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Chapter Four
Section 4.1

1. The differential equation is in standard form. Its coefficients, as well as the function
g(t) = t, are continuous everywhere. Hence solutions are valid on the entire real line.

3. Writing the equation in standard form, the coefficients are rational functions with
singularities at ¢t = 0 and ¢ = 1. Hence the solutions are valid on the intervals ( — 00,0),
(0,1),and (1,00).

4. The coefficients are continuous everywhere, but the function g(¢) = Int is defined
and
continuous only on the interval (0, cc0). Hence solutions are defined for positive reals.

5. Writing the equation in standard form, the coefficients are rational functions with a
singularity at z, = 1. Furthermore, p,(x) = tanx/(x — 1) is undefined, and hence not
continuous, at x, = £(2k + 1)7/2, k =0,1,2,---. Hence solutions are defined on any
interval that does not contain x, or x, .

6. Writing the equation in standard form, the coefficients are rational functions with
singularities at x = £+ 2. Hence the solutions are valid on the intervals ( — oo, — 2),
(—2,2),and (2,00).

7. Evaluating the Wronskian of the three functions, W ( f, f», fs) = — 14. Hence the
functions are linearly independent.

9. Evaluating the Wronskian of the four functions, W (f,, f», f3, f1) = 0. Hence the
functions are linearly dependent. To find a linear relation among the functions, we need
to find constants c¢,, ¢, c3, ¢y , not all zero, such that

e fi(t) + eafo(t) + csfs(t) +cufi(t) = 0.
Collecting the common terms, we obtain
(CQ +2C3 +C4)t2 + (261 — C3 +C4)t+ ( - 361 +CQ +C4) == 09

which results in three equations in four unknowns. Arbitrarily setting ¢, = — 1, we can
solve the equations ¢, +2¢; =1,2¢; —¢c; =1, — 3¢, + ¢, = 1, to find that ¢, = 2/7,
¢, =13/7,¢; = —3/7. Hence

2f1(t) +13/2(t) = 3f5(t) — 7/fu(t) = 0.

10. Evaluating the Wronskian of the three functions, W (f,, f,, fs) = 156 . Hence the
functions are linearly independent.
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11. Substitution verifies that the functions are solutions of the ODE. Furthermore, we

have
W(1,cost,sint) =1.

12. Substitution verifies that the functions are solutions of the ODE. Furthermore, we
have W (1,t,cost,sint) = 1.

14. Substitution verifies that the functions are solutions of the ODE. Furthermore, we
have W (1,t,e7t,te™?) = e 2.

15. Substitution verifies that the functions are solutions of the ODE. Furthermore, we
have W (1, z,2%) = 6x.

16. Substitution verifies that the functions are solutions of the ODE. Furthermore, we
have W (z,2?,1/z) = 6/x.
18. The operation of taking a derivative is linear, and hence

)(k’) (k) (k)

(Y1 + Yo =yt ey, .

It follows that
I . m (n) (n-1) -7,
[y + cayp] = iy + ey, + [0191 + Y, ] + o 4 pufeiy + eyl

Rearranging the terms, we obtain L[c,y, + ¢y,] = ¢, L{y1] + ¢, L[y,]. Since y, and y,
are solutions, L[c,y, + ¢,y,] = 0. The rest follows by induction.

19(a). Note that d*(t")/dt* = n(n —1)---(n —k+ 1)t" % fork =1,2,---,n.
Hence

L[t"] = agn! + ay[n(n — 1)--2)t + - a,_ nt" ' 4 a,t".

(b). We have d*(e")/dtk = r¥e™, for k = 0,1,2,---. Hence

L|:€7't] = q, Tnert + alrn—lert 4o a, T ert + a, e’rt

= [ao a4 a4 an]e”.

(¢). Sety = e, and substitute into the ODE. It follows that r* — 572 +4 = 0, with
r = 41,4 2. Furthermore, W (e!, e, %, e72) = 72.

20(a). Let f(t) and g(t) be arbitrary functions. Then W (f,g) = fg’ — f'g. Hence
W’(f,g) _ f/g/+fg//_f//g_f/g/ _ fg"—f"g. That is,
W’(f,g) = ‘ff// gg// .

Now expand the 3-by-3 determinant as
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/ / / / / /
Yo Y3 Y Y Y Y
W ) yYs) — - + : .
(yl Y2 ys) U yQ// yg// Yo yll/ y‘s” Ys yl// yQ//
Differentiating, we obtain
/ / / / / /
W) =ui| g =l g bl
/ / / / / /
+ U y/Z// y/g// — Y2 y/lll y/3// + Y3 y}// y/2// .
2 Ys 1 Ys 1 2

The second line follows from the observation above. Now we find that

/

) Y, ?JQ/ yyf Y1 Ys Y3
Wiy, yesys) = |9 ¥ ¥ |+ W ¥ Ui

" i " "

y!' oy oyl "y oy

Hence the assertion is true, since the first determinant is equal to zero.

