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Chapter Seven
Section 7.1

1. Introduce the variables x; = u and x, = u’. It follows that =] = x, and
xy =u"
= —2u—05u".
In terms of the new variables, we obtain the system of two first order ODEs

/
Ty = To
!/
Ty = — 2z —0.57,.

3. First divide both sides of the equation by ¢2, and write

1 1
"no__ /

Set x; = u and x, = u’. It follows that x| = x, and

I
Ty = U

1, 1 1
= ——-u' — - — |u.
t 4¢?

We obtain the system of equations

!/
Ty = Ty

1 1
T, = — (1—E>x1—¥x2.

6. One of the ways to transform the system is to assign the variables
Y=o, 9225171/ , Ys =Ty , y4::1:2/.

Before proceeding, note that

1
xl” = E[ — (l{fl + ]{12)1'1 + k2$2 + Fl(t)]
1
1
2l = —[kywy — (ko + ks)xy + Fy(t)] .
my

Differentiating the new variables, we obtain the system of four first order equations
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Y =Y

= [ O R+ g+ Fi(0)
Ys = Ys

Y, = %[kﬂh — (ky + k3)ys + Fy(1)] -

7(a). Solving the first equation for x,, we have x, = x| + 2x, . Substitution into the
second equation results in

(z] +22,) = 21 — 2(z] + 22,).

Thatis, ' + 4z + 3x, = 0. The resulting equation is a second order differential
equation with constant coefficients. The general solution is

T,(t) = cre™t 4 e

With z, given in terms of x,, it follows that

T5(t) = ce — et

(b). Imposing the specified initial conditions, we obtain

c+cy = 2
Ci — Cy = 3,
with solution ¢, = 5/2 and ¢, = — 1/2. Hence
5 1 5 1
x,(t) = ie_t - 56_‘% and x,(t) = ie_t + 56_:%
().
4
3
¥2 21
]
0 i 2 3 i

10. Solving the first equation for x,, we obtain z, = (x; — x/)/2. Substitution into
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the second equation results in
(z, —z))' )2 =3z, — 2(z; — z)).
Rearranging the terms, the single differential equation for z; is
' +3x+2x,=0.
The general solution is
z,(t) = e 4 e
With x, given in terms of x, , it follows that

3
Ty(t) = cre ™t + S

2
Invoking the specified initial conditions, c, = — 7 and ¢, = 6. Hence
z(t)= —Te ' +6e % and z,(t) = —Te ' +9e7.

11. Solving the first equation for x,, we have x, = x//2. Substitution into the
second equation results in

/2= —2ux,.
The resulting equation is x;" + 4z, = 0, with general solution
x,(t) = c1c08 2t + cysin 2t .
With z, given in terms of x, , it follows that
xy(t) = — e18in 2t + ¢y cos 2t .

Imposing the specified initial conditions, we obtain ¢; = 3 and ¢, = 4. Hence

x1(t) = 3cos2t + 4sin 2t and x,(t) = — 3sin 2t + 4cos 2t.
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12. Solving the first equation for z,, we obtain =, = x;/2 + x,/4. Substitution into
the second equation results in

v/ 242/ /A= —2x, — (x]/2+x,/4)/2.

Rearranging the terms, the single differential equation for z; is

17
$1/I+.CU1/—|—Z£E1=0.

The general solution is
z,(t) = e ?[e,co8 2t + cysin 2t].
With x, given in terms of x, , it follows that
() = e 7% — ¢icos 2t + cysin 2t] .
Imposing the specified initial conditions, we obtain ¢, = — 2 and ¢, = 2. Hence

2, (t) = e %[ — 2c0s 2t + 2sin 2t] and z,(t) = e /*[2c0s 2t + 2sin 2t] .

w2
1_
52 K; J 3
-2
3

13. Solving the first equation for V', we obtain V = L - I’. Substitution into
the second equation results in
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Rearranging the terms, the single differential equation for [ is

LRC-1"+L-I'+R-1=0.

15. Direct substitution results in
(11 (1) + e2za(t)) = pu(t) [ () + coza(t)] + pro(B)[cryn () + coys(t)]
(cryi(t) + e (t)) = pau(D)[erzi (t) + c2ma(t)] + pa(t) [y () + ey (1)) -
Expanding the left-hand-side of the first equation,

iy (t) + exy(t) = ci[pu(t)zi(t) + p()y: (t)] +
+ cy [pu(t)% (t) + p12(t)y2 (t)] .

Repeat with the second equation to show that the system of ODEs is identically satisfied.

16. Based on the hypothesis,

xl/(t) = pll(t)xl(t) + Pty (t) + gi(t)
xz/(t) = pn(t)%(t) + pra(t)ya(t) + gi(t) -

Subtracting the two equations,

() — 25(t) = pu )]z (t) — 2,(0)] + pa(t) [y) (t) — w2 (2)]
Similarly,

yi(t) =y, (8) = pa(®)[z](t) — 25(6)] + P2 (D) [y (£) — , (1))

Hence the difference of the two solutions satisfies the homogeneous ODE.

17. For rectilinear motion in one dimension, Newton's second law can be stated as
E F=mz".

The resisting force exerted by a linear spring is given by Fy; = k¢, in which ¢ is the
displacement of the end of a spring from its equilibrium configuration. Hence, with

0 < z; < x4, the first two springs are in tension, and the last spring is in compression.
The sum of the spring forces on m is

Fl = — klxl — k‘g(flfg — xl) .

S

The total force on m; 1s
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ZFl - — klxl + kQ(IQ - :L‘l) + Fl(t) .

Similarly, the fotal force on my is

ZFQ - — kQ(IQ - :L“l) - k:gxg + FQ(t) .

18(a). Taking a clockwise loop around each of the paths, it is easy to see that voltage
drops are givenby V; — Vo =0,and V5, — V3 =0.

(b). Consider the right node. The current in is given by I + I . The current leaving
the node is — I3. Hence the current passing through the node is (I; + Iz) — ( — I3).
Based on Kirchhoff's first law, Iy + I, + 13 = 0.

(c). In the capacitor,

cv/ =1I.
In the resistor,

Vo=RI,.
In the inductor,

LI;=V;.

(d). Based on part (a), V3 = V5 = V4. Based on part (b),

1
CV{+§V2+13:0.

It follows that

1
cCV = —EVl—Ig and LI, =V].

20. Let Iy, I5, I3, and I, be the current through the resistors, inductor, and capacitor,
respectively. Assign Vi, V5, Vi, and V) as the respective voltage drops. Based on
Kirchhoff's second law, the net voltage drops, around each loop, satisfy

Vi+Va+Vy=0,Vi+Vs+Vo=0and V,—Vo=0.
Applying Kirchhoff's first law to the upper-right node,
Is— (Iy+14) =0.

Likewise, in the remaining nodes,
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L—Iy=0and b+ 1,— 1, =0.
That is,
Vi—-Vo=0,Vi+Vs+Vy=0and Io+ 1, —1I3=0.
Using the current-voltage relations,
Vi=Rih, Vo=Roly, LI; =V3, CV/ =1,

Combining these equations,

v
Ris+ LI, +V,=0and CV,/ =1I5— 54'
2
Now set I3 = I and V; = V', to obtain the system of equations
/ / V
LlI'= —RI—-V and CV' =1— —.
Ry
22(a).
3 gal/min 1 galimin
— -——
qloz*’gal 3 q,02/gal
Eﬁ"‘——\\ S~ (
2 gal/min
O e lp—r 0 L
1 gal/min

Tank 2 ' 2 galimin

Let Q1(t) and Q2(t) be the amount of salt in the respective tanks at time ¢ . Note that
the volume of each tank remains constant. Based on conservation of mass, the rate of
increase of salt, in any given tank, is given by

rate of increase = ratein — rateout.

For Tank 1, the rate of salt flowing into Tank 1 is
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o oz gal Q2 oz [ gal]
Tin = [%gal] [3min] T |:100 gal:| 1min

- Q2 0z

The rate at which salt flow out of Tank 1 is

Tout = {%%} [4g_al} - % 0z

60 gal minl 15 min
Hence
dQ1 Q2
i 20T 00 15
Similarly, for Tank 2,
iQ:_ Q3@
dt 730 100
The process is modeled by the system of equations
Q1 Q>
/
= -4+ —43
@ 15 100 °®
Q1 3Q
, e —
@2= 35 700 %

The initial conditions are @1(0) = QY and Q2(0) = QY.

(b). The equilibrium values are obtain by solving the system

Q1 | @ B
15 T10p T30 =Y
Q1 3Q B
30 100 T2

Its solution leads to Q¥ =54¢, +6¢, and Q¥ =60¢q +40¢,.

(c). The question refers to possible solution of the system

60q, +40¢g, = 50.

It is possible for formally solve the system of equations, but the unique solution gives

s d%:—loz

_7
Q1—6 2w’

gal

which is not physically possible.
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(d). We can write

FE

q> = _9(114‘%
3 QF
4> = _591"' 409

which are the equations of two lines in the ¢, ¢,-plane:

0 : ; 3 y
q1

The intercepts of the first line are QF /54 and QF /6. The intercepts of the second
line are Q% /60 and QF /40. Therefore the system will have a unique solution, in the
first quadrant, as long as QF /54 < Q¥ /60 or Q¥ /40 < Q¥ /6. That is,

E
W _QF 20
9 ~QF = 3
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Section 7.2
2(a).
A_2B:(1+i—% -—L+%—6):( 1—i —7+%)
342—4 2—i+4i — 142 2+3i
(0).
savne (GraL ST (B 0),
(c).

_ ()i 2(—=14+2i) 3(1+4) + (= 1+ 2i)(—2i)
AB_( (B+20i +22—1)  3(3+2)+ (2~ i)~ 2) )

(=345 T+5i
“\ 244 742 )

(d).
BA — (1 +4)i+3(3+ 2i) (—1+2i)i+3(2—1)
T2+ )+ (20034 20) 2(—1+42)+(—2)(2—1)
(84T 4—4i
“\6—4 —4 )
3.
-2 1 2 1 3 =2
AT+BT = | 1 0 —-1]+]2 -1 1
2 -3 1 3 —1 0
-1 4 0
= 3 -1 0
5 —4 1
= (A+B)".
4(b)

(c). By definition, A* = (AT) = (A)".

5.
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-2 10 6 —4
=10 4 10
2 4 6

2(A+B) =2

— O Ot
N DN W
ot

7. Let A = (a;;) and B = (b;;) . The given operations in (a) — (d) are performed
elementwise. That is,

(a). a;; + bLJ = b,] + a;;.
(b) a;; + (bU + Cz‘j) = (aij + sz) + ¢ij.
(C). a(aij +b¢j) = aaij-l-abij.
(d) (Oé + 6) aij = aij + « aij .
In the following, let A = (a;;), B = (b;;)and C = (¢;;) -

(e). Calculating the generic element,
(Bc)z‘j = Z bzk Ckj -
k=1

Therefore

[A(BC)];; = Z Qir (Z by, ij)
r=1 k=1
= Z Zair brk Ckj

r=1 k=1

The last summation is recognized as

n

Z Qi brk = (AB)lk 5

r=1

which is the 7k-th element of the matrix AB.

(f). Likewise,
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[A(B + C)],L-j = air(brj + cxj)
k=1

= @y b + Z Qij; Cij
=1 =1
= (AB)V:J' + (Ac)ij'

8(a). xly =2(—1+4)+2(3i) + (1 —i)(3—1) = 4i.
(b (=14 +22+(3—i)’=12—8i.
Ez)) (XaY):%(—1—i)+2(3i)+(1—i)(3+i):2+2i.

(y,y)=(—14+i)(—1—-4)+22+(3—14)(3+1i) =16.
9. Indeed,
X'y=) zjy;=y'x,
=1
and

(,¥) =Dz =) ya=p Yz = (y.%) .
J=1 j=1 J=1

11. First augment the given matrix by the identity matrix:

wn=(3 38 Y)

Divide the first row by 3, to obtain

1 1
Y
6 2 0 1

Adding — 6 times the first row to the second row results in

1 1
L -3 5 0}
0 4 -2 1

Divide the second row by 4, to obtain

1 1
0 1 -3 1

Finally, adding 1/3 times the second row to the first row results in
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VR
O =
_ O
I o
DO
sl
v

Hence
3 -1\ _ 1/ 2 1
6 2 12\ —6 3)°

13. The augmented matrix is

1 1 -1 1 0 O
2 -1 1 010
1 1 2 0 01

Combining the elements of the first row with the elements of the second and third rows
results in

1 1 -1 1 0 O
0 -3 3 -2 1 0
0 O 3 -1 0 1

Divide the elements of the second row by — 3, and the elements of the third row by 3 .
Now subtracting the new second row from the first row yields

1 1
Lo o0 50
01 -1 5 -3 0
oo 1 -1 o !

Finally, combine the third row with the second row to obtain

1 1
01031—§§
o001 -1 o |

Hence
11—1‘11110
2 -1 1 :§1—11
1 1 2 -1 0 1

15. Elementary row operations yield
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2 10100 1 5035 00
021010]-{01 35 0 4§ 0]
0 0 2 0 0 1 00 1 0 0 %
1 1 1 1 1 1
1o -z 3 -3 0 10 -z 3 -3 0
o1 0o o &+ —-ii)sjo1 o o L -1
00 1 0 0 3 00 1 0 0 3
Finally, combining the first and third rows results in
Loo g -t
o100 5 -1
0010 0 3
16. Elementary row operations yield
1 -1 -1 10 0 1 -1 -1 1 0 0
2 1 0 01 0f|-f[0 3 2 -2 1 0]-
3 -2 1 0 01 0 1 4 -3 0 1
1 1 1 1 3 1
IR P S T T
P S S P I SR TR
00 5 -3 -3 1 00 3 -3 -3 1
Finally, normalizing the /ast row results in
1 00 15 3 35
010 -% -}
001 —3% —5% 1

17. Elementary row operations on the augmented matrix yield the row-reduced form of
the augmented matrix

=
I 3=
= o

0
0
1

o O =
o = O
O ~lw

|

[\

|

—

The left submatrix cannot be converted to the identity matrix. Hence the given matrix is
singular.

