Chapter Seven

Section 7.1

1. Introduce the variables $x_1 = u$ and $x_2 = u'$. It follows that $x'_1 = x_2$ and

$$x_2' = u''$$

= $-2u - 0.5 u'$.

In terms of the new variables, we obtain the system of two first order ODEs

$$x_1' = x_2$$

 $x_2' = -2x_1 - 0.5 x_2$.

3. First divide both sides of the equation by t^2 , and write

$$u'' = -\frac{1}{t}u' - \left(1 - \frac{1}{4t^2}\right)u.$$

Set $x_1 = u$ and $x_2 = u'$. It follows that $x'_1 = x_2$ and

$$\begin{split} x_2' &= u'' \\ &= -\frac{1}{t} \, u' - \left(1 - \frac{1}{4t^2}\right) u \,. \end{split}$$

We obtain the system of equations

$$x_1' = x_2$$

 $x_2' = -\left(1 - \frac{1}{4t^2}\right)x_1 - \frac{1}{t}x_2$.

6. One of the ways to transform the system is to assign the variables

$$y_1 = x_1$$
, $y_2 = x_1'$, $y_3 = x_2$, $y_4 = x_2'$.

Before proceeding, note that

$$x_1'' = \frac{1}{m_1} [-(k_1 + k_2)x_1 + k_2x_2 + F_1(t)]$$

$$x_2'' = \frac{1}{m_2} [k_2x_1 - (k_2 + k_3)x_2 + F_2(t)].$$

Differentiating the new variables, we obtain the system of four first order equations

$$y_1' = y_2$$

$$y_2' = \frac{1}{m_1} [-(k_1 + k_2)y_1 + k_2y_3 + F_1(t)]$$

$$y_3' = y_4$$

$$y_4' = \frac{1}{m_2} [k_2y_1 - (k_2 + k_3)y_3 + F_2(t)].$$

7(a). Solving the *first* equation for x_2 , we have $x_2 = x_1' + 2x_1$. Substitution into the second equation results in

$$(x_1' + 2x_1)' = x_1 - 2(x_1' + 2x_1).$$

That is, $x_1'' + 4x_1' + 3x_1 = 0$. The resulting equation is a second order differential equation with *constant coefficients*. The general solution is

$$x_1(t) = c_1 e^{-t} + c_2 e^{-3t}.$$

With x_2 given in terms of x_1 , it follows that

$$x_2(t) = c_1 e^{-t} - c_2 e^{-3t}$$
.

(b). Imposing the specified initial conditions, we obtain

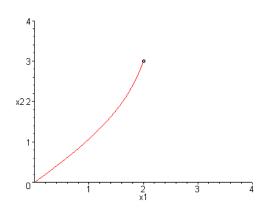
$$c_1 + c_2 = 2$$

 $c_1 - c_2 = 3$,

with solution $c_1 = 5/2$ and $c_2 = -1/2$. Hence

$$x_1(t) = \frac{5}{2}e^{-t} - \frac{1}{2}e^{-3t}$$
 and $x_2(t) = \frac{5}{2}e^{-t} + \frac{1}{2}e^{-3t}$.

(c).



10. Solving the *first* equation for x_2 , we obtain $x_2 = (x_1 - x_1')/2$. Substitution into

the second equation results in

$$(x_1 - x_1')'/2 = 3x_1 - 2(x_1 - x_1').$$

Rearranging the terms, the single differential equation for x_1 is

$$x_1'' + 3x_1' + 2x_1 = 0$$
.

The general solution is

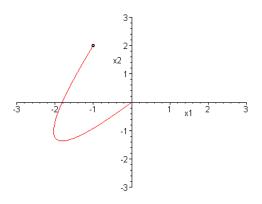
$$x_1(t) = c_1 e^{-t} + c_2 e^{-2t}$$
.

With x_2 given in terms of x_1 , it follows that

$$x_2(t) = c_1 e^{-t} + \frac{3}{2} c_2 e^{-3t}$$
.

Invoking the specified initial conditions, $c_1 = -7$ and $c_2 = 6$. Hence

$$x_1(t) = -7e^{-t} + 6e^{-2t}$$
 and $x_2(t) = -7e^{-t} + 9e^{-3t}$.



11. Solving the *first* equation for x_2 , we have $x_2 = x_1'/2$. Substitution into the second equation results in

$$x_1''/2 = -2x_1.$$

The resulting equation is $x_1'' + 4x_1 = 0$, with general solution

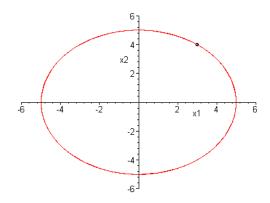
$$x_1(t) = c_1 \cos 2t + c_2 \sin 2t.$$

With x_2 given in terms of x_1 , it follows that

$$x_2(t) = -c_1 \sin 2t + c_2 \cos 2t$$
.

Imposing the specified initial conditions, we obtain $c_1 = 3$ and $c_2 = 4$. Hence

$$x_1(t) = 3\cos 2t + 4\sin 2t$$
 and $x_2(t) = -3\sin 2t + 4\cos 2t$.



12. Solving the *first* equation for x_2 , we obtain $x_2 = x_1'/2 + x_1/4$. Substitution into the second equation results in

$$x_1''/2 + x_1'/4 = -2x_1 - (x_1'/2 + x_1/4)/2$$
.

Rearranging the terms, the single differential equation for x_1 is

$$x_1'' + x_1' + \frac{17}{4} x_1 = 0.$$

The general solution is

$$x_1(t) = e^{-t/2}[c_1 \cos 2t + c_2 \sin 2t].$$

With x_2 given in terms of x_1 , it follows that

$$x_2(t) = e^{-t/2} [-c_1 \cos 2t + c_2 \sin 2t].$$

Imposing the specified initial conditions, we obtain $\,c_1=\,-\,2\,$ and $\,c_2=\,2\,$. Hence

$$x_1(t) = e^{-t/2}[-2\cos 2t + 2\sin 2t]$$
 and $x_2(t) = e^{-t/2}[2\cos 2t + 2\sin 2t]$.



13. Solving the *first* equation for V , we obtain $V=L\cdot I'$. Substitution into the second equation results in

$$L \cdot I'' = -\frac{I}{C} - \frac{L}{RC}I'.$$

Rearranging the terms, the single differential equation for I is

$$LRC \cdot I'' + L \cdot I' + R \cdot I = 0.$$

15. Direct substitution results in

$$(c_1x_1(t) + c_2x_2(t))' = p_{11}(t)[c_1x_1(t) + c_2x_2(t)] + p_{12}(t)[c_1y_1(t) + c_2y_2(t)]$$

$$(c_1y_1(t) + c_2y_2(t))' = p_{21}(t)[c_1x_1(t) + c_2x_2(t)] + p_{22}(t)[c_1y_1(t) + c_2y_2(t)].$$

Expanding the left-hand-side of the *first* equation,

$$c_1 x_1'(t) + c_2 x_2'(t) = c_1 [p_{11}(t)x_1(t) + p_{12}(t)y_1(t)] + c_2 [p_{11}(t)x_2(t) + p_{12}(t)y_2(t)].$$

Repeat with the second equation to show that the system of ODEs is identically satisfied.

16. Based on the hypothesis,

$$x_1'(t) = p_{11}(t)x_1(t) + p_{12}(t)y_1(t) + g_1(t)$$

$$x_2'(t) = p_{11}(t)x_2(t) + p_{12}(t)y_2(t) + g_1(t).$$

Subtracting the two equations,

$$x_1'(t) - x_2'(t) = p_{11}(t)[x_1'(t) - x_2'(t)] + p_{12}(t)[y_1'(t) - y_2'(t)].$$

Similarly,

$$y_1'(t) - y_2'(t) = p_{21}(t)[x_1'(t) - x_2'(t)] + p_{22}(t)[y_1'(t) - y_2'(t)].$$

Hence the *difference* of the two solutions satisfies the *homogeneous* ODE.

17. For rectilinear motion in one dimension, Newton's second law can be stated as

$$\sum F = m \, x''.$$

The resisting force exerted by a linear spring is given by $F_s = k \, \delta$, in which δ is the displacement of the end of a spring from its equilibrium configuration. Hence, with $0 < x_1 < x_2$, the first two springs are in tension, and the last spring is in compression. The sum of the spring forces on m_1 is

$$F_s^1 = -k_1 x_1 - k_2 (x_2 - x_1).$$

The *total* force on m_1 is

$$\sum F^1 = -k_1 x_1 + k_2 (x_2 - x_1) + F_1(t) .$$

Similarly, the *total* force on m_2 is

$$\sum F^2 = -k_2(x_2 - x_1) - k_3 x_2 + F_2(t) .$$

- 18(a). Taking a *clockwise* loop around each of the paths, it is easy to see that voltage drops are given by $V_1 V_2 = 0$, and $V_2 V_3 = 0$.
- (b). Consider the *right node*. The *current in* is given by $I_1 + I_2$. The current *leaving* the node is $-I_3$. Hence the current passing through the node is $(I_1 + I_2) (-I_3)$. Based on Kirchhoff's first law, $I_1 + I_2 + I_3 = 0$.
- (c). In the capacitor,

$$C V_1' = I_1.$$

In the resistor,

$$V_2 = R I_2$$
.

In the inductor,

$$L I_3' = V_3.$$

(d). Based on part (a), $V_3 = V_2 = V_1$. Based on part (b),

$$C V_1' + \frac{1}{R} V_2 + I_3 = 0.$$

It follows that

$$C V_1' = -\frac{1}{R} V_1 - I_3$$
 and $L I_3' = V_1$.

20. Let I_1 , I_2 , I_3 , and I_4 be the current through the resistors, inductor, and capacitor, respectively. Assign V_1 , V_2 , V_3 , and V_4 as the respective voltage drops. Based on Kirchhoff's second law, the net voltage drops, around each loop, satisfy

$$V_1 + V_3 + V_4 = 0$$
, $V_1 + V_3 + V_2 = 0$ and $V_4 - V_2 = 0$.

Applying Kirchhoff's first law to the upper-right node,

$$I_3 - (I_2 + I_4) = 0.$$

Likewise, in the remaining nodes,

$$I_1 - I_3 = 0$$
 and $I_2 + I_4 - I_1 = 0$.

That is,

$$V_4 - V_2 = 0$$
, $V_1 + V_3 + V_4 = 0$ and $I_2 + I_4 - I_3 = 0$.

Using the current-voltage relations,

$$V_1 = R_1 I_1, \ V_2 = R_2 I_2, \ L I_3' = V_3, \ C V_4' = I_4.$$

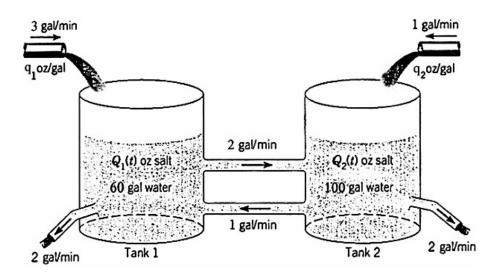
Combining these equations,

$$R_1I_3 + LI_3' + V_4 = 0$$
 and $CV_4' = I_3 - \frac{V_4}{R_2}$.

Now set $I_3 = I$ and $V_4 = V$, to obtain the system of equations

$$LI' = -R_1I - V$$
 and $CV' = I - \frac{V}{R_2}$.

22(a).



Let $Q_1(t)$ and $Q_2(t)$ be the *amount* of salt in the respective tanks at time t. Note that the *volume* of each tank remains constant. Based on conservation of mass, the *rate of increase* of salt, in any given tank, is given by

$$rate\ of\ increase = rate\ in\ -\ rate\ out\ .$$

For Tank 1, the rate of salt flowing *into* Tank 1 is

$$r_{in} = \left[q_1 \frac{oz}{gal}\right] \left[3 \frac{gal}{min}\right] + \left[\frac{Q_2}{100} \frac{oz}{gal}\right] \left[1 \frac{gal}{min}\right]$$
$$= 3 q_1 + \frac{Q_2}{100} \frac{oz}{min}.$$

The rate at which salt flow out of Tank 1 is

$$r_{out} = \left[\frac{Q_1}{60} \frac{oz}{gal}\right] \left[4 \frac{gal}{min}\right] = \frac{Q_1}{15} \frac{oz}{min}.$$

Hence

$$\frac{dQ_1}{dt} = 3\,q_1 + \frac{Q_2}{100} - \frac{Q_1}{15}\,.$$

Similarly, for Tank 2,

$$\frac{dQ_2}{dt} = q_2 + \frac{Q_1}{30} - \frac{3Q_2}{100} \,.$$

The process is modeled by the system of equations

$$Q_1' = -\frac{Q_1}{15} + \frac{Q_2}{100} + 3 q_1$$
$$Q_2' = \frac{Q_1}{30} - \frac{3Q_2}{100} + q_2.$$

The initial conditions are $Q_1(0) = Q_1^0$ and $Q_2(0) = Q_2^0$.

(b). The equilibrium values are obtain by solving the system

$$-\frac{Q_1}{15} + \frac{Q_2}{100} + 3 q_1 = 0$$
$$\frac{Q_1}{30} - \frac{3Q_2}{100} + q_2 = 0.$$

Its solution leads to $Q_1^E=54\,q_1+6\,q_2$ and $Q_2^E=60\,q_1+40\,q_2$.

(c). The question refers to possible solution of the system

$$54 q_1 + 6 q_2 = 60$$
$$60 q_1 + 40 q_2 = 50.$$

It is possible for formally solve the system of equations, but the unique solution gives

$$q_1=rac{7}{6}rac{oz}{gal}$$
 and $q_2=-rac{1}{2}rac{oz}{gal}$,

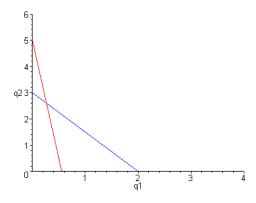
which is *not* physically possible.

