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Chapter Two
Section 2.1
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(b). Based on the direction field, all solutions seem to converge to a specific increasing
function.

(¢). The integrating factor is u(t) = €*, and hence y(t) =t/3 —1/9+ e 2 + ce 3.
It follows that all solutions converge to the function y,(¢t) =¢/3 —1/9.
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(b). All slopes eventually become positive, hence all solutions will increase without
bound.

(¢). The integrating factor is pu(t) = e~%, and hence y(t) = t3e* /3 4+ ce?. Itis
evident that all solutions increase at an exponential rate.

3(a)
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(b). All solutions seem to converge to the function y,(t) = 1.

(¢). The integrating factor is p(t) = e*, and hence y(t) = t’e /2 + 1+ cet. Itis
clear that all solutions converge to the specific solution y,(t) = 1.
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(b). Based on the direction field, the solutions eventually become oscillatory.

(c). The integrating factor is u(¢) = ¢, and hence the general solution is

_ 3cos(2t) 3

y(t) pm + 53m(2t) +

SR NeY

in which ¢ is an arbitrary constant. As ¢ becomes large, all solutions converge to the
function y, (t) = 3sin(2t)/2.

5(a).
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(b). All slopes eventually become positive, hence all solutions will increase without
bound.

¢). The integrating factor is ;(t) = exp( — [2dt) = e?!. The differential equation
g g M q

can

be written as e 2y’ — 2e 2y = 3¢~!, that is, (e 2'y)’ = 3e!. Integration of both

sides of the equation results in the general solution y(t) = — 3e! + ce?. It follows that
all solutions will increase exponentially.
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(b). All solutions seem to converge to the function y,(¢) = 0.

(c). The integrating factor is (t) = t*, and hence the general solution is

cos(t) sin(2t) ¢

) = — -
y(t) " " "

in which ¢ is an arbitrary constant. As ¢ becomes large, all solutions converge to the
function y,(t) = 0.

7(a).
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exp(t?), and hence y(t)
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(b). All solutions seem to converge to the function y,(¢) = 0.
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clear that all solutions converge to the function y,(t) = 0.

(c). The integrating factor is p(t)

8
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(1+ %)%, the general solution is y(t)

It follows that all solutions converge to the function y,(t)

a).

(

(b). All solutions seem to converge to the function y, (%)

(c). Since pu(t)
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(b). All slopes eventually become positive, hence all solutions will increase without
bound.

(c). The integrating factor is u(t) = exp([3dt) = e!/?. The differential equation can
be written as e!/2y’ + e'/%y/2 = 3t e!/? /2, that is, (¢'/2y/2)" = 3t e/ /2. Integration
of both sides of the equation results in the general solution y(t) = 3t — 6 +ce /2. All
solutions approach the specific solution y,(t) = 3t — 6.
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(b). Fory > 0, the slopes are all positive, and hence the corresponding solutions
increase

without bound. For y < 0, almost all solutions have negative slopes, and hence solutions
tend to decrease without bound.

(c). First divide both sides of the equation by ¢. From the resulting standard form, the
integrating factor is p(t) = exp(— [}dt) = 1/¢. The differential equation can be
written as y'/t —y/t?> = te~, thatis, (y/t) = te~". Integration leads to the general
solution y(t) = —te '+ ct. For ¢ # 0, solutions diverge, as implied by the direction
field. For the case ¢ = 0, the specific solution is y(t) = — te~!, which evidently
approaches zero as t + 00 .
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(b). The solutions appear to be oscillatory.
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(c). The integrating factor is p(t) = €', and hence y(t) = sin(2t) — 2cos(2t) +ce .

It is evident that all solutions converge to the specific solution y,(t) = sin(2t) — 2
cos(2t).

12(a).
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(b). All solutions eventually have positive slopes, and hence increase without bound.

(c). The integrating factor is u(t) = e*. The differential equation can be

written as e'/%y’ + e'/?y/2 = 3¢%/2, that is, (e'/? y/Q)/ = 3t2/2. Integration of both
sides of the equation results in the general solution y(t) = 3t — 12t + 24 + ¢ e 21t
follows that all solutions converge to the specific solution y,(t) = 3t2 — 12t + 24.

14. The integrating factor is u(t) = e*. After multiplying both sides by 1(t), the
equation can be written as (eZt y)/ =t . Integrating both sides of the equation results

in the general solution y(t) = t?e %' /2 + c e .. Invoking the specified condition, we
require that e 2 /2 + ce 2 = 0. Hence ¢ = — 1/2, and the solution to the initial value
problemis y(t) = (t* — 1)e % /2.

16. The integrating factor is yu(t) = ( [2dt) = t*. Multiplying both sides by p(t),
the equation can be written as (¢ y) 0s(t) . Integrating both sides of the equation
results in the general solution y(t) = ( )/t? + ct~2. Substituting t = 7 and setting

the value equal to zero gives ¢ = 0. Hence the specific solution is y(t) = sin(t)/t>.

17. The integrating factor is u(t) = e~%, and the differential equation can be written as
(e'y)" = 1. Integrating, we obtain e > y(t) = ¢ + c. Invoking the specified initial
condition results in the solution y(t) = (t + 2)e?

19. After writing the equation in standard form, we find that the integrating factor is
pu(t) = exp([3dt) = ¢*. Multiplying both sides by (), the equation can be written as

(t'y)" = te ! . Integrating both sides results in t'y(t) = — (t+ 1)e +c. Letting

t = — 1 and setting the value equal to zero gives ¢ = 0. Hence the specific solution of
the initial value problem is y(t) = — (¢ 2 + ¢ *)e "

21(a).
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The solutions appear to diverge from an apparent oscillatory solution. From the
direction

field, the critical value of the initial condition seems to be ¢y = — 1. Fora > — 1, the
solutions increase without bound. For a < — 1, solutions decrease without bound.

(b). The integrating factor is u(t) = e */2. The general solution of the differential
equation is y(t) = (8sin(t) — 4cos(t))/5 + ce'/?. The solution is sinusoidal as long
as ¢ = 0. The initial value of this sinusoidal solution is

ay = (8sin(0) — 4cos(0))/5 = —4/5.

(c). See part (b).
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All solutions appear to eventually increase without bound. The solutions initially
increase
or decrease, depending on the initial value a. The critical value seemstobe ay = — 1.

(b). The integrating factor is u(t) = e*/2, and the general solution of the differential
equation is y(t) = — 3e'/? 4 ce!/2. Invoking the initial condition (0) = a, the
solution

may also be expressed as y(t) = — 3e!/3 + (a + 3) e!/2. Differentiating, follows that
y'(0)= —14(a+3)/2=(a+1)/2. The critical value is evidently a, = — 1.
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(¢). For ay = — 1, the solution is y(t) = — 3e!/3 4+ 2¢'/2, which (for large t) is
dominated by the term containing e'/2.

is y(t) = (8sin(t) — 4cos(t))/5 + c e/’

23(a).
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As t—0, solutions increase without bound if y(1) = a > .4, and solutions decrease
without bound if y(1) =a < 4.

(b). The integrating factor is pu(t) = exp([“Ldt) = te’. The general solution of the
differential equation is y(t) =te ' + ce '/t. Invoking the specified value y(1) = a,
we have 1 + ¢ = ae. Thatis,c = ae — 1. Hence the solution can also be expressed as
y(t) =te '+ (ae—1)e t/t. Forsmall values of t , the second term is dominant.
Setting a e — 1 = 0, critical value of the parameter is a, = 1/e.

(c). Fora > 1/e, solutions increase without bound. For a < 1/e, solutions decrease
without bound. When a = 1/e, the solution is y(t) = ¢t e~*, which approaches O as t —+0

24(a).
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As t—0, solutions increase without bound if y(1) = a > .4, and solutions decrease
without bound if y(1) =a < 4.
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(b). Given the initial condition, y( — 7/2) = a, the solution is y(t) = (an?/4 — cost)/t

Since %im cost = 1, solutions increase without bound if @ > 4/72, and solutions

—0
decrease without bound if a < 4/7?. Hence the critical value is
a, = 4/7% = 0.452847....

(¢). Fora = 4/7?, the solution is y(t) = (1 — cost)/t, and %ingy(t) = 1/2. Hence the

solution is bounded.

25. The integrating factor is 1(t) = exp( [ 3dt) = €'/*. Therefore general solution is
y(t) = [4cos(t) + 8sin(t)]/5 + c e /2. Invoking the initial condition, the specific
solution is y(t) = [4cos(t) + 8sin(t) — 9€'/?]/5. Differentiating, it follows that

y'(t) = [ — 4sin(t) + 8cos(t) + 4.5¢7%] /5
y"(t) = [ — 4cos(t) — 8sin(t) — 2.25¢ %] /5

Setting y’(t) = 0, the first solution is ¢, = 1.3643, which gives the location of the first
stationary point. Since y”(¢,) < 0, the first stationary point in a local maximum. The
coordinates of the point are (1.3643,.82008).

26. The integrating factor is p(t) = exp([ %dt) = ¢%/3, and the differential equation
can

be written as (e2/% y)' = /3 — ¢ /3 /2. The general solution is y(t) = (21 — 6t)/8 +
+ce /3, Imposing the initial condition, we have y(t) = (21 — 6t)/8 + (y, — 21/8)e~ /.
Since the solution is smooth, the desired intersection will be a point of tangency. Taking
the derivative, y'(t) = — 3/4 — (2y, — 21/4)e"*/3/3. Setting y'(t) = 0, the solution
is t; = 2In[(21 — 8y,)/9]. Substituting into the solution, the respective value at the
stationary point is y(t,) = 3 + §In3 — 3In(21 — 8y,). Setting this result equal to zero,
we obtain the required initial value y, = (21 — 9¢"?)/8 = — 1.643.

27. The integrating factor is u(t) = e'/*, and the differential equation can be written as
(et y)" = 3e!’* + 2e'/*cos(2t). The general solution is

y(t) = 12 + [8cos(2t) + 64sin(2t)]/65 + ¢ e /.
Invoking the initial condition, y(0) = 0, the specific solution is

y(t) = 12 + [8cos(2t) + 64sin(2t) — 788 e ] /65.