18. Elementary row operations on the augmented matrix yield
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1 0 0 -1 1 0 0 O 1 0 0 -1 1 0 0 O
0 -1 1 0 0 1 00 . 0 -1 1 0 01 00 .
-1 0 1 0 0 0 10 0 1 -1 1 0 1 0
0 1 -1 1 0 0 0 1 0 1 -1 1 0 0 0 1
1 0 O -1 1 0 0 0 100 01 101
01 -1 0 0 =1 00 o 01 001011
0 0 1 -1 1 0 1 0 00101111
00 O 1 0 1 01 0001 0101
19. Elementary row operations on the augmented matrix yield
1 -1 2 0 1 0 00 1 -1 2 0 1 0 00
-1 2 -4 2 01 00 . 0 1 -2 2 1 1 00 5
1 0 1 3 0 010 0 1 -1 3 -1 010
-2 2 0 -1 0 0 0 1 0 0 4 -1 2 0 0 1
1 0 O 2 2 1 0 0 1 0 0 2 2 1 0 O
o1 -2 2 1 1 0 0 . 01 0 4 -3 -1 2 0
0 0 1 1 -2 -1 10 0 0 1 1 -2 -1 1 0
0 0 4 -1 2 0 01 0 00 =5 10 4 -4 1
Normalizing the /ast row and combining it with the others results in
1002 2 1 0 0 Looo ¢ F -5 2
0104 -3 -1 2 0 o100 5 ¥ % 2
0011 -2 -11 0 |7loo10 0o 1Lt 1 1
4 ) bl bl
0001 -2 -5 § —3 0001 —2 —4 & _1

20. Suppose that A is nonsingular, and that there exist matrices B and C, such that
AB =1Tand AC = 1. Based on the properties of matrices, it follows that

AB—-C)=AY=0,,,.
Write the difference of the two matrices, Y , in terms of its columns as
Y = [y y?) |y

The j-th column of the product matrix, AY , can be expressed as Ayl . Now since all
columns of the product matrix consist only of zeros, we end up with n homogeneous
systems of linear equations

Ayl =0,.,, j=1,2,---,n.

Since A is nonsingular, each system must have a trivial solution. Thatis,y} =0, ,
forj=1,2,---,n. Hence Y=0,,, and B=C.

21(a).
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et 2et 2
A+ 3B ( 2t et — %

—et 3e7t 2e2
5e~t

Te! b 10e*
—el Tet
8e! 0

)|
)

262t

2

Get 3e~t 9%t
—3e! 6Ge? 3e%
9¢! —3et  —3e

(b). Based on the standard definition of matrix multiplication,

2e% — 2 4 3e3t 1+ 4e 2 — et 3e3t 4 2et — e
AB = 4e? — 1 — 3e3t 2+ 2e % 4 et 6e3t + et + et
—2e? —34+6e3 — 14662 -2t —3e3 + et — 2
(c).
JA el —2e7t 2e2
s = 2¢t — et — 2¢2
—et —3et 4
(d). Note that
el —2et )2
/A(t)dt =1 2 —et —€*/2|4+C.
_et et o2t
Therefore
1 e —2l €22 1 =2 1/2
/A(t)dt 2 —et e |- 2 -1 —1p2
0 —e —3e! e? -1 =3 1
e—1 2—-21 €2/2-1/2
=12-2 1—-e! 1/2—¢€2/2
l—e 3—3e! e? —1
The result can also be written as
L2 gle+1)
e—1f 2 L —1e+1)
-1 % e+1

23. First note that

page 350



CHAPTER 7. ——

x’:(é)et+2<i)(et+tet):(2?1;??).
We also have
(5 2= (0 22)0) (5 22 (e
-Gy (oo

. 2¢et + 2t el
T\ 3et +2tet )

e A U A P 3¢’ + 2t e
3 -2 —1)7  \ 2 +2te' )

24. It is easy to see that

It follows that

-6 0 — 6e !
x' = 8 lel+ 4 e = 8e !+ 4e
4 —4 et — 42

On the other hand,
1 1 1 1 1 6 1 1 1 0
1 —1lx=[2 1 -1 —8let+|2 1 -1 2 e
-1 1 0 —1 1 —4 0 -1 1 -2
-6 0
= 8 et 4+ 4 et
4 —4

26. Differentiation, clementwise, results in

SN =

el —2e72t 33t
U= —4det 2% 6
— el 2e 2 3e¥

On the other hand,
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—2e %
2672t
267215

— 4¢t

— €
36315
663t
36315

672t eSt
o 67225 26315
_ 6—215 83t
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Section 7.3

4. The augmented matrix is

1 2 —11] 0
2 1 1 |0
1 -1 2 | 0

Adding — 2 times the first row to the second row and subtracting the first row from the
third row results in

1 2 —-11]0
0 -3 3 | 0
0 -3 3 | 0

Adding the negative of the second row to the third row results in

1 2 —-11]0
0 -3 3 | 0
0o 0 0 |0

We evidently end up with an equivalent system of equations

$1+2x2_fﬂ320

— Xy + T3 = O .
Since there is no unique solution, let x3 = a/, where « is arbitrary. It follows that
T, = v, and x; = — «. Hence all solutions have the form
—1
X =« 1
1

5. The augmented matrix is

Adding — 3 times the first row to the second row and adding the first row to the last row
yields

O O =
=)

- 0
3 10
1 0

Now add the negative of the second row to the third row to obtain
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We end up with an equivalent linear system

:L’l—xg,:()

Hence the unique solution of the given system of equations is z; = z, = 3 = 0.

7. Write the given vectors as columns of the matrix

2 0 -1
X=|[|11 2
00 O

It is evident that det(X) = 0. Hence the vectors are linearly dependent. In order to find
a linear relationship between them, write x4 e,x 4 ch(3) = 0. The latter
equation is equivalent to

2 0 -1 c 0
11 2 c |l =160
0 0 O 3 0
Performing elementary row operations,
2 0 -1 1] 0 1 0 —-1/2 | 0
11 2 | 0]-(0 1 5/2 | 0
o0 0 | O 0 0 0 | 0
We obtain the system of equations
Ci — 03/2 = 0
¢ +5¢3/2=0.
Setting c; = 2, it follows that ¢, =1 and ¢; = — 5. Hence

xM) — 5x®@ + 2x3) = 0.

9. The matrix containing the given vectors as columns is

12 -1 3
2 3 0 -1
X=1-1 1 2 1
0 -1 2 3

page 354



CHAPTER 7. ——

We find that det(X) = — 70. Hence the given vectors are linearly independent.

10. Write the given vectors as columns of the matrix

1 3 2 4
X = 2 1 -1 3
-2 0 1 -2

The four vectors are necessarily linearly dependent. Hence there are nonzero scalars
such that ¢, x1) 4 ¢,x®@ + ¢,x3) + ¢,x = 0. The latter equation is equivalent to

1 3 2 4 o 8
2 1 -1 3 o= 0
3
2 0 1 2 e 0
Performing elementary row operations,
1 3 2 4 | 0 1 0 01 ] 0
2 1 -1 3 | 0f->10 1 0 1 | O
-2 0 1 -2 |0 001 0| O
We end up with an equivalent linear system
¢ +ec,=0
Cy + Cy = O
C3 = 0.
Let ¢, = — 1. Then ¢; = 1 and ¢, = 1. Therefore we find that

11. The matrix containing the given vectors as columns, X, is of size n x m . Since

n < m, we can augment the matrix with m — n rows of zeros. The resulting matrix, X,
is of size m x m. Since X is square matrix, with at least one row of zeros, it follows
that det ()~() = 0. Hence the column vectors of X are linearly dependent. That is, there

is a nonzero vector, ¢, such that X¢ = 0,1 . If we write only the first n rows of the
latter equation, we have X ¢ = 0,,«; . Therefore the column vectors of X are linearly
dependent.

12. By inspection, we find that

ot
xD() —2x(¢) = ( Oe ) .
Hence 3xW(¢) — 6x)(t) + x®)(t) = 0, and the vectors are linearly dependent.

13. Two vectors are linearly dependent if and only if one is a nonzero scalar multiple
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of the other. However, there is no nonzero scalar, ¢, such that 2 sint = ¢ sint and
sint = 2c sint forall ¢t € (— 0o, 00). Therefore the vectors are linearly independent.

16. The eigenvalues A and eigenvectors x satisfy the equation

3—A -2 T . 0
4 —1-Xx)\z /) \o/)
For a nonzero solution, we must have (3 —A)(—1—\) +8 =0, that is,

A2\ +5=0.

The eigenvalues are A, =1 — 27 and A\, = 1 4+ 24. The components of the eigenvector
xV are solutions of the system

2424 -2 r\ (0
4 —2+2iJ\z,) \0)°
The two equations reduce to (14 4)z; = 2,. Hence x) = (1,1 +i)". Now setting
A= =142, wehave

17. The eigenvalues A and eigenvectors x satisfy the equation

(7 L)) 6)

For a nonzero solution, we must have ( —2 — A\)(—2 — ) — 1 =0, that s,
N 4+4x4+3=0.

The eigenvalues are A, = — 3 and A\, = — 1. For A\, = — 3, the system of equations

becomes
1 1 I . 0
1 1 Ty —\o /)’

which reduces to 2; + x, = 0. A solution vector is given by x) = (1, — 1)".
Substituting A = A\, = — 1, we have

-1 1 x\ (0
1 -1 T - 0/
The equations reduce to z; = x,. Hence a solution vector is given by x? = (1,1)".

19. The eigensystem is obtained from analysis of the equation
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() 6)=6)

For a nonzero solution, the determinant of the coefficient matrix must be zero. That is,
M —4=0.

Hence the eigenvalues are \; = — 2 and A\, = 2. Substituting the first eigenvalue,

A= —2,yields
(5200

The system is equivalent to the equation \/§ x; + x; = 0. A solution vector is given
T
by xV = (1, — \/§> . Substitution of A = 2 results in

—1 /3 (:cl) B <0)
\/§ -3 T 0 ’
T
which reduces to 2, = \/3 z,. A corresponding solution vector is x? = (\/§ , 1) :

20. The eigenvalues A and eigenvectors x satisfy the equation
-3—-X 3/4 i\ _ (0
-5 1—A T BRYA
For a nonzero solution, we must have ( —3 — A)(1 — \) + 15/4 = 0, that is,

A +20+3/4=0.

Hence the eigenvalues are A, = — 3/2 and A, = — 1/2. In order to determine the
eigenvector corresponding to A, , set A = — 3/2. The system of equations becomes

—3/2 3/4\[(x\ (0
5 5/2)\ 4 0)’
which reduces to — 2z, + 2, = 0. A solution vector is given by xV = (1,2)".
Substitution of A = A\, = — 1/2 results in

—5/2 3/4\ (=) (0
-5 3/2)\x/) \0)’
which reduces to 102; = 3z, . A corresponding solution vector is x? = (3,10)".

22. The eigensystem is obtained from analysis of the equation
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3—A 2 2 T 0
1 4—-A 1 | =10
-2 -4 —-1-A T3 0

The characteristic equation of the coefficient matrix is A3 — 6\ + 11\ — 6 = 0, with
roots \y =1, A\, =2 and A\; = 3. Setting A =\, = 1, we have

2 2 2 T 0
1 3 1 Tz | =10
-2 -4 =2 T3 0

This system is reduces to the equations
T, +x3;=0
Ty = 0.
A corresponding solution vector is given by x) = (1,0, — 1)". Setting A = \, = 2,
the reduced system of equations is
T, + 2 Ty = 0

A corresponding solution vector is given by x® = ( —2,1,0)". Finally, setting
A = A3 = 3, the reduced system of equations is
T = O

xg_f—xg:

s

A corresponding solution vector is given by x® = (0,1, —1)".

23. For computational purposes, note that if A is an eigenvalue of B, then c A is an
eigenvalue of the matrix A = ¢ B . Eigenvectors are unaffected, since they are only
determined up to a scalar multiple. So with

1 -2 8
B=| -2 2 10|,
8 10 5
the associated characteristic equation is p® — 18u% — 81 + 1458 = 0, with
roots u;, = — 9, u, = 9 and pz; = 18. Hence the eigenvalues of the given matrix, A,
are A\, = —1,X, =1 and \; =2. Setting A = A\, = — 1, (which corresponds to
using p; = — 9 in the modified problem) the reduced system of equations is
2 T + T3 = 0
Ty + x5 =0.

A corresponding solution vector is given by xV) = (1,2, —2)". Setting A = \, = 1,
the reduced system of equations is
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562_21/'3:0.

A corresponding solution vector is given by x? = (2, —2, — 1)". Finally, setting
A = X\, = 1, the reduced system of equations is

Il_x:;:o
2x2—x3:0.

A corresponding solution vector is given by x® = (2,1,2)".

25. Suppose that Ax = 0, but that x # 0. Let A = (a;;). Using elementary row
operations, it is possible to transform the matrix into one that is not upper triangular.
If it were upper triangular, backsubstitution would imply that x = 0. Hence a linear

combination of all the rows results in a row containing only zeros. That is, there are
n scalars, (3;, one for each row and not all zero, such that for each for column 7,

Zﬁiazj:o-

1=1

Now consider A* = (b;;). By definition, b;; = @j; , or a;; = bj; . It follows that
for each j,

ﬁ’bb_jl: Z b]_kﬁ]g = Z bjk@ZO.
i=1 k=1 k=1
Lety = (E, By, -+, E)T We therefore have nonzero vector, y, such that A*y = 0.

