
INTRODUCTION TO COMPLEX ANALYSIS

W W L CHEN

c© W W L Chen, 1996, 2003.

This chapter is available free to all individuals, on the understanding that it is not to be used for financial gains,

and may be downloaded and/or photocopied, with or without permission from the author.

However, this document may not be kept on any information storage and retrieval system without permission

from the author, unless such system is not accessible to any individuals other than its owners.

Chapter 14

SCHWARZ-CHRISTOFFEL TRANSFORMATIONS

14.1. Introduction

Recall that a function f(z) is conformal at every point where it is analytic and has non-zero derivative.
In this chapter, we shall study the situation at points where f(z) is not conformal.

Suppose that x0 ∈ R is fixed. Consider a function f(z) with derivative

f ′(z) = (z − x0)α,

where −1 < α < 1. Here we have chosen the branch of the argument so that

−π

2
< arg(z − x0) ≤

3π

2
,

introducing a branch cut along the axis {x0 + iy : y ≤ 0}. We shall study the image of the real axis
under this mapping f .

Suppose first of all that z lies on the real axis and z > x0. Then f(z) is conformal at such a point
z, since f ′(z) �= 0. Note also that

arg f ′(z) = α arg(z − x0) = 0

for all such points z, ignoring multiples of 2π. Since the tangent at every point of the half line (x0,∞) has
slope 0, it follows that the tangent at every point of the image curve f((x0,∞)) has slope arg f ′(z) = 0.
Hence f((x0,∞)) is a half line parallel to the real axis and has left hand end point f(x0).

Suppose next that z lies on the real axis and z < x0. Again f(z) is conformal at such a point z,
since f ′(z) �= 0. Note also that

arg f ′(z) = α arg(z − x0) = απ
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for all such points z, again ignoring multiples of 2π. It follows easily that f((−∞, x0)) is a half line
making an angle απ with the horizontal axis.

Summarizing the above, we have the following diagram which describes the image of the real axis
under f .
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14.2. A Generalization

Again, suppose that x0 ∈ R is fixed. Consider a function f(z) with derivative

f ′(z) = λ(z − x0)α,

where λ ∈ C is non-zero and −1 < α < 1. Then

arg f ′(z) = arg λ + α arg(z − x0).

In other words, there is an extra rotation by arg λ from the case in the previous section. This leads to
the following diagram which describes the image of the real axis under f .
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f(x0)������������

Suppose now that x1, . . . , xk ∈ R are fixed, and that x1 < . . . < xk. Consider a function f(z) with
derivative

(1) f ′(z) = λ(z − x1)α1 . . . (z − xk)αk ,

where λ ∈ C is non-zero and −1 < α1, . . . , αk < 1. Then

arg f ′(z) = arg λ + α1 arg(z − x1) + . . . + αk arg(z − xk).

It is easy to see that if z is on the real axis, then

arg f ′(z) =




arg λ if z > xk,
arg λ + αkπ if xk−1 < z < xk,

...
arg λ + α2π + . . . + αkπ if x1 < z < x2,
arg λ + α1π + . . . + αkπ if z < x1.
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This leads to the following diagram which describes the image of the real axis under f .
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Suppose now that a function f(z) satisfies (1). Then it is analytic on the complex plane C with a
few branch cuts at x1, . . . , xk. More precisely, it is analytic in the domain

C \ ({x1 + iy : y ≤ 0} ∪ . . . ∪ {xk + iy : y ≤ 0}).

It follows that for any z ∈ H, where H denotes the upper half plane, we can write

(2) f(z) =
∫

[z0,z]

f ′(ζ) dζ + B = λ

∫
[z0,z]

(ζ − x1)α1 . . . (ζ − xk)αk dζ + B.

Here, z0 is a suitably chosen point in H or its boundary. Also, for every z ∈ H, [z0, z] denotes the
straight line segment from z0 to z.

Definition. A function f(z) of the form (2) is called a Schwarz-Christoffel transformation.

14.3. Polygons

Note that the function (2) maps the real axis onto a polygonal path. We now wish to construct a
one-to-one analytic function that maps the upper half plane H onto the interior of a given polygon P .
The idea is to tailor a Schwarz-Christoffel transformation to achieve this.

