Chapter Five

Section 5.1

1. Apply the ratio test:

$$\lim_{n \to \infty} \frac{\left| (x-3)^{n+1} \right|}{\left| (x-3)^n \right|} = \lim_{n \to \infty} |x-3| = |x-3|.$$

Hence the series converges absolutely for |x-3|<1. The radius of convergence is $\rho=1$. The series diverges for x=2 and x=4, since the *n-th* term does not approach zero.

3. Applying the ratio test,

$$\lim_{n \to \infty} \frac{|n! \, x^{2n+2}|}{|(n+1)! \, x^{2n}|} = \lim_{n \to \infty} \frac{x^2}{n+1} = 0 \, .$$

The series converges absolutely for *all* values of x . Thus the radius of convergence is $\rho = \infty$.

4. Apply the ratio test:

$$\lim_{n \to \infty} \frac{|2^{n+1}x^{n+1}|}{|2^nx^n|} = \lim_{n \to \infty} 2|x| = 2|x|.$$

Hence the series converges absolutely for 2|x|, or |x| < 1/2. The radius of convergence is $\rho = 1/2$. The series diverges for $x = \pm 1/2$, since the *n-th* term does not approach zero.

6. Applying the ratio test,

$$\lim_{n \to \infty} \frac{\left| n(x - x_0)^{n+1} \right|}{\left| (n+1)(x - x_0)^n \right|} = \lim_{n \to \infty} \frac{n}{n+1} |(x - x_0)| = |(x - x_0)|.$$

Hence the series converges absolutely for $|(x-x_0)|<1$. The radius of convergence is $\rho=1$. At $x=x_0+1$, we obtain the *harmonic series*, which is *divergent*. At the other endpoint, $x=x_0-1$, we obtain

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n},$$

which is *conditionally* convergent.

7. Apply the ratio test:

$$\lim_{n \to \infty} \frac{\left| 3^n (n+1)^2 (x+2)^{n+1} \right|}{\left| 3^{n+1} n^2 (x+2)^n \right|} = \lim_{n \to \infty} \frac{(n+1)^2}{3 n^2} |(x+2)| = \frac{1}{3} |(x+2)|.$$

Hence the series converges absolutely for $\frac{1}{3}|x+2| < 1$, or |x+2| < 3. The radius of convergence is $\rho = 3$. At x = -5 and x = +1, the series diverges, since the *n-th* term does not approach zero.

8. Applying the ratio test,

$$\lim_{n \to \infty} \frac{|n^n(n+1)! \, x^{n+1}|}{|(n+1)^{n+1} n! \, x^n|} = \lim_{n \to \infty} \frac{n^n}{(n+1)^n} |x| = \frac{1}{e} |x|,$$

since

$$\lim_{n \to \infty} \frac{n^n}{(n+1)^n} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{-n} = e^{-1}.$$

Hence the series converges absolutely for |x| < e. The radius of convergence is $\rho = e$. At $x = \pm e$, the series *diverges*, since the *n-th* term does not approach zero. This follows from the fact that

$$\lim_{n \to \infty} \frac{n! \, e^n}{n^n \sqrt{2\pi n}} = 1 \, .$$

10. We have $f(x) = e^x$, with $f^{(n)}(x) = e^x$, for $n = 1, 2, \cdots$. Therefore $f^{(n)}(0) = 1$. Hence the Taylor expansion about $x_0 = 0$ is

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \, .$$

Applying the ratio test,

$$\lim_{n \to \infty} \frac{|n!x^{n+1}|}{|(n+1)!x^n|} = \lim_{n \to \infty} \frac{1}{n+1}|x| = 0.$$

The radius of convergence is $\rho = \infty$.

11. We have f(x)=x, with f'(x)=1 and $f^{(n)}(x)=0$, for $n=2,\cdots$. Clearly, f(1)=1 and f'(1)=1, with all other derivatives equal to zero. Hence the Taylor expansion about $x_0=1$ is

$$x = 1 + (x - 1).$$

Since the series has only a finite number of terms, the converges absolutely for all x.

14. We have f(x) = 1/(1+x), $f'(x) = -1/(1+x)^2$, $f''(x) = 2/(1+x)^3$, \cdots with $f^{(n)}(x) = (-1)^n n!/(1+x)^{n+1}$, for $n \ge 1$. It follows that $f^{(n)}(0) = (-1)^n n!$

for $n \ge 0$. Hence the Taylor expansion about $x_0 = 0$ is

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n.$$

Applying the ratio test,

$$\lim_{n \to \infty} \frac{|x^{n+1}|}{|x^n|} = \lim_{n \to \infty} |x| = |x|.$$

The series converges absolutely for |x| < 1, but diverges at $x = \pm 1$.

15. We have f(x) = 1/(1-x), $f'(x) = 1/(1-x)^2$, $f''(x) = 2/(1-x)^3$, ... with $f^{(n)}(x) = n!/(1-x)^{n+1}$, for $n \ge 1$. It follows that $f^{(n)}(0) = n!$, for $n \ge 0$. Hence the Taylor expansion about $x_0 = 0$ is

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n.$$

Applying the ratio test,

$$\lim_{n \to \infty} \frac{|x^{n+1}|}{|x^n|} = \lim_{n \to \infty} |x| = |x|.$$

The series converges absolutely for |x| < 1 , but diverges at $x = \pm 1$.

16. We have f(x) = 1/(1-x), $f'(x) = 1/(1-x)^2$, $f''(x) = 2/(1-x)^3$, ... with $f^{(n)}(x) = n!/(1-x)^{n+1}$, for $n \ge 1$. It follows that $f^{(n)}(2) = (-1)^{n+1}n!$ for $n \ge 0$. Hence the Taylor expansion about $x_0 = 2$ is

$$\frac{1}{1-x} = -\sum_{n=0}^{\infty} (-1)^n (x-2)^n.$$

Applying the ratio test,

$$\lim_{n \to \infty} \frac{\left| (x-2)^{n+1} \right|}{\left| (x-2)^n \right|} = \lim_{n \to \infty} |x-2| = |x-2|.$$

The series converges absolutely for |x-2| < 1, but diverges at x = 1 and x = 3.

17. Applying the ratio test,

$$\lim_{n\to\infty}\frac{|(n+1)x^{n+1}|}{|\,n\,x^n|}=\lim_{n\to\infty}\frac{n+1}{n}|x|=|x|.$$

The series converges absolutely for $\left|x\right|<1$. Term-by-term differentiation results in

$$y' = \sum_{n=1}^{\infty} n^2 x^{n-1} = 1 + 4x + 9x^2 + 16x^3 + \dots$$

$$y'' = \sum_{n=2}^{\infty} n^2(n-1) x^{n-2} = 4 + 18x + 48x^2 + 100x^3 + \dots$$

Shifting the indices, we can also write

$$y' = \sum_{n=0}^{\infty} (n+1)^2 x^n$$
 and $y'' = \sum_{n=0}^{\infty} (n+2)^2 (n+1) x^n$.

20. Shifting the index in the *second* series, that is, setting n = k + 1,

$$\sum_{k=0}^{\infty} a_k x^{k+1} = \sum_{n=1}^{\infty} a_{n-1} x^n.$$

Hence

$$\sum_{k=0}^{\infty} a_{k+1} x^k + \sum_{k=0}^{\infty} a_k x^{k+1} = \sum_{k=0}^{\infty} a_{k+1} x^k + \sum_{k=1}^{\infty} a_{k-1} x^k$$
$$= a_1 + \sum_{k=1}^{\infty} (a_{k+1} + a_{k-1}) x^{k+1}.$$

21. Shifting the index by 2, that is, setting m=n-2,

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{m=0}^{\infty} (m+2)(m+1)a_{m+2} x^m$$
$$= \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

22. Shift the index *down* by 2, that is, set m = n + 2. It follows that

$$\sum_{n=0}^{\infty} a_n x^{n+2} = \sum_{m=2}^{\infty} a_{m-2} x^m$$
$$= \sum_{n=2}^{\infty} a_{n-2} x^n.$$

24. Clearly,

$$(1-x^2)\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2} = \sum_{n=2}^{\infty}n(n-1)a_nx^{n-2} - \sum_{n=2}^{\infty}n(n-1)a_nx^n.$$

Shifting the index in the *first* series, that is, setting k = n - 2,

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{k=0}^{\infty} (k+2)(k+1)a_{k+2} x^k$$
$$= \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

Hence

$$(1-x^2)\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2} = \sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2}x^n - \sum_{n=2}^{\infty}n(n-1)a_nx^n.$$

Note that when n=0 and n=1, the coefficients in the *second* series are *zero*. So that

$$(1-x^2)\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}=\sum_{n=0}^{\infty}[(n+2)(n+1)a_{n+2}-n(n-1)a_n]x^n.$$

26. Clearly,

$$\sum_{n=1}^{\infty} n a_n x^{n-1} + x \sum_{n=0}^{\infty} a_n x^n = \sum_{n=1}^{\infty} n a_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^{n+1}.$$

Shifting the index in the *first* series, that is, setting k = n - 1,

$$\sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{k=0}^{\infty} (k+1) a_{k+1} x^k.$$

Shifting the index in the *second* series, that is, setting k = n + 1,

$$\sum_{n=0}^{\infty} a_n x^{n+1} = \sum_{k=1}^{\infty} a_{k-1} x^k.$$

Combining the series, and starting the summation at n = 1,

$$\sum_{n=1}^{\infty} n a_n x^{n-1} + x \sum_{n=0}^{\infty} a_n x^n = a_1 + \sum_{n=1}^{\infty} [(n+1)a_{n+1} + a_{n-1}]x^n.$$

27. We note that

$$x\sum_{n=2}^{\infty}n(n-1)a_n\,x^{n-2} + \sum_{n=0}^{\infty}a_n\,x^n = \sum_{n=2}^{\infty}n(n-1)a_n\,x^{n-1} + \sum_{n=0}^{\infty}a_n\,x^n.$$

Shifting the index in the \emph{first} series, that is, setting k=n-1,

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-1} = \sum_{k=1}^{\infty} k(k+1)a_{k+1}x^k$$
$$= \sum_{k=0}^{\infty} k(k+1)a_{k+1}x^k,$$

since the coefficient of the term associated with k=0 is zero. Combining the series,

$$x\sum_{n=2}^{\infty}n(n-1)a_n x^{n-2} + \sum_{n=0}^{\infty}a_n x^n = \sum_{n=0}^{\infty}[n(n+1)a_{n+1} + a_n]x^n.$$

Section 5.2

1. Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Then

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n - \sum_{n=0}^{\infty} a_n x^n = 0$$

or

$$\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} - a_n]x^n = 0.$$

Equating all the coefficients to zero,

$$(n+2)(n+1)a_{n+2} - a_n = 0, \quad n = 0, 1, 2, \cdots$$

We obtain the recurrence relation

$$a_{n+2} = \frac{a_n}{(n+1)(n+2)}, \quad n = 0, 1, 2, \cdots.$$

The subscripts differ by two, so for $k = 1, 2, \cdots$

$$a_{2k} = \frac{a_{2k-2}}{(2k-1)2k} = \frac{a_{2k-4}}{(2k-3)(2k-2)(2k-1)2k} = \dots = \frac{a_0}{(2k)!}$$

and

$$a_{2k+1} = \frac{a_{2k-1}}{2k(2k+1)} = \frac{a_{2k-3}}{(2k-2)(2k-1)2k(2k+1)} = \dots = \frac{a_1}{(2k+1)!}.$$

Hence

$$y = a_0 \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} + a_1 \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}.$$

The linearly independent solutions are

$$y_1 = a_0 \left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots \right) = a_0 \cosh x$$

$$y_2 = a_1 \left(x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots \right) = a_1 \sinh x.$$

4. Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Then

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + k^2x^2 \sum_{n=0}^{\infty} a_n x^n = 0.$$

Rewriting the *second* summation,

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \sum_{n=2}^{\infty} k^2 a_{n-2}x^n = 0,$$

that is,

$$2a_2 + 3 \cdot 2 a_3 x + \sum_{n=2}^{\infty} \left[(n+2)(n+1)a_{n+2} + k^2 a_{n-2} \right] x^n = 0.$$

Setting the coefficients equal to zero, we have $a_2 = 0$, $a_3 = 0$, and

$$(n+2)(n+1)a_{n+2} + k^2 a_{n-2} = 0$$
, for $n = 2, 3, 4, \dots$

The recurrence relation can be written as

$$a_{n+2} = -\frac{k^2 a_{n-2}}{(n+2)(n+1)}, \quad n = 2, 3, 4, \cdots$$

The indices differ by *four*, so a_4 , a_8 , a_{12} , \cdots are defined by

$$a_4 = -\frac{k^2 a_0}{4 \cdot 3}$$
, $a_8 = -\frac{k^2 a_4}{8 \cdot 7}$, $a_{12} = -\frac{k^2 a_8}{12 \cdot 11}$, ...

Similarly, a_5 , a_9 , a_{13} , \cdots are defined by

$$a_5 = -\frac{k^2 a_1}{5 \cdot 4}$$
, $a_9 = -\frac{k^2 a_5}{9 \cdot 8}$, $a_{13} = -\frac{k^2 a_9}{13 \cdot 12}$, ...

The remaining coefficients are zero. Therefore the general solution is

$$y = a_0 \left[1 - \frac{k^2}{4 \cdot 3} x^4 + \frac{k^4}{8 \cdot 7 \cdot 4 \cdot 3} x^8 - \frac{k^6}{12 \cdot 11 \cdot 8 \cdot 7 \cdot 4 \cdot 3} x^{12} + \cdots \right] + a_1 \left[x - \frac{k^2}{5 \cdot 4} x^5 + \frac{k^4}{9 \cdot 8 \cdot 5 \cdot 4} x^9 - \frac{k^6}{13 \cdot 12 \cdot 9 \cdot 8 \cdot 4 \cdot 4} x^{13} + \cdots \right].$$

Note that for the even coefficients,

$$a_{4m} = -\frac{k^2 a_{4m-4}}{(4m-1)4m}, \quad m = 1, 2, 3, \dots$$

and for the *odd* coefficients,

$$a_{4m+1} = -\frac{k^2 a_{4m-3}}{4m(4m+1)}, \quad m = 1, 2, 3, \dots$$

Hence the linearly independent solutions are

$$y_1(x) = 1 + \sum_{m=0}^{\infty} \frac{(-1)^{m+1} (k^2 x^4)^{m+1}}{3 \cdot 4 \cdot 7 \cdot 8 \cdots (4m+3)(4m+4)}$$

$$y_2(x) = x \left[1 + \sum_{m=0}^{\infty} \frac{(-1)^{m+1} (k^2 x^4)^{m+1}}{4 \cdot 5 \cdot 8 \cdot 9 \cdots (4m+4)(4m+5)} \right].$$

6. Let
$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
. Then

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

and

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

Substitution into the ODE results in

$$(2+x^2)\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n - x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n + 4\sum_{n=0}^{\infty} a_nx^n = 0.$$

Before proceeding, write

$$x^{2} \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^{n} = \sum_{n=2}^{\infty} n(n-1)a_{n} x^{n}$$

and

$$x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n = \sum_{n=1}^{\infty} n \, a_n x^n.$$

It follows that

$$4a_0 + 4a_2 + (3a_1 + 12a_3)x + \sum_{n=2}^{\infty} [2(n+2)(n+1)a_{n+2} + n(n-1)a_n - n a_n + 4a_n]x^n = 0.$$

Equating the coefficients to zero, we find that $a_2=-a_0$, $a_3=-a_1/4$, and

$$a_{n+2} = -\frac{n^2 - 2n + 4}{2(n+2)(n+1)} a_n, \quad n = 0, 1, 2, \dots$$

The indices differ by *two*, so for $k = 0, 1, 2, \cdots$

$$a_{2k+2} = -\frac{(2k)^2 - 4k + 4}{2(2k+2)(2k+1)} a_{2k}$$

and

$$a_{2k+3} = -\frac{(2k+1)^2 - 4k + 2}{2(2k+3)(2k+2)} a_{2k+1}.$$

Hence the linearly independent solutions are

$$y_1(x) = 1 - x^2 + \frac{x^4}{6} - \frac{x^6}{30} + \dots$$

$$y_2(x) = x - \frac{x^3}{4} + \frac{7x^5}{160} - \frac{19x^7}{1920} + \cdots$$

7. Let
$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
. Then

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

and

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n + 2\sum_{n=0}^{\infty} a_nx^n = 0.$$

First write

$$x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n = \sum_{n=1}^{\infty} n \, a_n x^n.$$

We then obtain

$$2a_2 + 2a_0 + \sum_{n=1}^{\infty} [(n+2)(n+1)a_{n+2} + n a_n + 2a_n]x^n = 0.$$

It follows that $a_2 = -a_0$ and $a_{n+2} = -a_n/(n+1)$, $n = 0, 1, 2, \cdots$. Note that the indices differ by *two*, so for $k = 1, 2, \cdots$

$$a_{2k} = -\frac{a_{2k-2}}{2k-1} = \frac{a_{2k-4}}{(2k-3)(2k-1)} = \dots = \frac{(-1)^k a_0}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2k-1)}$$

and

$$a_{2k+1} = -\frac{a_{2k-1}}{2k} = \frac{a_{2k-3}}{(2k-2)2k} = \dots = \frac{(-1)^k a_1}{2 \cdot 4 \cdot 6 \cdots (2k)}.$$

Hence the linearly independent solutions are

$$y_1(x) = 1 - \frac{x^2}{1} + \frac{x^4}{1 \cdot 3} - \frac{x^6}{1 \cdot 3 \cdot 5} + \dots = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{1 \cdot 3 \cdot 5 \cdots (2n-1)}$$

$$y_2(x) = x - \frac{x^3}{2} + \frac{x^5}{2 \cdot 4} - \frac{x^7}{2 \cdot 4 \cdot 6} + \dots = x + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{2 \cdot 4 \cdot 6 \cdots (2n)}.$$

9. Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Then

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

and

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

Substitution into the ODE results in

$$(1+x^2)\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n - 4x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n + 6\sum_{n=0}^{\infty} a_nx^n = 0.$$

Before proceeding, write

$$x^{2} \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^{n} = \sum_{n=2}^{\infty} n(n-1)a_{n} x^{n}$$

and

$$x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n = \sum_{n=1}^{\infty} n \, a_n x^n.$$

It follows that

$$6a_0 + 2a_2 + (2a_1 + 6a_3)x + \sum_{n=2}^{\infty} [(n+2)(n+1)a_{n+2} + n(n-1)a_n - 4n a_n + 6a_n]x^n = 0.$$

Setting the coefficients equal to zero, we obtain $a_2 = -3a_0$, $a_3 = -a_1/3$, and

$$a_{n+2} = -\frac{(n-2)(n-3)}{(n+1)(n+2)} a_n, \quad n = 0, 1, 2, \cdots$$

Observe that for n=2 and n=3, we obtain $a_4=a_5=0$. Since the indices differ by two, we also have $a_n=0$ for $n\geq 4$. Therefore the general solution is a polynomial

$$y = a_0 + a_1 x - 3a_0 x^2 - a_1 x^3 / 3.$$

Hence the linearly independent solutions are

$$y_1(x) = 1 - 3x^2$$
 and $y_2(x) = x - x^3/3$.

10. Let
$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
. Then

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

Substitution into the ODE results in

$$(4-x^2)\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + 2\sum_{n=0}^{\infty} a_nx^n = 0.$$

First write

$$x^{2} \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^{n} = \sum_{n=2}^{\infty} n(n-1)a_{n} x^{n}.$$

It follows that

$$2a_0 + 8a_2 + (2a_1 + 24a_3)x + \sum_{n=2}^{\infty} [4(n+2)(n+1)a_{n+2} - n(n-1)a_n + 2a_n]x^n = 0.$$

We obtain $a_2 = -a_0/4$, $a_3 = -a_1/12$ and

$$4(n+2)a_{n+2} = (n-2)a_n$$
, $n = 0, 1, 2, \cdots$

Note that for n=2, $a_4=0$. Since the indices differ by *two*, we also have $a_{2k}=0$ for $k=2,3,\cdots$. On the other hand, for $k=1,2,\cdots$,

$$a_{2k+1} = \frac{(2k-3)a_{2k-1}}{4(2k+1)} = \frac{(2k-5)(2k-3)a_{2k-3}}{4^2(2k-1)(2k+1)} = \dots = \frac{-a_1}{4^k(2k-1)(2k+1)}.$$

Therefore the general solution is

$$y = a_0 + a_1 x - a_0 \frac{x^2}{4} - a_1 \sum_{n=1}^{\infty} \frac{x^{2n+1}}{4^n (2n-1)(2n+1)}.$$

Hence the linearly independent solutions are $y_1(x) = 1 - x^2/4$ and

$$y_2(x) = x - \frac{x^3}{12} - \frac{x^5}{240} - \frac{x^7}{2240} - \dots = x - \sum_{n=1}^{\infty} \frac{x^{2n+1}}{4^n(2n-1)(2n+1)}$$
.

11. Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Then

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

and

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

Substitution into the ODE results in

$$(3-x^2)\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n - 3x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n - \sum_{n=0}^{\infty} a_nx^n = 0.$$

Before proceeding, write

$$x^{2} \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^{n} = \sum_{n=2}^{\infty} n(n-1)a_{n} x^{n}$$

and

$$x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n = \sum_{n=1}^{\infty} n \, a_n x^n.$$

It follows that

$$6a_2 - a_0 + (-4a_1 + 18a_3)x + \sum_{n=2}^{\infty} [3(n+2)(n+1)a_{n+2} - n(n-1)a_n - 3n a_n - a_n]x^n = 0.$$

We obtain $a_2 = a_0/6$, $2a_3 = a_1/9$, and

$$3(n+2)a_{n+2} = (n+1)a_n, \quad n = 0, 1, 2, \cdots.$$

The indices differ by two, so for $k = 1, 2, \cdots$

$$a_{2k} = \frac{(2k-1)a_{2k-2}}{3(2k)} = \frac{(2k-3)(2k-1)a_{2k-4}}{3^2(2k-2)(2k)} = \dots = \frac{3 \cdot 5 \cdots (2k-1)a_0}{3^k \cdot 2 \cdot 4 \cdots (2k)}$$

and

$$a_{2k+1} = \frac{(2k)a_{2k-1}}{3(2k+1)} = \frac{(2k-2)(2k)a_{2k-3}}{3^2(2k-1)(2k+1)} = \dots = \frac{2 \cdot 4 \cdot 6 \cdots (2k) a_1}{3^k \cdot 3 \cdot 5 \cdots (2k+1)}.$$

Hence the linearly independent solutions are

$$y_1(x) = 1 + \frac{x^2}{6} + \frac{x^4}{24} + \frac{5x^6}{432} + \dots = 1 + \sum_{n=1}^{\infty} \frac{3 \cdot 5 \cdots (2n-1) x^{2n}}{3^n \cdot 2 \cdot 4 \cdots (2n)}$$

$$y_2(x) = x + \frac{2x^3}{9} + \frac{8x^5}{135} + \frac{16x^7}{945} + \dots = x + \sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n) x^{2n+1}}{3^n \cdot 3 \cdot 5 \cdots (2n+1)}.$$

12. Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Then

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

and

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

Substitution into the ODE results in

$$(1-x)\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n - \sum_{n=0}^{\infty} a_nx^n = 0.$$

Before proceeding, write

$$x\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n = \sum_{n=1}^{\infty} (n+1)n a_{n+1}x^n$$

and

$$x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n = \sum_{n=1}^{\infty} n \, a_n x^n.$$

It follows that

$$2a_2 - a_0 + \sum_{n=1}^{\infty} \left[(n+2)(n+1)a_{n+2} - (n+1)n \, a_{n+1} + n \, a_n - a_n \right] x^n = 0.$$

We obtain $a_2 = a_0/2$ and

$$(n+2)(n+1)a_{n+2} - (n+1)n a_{n+1} + (n-1)a_n = 0$$

for $n = 0, 1, 2, \cdots$. Writing out the individual equations,

$$3 \cdot 2 a_3 - 2 \cdot 1 a_2 = 0$$

$$4 \cdot 3 a_4 - 3 \cdot 2 a_3 + a_2 = 0$$

$$5 \cdot 4 a_5 - 4 \cdot 3 a_4 + 2 a_3 = 0$$

$$6 \cdot 5 a_6 - 5 \cdot 4 a_5 + 3 a_4 = 0$$

$$\vdots$$

The coefficients can be calculated successively as $a_3 = a_0/(2 \cdot 3)$, $a_4 = a_3/2 - a_2/12 = a_0/24$, $a_5 = 3a_4/5 - a_3/10 = a_0/120$, \cdots . We can now see that for $n \ge 2$, a_n is proportional to a_0 . In fact, for $n \ge 2$, $a_n = a_0/(n!)$. Therefore the general solution is

$$y = a_0 + a_1 x + \frac{a_0 x^2}{2!} + \frac{a_0 x^3}{3!} + \frac{a_0 x^4}{4!} + \cdots$$

Hence the linearly independent solutions are $y_2(x) = x$ and

$$y_1(x) = 1 + \sum_{n=2}^{\infty} \frac{x^n}{n!}$$
.

13. Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Then

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

and

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

Substitution into the ODE results in

$$2\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n + 3\sum_{n=0}^{\infty} a_nx^n = 0.$$

First write

$$x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n = \sum_{n=1}^{\infty} n \, a_n x^n.$$

We then obtain

$$4a_2 + 3a_0 + \sum_{n=1}^{\infty} [2(n+2)(n+1)a_{n+2} + n a_n + 3a_n]x^n = 0.$$

It follows that $a_2 = -3a_0/4$ and

$$2(n+2)(n+1)a_{n+2} + (n+3)a_n = 0$$

for $n = 0, 1, 2, \cdots$. The indices differ by two, so for $k = 1, 2, \cdots$

$$a_{2k} = -\frac{(2k+1)a_{2k-2}}{2(2k-1)(2k)} = \frac{(2k-1)(2k+1)a_{2k-4}}{2^2(2k-3)(2k-2)(2k-1)(2k)} = \cdots$$
$$= \frac{(-1)^k 3 \cdot 5 \cdots (2k+1)}{2^k (2k)!} a_0.$$

and

$$a_{2k+1} = -\frac{(2k+2)a_{2k-1}}{2(2k)(2k+1)} = \frac{(2k)(2k+2)a_{2k-3}}{2^2(2k-2)(2k-1)(2k)(2k+1)} = \cdots$$
$$= \frac{(-1)^k \cdot 4 \cdot 6 \cdots (2k)(2k+2)}{2^k \cdot (2k+1)!} a_1.$$

Hence the linearly independent solutions are

$$y_1(x) = 1 - \frac{3}{4}x^2 + \frac{5}{32}x^4 - \frac{7}{384}x^6 + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n 3 \cdot 5 \cdots (2n+1)}{2^n (2n)!} x^{2n}$$

$$y_2(x) = x - \frac{1}{3}x^3 + \frac{1}{20}x^5 - \frac{1}{210}x^7 + \dots = x + \sum_{n=1}^{\infty} \frac{(-1)^n 4 \cdot 6 \cdots (2n+2)}{2^n (2n+1)!} x^{2n+1}.$$

15(a). From Prob. 2, we have

$$y_1(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{2^n n!}$$
 and $y_2(x) = \sum_{n=0}^{\infty} \frac{2^n n! x^{2n+1}}{(2n+1)!}$.

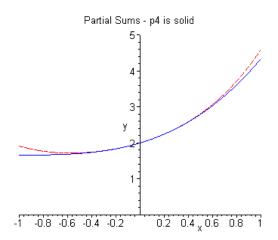
Since $a_0 = y(0)$ and $a_1 = y'(0)$, we have $y(x) = 2y_1(x) + y_2(x)$. That is,

$$y(x) = 2 + x + x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \frac{1}{15}x^5 + \frac{1}{24}x^6 + \cdots$$

The *four-* and *five-*term polynomial approximations are

$$p_4 = 2 + x + x^2 + x^3/3$$

 $p_5 = 2 + x + x^2 + x^3/3 + x^4/4$.



(c). The four-term approximation p_4 appears to be reasonably accurate (within 10%) on the interval |x| < 0.7.

17(a). From Prob. 7, the linearly independent solutions are

$$y_1(x) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{1 \cdot 3 \cdot 5 \cdots (2n-1)}$$

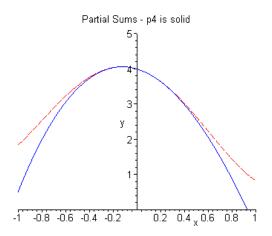
$$y_2(x) = x + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{2 \cdot 4 \cdot 6 \cdots (2n)}.$$

Since $a_0 = y(0)$ and $a_1 = y'(0)$, we have $y(x) = 4y_1(x) - y_2(x)$. That is,

$$y(x) = 4 - x - 4x^{2} + \frac{1}{2}x^{3} + \frac{4}{3}x^{4} - \frac{1}{8}x^{5} - \frac{4}{15}x^{6} + \cdots$$

The four- and five-term polynomial approximations are

$$p_4 = 4 - x - 4x^2 + \frac{1}{2}x^3$$
$$p_5 = 4 - x - 4x^2 + \frac{1}{2}x^3 + \frac{4}{3}x^4.$$



(c). The four-term approximation p_4 appears to be reasonably accurate (within 10%) on the interval |x| < 0.5.

18(a). From Prob. 12, we have

$$y_1(x) = 1 + \sum_{n=2}^{\infty} \frac{x^n}{n!}$$
 and $y_2(x) = x$.

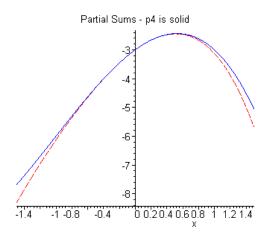
Since $a_0 = y(0)$ and $a_1 = y'(0)$, we have $y(x) = -3y_1(x) + 2y_2(x)$. That is,

$$y(x) = -3 + 2x - \frac{3}{2}x^2 - \frac{1}{2}x^3 - \frac{1}{8}x^4 - \frac{1}{40}x^5 - \frac{1}{240}x^6 + \cdots$$

The four- and five-term polynomial approximations are

$$p_4 = -3 + 2x - \frac{3}{2}x^2 - \frac{1}{2}x^3$$

$$p_5 = -3 + 2x - \frac{3}{2}x^2 - \frac{1}{2}x^3 - \frac{1}{8}x^4.$$



- (c). The four-term approximation p_4 appears to be reasonably accurate (within 10%) on the interval |x| < 0.9.
- 20. Two linearly independent solutions of Airy's equation (about $x_0 = 0$) are

$$y_1(x) = 1 + \sum_{n=1}^{\infty} \frac{x^{3n}}{2 \cdot 3 \cdots (3n-1)(3n)}$$

$$y_2(x) = x + \sum_{n=1}^{\infty} \frac{x^{3n+1}}{3 \cdot 4 \cdots (3n)(3n+1)}.$$

Applying the *ratio test* to the terms of $y_1(x)$,

$$\lim_{n \to \infty} \frac{|2 \cdot 3 \cdots (3n-1)(3n) x^{3n+3}|}{|2 \cdot 3 \cdots (3n+2)(3n+3) x^{3n}|} = \lim_{n \to \infty} \frac{1}{(3n+1)(3n+2)(3n+3)} |x|^3 = 0.$$

Similarly, applying the *ratio test* to the terms of $y_2(x)$,

$$\lim_{n \to \infty} \frac{\left| 3 \cdot 4 \cdots (3n)(3n+1) \, x^{3n+4} \right|}{\left| 3 \cdot 4 \cdots (3n+3)(3n+4) \, x^{3n+1} \right|} = \lim_{n \to \infty} \frac{1}{(3n+2)(3n+3)(3n+4)} |x|^3 = 0.$$

Hence both series converge absolutely for all x.

21. Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Then

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

and

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n - 2x \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n + \lambda \sum_{n=0}^{\infty} a_n x^n = 0.$$

First write

$$x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n = \sum_{n=1}^{\infty} n \, a_n x^n.$$

We then obtain

$$2a_2 + \lambda a_0 + \sum_{n=1}^{\infty} [(n+2)(n+1)a_{n+2} - 2n a_n + \lambda a_n]x^n = 0.$$

Setting the coefficients equal to zero, it follows that

$$a_{n+2} = \frac{(2n-\lambda)}{(n+1)(n+2)} a_n$$

for $n=0,1,2,\cdots$. Note that the indices differ by two, so for $k=1,2,\cdots$

$$a_{2k} = \frac{(4k - 4 - \lambda)a_{2k-2}}{(2k - 1)2k} = \frac{(4k - 8 - \lambda)(4k - 4 - \lambda)a_{2k-4}}{(2k - 3)(2k - 2)(2k - 1)2k} = \cdots$$
$$= (-1)^k \frac{\lambda \cdots (\lambda - 4k + 8)(\lambda - 4k + 4)}{(2k)!} a_0.$$

and

$$a_{2k+1} = \frac{(4k-2-\lambda)a_{2k-1}}{2k(2k+1)} = \frac{(4k-6-\lambda)(4k-2-\lambda)a_{2k-3}}{(2k-2)(2k-1)2k(2k+1)} = \cdots$$
$$= (-1)^k \frac{(\lambda-2)\cdots(\lambda-4k+6)(\lambda-4k+2)}{(2k+1)!} a_1.$$

Hence the linearly independent solutions of the *Hermite equation* (about $x_0 = 0$) are

$$y_1(x) = 1 - \frac{\lambda}{2!}x^2 + \frac{\lambda(\lambda - 4)}{4!}x^4 - \frac{\lambda(\lambda - 4)(\lambda - 8)}{6!}x^6 + \cdots$$

$$y_2(x) = x - \frac{\lambda - 2}{3!}x^3 + \frac{(\lambda - 2)(\lambda - 6)}{5!}x^5 - \frac{(\lambda - 2)(\lambda - 6)(\lambda - 10)}{7!}x^7 + \cdots$$

(b). Based on the recurrence relation

$$a_{n+2} = \frac{(2n-\lambda)}{(n+1)(n+2)} a_n,$$

the series solution will *terminate* as long as λ is a *nonnegative* even integer. If $\lambda = 2m$, then *one or the other* of the solutions in Part (b) will contain at most m/2 + 1 terms. In particular, we obtain the polynomial solutions corresponding to $\lambda = 0, 2, 4, 6, 8, 10$:

$\lambda = 0$	$y_1(x) = 1$
$\lambda = 2$	$y_2(x) = x$
$\lambda = 4$	$y_1(x) = 1 - 2x^2$
$\lambda = 6$	$y_2(x) = x - 2x^3/3$
$\lambda = 8$	$y_1(x) = 1 - 4x^2 + 4x^4/3$
$\lambda = 10$	$y_2(x) = x - 4x^3/3 + 4x^5/15$

(c). Observe that if $\lambda = 2n$, and $a_0 = a_1 = 1$, then

$$a_{2k} = (-1)^k \frac{2n \cdots (2n-4k+8)(2n-4k+4)}{(2k)!}$$

and

$$a_{2k+1} = (-1)^k \frac{(2n-2)\cdots(2n-4k+6)(2n-4k+2)}{(2k+1)!}.$$

for $k=1,2,\cdots [n/2]$. It follows that the *coefficient* of x^n , in y_1 and y_2 , is

$$a_n = \begin{cases} (-1)^k \frac{4^k k!}{(2k)!} & \text{for } n = 2k\\ (-1)^k \frac{4^k k!}{(2k+1)!} & \text{for } n = 2k+1 \end{cases}$$

Then by definition,

$$H_n(x) = \begin{cases} (-1)^k 2^n \frac{(2k)!}{4^k k!} y_1(x) = (-1)^k \frac{(2k)!}{k!} y_1(x) & \text{for } n = 2k \\ (-1)^k 2^n \frac{(2k+1)!}{4^k k!} y_2(x) = (-1)^k \frac{2(2k+1)!}{k!} y_2(x) & \text{for } n = 2k+1 \end{cases}$$

Therefore the first six Hermite polynomials are

$$H_0(x) = 1$$

$$H_1(x) = 2x$$

$$H_2(x) = 4x^2 - 2$$

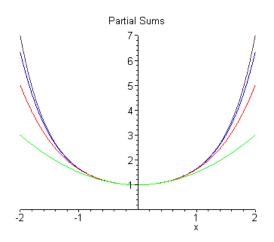
$$H_3(x) = 8x^8 - 12x$$

$$H_4(x) = 16x^4 - 48x^2 + 12$$

$$H_5(x) = 32x^5 - 160x^3 + 120x$$

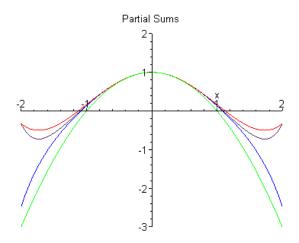
23. The series solution is given by

$$y(x) = 1 + \frac{1}{2}x^2 + \frac{1}{2^2 2!}x^4 + \frac{1}{2^3 3!}x^6 + \frac{1}{2^4 4!}x^8 + \cdots$$



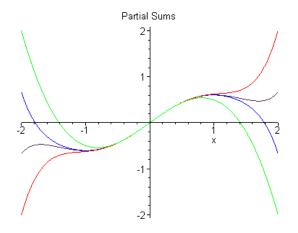
24. The series solution is given by

$$y(x) = 1 - x^2 + \frac{x^4}{6} - \frac{x^6}{30} + \frac{x^8}{120} + \cdots$$



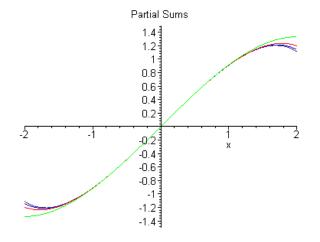
25. The series solution is given by

$$y(x) = x - \frac{x^3}{2} + \frac{x^5}{2 \cdot 4} - \frac{x^7}{2 \cdot 4 \cdot 6} + \frac{x^9}{2 \cdot 4 \cdot 6 \cdot 8} - \cdots$$



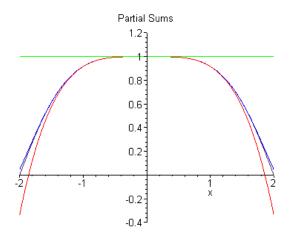
26. The series solution is given by

$$y(x) = x - \frac{x^3}{12} - \frac{x^5}{240} - \frac{x^7}{2240} - \frac{x^9}{16128} - \cdots$$



27. The series solution is given by

$$y(x) = 1 - \frac{x^4}{12} + \frac{x^8}{672} - \frac{x^{12}}{88704} + \cdots$$



28. Let
$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
. Then

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$

and

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n.$$

Substitution into the ODE results in

$$(1-x)\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + x\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n - 2\sum_{n=0}^{\infty} a_nx^n = 0.$$

After appropriately shifting the indices, it follows that

$$2a_2 - 2a_0 + \sum_{n=1}^{\infty} \left[(n+2)(n+1)a_{n+2} - (n+1)n \, a_{n+1} + n \, a_n - 2 \, a_n \right] x^n = 0.$$

We find that $a_2 = a_0$ and

$$(n+2)(n+1)a_{n+2} - (n+1)n a_{n+1} + (n-2)a_n = 0$$

for $n = 1, 2, \cdots$. Writing out the individual equations,

$$3 \cdot 2 \, a_3 - 2 \cdot 1 \, a_2 - a_1 = 0$$

$$4 \cdot 3 \, a_4 - 3 \cdot 2 \, a_3 = 0$$

$$5 \cdot 4 \, a_5 - 4 \cdot 3 \, a_4 + a_3 = 0$$

$$6 \cdot 5 \, a_6 - 5 \cdot 4 \, a_5 + 2 \, a_4 = 0$$

$$\vdots$$

Since $a_0 = 0$ and $a_1 = 1$, the remaining coefficients satisfy the equations

$$3 \cdot 2 a_3 - 1 = 0$$

$$4 \cdot 3 a_4 - 3 \cdot 2 a_3 = 0$$

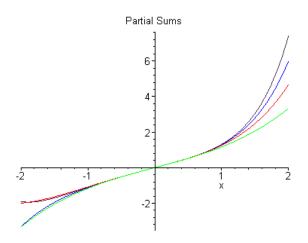
$$5 \cdot 4 a_5 - 4 \cdot 3 a_4 + a_3 = 0$$

$$6 \cdot 5 a_6 - 5 \cdot 4 a_5 + 2 a_4 = 0$$

$$\vdots$$

That is, $a_3=1/6$, $a_4=1/12$, $a_5=1/24$, $a_6=1/45$, \cdots . Hence the series solution of the initial value problem is

$$y(x) = x + \frac{1}{6}x^3 + \frac{1}{12}x^4 + \frac{1}{24}x^5 + \frac{1}{45}x^6 + \frac{13}{1008}x^7 + \cdots$$



Section 5.3

2. Let $y = \phi(x)$ be a solution of the initial value problem. First note that

$$y'' = -(\sin x)y' - (\cos x)y.$$

Differentiating twice,

$$y''' = -(\sin x)y'' - 2(\cos x)y' + (\sin x)y$$

$$y^{iv} = -(\sin x)y''' - 3(\cos x)y'' + 3(\sin x)y' + (\cos x)y.$$

Given that $\phi(0)=0$ and $\phi'(0)=1$, the *first* equation gives $\phi''(0)=0$ and the last two equations give $\phi'''(0)=-2$ and $\phi^{iv}(0)=0$.

