CHAPTER 5. ——

Chapter Five
Section 5.1
1. Apply the ratio test :
' |($ . 3)n+1 ‘ ‘
lim ———5+— = lim |z —3| = |z — 3|
nto (@ -3 nie

Hence the series converges absolutely for [z — 3| < 1. The radius of convergence is
p = 1. The series diverges for x = 2 and x = 4, since the n-th term does not approach
Zero.

3. Applying the ratio test,

‘n| x2n/+2| ) 1.2

1' _ = =
nooo|(n+ 1) a2 nsen + 1

The series converges absolutely for a// values of . Thus the radius of convergence is
p = 00.

4. Apply the ratio test :

|2n+1xn+1 |
lim = lim 2|z| = 2|z|.
n— 0o |2”:17”| n— 0o

Hence the series converges absolutely for 2|x|, or |z| < 1/2. The radius of convergence

is p = 1/2. The series diverges for z = +1/2, since the n-th term does not approach
zZero.

6. Applying the ratio test,

fim @ =)
n—oo|(n+ 1)(z — x,)"| n—oomn+ 1

(= 2)| = [(z = 2)|.

Hence the series converges absolutely for |(z — x,)| < 1. The radius of convergence is
p=1. Atz =z, + 1, we obtain the harmonic series, which is divergent. At the other
endpoint, z = x, — 1, we obtain

o0 _1Tl
P

n=1

which is conditionally convergent.

7. Apply the ratio test :
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3t 1) (@ 4+ 2)" . (n+1)?
lim lim ——*~

n— oo |3n+1n2(aj+2)n| - n— oo 3n2

(2 +2)] = 31z +2)].

Hence the series converges absolutely for %|:1; +2| < 1,0r|z+2| < 3. The radius of

convergenceis p = 3. Atz = — 5 and x = + 1, the series diverges, since the n-th
term does not approach zero.

8. Applying the ratio test,
_n(n 4 1)t n" 1

’n,—>oc‘<,n+ 1)n+1n|xn‘ B ’IL—)ngo (n_|_ 1>n‘$| = g|x|a

since

nn 1 —n
lim —— = lim (14— el
n— 00 (n—|—1> n— 00 n

Hence the series converges absolutely for |z| < e. The radius of convergence is p = e.
At x = =+ e, the series diverges, since the n-th term does not approach zero. This follows
from the fact that

. nle™
lim ——M =1.

n—00 NN, /27'('71/

10. We have f(x) = e, with f™(x) = e”, for n = 1,2, ---. Therefore £ (0) = 1.
Hence the Taylor expansion about z, = 0 is

00
e.”L' — §
n=>0

| 8

n
| .

3

Applying the ratio test,

, Inlz™ | 1
Iim ——— = 1i
n—oo|(n+ 1)l z"| n—oomn + 1

|z| = 0.
The radius of convergence is p = <.

11. We have f(z) = x, with f'(z) =1 and f™(z) =0, for n = 2,---. Clearly,
f(1) =1and f'(1) = 1, with all other derivatives equal to zero. Hence the Taylor
expansion about x, = 1 is

r=1+(z—1).

Since the series has only a finite number of terms, the converges absolutely for all z .

14. Wehave f(z) =1/(1+2), f'(z) = —1/Q +2)% f"(z) =2/(1 +2)®,---
with f)(z) = (= 1)"n!/(1 +2)""", for n > 1. It follows that £ (0) = ( —1)"n!
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for n > 0. Hence the Taylor expansion about z, = 0 is

Applying the ratio test,

The series converges absolutely for |x| < 1, but divergesatxz = +1.

15. Wehave f(x) = 1/(1 — ), f'(z) = 1/(1 —x)*, f"(z) = 2/(1 — x)°,---
with £ (z) =n!/(1 —x)""", for n > 1. It follows that £ (0) = n!, forn > 0.
Hence the Taylor expansion about z, = 0 is

n=0
Applying the ratio test,
| 7L+1|
lim = lim |z| = |z|.
n— 00 | xn | n— 00

The series converges absolutely for |x| < 1, but divergesatxz = +1.

2/(1— ),
2)

=(-1 )an' for

16. Wehave f(z) =1/(1—x), f'(z) =1/(1 —:c) , f(x)
with £ (z) =n!/(1 —z)"*", for n > 1. It follows that (")
n > 0. Hence the Taylor expansion about z, = 2 is

L Y (a2

L—z n=>0

"

Applying the ratio test,

. n+1
lim ‘(x 2) ‘

B2 1 im |z —2| = |z — 2|
o (@2

The series converges absolutely for |z — 2| < 1, but divergesatz =1 and = = 3.

17. Applying the ratio test,
fim (2D
n— 00 | n:L‘"| n— 00

] = |].

The series converges absolutely for |z| < 1. Term-by-term differentiation results in
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o0
:Zn%”*l =1+4x+ 922+ 162> + ---
—1

Z (n—1) 2" =4 + 18z + 48z% 4+ 100z> + - --

Shifting the indices, we can also write

o0

Z (n+41)*z" and y”:Z(n+2)2(n—|—1)x”

n=>0

20. Shifting the index in the second series, that is, settingn = k + 1,

[e)e] [ee]
d a2t = a2
k=0 n=1

Hence

o0 o0 o0 o0

ket k k
g apaxt + E apx”tt = E ap " + E ak_la:
k=0 k=0 k=0

o0
k+1
:a1+2 ak+1—|—ak1 .

21. Shifting the index by 2, that is, setting m = n — 2,

o0

;n(n — Dayx i;
2

(m+2)(m+ 1)ayoz™

n+2)(n+ 1apoz".

22. Shift the index down by 2, that is, set m = n + 2. It follows that

n+2 __ m
§ Qp — E Ap—2T
m=2
0
- g Ap—2T
n=2

24. Clearly,
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0 o0 0
(1- xQ)Zn(n — Da,z"? = Zn(n — Dayx"™ Z n(n — 1)a,z".
n=2 n=2 =

Shifting the index in the first series, that is, setting k = n — 2,

o0

Zn(n — Dayz" % = Z(k + 2)(k + 1)ajo z*
n=2 k=0
= Z(n +2)(n+ 1)ay 22",
n=0
Hence
(1- xQ)Zn(n Ya,x Z n+2)(n+1)ay2z" — Zn Da, z".
n=2 n= =

Note that when n = 0 and n = 1, the coefficients in the second series are zero. So that

(1= nln — Daga™ = 3 [0+ 2)(n + Danes —nln — Dala”
n=2 n=0

26. Clearly,
o0 0 0 o0
Znan "4 Zan " = Znan 4 Zan "
n=1 n=0 n=1 n=0
Shifting the index in the first series, that is, setting k =n — 1,
o0 [e.¢]
Znan " = Z(k + 1)ak+1:ck.
n=1 k=0

Shifting the index in the second series, that is, setting k = n + 1,

00

_ k

ap T - Q1T .
k=1

n=0

Combining the series, and starting the summation atn = 1,

o0 o0 o0
E na, z" '+ x E a, " = E n+ 1ay1 + ap-1]z".

27. We note that
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oo [o¢]

o o
xZn(n —Da, 2" 2 + Zan "t = Zn(n — Da, "' + Zan z".
=9 n=>0

Shifting the index in the first series, that is, setting k =n — 1,

M]3

Zn(n —Dap,z" ' =Y k(k+ Dagp 2"
n=2

B
Il

1

[
M]3

k(k 4 1)ap 1zt

B
I

0

since the coefficient of the term associated with k£ = 0 is zero. Combining the series,

o0

o0 o0
T Zn(n - 1a, "2 4 Zan " = Z[n(n + Dap1 + aylz”.
n=>0 n=>0

n=2
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Section 5.2

1. Lety = ay + a1z + ax® + --- + a,z" + ---. Then

o0 [e.0]
Z (n—1Dayz"" :Z (n+2)(n+1)ay22".
= n=0

Substitution into the ODE results in
o0 o0
Z (n+2)(n+ Dayoz" — Z apz" =0
n=0 n=0
or

Z n+2)(n+1)ay2 —ay)z” =0.

Equating all the coefficients to zero,
(n+2)(n+1aps2 —a, =0, n=0,1,2,--

We obtain the recurrence relation

Qn
n - , :(Ll,Qf-n
B (e § ) R
The subscripts differ by two, so for £ =1,2,---
P a2k—2 _ a9k —4 _ _ ag
T 2k—1)2k  (2k —3)(2k — 2)(2k — 1)2k (2k)!
and
a e a2k71 e a2k73 — e — L
T ok(2k+ 1) (2k — 2)(2k — 1)2k(2k + 1) (2k +1)!°

Hence

0 1@k+1

oo .2k
Yy = ao tar) oo
DR it e

The linearly independent solutions are

r?  xt af
ylzao(l—l—a—kﬁ%—ﬁ—k ):aocoshx

B 2 2 B nh
Yo = G x—|—§+5 +F+ =a18tnhx.
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4. Lety = ay + ax + ax> + --- + apx™ + ---. Then
[e.¢] 0
Z (n—1)a,z" :Z (n+2)(n+ 1)a,2z".
n= n=0
Substitution into the ODE results in
o0
Z (n 4 2)(n + Day 22" + k*x QZanx =0.
= n=0
Rewriting the second summation,
o0
Z n+2)(n+ a2 x" +Zk¢ an_o " =0,
n=>0 n=2
that is,
o
2a9 +3-2a3x + Z [(n+2)(n+ 1agss + k*ap_o]z" = 0.
n=2
Setting the coefficients equal to zero, we have ay = 0, a3 =0, and
(n+2)(n+ Daps + k*a,_ o =0, for n=2,34,--
The recurrence relation can be written as

k2an—2
= — , n=23.4,-
Int2 mt2)n+r1)’ "

The indices differ by four, so a4, ag, a,,,--- are defined by

k2a0 k2a4 k2a8
4= — ——,08= — ——,0)p = — —(———
4 4.3 "8 8.7 " 12-11°
Similarly, a5, a9, a,3,--- are defined by
k2a1 k2a5 k2a9
ar = — ———, Qg = — —— , Qi3 = —
’ 5.4° 7 9.8 " 13-12°

The remaining coefficients are zero. Therefore the general solution is

kQ 4 k4 8 kﬁ 12
— 1— 2 _ .
Y “O{ 13" T8 743" "2nsr4a3 T }+
+a’1[x_5_4x T9 854" " 1312.9.84.4" +}

Note that for the even coefficients,
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k2a4m—4
m= - — =1,2,3,---
“ (4m—Dam>
and for the odd coefficients,
k2a4m73
m = - —, :1,2,37"'
(Hm-+1 dm(@m+1)°

X (
- Z: T (4m+3)(4m+4)

B 0 (_1)m+1(k2x4)m+1
p(z) =2 1+Z4.5.8.9---(4m+4)(4m+5)

6. Lety = ay + a,x + axx® + --- + a,z" + ---. Then

[0.9] o
= E na,T E (n+ Day1z"
n=1 n=>0

and

:i (n —1)a,a” :in—i—2 Y(n 4+ Dagyox".

n=

o

Substitution into the ODE results in

o0

o0 o0
(2 + xz)z (n+2)(n+1)ay22" — :L’Z(n + Dapz" + 42 a,z" = 0.
n=0 n=0 n=0

Before proceeding, write

o o
Zn—I—Z Dayiox Z (n —1)a,z"

and

o0
E n+1 aon = E n T
n— n=1

It follows that

o0

dag + 4as + (3a1 + 12a3)x Z (n+2)(n+1)ap2 +n(n — 1a, nan—|—4an]xn =0.
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Equating the coefficients to zero, we find that ay = — ag, a3 = — a1/4, and

n?—2n+4
2(n+2)(n+1)

The indices differ by two, so for £k =0,1,2,---

Apy2 = — ap , 7’L:0,1,2,"'

o (2k)? — 4k + 4 .
HET T o0k+2)(2k+1)
and
(2k +1)* — 4k + 2
agk+3 = —

2(2k + 3)(2k + 2) "

Hence the linearly independent solutions are

4 :L‘6

X
—1— -
()— IL‘_3+7_£L‘5 19:1:7_1_
P =T T 160~ 1920

7. Lety = ay + a1z + axx® + --- + a,z" + ---. Then

o0 o
:Z na,x"" :Zn—l—lanﬂx

=0

3

and
o 0
Z (n—1)a,z" :Zn+2(n+1)an+2x
= n=
Substitution into the ODE results in

i n+2)(n+1)ayoz" —I—xz (n+ 1Da 12" +22an:1: =0.

First write

o0

o.¢]
QJ'Z(TL + Day12" = Zn apx".

n=0 n=1

We then obtain

o0
2a9 + 2a¢ + Z[(n +2)(n+ 1)ay2 + na, + 2a,]z" =0.

n=1
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It follows that as = — ap and a2 = —a,/(n+1),n=0,1,2,---. Note that the
indices differ by two, so for k =1,2,---
a = — a2k—2 = A2k—4 — ces — ( _ 1)ka0
2 2k —1  (2k—3)(2k — 1) 1-3-5---(2k —1)
and
o oamer ays (= Dfa
A2k+1 = — = == :
2k (2k —2)2k 2.4-6--(2k)
Hence the linearly independent solutions are
2 4 6 0 n, on
x x x (- 1"z
n(@) 1713 135 +nzll 3-5--(2n—1)
3 5 7 % n_on+1
x x x (- 1"z
(@) =z -5+ 5 - 2-4-6+"'_x+;2-4-6---(2n)'
9. Lety = ay + a1z + axx® + --- + a,z" + ---. Then
:Znan Z n—|—1 an+1£C
n=1 n=>0
and
Z Dayz (n+2)(n+1)ay2z"
n= n=0
Substitution into the ODE results in
(1 —|—;1;2)Z (n+2)(n+1a,22" —43:2 n+ 1)a, 12" +62 axz” =0.
n=>0 n= n=>0

Before proceeding, write

o0

in—l—Z Dayox Z (n —1a,z"

and

It follows that
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o0
6ag + 2as + (2a1 + 6az)x + Z [(n +2)(n+ Dapgo + n(n — Da, — 4na, + 6a”]$n =0.
n=2
Setting the coefficients equal to zero, we obtain as = — 3ag, a3 = — a1/3, and
(n—2)(n - 3)

Qpy2 = — Ay, n:0,1727""

(n+1)(n+2)

Observe that for n = 2 and n = 3, we obtain a4 = a5 = 0. Since the indices differ by
two, we also have a,, = 0 for n > 4. Therefore the general solution is a polynomial

y = ag + a1 — 3agxr® — a12°/3.
Hence the linearly independent solutions are

yi(r) =1—32> and y(z) =z —2°/3.

