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Chapter Three
Section 3.1

1. Let y = €', sothaty’ = re" and y” = re". Direct substitution into the differential
equation yields (1% + 2r — 3)e" = 0. Canceling the exponential, the characteristic
equation is 72 + 2r — 3 = 0. The roots of the equation are 7 = — 3,1. Hence the
general solution is y = c,e! + c,e 3.

2. Let y = €. Substitution of the assumed solution results in the characteristic equation
72 4+ 3r +2 = 0. The roots of the equation are 7 = — 2, — 1. Hence the general
solution is y = c;e™ + c,e 2.

4. Substitution of the assumed solution y = e"* results in the characteristic equation
272 — 3r +1 = 0. The roots of the equation are 7 = 1/2,1. Hence the general
solution is y = ¢,e/2 + c,e.

6. The characteristic equation is 47> — 9 = 0, with roots r = £3/2. Therefore the
general solution is y = ¢;e 32 4 ¢,e%/2.

8. The characteristic equation is 7> — 27 — 2 = 0, with roots r = 1i\/§ . Hence the
general solution is y = clexp<1 — \/§)t + cgexp<1 + \/§> t.

9. Substitution of the assumed solution y = €' results in the characteristic equation

72 + 1 — 2 = 0. The roots of the equation are 7 = — 2,1. Hence the general
solution is y = c;e 2" + cyet. Its derivative is y’' = — 2c,e™% + c,e!. Based on the
first condition, y(0) = 1, we require that ¢, + ¢, = 1. In order to satisfy y'(0) =1,
we find that — 2¢; 4+ ¢; = 1. Solving for the constants, ¢; = 0 and ¢; = 1. Hence the
specific solution is y(t) = €.

11. Substitution of the assumed solution y = e’* results in the characteristic equation
6r> — 5r + 1 = 0. The roots of the equation are r = 1/3,1/2. Hence the general
solution is y = c,e'/? + c,e!/?. Its derivative is 3’ = c,e/3/3 + c,e!/? /2. Based

on the first condition, y(0) = 1, we require that ¢; + ¢; = 4. In order to satisfy the
condition y’(0) = 1, we find that ¢;/3 + ¢;/2 = 0. Solving for the constants, ¢; = 12

and ¢, = — 8. Hence the specific solution is y(t) = 12e'/? — 8 ¢!/2.

12. The characteristic equation is 72 + 3r = 0, with roots r = — 3, 0. Therefore the
general solution is y = ¢; + c,e ¥, with derivative y’ = — 3 c,e 3. In order to
satisfy the initial conditions, we find that ¢; + ¢, = —2,and — 3¢, = 3. Hence the
specific solution is y(t) = — 1 — e~ .

13. The characteristic equation is 7> + 5r + 3 = 0, with roots
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5 13
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The general solution is y = clexp( — 5=/ 13) t/2 + c2e:z:p< — 5+ 4/ 13) t/2, with
derivative
—5—+13 —54++4/13
y' = — clea:p< —5—1/ 13)t/2 + % cgexp< — 5+ 13>t/2.

In order to satisfy the initial conditions, we require that ¢; + ¢, = 1, and
_5_2\/E c+ _5+2‘/1—3 ¢, = 0. Solving for the coefficients, ¢, = (1 —5/4/13 ) /2 and

e, = (1+5/v/13) /2.

1.8
1.6
1.44
1.29
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0.4
0.2

14. The characteristic equation is 2r® + r — 4 = 0, with roots

1. V33

o Voo
"2 171

The general solution is y = clewp( —1— 33) t/4+ cgexp( -1+ 33) t/4, with
derivative
—1—+/33 —14+/33
y' = — 1 clexp( e Y/ 33)t/4+ % cgexp< -1+ \/33)1&/4.

In order to satisfy the initial conditions, we require that ¢; + ¢; = 0, and
7174\/§ a+ 71+4\/§ ¢, = 1. Solving for the coefficients, ¢, = — 2/4/33 and
¢, = 2/4/33 . The specific solution is

y(t) = — 2[6:13‘]?( —1- \/ﬁ)t/él — e:z:p( -1+ \/ﬁ)lﬁ/@/\/ﬁ
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16. The characteristic equation is 47> — 1 = 0, with roots 7 = 4-1/2 . Therefore the
general solution is 3 = c,e /2 + ¢,e!/?. Since the initial conditions are specified at

t = — 2, is more convenient to write y = d,e~2/2 4 d,e(1+2)/2, The derivative
is givenby y' = — [die=("2/2] /2 + [dye™+?/2] /2. In order to satisfy the initial
conditions, we find that d, + d; = 1,and —d,/2+ d,/2 = — 1. Solving for the
coefficients, d, = 3/2,and d, = — 1/2. The specific solution is
3 1
_° —(t+2)/2 _ ~ (t+2)/2
y(t) 5¢ 5¢
_ 3 i € up
=3¢ ¢
14
124
104
8_
E_
_d.
2_
2 53 2 ? i 5 6
44
F
I
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141

18. An algebraic equation with roots — 2 and — 1/2is 2r* + 57 + 2 = 0. This is the
characteristic equation for the ODE 2y” + 5y’ +2y =0.

20. The characteristic equation is 272 — 3r + 1 = 0, with roots r = 1 /2, 1. Therefore
the general solution is y = ¢,e”/? + c,e!, with derivative 3’ = c,e/?/2 + c,e!. In

order to satisfy the initial conditions, we require ¢; + ¢; = 2 and ¢;/2 + ¢, = 1/2.
Solving for the coefficients, c; = 3, and ¢, = — 1. The specific solution is

y(t) = 3e'/? — e'. To find the stationary point, sety’ = 3e'/?/2 — et = 0. There is

a unique solution, with ¢, = In(9/4). The maximum value is then y(t;) = 9/4. To find
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t/2

the x-intercept, solve the equation 3e'/? — e = 0. The solution is readily found to be

ty = In9 ~ 2.1972.

22. The characteristic equation is 472 — 1 = 0, with roots 7 = +1/2. Hence the
general solution is y = cie /2 + c,e!/?, with derivative y’ = — cie t/2/2 + cet/?)2.
Invoking the initial conditions, we require that ¢; +c¢; =2 and — ¢, + ¢, = 3.

The specific solution is y(t) = (1 — B)e /2 + (1 + 3)e'/?. Based on the form of the
solution, it is evident that as t + o0, y(t)—=0 aslongas f = — 1.

23. The characteristic equation is r* — (2a — 1) + a(a — 1) = 0. Examining the
coefficients, the roots are » = o, & — 1. Hence the general solution of the differential
equation is y(t) = c;e® 4 c,e(* V!, Assuming o € R, all solutions will tend to zero
as long as a < 0. On the other hand, all solutions will become unbounded as long as
a—1>0,thatis,a > 1.

25. y(t) =2€'?/5+3e72/5.

2.44
229

2_
1.5
1.6
1.44
1.24

1_
0.5
0.6
0.47
0.24

D 02040608 1 1.2 1.'4t1.'5 T8 2 22242628 3
The minimum occurs at (¢, ,1,) = (0.7167,0.7155).

26(a). The characteristic roots are » = — 3, — 2. The solution of the initial value
problem is y(t) = (6 + B)e > — (4 + B)e .

3(4+ﬂ)} _ 46+9)°
2645) |* 0 T s’

(b). The maximum point has coordinates ¢, = ln[

(c). yoz%24,aslongasﬁz6+6\/§.

d). limt, =In3. I = 00.
(@) fimto=ing. Jim = oo

29. Setv =y’ and v’ = y”. Substitution into the ODE results in the first order equation
tv' + v = 1. The equation is linear, and can be written as (tv)’ = 1. Hence the general
solutionis v =1+¢,/t. Hencey’ =1+ ¢, /t,and y =t + cilnt + ¢, .

31. Settingv =y’ and v’ = ", the transformed equation is 2t>v’ 4+ v = 2tv. This
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is a Bernoulli equation, with n = 3. Let w = v~2. Substitution of the new dependent
variable yields — t?w’ 4+ 1 = 2tw, or t>w’ + 2tw = = 1. Integrating, we find that
w= (t+c,)/t?. Hence v = &t/\/t + c,, thatis,y’ = +t/\/t + c,. Integrating one
more time results in y(t) = +2(¢ — 2¢,)\/t + ¢, +¢;. (Notethat v =0isalsoa
solution of the transformed equation).

32. Setting v =y’ and v’ = y”, the transformed equation is v’ + v = e~'. This ODE
is linear, with integrating factor u(t) = e'. Hence v =y’ = (t + ¢,)e"". Integrating,
we obtain y(t) = — (t+c)e '+ ¢, .

33. Setv =y’ and v’ = y”. The resulting equation is t>v’ = v?. This equation is
separable, with solution v =y’ = t/(1 + ¢,t). Integrating, the general solution is

y(t) =t/c; — ¢ n|l + et| + ¢y,

aslong as ¢; # 0. For ¢, = 0, the solution is y(¢) = t?/2 + ¢, . Note that v = 0 is
also a solution of the transformed equation.

35. Lety’ =wvand y” = vdv/dy. Then vdv/dy + y = 0 is the transformed equation
for v = v(y) . This equation is separable, with vdv = — ydy. The solution is given by
v> = — 9% + ¢,. Substituting for v, we find that y’ = ++/¢; — y2. This equation is
also

separable, with solution arcsin(y/ \/c_l) =+t+c,or y(t) =disin(t + d,).

36. Lety’ = vand y” = vdv/dy. It follows that vdv/dy + yv® = 0 is the differential
equation for v = v(y) . This equation is separable, with v dv = — ydy. The solution
is given by v = [y2/2 + ;] . Substituting for v, we find that y’ = [y2/2 + ¢,]"'. This
equation is also separable, with (y?/2 + ¢,)dy = dt. The solution is defined implicitly
by ¥*/6+cy+c, =t.

38. Settingy’ = vand y” = vdv/dy, the transformed equation is yvdv/dy — v* = 0.
This equation is separable, with v=> dv = dy/y . The solution is v(y) = [c; — In|y|] "
Substituting for v, we obtain a separable equation, (¢, — In|y|)dy = dz . The solution is
given implicitly by ¢,y — yln|y| + ¢ =t.

39. Lety’ = vand y” = vdv/dy . It follows that vdv/dy + v* = 2e™¥ is the equation
for v = v(y) . Inspection of the left hand side suggests a substitution w = v?. The
resulting

equation is dw/dy + 2w = 4e~ Y. This equation is linear, with integrating factor
p=e?.

We obtain d(e? w)/dy = 4 ¥, which upon integration yields w(y) = 4e™ + ce™%.
Converting back to the original dependent variable, y’ = +e Y\/4¢e¥ + ¢, . Separating
variables, e¥(4e¥ + cl)*l/2dy = +dt. Integration yields y/4e¥+ ¢, = +2t+c,.

41. Setting y’ = vand y” = vdv/dy, the transformed equation is vdv/dy — 3y = 0.
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This equation is separable, with vdv = 3y*dy . The solutionisy’ = v = /2y3 + ¢, .
The positive root is chosen based on the initial conditions. Furthermore, whent¢ = 0,
y =2,and y' = v = 4. The initial conditions require that ¢, = 0. It follows that

y' = /2y? . Separating variables and integrating, 1/ \/_ = — t/\/§ + ¢, . Hence
the solution is y(¢) = 2/(1 —¢)*.