(d). We can write

$$q_2 = -9 q_1 + \frac{Q_1^E}{6}$$

$$q_2 = -\frac{3}{2} q_1 + \frac{Q_2^E}{40},$$

which are the equations of two lines in the q_1q_2 -plane:



The intercepts of the *first* line are $Q_1^E/54$ and $Q_1^E/6$. The intercepts of the *second* line are $Q_2^E/60$ and $Q_2^E/40$. Therefore the system will have a unique solution, in the *first quadrant*, as long as $Q_1^E/54 \leq Q_2^E/60$ or $Q_2^E/40 \leq Q_1^E/6$. That is,

$$\frac{10}{9} \le \frac{Q_2^E}{Q_1^E} \le \frac{20}{3} \,.$$

- CHAPTER 7. —

Section 7.2

2(a).

$$\mathbf{A} - 2\mathbf{B} = \begin{pmatrix} 1+i-2i & -1+2i-6 \\ 3+2i-4 & 2-i+4i \end{pmatrix} = \begin{pmatrix} 1-i & -7+2i \\ -1+2i & 2+3i \end{pmatrix}.$$

(b).

$$3\mathbf{A} + \mathbf{B} = \begin{pmatrix} 3+3i+i & -3+6i+3\\ 9+6i+2 & 6-3i-2i \end{pmatrix} = \begin{pmatrix} 3+4i & 6i\\ 11+6i & 6-5i \end{pmatrix}.$$

(c).

$$\mathbf{AB} = \begin{pmatrix} (1+i)i + 2(-1+2i) & 3(1+i) + (-1+2i)(-2i) \\ (3+2i)i + 2(2-i) & 3(3+2i) + (2-i)(-2i) \end{pmatrix}$$
$$= \begin{pmatrix} -3+5i & 7+5i \\ 2+i & 7+2i \end{pmatrix}.$$

(d).

$$\mathbf{BA} = \begin{pmatrix} (1+i)i + 3(3+2i) & (-1+2i)i + 3(2-i) \\ 2(1+i) + (-2i)(3+2i) & 2(-1+2i) + (-2i)(2-i) \end{pmatrix}$$
$$= \begin{pmatrix} 8+7i & 4-4i \\ 6-4i & -4 \end{pmatrix}.$$

3.

$$\mathbf{A}^{T} + \mathbf{B}^{T} = \begin{pmatrix} -2 & 1 & 2 \\ 1 & 0 & -1 \\ 2 & -3 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 3 & -2 \\ 2 & -1 & 1 \\ 3 & -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 4 & 0 \\ 3 & -1 & 0 \\ 5 & -4 & 1 \end{pmatrix}$$
$$= (\mathbf{A} + \mathbf{B})^{T}.$$

4(b).

$$\overline{\mathbf{A}} = \begin{pmatrix} 3+2i & 1-i \\ 2+i & -2-3i \end{pmatrix}.$$

(c). By definition, $\mathbf{A}^* = (\overline{\mathbf{A}}^T) = (\overline{\mathbf{A}})^T$.

5.

$$2(\mathbf{A} + \mathbf{B}) = 2 \begin{pmatrix} 5 & 3 & -2 \\ 0 & 2 & 5 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 10 & 6 & -4 \\ 0 & 4 & 10 \\ 2 & 4 & 6 \end{pmatrix}.$$

7. Let $\mathbf{A} = (a_{ij})$ and $\mathbf{B} = (b_{ij})$. The given operations in (a) - (d) are performed elementwise. That is,

(a).
$$a_{ij} + b_{ij} = b_{ij} + a_{ij}$$
.

(b).
$$a_{ij} + (b_{ij} + c_{ij}) = (a_{ij} + b_{ij}) + c_{ij}$$
.

(c).
$$\alpha(a_{ij} + b_{ij}) = \alpha a_{ij} + \alpha b_{ij}$$
.

(d).
$$(\alpha + \beta) a_{ij} = \alpha a_{ij} + \alpha a_{ij}$$
.

In the following, let $\mathbf{A} = (a_{ij})$, $\mathbf{B} = (b_{ij})$ and $\mathbf{C} = (c_{ij})$.

(e). Calculating the generic element,

$$(\mathbf{BC})_{ij} = \sum_{k=1}^{n} b_{ik} c_{kj}.$$

Therefore

$$[\mathbf{A}(\mathbf{BC})]_{ij} = \sum_{r=1}^{n} a_{ir} \left(\sum_{k=1}^{n} b_{rk} c_{kj} \right)$$
$$= \sum_{r=1}^{n} \sum_{k=1}^{n} a_{ir} b_{rk} c_{kj}$$
$$= \sum_{k=1}^{n} \left[\left(\sum_{r=1}^{n} a_{ir} b_{rk} \right) c_{kj} \right].$$

The last summation is recognized as

$$\sum_{r=1}^n a_{ir} b_{rk} = (\mathbf{AB})_{ik},$$

which is the ik-th element of the matrix AB.

(f). Likewise,

$$[\mathbf{A}(\mathbf{B} + \mathbf{C})]_{ij} = \sum_{k=1}^{n} a_{ik} (b_{kj} + c_{kj})$$

$$= \sum_{k=1}^{n} a_{ik} b_{kj} + \sum_{k=1}^{n} a_{ik} c_{kj}$$

$$= (\mathbf{A}\mathbf{B})_{ij} + (\mathbf{A}\mathbf{C})_{ij}.$$

8(a).
$$\mathbf{x}^T \mathbf{y} = 2(-1+i) + 2(3i) + (1-i)(3-i) = 4i$$
.
(b). $\mathbf{y}^T \mathbf{y} = (-1+i)^2 + 2^2 + (3-i)^2 = 12 - 8i$.

(b).
$$\mathbf{y}^T \mathbf{y} = (-1+i)^2 + 2^2 + (3-i)^2 = 12 - 8i$$
.

(c).
$$(\mathbf{x}, \mathbf{y}) = 2(-1-i) + 2(3i) + (1-i)(3+i) = 2+2i$$
.

(c).
$$(\mathbf{x}, \mathbf{y}) = 2(-1-i) + 2(3i) + (1-i)(3+i) = 2+2i$$
.
(d). $(\mathbf{y}, \mathbf{y}) = (-1+i)(-1-i) + 2^2 + (3-i)(3+i) = 16$.

9. Indeed,

$$\mathbf{x}^T \mathbf{y} = \sum_{j=1}^n x_j y_j = \mathbf{y}^T \mathbf{x},$$

and

$$(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{n} x_j \overline{y}_j = \sum_{j=1}^{n} \overline{y}_j x_j = \overline{\sum_{j=1}^{n} y_j \overline{x}_j} = \overline{(\mathbf{y}, \mathbf{x})}.$$

11. First *augment* the given matrix by the identity matrix:

$$[\mathbf{A} \,|\, \mathbf{I}] = \begin{pmatrix} 3 & -1 & 1 & 0 \\ 6 & 2 & 0 & 1 \end{pmatrix}.$$

Divide the *first row* by 3, to obtain

$$\begin{pmatrix} 1 & -\frac{1}{3} & \frac{1}{3} & 0 \\ 6 & 2 & 0 & 1 \end{pmatrix}.$$

Adding -6 times the *first row* to the *second row* results in

$$\begin{pmatrix} 1 & -\frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 4 & -2 & 1 \end{pmatrix}.$$

Divide the second row by 4, to obtain

$$\begin{pmatrix} 1 & -\frac{1}{3} & \frac{1}{3} & 0\\ 0 & 1 & -\frac{1}{2} & \frac{1}{4} \end{pmatrix}.$$

Finally, adding 1/3 times the second row to the first row results in

$$\begin{pmatrix} 1 & 0 & \frac{1}{6} & \frac{1}{12} \\ 0 & 1 & -\frac{1}{2} & \frac{1}{4} \end{pmatrix}.$$

Hence

$$\begin{pmatrix} 3 & -1 \\ 6 & 2 \end{pmatrix}^{-1} = \frac{1}{12} \begin{pmatrix} 2 & 1 \\ -6 & 3 \end{pmatrix}.$$

13. The augmented matrix is

$$\begin{pmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 2 & -1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{pmatrix}.$$

Combining the elements of the *first row* with the elements of the *second* and *third* rows results in

$$\begin{pmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & -3 & 3 & -2 & 1 & 0 \\ 0 & 0 & 3 & -1 & 0 & 1 \end{pmatrix}.$$

Divide the elements of the *second row* by -3, and the elements of the *third row* by 3. Now subtracting the new *second row* from the *first row* yields

$$\begin{pmatrix} 1 & 0 & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 1 & -1 & \frac{2}{3} & -\frac{1}{3} & 0 \\ 0 & 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} \end{pmatrix}.$$

Finally, combine the *third row* with the *second row* to obtain

$$\begin{pmatrix} 1 & 0 & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 1 & 0 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} \end{pmatrix}.$$

Hence

$$\begin{pmatrix} 1 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 1 & 2 \end{pmatrix}^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}.$$

15. Elementary row operations yield

$$\begin{pmatrix} 2 & 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 & \frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{4} & \frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & 1 & 0 & 0 & \frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{4} & \frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & 1 & 0 & 0 & \frac{1}{2} \end{pmatrix}.$$

Finally, combining the first and third rows results in

$$\begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & -\frac{1}{4} & \frac{1}{8} \\ 0 & 1 & 0 & 0 & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & 1 & 0 & 0 & \frac{1}{2} \end{pmatrix}.$$

16. Elementary row operations yield

$$\begin{pmatrix} 1 & -1 & -1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ 3 & -2 & 1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 & 1 & 0 & 0 \\ 0 & 3 & 2 & -2 & 1 & 0 \\ 0 & 1 & 4 & -3 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 1 & \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} & 0 \\ 0 & 0 & \frac{10}{3} & -\frac{7}{3} & -\frac{1}{3} & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{1}{10} & \frac{3}{10} & \frac{1}{10} \\ 0 & 1 & 0 & -\frac{3}{15} & \frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & \frac{10}{3} & -\frac{7}{3} & -\frac{1}{3} & 1 \end{pmatrix}.$$

Finally, normalizing the *last row* results in

$$\begin{pmatrix} 1 & 0 & 0 & \frac{1}{10} & \frac{3}{10} & \frac{1}{10} \\ 0 & 1 & 0 & -\frac{3}{15} & \frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 1 & -\frac{7}{10} & -\frac{1}{10} & \frac{3}{10} \end{pmatrix}.$$

17. Elementary row operations on the augmented matrix yield the row-reduced form of the augmented matrix

$$\begin{pmatrix} 1 & 0 & -\frac{1}{7} & 0 & \frac{1}{7} & \frac{2}{7} \\ 0 & 1 & \frac{3}{7} & 0 & \frac{4}{7} & \frac{1}{7} \\ 0 & 0 & 0 & 1 & -2 & -1 \end{pmatrix}.$$

The *left submatrix* cannot be converted to the identity matrix. Hence the given matrix is singular.

18. Elementary row operations on the augmented matrix yield

$$\begin{pmatrix} 1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

19. Elementary row operations on the augmented matrix yield

$$\begin{pmatrix} 1 & -1 & 2 & 0 & 1 & 0 & 0 & 0 \\ -1 & 2 & -4 & 2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 3 & 0 & 0 & 1 & 0 \\ -2 & 2 & 0 & -1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & -2 & 2 & 1 & 1 & 0 & 0 \\ 0 & 0 & 4 & -1 & 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 3 & -1 & 0 & 1 & 0 \\ 0 & 0 & 4 & -1 & 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 4 & -3 & -1 & 2 & 0 \\ 0 & 0 & 1 & 1 & -2 & -1 & 1 & 0 \\ 0 & 0 & 0 & -5 & 10 & 4 & -4 & 1 \end{pmatrix}.$$

Normalizing the *last row* and combining it with the others results in

$$\begin{pmatrix} 1 & 0 & 0 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 4 & -3 & -1 & 2 & 0 \\ 0 & 0 & 1 & 1 & -2 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -2 & -\frac{4}{5} & \frac{4}{5} & -\frac{1}{5} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 6 & \frac{13}{5} & -\frac{8}{5} & \frac{2}{5} \\ 0 & 1 & 0 & 0 & 5 & \frac{11}{5} & -\frac{6}{5} & \frac{4}{5} \\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ 0 & 0 & 0 & 1 & -2 & -\frac{4}{5} & \frac{4}{5} & -\frac{1}{5} \end{pmatrix}.$$

20. Suppose that **A** is *nonsingular*, and that there exist matrices **B** and **C**, such that AB = I and AC = I. Based on the properties of matrices, it follows that

$$\mathbf{A}(\mathbf{B} - \mathbf{C}) = \mathbf{A}\mathbf{Y} = \mathbf{0}_{n \times n}.$$

Write the difference of the two matrices, Y, in terms of its columns as

$$\mathbf{Y} = \left[\mathbf{y}^1 | \, \mathbf{y}^2 | \cdots | \, \mathbf{y}^n \right].$$

The *j-th* column of the product matrix, AY, can be expressed as Ay^{j} . Now since *all* columns of the product matrix consist only of *zeros*, we end up with n homogeneous systems of linear equations

$$\mathbf{A} \, \mathbf{y}^{\mathbf{j}} = \mathbf{0}_{n \times 1}, \ j = 1, 2, \dots, n.$$

Since **A** is *nonsingular*, each system must have a *trivial solution*. That is, $\mathbf{y^j} = \mathbf{0}_{n \times 1}$, for $j = 1, 2, \dots, n$. Hence $\mathbf{Y} = \mathbf{0}_{n \times n}$ and $\mathbf{B} = \mathbf{C}$.