3. Let $y = \phi(x)$ be a solution of the initial value problem. First write

$$y'' = -\frac{1+x}{x^2}y' - \frac{3\ln x}{x^2}y.$$

Differentiating twice,

$$y''' = \frac{-1}{x^3} [(x+x^2)y'' + (3x\ln x - x - 2)y' + (3-6\ln x)y].$$

$$y^{iv} = \frac{-1}{x^4} \Big[(x^2 + x^3) y''' + (3x^2 \ln x - 2x^2 - 4x) y'' + (6 + 8x - 12x \ln x) y' + (18 \ln x - 15) y \Big].$$

Given that $\phi(1)=2$ and $\phi'(1)=0$, the *first* equation gives $\phi''(1)=0$ and the last two equations give $\phi'''(0)=-6$ and $\phi^{iv}(0)=42$.

4. Let $y = \phi(x)$ be a solution of the initial value problem. First note that

$$y'' = -x^2 y' - (\sin x)y$$
.

Differentiating twice,

$$y''' = -x^2 y'' - (2x + \sin x)y' - (\cos x)y$$

$$y^{iv} = -x^2 y''' - (4x + \sin x)y'' - (2 + 2\cos x)y' + (\sin x)y.$$

Given that $\phi(0) = a_0$ and $\phi'(0) = a_1$, the *first* equation gives $\phi''(0) = 0$ and the last two equations give $\phi'''(0) = -a_0$ and $\phi^{iv}(0) = -4a_1$.

- 5. Clearly, p(x) = 4 and q(x) = 6x are analytic for all x. Hence the series solutions converge *everywhere*.
- 7. The zeroes of $P(x)=1+x^3$ are the three cube roots of -1. They all lie on the unit circle in the complex plane. So for $x_0=0$, $\rho_{min}=1$. For $x_0=2$, the nearest

root is $e^{i\pi/3} = \left(1 + i\sqrt{3}\right)/2$, hence $\rho_{min} = \sqrt{3}$.

- 8. The only root of P(x) = x is zero. Hence $\rho_{min} = 1$.
- 9(b). p(x) = -x and q(x) = -1 are analytic for all x.
- (c). p(x) = -x and q(x) = -1 are analytic for all x.
- (d). p(x) = 0 and $q(x) = kx^2$ are analytic for all x.
- (e). The only root of P(x) = 1 x is 1. Hence $\rho_{min} = 1$.
- (g). p(x) = x and q(x) = 2 are analytic for all x.
- (i). The zeroes of $P(x) = 1 + x^2$ are $\pm i$. Hence $\rho_{min} = 1$.
- (j). The zeroes of $P(x) = 4 x^2$ are ± 2 . Hence $\rho_{min} = 2$.
- (k). The zeroes of $P(x) = 3 x^2$ are $\pm \sqrt{3}$. Hence $\rho_{min} = \sqrt{3}$.
- (l). The only root of P(x) = 1 x is 1. Hence $\rho_{min} = 1$.
- (m). p(x) = x/2 and q(x) = 3/2 are analytic for all x.
- (n). p(x) = (1+x)/2 and q(x) = 3/2 are analytic for all x.
- 12. The Taylor series expansion of e^x , about $x_0 = 0$, is

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Substituting into the ODE,

$$\left[\sum_{n=0}^{\infty} \frac{x^n}{n!}\right] \left[\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n\right] + x\sum_{n=0}^{\infty} a_n x^n = 0.$$

First note that

$$x\sum_{n=0}^{\infty}a_nx^n=\sum_{n=1}^{\infty}a_{n-1}x^n=a_0x+a_1x^2+a_2x^3+\cdots+a_{n-1}x^n+\cdots.$$

The coefficient of x^n in the *product* of the two series is

$$c_n = 2a_2 \frac{1}{n!} + 6a_3 \frac{1}{(n-1)!} + 12a_4 \frac{1}{(n-2)!} + \dots + (n+1)n \, a_{n+1} + (n+2)(n+1)a_{n+2}.$$

Expanding the individual series, it follows that

$$2a_2 + (2a_2 + 6a_3)x + (a_2 + 6a_3 + 12a_4)x^2 + (a_2 + 6a_3 + 12a_4 + 20a_5)x^3 + \dots + a_0x + a_1x^2 + a_2x^3 + \dots = 0.$$

Setting the coefficients equal to zero, we obtain the system $2a_2=0$, $2a_2+6a_3+a_0=0$, $a_2+6a_3+12a_4+a_1=0$, $a_2+6a_3+12a_4+20a_5+a_2=0$, \cdots . Hence the general solution is

$$y(x) = a_0 + a_1 x - a_0 \frac{x^3}{6} + (a_0 - a_1) \frac{x^4}{12} + (2a_1 - a_0) \frac{x^5}{40} + \left(\frac{4}{3}a_0 - 2a_1\right) \frac{x^6}{120} + \cdots$$

We find that two linearly independent solutions are

$$y_1(x) = 1 - \frac{x^3}{6} + \frac{x^4}{12} - \frac{x^5}{40} + \cdots$$

$$y_2(x) = x - \frac{x^4}{12} + \frac{x^5}{20} - \frac{x^6}{60} + \cdots$$

Since p(x)=0 and $q(x)=xe^{-x}$ converge everywhere, $\,\rho=\infty$.

13. The Taylor series expansion of $\cos x$, about $x_0 = 0$, is

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$

Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Substituting into the ODE,

$$\left[\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}\right] \left[\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n\right] + \sum_{n=1}^{\infty} na_n x^n - 2\sum_{n=0}^{\infty} a_n x^n = 0.$$

The coefficient of x^n in the *product* of the two series is

$$c_n = 2a_2b_n + 6a_3b_{n-1} + 12a_4b_{n-2} + \dots + (n+1)n \, a_{n+1}b_1 + (n+2)(n+1)a_{n+2}b_0,$$

in which $\cos x = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n + \dots$. It follows that

$$2a_2 - 2a_0 + \sum_{n=1}^{\infty} c_n x^n + \sum_{n=1}^{\infty} (n-2)a_n x^n = 0.$$

Expanding the product of the series, it follows that

$$2a_2 - 2a_0 + 6a_3x + (-a_2 + 12a_4)x^2 + (-3a_3 + 20a_5)x^3 + \dots - a_1x + a_3x^3 + 2a_4x^4 + \dots = 0.$$

Setting the coefficients equal to zero, $a_2-a_0=0$, $6a_3-a_1=0$, $-a_2+12a_4=0$, $-3a_3+20a_5+a_3=0$, \cdots . Hence the general solution is

$$y(x) = a_0 + a_1 x + a_0 x^2 + a_1 \frac{x^3}{6} + a_0 \frac{x^4}{12} + a_1 \frac{x^5}{60} + a_0 \frac{x^6}{120} + a_1 \frac{x^7}{560} + \cdots$$

We find that two linearly independent solutions are

$$y_1(x) = 1 + x^2 + \frac{x^4}{12} + \frac{x^6}{120} + \cdots$$

$$y_2(x) = x + \frac{x^3}{6} + \frac{x^5}{60} + \frac{x^7}{560} + \cdots$$

The *nearest* zero of $P(x) = \cos x$ is at $x = \pm \pi/2$. Hence $\rho_{min} = \pi/2$.

14. The Taylor series expansion of ln(1+x), about $x_0=0$, is

$$ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}.$$

Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Substituting into the ODE,

$$\left[\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}\right] \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \left[\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}\right] \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n - x \sum_{n=0}^{\infty} a_n x^n = 0.$$

The *first* product is the series

$$2a_2 + (-2a_2 + 6a_3)x + (a_2 - 6a_3 + 12a_4)x^2 + (-a_2 + 6a_3 - 12a_4 + 20a_5)x^3 + \cdots$$

The *second* product is the series

$$a_1x + (2a_2 - a_1/2)x^2 + (3a_3 - a_2 + a_1/3)x^3 + (4a_4 - 3a_3/2 + 2a_2/3 - a_1/4)x^3 + \cdots$$

Combining the series and equating the coefficients to zero, we obtain

$$2a_2 = 0$$

$$-2a_2 + 6a_3 + a_1 - a_0 = 0$$

$$12a_4 - 6a_3 + 3a_2 - 3a_1/2 = 0$$

$$20a_5 - 12a_4 + 9a_3 - 3a_2 + a_1/3 = 0$$

$$\vdots$$

Hence the general solution is

$$y(x) = a_0 + a_1 x + (a_0 - a_1) \frac{x^3}{6} + (2a_0 + a_1) \frac{x^4}{24} + a_1 \frac{7x^5}{120} + \left(\frac{5}{3}a_1 - a_0\right) \frac{x^6}{120} + \cdots$$

We find that two linearly independent solutions are

$$y_1(x) = 1 + \frac{x^3}{6} + \frac{x^4}{12} - \frac{x^6}{120} + \cdots$$

$$y_2(x) = x - \frac{x^3}{6} + \frac{x^4}{24} + \frac{7x^5}{120} + \cdots$$

The coefficient $p(x) = e^x ln(1+x)$ is analytic at $x_0 = 0$, but its power series has a radius of convergence $\rho = 1$.

15. If $y_1 = x$ and $y_2 = x^2$ are solutions, then substituting y_2 into the ODE results in

$$2P(x) + 2xQ(x) + x^2R(x) = 0.$$

Setting x=0, we find that P(0)=0. Similarly, substituting y_1 into the ODE results in Q(0)=0. Therefore P(x)/Q(x) and R(x)/P(x) may not be analytic. If they were, Theorem 3.2.1 would guarantee that y_1 and y_2 were the *only* two solutions. But note that an *arbitrary* value of y(0) cannot be a linear combination of $y_1(0)$ and $y_2(0)$. Hence $x_0=0$ must be a singular point.

16. Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Substituting into the ODE,

$$\sum_{n=0}^{\infty} (n+1)a_{n+1} x^n - \sum_{n=0}^{\infty} a_n x^n = 0.$$

That is,

$$\sum_{n=0}^{\infty} [(n+1)a_{n+1} - a_n]x^n = 0.$$

Setting the coefficients equal to zero, we obtain

$$a_{n+1} = \frac{a_n}{n+1}$$

for $n=0,1,2,\cdots$. It is easy to see that $a_n=a_0/(n\,!)$. Therefore the general solution is

$$y(x) = a_0 \left[1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \right]$$

= $a_0 e^x$.

The coefficient $a_0 = y(0)$, which can be arbitrary.

17. Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Substituting into the ODE,

$$\sum_{n=0}^{\infty} (n+1)a_{n+1} x^n - x \sum_{n=0}^{\infty} a_n x^n = 0.$$

That is,

$$\sum_{n=0}^{\infty} (n+1)a_{n+1} x^n - \sum_{n=1}^{\infty} a_{n-1} x^n = 0.$$

Combining the series, we have

$$a_1 + \sum_{n=1}^{\infty} [(n+1)a_{n+1} - a_{n-1}] x^n = 0.$$

Setting the coefficient equal to zero, $a_1 = 0$ and $a_{n+1} = a_{n-1}/(n+1)$ for $n = 1, 2, \cdots$. Note that the indices differ by two, so for $k = 1, 2, \cdots$

$$a_{2k} = \frac{a_{2k-2}}{(2k)} = \frac{a_{2k-4}}{(2k-2)(2k)} = \dots = \frac{a_0}{2 \cdot 4 \cdots (2k)}$$

and

$$a_{2k+1} = 0$$
.

Hence the general solution is

$$y(x) = a_0 \left[1 + \frac{x^2}{2} + \frac{x^4}{2^2 2!} + \frac{x^6}{2^3 3!} + \dots + \frac{x^{2n}}{2^n n!} + \dots \right]$$

= $a_0 exp(x^2/2)$.

The coefficient $a_0 = y(0)$, which can be arbitrary.

19. Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Substituting into the ODE,

$$(1-x)\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n - \sum_{n=0}^{\infty} a_nx^n = 0.$$

That is,

$$\sum_{n=0}^{\infty} (n+1)a_{n+1} x^n - \sum_{n=1}^{\infty} n a_n x^n - \sum_{n=0}^{\infty} a_n x^n = 0.$$

Combining the series, we have

$$a_1 - a_0 + \sum_{n=1}^{\infty} [(n+1)a_{n+1} - n a_n - a_n] x^n = 0.$$

Setting the coefficients equal to zero, $a_1 = a_0$ and $a_{n+1} = a_n$ for $n = 0, 1, 2, \cdots$. Hence the general solution is

$$y(x) = a_0 [1 + x + x^2 + x^3 + \dots + x^n + \dots]$$

= $a_0 \frac{1}{1 - x}$.

The coefficient $a_0 = y(0)$, which can be arbitrary.

21. Let $y = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots$. Substituting into the ODE,

$$\sum_{n=0}^{\infty} (n+1)a_{n+1} x^n + x \sum_{n=0}^{\infty} a_n x^n = 1 + x.$$

That is,

$$\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n + \sum_{n=1}^{\infty} a_{n-1}x^n = 1 + x.$$

Combining the series, and the nonhomogeneous terms, we have

$$(a_1 - 1) + (2a_2 + a_0 - 1)x + \sum_{n=2}^{\infty} [(n+1)a_{n+1} + a_{n-1}] x^n = 0.$$

Setting the coefficients equal to zero, we obtain $a_1 = 1$, $2a_2 + a_0 - 1 = 0$, and

$$a_n = -\frac{a_{n-2}}{n}, \quad n = 3, 4, \cdots.$$

The indices differ by two, so for $k = 2, 3, \cdots$

$$a_{2k} = -\frac{a_{2k-2}}{(2k)} = \frac{a_{2k-4}}{(2k-2)(2k)} = \dots = \frac{(-1)^{k-1}a_2}{4 \cdot 6 \cdots (2k)} = \frac{(-1)^k(a_0-1)}{2 \cdot 4 \cdot 6 \cdots (2k)},$$

and for $k = 1, 2, \cdots$

$$a_{2k+1} = = -\frac{a_{2k-1}}{(2k+1)} = \frac{a_{2k-3}}{(2k-1)(2k+1)} = \dots = \frac{(-1)^k}{3 \cdot 5 \cdots (2k+1)}.$$

Hence the general solution is

$$y(x) = a_0 + x + \frac{1 - a_0}{2}x^2 - \frac{x^3}{3} + a_0 \frac{x^4}{2^2 2!} + \frac{x^5}{3 \cdot 5} - a_0 \frac{x^6}{2^3 3!} - \cdots$$

Collecting the terms containing a_0 ,

$$y(x) = a_0 \left[1 - \frac{x^2}{2} + \frac{x^4}{2^2 2!} - \frac{x^6}{2^3 3!} + \cdots \right] + \left[x + \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{2^2 2!} + \frac{x^5}{3 \cdot 5} + \frac{x^6}{2^3 3!} - \frac{x^7}{3 \cdot 5 \cdot 7} + \cdots \right].$$

Upon inspection, we find that

$$y(x) = a_0 exp(-x^2/2) + \left[x + \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{2^2 2!} + \frac{x^5}{3 \cdot 5} + \frac{x^6}{2^3 3!} - \frac{x^7}{3 \cdot 5 \cdot 7} + \cdots \right].$$

Note that the given ODE is *first order linear*, with integrating factor $\mu(t) = e^{x^2/2}$. The general solution is given by

$$y(x) = e^{-x^2/2} \int_0^x e^{u^2/2} du + (y(0) - 1)e^{-x^2/2} + 1.$$

23. If $\alpha=0$, then $y_1(x)=1$. If $\alpha=2n$, then $a_{2m}=0$ for $m\geq n+1$. As a result,

$$y_1(x) = 1 + \sum_{m=1}^{n} (-1)^m \frac{2^m n(n-1)\cdots(n-m+1)(2n+1)(2n+3)\cdots(2n+2m-1)}{(2m)!} x^{2m}.$$

$\alpha = 0$	1
$\alpha = 2$	$1 - 3x^2$
$\alpha = 4$	$1 - 10x^2 + \frac{35}{3}x^4$

If $\alpha = 2n + 1$, then $a_{2m+1} = 0$ for $m \ge n + 1$. As a result,

$$y_2(x) = x + \sum_{m=1}^{n} (-1)^m \frac{2^m n(n-1)\cdots(n-m+1)(2n+3)(2n+5)\cdots(2n+2m+1)}{(2m+1)!} x^{2m+1}.$$

$\alpha = 1$	x
$\alpha = 3$	$x - \frac{5}{3}x^3$
$\alpha = 5$	$x - \frac{14}{3}x^3 + \frac{21}{5}x^5$

24(a). Based on Prob. 23,

$\alpha = 0$	1	$y_1(1) = 1$
$\alpha = 2$		$y_1(1) = -2$
$\alpha = 4$	$1 - 10x^2 + \frac{35}{3}x^4$	$y_1(1) = \frac{8}{3}$

Normalizing the polynomials, we obtain

$$P_0(x) = 1$$

$$P_2(x) = -\frac{1}{2} + \frac{3}{2}x^2$$

$$P_4(x) = \frac{3}{8} - \frac{15}{4}x^2 + \frac{35}{8}x^4$$

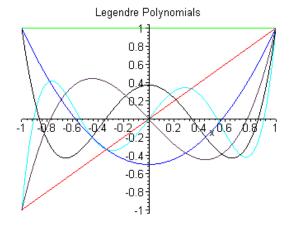
$\alpha = 1$	x	$y_2(1) = 1$
$\alpha = 3$	$x - \frac{5}{3}x^3$	$y_2(1) = -\frac{2}{3}$
$\alpha = 5$	$x - \frac{14}{3}x^3 + \frac{21}{5}x^5$	$y_2(1) = \frac{8}{15}$

Similarly,

$$P_1(x) = x$$

$$P_3(x) = -\frac{3}{2}x + \frac{5}{2}x^3$$

$$P_5(x) = \frac{15}{8}x - \frac{35}{4}x^3 + \frac{63}{8}x^5$$



(c). $P_0(x)$ has no roots. $P_1(x)$ has one root at x=0. The zeros of $P_2(x)$ are at $x=\pm 1/\sqrt{3}$. The zeros of $P_3(x)$ are $x=0,\pm\sqrt{3/5}$. The roots of $P_4(x)$ are given by $x^2=\left(15+2\sqrt{30}\right)/35$, $\left(15-2\sqrt{30}\right)/35$. The roots of $P_5(x)$ are given by x=0 and $x^2=\left(35+2\sqrt{70}\right)/63$, $\left(35-2\sqrt{70}\right)/63$.

25. Observe that

$$P_n(-1) = \frac{(-1)^n}{2^n} \sum_{k=0}^{[n/2]} \frac{(-1)^k (2n-2k)!}{k!(n-k)!(n-2k)!}$$
$$= (-1)^n P_n(1).$$

But $P_n(1) = 1$ for *all* nonnegative integers n.

27. We have

$$(x^{2}-1)^{n} = \sum_{k=0}^{n} \frac{(-1)^{n-k} n!}{k!(n-k)!} x^{2k},$$

which is a polynomial of degree 2n. Differentiating *n* times,

$$\frac{d^n}{dx^n}(x^2-1)^n = \sum_{k=0}^n \frac{(-1)^{n-k}n!}{k!(n-k)!}(2k)(2k-1)\cdots(2k-n+1)x^{2k-n},$$

in which the lower index is $\mu = [n/2] + 1$. Note that if n = 2m + 1, then $\mu = m + 1$.

Now shift the index, by setting

$$k = n - j$$
.

Hence

$$\frac{d^n}{dx^n} (x^2 - 1)^n = \sum_{j=0}^{[n/2]} \frac{(-1)^j n!}{(n-j)! j!} (2n - 2j) (2n - 2j - 1) \cdots (n-2j+1) x^{n-2j}$$

$$= n! \sum_{j=0}^{[n/2]} \frac{(-1)^j (2n - 2j)!}{(n-j)! j! (n-2j)!} x^{n-2j}.$$

Based on Prob. 25,

$$\frac{d^n}{dx^n} (x^2 - 1)^n = n! \, 2^n P_n(x).$$

29. Since the n+1 polynomials P_0, P_1, \dots, P_n are *linearly independent*, and the *degree* of P_k is k, any polynomial, f, of degree n can be expressed as a linear combination

$$f(x) = \sum_{k=0}^{n} a_k P_k(x).$$

Multiplying both sides by P_m and integrating,

$$\int_{-1}^{1} f(x) P_m(x) dx = \sum_{k=0}^{n} a_k \int_{-1}^{1} P_k(x) P_m(x) dx.$$

Based on Prob. 28,

$$\int_{-1}^{1} P_k(x) P_m(x) dx = \frac{2}{2m+1} \delta_{km}.$$

Hence

$$\int_{-1}^{1} f(x) P_m(x) dx = \frac{2}{2m+1} a_m.$$

Section 5.4

2. We see that P(x) = 0 when x = 0 and 1. Since the three coefficients have no factors

in common, both of these points are singular points. Near x = 0,

$$\lim_{x \to 0} x p(x) = \lim_{x \to 0} x \frac{2x}{x^2 (1 - x)^2} = 2.$$

$$\lim_{x \to 0} x^2 q(x) = \lim_{x \to 0} x^2 \frac{4}{x^2 (1 - x)^2} = 4.$$

The singular point x = 0 is regular. Considering x = 1,

$$\lim_{x \to 1} (x - 1)p(x) = \lim_{x \to 1} (x - 1) \frac{2x}{x^2 (1 - x)^2}.$$

The latter limit does not exist. Hence x = 1 is an irregular singular point.