42. Settingv =y’ and v’ = y”, the transformed equation is (1 + t?)v’ + 2tv =
= — 3t~2. Rewrite the equation as v’ + 2tv/(1 +t*) = — 3t72/(1 +t*). This
equation is /inear, with integrating factor u = 1 4 t>. Hence we have

[(1+)0] = -3t

Integrating both sides, v = 3t7!/(1 + t?) + ¢, /(1 + t?). Invoking the initial condition
v(l) = — 1, we require that ¢; = — 5. Hence y’ = (3 — 5t)/(t +t3). Integrating,
we obtain y(t) = 3In[t?/(1 + t*)] — 5arctan(t) + ¢, . Based on the initial condition
y(1) = 2, we find that ¢, = 3in2 + 27 + 2.
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—2sinfcos —2sin20

Section 3.2
1.
W(e% 73t/2) B o2t e—3t/2 -~ zet/Q
, = 2 3 ,—3t/2 )
22t 5€ t/ 2
3.
—2 te*Qt
Wie2t te2) = | © -
(e™te™) =| ) (1—2t)e%
5.
teint elcost
W (et sint . oteost) — e'sin — _ 2
(6 simnt,ecos ) et(sint + cost) et(cost — sint) ‘
6.
2
W(00829,1+00829>:‘ cos 0 1+COS20‘:0'

7. Write the equation as y” + (3/t)y’ = 1. p(t) = 3/t is continuous for all ¢ > 0.
Since t, > 0, the IVP has a unique solution for all ¢ > 0.

9. Write the equation as y"” + %y’ + 75y = 757 - The coefficients are not

continuous at ¢ = 0 and ¢ = 4. Since t, € (0,4), the largest interval is 0 < t < 4.

10. The coefficient 3in|t| is discontinuous att = 0. Since ¢, > 0, the largest interval
of existence is 0 <t < 00.

11. Write the equation as y” + —5y" + %y = 0. The coefficients are discontinuous

at  =0and z = 3. Since z, € (0, 3), the largest interval is 0 < z < 3.

13. y/' = 2. Wesee that t>(2) — 2(#?) = 0. y)/ = 2t 73, with t*>(yJ) — 2(y,) = 0.
Let ys = ;2 + ot 7%, then y)' = 2¢; + 2¢,t73. It is evident that ys is also a solution.

16. No. Substituting y = sin(¢?) into the differential equation,
— 4t*sin(t*) + 2cos(t*) + 2t cos(t*) p(t) + sin(t*)q(t) = 0.

For the equation to be valid, we must have p(t) = — 1/t¢, which is not continuous, or
even defined, att = 0.
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17. W(e?,g(t)) = e¥g'(t) — 2e*g(t) = 3e*. Dividing both sides by e, we find
that g must satisfy the ODE ¢’ — 2g = 3e?. Hence g(t) = 3t e? + ce?.

19. W(f,9)=fg' — f'g. Also, W(u,v) =W (2f —g,f+2g). Upon evaluation,
W(u,v)=5fg"—5f'g =5W(f,g).

20. W(f,9)=fg' — f'g =tcost—sint,and W(u,v) = —4fg" +4f'g.
Hence W(u,v) = —4tcost + 4sint.

22. The general solution is y = c;e 3 + c,e™!. W(e 3, e ) = 2e*, and hence

the exponentials form a fundamental set of solutions. On the other hand, the fundamental
solutions must also satisfy the conditions 3,(1) = 1,y/(1) =0;3,(1) =0,y,(1) = 1.
For y, , the initial conditions require ¢, + ¢, = e, — 3¢; — ¢, = 0. The coefficients are
c, = —e*/2,c, =3e/2. For the solution, y, , the initial conditions require ¢, + ¢, = 0
, —3c, — ¢, = e. The coefficients are ¢, = — €*/2, ¢, = ¢/2. Hence the fundamental
solutions are {y, = — e 37D 4 37D 1y, = — L7301 4 Le=(=1}

23. Yes. y/' = —4cos2t; y' = —4sin2t. W(cos2t,sin2t) =2.

24. Clearly, y, = €' is a solution. y, = (1 +t)e’, y;/ = (2 + t)e’. Substitution into the
ODE results in (2 +t)e! — 2(1 +t)e’ +te! = 0. Furthermore, W (e, te!) = e?.
Hence the solutions form a fundamental set of solutions.

26. Clearly, y, = x is a solution. y, = cosz,y, = — sinz. Substitution into the
ODE results in (1 — z cotx)( — sinx) — z(cosz) + sinxz = 0. W (y,,y.) = x cos
T — sinx,

which is nonzero for 0 < x < w. Hence {z, sin xz} is a fundamental set of solutions.

28. P=1,Q=x,R=1. Wehave P" — Q'+ R = 0. The equation is exact. Note
that (y')" + (zy)’ = 0. Hence y’ + 2y = c¢,. This equation is linear, with integrating
factor p = e?’/2, Therefore the general solution is

y(z) = clexp( — IE2/2> /xexp(u2/2)du + cgexp( — x2/2).

0

29. P=1,Q =32%, R =x. Note that P — Q' + R = — 5z, and therefore the
differential equation is not exact.

31. P=2?,Q=x2,R= —1. Wehave P" — Q'+ R = 0. The equation is exact.
Write the equation as (z2y’)’ — (zy)' = 0. Integrating, we find that 2%y’ — zy = c.
Divide both sides of the ODE by x?. The resulting equation is /inear, with integrating
factor u = 1/z. Hence (y/x)' = cx~>. The solution is y(t) = c,z~" + ¢,
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33. P=2%,Q =z, R = x> — v°. Hence the coefficients are 2P’ — () = 3z and
P" — Q'+ R = 22+1 — v%. The adjoint of the original differential equation is given
by 2°u" + 3z p'+(2*+1 — ) = 0.

35. P=1,Q =0, R = — x. Hence the coefficients are given by 2P’ — ) = 0 and
P" — Q'+ R = — x. Therefore the adjoint of the original equationis u” —xpu =0.
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Section 3.3

1. Suppose that « f(t) + Bg(t) = 0, that is, a(t? + 5t) + 3(t* — 5t) = 0 on some
interval /. Then (o + 8)t* + 5(a — 8)t = 0,Vt € I. Since a quadratic .has at most
wo

roots, we must have o+ 3 =0 and o — 3 = 0. The only solutionis o = = 0.
Hence the two functions are linearly independent.

3. Suppose that e*cos ut = A eMsin ut, for some A # 0, on an interval . Since the
function sin ut # 0 on some subinterval 1, C I, we conclude that tan ut = A on I,.
This is clearly a contradiction, hence the functions are linearly independent.

4. Obviously, f(z) = e g(x) for all real numbers = . Hence the functions are linearly
dependent.

5. Here f(x) = 3¢(x) for all real numbers. Hence the functions are linearly dependent.

8. Note that f(x) = g(x) forxz € [0,00), and f(z) = — g(x) forz € (—0c0,0]. It
follows that the functions are linearly dependent on R* and R~ . Nevertheless, they are
linearly independent on any open interval containing zero.

9. Since W (t) = t sint has only isolated zeros, W (t) cannot identically vanish on any
open interval. Hence the functions are linearly independent.

10. Same argument as in Prob. 9.

11. By linearity of the differential operator, ¢y, and c,y, are also solutions.
Calculating

the WI‘OIlSkiaIl, W(clyl y ngg) — (Clyl)(CZyQ)/ - (Clyl)/(CQyQ) = C1Co W(yl ,y2> .
Since W (y, ,y,) is not identically zero, neither is W (c,y, , ¢yys) .

13. Direct calculation results in

W(a1y1 + asys, biyr + bng) = aleW(yl ,yQ) - b1G2W(y1 73/2)
= (a1b2 — agbl)W(yl 7y2) .

Hence the combinations are also linearly independent as long as a,b, — a,b, # 0.

14. Leta(i+j)+ S(i—j)=0i+0j. Thena+ =0 and o — =0. The only
solution is @ = 3 = 0. Hence the given vectors are linearly independent. Furthermore,
any vector ai+ a.j = (% +%)([i+j)+ (% —%)0i—1]).

16. Writing the equation in standard form, we find that P(t) = sint/cost. Hence the
Wronskian is W (t) = bexp(— [22Ldt) = bexp(In|cost|) = bcost, in which b is

cost

some constant.
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17. After writing the equation in standard form, we have P(z) = 1/x. The Wronskian
is W(t) = cexp( — [1dz) = cexp( — In|z|) = ¢/|z|, in which ¢ is some constant.

18. Writing the equation in standard form, we find that P(z) = — 2z/(1 — x?). The
Wronskian is W (t) = cexp( — [2dz) = cexp( —In|l — 2?|) = c|l —2?| ",
in which ¢ is some constant.

19. Rewrite the equation as p(t)y” + p'(t)y’ + q(t)y = 0. After writing the equation
in standard form, we have P(t) = p’(t)/p(t) . Hence the Wronskian is

W(t) = cexp(—/p (t)dt> — cexp(— Inp(t)) = ¢/p(t).

p(t)

21. The Wronskian associated with the solutions of the differential equation is given by
W (t) = cexp( — [Z2dt) = cexp(—2/t). Since W (2) = 3, it follows that for the
hypothesized set of solutions, ¢ = 3e. Hence W (4) = 3,/e .

22. For the given differential equation, the Wronskian satisfies the first order differential
equation W' + p(t)W = 0. Given that W is constant, it is necessary that p(t) = 0.

23. Direct calculation shows that

W(fg,fh) =(fg —(f9)'(fh)
=(f

W)= (f'g+ fa")(fh)

=)
S—
=
3‘\/
+
K.'1/'\«

25. Since y; and y, are solutions, they are differentiable. The hypothesis can thus be
restated as y, (ty) = y, (ty) = 0 at some point ¢, in the interval of definition. This
implies that W (y: , v2)(t,) = 0. But W (y,,v,)(ty) = cexp( — [p(t)dt) , which
cannot be equal to zero, unless ¢ = 0. Hence W (y, ,y,) = 0, which is ruled out for
a fundamental set of solutions.
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Section 3.4

2. exp(2 — 3i) = e’e 3 = e*(cos 3 — isin3).
3. " =cosT+isinTt= —1.

4. e:cp(2 — %z) = GQ(COS% — 1 8in %) = —e’1.

6. m 1 = exp[( — 14 2i)Inw] = exp( — Inm)exp(2inmi) = L exp(2inTi) =
= %[cos (2Inm) +isin(2Iinn)].

8. The characteristic equation is 7> — 2r + 6 = 0, with roots r = 1 + z\/g . Hence the
general solution is y = ciefcos /5t + ¢y el sin /5.

9. The characteristic equation is 72 + 2r — 8 = 0, with roots »r = — 4,2. The roots
are real and different, hence the general solution is y = ce 4 + ¢, €.

10. The characteristic equation is 72 + 2r + 2 = 0, with roots r = — 1+ i. Hence the
general solution is y = cie ‘cost + c,e " tsint.

12. The characteristic equation is 472 4+ 9 = 0, with roots r = :I:% i. Hence the
general solution is y = ¢,cos %t + ¢y 811 %t .

13. The characteristic equation is 72 + 2r + 1.25 = 0, with roots r = — 14 %z Hence
the general solution is y = c,e cos %t + e tsin %t.

15. The characteristic equation is 7 4 r 4+ 1.25 = 0, with roots r = — % + 7. Hence
the general solution is y = cie”*cost + c,e /?sint.
16. The characteristic equation is 7% + 4r + 6.25 = 0, with roots 7 = — 2 i% i. Hence

the general solution is y = c;e % cos %t + e ?sin %t.