10. Lety = ay + a1z + ax® + --- + a,z" + ---. Then
o
Z (n—1Dayz"" :Z (n+2)(n+1)ay22".
= n=0
Substitution into the ODE results in
o
( — 22 Z (n+2)(n+ a2 x" —I—QZanx =0.
n=0 n=0

First write
a:QZ (n+2)(n+ Day22" = Z n(n —1)a,z"
n=0
It follows that

2ag + 8as + (2a1 + 24a3)x + Z [4(n+2)(n + Va2 — n(n — 1)a, + 2a,]x" = 0.

We obtain as = — ag/4,a3 = —ay/12 and
4(n+2)apio =(n—2)a,, n=0,1,2,---.

Note that for n = 2, a4, = 0. Since the indices differ by two, we also have as;, = 0 for
k =2,3,---. On the other hand, for k = 1,2, ---,

(2k — 3)a2k_1 . (2k' — 5)(2k — 3)a2k_3 o — a

42k +1) 422k -1)(2k+1) 4Rk —1)(2k+1)°

a2k+1 =

Therefore the general solution is
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$2 00 x2n+l
Yy =ay+ ax —ay—

4 alnzlzw(m —1)(2n+1)"

Hence the linearly independent solutions are y,(z) = 1 — z?/4 and

2n+1

T o0
B =T =5 -9 T T Z Cn—-1D)@n+1)

11. Lety = ay + a1z + aa® + --- + a,z" + ---. Then

o0 o0
y' = E na,x"” E (n+ Da,qz"
n=1 n=0
and

= Z n(n —1)a,z"? = Z(n +2)(n+ 1)ayi92".
n=2

n=

o

Substitution into the ODE results in

oo o
Zn+2 (n+ 1Day2z" — Zn—klanﬂx —Zanm =0.
= = n=>0

Before proceeding, write

o0
QZ (n+2)(n+ a2z Z (n—1)a,z"
n=0 n=
and
o0 o0
QJ'Z(TL + Day12" = Zn apx".
n=20 n=1
It follows that
o0
6as — ap + ( — 4ay + 18as)x + Z [B(n +2)(n + 1)ay2 — n(n — a, — 3na, —a,)z" = 0.
n=2

We obtain ay = a¢/6, 2a3 = a1/9, and
3(n+2)apo =(n+1)a,, n=0,1,2,---
The indices differ by two, so for £ =1,2,---

. <2k— 1)a2k_2 . (2k—3)(2k— l)agk_4 o 3'5"'(2]6— 1)&0
T30 0 322k—2)(2k) 3F-2-4---(2k)

and
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(2k)agk—1 (2k — 2)(2k)agk—3 2:4-6---(2k) ay
a = = — .
P32k + 1) 322k — 1)(2k + 1) 35.3-5---(2k + 1)

Hence the linearly independent solutions are
x?  at 5af X 3-5---(2n — 1)z
nw) =1+t o T +nzl 37-2-4--(2n)
223 8x° 1627 X.2-4-6---(2n) x>t
velr) =2+ 5=+ 13+ ot +"'_x+z3 35-(2n+1)

n=1

12. Lety = ay + a1z + ax® + --- + a,z" + ---. Then

0 0
y/ = Z nanm”_l = Z(’I’L + 1)an+1:c”

n=1 n=0

and

[e.¢] 0

Z n(n —1)a,z" * = (n+2)(n+1)a,2z".

n= n=0

Substitution into the ODE results in
o0 [e.0] o0
(1-— :I?)Z (n+2)(n+ Dagox" + :I:Z(n + Dap1z" — Z apz” =0.
n=0 n=0 n=0
Before proceeding, write
o o

x Z (n+2)(n+ 1ag22" = Z(n + Dnayz”

n=>0 n=1

and

o0 o0
x E (n+ 1a,12" = E na,x"
n=0 n=1

It follows that

2a9 — ap + Z [(n+2)(n+ Dapi2 — (n+ Dnaysr + na, —ay)z" = 0.
n=1
We obtain as = ay/2 and
(n+2)(n+1aps — (n+1)napm + (n—1)a, =0

for n =0,1,2,---. Writing out the individual equations,
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3-2a3——2-1a2::0
4-3a4—3'2a3+a2:0
5-4da5—4-3as+2a3=0
6-5a6—5~4a5+3a4=0

The coefficients can be calculated successively as a3 = a¢/(2-3), ay = a3/2 — ay/12
= ap/24, a5 = 3a4/5 — a3/10 = ao/120, ---. We can now see that forn > 2, a,, is
proportional to ag. In fact, forn > 2, a, = ag/(n!). Therefore the general solution is

a ZE2 a 1133 a 334

o T3 T

y=ay+ax+

Hence the linearly independent solutions are y,(z) = x and

x)zl%—ii—?.
n=2"""

13. Lety = ay + a1,z + a2’ + --- + a,z" + ---. Then

o0 o0
y' = Z na,z" ' = Z(n + Dap1z"
n=1 n=0
and
o0 o
Z (n — Dayz"™ =Zn+2(n+1)an+2x

o

n=

Substitution into the ODE results in

2 Z (n+2)(n+ 1apo 2" + $Z(TL + Day, 2" + BZ ap,z” =0.
n=0

n=>0 n=>0

First write

[e.¢] o0
x E (n+ 1Da,12" = E na,x"
n=0 n=1

We then obtain

4das + 3ag + Z[Q(n +2)(n+ 1)ayi2 +na, + 3a,]z" =0.
n=1

It follows that as = — 3ay/4 and
2(n+2)(n+ Dayo+ (n+3)a, =0
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forn =0,1,2,---. The indices differ by two, so for k =1,2,---
(21{? —+ 1)@2]@,2 . (2]{3 — 1)(2]{3 —+ 1)@2]@,4

G T T 90k — 1)(2k) | 22(2k — 3)(2k — 2)(2k — 1)(2k)
(=135 (26 + 1)
- ok (2k)! o
and
a _ (2]{3 + 2)&2]@,1 _ (2k)(2]€ + 2)a2]€,3 _
bt 2(2k)(2k +1)  22(2k—2)(2k— 1)(2k)(2k + 1)
(DM 6ER)RE )
2k (2k +1)! b
Hence the linearly independent solutions are
3 5 7 — ~(2n+1)
—q1_2232 4 O 2n
n(@) = 1= gat o+ goat = g+ nzo on ( 2n) ’
_ s, 15 7 _ ~(—1)"-6--2n+2) 5,4
A R TR 2 9" (2n + 1)
15(a). From Prob. 2, we have
x 113'2” x 2nn!$2n+l
= — and yo(x) =
;]2 n = 2n+1)

Since ayp = y(0) and a; = y'(0), we have y(z) = 2y,(x) + yo(z). That s,

1 1 1 1
y(z) :2—|—:z:—|—x2—|—§a:3—|— Zx4—|—1—5x5+ ﬁxﬁ—i—m.
The four- and five-term polynomial approximations are
pr=2+z+z°+2°/3
ps=2+z+2*+2%/3+2"/4.
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Partial Sums - p4 is solid

408 06 04 02 02 04,06 08 1

(¢). The four-term approximation p, appears to be reasonably accurate (within 10%)
on the interval |z| < 0.7.
17(a). From Prob. 7, the linearly independent solutions are

-1 nx2n

00 ( )
() :1+;1.3.5...(2n—1)

Since ayp = y(0) and a; = y'(0), we have y(z) =4y, (x) — yo(z). That s,
1 4

1 4
:4_ _42 =3 -4 -5 76
y(z) r —4x” + 5% + 3% g% T % +

The four- and five-term polynomial approximations are
1
p4:4—33—4x2+§x3

1 4
p5:4—x—4x2+§x3+§:134.
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Partial Sums - pd is solid

A 05 05 04 02 02 04,06 08 1

(c). The four-term approximation p, appears to be reasonably accurate (within 10%)
on the interval |z| < 0.5.

18(a). From Prob. 12, we have

oo xn
p(e)=1+3 0 and (o) ==,
n=2""

Since ap = y(0) and a; = y'(0), we have y(x) = — 3y, (z) + 2y,(x). Thatis,
3 1 1 1 1
- _ 2 22 -3 -4 5 6
ylo) = =3+ 20— ga” = 5w — g = 5%~ 5pp”

The four- and five-term polynomial approximations are

3 1
P4 = —3+2$—§$2—§$3

3 1 1
ps = —3+2x—§x2—§x3—§x4.
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Partial Sums - pd is solid

A4 708 04 D02040608 11214
H

(c). The four-term approximation p, appears to be reasonably accurate (within 10%)
on the interval |z| < 0.9.

20. Two linearly independent solutions of Airy's equation (about x, = 0) are

o 3n

yi(z) = 1+22~3---(3n— 1)(3n)

371+1

T Z 3.4---(3n)@Bn+1)
Applying the ratio test to the terms of y, (),
2-3--3n — 1)(3n) 2*" 3| 1

lz> = 0.

li =1
n5o]2-3--(3n + 2)(3n + 3) 23] noo (3n + 1)(3n + 2)(3n + 3)

Similarly, applying the ratio test to the terms of y,(x),

|3-4---(3n)(3n + 1) z*" ™| , 1
lim =

— 1 5=0.
R o POt g gy e R v o e

Hence both series converge absolutely for all x .

21. Lety:a0+a1x+a2x2+---+anx”+---. Then

00 00
y/ = Z nanx Z n + 1 (17,+1.717

n=1 n=>0

and
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o0 o
Z (n — Dayz"™ =Zn+2(n+1)an+2x

n=0
Substitution into the ODE results in
(0.0
Z (n+2)(n+ a2 2" —2932 (n+1ay 12" +)\Zanaz =0.
= n=>0 n=0

First write

[e.¢] o0
x E (n+ 1a,12" = E na,x"
n=>0 n=1

We then obtain

2a, +)\a0+2[(n+2)(n+ Va2 —2na, + Aa,)z" =0.

n=1
Setting the coefficients equal to zero, it follows that

(2n — \)
(nt+ Dn+2) "

Ap4+2 =

for n =0,1,2,---. Note that the indices differ by two, so for k =1,2,---
(4k —4 — )\)CLQ}C,Q . (4]€ —8— )\)(4]6 —4 — )\)agk74 .

as = (2k —1)2k  (2k —3)(2k — 2)(2k — 1)2k
B 1k)\...(/\_4k;+8)()\—4k+4)
= (-1 (2k)! -

and

@k —2—-XNag1  (4k—6—-N)(4k —2— Nag-—3

GRS TRk 1 1) (k—2)@k—12k@k+ 1)
A2 (A -k 4 6N — 4k £ 2)
=(=1 2k + 1) o

Hence the linearly independent solutions of the Hermite equation (about x, = 0) are

A(A—4 AA—=4)(A—8
2 A0 MO0

Yo(r) =2 — )\?)_!251:3+ ()\_2;(!)\_6)335 _ =2 ;!6)()‘_ 10)$7+

(b). Based on the recurrence relation
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(2n — )
(n+D(n+2) ™

Qpy2 =

the series solution will terminate as long as \ is a nonnegative even integer. If A = 2m,
then one or the other of the solutions in Part (b) will contain at most m/2 + 1 terms. In
particular, we obtain the polynomial solutions corresponding to A = 0,2,4,6, 8,10 :

A=0 |wyl(z )—1

A=2 | (@)=

A=4 yl(:v)—l—Qx

A=6 |y(x)=x—22%/3

A=8 |y(x)=1-42>+ 42/3
A=10 | yo(x) = ¢ — 423 /3 + 425 /15

(c). Observe that if A = 2n, and ag = a; = 1, then

p2n---(2n — 4k 4+ 8)(2n — 4k + 4)

aze = (= 1) (2h)!

and

r(2n—2)---2n —4k+6)(2n — 4k + 2)
(2k + 1)! ’

fork =1,2,---[n/2]. 1t follows that the coefficient of 2", in y, and y,, is

agprr = (—1)

(—1)]“2““)' for n = 2k

(—l)k(ifl') for n =2k + 1

Ay =

Then by definition,

Hn(x) = { (- ) 2 Ejkk)' yl('%.) =(- 1)k %yl(ﬂf) for n = 2k

(— 0 2 S () = (- ) 26 () for n =2k + 1

Therefore the first six Hermite polynomials are

= 162* — 482% + 12
= 322° — 1602° + 120z

23. The series solution is given by
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1 1 1 1
y(ill')=1—|-—£lj2—|— 4 6 8_‘_.__

2 92917 T osgt Tt iy
Partial Sums

?_

6_

54

24. The series solution is given by

4 :IZ'G .%'8

X
1?4 24
y() Tt T30 120"

Partial Sums
2_

N R

25. The series solution is given by

3 5 7 9

(@) =c— %+ 5 +
y\aw == 2.4-6-8

x
2 2-4 2-4-6
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Parttial Sums
2_

26. The series solution is given by

3 5 $7 x9

12 240 2240 16128

Partial Sums
1.4

1.2

0.5
0.6+
0.44
0.24

2
0.4
06
087

| RE
é=_// -1.24

-1.44

27. The series solution is given by

(x)—l_x_4_|_x_8_ le +
YW =27 19 T 672~ 88704
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Partial Sums
1.2

+
0.8
0.6
0.4

0.2

-0.21

‘—h_‘_____r\i\_
5]

0.4

28. Lety = ay +a;x + ax® +--- +a,z" + ---. Then

o0 o0
y' = E na,x"” E (n+ Da,qz"
n=1 n=>0
and

= Z n(n —1)a,z"? = Z(n +2)(n+ 1)ay192".
n=2

n

o

Substitution into the ODE results in

o0

o
1—xz (n+2)(n+ 1ag2x" +xz n+ 1)a, 12" 2Zanx”:().