(b). Based on the properties of determinants,

Psyr P3Y2 PsYs
pZ(t)pS(t)W/ =Dy Py DY
yll// yz/// y3///
Adding the first two rows to the third row does not change the value of the determinant.
Since the functions are assumed to be solutions of the given ODE, addition of the rows
results in

/ YZ D3 Y2 D3Ys
y%) (t)p‘s (t)W = Do y{ Do ygl Do yg/
— D y{’ — D yQN — D 3/3//

It follows that p,(t)ps(H)W' = — pi(t)p.(t)ps(t)W . As long as the coefficients are not
zero, we obtain W' = — p,(t)W.

(c). The first order equation W' = — p,(¢t)W is linear, with integrating factor u(t) =
= exp([pi(t)dt). Hence W (t) = cexp(— [pi(t)dt) . Furthermore, W (t) is zero
onlyifc =0.

(d). Tt can be shown, by mathematical induction, that

Y1 Yo e Yn— Yn
/ / !/ /
yl y? T yn—l yn
W,(ylay%"'ayn) = (: 2 (n-2) (n-2) :
n— n— n— n—
'y Yoo Yo
w ey
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Based on the reasoning in Part(b), it follows that
P(t)ps() P ()W = — pi()pa(t)ps(8) - pu ()W,
and hence W' = — p,(t)W.

22. Inspection of the coefficients reveals that p,(¢) = 0. Based on Prob. 20, we find
that W/’ =0, and hence W = c.

23. After writing the equation in standard form, observe that p,(¢) = 2/¢t. Based on the
results in Prob. 20, we find that W/ = ( — 2/t)W , and hence W = ¢/t%.

24. Writing the equation in standard form, we find that p, (¢) = 1/t. Using A4bel's
formula, the Wronskian has the form W (t) = cexp( — [1dt) = c/t.

25(a). Assuming that ¢,y (t) + coys(t) + -+ + ¢y, (t) = 0, then taking the first n — 1
derivatives of this equation results in

k k :
ey’ () + e (1) + -+ ey () = 0
for k=0,1,---,n — 1. Setting t = t,, we obtain a system of n algebraic equations with
unknowns ¢, ¢y, -+, ¢, . The Wronskian, W (yy, ys, -+, ¥ )(t0), is the determinant of the
coefficient matrix. Since system of equations is homogeneous, W (yy, 42, -+, ¥, ) (o) 7# O
implies that the only solution is the #rivial solution, ¢, = ¢, = --- =¢, = 0.

(b). Suppose that W (y,, ys, -+, y,)(ty) = 0 for some ¢,. Consider the system of
algebraic
equations

ey () + ey () + - + ey (1) = 0,

k=0,1,---,n — 1, with unknowns ¢, ¢,, - - -, ¢, . Vanishing of the Wronskian, which is
the determinant of the coefficient matrix, implies that there is a nontrivial solution of the
system of homogeneous equations. That is, there exist constants ¢y, ¢, - -+, ¢, , not all
zero, which satisfy the above equations. Now let

y(t) = e (t) + caa(t) + -+ + coya(t).

Since the ODE is linear, y(t) is also a nonzero solution. Based on the system of algebraic
equations above, y(t,) = y'(t,) = --- = y" Y(t,) = 0. This contradicts the uniqueness
of the identically zero solution.

26. Let y(t) = yi(t)v(t). Theny' =y/v+yv', y” =y/'v+2y/v' + y,v”, and
y" =y v+ 3y"v" + 3y/v"” + yv0"”. Substitution into the ODE results in

"

y"v + 3y + 3yiv” +yv” + oyl v+ 2yiv 4+ yiv”] + poyiv + yiv'] + payiv = 0.

Since y, is assumed to be a solution, all terms containing the factor v(¢) vanish. Hence
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yiv"” + oy + 3y " + By, + 2piy) + pyi|v’ =0,

which is a second order ODE in the variable u = v’.

28. First write the equation in standard form:

" t+2 1 t+1 / 6
— 6 —
t(t+3)y * t2(t+3)y t2(t+3

=0

Let y(t) = t?v(t). Substitution into the given ODE results in

H+q)

t2 " 3
S

=0.

Set w = v”. Then w is a solution of the first order differential equation

t+4

/
3
R Tra

w =

This equation is /inear, with integrating factor ;(t) = t*/(t + 3). The general solution
is w = c(t + 3)/t*. Integrating twice, it follows that v(t) = c;t ™ + ¢;t 72 + ¢yt + cs.
Hence y(t) = cit + ¢; + ct3 + c5t%. Finally, since y,(t) = t? and 1, (¢) = t3are given
solutions, the third independent solution is y;(t) = ¢t + ¢; .
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Section 4.2

1. The magnitude of 1 +1iis R = \/5 and the polar angle is /4 . Hence the polar
form is given by 14 i = /2 e/™/4.

3. The magnitude of — 3 is R = 3 and the polar angle is 7. Hence — 3 = 3¢,

4. The magnitude of — i is R = 1 and the polar angle is 37/2. Hence — i = €’™/2,
5. The magnitude of \/3 — i is R = 2 and the polar angle is — 7/6 = 117/6. Hence
the polar form is given by /3 — i = 2 e!1m/6,