26. By definition,

I
e
5
<

Now note that
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Therefore

28. By linearity,

AV 4+ af) = Ax" + a A
—b+0
=b.

29. Let ¢;; = aj; . By the hypothesis, there is a nonzero vector, y , such that
n n
Z cz-jyj = Z a_ﬂyj = 0, = 1,2,"',7‘!,.
j=1 j=1
Taking the conjugate of both sides, and interchanging the indices, we have
n
Z az-j E =0.
i=1

This implies that a linear combination of each row of A is equal to zero. Now consider
the augmented matrix [A |b]. Replace the /ast row by

Zn: E[ailaa"ﬂa'”?ainabi] = [0707"'7072”: Ebzl

i=1 =1

We find that if (b,y) = 0, then the last row of the augmented matrix contains only zeros.
Hence there are n — 1 remaining equations. We can now set x,, = o/, some parameter,
and solve for the other variables in terms of « . Therefore the system of equations

Ax = b has a solution.

30. If A = 0 is an eigenvalue of A, then there is a nonzero vector, x, such that

Ax =)Ax=0.

That is, Ax = 0 has a nonzero solution. This implies that the mapping defined by A is
not I-to-1, and hence not invertible. On the other hand, if A is singular, then

det(A) = 0.

Thus, Ax = 0 has a nonzero solution. The latter equation can be written as Ax = 0x.

31. Asshown in Prob. 26, (Ax,y) = (x,A"y). By definition of a Hermitian matrix,
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A=A"
32(a). Based on Prob. 31, (Ax,x) = (x,AX).

(b). Let x be an eigenvector corresponding to an eigenvalue A . It then follows that
(Ax,x) = (Ax,x) and (x, Ax) = (x, Ax) . Based on the properties of the inner product,
(Ax,x) = A(x,x) and (x, Ax) = A(x,x). Then from Part (a),

A(x,X) = A(x,X).

(c). From Part (b),
(A=) (x,x)=0.

Based on the definition of an eigenvector, (x,x) = ||x||*> > 0. Hence we must have
A — A = 0, which implies that X is real.

33. From Prob. 31,

Hence
M\ (X(l) ’X(2)) — )\_2(X(1) ,x(Q)) =\ (X(l) 7X(2)) ’
since the eigenvalues are real. Therefore
(A — Ag)(x(l) ,X(Q)) =0.

Given that A\; # Ay, we must have (x(l) ,X(Q)) =0.
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Section 7.4

3. Eq. (14) states that the Wronskian satisfies the first order linear ODE

aw

ﬁ = (pn + P+ - +pnn)W-

The general solution is
W(t) = Cemp[/(pn + P+ +pnn)dt:| >

in which C' is an arbitrary constant. Let X; and X, be matrices representing two sets
of fundamental solutions. It follows that

det(X;) = Wy(t) = Crexp U(pn + po e+ pnn)dt:|
det(XQ) = WZ(t) - 02€$P |:/(p11 + D22 + -+ pnn)dt:| .

Hence det(X;)/det(X2) = C1/Cy. Note that Cy # 0.

4. First note that p;; + p» = — p(t). As shown in Prob. (3),
Wx® ,x®)] = ¢ e/,

For second order linear ODE, the Wronskian (as defined in Chap. 3) satisfies the first
order differential equation W' + p(t)IW = 0. It follows that

W[y(l) ,y(2)] — ¢y e JP®L,
Alternatively, based on the hypothesis,

1
y( ) = Q1 Ty + Qi o

y(2) = Q91 T11 + Qg2 Tyo .
Direct calculation shows that

Qq T+ Qia T Qg Tip + Qg Typ
/ / !/ !/
A&y + Qua®yy Qg Ty + Qg Ty

Wy, y®) =

!/ !/
= (04110522 - 04120421>~’L’1151712 - (04110422 - 04120421)551251711
= (04110422 - 04120421)%1%2 - (04110422 - 04120421)%21'21«

Here we used the fact that =/ = z,. Hence

W [y(l) 7y(2):| = (10 — a0 )W [X(l) 7X(2)} .

5. The particular solution satisfies the ODE [x(p)], =P(t)x?) + g(t). Now let
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X = ¢(t) be any solution of the homogeneous equation. Thatis, x’ = P(¢)x . We know
that x = x°, in which x¢ is a linear combination of some fundamental solution. By
linearity of the differential equation, it follows that x = x(*) 4+ x“ is a solution of the
ODE. Based on the uniqueness theorem, all solutions must have this form.

7(a). By definition,

t2 et

WO X0 =1

= (* —2t)e".

(b). The Wronskian vanishes at t, = 0 and ¢, = 2. Hence the vectors are linearly
independent on D = ( —00,0) U (0,2) U (2,00).

(c). Tt follows from Theorem 7.4.3 that one or more of the coefficients of the ODE
must be discontinuous at £, = 0 and ¢, = 2. If not, the Wronskian would not vanish.

(d). Let
t? e
=)+ (0)
Then
r 2t el
X = 9 + ¢ o
On the other hand,

D1 D2 X =¢ D1 Di2 t? + e D1 D2 ef
Da1 D2 Da1 D2 2t Po1 P2 et
_ (Cl [p11t2 + 2p12t] + co [pll + pl?]et)
C1 [p21t2 + 2p22t] + co [p21 + p22]€t

Comparing coefficients, we find that

p11t2 + 2pot = 2t

pu+pe=1
]321752 + 2ppt = 2
P+ P = 1.

Solution of this system of equations results in

2 — 2t 2 -2

pn(t) =0 7p12(t) =1 7p21(t) = m 7p22(t) =

Hence the vectors are solutions of the ODE
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oo L 0 t2—2tx
22t \2—-2t t2-2

8. Suppose that the solutions xV, x? ... x are linearly dependent att = t,. Then
there are constants ¢, , ¢,, - -+, ¢, (not all zero) such that

arxV(ty) + e X (tg) + -+ + ¢, X" (t) = 0.

Now let z(t) = ¢;xV(t) + ¢, xXP(t) + -+ + ¢,, X" (t) . Then clearly, z(t) is a
solution of x’ = P(¢)x, with z(t,) = 0. Furthermore, y(¢) = 0 is also a solution,
with y(t,) = 0. By the uniqueness theorem, z(t) = y(t) = 0. Hence

ex(8) + ¢ XD () + -+ 0 X () = 0

on the entire interval « < ¢t < (3. Going in the other direction is trivial.

9(a). Let y(t) be any solution of x’ = P(¢)x. It follows that
2(t) + y(t) = exV(t) + c XV () + -+ + e, X" (2) + ¥(2)
is also a solution. Now let ¢, € (v, 3). Then the collection of vectors
xV (to), x? (to), -+, x(™ (to), y(to)

constitutes n + 1 vectors, each with n components. Based on the assertion in Prob. 11,
Section 7.3, these vectors are necessarily linearly dependent. That is, there are n + 1
constants b, , by, -+, b,, b, (not all zero) such that

bixV (o) + by X (tg) 4 +++ + by X" (t) + by ¥(t) = 0.
From Prob. 8, we have
DX (t) + by X2 () 4+ + b, X" () + by y(t) = 0

forallt € (a,3). Now b,,; # 0, otherwise that would contradict the fact that the
first n vectors are linearly independent. Hence

1
y(t) = — (bxV(t) + by xP(t) + -+ + b, x" (1)),

bn+1

and the assertion is true.

(b). Consider z(t) = ¢,xV(t) + ¢ xX?(¢) + -+ + ¢, x"(¢), and suppose that we also
have

2(t) = kyxW(t) + ky x@(t) + -+ k, x(t).

Based on the assumption,
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(kl - Cl)X<1)(t) + (kg - CQ)X<2)(t) + A + (kn, - C,I)X(n’)(t) = 0 .
The collection of vectors
X<1) (t)v X(Q) (t)a T X(n>(t)

is linearly independent on o < t < (3. It follows that k; —c¢; =0,for : =1,2,---,n.
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Section 7.5

2. Setting x = £ e, and substituting into the ODE, we obtain the algebraic equations

1—r -2 SRNAL
3 - 4 - T 52 - 0 '
For a nonzero solution, we must have det(A — r1) = r> + 3r +2 = 0. The roots of the
characteristic equation are r, = — 1 and r, = — 2. For r = — 1, the two equations
reduce to & = &, . The corresponding eigenvector is £ = (1,1)". Substitution of

r = — 2 results in the single equation 3¢, = 2&,. A corresponding eigenvector is
£€® = (2,3)". Since the eigenvalues are distinct, the general solution is

e e
cat

a2 S ICNCCCNEN

e
g e g o g

3. Setting x = £ "’ results in the algebraic equations

(57 S5 )E) =)

For a nonzero solution, we must have det(A — 1) = r?> — 1 = 0. The roots of the

characteristic equation are 7, =1 and r, = — 1. For r = 1, the system of equations
reduces to & = &,. The corresponding eigenvector is £V = (1,1)". Substitution of
r = — 1 results in the single equation 3&;, = &, . A corresponding eigenvector is

£€? = (1,3)". Since the eigenvalues are distinct, the general solution is

1Y\ 1\
X20116—|—0236.
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R T T, N

The system has an unstable eigendirection along £€" = (1,1)". Unless ¢; = 0, all
solutions will diverge.

4. Solution of the ODE requires analysis of the algebraic equations

(7 —a)(@) =)

For a nonzero solution, we must have det(A — r1) = 72 + 7 — 6 = 0. The roots of the

characteristic equation are r;, = 2 and 7, = — 3. For r = 2, the system of equations
reduces to & = &,. The corresponding eigenvector is £ = (1,1)". Substitution of
r = — 3 results in the single equation 4&, + & = 0. A corresponding eigenvector is

£? = (1, —4)". Since the eigenvalues are distinct, the general solution is

1 1
X = 61(1)62t+02( _4)€3t.

R L R "
L AL Ny T
\ N s
] e e
™ e S
P
| 7
A NN AN /)
o PRNax
Ll 4 IR
£ Iy ! {
L F
Py
b P
Z
s 1
|

The system has an unstable eigendirection along £V = (1,1)". Unless ¢, = 0, all
solutions will diverge.

8. Setting x = £ e results in the algebraic equations
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(0 =) (@)= 6)

For a nonzero solution, we must have det(A — r1) = 7?2 —r = 0. The roots of the
characteristic equation are r;, = 1 and 7, = 0. With » = 1, the system of equations
reduces to & + 3¢, = 0. The corresponding eigenvector is £V = (3, — 1)". For the
case r = (, the system is equivalent to the equation &, 4+ 2&, = 0. An eigenvector is
£? = (2, —1)". Since the eigenvalues are distinct, the general solution is

T T T T T T T T T T T T
e M e Tl M
e e e e e T
T T A T T T e T T T e,
“‘H-;"‘-\—\..“——.“"-\—\..“‘H—_“'H—;“H‘H-."‘-\—Y

e T e e e

i e e e R
e e T e e e e
T e T T P e T Py
R = e S S
-‘:E“-:"%_ T T T
H HHH?!HHW
o Wt P,

L S S S =,
e e e
e T L

L L S S S Sl
— . o, U L
T R T T T T T T T T T T T T T

e i L, i e e e e e e
L L WU S S S S L

The entire line along the eigendirection £® = (2, — 1)" consists of equilibrium points.
All other solutions diverge. The direction field changes across the line z; 4+ 2z, = 0.
Eliminating the exponential terms in the solution, the trajectories are given by

x1+3x2: — Cy.

10. The characteristic equation is given by

2 —T 2 + Z 2 . .
1 iy =r"—(1—-i)r—i=0.
The equation has complex roots r, = 1 and r, = — i. For r = 1, the components of the
solution vector must satisfy &, + (2 +7)§, = 0. Thus the corresponding eigenvector is
€Y = (2414, —1)". Substitution of 7 = — i results in the single equation ¢, + &, = 0.

A corresponding eigenvector is £® = (1, — 1)". Since the eigenvalues are distinct, the
general solution is
2+1 1 4
x:cl( _1)€t—|—62< _1)6 @,

11. Setting x = £ € results in the algebraic equations
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1—r 1 2 & 0
1 2—r 1 L1 =10
2 1 1—r & 0
For a nonzero solution, we must have det(A — r1) = r® — 4r> —r + 4 = 0. The roots
of the characteristic equation are », =4,r, =1 and r; = — 1. Setting r =4, we
have
-3 1 2 & 0
1 -2 1 L1 =10
2 1 -3 & 0

This system is reduces to the equations
§i—&=0
§&—&=0.

A corresponding solution vector is given by €V = (1,1,1)". Setting A =1,
the reduced system of equations is

§i—&=0
§+28=0.
A corresponding solution vector is given by £ = (1, —2,1)". Finally, setting
A = — 1, the reduced system of equations is
§i+&=0
52 - 0 .

A corresponding solution vector is given by £€® = (1,0, — 1)". Since the eigenvalues
are distinct, the general solution is

1 1 1
x=c |1 ]|et4+e| —2 | +e 0 et
1 1 -1

12. The eigensystem is obtained from analysis of the equation

3—r 2 4 £, 0
2 - T 2 52 = 0
4 2 3-r)\& 0

The characteristic equation of the coefficient matrix is 73 — 672 — 15r — 8 = 0, with
roots 1, =8,7, = — 1 and r; = — 1. Setting » = r, = 8, we have
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-5 2 4 & 0
4 2 =5/ \g 0

This system is reduced to the equations

§i—&=0
26, —-&=0.
A corresponding solution vector is given by £ = (2,1,2)". Setting » = — 1, the

system of equations is reduced to the single equation
26 +&6&+25=0.
Two independent solutions are obtained as
€P = (1, -2,0)" and €% = (0, —2,1)".

