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1.5, to which all other solutions converge.

slopes are positive, and hence the solutions increase. The equilibrium solution appears to

For y > 1.5, the slopes are negative, and hence the solutions decrease. For y < 1.5, the
be y(t)
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For y > — 1.5, the slopes are positive, and hence the solutions increase. Fory < — 1.5

, the slopes are negative, and hence the solutions decrease. All solutions appear to

diverge away from the equilibrium solution y(¢) = — 1.5.
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y < — 1/2, theslopes are negative, and hence the solutions decrease. All solutions

Fory > — 1/2,the slopes are positive, and hence the solutions increase. For
diverge away from
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the equilibrium solution y(¢t) = — 1/2.
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For y > — 2,the slopes are positive, and hence the solutions increase. Fory < — 2,
the slopes are negative, and hence the solutions decrease. All solutions diverge away
from

the equilibrium solution y(t) = — 2.

8. For all solutions to approach the equilibrium solution y(¢) = 2/3, we must have
y' <0fory >2/3,and y’' > 0 fory < 2/3. The required rates are satisfied by the
differential equation y’' = 2 — 3y.

9. For solutions other than y(t) = 2 to diverge from y = 2, y(t) must be an increasing
function for y > 2, and a decreasing function for y < 2. The simplest differential
equation

whose solutions satisfy these criteriais y' =y — 2.

10. For solutions other than y(t) = 1/3 to diverge from y = 1/3, we must have y' < 0
fory < 1/3,and y’ > 0 fory > 1/3. The required rates are satisfied by the differential
equation y' =3y — 1.
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Note that y’ = 0 fory = 0 and y = 5. The two equilibrium solutions are y(¢) = 0 and
y(t) = 5. Based on the direction field, y’ > 0 for y > 5; thus solutions with initial
values greater than 5 diverge from the solution y(t) = 5. For 0 < y < 5, the slopes are
negative, and hence solutions with initial values between 0 and 5 all decrease toward the
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solution y(¢) = 0. For y < 0, the slopes are all positive; thus solutions with initial
values
less than 0 approach the solution y(t) = 0.

14.
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Observe that y’ = 0 for y = 0 and y = 2. The two equilibrium solutions are y(¢) = 0
and y(¢) = 2. Based on the direction field, y’ > 0 for y > 2; thus solutions with initial
values greater than 2 diverge from y(¢) = 2. For 0 < y < 2, the slopes are also
positive, and hence solutions with initial values between 0 and 2 all increase toward the
solution

y(t) = 2. Fory < 0, the slopes are all negative; thus solutions with initial

values less than 0 diverge from the solution y(¢) = 0.

16. (a)Let M(t) be the total amount of the drug (in milligrams) in the patient's body at
any

given time ¢ (hrs). The drug is administered into the body at a constant rate of 500
mg/hr.

The rate at which the drug leaves the bloodstream is given by 0.4M (¢). Hence the
accumulation rate of the drug is described by the differential equation

dM
T 500 — 0.4 M (mg/hr).

(b)
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Based on the direction field, the amount of drug in the bloodstream approaches the
equilibrium level of 1250 mg (within a few hours).

18. (a) Following the discussion in the text, the differential equation is
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dv 9
m— =mg—yv
dt g—7
or equivalently,
dv V2
a9 m

(b) After a long time, Z@’ ~ 0. Hence the object attains a terminal velocity given by

mg
V=4 — .
v

(c¢) Using the relation yv?2 = mg, the required drag coefficient is v = 0.0408 kg/sec .

(d)
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All solutions appear to approach a linear asymptote (with slope equalto1). It is easy to
verify that y(¢) =t — 3 is a solution.

20.
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All solutions approach the equilibrium solution y

23.
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which is also a solution corresponding to the initial value y(0) = — 5/2.

All solutions appear to diverge from the sinusoid y(t) =

25.
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= 0. First, the rate of change is small. The

All solutions appear to converge to y(t)

slopes

eventually increase very rapidly in magnitude.