6. The magnitude of — 1 —11s R = \/5 and the polar angle is 57 /4 . Hence the polar
form is given by — 1 — i = /2 "™/4,

7. Writing the complex number in polar form, 1 = e?™™_ where m may be any integer.
Thus 1/ = ¢?"7/3_ Setting m = 0, 1, 2 successively, we obtain the three roots as
113 =1,1Y% = /3 113 = ¢*i/3_ Equivalently, the roots can also be written as

1, cos(2n/3) + i sin(2n/3) = %( —1+ \/§>, cos(4n/3) + isin(4n/3) = %( —1+ \/§>

9. Writing the complex number in polar form, 1 = e?™™, where m may be any integer.
Thus 1V* = ¢?"7i/4 Setting m = 0, 1, 2, 3 successively, we obtain the three roots as
1V =1,1Y = e™/2 1/ = ¢™ 1Y* = ¢37/2, Equivalently, the roots can also be
written as 1, cos(w/2) + i sin(w/2) =i, cos(w) +isin(w) = — 1, cos(37/2) +

+isin(37/2) = —i.

10. In polar form, 2(cos /3 + i sinm/3) = 2e™/3+¥"7 in which m is any integer.
Thus [2(cos 7/3 + i sin/3)]"* = 2'/2 &!™/0+m7  With m = 0, one square root is

given by 21/2¢™/6 = <\/§ + z> /+/2 . With m = 1, the other root is given by

21/26i77r/6: (_ \/§_1>/\/§
3 2

11. The characteristic equation is 7° —r* —r 4+ 1 =10. Therootsarer = — 1,1,1.
One root is repeated, hence the general solution is y = c,e™! + c,e! + cstel.

13. The characteristic equation is r* — 2r2 —r +2 = 0, withroots» = — 1,1,2. The
roots are real and distinct, hence the general solution is y = c,e ™" 4 c,e! + cze?.

14. The characteristic equation can be written as r?(r? — 4r + 4) = 0. The roots are
r =0,0,2,2. There are two repeated roots, and hence the general solution is given by
Y=c +ct+ 03€2t + C4t62t.

15. The characteristic equation is 7% + 1 = 0. The roots are given by 7 = ( — 1)"/°,
that is, the six sixth roots of — 1. They are e ™/6+m7/3 1y = 0,1, ---,5. Explicitly,
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r= (\/5—@')/2, (\/§+z'>/2,z', _s, (— \/§+z‘)/2, (— \/§—@)/2. Hence
the general solution is given by y = ¢V3t/2 [cicos (1/2) 4 cysin (t/2)] 4 czcost +
cisint + e V312 [escos (t/2) + cgsin (t/2)].

16. The characteristic equation can be written as (r*> — 1)(r*> —4) = 0. The roots

are given by r = + 1, =2. The roots are real and distinct, hence the general solution is
y = cre !+ cel + cie? 4 e

17. The characteristic equation can be written as (72 — 1)3 = 0. The roots are given by
r = £ 1, each with multiplicity three. Hence the general solution is

Yy = ce t 4 ete ™t + c3t26_t +ciel + c5tet + c6t2€t.

18. The characteristic equation can be written as 72 (r4 — 1) = 0. The roots are given
by r =0,0,41,47. The general solution is y = ¢, + ¢t + cse™ ! + cie! + cscost +
+ cgsint.

19. The characteristic equation can be written as 7(r* — 3r® + 3r? — 3r + 2) = 0.
Examining the coefficients, it follows that 74 — 3r® + 3r? —3r +2 = (r — 1)(r — 2) x
(r? 4+ 1). Hence the roots are 7 = 0, 1,2, &4 . The general solution of the ODE is given
by y = ¢ + cel + ;e + cicost + cssint.

20. The characteristic equation can be written as 7(r3 — 8) = 0, with roots r = 0 ,
2e2mmi/3 ' =0,1,2. Thatis, 7 = 0,2, — 1 +i1/3 . Hence the general solution is

y=c +ce¥ +et [03003\/§t + c4sin\/§t} )

21. The characteristic equation can be written as (7“4 + 4) ? = 0. The roots of the
equation r* +4 = Oarer = 1 +i, — 14+14. Each of these roots has multiplicity two.
The general solution is y = e'[c,cost + cysint| + tel[cscost + cysint] +

+ e escost + cgsint ] + te te;cost + cgsint].

22. The characteristic equation can be written as (7> + 1)2 = 0. The roots are given
by r = £ 14, each with multiplicity two. The general solution is y = c,cost + c,sin
t+

+ tlescost + eysint .

24. The characteristic equation is 7> + 5r + 6r + 2 = 0. Examining the coefficients,
we find that 7% + 572 4+ 67 + 2 = (r + 1)(r? 4+ 47 + 2). Hence the roots are deduced as

r=—1, —2 j:ﬁ. The general solution is y = c;e ™ + c2e(_2+‘/§)t + cge(_Q_\/E)t.