Suppose that the vertices of the polygon P are given by w1, . . . , wk in the anticlockwise direction.
Let us follow the edges of the polygon P . At vertex wj , suppose that we make a right turn of angle θjπ,
where −1 < θj < 1, with the convention that θj < 0 denotes a left turn.
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Since P is a polygon and its vertices are given in the anticlockwise direction, we must have

θ1π + . . . + θkπ = −2π.

It is an elementary fact in geometry that if we know the vertices w1, . . . , wk−1 and angles θ1π, . . . , θk−1π
of the polygon P , then the last vertex wk and angle θkπ are uniquely determined. The idea is therefore
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to find real numbers x1 < . . . < xk−1 to act as preimages of the vertices w1, . . . , wk−1, and to assume
that x = ∞ is the preimage of the vertex wk.

Suppose that x1 < . . . < xk−1. Clearly the function

g(z) =
∫

[z0,z]

(ζ − x1)θ1 . . . (ζ − xk−1)θk−1 dζ

maps the real line onto some polygon Q of k sides. However, the polygon Q may not be the polygon
P , but at least it has the required right hand turn angles θ1, . . . , θk−1 at the vertices g(x1), . . . , g(xk−1).
We can adjust the lengths of the sides of the polygon Q by choosing x1, . . . , xk−1 carefully, so that Q is
similar to the polygon P . Once this is achieved, we can then map the polygon Q to the polygon P by a
linear transformation.

We state, without proof, the following important result.

THEOREM 14A. Suppose that P is a polygon with vertices w1, . . . , wk in the anticlockwise direction,
with corresponding right turns of angles θ1π, . . . , θkπ respectively, where −1 < θ1, . . . , θk < 1. Then there
exists a function of the form

f(z) = A

∫
[z0,z]

(ζ − x1)θ1 . . . (ζ − xk−1)θk−1 dζ + B,

where A, B ∈ C, that maps the upper half plane H one-to-one and conformally onto the interior of P ,
with

f(x1) = w1, . . . , f(xk−1) = wk−1, f(∞) = wk.

Remarks. (1) Note that we do not even need to have very precise information on wk and θk.

(2) Certain infinite regions can sometimes be thought of as infinite polygons. In this case, it is
sometimes convenient to take wk as the point at infinity, as we need no information on the angle θk

when we use Theorem 14A.

(3) It can be shown that a Schwarz-Christoffel transformation can be uniquely determined by three
points, as is the case for Möbius transformations. This can be interpreted as three degrees of freedom
in our construction of the transformation. One of these is used by taking f(∞) = wk. We can therefore
afford to choose x1 and x2 freely, subject to the restriction that −∞ < x1 < x2 < ∞.

(4) Occasionally, we may choose extra points apart from x1 and x2 due to symmetry properties
of the polygon P . We shall illustrate this point in Examples 14.4.3–14.4.5 below.

(5) Note that the integrals involved may be impossible to calculate in practice. Numerical tech-
niques are often used. However, we shall not discuss these here.

14.4. Examples

Example 14.4.1. We wish to find a Schwarz-Christoffel transformation that maps the upper half plane
H to the inside of the triangle with vertices at −1, 0 and i. The boundary of the triangle is described
by the solid edges in the picture below.
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Let us write, in our notation,

w1 = i, w2 = −1, w3 = 0,

so that

θ1 = −3/4, θ2 = −3/4, θ3 = −1/2.

Following Theorem 14A, we consider a function of the form

f(z) = A

∫
[z0,z]

(ζ − x1)−3/4(ζ − x2)−3/4 dζ + B.

We may choose x1 = −1 and x2 = 1, and obtain, using z0 = 0,

f(z) = A

∫
[0,z]

(ζ + 1)−3/4(ζ − 1)−3/4 dζ + B = A

∫
[0,z]

(ζ2 − 1)−3/4 dζ + B.

We need f(−1) = i and f(1) = −1. It follows that

A

∫ −1

0

(ζ2 − 1)−3/4 dζ + B = i and A

∫ 1

0

(ζ2 − 1)−3/4 dζ + B = −1.

Writing

κ =
∫ 1

0

(ζ2 − 1)−3/4 dζ,

we have

−Aκ + B = i and Aκ + B = −1,

so that

A =
−1 − i

2κ
and B =

i − 1
2

.

