinite radius. It follows that our definition
covers symmetry with respect to both lines and circles.

THEOREM 13H. (SYMMETRY PRINCIPLE) Suppose that T : C → C is a Möbius transforma-
tion. Suppose further that C is a circle or line in C. Then two points z1, z2 ∈ C are symmetric with
respect to C if and only if T (z1) and T (z2) are symmetric with respect to T (C).

Proof. Note that T maps the class of lines and circles in C to itself. Note also that T is conformal at
all points where it is analytic, and so preserves orthogonality. ©

Example 13.5.1. Let us return to Example 13.3.1. Suppose that a ∈ C is fixed and |a| < 1. Suppose
also that λ ∈ C is fixed and |λ| = 1. Then the Möbius transformation T : C → C, given by

T (z) = λ
z − a

az − 1
,

maps the unit disc D = {z : |z| < 1} onto itself. Note here that we have introduced an extra rotation
λ about the origin. We shall now attempt to show that any Möbius transformation T : C → C which
maps the unit disc D onto itself must be of this form. Clearly T maps the unit circle C = {z : |z| = 1}
onto itself. Next, let a ∈ C be the unique point satisfying T (a) = 0. Then |a| < 1. Suppose now that
a and a∗ are symmetric with respect to the unit circle C. Then by the Symmetry principle, T (a) and
T (a∗) are symmetric with respect to the circle T (C) = C. Since T (a) = 0, we must have T (a∗) = ∞.
It follows that T (z) must have a zero at z = a and a pole at z = a∗. Note now that aa∗ = 1, so that
a∗ = 1/a. Hence

T (z) = λ
z − a

az − 1

for some λ ∈ C. Recall now that |T (z)| = 1 whenever |z| = 1. In particular, we require

|T (1)| =
∣∣∣∣λ1 − a

a − 1

∣∣∣∣ = 1.

It follows that |λ| = 1.

Problems for Chapter 13

1. Find a Möbius transformation that takes the points 0, 2,−2 to the points −2, 0, 2 respectively.

2. Show that the Möbius transformation w =
z − i
z + i

maps the upper half plane {z : Imz > 0} onto the

disc {w : |w| < 1}.
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3. Suppose that C is a given circle or line, and that C ′ is also a given circle or line. Does there exist a
Möbius transformation that maps C onto C ′? If so, is this Möbius transformation unique? Justify
your assertions.

4. The cross ratio of four distinct points z1, z2, z3, z4 ∈ C is defined by

X(z1, z2, z3, z4) =
(z1 − z2)(z3 − z4)
(z1 − z4)(z3 − z2)

and by the obvious limit if one of the points is ∞. Show that the cross ratio is invariant under
Möbius transformation; in other words, for every Möbius transformation T : C → C, we have

X(T (z1), T (z2), T (z3), T (z4)) = X(z1, z2, z3, z4).

[Hint: Note that every Möbius transformation is a composition of translations, rotations, magnifi-
cations and inversions.]

5. Use the invariance of the cross ratio to find a Möbius transformation that takes the points 0, 1,∞
to the points −i, 1, i respectively.
[Hint: Suppose that the Möbius transformation takes z to w.]

6. Show that a Möbius transformation w = f(z) maps the upper half plane {z : Imz > 0} onto the
disc {w : |w| < 1} if and only if it is of the form

w = λ
z − a

z − a
,

where a, λ ∈ C satisfy |λ| = 1 and Ima > 0.

7. a) Construct a one-parameter family of Möbius transformations that map the real axis onto the
unit circle by mapping the points 0, λ,∞ to the points −i, 1, i respectively, where λ is a non-zero
real parameter.

b) What point of the upper half plane gets mapped to the centre of the circle?
c) For what values of λ is the upper half plane {z : Imz > 0} mapped onto the disc {w : |w| < 1}?

Onto the annulus {w : |w| > 1}?
d) Taking note of Problem 6, comment whether the family includes all Möbius transformations

that map the real axis onto the unit circle.

8. Find all Möbius transformations that map the disc {z : |z − 1| < 2} onto the upper half plane
{w : Imw > 0} and takes z = 1 to w = i.

9. Show that if either of the transformations w = a +
bz

1 − cz
and w = c +

bz

1 − az
maps the unit disc

onto the unit disc, then they both do.

10. Find a transformation that maps A = {z = x + iy : |z| < 1 and y > 0}, the upper half of the unit
disc, onto the first quadrant.