21(a).

$$\mathbf{A} + 3\mathbf{B} = \begin{pmatrix} e^{t} & 2e^{-t} & e^{2t} \\ 2e^{t} & e^{-t} & -e^{2t} \\ -e^{t} & 3e^{-t} & 2e^{2t} \end{pmatrix} + \begin{pmatrix} 6e^{t} & 3e^{-t} & 9e^{2t} \\ -3e^{t} & 6e^{-t} & 3e^{2t} \\ 9e^{t} & -3e^{-t} & -3e^{2t} \end{pmatrix}$$
$$= \begin{pmatrix} 7e^{t} & 5e^{-t} & 10e^{2t} \\ -e^{t} & 7e^{-t} & 2e^{2t} \\ 8e^{t} & 0 & -e^{2t} \end{pmatrix}.$$

(b). Based on the standard definition of matrix multiplication,

$$\mathbf{AB} = \begin{pmatrix} 2e^{2t} - 2 + 3e^{3t} & 1 + 4e^{-2t} - e^t & 3e^{3t} + 2e^t - e^{4t} \\ 4e^{2t} - 1 - 3e^{3t} & 2 + 2e^{-2t} + e^t & 6e^{3t} + e^t + e^{4t} \\ -2e^{2t} - 3 + 6e^{3t} & -1 + 6e^{-2t} - 2e^t & -3e^{3t} + 3e^t - 2e^{4t} \end{pmatrix}.$$

(c).

$$\frac{d\mathbf{A}}{dt} = \begin{pmatrix} e^t & -2e^{-t} & 2e^{2t} \\ 2e^t & -e^{-t} & -2e^{2t} \\ -e^t & -3e^{-t} & 4e^{2t} \end{pmatrix}.$$

(d). Note that

$$\int \mathbf{A}(t)dt = \begin{pmatrix} e^t & -2e^{-t} & e^{2t}/2\\ 2e^t & -e^{-t} & -e^{2t}/2\\ -e^t & -3e^{-t} & e^{2t} \end{pmatrix} + \mathbf{C}.$$

Therefore

$$\int_{0}^{1} \mathbf{A}(t)dt = \begin{pmatrix} e & -2e^{-1} & e^{2}/2 \\ 2e & -e^{-1} & -e^{2}/2 \\ -e & -3e^{-1} & e^{2} \end{pmatrix} - \begin{pmatrix} 1 & -2 & 1/2 \\ 2 & -1 & -1/2 \\ -1 & -3 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} e - 1 & 2 - 2e^{-1} & e^{2}/2 - 1/2 \\ 2e - 2 & 1 - e^{-1} & 1/2 - e^{2}/2 \\ 1 - e & 3 - 3e^{-1} & e^{2} - 1 \end{pmatrix}.$$

The result can also be written as

$$(e-1)\begin{pmatrix} 1 & \frac{2}{e} & \frac{1}{2}(e+1) \\ 2 & \frac{1}{e} & -\frac{1}{2}(e+1) \\ -1 & \frac{3}{e} & e+1 \end{pmatrix}.$$

23. First note that

$$\mathbf{x}' = \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^t + 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \left(e^t + t e^t \right) = \begin{pmatrix} 3e^t + 2t e^t \\ 2e^t + 2t e^t \end{pmatrix}.$$

We also have

$$\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^t + \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} (t e^t)$$

$$= \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^t + \begin{pmatrix} 2 \\ 2 \end{pmatrix} (t e^t)$$

$$= \begin{pmatrix} 2e^t + 2t e^t \\ 3e^t + 2t e^t \end{pmatrix}.$$

It follows that

$$\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathbf{x} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t = \begin{pmatrix} 3e^t + 2t e^t \\ 2e^t + 2t e^t \end{pmatrix}.$$

24. It is easy to see that

$$\mathbf{x}' = \begin{pmatrix} -6 \\ 8 \\ 4 \end{pmatrix} e^{-t} + \begin{pmatrix} 0 \\ 4 \\ -4 \end{pmatrix} e^{2t} = \begin{pmatrix} -6e^{-t} \\ 8e^{-t} + 4e^{2t} \\ 4e^{-t} - 4e^{-2t} \end{pmatrix}.$$

On the other hand,

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ -8 \\ -4 \end{pmatrix} e^{-t} + \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ -2 \end{pmatrix} e^{2t}$$

$$= \begin{pmatrix} -6 \\ 8 \\ 4 \end{pmatrix} e^{-t} + \begin{pmatrix} 0 \\ 4 \\ -4 \end{pmatrix} e^{2t} .$$

26. Differentiation, elementwise, results in

$$\Psi' = \begin{pmatrix} e^t & -2e^{-2t} & 3e^{3t} \\ -4e^t & 2e^{-2t} & 6e^{3t} \\ -e^t & 2e^{-2t} & 3e^{3t} \end{pmatrix}.$$

On the other hand,

$$\begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix} \Psi = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} e^t & e^{-2t} & e^{3t} \\ -4e^t & -e^{-2t} & 2e^{3t} \\ -e^t & -e^{-2t} & e^{3t} \end{pmatrix}$$
$$= \begin{pmatrix} e^t & -2e^{-2t} & 3e^{3t} \\ -4e^t & 2e^{-2t} & 6e^{3t} \\ -e^t & 2e^{-2t} & 3e^{3t} \end{pmatrix}.$$

Section 7.3

4. The augmented matrix is

$$\begin{pmatrix} 1 & 2 & -1 & | & 0 \\ 2 & 1 & 1 & | & 0 \\ 1 & -1 & 2 & | & 0 \end{pmatrix}.$$

Adding -2 times the *first row* to the *second row* and subtracting the *first row* from the *third row* results in

$$\begin{pmatrix} 1 & 2 & -1 & | & 0 \\ 0 & -3 & 3 & | & 0 \\ 0 & -3 & 3 & | & 0 \end{pmatrix}.$$

Adding the negative of the second row to the third row results in

$$\begin{pmatrix} 1 & 2 & -1 & | & 0 \\ 0 & -3 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

We evidently end up with an equivalent system of equations

$$x_1 + 2x_2 - x_3 = 0$$
$$-x_2 + x_3 = 0.$$

Since there is no unique solution, let $x_3 = \alpha$, where α is arbitrary. It follows that $x_2 = \alpha$, and $x_1 = -\alpha$. Hence all solutions have the form

$$\mathbf{x} = \alpha \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}.$$

5. The augmented matrix is

$$\left(\begin{array}{ccc|cccc}
1 & 0 & -1 & | & 0 \\
3 & 1 & 1 & | & 0 \\
-1 & 1 & 2 & | & 0
\end{array}\right).$$

Adding -3 times the *first row* to the *second row* and adding the *first row* to the *last row* yields

$$\begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{pmatrix}.$$

Now add the negative of the second row to the third row to obtain

$$\begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & -2 & | & 0 \end{pmatrix}.$$

We end up with an equivalent linear system

$$x_1 - x_3 = 0$$
$$x_2 + 3x_3 = 0$$
$$x_3 = 0.$$

Hence the unique solution of the given system of equations is $\,x_1=x_2=x_3=0$.

7. Write the given vectors as *columns* of the matrix

$$\mathbf{X} = \begin{pmatrix} 2 & 0 & -1 \\ 1 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

It is evident that $det(\mathbf{X})=0$. Hence the vectors are *linearly dependent*. In order to find a linear relationship between them, write $c_1\mathbf{x}^{(1)}+c_2\mathbf{x}^{(2)}+c_3\mathbf{x}^{(3)}=\mathbf{0}$. The latter equation is equivalent to

$$\begin{pmatrix} 2 & 0 & -1 \\ 1 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Performing elementary row operations,

$$\begin{pmatrix} 2 & 0 & -1 & | & 0 \\ 1 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1/2 & | & 0 \\ 0 & 1 & 5/2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

We obtain the system of equations

$$c_1 - c_3/2 = 0$$

$$c_2 + 5c_3/2 = 0.$$

Setting $c_3 = 2$, it follows that $c_1 = 1$ and $c_3 = -5$. Hence

$$\mathbf{x}^{(1)} - 5\mathbf{x}^{(2)} + 2\mathbf{x}^{(3)} = \mathbf{0}$$
.

9. The matrix containing the given vectors as *columns* is

$$\mathbf{X} = \begin{pmatrix} 1 & 2 & -1 & 3 \\ 2 & 3 & 0 & -1 \\ -1 & 1 & 2 & 1 \\ 0 & -1 & 2 & 3 \end{pmatrix}.$$

We find that $det(\mathbf{X}) = -70$. Hence the given vectors are *linearly independent*.

10. Write the given vectors as *columns* of the matrix

$$\mathbf{X} = \begin{pmatrix} 1 & 3 & 2 & 4 \\ 2 & 1 & -1 & 3 \\ -2 & 0 & 1 & -2 \end{pmatrix}.$$

The four vectors are necessarily linearly dependent. Hence there are nonzero scalars such that $c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)} + c_3 \mathbf{x}^{(3)} + c_4 \mathbf{x}^{(4)} = \mathbf{0}$. The latter equation is equivalent to

$$\begin{pmatrix} 1 & 3 & 2 & 4 \\ 2 & 1 & -1 & 3 \\ -2 & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Performing elementary row operations,

$$\begin{pmatrix} 1 & 3 & 2 & 4 & | & 0 \\ 2 & 1 & -1 & 3 & | & 0 \\ -2 & 0 & 1 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & | & 0 \\ 0 & 1 & 0 & 1 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \end{pmatrix}.$$

We end up with an equivalent linear system

$$c_1 + c_4 = 0$$
$$c_2 + c_4 = 0$$
$$c_3 = 0$$

Let $c_4 = -1$. Then $c_1 = 1$ and $c_2 = 1$. Therefore we find that

$$\mathbf{x}^{(1)} + \mathbf{x}^{(2)} - \mathbf{x}^{(4)} = \mathbf{0}$$
.

- 11. The matrix containing the given vectors as *columns*, \mathbf{X} , is of size $n \times m$. Since n < m, we can augment the matrix with m-n rows of zeros. The resulting matrix, $\widetilde{\mathbf{X}}$, is of size $m \times m$. Since $\widetilde{\mathbf{X}}$ is square matrix, with at least one row of zeros, it follows that $\det(\widetilde{\mathbf{X}}) = 0$. Hence the column vectors of $\widetilde{\mathbf{X}}$ are linearly dependent. That is, there is a nonzero vector, \mathbf{c} , such that $\widetilde{\mathbf{X}} \mathbf{c} = \mathbf{0}_{m \times 1}$. If we write only the first n rows of the latter equation, we have $\mathbf{X} \mathbf{c} = \mathbf{0}_{n \times 1}$. Therefore the column vectors of \mathbf{X} are linearly dependent.
- 12. By inspection, we find that

$$\mathbf{x}^{(1)}(t) - 2\mathbf{x}^{(2)}(t) = \begin{pmatrix} -e^{-t} \\ 0 \end{pmatrix}.$$

Hence $3\mathbf{x}^{(1)}(t)-6\mathbf{x}^{(2)}(t)+\mathbf{x}^{(3)}(t)=\mathbf{0}$, and the vectors are linearly dependent.

13. Two vectors are *linearly dependent* if and only if one is a *nonzero* scalar multiple

of the other. However, there is no *nonzero* scalar, c, such that $2 \sin t = c \sin t$ and $\sin t = 2c \sin t$ for all $t \in (-\infty, \infty)$. Therefore the vectors are *linearly independent*.

16. The eigenvalues λ and eigenvectors **x** satisfy the equation

$$\begin{pmatrix} 3-\lambda & -2 \\ 4 & -1-\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $(3 - \lambda)(-1 - \lambda) + 8 = 0$, that is,

$$\lambda^2 - 2\lambda + 5 = 0.$$

The eigenvalues are $\lambda_1 = 1 - 2i$ and $\lambda_2 = 1 + 2i$. The components of the eigenvector $\mathbf{x}^{(1)}$ are solutions of the system

$$\begin{pmatrix} 2+2i & -2 \\ 4 & -2+2i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The two equations reduce to $(1+i)x_1 = x_2$. Hence $\mathbf{x}^{(1)} = (1,1+i)^T$. Now setting $\lambda = \lambda_2 = 1 + 2i$, we have

$$\begin{pmatrix} 2-2i & -2 \\ 4 & -2-2i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

with solution given by $\mathbf{x}^{(2)} = (1, 1-i)^T$.

17. The eigenvalues λ and eigenvectors **x** satisfy the equation

$$\begin{pmatrix} -2-\lambda & 1\\ 1 & -2-\lambda \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $(-2 - \lambda)(-2 - \lambda) - 1 = 0$, that is,

$$\lambda^2 + 4\lambda + 3 = 0.$$

The eigenvalues are $\lambda_1=-3$ and $\lambda_2=-1$. For $\lambda_1=-3$, the system of equations becomes

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

which reduces to $x_1 + x_2 = 0$. A solution vector is given by $\mathbf{x}^{(1)} = (1, -1)^T$. Substituting $\lambda = \lambda_2 = -1$, we have

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The equations reduce to $x_1 = x_2$. Hence a solution vector is given by $\mathbf{x}^{(2)} = (1, 1)^T$.

19. The eigensystem is obtained from analysis of the equation

$$\begin{pmatrix} 1 - \lambda & \sqrt{3} \\ \sqrt{3} & -1 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, the determinant of the coefficient matrix must be zero. That is,

$$\lambda^2 - 4 = 0$$

Hence the eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = 2$. Substituting the first eigenvalue, $\lambda = -2$, yields

$$\begin{pmatrix} 3 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The system is equivalent to the equation $\sqrt{3} x_1 + x_2 = 0$. A solution vector is given by $\mathbf{x}^{(1)} = \left(1, -\sqrt{3}\right)^T$. Substitution of $\lambda = 2$ results in

$$\begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

which reduces to $x_1 = \sqrt{3} x_2$. A corresponding solution vector is $\mathbf{x}^{(2)} = (\sqrt{3}, 1)^T$.

20. The eigenvalues λ and eigenvectors **x** satisfy the equation

$$\begin{pmatrix} -3-\lambda & 3/4 \\ -5 & 1-\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $(-3 - \lambda)(1 - \lambda) + 15/4 = 0$, that is,

$$\lambda^2 + 2\lambda + 3/4 = 0.$$

Hence the eigenvalues are $\lambda_1=-3/2$ and $\lambda_2=-1/2$. In order to determine the eigenvector corresponding to λ_1 , set $\lambda=-3/2$. The system of equations becomes

$$\begin{pmatrix} -3/2 & 3/4 \\ -5 & 5/2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

which reduces to $-2x_1 + x_2 = 0$. A solution vector is given by $\mathbf{x}^{(1)} = (1, 2)^T$. Substitution of $\lambda = \lambda_2 = -1/2$ results in

$$\begin{pmatrix} -5/2 & 3/4 \\ -5 & 3/2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

which reduces to $10 x_1 = 3 x_2$. A corresponding solution vector is $\mathbf{x}^{(2)} = (3, 10)^T$.

22. The eigensystem is obtained from analysis of the equation

$$\begin{pmatrix} 3-\lambda & 2 & 2\\ 1 & 4-\lambda & 1\\ -2 & -4 & -1-\lambda \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}.$$

The characteristic equation of the coefficient matrix is $\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0$, with roots $\lambda_1 = 1$, $\lambda_2 = 2$ and $\lambda_3 = 3$. Setting $\lambda = \lambda_1 = 1$, we have

$$\begin{pmatrix} 2 & 2 & 2 \\ 1 & 3 & 1 \\ -2 & -4 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This system is reduces to the equations

$$x_1 + x_3 = 0$$
$$x_2 = 0$$

A corresponding solution vector is given by $\mathbf{x}^{(1)} = (1, 0, -1)^T$. Setting $\lambda = \lambda_2 = 2$, the *reduced* system of equations is

$$x_1 + 2x_2 = 0$$
$$x_3 = 0.$$

A corresponding solution vector is given by $\mathbf{x}^{(2)} = (-2, 1, 0)^T$. Finally, setting $\lambda = \lambda_3 = 3$, the *reduced* system of equations is

$$x_1 = 0$$

$$x_2 + x_3 = 0.$$

A corresponding solution vector is given by $\mathbf{x}^{(3)} = (0, 1, -1)^T$.