25. The characteristic equation is 1873 4 2172 + 14r + 4 = 0. By examining the first
and last coefficients, we find that 187 + 2172 + 147 + 4 = (2r + 1)(972 + 67 + 4).
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Hence the roots are r = — 1/2, ( — 1j:\/§ ) /3. The general solution of the ODE is
given by y = ¢,e /2 4 ¢71/3 [czcos (t/\/g) + c38in (t/\/g) } )

26. The characteristic equation is 7! — 773 + 672 4 307 — 36 = 0. By examining the
first and last coefficients, we find that

rt —7r® 4+ 6r° +30r — 36 = (r — 3)(r +2)(r* — 6r +6).
The rootsare r = —2,3,3 :I:\/§ . The general solution is

Y = 0167% + c2e3t + 036(37\/§)t + c4e(g+\/§)t.

28. The characteristic equation is 74 4 673 4 1772 4 22r + 14 = 0. It can be shown
that % + 673 + 17r? + 22r + 14 = (r? + 2r + 2)(r? + 4r + 7). Hence the roots are
r= —1+i, —2+i\/3. The general solution is

Yy = eft[clcost + cysint] + e 2 |:CgCOS\/§t + c4sin\/§t] .

30. y(t) = %e‘t/ﬁsin(t/ﬁ> - %et/ﬁsin(t/ﬁ).

32. The characteristic equation is ™ —r24+r—1=0,withroots =1, +i. Hence
the general solution is y(t) = c,e’ + c,cost + c3sint. Invoking the initial conditions,
we obtain the system of equations

¢+ =2
C1 + C3 = — ]_
CiL — C = — 2
with solution ¢, = 0, ¢, = 2, ¢ = — 1. Therefore the solution of the initial value

problem is y(t) = 2cost — sint.
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33. The characteristic equation is 2r* — 73 — 97> + 4r + 4 =0, withroots 7 = — 1/2,
1, +2. Hence the general solution is y(t) = c;e /2 + c,e + c;e72 + c,e?' . Applying
the initial conditions, we obtain the system of equations

a+ce+cegte=—2

1
—501+Cg_203+204:0

1

ZCl+Cg+4Cg+4C4: -2

1
_§CI+02_803+8C4:0

with solution ¢, = — 16/15,¢, = —2/3,¢3 = —1/6,¢, = — 1/10. Therefore the
solution of the initial value problem is y(t) = — 8e~1/2 — 2¢f — Le=20 _ L2t

2
-2.21
-2.44
-2.61

-2.81

31

-3.21
1] 0.2 o4 4 06 0.8 1

The solution decreases without bound.

34. y(t) = Ze '+ €' [Zcost + Lsint].
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304

204

The solution is an oscillation with increasing amplitude.

35. The characteristic equation is 6 % + 572 + 7 = 0, withroots 7 = 0, — 1/3, — 1/2.
The general solution is y(t) = ¢; + c,e*/® 4+ c;e /2. Invoking the initial conditions,
we require that

Cq + Co + Cy = — 2
1 1
— gCQ — 503 =2
1 1
502 + 103 =0
with solution ¢; = 8, ¢, = — 18, ¢; = 8 . Therefore the solution of the initial value

problem is y(t) = 8 — 18e7/3 + 8e~/2.

a4

36. The general solution is derived in Prob.(28) as
y(t) = e '[eicost + cysint] + e [cgcosﬁt + c43in\/37t} :

Invoking the initial conditions, we obtain the system of equations
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citec=1
—C1+CQ—263—|—\/_C4= 2

—2¢cy + ¢35 — 4[04—0

201+2CQ+1003+9fc4:3

with solution ¢; = 21/13,¢, = —38/13,¢3 = —8/13,¢, = 17\/5/39.

14
0.8
0.6
0.4

0.2

The solution is a rapidly-decaying oscillation.

38.

W(et,e_t,cost, sint) = -8
W(cosht,sinht,cost,sint) =4

40. Suppose that c,e™ 4 c,e™ + --- + ¢,e™! = 0, and each of the r, are real and
different. Multiplying this equation by e "%, ¢, + c,e™ ™)t ... 4 ¢ et = (.,
Differentiation results in

cy(ry —m)e (ra=r)t 44 Co(rn — 11 )e(”*”)t =0.
Now multiplying the latter equation by e~(">="1_and differentiating, we obtain
es(ry — 1) (rs — ) e e (= 1) (1 — 1 )eT T =0
Following the above steps in a similar manner, it follows that
Co(ry — 1) (1 — rl)e(""_r”*l)t =0.
Since these equations hold for all ¢, and all the r;, are different, we have ¢, = 0. Hence
e+ e 4o, €t =0, —co<t<oo.

The same procedure can now be repeated, successively, to show that

co=¢c=-=c¢,=0.
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Section 4.3

2. The general solution of the homogeneous equation is y, = c,e! + c,e ™" + cscost +
+ ¢eysint. Let g,(t) = 3t and g,(t) = cost. By inspection, we find that Y;(t) = — 3t.
Since g¢,(t) is a solution of the homogeneous equation, set Y, (t) = t(Acost + Bsint).
Substitution into the given ODE and comparing the coefficients of similar term results in
A =0and B= —1/4. Hence the general solution of the nonhomogeneous problem is

t
y(t) = y.(t) — 3t — Zsint.