3. P(x) = 0 when x = 0 and 1. Since the three coefficients have no common factors, both of these points are singular points. Near x = 0,

$$\lim_{x \to 0} x \, p(x) = \lim_{x \to 0} x \frac{x - 2}{x^2 (1 - x)} \,.$$

The limit does not exist, and so x = 0 is an irregular singular point. Considering x = 1,

$$\lim_{x \to 1} (x - 1)p(x) = \lim_{x \to 1} (x - 1) \frac{x - 2}{x^2(1 - x)} = 1.$$

$$\lim_{x \to 1} (x-1)^2 q(x) = \lim_{x \to 1} (x-1)^2 \frac{-3x}{x^2 (1-x)} = 0.$$

Hence x = 1 is a regular singular point.

4. P(x)=0 when x=0 and ± 1 . Since the three coefficients have no common factors, both of these points are singular points. Near x=0,

$$\lim_{x \to 0} x \, p(x) = \lim_{x \to 0} x \frac{2}{x^3 (1 - x^2)} \,.$$

The limit does not exist, and so x = 0 is an irregular singular point. Near x = -1,

$$\lim_{x \to -1} (x+1)p(x) = \lim_{x \to -1} (x+1) \frac{2}{x^3(1-x^2)} = -1.$$

$$\lim_{x \to -1} (x+1)^2 q(x) = \lim_{x \to -1} (x+1)^2 \frac{2}{x^3 (1-x^2)} = 0.$$

Hence x = -1 is a *regular* singular point. At x = 1,

$$\lim_{x \to 1} (x - 1)p(x) = \lim_{x \to 1} (x - 1) \frac{2}{x^3 (1 - x^2)} = -1.$$

$$\lim_{x \to 1} (x-1)^2 q(x) = \lim_{x \to 1} (x-1)^2 \frac{2}{x^3 (1-x^2)} = 0.$$

Hence x = 1 is a *regular* singular point.

6. The only singular point is at x = 0. We find that

$$\lim_{x \to 0} x \, p(x) = \lim_{x \to 0} x \frac{x}{x^2} = 1 \, .$$

$$\lim_{x \to 0} x^2 q(x) = \lim_{x \to 0} x^2 \frac{x^2 - \nu^2}{x^2} = -\nu^2.$$

Hence x = 0 is a *regular* singular point.

7. The only singular point is at x = -3. We find that

$$\lim_{x \to -3} (x+3)p(x) = \lim_{x \to -3} (x+3) \frac{-2x}{x+3} = 6.$$

$$\lim_{x \to -3} (x+3)^2 q(x) = \lim_{x \to -3} (x+3)^2 \frac{1-x^2}{x+3} = 0.$$

Hence x = -3 is a *regular* singular point.

8. Dividing the ODE by $x(1-x^2)^3$, we find that

$$p(x) = \frac{1}{x(1-x^2)}$$
 and $q(x) = \frac{2}{x(1+x)^2(1-x)^3}$.

The singular points are at x = 0 and ± 1 . For x = 0,

$$\lim_{x \to 0} x \, p(x) = \lim_{x \to 0} x \frac{1}{x(1-x^2)} = 1 \, .$$

$$\lim_{x \to 0} x^2 q(x) = \lim_{x \to 0} x^2 \frac{2}{x(1+x)^2 (1-x)^3} = 0.$$

Hence x = 0 is a *regular* singular point. For x = -1,

$$\lim_{x \to -1} (x+1)p(x) = \lim_{x \to -1} (x+1) \frac{1}{x(1-x^2)} = -\frac{1}{2}.$$

$$\lim_{x \to -1} (x+1)^2 q(x) = \lim_{x \to -1} (x+1)^2 \frac{2}{x(1+x)^2 (1-x)^3} = -\frac{1}{4}.$$

Hence x = -1 is a regular singular point. For x = 1,

$$\lim_{x \to 1} (x - 1)p(x) = \lim_{x \to 1} (x - 1) \frac{1}{x(1 - x^2)} = -\frac{1}{2}.$$

$$\lim_{x \to 1} (x-1)^2 q(x) = \lim_{x \to 1} (x-1)^2 \frac{2}{x(1+x)^2 (1-x)^3}.$$

The latter limit does not exist. Hence x = 1 is an irregular singular point.

9. Dividing the ODE by $(x+2)^2(x-1)$, we find that

$$p(x) = \frac{3}{(x+2)^2}$$
 and $q(x) = \frac{-2}{(x+2)(x-1)}$.

The singular points are at x = -2 and 1. For x = -2,

$$\lim_{x \to -2} (x+2)p(x) = \lim_{x \to -2} (x+2) \frac{3}{(x+2)^2}.$$

The limit does not exist. Hence x = -2 is an irregular singular point. For x = 1,

$$\lim_{x \to 1} (x-1)p(x) = \lim_{x \to 1} (x-1) \frac{3}{(x+2)^2} = 0.$$

$$\lim_{x \to 1} (x-1)^2 q(x) = \lim_{x \to 1} (x-1)^2 \frac{-2}{(x+2)(x-1)} = 0.$$

Hence x = 1 is a *regular* singular point.

10. P(x) = 0 when x = 0 and 3. Since the three coefficients have no common factors, both of these points are singular points. Near x = 0,

$$\lim_{x \to 0} x \, p(x) = \lim_{x \to 0} x \frac{x+1}{x(3-x)} = \frac{1}{3} \,.$$

$$\lim_{x \to 0} x^2 q(x) = \lim_{x \to 0} x^2 \frac{-2}{x(3-x)} = 0.$$

Hence x = 0 is a regular singular point. For x = 3,

$$\lim_{x \to 3} (x-3)p(x) = \lim_{x \to 3} (x-3) \frac{x+1}{x(3-x)} = -\frac{4}{3}.$$

$$\lim_{x \to 3} (x-3)^2 q(x) = \lim_{x \to 3} (x-3)^2 \frac{-2}{x(3-x)} = 0.$$

Hence x = 3 is a *regular* singular point.

11. Dividing the ODE by $(x^2 + x - 2)$, we find that

$$p(x) = \frac{x+1}{(x+2)(x-1)}$$
 and $q(x) = \frac{2}{(x+2)(x-1)}$.

The singular points are at x = -2 and 1. For x = -2,

$$\lim_{x \to -2} (x+2)p(x) = \lim_{x \to -2} \frac{x+1}{x-1} = \frac{1}{3}.$$

$$\lim_{x \to -2} (x+2)^2 q(x) = \lim_{x \to -2} \frac{2(x+2)}{x-1} = 0.$$

Hence x = -2 is a regular singular point. For x = 1,

$$\lim_{x \to 1} (x - 1)p(x) = \lim_{x \to 1} \frac{x + 1}{x + 2} = \frac{2}{3}.$$

$$\lim_{x \to 1} (x-1)^2 q(x) = \lim_{x \to 1} \frac{2(x-1)}{(x+2)} = 0.$$

Hence x = 1 is a regular singular point.

- 13. Note that p(x) = ln|x| and q(x) = 3x. Evidently, p(x) is *not* analytic at $x_0 = 0$. Furthermore, the function $x \ p(x) = x \ ln|x|$ does *not* have a Taylor series about $x_0 = 0$. Hence x = 0 is an *irregular* singular point.
- 14. P(x) = 0 when x = 0. Since the three coefficients have no common factors, x = 0 is a singular point. The Taylor series of $e^x 1$, about x = 0, is

$$e^x - 1 = x + x^2/2 + x^3/6 + \cdots$$

Hence the function $x p(x) = 2(e^x - 1)/x$ is analytic at x = 0. Similarly, the Taylor series of $e^{-x}\cos x$, about x = 0, is

$$e^{-x}\cos x = 1 - x + x^3/3 - x^4/6 + \cdots$$

The function $x^2q(x)=e^{-x}\cos x$ is also analytic at x=0 . Hence x=0 is a regular singular point.

15. P(x) = 0 when x = 0. Since the three coefficients have no common factors, x = 0 is a singular point. The Taylor series of $\sin x$, about x = 0, is

$$\sin x = x - x^3/3! + x^5/5! - \cdots$$

Hence the function $x p(x) = -3\sin x/x$ is analytic at x = 0. On the other hand, q(x) is a rational function, with

$$\lim_{x \to 0} x^2 q(x) = \lim_{x \to 0} x^2 \frac{1 + x^2}{x^2} = 1.$$

Hence x = 0 is a regular singular point.

16. P(x) = 0 when x = 0. Since the three coefficients have no common factors, x = 0 is a singular point. We find that

$$\lim_{x \to 0} x \, p(x) = \lim_{x \to 0} x \frac{1}{x} = 1 \, .$$

Although the function $R(x)=\cot x$ does not have a Taylor series about x=0, note that $x^2q(x)=x\cot x=1-x^2/3-x^4/45-2x^6/945-\cdots$. Hence x=0 is a regular singular point. Furthermore, $q(x)=\cot x/x^2$ is undefined at $x=\pm n\pi$. Therefore the points $x=\pm n\pi$ are also singular points. First note that

$$\lim_{x \to \pm n\pi} (x \mp n\pi) p(x) = \lim_{x \to \pm n\pi} (x \mp n\pi) \frac{1}{x} = 0.$$

Furthermore, since $\cot x$ has period π ,

$$q(x) = \cot x/x = \cot(x \mp n\pi)/x$$
$$= \cot(x \mp n\pi) \frac{1}{(x \mp n\pi) \pm n\pi}.$$

Therefore

$$(x \mp n\pi)^2 q(x) = (x \mp n\pi) \cot(x \mp n\pi) \left[\frac{(x \mp n\pi)}{(x \mp n\pi) \pm n\pi} \right].$$

From above,

$$(x \mp n\pi)cot(x \mp n\pi) = 1 - (x \mp n\pi)^2/3 - (x \mp n\pi)^4/45 - \cdots$$

Note that the function in *brackets* is analytic *near* $x = \pm n\pi$. It follows that the function $(x \mp n\pi)^2 q(x)$ is also analytic near $x = \pm n\pi$. Hence all the singular points are *regular*.

18. The singular points are located at $x=\pm n\pi$, $n=0,1,\cdots$. Dividing the ODE by $x\sin x$, we find that $x\,p(x)=3\csc x$ and $x^2q(x)=x^2\csc x$. Evidently, $x\,p(x)$ is not even defined at x=0. Hence x=0 is an *irregular* singular point. On the other hand, the Taylor series of $x\csc x$, about x=0, is

$$x \csc x = 1 + x^2/6 + 7x^4360 + \cdots$$

Noting that $csc(x \mp n\pi) = (-1)^n csc x$,

$$(x \mp n\pi)p(x) = 3(-1)^{n}(x \mp n\pi)csc(x \mp n\pi)/x$$

= $3(-1)^{n}(x \mp n\pi)csc(x \mp n\pi)\left[\frac{1}{(x \mp n\pi) \pm n\pi}\right].$

It is apparent that $(x \mp n\pi)p(x)$ is analytic at $x = \pm n\pi$. Similarly,

$$(x \mp n\pi)^2 q(x) = (x \mp n\pi)^2 csc x$$
$$= (-1)^n (x \mp n\pi)^2 csc (x \mp n\pi),$$

which is also analytic at $x = \pm n\pi$. Hence all other singular points are regular.

20. x=0 is the only singular point. Dividing the ODE by $2x^2$, we have p(x)=3/(2x) and $q(x)=-x^{-2}(1+x)/2$. It follows that

$$\lim_{x \to 0} x \, p(x) = \lim_{x \to 0} x \frac{3}{2x} = \frac{3}{2} \,,$$

$$\lim_{x \to 0} x^2 q(x) = \lim_{x \to 0} x^2 \frac{-(1+x)}{2x^2} = -\frac{1}{2}.$$

Hence x=0 is a *regular* singular point. Let $y=a_0+a_1x+a_2x^2+\cdots+a_nx^n+\cdots$. Substitution into the ODE results in

$$2x^{2}\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2}x^{n} + 3x\sum_{n=0}^{\infty}(n+1)a_{n+1}x^{n} - (1+x)\sum_{n=0}^{\infty}a_{n}x^{n} = 0.$$

That is,

$$2\sum_{n=2}^{\infty} n(n-1)a_n x^n + 3\sum_{n=1}^{\infty} n a_n x^n - \sum_{n=0}^{\infty} a_n x^n - \sum_{n=1}^{\infty} a_{n-1} x^n = 0.$$

It follows that

$$-a_0 + (2a_1 - a_0)x + \sum_{n=2}^{\infty} [2n(n-1)a_n + 3n a_n - a_n - a_{n-1}]x^n = 0.$$

Equating the coefficients to zero, we find that $a_0=0$, $2a_1-a_0=0$, and

$$(2n-1)(n+1)a_n = a_{n-1}, \quad n = 2, 3, \cdots$$

We conclude that *all* the a_n are *equal to zero*. Hence y(x) = 0 is the only solution that can be obtained.

22. Based on Prob. 21, the change of variable, $x = 1/\xi$, transforms the ODE into the

form

$$\xi^4 \frac{d^2 y}{d\xi^2} + 2\xi^3 \frac{dy}{d\xi} + y = 0.$$

Evidently, $\xi=0$ is a singular point. Now $p(\xi)=2/\xi$ and $q(\xi)=1/\xi^4$. Since the value of $\lim_{\xi\to 0}\xi^2q(\xi)$ does not exist, $\xi=0$, that is, $x=\infty$, is an *irregular* singular point.

24. Under the transformation $x = 1/\xi$, the ODE becomes

$$\xi^4 \bigg(1 - \frac{1}{\xi^2} \bigg) \frac{d^2 y}{d\xi^2} + \bigg[2 \xi^3 \bigg(1 - \frac{1}{\xi^2} \bigg) + 2 \xi^2 \frac{1}{\xi} \bigg] \frac{dy}{d\xi} + \alpha (\alpha + 1) y = 0 \,,$$

that is,

$$(\xi^4 - \xi^2) \frac{d^2 y}{d\xi^2} + 2\xi^3 \frac{dy}{d\xi} + \alpha(\alpha + 1)y = 0.$$

Therefore $\xi = 0$ is a singular point. Note that

$$p(\xi) = \frac{2\xi}{\xi^2 - 1}$$
 and $q(\xi) = \frac{\alpha(\alpha + 1)}{\xi^2(\xi^2 - 1)}$.

It follows that

$$\lim_{\xi \to 0} \xi \, p(\xi) = \lim_{\xi \to 0} \xi \frac{2\xi}{\xi^2 - 1} = 0 \,,$$

$$\lim_{\xi \to 0} \xi^2 q(\xi) = \lim_{\xi \to 0} \xi^2 \frac{\alpha(\alpha+1)}{\xi^2(\xi^2-1)} = -\alpha(\alpha+1).$$

Hence $\xi = 0 \ (x = \infty)$ is a *regular* singular point.

26. Under the transformation $x = 1/\xi$, the ODE becomes

$$\xi^4 \frac{d^2 y}{d \xi^2} + \left[2 \xi^3 + 2 \xi^2 \frac{1}{\xi} \right] \frac{d y}{d \xi} + \lambda \, y = 0 \,,$$

that is,

$$\xi^4 \frac{d^2 y}{d\xi^2} + 2(\xi^3 + \xi) \frac{dy}{d\xi} + \lambda y = 0.$$

Therefore $\xi = 0$ is a singular point. Note that

$$p(\xi) = \frac{2(\xi^2+1)}{\xi^3} \text{ and } q(\xi) = \frac{\lambda}{\xi^4} \,.$$

It immediately follows that the limit $\lim_{\xi \to 0} \xi p(\xi)$ does not exist. Hence $\xi = 0$ $(x = \infty)$

is an irregular singular point.

27. Under the transformation $x = 1/\xi$, the ODE becomes

$$\xi^4 \frac{d^2 y}{d \xi^2} + 2 \xi^3 \frac{d y}{d \xi} - \frac{1}{\xi} y = 0 \, .$$

Therefore $\xi = 0$ is a singular point. Note that

$$p(\xi) = \frac{2}{\xi} \text{ and } q(\xi) = \frac{-1}{\xi^5}.$$

We find that

$$\lim_{\xi \to 0} \xi \, p(\xi) = \lim_{\xi \to 0} \xi \frac{2}{\xi} = 2 \,,$$

but

$$\lim_{\xi \to 0} \xi^2 q(\xi) = \lim_{\xi \to 0} \xi^2 \frac{(-1)}{\xi^5} .$$

The latter limit does not exist. Hence $\xi = 0 \ (x = \infty)$ is an irregular singular point.

Section 5.5

1. Substitution of $y = x^r$ results in the quadratic equation F(r) = 0, where

$$F(r) = r(r-1) + 4r + 2$$

= $r^2 + 3r + 2$.

The roots are $r=\,-\,2\,,\,\,-\,1\,.\,$ Hence the general solution, for $x\neq 0$, is

$$y = c_1 x^{-2} + c_2 x^{-1}$$
.

3. Substitution of $y = x^r$ results in the quadratic equation F(r) = 0, where

$$F(r) = r(r-1) - 3r + 4$$

= $r^2 - 4r + 4$.

The root is r=2, with multiplicity two. Hence the general solution, for $x\neq 0$, is

$$y = (c_1 + c_2 \ln|x|) x^2.$$

5. Substitution of $y = x^r$ results in the quadratic equation F(r) = 0, where

$$F(r) = r(r-1) - r + 1$$

= $r^2 - 2r + 1$.

The root is r=1, with multiplicity two. Hence the general solution, for $x \neq 0$, is

$$y = (c_1 + c_2 \ln|x|) x.$$

6. Substitution of $y = (x - 1)^r$ results in the quadratic equation F(r) = 0, where

$$F(r) = r^2 + 7r + 12.$$

The roots are r=-3, -4. Hence the general solution, for $x \neq 1$, is

$$y = c_1(x-1)^{-3} + c_2(x-1)^{-4}$$
.

7. Substitution of $y = x^r$ results in the quadratic equation F(r) = 0, where

$$F(r) = r^2 + 5r - 1.$$

The roots are $r=-\left(5\pm\sqrt{29}\right)/2$. Hence the general solution, for $x\neq 0$, is

$$y = c_1 |x|^{-\left(5 + \sqrt{29}\right)/2} + c_2 |x|^{-\left(5 - \sqrt{29}\right)/2}$$

8. Substitution of $y = x^r$ results in the quadratic equation F(r) = 0, where

$$F(r) = r^2 - 3r + 3.$$

The roots are complex, with $r = \left(3 \pm i\sqrt{3}\right)/2$. Hence the general solution, for $x \neq 0$, is

$$y = c_1 |x|^{3/2} cos\left(\frac{\sqrt{3}}{2} \ln|x|\right) + c_2 |x|^{3/2} sin\left(\frac{\sqrt{3}}{2} \ln|x|\right).$$

10. Substitution of $y=(x-2)^r$ results in the quadratic equation F(r)=0 , where $F(r)=r^2+4r+8\,.$

The roots are complex, with $r=-2\pm 2i$. Hence the general solution, for $x\neq 2$, is $y=c_1(x-2)^{-2}cos(2\ln|x-2|)+c_2(x-2)^{-2}sin(2\ln|x-2|).$

11. Substitution of $y = x^r$ results in the quadratic equation F(r) = 0, where

$$F(r) = r^2 + r + 4.$$

The roots are complex, with $\,r=-\left(1\pm i\sqrt{15}\,\right)/2$. Hence the general solution, for $x\neq 0$, is

$$y = c_1 |x|^{-1/2} cos\left(\frac{\sqrt{15}}{2} \ln|x|\right) + c_2 |x|^{-1/2} sin\left(\frac{\sqrt{15}}{2} \ln|x|\right).$$

12. Substitution of $y = x^r$ results in the quadratic equation F(r) = 0, where

$$F(r) = r^2 - 5r + 4.$$

The roots are r = 1, 4. Hence the general solution, for $x \neq 0$, is

$$y = c_1 x + c_2 x^4.$$

14. Substitution of $y = x^r$ results in the quadratic equation F(r) = 0, where

$$F(r) = 4r^2 + 4r + 17.$$

The roots are complex, with $r=-1/2\pm 2i$. Hence the general solution, for x>0, is

$$y = c_1 x^{-1/2} cos(2 \ln x) + c_2 x^{-1/2} sin(2 \ln x).$$

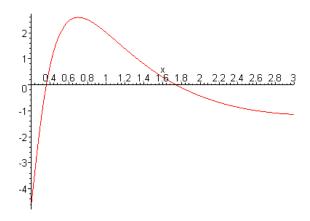
Invoking the initial conditions, we obtain the system of equations

$$c_1 = 2$$

$$-\frac{1}{2}c_1 + 2c_2 = -3$$

Hence the solution of the initial value problem is

$$y(x) = 2x^{-1/2}cos(2\ln x) - x^{-1/2}sin(2\ln x).$$



As $x \rightarrow 0^+$, the solution decreases without bound.

