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Chapter 16

UNIFORM CONVERGENCE

16.1. Uniform Convergence of Sequences

Recall that if a sequence an of complex numbers converges to a, then, given any ε > 0, there exists
N ∈ R such that |an − a| < ε whenever n > N .

We can extend this to pointwise convergence in a region D ⊆ C in a natural way. A sequence of
complex valued functions an(z) defined on D converges pointwise to a function a(z) defined on D if,
given any ε > 0 and any z ∈ D, there exists N ∈ R such that |an(z) − a(z)| < ε whenever n > N . Here
the value of N may depend on the choice of z ∈ D. Indeed, for any fixed z ∈ D, we simply consider the
convergence of the sequence an(z) of complex numbers to the complex number a(z). The region D does
not play any essential part in the argument apart from providing the complex numbers z in question.

In this chapter, we introduce the idea of uniformity to the question of convergence. Put simply,
uniformity transfers the dependence of N on z to dependence of N only on the region D containing the
complex numbers z in question. More precisely, we have the following definition.

Definition. Suppose that D ⊆ C is a region. We say that a sequence of complex valued functions
an(z) converges uniformly in D to a function a(z), denoted by an(z) → a(z) as n → ∞ uniformly in D,
if, given any ε > 0, there exists N ∈ R such that for every z ∈ D, |an(z) − a(z)| < ε whenever n > N .

Remark. Note that N no longer depends on the choice of z ∈ D. Note also that a precise definition
can be given by requiring N ∈ R to satisfy

sup
z∈D

|an(z) − a(z)| < ε

whenever n > N .
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Example 16.1.1. Consider the sequence

an(z) =
z

n

in the region D = {z : |z| < 1}. Note first of all that for every fixed z ∈ D, we have an(z) → 0 as
n → ∞. On the other hand, given any ε > 0, we have, for every z ∈ D, that

|an(z) − 0| =
|z|
n

<
1
n

< ε

whenever n > 1/ε. Hence an(z) → 0 as n → ∞ uniformly in D. Now consider the same sequence in the
region D = C. Note that

|an(z) − 0| < ε if and only if n >
|z|
ε

.

It is therefore impossible to find a suitable N independent of the choice of z ∈ C. Hence an(z) converges
to 0, but not uniformly, in C.

16.2. Consequences of Uniform Convergence

In this section, we show that uniform convergence carries a number of properties of the sequence over
to the limit function. The following three results concern respectively continuity, integrability and
differentiability.

THEOREM 16A. Suppose that for every n ∈ N, the function an(z) is continuous in a region D ⊆ C.
Suppose further that an(z) → a(z) as n → ∞ uniformly in D. Then a(z) is continuous in D.

Proof. Suppose that z0 ∈ D is fixed. For every z ∈ D, we have

a(z) − a(z0) = a(z) − an(z) + an(z) − an(z0) + an(z0) − a(z0),

so that

(1) |a(z) − a(z0)| ≤ |an(z) − a(z)| + |an(z) − an(z0)| + |an(z0) − a(z0)|.

Given any ε > 0, there exists N (independent of the choice of z ∈ D) such that

(2) |an(z) − a(z)| <
ε

3
and |an(z0) − a(z0)| <

ε

3

whenever n > N . We now choose any n > N and consider the function an(z). Clearly this function is
continuous at z0. Hence given any ε > 0, there exists δ > 0 such that

(3) |an(z) − an(z0)| <
ε

3
whenever |z − z0| < δ.

Combining (1)–(3), we conclude that |a(z)− a(z0)| < ε whenever |z − z0| < δ, so that a(z) is continuous
at z0. Since z0 ∈ D is arbitrary, the result follows. ©

Example 16.2.1. Consider the sequence an(z) = zn on the real interval [0, 1]. Each function an(z) is
clearly continuous in [0, 1]. Also an(z) → 0 as n → ∞ if z ∈ [0, 1) and an(1) → 1 as n → ∞, so that the
limit function is not continuous in [0, 1]. In view of Theorem 16A, it is clear that this discontinuity is
caused by the lack of uniform convergence of an(z) in [0, 1].
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THEOREM 16B. Suppose that for every n ∈ N, the function an(z) is continuous in a region D ⊆ C.
Suppose further that an(z) → a(z) as n → ∞ uniformly in D. Then for any contour C lying in D, we
have

lim
n→∞

∫
C

an(z) dz =
∫

C

a(z) dz.