As t— o0, the exponential term will decay, and the solution will oscillate about an
average

value of 12, with an amplitude of 8/+/65 .
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29. The integrating factor is u(t) = e */2, and the differential equation can be written

as (%2 y) = 3te 32 4 22, The general solution is y(t) = — 2t —4/3 —4e’ +
+ c e*/2. Imposing the initial condition, y(t) = — 2t —4/3 — 4 e’ + (y, + 16/3) /2.
As t— 00, the term containing e*/? will dominate the solution. Its sign will determine
the divergence properties. Hence the critical value of the initial condition is

Yo = —16/3.

The corresponding solution, y(t) = — 2t — 4/3 — 4 €', will also decrease without
bound.

Note on Problems 31-34:

Let g(t) be given, and consider the function y(¢) = y,(¢) + ¢(t) , in which y,(¢) = o0
as t— oo . Differentiating, y'(t) = y/(t) + ¢’(t) . Letting a be a constant, it follows
that y'(t) + ay(t) = y/(t) + ayi(t) + ¢'(t) + ag(t). Note that the hypothesis on the
function y, (¢) will be satisfied, if y,(t) + ay,(t) = 0. Thatis, y,(t) = ce . Hence
y(t) = ce  + g(t), which is a solution of the equation y’ + ay = ¢'(t) + ag(t).
For convenience, choose a = 1.

31. Here ¢(t) = 3, and we consider the linear equation y’ + y = 3. The integrating
factor is p(t) = €', and the differential equation can be written as (e’ )’ = 3¢!. The
general solution is y(t) =3+ ce ™.

33. g(t) = 3 — t. Consider the linear equation y’ +y = — 1 4+ 3 — ¢ .The integrating
factor is su(t) = €', and the differential equation can be written as (e’ )’ = (2 — t)e’.
The general solution is y(t) =3 —t +ce™".

34. g(t) = 4 — t?. Consider the linear equation y’ +y = 4 — 2t — t* .The integrating
factor is 4u(t) = €', and the equation can be written as (e y)’ = (4 — 2t — t?)e'.
The general solution is y(t) = 4 — t> + ce™.
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Section 2.2

2. Forx # — 1, the differential equation may be written as y dy = [#?/(1 + z®)]dx .
Integrating both sides, with respect to the appropriate variables, we obtain the relation

Y’ /2 = %ln\1+x3| + ¢. Thatis, y(z) = i\/§1n|l+x3| +c.

3. The differential equation may be written as y 2dy = — sinx dz . Integrating both
sides of the equation, with respect to the appropriate variables, we obtain the relation
—y ' =cosx+c. Thatis, (C — cosz)y = 1, in which C is an arbitrary constant.
Solving for the dependent variable, explicitly, y(z) = 1/(C — cosx) .

5. Write the differential equation as cos ? 2y dy = cos’z dx, or sec?® 2y dy = cos’z dx.
Integrating both sides of the equation, with respect to the appropriate variables, we obtain
the relation tan 2y = sinxcosx + =+ c.

7. The differential equation may be written as (y + e¥)dy = (x — e”")dz . Integrating
both sides of the equation, with respect to the appropriate variables, we obtain the
relation

v +2e¥ =22 +2e " +ec.

8. Write the differential equation as (1 +3?)dy = x> dx . Integrating both sides of the
equation, we obtain the relation y + y3/3 = 23/3 + ¢, thatis, 3y +y> = 2® + C.

9(a). The differential equation is separable, with y~2dy = (1 — 2x)dz . Integration
yields —y™' = x — 2® + ¢. Substituting z = 0andy = — 1/6, we find thatc = 6.
Hence the specific solution is 3! = 2> — x — 6. The explicit form is

y(x) =1/(* — 2 -6).

(b)

-3

(¢). Note that 2 — z — 6 = (x + 2)(x — 3). Hence the solution becomes singular at
r= —2and z=3.

10(a). y(z) = — 2z — 222+ 4.
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10(b).

O o2 040608 1 1214 16 18
X

11(a). Rewrite the differential equation as z e"dx = — ydy. Integrating both sides
of the equation results in ze” — e® = — y?/2 + c. Invoking the initial condition, we
obtain ¢ = — 1/2. Hence y? = 2¢” — 2x e® — 1. The explicit form of the solution is

y(z) = \/2e" — 2z e” — 1 . The positive sign is chosen, since y(0) = 1.

(b).

|

0701 02 03 04 05 0F 07 OB
X

e
(c). The function under the radical becomes negative near t = — 1.7 and = = 0.76.

11(a). Write the differential equation as r~2dr = #~' df . Integrating both sides of the
equation results in the relation — ' = in# + ¢. Imposing the condition r(1) = 2, we
obtain ¢ = — 1/2. The explicit form of the solution is r(0) = 2/(1 — 2In9).
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0 02 04 0B 08 1 12 14 1B
®

(c). Clearly, the solution makes sense only if # > 0. Furthermore, the solution becomes
singular when In6 = 1/2, thatis, 0 = \/E_

13(a). y(z) = —/2In(1 +22)+ 4.
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14(a). Write the differential equation as y~*dy = z(1 + 22)""* dx . Integrating both
sides of the equation, with respect to the appropriate variables, we obtain the relation
—y?/2=1+/1+2? + c¢. Imposing the initial condition, we obtain ¢ = — 3/2.
Hence the specific solution can be expressed as y 2 = 3 — 2y/1 + 22 . The explicit
Sform of the solution is y(z) = 1/\/3 —24y/1+4 22 . The positive sign is chosen to
satisfy the initial condition.
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(¢). The solution becomes singular when 21/1 + z2 = 3. Thatis, at z = +/5 /2.

15(a). y(x) = —1/2+ /2? —15/4 .
(b).

16(a). Rewrite the differential equation as 4y3dy = z(x? 4+ 1)dx . Integrating both
sides

of the equation results in y* = (22 +1)*/4 + c¢. Imposing the initial condition, we obtain
¢ = 0. Hence the solution may be expressed as (22 + 1) — 4y* = 0. The explicit form

of the solution is y(x) = — /(22 +1)/2 . The sign is chosen based on y(0) = —1/1/2.
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-1.24
-1.44
-1.61
-1.84

-2.24
-2.44
-2.61

(c). The solution is valid for all x € R.

17(a). y(z) = —5/2 — /a3 — e+ 13/4 .

(b).

(c). The solution is valid for = > — 1.45. This value is found by estimating the root of
4a% —4e” +13 =10.

18(a). Write the differential equation as (3 + 4y)dy = (e™" — e”)dx . Integrating both
sides of the equation, with respect to the appropriate variables, we obtain the relation

3y +2y* = — (e + e %) + c. Imposing the initial condition, y(0) = 1, we obtain
¢ = 7. Thus, the solution can be expressed as 3y + 23> = — (e + e %) + 7. Now by
completing the square on the left hand side, 2(y + 3/4)> = — (e” + e %) + 65/8.

Hence the explicit form of the solution is y(z) = — 3/4 + \/65/16 — cosh x .

page 32



CHAPTER 2. ——

(c). Note the 65 — 16 coshx > 0, as long as |z| > 2.1. Hence the solution is valid on
the interval — 2.1 <z < 2.1.

19(a). y(z) = —7/3 + isin~'(3cos’z).

0.9
0.8

0.7

08 1 12 14,16 18 2 22

20(a). Rewrite the differential equation as y°dy = arcsinz/v/1 — 2% dz . Integrating
both sides of the equation results in y*/3 = (arcsinz)?/2 + ¢. Imposing the condition

y(0) = 0, we obtain ¢ = 0. The explicit form of the solution is y(z) = \:%g(arcsin z)*?.
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1 050604-02 020406508 1
X

(c). Evidently, the solution is defined for — 1 < < 1.

22. The differential equation can be written as (3y> — 4)dy = 3x°dx . Integrating both
sides, we obtain y® — 4y = 2% + ¢. Imposing the initial condition, the specific solution
is y® — 4y = 23 — 1. Referring back to the differential equation, we find that y'— co as
y— 12/\/5. The respective values of the abscissas are x = — 1.276, 1.598.

i 1.2
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0.2 .
0.4
064 !

084 \
-14 1
-1.24 '

Hence the solution is valid for — 1.276 < x < 1.598.

24. Write the differential equation as (3 4 2y)dy = (2 — e”)dx . Integrating both sides,
we obtain 3y + y> = 2z — e* + ¢. Based on the specified initial condition, the solution
can be written as 3y + y? = 2x — e* 4+ 1. Completing the square, it follows that

y(r) = —3/2+4 \/2z — e* + 13/4 . The solution is defined if 2z — e* + 13/4 > 0,
thatis, — 1.5 <z < 2 (approximately). In that interval, y’ = 0, for x = In2. It can
be verified that y”(In2) < 0. In fact, y”(x) < 0 on the interval of definition. Hence
the solution attains a global maximum at z = In 2.

26. The differential equation can be written as (1+y?) 'dy = 2(1 + z)dx . Integrating
both sides of the equation, we obtain arctany = 2z + x* + c¢. Imposing the given
initial

condition, the specific solution is arctany = 2z + x?. Therefore, y(z) = tan(2z + z2).
Observe that the solution is defined as long as — 7/2 < 2z + 2? < 7/2. Itis easy to
see that 2 4+ 22 > — 1. Furthermore, 2z + 22 = /2 for x = — 2.6 and 0.6. Hence
the solution is valid on the interval — 2.6 < x < 0.6. Referring back to the differential
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equation, the solution is stationary at x = — 1. Since y” () > 0 on the entire interval
of
definition, the solution attains a global minimumat z = — 1.

28(a). Write the differential equation as ' (4 — y) 'dy = t(1 4+ ¢) 'dt. Integrating
both sides of the equation, we obtain In |y| — in|y — 4| = 4t — 4In|1 + t| + ¢ . Taking
the exponential of both sides, it follows that |y/(y — 4)| = C e /(1 +t)*. It follows
thatas t—o0, |y/(y —4)| =1+ 4/(y — 4)|» 0. Thatis, y(t)— 4.