15. Substitution of $y = x^r$ results in the quadratic equation F(r) = 0, where

$$F(r) = r^2 - 4r + 4.$$

The root is r=2, with multiplicity two. Hence the general solution, for x<0, is

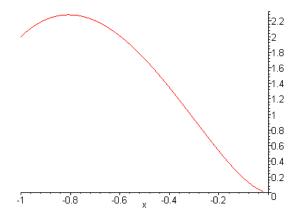
$$y = (c_1 + c_2 \ln |x|) x^2.$$

Invoking the initial conditions, we obtain the system of equations

$$c_1 = 2 \\ -2c_1 - c_2 = 3$$

Hence the solution of the initial value problem is

$$y(x) = (2 - 7 \ln|x|) x^2.$$



We find that $y(x) \rightarrow 0$ as $x \rightarrow 0^-$.

18. Substitution of $y=x^r$ results in the quadratic equation $\,r^2-r+\beta=0$. The roots are

$$r = \frac{1 \pm \sqrt{1 - 4\beta}}{2} \ .$$

If $\beta > 1/4$, the roots are complex, with $r_{1,2} = \left(1 \pm i\sqrt{4\beta - 1}\right)/2$. Hence the general solution, for $x \neq 0$, is

$$y = c_1 |x|^{1/2} cos\left(\frac{1}{2}\sqrt{4\beta - 1} \ln|x|\right) + c_2 |x|^{1/2} sin\left(\frac{1}{2}\sqrt{4\beta - 1} \ln|x|\right).$$

Since the trigonometric factors are bounded, $y(x) \rightarrow 0$ as $x \rightarrow 0$. If $\beta = 1/4$, the roots are equal, and

$$y = c_1 |x|^{1/2} + c_2 |x|^{1/2} \ln |x|$$
.

Since $\lim_{x\to 0} \sqrt{|x|} \ln |x| = 0$, $y(x)\to 0$ as $x\to 0$. If $\beta<1/4$, the roots are real, with $r_{1,2}=\left(1\pm\sqrt{1-4\beta}\right)/2$. Hence the general solution, for $x\neq 0$, is

$$y = c_1 |x|^{1/2 + \sqrt{1 - 4\beta}/2} + c_2 |x|^{1/2 - \sqrt{1 - 4\beta}/2}.$$

Evidently, solutions approach zero as long as $1/2 - \sqrt{1 - 4\beta}/2 > 0$. That is,

$$0<\beta<1/4\,.$$

Hence *all* solutions approach *zero*, for $\beta > 0$.

19. Substitution of $y = x^r$ results in the quadratic equation $r^2 - r - 2 = 0$. The roots are r = -1, 2. Hence the general solution, for $x \neq 0$, is

$$y = c_1 x^{-1} + c_2 x^2.$$

Invoking the initial conditions, we obtain the system of equations

$$c_1 + c_2 = 1$$
$$-c_1 + 2c_2 = \gamma$$

Hence the solution of the initial value problem is

$$y(x) = \frac{2 - \gamma}{3}x^{-1} + \frac{1 + \gamma}{3}x^{2}.$$

The solution is *bounded*, as $x \rightarrow 0$, if $\gamma = 2$.

20. Substitution of $y=x^r$ results in the quadratic equation $r^2+(\alpha-1)r+5/2=0$. Formally, the roots are given by

$$r = \frac{1 - \alpha \pm \sqrt{\alpha^2 - 2\alpha - 9}}{2}$$
$$= \frac{1 - \alpha \pm \sqrt{\left(\alpha - 1 - \sqrt{10}\right)\left(\alpha - 1 + \sqrt{10}\right)}}{2}$$

(i) The roots $r_{1,2}$ will be *complex*, if $|1 - \alpha| < \sqrt{10}$. For solutions to approach zero, as $x \to \infty$, we need $-\sqrt{10} < 1 - \alpha < 0$.

(ii) The roots will be equal, if $|1-\alpha|=\sqrt{10}$. In this case, all solutions approach zero as long as $1-\alpha=-\sqrt{10}$.

(iii) The roots will be real and distinct, if $|1 - \alpha| > \sqrt{10}$. It follows that

$$r_{max} = \frac{1 - \alpha + \sqrt{\alpha^2 - 2\alpha - 9}}{2} \,.$$

For solutions to approach zero, we need $1-\alpha+\sqrt{\alpha^2-2\alpha-9}<0$. That is, $1-\alpha<-\sqrt{10}$.

Hence all solutions approach zero, as $x \to \infty$, as long as $\alpha > 1$.

23(a). Given that $x = e^z$, $y(x) = y(e^z) = w(z)$. By the chain rule,

$$\frac{dy}{dx} = \frac{d}{dx}w(z) = \frac{dw}{dz}\frac{dz}{dx} = \frac{1}{x}\frac{dw}{dz}.$$

Similarly,

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left[\frac{1}{x} \frac{dw}{dz} \right] = -\frac{1}{x^2} \frac{dw}{dz} + \frac{1}{x} \frac{d^2w}{dz^2} \frac{dz}{dx} = -\frac{1}{x^2} \frac{dw}{dz} + \frac{1}{x^2} \frac{d^2w}{dz^2}.$$

(b). Direct substitution results in

$$x^{2} \left[\frac{1}{x^{2}} \frac{d^{2}w}{dz^{2}} - \frac{1}{x^{2}} \frac{dw}{dz} \right] + \alpha x \left[\frac{1}{x} \frac{dw}{dz} \right] + \beta w = 0,$$

that is,

$$\frac{d^2w}{dz^2} + (\alpha - 1)\frac{dw}{dz} + \beta w = 0.$$

The associated *characteristic equation* is $r^2 + (\alpha - 1)r + \beta = 0$. Since $z = \ln x$, it follows that $y(x) = w(\ln x)$.

(c). If the roots $r_{1,2}$ are real and distinct, then

$$y = c_1 e^{r_1 z} + c_2 e^{r_2 z}$$

= $c_1 x^{r_1} + c_2 x^{r_2}$.

(d). If the roots $r_{1,2}$ are real and equal, then

$$y = c_1 e^{r_1 z} + c_2 z e^{r_1 z}$$

= $c_1 x^{r_1} + c_2 x^{r_1} \ln x$.

(e). If the roots are *complex conjugates*, then $r = \lambda \pm i\mu$, and

$$y = e^{\lambda z} (c_1 \cos \mu z + c_2 \sin \mu z)$$

= $x^{\lambda} [c_1 \cos(\mu \ln x) + c_2 \sin(\mu \ln x)].$

24. Based on Prob. 23, the change of variable $x = e^z$ transforms the ODE into

$$\frac{d^2w}{dz^2} - \frac{dw}{dz} - 2w = 0.$$

The associated characteristic equation is $r^2-r-2=0$, with roots r=-1, 2. Hence $w(z)=c_1e^{-z}+c_2e^{2z}$, and $y(x)=c_1x^{-1}+c_2x^2$.

26. The change of variable $x = e^z$ transforms the ODE into

$$\frac{d^2w}{dz^2} + 6\frac{dw}{dz} + 5w = e^z.$$

The associated characteristic equation is $r^2+6\,r+5=0$, with roots $r=-5\,,-1$. Hence $w_c(z)=c_1e^{-z}+c_2e^{-5z}$. Since the right hand side is not a solution of the homogeneous equation, we can use the method of undetermined coefficients to show that a particular solution is $W=e^z/12$. Therefore the general solution is given by $w(z)=c_1e^{-z}+c_2e^{-5z}+e^z/12$, that is, $y(x)=c_1x^{-1}+c_2x^{-5}+x/12$.

27. The change of variable $x = e^z$ transforms the given ODE into

$$\frac{d^2w}{dz^2} - 3\frac{dw}{dz} + 2w = 3e^{2z} + 2z.$$

The associated characteristic equation is $r^2-3\,r+2=0$, with roots r=1, 2. Hence $w_c(z)=c_1e^z+c_2e^{2z}$. Using the method of undetermined coefficients, let $W=Ae^{2z}+Bze^{2z}+Cz+D$. It follows that the general solution is given by $w(z)=c_1e^z+c_2e^{2z}+3ze^{2z}+z+3/2$, that is,

$$y(x) = c_1 x + c_2 x^2 + 3 x^2 \ln x + \ln x + 3/2$$
.

28. The change of variable $x = e^z$ transforms the given ODE into

$$\frac{d^2w}{dz^2} + 4w = \sin z \,.$$

The solution of the homogeneous equation is $w_c(z)=c_1cos\,2z+c_2sin\,2z$. The right hand side is *not* a solution of the homogeneous equation. We can use the *method of undetermined coefficients* to show that a particular solution is $W=\frac{1}{3}sin\,z$. Hence the general solution is given by $w(z)=c_1cos\,2z+c_2sin\,2z+\frac{1}{3}sin\,z$, that is, $y(x)=c_1cos\,(2\ln x)+c_2sin\,(2\ln x)+\frac{1}{3}sin\,(\ln x)$.

29. After dividing the equation by 3, the change of variable $x = e^z$ transforms the ODE into

$$\frac{d^2w}{dz^2} + 3\frac{dw}{dz} + 3w = 0.$$

The associated *characteristic equation* is $r^2+3\,r+3=0$, with complex roots $r=-\left(3\pm i\sqrt{3}\right)/2$. Hence the general solution is

$$w(z) = e^{-3z/2} \left[c_1 \cos\left(\sqrt{3} \ z/2\right) + c_2 \sin\left(\sqrt{3} \ z/2\right) \right],$$

and therefore

$$y(x) = x^{-3/2} \left[c_1 cos\left(\frac{\sqrt{3}}{2} \ln x\right) + c_2 sin\left(\frac{\sqrt{3}}{2} \ln x\right) \right].$$

30. Let x < 0. Setting $y = (-x)^r$, successive differentiation gives $y' = -r(-x)^{r-1}$ and $y'' = r(r-1)(-x)^{r-2}$. It follows that

$$L[(-x)^r] = r(r-1)x^2(-x)^{r-2} - \alpha r x(-x)^{r-1} + \beta (-x)^r.$$

Since $x^2 = (-x)^2$, we find that

$$L[(-x)^r] = r(r-1)(-x)^r + \alpha r(-x)^r + \beta (-x)^r$$

= $(-x)^r [r(r-1) + \alpha r + \beta].$

Given that r_1 and r_2 are roots of $F(r)=r(r-1)+\alpha\,r+\beta$, we have $L[(-x)^{r_i}]=0$. Therefore $y_1=(-x)^{r_1}$ and $y_2=(-x)^{r_2}$ are linearly independent solutions of the differential equation, L[y]=0, for x<0, as long as $r_1\neq r_2$.

Section 5.6

1. P(x) = 0 when x = 0. Since the three coefficients have no common factors, x = 0 is a singular point. Near x = 0,

$$\lim_{x \to 0} x \, p(x) = \lim_{x \to 0} x \frac{1}{2x} = \frac{1}{2} \,.$$

$$\lim_{x \to 0} x^2 q(x) = \lim_{x \to 0} x^2 \frac{1}{2} = 0.$$

Hence x = 0 is a regular singular point. Let

$$y = x^{r} (a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots) = \sum_{n=0}^{\infty} a_n x^{r+n}.$$

Then

$$y' = \sum_{n=0}^{\infty} (r+n)a_n x^{r+n-1}$$

and

$$y'' = \sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n-2}.$$

Substitution into the ODE results in

$$2\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n-1} + \sum_{n=0}^{\infty} (r+n)a_n x^{r+n-1} + \sum_{n=0}^{\infty} a_n x^{r+n+1} = 0.$$

That is,

$$2\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} + \sum_{n=0}^{\infty} (r+n)a_n x^{r+n} + \sum_{n=2}^{\infty} a_{n-2} x^{r+n} = 0.$$

It follows that

$$a_0[2r(r-1)+r]x^r + a_1[2(r+1)r+r+1]x^{r+1} + \sum_{n=2}^{\infty} [2(r+n)(r+n-1)a_n + (r+n)a_n + a_{n-2}]x^{r+n} = 0.$$

Assuming that $a_0 \neq 0$, we obtain the *indicial equation* $2r^2 - r = 0$, with roots $r_1 = 1/2$

and $r_2=0$. It immediately follows that $a_1=0$. Setting the remaining coefficients equal

to zero, we have

$$a_n = \frac{-a_{n-2}}{(r+n)[2(r+n)-1]}, \quad n = 2, 3, \dots$$

For r = 1/2, the recurrence relation becomes

$$a_n = \frac{-a_{n-2}}{n(1+2n)}, \quad n = 2, 3, \dots.$$

Since $a_1 = 0$, the *odd* coefficients are *zero*. Furthermore, for $k = 1, 2, \dots$,

$$a_{2k} = \frac{-a_{2k-2}}{2k(1+4k)} = \frac{a_{2k-4}}{(2k-2)(2k)(4k-3)(4k+1)} = \frac{(-1)^k a_0}{2^k \, k! \, 5 \cdot 9 \cdot 13 \cdots (4k+1)} \,.$$

For r=0, the recurrence relation becomes

$$a_n = \frac{-a_{n-2}}{n(2n-1)}, \quad n = 2, 3, \cdots.$$

Since $a_1 = 0$, the *odd* coefficients are *zero*, and for $k = 1, 2, \dots$,

$$a_{2k} = \frac{-a_{2k-2}}{2k(4k-1)} = \frac{a_{2k-4}}{(2k-2)(2k)(4k-5)(4k-1)} = \frac{(-1)^k a_0}{2^k k! \cdot 3 \cdot 7 \cdot 11 \cdots (4k-1)}.$$

The two linearly independent solutions are

$$y_1(x) = \sqrt{x} \left[1 + \sum_{k=1}^{\infty} \frac{(-1)^k x^{2k}}{2^k k! \cdot 5 \cdot 9 \cdot 13 \cdots (4k+1)} \right]$$

$$y_2(x) = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k x^{2k}}{2^k k! \cdot 3 \cdot 7 \cdot 11 \cdots (4k-1)}.$$

3. Note that x p(x) = 0 and $x^2 q(x) = x$, which are *both* analytic at x = 0. Set $y = x^r(a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots)$. Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n-1} + \sum_{n=0}^{\infty} a_n x^{r+n} = 0,$$

and after multiplying both sides of the equation by x,

$$\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} + \sum_{n=1}^{\infty} a_{n-1}x^{r+n} = 0.$$

It follows that

$$a_0[r(r-1)]x^r + \sum_{n=1}^{\infty} [(r+n)(r+n-1)a_n + a_{n-1}]x^{r+n} = 0.$$

Setting the coefficients equal to zero, the indicial equation is r(r-1) = 0. The roots are $r_1 = 1$ and $r_2 = 0$. Here $r_1 - r_2 = 1$. The recurrence relation is

$$a_n = \frac{-a_{n-1}}{(r+n)(r+n-1)}, \quad n = 1, 2, \cdots.$$

For r = 1,

$$a_n = \frac{-a_{n-1}}{n(n+1)}, \quad n = 1, 2, \cdots.$$

Hence for $n \geq 1$,

$$a_n = \frac{-a_{n-1}}{n(n+1)} = \frac{a_{n-2}}{(n-1)n^2(n+1)} = \dots = \frac{(-1)^n a_0}{n!(n+1)!}$$

Therefore one solution is

$$y_1(x) = x \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!(n+1)!}$$
.

5. Here x p(x) = 2/3 and $x^2 q(x) = x^2/3$, which are *both* analytic at x = 0. Set $y = x^r(a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots)$. Substitution into the ODE results in

$$3\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} + 2\sum_{n=0}^{\infty} (r+n)a_n x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+2} = 0.$$

It follows that

$$a_0[3r(r-1) + 2r]x^r + a_1[3(r+1)r + 2(r+1)]x^{r+1} + \sum_{n=2}^{\infty} [3(r+n)(r+n-1)a_n + 2(r+n)a_n + a_{n-2}]x^{r+n} = 0.$$

Assuming $a_0 \neq 0$, the *indicial equation* is $3r^2 - r = 0$, with roots $r_1 = 1/3$, $r_2 = 0$. Setting the remaining coefficients equal to zero, we have $a_1 = 0$, and

$$a_n = \frac{-a_{n-2}}{(r+n)[3(r+n)-1]}, \quad n = 2, 3, \dots$$

It immediately follows that the *odd* coefficients are equal to zero. For r = 1/3,

$$a_n = \frac{-a_{n-2}}{n(1+3n)}, \quad n = 2, 3, \dots.$$

So for $k=1,2,\cdots$,

$$a_{2k} = \frac{-a_{2k-2}}{2k(6k+1)} = \frac{a_{2k-4}}{(2k-2)(2k)(6k-5)(6k+1)} = \frac{(-1)^k a_0}{2^k k! \cdot 7 \cdot 13 \cdots (6k+1)}.$$

For r = 0,

$$a_n = \frac{-a_{n-2}}{n(3n-1)}, \quad n = 2, 3, \dots.$$

So for $k = 1, 2, \dots$,

$$a_{2k} = \frac{-a_{2k-2}}{2k(6k-1)} = \frac{a_{2k-4}}{(2k-2)(2k)(6k-7)(6k-1)} = \frac{(-1)^k a_0}{2^k \, k! \, 5 \cdot 11 \cdots (6k-1)}.$$

The two linearly independent solutions are

$$y_1(x) = x^{1/3} \left[1 + \sum_{k=1}^{\infty} \frac{(-1)^k}{k! \cdot 7 \cdot 13 \cdots (6k+1)} \left(\frac{x^2}{2} \right)^k \right]$$

$$y_2(x) = 1 + \sum_{k=1}^{\infty} \frac{(-1)^k}{k! \cdot 5 \cdot 11 \cdots (6k-1)} \left(\frac{x^2}{2}\right)^k.$$

6. Note that x p(x) = 1 and $x^2 q(x) = x - 2$, which are *both* analytic at x = 0. Set $y = x^r(a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots)$. Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} + \sum_{n=0}^{\infty} (r+n)a_n x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+1} - 2\sum_{n=0}^{\infty} a_n x^{r+n} = 0.$$

After adjusting the indices in the second-to-last series, we obtain

$$a_0[r(r-1)+r-2]x^r + \sum_{n=1}^{\infty} [(r+n)(r+n-1)a_n + (r+n)a_n - 2a_n + a_{n-1}]x^{r+n} = 0.$$

Assuming $a_0 \neq 0$, the *indicial equation* is $r^2 - 2 = 0$, with roots $r = \pm \sqrt{2}$. Setting the remaining coefficients equal to zero, the recurrence relation is

$$a_n = \frac{-a_{n-1}}{(r+n)^2 - 2}, \quad n = 1, 2, \cdots.$$

First note that $(r+n)^2 - 2 = \left(r + n + \sqrt{2}\right)\left(r + n - \sqrt{2}\right)$. So for $r = \sqrt{2}$,

$$a_n = \frac{-a_{n-1}}{n(n+2\sqrt{2})}, \quad n = 1, 2, \cdots.$$

It follows that

$$a_n = \frac{(-1)^n a_0}{n! (1+2\sqrt{2})(2+2\sqrt{2})\cdots(n+2\sqrt{2})}, \quad n = 1, 2, \cdots.$$

For $r = -\sqrt{2}$,

$$a_n = \frac{-a_{n-1}}{n(n-2\sqrt{2})}, \quad n = 1, 2, \dots,$$

and therefore

$$a_n = \frac{(-1)^n a_0}{n! (1 - 2\sqrt{2}) (2 - 2\sqrt{2}) \cdots (n - 2\sqrt{2})}, \quad n = 1, 2, \cdots.$$

The two linearly independent solutions are

$$y_1(x) = x^{\sqrt{2}} \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n! \left(1 + 2\sqrt{2}\right) \left(2 + 2\sqrt{2}\right) \cdots \left(n + 2\sqrt{2}\right)} \right]$$

$$y_2(x) = x^{-\sqrt{2}} \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n! (1 - 2\sqrt{2}) (2 - 2\sqrt{2}) \cdots (n - 2\sqrt{2})} \right].$$

7. Here x p(x) = 1 - x and $x^2 q(x) = -x$, which are *both* analytic at x = 0. Set $y = x^r(a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots)$. Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n-1} + \sum_{n=0}^{\infty} (r+n)a_n x^{r+n-1} - \sum_{n=0}^{\infty} (r+n)a_n x^{r+n} - \sum_{n=0}^{\infty} a_n x^{r+n} = 0.$$

After multiplying both sides by x,

$$\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} + \sum_{n=0}^{\infty} (r+n)a_n x^{r+n} - -\sum_{n=0}^{\infty} (r+n)a_n x^{r+n+1} - \sum_{n=0}^{\infty} a_n x^{r+n+1} = 0.$$