Proof. Note first of all that the integrals exist, since integrability over C is a consequence of continuity
in D. Suppose now that the contour C has length L. Given any ε > 0, there exists N ∈ R such that for
every z ∈ D, |an(z) − a(z)| < ε/L whenever n > N . Then

∣∣∣∣
∫

C

an(z) dz −
∫

C

a(z) dz

∣∣∣∣ ≤ L sup
z∈C

|an(z) − a(z)| ≤ ε

whenever n > N . ©

THEOREM 16C. Suppose that for every n ∈ N, the function an(z) is analytic in a disc D = {z :
|z − z0| < R}. Suppose further that an(z) → a(z) as n → ∞ uniformly in Dr = {z : |z − z0| ≤ r} for
every r ∈ [0, R). Then a(z) is analytic in D, and a′

n(z) → a′(z) as n → ∞ uniformly in Dr for every
r ∈ [0, R).

Proof. Suppose that T is any triangular path in D. We now choose r ∈ [0, R) so that T ⊆ Dr. Then
∫

T

a(z) dz = lim
n→∞

∫
T

an(z) dz = 0.

Here the second equality follows from Cauchy’s integral theorem, while the first equality follows from
Theorem 16B, in view of uniform convergence in Dr. The assertion that a(z) is analytic in D now
follows from Morera’s theorem (Theorem 6G). Suppose next that r ∈ [0, R) is fixed. We now choose
ρ = (r + R)/2, so that r < ρ < R, and let Cρ denote the circle {ζ : |ζ − z0| = ρ}, followed in the
positive (anticlockwise) direction (the reader is advised to draw a picture). For every z ∈ Dr, we have,
by Cauchy’s integral formula, that

a′
n(z) − a′(z) =

1
2πi

∫
Cρ

an(ζ) − a(ζ)
(ζ − z)2

dζ.

Note that for every ζ ∈ Cρ, we have |ζ − z| ≥ ρ − r. Also, in view of the uniform convergence of the
sequence an(z) in Dρ, we have, given any ε > 0, there exists N such that for every z ∈ Dρ,

|an(z) − a(z)| <
(ρ − r)2ε

ρ

whenever n > N . It follows that for every z ∈ Dr, we have

|a′
n(z) − a′(z)| < ρ sup

ζ∈Cρ

∣∣∣∣an(ζ) − a(ζ)
(ζ − z)2

∣∣∣∣ ≤ ε

whenever n > N . Hence a′
n(z) → a′(z) as n → ∞ uniformly in Dr. ©

Note that Theorem 16C is restricted to discs. However, as far as application is concerned, this is
not a serious restriction. For any point z in an arbitrary domain D ⊆ C, we can always find an open
disc D′ such that z ∈ D′ ⊆ D, and so we can apply Theorem 16C to the disc D′. We immediately have
the following result.

THEOREM 16D. Suppose that for every n ∈ N, the function an(z) is analytic in a domain D ⊆ C.
Suppose further that an(z) → a(z) as n → ∞ uniformly in D. Then a(z) is analytic in D. Furthermore,
for every z ∈ D and every k ∈ N, we have a

(k)
n (z) → a(k)(z) as n → ∞.
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16.3. Cauchy Sequences

Suppose that a sequence of complex numbers an converges to a. Then given any ε > 0, there exists
N ∈ R such that |an − a| < ε/2 whenever n > N . It follows that

|an − am| ≤ |an − a| + |am − a| < ε

whenever m,n > N .

Definition. We say that a sequence of complex numbers an is a Cauchy sequence if, given any ε > 0,
there exists N ∈ R such that |an − am| < ε whenever m,n > N .