(b). Setting y(0) = 2, we obtain that C = 1. Based on the initial condition, the solution
may be expressed as y/(y —4) = —e* /(1 +)". Note that y/(y — 4) < 0, for all

t > 0. Hence y < 4 forallt > 0. Referring back to the differential equation, it follows
that ' is always positive. This means that the solution is monotone increasing. We find
that the root of the equation e* /(1 +¢)" = 399 is near ¢t = 2.844.

(c). Note the y(t) = 4 is an equilibrium solution. Examining the local direction field,
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we see that if y(0) > 0, then the corresponding solutions converge to y = 4. Referring
back to part (a), we have y/(y — 4) = [yo/(yo — 4)]e* /(1 +t)", for y, # 4. Setting

t =2, weobtain y,/(y, — 4) = (3/62)4y(2)/(y(2) —4). Now since the function

fly) =y/(y —4) is monotone fory < 4 and y > 4, we need only solve the equations
Yo/ (yo — 4) = —399(3/¢?)'and 5,/ (yo — 4) = 401(3/¢?)*. The respective solutions

are y, = 3.6622 and y, = 4.4042.

30(f).
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T e e e e S, e
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31(c)

32(a). Observe that (2% + 3y?)/2xy = %(%)‘1 + 3y,

is homogeneous.
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Hence the differential equation

(b). The substitution y = z v results in v + z v’ = (2% + 32?v?)/22%v. The
transformed equation is v’ = (1 + v?)/2zv. This equation is separable, with general
solution v> + 1 = cx. In terms of the original dependent variable, the solution is

22 +y? =ca’.

(c).

S
o
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33(c).
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34(a). Observe that — (4z + 3y)/(2z +y) = —2 — £[2+ %] ", Hence the
differential equation is homogeneous.

(b). The substitution y = zvresultsin v + zv' = —2 —v/(2 + v). The transformed
equation is v’ = — (v2 + 5v +4)/(2 + v)z . This equation is separable, with general
solution (v+4)*|v+1| = C/2*. In terms of the original dependent variable, the solution
is (47 +y)*|z+y| = C.

().

o e T T Ty Ty T T T T T T T Ty T T
o T T T T T e e
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B e i

e T e e e e e

T A D

35(c).

36(a). Divide by 2% to see that the equation is homogeneous. Substituting y = v, we
obtain v’ = (1 + v)®. The resulting differential equation is separable.

(b). Write the equation as (1 + v) “dv = z~'dz . Integrating both sides of the equation,
we obtain the general solution — 1/(1 + v) = In|z| 4+ c¢. In terms of the original
dependent variable, the solution is y = z [C — In|z|] " — z.
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equation is homogeneous. The substitution y = x v results in zv’ = (1 — 50?)/2v.

Separating variables, we have ; 2; sdv = 1dz.
—oU T

37(a). The differential equation can be expressed as 3/ = 1 (%) = %% Hence the
1

1

(b). Integrating both sides of the transformed equation yields — z

In|1 —50% = In|z| + ¢,
thatis, 1 — 50> = C'/|z|”. In terms of the original dependent variable, the general
solution is 5y% = z2 — C/|xz|".
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(%)_1. Hence the
= (v? — 1)/2v, that

38(a). The differential equation can be expressed as y' = %
equation is homogeneous. The substitution y = z v results 1

18, Uffldv = %dx.

=N

1
2
xov'

(b). Integrating both sides of the transformed equation yields in|v* — 1| = In|x| + ¢,
that is, v> — 1 = C||z|. In terms of the original dependent variable, the general solution
is y? = C 2?|z| + 2%
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Section 2.3

5(a). Let @ be the amount of salt in the tank. Salt enters the tank of water at a rate of
2 %(1 + %sin t) = % + isint oz/min . It leaves the tank at a rate of 2(Q)/100 oz/min.
Hence the differential equation governing the amount of salt at any time is

dQ 1 1
T §+1827’Lt—Q/50.

The initial amount of salt is (), = 50 oz. The governing ODE is linear, with integrating
factor ju(t) = e'/°0. Write the equation as (et/E’OQ)/ = e!/%0(% + Lsint). The
specific solution is Q(t) = 25 + [12.5sint — 625cos t + 63150 e /%] /2501 oz.

(b).
a0
404
304
204

107

0720 a0 a0 't'aij 00" 120 140

(c). The amount of salt approaches a steady state, which is an oscillation of amplitude
1/4 about a level of 25 oz.

6(a). The equation governing the value of the investment is d.S/dt = r S. The value of
the investment, at any time, is given by S(t) = Sye". Setting S(T') = 25, , the required
time is 7' = In(2)/r.

(b). Forthecase r =7% = .07, T =99 yrs.

(c). Referring to Part(a), r = In(2)/T. Setting 1" = 8, the required interest rate is to
be approximately r = 8.66 % .

8(a). Based on the solution in Eg.(16), with S, = 0, the value of the investments with
contributions is given by S(t) = 25,000(e"" — 1). After fen years, person A has

S, = $25,000(1.226) = $30,640. Beginning at age 35, the investments can now be
analyzed using the equations S, = 30,640e%" and Sy = 25,000(e " — 1).

After thirty years, the balances are S, = $337,734 and Sy = $250,579.

(b). For an unspecified rate r , the balances after thirty years are S, = 30,640 3" and
Sy = 25,000(e3" — 1).
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(d). The two balances can never be equal.

11(a). Let S be the value of the mortgage. The debt accumulates at a rate of S, in
which r = .09 is the annual interest rate. Monthly payments of § 800 are equivalent to
89,600 per year. The differential equation governing the value of the mortgage is
dS/dt =.095 —9,600. Given that S, is the original amount borrowed, the debt is
S(t) = Sye™ —106,667(e" — 1). Setting S(30) = 0, it follows that

So = $99,500.

(b). The total payment, over 30 years, becomes § 288,000 . The interest paid on this
purchase is § 188, 500 .

13(a). The balance increases at a rate of S $/yr, and decreases at a constant rate of k
$ per year. Hence the balance is modeled by the differential equation d.S/dt =rS — k.
The balance at any time is given by S(t) = Spe’’ — £(e™ — 1).

(b). The solution may also be expressed as S(t) = (S, — £)e" + . Note that if the

r

withdrawal rate is k, = r S, , the balance will remain at a constant level S, .
(¢). Assuming that k > k,, S(T,) = 0 for T, = %ln[k_LkU]

(d). If r = .08 and k = 2k, , then T, = 8.66 years.

(€). Setting S(t) = 0 and solving for e in Part(b), e’ = k_]j,SU. Now setting t = T
results in k = rSpe™ /(e —1).

(f). Inpart(e), let k = 12,000, r = .08, and 7" = 20. The required investment
becomes S, = $119,715.

14(a). Let Q' = — r Q. The general solution is Q(t) = Q,e . Based on the
definition of &alf-life, consider the equation @Qy/2 = Qe >"". It follows that
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— 57307 = In(1/2), that is, 7 = 1.2097 x 10~* per year.

(b). Hence the amount of carbon-14 is given by Q(t) = Q, e~ 1.2097x107"t

(¢). Given that Q(T) = Q,/5, we have the equation 1/5 = ¢~ 12097107 Solying for
the decay time, the apparent age of the remains is approximately 7' = 13, 304.65 years.

15. Let P(t) be the population of mosquitoes at any time ¢. The rate of increase of the
mosquito population is 7P. The population decreases by 20,000 per day. Hence the
equation that models the population is given by dP/dt = rP — 20,000. Note that the
variable ¢ represents days . The solution is P(t) = Pye™ — 220 (e — 1), In the
absence of predators, the governing equation is d P, /dt = r P, with solution

P,(t) = Pje". Based on the data, set P,(7) = 2P, , thatis, 2P, = Pye™. The growth
rate is determined as r = In(2)/7 = .09902 per day. Therefore the population,
including the predation by birds, is P(t) = 2 x 10%e%" — 201, 997(e" — 1) =

= 201,997.3 — 1977.3 "%,

16(a). y(t) = exp[2/10 +t/10 — 2cos(t)/10]. The doubling-time is T ~ 2.9632 .

(b). The differential equation is dy/dt = y/10, with solution y(t) = y(0)e"/'°. The
doubling-time is given by 7 = 10in(2) ~ 6.9315.

(¢). Consider the differential equation dy/dt = (0.5 + sin(2nt))y/5. The equation is
separable, with %dy = (0.1 4 Lsin(27t))dt. Integrating both sides, with respect to the

appropriate variable, we obtain Iny = (7t — cos(2nt))/10m + ¢. Invoking the initial
condition, the solution is y(t) = exp[(1 + 7t — cos(2nt))/10x]. The doubling-time is
T & 6.3804 . The doubling-time approaches the value found in part(b).

(d).

17( ). The differential equation dy/dt = r(t)y — k is linear, with integrating factor
pu(t) = exp[ — [r(t)dt]. Write the equation as (py) = — k p(t). Integration of both
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sides yields the general solution y = [ — k[ u(7)d7 + yy #(0)] /p1(t) . In this problem,
the
integrating factor is u(t) = exp|(cost —t)/5].

24
1.84
164
1.44
1.24

E
0.8
0.6
0.4
0.2

TR T h

(b). The population becomes extinct, if y(t*) = 0, for some ¢t = t*. Referring to

part(a),
we find that y(t*) = 0 =

t*
/ exp|(cosT — 1) /5]dT = 5%y
0

It can be shown that the integral on the left hand side increases monotonically, from zero
to a limiting value of approximately 5.0893. Hence extinction can happen only if
5e'/5y, < 5.0893, that is, y. < 0.8333.

(c). Repeating the argument in part(b), it follows that y(t*) = 0 =

t 1
/ expl(cosT — 7)/5ldT = % el/y..
0
Hence extinction can happen only if e'/°y./k < 5.0893, that is, y, < 4.1667 k.
(d). Evidently, y. is a linear function of the parameter & .