23. For computational purposes, note that if λ is an eigenvalue of $\bf B$, then $c\,\lambda$ is an eigenvalue of the matrix $\bf A=c\, \bf B$. Eigenvectors are unaffected, since they are only determined up to a scalar multiple. So with

$$\mathbf{B} = \begin{pmatrix} 11 & -2 & 8 \\ -2 & 2 & 10 \\ 8 & 10 & 5 \end{pmatrix},$$

the associated characteristic equation is $\mu^3-18\mu^2-81\mu+1458=0$, with roots $\mu_1=-9$, $\mu_2=9$ and $\mu_3=18$. Hence the eigenvalues of the given matrix, **A**, are $\lambda_1=-1$, $\lambda_2=1$ and $\lambda_3=2$. Setting $\lambda=\lambda_1=-1$, (which corresponds to using $\mu_1=-9$ in the *modified* problem) the *reduced* system of equations is

$$2x_1 + x_3 = 0$$
$$x_2 + x_3 = 0.$$

A corresponding solution vector is given by $\mathbf{x}^{(1)} = (1, 2, -2)^T$. Setting $\lambda = \lambda_2 = 1$, the *reduced* system of equations is

$$x_1 + 2 x_3 = 0$$

$$x_2 - 2 x_3 = 0$$
.

A corresponding solution vector is given by $\mathbf{x}^{(2)} = (2, -2, -1)^T$. Finally, setting $\lambda = \lambda_2 = 1$, the *reduced* system of equations is

$$x_1 - x_3 = 0$$

$$2x_2 - x_3 = 0.$$

A corresponding solution vector is given by $\mathbf{x}^{(3)} = (2, 1, 2)^T$.

25. Suppose that $\mathbf{A}\mathbf{x} = \mathbf{0}$, but that $\mathbf{x} \neq \mathbf{0}$. Let $\mathbf{A} = (a_{ij})$. Using elementary row operations, it is possible to transform the matrix into one that is *not* upper triangular. If it were upper triangular, backsubstitution would imply that $\mathbf{x} = \mathbf{0}$. Hence a linear combination of all the rows results in a row containing only *zeros*. That is, there are n scalars, β_i , one for each row and not all zero, such that for each for column j,

$$\sum_{i=1}^{n} \beta_i \, a_{ij} = 0 \, .$$

Now consider $\mathbf{A}^* = (b_{ij})$. By definition, $b_{ij} = \overline{a_{ji}}$, or $a_{ij} = \overline{b_{ji}}$. It follows that for each j,

$$\sum_{i=1}^{n} \beta_i \, \overline{b_{ji}} = \sum_{k=1}^{n} \, \overline{b_{jk}} \, \beta_k = \sum_{k=1}^{n} \, b_{jk} \, \overline{\beta_k} = 0 \, .$$

Let $\mathbf{y} = (\overline{\beta_1}, \overline{\beta_2}, \cdots, \overline{\beta_n})^T$. We therefore have *nonzero* vector, \mathbf{y} , such that $\mathbf{A}^*\mathbf{y} = \mathbf{0}$.

26. By definition,

$$(\mathbf{A}\mathbf{x}, \mathbf{y}) = \sum_{i=0}^{n} (\mathbf{A}\mathbf{x})_{i} \overline{y_{i}}$$
$$= \sum_{i=0}^{n} \sum_{j=0}^{n} a_{ij} x_{j} \overline{y_{i}}.$$

Let $b_{ij} = \overline{a_{ji}}$, so that $a_{ij} = \overline{b_{ji}}$. Now interchanging the order or summation,

$$(\mathbf{A}\mathbf{x}, \mathbf{y}) = \sum_{j=0}^{n} x_j \sum_{i=0}^{n} a_{ij} \, \overline{y_i}$$
$$= \sum_{j=0}^{n} x_j \sum_{i=0}^{n} \overline{b_{ji}} \, \overline{y_i}.$$

Now note that

$$\sum_{i=0}^{n} \overline{b_{ji}} \, \overline{y_i} = \overline{\sum_{i=0}^{n} b_{ji} \, y_i} = \overline{(\mathbf{A}^* \mathbf{y})}_j \, .$$

Therefore

$$(\mathbf{A}\mathbf{x},\mathbf{y}) = \sum_{j=0}^{n} x_j \overline{(\mathbf{A}^*\mathbf{y})}_j = (\mathbf{x},\mathbf{A}^*\mathbf{y}).$$

28. By linearity,

$$\mathbf{A}(\mathbf{x}^{(0)} + \alpha \boldsymbol{\xi}) = \mathbf{A}\mathbf{x}^{(0)} + \alpha \mathbf{A}\boldsymbol{\xi}$$
$$= \mathbf{b} + \mathbf{0}$$
$$= \mathbf{b}.$$

29. Let $c_{ij} = \overline{a_{ji}}$. By the hypothesis, there is a nonzero vector, \mathbf{y} , such that

$$\sum_{j=1}^{n} c_{ij} y_j = \sum_{j=1}^{n} \overline{a_{ji}} y_j = 0, \ i = 1, 2, \dots, n.$$

Taking the *conjugate* of both sides, and interchanging the indices, we have

$$\sum_{i=1}^{n} a_{ij} \, \overline{y_i} = 0 \, .$$

This implies that a linear combination of *each row* of **A** is equal to *zero*. Now consider the augmented matrix $[\mathbf{A} | \mathbf{b}]$. Replace the *last* row by

$$\sum_{i=1}^{n} \overline{y_i} [a_{i1}, a_{i2}, \dots, a_{in}, b_i] = \left[0, 0, \dots, 0, \sum_{i=1}^{n} \overline{y_i} b_i\right].$$

We find that if $(\mathbf{b}, \mathbf{y}) = 0$, then the last row of the augmented matrix contains only zeros. Hence there are n-1 remaining equations. We can now set $x_n = \alpha$, some parameter, and solve for the other variables in terms of α . Therefore the system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution.

30. If $\lambda = 0$ is an eigenvalue of **A**, then there is a nonzero vector, **x**, such that

$$\mathbf{A}\mathbf{x} = \lambda \,\mathbf{x} = \mathbf{0} \,.$$

That is, $\mathbf{A}\mathbf{x} = \mathbf{0}$ has a nonzero solution. This implies that the mapping defined by \mathbf{A} is not 1-to-1, and hence not invertible. On the other hand, if \mathbf{A} is singular, then $det(\mathbf{A}) = 0$.

Thus, Ax = 0 has a nonzero solution. The latter equation can be written as Ax = 0 x.

31. As shown in Prob. 26, $(\mathbf{A}\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathbf{A}^*\mathbf{y})$. By definition of a Hermitian matrix,

 $\mathbf{A} = \mathbf{A}^*$.

- 32(a). Based on Prob. 31, $(\mathbf{A}\mathbf{x},\mathbf{x}) = (\mathbf{x},\mathbf{A}\mathbf{x})$.
- (b). Let \mathbf{x} be an eigenvector corresponding to an eigenvalue λ . It then follows that $(\mathbf{A}\mathbf{x},\mathbf{x})=(\lambda\mathbf{x},\mathbf{x})$ and $(\mathbf{x},\mathbf{A}\mathbf{x})=(\mathbf{x},\lambda\mathbf{x})$. Based on the properties of the inner product, $(\lambda\mathbf{x},\mathbf{x})=\lambda(\mathbf{x},\mathbf{x})$ and $(\mathbf{x},\lambda\mathbf{x})=\overline{\lambda}(\mathbf{x},\mathbf{x})$. Then from Part (a),

$$\lambda(\mathbf{x},\mathbf{x}) = \overline{\lambda}(\mathbf{x},\mathbf{x}).$$

(c). From Part (b),

$$(\lambda - \overline{\lambda})(\mathbf{x}, \mathbf{x}) = 0.$$

Based on the definition of an eigenvector, $(\mathbf{x}, \mathbf{x}) = ||\mathbf{x}||^2 > 0$. Hence we must have $\lambda - \overline{\lambda} = 0$, which implies that λ is *real*.

33. From Prob. 31,

$$\left(\mathbf{A}\mathbf{x}^{(1)},\mathbf{x}^{(2)}\right)=\left(\mathbf{x}^{(1)},\mathbf{A}\mathbf{x}^{(2)}\right)$$
.

Hence

$$\lambda_1(\mathbf{x}^{(1)},\mathbf{x}^{(2)}) = \overline{\lambda_2}(\mathbf{x}^{(1)},\mathbf{x}^{(2)}) = \lambda_2(\mathbf{x}^{(1)},\mathbf{x}^{(2)})$$
,

since the eigenvalues are real. Therefore

$$(\lambda_1 - \lambda_2)(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = 0.$$

Given that $\lambda_1
eq \lambda_2$, we must have $\left(\mathbf{x}^{(1)},\mathbf{x}^{(2)}\right) = 0$.

Section 7.4

3. Eq. (14) states that the Wronskian satisfies the first order linear ODE

$$\frac{dW}{dt} = (p_{11} + p_{22} + \dots + p_{nn})W.$$

The general solution is

$$W(t) = C \exp \left[\int (p_{11} + p_{22} + \dots + p_{nn}) dt \right],$$

in which C is an arbitrary constant. Let X_1 and X_2 be matrices representing two sets of fundamental solutions. It follows that

$$det(\mathbf{X}_1) = W_1(t) = C_1 exp \left[\int (p_{11} + p_{22} + \dots + p_{nn}) dt \right]$$
$$det(\mathbf{X}_2) = W_2(t) = C_2 exp \left[\int (p_{11} + p_{22} + \dots + p_{nn}) dt \right].$$

Hence $det(\mathbf{X}_1)/det(\mathbf{X}_2) = C_1/C_2$. Note that $C_2 \neq 0$.

4. First note that $p_{11} + p_{22} = -p(t)$. As shown in Prob. (3),

$$W[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}] = c e^{-\int p(t)dt}.$$

For second order linear ODE, the Wronskian (as defined in Chap. 3) satisfies the first order differential equation W' + p(t)W = 0. It follows that

$$W[y^{(1)}, y^{(2)}] = c_1 e^{-\int p(t)dt}.$$

Alternatively, based on the hypothesis,

$$y^{(1)} = \alpha_{11} x_{11} + \alpha_{12} x_{12}$$

$$y^{(2)} = \alpha_{21} x_{11} + \alpha_{22} x_{12}.$$

Direct calculation shows that

$$W[y^{(1)}, y^{(2)}] = \begin{vmatrix} \alpha_{11} x_{11} + \alpha_{12} x_{12} & \alpha_{21} x_{11} + \alpha_{22} x_{12} \\ \alpha_{11} x'_{11} + \alpha_{12} x'_{12} & \alpha_{21} x'_{11} + \alpha_{22} x'_{12} \end{vmatrix}$$

$$= (\alpha_{11} \alpha_{22} - \alpha_{12} \alpha_{21}) x_{11} x'_{12} - (\alpha_{11} \alpha_{22} - \alpha_{12} \alpha_{21}) x_{12} x'_{11}$$

$$= (\alpha_{11} \alpha_{22} - \alpha_{12} \alpha_{21}) x_{11} x_{22} - (\alpha_{11} \alpha_{22} - \alpha_{12} \alpha_{21}) x_{12} x_{21}.$$

Here we used the fact that $x_1' = x_2$. Hence

$$W[y^{(1)}, y^{(2)}] = (\alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21})W[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}].$$

5. The *particular solution* satisfies the ODE $\left[\mathbf{x}^{(p)}\right]' = \mathbf{P}(t)\mathbf{x}^{(p)} + \mathbf{g}(t)$. Now let

 $\mathbf{x} = \boldsymbol{\phi}(t)$ be any solution of the homogeneous equation. That is, $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$. We know that $\mathbf{x} = \mathbf{x}^c$, in which \mathbf{x}^c is a linear combination of some fundamental solution. By linearity of the differential equation, it follows that $\mathbf{x} = \mathbf{x}^{(p)} + \mathbf{x}^c$ is a solution of the ODE. Based on the *uniqueness theorem*, all solutions must have this form.

7(a). By definition,

$$W\left[\mathbf{x}^{(1)},\mathbf{x}^{(2)}
ight] = egin{bmatrix} t^2 & e^t \ 2t & e^t \end{bmatrix} = \left(t^2 - 2t\right)e^t.$$

- (b). The Wronskian vanishes at $t_0=0$ and $t_0=2$. Hence the vectors are linearly independent on $\mathcal{D}=(-\infty,0)\cup(0,2)\cup(2,\infty)$.
- (c). It follows from Theorem 7.4.3 that one or more of the coefficients of the ODE must be discontinuous at $t_0 = 0$ and $t_0 = 2$. If not, the Wronskian would not vanish.
- (d). Let

$$\mathbf{x} = c_1 \begin{pmatrix} t^2 \\ 2t \end{pmatrix} + c_2 \begin{pmatrix} e^t \\ e^t \end{pmatrix}.$$

Then

$$\mathbf{x}' = c_1 \binom{2t}{2} + c_2 \binom{e^t}{e^t}.$$

On the other hand,

$$\begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} \mathbf{x} = c_1 \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} \begin{pmatrix} t^2 \\ 2t \end{pmatrix} + c_2 \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} \begin{pmatrix} e^t \\ e^t \end{pmatrix}$$

$$= \begin{pmatrix} c_1[p_{11}t^2 + 2p_{12}t] + c_2[p_{11} + p_{12}]e^t \\ c_1[p_{21}t^2 + 2p_{22}t] + c_2[p_{21} + p_{22}]e^t \end{pmatrix}.$$

Comparing coefficients, we find that

$$p_{11}t^{2} + 2p_{12}t = 2t$$

$$p_{11} + p_{12} = 1$$

$$p_{21}t^{2} + 2p_{22}t = 2$$

$$p_{21} + p_{22} = 1$$

Solution of this system of equations results in

$$p_{11}(t) = 0 , p_{12}(t) = 1 , p_{21}(t) = \frac{2-2t}{t^2-2t} , p_{22}(t) = \frac{t^2-2}{t^2-2t} .$$

Hence the vectors are solutions of the ODE

$$\mathbf{x}' = \frac{1}{t^2 - 2t} \begin{pmatrix} 0 & t^2 - 2t \\ 2 - 2t & t^2 - 2 \end{pmatrix} \mathbf{x}.$$

8. Suppose that the solutions $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, \cdots , $\mathbf{x}^{(m)}$ are linearly dependent at $t=t_0$. Then there are constants c_1 , c_2 , \cdots , c_m (not all zero) such that

$$c_1 \mathbf{x}^{(1)}(t_0) + c_2 \mathbf{x}^{(2)}(t_0) + \dots + c_m \mathbf{x}^{(m)}(t_0) = \mathbf{0}$$
.