26.
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The direction field is rather complicated. Nevertheless, the collection of points at which
the slope field is zero, is given by the implicit equation y*> — 6y = 2t>. The graph of
these points is shown below:

The y-intercepts of these curves are at y = 0, i\@ . It follows that for solutions with
initial values y > \/g , all solutions increase without bound. For solutions with initial
values in the range y < — \/g and 0 <y < \/g , the slopes remain negative, and

hence
these solutions decrease without bound. Solutions with initial conditions in the range

—4/6 <y < 0 initially increase. Once the solutions reach the critical value, given by
the equation 3® — 6y = 2t2, the slopes become negative and remain negative. These
solutions eventually decrease without bound.
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Section 1.2

1(a) The differential equation can be rewritten as

dy
5—y

=dt.

Integrating both sides of this equation results in — [n|5 — y| =t + ¢, or equivalently,
5—y=ce '. Applying the initial condition y(0) = y, results in the specification of
the constant as ¢ = 5 — y,. Hence the solutionis y(t) =5+ (y, — 5)e " .

D 2 PN g 10
All solutions appear to converge to the equilibrium solution y(¢) = 5.

1(c). Rewrite the differential equation as

d
b _ .
10 — 2y

Integrating both sides of this equation results in — %ln|10 —2y|=t+cy,or
equivalently,

5 —y = ce 2. Applying the initial condition 3(0) = y, results in the specification of
the constant as ¢ = 5 — . Hence the solution is y(¢) =5 + (y, — 5)e .

D 2 4 t6 8 10

All solutions appear to converge to the equilibrium solution y(¢) = 5, but at a faster rate
than in Problem la .

2(a). The differential equation can be rewritten as
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d
Y
y—95
Integrating both sides of this equation results in In|y — 5| = ¢ + ¢; , or equivalently,
y — 5= ce'. Applying the initial condition y(0) = ¥, results in the specification of
the constant as ¢ = y, — 5. Hence the solution is y(t) = 5 + (y, — 5)e’.

All solutions appear to diverge from the equilibrium solution y(¢) = 5.

2(b). Rewrite the differential equation as

dy
2y —5

dt .

Integrating both sides of this equation results in %ln!Qy — 5| =t + ¢, or equivalently,
2y — 5 = ce* . Applying the initial condition y(0) = ¥, results in the specification of
the constant as ¢ = 2y, — 5. Hence the solution is y(t) = 2.5 + (y, — 2.5)e? .

104
¥it) /

J'a.rl_r1m.h.u:n0:|
Fr |

All solutions appear to diverge from the equilibrium solution y(t) = 2.5.

2(c). The differential equation can be rewritten as

d
A
2y — 10

Integrating both sides of this equation results in %ln|2y — 10| =t + ¢, or equivalently,
y — 5 = ce? . Applying the initial condition 3(0) = y, results in the specification of
the constant as ¢ = y, — 5. Hence the solution is y(t) = 5 + (y, — 5)e* .
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All solutions appear to diverge from the equilibrium solution y(¢) = 5.

3(a). Rewrite the differential equation as

dy
= dt
b—ay ’

which is valid for y # b /a. Integrating both sides results in =Lin|b — ay| =t + ¢, , or
equivalently, b — ay = ce *". Hence the general solution is y(t) = (b — ce ) /a.
Note that if y = b/a, then dy/dt = 0, and y(t) = b/a is an equilibrium solution.

(b)

0 02 04 t06 08 1

(i)  As a increases, the equilibrium solution gets closer to y(¢) = 0, from above.
Furthermore, the convergence rate of all solutions, that is, a , also increases.

(79) As b increases, then the equilibrium solution y(¢) = b/a also becomes larger. In
this case, the convergence rate remains the same.

(7i7) If @ and b both increase (but b/a = constant), then the equilibrium solution
y(t) = b/a remains the same, but the convergence rate of all solutions increases.

5(a). Consider the simpler equation dy, /dt = — ay, . As in the previous solutions, re-
write the equation as

dy:
()1

= —adt.

at

Integrating both sides results in y,(t) = ce”
(b). Now set y(t) = y,(t) + k, and substitute into the original differential equation. We
find that
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—ay; +0= —a(y, +k)+0.