After adjusting the indices in the *last two* series, we obtain

$$a_0[r(r-1)+r]x^r + \sum_{n=1}^{\infty} [(r+n)(r+n-1)a_n + (r+n)a_n - (r+n)a_{n-1}]x^{r+n} = 0.$$

Assuming $a_0 \neq 0$, the *indicial equation* is $r^2 = 0$, with roots $r_1 = r_2 = 0$. Setting the remaining coefficients equal to zero, the recurrence relation is

$$a_n = \frac{a_{n-1}}{r+n}, \quad n = 1, 2, \cdots.$$

With r = 0,

$$a_n = \frac{a_{n-1}}{n}, \quad n = 1, 2, \cdots.$$

Hence one solution is

$$y_1(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = e^x.$$

8. Note that x p(x) = 3/2 and $x^2 q(x) = x^2 - 1/2$, which are *both* analytic at x = 0. Set $y = x^r(a_0 + a_1x + a_2x^2 + \dots + a_nx^n + \dots)$. Substitution into the ODE results in

$$2\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} + 3\sum_{n=0}^{\infty} (r+n)a_n x^{r+n} + 2\sum_{n=0}^{\infty} a_n x^{r+n+2} - \sum_{n=0}^{\infty} a_n x^{r+n} = 0.$$

After adjusting the indices in the *second-to-last* series, we obtain

$$a_0[2r(r-1) + 3r - 1]x^r + a_1[2(r+1)r + 3(r+1) - 1] + \sum_{n=2}^{\infty} [2(r+n)(r+n-1)a_n + 3(r+n)a_n - a_n + 2a_{n-2}]x^{r+n} = 0.$$

Assuming $a_0 \neq 0$, the *indicial equation* is $2r^2 + r - 1 = 0$, with roots $r_1 = 1/2$ and $r_2 = -1$. Setting the remaining coefficients equal to zero, the recurrence relation is

$$a_n = \frac{-2a_{n-2}}{(r+n+1)[2(r+n)-1]}, \quad n=2,3,\cdots.$$

Setting the remaining coefficients equal to zero, we have $a_1 = 0$, which implies that all of the *odd* coefficients are zero. With r = 1/2,

$$a_n = \frac{-2a_{n-2}}{n(2n+3)}, \quad n = 2, 3, \cdots.$$

So for $k = 1, 2, \dots$,

$$a_{2k} = \frac{-a_{2k-2}}{k(4k+3)} = \frac{a_{2k-4}}{(k-1)k(4k-5)(4k+3)} = \frac{(-1)^k a_0}{k! \cdot 7 \cdot 11 \cdots (4k+3)}.$$

With r = -1,

$$a_n = \frac{-2a_{n-2}}{n(2n-3)}, \quad n = 2, 3, \dots.$$

So for $k = 1, 2, \dots$,

$$a_{2k} = \frac{-a_{2k-2}}{k(4k-3)} = \frac{a_{2k-4}}{(k-1)k(4k-11)(4k-3)} = \frac{(-1)^k a_0}{k! \cdot 5 \cdot 9 \cdots (4k-3)}.$$

The two linearly independent solutions are

$$y_1(x) = x^{1/2} \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{n! \cdot 7 \cdot 11 \cdots (4n+3)} \right]$$

$$y_2(x) = x^{-1} \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{n! \cdot 5 \cdot 9 \cdots (4n-3)} \right].$$

9. Note that x p(x) = -x - 3 and $x^2 q(x) = x + 3$, which are *both* analytic at x = 0. Set $y = x^r(a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots)$. Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} - \sum_{n=0}^{\infty} (r+n)a_n x^{r+n+1} - 3\sum_{n=0}^{\infty} (r+n)a_n x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+1} + 3\sum_{n=0}^{\infty} a_n x^{r+n} = 0.$$

After adjusting the indices in the *second-to-last* series, we obtain

$$a_0[r(r-1) - 3r + 3]x^r + \sum_{n=1}^{\infty} [(r+n)(r+n-1)a_n - (r+n-2)a_{n-1} - 3(r+n-1)a_n]x^{r+n} = 0.$$

Assuming $a_0 \neq 0$, the *indicial equation* is $r^2 - 4r + 3 = 0$, with roots $r_1 = 3$ and $r_2 = 1$. Setting the remaining coefficients equal to zero, the recurrence relation is

$$a_n = \frac{(r+n-2)a_{n-1}}{(r+n-1)(r+n-3)}, \quad n = 1, 2, \dots$$

With r=3,

$$a_n = \frac{(n+1)a_{n-1}}{n(n+2)}, \quad n = 1, 2, \cdots.$$

It follows that for $n \geq 1$,

$$a_n = \frac{(n+1)a_{n-1}}{n(n+2)} = \frac{a_{n-2}}{(n-1)(n+2)} = \dots = \frac{2 a_0}{n! (n+2)}.$$

Therefore one solution is

$$y_1(x) = x^3 \left[1 + \sum_{n=1}^{\infty} \frac{2 x^n}{n! (n+2)} \right].$$

10. Here x p(x) = 0 and $x^2 q(x) = x^2 + 1/4$, which are *both* analytic at x = 0. Set $y = x^r(a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots)$. Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+2} + \frac{1}{4} \sum_{n=0}^{\infty} a_n x^{r+n} = 0.$$

After adjusting the indices in the second series, we obtain

$$a_0 \left[r(r-1) + \frac{1}{4} \right] x^r + a_1 \left[(r+1)r + \frac{1}{4} \right] x^{r+1} +$$

$$+ \sum_{n=2}^{\infty} \left[(r+n)(r+n-1)a_n + \frac{1}{4}a_n + a_{n-2} \right] x^{r+n} = 0.$$

Assuming $a_0 \neq 0$, the *indicial equation* is $r^2 - r + \frac{1}{4} = 0$, with roots $r_1 = r_2 = 1/2$. Setting the remaining coefficients equal to *zero*, we find that $a_1 = 0$. The recurrence relation is

$$a_n = \frac{-4a_{n-2}}{(2r+2n-1)^2}, \quad n = 2, 3, \dots.$$

With r = 1/2,

$$a_n = \frac{-a_{n-2}}{n^2}, \quad n = 2, 3, \cdots.$$

Since $a_1 = 0$, the *odd* coefficients are *zero*. So for $k \ge 1$,

$$a_{2k} = \frac{-a_{2k-2}}{4k^2} = \frac{a_{2k-4}}{4^2(k-1)^2k^2} = \dots = \frac{(-1)^k a_0}{4^k(k!)^2}.$$

Therefore one solution is

$$y_1(x) = \sqrt{x} \left[1 + \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \right].$$

12(a). Dividing through by the leading coefficient, the ODE can be written as

$$y'' - \frac{x}{1 - x^2}y' + \frac{\alpha^2}{1 - x^2}y = 0.$$

For x = 1,

$$p_0 = \lim_{x \to 1} (x - 1)p(x) = \lim_{x \to 1} \frac{x}{x + 1} = \frac{1}{2}.$$

$$q_0 = \lim_{x \to 1} (x - 1)^2 q(x) = \lim_{x \to 1} \frac{\alpha^2 (1 - x)}{x + 1} = 0.$$

For x = -1,

$$p_0 = \lim_{x \to -1} (x+1)p(x) = \lim_{x \to -1} \frac{x}{x-1} = \frac{1}{2}.$$

$$q_0 = \lim_{x \to -1} (x+1)^2 q(x) = \lim_{x \to -1} \frac{\alpha^2 (x+1)}{(1-x)} = 0.$$

Hence both x = -1 and x = 1 are *regular* singular points. As shown in Example 1, the indicial equation is given by

$$r(r-1) + p_0 r + q_0 = 0.$$

In this case, both sets of roots are $r_1 = 1/2$ and $r_2 = 0$.

(b). Let t=x-1, and u(t)=y(t+1). Under this change of variable, the differential equation becomes

$$(t^2 + 2t)u'' + (t+1)u' - \alpha^2 u = 0.$$

Based on Part (a), t=0 is a *regular* singular point. Set $u=\sum_{n=0}^{\infty}a_n\,t^{r+n}$. Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n t^{r+n} + 2\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n t^{r+n-1} + \sum_{n=0}^{\infty} (r+n)a_n t^{r+n} + \sum_{n=0}^{\infty} (r+n)a_n t^{r+n} + \sum_{n=0}^{\infty} (r+n)a_n t^{r+n-1} - \alpha^2 \sum_{n=0}^{\infty} a_n t^{r+n} = 0.$$

Upon inspection, we can also write

$$\sum_{n=0}^{\infty} (r+n)^2 a_n t^{r+n} + 2\sum_{n=0}^{\infty} (r+n) \left(r+n-\frac{1}{2}\right) a_n t^{r+n-1} - \alpha^2 \sum_{n=0}^{\infty} a_n t^{r+n} = 0.$$

After adjusting the indices in the *second* series, it follows that

$$a_0 \left[2r \left(r - \frac{1}{2} \right) \right] t^{r-1} + \sum_{n=0}^{\infty} \left[(r+n)^2 a_n + 2(r+n+1) \left(r + n + \frac{1}{2} \right) a_{n+1} - \alpha^2 a_n \right] t^{r+n} = 0.$$

Assuming that $a_0 \neq 0$, the *indicial equation* is $2r^2 - r = 0$, with roots r = 0, 1/2. The recurrence relation is

$$(r+n)^2 a_n + 2(r+n+1)\left(r+n+\frac{1}{2}\right)a_{n+1} - \alpha^2 a_n = 0, \quad n = 0, 1, 2, \dots$$

With $\,r_1=1/2$, we find that for $n\geq 1$,

$$a_n = \frac{4\alpha^2 - (2n-1)^2}{4n(2n+1)} a_{n-1}$$

$$= (-1)^n \frac{[1 - 4\alpha^2][9 - 4\alpha^2] \cdots [(2n-1)^2 - 4\alpha^2]}{2^n (2n+1)!} a_0.$$

With $r_2 = 0$, we find that for $n \ge 1$,

$$a_n = \frac{\alpha^2 - (n-1)^2}{n(2n-1)} a_{n-1}$$

$$= (-1)^n \frac{\alpha(-\alpha)[1-\alpha^2][4-\alpha^2]\cdots[(n-1)^2-\alpha^2]}{n! \cdot 3 \cdot 5 \cdots (2n-1)} a_0.$$

The two linearly independent solutions of the *Chebyshev equation* are

$$y_1(x) = |x-1|^{1/2} \left[1 + \sum_{n=1}^{\infty} (-1)^n \frac{[1-4\alpha^2][9-4\alpha^2]\cdots[(2n-1)^2-4\alpha^2]}{2^n (2n+1)!} (x-1)^n \right]$$

$$y_2(x) = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{\alpha(-\alpha)[1-\alpha^2][4-\alpha^2]\cdots[(n-1)^2-\alpha^2]}{n!\cdot 3\cdot 5\cdots (2n-1)} (x-1)^n.$$

13. Here x p(x) = 1 - x and $x^2 q(x) = \lambda x$, which are both analytic at x = 0. In fact,

$$p_0 = \lim_{x \to 0} x \, p(x) = 1 \text{ and } q_0 = \lim_{x \to 0} x^2 q(x) = 0$$
.

Hence the indicial equation is r(r-1)+r=0 , with roots $r_{1,2}=0$. Set

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

Substitution into the ODE results in

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-1} + \sum_{n=1}^{\infty} na_n x^{n-1} - - \sum_{n=0}^{\infty} na_n x^n + \lambda \sum_{n=0}^{\infty} a_n x^n = 0.$$

That is,

$$\sum_{n=1}^{\infty} n(n+1)a_{n+1} x^n + \sum_{n=0}^{\infty} (n+1)a_{n+1} x^n - \sum_{n=1}^{\infty} na_n x^n + \lambda \sum_{n=0}^{\infty} a_n x^n = 0.$$

It follows that

$$a_1 + \lambda a_0 + \sum_{n=1}^{\infty} [(n+1)^2 a_{n+1} - (n-\lambda)a_n]x^n = 0.$$

Setting the coefficients equal to zero, we find that $a_1 = -\lambda a_0$, and

$$a_n = \frac{(n-1-\lambda)}{n^2} a_{n-1}, \quad n = 2, 3, \dots$$

That is, for $n \geq 2$,

$$a_n = \frac{(n-1-\lambda)}{n^2} a_{n-1} = \dots = \frac{(-\lambda)(1-\lambda)\cdots(n-1-\lambda)}{(n!)^2} a_0.$$

Therefore one solution of the Laguerre equation is

$$y_1(x) = 1 + \sum_{n=1}^{\infty} \frac{(-\lambda)(1-\lambda)\cdots(n-1-\lambda)}{(n!)^2} x^n.$$

Note that if $\lambda=m$, a positive integer, then $a_n=0$ for $n\geq m+1$. In that case, the solution is a polynomial

$$y_1(x) = 1 + \sum_{n=1}^{m} \frac{(-\lambda)(1-\lambda)\cdots(n-1-\lambda)}{(n!)^2} x^n$$

Section 5.7

2. P(x)=0 only for x=0 . Furthermore, $x\,p(x)=-2-x$ and $x^2q(x)=2+x^2$. It follows that

$$p_0 = \lim_{x \to 0} (-2 - x) = -2$$
$$q_0 = \lim_{x \to 0} (2 + x^2) = 2$$

and therefore x = 0 is a regular singular point. The indicial equation is given by

$$r(r-1) - 2r + 2 = 0$$

that is, $r^2 - 3r + 2 = 0$, with roots $r_1 = 2$ and $r_2 = 1$.

- 4. The coefficients P(x), Q(x), and R(x) are analytic for all $x \in \mathbb{R}$. Hence there are no singular points.
- 5. P(x)=0 only for x=0 . Furthermore, $x\,p(x)=3\frac{\sin x}{x}$ and $x^2q(x)=-2$. It follows that

$$p_0 = \lim_{x \to 0} 3 \frac{\sin x}{x} = 3$$

$$q_0 = \lim_{x \to 0} -2 = -2$$

and therefore x = 0 is a regular singular point. The indicial equation is given by

$$r(r-1) + 3r - 2 = 0$$

that is, $r^2+2r-2=0$, with roots $r_1=-1+\sqrt{3}$ and $r_2=-1-\sqrt{3}$.

6. P(x)=0 for x=0 and x=-2. We note that $p(x)=x^{-1}(x+2)^{-1}/2$, and $q(x)=-(x+2)^{-1}/2$. For the singularity at x=0,

$$p_0 = \lim_{x \to 0} \frac{1}{2(x+2)} = \frac{1}{4}$$
$$q_0 = \lim_{x \to 0} \frac{-x^2}{2(x+2)} = 0$$

and therefore x = 0 is a regular singular point. The indicial equation is given by

$$r(r-1) + \frac{1}{4}r = 0,$$

that is, $r^2 - \frac{3}{4}r = 0$, with roots $r_1 = \frac{3}{4}$ and $r_2 = 0$. For the singularity at x = -2 ,

$$p_0 = \lim_{x \to -2} (x+2)p(x) = \lim_{x \to -2} \frac{1}{2x} = -\frac{1}{4}$$
$$q_0 = \lim_{x \to -2} (x+2)^2 q(x) = \lim_{x \to -2} \frac{-(x+2)}{2} = 0$$

and therefore x = -2 is a regular singular point. The indicial equation is given by

$$r(r-1) - \frac{1}{4}r = 0$$
,

that is, $r^2 - \frac{5}{4}r = 0$, with roots $r_1 = \frac{5}{4}$ and $r_2 = 0$.

7. P(x)=0 only for x=0 . Furthermore, $x\,p(x)=\frac{1}{2}+\frac{\sin x}{2x}$ and $x^2q(x)=1$. It follows that

$$p_0 = \lim_{x \to 0} x p(x) = 1$$

 $q_0 = \lim_{x \to 0} x^2 q(x) = 1$

and therefore x = 0 is a regular singular point. The indicial equation is given by

$$r(r-1) + r + 1 = 0,$$

that is, $r^2 + 1 = 0$, with complex conjugate roots $r = \pm i$.

8. Note that P(x)=0 only for x=-1 . We find that p(x)=3(x-1)/(x+1) , and $q(x)=3/(x+1)^2$. It follows that

$$p_0 = \lim_{x \to -1} (x+1)p(x) = \lim_{x \to -1} 3(x-1) = -6$$

$$q_0 = \lim_{x \to -1} (x+1)^2 q(x) = \lim_{x \to -1} 3 = 3$$

and therefore x = -1 is a regular singular point. The indicial equation is given by

$$r(r-1) - 6r + 3 = 0,$$

that is, $r^2-7r+3=0$, with roots $r_1=\left(7+\sqrt{37}\right)/2$ and $r_2=\left(7-\sqrt{37}\right)/2$.

10. P(x) = 0 for x = 2 and x = -2. We note that $p(x) = 2x(x-2)^{-2}(x+2)^{-1}$, and $q(x) = 3(x-2)^{-1}(x+2)^{-1}$. For the singularity at x = 2,

$$\lim_{x \to 2} (x-2)p(x) = \lim_{x \to 2} \frac{2x}{x^2 - 4},$$

which is *undefined*. Therefore x = 0 is an *irregular* singular point. For the singularity at x = -2,

$$p_0 = \lim_{x \to -2} (x+2)p(x) = \lim_{x \to -2} \frac{2x}{(x-2)^2} = -\frac{1}{4}$$
$$q_0 = \lim_{x \to -2} (x+2)^2 q(x) = \lim_{x \to -2} \frac{3(x+2)}{x-2} = 0$$

and therefore x = -2 is a regular singular point. The indicial equation is given by

$$r(r-1) - \frac{1}{4}r = 0,$$

that is, $r^2 - \frac{5}{4}r = 0$, with roots $r_1 = \frac{5}{4}$ and $r_2 = 0$.

11. P(x)=0 for x=2 and x=-2. We note that $p(x)=2x/(4-x^2)$, and $q(x)=3/(4-x^2)$. For the singularity at x=2,

$$p_0 = \lim_{x \to 2} (x - 2)p(x) = \lim_{x \to 2} \frac{-2x}{x + 2} = -1$$
$$q_0 = \lim_{x \to 2} (x - 2)^2 q(x) = \lim_{x \to 2} \frac{3(2 - x)}{x + 2} = 0$$

and therefore x=2 is a regular singular point. The indicial equation is given by

$$r(r-1) - r = 0,$$

that is, $r^2 - 2r = 0$, with roots $r_1 = 2$ and $r_2 = 0$. For the singularity at x = -2,

$$p_0 = \lim_{x \to -2} (x+2)p(x) = \lim_{x \to -2} \frac{2x}{2-x} = -1$$

$$q_0 = \lim_{x \to -2} (x+2)^2 q(x) = \lim_{x \to -2} \frac{3(x+2)}{2-x} = 0$$

and therefore x = -2 is a regular singular point. The indicial equation is given by

$$r(r-1)-r=0,$$

that is, $r^2 - 2r = 0$, with roots $r_1 = 2$ and $r_2 = 0$.

12. P(x)=0 for x=0 and x=-3. We note that $p(x)=-2x^{-1}(x+3)^{-1}$, and $q(x)=-1/(x+3)^2$. For the singularity at x=0,

$$p_0 = \lim_{x \to 0} x p(x) = \lim_{x \to 0} \frac{-2}{x+3} = -\frac{2}{3}$$
$$q_0 = \lim_{x \to 0} x^2 q(x) = \lim_{x \to 0} \frac{-x^2}{(x+3)^2} = 0$$

and therefore x = 0 is a regular singular point. The indicial equation is given by

$$r(r-1) - \frac{2}{3}r = 0,$$

that is, $r^2 - \frac{5}{3}r = 0$, with roots $r_1 = \frac{5}{3}$ and $r_2 = 0$. For the singularity at x = -3,

$$p_0 = \lim_{x \to -3} (x+3)p(x) = \lim_{x \to -3} \frac{-2}{x} = \frac{2}{3}$$
$$q_0 = \lim_{x \to -3} (x+3)^2 q(x) = \lim_{x \to -3} (-1) = -1$$

and therefore x = -3 is a regular singular point. The indicial equation is given by

$$r(r-1) + \frac{2}{3}r - 1 = 0$$
,

that is, $r^2 - \frac{1}{3}r - 1 = 0$, with roots $r_1 = \left(1 + \sqrt{37}\right)/6$ and $r_2 = \left(1 - \sqrt{37}\right)/6$.

13(a). Note the $p(x)=1/x\,$ and $\,q(x)=-1/x\,.$ Furthermore, $\,x\,p(x)=1\,$ and $\,x^2q(x)=\,-\,x\,.$ It follows that

$$p_0 = \lim_{x \to 0} (1) = 1$$

$$q_0 = \lim_{x \to 0} (-x) = 0$$

and therefore x = 0 is a *regular* singular point.

(b). The indicial equation is given by

$$r(r-1) + r = 0,$$

that is, $r^2 = 0$, with roots $r_1 = r_2 = 0$.