Now let $\mathbf{z}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t) + \cdots + c_m \mathbf{x}^{(m)}(t)$. Then clearly, $\mathbf{z}(t)$ is a solution of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$, with $\mathbf{z}(t_0) = 0$. Furthermore, $\mathbf{y}(t) \equiv \mathbf{0}$ is also a solution, with $\mathbf{y}(t_0) = 0$. By the *uniqueness theorem*, $\mathbf{z}(t) = \mathbf{y}(t) = \mathbf{0}$. Hence

$$c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t) + \dots + c_m \mathbf{x}^{(m)}(t) = \mathbf{0}$$

on the entire interval $\alpha < t < \beta$. Going in the other direction is trivial.

9(a). Let $\mathbf{v}(t)$ be any solution of $\mathbf{x}' = \mathbf{P}(t)\mathbf{x}$. It follows that

$$\mathbf{z}(t) + \mathbf{y}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t) + \dots + c_n \mathbf{x}^{(n)}(t) + \mathbf{y}(t)$$

is also a solution. Now let $t_0 \in (\alpha, \beta)$. Then the collection of vectors

$$\mathbf{x}^{(1)}(t_0), \mathbf{x}^{(2)}(t_0), \cdots, \mathbf{x}^{(n)}(t_0), \mathbf{y}(t_0)$$

constitutes n+1 vectors, each with n components. Based on the assertion in Prob. 11, Section 7.3, these vectors are necessarily linearly *dependent*. That is, there are n+1 constants $b_1, b_2, \dots, b_n, b_{n+1}$ (not all zero) such that

$$b_1 \mathbf{x}^{(1)}(t_0) + b_2 \mathbf{x}^{(2)}(t_0) + \dots + b_n \mathbf{x}^{(n)}(t_0) + b_{n+1} \mathbf{y}(t_0) = \mathbf{0}$$

From Prob. 8, we have

$$b_1 \mathbf{x}^{(1)}(t) + b_2 \mathbf{x}^{(2)}(t) + \dots + b_n \mathbf{x}^{(n)}(t) + b_{n+1} \mathbf{y}(t) = \mathbf{0}$$

for all $t \in (\alpha, \beta)$. Now $b_{n+1} \neq 0$, otherwise that would contradict the fact that the first n vectors are linearly independent. Hence

$$\mathbf{y}(t) = -\frac{1}{b_{n+1}} (b_1 \mathbf{x}^{(1)}(t) + b_2 \mathbf{x}^{(2)}(t) + \dots + b_n \mathbf{x}^{(n)}(t)),$$

and the assertion is true.

(b). Consider $\mathbf{z}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t) + \cdots + c_n \mathbf{x}^{(n)}(t)$, and suppose that we also have

$$\mathbf{z}(t) = k_1 \mathbf{x}^{(1)}(t) + k_2 \mathbf{x}^{(2)}(t) + \dots + k_n \mathbf{x}^{(n)}(t).$$

Based on the assumption,

$$(k_1-c_1)\mathbf{x}^{(1)}(t)+(k_2-c_2)\mathbf{x}^{(2)}(t)+\cdots+(k_n-c_n)\mathbf{x}^{(n)}(t)=\mathbf{0}$$
.

The collection of vectors

$$\mathbf{x}^{(1)}(t),\mathbf{x}^{(2)}(t),\cdots,\ \mathbf{x}^{(n)}(t)$$

is linearly independent on $\alpha < t < \beta$. It follows that $\, k_i - c_i = 0$, for $\, i = 1, 2, \cdots, n$.

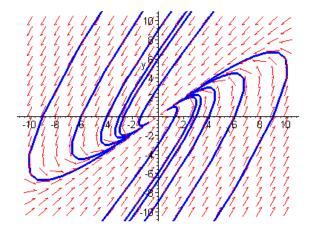
Section 7.5

2. Setting $\mathbf{x} = \boldsymbol{\xi} e^{rt}$, and substituting into the ODE, we obtain the algebraic equations

$$\begin{pmatrix} 1-r & -2 \\ 3 & -4-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A} - r\mathbf{I}) = r^2 + 3r + 2 = 0$. The roots of the characteristic equation are $r_1 = -1$ and $r_2 = -2$. For r = -1, the two equations reduce to $\xi_1 = \xi_2$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)} = (1,1)^T$. Substitution of r = -2 results in the single equation $3\xi_1 = 2\xi_2$. A corresponding eigenvector is $\boldsymbol{\xi}^{(2)} = (2,3)^T$. Since the eigenvalues are *distinct*, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 2 \\ 3 \end{pmatrix} e^{-2t}.$$

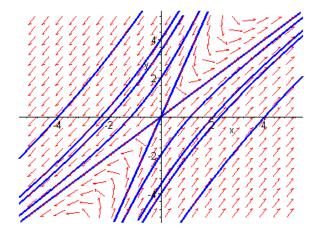


3. Setting $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ results in the algebraic equations

$$\begin{pmatrix} 2-r & -1 \\ 3 & -2-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A}-r\,\mathbf{I})=r^2-1=0$. The roots of the characteristic equation are $r_1=1$ and $r_2=-1$. For r=1, the system of equations reduces to $\xi_1=\xi_2$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)}=(1\,,1)^T$. Substitution of r=-1 results in the single equation $3\,\xi_1=\xi_2$. A corresponding eigenvector is $\boldsymbol{\xi}^{(2)}=(1\,,3)^T$. Since the eigenvalues are *distinct*, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t}.$$



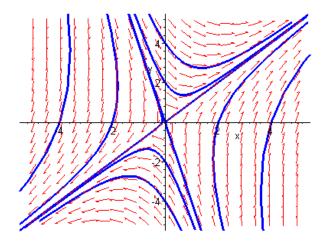
The system has an *unstable* eigendirection along $\boldsymbol{\xi}^{(1)} = (1,1)^T$. Unless $c_1 = 0$, all solutions will diverge.

4. Solution of the ODE requires analysis of the algebraic equations

$$\begin{pmatrix} 1-r & 1 \\ 4 & -2-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A} - r\mathbf{I}) = r^2 + r - 6 = 0$. The roots of the characteristic equation are $r_1 = 2$ and $r_2 = -3$. For r = 2, the system of equations reduces to $\xi_1 = \xi_2$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)} = (1,1)^T$. Substitution of r = -3 results in the single equation $4\xi_1 + \xi_2 = 0$. A corresponding eigenvector is $\boldsymbol{\xi}^{(2)} = (1, -4)^T$. Since the eigenvalues are *distinct*, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ -4 \end{pmatrix} e^{-3t}.$$



The system has an *unstable* eigendirection along $\boldsymbol{\xi}^{(1)} = (1,1)^T$. Unless $c_1 = 0$, all solutions will diverge.

8. Setting $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ results in the algebraic equations

$$\begin{pmatrix} 3-r & 6 \\ -1 & -2-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A} - r\mathbf{I}) = r^2 - r = 0$. The roots of the characteristic equation are $r_1 = 1$ and $r_2 = 0$. With r = 1, the system of equations reduces to $\xi_1 + 3\xi_2 = 0$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)} = (3, -1)^T$. For the case r = 0, the system is equivalent to the equation $\xi_1 + 2\xi_2 = 0$. An eigenvector is $\boldsymbol{\xi}^{(2)} = (2, -1)^T$. Since the eigenvalues are *distinct*, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 3 \\ -1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$



The *entire line* along the eigendirection $\boldsymbol{\xi}^{(2)} = (2, -1)^T$ consists of equilibrium points. All other solutions diverge. The direction field changes across the line $x_1 + 2x_2 = 0$. Eliminating the exponential terms in the solution, the trajectories are given by

$$x_1 + 3 x_2 = -c_2$$
.

10. The characteristic equation is given by

$$\begin{vmatrix} 2-r & 2+i \\ -1 & -1-i-r \end{vmatrix} = r^2 - (1-i)r - i = 0.$$

The equation has *complex* roots $r_1 = 1$ and $r_2 = -i$. For r = 1, the components of the solution vector must satisfy $\xi_1 + (2+i)\xi_2 = 0$. Thus the corresponding eigenvector is $\boldsymbol{\xi}^{(1)} = (2+i, -1)^T$. Substitution of r = -i results in the single equation $\xi_1 + \xi_2 = 0$. A corresponding eigenvector is $\boldsymbol{\xi}^{(2)} = (1, -1)^T$. Since the eigenvalues are *distinct*, the general solution is

$$\mathbf{x} = c_1 \binom{2+i}{-1} e^t + c_2 \binom{1}{-1} e^{-it}.$$

11. Setting $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ results in the algebraic equations

$$\begin{pmatrix} 1 - r & 1 & 2 \\ 1 & 2 - r & 1 \\ 2 & 1 & 1 - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A} - r\mathbf{I}) = r^3 - 4r^2 - r + 4 = 0$. The roots of the characteristic equation are $r_1 = 4$, $r_2 = 1$ and $r_3 = -1$. Setting r = 4, we have

$$\begin{pmatrix} -3 & 1 & 2 \\ 1 & -2 & 1 \\ 2 & 1 & -3 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This system is reduces to the equations

$$\xi_1 - \xi_3 = 0
\xi_2 - \xi_3 = 0.$$

A corresponding solution vector is given by $\boldsymbol{\xi}^{(1)} = (1, 1, 1)^T$. Setting $\lambda = 1$, the *reduced* system of equations is

$$\xi_1 - \xi_3 = 0$$

$$\xi_2 + 2\,\xi_3 = 0.$$

A corresponding solution vector is given by $\boldsymbol{\xi}^{(2)} = (1, -2, 1)^T$. Finally, setting $\lambda = -1$, the *reduced* system of equations is

$$\xi_1 + \xi_3 = 0$$

$$\xi_2 = 0.$$

A corresponding solution vector is given by $\boldsymbol{\xi}^{(3)} = (1, 0, -1)^T$. Since the eigenvalues are distinct, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} e^t + c_3 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} e^{-t}.$$

12. The eigensystem is obtained from analysis of the equation

$$\begin{pmatrix} 3 - r & 2 & 4 \\ 2 & -r & 2 \\ 4 & 2 & 3 - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The characteristic equation of the coefficient matrix is $r^3 - 6r^2 - 15r - 8 = 0$, with roots $r_1 = 8$, $r_2 = -1$ and $r_3 = -1$. Setting $r = r_1 = 8$, we have

$$\begin{pmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This system is reduced to the equations

$$\xi_1 - \xi_3 = 0 2\xi_2 - \xi_3 = 0.$$

A corresponding solution vector is given by $\boldsymbol{\xi}^{(1)} = (2, 1, 2)^T$. Setting r = -1, the system of equations is reduced to the *single* equation

$$2\xi_1 + \xi_2 + 2\xi_3 = 0$$
.

Two independent solutions are obtained as

$$\boldsymbol{\xi}^{(2)} = (1, -2, 0)^T \text{ and } \boldsymbol{\xi}^{(3)} = (0, -2, 1)^T.$$

Hence the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} e^{8t} + c_2 \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} e^{-t} + c_3 \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} e^{-t}.$$

13. Setting $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ results in the algebraic equations

$$\begin{pmatrix} 1 - r & 1 & 1 \\ 2 & 1 - r & -1 \\ -8 & -5 & -3 - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A} - r\mathbf{I}) = r^3 + r^2 - 4r - 4 = 0$. The roots of the characteristic equation are $r_1 = 2$, $r_2 = -2$ and $r_3 = -1$. Setting r = 2, we have

$$\begin{pmatrix} -1 & 1 & 1 \\ 2 & -1 & -1 \\ -8 & -5 & -5 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This system is reduces to the equations

$$\xi_1 = 0$$

$$\xi_2 + \xi_3 = 0.$$

A corresponding solution vector is given by $\boldsymbol{\xi}^{(1)} = (0, 1, -1)^T$. Setting $\lambda = -1$, the *reduced* system of equations is

$$2\,\xi_1 + 3\,\xi_3 = 0$$
$$\xi_2 - 2\,\xi_3 = 0.$$

A corresponding solution vector is given by $\boldsymbol{\xi}^{(2)} = (3, -4, -2)^T$. Finally, setting $\lambda = -2$, the *reduced* system of equations is

$$7\,\xi_1 + 4\,\xi_3 = 0$$
$$7\xi_2 - 5\,\xi_3 = 0.$$

A corresponding solution vector is given by $\boldsymbol{\xi}^{(3)} = (4, -5, -7)^T$. Since the eigenvalues are distinct, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 3 \\ -4 \\ -2 \end{pmatrix} e^{-t} + c_3 \begin{pmatrix} 4 \\ -5 \\ -7 \end{pmatrix} e^{-2t}.$$

15. Setting $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ results in the algebraic equations

$$\begin{pmatrix} 5-r & -1 \\ 3 & 1-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A} - r\mathbf{I}) = r^2 - 6r + 8 = 0$. The roots of the characteristic equation are $r_1 = 4$ and $r_2 = 2$. With r = 4, the system of equations reduces to $\xi_1 - \xi_2 = 0$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)} = (1,1)^T$. For the case r = 2, the system is equivalent to the equation $3\xi_1 - \xi_2 = 0$. An eigenvector is $\boldsymbol{\xi}^{(2)} = (1,3)^T$. Since the eigenvalues are *distinct*, the general solution is

$$\mathbf{x} = c_1 \binom{1}{1} e^{4t} + c_2 \binom{1}{3} e^{2t}.$$

Invoking the initial conditions, we obtain the system of equations

$$c_1 + c_2 = 2$$

 $c_1 + 3 c_2 = -1$.