17. The characteristic equation is 7> 4+ 4 = 0, with roots r = 4= 2i. Hence the general
solution is y = c;cos 2t + ¢, sin 2t . Its derivative is y' = — 2¢,sin 2t + 2¢,cos 2t .
Based on the first condition, y(0) = 0, we require that ¢; = 0. In order to satisfy the
condition y’(0) = 1, we find that 2¢, = 1. The constants are ¢; = 0 and ¢, = 1/2.
Hence the specific solution is y(t) = §sin 2t.

19. The characteristic equation is 7> — 2r + 5 = 0, with roots r = 14-2i. Hence the
general solution is y = c,e'cos 2t + ¢, e'sin 2t . Based on the condition, y(7/2) =0,
we require that ¢, = 0. It follows that y = ¢, e!sin 2t, and so the first derivative is
y' = cyelsin 2t + 2cye’cos 2t . In order to satisfy the condition y'(7/2) = 2, we find
that — 2e™?c, = 2. Hence we have ¢, = — e ™% . Therefore the specific solution is
y(t) = —el"™?sin2t.
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a0

401

307

207

20. The characteristic equation is 72 + 1 = 0, with roots r = #14. Hence the general
solution is y = c;cost + ¢y sint. Its derivative is y' = — ¢isint + ¢, cost. Based
on the first condition, y(7/3) = 2, we require that ¢; + /3¢, = 4. In order to satisfy
the condition y/(7/3) = — 4, we find that — /3¢, + ¢, = — 8. Solving these for
the constants, ¢, = 1+2/3 and ¢, = /3 — 2. Hence the specific solution is a steady
oscillation, given by y(t) = (1 + 2\/§> cost + (\/3 - 2) sint.

21. From Prob. 15, the general solution is y = cie ?cost + c,e /?sint. Invoking

the first initial condition, y(0) = 3, which implies that ¢; = 3. Substituting, it follows
that y = 3e "?cost + c,e”"?sint, and so the first derivative is

3 , _ Co 4y .
y' = — Qe_tﬁcost—Se_t/2smt+cge ecost — 526 sint.

Invoking the initial condition, y’(0) = 1, we find that — % +c,=1,andso ¢, = % )

Hence the specific solution is y(t) = 3¢ "?cost + 3 e/ sint.

0 SN B R
0.5

24(a). The characteristic equation is 5r% + 27 + 7 = 0, with roots r = — %ﬂ: i@.
The solution is u = ¢,e ¥ cos @t + e Psin @t. Invoking the given initial
conditions, we obtain the equations for the coefficients: ¢; =2, — 2 + \/3_4 c,=095.
Thatis,c; =2, ¢ =7/ \/374 . Hence the specific solution is
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V34, 7 V34

u(t) = 2e Pcos Y—t + ——e Psin ~—t.

5 T 5

0.5 /\

0 o dTe N A
057

-14

(b). Based on the graph of w(t), 7" is in the interval 14 < t < 16. A numerical solution
on that interval yields 7" ~ 14.5115 .

26(a). The characteristic equation is 7> + 2a 7 + (a>+1) = 0, withroots r = —a+i.
Hence the general solution is y(t) = c;e”“cost + c,e “sint. Based on the initial
conditions, we find that ¢, = 1 and ¢, = a. Therefore the specific solution is given by

y(t) = e “cost +ae "sint
=V 1+a?e "cos(t—¢),

in which ¢ = tan™"'(a).

(b). For estimation, note that |y(¢)] < v/1+ a? e *. Now consider the inequality
V1+a? e <1/10. The inequality holds for ¢ > %ln [10 1+ aQ] Therefore

T < %ln[lO\/ 1+ aQ}. Setting @ = 1, numerical analysis gives 7'~ 1.8763 .

(¢). Similarly, T}/, ~ 7.4284, T}/, ~ 4.3003, T, ~ 1.5116, T; ~ 1.1496.

(d).

Twvals

2249
204
189
16
144
129
104

3

[RS=
Lua

3

D 02040608 1 12141618 2 22242628 3
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Note that the estimates T}, approach the graph of %ln [10 v1+ aQ] as a gets large.

27. Direct calculation gives the result. On the other hand, it was shown in Prob. 3.3.23
that W(fg,fh)= f°W(g,h). Hence

W(e”cos ut , eMsin pt) = e*M W (cos it , sin ut)
= 2 [cos pt(sin ut)" — (cos put)'sin put]

— pe,

28(a). Clearly, y; and y, are solutions. Also, W (cost, sint) = cos*t + sin’*t = 1.
P it o s2 it it . . : _
(b). y' =ie",y" =i*e" = — e". Evidently, y is a solution and so y = ¢,y; + ¢,».

(c). Settingt =0, 1 =c,cos0+ c,sin0, and ¢, = 0. Differentiating, i e’ = ¢, cost.
Settingt = 0, i = ¢, cos0 and hence ¢, = i. Therefore e = cost +isint.

29. Euler's formulais ¢" = cost + isint. It follows that e™" = cost — i sint.
Adding these equation, e + e~ = 2 cost. Subtracting the two equations results in

e —e ™ =i sint.

30. Letr, = A\ +ipy,and ry = Ay + 25 . Then

exp(ry + 1)t = exp[(A + Aot +i(py + po)t]

= eM N eos (1 + po)t + i sin(p + po)i]

6()\1+)\2)t[(005 pit + isin pit)(cos pyt + isin pot)]

= M (cos put + isin pt) - e (cos put + isin pt)

Hence ettt — ent grt

32. If ¢(t) = u(t) + i v(t) is a solution, then
(u + )" + p(t)(u +iv) + q(t)(u+iv) =0,

and (u” +iv") 4+ p(t)(u' + ') + q(t)(u + iv) = 0. After expanding the equation and
separating the real and imaginary parts,

u" + p(t)u” + q(t)u =10
o+ pt)v" +q(t)v =0

Hence both wu(t) and v(t) are solutions.

1 dz dz dx

34(a). By the chain rule, y(z) = % 2'. In genera , 5= 9. Setting z = 3,

E_
d’y _ dz dr _ d [dy dz1 da d*y dx dy d [dx
we have W_Eﬁ_d:r[ﬁ E]T_ o w2549 However,
&Ly _ Ay [d_:c] 4+ by &z

dt dx dt*"

d [de]de _ [dx]|dt dz _

i L3t @ = [dﬁ} % = G Hence i = 7%
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(b). Substituting the results in Part(a) into the general ODE, y" + p(t)y’ + ¢(t)y = 0,
“we find that

Ay [dz]?  dy d*x dy dz
2 22 )2 == +q(t)y =0.
dac?{dt} T ae TP g Ay =0

Collecting the terms,

dz]*d%y d*z dx | dy
g S =2 =0.
[dt] i " [dﬁ () dt}da: +alt)y

(¢). Assuming [%]* = kg(t), and ¢(t) > 0, we find that % = | /k q(Z), which can
be integrated. Thatis, x = £(t) = [/kq(t) dt.

(d). Let k = 1. It follows that ‘57? +p(t) % = 9 4 p(t)et) = % +p./q . Hence

d*x dz] [dz]®  q'(t) + 2p(t)q(t)
[W + p(t)E:| / [a} = 2[q(t)]3/2 .

As long as dx/dt # 0, the differential equation can be expressed as

d’y  [q'()+2p()q(t) ]| dy
da? [ 2[q(6)]" ] ERR
*For the case ¢(t) < 0, write ¢(t) = — [ — ¢q(t)], and set [%]2 = —q(t).

36. p(t) = 3tand q(t) =t*. Wehave z = [tdt =t*/2. Furthermore,

q'(t) + 2p(t)q(t)
2[q(t))"?

The ratio is not constant, and therefore the equation cannot be transformed.

= (14 3t%) /¢*.

37. p(t) =t —1/t and q(t) = t*. We have x = [tdt = t*/2. Furthermore,
q'(t) +2p(t)q(t) _
2[q (1))

The ratio is constant, and therefore the equation can be transformed. From Prob. 35,
the transformed equation is

d*y  dy
ST Sy =o.
dxz? + dx Tty

Based on the methods in this section, the characteristic equation is 72 + r + 1 = 0, with

/3
roots r = — 1iz‘/7—

5 . The general solution is
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y(x) = cre?cos \/3x/2 + e Psin\/31/2.

Since z = t?/2, the solution in the original variable ¢ is

y(t) = et/ [clcos <\/§t2/4> + ¢ sin <\/§t2/4>} :

40. p(t) =4/t and ¢(t) = 2/t*. Wehave z = /2 [t"'dt = \/2 Int. Furthermore,

q'(t) +2p(t)g(t) _ 3
2[q(t))"" V2

The ratio is constant, and therefore the equation can be transformed. In fact, we obtain

d?y 3 dy

-— + —F= =0

dz? + V2 dx ty
Based on the methods in this section, the characteristic equation is \/2 r2 +3r++/2 =0,
with roots r = — \/5 , — 1/ \/5 . The general solution is

y(zr) = cle_ﬁx + ¢ e UV,
Since =z = \/5 Int, the solution in the original variable ¢ is

y(t) — Cle—2lnt + e e—lnt
=ct 2+t h

41. p(t) = 3/t and ¢(t) = 1.25/t*. We have = = /1.25 [t'dt = \/1.25 Int.
Checking the feasibility of the transformation,
q'(t) +2p(t)g(t) _ 4
2[q(t)]"" V5

The ratio is constant, and therefore the equation can be transformed. In fact, we obtain

&y

4 dy
dac2+\/3%

+y=0.

Based on the methods in this section, the characteristic equation is
2 _ ; 2 41 L
V572 +4r 4+ /5 =0, with roots r = 75 +ie The general solution is

y(z) = e Vocos /5 + cre M Vosin /5.

Since 2x/ f = [nt, the solution in the original variable ¢ is
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y(t) = cie™lcos (ln\/t_) + e Msin (lnﬁ)
=t! [clcos (ln\/l?) + ¢y 810 (lnﬁ)] .

42. p(t) = —4/t andq(t) = —6/t>. Set = /6 [t 'dt = /6 Int.
Checking the feasibility of the transformation (*see Prob. 34 d, with q < 0),
—q'() = 2p()g(t) _ =5

2—q)” V6

The ratio is constant, and therefore the equation can be transformed. In fact, we obtain

Based on the methods in this section, the characteristic equation is \/6 r?—5

r—\/€=0,

with roots r = \/g , — 1/ \/E . The general solution is
y(z) = c1eV" + e V0,
Since = = /6 Int, the solution in the original variable ¢ is

y(t) _ cleGInt + e e—lnt
= C1t6 + Cgt_l.
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Section 3.5

2. The characteristic equation is 97% + 6r + 1 = 0, with the double root r = — 1/3.
Based on the discussion in this section, the general solution is y(t) = c;e ? + ¢yt e /3.

3. The characteristic equation is 472 — 4r — 3 = 0, with roots 7 = — 1/2,3/2. The
general solution is y(t) = c,e "? + c,e™/2,

4. The characteristic equation is 472 4+ 12r + 9 = 0, with the double root r = — 3/2.
Based on the discussion in this section, the general solution is y(t) = (¢, + ¢, t)e V2.

5. The characteristic equation is *> — 2r + 10 = 0, with complex roots r = 1 = 3i.
The general solution is y(t) = c,e’cos 3t + c,elsin 3t.

6. The characteristic equation is 7> — 67 + 9 = 0, with the double root » = 3. The
general solution is y(t) = c,e* + c,t €.

7. The characteristic equation is 472 + 17r +4 = 0, with roots r = — 1 /4, —4.
The general solution is y(t) = c,e™¥/* + c,e™.