Hence the general solution is

2 1 0
x=c, | 1]|e¥4ec| —2|et4+e| —2 |
2 0 1

13. Setting x = £ € results in the algebraic equations

1—7r 1 1 & 0
2 1—7r —1 &1 =10
-8 -5 =3-r & 0
For a nonzero solution, we must have det(A — r1) = 73 + 72 — 4r — 4 = 0. The roots
of the characteristic equation are 7, = 2,r, = — 2 and r; = — 1. Setting r = 2, we
have
—1 1 1 & 0
-8 -5 =5 &; 0

This system is reduces to the equations

& =0
&+&=0.
A corresponding solution vector is given by £V = (0,1, — 1)". Setting A = — 1,
the reduced system of equations is
2 fl +3 53 =0
§&—286=0.
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A corresponding solution vector is given by £® = (3, —4, —2)". Finally, setting

A = — 2, the reduced system of equations is
76 +46 =0
7€ —58=0.

A corresponding solution vector is given by £€®) = (4, — 5, — 7)". Since the
eigenvalues are distinct, the general solution is

0 3 4
x=c, | 1 |e¥+¢c| —4|et+e| =5 |e?.
1 9 7

15. Setting x = £ " results in the algebraic equations

(75" (@)= ()

For a nonzero solution, we must have det(A — r1) = 72 — 6r + 8 = 0. The roots of
the characteristic equation are r, = 4 and r, = 2. With r = 4, the system of equations
reduces to & — & = 0. The corresponding eigenvector is £ = (1,1)". For the

case r = 2, the system is equivalent to the equation 3¢, — & = 0. An eigenvector is
£€® = (1,3)". Since the eigenvalues are distinct, the general solution is

1 1
X = 61(1>64t+62<3)62t.

Invoking the initial conditions, we obtain the system of equations

c; + ¢y =2
c+3c,= —1.
Hence ¢, = 7/2 and ¢, = — 3/2, and the solution of the IVP is

(1 4y 3(1) 4
X"2(1>6 2(3)8'

17. Setting x = £ " results in the algebraic equations

1—r 1 2 £ 0
0 2—r 2 “l=1o

For a nonzero solution, we must have det(A — r1) = r3 — 67> + 11r — 6 = 0. The
roots of the characteristic equation are r, = 1,7, =2 and r; = 3. Setting r =1,
we have
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0 1 2 & 0
0 1 2 &L =10
-1 1 2 & 0
This system is reduces to the equations
§& =0
52 + 2 53 — 0 .

A corresponding solution vector is given by £ = (0, —2,1)". Setting A = 2, the
reduced system of equations is
§i—& =0
53 == O .

A corresponding solution vector is given by £® = (1,1,0)". Finally, upon setting
A = 3, the reduced system of equations is

51_‘253::0
52'— 255:: 0.

A corresponding solution vector is given by €@ = (2,2,1)". Since the eigenvalues
are distinct, the general solution is

0 1 2
x=c,| =2 |el+e| 1] +e)| 2|
1 0 1

Invoking the initial conditions, the coefficients must satisfy the equations

CQ+203:2
—201+CQ+2C3:0
Cl+C3:1.

It follows that ¢, = 1, ¢, = 2 and ¢; = 0. Hence the solution of the IVP is

0 1
x= | —2 e +2| 1]
1 0

18. The eigensystem is obtained from analysis of the equation

- T 0 -1 51 0
2 - T 0 52 = 0
-1 2 4 —r 53 0

The characteristic equation of the coefficient matrix is 7> — 47> —r +4 = 0, with
roots r;, = —1,r, =1 and r; = 4. Setting r =r, = — 1, we have
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-1 0 -1\/& 0
-1 2 3 & 0

This system is reduced to the equations

51—53:0
£2+253:0-

A corresponding solution vector is given by £V = (1, —2,1)". Setting r = 1, the
system reduces to the equations

51“‘5320
£2+253:0-

The corresponding eigenvector is £2 = (1,2, — 1)". Finally, upon setting r = 4,
the system is equivalent to the equations

46 +&=0
88 + 53 =0.
The corresponding eigenvector is £€® = (2,1, — 8)". Hence the general solution is
1 1 2
x=c | =2 let+el| 2 |e+e| 1 |t
1 -1 -8

Invoking the initial conditions,

Cl+C2+203:7
—201+202+03:5
01_02_863:5.

It follows that ¢, = 3, ¢, = 6 and ¢; = — 1. Hence the solution of the IVP is
1 1 2
x=3 -2 ]et+6[ 2 |- 1 |e"
1 -1 -8

19. Set x = £t". Substitution into the system of differential equations results in
t-rt" '€ = A€,

which upon simplification yields is, A& — r€ = 0. Hence the vector £ and constant r
must satisfy (A —r1)€ = 0.

21. Setting x = £ t" results in the algebraic equations
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(75" 2)(e) =)

For a nonzero solution, we must have det(A — r1) = r? — 6r + 8 = 0. The roots of
the characteristic equation are r;, = 4 and r, = 2. With r = 4, the system of equations
reduces to & — & = 0. The corresponding eigenvector is £ = (1,1)". For the

case r = 2, the system is equivalent to the equation 3¢, — & = 0. An eigenvector is
£€® = (1,3)". It follows that

1 1
W= {7 )t"and x? = { _ |¢*.
W= (1) anaxe = ()

The Wronskian of this solution set is W [x, x?] = 2¢%. Thus the solutions are linearly
independent for ¢ > 0. Hence the general solution is

1 1
X = 01(1)t4+62<3)t2.

22. As shown in Prob. 19, solution of the ODE requires analysis of the equations

(5 S0 )E) =)

For a nonzero solution, we must have det(A — r1) = r? + 2r = 0. The roots of the

characteristic equation are , = 0 and r, = — 2. For r = 0, the system of equations
reduces to 4&, = 3&,. The corresponding eigenvector is £ = (3,4)". Setting
r = — 2 results in the single equation 2¢&, — & = 0. A corresponding eigenvector is

€% = (1,2)". It follows that

3 1
xV = (4) and x? = (2)t2.

The Wronskian of this solution set is W [x!), x®] = 2¢72. These solutions are
linearly independent for £ > 0. Hence the general solution is

3 1\,
X=C 4 "‘CQ 2 t .

23. Setting x = £ t" results in the algebraic equations

(2 L2 )E)-(6)

For a nonzero solution, we must have det(A — r1) = r> —r — 2 = 0. The roots of
the characteristic equation are r, = 2 and r, = — 1. Setting r = 2, the system of
equations reduces to & — 2&, = 0. The corresponding eigenvector is £ = (2,1)".
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With » = — 1, the system is equivalent to the equation 2, — & = 0. An eigenvector
is £€® = (1,2)". It follows that

2 1
xV = (1)752 and x? = (2>t1.

The Wronskian of this solution set is W[x", x®] = 3¢. Thus the solutions are linearly
independent for ¢ > 0. Hence the general solution is

2 1
X = Cl(1>t2 +CQ(2)t_1.

24(a). The general solution is
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O 05040608 1 12141618 2 22242628 3
1

26(a). The general solution is

110 12 14
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10

1804
1604
1404
1207
100
804
B0
404
204

0702 04 0B 08 1 12 14 15 18 2

28(a). We note that (A — r,1)é® =0, for i = 1,2.
(b). Tt follows that (A — r,1)éW) = A& — 7€) = £0) — p ()

(¢). Suppose that £) and ¢ are linearly dependent. Then there exist constants ¢,
and ¢, , not both zero, such that clf(l) + 025(2) = 0. Assume that ¢, # 0. Itis clear
that (A — r.I) (€W + ¢, €?) = 0. On the other hand,

(A = 70) (&Y + ¢, €¥) = ci(r — 1)€Y + 0
= ¢ (r —r)gl.

Since 7, # 15, we must have ¢, = 0, which leads to a contradiction.

(d). Note that (A — r1)€®) = (r, —r)€@.
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(e). Letn = 3, with r; # 7, # r5. Suppose that £V, €@ and £®) are indeed linearly
dependent. Then there exist constants ¢, , ¢, and c3, not all zero, such that

€Y + 6 + " = 0.

Assume that ¢; # 0. Itis clear that (A — 7,1) (015(1) + @ 4+ 035(3)) =10. Onthe
other hand,

(A = D) (€Y + 6, €% + c€W) = (= ;)€Y + ey(ry — 1)€Y,

It follows that ¢, (r; — 1)€Y + ¢;(ry — 7,)€®) = 0. Based on the result of Part (a),
which is actually not dependent on the value of n, the vectors €Vand £€®) are linearly
independent. Hence we must have ¢, (r, — ry) = ¢3(rs — r,) = 0, which leads to

a contradiction.

29(a). Letx, =y and z, = y'. It follows that =] = z, and

‘IQI y/l
1( b ,)
= — —(cy+ .
Yy Yy

In terms of the new variables, we obtain the system of two first order ODEs
!/
:L‘l = X9

1
T, = — E(C$1+b$2)~

(b). The coefficient matrix is given by

()
A - ¢ N Q .
Setting x = & " results in the algebraic equations
—r 1 &\ (0
- )e) =)
For a nonzero solution, we must have
b
det(A —rI) =r* 4+ —r + £oo.
a a
Multiplying both sides of the equation by a, we obtain ar? +br +c¢ = 0.
30. Solution of the ODE requires analysis of the algebraic equations
1—r 1 SANENAL
4 —2—-rJ\&)  \o)°

For a nonzero solution, we must have det(A — rI) = 0. The characteristic equation is
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8072 +247r+1 =0, withroots 7, = —1/4 and 7, = — 1/20. With r = —1/4,
the system of equations reduces to 2&, + & = 0. The corresponding eigenvector is
€V = (1, —2)". Substitution of » = — 1/20 results in the equation 2¢, — 3& = 0.

A corresponding eigenvector is £® = (3,2)". Since the eigenvalues are distinct, the

general solution is
1 N 3\ _
x:cl( _2>e t/4+c2(2)e t/20

Invoking the initial conditions, we obtain the system of equations

G +3c=—17
_261+262: —21.

Hence ¢, =29/8 and ¢, = — 55/8, and the solution of the IVP is

X_s(—2>e 8(2)6 '

ul & %2

& koo
et

'
]
1

-124
-144
-164
181
-207

(c). Both functions are monotone increasing. It is easy to show that — 0.5 < z,(¢) < 0
and — 0.5 < xz,(t) < 0 provided that t > T' ~ 74.39.

31(a). For @ = 1/2, solution of the ODE requires that

—1—r -1 SRNAL

—1/2 —-1-r)\&) \o)
The characteristic equation is 27° + 47+ 1 =0, withroots r, = — 1+ 1/ \/5 and
rp=—1-1/ \/5 . With r= —14+1/ \/5 , the system of equations reduces to

T
V/2& +2& = 0. The corresponding eigenvector is £1) = < /2, 1) . Substitution
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of r=—1- 1/\/5 results in the equation \/551 —2& = 0. An eigenvector is
T
£® = (\/5 , 1) . The general solution is

( V2 )<f>/(f )ewﬁw

1 1
The eigenvalues are distinct and both negative. The equilibrium point is a stable node.

(b). For o = 2, the characteristic equation is given by 72 + 27 — 1 = 0, with roots
r=—1+ ﬁand ry= —1-— \/5 With r = — 1+ ﬁ,thesystemofequations
reduces to \/551 + &, = 0. The corresponding eigenvector is £V = (1 . — \/i)T
Substitutionof r = — 1 — \/5 results in the equation \/551 — & = 0. An eigenvector
is €% = (1 , \/§)T The general solution is

e L) e )

The eigenvalues are of opposite sign, hence the equilibrium point is a saddle point.
32. The system of differential equations is

A= D)6

Solution of the system requires analysis of the eigenvalue problem

)OO

A AL
The characteristic equation is 72 + 37 + 2, withroots r, = — 1 and r, = — 2. With
r = — 1, the equations reduce to &, — & = 0. A corresponding eigenvector is given

by €W = (1,1)". Setting r = — 2, the system reduces to the equation 3¢, — & = 0.
An eigenvector is £€® = (1,3)". Hence the general solution is

()=o)

(b). The eigenvalues are distinct and both negative. We find that the equilibrium point
(0,0) is a stable node. Hence all solutions converge to (0,0).

NG ENIE

33(a). Solution of the ODE requires analysis of the algebraic equations
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0
0)

=0.

(— _

1
T (51)
1
—om ") \&
The characteristic equation is

T2+ L+CR1R2 T+R1+R2
LCRQ LCRQ

The eigenvectors are real and distinct, provided that the discriminant is positive.
That is,

L 2
+CR1R2 _ 4 Ry + Ry >0,
LCR, LCR;

which simplifies to the condition
1 R\ 4
—— ) —— >0.
(C’ Ry, L ) LC

(b). The parameters in the ODE are all positive. Observe that the sum of the roots is

L+ CRRy
T T ILCR, <0.

=

Also, the product of the roots is

Ry + Ry

7LC’R2 > 0.

It follows that both roots are negative. Hence the equilibrium solution I =0,V =0
represents a stable node, which attracts a// solutions.