= n=0
After appropriately shifting the indices, it follows that

205 — 2a0+ Y _ [(n+2)(n + D)ansa — (n+ D)nanss + na, — 2a,)2" = 0.

n=1
We find that as = ag and
(n+2)(n+1)ap2 — (n+1)nays + (n—2)a, =0
for n =1,2,.--. Writing out the individual equations,

3'2@3—2'10,2—0,1:0
4-3a4—3-2a3:O
5-4a—4-3a4+a3=0
6-5a¢—5-4a5+2a4=0

Since ag = 0 and a; = 1, the remaining coefficients satisfy the equations
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3:-2a3—1=0
4-3a4—3-2a3=0
5-4da5—4-3a4+a3=0
6-5a¢—5-4a5+2a4=0

Thatis, a3 = 1/6,a4 = 1/12,a5 = 1/24,a¢ = 1/45,---. Hence the series solution
of the initial value problem is

1 1 1 1 13
yr)=z+ —2* + —a'+ =2 + —2f +

[ 7 .« oo
6 12 24" T 15 008" T

Partial Surns
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Section 5.3

2. Let y = ¢(x) be a solution of the initial value problem. First note that

y" = — (sinx)y’ — (cosx)y.

Differentiating twice,
n

— (sinx)y" —2(cosx)y’ + (sinx)y

iv "o

y" — (sinx)y

Given that ¢(0) = 0 and ¢’(0) = 1, the first equation gives ¢”(0) = 0 and the last
two equations give ¢”’(0) = —2and ¢*(0) = 0.

3(cosx)y” + 3(sinz)y’ + (cosx)y.

3. Let y = ¢(x) be a solution of the initial value problem. First write

w_ 14z, 3inz
y" = y' - —v.
x? x
Differentiating twice,
—1
y" = — [(z+2*)y" + Bzlnz —z —2)y’ + (3—6Inz)y].

1
y = — [(1’2 +2¥)y" + (32°Inz — 22 — da)y" +
x
+ (6 +8x — 12zilnz)y’ + (18Inx — 15)y].

Given that ¢(1) = 2 and ¢'(1) = 0, the first equation gives ¢" (1) = 0 and the last
two equations give ¢"’(0) = — 6and ¢"(0) = 42.

4. Let y = ¢(x) be a solution of the initial value problem. First note that

y" = —x*y’ — (sinz)y.
Differentiating twice,
y" = —2%y" — 2z + sinz)y’ — (cosx)y
y" = —2ty"” — (dx + sinzx)y” — (2 + 2cosx)y’ + (sinx)y.

Given that ¢(0) = ag and ¢'(0) = a4, the first equation gives ¢"”(0) = 0 and the last
two equations give ¢"'(0) = — ag and ¢™(0) = — 4aj.

5. Clearly, p(x) = 4 and q(z) = 6x are analytic for all . Hence the series solutions
converge everywhere.

7. The zeroes of P(x) = 1 + 3 are the three cube roots of — 1. They all lie on the
unit circle in the complex plane. So for xy = 0, ppin = 1. For xy, = 2, the nearest
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root is €'™/3 = (1 + Z\/§> /2, hence poin = \/3 .

8. The only root of P(z) = x is zero. Hence pm = 1.

9(b). p(x) = —x and g(x) = — 1 are analytic for all x .
(¢). p(x) = —x and g(x) = — 1 are analytic for all z.

(d). p(z) =0 and g(z) = ka?* are analytic for all z .

(e). The only root of P(x) =1 —xis 1. Hence ppi, = 1.
(9). p(z) =z and gq(x) = 2 are analytic for all z .

(). The zeroes of P(x) =1+ % are 4. Hence ppi, = 1.
(7). The zeroes of P(z) =4 — x? are 2. Hence ppin = 2.
(k). The zeroes of P(z) = 3 — 2% are £1/3 . Hence poin = /3 .
(I). The only root of P(z) =1 —xis1. Hence py;, = 1.
(m). p(x) =x/2 and q(x) = 3/2 are analytic for all x .

(n). p(x) = (1+x)/2 and g(x) = 3/2 are analytic for all z .

12. The Taylor series expansion of e, about z, = 0, is
o0 ,'En
=D
n=0
Lety = ay + a;x + a,2® + -+ + a,x™ + ---. Substituting into the ODE,

poei

o0 0
Z(n+2)(n+1)an+2x" —l—xZanq:":O.
n=0

First note that

o0 [e.e]
x E a,x" = E Ap 12" = ayx + a18° + ayx® + -+ ap_ 2"+ -
n=0 n=1

The coefficient of " in the product of the two series is

1 1
12
(n—l)!Jr CL4(n—2)!

Expanding the individual series, it follows that

1
C, = 2agm + 6as +--+m+1Dnap + (n+2)(n+ 1apss .

2a5 + (2ay + 6a3)x + (ag + 6as + 12a4)2”* + (as + 6as + 12a4 + 20a5)z> + -+ +
+apx +az? +Faxd+---=0.
Setting the coefficients equal to zero, we obtain the system 2a, = 0, 2a, + 6as + a, = 0,

as + 6as + 12a4 + a1 = 0, ay + 6as + 12a4 + 20a5 + a3 = 0,---. Hence the
general solution is
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3 4 o 6
y(x) = ap+ a1z — ao% + (ag — al):f2 + (2a1 — ao) 0 <4a0 - al) 120

We find that two linearly independent solutions are

563 I4 Is
_1__ -
v(2) 6 "12 10 "
.%'4 .%'5 .%'6
yg(m)zx—ﬁ—}—%—@—}—

Since p(x) = 0 and g(x) = ze™ " converge everywhere, p = co

13. The Taylor series expansion of cos x, about x, = 0, is

o0
COST = E

Lety = ay + a;x + ayx® + -+ + a,z" + ---. Substituting into the ODE,

[i(_(;ii:!ﬁ] [i(n +2)(n+ Dapoz™| + f:nana:” — Qi apx =0.

n=0 n=0 n=1 n=0

n2n

The coefficient of x" in the product of the two series is
C, = 2a9b, + 6azb,—1 + 12a4b, 2+ -+ (n+ Dnap1br + (n+ 2)(n + Dayi9bo ,
in which cosx = by + byx + byx? + -+ + b,x" + ---. It follows that
o o0
2a9 — 2ag + Z cpx” + Z(n —2)ayz" =0.
n=1 n=1
Expanding the product of the series, it follows that

2ay — 2ag + 6azz + ( — as + 12a4)x* + ( — 3az + 20as)z® +

—a1x+a3w3+2a4x4+---=0.
Setting the coefficients equal to zero, as — ag =0, 6a3 —a; =0, —ay + 12a4 =0,
— 3as + 20a; + a3 = 0, --- . Hence the general solution is
(ac)—a+am+ax2+ax—3+a$—4+ax5+ax—6+ax—7+
YE) = GoF 1% 7 o 6 T2 T %60 T 120 T 560

We find that two linearly independent solutions are

4 xG

=1 -
Y (z) + 22 +12+120+
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:L’3 1175 $7
y( )—x+€+@+%+

The nearest zero of P(x) = coszisatx = /2. Hence pim = 7/2.

14. The Taylor series expansion of In(1 + x), about x, = 0, is

n(l+ x) i

n=1

n+1

Lety = ay + a,x + ayx® + --- + a,x" + ---. Substituting into the ODE,

n=00<J ( "+1 nz N
+ Z ]Zn-l— Japi1x" —J:Zanx =0.
n=1 n=0

The first product is the series
2ay + ( — 2ay + 6az)x + (ag — 6az + 12a4)2” + ( — ay + 6az — 12a4 + 20a;3)x> 4 - - - .
The second product is the series
a1z + (2a9 — (JL1/2)x2 + (3ag —as + a1/3)x3 + (4aq4 — 3a3/2 + 2a2/3 — a1/4)x3 +
Combining the series and equating the coefficients to zero, we obtain
2a9 =0
— 2a9 4+ 6as +a; —ag =0

120,4 - 6&3 —|—3CL2 - 3&1/2 =0
20a5 — 12a4 + 9a3 — 3a- +6L1/3 =0

Hence the general solution is

6

3 x? 75 5 T
y(z) _ao+a1x+(ag—a1)€+(2ao+a1)24 +aigs + ( 1—ao) TR

We find that two linearly independent solutions are

Xr
I
m@)=1+e+5 -5
() x3+x4+7x"+
)= — —+ — .
& 6 24 120

The coefficient p(x) = e”In(1 + z) is analytic at x, = 0, but its power series has a
radius of convergence p = 1.
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15. If y; = z and y, = x? are solutions, then substituting v, into the ODE results in
2 P(z) + 22 Q(x) + 2*R(z) = 0.

Setting = 0, we find that P(0) = 0. Similarly, substituting y; into the ODE results
in Q(0) = 0. Therefore P(z)/Q(x) and R(x)/P(z) may not be analytic. If they were,
Theorem 3.2.1 would guarantee that y, and y, were the only two solutions. But note
that an arbitrary value of y(0) cannot be a linear combination of 3, (0) and y,(0). Hence
xy = 0 must be a singular point.

16. Lety = ay + a;x + a,x® + --- + a,x" + ---. Substituting into the ODE,

00 00
Z(n + Dayp " — Z apz” =0.
n=0 n=0

That is,
S [(n+ Dt — agla” =0,
n=0

Setting the coefficients equal to zero, we obtain

Qn
Qpy1 =
T T
for n=0,1,2,---. Itis easy to see that a,, = ag/(n!). Therefore the general solution

1S
1 (EQ xS
y(w)—ao +l’+§+§+

= ape”.

The coefficient ay = y(0), which can be arbitrary.

17. Lety = ay + a,x + ayx® + -+ + a,z" + ---. Substituting into the ODE,

[e.0]
(n+ 1Dap4 2" — :UZ a,z" = 0.
0 n=0

1

3

That is,

in-i—l Yani1 " —Zan " =0.

n=1

Combining the series, we have
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ay + Z[(n + Dayi1 —ap—1]z" =0.

n=1

Setting the coefficient equal to zero, a; = 0 and a1 = ap—1/(n+1) forn =1,2,---
Note that the indices differ by two, so for £k =1,2,---

Qs = e A2k 4 .
T2k T (2k — 2)(2k) 2. 4--(2k)
and
asgp4+1 = 0.

Hence the general solution is

B . 2 564 32‘6 x2n
e e T S TR F TR Tr B
= apexp(z*/2).

The coefficient ap = y(0), which can be arbitrary.

19. Lety = ay + ;= + axx® + --- + a,x" + ---. Substituting into the ODE,

1—J:Zn+ Apiq T —Zan =0.
= n=0

That is,

Combining the series, we have

[e.0]
a1 —ag + Z[(n + Dap1 —na, —ay]z" =0.
n=1

Setting the coefficients equal to zero, a; = ag and a,+1 = a, for n =0,1,2,---
Hence the general solution is

y(z) =a[l+a+2>+2°+ - +2" + -]
1
1—2z

= aO
The coefficient ag = y(0), which can be arbitrary.

21. Lety = ay + a1z + a,x® + --- + a,2" + ---. Substituting into the ODE,
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o0
(n+1)an+1x"+x2ana¢”:1+x.
0 n=0

I M8

<

3

That is,

o0

Z (n+ a1 2" + Zan ' =1+z.

- n=1
Combining the series, and the nonhomogeneous terms, we have
o0
(e — 1)+ (2a2 +ag — 1)z + Z[(n + Day1 +ap1] 2" =0.
n=2

Setting the coefficients equal to zero, we obtaina; = 1, 2as + a9 — 1 =0, and

Ap—2

ap = — , n=34,--
n
The indices differ by two, so for £ = 2,3, ---
R = S (—1)]971@2: (= 1)(ap—1)
2 (2k) — (2k — 2)(2k) 4.6---(2k)  2-4-6---(2k)
and for k =1,2,---
" I B a2k—3 _ (— 1)
2h (2k+1)  (2k—1)(2k+1) 3.5--(2k+1)
Hence the general solution is
() n +1—a02 x3+ x4+935 0
r)=a+T+—F]—2" — —a —
Y 0 2 3 9291 T35 W93
Collecting the terms containing ay,
z? x? x0
y<x):“°[1_?+ﬁ_23—m+"' *
x2 $3 I4 $5 $6 $7
+[x+§_§_222!+3-5+233!_3-5-7+"']'

Upon inspection, we find that

$2 x3 $4 $5 $6 $7
— —2%/9 - _ .
y(x) = agexp( x/)+{x+2 5 2221 "3.5 731 3.5.7 " }

Note that the given ODE is first order linear, with integrating factor u(t) = ¢’ /2. The
general solution is given by
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y(z) = ex2/2/ e“du + (y(0) — e ™ /2 4+1.
0

23. Ifa =0, then y,(x) = 1. If @ = 2n, then ay,, =0 form > n+ 1. Asaresult,

=1

a=0]|1
a=2]1-23z2
a=4 1—103:2—}—%:134

If a« =2n+ 1, then a9y, 1 =0 form >n+ 1. Asaresult,

=1

|4
a=3|x— 3w

a=5|x— 4 Uy

3 5

24(a). Based on Prob. 23,
a=2|1-32> ()= —2
a=4 1—10:132-1—?})—51'4 yl(l)zg

Normalizing the polynomials, we obtain

P()(JJ) =1
1 3
Pz(l’): —§+§I2
3 15 39

Py(x) = 3 Z:/r:2 3 z?
a=1|=z y(l) =1
a=3|x %x‘g (1) = — %
a=5|z- Y+ 255 | yp(l)=32

Similarly,
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P(z)=1=z
3 )
Pg(.’]f) = — §.T+ 5[133
15 35 63 -
Py(z) = e ng + gl‘o
(b).
Legendre Palynomials
1
0.5
0B

(¢). Py(z) has no roots. P,(z) has one root at x = 0. The zeros of P,(x) are at
r=4 1/\/§ The zeros of Py(x) are z = 0,4+/3/5 . The roots of P,(x) are given

by 2? = (15 + 2\/%) /35, (15 — 2\/%) /35 . The roots of P;(x) are given by

2 =0 and 22 = (35+2\/%)/63, <35 - 2\/%)/63.