Hence $c_1 = 7/2$ and $c_2 = -3/2$, and the solution of the IVP is

$$\mathbf{x} = \frac{7}{2} \binom{1}{1} e^{4t} - \frac{3}{2} \binom{1}{3} e^{2t}.$$

17. Setting $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ results in the algebraic equations

$$\begin{pmatrix} 1 - r & 1 & 2 \\ 0 & 2 - r & 2 \\ -1 & 1 & 3 - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A}-r\,\mathbf{I})=r^3-6r^2+11r-6=0$. The roots of the characteristic equation are $r_1=1$, $r_2=2$ and $r_3=3$. Setting r=1, we have

$$\begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This system is reduces to the equations

$$\xi_1 = 0 \xi_2 + 2\,\xi_3 = 0 \,.$$

A corresponding solution vector is given by $\boldsymbol{\xi}^{(1)} = (0\,,\,-2\,,1)^T$. Setting $\lambda = 2$, the *reduced* system of equations is

$$\xi_1 - \xi_2 = 0$$
$$\xi_3 = 0$$

A corresponding solution vector is given by $\boldsymbol{\xi}^{(2)} = (1, 1, 0)^T$. Finally, upon setting $\lambda = 3$, the *reduced* system of equations is

$$\xi_1 - 2\,\xi_3 = 0$$
$$\xi_2 - 2\,\xi_3 = 0.$$

A corresponding solution vector is given by $\boldsymbol{\xi}^{(3)} = (2, 2, 1)^T$. Since the eigenvalues are distinct, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{2t} + c_3 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} e^{3t}.$$

Invoking the initial conditions, the coefficients must satisfy the equations

$$c_2 + 2 c_3 = 2$$

$$-2 c_1 + c_2 + 2 c_3 = 0$$

$$c_1 + c_3 = 1.$$

It follows that $c_1 = 1$, $c_2 = 2$ and $c_3 = 0$. Hence the solution of the IVP is

$$\mathbf{x} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} e^t + 2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{2t}.$$

18. The eigensystem is obtained from analysis of the equation

$$\begin{pmatrix} -r & 0 & -1 \\ 2 & -r & 0 \\ -1 & 2 & 4-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The characteristic equation of the coefficient matrix is $r^3 - 4r^2 - r + 4 = 0$, with roots $r_1 = -1$, $r_2 = 1$ and $r_3 = 4$. Setting $r = r_1 = -1$, we have

$$\begin{pmatrix} -1 & 0 & -1 \\ 2 & -1 & 0 \\ -1 & 2 & 3 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This system is reduced to the equations

$$\xi_1 - \xi_3 = 0$$

$$\xi_2 + 2\,\xi_3 = 0.$$

A corresponding solution vector is given by $\boldsymbol{\xi}^{(1)} = (1, -2, 1)^T$. Setting r = 1, the system reduces to the equations

$$\xi_1 + \xi_3 = 0$$

$$\xi_2 + 2\,\xi_3 = 0$$

The corresponding eigenvector is $\boldsymbol{\xi}^{(2)} = (1, 2, -1)^T$. Finally, upon setting r = 4, the system is equivalent to the equations

$$4\xi_1 + \xi_3 = 0 8\xi_2 + \xi_3 = 0.$$

The corresponding eigenvector is $\boldsymbol{\xi}^{(3)} = (2, 1, -8)^T$. Hence the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} e^t + c_3 \begin{pmatrix} 2 \\ 1 \\ -8 \end{pmatrix} e^{4t}.$$

Invoking the initial conditions,

$$c_1 + c_2 + 2 c_3 = 7$$

$$-2 c_1 + 2 c_2 + c_3 = 5$$

$$c_1 - c_2 - 8 c_3 = 5.$$

It follows that $c_1=3$, $c_2=6$ and $c_3=-1$. Hence the solution of the IVP is

$$\mathbf{x} = 3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} e^{-t} + 6 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} e^{t} - \begin{pmatrix} 2 \\ 1 \\ -8 \end{pmatrix} e^{4t}.$$

19. Set $\mathbf{x} = \boldsymbol{\xi} t^r$. Substitution into the system of differential equations results in

$$t \cdot rt^{r-1} \boldsymbol{\xi} = \mathbf{A} \boldsymbol{\xi} t^r,$$

which upon simplification yields is, $\mathbf{A}\boldsymbol{\xi} - r\boldsymbol{\xi} = \mathbf{0}$. Hence the vector $\boldsymbol{\xi}$ and constant r must satisfy $(\mathbf{A} - r\mathbf{I})\boldsymbol{\xi} = \mathbf{0}$.

21. Setting $\mathbf{x} = \boldsymbol{\xi} t^r$ results in the algebraic equations

$$\begin{pmatrix} 5-r & -1 \\ 3 & 1-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A}-r\,\mathbf{I})=r^2-6r+8=0$. The roots of the characteristic equation are $r_1=4$ and $r_2=2$. With r=4, the system of equations reduces to $\xi_1-\xi_2=0$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)}=(1\,,1)^T$. For the case r=2, the system is equivalent to the equation $3\,\xi_1-\xi_2=0$. An eigenvector is $\boldsymbol{\xi}^{(2)}=(1\,,3)^T$. It follows that

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t^4 \text{ and } \mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} t^2.$$

The Wronskian of this solution set is $W[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}] = 2t^6$. Thus the solutions are linearly independent for t > 0. Hence the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} t^4 + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} t^2.$$

22. As shown in Prob. 19, solution of the ODE requires analysis of the equations

$$\begin{pmatrix} 4-r & -3 \\ 8 & -6-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A}-r\,\mathbf{I})=r^2+2r=0$. The roots of the characteristic equation are $r_1=0$ and $r_2=-2$. For r=0, the system of equations reduces to $4\,\xi_1=3\,\xi_2$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)}=(3\,,4)^T$. Setting r=-2 results in the single equation $2\,\xi_1-\xi_2=0$. A corresponding eigenvector is $\boldsymbol{\xi}^{(2)}=(1\,,2)^T$. It follows that

$$\mathbf{x}^{(1)} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
 and $\mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} t^{-2}$.

The Wronskian of this solution set is $W[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}] = 2t^{-2}$. These solutions are linearly independent for t > 0. Hence the general solution is

$$\mathbf{x} = c_1 \binom{3}{4} + c_2 \binom{1}{2} t^{-2}.$$

23. Setting $\mathbf{x} = \boldsymbol{\xi} t^r$ results in the algebraic equations

$$\begin{pmatrix} 3-r & -2 \\ 2 & -2-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A} - r\mathbf{I}) = r^2 - r - 2 = 0$. The roots of the characteristic equation are $r_1 = 2$ and $r_2 = -1$. Setting r = 2, the system of equations reduces to $\xi_1 - 2\xi_2 = 0$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)} = (2, 1)^T$.

With r=-1, the system is equivalent to the equation $2\xi_1-\xi_2=0$. An eigenvector is $\boldsymbol{\xi}^{(2)}=(1\,,2)^T$. It follows that

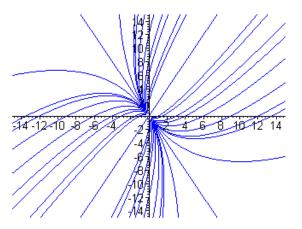
$$\mathbf{x}^{\scriptscriptstyle (1)} = inom{2}{1} t^2 \ ext{and} \ \mathbf{x}^{\scriptscriptstyle (2)} = inom{1}{2} t^{-1}.$$

The Wronskian of this solution set is $W[\mathbf{x}^{(1)}, \mathbf{x}^{(2)}] = 3t$. Thus the solutions are linearly independent for t > 0. Hence the general solution is

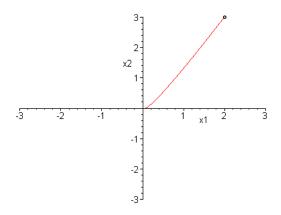
$$\mathbf{x} = c_1 \binom{2}{1} t^2 + c_2 \binom{1}{2} t^{-1}.$$

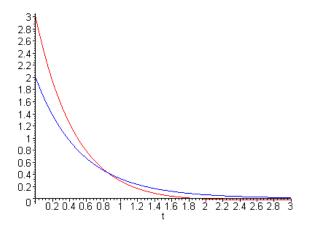
24(a). The general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} -1 \\ 2 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{-2t}.$$



(b).

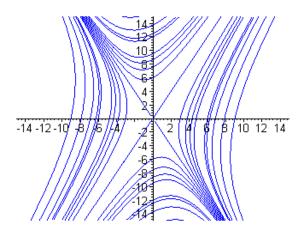




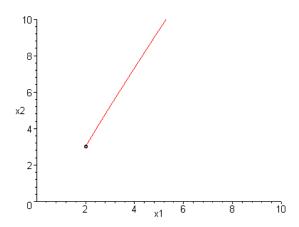
26(a). The general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} -1 \\ 2 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{2t}.$$

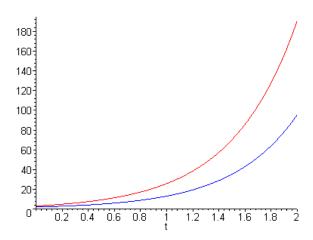
(b).



(b).



(c).



28(a). We note that $(\mathbf{A} - r_i \mathbf{I})\boldsymbol{\xi}^{(i)} = \mathbf{0}$, for i = 1, 2.

(b). It follows that
$$(\mathbf{A} - r_2 \mathbf{I}) \boldsymbol{\xi}^{(1)} = \mathbf{A} \boldsymbol{\xi}^{(1)} - r_2 \boldsymbol{\xi}^{(1)} = r_1 \boldsymbol{\xi}^{(1)} - r_2 \boldsymbol{\xi}^{(1)}$$
.

(c). Suppose that $\boldsymbol{\xi}^{(1)}$ and $\boldsymbol{\xi}^{(2)}$ are linearly *dependent*. Then there exist constants c_1 and c_2 , not both zero, such that $c_1\boldsymbol{\xi}^{(1)}+c_2\boldsymbol{\xi}^{(2)}=\boldsymbol{0}$. Assume that $c_1\neq 0$. It is clear that $(\mathbf{A}-r_2\mathbf{I})\big(c_1\boldsymbol{\xi}^{(1)}+c_2\,\boldsymbol{\xi}^{(2)}\big)=\boldsymbol{0}$. On the other hand,

$$(\mathbf{A} - r_2 \mathbf{I}) (c_1 \boldsymbol{\xi}^{(1)} + c_2 \boldsymbol{\xi}^{(2)}) = c_1 (r_1 - r_2) \boldsymbol{\xi}^{(1)} + \mathbf{0}$$

= $c_1 (r_1 - r_2) \boldsymbol{\xi}^{(1)}$.

Since $r_1 \neq r_2$, we must have $c_1 = 0$, which leads to a contradiction.

(d). Note that
$$(\mathbf{A} - r_1 \mathbf{I})\boldsymbol{\xi}^{(2)} = (r_2 - r_1)\boldsymbol{\xi}^{(2)}$$
.

(e). Let n=3, with $r_1 \neq r_2 \neq r_3$. Suppose that $\boldsymbol{\xi}^{(1)}$, $\boldsymbol{\xi}^{(2)}$ and $\boldsymbol{\xi}^{(3)}$ are indeed linearly dependent. Then there exist constants c_1 , c_2 and c_3 , not all zero, such that

$$c_1 \boldsymbol{\xi}^{(1)} + c_2 \boldsymbol{\xi}^{(2)} + c_3 \boldsymbol{\xi}^{(3)} = \mathbf{0}.$$

Assume that $c_1 \neq 0$. It is clear that $(\mathbf{A} - r_2 \mathbf{I}) (c_1 \boldsymbol{\xi}^{(1)} + c_2 \boldsymbol{\xi}^{(2)} + c_3 \boldsymbol{\xi}^{(3)}) = \mathbf{0}$. On the other hand,

$$(\mathbf{A} - r_2 \mathbf{I}) (c_1 \boldsymbol{\xi}^{(1)} + c_2 \boldsymbol{\xi}^{(2)} + c_3 \boldsymbol{\xi}^{(3)}) = c_1 (r_1 - r_2) \boldsymbol{\xi}^{(1)} + c_3 (r_3 - r_2) \boldsymbol{\xi}^{(3)}.$$

It follows that $c_1(r_1-r_2)\boldsymbol{\xi}^{(1)}+c_3(r_3-r_2)\boldsymbol{\xi}^{(3)}=\boldsymbol{0}$. Based on the result of Part (a), which is actually not dependent on the value of n, the vectors $\boldsymbol{\xi}^{(1)}$ and $\boldsymbol{\xi}^{(3)}$ are linearly independent. Hence we must have $c_1(r_1-r_2)=c_3(r_3-r_2)=0$, which leads to a contradiction.

29(a). Let $x_1 = y$ and $x_2 = y'$. It follows that $x'_1 = x_2$ and

$$x_2' = y''$$

= $-\frac{1}{a}(cy + by')$.

In terms of the new variables, we obtain the system of two first order ODEs

$$x'_1 = x_2$$

 $x'_2 = -\frac{1}{a}(c x_1 + b x_2).$

(b). The coefficient matrix is given by

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix}.$$

Setting $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ results in the algebraic equations

$$\begin{pmatrix} -r & 1 \\ -\frac{c}{a} & -\frac{b}{a} - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have

$$det(\mathbf{A} - r\mathbf{I}) = r^2 + \frac{b}{a}r + \frac{c}{a} = 0.$$

Multiplying both sides of the equation by a, we obtain $a r^2 + b r + c = 0$.

30. Solution of the ODE requires analysis of the algebraic equations

$$\begin{pmatrix} 1-r & 1 \\ 4 & -2-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A} - r\mathbf{I}) = 0$. The characteristic equation is

 $80\,r^2+24\,r+1=0$, with roots $r_1=-1/4$ and $r_2=-1/20$. With r=-1/4, the system of equations reduces to $2\,\xi_1+\xi_2=0$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)}=(1\,,\,-2)^T$. Substitution of r=-1/20 results in the equation $2\,\xi_1-3\,\xi_2=0$. A corresponding eigenvector is $\boldsymbol{\xi}^{(2)}=(3\,,2)^T$. Since the eigenvalues are *distinct*, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t/4} + c_2 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{-t/20}.$$

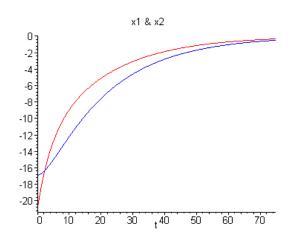
Invoking the initial conditions, we obtain the system of equations

$$c_1 + 3 c_2 = -17$$
$$-2 c_1 + 2 c_2 = -21.$$

Hence $c_1 = 29/8$ and $c_2 = -55/8$, and the solution of the IVP is

$$\mathbf{x} = \frac{29}{8} \binom{1}{-2} e^{-t/4} - \frac{55}{8} \binom{3}{2} e^{-t/20}.$$

(b).



- (c). Both functions are monotone increasing. It is easy to show that $-0.5 \le x_1(t) < 0$ and $-0.5 \le x_2(t) < 0$ provided that $t > T \approx 74.39$.
- 31(a). For $\alpha = 1/2$, solution of the ODE requires that

$$\begin{pmatrix} -1-r & -1 \\ -1/2 & -1-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The characteristic equation is $2\,r^2+4\,r+1=0$, with roots $r_1=-1+1/\sqrt{2}$ and $r_2=-1-1/\sqrt{2}$. With $r=-1+1/\sqrt{2}$, the system of equations reduces to $\sqrt{2}\,\xi_1+2\,\xi_2=0$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)}=\left(-\sqrt{2}\,,1\right)^T$. Substitution

of $r=-1-1/\sqrt{2}$ results in the equation $\sqrt{2}\,\xi_1-2\,\xi_2=0$. An eigenvector is $\boldsymbol{\xi}^{(2)}=\left(\sqrt{2}\,,1\right)^T$. The general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix} e^{\left(-2+\sqrt{2}\right)t/2} + c_2 \begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix} e^{\left(-2-\sqrt{2}\right)t/2}.$$

The eigenvalues are distinct and both negative. The equilibrium point is a stable node.