(c). If the condition in Part (a) is not satisfied, that is,
2
RV 4
CRy, L LC —
then the real part of the eigenvalues is

L+ CRiR,
Re(r,) = — W

As long as the parameters are all positive, then the solutions will still converge to the
equilibrium point (0, 0).
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Section 7.6

2. Setting x = £ €' results in the algebraic equations

(7 8)E)=6)

For a nonzero solution, we require that det(A — 7 1) = r> + 2r +5 = 0. The roots of
the characteristic equation are » = — 1+ 2¢. Substituting » = — 1 — 27, the two
equations reduce to & + 2i &, = 0. The two eigenvectors are £V = ( —2i,1)" and
€ = (2i,1)". Hence one of the complex-valued solutions is given by

x = ( B Qi)e(1+2i)t
1

9
= ( . Z)e_t(co,SQt—isinZt)

T 2s1n 2t viet( T 2cos2t
N cos 2t —sin2t )
Based on the real and imaginary parts of this solution, the general solution is

x— ot —2sin2t feet 2cos 2t
- cos 2t ? sin2t )

ﬂf—‘f'f'f'/,-)/—',-"/

3. Solution of the ODE:s is based on the analysis of the algebraic equations

2—r -5 51 . 0
(7 2)(@)-6)
For a nonzero solution, we require that det(A — 7 1) = 72 + 1 = 0. The roots of the
characteristic equation are » = =+i. Setting r = 7, the equations are equivalent to
& — (2+14)& = 0. The eigenvectors are €V = (2 +4,1)" and £€? = (2 —4,1)".
Hence one of the complex-valued solutions is given by
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91
:( i_z>(cost+isint)

2cost — sint [ cost+2sint
= +1 . .
cost sint

Therefore the general solution is

2cost — sint cost+ 2sint
X=¢ + ¢ . .
cost sint

The solution may also be written as
< dcost n dsint
=c c :
"\ 2cost+ sint *\ —cost+ 2sint

T e e e e e e e e e
e e e e e e e e e e e e T e e e e e e
e e e B
e e e e e e e e e e e e e e e
e e e e e e B e

e g e e e e e
T e e i e e e [ T
L g
g e e
0 -

T e
R ey
A

P e e e T T T T
e e e e e e e e e e e e e ™
e e e R T
T e e R
e e e L T R T T
e e e e e e e R T T e T e

4. Setting x = £ " results in the algebraic equations

2 — T — 5/2 51 . 0

9/5 —1—-r)\&) \0)°
For a nonzero solution, we require that det(A — 1) = r2 — r + % = (. The roots of
the characteristic equation are » = (1 £3¢)/2. With » = (1 + 34)/2, the equations

reduce to the single equation (3 — 37)&;, —5&, = 0. The corresponding eigenvector is
given by €V = (5,3 — 34)" . Hence one of the complex-valued solutions is
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5 .
n _ (1+43i)t/2
¥ (3 - Bi) ‘

241 3 3
:( Tz)et/2<cos§t+isin§t)

3¢ _ aim 3 3 iy 3
:et/2<20032t stt)—I—iet/2<6082t+28m2t>.

3 iy 3
cos 2t sim 2t

The general solution is

2cos 3t — sin 3t cos 3t + 2 sin 3t
chlet/Q 2 ; 2 +c2et/2 2 ] 2" )
cos §t sin it

The solution may also be written as
5cos 3t 5 sin 3t
x=clet/2 . 2" , +626t/2 . 2" .
3cos 5t + 3sin 5t — 3cos 5t + 3sin 5t

i T T T e
T T T

T T T T T T T
T T T T T T T T
T T T T T T T T T
T T T T T T T

5. Setting x = £ ¢" results in the algebraic equations

1-— T -1 51 . 0
(5" 5= 6)
The characteristic equation is 72 + 27 + 2 = 0, with roots 7 = — 1 4. Substituting
r = — 1 — i reduces the system of equations to (2 4 )&, — & = 0. The eigenvectors
are £V = (1,2+i)" and £€® = (1,2 —4)". Hence one of the complex-valued
solutions is given by
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xV — 1 o (L+i)t
241

> e '(cost —isint)

I
N
—

2+1

. cost et — sint
=e ie .
2cost+ sint cost — 2sint

The general solution is

ot cost feet sint
! 2cost+ sint ? —cost+ 2sint )’

P T e e e e e
[ S S S S S

o ih S SN, S
Rl i S

T T T T T e e

—

e e e o]

'

e et e
o
B

e e e
e e e .
B e e e P "

6. Solution of the ODE:s is based on the analysis of the algebraic equations

(5 -)(@)=6)

For a nonzero solution, we require that det(A — rI) = r> +9 = 0. The roots of the
characteristic equation are » = £ 34. Setting r = 3¢, the two equations reduce to

(1 —3i)& +2& = 0. The corresponding eigenvector is £ = ( — 2,1 — 3i)". Hence
one of the complex-valued solutions is given by

—9 ,
n _ 34t
¥ (1—3z’)€

(2 (cos 3t + i sin 3t)
= 1—3 CcOS 181N

B — 2cos 3t nw —2sin 3t
~ \cos3t+ 3sin3t ¢ —3cos3t+ sin3t )’

The general solution is
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— 2cos 3t n 2sin 3t
X=c¢ c .
! cos 3t + 3 sin 3t >\ 3cos 3t — sin 3t
F 77 7 7 e B N N S N N Y Y
F g T T
Fh 7 T T T
{ Iy 24 g e ey Ty
1= NN
(AN
10 ' AN W

QE%EE&QEE ) t H

LN

OO R RN T /i /

R N VA

R L L L N SN O B |
NN N e S S ]

8. The eigensystem is obtained from analysis of the equation

—3-r 0 2\ /& 0
1 —1-—r 0 52 = 0
-2 -1 - & 0

The characteristic equation of the coefficient matrix is r* + 472 + 7r + 6 = 0, with
roots r; = — 2,1y = —1—\/51' and 7y = —1—1—\/52'. Setting r = — 2, the
equations reduce to
—&6+26=0
& +&=0.

The corresponding eigenvector is £ = (2, —2,1)". With r = —1— /2 i, the

system of equations is equivalent to

(2-iv2)e —26 =0
& +iV26=0.

T
An eigenvector is given by £@ = < —iv/2,1,—1— zﬁ) . Hence one of the

complex-valued solutions is given by
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—iv?2 ef<1+i\/§>it

1 e_t<cos ﬁt—isin \/gt)
—1-iV/?2

— /2 sin /2t — /2 cos /2t
=e! cos /2t +ie”! — sin+/2t
—cos\/2t — /2 sin /2t — V2 cos /2t — sin+/2t

The other complex-valued solution is x®®) = £@ ¢3!, The general solution is

2
X=c¢| —2 e 24
1

ﬁsinﬁt ﬁcosﬁt

+ e’ — cos /2t +eze! sin\/2t

cos\/2t + /2 sin\/2t V2 cos /2t + sin /2t

It is easy to see that all solutions converge to the equilibrium point (0,0, 0) .

10. Solution of the system of ODEs requires that

(T )E)-()

The characteristic equation is > + 47 + 5 = 0, with roots » = — 244. Substituting
r = — 2+ 1, the equations are equivalent to £, — (1 — )&, = 0. The corresponding
eigenvector is £V = (1 —1i,1)". One of the complex-valued solutions is given by

x = (1 I i>e(2+i)t

1
— ( . Z)e_%(cost—kisint)

_o [ cost + sint . o —cost+ sint
=e + e _ .
cost sint

Hence the general solution is

_o [ coSt + sint _o[ —cost+sint
X=ce +ce . .
cost sint

Invoking the initial conditions, we obtain the system of equations

01_02:1
C = —2.
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Solving for the coefficients, the solution of the initial value problem is

5 _Qt(cost+sint) 3 _2t<—cost+sint)
X = — e - e

cost sint

_ cost —Hsint
N —2cost —3sint)’

Y }e’s‘,f
T £E
TN PSS
e Y LAY
N\} £
\} Py
NS e
L T
e
e il i e e i i it

\
\
!
\
\
\

11(a). With x(0) = (2 ,2)", the solution is

- 2cost —2sint .
2cost

11(b).

wl & w2
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11(c).

12. Solution of the ODEs is based on the analysis of the algebraic equations

—3-r 2 &\ _ [0
1 o \e) T o)
The characteristic equation is 2572 — 107 + 26 = 0, with roots r = % + 1. Setting

r = 1/5+ i, the two equations reduce to &, — (1 — )&, = 0. The corresponding
eigenvector is £V = (1 —i,1)". One of the complex-valued solutions is given by

xV — (1Ii>e(%+i)t

1—4\ s
= < ) Z)et/"(cost—i—isz'nt)

_ et/5(cost+sint) —I—z'et/5< —cost—l—sint).

cost sint

Hence the general solution is

< — ¢ ol cost + sint 4 eell? —cost+ sint
! cost ? sint '

(b). Letx(0) = (2! ,23)". The solution of the initial value problem is

_ 0t/ cost+sint 0 oy t/5( —cost+ sint
X =x,¢€ + (z, —x))e . .
2 < cost (=, ! sint

15 [ Tlcost + (2x) — xf)sint
=e :
xycost + (x) — x¥)sint

With x(0) = (1 ,2)", the solution is
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t/5 [ cost+3sint
X=¢e i .
2cost+ sint

144
124

10

14
161
181

—
[ S i
TN T

w1 & %2

dodn b ra
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3|:|'_
201
10 - 40
A
-101 10
] 15

13(a). The characteristic equation of the coefficient matrix is * — 2ar + 1 + o2, with
roots r = a 1.

(b). When a < 0 and a > 0, the equilibrium point (0, 0) is a stable spiral and an
unstable spiral, respectively. The equilibrium point is a center when o = 0.

(c).
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T P, e T e e e

2

14(a). The roots of the characteristic equation, 7 — ar +5 =0, are

a 1

== +>va2—20.
T2 5 5 (6%

(b). Note that the roots are complex when — /20 < a < /20 . For the case when
a € ( — /20, 0), the equilibrium point (0, 0) is a stable spiral. On the other hand,

when a € (O , v/ 20 ), the equilibrium point is an unstable spiral. For the case o = 0,

the roots are purely imaginary, so the equilibrium point is a center. When a? > 20,
the roots are real and distinct. The equilibrium point becomes a node, with its stability
dependent on the sign of o . Finally, the case a® = 20 marks the transition from spirals
to nodes.

().
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a=-05

e e e

17. The characteristic equation of the coefficient matrix is 72 + 2r + 1+« = 0, with
roots given formally as 7, = — 1+ ./ — a . The roots are real provided that o« < 0.
First note that the sum of the roots is — 2 and the product of the roots is 1 + ««. For
negative values of «, the roots are distinct, with one always negative. When v < — 1,
the roots have opposite signs. Hence the equilibrium point is a saddle. For the case

— 1 < a < 0, the roots are both negative, and the equilibrium point is a stable node.
a = — 1 represents a transition from saddle to node. When v = 0, both roots are
equal. For the case o > 0, the roots are complex conjugates, with negative real part.
Hence the equilibrium point is a stable spiral.

a=-15

e e o
e e e

N e

g
i

/|
2
I
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19. The characteristic equation for the system is given by
4+ (4 —a)r+10 — 4a = 0.
The roots are

ris = —2+%i\/a2+8a—24.

First note that the roots are complex when — 4 — 2\/5 <a< —4+ 2\/5 . We also
find that when —4 — 21/10 < a < 2, the equilibrium point is a stable spiral. For the
case o = 2, the equilibrium point is a center. When2 < o < —4 + 2\/ﬁ , the
equilibrium point is an unstable spiral. For all other cases, the roots are real. When

a > 2.5, the roots have opposite signs, with the equilibrium point being a saddle. For

the case —4 + 21/10 < a < 2.5, the roots are both positive, and the equilibrium point
is an unstable node. Finally, when o < — 4 — 24/10 , both roots are negative, with the
equilibrium point being a stable node.

o e T i S
T e e
e T e e e
T T T,

e e e T T e S e
R L L S
e e e e e e e e
e e e e e e
e T T T e T T T e
e e e e e e e e

e e e e e e
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, the roots

— 3, both roots

page 395

o T T T T

e i St

e s e
e T T T

oo
o
; e R e
e
o ™

(24 + 8a)

b e e e e e e,
e T T e e T

+29

=

a

o e T

NP Moy
o T e T T e

T IS

— 25/8. Since the real part is negative, the origin

711’2: _lj:

R L S L,

s S S "
oy
ey oA Y
T =]

R,
fomany, SN SRS

are negative, and hence the equilibrium point is a stable node. For « > — 3

is a stable spiral. Otherwise the roots are real. When — 25 < a <
are of opposite sign and the origin is a saddle.

20. The characteristic equation is 72 + 27 —
The roots are complex when o <

e e M

é!{.f!z{

o e g g )
e
T e
o e M
T ey e e g
I N Yy

0
ey
@)
o
=
=
X ~,
W B T T e e R, e e e e
ﬂw b, A LN L
H/ A AL P e e e P
Il : A I SO\ S N O e,
3 = T RN I e e
o0 —— N o P o P P
+ ii[l\f R s L
o)
N

22. Based on the method in Prob. 19 of Section 7.5, setting x = £ ¢" results in the
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algebraic equations

7 ST)E)-(6)

The characteristic equation for the system is 72 4+ 1 = 0, with roots r,, = 4=7. With
r = i, the equations reduce to the single equation &, — (2 + )&, = 0. A corresponding
eigenvector is £V = (24 1i,1)". One complex-valued solution is

2410
W= ¢
<= ()

We can write ¢! = e!'"*, Hence

x — (2 + i)eilnt
1

_ (2 N Z) [cos(int) + i sin(int)]
_ (2003(lnt) - sin(lnt)) _l_i(cos(lnt) 4 zsm(zm))

cos(Int) sin(lnt)
Therefore the general solution is

. (QCos(lnt) - sin(lnt)) e <cos(lnt) +2 sin(lnt))

cos(Int) sin(lnt)

Other combinations are also possible.