Thatis, —ak +b=0,and hence k =b/a.

(c). The general solution of the differential equation is y(¢) = ce * + b/a. This is
exactly the form given by Eq. (17) in the text. Invoking an initial condition y(0) = y,,
the solution may also be expressed as y(t) = b/a + (y, — b/a)e ™.

6(a). The general solution is p(t) = 900 + c €'/?, that is, p(t) = 900 + (p, — 900)e"/?.
With p, = 850, the specific solution becomes p(t) = 900 — 50¢"/. This solution is a
decreasing exponential, and hence the time of extinction is equal to the number of
months

it takes, say ¢, for the population to reach zero. Solving 900 — 50e’/? = 0, we find that
t; = 2In(900/50) = 5.78 months.

(b) The solution, p(t) = 900 + (p, — 900)e"/?, is a decreasing exponential as long as

Py < 900. Hence 900 + (p, — 900)e’/? = 0 has only one root, given by

900
to=on —— ).
J ”(900—;90)

(c). The answer in part (b) is a general equation relating time of extinction to the value
of
the initial population. Setting ¢; = 12 months , the equation may be written as
900 6

—— = 5

900 — py
which has solution p, = 897.7691 . Since p, is the initial population, the appropriate
answer is p, = 898 mice .

7(a). The general solution is p(t) = p, €. Based on the discussion in the text, time ¢ is
measured in months . Assuming 1 month = 30 days , the hypothesis can be expressed as
poe”! = 2p,. Solving for the rate constant, r = [n(2), with units of per month.

T™N/30

(b). N days = N /30 months. The hypothesis is stated mathematically as p,e™"° = 2p,

It follows that N /30 = In(2), and hence the rate constant is given by r = 30In(2)/N .
The units are understood to be per month .

9(a). Assuming no air resistance, with the positive direction taken as downward,
Newton's
Second Law can be expressed as

dv

m— =m
a9

in which g is the gravitational constant measured in appropriate units. The equation can
be
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written as dv/dt = g, with solution v(t) = gt + v,. The object is released with an
initial
velocity vy .

(b). Suppose that the object is released from a height of h units above the ground. Using
the

fact that v = dz/dt, in which z is the downward displacement of the object, we obtain
the

differential equation for the displacement as dz/dt = gt + v,. With the origin placed at
the point of release, direct integration results in z(t) = gt>/2 + v,t. Based on the
chosen

coordinate system, the object reaches the ground when z(¢) = h. Lett = T be the time
that it takes the object to reach the ground. Then ¢7?/2 + v,T = h . Using the
quadratic

formula to solve for 1",

— VoAV + 2gh
p .

T —

The positive answer corresponds to the time it takes for the object to fall to the ground.
The

negative answer represents a previous instant at which the object could have been
launched

upward (with the same impact speed ), only to ultimately fall downward with speed v, ,
from a height of A units above the ground.

(c). The impact speed is calculated by substituting ¢ = 7" into v(t) in part (a). That is,

v(T) = /vy + 2gh .

10(a,b). The general solution of the differential equation is Q(t) = ce ™. Given that
Q(0) = 100 mg, the value of the constant is given by ¢ = 100. Hence the amount of
thorium-234 present at any time is given by Q(¢) = 100 e . Furthermore, based on the
hypothesis, setting ¢ = 1 results in 82.04 = 100e™". Solving for the rate constant, we
find that » = — In(82.04/100) = .19796/week or r = .02828/day .

(c). Let T be the time that it takes the isotope to decay to one-half of its original
amount.

From part (a), it follows that 50 = 100 e "%, in which r = .19796/week. Taking the
natural logarithm of both sides, we find that 7" = 3.5014 weeks or T' = 24.51 days .