8. The characteristic equation is 16r% + 247 + 9 = 0, with the double root r = — 3/4.
The general solution is y(t) = c,e /4 4 ¢yt e /4,

10. The characteristic equation is 2r® + 2r + 1 = 0, with complex roots r = — % £ % 4.

The general solution is y(t) = c,e ¥/2cost/2 + c,e /?sint/2.

D=

L
2

11. The characteristic equation is 9r* — 12r + 4 = 0, with the double root r = 2/3..
The general solution is y(t) = c,e*/® + ¢yt €*/3. Invoking the first initial condition, it
follows that ¢, = 2. Now y'(t) = (4/3 + ¢,)e*’® + 2¢,t €*/% /3. Invoking the second
initial condition, 4/3 4+ ¢, = —1,0r ¢, = — 7/3. Hence y(t) = 2¢*/* — It e/,
Since the second term dominates for large t, y(t)—» — c©.

13. The characteristic equation is 972 + 67 + 82 = 0, with complex roots r = — % +31.
The general solution is y(t) = c,e */3cos 3t + c,e~*/3sin 3t . Based on the first initial
condition, ¢, = — 1. Invoking the second initial condition, 1/3 + 3¢, =2, 0r ¢, = 5.

9
Hence y(t) = — e /3cos3t + e 3sin3t.
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0.8
0.6

E:/\zAﬂf\ﬁ g
\/

0.29
-0.44
-0.64
-0.84

15(a). The characteristic equation is 47? + 12r 4+ 9 = 0, with the double root r = —
The general solution is y(t) = c;e /% + ¢,t e731/%, Invoking the first initial condition,
it follows that ¢; = 1. Now y'(t) = ( — 3/2 + ¢,)e*/* — 3¢yt €?/5. The second
initial condition requires that — 3/2+ ¢, = — 4, 0or ¢, = — 5/2. Hence the specific
solution is y(t) = e */? — 3¢e 5/,

[\SJ[eV]

1

0.8

0.6

0.4

0.2

u 1 2
021

(b). The solution crosses the x-axis at t = 0.4.
(¢). The solution has a minimum at the point (16/15, — 5e*/7/3).

(d). Given thaty’(0) = b, wehave —3/2+ ¢, =b,0r ¢, = b+ 3/2. Hence the
solution is y(t) = e+ (b + 2)t e~/ Since the second term dominates, the long-
term solution depends on the sign of the coefficient b + % The critical value is b = —

NSJ[e]

16. The characteristic roots are r;, = r, = 1/2. Hence the general solution is given by
y(t) = c1e'? + ¢yt €'/2. Invoking the initial conditions, we require that ¢, = 2, and that
1+ ¢, = b. The specific solution is y(t) = 2¢"/* + (b — 1)t e/?. Since the second term
dominates, the long-term solution depends on the sign of the coefficient b — 1. The
critical value is b = 1.
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18(a). The characteristic roots are v, = r, = — 2/3. Therefore the general solution is
given by y(t) = c,e /3 + ¢yt e */*. Invoking the initial conditions, we require that
¢, = a,and that — 2a/3 + ¢, = — 1. After solving for the coefficients, the specific

solution is y(t) = ae ?/* + (%a _ 1)te*2t/3,

(b). Since the second term dominates, the long-term solution depends on the sign of the

coefficient % — 1. The critical value is a = 3/2.

20(a). The characteristic equation is 72 + 2ar + a? = 0, with double root r = — a.
Hence one solution is y, (t) = c;e .

(b). Recall that the Wronskian satisfies the differential equation W' + 2aW = 0. The
solution of this equation is W (t) = ¢ e 2.

(¢). By definition, W = y, v, — y!y,. Hence cie "y, + acie "y, = ce 2,
Thatis, y, + ay, = c,e” . This equation is first order /inear, with general solution
Yo (t) = cote " + cye . Setting ¢, = 1 and ¢; = 0, we obtain y,(t) = te™ .

22(a). Write ar? +br +c = a(r’ + Lr + £). It follows that 2 = — 2r, and £ = r?.
Hence ar? + br + ¢ = ar? — 2ar;r + ar? = a(r? — 2rr +12) = a(r —r)*. We

find that Le™] = (ar? + br + ¢)e™ = a(r — r,)%e™. Setting 7 = r,, L[e"] = 0.

(b). Differentiating Eq.(¢) with respect to r,

%L [e"] = ate™ (r — ) + 2ae” (r — ).

Now observe that

0 o[ o

L) = o ag e 4o ()]

L) o (o) ()]

— ol (te”) b2 (te™)+c(te™).

ot? ot
Hence L[te’"] = ate’ (r — r,)* + 2ae™ (r — r,). Setting r = r,, L[te"!] = 0.
23. Set y,(t) = t>v(t) . Substitution into the ODE results in
(0" + 4tv’ + 20) — 4t (20" + 2tv) + 6t°v = 0.

After collecting terms, we end up with t'v” = 0. Hence v(t) = ¢; + ¢yt , and thus
y5(t) = 1t + c,t?. Setting ¢, = 0 and ¢, = 1, we obtain y,(t) = 3.

24. Set y,(t) = tv(t). Substitution into the ODE results in
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t2(tv” +20") + 2t(tv’ +v) —2tv = 0.

After collecting terms, we end up with t3v"” + 4t?v’ = 0. This equation is /inear in
the variable w = v’. It follows that v’ (t) = ct™*, and v(t) = ¢;t® + ¢, . Thus
y2(t) = c1t ™2 + ¢yt . Setting ¢, = 1 and ¢, = 0, we obtain y,(t) = ¢t 2.

26. Set y,(t) = tv(t). Substitution into the ODE results in v” — v’ = 0. This ODE
is linear in the variable w = v’. It follows that v'(¢) = c,e’, and v(t) = c,e! + ¢, .
Thus y,(t) = cite! + c,t. Setting ¢, = 1 and ¢, = 0, we obtain y,(t) = te'.
28. Set y,(x) = e"v(x). Substitution into the ODE results in
v”+—$_2v'20
r—1 )

This ODE is linear in the variable w = v’. An integrating factor is

= e:z:p(/i_idm)

Rewrite the equation as [;”1']/ = 0, from which it follows that v'(z) = c(z — 1)e 2.
Hence v(x) = cixze ™ + ¢, and y,(x) = ¢;x + cye”. Setting ¢, = 1 and ¢, =0, we

obtain y,(z) = .

29. Set yo(x) = yi(x) v(z), in which y,(z) = z'*exp(2,/x). It can be verified that
y, is a solution of the ODE, that is, x*y,” — (z — 0.1875)y, = 0. Substitution of the
given form of y, results in the differential equation

20" + (42" + ")’ = 0.
This ODE is linear in the variable w = v’. An integrating factor is
~1/2 1
U = exp 2077 4+ —|dz
2z
=/ exp(4\/5).
Rewrite the equation as [\/z exp(4,/z) v']" = 0, from which it follows that

v'(z) = cexp(—4y/7)/\/x .

Integrating, v(z) = c,exp( — 4,/) + ¢, and as a resul,

y(x) = clwmewp( — 2\/5) + chmexp(Q\/E).
Setting ¢, = 1 and ¢, = 0, we obtain y,(z) = z"*exp( — 2/x).
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32. Direct substitution verifies that y,(t) = exp( — 6x%/2) is a solution of the ODE.
Now set y»(z) = y;(x) v(x). Substitution of y, into the ODE results in

v’ —bxv' =0.

This ODE is linear in the variable w = v’. An integrating factor is ;. = exp( — 62%/2).
Rewrite the equation as [ exp( — 622/2)v’]" = 0, from which it follows that

v'(z) = ¢, exp(62?/2) .

Integrating, we obtain

X

v(x) = 01/';exp(6u2/2)du + v(x).

Hence
yo(z) = crexp(— (5x2/2)/ exp(du®/2)du + crexp( — 62%/2).

Setting ¢, = 0, we obtain a second independent solution.

34. After writing the ODE in standard form, we have p(¢) = 3/t. Based on Abel's
identity, W (y., 1) = clexp( — f%dt) = ¢,t73. As shown in Prob. 33, two solutions
of a second order linear equation satisfy

(y2/y1), = W (y, y2)/?/f .

In the given problem, y,(t) = ¢~'. Hence (tv,)’ = c,t~'. Integrating both sides of the
equation, 1, (t) = c;tlnt + eyt L.

36. After writing the ODE in standard form, we have p(z) = — z/(x — 1). Based on
Abel’s identity, W (y,y,) = c exp([-*;dx) = ¢ €”(x — 1). Two solutions of a
second order linear equation satisfy

(/1) = Wy, 2) /v

In the given problem, y,(x) = e”. Hence (e *y,)" = ce™(x — 1). Integrating both
sides of the equation, y,(x) = ¢,z + c,e”. Setting ¢, = 1 and ¢, = 0, we obtain
yo(z) = .

37. Write the ODE in standard form to find p(x) = 1/z. Based on Abel's identity,
W (y1,y2) = cexp(— [Ldx) = ca™. Two solutions of a second order linear ODE
satisfy (v,/y1) = W (y1,.)/y?. In the given problem, y,(z) = z~"*sinz . Hence

/
VT 1
. Ya = C —; IR
sinx sin°x
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Integrating both sides of the equation, y,(z) = c;x *cosx + ¢,z /*sin x. Setting
¢, = land ¢, =0, we obtain y,(z) = 27 cosx.

39(a). The characteristic equation is ar? + ¢ = 0. If a,c > 0, then the roots are
r, = +iy/c/a . The general solution is

[c [c
y(t) = cicosy [ —t + cpsing [ — ¢,
a a

(b). The characteristic equation is ar? + br = 0. The roots are 1, =0, — b/a,
and hence the general solution is y(t) = ¢, + cexp( — bt/a). Clearly, y(t)—=c; .

which is bounded.

40. Note that cost sint = %sin 2t. Sothatl — kcostsint =1 — %sm 2t. If
0 <k <2,then £sin2t < |sin2t|and — £sin2t > — |sin2t|. Hence

k
1—kcostsint =1 — §sin2t

> 1 — |sin 2t|
>0.

41. p(t) = — 3/t and q(t) = 4/t>. Wehave z = 2 [t 'dt = 2Int,and t = e"/%.
Furthermore,
q'(t) +2p(t)g(t) _
2[q(t)]"”

The ratio is constant, and therefore the equation can be transformed. In fact, we obtain

The general solution of this ODE is y(x) = ¢,€” + c;ze”. In terms of the original
independent variable, y(t) = c,t? + c,t*Int.
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Section 3.6

2. The characteristic equation for the homogeneous problem is r* + 2r +5 = 0, with
complex roots 7 = — 14+2i. Hence y.(t) = cie 'cos 2t + c,e 'sin 2t . Since the
function g(t) = 3 sin 2t is not proportional to the solutions of the homogeneous equation,
set Y = Acos2t+ Bsin2t. Substitution into the given ODE, and comparing the
coefficients, results in the system of equations B —4A =3 and A+ 4B = 0. Hence
Y = — cos2t + £sin2t. The general solution is y(t) = y.(t) + Y.

3. The characteristic equation for the homogeneous problem is r?> — 2r — 3 = 0, with
roots r = — 1,3. Hence y.(t) = cie™’ + c,e® . Note that the assignment Y = Ate™!
is not sufficient to match the coefficients. Try Y = Ate ™! + Bt?e~!. Substitution into
the differential equation, and comparing the coefficients, results in the system of
equations —4A +2B =0 and —8B = —3. Hence Y = te ' + 3t’e~". The
general

solution is y(t) = y.(t) + Y.