25. Observe that

(—1)" &2 (= 1D)f@n -2k
20 £~k I(n— k)l(n — 2k)!
= (= 1)"Py(1).

Pn(_l) =

But P,(1) = 1 for all nonnegative integers n.

27. We have

" n _ 1)71,—kn!
(CCQ . 1) — ( ka"
= kl(n—k)!

which is a polynomial of degree 2n. Differentiating n times,

" t(—1)""n!
ddxn (:I?2 - 1)” = Zﬂ%(?k)@k — 1)- --(2]{ —n+ 1);52/67”,

in which the lower index is ;1 = [n/2] + 1. Note thatif n = 2m + 1, then py = m + 1.
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Now shift the index, by setting

Hence

dTL

—1
dx™ x

Based on Prob. 25,

k=n-—j.

J

2])(27’L — 27— 1)(7’L —2j+ 1)xn—2j

2n— 27)!
(n — 2j)!

n—2j

(/2]
Z

dn

dxm

(z* — l)n =nl2"P, (z).

29. Since the n + 1 polynomials F,, P, ---, P, are linearly independent, and the degree
of P, is k, any polynomial, f, of degree n can be expressed as a linear combination

x) = iakPk.(x)
k=0

Multiplying both sides by P, and integrating,

Based on Prob. 28,

Hence

/_1f(:v)Pm(x)d:z: = ;}ak/_lpk(flf)Pm(:v)dx.
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Section 5.4

2. We see that P(z) = 0 whenx = 0 and 1. Since the three coefficients have no
factors
in common, both of these points are singular points. Near x = 0,

2

limz p(z) = lim :/zr:—:l;2 =2.

x—0 z—0 3;2(1 — .T)

. 2 . 2 4

limr“g(z) = lim2° ———— = 4.

x—0 x—0 $2(1 — x)

The singular point « = 0 is regular. Considering x = 1,
2x

lim(z — 1)p(z) =lim(z — 1) ——— .
lim(e = Dp(e) = lim (7 = 1) =

The latter limit does not exist. Hence x = 1 is an irregular singular point.

3. P(x) =0whenz =0 and 1. Since the three coefficients have no common factors,
both of these points are singular points. Near x = 0,

) . T —2
lime p(z) =M@ g0y -

The limit does not exist, and so x = 0 is an irregular singular point. Considering z = 1,

. . T —2

};IE}(CC — 1)p(x) :alrlg} (x — l)m =1.
lim(z — 1)%(z) = lim (z — 1)’ % _ =g
;,ILI}'T q(x —xlir%x 562(1_33)_ .

Hence = = 1 is a regular singular point.

4. P(x) =0whenz = 0and £ 1. Since the three coefficients have no common factors,
both of these points are singular points. Near z = 0,

2
li =limer——.
Ilil’(l)xp(:l]) xlir(l)xl‘g(l — 332)
The limit does not exist, and so = 0 is an irregular singular point. Nearz = — 1,
2
li 1 =1 1) —————-= —1.
xin;ll(x + Dp(z) P (z+ )x3(1 —z?)
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2
. 2 . 2
Jim, (@ +1)"g(e) = lim, (@ + 15—y = 0.

Hence x = — 1 is a regular singular point. Atz =1,

lim (2 — 1)p(z) = lim (z — 1)m 1.

. ) _ s 2
lim(z = 1)q(w) = lim (z = 1)" 57 —5y = 0-

Hence z = 1 is a regular singular point.

6. The only singular point is at x = 0. We find that

X
Ii =1 —=1.
limz p(x) = lim 2

2 _ 2
. . x*—v
limz?q(x) = lim z* = — V2,
z—0 z—0 T

Hence = = 0 is a regular singular point.
7. The only singular point is at z = — 3. We find that

lim (2 + 3)p(z) = lim (2 + 3)——

=6.
r——3 x——3 z+3

1 — 2

li 3)%q(z) = li 3)? =
Ig{lg(:z:%— ) a(z) xirzl3(x+ ) r+3

Hence x = — 3 is a regular singular point.

8. Dividing the ODE by z(1 — 2?)”, we find that

1 2
Pr) = gy and al) = 2(1+ 221 —2)

The singular points are at t = 0 and £1. For x = 0,

1
limzple) = limz 5
. 2 . 2 2
limz*g(x) = limx 5 5 =0.
z—0 =0 z(l14+2)°(1—2x)
Hence x = 0 is a regular singular point. Forx = — 1,
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: . 1 1
Jim, (o p() =lim, (@ + Doz = ~ 5
lim (z + 1)%¢(z) = lim (z + 1)° 2 !
im (x x)=Ilim (x = —
el ! r—-1 z(1+ :1:)2(1 — x)?’ 4
Hence x = — 1 is a regular singular point. For x = 1,
lim(z — 1)p(z) = lim (2~ 1)~ = —
lim(z — 1)%q(z) = lim (z — 1) 2
r—1 r—1 x(l + x)Z(l . 33)3

The latter limit does not exist. Hence x = 1 is an irregular singular point.

9. Dividing the ODE by (z + 2)*(z — 1), we find that
-2
(x+2)(x—1)

3
p(x) = m and q(z) =

The singular points areatx = —2and 1. Forz = — 2,

3
Iim (z +2)p(z) =lim (z +2)— .
Jim, 2)pla) = fim, (+2)

The limit does not exist. Hence x = — 2 is an irregular singular point. For x =1,

3
lim(z — Dp(z) =lim(x —1)—= = 0.
fim(z — Dp(e) = lim (7 = 1)

. 2 Y 12 —2 B
ilg}(x_l) q(x)_ilg}@ 1 (r+2)(x—1) =0

Hence x = 1 is a regular singular point.

10. P(z) =0whenz =0 and 3. Since the three coefficients have no common factors,
both of these points are singular points. Near x = 0,

lima p(z) = limz— " —
rzp(z) =limer——— = -.
z—0 P z—0 :L‘(3 — ZL‘) 3
limz?q(x) = lim 3:2_—2 =0.
z—0 z—0 x(?) — LE)

Hence = = 0 is a regular singular point. For z = 3,
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. . r+1
lim (2 — 3)p(x) = lim (z — 3)m = -

Lol W~

-2
lin(z = 3e) =lim (0 = 3)" ;=5 =0-

Hence x = 3 is a regular singular point.

11. Dividing the ODE by (2? 4+ x — 2), we find that

r+1 2
P = oo ™ = oee o

The singular points areatz = —2and 1. Forz = — 2,

r+1 1
li 2 =1l =-.
A, (@ +2)p(r) = lim, 777 = 3

. 2 o 2(z+2)

=0.

Hence x = — 2 is a regular singular point. For xz = 1,

rz+1 2
li -1 =1 = — .

. 2 T _
li(a — 1'ae) =l

Hence x = 1 is a regular singular point.

13. Note that p(x) = In|z| and ¢(x) = 3z . Evidently, p(z) is not analytic at z, = 0.
Furthermore, the function x p(z) = x In|z| does not have a Taylor series about x, = 0.
Hence x = 0 is an irregular singular point.

14. P(x) = 0 whenz = 0. Since the three coefficients have no common factors, z = 0
is a singular point. The Taylor series of e* — 1, about x = 0, is

" —1=x+2%/2+2%/6+---.

Hence the function = p(z) = 2(e* — 1)/x is analytic at x = 0. Similarly, the Taylor
series of e “cosx, about x = 0, is

e lcosr=1—ax+23/3—2"/6+ .

The function z2¢(z) = e “cos z is also analytic at x = 0. Hence z = 0 is a regular
singular point.
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15. P(z) = 0 when z = 0. Since the three coefficients have no common factors, z = 0
is a singular point. The Taylor series of sin x, about x = 0, is

sinw =x—2° /3! +2° /5 — .-,

Hence the function x p(x) = — 3sinx/x is analytic at z = 0. On the other hand, ¢(z)
is a rational function, with

51+ 22
2

,l.in%qu(x) =limx =1.

z—0 T
Hence x = 0 is a regular singular point.

16. P(xz) = 0whenz = 0. Since the three coefficients have no common factors, z = 0
is a singular point. We find that

li =li —=1.

Although the function R(z) = cot = does not have a Taylor series about = 0, note that
2?q(z) =z cotw =1—2%/3 — 2 /45 — 22°/945 — ---. Hence x = 0 is a regular
singular point. Furthermore, ¢(z) = cot z/x? is undefined at * = &= nn. Therefore the
points z = &+ n7 are also singular points. First note that

lim (zFnm)p(x) = lim (x:FmT)l =0.
T

r—Enm r—+nmT
Furthermore, since cot x has period 7,

q(x) = cotx/x = cot(x Fnm)/z

1
— cot .
cot(x F nm) EFnn) Lo
Therefore
(z Fnm)’q(z) = (x F nr)cot(x F n) [%] '
From above,

(z Fnm)cot(z For) =1 — (xFnn)?/3 — (x Fomr)' /45 — ..

Note that the function in brackets is analytic near x = £ nm. It follows that the function
(z F nm)?q(z) is also analytic near = + nar. Hence all the singular points are regular.

18. The singular points are located at x = £=nm, n =0, 1,---. Dividing the ODE by
x sinz, we find that 2 p(z) = 3cscz and 2°q(x) = x’cscx . Bvidently, x p(x) is
not even defined at x = 0. Hence z = 0 is an irregular singular point. On the other
hand, the Taylor series of = cscx, about x = 0, is
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rescx =14 2%/6 + T2*360 + - -
Noting that csc(x Fnw) = (—1)"cscx,
(x Fnm)p(x) =3(—1)"(x Fnr)cse(x Fnr)/x

— 3(= 1)"(a T nm)ese(z T nw) {m} .

It is apparent that (z F n7)p(x) is analytic at x = £ nr. Similarly,

(z Fnn)’q(z) = (@ Fnr)lesca
= (= 1)"(z Fnr)esc(z Fow),

which is also analytic at z = 4+ nm. Hence all other singular points are regular.

20. z = 0 is the only singular point. Dividing the ODE by 222, we have p(z) = 3/(2z)
and ¢(z) = — 27 2(1 4 x)/2. It follows that

3 3
limz p(z) = limzr— = 3

x—0 z—0 2T
o, —(+x) 1
fimea(o) = Mo 5 = 3

Hence = = 0 is a regular singular point. Lety = ag + a7 + a,x® + -+ + a,z" + -+ .
Substitution into the ODE results in

2x22 (n+2)(n+ 1ap42 " +3mz n+ 1Da,z" — (1 + ) Z =

n=0 n=0
That is,
o0
Z (n—1)a,z" —I—SZnanx — Zanx —Zan 1"
It follows that

[e.0]
—ag+ (2a1 — ap)x + Z 2n(n —1)a, + 3na, —a, — ap—1|z" =
n=2

Equating the coefficients to zero, we find that ag = 0, 2a; — a9 = 0, and
2n—1)(n+1)a, = ap-1, n=2,3,---

We conclude that a/l the a,, are equal to zero. Hence y(x) = 0 is the only solution that
can be obtained.

22. Based on Prob. 21, the change of variable, x = 1/¢, transforms the ODE into the
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form

2
§4d£‘7§+2§3—€+y—0

Evidently, ¢ = 0 is a singular point. Now p(§) = 2/¢ and ¢(£) = 1/£%. Since the value
of flin%SQq(f) does not exist, £ = 0, that is, z = 0o, is an irregular singular point.

24. Under the transformation x = 1/¢, the ODE becomes

o, 1\ d% sy L1 o 1| dy
&1 52 7 + [2¢8°( 1 & +2£§ d£+oz(a+1)y 0,

that is,
d?
(& —¢ )dé/ +2530l—5 tafa+1)y=0.
Therefore £ = 0 is a singular point. Note that
28 ala+1)
p(§) £-1 and ¢(¢§) = 2@ 1)
It follows that
lime p(6) = limé 7 = 0.
: a+1
limé?g(€) = lim ¢ &2 = —ata-+1).

Hence £ = 0 (x = 00) is a regular singular point.

26. Under the transformation x = 1/¢, the ODE becomes

g d§2 {2§3+2§2€]2—§+)\ =0,
that is,
5 de 2(£3+£)3—Z +Ay=0.
Therefore & = 0 is a singular point. Note that
) = 2 ana g = 3

It immediately follows that the limit %inéﬁ p(§) does not exist. Hence { =0 (z = 00)
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is an irregular singular point.

27. Under the transformation = = 1/¢, the ODE becomes

d?y dy 1
4 3
— + 20— —-y=0.
Therefore £ = 0 is a singular point. Note that
2 -1
p(§) = zand ¢(§) = —.
(€) ¢ (€) &
We find that
2
lim =limé- =2,
limg p(¢) fim&e
but

(=1
&

The latter limit does not exist. Hence £ = 0 (x = o0) is an irregular singular point.

li 2 — li 2
51335 q(¢) 513[1)5
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Section 5.5

1. Substitution of y = " results in the quadratic equation F'(r) = 0, where

Fir)y =r(r—1)+4r+2
=r’+3r+2.
The roots are r = — 2, — 1. Hence the general solution, for z # 0, is

Y= clx_2 + ¢ x L.

3. Substitution of y = 2" results in the quadratic equation F'(r) = 0, where

F(r)y=r(r—1)—3r+4
=72 —dr+4.

The root is » = 2, with multiplicity two . Hence the general solution, for x # 0, is

y = (c1 + ¢ In|z|) 2*.

5. Substitution of y = 2" results in the quadratic equation F'(r) = 0, where

F(r)y=r(r—1)—r+1
=72 —2r+1.

The root is » = 1, with multiplicity two . Hence the general solution, for = # 0, is

y= (a1 +elinlz|)x.