11. The general solution of the differential equation dQ/dt = —rQ is Q(t) = Qe ",
in which @, = Q(0) is the initial amount of the substance. Let 7 be the time that it takes
the substance to decay to one-half of its original amount, (), . Setting t = 7 in the
solution,

we have 0.5 Q, = Qe "". Taking the natural logarithm of both sides, it follows that
—r7 =1In(0.5) or r7 =1In2.

page 11
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12. The differential equation governing the amount of radium-226 is dQ/dt = —r @,
with solution Q(¢) = Q(0)e ™. Using the result in Problem 11, and the fact that the
half-life 7 = 1620 years, the decay rate is given by r = In(2)/1620 per year. The
amount of radium-226, after ¢ years, is therefore Q(¢) = Q(0)e 00012786 et T be
the time that it takes the isotope to decay to 3/4 of its original amount. Then setting
t="1T,

and Q(T) = 2Q(0), we obtain 3Q(0) = Q(0)e~ 0012767 " Solving for the decay
time, it follows that — 0.00042786 T = In(3/4) or T' = 672.36 years.

13. The solution of the differential equation, with Q(0) = 0, is
Q(t) = CV (1 — e lOR),
As t— o0, the exponential term vanishes, and hence the limiting value is @, = C'V.

14(a). The accumulation rate of the chemical is (0.01)(300) grams per hour. At any
giventime ¢, the concentration of the chemical in the pond is Q(t)/10° grams per gallon

Consequently, the chemical /eaves the pond at a rate of (3 x 107*)Q(t) grams per hour .
Hence, the rate of change of the chemical is given by
dQ

i 3 —0.0003Q(t) gm/hr.

Since the pond is initially free of the chemical, Q(0) = 0.

(b). The differential equation can be rewritten as

_ 4@

=0. dt .
10000 — 0.0003

Integrating both sides of the equation results in — (n[10000 — Q| = 0.0003t + C.
Taking

the natural logarithm of both sides gives 10000 — Q = c e %% Since Q(0) = 0, the
value of the constant is ¢ = 10000. Hence the amount of chemical in the pond at any
time

is Q(t) = 10000(1 — e~00%3%) orams . Note that 1 year = 8760 hours . Setting

t = 8760, the amount of chemical present after one year is Q(8760) = 9277.77 grams ,
that is, 9.27777 kilograms .

(c). With the accumulation rate now equal to zero, the governing equation becomes
dQ/dt = —0.0003 Q(t) gm/hr. Resetting the time variable, we now assign the new
initial value as Q(0) = 9277.77 grams .

(d). The solution of the differential equation in Part (c) is Q(t) = 9277.77 00003,
Hence, one year after the source is removed, the amount of chemical in the pond is
Q(8760) = 670.1 grams .
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(e). Letting t be the amount of time after the source is removed, we obtain the equation
10 = 9277.77 e700903¢ " Taking the natural logarithm of both sides, — 0.0003 ¢ =
= In(10/9277.77) or t = 22,776 hours = 2.6 years .

(f)

10000+
G000+
£000
4000 1

2000

U 3000 5000 10000 14000 18000 22000 25000
t

15(a). It is assumed that dye is no longer entering the pool. In fact, the rate at which the
dye leaves the pool is 200 - [¢(t)/60000] kg/min = 200(60,/1000)[q(t)/60] gm per hour

Hence the equation that governs the amount of dye in the pool is

d
d_jfl = —02q (gm/hr).

The initial amount of dye in the pool is ¢(0) = 5000 grams .

(b). The solution of the governing differential equation, with the specified initial value,
is q(t) = 5000 e 02,

(c). The amount of dye in the pool after four hours is obtained by setting ¢ = 4. That is,
q(4) = 5000 e~ "® = 2246.64 grams. Since size of the pool is 60, 000 gallons , the
concentration of the dye is 0.0374 grams/gallon .

(d). Let T be the time that it takes to reduce the concentration level of the dye to

0.02 grams/gallon . At that time, the amount of dye in the pool is 1,200 grams. Using
the answer in part (b), we have 5000 e~%2T = 1200 . Taking the natural logarithm of
both sides of the equation results in the required time 7" = 7.14 hours .