In the last section of this chapter, we shall prove the following result.

THEOREM 16E. (GENERAL PRINCIPLE OF CONVERGENCE) A sequence of complex num-
bers an is convergent if and only if it is a Cauchy sequence. In other words, a sequence an of complex
numbers is convergent if and only if, given any ε > 0, there exists N ∈ R such that |an − am| < ε
whenever m, n > N .

Definition. Suppose that D ⊆ C is a region. We say that a sequence of complex valued functions
an(z) is a uniform Cauchy sequence in D, if, given any ε > 0, there exists N ∈ R such that for every
z ∈ D, |an(z) − am(z)| < ε whenever m, n > N .

We have the following important result.

THEOREM 16F. (GENERAL PRINCIPLE OF UNIFORM CONVERGENCE) Suppose that D ⊆
C is a region. A sequence of complex valued functions an(z) converges uniformly in D if and only if it
is a uniform Cauchy sequence in D.

Proof. It is simple to show that uniform convergence implies uniform Cauchy. To prove the converse,
note that for every fixed z ∈ D, the sequence of complex numbers an(z) is a Cauchy sequence. It follows
from Theorem 16E that an(z) converges to a(z), say. Since an(z) is a uniform Cauchy sequence in D,
it follows that, given any ε > 0, there exists N ∈ R such that for every z ∈ D, |an(z) − am(z)| < ε
whenever m,n > N . Letting m → ∞, we conclude that |an(z) − a(z)| ≤ ε whenever n > N . ©

16.4. Uniform Convergence of Series

Recall that the convergence of a series depends on the convergence of the sequence of partial sums.

Definition. Suppose that D ⊆ C is a region. We say that a series of complex valued functions

∞∑
n=1

an(z)

converges uniformly in D if the sequence of partial sums

sN (z) =
N∑

n=1

an(z)

converges uniformly in D.

We immediately have the following analogues of Theorems 16A, 16B, 16D, 16E and 16F. They can
be established by applying the earlier results to the sequence of partial sums.
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THEOREM 16G. Suppose that for every n ∈ N, the function an(z) is continuous in a region D ⊆ C.
Suppose further that the series

∞∑
n=1

an(z)

converges uniformly to a function s(z) in D. Then s(z) is continuous in D.

THEOREM 16H. Suppose that for every n ∈ N, the function an(z) is continuous in a region D ⊆ C.
Suppose further that the series

∞∑
n=1

an(z)

converges uniformly to a function s(z) in D. Then for any contour C lying in D, we have

∞∑
n=1

∫
C

an(z) dz =
∫

C

s(z) dz.

In other words, we can interchange the order of summation and integration.

THEOREM 16J. Suppose that for every n ∈ N, the function an(z) is analytic in a domain D ⊆ C.
Suppose further that the series

∞∑
n=1

an(z)

converges uniformly to a function s(z) in D. Then s(z) is analytic in D. Furthermore, for every z ∈ D
and every k ∈ N, we have

∞∑
n=1

a(k)
n (z) = s(k)(z).

In other words, we can interchange the order of summation and differentiation.

THEOREM 16K. (GENERAL PRINCIPLE OF CONVERGENCE) A series

∞∑
n=1

an

of complex numbers converges if and only if, given any ε > 0, there exists N0 ∈ R such that

∣∣∣∣∣
N2∑

n=N1+1

an

∣∣∣∣∣ < ε

whenever N2 > N1 > N0.
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THEOREM 16L. (GENERAL PRINCIPLE OF UNIFORM CONVERGENCE) Suppose that D ⊆
C is a region. A series

∞∑
n=1

an(z)

of complex valued functions converges uniformly in D if and only if, given any ε > 0, there exists N0 ∈ R

such that for every z ∈ D,
∣∣∣∣∣

N2∑
n=N1+1

an(z)

∣∣∣∣∣ < ε

whenever N2 > N1 > N0.