5. The characteristic equation for the homogeneous problem is 72 + 9 = 0, with
complex roots r = £3i. Hence y.(t) = ¢,cos3t + cysin 3t. To simplify the analysis,
set g;(t) = 6 and g,(t) = t?e*. By inspection, we have Y; = 2/3. Based on the form
of g, set Y, = Ae3 + Bte3 + Ct?e3. Substitution into the differential equation, and
comparing the coefficients, results in the system of equations 184 + 6B + 2C =0,
18 B+ 12C' =0, and 18C = 1. Hence

1 1

1
2= 1626 T 97¢ Tigte

The general solution is y(t) = y.(t) + Y, + V5.

7. The characteristic equation for the homogeneous problem is 272 + 3r + 1 = 0, with
roots r = — 1, —1/2. Hence y.(t) = cie™ + ¢, e */?. To simplify the analysis,

set g;(t) = t* and g,(t) = 3sint. Based on the form of g, , set Y, = A + Bt + Ct>.
Substitution into the differential equation, and comparing the coefficients, results in the
system of equations A +3B+4C =0,B+6C =0, and C' = 1. Hence we obtain
Y, = 14 — 6t + t2. On the other hand, set Y, = D cost + E sint. After substitution
into the ODE, we find that D = — 9/10 and £ = — 3/10. The general solution is
y(t) = y.(t) + Y1 + V2.

9. The characteristic equation for the homogeneous problem is 72 4+ w? = 0, with
complex roots r = + wyi. Hence y,.(t) = cicoswyt + ¢ysinwyt. Since w # wy,
setY = Acoswt + B sinwt. Substitution into the ODE and comparing the coefficients

results in the system of equations (w? — w?)A =1 and (w? — w?)B = 0. Hence

The general solution is y(t) = y.(¢t) + Y.
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10. From Prob. 9, y.(t) = c¢. Since coswyt is a solution of the homogeneous problem,
setY = Atcosw,t + Bt sinw,t. Substitution into the given ODE and comparing the
1

coefficients results in A = 0 and B = 5., - Hence the general solution is

y(t) = cicoswyt + cysinwyt + 2%032'71 wyt.

12. The characteristic equation for the homogeneous problem is > — 7 — 2 = 0, with
roots 7 = — 1,2. Hence y.(t) = cie”! + ¢, e*. Based on the form of the right hand
side, that is, cosh(2t) = (2 + e 2)/2,set Y = At e* + Be 2!, Substitution into the
given ODE and comparing the coefficients results in A = 1/6 and B = 1/8. Hence the
general solution is y(t) = cie ™t + ¢, e +te* /6 + e /8.

14. The characteristic equation for the homogeneous problem is 2 4+ 4 = 0, with roots
r = 4 2i. Hence y.(t) = c,cos2t + c,sin2t. SetY; = A + Bt + Ct?. Comparing
the coefficients of the respective terms, we findthat A= —1/8, B=0,C =1/4.
Now set Y, = De’, and obtain D = 3/5. Hence the general solution is

y(t) = cico82t + cysin2t — 1/8 +t2/4 + 3¢€! /5.

Invoking the initial conditions, we require that 19/40 + ¢, = 0 and 3/5 + 2¢, = 2.
Hence ¢, = — 19/40 and ¢, = 7/10.

15. The characteristic equation for the homogeneous problem is 72 — 2r + 1 = 0, with
a double root 7 = 1. Hence y,.(t) = c,e! + eyt e'. Consider g,(t) = te'. Note that

g1 is a solution of the homogeneous problem. Set Y, = At?e’ + Bt3e! (the first term is
not sufficient for a match). Upon substitution, we obtain Y; = t3¢! /6. By inspection,
Y, = 4. Hence the general solution is y(t) = c,e! + c,t ' + t3e! /6 + 4. Invoking the
initial conditions, we require that ¢, + 4 =1 and ¢; + ¢, = 1. Hencec;, = — 3 and
c,=4.

17. The characteristic equation for the homogeneous problem is % 4+ 4 = 0, with roots
r = +2i. Hence y.(t) = c¢,cos 2t + c,sin 2t . Since the function sin 2t is a solution of
the homogeneous problem, set Y = At cos 2t + Bt sin 2t. Upon substitution, we obtain

Y = — 3tcos2t. Hence the general solution is y(t) = ¢,c0s 2t + c,sin 2t — 1t cos2t .
Invoking the initial conditions, we require that ¢, = 2 and 2¢, — % = — 1. Hence
Ci = QandCQ = — 1/8

18. The characteristic equation for the homogeneous problem is 72 + 2r + 5 = 0, with
complex roots 7 = — 14 24. Hence v.(t) = cie tcos 2t + c,e!sin 2t . Based on the
form of g(t), setY = Ate'cos2t + Bte 'sin2t. After comparing coefficients, we
obtain Y = t e~'sin 2t . Hence the general solution is

y(t) = ce'cos 2t + ce 'sin 2t +tesin2t.

Invoking the initial conditions, we require that ¢, = 1 and — ¢; + 2¢, = 0. Hence
co=1landec, =1/2.
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20. The characteristic equation for the homogeneous problem is > 4+ 1 = 0, with
complex roots = + 4. Hence y,.(t) = c;cost + ¢ysint. Let g,(t) =t sint and
g2(t) = t. By inspection, it is easy to see that Y;(¢) = 1. Based on the form of ¢, (¢),
set Y, (t) = At cost + Bt sint + Ct*cost + Dt*sint. Substitution into the equation
and comparing the coefficients resultsin A =0, B=1/4,C = —1/4,and D = 0.
Hence Y (t) = 1+ jtsint — jt*cost.

21. The characteristic equation for the homogeneous problem is 72 — 5r + 6 = 0, with
roots r = 2,3. Hence y.(t) = c,e* + c,e®. Consider g, (t) = e*(3t + 4)sint, and
g2(t) = e'cos 2t. Based on the form of these functions on the right hand side of the
ODE,

set Y5(t) = e'(A1cos 2t + Aysin 2t), Yi(t) = (By + Byt )e*sint + (C, + Cot)e* cost.
Substitution into the equation and comparing the coefficients results in

Y(t)= — % (e'cos 2t + 3e'sin 2t) + gte%(cost — sint) + e (%cost — bsin t).
23. The characteristic roots are r = 2,2. Hence y.(t) = c;e* + c,te?. Consider the
functions g,(t) = 2t2, g,(t) = 4te*, and g;(t) = t sin 2t . The corresponding forms of
the respective parts of the particular solution are Y;(t) = A + At + Aqst?, Ys(t) =

= e?(Byt? + Bst?), and Y3(t) = t(Cicos 2t + Cysin 2t) + (Dycos2t + Dosin2t).
Substitution into the equation and comparing the coefficients results in

1 2 1 1
Y(t) = 1 (3 + 4t + 2t2) + §t362t + §t cos 2t + 1—6(005 2t — sin2t).

24. The homogeneous solution is y.(t) = ¢;cos 2t + cysin 2t. Since cos 2t and sin 2t
are both solutions of the homogeneous equation, set

Y (t) = t(Ag + Ait + Ast®)cos 2t + t(By + Byt + Bat?)sin 2t .

Substitution into the equation and comparing the coefficients results in

131, 1 .
Y(t) = (3—215— ﬁt >0032t—|— E(?&H— 13t )stt.

25. The homogeneous solution is y.(t) = c,e " + c,te . None of the functions on the
right hand side are solutions of the homogenous equation. In order to include all possible
combinations of the derivatives, consider Y (t) = e!(Ag + A1t + Ast?)cos 2t +

+ €e'(By + Bit + Bot?)sin 2t + e 1(Cicost + Casint) + De'. Substitution into the
differential equation and comparing the coefficients results in

Y(t) = et(AO + At + A2t2)cos 2t + + € (Bo + Bit + BQtQ)sin 2t +
+eft< — %cost#— gsint> +2¢'/3,
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in which 4y = — 4105/35152, A, = 73/676, Ay = —5/52, By = — 1233/35152,
By =10/169, By = 1/52.

26. The homogeneous solution is y,(t) = c,e 'cos 2t + c,e 'sin 2t. None of the terms
on the right hand side are solutions of the homogenous equation. In order to include the
appropriate combinations of derivatives, consider Y (¢) = e *(At + Ast?)cos 2t +

+ e (Bt 4+ Bat?)sin 2t + e *(Cy + Cit)cos 2t + e *(Dy + Dit)sin 2t.
Substitution into the differential equation and comparing the coefficients results in

Y(t) = %teftcos 2t + theftsin 2t — %567%(7 + 10t)cos 2t +

+ %6_%(1 + 5t)sin 2t .

27. The homogeneous solution is y.(t) = c,cos At + c,sin At. Since the differential
operator does not contain a first derivative (and X\ # mm), we can set

N
Y(t) = ZC'msin mt.

m=1

Substitution into the ODE yields
N N N
— ZmQWQCmsin mmnt + )\QZCmsin mmnt = Zamsm mat .
m=1 m=1 m=1

Equating coefficients of the individual terms, we obtain

aTﬂ

ONL = A2 _ m2ﬂ'2 b

m=1,2---N.

29. The homogeneous solution is y,(t) = c,e 'cos 2t + c,e 'sin 2t. The input function
is independent of the homogeneous solutions, on any interval. Since the right hand side
is

piecewise constant, it follows by inspection that

C[1/5, 0<t<w/2
Y(t)_{() , t>m/2 '

For 0 <t < /2, the general solution is y(t) = c,e ‘cos 2t + c,e tsin2t +1/5.
Invoking the initial conditions y(0) = y’(0) = 0, we require that ¢, = — 1/5, and that
¢, = —1/10. Hence

1 1
y(t) = T (2e 'cos 2t + e 'sin 2t)

on the interval 0 < ¢ < 7/2. We now have the values y(7/2) = (1 + e ™?)/5, and
y'(w/2) = 0. For t > /2, the general solution is y(t) = d,e "cos 2t + dye 'sin 2t .
It follows that y(7/2) = — e ™2d, and y'(7/2) = e ™/?d, — 2¢~"/?d, . Since the
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solution is continuously differentiable, we require that

— e 24, = (1+ 64/2)/5
eiﬂ-/zdl — 2677r/2d2 =0.

Solving for the coefficients, d; = 2d, = — (e™? +1)/5.

0.244
0229

0.24
0184
0165
0.144
0124

0.14
0.084
0.064
0.044
0.024

0y 020406085 1 12141618 2 22242628 3
002 )
004

31. Since a,b,c > 0, the roots of the characteristic equation has negative real parts.
That is, r = a3+, where a < 0. Hence the homogeneous solution is

Y.(t) = cie™cos Bt + c,esin [t
If g(t) = d, then the general solution is
y(t) = d/c + ce*cos Bt + c,e sin Bt

Since a < 0, y(t)=»d/c ast—o0. If ¢ = 0, then that characteristic roots are = 0 and
r = —b/a. The ODE becomes ay” + by’ = d . Integrating both sides, we find that
ay’ + by = dt + ¢,. The general solution can be expressed as

y(t) = dt/b+ ¢, + ce

In this case, the solution grows without bound. If b = 0, also, then the differential
equation

can be written as y” = d/a, which has general solution y(t) = dt*/2a + ¢, + ¢, .
Hence the assertion is true only if the coefficients are positive.

32(a). Since D is a linear operator,

D?*y +bDy + cy = D*y — (ry + 1) Dy + riry
= DQZ/ — 13Dy — 1 Dy + riryy
= D(Dy — ryy) — ri(Dy — r5y)
=(D—-r)(D-—mr)y.