(e). Note that 0.2 = 200/1000. Consider the differential equation

@_ T
at 10001

Here the parameter r corresponds to the flow rate, measured in gallons per minute .
Using the same initial value, the solution is given by ¢(t) = 5000 ¢ "/ | In order
to determine the appropriate flow rate, set ¢t = 4 and ¢ = 1200. (Recall that 1200 gm of
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—r /250

dye has a concentration of 0.02 gm/gal). We obtain the equation 1200 = 5000 e
Taking the natural logarithm of both sides of the equation results in the required flow rate
r = 357 gallons per minute .
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Section 1.3

1. The differential equation is second order, since the highest derivative in the equation
is of order two. The equation is linear, since the left hand side is a linear function of y
and

its derivatives.

3. The differential equation is fourth order, since the highest derivative of the function y
is of order four. The equation is also l/inear, since the terms containing the dependent
variable is linear in y and its derivatives.

4. The differential equation is first order, since the only derivative is of order one. The
dependent variable is squared, hence the equation is nonlinear.

5. The differential equation is second order. Furthermore, the equation is nonlinear,
since the dependent variable y is an argument of the sine function, which is not a linear
function.

7. yi(t) = e = y/(t) =y/(t) = e'. Hence y/ —y, =0.
Also, y,(t) = cosht = y/(t) = sinht and y,'(t) = cosht. Thus y; —y, = 0.

9. y(t) = 3t +t*> = y'(t) = 3 + 2t. Substituting into the differential equation, we have
t(3 +2t) — (3t +t%) = 3t + 2t> — 3t — t> = t*. Hence the given function is a solution.

10. yy(t) =t/3 = y/(t) =1/3 and y/"(t) = v, (t) = y""(t) = 0. Clearly, y,(t) is
a solution. Likewise, y,(t) = e ' +t/3 = yj(t) = —e ' +1/3, y)/(t) =,

y) (t) = —e™ ', y,”"(t) = e”'. Substituting into the left hand side of the equation, we
find that e " +4( —e ") +3(e"+t/3) =e ' —4e "+ 3e "+t =t. Hence both
functions are solutions of the differential equation.

1. y(¢t) =t = y/(t) =t7*/2 and y/'(t) = — t~**/4. Substituting into the left
hand side of the equation, we have

207 (=t /4) + 3L (t2)2) — 1P = — 12 /2 4 3¢ )2 — 12
=0

Likewise, y,(t) =t' = y,(t) = —t*and y, (t) = 2¢™*. Substituting into the left
hand side of the differential equation, we have 2t*(2¢7%) + 3t( —t2) — ¢t = 4t~ —
— 3t ' —t' = 0. Hence both functions are solutions of the differential equation.

12. y(t) =t2=y/(t)= — 2t and y,"(t) = 6¢*. Substituting into the left hand
side of the differential equation, we have t2(6¢*) + 5t( — 2t %) + 42 = 62 —
—10t2+4t2=0. Likewise, y,(t) =t *Int = y,(t) =t* — 2t *Int and

y, (t) = —5t™* 4+ 6t *Int. Substituting into the left hand side of the equation, we have
t2( =5t + 6t nt) +5t(t° — 2t%Int) +4(t2nt) = — 5t +6t2Int +
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+5t2—10t2Int+4t%Int = 0. Hence both functions are solutions of the
differential equation.

13. y(t) = (cost)incost +tsint = y'(t) = — (sint)lncost + tcost and

y"(t) = — (cost)incost — t sint + sect. Substituting into the left hand side of the
differential equation, we have ( — (cost)lncost — tsint + sect) + (cost)lncost +
+tsint = — (cost)lncost —tsint + sect + (cost)lncost +tsint = sect .

Hence the function y(t) is a solution of the differential equation.

15. Let y(t) = ™. Theny”(t) = r?e", and substitution into the differential equation
results in 72e™ + 2™ = 0. Since "’ # 0, we obtain the algebraic equation r* + 2 = 0.

The roots of this equation are r,, = + z\/§ .

17. y(t) = e™ = y'(t) = re™ and y”(t) = r’e™ . Substituting into the differential
equation, we have r2e’ + re’’ — 6e™ = 0. Since €™ # 0, we obtain the algebraic
equation > +7r — 6 = 0, thatis, (r — 2)(r +3) = 0. Theroots are 7, = — 3, 2.