We can also establish the following uniform versions of the Comparison test and the Ratio test.

THEOREM 16M. (WEIERSTRASS M -TEST) Suppose that D ⊆ C is a region. Suppose further
that an(z) is a sequence of complex valued functions such that |an(z)| ≤ Mn for every z ∈ D, where the
real series

∞∑
n=1

Mn

of non-negative terms is convergent. Then the series

∞∑
n=1

an(z)

converges uniformly (and absolutely) in D.

Proof. Using the Triangle inequality, we have

∣∣∣∣∣
N2∑

n=N1+1

an(z)

∣∣∣∣∣ ≤
N2∑

n=N1+1

|an(z)| ≤
N2∑

n=N1+1

Mn.

Given any ε > 0, it follows from Theorem 16K that there exists N0 such that

N2∑
n=N1+1

Mn < ε

whenever N2 > N1 > N0. It follows that for every z ∈ D,

∣∣∣∣∣
N2∑

n=N1+1

an(z)

∣∣∣∣∣ < ε

whenever N2 > N1 > N0. The result now follows from Theorem 16L. ©
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THEOREM 16N. (RATIO TEST) Suppose that D ⊆ C is a region. Suppose further that an(z) is
a sequence of complex valued functions such that a1(z) is bounded in D, and

(4)
∣∣∣∣an+1(z)

an(z)

∣∣∣∣ ≤ R < 1

for every z ∈ D, where R is constant. Then the series

∞∑
n=1

an(z)

converges uniformly (and absolutely) in D.

Proof. Note that the condition (4) implies |an(z)| ≤ Rn−1|a1(z)| for every n ∈ N. On the other hand,
there exists M ∈ R such that |a1(z)| ≤ M for every z ∈ D. It follows that for every z ∈ D and every
n ∈ N, we have |an(z)| ≤ MRn−1. The result now follows from the Weierstrass M -test, noting that the
geometric series

∞∑
n=1

MRn−1

converges. ©

Example 16.4.1. The series

(5) ζ(z) =
∞∑

n=1

1
nz

converges absolutely for every z satisfying Rez > 1. To see this, note that writing z = x + iy, where
x, y ∈ R, we have

1
nz

=
1

nx+iy
=

1
nx

n−iy =
1
nx

e−iy log n =
1
nx

(cos(y log n) − i sin(y log n)),

so that
∣∣∣∣ 1
nz

∣∣∣∣ =
1
nx

.

Since x > 1, the series

∞∑
n=1

1
nx

of non-negative terms is convergent. It follows from the Comparison test that the series (5) converges
absolutely. Suppose now that δ > 0 is fixed. Consider the region D = {z : Rez > 1 + δ}. Then for every
z ∈ D, we have

∣∣∣∣ 1
nz

∣∣∣∣ =
1
nx

<
1

n1+δ
.

The series

∞∑
n=1

1
n1+δ
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of non-negative terms is convergent. It follows from the Weierstrass M -test that the series (5) converges
uniformly in D. We comment here that the series (5) is called the Riemann zeta function, and is crucial
in the study of the distribution of prime numbers. Indeed, the study of this function has led to much of
the development in complex analysis.

Example 16.4.2. In Chapter 10, we discussed the function π cot πz, and showed that it has simple
poles at the (real) integers with residue 1. Here we shall make a more detailed study. Consider the
function

f(z) =
1
z

+
∞∑

n=1

2z

z2 − n2
.

Let us first of all study this function in the region DR = {z : |z| < R}, where R > 0 is fixed. Let N ∈ N

satisfy N > 2R, and write f(z) = f1(z) + f2(z), where

f1(z) =
1
z

+
N∑

n=1

2z

z2 − n2
and f2(z) =

∞∑
n=N+1

2z

z2 − n2
.

Clearly the function f1(z) is analytic in DR, with the exception of simple poles at the (real) integers in
DR. Consider next the function f2(z) in DR. For every z ∈ DR and every n > N > 2R, we have

∣∣∣∣ 2z

z2 − n2

∣∣∣∣ ≤ 2R

n2 − R2
=

1
n2

2R

1 − (R/n)2
<

8R

3n2
.