19(a). Let Q(t) be the volume of carbon monoxide in the room. The rate of increase of
COis (.04)(0.1) = 0.004 ft*/min . The amount of CO leaves the room at a rate of
(0.1)Q(t) /1200 = Q(t) /12000 ft?/min . Hence the total rate of change is given by
the differential equation d@/dt = 0.004 — Q(¢)/12000. This equation is /inear and
separable, with solution Q(t) = 48 — 48 exp( — t/12000) ft*. Note that Q, = 0 ft>.
Hence the concentration at any time is given by z(t) = Q(t)/1200 = Q(t)/12 %.

(b). The concentration of CO in the room is z(t) = 4 — dexp( — t/12000) %. A level
0f 0.00012 corresponds to 0.012 %. Setting z(7) = 0.012, the solution of the equation
4 — dexp( —t/12000) = 0.012 is 7 ~ 36 minutes .
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20(a). The concentration is c¢(t) = k + P/r + (¢, — k — P/r)e "/ ltis easy to see
that c(t—»o0) = k + P/r.

(b). c(t) = coe V. The reduction times are Ty, = In(2)V /r and Ty, = In(10)V /r.
(c). The reduction times, in years, are Ts = In(10)(65.2)/12,200 = 430.85

Ty = In(10)(158) /4,900 = 71.4 ; T, = In(10)(175)/460 = 6.05
T, = In(10)(209) /16,000 = 17.63 .

21(c).
Pasition
“Welocity 50
" 107
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0 0]
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104
-20
u i 3 3 i s &
-30 t
22(a). The differential equation for the motion is mdv/dt = — v/30 — mg. Given the
initial condition v(0) = 20 m/s , the solution is v(t) = — 44.1 + 64.1exp( —t/4.5).

Setting v(t;) = 0, the ball reaches the maximum height at ¢, = 1.683 sec. Integrating
v(t), the position is given by z(t) = 318.45 — 44.1¢ — 288.45 exp( — t/4.5). Hence
the maximum height is x(t,) = 45.78 m.

(b). Setting x(t,) = 0, the ball hits the ground at ¢, = 5.128 sec.

().
Yelocity Puosition
204
40
104
307
y 2z U3 4 5
0 204
10 107
1 0 T 7 ;3 3 g
23(a). The differential equation for the upward motion is mdv/dt = — pv* — mg,
in which = 1/1325. This equation is separable, with —"—dv = — dt. Integrating
Hnost+mg
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both sides and invoking the initial condition, v(t) = 44.133 tan(.425 — .222t). Setting
v(t;) = 0, the ball reaches the maximum height at ¢, = 1.916 sec. Integrating v(t), the
position is given by z(t) = 198.75In[cos(0.222¢ — 0.425)] 4+ 48.57 . Therefore the
maximum height is x(t,) = 48.56 m.

(b). The differential equation for the downward motion is mdv/dt = + pv? —mg.

This equation is also separable, with mgi’L —dv = —dt. For convenience, sett = 0 at

the top of the trajectory. The new initial condition becomes v(0) = 0. Integrating both
sides and invoking the initial condition, we obtain In[(44.13 — v)/(44.13 + v)] = t/2.25

Solving for the velocity, v(t) = 44.13(1 — €/>%) /(1 + €"/**) . Integrating v(t), the
position is given by z(t) = 99.29n [et/z%/(l + Gt/2'25)2} + 186.2. To estimate the

duration of the downward motion, set x(¢,) = 0, resulting in ¢, = 3.276 sec. Hence the
total time that the ball remains in the air is ¢, + ¢, = 5.192 sec.

().
“elocity Position

204

! 2 3 4 85 8 30
o
101 201
0] 104
0] I B MAPE IR ARRF-

24(a). Measure the positive direction of motion downward . Based on Newton's 2nd
law,
the equation of motion is given by

dv { —0.75v+mg , 0<t<10

m%: —12v4+mg ,t>10

Note that gravity acts in the positive direction, and the drag force is resistive. During the
first ten seconds of fall, the initial value problem is dv/dt = — v/7.5 + 32, with initial

velocity v(0) = 0 fps. This differential equation is separable and linear, with solution
v(t) = 240(1 — e /7%). Hence v(10) = 176.7 fps .

(b). Integrating the velocity, with z(¢) = 0, the distance fallen is given by
z(t) = 240t + 1800 e /™ — 1800.
Hence x(10) = 1074.5 fi.
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(¢). For computational purposes, reset time to ¢ = 0. For the remainder of the motion,
the initial value problem is dv/dt = — 32v/15 + 32, with specified initial velocity

v(0) = 176.7 fps . The solution is given by v(t) = 15 + 161.7e /1>, Ast—oo,

v(t) > v, = 15 fps . Integrating the velocity, with z(0) = 1074.5, the distance fallen
after the parachute is open is given by z(¢) = 15¢ — 75.8 ¢ *?"/% + 1150.3. To find the
duration of the second part of the motion, estimate the root of the transcendental equation
15T — 75.8 ¢~ #7/15 4 1150.3 = 5000 . The resultis T = 256.6 sec.

(d).

“Welocity

“elocity
)
140 140
120 1204
100 1004
B0 a0
BD- B0
40 404
-0 204
0 : :
0 50 100 150 200 280 5 10 18 A

25(a). Measure the positive direction of motion upward. The equation of motion is
given by mdv/dt = — kv — mg. The initial value problem is dv/dt = — kv/m — g,
with v(0) = v,. The solution is v(t) = — mg/k + (vo + mg/k)e /™. Setting

v(ty) = 0, the maximum height is reached at time ¢, = (m/k)In[(mg + kv,)/mg].
Integrating the velocity, the position of the body is

z(t) = —mgt/k+ [(%)29 + mkvo] (1 — e ktimy,

Hence the maximum height reached is

mu m\ 2 mg—|—]{iv
2= alt,) = 0~ g(7) l"[Tg}

(b). Recall that for § < 1, In(146) =68 — §8*+ £6° — 36+ ...

26(b). lim _mg+(k”“;mg)efkt/m = lim — L (kv, + mg)e /™ =

k—0 k—0

—gt.

(c). lim [— % + (%e4v,)e ¥/™m] = 0,since lim e /™ =0.

m—0 m—0

28(a). In terms of displacement, the differential equation is mvdv/dz = — kv + mg.

This follows from the chain rule: % = w4z — v The differential equation is

dt dx dt dt *
separable, with
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mv  mig, |mg—kv
#(v) = kR n mg

The inverse exists, since both x and v are monotone increasing. In terms of the given
parameters, z(v) = — 1.25v — 15.311n|0.0816 v — 1|.
dizplacement
309
254
204

u 2 4 6 8 10
(b). x(10) = 13.45 meters . The required value is k = 0.24.

(¢). Inpart(a), set v =10 m/s and x = 10 meters .

29(a). Let x represent the height above the earth's surface. The equation of motion is

given by m% = -G ( é‘i 7;)2 , in which G is the universal gravitational constant. The
symbols M and R are the mass and radius of the earth, respectively. By the chain rule,
dv Mm
mv— = —G——.
dx (R+ )

This equation is separable, with vdv = — GM (R + x)_de . Integrating both sides,
and

invoking the initial condition v(0) = \/2gR , the solution is v> = 2GM (R + =)' +
+2gR — 2GM /R . From elementary physics, it follows that g = GM /R?. Therefore

v(x) = /29 [R/\/R + :1;] (Note that g = 78,545 mi/hr®.)

(b). We now consider dz/dt = /2g [R/\/ R+ w] . This equation is also separable,

with /R + zdx = /29 Rdt. By definition of the variable x, the initial condition is
z(0) = 0. Integrating both sides, we obtain z(¢) = [3 (/29 Rt + %Rm)}?/g ~R.
Setting the distance z(7") + R = 240,000, and solving for T, the duration of such a
flight would be T ~ 49 hours.

32(a). Both equations are linear and separable. The initial conditions are v(0) = u cos
A
and w(0) = usin A. The two solutions are v(t) = ucos Ae " and w(t) = — g/r +

+ (usin A + g/r)e .
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(b). Integrating the solutions in part(a), and invoking the initial conditions, the
coordinates are z(t) = “cos A(1 —e"") and

y(t) = —gt/r+ (g+ursin A+ hr?) /1% — (gsz’nA + g/r2>e_”.
r
().

1201
1007
807
604
409

207

o g0 100 180 200 250 300

(d). Let T be the time that it takes the ball to go 350 f# horizontally. Then from above,
e T/5 = (ucos A —70)/ucos A. At the same time, the height of the ball is given by
y(T) = — 16071 + 267 + 125usin A — (800 + bu sin A)[(ucos A —70)/ucos A].
Hence A and u must satisfy the inequality

ucos A—T70

SOth[ oA

] + 267 + 125usin A — (800 + 5u sin A)[(ucos A — 70)/ucos A] > 10.

33(a). Solving equation (i), y'(z) = [(k* — y)/y]l/Q. The positive answer is
chosen, since y is an increasing function of x .

(b). Let y = k?sin’*t. Then dy = 2k’sint costdt. Substituting into the equation in
part(a), we find that

2k%sint costdt _cost

dx sint

Hence 2k2sin’t dt = dx .

(c). Letting 6 = 2t, we further obtain kQSiHZ% df = dx . Integrating both sides of the

equation and noting that ¢t = # = 0 corresponds to the origin, we obtain the solutions
2(0) = k*(0 — sin ) /2 and [from part(b)] y(0) = k*(1 — cos ) /2.

(d). Note that y/x = (1 — cos0)/(0 — sinf). Setting x = 1,y = 2, the solution of
the equation (1 — cos#)/(0 — sinf) = 2is 0 ~ 1.401. Substitution into either of the
expressions yields k£ ~ 2.193.
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Section 2.4

2. Considering the roots of the coefficient of the leading term, the ODE has unique
solutions on intervals not containing 0 or 4. Since 2 € (0,4), the initial value problem
has a unique solution on the interval (0,4) .

3. The function tant is discontinuous at odd multiples of 5 . Since § < 7 < 37” , the
initial value problem has a unique solution on the interval (g , 37”)

5. p(t) = 2t/(4—*)and g(t) = 3t*/(4 —t2). These functions are discontinuous at

x = £2. The initial value problem has a unique solution on the interval ( — 2, 2).