3. The characteristic equation corresponding to the homogeneous problem can be written
as (r+1)(r* + 1) = 0. The solution of the homogeneous equation is y, = c;e™ +

+ cycost + czsint. Let g(t) = e ' and g,(t) = 4t. Since g,(t) is a solution of the
homogeneous equation, set Y;(t) = Ate'. Substitution into the ODE results in A = 1/2.
Now let Y;(t) = Bt + C. We find that B = — C' = 4. Hence the general solution of
the nonhomogeneous problem is y(t) = y.(t) +te /2 + 4(t — 1).

4. The characteristic equation corresponding to the homogeneous problem can be written
as r(r+1)(r — 1) = 0. The solution of the homogeneous equation is y. = ¢, + c,e’ +
+ cse". Since g(t) = 2 sint is not a solution of the homogeneous problem, we can set
Y (t) = Acost + B sint. Substitution into the ODE resultsin A = 1 and B =0.

Thus

the general solution is y(t) = ¢; + c,e! + cse ™! + cost.

6. The characteristic equation corresponding to the homogeneous problem can be written
as (r2+1)> = 0. It follows that Yo = 1c08t + cysint + t(czcost + eysint). Since

¢g(t) is not a solution of the homogeneous problem, set Y (¢) = A + Bcos 2t + Csin 2t .
Substitution into the ODE results in A = 3, B = 1/9, C' = 0. Thus the general solution
is y(t) = y.(t) + 3+ scos2t.

7. The characteristic equation corresponding to the homogeneous problem can be written
as 73(r® +1) = 0. Thus the homogeneous solution is

Yo =1+ ot + st + ciet + et/? [c5cos<\/§t/2) +cgsin<\/§t/2)]

Note the g(t) = t is a solution of the homogenous problem. Consider a particular
solution

of the form Y (t) = t3(At + B). Substitution into the ODE results in A = 1/24 and
B = 0. Thus the general solution is y(t) = y.(t) + t*/24.

8. The characteristic equation corresponding to the homogeneous problem can be written
as 73(r + 1) = 0. Hence the homogeneous solution is y, = ¢; + ¢, t + c5t% + et

Since ¢(t) is not a solution of the homogeneous problem, set Y (t) = Acos 2t + Bsin 2t .
Substitution into the ODE results in A = 1/40 and B = 1/20. Thus the general solution
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is y(t) = y.(t) + (cos 2t + 2sin 2t) /40.

10. From Prob. 22 in Section 4.2, the homogeneous solution is
Yo = 108t + cysint + + t[ezcost + cysint].

Since g(t) is not a solution of the homogeneous problem, substitute Y (¢) = At + B into
the ODE to obtain A = 3 and B = 4. Thus the general solution is y(t) = y.(t) + 3t + 4.
Invoking the initial conditions, we findthatc, = —4,¢, = —4,c3=1,¢, = — 3/2.
Therefore the solution of the initial value problem is

y(t) = (t —4)cost — (3t/2 +4)sint + 3t + 4.

B0
a0
407
30

207

11. The characteristic equation can be written as 7(r?> — 3r + 2) = 0. Hence the
homogeneous solution is y. = ¢; + c,e! + cse?’. Let gy (t) = e’ and g,(t) = t. Note
that g, is a solution of the homogeneous problem. Set Y;(¢) = Ate'. Substitution into
the ODE results in A = — 1. Now let Y,(t) = Bt*> + C't. Substitution into the ODE
results in B = 1/4 and C' = 3/4. Therefore the general solution is

y(t) = c1 + e’ + cye* —te' + (t* 4 3t) /4.

Invoking the initial conditions, we find that ¢, = 1, ¢, = ¢; = 0. The solution of the
initial value problem is y(t) = 1 — te’ + (t + 3t) /4.
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1
02 0Z66- 08 1 12 14 16 18 32

12. The characteristic equation can be written as (r — 1)(r + 3)(r? + 4) = 0. Hence

the homogeneous solution is y, = c;e’ + c,e ' + cycos 2t + c4sin 2t. None of the

terms in g(t) is a solution of the homogeneous problem. Therefore we can assume a form
Y(t) = Ae ' + Bceost + Csint. Substitution into the ODE results in A = 1/20,

B= —2/5,C = —4/5. Hence the general solution is

y(t) = cie’ + e + cyc08 2t + cy5in 2t + 71 /20 — (2cost + 4sint) /5.
Invoking the initial conditions, we find that ¢, = 81/40, ¢, = 73/520, ¢; = 77/65,
¢ = —49/130.

36
36

3.4

3.21

14. From Prob. 4, the homogeneous solution is 3. = ¢, + c,e’ + c;e”!. Consider the
terms g,(t) = te”' and ¢,(t) = 2cost. Note that since r = — 1 is a simple root of the
characteristic equation, Table 4.3.1 suggests that we set Y, (¢) = t(At + B)e™'. The
function 2cos t is not a solution of the homogeneous equation. We can simply choose
Y,(t) = Ccost + Dsint. Hence the particular solution has the form

Y (t) = t(At + B)e " + Ccost + Dsint.