24(a). The characteristic equation of the system is

2 81 17
3 2
Il Bt S
TEET TR 160
with eigenvalues 7, = 1/10,and o3 = — 1/4+ 4. For r = 1/10, simple calculations
reveal that a corresponding eigenvectoris &% = (0,0,1)". Setting r = — 1/4 — i,

we obtain the system of equations

51—i€2:0
53:0-

A corresponding eigenvector is €% = (i, 1,

1
xO — (

Another solution, which is complex-valued, is given by

T . .
. Hence one solution is

0)
0
0 et/lO.
1
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7
x? = | 1 e GHit
0
7
= |1 |e*(cost—isint)
0
sint cost
=e | cost | +ie | — sint
0 0

Using the real and imaginary parts of x®, the general solution is constructed as

0 sint cost
x=c | 0|’ +ce | cost | +cse | —sint
1 0 0

(b). Let x(0) = («¥, 2y, %) . The solution can be written as

0 zy sint + xY cost
X = 0 + e 2l cost — 20 sint
g et/10 0

With x(0) = (1,1, 1), the solution of the initial value problem is

0 sint+ cost
X = 0 +e_t/4 cost — sint
et/lo 0

5 R /i\ 1\ 3
S
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25(a). Based on Probs. 18 — 20 of Section 7.1, the system of differential equations is

H0-(F L))
dt\V z - |4

With R, = Ry, = 4o0hms, C = % farads and L = 8 henrys , the eigenvalue problem is
—5-r -3 &\ _ (0
2 NS 0/

(b). The characteristic equation of the system is 7° + r + % = 0, with eigenvalues

1 1.
Tio = — 5 + 57, .
Setting r = — 1/2 + /2, the algebraic equations reduce to 4i&, + & = 0. It follows

that £V = (1, — 4i)". Hence one complex-valued solution is
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o)
\" _ (1 NS
Vv — 4

_ ( _142_) e 2[cos(t/2) + i sin(t)2)]

s e (s )

Therefore the general solution is
I _ oo th? cojs(t/Q) et sin(t/2) '
Vv 4 sin(t/2) —4cos(t/2)

(c). Imposing the initial conditions, we arrive at the equations ¢, = 2 and ¢, = —
and

=

(v) = (ot aomtra)):

(d). Since the eigenvalues have negative real parts, all solutions converge to the origin.

26(a). The characteristic equation of the system is

with eigenvalues

_ 1,1 [ Tarc
"2 = T 9RC T 2RC L

The eigenvalues are real and different provided that

B 4R*C

1 > 0.

The eigenvalues are complex conjugates as long as

AR*C
1— <0.
L
(b). With the specified values, the eigenvalues are r,, = — 1+¢. The eigenvector
corresponding to » = — 1+ is &Y = (1, — 44)". Hence one complex-valued solution

1S
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m
" _ L s
v 14

1
= ( _1 +i)e_t(cost+isint)

—t cost I sint
=e . + 1€ . .
—cost — sint cost — sint

Therefore the general solution is

I y cost Lot sint
= cie cye .
Vv ! —cost — sint ? cost — sint

(¢). Imposing the initial conditions, we arrive at the equations

01:2
—a+e=1,

with ¢; = 2 and ¢, = 3. Therefore the solution of the IVP is
I [ 2cost+ 3sint
= e .
%4 cost — dsint
(d). Since Re(r;,) = — 1, all solutions converge to the origin.

27(a). Suppose that c;a+ c;b = 0. Since a and b are the real and imaginary parts of
the vector £V, respectively, a = (£% + £1) /2 and b = (¢ — £0) /2. Hence

o (€9 + ) — (6 - E7) =0,
which leads to
(e, — i)Y + (¢; +ic,)€ED = 0.
Now since £V and €U are linearly independent, we must have

c,—1c, =0
Cl‘i_iCQ:O.

It follows that ¢, = ¢, = 0.

(c). Recall that

u(t) = eM(acos ut — b sin ut)
v(t) = eM(acos ut + b sin ut) .

Consider the equation c,u(t) + ¢;v(ty) = 0, for some ¢,. We can then write

page 400



CHAPTER 7. ——

ce’(acos puty — b sin pity) + e (

acos uty +bsin ut)) = 0. (x)
Rearranging the terms, and dividing by the exponential,

(¢, + ¢y)cos ptoa + (¢y — ¢)sinuty, b = 0.
From Part (b), since a and b are linearly independent, it follows that

(¢ + ¢y)cos pty = (cy — ¢p)sinuty = 0.

Without loss of generality, assume that the trigonometric factors are nonzero. Otherwise
proceed again from Equation (x), above. We then conclude that

Cl+02:o and 02_0120,
which leads to ¢, = ¢, = 0. Thus u(t,) and v(t,) are linearly independent for some ¢,

and hence the functions are linearly independent at every point.

28(a). Letx; = u and x, = u’. It follows that ] = z, and

/
Ty =U

k
= — —u.
m

In terms of the new variables, we obtain the system of two first order ODEs
!/
CEI = X9
, k

3:2: — — T .
m

(b). The associated eigenvalue problem is

—Tr 1 61 o 0
—k/m —rJ\&) \0)
The characteristic equation is 72 + k/m = 0, with roots r,, = +i\/k/m .

(c). Since the eigenvalues are purely imaginary, the origin is a center. Hence the phase
curves are ellipses, with a clockwise flow. For computational purposes, let k = 1 and
m=2.
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#1 & %2

(d). The general solution of the second order equation is

k , k
u(t) = cicos | —t + cysiny| —t.
m m

The general solution of the system of ODE:s is given by
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,/% sim/%t \/%cos\/%t
X =¢ + .
cos\/%t —sin\/%t

It is evident that the natural frequency of the system is equal to Im(r;,).
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Section 7.7

1. The eigenvalues and eigenvectors were found in Prob. 1, Section 7.5.

1 2
T = —1, 5(1): (2>, 7”2:2, 6(2): (1)

The general solution is
e ! 2 et

Hence a fundamental matrix is given by
We now have

So that

_ —e 4+ 4e?  2e7t — 2e%
o) = wiow o) = (o T

3. The eigenvalues and eigenvectors were found in Prob. 3, Section 7.5. The general

solution of the system is
_ el et
X = ot + c 3e—t |

Given the initial conditions x(0) = e!’), we solve the equations

cte=1
c + 302 =0 .
to obtain ¢, = 3/2, ¢, = — 1/2. The corresponding solution is

Given the initial conditions x(0) = e, we solve the equations

C1+02:O
¢, +3c=1,

to obtain ¢, = — 1/2, ¢, = 1/2. The corresponding solution is
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_ %et + %eft
Therefore the fundamental matrix is
1/ 3el —et —el et
d(t) = - .
(*) 2 (3et —3e! —el4+3e!
5. The general solution, found in Prob. 3, Section 7.6, is given by

H5cost n 5sint
X=c c .
! 2cost+ sint ’ —cost+2sint

Given the initial conditions x(0) = eV, we solve the equations

501:1
261—62:0,

resulting in ¢, = 1/5, ¢, = 2/5. The corresponding solution is

< — cost+ 2sint
- sint )

Given the initial conditions x(0) = e, we solve the equations

501 - 0
201 — Cy = 1,
resulting in ¢, =0, c, = — 1. The corresponding solution is

—5sint
X = .
cost — 2sint

Therefore the fundamental matrix is

B(t) = (

cost+ 2sint —5Hsint
sint cost—2sint )’

7. The general solution, found in Prob. 15, Section 7.5, is given by

B o2t olt
X=0 3e2t + 6 edt |-

Given the initial conditions x(0) = eV, we solve the equations

Cl+02:1
3C1+02:O,
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resulting in ¢, = — 1/2, ¢, = 3/2. The corresponding solution is
1/ —e? 4+ 3e*
X=— )
2\ — 3e?t + 3ett

The initial conditions x(0) = e® require that

c+c = 0
3c,+c =1,
resulting in ¢, =1/2, ¢, = — 1/2. The corresponding solution is

1 €2t _ e4t
X= 2 (3th — e4t>'
Therefore the fundamental matrix is

_ 6215 + 3647,‘ 6215 _ 647,‘
B(t) = =
( ) 9 ( - 3627,‘ +3€4t 3627,‘ _ e4t

8. The general solution, found in Prob. 5, Section 7.6, is given by

s cost Yoot sint
X = ¢e€ cye .
! 2cost+ sint ’ —cost+2sint

The specific solution corresponding to the initial conditions x(0) = e is

;[ cost+2sint
X=e . .
osint

For the initial conditions x(0) = e, the solution is

s —sint
X=¢e . .
cost — 2sint

Therefore the fundamental matrix is

_ _4fcost+2sint —sint
o(t) =e ( S5sint cost — 2sint )’

9. The general solution, found in Prob. 13, Section 7.5, is given by

de~2t 3e ! 0
x=c¢| =52 | +e| —det | 5| €*
— Te 2 — 27t — et

Given the initial conditions x(0) = e!”), we solve the equations
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401"’302:1
_501_4CQ+03:0
—701—202—0320,

resultingin ¢, = — 1/2,¢, =1, ¢s = 3/2. The corresponding solution is
—2e % 4 3e7!
x= | Be? — et 4 B
Te2 _9e~t — 32

The initial conditions x(0) = e, we solve the equations
4:01 + 302 =0
—501—402‘1‘03: 1

—701—202—03:0,

resultingin ¢, = —1/4,¢, =1/3, ¢; = 13/12. The corresponding solution is

The initial conditions x(0) = e®, we solve the equations

4C1+302:O
—501—4CQ+03:0
—Tci—2¢c—c3 =1,

resultingin ¢, = —1/4, ¢, =1/3, ¢; = 1/12. The corresponding solution is

—e et
ot 4t | 1 9t
3¢ + 5€

e
-2t 2 -t 1 2t
e e 3¢

Therefore the fundamental matrix is

— 272 4 3e7? —e 2 f et —e et
52 4t 3.2 5.-2  4.—t, 13.% 5.-% 4.—t, 1. %
o(t) = | 3¢ 4e”" 57 je 3¢ T et g€ 3¢t 1€
T % o~ 3.2 T=2 2t 13.% T-2% 2 .-t 1 _%
2¢ 2e 2€ 1€ 3¢ 12¢ 1€ 3¢ 12€¢

12. The solution of the initial value problem is given by
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=®(t
(e tcos 2t —2etsin2t\ (3
o %e Fsin 2t e tcos 2t 1
_ 3608 2t — 2sin 2t
N sm 2t + cos 2t
13. Let
i (t) 1" (t)
U(t) = :
zP(t) M (t)
It follows that
(k) o 2 (k)
W(t)) = : :
) o aln)

is a scalar matrix, which is invertible, since the solutions are linearly independent.
Let ¥'(¢y) = (¢;). Then

II:<11) (t) e x(ln) (t) i cen Cin
‘I'(t)‘I’_l(to) = : : :
CC<1) (t) s .T(”) (t) Cnl o Cpp

n

The j-th column of the product matrix is

W) =3 e x®,
k=1

which is a solution vector, since it is a linear combination of solutions. Furthermore, the
columns are all linearly independent, since the vectors x*) are. Hence the product is

a fundamental matrix. Finally, setting ¢t = t,, W(¢,) ¥ '(¢,) = I. This is precisely the
definition of ®(¢).

14. The fundamental matrix ®(¢) for the system
=1
S \4 1

1/ 2e% +2et 3 —et
o(t) = 4 (4€3t —4et 23 4 2¢71

is given by

Direct multiplication results in
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@(t)@(s) B i 26315 + 26—15 6315 _ e—t 2635 + 2¢~8 635 —e 8
16\ 4e¥ —de7t 2e3t 4 2t 4e35 — de™  2e3 4 2e7F

B 1 8( 3t+3s + eftfs) 4(63t+35 _ eftfs)
- 16 16( 3t+3s __ eftfs) 8(€3t+38 _{_eftfs) :

Hence

1 [ 2e3(45) 4 9e=(t4s)  3lits) _ o (t4s)
= Z 4e3t+s) _ go—(t+s)  9o3(t+s) + 2¢~(t+s)

15(a). Let s be arbitrary, but fixed, and ¢ variable. Similar to the argument in Prob. 13,
the columns of the matrix ®(¢)®(s) are linear combinations of fundamental solutions.
Hence the columns of ®(¢)®(s) are also solution of the system of equations. Further,
settingt = 0, ®(0)®(s) =1®(s) = ®(s). Thatis, ®(¢t)®(s) is a solution of the
initial value problem Z' = AZ, with Z(0) = ®(s). Now consider the change of
variable 7 =t + s. Let W(7) = Z(7 — s). The given initial value problem can be
reformulated as

d

d—W AW , with W(s) = ®(s).

-

Since ®(t) is a fundamental matrix satisfying ®' = A®, with ®(0) =1, it follows
that

|
oA
\i

Thatis, ®(t + s) = ®(7) = W(7) = Z(t) = ®(1)P(s) .

(b). Based on Part (a), ®(£)®( —t) = ®(t+ (—t)) = ®(0) = I. Hence
&(—t) = (1)

(¢). It also follows that ®(t — s) = ®(t + (—5)) = B(1)®( — s) = ®()® !(s).

16. Let A be a diagonal matrix, with A = [a,eV, a,e®,--- a,e™]. Note that for any

positive integer, k ,
Al = [alf eV ale?®, ... o e™].

It follows, from basic matrix algebra, that
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ik
Zaly 0 0
k=0
LN 0 S~ g 0
k: ' . . .
QL ktF
0 0 Zanm
k=0

It can be shown that the partial sums on the left hand side converge for all ¢. Taking the
limit (as m — co) on both sides of the equation, we obtain

e 0 -~ 0
at |
exp(At) = 0 € : 0
0 0 v e“nt

Alternatively, consider the system x’ = Ax . Since ODEs are uncoupled, the vectors
xV = exp(a;t) eV, j=1,2,---n,are a set of linearly independent solutions. Hence
the matrix

X = [exp(a;t) eV, exp(ast) e?, - exp(a,t) "]
is a fundamental matrix. Finally, since X(0) = I, it follows that

lexp(ait) eV, exp(ast) e, -+, exp(a,t) e™] = ®(t) = exp(At).