6. The function [nt is defined and continuous on the interval (0, 00). Therefore the
initial value problem has a unique solution on the interval (0, c0).

7. The function f(¢,y) is continuous everywhere on the plane, except along the straight
line y = — 2t/5. The partial derivative 9f /0y = — 7t/(2t + 5y)* has the same
region of continuity.

9. The function f(¢,y) is discontinuous along the coordinate axes, and on the hyperbola
t> —y?> = 1. Furthermore,
of _ +1 o Y In|tyl

Oy  y(1—2+12) T(1-2+42)>

has the same points of discontinuity.

10. f(t,y) is continuous everywhere on the plane. The partial derivative 0 f/Jy is also
continuous everywhere.

12. The function f(¢,y) is discontinuous along the lines t = +kmandy = — 1. The
partial derivative 9 f /Oy = cot(t)/(1 + y)* has the same region of continuity.

14. The equation is separable, with dy/y?> = 2tdt. Integrating both sides, the solution
is given by y(t) = y,/(1 — yot?). Fory, > 0, solutions exist as long as t*> < 1/y,.
For y, < 0, solutions are defined for all t .

15. The equation is separable, with dy/y® = — dt. Integrating both sides and invoking
the initial condition, y(t) = yo/+/2yst + 1. Solutions exist as long as 2y,t +1 > 0,
that is, 2y,t > — 1. If y, > 0, solutions exist fort > — 1/2y,. Ify, = 0, then the
solution y(¢) = 0 exists for all . If y, < 0, solutions exist fort < — 1/2y,.

16. The function f(¢,y) is discontinuous along the straight linest = — landy = 0.
The partial derivative J f /Oy is discontinuous along the same lines. The equation is
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separable, with y dy = t? dt/(1+¢*). Integrating and invoking the initial condition, the
solution is y(t) = [3In|1 + t*| + y] "2 Solutions exist as long as

%ln\1+t3| +y5 >0,

thatis, y2 > — 2In|1 + ¢3|. Forall y, (it can be verified that y, = 0 yields a valid

solution, even though Theorem 2.4.2 does not guarantee one) , solutions exists as long as

|1+ 3| > exp( — 3y2/2). From above, we must have ¢ > — 1. Hence the inequality

may be written as > > exp( — 3y?/2) — 1. It follows that the solutions are valid for
173

[exp( —3y2/2) — 1] <t < 00.

17.
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Based on the direction field, and the differential equation, for y, < 0, the slopes
eventually become negative, and hence solutions tend to — oo. For y, < 0, solutions
increase without bound if ¢, < 0. Otherwise, the slopes eventually become negative, and
solutions tend to zero . Furthermore, y, = 0 is an equilibrium solution. Note that slopes
are zero along the curves y = O and ty = 3.

19.
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For initial conditions (t,, y,) satisfying ty < 3, the respective solutions all tend to zero .
Solutions with initial conditions above or below the hyperbola ty = 3 eventually tend to
+00. Also, y, = 0 is an equilibrium solution.

20.
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Solutions with ¢, < 0 all tend to — co. Solutions with initial conditions (%, y,) to the
right of the parabola ¢t = 1 + y? asymptotically approach the parabola as t -+ oo . Integral
curves with initial conditions above the parabola (and y, > 0) also approach the curve.
The slopes for solutions with initial conditions below the parabola (and y, < 0) are all
negative. These solutions tend to — co.

21. Define y.(t) = 2(t — ¢)**u(t — ¢), in which u(t) is the Heaviside step function.

5(t—¢) )
Note that y.(c) = .(0) = 0 and . (c + (3/2)**) = 1.
(a). Letc =1 — (3/2)"".
(b). Letc =2 — (3/2)*".

c). Observe that y,(2) = 23/2,ypt 23/2f0r0<c<2,andthatyc 2) = 0 for
3 3
¢ >2. Soforany ¢ >0, £y.(2) € [ - 2,2].

26(a). Recalling Eq. (35) in Section 2.1,
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1 / c
y=——1[ wu(s)g(s)ds + ——=
u(t) (#Jale) u(t)
It is evident that y, (t) = ﬁ and v, (t f u(s
(b). By definition, 5 = exp( — [p(t)dt). Hencey/ = — p(t) 15 = — p(t)y-

That is, y{ + p(t)y: =

A
w

() vl = (=) 75 ) u()9(s) ds + (5 ) mBg() = = p(B) + g(0).

Thatis, y, + p(t)y. = g(t).

. 3
30. Since n = 3, setv = y . It follows that % = - 2y 3 ff,i{ and ZZ;’ = — Ly
Substitution into the differential equation yields — % % — ey = — oy?®, which further

results in v’ + 2ev = 20. The latter differential equation is linear, and can be written as

(e2")" = 20. The solution is given by v(t) = 20t e 2 + ce %", Converting back to
the original dependent variable, y = +v~'/2.

31. Since n = 3, set v = y 2. It follows t};at % = =2y 2 and dJ = - L f;tf
The differential equation is written as — % % — (Ccost + T)y = oy*, which upon

further substitution is v’ + 2(I'cost + T')v = 2. This ODE is linear, with integrating
factor u(t) = exp(2[ (Lcost + T)dt) = exp( — 2I'sint + 2T't). The solution is

t
v(t) = 2exp(2Tsint — 2Tt)/ exp( — 2TsinT 4 2T7)dT + cexp( — 2Tsint + 2T't).
0

Converting back to the original dependent variable, y = £v /2

33. The solution of the initial value problem 3/ + 2y, = 0, 3,(0) = 1is y,(¢) = e 2.
Therefore y(17) = 4,(1) = e 2. On the interval (1, 00), the differential equation is
ys + v, = 0, with y,(t) = ce~'. Therefore y(1*) = y,(1) = ce!. Equating the limits
y(17) = y(17), we require that c = e~ . Hence the global solution of the initial value
problem is

e, 0<t<1
et t>1 '

Note the discontinuity of the derivative

—27% 0<t<l1
t) = ’ .
y( ) { _ e—l—t’ t > 1
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Section 2.5

1.

D™ n2040608 1 12141618 2
¥

For y, > 0, the only equilibrium point is y* = 0. f’(0) = a > 0, hence the equilibrium
solution ¢(t) = 0 is unstable.

2.
o
e
L4
b2
ST 1‘
The equilibrium points are y* = —a/bandy* =0. f'( —a/b) < 0, therefore the
equilibrium solution ¢(t) = — a/b is asymptotically stable.
3.
4-
3_
2-
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RE ¥
The only equilibrium point is y* = 0. f’(0) > 0, hence the equilibrium solution

¢(t) =0

1S unstable.

5.

A
. .

RE ¥

The only equilibrium point is y* = 0. f’(0) < 0, hence the equilibrium solution
¢(t) =0

is asymptotically stable.

6.

-0.24
-0.44
-0.64
-0.84
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The only equilibrium point is y* = 1. Note that f’'(1) = 0, and thaty’ < 0 fory # 1.
As long as y, # 1, the corresponding solution is monotone decreasing. Hence the
equilibrium solution ¢(t) = 1 is semistable.

9.

1.69
1.69
1.49
1.29

0.51
0.64
0.44
0.24

-t08 D 021 028406081 1.21.
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10.

1.5

0.5

A5 05
-0.5

-1.51

05y 1 1.4

The equilibrium points are y* = 0,41. f’(y) = 1 — 3y?>. The equilibrium solution
¢(t) = 0 is unstable, and the remaining two are asymptotically stable.

11.
087
06
044
021
U R 2 25 13
0.2
12.
A4
2_
- 17
-2
44
-4
-7
104
2]
14

The equilibrium points are y* = 0,42. f’(y) = 8y — 4y*. The equilibrium solutions
¢(t) = —2and ¢(t) = + 2 are unstable and asymptotically stable, respectively. The

equilibrium solution ¢(t) = 0 is semistable.
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13.

0402 02 04 n.'eyn.'a 112 1.4
The equilibrium points are y* = 0 and 1. f'(y) = 2y — 6y + 4y>. Both equilibrium
solutions are semistable.

15(a). Inverting the Solution (11), Eq. (13) shows ¢ as a function of the population y
and
the carrying capacity K. With y, = K /3,

‘(1/3)[1—(y/K)]‘.

t= — 1ln
a (y/K)[1 = (1/3)]

r

Setting y = 2y,

T= ——In
r

(1/3)[1 = (2/3)] ‘
(2/3)[1 = (1/3)]

Thatis, 7 = %ln4. If r = 0.025 per year, T = 55.45 years.

(b). InEq. (13), set yo/K = aand y/K = (3. As a result, we obtain

1 el g
=5

r
Given a = 0.1, 8 = 0.9 and r = 0.025 per year, T = 175.78 years.

16(a).
r=075 K=B0ER
2417
1.5e+17
Te+17 ]
5e-HI5
0 o417  de+l7  Be+l7 sehgg
¥
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17. Consider the change of variable u = In(y/K). Differentiating both sides with
respect

tot,u’ = y’'/y. Substitution into the Gompertz equation yields u’ = — ru, with
solution u = uye". It follows that in(y/K) = In(y,/K)e ™. Thatis,

% = exp [ln(yO/K)e’”} .

(a). Given K = 80.5 x 10°%, y,/K = 0.25 and r = 0.71 per year, y(2) = 57.58 x 10°.

(b). Solving for ¢,

In(y/K)

Setting y(7) = 0.75K, the corresponding time is 7 = 2.21 years.

1 [ln(y/K)]'

t= ——In
r

19(a). The rate of increase of the volume is given by rate of flow in — rate of flow out.
That is, dV /dt = k — aa/2gh . Since the cross section is constant, dV /dt = Adh/dt.
Hence the governing equation is dh/dt = (k — aay/2gh ) / A.

(b). Setting dh/dt = 0, the equilibrium height is h, = 2%} (i)z Furthermore, since

f'(h.) < 0, it follows that the equilibrium height is asymptotically stable.

(c). Based on the answer in part(b), the water level will intrinsically tend to approach h,.
Therefore the height of the tank must be greater than h.; that is, h, < V / A.