(c). Let $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$. Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^{n+1} + \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n - \sum_{n=0}^{\infty} a_nx^n = 0.$$

After adjusting the indices in the *first* series, we obtain

$$a_1 - a_0 + \sum_{n=1}^{\infty} [n(n+1)a_{n+1} + (n+1)a_{n+1} - a_n]x^n = 0.$$

Setting the coefficients equal to $\emph{zero},$ it follows that for $n \geq 0$,

$$a_{n+1} = \frac{a_n}{(n+1)^2} \, .$$

So for $n \ge 1$,

$$a_n = \frac{a_{n-1}}{n^2} = \frac{a_{n-2}}{n^2(n-1)^2} = \dots = \frac{1}{(n!)^2} a_0.$$

With $a_0 = 1$, one solution is

$$y_1(x) = 1 + x + \frac{1}{4}x^2 + \frac{1}{36}x^3 + \dots + \frac{1}{(n!)^2}x^n + \dots$$

For a second solution, set $y_2(x) = y_1(x) \ln x + b_1 x + b_2 x^2 + \dots + b_n x^n + \dots$. Substituting into the ODE, we obtain

$$L[y_1(x)] \cdot \ln x + 2 y_1'(x) + L\left[\sum_{n=1}^{\infty} b_n x^n\right] = 0.$$

Since $L[y_1(x)] = 0$, it follows that

$$L\left[\sum_{n=1}^{\infty} b_n x^n\right] = -2 y_1'(x).$$

More specifically,

$$b_1 + \sum_{n=1}^{\infty} [n(n+1)b_{n+1} + (n+1)b_{n+1} - b_n]x^n =$$

$$= -2 - x - \frac{1}{6}x^2 - \frac{1}{72}x^3 - \frac{1}{1440}x^4 - \cdots$$

Equating the coefficients, we obtain the system of equations

$$b_1 = -2$$

$$4b_2 - b_1 = -1$$

$$9b_3 - b_2 = -1/6$$

$$16b_4 - b_3 = -1/72$$
:

Solving these equations for the coefficients, $b_1 = -2$, $b_2 = -3/4$, $b_3 = -11/108$, $b_4 = -25/3456$, \cdots . Therefore a *second* solution is

$$y_2(x) = y_1(x) \ln x + \left[-2x - \frac{3}{4}x^2 - \frac{11}{108}x^3 - \frac{25}{3456}x^4 - \cdots \right].$$

14(a). Here $x\,p(x)=2x$ and $x^2q(x)=6\,xe^x$. Both of these functions are *analytic* at x=0, therefore x=0 is a *regular* singular point. Note that $p_0=q_0=0$.

(b). The indicial equation is given by

$$r(r-1) = 0,$$

that is, $r^2 - r = 0$, with roots $r_1 = 1$ and $r_2 = 0$.

(c). In order to find the solution corresponding to $r_1 = 1$, set $y = x \sum_{n=0}^{\infty} a_n x^n$. Upon substitution into the ODE, we have

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+1}x^{n+1} + 2\sum_{n=0}^{\infty} (n+1)a_nx^{n+1} + 6e^x \sum_{n=0}^{\infty} a_nx^{n+1} = 0.$$

After adjusting the indices in the *first* two series, and expanding the *exponential* function,

$$\sum_{n=1}^{\infty} n(n+1)a_n x^n + 2\sum_{n=1}^{\infty} n a_{n-1}x^n + 6 a_0 x + (6a_0 + 6a_1)x^2 + (6a_2 + 6a_1 + 3a_0)x^3 + (6a_3 + 6a_2 + 3a_1 + a_0)x^4 + \dots = 0.$$

Equating the coefficients, we obtain the system of equations

$$2a_1 + 2a_0 + 6a_0 = 0$$

$$6a_2 + 4a_1 + 6a_0 + 6a_1 = 0$$

$$12a_3 + 6a_2 + 6a_2 + 6a_1 + 3a_0 = 0$$

$$20a_4 + 8a_3 + 6a_3 + 6a_2 + 3a_1 + a_0 = 0$$

$$\vdots$$

Setting $a_0=1$, solution of the system results in $a_1=-4$, $a_2=17/3$, $a_3=-47/12$, $a_4=191/120$, \cdots . Therefore one solution is

$$y_1(x) = x - 4x^2 + \frac{17}{3}x^3 - \frac{47}{12}x^4 + \cdots$$

The exponents differ by an integer. So for a second solution, set

$$y_2(x) = a y_1(x) \ln x + 1 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

Substituting into the ODE, we obtain

$$a L[y_1(x)] \cdot \ln x + 2a y_1'(x) + 2a y_1(x) - a \frac{y_1(x)}{x} + L \left[1 + \sum_{n=1}^{\infty} c_n x^n \right] = 0.$$

Since $L[y_1(x)] = 0$, it follows that

$$L\left[1 + \sum_{n=1}^{\infty} c_n x^n\right] = -2a y_1'(x) - 2a y_1(x) + a \frac{y_1(x)}{x}.$$

More specifically,

$$\sum_{n=1}^{\infty} n(n+1)c_{n+1}x^n + 2\sum_{n=1}^{\infty} n c_n x^n + 6 + (6+6c_1)x + (6c_2 + 6c_1 + 3)x^2 + \dots = -a + 10ax - \frac{61}{3}ax^2 + \frac{193}{12}ax^3 + \dots$$

Equating the coefficients, we obtain the system of equations

$$6 = -a$$

$$2c_2 + 8c_1 + 6 = 10a$$

$$6c_3 + 10c_2 + 6c_1 + 3 = -\frac{61}{3}a$$

$$12c_4 + 12c_3 + 6c_2 + 3c_1 + 1 = \frac{193}{12}a$$
:

Solving these equations for the coefficients, a=-6. In order to solve the remaining equations, set $c_1=0$. Then $c_2=-33$, $c_3=449/6$, $c_4=-1595/24$, \cdots . Therefore a *second* solution is

$$y_2(x) = -6 y_1(x) \ln x + \left[1 - 33x^2 + \frac{449}{6}x^3 - \frac{1595}{24}x^4 + \cdots \right].$$

15(a). Note the p(x) = 6x/(x-1) and $q(x) = 3x^{-1}(x-1)^{-1}$. Furthermore, $x p(x) = 6x^2/(x-1)$ and $x^2 q(x) = 3x/(x-1)$. It follows that

$$p_0 = \lim_{x \to 0} \frac{6x^2}{x - 1} = 0$$
$$q_0 = \lim_{x \to 0} \frac{3x}{x - 1} = 0$$

and therefore x = 0 is a regular singular point.

(b). The indicial equation is given by

$$r(r-1) = 0,$$

that is, $r^2 - r = 0$, with roots $r_1 = 1$ and $r_2 = 0$.

(c). In order to find the solution corresponding to $r_1 = 1$, set $y = x \sum_{n=0}^{\infty} a_n x^n$. Upon substitution into the ODE, we have

$$\sum_{n=1}^{\infty} n(n+1)a_n x^{n+1} - \sum_{n=1}^{\infty} n(n+1)a_n x^n + 6\sum_{n=0}^{\infty} (n+1)a_n x^{n+2} + 3\sum_{n=0}^{\infty} a_n x^{n+1} = 0.$$

After adjusting the indices, it follows that

$$\sum_{n=2}^{\infty} n(n-1)a_{n-1}x^n - \sum_{n=1}^{\infty} n(n+1)a_n x^n +$$

$$+ 6\sum_{n=2}^{\infty} (n-1)a_{n-2}x^n + 3\sum_{n=1}^{\infty} a_{n-1}x^n = 0.$$

That is,

$$-2a_1 + 3a_0 + \sum_{n=2}^{\infty} \left[-n(n+1)a_n + (n^2 - n + 3)a_{n-1} + 6(n-1)a_{n-2} \right] x^n = 0.$$

Setting the coefficients equal to zero, we have $a_1=3a_0/2$, and for $n\geq 2$,

$$n(n+1)a_n = (n^2 - n + 3)a_{n-1} + 6(n-1)a_{n-2}.$$

If we assign $a_0=1$, then we obtain $a_1=3/2$, $a_2=9/4$, $a_3=51/16$, \cdots . Hence one solution is

$$y_1(x) = x + \frac{3}{2}x^2 + \frac{9}{4}x^3 + \frac{51}{16}x^4 + \frac{111}{40}x^5 + \cdots$$

The exponents differ by an *integer*. So for a second solution, set

$$y_2(x) = a y_1(x) \ln x + 1 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

Substituting into the ODE, we obtain

$$2ax y_1'(x) - 2a y_1'(x) + 6ax y_1(x) - a y_1(x) + a \frac{y_1(x)}{x} + L \left[1 + \sum_{n=1}^{\infty} c_n x^n \right] = 0,$$

since $L[y_1(x)] = 0$. It follows that

$$L\left[1 + \sum_{n=1}^{\infty} c_n x^n\right] = 2a y_1'(x) - 2ax y_1'(x) + a y_1(x) - 6ax y_1(x) - a \frac{y_1(x)}{x}.$$

Now

$$L\left[1 + \sum_{n=1}^{\infty} c_n x^n\right] = 3 + (-2c_2 + 3c_1)x + (-6c_3 + 5c_2 + 6c_1)x^2 + (-12c_4 + 9c_3 + 12c_2)x^3 + (-20c_5 + 15c_4 + 18c_3)x^4 + \cdots$$

Substituting for $y_1(x)$, the *right hand side* of the ODE is

$$a + \frac{7}{2}ax + \frac{3}{4}ax^2 + \frac{33}{16}ax^3 - \frac{867}{80}ax^4 - \frac{441}{10}ax^5 + \cdots$$

Equating the coefficients, we obtain the system of equations

$$3 = a$$

$$-2c_2 + 3c_1 = \frac{7}{2}a$$

$$-6c_3 + 5c_2 + 6c_1 = \frac{3}{4}a$$

$$-12c_4 + 9c_3 + 12c_2 = \frac{33}{16}a$$

$$\vdots$$

We find that a=3. In order to solve the second equation, set $c_1=0$. Solution of the remaining equations results in $c_2=-21/4$, $c_3=-19/4$, $c_4=-597/64$, \cdots . Hence a second solution is

$$y_2(x) = 3 y_1(x) \ln x + \left[1 - \frac{21}{4} x^2 - \frac{19}{4} x^3 - \frac{597}{64} x^4 + \cdots \right].$$

16(a). After multiplying both sides of the ODE by x, we find that $x\,p(x)=0$ and $x^2q(x)=x$. Both of these functions are analytic at x=0, hence x=0 is a regular singular point.

(b). Furthermore, $\,p_0=q_0=0$. So the indicial equation is $\,r(r-1)=0$, with roots $\,r_1=1$ and $\,r_2=0$.

(c). In order to find the solution corresponding to $r_1 = 1$, set $y = x \sum_{n=0}^{\infty} a_n x^n$. Upon substitution into the ODE, we have

$$\sum_{n=1}^{\infty} n(n+1)a_n x^n + \sum_{n=0}^{\infty} a_n x^{n+1} = 0.$$

That is,

$$\sum_{n=1}^{\infty} \left[n(n+1)a_n + a_{n-1} \right] x^n = 0.$$

Setting the coefficients equal to zero, we find that for $n \geq 1$,

$$a_n = \frac{-a_{n-1}}{n(n+1)} \,.$$

It follows that

$$a_n = \frac{-a_{n-1}}{n(n+1)} = \frac{a_{n-2}}{(n-1)n^2(n+1)} = \dots = \frac{(-1)^n a_0}{(n!)^2(n+1)}.$$

Hence one solution is

$$y_1(x) = x - \frac{1}{2}x^2 + \frac{1}{12}x^3 - \frac{1}{144}x^4 + \frac{1}{2880}x^5 + \cdots$$

The exponents differ by an *integer*. So for a second solution, set

$$y_2(x) = a y_1(x) \ln x + 1 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

Substituting into the ODE, we obtain

$$a L[y_1(x)] \cdot \ln x + 2a y_1'(x) - a \frac{y_1(x)}{x} + L \left[1 + \sum_{n=1}^{\infty} c_n x^n \right] = 0.$$

Since $L[y_1(x)] = 0$, it follows that

$$L\left[1 + \sum_{n=1}^{\infty} c_n x^n\right] = -2a y_1'(x) + a \frac{y_1(x)}{x}.$$

Now

$$L\left[1 + \sum_{n=1}^{\infty} c_n x^n\right] = 1 + (2c_2 + c_1)x + (6c_3 + c_2)x^2 + (12c_4 + c_3)x^3 + (20c_5 + c_4)x^4 + (30c_6 + c_5)x^5 + \cdots$$

Substituting for $y_1(x)$, the *right hand side* of the ODE is

$$-a + \frac{3}{2}ax - \frac{5}{12}ax^2 + \frac{7}{144}ax^3 - \frac{1}{320}ax^4 + \cdots$$

Equating the coefficients, we obtain the system of equations

$$1 = -a$$

$$2c_2 + c_1 = \frac{3}{2}a$$

$$6c_3 + c_2 = -\frac{5}{12}a$$

$$12c_4 + c_3 = \frac{7}{144}a$$

$$\vdots$$

Evidently, a=-1. In order to solve the *second* equation, set $c_1=0$. We then find that $c_2=-3/4$, $c_3=7/36$, $c_4=-35/1728$, \cdots . Therefore a second solution is

$$y_2(x) = -y_1(x) \ln x + \left[1 - \frac{3}{4}x^2 + \frac{7}{36}x^3 - \frac{35}{1728}x^4 + \cdots\right].$$

19(a). After dividing by the leading coefficient, we find that

$$p_0 = \lim_{x \to 0} x \, p(x) = \lim_{x \to 0} \frac{\gamma - (1 + \alpha + \beta)x}{1 - x} = \gamma.$$

$$q_0 = \lim_{x \to 0} x^2 q(x) = \lim_{x \to 0} \frac{-\alpha \beta x}{1 - x} = 0.$$

Hence x=0 is a regular singular point. The indicial equation is $r(r-1)+\gamma\,r=0$, with roots $r_1=1-\gamma$ and $r_2=0$.

(b). For x = 1,

$$p_0 = \lim_{x \to 1} (x - 1)p(x) = \lim_{x \to 1} \frac{-\gamma + (1 + \alpha + \beta)x}{x} = 1 - \gamma + \alpha + \beta.$$

$$q_0 = \lim_{x \to 1} (x - 1)^2 q(x) = \lim_{x \to 1} \frac{\alpha \beta(x - 1)}{x} = 0.$$

Hence x = 1 is a regular singular point. The indicial equation is

$$r^2 - (\gamma - \alpha - \beta) r = 0,$$

with roots $r_1 = \gamma - \alpha - \beta$ and $r_2 = 0$.

(c). Given that $r_1 - r_2$ is not a positive integer, we can set $y = \sum_{n=0}^{\infty} a_n x^n$. Substitution into the ODE results in

$$x(1-x)\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2} + [\gamma - (1+\alpha+\beta)x]\sum_{n=1}^{\infty}n \, a_nx^{n-1} - \alpha\beta\sum_{n=0}^{\infty}a_nx^n = 0.$$

That is,

$$\sum_{n=1}^{\infty} n(n+1)a_{n+1}x^n - \sum_{n=2}^{\infty} n(n-1)a_nx^n + \gamma \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n - (1+\alpha+\beta)\sum_{n=1}^{\infty} n \, a_nx^n - \alpha\beta \sum_{n=0}^{\infty} a_nx^n = 0.$$

Combining the series, we obtain

$$\gamma a_1 - \alpha \beta a_0 + [(2+2\gamma)a_2 - (1+\alpha+\beta+\alpha\beta)a_1]x + \sum_{n=2}^{\infty} A_n x^n = 0,$$

in which

$$A_n = (n+1)(n+\gamma)a_{n+1} - [n(n-1) + (1+\alpha+\beta)n + \alpha\beta]a_n.$$

Note that $n(n-1)+(1+\alpha+\beta)n+\alpha\beta=(n+\alpha)(n+\beta)$. Setting the coefficients equal to zero, we have $\gamma\,a_1-\alpha\beta\,a_0=0$, and

$$a_{n+1} = \frac{(n+\alpha)(n+\beta)}{(n+1)(n+\gamma)} a_n$$

for $n \ge 1$. Hence one solution is

$$y_{1}(x) = 1 + \frac{\alpha\beta}{\gamma \cdot 1!}x + \frac{\alpha(\alpha+1)\beta(\beta+1)}{\gamma(\gamma+1) \cdot 2!}x^{2} + \frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{\gamma(\gamma+1)(\gamma+2) \cdot 3!}x^{3} + \cdots$$

Since the nearest other singularity is at x=1, the radius of convergence of $y_1(x)$ will be at least $\rho=1$.

(d). Given that $r_1 - r_2$ is not a positive integer, we can set $y = x^{1-\gamma} \sum_{n=0}^{\infty} b_n x^n$. Then Substitution into the ODE results in

$$x(1-x)\sum_{n=0}^{\infty} (n+1-\gamma)(n-\gamma)a_n x^{n-\gamma-1} +$$

$$+ [\gamma - (1+\alpha+\beta)x]\sum_{n=0}^{\infty} (n+1-\gamma)a_n x^{n-\gamma} - \alpha\beta\sum_{n=0}^{\infty} a_n x^{n+1-\gamma} = 0.$$

That is,

$$\begin{split} &\sum_{n=0}^{\infty} (n+1-\gamma)(n-\gamma) a_n x^{n-\gamma} - \sum_{n=0}^{\infty} (n+1-\gamma)(n-\gamma) a_n x^{n+1-\gamma} + \\ &+ \gamma \sum_{n=0}^{\infty} (n+1-\gamma) a_n x^{n-\gamma} - (1+\alpha+\beta) \sum_{n=0}^{\infty} (n+1-\gamma) a_n x^{n+1-\gamma} - \alpha \beta \sum_{n=0}^{\infty} a_n x^{n+1-\gamma} = 0. \end{split}$$

After adjusting the indices,

$$\sum_{n=0}^{\infty} (n+1-\gamma)(n-\gamma)a_n x^{n-\gamma} - \sum_{n=1}^{\infty} (n-\gamma)(n-1-\gamma)a_{n-1} x^{n-\gamma} +$$

$$+ \gamma \sum_{n=0}^{\infty} (n+1-\gamma)a_n x^{n-\gamma} - (1+\alpha+\beta) \sum_{n=1}^{\infty} (n-\gamma)a_{n-1} x^{n-\gamma} - \alpha\beta \sum_{n=1}^{\infty} a_{n-1} x^{n-\gamma} = 0.$$

Combining the series, we obtain

$$\sum_{n=1}^{\infty} B_n x^{n-\gamma} = 0,$$

in which

$$B_n = n(n+1-\gamma)b_n - [(n-\gamma)(n-\gamma+\alpha+\beta) + \alpha\beta]b_{n-1}.$$

Note that $(n-\gamma)(n-\gamma+\alpha+\beta)+\alpha\beta=(n+\alpha-\gamma)(n+\beta-\gamma)$. Setting $B_n=0$, it follows that for $n\geq 1$,

$$b_n = \frac{(n+\alpha-\gamma)(n+\beta-\gamma)}{n(n+1-\gamma)} b_{n-1}.$$

Therefore a second solution is

$$y_{2}(x) = x^{1-\gamma} \left[1 + \frac{(1+\alpha-\gamma)(1+\beta-\gamma)}{(2-\gamma)1!} x + \frac{(1+\alpha-\gamma)(2+\alpha-\gamma)(1+\beta-\gamma)(2+\beta-\gamma)}{(2-\gamma)(3-\gamma)2!} x^{2} + \cdots \right].$$

(e). Under the transformation $x = 1/\xi$, the ODE becomes

$$\xi^4 \frac{1}{\xi} \left(1 - \frac{1}{\xi} \right) \frac{d^2 y}{d\xi^2} + \left\{ 2\xi^3 \frac{1}{\xi} \left(1 - \frac{1}{\xi} \right) - \xi^2 \left[\gamma - (1 + \alpha + \beta) \frac{1}{\xi} \right] \right\} \frac{dy}{d\xi} - \alpha \beta y = 0.$$

That is,

$$(\xi^3 - \xi^2) \frac{d^2 y}{d\xi^2} + [2\xi^2 - \gamma \xi^2 + (-1 + \alpha + \beta)\xi] \frac{dy}{d\xi} - \alpha\beta y = 0.$$

Therefore $\xi = 0$ is a singular point. Note that

$$p(\xi) = \frac{(2-\gamma)\,\xi + (-1+\alpha+\beta)}{\xi^2 - \xi} \text{ and } q(\xi) = \frac{-\alpha\beta}{\xi^3 - \xi^2}.$$

It follows that

$$p_0 = \lim_{\xi \to 0} \xi \, p(\xi) = \lim_{\xi \to 0} \frac{(2 - \gamma) \, \xi + (-1 + \alpha + \beta)}{\xi - 1} = 1 - \alpha - \beta \,,$$

$$q_0 = \lim_{\xi \to 0} \xi^2 q(\xi) = \lim_{\xi \to 0} \frac{-\alpha\beta}{\xi - 1} = \alpha\beta.$$

Hence $\xi = 0 \ (x = \infty)$ is a *regular* singular point. The indicial equation is

$$r(r-1) + (1 - \alpha - \beta)r + \alpha\beta = 0,$$

or $r^2-(\alpha+\beta)r+\alpha\beta=0$. Evidently, the roots are $r=\alpha$ and $r=\beta$.