17(a). Assuming that x = ¢(¢) is a solution, then ¢’ = A¢, with ¢(0) = x°. Integrate
both sides of the equation to obtain

$(t) — $(0) = / Ad(s)ds

Hence

o(t) =x"+ /0 A¢(s)ds.

(b). Proceed with the iteration
t

%”szx“ﬁ/AMWQM-

0

With ¢©(t) = x°, and noting that A is a constant matrix,
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t
pV(t) =x" + / Ax’ds
0
=x"4 Ax"t.
That is, ¢V (t) = (I + At)x".

(c). We then have

t

&Wﬂ:ﬂ+/Aa+MM@
0
2

t
=x"+ Ax’t + AQXOE

£2
= <I + At + A25>x°.
Now suppose that

t2 t"
o™ (t) = (I+At +A2§ N +A”—'>x°.
n.

It follows that
t t2 tn
/ A(I+At—|—A2— + .- +A"—)x0ds =
0 2 n'
t2 2t3 tn+1 .
=AlIt+A—+A"— +.-.-+ A"
( + 2+ 3!+ + (n+1>!>x
o 12 t3 tn
= (At + A A o AT X
2 3! n!
Therefore

¢(”+1)(t) — I—|—At—|—A2ﬁ 4. +An+1ﬂ x’.
2 (n+1)!

By induction, the asserted form of ¢(™(t) is valid for alln. > 0.

(d). Define ¢ (t) = lim ¢™ (). It can be shown that the limit does exist. In fact,

¢ (t) = exp(At)x".

Term-by-term differentiation results in
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That is,

d t"
I+At+A2 +o AT 4 )X
2 n!

(n—1)!

tnfl
<I+At+A2—+ A" 1—)—|—)x°.

d
tn—l
<A At + .-+ A" +)x°
=A
(n—1)!

d ) _ oo
S0 (1) = AO(1).

Furthermore, ¢ (0) = x’. Based on uniqueness of solutions, ¢(t) = ¢©)(t).
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Section 7.8
2. Setting x = £t results in the algebraic equations
4—r -2 SRNAL
8 - 4 - T 52 - 0 '
The characteristic equation is 72 = 0, with the single root » = 0. Substituting r = 0
reduces the system of equations to 2§, — & = 0. Therefore the only eigenvector is

& =(1,2)". One solution is
- (1
2 b

which is a constant vector. In order to generate a second linearly independent solution,
we must search for a generalized eigenvector. This leads to the system of equations

4 -2 T . 1

8 - 4 772 o 2 '
This system also reduces to a single equation, 21, — 7, = 1/2. Setting 1, = k, some
arbitrary constant, we obtain 7, = 2k — 1/2. A second solution is

= () 1)
_ (;>t+ ( _?/2) +k<;)

Note that the /ast term is a multiple of x" and may be dropped. Hence

¥= (o) (L)
() ()

The general solution is
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All of the points on the line z, = 2x, are equilibrium points. Solutions starting at all
other points become unbounded.

3. Solution of the ODE:s is based on the analysis of the algebraic equations
()0
A A
The characteristic equation is 7* + 27 + 1 = 0, with a single root » = — 1. Setting

r = — 1, the two equations reduce to &; — 2§, = 0. The corresponding eigenvector is
£ =(2,1)". One solution is
= (2)e
1

A second linearly independent solution is obtained by finding a generalized eigenvector.
We therefore analyze the system

)6)-6)

-1 3/ \m 2
The equations reduce to the single equation — n, + 21, = 2. Letn, = 2k. We obtain
1, = 1 + k, and a second linearly independent solution is

2 2k
@ _ te! —t
X (1> e+ ( 14 k) e
2 0 2
= (1>te_t + (1)6_t + k(l)e_t.
Dropping the last term, the general solution is

ool e ()]
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4. Solution of the ODE requires analysis of the algebraic equations

) @)-0)
3 2\ 0)
For a nonzero solution, we must have det(A — 1) = r% +r + i = 0. The only root
is r = — 1/2, which is an eigenvalue of multiplicity two. Setting r = — 1/2 is the

coefficient matrix reduces the system to the single equation — &, + & = 0. Hence the
corresponding eigenvector is £ = (1,1)". One solution is

1
(1 _ —t/2

o= (D)
In order to obtain a second linearly independent solution, we find a solution of the system

= )G =0)

- U 1)
There equations reduce to — 51, + 51, = 2. Setn, = k, some arbitrary constant. Then
ny =k +2/5. A second solution is

1 k
2 _— t —t/2 —t/2
= (1) (s
1 0 1
_ te—t/2 ~t/2 4 . /2
<1) e +>(2/5)e + 1 e

Dropping the /ast term, the general solution is

1 1
cea(Jeeel (e ()7

DU DOt
[\l [e28 Y[

T T T T T TR T e
T T T T T T T T T T T et o
T T T T T T T T T T ot e T
T T T T
LSS I AP e
R ol . .
e / : <

e 4 -
_ e
Py = o~ i
i . o
- = R
s : e
T T W
,///{j/?.wf/////////
R Rl G N
T e o T B T
Tt T o T T T
S et 7 AR i
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6. The eigensystem is obtained from analysis of the equation

- T 1 1 51 0
1 - T 1 52 = 0
1 1 —T 53 0
The characteristic equation of the coefficient matrix is > — 3r — 2 = 0, with
roots r, = 2 and 73 = — 1. Setting r = 2, we have
-2 1 1 & 0
1 -2 1 &L 1=10
1 1 -2 & 0

This system is reduced to the equations

51"5322 0
52—‘53:=0-
A corresponding eigenvector vector is given by £V = (1,1,1)". Setting r = — 1,
the system of equations is reduced to the single equation
S +&6E+E=0.
An eigenvector vector is given by €% = (1,0, — 1)T. Since the last equation has two
free variables, a third linearly independent eigenvector (associated with r = — 1) is
£€¥ = (0,1, —1)". Therefore the general solution may be written as
1 1 0
x=c¢ |1 e + Cy 0 e+ ey 1 e t.
1 -1 -1

7. Solution of the ODE requires analysis of the algebraic equations

(2 )E)=6)

For a nonzero solution, we must have det(A — r1) = r? 4+ 67 + 9 = 0. The only root
is » = — 3, which is an eigenvalue of multiplicity two. Substituting » = 3 into the
coefficient matrix, the system reduces to the single equation & — & = 0. Hence the
corresponding eigenvector is & = (1,1)". One solution is

1
1 — —3t
X (1)6 .

For a second linearly independent solution, we search for a generalized eigenvector.
Its components satisfy
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(=) G)=0)

that is, 4n, — 4n, = 1. Let 7, = k, some arbitrary constant. Then 7, =k + 1/4.
It follows that a second solution is given by

1 - k+1/4 _
@ _ 3t 3t
X (1>te +< 1 )e
_ 1 —3t 1/4 —3t L\ _5
—(1>te +<O)e +kle .

Dropping the last term, the general solution is

X = cl(i)e?’t +c2[<1)te3t - (1é4)e3t].

Imposing the initial conditions, we require that

1
Cl+102:3
61:2,

which results in ¢, = 2 and ¢, = 4. Therefore the solution of the IVP is

_ 3\ s 4 —3t
X—(2>6 +<4)te .

%1
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x1

&) _ (0
T 52 0 '
The characteristic equation is > + 27 + 1 = 0, with a single root 7 = — 1. Setting
r = — 1, the two equations reduce to — & + & = 0. The corresponding eigenvector is

¢ = (1,1)". One solution is
o (e

A second linearly independent solution is obtained by solving the system

EIONY

_ % s 1/)°
The equations reduce to the single equation — 37, + 31, = 2. Letn, = k. We obtain
ny = 2/3 + k, and a second linearly independent solution is

= G)te‘t + (233)e‘t +I<:G)e—t.

Dropping the last term, the general solution is

oo (Jerel (e ()]

Imposing the initial conditions, find that

N DN
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C = 3
2
¢+ gCQ = -1,
so that ¢; = 3 and ¢, = — 6. Therefore the solution of the IVP is

()

w1

10. The eigensystem is obtained from analysis of the equation

() (@)= ()

The characteristic equation is > = 0, with a single root » = 0. Setting 7 = 0, the two
equations reduce to & + 3¢, = 0. The corresponding eigenvector is & = ( —3,1)".
Hence one solution is
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w3
1 2

which is a constant vector. A second linearly independent solution is obtained from the

system

3 9 Ty -3

-1 =-3)\n/) \ 1)
The equations reduce to the single equation 7, + 31, = — 1. Letn, = k. We obtain
n = — 1 — 3k, and a second linearly independent solution is

-3 —1-3k
@ _
<= (30) ()
-3 -1 -3
-(3)e () (7))
Dropping the last term, the general solution is
x=ef )4 e (T
901 )T 0 )]

Imposing the initial conditions, we require that

— 301 — Cy = 2
CL = 4 ,
which results in ¢, = 4 and ¢, = — 14. Therefore the solution of the IVP is

= () ()
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#1

400+

300+

200+

1004

12. The characteristic equation of the system is 873 4+ 6072 4+ 126 + 49 = 0. The

eigenvalues are r, = — 1/2 and ry3 = — 7/2. The eigenvector associated with r;
is €V = (1,1,1)". Setting » = — 7/2, the components of the eigenvectors must
satisfy the relation
51 + fz + fs =0.

An eigenvector vector is given by £ = (1,0, — 1)". Since the last equation has two
free variables, a third linearly independent eigenvector (associated with r = — 7/2)
is £ = (0,1, —1)". Therefore the general solution may be written as

1 1 0

x=c¢ |1 e t? 4 Cy 0 e T2 4 Cs 1 e 2,
1 -1 —1

Invoking the initial conditions, we require that

¢+ =2
C1 + C3 = 3
Ci —C — C3 = — 1.
Hence the solution of the IVP is
1 1 0
X = é 1 e—t/2 + g 0 e—?t/Q + é 1 6_7t/2.
3\ 1 3\ 1 3\ —1

13. Setting x = £ t" results in the algebraic equations

(7 )E)=(6)

The characteristic equation is 7> — 2r + 1 = 0, with a single root of T2 = 1. With
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r = 1, the system reduces to a single equation &, — 2&, = 0. An eigenvector is given by
¢ =(2,1)". Hence one solution is
2
n —
X = t.
(1)

In order to find a second linearly independent solution, we search for a generalized
eigenvector whose components satisfy

(=) ()= ()

These equations reduce to n;, — 27, = 1. Let 1, = k, some arbitrary constant. Then

m = 1+ 2k . [Before proceeding, note that if we set u = Int, the original equation is
transformed into a constant coefficient equation with independent variable u . Recall that
a second solution is obtained by multiplication of the first solution by the factor w. This
implies that we must multiply first solution by a factor of Int.]| Hence a second linearly

independent solution is
2 1+ 2k
@ = tint t
<= (3 ()

=) ()=o)

Dropping the last term, the general solution is

ool ()]

15. The characteristic equation is
r* —(a+d)r+ad —bc=0.

Hence the eigenvalues are

a-+d
2

To =

:I:%\/(a+d)2—4(ad—bc) |

16(a). Using the result in Prob. 15, the eigenvalues are
1 n vV L? —4R?*CL
2RC 2RCL '

The discriminant vanishes when L = 4R2C'L .

T = —
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(b). The system of differential equations is

alv)= (1 2)0)

The associated eigenvalue problem is

(77 )E)=0)

The characteristic equation is 72 + 7 + 1/4 = 0, with a single root of 7, = — 1/2.
Setting » = — 1/2, the algebraic equations reduce to 2§, + & = 0. An eigenvector is
given by &€ = (1, —2)". Hence one solution is

()=

A second solution is obtained from a generalized eigenvector whose components satisfy

BB
-1 - % Up -2
It follows that 7, = k and 7, = 4 — 2k . A second linearly independent solution is
\" 1 k
_ % —t/2
(v) = o) (i)
_ (1 —t/2 0\ _ipo L\ 4
—(_2)156 +(4)e +k o)

Dropping the last term, the general solution is

(v)=e( o)l (Lo e ()]

Imposing the initial conditions, we require that

01:1
—201—|—402:2,

which resultsin ¢; = 1 and ¢, = 1. Therefore the solution of the IVP is
Iy (1 —t/2 1 —t/2
(1) Q)L

18(a). The eigensystem is obtained from analysis of the equation
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5—r -3 —2\ /& 0
8 —5-r —4|l&l=]0

The characteristic equation of the coefficient matrix is 73 — 372 +3r — 1 = 0, witha
single root of multiplicity three, r = 1. Setting r = 1, we have

4 -3 -2\ /& 0
8 -6 —4|le]=10
—4 3 2 & 0

The system of algebraic equations reduce to a single equation
4:51 _352_253 :O.

An eigenvector vector is given by £ = (1,0,2)". Since the last equation has two
free variables, a second linearly independent eigenvector (associated with r = 1) is
£€® = (0,2, —3)". Therefore two solutions are obtained as

0
e! and x? = Y I
-3

< —

N O =

(b). It follows directly that x’ = £te! + €e! + ne! . Hence the coefficient vectors must
satisfy £te! + €e! + pe! = A€te! + Anel. Rearranging the terms, we have

ge! = (A —T)&te' + (A —T)pe'.
Given an eigenvector &, it follows that (A — I)p = £.
(c). Note that a linear combination of two eigenvectors, associated with the same

eigenvalue, is also an eigenvector. Consider the equation (A — 1) = ;€Y + ¢,€?.
The augmented matrix is

4 -3 -2 ‘ Cq
8 —6 —4 | 202
-4 3 2 | 2¢ -3¢

Using elementary row operations, we obtain

4 -3 =2 | C1
0 O 0 | —2¢+2¢
0 0 0 | 3C1 — 302

It is evident that a solution exists provided ¢, = ¢, .