22(a). The equilibrium points are at y* = 0 and y* = 1. Since f'(y) = a — 2ay, the
equilibrium solution ¢ = 0 is unstable and the equilibrium solution ¢ = 1 is
asymptotically stable.

(b). The ODE is separable, with [y(1 — y)]'dy = adt. Integrating both sides and
invoking the initial condition, the solution is

_ Yo e(xt
L —yo+yoet

y(t)
It is evident that (independent of y;) tlim y(t) =0 and tlim y(t)=1.

23(a). y(t) = yye .

(b). From part(a), dz/dt = axy,e 7. Separating variables, dz/z = ay,e Pdt.
Integrating both sides, the solution is z(t) = z, exp[ay,/B(1 — e )].

(c). Ast—=o0, y(t)—=0 and z(t) > x,exp(ay,/F). Over along period of time, the
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proportion of carriers vanishes. Therefore the proportion of the population that escapes
the epidemic is the proportion of susceptibles left at that time, z, exp(a y,/3).

25(a). Note that f(x) = 2[(R — R.) —az?],and f'(x) = (R — R.) — 3ax?. Soif
(R — R.) < 0, the only equilibrium point is z* = 0. f’(0) < 0, and hence the solution
o(t) = 0 is asymptotically stable.

(b). If (R — R,) > 0, there are three equilibrium points z* = 0,++/(R — R.)/a .
Now f/(0) > 0, and f'(++/(R — R.)/a ) < 0. Hence the solution ¢ = 0 is unstable,
and the solutions ¢ = £./(R — R.)/a are asymptotically stable.

(c).
44
201
0
20
A0
o 1 2R3 4 &
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Section 2.6

l. M(z,y) =2x+3and N(x,y) =2y — 2. Since M, = N, = 0, the equation is
exact. Integrating M with respect to «, while holding y constant, yields ¢ (z,y) =
=22+ 3z + h(y). Now ¢, = h'(y), and equating with N results in the possible
function h(y) = y* — 2y. Hence ¢(z,y) = 2* + 3z + 3> — 2y, and the solution is
defined implicitly as z* + 3z +y*> — 2y = c.

2. M(z,y) =2x + 4y and N (z,y) = 2z — 2y . Note that M, # N, , and hence the
differential equation is not exact.

4. First divide both sides by (2zy + 2). We now have M (z,y) = y and N(z,y) = .
Since M, = N, = 0, the resulting equation is exact. Integrating M with respect to x,
while holding y constant, results in ¢)(x,y) = xy + h(y) . Differentiating with respect
toy, 1, =x+ h'(y). Setting b, = N, we find that h'(y) = 0, and hence h(y) =0
is acceptable. Therefore the solution is defined implicitly as xy = c¢. Note that if

zy + 1 = 0, the equation is trivially satisfied.

6. Write the given equation as (az — by)dx + (bx — cy)dy . Now M (z,y) = ax — by
and N(z,y) = bx — cy. Since M, # N, , the differential equation is not exact.

8. M(z,y) =e"siny+ 3y and N(x,y) = — 3z + e”siny. Note that M, # N, , and
hence the differential equation is not exact.

10. M(z,y) =y/x + 6z and N(z,y) = Inx — 2. Since M, = N, = 1/z, the given
equation is exact. Integrating N with respect to y, while holding = constant, results in
W(z,y) = ylnx — 2y + h(x). Differentiating with respect to z, ¢, = y/x + h'(x).
Setting ), = M, we find that ' (z) = 6x, and hence h(x) = 3x2. Therefore the
solution

is defined implicitly as 32> + ylnxz — 2y = c.

1. M(z,y) =xlny+ xyand N(x,y) = ylnx + zy. Note that M, # N, , and hence
the differential equation is not exact.

13. M(z,y) =2z —yand N(z,y) = 2y — . Since M, = N, = — 1, the equation is
exact. Integrating M with respect to «, while holding y constant, yields ¢ (z,y) =

=22 — 2y + h(y). Now ), = — z + h'(y). Equating , with N results in h'(y) = 2y,
and hence h(y) = y?. Thus ¥(x,y) = ¥* — xy + y*, and the solution is given implicitly
as 2 — xy + y? = c. Invoking the initial condition y(1) = 3, the specific solution is
z? — zy + y* = 7. The explicit form of the solution is y(z) = 3 [x + /28 — 322 } :

Hence the solution is valid as long as 3x? < 28.

16. M(x,y) =ye*¥ +x and N(z,y) = bx e*¥. Note that M, = > + 2xy e*™,
and N, = b eV + 2bxy Y. The given equation is exact, as long as b = 1. Integrating
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N with respect to y, while holding  constant, results in 1(x,y) = €*¥/2 + h(z). Now
differentiating with respect to x, 1, = y e**¥ + h/(x). Setting 1), = M, we find that
h'(z) = x, and hence h(x) = x?/2. Conclude that 1(x,y) = €**¥/2 + x?/2. Hence
the solution is given implicitly as €**Y 4+ x* = c.

17. Integrating 1), = N, while holding = constant, yields

Y(w,y) = [ N(z,y)dy + h(z).

Taking the partial derivative with respect tox, ¢x i 881 N(z,y)dy + h'(x). Now

set 1, = M (x,y) and therefore h/(x) = — [Z N(z,y)dy. Based on the fact
that M, = N, , it follows that (% W (z)] = 0. Hence the expression for 2’ (x) can be

integrated to obtain
:/M(x,y)dfc—/V;N(fc,y)dy}dx
x

18. Observe that a%[M(:c)] = Z[N(y)]=0.

20. M, =y 'cosy —y?siny and N, = — 2e "(cosz + sinx)/y. Multiplying
both sides by the integrating factor p(x,y) = ye”, the given equation can be written as
(e"siny — 2y sinx)dz + (e"cosy + 2cosx)dy = 0. Let M = uM and N = uN.
Observe that M, = N, , and hence the latter ODE is exact. Integrating N with respect
to i, while holdmg x constant, results in Y(z,y) = e"siny + 2y cosx + h(z). Now
differentiating with respect to x, 1, = e*siny — 2y sinx + h'(z). Setting 1), = M,
we find that A/(z) = 0, and hence h(z) = 0 is feasible. Hence the solution of the given
equation is defined implicitly by e*siny + 2y cosx = (3.

21. M, =1 and N, = 2. Multiply both sides by the integrating factor u(x,y) = y to
obtain y2d93 + (2zy — y?e¥)dy = 0. Let M = yM and N = yN. Itis easy to see that
M,=N,, and hence the latter ODE is exact. Integrating M with respect to x yields
Y(z,y) = xy? + h(y). Equating v, with N results in h'(y) = — y?eY, and hence
h(y) = — e¥(y* — 2y + 2). Thus ¥(z,y) = zy* — ¥ (y* — 2y + 2), and the solution
is defined implicitly by zy? — e¥(y? — 2y +2) = c.

24. The equation M + pNy' = 0 has an integrating factor if (uM) = (uN),, thatis,
w,M — ., N = uN, — uM, . Suppose that N, — M, = R (M — yN), in which R is
some function depending only on the quantity z = xy. It follows that the modified form
of the equation is exact, if u,M — pu,N = uR (zM —yN) =R (pzM — pyN). This
relation is satisfied if pu, = (ux)R and p, = (py)R. Now consider 4 = u(xy). Then
the partial derivatives are p, = p'y and pu, = p/x. Note that 4/ = dp/dz. Thus g must
satisfy p/(z) = R(z). The latter equation is separable, with dy = R(z)dz, and

= [R(z)dz. Therefore, given R = R(xy), it is possible to determine p = p(xy)
which becomes an integrating factor of the differential equation.
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28. The equation is not exact, since N, — M, = 2y — 1. However, (N, — M,)/M =

= (2y — 1)/y is a function of y alone. Hence there exists i = u(y), which is a solution
of the differential equation i/ = (2 — 1/y)u. The latter equation is separable, with
du/p =2 —1/y. One solution is u(y) = exp(2y — Iny) = €% /y. Now rewrite the
given ODE as e*dz + (2ze* — 1/y)dy = 0. This equation is exact, and it is easy to
see that (z,y) = xe? — Iny. Therefore the solution of the given equation is defined
implicitly by ze? —Iny =c.

30. The given equation is not exact, since N, — M, = 8z3/y> + 6/y*. But note that
(N, — M,)/M = 2/y is a function of y alone, and hence there is an integrating factor
p = p(y). Solving the equation p' = (2/y)u, an integrating factor is u(y) = y*>. Now
rewrite the differential equation as (42° + 3y)dx + (3z + 4y®)dy = 0. By inspection,
Y(z,y) = z* + 3zy + y*, and the solution of the given equation is defined implicitly by
2+ 3zy+yt=c.

32. Multiplying both sides of the ODE by u = [zy(2z + y)] ', the given equation is
equivalent to [(3z + y)/(22? + zy)]dz + [(z + y)/(2zy + y?)]dy = 0. Rewrite
the differential equation as

2—!— 2 dx + 1+ ! d 0
— x — =0.
r 2x4vy y 2x+4y Y

It is easy to see that M, = N,. Integrating M with respect to x, while keeping y
constant, results in ¢(x, y) = 2in|z| + In|2z + y| + h(y) . Now taking the partial
derivative with respect to i, 1, = (2o + %)~ + h'(y). Setting v», = N, we find that
h'(y) = 1/y, and hence h(y) = In|y|. Therefore

W(z,y) = 2n|x| + In]2x + y| + Inly|,

and the solution of the given equation is defined implicitly by 23y + 2%y* = c.
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Section 2.7

2(a). The Euler formula is v, = 9, + h(2y, — 1) = (1 +2h)y, — h.
(d). The differential equation is /inear, with solution y(t) = (1 + ') /2.
4(a). The Euler formula is y,., = (1 — 2h)y, + 3h cost, .

(d). The exact solution is y(t) = (6cost + 3sint —6e~2)/5.

5.
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All solutions seem to converge to ¢(t) = 25/9.
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Solutions with positive initial conditions seem to converge to a specific function. On the
other hand, solutions with negative coefficients decrease without bound. ¢(¢) = 0 is an
equilibrium solution.