(b). Letu = (D — 7;)y. Then the ODE (i) can be written as (D — r,)u = ¢(t), that is,
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u’ — ryu = g(t). The latter is a linear first order equation in u . Its general solution is
t
u(t) = 67'1t/ e "Tg(T)dT + cret.
to

From above, we have y’ — r,y = u(t). This equation is also a first order ODE. Hence
the general solution of the original second order equation is

t
y(t) = e”t/ e "Tu(T)dT + ce™ .
to

Note that the solution y(¢) contains two arbitrary constants.

34. Note that (2D? + 3D + 1)y = (2D + 1)(D + 1)y. Letu = (D + 1)y, and solve
the ODE 2u’ + u = t*> + 3sint. This equation is a linear first order ODE, with solution

t
u(t) = et/2/ em? [72/2-1— %sinT dr +ce ?

to

=1? — 4t +8 — gcost+ gsimH— ce /2,
Now consider the ODE y’ + y = u(¢). The general solution of this first order ODE is
y(t) = e_t/teTu(T)dT + et
to
in which u(t) is given above. Substituting for u(t) and performing the integration,

9 3
y(t) = 2 _6t+14 — 1—Ocost — Esint + cleft/2 + e

35. Wehave (D* +2D+ 1)y = (D +1)(D+1)y. Letu = (D + 1)y, and consider
the ODE u’ + u = 2e'. The general solution is u(t) = 2te~! 4+ ce!. We therefore
have the first order equation u’ + u = 2te~' + c,e~*. The general solution of the latter
differential equation is

t
y(t) = e_t/ [27 4+ ¢, )dT + cre ™"

to
=e ! (t2 +cit + cg).

36. We have (D* +2D)y = D(D +2)y. Letu = (D + 2)y, and consider the equation
u’ = 3 + 4sin 2t . Direct integration results in u(t) = 3t — 2cos 2t + c¢. The problem
is reduced to solving the ODE vy’ + 2y = 3t — 2cos 2t + ¢. The general solution of this
first order differential equation is
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t
y(t) = e_Qt/ e’ [37 — 2c0s 2T + ¢ |dT + cre*
to

3 1
= §t - 5(608 2t + sin 2t) + ¢, + cre %,
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Section 3.7

1. The solution of the homogeneous equation is y,(t) = c,e? + ¢,e’. The functions
y,(t) = e and y,(t) = €3 form a fundamental set of solutions. The Wronskian of

these functions is W (y;,4,) = €. Using the method of variation of parameters, the
particular solution is given by Y () = u,(¢) y,(¢) + us(t) y»(¢), in which

_ et (2el)
w (t) = — W dt
=2¢ !
B 62t(26t)
uy(t) = 40 dt
2

Hence the particular solution is Y (t) = 2¢' — ¢! = €.

3. The solution of the homogeneous equation is y.(t) = c,e™* + c,te t. The functions
y1(t) = e ' and y,(t) = te”! form a fundamental set of solutions. The Wronskian of
these functions is W (y;,4,) = e !, Using the method of variation of parameters, the
particular solution is given by Y (¢) = u,(¢) y,(¢) + us(t) y»(¢), in which

te t(3e7t)
) = — [ =2 Ly
) W)
= —3t%/2

e '(3e7")

t) = | ————=dt
=0 = "
=3t
Hence the particular solution is Y'(t) = — 3t%e~*/2 + 3t?e™ = 3t?e ' /2.

4. The functions y;(t) = e/ and y,(t) = te'/?> form a fundamental set of solutions.
The Wronskian of these functions is W (y,, y,) = €. First write the equation in standard
form, so that g(t) = 4e'/?. Using the method of variation of parameters, the particular
solution is given by Y (¢) = u, (t) v1(t) + ux() y2(t), in which
tet/? (4et/2)
w (t) = 70 dt
= — 2t
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el/2 (4et/2)
t) = | ————=dt
SR 0
=4t
Hence the particular solution is Y (t) = — 2t%e!/? 4 4t%e!/? = 2t2%e!/? .

6. The solution of the homogeneous equation is y.(t) = ¢,cos 3t + ¢,sin 3t. The two

functions y, (t) = cos 3t and y,(t) = sin 3t form a fundamental set of solutions, with

W (y1,y,) = 3. The particular solution is given by Y (t) = u, () y,(t) + us(t) y»(t), in
which

sin 3t(9 sec?3t)
= —cscdt

[ cos3t(9sec?3t)
uy(t) = / W dt

= In|sec 3t + tan 3t|

Hence the particular solution is Y (t) = — 1 + (sin 3t)In|sec 3t + tan 3t|. The general
solution is given by y(t) = c¢,cos 3t + c,sin 3t + (sin 3t)in|sec 3t + tan 3t| — 1.

7. The functions ¥, (t) = e 2" and y,(t) = te ' form a fundamental set of solutions.
The Wronskian of these functions is W (y;,1,) = e~ *. The particular solution is given
by Y () = wi(t) y:(£) + us(t) y2(¢), in which

u1<t) = —/Mdt

W (t)
= —Int
o2 (126 21)
t) = | —————=dt
w) = [ i
— 1yt
Hence the particular solution is Y (t) = — e ?Int — e !, Since the second term is a

solution of the homogeneous equation, the general solution is given by y(t) = c;e % +
+ cote ™ — e nt.

8. The solution of the homogeneous equation is y.(t) = ¢,cos 2t + ¢,sin 2t. The two

functions y, (t) = cos 2t and y,(t) = sin 2t form a fundamental set of solutions, with

W (y1,y,) = 2. The particular solution is given by Y (t) = u, () y, (t) + us(t) y»(t), in
which
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sin 2t(3 csc 2t)
= —3t/2
cos 2t(3 csc 2t)
t) = dt
wt) = [5G
3 .
= Zln|8m 2t|
Hence the particular solution is Y (t) = — 3tcos 2t + 3(sin 3t)in|sin 2t|. The general

solution is given by y(t) = ¢,cos 2t + ¢ysin 2t — 3tcos 2t + 3(sin 3t)In|sin 2t|.

9. The functions y, (t) = cos (t/2) and y,(t) = sin(t/2) form a fundamental set of
solutions. The Wronskian of these functions is W (y,,y,) = 1/2. First write the ODE
in standard form, so that g(¢) = sec(t/2)/2. The particular solution is given by

Y (t) = ui(t) y1(t) 4+ uy(t) y2(t), in which

B cos (t/2)[sec(t/2)]
w(t) = — / e
= 2In[cos (t/2)]

t

[ sin(t/2)[sec(t/2)]
ua(t) = / oW ¢
=t

The particular solution is Y (t) = 2cos(t/2)In[cos (t/2)] + t sin(t/2). The general
solution is given by

y(t) = cicos (t/2) + cysin(t/2) + 2 cos(t/2) Infcos (t/2)] + t sin(t/2).

10. The solution of the homogeneous equation is y.(t) = c,e! + c,te’. The functions
y,(t) = e’ and y,(t) = te' form a fundamental set of solutions, with W (y;,,) = e*.
The particular solution is given by Y (¢) = w,(¢) y1(t) + us(t) y»(t), in which

B te'(el)
=~ [
= — %ln(l + %)

_ e'(el)

0 = [ e

= arctant

The particular solution is Y (¢) = — L€’ In(1 +2) + te’ arctan(t). Hence the general
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solution is given by y(t) = cie’ + cote’ — L€' In(1 + %) + te' arctan(t).

12. The functions y,(t) = cos 2t and y,(t) = sin 2t form a fundamental set of
solutions, with W (y,, y,) = 2. The particular solution is given by Y (t) = u,(t)

Y1 (t) + us(t) ya(1),
in which

1 t
uy(t) = 5/ g(s)cos2sds
Hence the particular solution is
1 ! 1 !
Y(t)= — 5608 2t/ g(s) sin2sds + 537)71 2t/ g(s)cos2sds.

Note that sin 2t cos 2s — cos 2t sin 2s = sin(2t — 2s). It follows that

Y(t) = %/lg(s)sin(% —2s)ds.

The general solution of the differential equation is given by

1 t
y(t) = c1co8 2t + cysin 2t + 5/ g(s)sin(2t — 2s)ds.

13. Note first that p(t) = 0,q(t) = — 2/t* and g(t) = (3t> — 1)/t>. The functions
y:1(t) and y,(t) are solutions of the homogeneous equation, verified by substitution. The
Wronskian of these two functions is W (y,,y,) = — 3. Using the method of variation of
parameters, the particular solution is Y (¢) = u,(¢) y1(t) + ua(t) y»(¢), in which

B 132 - 1)

=t2/6+Int

[ B -1)
uy(t) —/Wdt

= —t3/34+1/3
Therefore Y (t) = 1/6 + t%Int —t?/3 + 1/3. Hence the general solution is
y(t) = cit’ + et FPInt +1/2.
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15. Observe that g(t) = te*. The functions y,(t) and y,(t) are a fundamental set of
solutions. The Wronskian of these two functions is W (y,,1,) = t e’. Using the method
of variation of parameters, the particular solution is Y (t) = u, () y,(t) + us(t) yo(t),

in which
Gt(t th)
w (t) = —/ W@ dt
- _ 62t/2
[+t (te™)
=teé'
Therefore Y (t) = — (1 +t)e* /2 +te* = —e*/2+te? /2.

16. Observe that g(t) = 2(1 — t) e~ '. Direct substitution of ;(¢) = e’ and y,(t) =t
verifies that they are solutions of the homogeneous equation. The Wronskian of the two
solutions is W (y,,y,) = (1 — t) e'. Using the method of variation of parameters, the
particular solution is Y'(t) = u,(t) y;(¢) + ua(t) y»(t), in which

wn(t) = — / 7%(1”; (26 dt

=te 2 +e7%)/2

o [201-1)
uy(t) —/ 720 dt

= —2¢7!

Therefore Y (t) =te ' +e /2 —2tet = —te !+ e7/2.

17. Note that g(x) = Inx . The functions y,(x) = z? and y,(z) = z%In z are solutions
of the homogeneous equation, as verified by substitution. The Wronskian of the solutions
is W (y1,y,) = 2®. Using the method of variation of parameters, the particular solution is

Y(z) = ui(z) yi(z) + ua(x) yo(),
in which

2Inx(l
w(z) = — x nx(nx)dx

W (z)
= —(Inz)*/3
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xQ(lnx
W) ¢
= (Inx)?/2

Therefore Y (z) = — 22(lnz)*/3 4 22(Inx)’ /2 = 22(In )’ /6.

19. First write the equation in standard form. Note that the forcing function becomes
g(x)/(1 —z). The functions y,(z) = e” and y,(x) = z are a fundamental set of
solutions,

as verified by substitution. The Wronskian of the solutions is W (y,y,) = (1 — z)e”.
Using the method of variation of parameters, the particular solution is

Y(z) = ui(w) yi(z) + us(z) ya(2),

in which
B G )
w@) = - [ T o
_ 7 €e(g(n)
“2(”3)_/ A=
Therefore
Y L Cco) NN e 1 N
v = - [ et g
:/”3 (re™ — € T)g(T)dT‘
(1—7)%"

20. First write the equation in standard form. The forcing function becomes g(z)/z> .
The functions 3, (z) = z~"*sin x and y,(r) = 2~"/*cos z are a fundamental set of
solutions. The Wronskian of the solutions is W (y,,42) = — 1/z. Using the method
of variation of parameters, the particular solution is

Y(z) = ui(w) yi(z) + us(z) va(2),

in which
wie) = [ ' "’Of—ﬁf”m
uy(z) = — /x Ln:\(/i—(ﬂ)ch
Therefore
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sinx [* COST(g(T))dt_ cosx [* sinT(g(T))d

Tz /T NG /T
1 T st —
_ / sin(x — 1) g(T) dr
\/E T\/;
21. Lety,(t) and y,(t) be a fundamental set of solutions, and W (t) = W (y,, y,) be the

corresponding Wronskian. Any solution, u(t), of the homogeneous equation is a linear
combination u(t) = a,y,(t) + a,y»(t). Invoking the initial conditions, we require that

T

Yo = alyl(to) + ay y?(to)
/ / /
Yo = 1 ¥y, (to) + gy (to)

Note that this system of equations has a unique solution, since W (¢,) # 0. Now consider
the nonhomogeneous problem, L[v] = g(t) ,with homogeneous initial conditions. Using
the method of variation of parameters, the particular solution is given by

i) = _yl(t>/t %dswxw[ %ds.