Hence

f(z) =
−1 − i

2κ

∫
[0,z]

(ζ2 − 1)−3/4 dζ +
i − 1

2
.

Example 14.4.2. We wish to find a Schwarz-Christoffel transformation that maps the upper half plane
H to the set

P = {z = x + iy : x > 0 and y > 0} ∪ {z = x + iy : x ≤ 0 and y > 1}.

The boundary of P is described by the solid edges in the picture below.
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Let us write, in our notation,

w1 = i, w2 = 0, w3 = ∞,

so that

θ1 = 1/2 and θ2 = −1/2.

Following Theorem 14A, we consider a function of the form

f(z) = A

∫
[z0,z]

(ζ − x1)1/2(ζ − x2)−1/2 dζ + B′.

We may choose x1 = −1 and x2 = 1, and obtain

f(z) = A

∫
[z0,z]

(ζ + 1)1/2(ζ − 1)−1/2 dζ + B′ = A

∫
[z0,z]

(
ζ + 1
ζ − 1

)1/2

dζ + B′

= A
(
(z2 − 1)1/2 + log(z + (z2 − 1)1/2)

)
+ B.

We shall omit some of the painful analysis, and claim that we can choose a branch of the function which
is analytic in the upper half plane H. We need f(−1) = i and f(1) = −1. It follows that by choosing a
suitable branch of the logarithm, we have

A log(−1) + B = i and A log 1 + B = 0,

so that A = 1/π and B = 0. Hence

f(z) =
1
π

(
(z2 − 1)1/2 + log(z + (z2 − 1)1/2)

)
.

Example 14.4.3. We wish to find a Schwarz-Christoffel transformation that maps the upper half
plane H to the inside of the rectangle with vertices at ±1 and ±1 + i. The boundary of the rectangle is
described by the solid edges in the picture below.

�
�
�
�
�
�
�
�
�

i−1+i 1+i

� � �
−1

� � �
1

Let us write, in our notation,

w1 = −1 + i, w2 = −1, w3 = 1, w4 = 1 + i, w5 = i

(here we have used an extra point w5 in order to create some symmetry; see Remark (4) in the previous
section), so that

θ1 = θ2 = θ3 = θ4 = −1/2 and θ5 = 0.

Following Theorem 14A, we consider a function of the form

f(z) = A

∫
[z0,z]

(ζ − x1)−1/2(ζ − x2)−1/2(ζ − x3)−1/2(ζ − x4)−1/2 dζ + B.
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We shall choose

x1 = −α, x2 = −1, x3 = 1, x4 = α,

where α > 1 will be determined later. Note that we are attempting to benefit from the symmetry here.
With such a choice, we obtain, using z0 = 0,

f(z) = A

∫
[0,z]

(ζ + α)−1/2(ζ + 1)−1/2(ζ − 1)−1/2(ζ − α)−1/2 dζ + B

= A

∫
[0,z]

(ζ2 − 1)−1/2(ζ2 − α2)−1/2 dζ + B = A

∫
[0,z]

dζ√
(1 − ζ2)(α2 − ζ2)

+ B.

We need

f(−α) = −1 + i, f(−1) = −1, f(1) = 1, f(α) = 1 + i.

It follows that

A

∫ −α

0

dζ√
(1 − ζ2)(α2 − ζ2)

+ B = −1 + i,(3)

A

∫ −1

0

dζ√
(1 − ζ2)(α2 − ζ2)

+ B = −1,(4)

A

∫ 1

0

dζ√
(1 − ζ2)(α2 − ζ2)

+ B = 1,(5)

A

∫ α

0

dζ√
(1 − ζ2)(α2 − ζ2)

+ B = 1 + i.(6)

Subtracting (4) from (3) and subtracting (5) from (6), we obtain respectively

A

∫ −α

−1

dζ√
(1 − ζ2)(α2 − ζ2)

= i and A

∫ α

1

dζ√
(1 − ζ2)(α2 − ζ2)

= i,

which are in fact the same equation (note that symmetry is at work here). Multiplying the denominator
by i, we obtain

(7) A

∫ α

1

dζ√
(ζ2 − 1)(α2 − ζ2)

= 1.