It follows from the Weierstrass M -test that the series for f2(z) converges uniformly in DR, and is analytic
in DR in view of Theorem 16J. Hence f(z) is analytic in DR, with the exception of simple poles at the
(real) integers in DR. It follows that f(z) is meromorphic in C, with simple poles at the (real) integers.
It is easy to check that all these simple poles have residue 1. Note also that we can write

f(z) = z
∑
n∈Z

1
z2 − n2

.

We shall show that f(z) = π cot πz. For convenience, we shall change notation, and show that

(6)
∑
n∈Z

1
a2 − n2

=
π cot πa

a

whenever a �∈ Z. Consider the function

g(z) =
π cot πz

a2 − z2
.

Since the function π cot πz has simple poles at every n ∈ Z with residue 1, and since a �∈ Z, it follows
that g(z) has simple poles at every n ∈ Z and at z = ±a, with residues

res(g, n) =
1

a2 − n2
and res(g,±a) = −π cot πa

2a
.

For every N ∈ N, let CN denote the boundary of the rectangular domain
{

z = x + iy : |x| < N +
1
2

and |y| < N

}
,

followed in the positive (anticlockwise) direction. If N > |a|, then we have

1
2πi

∫
CN

π cot πz

a2 − z2
dz =

∑
−N≤n≤N

1
a2 − n2

− π cot πa

a
.
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Clearly (6) will follow if we show that the integral on the left hand side converges to 0 as N → ∞. It
can be shown that | cot πz| ≤ coth π for every z ∈ CN . Hence for every N > |a|, we have

∣∣∣∣
∫

CN

π cot πz

a2 − z2
dz

∣∣∣∣ ≤ (8N + 2) sup
z∈CN

∣∣∣∣π cot πz

a2 − z2

∣∣∣∣ ≤ (8N + 2)π coth π

N2 − |a|2 → 0 as N → ∞.

16.5. Application to Power Series

Let z, α ∈ C. In this section, we shall study series of the type

(7)
∞∑

n=0

an(z − α)n (a0, a1, a2, . . . ∈ C),

known commonly as power series.

THEOREM 16P. Suppose that the series given by (7) converges for a particular value z = z0. Then,
for every r < |z0 −α|, the series converges uniformly (and absolutely) in the disc Dr = {z : |z−α| ≤ r}.

Proof. Suppose that

∞∑
n=0

an(z0 − α)n

converges. Then an(z0 − α)n → 0 as n → ∞, and so there exists M ∈ R such that |an(z0 − α)n| ≤ M
for every n ∈ N ∪ {0}. For every z ∈ Dr, we have

|an(z − α)n| ≤ M

∣∣∣∣ z − α

z0 − α

∣∣∣∣
n

≤ M

∣∣∣∣ r

z0 − α

∣∣∣∣
n

for every n ∈ N ∪ {0}. The result now follows from the Weierstrass M -test, noting that the geometric
series

∞∑
n=0

M

∣∣∣∣ r

z0 − α

∣∣∣∣
n

converges. ©

THEOREM 16Q. (CONVERGENCE THEOREM FOR POWER SERIES) For the power series
given by (7), exactly one of the following holds:
(a) The series converges absolutely for every z ∈ C.
(b) There exists a positive real number R such that the series converges absolutely for every z ∈ C

satisfying |z − α| < R and diverges for every z ∈ C satisfying |z − α| > R.
(c) The series diverges for every z �= α.

Sketch of Proof. In the notation of Theorem 16P, consider

S = {r ≥ 0 : (7) converges absolutely in Dr}.

Then S contains the number 0. In view of Theorem 16P, S must be an interval with lower end-point 0,
so that S = [0,∞), S = {0} or there exists some positive number R such that S = [0, R) or S = [0, R].
The first two possibilities correspond to (a) and (c) respectively, while the last possibility corresponds
to (b). ©
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Definition. The number R in Theorem 16Q is called the radius of convergence of the series (7). We
also say that R = 0 if case (c) occurs, and that R = ∞ if case (a) occurs.