The general solution of the IVP (i) is

v(t) = B (t) + Boya(t) + Y (1)
= By (t) + By (t) + yu (D) ua(t) + ya(t)ua(t)

in which u, and w, are defined above. Invoking the initial conditions, we require that

0= @yl(to) + 6292(t0) + Y(to)
0= ﬁlyll(t()) + ﬂQ?J;(tO) + Y/(to)

Based on the definition of u; and wus, Y(¢,) = 0. Furthermore, since y,u; + you, =0,
it follows that Y''(¢,) = 0. Hence the only solution of the above system of equations is
the trivial solution. Therefore v(t) = Y (t). Now consider the function y = u+v. Then
L[yl = L[u+ v] = L[u] 4+ L]v] = g(t). Thatis, y(t) is a solution of the
nonhomogeneous

problem. Further, y(to) = u(ty) + v(to) = yo , and similarly, y'(¢y) = y,. By the
uniqueness theorems, y(t) is the unique solution of the initial value problem.

23. A fundamental set of solutions is y,(t) = cost and y,(t) = sint. The Wronskian
W(t) = y1yy — y/y, = 1. By the result in Prob. 22,

_ ["cos(s) sin(t) — cos(t) sin(s)
Y (t) _/t[, W) g(s)ds

= /t [cos(s) sin(t) — cos(t) sin(s)]g(s)ds .

0

Finally, we have cos(s) sin(t) — cos(t) sin(s) = sin(t — s).
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24. A fundamental set of solutions is ¥, (t) = e and y,(t) = € . The Wronskian
W(t) = y1ys — yya = (b — a)exp[(a + b)t]. By the result in Prob. 22,

t jas bt _ _at bs
Y(t) = / e’ —eTel s)ds
tO

W (s)
1 teasebt _ eatebs
= ds.
b— a/tu expl(a + b)s] 9(s)ds
Hence the particular solution is
1

t
Y (t) / [eb(tfs) - e“(tfs)]g(s)ds.
ty

:b—a

26. A fundamental set of solutions is y,(t) = e and y,(t) = te® . The Wronskian
W (t) = yiys — y/y, = €**. By the result in Prob. 22,

teasebt . 6atebs
vi) = [ =2 —5 % (s)d
(1 / s

1 te(l,sebt _ eatebs
= ds.
b— a/tn expl(a + b)s] 9(s)ds

Hence the particular solution is

1 ' —S alt—Ss
Y(t) = -~ G/t [eb(t ) — ol )}g(s)ds.

26. A fundamental set of solutions is y,(¢) = e and y,(t) = te® . The Wronskian
W (t) = yys — y/y, = €2*. By the result in Prob. 22,

tteaerat — 3 eat+as
Y(t) = / g(s)ds
(t) A W) (s)

t (t _ 8)6a3+at
= / ————9g(s)ds.
to €

Hence the particular solution is

27. Depending on the values of a, b and c, the operator aD? 4+ bD + ¢ can have three
types of fundamental solutions.

(i) The characteristic roots 7, = a, 3; a # . vy (t) = e* and y,(t) = €.
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(#4) The characteristic roots 7, = a, 8; a = 3. y(t) = e and y,(t) = te™.
K(t) =te™,

A A

(i71) The characteristic roots 71, = A+ i . y,(t) = eMcos ut and y,(t) = eMsin ut.

1
K(t) = —eMsinput .
w

28. Let y(t) = v(t)y:(t), in which y, (¢) is a solution of the homogeneous equation.
Substitution into the given ODE results in

vy 20"y oy 4+ p()['y + vy + a()oy = g(t) -
By assumption, y/” + p(t)y, + q(t)y, = 0, hence v(¢) must be a solution of the ODE
vy + 2y + p(Oylo” = g(t).
Setting w = v’, we also have w’y, + [2y, + p(t)y,Jw = g(t).
30. First write the equation as y” + 7t 'y + 5t~2y = ¢t~'. As shown in Prob. 28, the
function y(t) = ¢t 'v(t) is a solution of the given ODE as long as v is a solution of
"+ [ =274+ =t

that is, v” + 5¢' v’ = 1. This ODE is linear and first order in v’. The integrating
factor is pu = t°. The solution is v’ = /6 + ct~°. Direct integration now results in
v(t) =t2/12+ it + ¢,. Hence y(t) = t/12 + it + ¢t ™.

31. Write the equation as y” —t'(1+t)y +t 'y = te*. Asshown in Prob. 28, the
function y(t) = (1 + ¢)v(t) is a solution of the given ODE as long as v is a solution of

(L+t)v" +[2—t A+ )]0 =te*,

O S - AR A ) ; SR : o oith .
that is, v o V= e This equation is first order linear in v', with integrating

factor o = t~'(1 4 t)%e". The solution is v’ = (t2e2 + ¢,te')/(1+t)®. Integrating,
we obtain v(t) = e*/2 — e* /(t + 1) + cie'/(t + 1) + ¢, . Hence the solution of the
original ODE is y(t) = (t — 1)e? /2 + cie! + co(t + 1)

32. Write the equation as y” +¢(1 —t) 'y — (1 —t)" 'y = 2(1 — t) e~*. The function
y(t) = e'v(t) is a solution to the given ODE as long as v is a solution of
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e’ + [2e" +t(1—t) e v =2(1 —t) e,

thatis, v” + [(2 — t)/(1 — t)]v’ = 2(1 — t) e~ *. This equation is first order linear in
v’, with integrating factor yn = €' /(¢ — 1). The solution is

o' =(t—1)(2e " + ).
Integrating, we obtain v(t) = (1/2 — t)e 2 — ¢;te~! + ¢, . Hence the solution of the
original ODE is y(t) = (1/2 — t)e™ ! — ¢t + cye’.

Section 3.8

1. Rcosé =3and Rsind =4 = R = /25 =5andé = arctan(4/3). Hence
u = 5cos(2t — 0.9273).

3. Rcosé =4and Rsiné = —2 = R=+/20 =2v/5 and 6 = — arctan(1/2).
Hence

u=2v/5 cos(3t + 0.4636).

4. Rcosé = —2and Rsind = —3 = R = /13 and 6 = 7+ arctan(3/2).
Hence

u = /13 cos(mt — 4.1244).

5. The spring constant is k = 2/(1/2) = 4 Ib/ft. Mass m = 2/32 = 1/16 Ib-s*/ft.
Since there is no damping, the equation of motion is

1
Eu'/+4u:0,

thatis, u” 4+ 64w = 0. The initial conditions are w(0) = 1/4 f¢, u/(0) = Ofps . The
general solution is u(t) = A cos 8t + B sin 8t. Invoking the initial conditions, we have
u(t) = icos 8t. R =3 inches, 6 =0rad, wy=8rad/s,and T = 7/4 sec.

7. The spring constant is k = 3/(1/4) = 12 Ib/ft. Mass m = 3/32 Ib-s*/ft. Since
there is no damping, the equation of motion is

3
ﬁu” +12u =0,
that is, u” 4+ 128u = 0. The initial conditions are u(0) = — 1/12ft, v/(0) = 2 fps .

The general solution is u(t) = A cos8v/2t + B sin8+/2t. Invoking the initial
conditions, we have
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1 1
u(t) = —ECOS8\/515+ sin8v/2t.

1,/2

R = \/ﬁ/12ft,5: 7r—atan<3/\/§) rad, wy = 8+/2 rad/s, andT:W/<4\/5) sec.

10. The spring constant is k = 16/(1/4) = 64 Ib/ft. Mass m = 1/2 Ib-s*/ft. The
damping coefficient is v = 2 [b-sec/ft. Hence the equation of motion is

1
§u”—|—2u’—|—64u =0,

thatis, u” + 4u’ 4+ 128u = 0. The initial conditions are «(0) = 0%, v’ (0) = 1/4 fps.
The general solution is u(t) = Acos2+/31t + B sin24/31t. Invoking the initial
conditions, we have

u(t) = 531 e sin24/31t.

0.0161
0.0147
0.0124
0.014
0.0087
(0.006 5
0.0044
0.002 3

oomd 02\04 P 0.8\1‘/1.2 1416 18 2
-0.004
-0.008
-0.008

-0.014

Solving u(t) = 0, on the interval [0.2, 0.4], we obtain ¢ = 7/2+/31 = 0.2821 sec.
Based on the graph, and the solution of u(¢) = 0.01, we have |u(t)| < 0.01 for
t>71=0.2145.

11. The spring constant is k = 3/(.1) = 30 N/m . The damping coefficient is given as
~v = 3/5 N-sec/m . Hence the equation of motion is

2u” + %u/+30u =0,

thatis, u” 4+ 0.3u’ 4+ 15u = 0. The initial conditions are «(0) = 0.05 m and
u'(0) = 0.01m/s. The general solution is u(t) = A cos ut + B sin ut , in which
= 3.87008 rad/s . Invoking the initial conditions, we have

u(t) = e *151(0.05¢c0s pt 4 0.00452sin pt) .

Also, 1/w, = 3.87008/+/15 ~ 0.99925 .

page 124



CHAPTER 3. ——

13. The frequency of the undamped motion is w, = 1. The quasi frequency of the
damped

motion is p = §1/4 —~2 . Setting p1 = 3w, , we obtain v = %\/g

14. The spring constant is k = mg/L . The equation of motion for an undamped system
is
mg

Lu:().

mu 1 +
Hence the natural frequency of the system is wy = /4 . The period is 7' = 27 /wj .

15. The general solution of the system is u(t) = Acos~y(t — t,) + Bsiny(t — t,) .
Invoking the initial conditions, we have u(t) = ugcosy(t — t,) + (u./7)siny(t — t,).
Clearly, the functions v = uycosy(t — t,) and w = (u,/7y)siny(t — t,) satisfy the given
criteria.

16. Note that r sin( wyt — 0) = r sinw,t cos 8 — r coswyt sinf . Comparing the given

expressions, we have A = —rsinf and B =rcosf. Thatis,r = R = /A% + B2,
and tanf = — A/B = — 1/tan 6. The latter relation is also tan + cot 6 = 1.

18. The system is critically damped, when R = 2./L/C . Here R = 1000 ohms .

21(a). Letu = Re ""/?"cos(ut — ). Then attains a maximum when ut, — § = 2k.
Hence T; =t — t, = 27/ 1.

(). u(te)/u(tes) = exp(—yti/2m)/exp( —typ1/2m) = exp|(Vtrer — i)/ 2m].
Hence u(t;)/u(tr 1) = exp[y(2n/pn)/2m] = exp(yTy/2m).

(©). A= Infuty)/utn)] = ~y(2r/p)/2m = 7y /pm .