6. Substitution of y = (x — 1)" results in the quadratic equation F'(r) = 0, where
F(ry=r*+1Tr+12.
The roots are r = — 3, — 4. Hence the general solution, for z # 1, is

y=c(z—1 " +e@@-1)""

7. Substitution of y = z" results in the quadratic equation F'(r) = 0, where

F(ry=r*+5r—1.
The roots are r = — (5 + 29> /2. Hence the general solution, for x # 0, is

(5+\/@)/2 (5—\/5)/2.

y=cilz| + elz|

8. Substitution of y = z" results in the quadratic equation F'(r) = 0, where
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F(r)y=r*=3r+3.

The roots are complex, with r = (3 £ Z\/g ) /2. Hence the general solution, for x # 0,

1S

y = ¢ |z[**cos (@ ln|x|) + |z ?sin (@ ln|x|)

10. Substitution of y = (x — 2)" results in the quadratic equation F'(r) = 0, where
F(r)=r?+4r+8.
The roots are complex, with » = — 2+ 2¢. Hence the general solution, for x # 2, is

y=c (z—2)cos(2In|z — 2|) + co(x — 2) sin(2In|z — 2|).

11. Substitution of y = " results in the quadratic equation F'(r) = 0, where
Fry=r*4r+4.

The roots are complex, with r = — (1 +14/15 ) /2. Hence the general solution, for
x #0,1s

y = c |z| V2cos (@ ln|x|) + cg|:c|_1/23in(@ ln|x|)

12. Substitution of y = z" results in the quadratic equation F'(r) = 0, where
F(r)y=7r*—5r+4.
The roots are » = 1, 4. Hence the general solution, for x # 0, is

y:clx+02x4.

14. Substitution of y = z" results in the quadratic equation F'(r) = 0, where
F(r)=4r* 4+ 4r +17.

The roots are complex, with » = — 1/2 4 2i. Hence the general solution, for
x> 0,is

y=cz Ycos(2inz) + e, a2 sin(2In ).

Invoking the initial conditions, we obtain the system of equations
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C = 2
1
- — 2c,= —3
201 + 2¢y
Hence the solution of the initial value problem is

y(z) =227 2cos(2Inz) — 2 2sin(2In x).

40608 1 1214 TH18 2 22242628 3

As £ — 07", the solution decreases without bound.

15. Substitution of y = " results in the quadratic equation F'(r) = 0, where
F(r)y=7r*—4r +4.
The root is » = 2, with multiplicity two. Hence the general solution, for z < 0, is
y = (c, + ¢ In|z|) 2
Invoking the initial conditions, we obtain the system of equations

01:2
—201—02:3

Hence the solution of the initial value problem is

y(x) = (2 — Tin|z|) 2*.
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2.2

1.8
F1.6
1.4
1.2

.8
H.6
0.4
F0.2

A 0.8 06 0.4 02 0
We find that y(z) >0 asz—0".

18. Substitution of y = z" results in the quadratic equation 7> — r + 3 = 0. The roots
are

1+/1-48
5 .

If 3> 1/4, the roots are complex, with 7, = (1£14y/43 — 1) /2. Hence the general
solution, for x # 0, is

1 1
y=c \x|l/2003<§\/4ﬂ -1 ln|x|) + 02|x|1/28in<§\/46 -1 ln\x|)

Since the trigonometric factors are bounded, y(x)—0as x—0. If 3 = 1/4, the roots
are equal, and

r =

Y2 In|z|.

y=clz|'? + ||
Since limox/\x|ln|a:| =0, y(x)=>0as x—=0. If § < 1/4, the roots are real, with
r2 = (1£+/1—43)/2. Hence the general solution, for z # 0, is

y=c |$|1/2+V1_4ﬁ/2 + 02|m|1/2—\/1—4[3/2'

Evidently, solutions approach zero as long as 1/2 — /1 —4(3/2 > 0. That s,
0<p<1/4.

Hence all solutions approach zero, for g > 0.

19. Substitution of 3 = " results in the quadratic equation 7> — r — 2 = 0. The roots
are 7 = — 1, 2. Hence the general solution, for x # 0, is

Y= clx_l +c z2.

Invoking the initial conditions, we obtain the system of equations
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G +e=1
—c+2c =y

Hence the solution of the initial value problem is

2= 4 147
y(x) = 3 ¢ + 5 &

The solution is bounded, as x—0,1if v = 2.

20. Substitution of y = 2" results in the quadratic equation 72 + (o — 1)r +5/2 = 0.
Formally, the roots are given by

_l-a+ a? —2a—9
2

1—ai\/(a—1—\/ﬁ>(a—1+\/ﬁ)

5 .

(7) The roots 7, will be complex, if |1 — a| < /10 For solutions to approach zero,
as x—o00,weneed — \/ﬁ< 1-a<0.

(i7) The roots will be equal, if |1 — | = \/10 . In this case, all solutions approach
zeroaslongas 1 —a = — \/ﬁ

(iii) The roots will be real and distinct, if |1 — | > 1/10. It follows that

l—a+ Va2—2a-9
5 .

Tmaf, -

For solutions to approach zero, weneed 1 — a + vV a? —2a — 9 < 0. That s,
l-a< —+/10.

Hence all solutions approach zero, as z =00, aslongas a > 1.

23(a). Giventhat z = e?, y(x) = y(e®) = w(z). By the chain rule,

dy d () dw dz 1 dw
= —wE)=—— = - —.
dx dx dz dx T dz
Similarly,
By _drde] L 1dwa
dz?  dzx |z dz 2 dz 1z dz2? dx
1d_w 1 d*w

(b). Direct substitution results in
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22 dz?2 2?2 dz x dz o
that is,
d*w dw
—1)== =
7.2 + (« )dz+ﬁw

The associated characteristic equation is r? + (o — 1)r + 3 = 0. Since z = Inz,
it follows that y(x) = w(in x).

(c). Ifthe roots r, are real and distinct, then

y — 0167‘12 + 0267‘22
=2 + ",

(d). If the roots r, , are real and equal, then

y =c e+ cze'?
=cz"' +czlng.

(e). If the roots are complex conjugates, then r = X\ +ip, and

y = eM(cicos pz + ¢, sin pz)
= 2Me,cos(pinz) + ¢ sin(pln x)].

24. Based on Prob. 23, the change of variable x = e transforms the ODE into

d*w  dw
— — — —2w=0.
dz?2 dz
The associated characteristic equation is r> —r —2 = 0, withroots r = — 1, 2.

Hence w(z) = cie* + ,e?*, and y(z) = ¢,z ! + ¢, 2%

26. The change of variable x = e* transforms the ODE into

d*w dw .
The associated characteristic equation is > +6r +5 =0, withroots r = —5, — 1.
Hence w,(2) = c;e™* + c,e %, Since the right hand side is not a solution of the
homogeneous equation, we can use the method of undetermined coefficients to show
that a particular solution is W = e”/12. Therefore the general solution is given by
w(z) = cie™* + e % + 7 /12, thatis, y(z) = o '+ 270 + /12,

27. The change of variable x = e* transforms the given ODE into
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d*w dw 9z

The associated characteristic equation is r> — 37 +2 = 0, withroots r =1, 2.
Hence w,(z) = c,e* + c,e?*. Using the method of undetermined coefficients, let
W = Ae?* + Bze?* + Cz + D. It follows that the general solution is given by
w(z) = c;€* + c,e* + 3ze* + z + 3/2, that is,

y(z) = clx+cza:2+3x2ln:r+lnx+3/2.

28. The change of variable x = e* transforms the given ODE into

d*w 4 )
— W= sinz.
dz?

The solution of the homogeneous equation is w,(z) = ¢,cos 2z + c¢,sin 2z . The right

hand side is not a solution of the homogeneous equation. We can use the method of

undetermined coefficients to show that a particular solution is W = %sin z. Hence

the general solution is given by w(z) = ¢,cos 2z + c;sin 2z + 3sin z, that is,
y(z) = cicos(2Inx) + cysin(2inz) + 3sin(in).

29. After dividing the equation by 3, the change of variable x = e* transforms the ODE
into

The associated characteristic equation is v* + 37 + 3 = 0, with complex roots
r= — (3 +iy/3 ) /2. Hence the general solution is

w(z) = e 32 [c1c03<\/§z/2) + cgsin(\/gz/Zﬂ ,

and therefore

y(z) = x~%? [clcos (@ In x) + c23m<§ In :1:)]

30. Letx < 0. Settingy = ( — )", successive differentiation gives y’ = —r( — )
and y” = r(r —1)( — z)"*. It follows that

Li(=2)]=r( -1z - x)T_Q —arz(— x)7'_1 +6(—x)".

Since 2? = ( — x)°, we find that
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LI(=2)] =r(r=1)(=2) +ar(-z)"+6(—z)
=(—a)[r(r—1)+ar+7g.
Given that r, and 7, are roots of F'(r) = r(r — 1) + ar + 3, we have L[( — 2)"] = 0.

Therefore y, = (— x)"™ and y, = ( — x)" are linearly independent solutions of the
differential equation, L[y] = 0, forx < 0, as long as r, # r,.
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Section 5.6

1. P(xz) =0whenx = 0. Since the three coefficients have no common factors, z = 0
is a singular point. Near x = 0,

1 1
| =1 — = =
limz p(w) = lim 25> = 3
lima?q(x) = hm :1:21 =0.
x—0 —0 2

Hence = = 0 is a regular singular point. Let
o0
Yy = :I:T(ao + a4 ayx® + -+ apz” + ) = Zanx””

Then

o0
E 7"+7’L anl,rJrnfl
n=>0

and

o0

Z r+n)(r+n—1)a,z" "2

Substitution into the ODE results in

2 Z (r+n)(r+n—1a, 2™ + Z(r +n)a,x "+
n=0 —

o0
_|_ E anxT+’n+1 — O .
n=>0

That is,
o0
22(r+n)(r+n—1)an ”"-I—Z T+nanxr+”+2an 22" =0.
n=0 n=0 =
It follows that

agl2r(r — 1) +rlz" + a1 2(r + D)r +r + 1]x7'+1 +

_|_

Nk

2(r +n)(r+n—1a, + (r+n)a, +a, o]z =0.

n=2

Assuming that ay # 0, we obtain the indicial equation 2r* — r = 0, with roots r, = 1/2
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and r, = 0. It immediately follows that a; = 0. Setting the remaining coefficients
equal
to zero, we have

— ap-2

“E Rt 1 "

For r = 1/2, the recurrence relation becomes

— Ap—2

2 =23,
n(1+ 2n) "

Ay =

Since a; = 0, the odd coefficients are zero. Furthermore, fork =1,2,---,

— k2 agk—4 _ (—1)*aq

YT ORI+ 4k)  (2k—2)(2k)(4k —3)(4k + 1)  2FKI5-9-13---(4k + 1)

For r = 0, the recurrence relation becomes

— Qp—2

2 —92.3 ...
n(2n—1)° e

an =

Since a; = 0, the odd coefficients are zero, and for k = 1,2, ---,

— Qgp—2 A2k —4 B (—1)fag

2k(4k —1)  (2k —2)(2k)(4k —5)(4k — 1)  2+E!3-7-11---(4k — 1)~

Qg =

The two linearly independent solutions are

(_1>k 2k
yi(z) =z 1+22kkl5 9.13---(4k + 1)

1 (= 1)F g2
Yo(w) = +22kk'3 7-11---(4k — 1)

3. Note that z p(z) = 0 and x°q(x) = =, which are both analytic at z = 0. Set
y=12"(ay+ ayx + x4 - 4 apa” + --+). Substitution into the ODE results in

NgE

(r+n)(r+n—1a, 2™ + i a,x’ =0,
n=0

q
Il
o

and after multiplying both sides of the equation by =,

Zr-l—n (r+mn-—1a, T+"+Zan 1" =0.

n=1

It follows that
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ap[r(r —1)]z" + i [(r+n)(r+n—1a,+a, 1]z"" =0.

n=1

Setting the coefficients equal to zero, the indicial equation is r(r — 1) = 0. The roots
are r;, =1 and r, = 0. Herer;, — r, = 1. The recurrence relation is

— Qp—1 1.9
an = > M= 1,4,
(r+n)(r+n-1)
Forr=1,
— Qp—1
n — 5 _1727
¢ n(n+1)
Hence forn > 1,
S Qn—2 _ .- (=D
" nn+1) (n—1)n%(n+1) nl(n+ 1)

Therefore one solution is

5. Here x p(z) = 2/3 and z%q(x) = 2?/3, which are both analytic at x = 0. Set
y = 2" (ay + a1z + a,x® + -+ + a,x"™ + --+). Substitution into the ODE results in

32 (r+n)(r+n-—1a,2""" + 22 (r+n)a, ™" + Z apx™t? =0.
n=0 n=0 n=0
It follows that
ag[3r(r — 1) + 2r)z" 4+ a[3(r + 1)r + 2(r + 1)]z" +
+ 2[3(7“ +n)(r+mn—1)a, +2(r +n)a, +a, 2]z’ =0.
n=2

Assuming ag # 0, the indicial equation is 3r* —r = 0, with roots r; = 1/3,7r,=0.
Setting the remaining coefficients equal to zero, we have a; = 0, and

(r+n)[3(r;n) —1]°

an = n=223,--.
It immediately follows that the odd coefficients are equal to zero. Forr =1/3,

— Ap—2

=%, =23,
n(1+ 3n) "

Qn

Sofork=1,2,---,
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Qo = ——2h=2 G2k—4 _ (= 1)"aq
T 2k(6k+ 1) (2k — 2)(2k)(6k — 5)(6k+1)  2FkIT-13---(6k+ 1)

Forr =0,
— Gp-2
n= e =23,
¢ n(3n —1) "
Sofork=1,2,---,
I — Gok—2 A2k—4 _ (_1)ka0
2k 2k(6k — 1)  (2k —2)(2k)(6k —7)(6k —1)  2FK!5-11---(6k —1)°

The two linearly independent solutions are

_ 1 N (-1 2\
yi(z) = '/ 1+;k!7.13---(6k+1)(5)]

s (2D ey
yz(x)—1+;k!5.11...(6k_1)(?) '

6. Note that z p(x) = 1 and z%q(x) = x — 2, which are both analytic at z = 0. Set
y=12"(ay+ ayx + a4+ - 4 apa” + --+). Substitution into the ODE results in

o0

o
Z (r+n)(r+mn-1a,z"" + Z (r+mn)a, ™" +
n=0 n=0

o0 o0
+ Z apx T — 22 a7 =0.
n=0 n=0
After adjusting the indices in the second-to-last series, we obtain

aglr(r—1) 4+ r —2]z" + Z[(r—i— n)(r+n—Da, + (r +n)a, — 2a, + a,_i]z" " = 0.
n=1

Assuming ag # 0, the indicial equation is r* — 2 = 0, with roots 7 = & \/5 . Setting
the remaining coefficients equal to zero, the recurrence relation is

TS
(r+mn)”—2
First note that (7’+n)2—2: (r+n+ \/5)(7’+n—\/§>. Soforr:ﬁ,
4y = —— L =19

n<n+2\/§>
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It follows that

Qp =

and therefore

— 1"
(—1)%a n=1,2,-

n!(1+2\/§) <2+2\/§)---(n+2\/§) ’

— Ap—1
ap=——""1  n=1,2-,

n(n—2\/§>

—1)"
(= 1)a —1.2

a, =
n!