(d). Let ¢, = ¢, = 2. The components of the generalized eigenvector must satisfy
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4 -3 -2\ [m 2
4 3 2 )\ —9

Based on Part (¢), the equations reduce to the single equation 417, — 3n, — 213 = 2.
Let 7, = « and 7, = 23, where « and (3 are arbitrary constants. We then have

so that
o 0 1 0
n= 203 = 0 +al 0| +8 2
—142a—33 -1 2 -3

Observe that 7 = €Y + €. Hence a third linearly independent solution is

(e). Given the three linearly independent solutions, a fundamental matrix is given by

el 0 2t et
Tit)=1 0 2¢! 4t e
2¢t —3e! —2tel — ¢!

(f). We construct the transformation matrix

1 2 0
T=1]0 4 0 ,
2 -2 -1
with inverse
1 —1/2 0
T'=1|0 1/4 0
2 -3/2 -1

The Jordan form of the matrix A is

e )

1 0
J=T'AT=|0 1
0 0

20(a). Direct multiplication results in
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XMoo 0 X0 0 M0 0
=10 X 20,F=[0 X 3x2|,J=|0 ) 4)3
0 0 M\ 0o 0 M 0 0 )

A0 0
J'’=1 0 M n\!
0 O A"
Then
A0 0 A0 O
Jt = 0 M\ npi\v1 0 X 1
0 O A" 0O 0 A
A A” 0 0
= 0 DD D RS W Ui
0 0 A"

Hence the result follows by mathematical induction.

(c). Note that J is block diagonal. Hence each block may be exponentiated. Using the
result in Prob. (19),

el 0 0
exp(Jt) = | 0 e teM
0 0 eM

(d). Setting A = 1, and using the transformation matrix T in Prob. (18),

1 2 0 et 0 0
Texp(Jt) = | 0 4 0 0 e te
2 -2 —-1)\o 0o ¢
et 2¢e! 2t et
=1 0 4e! 4t et
2¢t  — 2t —2tel —éf

Based on the form of J, exp(Jt) is the fundamental matrix associated with the solutions
y(l) - §(1)et, y(2) = (25(1) + 25(2))et and y<3) - (25(1) + 25(2))t6t + "7€t-

Hence the resulting matrix is the fundamental matrix associated with the solution set
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[EWe! | (26 + 26 ¢!, (26D + 262 te! + e’}
as opposed to the solution set in Prob. (18), given b
PP g y
{S”et L EDel (25(1> + 2§<2>)tet + net}.

21(a). Direct multiplication results in

2224 1 A3 3)\2 3\ A 4N 62
=10 XX 22|,F=[0 X 3X|,F=0 X 4)
0 0 )2 0 0 M 0 0 M

(b). Suppose that

P n)\nfl n(n;l) )\n72

J'=10 X nA" !
0 0 A"
Then
A" pAl ’”/(”2—1) A2 A1 0
=10 ot 0 A 1
0 0 A\ 0 0 A
AN N ph- N gl ’"1(”2—1))\ L\ 2
= 0 A A A" 4\ - A
0 0 A AT

The result follows by noting that

n)\nfl + n(nz_ 1))\ . )\7172 _ |:n + n(n _ 1):| )\nfl

(c). We first observe that
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n=0
D N AT te
n=0 ! n=1 (TL 1)'
in(n 1) n Qﬁ — ﬁ io: n—2 tn_2 — ﬁ At
= 2 n! 24 (n—2)! 2
Therefore
M et t;eAt
exp(Jt) =1 0 eM teM

(d). Setting A = 2, and using the transformation matrix T in Prob. (17),

2 42t 2 o

0 1 2 e 7€
Texp(Jt) = 1 1 0 0 2 et
-1 03/\0o o ¢
0 62t t62t + 26215
_ o2t te2t + o2t %6215 + te2t
2t _ o2t _ ﬁem + 32t

2
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Section 7.9

5. As shown in Prob. 2, Section 7.8, the general solution of the homogeneous equation

1S
1 t
X, = ¢ 9 + ¢ 2t—% .

An associated fundamental matrix is

w(t) = (; 2tt—%>'

The inverse of the fundamental matrix is easily determined as

o [A—3 —2+2
v (t)_(St—S —4t+5>'

We can now compute

A G

B3\ —2t—4
and
— 4 —2Int
\/a = 2 :
Jwwenan= (72 )
Finally,
V() =) [ ¥ gl
where
1 -2 -1
v (t) = — §t +2t7 = 2Int—2
vy(t) =5t —4int —4.

Note that the vector (2,4)" is a multiple of one of the fundamental solutions. Hence we
can write the general solution as

x=c,)+e 2 1) " E\ o +5 (5 ) —2mt(, ).
(o) relal ) =2 () () ~2me()

6. The eigenvalues of the coefficient matrix are », = 0 and r, = — 5. It follows that
the solution of the homogeneous equation is
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1 — 2e 0
Xe =C 9 + ¢ o5t .

The coefficient matrix is symmetric. Hence the system is diagonalizable. Using the
normalized eigenvectors as columns, the transformation matrix, and its inverse, are

o1 (1 =2\ ., 11 2
T—ﬁ(z ) _ﬁ<—2 )
Setting x = Ty, and h(t) = T 'g(t), the transformed system is given, in scalar form,
as

, 548t

Y= \/gt
?/2/: _5y2+ﬁ.

The solutions are readily obtained as
4

N

4
y(t) = VbInt+ ——t+¢, and Yo (t) = cre ™ +

V5

Transforming back to the original variables, we have x = Ty, with

(s
_ %(;)yl(t) + %( _12)y2(t).

Hence the general solution is,
(D) r( ") o (Dmer 2 (Ve (2
X = = il _
"\ 2 2\ et 2 )" T 5\2) "5\ 1

7. The solution of the homogeneous equation is

B e—t e3t
X, = C _ 2€_t + Cy 263t .

Based on the simple form of the right hand side, we use the method of undetermined
coefficients. Set v = ae’. Substitution into the ODE yields

()= () () (20

In scalar form, after canceling the exponential, we have
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a,=a,+ay+2
a2:4a/1+a/2_1,

with a; = 1/4 and a, = — 2. Hence the particular solution is

1/4
o= ()
so that the general solution is
et et 1/ ¢
= Cl( - Qe_t) +C2(263t) + Z( — Set)'

8. The eigenvalues of the coefficient matrix are 7, =1 and r, = — 1. It follows that
the solution of the homogeneous equation is

_ 1t+ Ly
Xc—011€ 0236.

Use the method of undetermined coefficients. Since the right hand side is related to one
of the fundamental solutions, set v = ate’ + be’. Substitution into the ODE yields

() ()= (6 Za) ()
(3 =) (L)

(a1 + bl)et + altet = (2&1 — a,g)tet + (2b1 — bg)et + et
(ay + by)e' + aste’ = (3a, — 2a,)te’ + (3b, — 2b,)e’ — e,

In scalar form, we have

Equating the coefficients in these two equations, we find that
a; = 2@1 — Q9
a1+b1:2b1—b2+1
ay, = 3a; — 2a,
a2+b2:3b1_2b2_1.
It follows that a; = a,. Setting a; = a, = a, the equations reduce to

bl—bQZG—l
3b1—3b2:1+a.

Combining these equations, it is necessary that a = 2. Asaresult, b, = b, + 1.
Choosing a; = a, = 2, and b, = k£, some arbitrary constant, a particular solution is
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=G ()= () G

Since the second vector is a fundamental solution, the general solution can be written as
1\ , n 1\ N 2 tel + 1\ ,
X = .
alq)etel,)e 5 Jte 0)¢

9. Note that the coefficient matrix is symmetric. Hence the system is diagonalizable.
The eigenvalues and eigenvectors are given by

1 1 1
= — — <1): = — (2>:
T 2,§ (1)andr2 2, & (_1).

Using the normalized eigenvectors as columns, the transformation matrix, and its inverse,
are

1 /1 1 L1 /1 1
T—ﬁ(l L) —ﬁ(l L)
Setting x = Ty, and h(t) = T 'g(t), the transformed system is given, in scalar form,
as

y, = — %yﬁ— \/§t+%et
gl = — 2y + V2t — %et.
Using any elementary method for first order linear equations, the solutions are
() = ke % 4 get —4V/2 + 22t
Yy (1) = kpe 2 — ﬁet - ﬁ + % t.

Transforming back to the original variables, x = Ty, the general solution is
- 1 o 1 [17 1/5 1/1Y\ ,
— U . - t - b
¥ 01(1>6 +CQ<—1 © ~3\5) T2\3) TE\3)°

10. Since the coefficient matrix is symmetric, the differential equations can be
decoupled.
The eigenvalues and eigenvectors are given by
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r o= —4,§<1):<Y§1> and r, = —1,§<2>:(\}§>.

Using the normalized eigenvectors as columns, the transformation matrix, and its inverse,

are
T = L \/5 1 T ! = L \/5 —1
Va3l -1 V2’ Va3l 1 V2 )
Setting x = Ty, and h(¢) = T 'g(t), the transformed system is given, in scalar form,
as

1
Y = —4y1+%(1+\/5)et

wi=—wt oo (1-v2)e

The solutions are easily obtained as

1
yi(t) = ke ™ + e (1 + \/5) e’

3\/3

Yo () = koe ' + % (1 - \/§>t6_t.

Transforming back to the original variables, the general solution is

e V3)ewa( ) b ) 4 (R e

Note that
2+2+3v3\ [ 242 s !
3ve—v2-1) | —v2-1 V2 )
The second vector is an eigenvector, hence the solution may be written as
_ \/5 —4¢ 1 e 12V L 1(1-V2),
x_cl<_1>e +CQ(\/§>6 +§<_\/§_1 e ~|—§ 59 te .
11. Based on the solution of Prob. 3 of Section 7.6, a fundamental matrix is given by

Hcost Hsint
T(t) = (2cost+sint — cost+25mt>'

The inverse of the fundamental matrix is easily determined as
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1 o .
ol = (cost 2sint  Ssint )

T 5\ 2cost+ sint — beost
It follows that
costsint
T (g(t) = ,
e = (")
and

Lsint
O (t)g(t)dt = 2 .
/ ()g() <—lcostsint—%t

2

A particular solution is constructed as
V() = w0) [ ¥ 0l
where
5 _ ,, 5
v (t) = §costsmt — cos“t + Et +1
. | 1
vy(t) = costsint — 5¢08 t+t+ -.

2

Hence the general solution is
dcost n dsint
X =¢C C: —
"\ 2cost + sint *\ = cost+ 2sint

—tsint<5{2) + (tcost—i—sint)(l(/)Q).

13(a). As shown in Prob. 25 of Section 7.6, the solution of the homogeneous system is

(4] = Y a2,

Therefore the associated fundamental matrix is given by

_¢/2f cos(t/2) sin(t/2)
Wit)=e /(43m(t/2) —4008(75/2))'

(b). The inverse of the fundamental matrix is

L1 €7 (dcos(t)2)  sin(t)2)
v (t>__(4sm(t/2) —cos(t/2)>'
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It follows that
and

A particular solution is constructed as
V) = w(0) [ 9 gl dr

where
U1 (t) = O
vy(t) =4e 2,

Hence the general solution is

R IR

Imposing the initial conditions, we require that

0120
—462“1‘4:0,

which results in ¢; = 0 and ¢, = 1. Therefore the solution of the IVP is

x=e (4 —Sinc(Z(zt)/m )

15. The general solution of the homogeneous problem is

()
x| 1Y\, 2\
() = () e(D)e

which can be verified by substitution into the system of ODEs. Since the vectors are
linearly independent, a fundamental matrix is given by

=1 22

The inverse of the fundamental matrix is
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Dividing both equations by ¢, we obtain

g(t) = (tg :?_1)-

Proceeding with the method of variation of parameters,
2/4 | 24 2
2yt 4 2y 2
Wl@ﬂﬂZ( G 4p 1 ),
— gt — §t72 + gti?)
and

2 45 142 2
=17+ 3t° — 3t
U (t)g(t) dt = ( o) 5 )
/ — th -+ gtil — 6t72

Hence a particular solution is obtained as

( — 1t 43t 1
V= 1 s |-
ot +2t—3
The general solution is

a5 (O ()

16. Based on the hypotheses,
¢'(t) = P(t)p(t) +g(t) and v'(t) = P(t)v(t) + g(t) -
Subtracting the two equations results in
¢'(t) —v'(t) = P(t)$(t) — P(t)v(t),
that is,
[6(t) = v()]" = P()[o(t) — v(t)].

It follows that ¢(t) — v(t) is a solution of the homogeneous equation. According to
Theorem 7.4.2,

d(t) —v(t) = crxV(t) + ex(t) + -« + ¢, x"(2).

Hence
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in which u(t) is the general solution of the homogeneous problem.

17(a). Setting t, = 0 in Eq. (34),
x = ®(t)x" + <I>(t)/0 @ !(s)g(s)ds
= ®(t)x’ +/0 &(1)® '(s)g(s)ds.

It was shown in Prob. 15(c) in Section 7.7 that ®(¢t)®!(s) = ®(¢ — s). Therefore

t

x=®(t)x" + /0 ®(t—s)g(s)ds.

(b). The principal fundamental matrix is identified as ®(¢) = exp(At). Hence

t

x = exp(At)x’ + /O/e.rp[A(t — s)]g(s)ds.

In Prob. 26 of Section 3.7, the particular solution is given as

Y(t)= [ K(t—s)g(s)ds,

t(J

in which the kernel K (¢) depends on the nature of the fundamental solutions.
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