(b). For $\alpha=2$, the characteristic equation is given by $r^2+2\,r-1=0$, with roots $r_1=-1+\sqrt{2}$ and $r_2=-1-\sqrt{2}$. With $r=-1+\sqrt{2}$, the system of equations reduces to $\sqrt{2}\,\xi_1+\xi_2=0$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)}=\left(1\,,\,-\sqrt{2}\right)^T$. Substitution of $r=-1-\sqrt{2}$ results in the equation $\sqrt{2}\,\xi_1-\xi_2=0$. An eigenvector is $\boldsymbol{\xi}^{(2)}=\left(1\,,\sqrt{2}\right)^T$. The general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ -\sqrt{2} \end{pmatrix} e^{\left(-1+\sqrt{2}\right)t} + c_2 \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} e^{\left(-1-\sqrt{2}\right)t}.$$

The eigenvalues are of opposite sign, hence the equilibrium point is a saddle point.

32. The system of differential equations is

$$\frac{d}{dt}\begin{pmatrix} I\\V \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2}\\ \frac{3}{2} & -\frac{5}{2} \end{pmatrix} \begin{pmatrix} I\\V \end{pmatrix}.$$

Solution of the system requires analysis of the eigenvalue problem

$$\begin{pmatrix} -\frac{1}{2} - r & -\frac{1}{2} \\ \frac{3}{2} & -\frac{5}{2} - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The characteristic equation is $r^2+3\,r+2$, with roots $r_1=-1$ and $r_2=-2$. With r=-1, the equations reduce to $\xi_1-\xi_2=0$. A corresponding eigenvector is given by $\boldsymbol{\xi}^{(1)}=(1\,,1)^T$. Setting r=-2, the system reduces to the equation $3\,\xi_1-\xi_2=0$. An eigenvector is $\boldsymbol{\xi}^{(2)}=(1\,,3)^T$. Hence the general solution is

$$\binom{I}{V} = c_1 \binom{1}{1} e^{-t} + c_2 \binom{1}{3} e^{-2t}.$$

- (b). The eigenvalues are distinct and both negative. We find that the equilibrium point (0,0) is a stable *node*. Hence all solutions converge to (0,0).
- 33(a). Solution of the ODE requires analysis of the algebraic equations

$$\begin{pmatrix} -\frac{R_1}{L} - r & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{CR_2} - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The characteristic equation is

$$r^{2} + \left(\frac{L + CR_{1}R_{2}}{LCR_{2}}\right)r + \frac{R_{1} + R_{2}}{LCR_{2}} = 0.$$

The eigenvectors are *real* and *distinct*, provided that the *discriminant* is positive. That is,

$$\left(\frac{L + CR_1R_2}{LCR_2}\right)^2 - 4\left(\frac{R_1 + R_2}{LCR_2}\right) > 0,$$

which simplifies to the condition

$$\left(\frac{1}{CR_2} - \frac{R_1}{L}\right)^2 - \frac{4}{LC} > 0.$$

(b). The parameters in the ODE are all positive. Observe that the sum of the roots is

$$-\frac{L+CR_1R_2}{LCR_2}<0.$$

Also, the *product* of the roots is

$$\frac{R_1 + R_2}{LCR_2} > 0.$$

It follows that both roots are negative. Hence the equilibrium solution I = 0, V = 0 represents a stable node, which attracts all solutions.

(c). If the condition in Part (a) is not satisfied, that is,

$$\left(\frac{1}{CR_2} - \frac{R_1}{L}\right)^2 - \frac{4}{LC} \le 0,$$

then the real part of the eigenvalues is

$$Re(r_{1,2}) = -\frac{L + CR_1R_2}{2LCR_2}.$$

As long as the parameters are *all* positive, then the solutions will still converge to the equilibrium point (0,0).

Section 7.6

2. Setting $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ results in the algebraic equations

$$\begin{pmatrix} -1-r & -4 \\ 1 & -1-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we require that $det(\mathbf{A} - r\mathbf{I}) = r^2 + 2r + 5 = 0$. The roots of the characteristic equation are $r = -1 \pm 2i$. Substituting r = -1 - 2i, the two equations reduce to $\xi_1 + 2i \, \xi_2 = 0$. The two eigenvectors are $\boldsymbol{\xi}^{(1)} = (-2i \, , 1)^T$ and $\boldsymbol{\xi}^{(2)} = (2i \, , 1)^T$. Hence one of the *complex-valued* solutions is given by

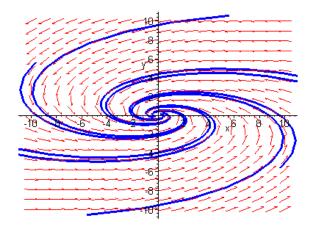
$$\mathbf{x}^{(1)} = \begin{pmatrix} -2i \\ 1 \end{pmatrix} e^{-(1+2i)t}$$

$$= \begin{pmatrix} -2i \\ 1 \end{pmatrix} e^{-t} (\cos 2t - i\sin 2t)$$

$$= e^{-t} \begin{pmatrix} -2\sin 2t \\ \cos 2t \end{pmatrix} + i e^{-t} \begin{pmatrix} -2\cos 2t \\ -\sin 2t \end{pmatrix}.$$

Based on the real and imaginary parts of this solution, the general solution is

$$\mathbf{x} = c_1 e^{-t} \begin{pmatrix} -2\sin 2t \\ \cos 2t \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 2\cos 2t \\ \sin 2t \end{pmatrix}.$$



3. Solution of the ODEs is based on the analysis of the algebraic equations

$$\begin{pmatrix} 2-r & -5 \\ 1 & -2-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we require that $det(\mathbf{A}-r\mathbf{I})=r^2+1=0$. The roots of the characteristic equation are $r=\pm i$. Setting r=i, the equations are equivalent to $\xi_1-(2+i)\xi_2=0$. The eigenvectors are $\boldsymbol{\xi}^{(1)}=(2+i\,,1)^T$ and $\boldsymbol{\xi}^{(2)}=(2-i\,,1)^T$. Hence one of the *complex-valued* solutions is given by

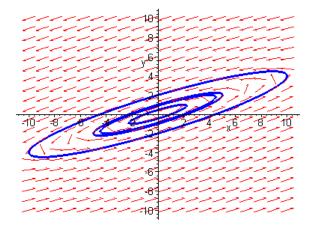
$$\begin{split} \mathbf{x}^{(1)} &= \binom{2+i}{1} e^{it} \\ &= \binom{2+i}{1} (\cos t + i \sin t) \\ &= \binom{2\cos t - \sin t}{\cos t} + i \binom{\cos t + 2\sin t}{\sin t} . \end{split}$$

Therefore the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 2\cos t - \sin t \\ \cos t \end{pmatrix} + c_2 \begin{pmatrix} \cos t + 2\sin t \\ \sin t \end{pmatrix}.$$

The solution may also be written as

$$\mathbf{x} = c_1 \begin{pmatrix} 5\cos t \\ 2\cos t + \sin t \end{pmatrix} + c_2 \begin{pmatrix} 5\sin t \\ -\cos t + 2\sin t \end{pmatrix}.$$



4. Setting $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ results in the algebraic equations

$$\begin{pmatrix} 2-r & -5/2 \\ 9/5 & -1-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we require that $det(\mathbf{A}-r\,\mathbf{I})=r^2-r+\frac{5}{2}=0$. The roots of the characteristic equation are $r=(1\pm 3i)/2$. With $r=(1+3\,i)/2$, the equations reduce to the single equation $(3-3i)\xi_1-5\,\xi_2=0$. The corresponding eigenvector is given by $\boldsymbol{\xi}^{(1)}=(5\,,3-3\,i)^T$. Hence one of the *complex-valued* solutions is

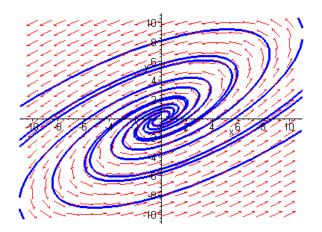
$$\begin{split} \mathbf{x}^{(1)} &= \binom{5}{3-3i} e^{(1+3i)t/2} \\ &= \binom{2+i}{1} e^{t/2} \left(\cos \frac{3}{2}t + i \sin \frac{3}{2}t \right) \\ &= e^{t/2} \binom{2\cos \frac{3}{2}t - \sin \frac{3}{2}t}{\cos \frac{3}{2}t} \right) + i e^{t/2} \binom{\cos \frac{3}{2}t + 2\sin \frac{3}{2}t}{\sin \frac{3}{2}t} \right). \end{split}$$

The general solution is

$$\mathbf{x} = c_1 e^{t/2} \begin{pmatrix} 2\cos\frac{3}{2}t - \sin\frac{3}{2}t \\ \cos\frac{3}{2}t \end{pmatrix} + c_2 e^{t/2} \begin{pmatrix} \cos\frac{3}{2}t + 2\sin\frac{3}{2}t \\ \sin\frac{3}{2}t \end{pmatrix}.$$

The solution may also be written as

$$\mathbf{x} = c_1 e^{t/2} \begin{pmatrix} 5\cos\frac{3}{2}t \\ 3\cos\frac{3}{2}t + 3\sin\frac{3}{2}t \end{pmatrix} + c_2 e^{t/2} \begin{pmatrix} 5\sin\frac{3}{2}t \\ -3\cos\frac{3}{2}t + 3\sin\frac{3}{2}t \end{pmatrix}.$$



5. Setting $\mathbf{x} = \boldsymbol{\xi} t^r$ results in the algebraic equations

$$\begin{pmatrix} 1-r & -1 \\ 5 & -3-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The characteristic equation is $r^2+2\,r+2=0$, with roots $r=-1\pm i$. Substituting r=-1-i reduces the system of equations to $(2+i)\xi_1-\xi_2=0$. The eigenvectors are $\boldsymbol{\xi}^{(1)}=(1\,,2+i)^T$ and $\boldsymbol{\xi}^{(2)}=(1\,,2-i)^T$. Hence one of the *complex-valued* solutions is given by

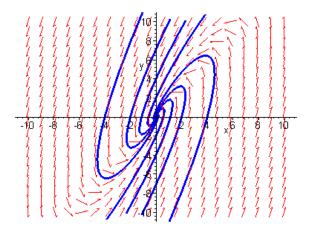
$$\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 2+i \end{pmatrix} e^{-(1+i)t}$$

$$= \begin{pmatrix} 1 \\ 2+i \end{pmatrix} e^{-t} (\cos t - i \sin t)$$

$$= e^{-t} \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} + ie^{-t} \begin{pmatrix} -\sin t \\ \cos t - 2\sin t \end{pmatrix}.$$

The general solution is

$$\mathbf{x} = c_1 e^{-t} \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} \sin t \\ -\cos t + 2\sin t \end{pmatrix}.$$



6. Solution of the ODEs is based on the analysis of the algebraic equations

$$\begin{pmatrix} 1-r & 2 \\ -5 & -1-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we require that $det(\mathbf{A} - r\mathbf{I}) = r^2 + 9 = 0$. The roots of the characteristic equation are $r = \pm 3i$. Setting r = 3i, the two equations reduce to $(1-3i)\xi_1 + 2\xi_2 = 0$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)} = (-2, 1-3i)^T$. Hence one of the *complex-valued* solutions is given by

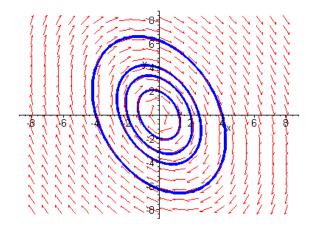
$$\mathbf{x}^{(1)} = \begin{pmatrix} -2\\1-3i \end{pmatrix} e^{3it}$$

$$= \begin{pmatrix} -2\\1-3i \end{pmatrix} (\cos 3t + i \sin 3t)$$

$$= \begin{pmatrix} -2\cos 3t\\\cos 3t + 3\sin 3t \end{pmatrix} + i \begin{pmatrix} -2\sin 3t\\-3\cos 3t + \sin 3t \end{pmatrix}.$$

The general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} -2\cos 3t \\ \cos 3t + 3\sin 3t \end{pmatrix} + c_2 \begin{pmatrix} 2\sin 3t \\ 3\cos 3t - \sin 3t \end{pmatrix}.$$



8. The eigensystem is obtained from analysis of the equation

$$\begin{pmatrix} -3-r & 0 & 2 \\ 1 & -1-r & 0 \\ -2 & -1 & -r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The characteristic equation of the coefficient matrix is $r^3+4r^2+7r+6=0$, with roots $r_1=-2$, $r_2=-1-\sqrt{2}i$ and $r_3=-1+\sqrt{2}i$. Setting r=-2, the equations reduce to

$$-\xi_1 + 2\xi_3 = 0$$

$$\xi_1 + \xi_2 = 0.$$

The corresponding eigenvector is $\boldsymbol{\xi}^{(1)}=(2\,,\,-2\,,1)^T$. With $r=-1-\sqrt{2}\,i$, the system of equations is equivalent to

$$(2 - i\sqrt{2})\xi_1 - 2\xi_3 = 0$$
$$\xi_1 + i\sqrt{2}\xi_2 = 0.$$

An eigenvector is given by $\boldsymbol{\xi}^{(2)}=\left(-i\sqrt{2}\;,1\,,\,-1-i\sqrt{2}\right)^T$. Hence one of the *complex-valued* solutions is given by

$$\mathbf{x}^{(2)} = \begin{pmatrix} -i\sqrt{2} \\ 1 \\ -1 - i\sqrt{2} \end{pmatrix} e^{-\left(1 + i\sqrt{2}\right)it}$$

$$= \begin{pmatrix} -i\sqrt{2} \\ 1 \\ -1 - i\sqrt{2} \end{pmatrix} e^{-t} \left(\cos\sqrt{2}t - i\sin\sqrt{2}t\right)$$

$$= e^{-t} \begin{pmatrix} -\sqrt{2}\sin\sqrt{2}t \\ \cos\sqrt{2}t \\ -\cos\sqrt{2}t - \sqrt{2}\sin\sqrt{2}t \end{pmatrix} + ie^{-t} \begin{pmatrix} -\sqrt{2}\cos\sqrt{2}t \\ -\sin\sqrt{2}t \\ -\sqrt{2}\cos\sqrt{2}t - \sin\sqrt{2}t \end{pmatrix}.$$

The other complex-valued solution is $\mathbf{x}^{(3)} = \overline{\boldsymbol{\xi}^{(2)}} e^{r_3 t}$. The general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} e^{-2t} +$$

$$+ c_2 e^{-t} \begin{pmatrix} \sqrt{2} \sin \sqrt{2} t \\ -\cos \sqrt{2} t \\ \cos \sqrt{2} t + \sqrt{2} \sin \sqrt{2} t \end{pmatrix} + c_3 e^{-t} \begin{pmatrix} \sqrt{2} \cos \sqrt{2} t \\ \sin \sqrt{2} t \\ \sqrt{2} \cos \sqrt{2} t + \sin \sqrt{2} t \end{pmatrix}.$$

It is easy to see that all solutions converge to the equilibrium point (0, 0, 0).