(e (o)

The two linearly independent solutions are

yi(z) ==

ys(x) = V2|1 +

7. Here zp(x) =1

NG N (—1)"a"
H; n!(1+2\/§) (2+2\/§)---<n+2\/§>_

S (-1

T (RPN | EEWC R CEw

—x and z%q(z) = — z, which are both analytic at x = 0. Set

y = 2"(ay + a1z + ayx® + -+ + a,x" + --+). Substitution into the ODE results in

o0
Z r+n)( r+n—1)anazr+"71+

After multiplying bo

r+n—1 _

M2

(r+mn)a, x
0

00 00
— E (7‘ + n)a” xr—i—n . § : anxr+n =0
n=0 n=0

3
|

th sides by =,

o
Z r+n)(r+mn-—1)a, ”"%—Z r+n)a, " —

n=0
00

0
} : et } : +nt
T—|—7’L a, Pl I anx7+” 1 _ 0.
n=0

After adjusting the indices in the last two series, we obtain
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ao[r(r —1) +rjz" + Z[(r +n)(r+n—1a, + (r+n)a, — (r+n)a, ]z " = 0.

n=1

Assuming ay # 0, the indicial equation is r*> = 0, with roots r, = r, = 0. Setting
the remaining coefficients equal to zero, the recurrence relation is

ap—1

a, = s 7@::1,27”.
" r+n
Withr =0,
an::an_l’ n::l,Z
n
Hence one solution is
2 n
_ T ¥ LT e
yl(x)—1+1!+2!+ +n!+ =e".

8. Note that x p(z) = 3/2 and 2?q(z) = 2% — 1/2, which are both analytic at z = 0.
Set y = 2"(ay + ayx + ax* + -+ + a,x™ + ---). Substitution into the ODE results in

22 (r+n)(r+mn-1a,z"" + 32 (r+mn)a, ™™ +
n=0 n=0

) )
+ 2§ anxT+n+2 _ E anxT+n =0.
n=0 n=>0

After adjusting the indices in the second-to-last series, we obtain

apl2r(r—1)+3r—1]z" + a12(r+ D)r+3(r+1) — 1] +

o0

+ 3 2(r +0)(r + 1 — Day + 3(r + n)ay — ay + 2a,_oJa™" = 0.

n=2

Assuming ag # 0, the indicial equation is 2r* +r — 1 = 0, with roots r, = 1/2 and
ry = — 1. Setting the remaining coefficients equal to zero, the recurrence relation is

_2an—2 n_23
(r+n+D[20r+n) -1~ 77

ap =
Setting the remaining coefficients equal to zero, we have a; = 0, which implies that all
of the odd coefficients are zero. Withr =1/2,

- 2an—2

L= 2 93
¢ n(2n + 3) "

Sofork=1,2,---,
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- — Q2k—2 _ Aok —4 _ ( — 1)ka0
T k(4k+3) (k- Dk(dk —5)(4k+3)  Kkl7-11---(4dk+3)

Withr = —1,
_2an72
W= o =2,3,
¢ n(2n — 3) "
Sofork=1,2,---,
T Q2 a2} —4 _ (—1)ka0
A2k =

k(4k —3)  (k—1)k(4k —11)(4k —3)  k!5-9---(4k —3) °

The two linearly independent solutions are

_ l)n 2n
1
y(z) +Zn'7 11---(4n +3)
n _.2n
- )"z
1
ve(2) +Zn'5 9. 4n—3)]
9. Note that z p(r) = — 2 — 3 and z°q(x) = x + 3, which are both analytic atz = 0.

Sety = z"(ay + a1 + a,x® + -+ + a,z" + ---). Substitution into the ODE results in

o0 o0
Zr%—n(r—i—n—lan Zr—l—nan rintl _ Zr—i—nan
n=>0

i nxr+n+1 + 32 anl,rJrn —0.

After adjusting the indices in the second-to-last series, we obtain
aglr(r—1) —3r + 3|z" +
+ Z[(r +n)(r+n—1)a,—(r+n—2)a,_1 —3(r+n-1)a,)z"" =0.
n=1

Assuming ay # 0, the indicial equation is r*> — 4r + 3 = 0, with roots r, = 3 and

ry, = 1. Setting the remaining coefficients equal to zero, the recurrence relation is
(r+n—2)a,1

(r+n—1)(r+n—23)

an = , n=1,2 -

With r =3,
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a, = M’ n=1,2,-
n(n + 2)
It follows that forn > 1,
(n + 1)a'n—1 an—2 2 ag
a’TL = = == —
n(n + 2) (n—1)(n+2) n!(n+2)

Therefore one solution is

—I

1+Zn' n+2]

10. Here x p(z) = 0 and 2?q(x) = x* + 1/4, which are both analytic at x = 0.
Sety = z2"(ay + a,x + ayx® + -+ + a,z" + ---). Substitution into the ODE results in

o0

Z r+n)(r+n-—1)a, 7+”+Zanx7+“+2+ Zan Hno— ),
n=0

After adjusting the indices in the second series, we obtain

1:| xr+1 +

“0[7"(7“—1)4'%]%" +a1[(r+1)r+ 1

> 1
+ Z |:(T—|—7’L)<T’ +n— 1)an + Zan + an2:| errn =0.

Assuming ay # 0, the indicial equation is > — r + i = 0, with roots r, =7, = 1/2.
Setting the remaining coefficients equal to zero, we find that a; = 0. The recurrence
relation is

Gy= M2 93
To2r+2m—1)% o
Withr = 1/2,

Since a1 = 0, the odd coefficients are zero. So for k > 1,

k
a?k‘ prnd _ a2k72 frnd a2k74 — . = 7( _ 1) aO
4k? A2(k — 1)%k2 4k (kN?

Therefore one solution is
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T 2Y T2l
Forxz =1,
T 1
po = lim(z — Dp(x) = lim —— = 5
o = lim(r —1'g(a) = tim T g,
Forz = —1,
. T 1
po = Jim (o + 1p(x) =lim 777 =5
qo = Ili@l(x +1)%q(z) ::Elir{ll % =0.
Hence both x = — 1 and x = 1 are regular singular points. As shown in Example 1,

the indicial equation is given by
r(r—1)+ por+qo=0.

In this case, both sets of roots are 7, = 1/2 and 7, = 0.

(b). Lett =2 — 1, and u(t) = y(t + 1). Under this change of variable, the differential
equation becomes

(+2t)u” + (t+1u’ —a’u=0.

o0
Based on Part (a), t = 0 is a regular singular point. Set u =Y a, t"*". Substitution
n=0
into the ODE results in

o
Z (r+n)( r+n—1)ant’"+n+22 (r+n)(r+n—1a, ™"+
n=0

o0
Z r+n)a, ™" + Z r+n)a,t™ " 1 QZ a,t’t" =

Upon inspection, we can also write
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o0

[0.9]
(7“ + TL) (r +n— %)an prn=1 _ QQZ antwrn = 0.

00
Z (r+n)’an t™" + 2
n=>0 n=>0 n=>0

After adjusting the indices in the second series, it follows that

o0
IN] = 1
ao[Zr(r—§>}t 1y E [(r+n)2an+2(r+n+1)<r+n+ 5>an+1—a2an

n=>0

t7‘+71, — 0

Assuming that ay # 0, the indicial equation is 2r* —r = 0, with roots r = 0, 1/2.
The recurrence relation is

1
(T—i—n)2a7,/—|—2(r+n—|—1)(7’—l—n—l—§>an+1_a2an:0, 7’1,:0,1,2,..‘_

With r, = 1/2, we find that forn > 1,
40 — (2n —1)*
Ay = Qp—1
dn(2n + 1)
_(_1p [1—4a?][9 — 4a?]---[(2n — 1)* — 4a?]
B 27(2n + 1)!

ag .

With r, = 0, we find that forn > 1,
o2 —(n—1)>
n(2n —1)
al —a)[l —a?][4 - a2]---[(n — 1)2 — aQ]

ap = An—1

— _ 1 n .
(=1 nl-3-5--(2n — 1) 0
The two linearly independent solutions of the Chebyshev equation are
N P PO e 10 ok 0 0 (G Vs PN
ple) =l =11+ D (- 20(2n + 1)! (z—-1)

13. Here x p(z) = 1 — x and x?q(z) = X\ =, which are both analytic atz = 0.
In fact,

Po = lir%x p(zr) =1and ¢y = lin})xQQ(m) =0.

Hence the indicial equation is r(r — 1) +r = 0, with roots r,, = 0. Set
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y=ay+ax+ ax? + - +ax" + -

Substitution into the ODE results in

I Mé%
3
-
§
]
S
S
|

That is,
i (n+ Dap 2" + i n+ Day 2" —
- Znanm’ -I—)\Z a,x"
n=1
It follows that
a; + Aag + i [(n+ 1 2ap41 — (n — Na,|z" =0.
n=1
Setting the coefficients equal to zero, we find that a; = — Aag, and
L C PP
That is, forn > 2,
0 = (n—1-=2X) 4 == (=N =X)-(n=1-=X) a.

n2

(n!)?

Therefore one solution of the Laguerre equation is

n—1—MX
— 1—1—2 (7)1')( )x".

Note that if A\ = m, a positive integer, then a,, = 0 for n > m + 1. In that case, the
solution is a polynomial

RN NE\ (E SR e

n=1 (TL')
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Section 5.7

2. P(x) =0 only for z = 0. Furthermore, x p(z) = — 2 —z and z%q(x) = 2 + 2%
It follows that

p =lim(-2-z)= —2
qo =1im (2 + 2%) =2
and therefore x = 0 is a regular singular point. The indicial equation is given by
r(r—1)—2r+2=0,

thatis, 7> —3r +2 =0, withroots 7, =2 and r, = 1.

4. The coefficients P(z), Q(z), and R(x) are analytic for all x € R. Hence there are
no singular points.

5. P(z) =0 only for z = 0. Furthermore, z p(z) = 3*2% and z%q(z) = — 2. It
follows that
po=lim3 2% =3
z—0 T
qo — lim—-2= —2

z—0
and therefore z = 0 is a regular singular point. The indicial equation is given by
r(r—1)+3r—2=0,

thatis, 72 +2r — 2 =0, withroots 7, = —1++/3 and r, = — 1 — /3.

6. P(z)=0 forz =0 and z = — 2. We note that p(z) =z '(z+2)"'/2, and

q(z) = — (x+2)""/2. For the singularity at z = 0,
i 1 1
=lim — = -
Po x—0 2(IE+2) 4
2
-z
O =220z 1 2)

and therefore = = 0 is a regular singular point. The indicial equation is given by

1
r(r—l)—l—ZT:O,

2_3

that is, r 1

r = 0, with roots r, = % and r, = 0. For the singularity at x = — 2,
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1 1
=li 2 =lim — = — -
po = lim, (o +2)p(x) =lm, 57 =~
— 2
g = lim (2 +2)%g(z) = lim — =T _g
T——2 T——2 2
and therefore x = — 2 is a regular singular point. The indicial equation is given by

B

thatis, r* — 27 = 0, withroots r, = 2 and r, = 0.

+ ST and 2%q(x) = 1. It

7. P(z) = 0 only for x = 0. Furthermore, z p(z) = 5

follows that

1
2

po = lim xp(z) = 1

q = lim 2%q(z) = 1
z—0

and therefore = = 0 is a regular singular point. The indicial equation is given by
rr—=1)+r+1=0,
thatis, 72> + 1 = 0, with complex conjugate roots r = £ i.
8. Note that P(z) = 0 only forx = — 1. We find that p(z) = 3(x — 1)/(z + 1), and
q(z) = 3/(z +1)°. It follows that
o ::,;l_ilel (x + 1)p(x) ::L.lln_n1 3x—1)= —6
= Jim, (o 1a(o) = lim,3 =3

and therefore z = — 1 is a regular singular point. The indicial equation is given by

r(r—1)—6r+3=0,

that is, 7> — 7r +3 = 0, with roots 7, = (7 + \/37)/2 and r, = (7 . \/37>/2.

10. P(z) =0 forz =2 and = — 2. We note that p(z) = 2z(x — 2) *(z +2)"",
and q(z) = 3(x —2) ' (2 +2)"". For the singularity at z = 2,

i (&~ 2p(e) = iy .

which is undefined. Therefore x = 0 is an irregular singular point. For the singularity
at x = — 2,
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. . 2z
m = fim, (o +2)p(e) = lim, o = T

T 2 o 3@ +2)
o0 = lim, (e +2ale) = lim, =

B | =

=0
and therefore x = — 2 is a regular singular point. The indicial equation is given by

1
r(r—l)—zr:O,

that is, > — %r = 0, with roots r, = g and r, = 0.

I1. P(z) =0 forx =2 and z = — 2. We note that p(x) = 2z/(4 — 2?), and
q(z) = 3/(4 - 2?). For the singularity atx = 2,

and therefore © = 2 is a regular singular point. The indicial equation is given by

r(r—1)—r=0,

thatis, 7> — 2r = 0, with roots 7, = 2 and 7, = 0. For the singularity at x = — 2,
2x
=i 2 =1 = -1
P xEEQ(x—i_ (@) xinfz 22—z
. . 3(x+2)
=1 2)? =1 -
P =11, (z+2)q(x) P’ 2—zx 0
and therefore x* = — 2 is a regular singular point. The indicial equation is given by
r(r—1)—r=20,

thatis, r> — 2r = 0, withroots , =2 and r, = 0.