21(a). Note that

$$p(x) = \frac{\alpha}{x^s}$$
 and $q(\xi) = \frac{\beta}{x^t}$.

It follows that

$$\lim_{x \to 0} x p(x) = \lim_{x \to 0} \alpha x^{1-s},$$

$$\lim_{\xi \to 0} \xi^2 q(\xi) = \lim_{\xi \to 0} \beta \, x^{2-s}.$$

Hence if s > 1 or t > 2, one or both of the limits does not exist. Therefore x = 0 is an *irregular* singular point.

(c). Let
$$y = a_0 x^r + a_1 x^{r+1} + \dots + a_n x^{r+n} + \dots$$
. Write the ODE as
$$x^3 y'' + \alpha x^2 y' + \beta y = 0.$$

Substitution of the assumed solution results in

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r+1} + \alpha \sum_{n=0}^{\infty} (n+r)a_n x^{n+r+1} + \beta \sum_{n=0}^{\infty} a_n x^{n+r} = 0.$$

Adjusting the indices, we obtain

$$\sum_{n=1}^{\infty} (n-1+r)(n+r-2)a_{n-1}x^{n+r} + \alpha \sum_{n=1}^{\infty} (n-1+r)a_{n-1}x^{n+r} + \beta \sum_{n=0}^{\infty} a_n x^{n+r} = 0.$$

Combining the series,

$$\beta a_0 + \sum_{n=1}^{\infty} A_n x^{n+r} = 0,$$

in which $A_n = \beta a_n + (n-1+r)(n+r+\alpha-2)a_{n-1}$. Setting the coefficients equal to zero, we have $a_0 = 0$. But for $n \ge 1$,

$$a_n = \frac{(n-1+r)(n+r+\alpha-2)}{\beta} a_{n-1}.$$

Therefore, regardless of the value of r, it follows that $a_n = 0$, for $n = 1, 2, \cdots$.

Section 5.8

3. Here x p(x) = 1 and $x^2 q(x) = 2x$, which are both analytic everywhere. We set $y = x^r(a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots)$. Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} + \sum_{n=0}^{\infty} (r+n)a_n x^{r+n} + 2\sum_{n=0}^{\infty} a_n x^{r+n+1} = 0.$$

After adjusting the indices in the *last* series, we obtain

$$a_0[r(r-1)+r]x^r + \sum_{n=1}^{\infty} [(r+n)(r+n-1)a_n + (r+n)a_n + 2a_{n-1}]x^{r+n} = 0.$$

Assuming $a_0 \neq 0$, the *indicial equation* is $r^2 = 0$, with *double* root r = 0. Setting the remaining coefficients equal to zero, we have for $n \geq 1$,

$$a_n(r) = -\frac{2}{(n+r)^2} a_{n-1}(r).$$

It follows that

$$a_n(r) = \frac{(-1)^n 2^n}{\left[(n+r)(n+r-1)\cdots(1+r)\right]^2} a_0, \quad n \ge 1.$$

Since r = 0, one solution is given by

$$y_1(x) = \sum_{n=0}^{\infty} \frac{(-1)^n 2^n}{(n!)^2} x^n.$$

For a second linearly independent solution, we follow the discussion in Section 5.7 . First

note that

$$\frac{a'_n(r)}{a_n(r)} = -2\left[\frac{1}{n+r} + \frac{1}{n+r-1} + \dots + \frac{1}{1+r}\right].$$

Setting r = 0,

$$a'_n(0) = -2 H_n a_n(0) = -2 H_n \frac{(-1)^n 2^n}{(n!)^2}.$$

Therefore,

$$y_2(x) = y_1(x) \ln x - 2 \sum_{n=0}^{\infty} \frac{(-1)^n 2^n H_n}{(n!)^2} x^n.$$

4. Here $x\,p(x)=4$ and $x^2q(x)=2+x$, which are both analytic everywhere. We set $y=x^r(a_0+a_1x+a_2x^2+\cdots+a_nx^n+\cdots)$. Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} + 4\sum_{n=0}^{\infty} (r+n)a_n x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+1} + 2\sum_{n=0}^{\infty} a_n x^{r+n} = 0.$$

After adjusting the indices in the second-to-last series, we obtain

$$a_0[r(r-1) + 4r + 2]x^r + \sum_{n=1}^{\infty} [(r+n)(r+n-1)a_n + 4(r+n)a_n + 2a_n + a_{n-1}]x^{r+n} = 0.$$

Assuming $a_0 \neq 0$, the *indicial equation* is $r^2 + 3r + 2 = 0$, with roots $r_1 = -1$ and $r_2 = -2$. Setting the remaining coefficients equal to zero, we have for $n \geq 1$,

$$a_n(r) = -\frac{1}{(n+r+1)(n+r+2)} a_{n-1}(r).$$

It follows that

$$a_n(r) = \frac{(-1)^n}{[(n+r+1)(n+r)\cdots(2+r)][(n+r+2)(n+r)\cdots(3+r)]} a_0, \ n \ge 1.$$

Since $r_1 = -1$, one solution is given by

$$y_1(x) = x^{-1} \sum_{n=0}^{\infty} \frac{(-1)^n}{(n)!(n+1)!} x^n.$$

For a second linearly independent solution, we follow the discussion in Section 5.7 . Since $r_1 - r_2 = N = 1$, we find that

$$a_1(r) = -\frac{1}{(r+2)(r+3)},$$

with $a_0 = 1$. Hence the leading coefficient in the solution is

$$a = \lim_{r \to -2} (r+2) a_1(r) = -1$$
.

Further,

$$(r+2) a_n(r) = \frac{(-1)^n}{(n+r+2) [(n+r+1)(n+r)\cdots(3+r)]^2}.$$

Let $A_n(r) = (r+2) a_n(r)$. It follows that

$$\frac{A'_n(r)}{A_n(r)} = -\frac{1}{n+r+2} - 2\left[\frac{1}{n+r+1} + \frac{1}{n+r} + \dots + \frac{1}{3+r}\right].$$

Setting $r = r_2 = -2$,

$$\frac{A'_n(-2)}{A_n(-2)} = -\frac{1}{n} - 2\left[\frac{1}{n-1} + \frac{1}{n-2} + \dots + 1\right]$$
$$= -H_n - H_{n-1}.$$

Hence

$$c_n(-2) = -(H_n + H_{n-1}) A_n(-2)$$

= -(H_n + H_{n-1}) \frac{(-1)^n}{n!(n-1)!}.

Therefore,

$$y_2(x) = -y_1(x) \ln x + x^{-2} \left[1 - \sum_{n=1}^{\infty} \frac{(-1)^n (H_n + H_{n-1})}{n!(n-1)!} x^n \right].$$

6. Let $y(x)=v(x)/\sqrt{x}$. Then $y'=x^{-1/2}\,v'-x^{-3/2}\,v/2$ and $y''=x^{-1/2}\,v''-x^{-3/2}\,v'+3\,x^{-5/2}\,v/4$. Substitution into the ODE results in

$$\left[x^{3/2}\,v^{\,\prime\prime}-x^{1/2}\,v^{\,\prime}+3\,x^{-1/2}\,v/4\right]+\left[x^{1/2}\,v^{\,\prime}-x^{-1/2}\,v/2\right]+\left(x^2-\frac{1}{4}\right)x^{-1/2}\,v=0\,.$$

Simplifying, we find that

$$v'' + v = 0$$
.

with general solution $v(x) = c_1 \cos x + c_2 \sin x$. Hence

$$y(x) = c_1 x^{-1/2} \cos x + c_2 x^{-1/2} \sin x$$
.

8. The absolute value of the ratio of consecutive terms is

$$\left| \frac{a_{2m+2} x^{2m+2}}{a_{2m} x^{2m}} \right| = \frac{|x|^{2m+2} 2^{2m} (m+1)! \, m!}{|x|^{2m} 2^{2m+2} (m+2)! (m+1)!} = \frac{|x|^2}{4(m+2)(m+1)}.$$

Applying the *ratio test*,

$$\lim_{m \to \infty} \left| \frac{a_{2m+2} \, x^{2m+2}}{a_{2m} \, x^{2m}} \right| = \lim_{m \to \infty} \, \frac{\left| x \right|^2}{4(m+2)(m+1)} = 0 \, .$$

Hence the series for $J_1(x)$ converges absolutely for all values of x. Furthermore, since the series for $J_0(x)$ also converges absolutely for all x, term-by-term differentiation results in

$$J_0'(x) = \sum_{m=1}^{\infty} \frac{(-1)^m x^{2m-1}}{2^{2m-1} m! (m-1)!}$$

$$= \sum_{m=0}^{\infty} \frac{(-1)^{m+1} x^{2m+1}}{2^{2m+1} (m+1)! m!}$$

$$= -\frac{x}{2} \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m} (m+1)! m!}.$$

Therefore, $J_0'(x) = -J_1(x)$.

- 9(a). Note that $x\,p(x)=1$ and $x^2q(x)=x^2-\nu^2$, which are both analytic at x=0. Thus x=0 is a regular singular point. Furthermore, $p_0=1$ and $q_0=-\nu^2$. Hence the indicial equation is $r^2-\nu^2=0$, with roots $r_1=\nu$ and $r_2=-\nu$.
- (b). Set $y = x^r(a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots)$. Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} + \sum_{n=0}^{\infty} (r+n)a_n x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+2} - \nu^2 \sum_{n=0}^{\infty} a_n x^{r+n} = 0.$$

After adjusting the indices in the second-to-last series, we obtain

$$a_0 [r(r-1) + r - \nu^2] x^r + a_1 [(r+1)r + (r+1) - \nu^2] + \sum_{n=2}^{\infty} [(r+n)(r+n-1)a_n + (r+n)a_n - \nu^2 a_n + a_{n-2}] x^{r+n} = 0.$$

Setting the coefficients equal to zero, we find that $a_1 = 0$, and

$$a_n = \frac{-1}{(r+n)^2 - \nu^2} a_{n-2},$$

for $n \ge 2$. It follows that $a_3 = a_5 = \dots = a_{2m+1} = \dots = 0$. Furthermore, with $r = \nu$,

$$a_n = \frac{-1}{n(n+2\nu)} a_{n-2}$$

So for $m=1,2,\cdots$,

$$a_{2m} = \frac{-1}{2m(2m+2\nu)} a_{2m-2}$$

$$= \frac{(-1)^m}{2^{2m} m! (1+\nu)(2+\nu) \cdots (m-1+\nu)(m+\nu)} a_0.$$

Hence one solution is

$$y_1(x) = x^{\nu} \left[1 + \sum_{m=1}^{\infty} \frac{(-1)^m}{m!(1+\nu)(2+\nu)\cdots(m-1+\nu)(m+\nu)} \left(\frac{x}{2}\right)^{2m} \right].$$

(c). Assuming that $r_1 - r_2 = 2\nu$ is *not* an integer, simply setting $r = -\nu$ in the above results in a second *linearly independent* solution

$$y_2(x) = x^{-\nu} \left[1 + \sum_{m=1}^{\infty} \frac{(-1)^m}{m!(1-\nu)(2-\nu)\cdots(m-1-\nu)(m-\nu)} \left(\frac{x}{2}\right)^{2m} \right].$$

(d). The absolute value of the ratio of consecutive terms in $y_1(x)$ is

$$\left| \frac{a_{2m+2} x^{2m+2}}{a_{2m} x^{2m}} \right| = \frac{|x|^{2m+2} 2^{2m} m! (1+v) \cdots (m+\nu)}{|x|^{2m} 2^{2m+2} (m+1)! (1+v) \cdots (m+1+\nu)}$$
$$= \frac{|x|^2}{4(m+1)(m+1+\nu)}.$$

Applying the ratio test,

$$\lim_{m \to \infty} \left| \frac{a_{2m+2} x^{2m+2}}{a_{2m} x^{2m}} \right| = \lim_{m \to \infty} \frac{|x|^2}{4(m+1)(m+1+\nu)} = 0.$$

Hence the series for $y_1(x)$ converges absolutely for all values of x. The same can be shown for $y_2(x)$. Note also, that if ν is a positive integer, then the coefficients in the series for $y_2(x)$ are undefined.

10(a). It suffices to calculate $L[J_0(x) \ln x]$. Indeed,

$$[J_0(x) \ln x]' = J_0'(x) \ln x + \frac{J_0(x)}{r}$$

and

$$[J_0(x) \ln x]'' = J_0''(x) \ln x + 2 \frac{J_0'(x)}{x} - \frac{J_0(x)}{x^2}.$$

Hence

$$L[J_0(x) \ln x] = x^2 J_0''(x) \ln x + 2x J_0'(x) - J_0(x) + + x J_0'(x) \ln x + J_0(x) + x^2 J_0(x) \ln x.$$

Since
$$x^2 J_0''(x) + x J_0'(x) + x^2 J_0(x) = 0$$
,

$$L[J_0(x) \ln x] = 2x J_0'(x).$$

(b). Given that $L[y_2(x)] = 0$, after adjusting the indices in Part (a), we have

$$b_1 x + 2^2 b_2 x^2 + \sum_{n=3}^{\infty} (n^2 b_n + b_{n-2}) x^n = -2x J_0'(x).$$

Using the series representation of $J_0'(x)$ in Problem 8,

$$b_1 x + 2^2 b_2 x^2 + \sum_{n=3}^{\infty} (n^2 b_n + b_{n-2}) x^n = -2 \sum_{n=1}^{\infty} \frac{(-1)^n (2n) x^{2n}}{2^{2n} (n!)^2}.$$

(c). Equating the coefficients on both sides of the equation, we find that

$$b_1 = b_3 = \dots = b_{2m+1} = \dots = 0$$
.

Also, with n = 1, $2^2b_2 = 1/(1!)^2$, that is, $b_2 = 1/[2^2(1!)^2]$. Furthermore, for $m \ge 2$,

$$(2m)^{2}b_{2m} + b_{2m-2} = -2\frac{(-1)^{m}(2m)}{2^{2m}(m!)^{2}}.$$

More explicitly,

$$b_4 = -\frac{1}{2^2 4^2} \left(1 + \frac{1}{2} \right)$$

$$b_6 = \frac{1}{2^2 4^2 6^2} \left(1 + \frac{1}{2} + \frac{1}{3} \right)$$

$$\vdots$$

It can be shown, in general, that

$$b_{2m} = (-1)^{m+1} \frac{H_m}{2^{2m} (m!)^2}.$$

11. Bessel's equation of *order one* is

$$x^2y'' + xy' + (x^2 - 1)y = 0.$$

Based on Problem 9, the roots of the indicial equation are $r_1=1$ and $r_2=-1$. Set $y=x^r(a_0+a_1x+a_2x^2+\cdots+a_nx^n+\cdots)$. Substitution into the ODE results in

$$\sum_{n=0}^{\infty} (r+n)(r+n-1)a_n x^{r+n} + \sum_{n=0}^{\infty} (r+n)a_n x^{r+n} + \sum_{n=0}^{\infty} a_n x^{r+n+2} - \sum_{n=0}^{\infty} a_n x^{r+n} = 0.$$

After adjusting the indices in the *second-to-last* series, we obtain

$$a_0[r(r-1)+r-1]x^r + a_1[(r+1)r+(r+1)-1] + \sum_{n=2}^{\infty} [(r+n)(r+n-1)a_n + (r+n)a_n - a_n + a_{n-2}]x^{r+n} = 0.$$

Setting the coefficients equal to zero, we find that $a_1 = 0$, and

$$a_n(r) = \frac{-1}{(r+n)^2 - 1} a_{n-2}(r)$$

$$= \frac{-1}{(n+r+1)(n+r-1)} a_{n-2}(r),$$

for $n \ge 2$. It follows that $a_3 = a_5 = \cdots = a_{2m+1} = \cdots = 0$. Solving the recurrence relation,

$$a_{2m}(r) = \frac{(-1)^m}{(2m+r+1)(2m+r-1)^2 \cdots (r+3)^2 (r+1)} a_0.$$

With $r = r_1 = 1$,

$$a_{2m}(1) = \frac{(-1)^m}{2^{2m}(m+1)! \, m!} \, a_0.$$

For a *second* linearly independent solution, we follow the discussion in Section 5.7 . Since $r_1-r_2=N=2$, we find that

$$a_2(r) = -\frac{1}{(r+3)(r+1)},$$

with $a_0 = 1$. Hence the leading coefficient in the solution is

$$a = \lim_{r \to -1} (r+1) a_2(r) = -\frac{1}{2}.$$

Further,

$$(r+1) a_{2m}(r) = \frac{(-1)^m}{(2m+r+1) [(2m+r-1)\cdots(3+r)]^2}.$$

Let $A_n(r) = (r+1) a_n(r)$. It follows that

$$\frac{A'_{2m}(r)}{A_{2m}(r)} = -\frac{1}{2m+r+1} - 2\left[\frac{1}{2m+r-1} + \dots + \frac{1}{3+r}\right].$$

Setting $r = r_2 = -1$, we calculate

$$c_{2m}(-1) = -\frac{1}{2}(H_m + H_{m-1})A_{2m}(-1)$$

$$= -\frac{1}{2}(H_m + H_{m-1})\frac{(-1)^m}{2m[(2m-2)\cdots 2]^2}$$

$$= -\frac{1}{2}(H_m + H_{m-1})\frac{(-1)^m}{2^{2m-1}m!(m-1)!}.$$

Note that $a_{2m+1}(r) = 0$ implies that $A_{2m+1}(r) = 0$, so

$$c_{2m+1}(-1) = \left[\frac{d}{dr}A_{2m+1}(r)\right]_{r=r_2} = 0.$$

Therefore,

$$y_2(x) = -\frac{1}{2} \left[x \sum_{m=0}^{\infty} \frac{(-1)^m}{(m+1)! \, m!} \left(\frac{x}{2} \right)^{2m} \right] \ln x + \frac{1}{x} \left[1 - \sum_{m=1}^{\infty} \frac{(-1)^m (H_m + H_{m-1})}{m! (m-1)!} \left(\frac{x}{2} \right)^{2m} \right].$$

Based on the definition of $J_1(x)$,

$$y_2(x) = -J_1(x) \ln x + \frac{1}{x} \left[1 - \sum_{m=1}^{\infty} \frac{(-1)^m (H_m + H_{m-1})}{m!(m-1)!} \left(\frac{x}{2}\right)^{2m} \right].$$

12. Consider a solution of the form

$$y(x) = \sqrt{x} f(\alpha x^{\beta}).$$

Then

$$y' = \frac{df}{d\xi} \cdot \frac{\alpha\beta x^{\beta}}{\sqrt{x}} + \frac{f(\xi)}{2\sqrt{x}}$$

in which $\xi = \alpha x^{\beta}$. Hence

$$y'' = \frac{d^2 f}{d\xi^2} \cdot \frac{\alpha^2 \beta^2 x^{2\beta}}{x\sqrt{x}} + \frac{df}{d\xi} \cdot \frac{\alpha \beta^2 x^{\beta}}{x\sqrt{x}} - \frac{f(\xi)}{4x\sqrt{x}},$$

and

$$x^{2}y'' = \alpha^{2}\beta^{2} x^{2\beta} \sqrt{x} \frac{d^{2}f}{d\xi^{2}} + \alpha\beta^{2} x^{\beta} \sqrt{x} \frac{df}{d\xi} - \frac{1}{4} \sqrt{x} f(\xi).$$

Substitution into the ODE results in

$$\alpha^2 \beta^2 x^{2\beta} \frac{d^2 f}{d\xi^2} + \alpha \beta^2 x^{\beta} \frac{df}{d\xi} - \frac{1}{4} f(\xi) + \left(\alpha^2 \beta^2 x^{2\beta} + \frac{1}{4} - \nu^2 \beta^2 \right) f(\xi) = 0.$$

Simplifying, and setting $\xi = \alpha x^{\beta}$, we find that

$$\xi^2 \frac{d^2 f}{d\xi^2} + \xi \frac{df}{d\xi} + (\xi^2 - \nu^2) f(\xi) = 0, \quad (*)$$

which is a Bessel equation of $\textit{order}\ \nu$. Therefore, the general solution of the given ODE is

$$y(x) = \sqrt{x} \left[c_1 f_1(\alpha x^{\beta}) + c_2 f_2(\alpha x^{\beta}) \right],$$

in which $f_1(\xi)$ and $f_2(\xi)$ are the linearly independent solutions of (*).