We now show that differentiation of a power series can be carried out term by term, and that the
series so obtained converges to the derivative.

THEOREM 16R. Suppose that the power series given by (7) has radius of convergence R > 0. Then
it represents an analytic function f(z) in the open disc D = {z : |z − α| < R}. Furthermore, the
derivatives of f(z) can be obtained by differentiating the series term by term.

Proof. For every r < R, it follows from Theorem 16P that the series converges uniformly in the disc
Dr = {z : |z−α| < r}. It now follows from Theorem 16J that the series converges to an analytic function
f(z) in Dr, and the derivatives of f(z) can be obtained by differentiating the series term by term. Since
the above holds for any r < R, the result follows. ©

Example 16.5.1. Suppose that f(t) is a complex valued function continuous (and so bounded) on the
closed real interval [0, 1]. Consider the function

F (z) =
∫ 1

0

e−ztf(t) dt.

For any fixed z ∈ C, we have the power series (here t is the variable)

(8) e−zt =
∞∑

n=0

(−zt)n

n!
,

with infinite radius of convergence. It follows from Theorem 16P that the series (8) converges uniformly
in [0, 1], and so can be multiplied by the bounded function f(t) and integrated term by term, in view of
Theorem 16H. Hence

(9) F (z) =
∞∑

n=0

∫ 1

0

(−zt)n

n!
f(t) dt =

∞∑
n=0

(−z)n

n!

∫ 1

0

tnf(t) dt.

Furthermore, if |f(t)| ≤ M , where M is a fixed positive number, then

∣∣∣∣
∫ 1

0

tnf(t) dt

∣∣∣∣ ≤ M

∫ 1

0

tn dt =
M

n + 1
.

Suppose now that R > 0 is fixed. If |z| < R, then

∣∣∣∣ (−z)n

n!

∫ 1

0

tnf(t) dt

∣∣∣∣ ≤ MRn

(n + 1)!
.

Note that the series

∞∑
n=0

MRn

(n + 1)!

converges, so it follows from the Weierstrass M -test that the series in (9) converges uniformly in the disc
{z : |z| < R}. By Theorem 16J, the function F (z) is analytic in {z : |z| < R}. Since R > 0 is arbitrary,
it follows that F (z) is entire.
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16.6. Cauchy Sequences

In this section, we shall prove Theorem 16E. Clearly a convergent sequence of complex numbers is
Cauchy. It remains to show that a Cauchy sequence of complex numbers is convergent.

The proof of this result usually involves the Bolzano-Weierstrass theorem which states that every
bounded sequence of complex numbers has a convergent subsequence. Here, we shall give a proof without
using the Bolzano-Weierstrass theorem.

Assume, first of all, that the sequence an is real. Since an is a Cauchy sequence, it follows that
there exists an increasing sequence of natural numbers

N1 < N2 < . . . < Np < . . .

such that

|an − am| <
1
2p

whenever n, m ≥ Np (we simply take ε = 2−p for every p ∈ N). In particular, we have

|aNp+1 − aNp | <
1
2p

for every p ∈ N. For every p ∈ N, let

bp = aNp
− 1

2p−1
.

Then

bp+1 − bp = aNp+1 − aNp
+

1
2p

≥ 1
2p

− |aNp+1 − aNp
| > 0,

so that the sequence bp is increasing. Note next that

|bp| =
∣∣∣∣aNp − 1

2p−1

∣∣∣∣ ≤ |aNp − aN1 | + |aN1 | +
1

2p−1
≤ 1

2
+ |aN1 | +

1
2p−1

,

so that the sequence bp is bounded. Hence the sequence bp converges to L, say, as p → ∞.

We now show that an → L as n → ∞. Given any ε > 0, we now choose p ∈ N so large that

1
2p

<
ε

4
and |bp − L| <

ε

4
.