18. Let y(t) = €. Theny'(t) = re™, y"(t) = r?e" and y"'(t) = r3e™ . Substituting

the derivatives into the differential equation, we have r3e™ — 3r2e’ + 2re™ = 0. Since
e # 0, we obtain the algebraic equation r® — 3r2 + 2r = 0. By inspection, it follows
that r(r — 1)(r — 2) = 0. Clearly, the rootsare r, = 0,7, = 1 and 73 = 2.

20. y(t) =t"=y'(t) =rt"" andy”(t) = r(r — 1)t"*. Substituting the derivatives
into the differential equation, we have t2[r(r — 1)#"72] — 4t(rt"™') + 4" = 0. After
some algebra, it follows that (r — 1)t" — 4rt" +4t" = 0. Fort # 0, we obtain the
algebraic equation 72 — 57 4+ 4 = 0. The roots of this equation are 7, = 1 and 7, = 4.

21. The order of the partial differential equation is two, since the highest derivative, in
fact each one of the derivatives, is of second order. The equation is linear, since the left
hand side is a linear function of the partial derivatives.

23. The partial differential equation is fourth order, since the highest derivative, and in
fact each of the derivatives, is of order four. The equation is /inear, since the left hand
side is a linear function of the partial derivatives.

24. The partial differential equation is second order, since the highest derivative of the
function u(z, y) is of order two. The equation is nonlinear, due to the product u - u, on
the left hand side of the equation.

0%u 0%u
25. uy(x,y) = cosx coshy = G4 = — cosx coshyand W“’l = cosxcoshy.

It is evident that % + %2;? = 0. Likewise, given u,(z,y) = In(z* + y?), the second

derivatives are
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0%u, B 2 422
or2 :c2—|—y2 (x2+y2)2
821,(/2 2 4y2

Oy? 22 + 12 o (:1:2 —I—y2)2

Adding the partial derivatives,

u,  O0*u, 2 A2 2 4y
912 + 2 = 22 + 12 B <$2+y2)2 + 72 + 32 o ($2+y2)2
4 4(2? +y?)
Calty? (22 +y2)°
=0.

Hence u,(x,y) is also a solution of the differential equation.

27. Let u,(z,t) = sin Ax sin Aat. Then the second derivatives are

%2;21 = — \sin Az sin Aat
3;:;1 = — Ma’sin Az sin \at
It is easy to see that a2% = % . Likewise, given u,(z,t) = sin(x — at), we have
%2;22 = — sin(x — at)
8;22 = — a’sin(z — at)

Clearly, u,(x, t) is also a solution of the partial differential equation.

28. Given the function u(xz,t) = \/7/t e *"/4 | the partial derivatives are
me—ﬁ/llazt \/ml.Qe—szaZt

a 202t * 4at?
Tt efx2/4a2t T x267x2/4a2t

Jaterht \fr

2t 4022/t

UCECE -

Ut = —

24 p2 71‘2/4(12t
It follows that o u,, = uy = — V7 (20%t—a%)e .

4022/t

Hence u(z,t) is a solution of the partial differential equation.
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29(a).

2,
a ¥

N T o=cendon
ll\.h'\.
L o~

.
A8

W=-mz

(b). The path of the particle is a circle, therefore polar coordinates are intrinsic to the
problem. The variable r is radial distance and the angle # is measured from the vertical.
Newton's Second Law states that > F = ma . In the tangential direction, the equation of

motion may be expressed as Y F;, = m ay, in which the tangential acceleration, that is,

the linear acceleration along the path is ay = L d*0/dt*. (ay is positive in the direction
of increasing # ). Since the only force acting in the tangential direction is the component
of weight, the equation of motion is

d*0

—mgsind =mlL—s; .

dt?
ote that the equation of motion in the radial direction will include the tension in the
Note that the equat f mot the radial direct 11 include the t th
rod).

(c). Rearranging the terms results in the differential equation

a0 g .
E-ﬁ-zsmH—O.

page 18