22. The spring constant is k = 16/(1/4) = 64 Ib/ft. Mass m = 1/2 [b-s*/ft. The
damping coefficient is v = 2 [b-sec/ft . The quasi frequency is u = 21/31 rad/s.

_ 2
Hence A = v 1.1285.

25(a). The solution of the IVP is u(t) = e */* (2 cos %\/?t + 0.252sin gﬁt).
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: va WA
t
-0.57

Using the plot, and numerical analysis, 7 ~ 41.715.

(b). Fory=0.5,7~20.402; fory=1.0,7~9.168; fory= 15,7~ 7.184.

().

404
351
304
281

201

(d). Fory=1.6,7~7.218; fory= 17,7~ 6.767; fory= 1.8, 7 ~ 5.473;
fory=1.9, 7~ 6.460. 7 steadily decreases to about 7,,;,, ~ 4.873, corresponding to
the critical value v, ~ 1.73.

(¢). We have u(t) = 2 cos(ut — §) ,in which 1 = }1/2 =77 , and

_ a e /2
6 = tan 1\/417 . Hence |u(t)| < jm .

26(a). The characteristic equation is mr* + yr 4+ k = 0. Since 4> < 4km , the roots
are 7y, = — 5-+i 7W . The general solution is

\Amk — 2 Vamk — 2
u(t) = e MM Acos#t—i—Bsin%t :
m m

Invoking the initial conditions, A = u, and

(2muvy, — yuy)

Amk —~2
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(b). We can write u(t) = Re "/*"cos(ut — 6), in which

(2mu, — *)/uo)Z
R=/ul
\/uo + dmk — 2

and
0 = arctan @2muvy — yu)
U/ dmk — 2
. 2 (2muv,— 'yu(, m(ku? +’yu(,vu+muo) . a+by
(C)' R = \/’LLO + T dmk—? 2\/ dmk—~? - dmk—~*

It is evident that R increases (monotonically) without bound as v — (2\/ mk:) )

28(a). The general solutlon is u(t) = Acos /2t + Bsin\/2t. Invoking the initial
conditions, we have u(t) = \/2 sin /2 t.

(b).

-
L

02040608 1 121)4

The condition v’(0) = 2 implies that u(t) initially increases. Hence the phase point
travels clockwise.
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29. u(t) = %e*t/gsin @t.

31. Based on Newton's second law, with the positive direction to the right,
ZF = mu”
where

ZF: — ku —~yu'.

Hence the equation of motion is mu"” 4+ yu’ + ku = 0. The only difference in this
problem is that the equilibrium position is located at the unstretched configuration of
the spring.

32(a). The restoring force exerted by the spring is F, = — (ku + cu®). The opposing
viscous force is F; = — yu’'. Based on Newton's second law, with the positive direction
to the right,

F,+ F;=mu”.

Hence the equation of motion is mu” + yu’ + ku +cu® = 0.

(b). With the specified parameter values, the equation of motion is u” +u = 0. The
general solution of this ODE is u(t) = A cost + B sint. Invoking the initial
conditions,

the specific solution is u(t) = sint. Clearly, the amplitude is R = 1, and the period of
the motion is 7" = 2.

(¢). Given e = 0.1, the equation of motion is u” +u + 0.1u? = 0. A solution of the
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IVP can be generated numerically:

eps=.1
1 H
0.87
0.6
0.44
0.24
b 4 E 10 1,
-0.24
-0.44
-0.67
-0.54
-14
eps=0.2
eps=0.3
087 08
067 063
0.41

0.4

0.9 0.2

2 s 8 | fz I R R R B NN N I
0.2 0.2
0.4 044
-0.61 05
0.5 -0.84

(e). The amplitude and period both seem to decrease.

(f)-
14
0.5
0.6
0.4
0.21
2

-0.24
-0.4
-0.61
-0.81

eps=-.1

/)
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0.8
0.6
0.4
0.2

eps=-0.2

-0.2
0.4
0B
0.8

eps=-0.3

0.2
0.4
0.6
-0.84

[N
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Section 3.9

2. We have sin(a+3) = sinacos 3+ cos a sin (3. Subtracting the two identities, we
obtain sin(a + () — sin(a — ) = 2cosasin 3. Setting a + § = Tt and o — 3 = 6t,
o = 6.5t and 3 = 0.5¢. Hence sin Tt — sin 6t = 2 sin £ cos 13 .

3. Consider the trigonometric identity cos(a+f3) = cosacos 3 F sina sin 3. Adding

the two identities, we obtain cos(a — ) + cos(a + ) = 2cos acos 3. Comparing the
expressions, set « + 3 = 27t and o — 3 = wt. Hence o« = 37t/2 and § = nt/2. Upon

substitution, we have cos(wt) + cos(2nt) = 2 cos(3nt/2) cos(nt/2).

4. Adding the two identities sin(a=%[3) = sin a cos 3+ cos a sin [3, it follows that
sin(a — ) 4+ sin(a + ) = 2sinacos 3. Setting a + § = 4t and a — § = 3t, we
have a = 7t/2 and 5 = t/2. Hence sin 3t + sin 4t = 2 sin(7t/2) cos(t/2).

6. Using mks units, the spring constant is k£ = 5(9.8)/0.1 = 490 N/m , and the damping
coefficient is 7 = 2/0.04 = 50 N-sec/m . The equation of motion is

5u’ + 50u’ + 490u = 10 sin(t/2).

The initial conditions are u(0) = 0 m and u'(0) = 0.03 m/s .

8(a). The homogeneous solution is u,(t) = Ae 'cos/ 73t + Be 'sin\/73t. Based
on the method of undetermined coefficients, the particular solution is

Ut) = —

153281
Hence the general solution of the ODE is u(t) = u.(t) + U (¢). Invoking the initial
conditions, we find that A = 160/153281 and B = 383443+/73 /1118951300 . Hence
the response is

1 3834434/ 73
t) = 160 e 'cos /T3t + ——— e sin\/T3t| + U(t).
u(t) 153981 60e "cos /T3t + 300 ¢ Sin 3t +U(t)

[ — 160 cos(t/2) + 3128 sin(t/2)].

(b). wu.(t) is the transient part and U (¢) is the steady state part of the response.
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0.024

0.014

-0.011

-0.024

(d). Based on Egs. (9) and (10), the amplitude of the forced response is given by
R =2/A, in which

A= \/25(98 — w?)® + 25002

The maximum amplitude is attained when A is a minimum. Hence the amplitude is

maximum at w = 44/ 3 rad/s .
9. The spring constant is £ = 12 [b/ft and hence the equation of motion is

6
3—2u” +12u =4cosTt,

thatis, u” + 64u = S cos 7t. The initial conditions are u(0) = 0 f, w'(0) = 0 fps.

The general solution is u(t) = Acos 8t + Bsin 8t + $tcos 7t. Invoking the initial

conditions, we have u(t) = — $cos8t + Sicos Tt = Bsin(t/2)sin(15¢/2).

12. The equation of motion is

2u” +u' + 3u = 3cos 3t — 2sin 3t.

Since the system is damped, the steady state response is equal to the particular solution.

Using the method of undetermined coefficients, we obtain

page 132



CHAPTER 3. ——

1
U (t) = é(szn 3t — cos 3t).

Further, we find that R = /2 /6 and § = arctan( — 1) = 37 /4. Hence we can write
Uy (t) = gcos(i’)t — 37/4).

13. The amplitude of the steady-state response is given by
Fy

\/mQ(wg — w2)2 + 2 w?

Since Fj is constant, the amplitude is maximum when the denominator of R is minimum .

Let 2 = w?, and consider the function f(z) = m2(w? — z)° + 42z Note that f(z) is

a quadratic, with minimum at z = w? — v*/2m?. Hence the amplitude R attains a

R =

maximum at w? = w? —v*/2m?. Furthermore, since w? = k/m , and therefore
2
2 _ 2 2
Winaz = W |:1 - 2km:| :

2

maxr

into the expression for the amplitude,
E
R = 4 2 | A2 0 2 _ 2 2
VA2 + 92 (W] — 72/2m?)
V3 = am?
Fy

Ywor/1 —~2/dmk

Substituting w? = w

14(a). The forced response is u,,(t) = Acoswt + Bsinwt. The constants are obtain by
the method of undetermined coefficients. That is, comparing the coefficients of cos wt
and sin wt, we find that

—mw?A+ywB+ kA =F,,and — mw’B —ywA+ kB =0.
Solving this system results in

A=m(w —w?)/A and B=w/A,

in which A = \/ m?(w? — w?)” + 42w? . It follows that

yw

tanb = B/A = ————.
o= B R =)

(b). Herem =1, = 0.125,w, = 1. Hence tan § = 0.125w/(1 — w?).
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phase

01" 02 04 06 08

17(a). Herem = 1,7 =0.25,w} = 2, F, = 2. Hence u,,(t) = %cos(wt — ),
where A = \/(2 — W)+ w?/16 = i\/64 — 63w? 4+ 16w , and tan é = o

(b). The amplitude is

8
R = .
V64 — 63w? + 16 w*
(c).
Armplitude
5_
4
3_
2_
1_
o 08 1 18 2 25 3
Wy

(d). See Prob. 13. The amplitude is maximum when the denominator of R is minimum.
That is, when w = w,,,, = 3v/14 /8 ~ 1.4031. Hence R(w = wy..) = 64/+/127 .

18(a). The homogeneous solution is u.(t) = Acost + Bsint. Based on the method of
undetermined coefficients, the particular solution is

Hence the general solution of the ODE is u(t) = w.(t) + U (¢). Invoking the initial
conditions, we find that A = 3/(w? — 1) and B = 0. Hence the response is
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104

T

u(t) = - sl coswt — cost].

-10+
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304

20

\/ 10 20 30 40 50 \/ﬁ'ﬂ
t

-204

-30

Note that

19(a). The homogeneous solution is u,(t) = Acost + Bsint. Based on the method of
undetermined coefficients, the particular solution is

U(t)

= ﬁcoswt.
—w

Hence the general solution is u(t) = u,.(t) + U (t). Invoking the initial conditions, we
find that A = (w? +2)/(w? - 1) and B = 1. Hence the response is

u(t) [3coswt — (w* +2)cost] + sint.

12

(b.)

page 136






CHAPTER 3. ——

304

204

101 /\
i

\/ 10 20 3ﬂ 40 50 \fh

-104

-2 0

_3 l]_

Note that
6 1—-w)t
u(t) = . 2$zn{( w) ]sin{(w_+ ]—Fcost%—smzt.
20.
w =07
104
5_
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21. The general solution is u(t) = u.(t) + U (¢), in which

__—t/16 171358 \/255t 257758 _ \/255?5

(’t - -
u(t) =e 132721 7716 | 132721255 16

and

U(t) [436800 cos(.3t) + 18000 sin(.3t)] .

~ 132721
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o 10 20 Va0 J4n ls0 [ED 0
t

_1—

_2—

-34

e

23. The general solution is u(t) = u.(t) + U(t), in which

9746 V2 12 v 2
u.(t) = e~/ o0 LI 5,

t
4105 €os 16 + 821+/255 s 16
and
1
t) = ——| — ' .
U(t) 4105[ 1536 cos(3t) + 72 sin(3t)]
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Aldmin
U ool || [ ][9] 1 o) |]] 4 b
iR

249 @
2.29

1,69
1.44 o
1.23

0.6
0.41 +

(c). The amplitude for a similar system with a /inear spring is given by

5
R = :
V25 — 4902 + 25w!
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Armplitude

06

08
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