Suppose that n ≥ Np. Then

|an − L| ≤ |an − aNp | + |aNp − bp| + |bp − L| <
1
2p

+
1

2p−1
+

ε

4
< ε

as required.

Suppose now that the sequence an is complex valued. Then we can write an = xn + iyn, where
xn, yn ∈ R. If an is a Cauchy sequence, then it is easy to see that the real sequences xn and yn are real
Cauchy sequences. It follows that both xn and yn converge, and so an converges.
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Problems for Chapter 16

1. Suppose that an(z) → a(z) and bn(z) → b(z) as n → ∞ uniformly in a region D.
a) Show that an(z) + bn(z) → a(z) + b(z) as n → ∞ uniformly in D.
b) Suppose that f(z) is bounded in D. Show that an(z)f(z) → a(z)f(z) as n → ∞ uniformly in

D.
c) Write f(z) = 1/z and an(z) = 1/n. Find a region D such that an(z) converges uniformly in D

but an(z)f(z) does not converge uniformly in D.

2. For each of the following power series, find a number R such that the series converges for |z| < R
and diverges for |z| > R:

a)
∞∑

n=0

2nzn b)
∞∑

n=1

n2zn

c)
∞∑

n=1

2nz2n

n2 + n
d)

∞∑
n=0

3nzn

4n + 5n

3. Show that each of the following represents an entire function:

a)
∞∑

n=1

zn

(n!)1/2
b)

∞∑
n=1

zn

2n2

c)
∞∑

n=1

1
2nnz

4. Show that each of the following functions is meromorphic in C, and find the residues at the poles:

a)
∞∑

n=0

(−1)n

n!(n + z)
b)

∞∑
n=1

1
(z + n)2

5. Show that for every z �∈ Z, we have
∞∑

n=−∞

1
(n + z)2

=
( π

sinπz

)2

.

6. a) Show that except at the poles, we have
∞∑

n=−∞

z

n2 + z2
=

π

tanhπz
.

b) By writing the series as 1/z plus a sum over all natural numbers, evaluate
∞∑

n=1

1
z2 + n2

.

c) By letting z → 0, show that
∞∑

n=1

1
n2

=
π2

6
.

7. Consider the exponential series

∞∑
n=0

zn

n!

which converges for every z ∈ C. Suppose further that e(z) is the sum of the series.
a) Show that the series converges uniformly in the disc DR = {z : |z| < R} for every real number

R > 0.
b) Suppose that D is a bounded region in C. Explain why the series converges uniformly in D.
c) Show that for every z ∈ C satisfying |z| = R, we have

∣∣∣∣∣
M∑

n=N+1

zn

n!

∣∣∣∣∣ ≥
RM

M !
− RM

(
1
R

+
1

R2
+ . . . +

1
RM−N−1

)
≥ RM

(
1

M !
− 1

R − 1

)
.
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d) Use (c) to show that the series does not converge uniformly in C.
e) Explain carefully why e(z) is an entire function in C.

[Remark: In view of the unfavourable conclusion of (d), you should take extra care here.]
f) Show that e′(z) = e(z) for every z ∈ C and e(0) = 1.
g) Let g(z) = e(−z)e(z). Show that g′(z) = 0 for every z ∈ C, and deduce that e(−z)e(z) = 1 for

every z ∈ C.
h) Suppose that a ∈ C is fixed. By studying the function ga(z) = e(−z)e(z + a), show that

e(z + a) = e(z)e(a) for every z ∈ C.

8. This question makes use of the function e(z) discussed in Problem 7. Suppose that for every z ∈ C,
we write

c(z) =
e(iz) + e(−iz)

2
and s(z) =

e(iz) − e(−iz)
2i

.

a) By using the Taylor series for e(iz) and e(−iz), find the Taylor series for c(z) and s(z).
b) Show that c′(z) = −s(z) and s′(z) = c(z) for every z ∈ C.
c) By studying the function h(z) = c2(z) + s2(z), show that c2(z) + s2(z) = 1 for every z ∈ C.