7.
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the other hand, solutions to the 'right’ of the curve seem to converge to zero. Also, ¢(t)
;
;
/‘
-

Solutions with initial conditions to the 'eft’ of the curve t = 0.1y? seem to diverge. On
is an equilibrium solution.

All solutions seem to converge to a specific function.

All solutions seem to diverge.
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Solutions with positive initial conditions increase without bound. Solutions with
negative
initial conditions decrease without bound. Note that ¢(¢) = 0 is an equilibrium solution.

11. The Euler formulais y,,; = v, — 3h\/y, + 5h. The initial value is y, = 2.
12. The iteration formula is y,.; = (1 + 3h)y, — ht,y>. (to, ) = (0,0.5).
14. The iteration formula is 4, = (1 — ht, )y, + hy? /10. (to,5,) = (0,1).

17. The Euler formula is
h(y2 + 2t,y,)

yn+1 :yn+ 3+t2
The initial point is (¢y, yo) = (1,2).
18(a). See Problem 8.
19(a).
_../' - /'_.
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(b). The iteration formula is v,,; = vy, + hy> — ht>. The critical value of @ appears
to be near oy ~ 0.6815. For y, > «, the iterations diverge.
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20(a). The ODE is linear, with general solution y(t) =t + ce’. Invoking the specified
initial condition, y(t,) = y,, we have y, = t, + ce®. Hence ¢ = (y, — t;)e . Thus
the solution is given by ¢(¢) = (yo — to)e' " +¢t.

(b). The Euler formulais y,.;, = (1+h)y, +h —ht,. Nowset k =n+1.

(c). Wehavey, = (1+h)yo+h —hty=(1+ h)y,+ (t, — ty) — ht,. Rearranging
the terms, 1, = (1 + h)(yo — to) + t;. Now suppose that 3, = (1 4+ h)"(yo — to) + s,
forsome k£ > 1. Theny,., = (1 + h)y, + h — ht,. Substituting for y,, we find that
Yr = (L+R)" (o —to)+ L+ R )ty +h—ht, = (L+ 1) (yo—to) +ti + 1.
Noting that t,,, = ¢, + k, the result is verified.

(d). Substituting h = (t — t;)/n, with t, = ¢,

t—to\"
yn:(1+ no) (yo_to)+t

Taking the limit of both sides, as n— oo, and using the fact that lim (1 + a/n)" = €°,

n—oo
pointwise convergence is proved.

21. The exact solution is ¢(t) = e’. The Euler formula is y,.;, = (1 + h)y, . Itis easy
to see that y, = (1 + h)"y, = (L + h)". Givent > 0, set h = t/n. Taking the limit,

we find that lim y, = lim (1 +¢/n)" = €.

23. The exact solution is ¢(t) = t/2 + e*. The Euler formula is y,,; = (1 + 2h)y, +
+h/2—ht,. Sincey, =1,y = (1 +2h)+h/2=(1+2h)+t,/2. Ttiseasy to

show by mathematical induction, that y, = (1 4+ 2h)" +¢,/2. Fort > 0,seth =t/n
and thus ¢, = ¢. Taking the limit, we find that nhrglo Yo = nhngo [(1+2t/n)"+t/2] =

= e?! +t/2. Hence pointwise convergence is proved.
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Section 2.8

2. Letz=y—3and 7 =t+ 1. It follows that dz/dT = (dz/dt)(dt/dT) = dz/dt .
Furthermore, dz/dt = dy/dt = 1 — y*. Hence dz/dT = 1 — (z + 3)®. The new initial
condition is z(7 = 0) = 0.

3. The approximating functions are defined recursively by ¢,,,(t) = fo 1]ds.
Setting ¢o(t) = 0, ¢,(t) = 2t. Continuing, ¢,(t) = 2t> + 2t , ¢5(t) = 4t3 —|— 2t2 + 2t,
¢(t) = 2t* + 3¢5+ 2t 4+ 2t ---. Given convergence, set
P(t) )+ Z Gra(t) — i(t)]
k=1
- k:_

Comparing coefficients, a;/3! =4/3,a,/4! =2/3,---. It follows that a; = 8,
a, = 16,
and so on. We find that in general, that a, = 2". Hence

k=1
=2 -1
errar

S0
] 40
251
207 304
151 a0
104

104
5_ -
0" 02040608 1 12141618 2 0° 02040608 1 12141618 2

t

t
5. The approximating functions are defined recursively by

o) = [ 1= 6u(s)/2 + slds.

Setting ¢ (t) = 0, ¢,(t) = t*/2. Continuing, ¢ (t) = t2/2 — t3/12,¢5(t) = t?/2 —
—3/12 +t1/96, ¢u(t) = t2/2 — t3/12 + t1/96 — t7/960, - -- . Given convergence, set
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O(t) = di(t) + ) _[dun(t) — du(t)]

M e

— 42 ke
=}/2+ ) tt.
k=3
Comparing coefficients, a;/3! = —1/12,a,/4' =1/96, a;/5! = —1/960, ---. We
find thatay = — 1/2,a, =1/4,a; = —1/8,---. In general, a;, = 27*"'. Hence
) 2—k+2 1
bt) =3 (— 1
=2
=de "’ +2t—4.
errar
2 ]
164 057
1.6 3
ot D.AE
121 / 0.3
14 e b
0.8 0.2
0.5 e ]
0.4 0.1
0.2 ]
00203 06 08 1t 12141618 2 U n2040808 1t 12141618 2

6. The approximating functions are defined recursively by

o) = [ 6,(s) + 1 — s]ds.

Setting ¢o(t) = 0, ¢i(t) =t — 2/2, ¢(t) = t — £3/6, ¢s(t) =t — t1/24, ¢,(t) =
=t— t5/120, ---. Given convergence, set

6(t) = ou(t) + i[@,ﬂ (t) - 64(2)

=t—12/2+ [t?/2 - £3/6] + [t3/6 — t*/24] + -
=t+0+0+---.

Note that the terms can be rearranged, as long as the series converges uniformly.
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errar

2_

1.6 183
1.44 164
1.24 1.44
1 1.24
0.6 14
os{ . 0%
041 0.4
0.24 0.24

002040608 1t 12141618 2 0D 2040608 1t 121416818 2

8(a). The approximating functions are defined recursively by

t
Do (t) = / [s2q§n(s) — s]ds.
0
Set ¢ (t) = 0. The iterates are given by ¢,(t) = —t2/2, ¢,(t) = —t*/2 —1°/10,
Bs(t) = —t2/2 —17/10 — t3/80, ¢ (t) = — /2 — t5/10 — t3/80 — t'1/880 ,-- - .

Upon inspection, it becomes apparent that
1t 6 ()"

2]t
ou(t) = — 1t [2+2,5+2.5.8+ +2-5-8~~[2+3(n—1)]

_ tQi (t?))k*l
2425 82180k 1)

t
02040608 1 121416 18 2

i

-8

-10
The iterates appear to be converging.
9(a). The approximating functions are defined recursively by
o) = [ 1+ 62(9)ds.

Set ¢ (t) = 0. The first three iterates are given by ¢, () = t3/3, ¢,(t) = t3/3 +17/63,
B3(t) = t3/3 +7/63 + 2t11 /2079 + 119 /59535 .
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0TS T 06 06 1 12141618 2
The iterates appear to be converging.

10(a). The approximating functions are defined recursively by
6us(0) = [ [1-6(9)ds.

Set ¢y (t) = 0. The first three iterates are given by ¢, (t) = t, ¢, (t) =t — t*/4,
By(t) =t —t*/4 + 3t7/28 — 3t /160 + ¢13/833.

(b).

U1 020406 08 g 1214 1618 2

-1

2]
The approximations appear to be diverging.

12(a). The approximating functions are defined recursively by

6
Note that 1/(2y —2) = — 1 > y" 4+ O(y"). For computational purposes, replace the
k=0

above iteration formula by
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b= —3 [

Set ¢y(t) = 0. The first four approximations are given by ¢, (t) = —t — > —t3/2,
G(t) = —t—t2/2+t3/6+t1/4 —t5/5 —15/24 + .-,

Bs(t) = —t—1t2/2+14/12 — 3t7/20 + 416 /45 + -,

Gu(t) = —t—t2/2+t1/8 —Tt°/60 +5/15 + ---

(b).

02 04 tog 08 1

The approximations appear to be converging to the exact solution,

G(t) =1 — /142t +22+ 13,

13. Note that ¢,,(0) =0and ¢,(1) =1,Vn >1. Leta € (0,1). Then ¢,(a) = a”.
Clearly, lim a" = 0. Hence the assertion is true.

n—oo

14(a). ¢,(0)=0,Yn>1. Leta € (0,1]. Then ¢,(a) = 2nae " = 2na/e" .
Using I'Hospital's rule, lim 2az/e®" = lim 1/ze% = 0. Hence lim ¢,(a)=0.

Z—00

b). [l 2nze " de = — e‘”""2|; =1 — e ". Therefore,

lim 1¢n(:c)dx7é 1lim ¢n(x)dx.
0

n—oo 0 n—oo

15. Let ¢ be fixed, such that (¢, y,), (t,y,) € D. Without loss of generality, assume that
Yy, < ¥y, . Since f is differentiable with respect to y, the mean value theorem asserts that

3¢ € (yi,y2) such that f(¢,y,) — f(t,y.) = fy(t,€)(ys — y2). Taking the absolute
value of both sides, | (¢, 1) — f(t,v2)| = |fy(t,€)||y: — vo|. Since, by assumption,
df /0y is continuous in D, f, attains a maximum on any closed and bounded subset of D
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Hence ‘f(tayl) —flt, )| < K|y — ?/2|-

16. For a sufficiently small interval of t, ¢, ,(t),d,(t) € D. Sl nce f satisfies a
Lipschitz condition, |f(t,®,(t)) — f(t, .1 ()| < K |p.(t) — ¢,1(t)|. Here
K = maz|f,|.

17(a). ¢(t) = [ f(s,0)ds. Hence |¢,(t)] < [ f(s,0)|ds < [\ Mds = M]t|, in
which M is the maximum value of | f(¢,y)| on D.