12. P(z) =0 forz = 0and z = — 3. We note that p(z) = — 2z (z +3) ', and

q(z) = —1/(z + 3)*. For the singularity at z = 0,
. . -2 2
m=limepln) =ln 25 = 73
’ lim —2
=lim 2°¢(z) = lm —— =
q0 20 q( ) 20 ($+3)2

and therefore © = 0 is a regular singular point. The indicial equation is given by
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2
r(r—1)—-r=0,

3
that is, > — gr = 0, with roots r, = % and r, = 0. For the singularity at x = — 3,
—lim (z+3)p(z) = li -2 2
Po= A W) = A T T 3
q = lim3 (x4 3)%q(z) = lim3 (-1)= -1
and therefore x = — 3 is a regular singular point. The indicial equation is given by

2
r(r—l)—i-gr—l:O,

thatis, ? — 37 — 1 = 0, with roots r, = (1+ \/37)/6 and r, = (1 - \/37)/6.

13(a). Note the p(x) = 1/x and ¢(z) = — 1/2. Furthermore, z p(z) = 1 and
2?q(r) = — x. It follows that
go = lim(—2) =0

and therefore x = 0 is a regular singular point.

(b). The indicial equation is given by
rr—1)+r=0,

2

thatis, 7 = 0, withroots r, = r, = 0.

(c). Lety = ag+ ayx + ayx® + -+ + a,x” + ---. Substitution into the ODE results in

Z (n42)(n 4 Va2 2™ + Z(n + Dapz" — Z a,x” =0.
n=0

n=0 n=0
After adjusting the indices in the first series, we obtain
o0
a; —ap + Z[n(n + Dapi1 + (n+ 1)apsr — ay)z" = 0.
n=1

Setting the coefficients equal to zero, it follows that for n > 0,
an

a = .
n+1 (n+ 1)2

Soforn>1,

page 234



CHAPTER 5. ——

With ag = 1, one solution is

1 1
yi(z)=1+z+ -2+ —2°+ -+

1 36 (n!>2:c 4.

For a second solution, set y,(z) = v, (z) Inx + byx + byw® + - + bz + ---.
Substituting into the ODE, we obtain

Liy,(z)] - Inx +2y/(z) + L ibnx" =0.
n=1
Since L[y (z)] = 0, it follows that
L [ibn :1:”] = —2y/(x).
n—=1
More specifically,
b1 + i[n(n + Dbps1 + (n+ 1)bpyy — bylz" =
n=1

:_Q_x_lﬁ_i s_ 1 4_ ...

6" ~ 72" " 1440”
Equating the coefficients, we obtain the system of equations
by = —2
4by — by = —1
9b3 —by = —1/6
16by —bs = —1/72

Solving these equations for the coefficients, by = — 2, by = — 3/4, by = — 11/108,
by = — 25/3456, ---. Therefore a second solution is

3 11 25
Yo(x) =y(x)Inc + | — 2z — ZxQ - mx?’ - %:ﬁl -

14(a). Here zp(z) = 2z and 2?q(x) = 6 ze* . Both of these functions are analytic at
x = 0, therefore x = 0 is a regular singular point. Note that py = gy = 0.

(b). The indicial equation is given by

page 235



CHAPTER 5. ——

r(r—1)=0,

2

thatis, 7 —r =0, withroots r, =1 and r, = 0.

o0
(¢). In order to find the solution correspondingto r; = 1,set y = = Y, a,z™. Upon
n=>0
substitution into the ODE, we have

i(n+2)(n+1)an+l xn+1+2§:(n+1)anlﬂ+l+6€$§: anxﬂJrl =0.
n=>0 n=>0 n=0

After adjusting the indices in the first two series, and expanding the exponential function,

Z n(n+ 1)a, " + 2Zn an12" + 6 agz + (6ag + 6ay)z* +
n=1 n=1
+ (6ag + 6a1 + 3a0):c3 + (6ag + 6as + 3a; + ao)x4 +---=0.

Equating the coefficients, we obtain the system of equations

2a1 + 2a9 + 6ag =0

6ay + 4a1 + 6ag + 6a; =0

12a3 + 6a9 + 6as + 6a1 + 3ag =0
20a4 + 8as + 6as + 6as +3a; + a9 =0

Setting ag = 1, solution of the system results in a; = — 4, a9 =17/3, a3 = — 47/12,
as = 191/120, ---. Therefore one solution is
17 47
yl(ﬂ?) =T — 41‘2 + EZES - EIA +

The exponents differ by an integer. So for a second solution, set
y(x) = ay(x)Ine + 14+ cx+ e + -+ cpr™ + -

Substituting into the ODE, we obtain

a L[y, (z)] - Inz + 2ay/(x) + 2ay,(z) — a% + L

1+§:cnx”] =0.

n=1

Since L[y (z)] = 0, it follows that

L

1+§:cnx"] = —2avy,(r) — 2ay () +ay1($) :

n=1

More specifically,
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o0
Zn (n+ Deppz” +2chnac +6 + (6 + 6¢1)x +
n=1 n=1

61 193
+ (6cy + 6¢y +3)z* +--- = —a+ 10az — 3w +§a:1:3+-~-.

Equating the coefficients, we obtain the system of equations

6= —a
202 + 801 + 6 = 10a
61
6c3 + 10cy + 6¢1 + 3 = —-?;a
193
12¢4 + 12¢3 + 6¢c9 + 3c1 + 1 = Ea
Solving these equations for the coefficients, a = — 6. In order to solve the remaining

equations, set c; = 0. Then ¢ = — 33, ¢3 =449/6,¢4 = —1595/24,---.
Therefore a second solution is
449 5 1595 v

= — 1— St Bt
Yo () 6y (z)Inx + 3322 + 5 " 51

15(a). Note the p(z) = 6x/(x — 1) and ¢(z) = 3z~ '(z — 1)~ . Furthermore,
rp(z) = 62°/(xr — 1) and 2?q(z) = 3z/(x — 1) . It follows that

622
=1 =
Po xlir(l).%‘—l 0
3z
=1 =
% 7%:1}—1 0

and therefore z = 0 is a regular singular point.
(b). The indicial equation is given by
r(r—1)=0,

thatis, r> —r = 0, withroots r, =1 and r, = 0.

o0
(¢). In order to find the solution correspondingto r; = 1,set y =z Y, a,z™. Upon
n=>0

substitution into the ODE, we have
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Mg

n(n+ a, z" +

o0
Z n(n+ 1)a, 2"
n=1

3

7 L

o
(n 4 Da,z"? + SZ apz" ™t =0.
0 n=0

+6

3
Il

After adjusting the indices, it follows that

o0 o0

Z (n—1)a,_1 2" —Zn(n+1)anx7”+

= n=

+6i n—1)a,_ 2m”+3Zan 1" =0.
n=1

n=

(V]

That is,
—2a; + 3ap + Z[ —n(n+1)a, + (n* —n+3)ay_1 +6(n — 1)a,_oJz" = 0.
n=2
Setting the coefficients equal to zero, we have a; = 3aq/2, and forn > 2,
n(n+ 1)a, = (n2 —n+ S)a,,,,_l +6(n—1)a, 2.

If we assign ag = 1, then we obtain a; = 3/2, a2 =9/4, a3 = 51/16, ---
Hence one solution is

111

35,95 51,
() =z + o+ -+ —at 4+ —a" + -

2 4 16" 40
The exponents differ by an integer. So for a second solution, set

y(z) = ay(x)Ine + 1+ cz+ e + -+ cpr™ + -

Substituting into the ODE, we obtain

+ L

2ax y, (v) — 2ay, (z) + 6az y,(v) — ay (z) + aylff)

1+ icn x"] =0,
n=1

since L[y, (x)] = 0. It follows that

L1 + ch Qj”] = 2a yll(m) — 2ax yl/(.’]f) —+ ayl(x) — 6azx yl(x) o ayliaf) .

Now

L 1+chx"] =3+ (—2cy+3c))x + (—6c3 + 5y + 6cy)x® +
B + (= 12¢4 + 9c3 + 12¢9)7* + ( — 20¢5 + 15¢4 + 18¢3)z* + -+

Substituting for y,(x), the right hand side of the ODE is
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+ + +§ 3 &7 4 44_1 r+
a 2ax 4a,x G 20 ar 10 ar

Equating the coefficients, we obtain the system of equations

3=a
7
— 202 + 361 = 5&
3
— 6c3 + 5cy + 61 = Za
33
—12¢4 +9¢c3 + 12¢9 = —a

We find that a = 3. In order to solve the second equation, set ¢; = 0. Solution of the
remaining equations results in ¢o = —21/4,¢c3 = —19/4,¢4 = — 597/64,---
Hence a second solution is

21 , 19 3 597

= 1 22 22,8 270
yo(z) =3y (x) Inx + T 17 64w+

16(a). After multiplying both sides of the ODE by x, we find that x p(x) = 0 and
2%q(z) = x. Both of these functions are analytic at x = 0, hence z = 0 is a regular
singular point.

(b). Furthermore, py = gy = 0. So the indicial equation is r(r — 1) = 0, with roots
leland TQZO.

o0
(¢). In order to find the solution corresponding to r, = 1,set y = = > . a,x”. Upon
n=0

substitution into the ODE, we have

o0

Z (n+1) anx"—i—Zan ntl— .

n= n=0

That is,
Z n(n+ 1)a, +ap,—1]2" =0.
n=1

Setting the coefficients equal to zero, we find that for n > 1,
— Qp—1

fin = n(n+1)"

It follows that
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e N Q2 _ .= (=D'a
"Tnn+1) (n—1n%(n+1) (n))*(n+1)"
Hence one solution is
_ 1, 1 4 r 5
y(z) ==z 2:1: + 123: 144:1: +2880$ 4

The exponents differ by an integer. So for a second solution, set
yo(z) = ay(z)ine + 14 x4+ cx® + - F ez + -+

Substituting into the ODE, we obtain

L 1 2 ! . yl(x) L1 " nl _ 0
aLly(2)] - Inz +2ay,(z) —a=—+ +;C x
Since Ly, (z)] = 0, it follows that
L 1+icnx” = —2ay’(ac)+ayl<x) :
n=1 1 x

Now

L

1+ e, x"] =1+ (2¢c2 +c1)x + (6c3 + co)x® 4 (12¢4 + c3)x® +
et + (20c5 + c4)z* + (30cg 4 c5)x° + ---.
Substituting for y,(x), the right hand side of the ODE is

—a+ -ar — —ar” + —ax” — ——ax" +---.
2 12 144 320

Equating the coefficients, we obtain the system of equations

1= —a
3
2co 41 = 5@
5)
6c3 +cp = — 2%
12405 = ——
ATE =
Evidently, a = — 1. In order to solve the second equation, set c; = 0. We then find
that co = —3/4,¢3 =7/36,c, = — 35/1728,---. Therefore a second solution is
3 7 35
y(z) = —y(z)ine+ |1 — “2? + o — ——a* +..-].

4 36 1728
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19(a). After dividing by the leading coefficient, we find that
y—(1+a+p)x

po = limz p(z) = lim
z—0

z—0 11—z
_ . —afz
= limz’q(z) = lim =0.
P = 250" a(x) 220 11—z 0

Hence x = 0 is a regular singular point. The indicial equationis r(r — 1) +yr =0,
withroots , =1 —~v and r, = 0.

(b). Forx =1,
—v+(14+a+P)x

=l pe) = lim AT <ty
Qo leiirr%(x— 1)2q(:c) = limM =0.

z—1 x
Hence x = 1 is a regular singular point. The indicial equation is
P —(y—a-B8)r=0,
withroots r, =y —a —f3 and r, = 0.

o0
(c). Given that r; — r, is not a positive integer, we can set y = > a,x". Substitution
n=0

into the ODE results in

o0 o0
z(l—=x Zn Dayx"™ 2 - (1+a+ ﬁ)x}Zn anz" !t — aﬁZan:c" =0
n=1 n=0

That is,

Zn (n+ Day1z" — Zn Da,z" ~|—’yZ n+ a2z —

n=1 n=2 n=0

—(14+a+p) Znanm —aﬂZan =

n=1
Combining the series, we obtain
var —afag+ [(2+2v)as — (1+a+ B+ af)al]r + ZA,,,,:C" =0,
n=2

in which
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Ay = (4 1)(n+ a1 — [n(n = 1) + (1 + a+ Bn + afla,

Note that n(n — 1) + (1 + a + B)n + af = (n + «a)(n + B) . Setting the coefficients
equal to zero, we have ya; — afag = 0, and

(n+a)(n+f)
(n+1)(n+7)

ap4+1 = an

for n > 1. Hence one solution is

of aletDBB+]) ,

v - 1! y(iy+1)-2!

oo+ D(e+2)BB+1D(BE+2) 5
Yy + 1) (v +2) -3

Since the nearest other singularity is at x = 1, the radius of convergence of y, () will
be at least p = 1.

yi(z) =1+

o0
(d). Given that r; — 7, is not a positive integer, we can set y = ' > b,z". Then

n=>0
Substitution into the ODE results in
o0
(1 — :L')Z(n +1—9)(n—"7)a,z" 7t +
B o0 o0
+h-(tatfa)d (n+1=7)aa"" —apfd ax™ 7 =0.
n=0 =
That is,
Y1) (n—yaa"" =Y (n+1—7)(n—y)aa" +
n=0 n=>0
+ vz (n+1—-7)az"7—(1+a+p) Z (n+1-— "t — aﬂZanx”+1‘7 =0.
n=20 n=>0 n=>0

After adjusting the indices,

[&°]

i(” +1=)(n—Yanz"" =Y (n=y)(n—1=7ag 1" +

=0 n=1

<

in—i—l— " 1+a+ﬂi

00
Yap—12"7 — af E an—12" 7 =0.
n=1 n=1

Combining the series, we obtain

o0
n—y __
E B,x"7 =0,

n=1

in which
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B, =n(n+1-7b,—[(n—7)(n—v+a+p8)+ablb,1.