15. The characteristic equation can be written as (r* — 1)2 = 0. The roots are given
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as r = =+ 1, each with multiplicity two. Hence the solution of the homogeneous problem
is y. = cie! + cote! + cse + cqte!. Let g, (t) = e! and g,(t) = sint. The function

e’ is a solution of the homogeneous problem. Since r = 1 has multiplicity two, we set
Yi(t) = At?e’. The function sin t is not a solution of the homogeneous equation. We
can set Y, (t) = Bcost + Csint. Hence the particular solution has the form

Y (t) = At*e¢' + Bcost + Csint.

16. The characteristic equation can be written as 72(r? 4+ 4) = 0, with roots r = 0, 4-2i.
The root » = 0 has multiplicity two, hence the homogeneous solution is y. = ¢, + cot +
+ c3c08 2t + ¢,sin 2t . The functions g, (t) = sin 2t and ¢,(t) = 4 are solutions of the
homogenous equation. The complex roots have multiplicity one, therefore we need to set
Yi(t) = At cos2t + Bt sin2t. Now g,(t) = 4 is associated with the double root r = 0.
Based on Table 4.3.1, set Y5(t) = C't?. Finally, gs(t) = te! (and its derivatives) is
independent of the homogeneous solution. Therefore set Y;(¢) = (Dt + E)e'. Conclude
that the particular solution has the form

Y (t) = At cos 2t + Bt sin 2t + Ct* + (Dt + E)e'.

18. The characteristic equation can be written as 72(r? 4+ 2r + 2) = 0, with roots 7 = 0,
with multiplicity two, and r = — 1 +¢. The homogeneous solution is y. = ¢; + ¢t +
+ csecost + cietsint. The function g, (t) = 3e! + 2te™?, and all of its derivatives,
is independent of the homogeneous solution. Therefore set Y;(t) = Ae! + (Bt + C)e .
Now ¢,(t) = e 'sint is a solution of the homogeneous equation, associated with the
complex roots. We need to set Y;(t) = t(De ‘cost + Ee 'sint). It follows that the
particular solution has the form

Y(t) = Ae' + (Bt + C)e " + t(D e lcost+ Eetsin t).

19. Differentiating y = u(t)wv(t), successively, we have

y' =u'v+uv’
y// — u//’U—i_ 2u/'U/ —"—U’U”

=3 (”) (190
=0 \J

Setting v(t) = e, 1) = ade®. So foranyp=1,2,---,n,

p
YO =y <1?) )

=0 \J

It follows that
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Lle*] = e Z [a n_,,i (]7 ) o ul? —ﬁ] (%)

=0 =o \J
It is evident that the right hand side of Eq. (x) is of the form
et [k:o u™ ke u™ Y ek, qu + Ky, u} .

Hence operator equation L[e®u] = e (byt™ + by t™ 1 + --- +b,,_1t + b, ) can be
written as

ko U(n) + ]ﬁ U(nil) + -+ kn_lu’ + knu =

=D t" + bt b, by,

The coefficients k;,7 = 0,1, ---,n can be determined by collecting the like terms in

the double summation in Eq. (). For example, k; is the coefficient of u(™). The only
term that contains ©(™ is when p=mnand j=0. Hence k, = a,. On the other hand,

k, is the coefficient of w(¢). The inner summation in () contains terms with u, given by
aPu (when j = p), foreach p =0,1,---,n. Hence

n
k, = E appal.
p=0

21(a). Clearly, € is a solution of 3’ — 2y = 0, and te™" is a solution of the differential
equation y” + 2y’ +y = 0. The latter ODE has characteristic equation (r 4+ 1)* = 0.
Hence (D — 2)[3e%] = 3(D — 2)[e*] = 0 and (D + 1)*[te!] = 0. Furthermore,

we have (D — 2)(D + 1)*[te™"] = (D — 2)[0] = 0, and (D — 2)(D + 1)*[3e¥] =

= (D+1)*(D - 2)[3¢%] = (D +1)%[0] = 0.

(b). Based on Part (a),
(D—2)(D+1)°[(D-2*D+1)Y] = (D—2)(D+1)*[3e* — te]
=0,

since the operators are linear. The implied operations are associative and commutative.
Hence

(D-2"(D+1)’Y =0.

The operator equation corresponds to the solution of a linear homogeneous ODE with
characteristic equation (r — 2)*(r 4+ 1)* = 0. The roots are » = 2, with multiplicity 4
and r = — 1, with multiplicity 3. It follows that the given homogeneous solution is

Y(t) = cre?t 4 epte® + cyt?e® + et3e + cse Tt + cte ! + ertle

which is a linear combination of seven independent solutions.
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22(15). Observe that (D — 1)[e!] = 0 and (D? + 1)[sint] = 0. Hence the operator
H(D) = (D — 1)(D? + 1) is an annihilator of e’ + sint. The operator corresponding

to the left hand side of the given ODE is (D? — 1)2. It follows that
(D+1)*(D-1)*(D*+1)Y =0.
The resulting ODE is homogeneous, with solution
Y(t) = e’ + eyte ™ + czel + eyte! + estPe! 4 cocost + crsint.

After examining the homogeneous solution of Prob. 15, and eliminating duplicate terms,
we have

Y (t) = cstde’ + cocost + crsint .