(b). By definition, ¢,(t) — = [1f( — f(s,0)]ds. Taking the absolute
value of both sides, |¢,(t) | < f't‘ [ (s)) — f(s,0)]|ds. Based on the
results in Problems 16 and 17 ]qbQ( & (1) | < me|q§1 — O|ds < KM [)|s|ds.

Evaluating the last integral, we obtain |¢2(t) o) <M K It|*/2.

(c). Suppose that

MKt
il

|$i(t) — i (t)| <

for some 7 > 1. By definition, ¢,,,(t) — = [T1( — f(s,¢i1(s))]ds.
It follows that
1t

P (t) — ¢i(t)] < ; |f(s,0i(s)) — f(s,¢i-1(s))|ds

It]
< K|¢i(s) — ¢i-1(s)|ds

0

[t] i—1
o [ g ME S
- ) il
_ ME" MK
G+ T G+

Hence, by mathematical induction, the assertion is true.
18(a). Use the triangle inequality, |a + b| < |a| + |b].

(b). For|t| < h, |p.(t)] < Mh,and |¢,(t) — ¢, 1(t)| < MK™'h"/(n!). Hence

n Kz—lhz
9u(D] < MY =
i=1 :

M (KD)
_E;
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(c). The sequence of partial sums in (b) converges to 3% (e®"

test, the sums in (a) also converge. Furthermore, the sequence |9, (t)| is bounded, and
hence has a convergent subsequence. Finally, since individual terms of the series must
tend to zero, |¢,(t) — ¢, 1 (t)| =0, and it follows that the sequence |¢,(t)| is convergent.

— 1). By the comparison

19(a). Let ¢(t) fO ))ds and w = [1f( . Then by linearity of
the integral, ¢(t) fo[f f(s,w( ))]ds.

(b). Tt follows that [¢(t) — $(t)] < [!1f(s. 6(s)) — f(s,%(s))|ds

(c). We know that f satisfies a Lipschitz condition,
|f(t>y1) - f(tay2)| < Klyl _y2|’
based on |0f/0y| < K in D. Therefore,
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Section 2.9

1. Writing the equation foreachn > 0,4y, = —0.9y,, .= —09y,,y3 = — 0.9y,
and so on, it is apparent that y, = ( — 0.9)" y, . The terms constitute an alternating
series, which converge to zero, regardless of ¥, .

3. Write the equation for eachn > 0, y, = \/§y0 s Y = \/4/2 Y1, ys = /D)3 Yy,
Upon substitution, we find that y, = /(4 -3)/2 y1, y3 = \/(5 4-3)/(3-2) yo, -
It can be proved by mathematical induction, that

1 [(n+2)
yn_ﬁ ol Yo
1
:ﬁ\/(n+1)(n+2)y0.

This sequence is divergent, except for y, = 0.

4. Writing the equation foreachn > 0, y1 = — Yy, Yo = Y1, Ys = — Yo, Ys = Y3,
and so on, it can be shown that

_ Yo , forn=4korn=4k—1
U= =y , forn=4k—2orn=4k—3

The sequence is convergent only for y, = 0.

6. Writing the equation for eachn > 0,

y1 = 0.5y, +6
Yo = 0.59; +6 = 0.5(0.5y, + 6) + 6 = (0.5)%y, 4+ 6 + (0.5)6
ys = 0.59, 4+ 6 = 0.5(0.5y, + 6) + 6 = (0.5)%yy + 6[1 4 (0.5) + (0.5)?]

g = (05)"90 + 12[1 — (0.5)"

which can be verified by mathematical induction. The sequence is convergent for all y, ,
and in fact y, —»12.

7. Let y, be the balance at the end of the n-th day. Then y,,, = (1 + r/356)y, . The
solution of this difference equation is y, = (1 4 r/365)" y, , in which y, is the initial
balance. At the end of one year, the balance is y;; = (1 + r/365)” y,. Given that

r = .07, yss = (1 +7/365)*" 35 = 1.0725 3, . Hence the effective annual yield is
(1.0725 90 — yo) /Yo = 7.25%.

8. Let y, be the balance at the end of the n-th month. Then y,.; = (1 +7/12)y, +25.
As in the previous solutions, we have
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y —p"[y 25 } n 25

n 0 1 —p 1 —p s
in which p = (1 + r/12). Here r is the annual interest rate, given as 8 %. Therefore
ys = (1.0066)* | 1000 + %] — U225 _ 9 983.63 dollars.

r

9. Let y, be the balance due at the end of the n-th month. The appropriate difference
equation is y,., = (1 +r/12)y, — P. Here r is the annual interest rate and P is the
monthly payment. The solution, in terms of the amount borrowed, is given by

P
1—p°

P
y":pn[yo—i_l ]
—p

in which p = (1 4+ r/12) and y, = 8,000 . To figure out the monthly payment, P, we
require that ¢33 = 0. That s,

P ] P

P36 [?JU + 1
—p

pr— 1 — p .
After the specified amounts are substituted, we find the P = $258.14.

11. Let y, be the balance due at the end of the n-th month. The appropriate difference

equation is y,,; = (1 +r/12)y, — P, in which r = .09 and P is the monthly payment.
The initial value of the mortgage is y, = 100,000 dollars. Then the balance due at the
end of the n-th month is

P}_P

where p = (1 +7/12). In terms of the specified values,

S 12P]  12P
y, = (0.0075)"10° — —=— | 4+ =

r r

Setting n = 30(12) = 360, and ys4 = 0, we find that P = 804.62 dollars. For the
monthly payment corresponding to a 20 year mortgage, set n = 240 and 3,y = 0.

12. Let y, be the balance due at the end of the n-t2 month, with y, the initial value of the
mortgage. The appropriate difference equation is y,.;, = (1 +r/12) y, — P, in which

r = 0.1 and P = 900 dollars is the maximum monthly payment. Given that the life of
the mortgage is 20 years, we require that 1,,, = 0. The balance due at the end of the n-
th month is

T P

In terms of the specified values for the parameters, the solution of

page 75



210 12(1000) 12(1000)
(.00833)20 |y, — | = -
0.1 0.1
is yo = 103,624.62 dollars.
15.
p=25 p=2.8
e 073e
084y 0eal o
0.624 oooooooooooooooooooooooo 0.664 @ o 5
0.6 o 0643 . o e c®a%eP00000R0000
1 062y _°
0.55 051
0.561 0] °
0.541 0.56+
0.544
0.52 0523
054 . . . . . , .54 . . . . . ,
5 10 15 20 25 30 =} 10 15 20 25 30
n n
p=3.2 p=3.4
0.5 g @ o 0 0 0 0o ® o ® 5 ® g ® g 0 0 O O O O O
[+]
o © e 0.84
n74 ¢ °
¢ g o
06 - 0.7
0.5 R 0.6
0.4 054
0.3 . . . . . . O‘I’o"lo"?ooIOo?ool
5 10 15 20 25 30 5 10 15 20 25 30
n n
16. For example, take p = 3.5 and uy = 1.1:
ud=1.1
-2 -1 . i 2
_5_
_‘ll]_
_]5_
_2']_
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19(a). 6, = (pr — p1)/(ps — ps) = (3.449 — 3)/(3.544 — 3.449) = 4.7263 .

(b). % diff = 2 x 100 = L2 AT 5 100 ~1.22 % .

(d). A period 16 solutions appears near p =~ 3.565.
p=3.565
1 -

o o % o e % o e ® o
0.8

064
Y ] o ] o o ]

0.4+ o o o

0.21

Uso &0 70 , &0 90 100

(e). Note that (p,,1 — p.) = 6, (p, — pu_1). With the assumption that 6, = 8, we have
(Pns1 — Pu) = 6 (pn — pu_1), which is of the form y,,, = ay,,n > 3. It follows that
(pr — pk_l) 6% "(pg, — py) fork > 4. Then

Pr = Pt (2= p) (P = p2) + (pu = p) -+ (P = pi1)
=pit+(p—p)+(ps—p)[1+6"+67 4+ 67

1_54 n
= p1+ (pa— p1) + (3 — p2) 161 |

Hence lim p, = py + (ps — ps) [6%1] Substitution of the appropriate values yields
n—oo

lim p, = 3.5699

n—oo
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Miscellaneous Problems

1. Linear [y=c/a®+23/5].

2. Homogeneous [arctan(y/z) — In\/z2 + 42 = ¢ ].
3. Exact (2?2 + 2y —3y—y>=0].

4. Linear in z(y) [z =ceV+yeY].

5. Exact [y + 2y’ +x=c].

6. Linear [y=az'(1—e"")].

7. Letu = 2? (22 +1y2+1=ce’].

8. Linear [y = (4+cos2—cosz)/z?].

9. Exact [2?y+ 2 +9y° =c].

10. p = p(z) [y /2 +y/a? =c].

11. Exact [23/3 + 2y +e¥ =c].

12. Linear [y=ce " +e "In(l+e")].

13. Homogeneous [2\/y/x —In|z|=c].

14. Exact/Homogeneous [ z? + 2zy + 2y* = 34].
15. Separable [y =c/cosh?(x/2)].

16. Homogeneous | (2/\/§) arctan [(Zy - x)/\/gx} —In|z| = c].
17. Linear [y = ce’ — e ].

18. Linear/Homogeneous [y =cz 2 —x].

19. p = p(z) [3y — 22y — 10z = 0].

20. Separable [e" +e ¥ =c].

21. Homogeneous [e ¥/* +in|z| = c].

22. Separable [y + 3y — 2% + 3z = 2].

23. Bernoulli [1/y= —z[x2e* dx + cx].
24. Separable [ sin*z siny = c].

25. Exact [ 22y + arctan(y/x) = c].

26. p = p(x) [ 22 + 22%y — y? = c].

27. u= pu(z) [ sinx cos2y — § sin*z = c].
28. Exact  [2zy+azy® — 2P =c].

29. Homogeneous [arcsin(y/x) —In|z| = c].
30. Linearinz(y) [zy® —Inly| =0].

31. Separable [z +in|z|+z +y—2Inlyl =c].
32. p=p(y) [2%y® + oy’ = —4].
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