Note that (n —y)(n—y+a+p)+af=n+a—7v)(n+ 6 —7). Setting B, =0,
it follows that for n > 1,

(n+ta—7)n+p-7)
nn+1-—7)

b, = bp_1.

Therefore a second solution is

Ly (Lra—)+8-7)
) = o1 |1 SR

(l+a—-7)C+a-7)A+8-72+8-7) 5,
+ 2-B-2! o ]'

T+

(e). Under the transformation z = 1/¢, the ODE becomes

2
541<1_1)Z_§+{2§33(1—1> —52[7—(1+a+ﬂ)1]}@—045?/:0-

£ £ £ 3 £1) d§

That is,

(53—52)@+ 262 - £2+(—1+a+6)€}@ —afy=0

de 7 dé =
Therefore £ = 0 is a singular point. Note that
2 — -1 —
pe = BT D g g - 27

It follows that

o = limg p(e) = lim = NEHCL¥RD) g

= -1
0 = limg?(¢) = lim 1 = af

Hence £ = 0 (x = o) is a regular singular point. The indicial equation is
rr—1)+(1—-a—-08)r+as8=0,

or 72 — (a+ B)r + af = 0. Evidently, the roots are 7 = a and r = (3.

21(a). Note that
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It follows that

limz p(z) = lima z' ",
z—0 z—0

. 2 1 2—s
ygg& q(é)—éhggﬁrc :

Hence if s > 1 or t > 2, one or both of the limits does not exist. Therefore x = 0 is an
irregular singular point.

(c). Let y = apz” + ajz" ™ + -+ + @,z + ---. Write the ODE as
:Egy”—i-oszy’-l—ﬁy:O.

Substitution of the assumed solution results in

0.

o
Z n+r)(n+r—1Daz"" 1+ ozz n 4+ r)a,z" 4 ﬁzan
Adjusting the indices, we obtain
Z n—1+r)(n+7r—2)a, 12" nr —|—O¢Z (n—1+7r)a, 12" nr —I-ﬁZan mr— ).
n= n=1 =
Combining the series,
o0
ﬁaO+ZAnxn+r:
n=1

in which A, = fBa,+(n—1+7r)(n+7r+ a—2)a,_1. Setting the coefficients equal
to zero, we have ayp = 0. Butforn > 1,

—1 -2
0 = (n +7‘)(nﬁ+r+a )Gn—l-

Therefore, regardless of the value of r, it follows that a,, =0, for n =1,2,---
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Section 5.8

3. Here zp(z) = 1 and 2°q(x) = 2z, which are both analytic everywhere. We set
y = 2" (ay + a1z + a,x® + --- + a,x"™ + --+). Substitution into the ODE results in

o
Z r+n)(r+n-1)a, T+"+Z P+ n)a, T 7+n+22a“ rentl _

n=>0 n=>0

After adjusting the indices in the /ast series, we obtain

aplr(r = 1) +7]a7 + Y[+ w7+ 1= Do + ¢+ m)as + 20 22" = 0.

n=1

Assuming ag # 0, the indicial equation is r* = 0, with double root r = . Setting the
remaining coefficients equal to zero, we have forn > 1,

2

m an—1(r) .

an(r) = -

It follows that

an(r) = (-p72 5a0, n>1.
[(n+r)(n+7r—1)-(1+7)]

Since r = 0, one solution is given by

y1(x) = ii( — 2 "

n=>0 (TL')2

For a second linearly independent solution, we follow the discussion in Section 5.7 .
First

note that
/ 1 1 1
a’n<r) - _ 2 .. _|_
an(r) n+r n4+r—1 1+r
Settingr =0,
— 1)t
a'(0) = —2H,a,(0) = —2Hn( )2
(n!)
Therefore,

(—1)" Q"H
yo(z) = y1(x ln:c—?Z x".

4. Here x p(r) = 4 and x?q(x) = 2 + x, which are both analytic everywhere. We set
y = 2" (ay + a1z + a,x® + - -+ + a,x"™ + --+). Substitution into the ODE results in

page 245



CHAPTER 5. ——

o0 o0
Z (r+n)(r+n—1a, 2"+ Z (r+mn)a, 2" +
n: :0

o0

o0
+ E CanH_n-H + 2§ a/nxr-i-n =0
n=0

After adjusting the indices in the second-to-last series, we obtain

o0
aolr(r = 1) +4r + 22" + Y _[(r+n)(r +n — Day +4(r +n)ay +2a, + ay_1]a’" = 0.

n=1

Assuming ag # 0, the indicial equation is v* + 3r + 2 = 0, with roots r, = — 1 and
r, = — 2. Setting the remaining coefficients equal to zero, we have forn > 1,

@ 1 )

an(r) = — an—1(7).

: m+r+Dn+r+2) "

It follows that
— 1"
an(r) = ) ap, n>1.

[(n+r+Dn+7r)--C+r)l(n+r+2)(n+r)--@+7r)

Since r; = — 1, one solution is given by
o
— E n

For a second linearly independent solution, we follow the discussion in Section 5.7 .
Since v, — r, = N = 1, we find that

1
B TN

with ap = 1. Hence the leading coefficient in the solution is

a:‘limQ(r+2) ap(r)= —1.

Further,

(="

Let A, (r) = (r+2)ay(r). It follows that

Al (r) 1 1 1
A (r) n+r+2 n+r+1 n+r 3+
Setting r =1r, = — 2,
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A=) L o L b Ly
A (—2) n n—1 n-—2
- - Hn - anl
Hence
Cn( - 2) = - (Hn + Hn—l) An( - 2)
(-n”
- - Hn Hn— .
(Hy + 1)n!(n - 1)!
Therefore,
(-1)"(H,+ H,_
yo(z) = —y(z)Ine + 72 ; n——’i) ) ”] .
6. Let y(x z)/y/z . Then y' = 2720 — 273 v/2 and y" = a2 v" —

z 2 —I—Sx ’/2 v/4. Substitution into the ODE results in
1
[2°7 0" — 20 + 327 /4] + [2"7 0" — a7 u/2] + (51:2 — Z)x_mv =0.

Simplifying, we find that
v +0v=0,
with general solution v(x) = ¢,cosx + ¢, sinx . Hence

y(z) = c.x?cosx + ey ?sinz.

&. The absolute value of the ratio of consecutive terms is

Qoo T2 |2 [>™2 22 (m 4 1) m) _ Els
Oy T27 2 222 (m 4 2)(m 4+ 1) 4(m+2)(m+1)
Applying the ratio test,
2m+2 2
. a‘?'m,-‘rQ X . |x‘
1 _ | = 1 - O .
mggo Qs T2 mgréo 4m+2)(m+1)

Hence the series for J,(x) converges absolutely for all values of . Furthermore,
since the series for .J;(x) also converges absolutely for all z, term-by-term differentiation
results in
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_ l)mem—l

Jo (@) = Z 227(”—1 m!(m —1)!

1
_ 1)m+ x2m+1

o (
=2 22m+1(m, + 1)1 m!

—1 mem

T o
522 Im!

Therefore, J/(z) = — Ji(x).

9(a). Note that z p(z) = 1 and z%q(x) = 2% — 1%, which are both analytic at x=0.
Thus x = 0 is a regular singular point. Furthermore, py = 1 and ¢y = — v?. Hence
the indicial equation is > — v*> = 0, withroots r, = v and r, = — v.

(b). Set y = x"(ag + a;x + a,x® + -+ + a,x™ + ---). Substitution into the ODE
results in

o
Z r+n)(r+n—1)a, ”"%—Z r+n)a, 2"+
= n=0

[0.9] o
+ E apx T — 2 E a,z’" =0

After adjusting the indices in the second-to-last series, we obtain
ag[r(r—1)+r—v*a" +a[(r+ Dr+ (r+1) — %] +

+3 [+ n)(r +n = Day + (r +n)a, — va, + a, o)™ = 0.

n=2

Setting the coefficients equal to zero, we find that a; = 0, and

—1
An = — 5 - An-2,
o) =2
for n > 2. It follows that a3 = a5 = -+ = a9,4.1 = --- = 0. Furthermore, with
r=v,
-1
= A
n (n+21/) n—2
Soform=1,2,---,
-1
Aoy = ———————— A9y
2 2m(2m + 2v) 2m=2

( _ 1)7TL

22nml(1+v)24v)--(m—14v)(m+v) ¢
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Hence one solution is

yi(z) = 2"

o (_1)m T\ 2m
: +mz_1 m(1+v)2+v)--(m—1+v)(m+v) (5) ]

(c). Assuming that r, — r, = 2v is not an integer, simply setting » = — v in the above
results in a second linearly independent solution

S (-0 vy
43 e T () ]

m=1

yo(w) = 27"

(d). The absolute value of the ratio of consecutive terms in y,(z) is

2m+2 |'_,1»/.|27n"'_2 22m m‘(l + U)' . (m + ]/)

Qo2 L _
Qg T 2> 22m+2(m 4+ D1+ v)---(m + 14 v)
_ £
Am+1)(m+1+v)’
Applying the ratio test,
hm Qo2 x2m+2 — llm |x‘2 _
m—oo| Qg L m—oo 4(m+ 1)(m+ 1+ v)

Hence the series for y,(z) converges absolutely for all values of . The same can be
shown for y,(z). Note also, that if v is a positive integer, then the coefficients in the
series for y,(x) are undefined.

10(a). It suffices to calculate L[.Jy(x)In x|. Indeed,

(@) gl = I () i+ 28
X
and
J) ()  Jy(x
[Jo(z)inz]" = J) (z)Inz + 2 Ox( — ;2 ) :
Hence

L[Jy(z) Inz] = 2*J) (2) Inx + 22 J/ (x) — Jo(z) +
+aJ)(z)Inz + Jy(z) + 2Ty () Inz.

Since z2J) (z) + z J/(z) + 2*Jy(z) = 0,
L{Jy(z)Inz] =2z J)(x).
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(b). Given that L[y,(z)] = 0, after adjusting the indices in Part (a), we have

bix + 22b2 z? + Z (n2bn + bn—Q)xn = —2z JO/(:C) :
n=3
Using the series representation of J/(z) in Problem 8,

[ee] TL 277/)
2 _
bz + 22by 22 +Z by + byo)z" = Zl 2%”'

(c). Equating the coefficients on both sides of the equation, we find that
by=b3=-=byp1=--=0.
Also, withn = 1, 22by = 1/(11)*, that is, by = 1/[22(1!)2]. Furthermore, for m > 2,

(—1)"(2m)
22m(ml)?

by = L (]
1T T g2y 2

be — 1+1+1
67 924242 2 '3

It can be shown, in general, that

(2m)%bay, + boy 2 = — 2

More explicitly,

m HTTL
b = (— 1) I
22m (m)!)

11. Bessel's equation of order one is
?y" +zy + (2 - 1)y =0.

Based on Problem 9, the roots of the indicial equation are r, =1 and r, = — 1. Set
y=1z"(ay+ ayx + a4+ -+ apa” + --+). Substitution into the ODE results in

o0

o0
Z (r+n)(r+n—1a,z""" + Z (r+n)a, ™" +
n=0 n=0

o

o0
+ a xr+n+2__ a 1¢+n __0
E n E n — V.
n=0

After adjusting the indices in the second-to-last series, we obtain

page 250



CHAPTER 5. ——

aglr(r—1)+r—1jz"+ a1 [(r+ Dr+ (r+1) - 1]+

+ Z[(r +n)(r+mn—1)a, + (r+n)a, —a, + a, o)z"™" = 0.
n=2

Setting the coefficients equal to zero, we find that a; = 0, and

-1

ap(r) = ———— a,_9o(r
( ) (7“ +n)2 1 2( )
_ (1)
= an—o(r),
m+r+)n+r—1) "7
for n > 2. It follows that a3 = a5 = -+ = ag;,+1 = --- = 0. Solving the recurrence
relation,
— 1)
agm (1) = ( ) a.

@m+r+1)2m+r—1)%(r+3)*(r+1)
With r =r, =1,

(=D"

D) = g 1)1l

For a second linearly independent solution, we follow the discussion in Section 5.7 .
Since r;, — r, = N = 2, we find that
1

N )

with ap = 1. Hence the leading coefficient in the solution is

1
a :,.lim1 (r+1)as(r) = — 5

Further,

( _ 1)’]7),

(r 1) azm(r) = @m+r+1)[2m+r—1)--@+r)]

Let A, (r) = (r+ 1) a,(r). It follows that

Al 1 1 1
M:_i_Q S W )

Aoy (1) 2m +r+1 2m +r —1 3+r
Setting » = r, = — 1, we calculate
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CQm( — 1) = (Hm + Hm 1)A2m( - 1)

( _ 1)7TL
om[(2m — 2)---2]°

(=D"
22m=1ml(m — 1)1

(Hp + Hy1)

(Hm + Hm 1)

[\DI)—k l\DIH[\DI)—‘

Note that ag,,+1(7) = 0 implies that Ay, 1(r) =0, so

d
Com1(—1) = |:%A2m+1<7’):| - =0.
Therefore,
1 S T\ 2m 0 m(H + H,_ 1) 2m
o) = = o3 i (5) i |- 3 e e (27

Based on the definition of .J,(x),

y(z) = — Ji(x )lnm+

-3 S0 ) (27

12. Consider a solution of the form

~ V& f(aa?).
Then

,:ﬂ'aﬁxﬂ_}_f(f)
AN NG

in which ¢ = ax®. Hence

B df e’ [
©de x\/g d¢ x\/7 4:1:\/5 ’

and

d2
$2y1/2a262x2ﬁ\/;d£2 62 5\/7___\/7./3
Substitution into the ODE results in

L rarar L Lie+ (e + 1810 =0,

Simplifying, and setting ¢ = ax®, we find that

52 203
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2
et ret i @-nr9=0, v

which is a Bessel equation of order v . Therefore, the general solution of the given ODE
1s

y(z) =z [c1 fi(az?) + ¢, fo(az?)],
in which f,(£) and f£,(¢) are the linearly independent solutions of ().
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