22(16). We find that D[4] = 0, (D — 1)*[te’] = 0, and (D? + 4)[sin2t] = 0.
The operator H (D) = D(D — 1)*(D? + 4)is an annihilator of 2 + te’ 4+ sin 2t. The
operator corresponding to the left hand side of the ODE is D?(D? + 4). It follows that

DD —1)*(D*+4)Y =0.
The resulting ODE is homogeneous, with solution
Y (t) = ¢, + ot + c5t® + cie’ + cste! + cgeos 2t + cr5in 2t + cstcos 2t + cotsin 2t

After examining the homogeneous solution of Prob. 16, and eliminating duplicate terms,
we have

Y(t) = C3t2 + el + este! + cgtcos 2t + cotsin 2t .

22(18). Observe that (D — 1)[e!] = 0, (D + 1)*[te™"] = 0. The function e 'sint is
a solution of a second order ODE with characteristic roots r = — 1+4. It follows that
(D* + 2D + 2)[e 'sint] = 0. Therefore the operator

H(D) = (D —1)(D+1)*(D*+2D +2)

is an annihilator of 3e! + 2te™! + e~!sint. The operator corresponding to the left hand
side of the given ODE is D?(D? 4 2D + 2). It follows that

D*(D —1)(D+1)*(D*+2D +2)°Y = 0.
The resulting ODE is homogeneous, with solution

Y(t) = ¢ + et + e’ +eet +este T +
+ e (cgeost + crsint) + te ' (cscost + cysint ).

After examining the homogeneous solution of Prob. 18, and eliminating duplicate terms,
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we have

Y(t) = cse’ + cie Tt 4 este T + t€7t<CgCOSt + cosint).
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Section 4.4

2. The characteristic equation is r(r> — 1) = 0. Hence the homogeneous solution is
y.(t) = ¢, + cye’ + cse . The Wronskian is evaluated as W (1, e', e ") = 2. Now
compute the three determinants

0 e et
W1<t): 0 t _eit = —2
1 e et
1 0 et
Wot)=10 0 —et|=¢"
0 1 et
1 ¢ 0
Wi(t) =10 e 0|=¢
0 e 1
The solution of the system of equations (10) is
/ th (t)
t) = = —1
! tWQ (t) —t
i) = Gy =t
tWis(t
ug(t) = 10, = te'/2

W (t)

Hence u,(t) = —t?/2,u,(t) = —e '(t +1)/2,us(t) = €'(t — 1)/2. The particular
solution becomes Y (t) = —t?/2 — (t+1)/2+ (t —1)/2 = —?/2 — 1. The constant
is a solution of the homogeneous equation, therefore the general solution is

y(t) = ¢, + cre’ + et —t2/2.

3. From Prob. 13 in Section 4.2, y.(t) = ce™t + cye! + cse*'. The Wronskian is
evaluated as W (e, €', e*) = 6 ¢*. Now compute the three determinants

0 et 627,‘
Wit) =10 e 2% |=¢e"
1 e 4e*
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et el 0
Wit)=|—et e 0|=2
et |
Hence u(t) = €’ /6, ul(t) = — €3/2,ul(t) = €* /3. Therefore the particular solution

can be expressed as
Y(t) =e [ /30] —e'[e¥/6] + e* [e* /6]
= ¢'/30.

6. From Prob. 22 in Section 4.2, y.(t) = c,cost + cysint + t[czcost + cysint]. The
Wronskian is evaluated as W (cost, sint,tcost,t sint) = 4. Now compute the four
auxiliary determinants

0 sint tcost tsint
10 cost cost —tsint sint+tcost | .
Wi(t) = 0 —sint —2sint—tcost 2cost—tsint | 2sint + 2t cost
1 —cost —3cost+tsint —3sint—tcost
cost 0 tcost tsint
| —sint 0 cost —tsint sint+tcost | .
Wa(t) = —cost 0 —2sint—tcost 2cost—tsint = 2tsint + 2cost
sint 1 —3cost+tsint —3sint—tcost
cost sint 0 tsint
| —sint cost 0 sint+tcost |
Wi(t) = —cost —sint 0  2cost—tsint | 2cost
sint —cost 1 —3sint—tcost
cost sint tcost 0
—sint cost cost —tsint 0 )
Wi(t) = —cost —sint —2sint—tcost 0] — 2sint
sint —cost —3cost+tsint 1
It follows that u/(t) = [ — sin’t +tsintcost]/2, ul(t) = [tsin’t + sintcost]/2,
ul(t) = — sintcost/2, ul(t) = — sin*t/2. Hence

u,(t) = [3sintcost — 2t cos’t — t] /8
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uy(t) = [sin’t — 2cos’t — 2t sintcost +t*]/8
us(t) = — sin’t/4

uy(t) = [costsint —t]/4
Therefore the particular solution can be expressed as
Y (t) = costu,(t)] + sint[uy(t)] + t cost [uz(t)] + t sint [uy(t)]
= [sint — 3tcost — t*sint] /8.

Note that only the last term is not a solution of the homogeneous equation. Hence the
general solution is

y(t) = cicost + cysint + tlescost + cysint] — t2sint /8.