On the other hand, if B = 0, then (4) and (5) are the same, and can be represented by

(8) A

∫ 1

0

dζ√
(1 − ζ2)(α2 − ζ2)

= 1.

It follows that our choice of α should be made so that

∫ 1

0

dζ√
(1 − ζ2)(α2 − ζ2)

=
∫ α

1

dζ√
(ζ2 − 1)(α2 − ζ2)

.

We can then take A to be the reciprocal of the common value of these two integrals.
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Example 14.4.4. We wish to find a Schwarz-Christoffel transformation that maps the upper half plane
H to the domain

P = C \ {z = x ± i : x ≤ 0}.

The boundary of the set P is described by the solid edges in the picture below when the point w2 is
taken to infinity along the negative real axis.

i
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� � � � � �jjjj

jjjj
jjjj

jjjj
j

TTTTTTTTTTTTTTTTT
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�
�
�
�

Let us write, in our notation,

w1 = i, w2 = ∞, w3 = −i, w4 = ∞

(note again the symmetry; see Remark (4) in the previous section), so that

θ1 = 1, θ2 = −1, θ3 = 1.

Following Theorem 14A, we consider a function of the form

f(z) = A

∫
[z0,z]

(ζ − x1)(ζ − x2)−1(ζ − x3) dζ + B′.

We shall choose

x1 = −1, x2 = 0, x3 = 1,

and note that we are attempting to benefit from the symmetry here. We obtain

f(z) = A

∫
[z0,z]

(ζ + 1)ζ−1(ζ − 1) dζ + B′ = A

∫
[z0,z]

(ζ2 − 1)ζ−1 dζ + B′

= A

∫
[z0,z]

(
ζ − 1

ζ

)
dζ + B′ = A

(
z2

2
− log z

)
+ B.

We need

f(−1) = i, f(0) = −∞, f(1) = −i.

It follows that by choosing a suitable branch of the logarithm, we have

A

(
1
2
− iπ

)
+ B = i and A

(
1
2
− 0

)
+ B = −i,

so that A = −2/π and B = 1/π − i. Hence

f(z) = − 2
π

(
z2

2
− log z

)
+

(
1
π
− i

)
.

Note that |f(z)| → ∞ as z → 0.
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Example 14.4.5. We wish to find a Schwarz-Christoffel transformation that maps the upper half plane
H to the domain

P = H \ {z = yi : y ≤ 1}.

The boundary of the set P is described by the solid edges in the picture below.

�
�
�

i

0
�
�
�

Let us write, in our notation,

w1 = 0, w2 = i, w3 = 0, w4 = ∞

(note again the symmetry as well as the use of the point 0 twice), so that

θ1 = −1/2, θ2 = 1, θ3 = −1/2.

Following Theorem 14A, we consider a function of the form

f(z) = A

∫
[z0,z]

(ζ − x1)−1/2(ζ − x2)(ζ − x3)−1/2 dζ + B′.

We shall choose

x1 = −1, x2 = 0, x3 = 1,

and note again that we are attempting to benefit from the symmetry here. We obtain

f(z) = A

∫
[z0,z]

(ζ + 1)−1/2ζ(ζ − 1)−1/2 dζ + B′ = A

∫
[z0,z]

(ζ2 − 1)−1/2ζ dζ + B′ = A(z2 − 1)1/2 + B.

We need

f(−1) = 0, f(0) = i, f(1) = 0.

It follows that by choosing a suitable branch of the function which is positive for large positive z, we
have

Ai + B = i and B = 0,

so that A = 1 and B = 0. Hence

f(z) = (z2 − 1)1/2.

Problems for Chapter 14

1. Use these notes and without reproducing proofs, find a transformation that maps the unit disc
D = {z : |z| < 1} onto the domain D′ = H\{z = yi : y ≤ 1}, where H denotes the upper half plane.
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2. For each of the sets A below, find a Schwarz-Christoffel transformation that maps the upper half
plane H onto the set A:
a) A is an open triangular region with vertices ±1 and i

√
3.

b) A is the region above the polygonal path

{z = x + i : x ≤ 0} ∪ {z = x + (1 − x)i : 0 ≤ x ≤ 1} ∪ {z = x : x ≥ 1}.

c) A = {z = x + iy : y > 0 or |x| < 1}.