8. Based on the results in Prob. 2, y.(t) = ¢, + coe’ + cse . It was also shown that
W(l,e' e ) =2,with W,(t) = —2, W,(t) = e ", Ws(t) = e'. Therefore we have
u/(t) = —csct, u)(t) =e'csct /2, uj(t) = e'csct /2. The particular solution can
be expressed as Y (t) = [u,(t)] + e '[uy(t)] + €' [us(t)]. More specifically,

t

t gt
Y (t) = In|esc(t) + cot(t)| + %/ e *csc(s)ds + %/ e’csc(s)ds
to to

= In|esc(t) + cot(t)| + / cosh(t — s)csc(s)ds.

to

9. Based on Prob. 4, u/(t) = sect, uj(t) = — 1, us(t) = — tant. The particular
solution can be expressed as Y (t) = [u,(t)] + cost [uy(t)] + sint [us(t)]. Thatis,

Y (t) = In|sec(t) + tan(t)| — t cost + sintin|cos(t)|.
Hence the general solution of the initial value problem is
y(t) = ¢ + cecost + czsint + In|sec(t) + tan(t)| — tcost + sintin|cos(t)|.

Invoking the initial conditions, we require that ¢, +¢c, =2,¢c3=1, —¢c, = — 2.
Therefore

y(t) = 2cost + sint + In|sec(t) + tan(t)| — t cost + sintin|cos(t)|
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224

217

1.97

1.84

1.71

10. From Prob. 6, y(t) = c,cost + c,sint + cst cost + cit sint — t?sint /8. In
order to satisfy the initial conditions, we require that ¢, = 2, ¢, + ¢3 =0,
—¢+2¢=—1, —3/4— ¢, —3c;s = 1. Therefore

y(t) = 2cost + [Tsint — Ttcost + 4t sint — t’sint]/8.

107

12. From Prob. 8 , the general solution of the initial value problem is

t

¢ ot
/efscsc(s)ds—i— — | €e’cse(s)ds.
to

to

et

y(t) = ¢, + cre’ + cse”" + Infesc(t) + cot(t)| + 5

In this case, t, = 7/2. Observe that y(7/2) = y.(7/2), y'(7/2) = y/(7/2), and
y"(m/2) = y!"(7/2). Therefore we obtain the system of equations
e + cre™? + e 2 = 2
cre™? — cpem™? =1

cr€™? e = —1

Hence the solution of the initial value problem is

page 167



CHAPTER 4. ——

t
y(t) =3 — A In|ese(t) + cot(t)| + / cosh(t — s)csc(s)ds.
to

0 02040608 1 12141618 2 227242528 3
t

13. First write the equation as "' + x~'y” — 227?y’ + 2273y = 22 . The Wronskian
is evaluated as W (x, 2, 1/x) = 6/x. Now compute the three determinants

0 22 1/z
Wi(x) =10 2z —1/2*|= —3
1 2 2/
x 0 1/z
Wyz)=11 0 —1/2*|=2/x
0o 1 2/
r 22 0
Wi(z)=|1 2z 0|=2"
0 2 1
Hence u](z) = — 2%, uj(x) = 2x/3, ul(x) = x*/3. Therefore the particular solution
can be expressed as
1
Y(z) =] —2°/3] + 2°[2%/3] + E[:C5/15]

=21/15.

15. The homogeneous solution is y.(t) = c,cost + cysint + cscosht + ¢ysinht. The
Wronskian is evaluated as W (cost, sint, cosht, sinht) = 4. Now the four additional

determinants are given by W,(t) = 2sint, W,y(t) = — 2cost, Wi(t) = — 2sinht,
W, (t) = 2cosht. If follows that u/(t) = g(t) sin(t)/2, uy(t) = — g(t) cos(t)/2,
us(t) = — g(t) sinh(t)/2, uj(t) = g(t) cosh(t)/2. Therefore the particular solution
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can be expressed as

Y(t) = co;(t)/t g(s) sin(s)ds — S”;(t)/t g(s) cos(s)ds —
- %h(t)/tolg(s) sinh(s)ds + Smh(t)/tog(s) cosh(s)ds.

Using the appropriate identities, the integrals can be combined to obtain

1

Y(t) = 5/,‘9(8) sinh(t — s)ds — %/fg(s) sin(t — s)ds.

17. First write the equation as ¥’ — 3z7'y” + 6272y’ — 62y = g(z) /2. Itcan
be shown that y,(z) = ¢,z + c,2* + ¢; ? is a solution of the homogeneous equation.
The Wronskian of this fundamental set of solutions is W (x, 2%, 23) = 223, The three
additional determinants are given by W,(z) =z, Wy(z) = — 223, W;(x) = 22
Hence u/(z) = g(x)/22%, ul(z) = — g(z) /23, u)(x) = g(x)/22*. Therefore the
particular solution can be expressed as

_ 9 2/‘”@ 3/‘”@
Y(x) —xéo o2 dt — x P dt + = : 2t4dt

1 [*]x 2202 g3
e B LT P
2/% Lﬂ e +t4}g(>
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