10. Solution of the system of ODEs requires that

$$\begin{pmatrix} -3-r & 2 \\ -1 & -1-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The characteristic equation is $r^2+4\,r+5=0$, with roots $r=-2\pm i$. Substituting r=-2+i, the equations are equivalent to $\xi_1-(1-i)\xi_2=0$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)}=(1-i\,,1)^T$. One of the *complex-valued* solutions is given by

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1-i\\1 \end{pmatrix} e^{(-2+i)t}$$

$$= \begin{pmatrix} 1-i\\1 \end{pmatrix} e^{-2t} (\cos t + i \sin t)$$

$$= e^{-2t} \begin{pmatrix} \cos t + \sin t\\\cos t \end{pmatrix} + i e^{-2t} \begin{pmatrix} -\cos t + \sin t\\\sin t \end{pmatrix}.$$

Hence the general solution is

$$\mathbf{x} = c_1 e^{-2t} \begin{pmatrix} \cos t + \sin t \\ \cos t \end{pmatrix} + c_2 e^{-2t} \begin{pmatrix} -\cos t + \sin t \\ \sin t \end{pmatrix}.$$

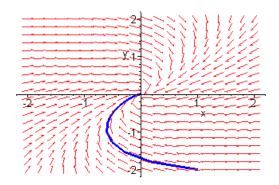
Invoking the initial conditions, we obtain the system of equations

$$c_1 - c_2 = 1$$

 $c_1 = -2$.

Solving for the coefficients, the solution of the initial value problem is

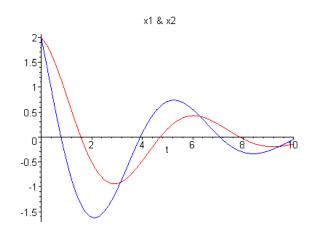
$$\mathbf{x} = -2e^{-2t} \begin{pmatrix} \cos t + \sin t \\ \cos t \end{pmatrix} - 3e^{-2t} \begin{pmatrix} -\cos t + \sin t \\ \sin t \end{pmatrix}$$
$$= e^{-2t} \begin{pmatrix} \cos t - 5\sin t \\ -2\cos t - 3\sin t \end{pmatrix}.$$



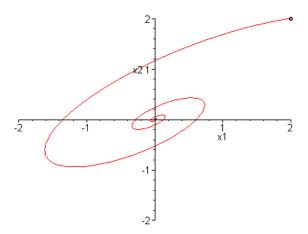
11(a). With $\mathbf{x}(0) = (2, 2)^T$, the solution is

$$\mathbf{x} = e^{-t/4} \begin{pmatrix} 2\cos t - 2\sin t \\ 2\cos t \end{pmatrix}.$$

11(b).



11(c).



12. Solution of the ODEs is based on the analysis of the algebraic equations

$$\begin{pmatrix} -\frac{4}{5} - r & 2\\ -1 & \frac{6}{5} - r \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

The characteristic equation is $25 r^2 - 10 r + 26 = 0$, with roots $r = \frac{1}{5} \pm i$. Setting r = 1/5 + i, the two equations reduce to $\xi_1 - (1-i)\xi_2 = 0$. The corresponding eigenvector is $\boldsymbol{\xi}^{(1)} = (1-i,1)^T$. One of the *complex-valued* solutions is given by

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1-i\\1 \end{pmatrix} e^{(\frac{1}{5}+i)t}$$

$$= \begin{pmatrix} 1-i\\1 \end{pmatrix} e^{t/5} (\cos t + i \sin t)$$

$$= e^{t/5} \begin{pmatrix} \cos t + \sin t\\\cos t \end{pmatrix} + i e^{t/5} \begin{pmatrix} -\cos t + \sin t\\\sin t \end{pmatrix}.$$

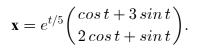
Hence the general solution is

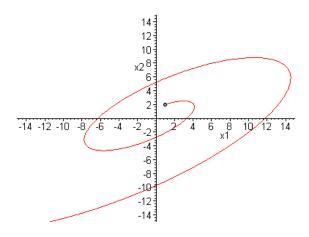
$$\mathbf{x} = c_1 e^{t/5} \begin{pmatrix} \cos t + \sin t \\ \cos t \end{pmatrix} + c_2 e^{t/5} \begin{pmatrix} -\cos t + \sin t \\ \sin t \end{pmatrix}.$$

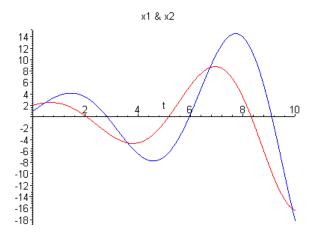
(b). Let $\mathbf{x}(0) = (x_1^0, x_2^0)^T$. The solution of the initial value problem is

$$\begin{split} \mathbf{x} &= x_2^0 \, e^{t/5} \binom{\cos t + \sin t}{\cos t} + (x_2^0 - x_1^0) e^{t/5} \binom{-\cos t + \sin t}{\sin t}. \\ &= e^{t/5} \binom{x_1^0 \cos t + (2 \, x_2^0 - x_1^0) \sin t}{x_2^0 \cos t + (x_2^0 - x_1^0) \sin t}. \end{split}$$

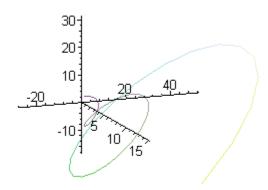
With $\mathbf{x}(0) = (1, 2)^T$, the solution is





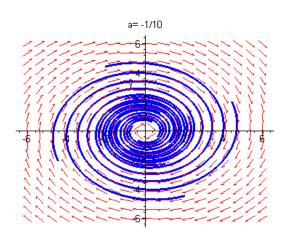


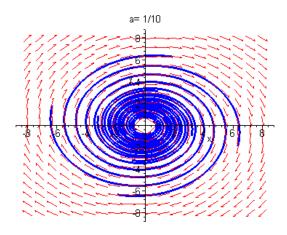
(d).



13(a). The characteristic equation of the coefficient matrix is $r^2-2\alpha r+1+\alpha^2$, with roots $r=\alpha\pm i$.

(b). When $\alpha<0$ and $\alpha>0$, the equilibrium point $(0\,,0)$ is a *stable* spiral and an *unstable* spiral, respectively. The equilibrium point is a *center* when $\alpha=0$.

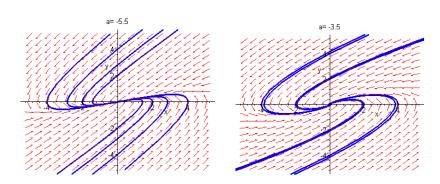


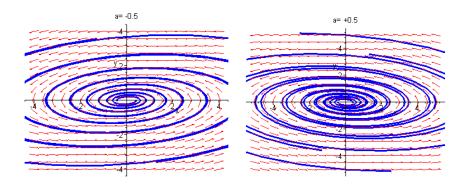


14(a). The roots of the characteristic equation, $r^2 - \alpha \, r + 5 = 0$, are

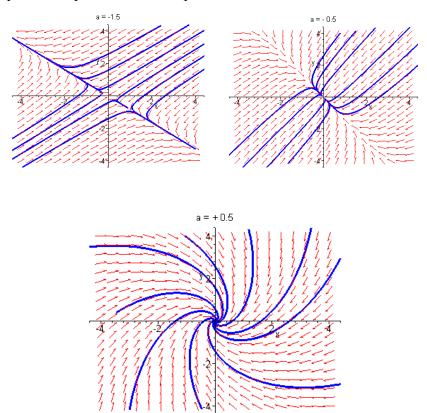
$$r_{1,2} = \frac{\alpha}{2} \pm \frac{1}{2} \sqrt{\alpha^2 - 20}$$
.

(b). Note that the roots are complex when $-\sqrt{20} < \alpha < \sqrt{20}$. For the case when $\alpha \in \left(-\sqrt{20},0\right)$, the equilibrium point $(0\,,0)$ is a stable spiral. On the other hand, when $\alpha \in \left(0\,,\sqrt{20}\right)$, the equilibrium point is an unstable spiral. For the case $\alpha=0$, the roots are purely imaginary, so the equilibrium point is a center. When $\alpha^2>20$, the roots are real and distinct. The equilibrium point becomes a node, with its stability dependent on the sign of α . Finally, the case $\alpha^2=20$ marks the transition from spirals to nodes.





17. The characteristic equation of the coefficient matrix is $r^2+2r+1+\alpha=0$, with roots given formally as $r_{1,2}=-1\pm\sqrt{-\alpha}$. The roots are real provided that $\alpha\leq 0$. First note that the sum of the roots is -2 and the product of the roots is $1+\alpha$. For negative values of α , the roots are distinct, with one always negative. When $\alpha<-1$, the roots have acceptage signs. Hence the equilibrium point is a acceptage saddle. For the case acceptage and the equilibrium point is a acceptage saddle acceptage and the equilibrium point is a acceptage saddle acceptage and the equilibrium point is a acceptage saddle equal. For the case acceptage of acceptage the roots are complex conjugates, with negative real part. Hence the equilibrium point is a acceptage saddle acceptage sadd



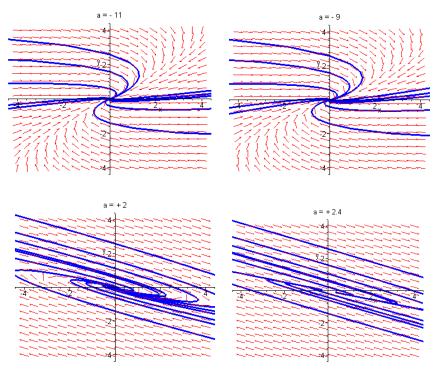
19. The characteristic equation for the system is given by

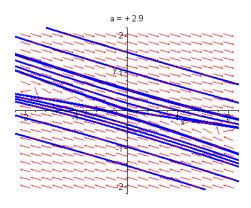
$$r^2 + (4 - \alpha)r + 10 - 4\alpha = 0.$$

The roots are

$$r_{1,2} = -2 + \frac{\alpha}{2} \pm \sqrt{\alpha^2 + 8\alpha - 24}$$
.

First note that the roots are complex when $-4-2\sqrt{10}<\alpha<-4+2\sqrt{10}$. We also find that when $-4-2\sqrt{10}<\alpha<2$, the equilibrium point is a stable spiral. For the case $\alpha=2$, the equilibrium point is a center. When $2<\alpha<-4+2\sqrt{10}$, the equilibrium point is an unstable spiral. For all other cases, the roots are real. When $\alpha>2.5$, the roots have opposite signs, with the equilibrium point being a saddle. For the case $-4+2\sqrt{10}<\alpha<2.5$, the roots are both positive, and the equilibrium point is an unstable node. Finally, when $\alpha<-4-2\sqrt{10}$, both roots are negative, with the equilibrium point being a stable node.

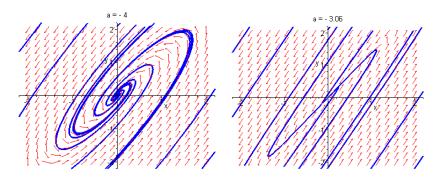


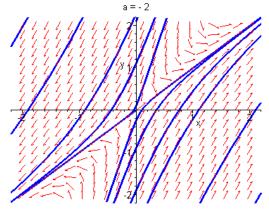


20. The characteristic equation is $\,r^2+2\,r-(24+8\alpha)=0$, with roots

$$r_{1,2} = -1 \pm \sqrt{25 + 8\alpha}$$
.

The roots are *complex* when $\alpha < -25/8$. Since the real part is negative, the origin is a stable *spiral*. Otherwise the roots are real. When $-25 < \alpha < -3$, both roots are negative, and hence the equilibrium point is a stable *node*. For $\alpha > -3$, the roots are of opposite sign and the origin is a *saddle*.





22. Based on the method in Prob. 19 of Section 7.5, setting $\mathbf{x} = \boldsymbol{\xi} t^r$ results in the

algebraic equations

$$\begin{pmatrix} 2-r & -5 \\ 1 & -2-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The characteristic equation for the system is $r^2+1=0$, with roots $r_{1,2}=\pm i$. With r=i, the equations reduce to the single equation $\xi_1-(2+i)\xi_2=0$. A corresponding eigenvector is $\boldsymbol{\xi}^{(1)}=(2+i,1)^T$. One *complex-valued* solution is

$$\mathbf{x}^{(1)} = \begin{pmatrix} 2+i \\ 1 \end{pmatrix} t^i.$$

We can write $t^i = e^{i \ln t}$. Hence

$$\begin{split} \mathbf{x}^{(1)} &= \binom{2+i}{1} e^{i \ln t} \\ &= \binom{2+i}{1} [\cos(\ln t) + i \sin(\ln t)] \\ &= \binom{2\cos(\ln t) - \sin(\ln t)}{\cos(\ln t)} + i \binom{\cos(\ln t) + 2\sin(\ln t)}{\sin(\ln t)}. \end{split}$$

Therefore the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 2\cos(\ln t) - \sin(\ln t) \\ \cos(\ln t) \end{pmatrix} + c_2 \begin{pmatrix} \cos(\ln t) + 2\sin(\ln t) \\ \sin(\ln t) \end{pmatrix}.$$

Other combinations are also possible.

24(a). The characteristic equation of the system is

$$r^3 + \frac{2}{5}r^2 + \frac{81}{80}r - \frac{17}{160} = 0$$

with eigenvalues $r_1 = 1/10$, and $r_{2,3} = -1/4 \pm i$. For r = 1/10, simple calculations reveal that a corresponding eigenvector is $\boldsymbol{\xi}^{(1)} = (0\,,0\,,1)^T$. Setting r = -1/4 - i, we obtain the system of equations

$$\xi_1 - i\,\xi_2 = 0$$
$$\xi_3 = 0.$$

A corresponding eigenvector is $\boldsymbol{\xi}^{(2)} = (i, 1, 0)^T$. Hence one solution is

$$\mathbf{x}^{(1)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} e^{t/10}.$$

Another solution, which is *complex-valued*, is given by

$$\begin{split} \mathbf{x}^{(2)} &= \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix} e^{-\left(\frac{1}{4} + i\right)t} \\ &= \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix} e^{-t/4} (\cos t - i \sin t) \\ &= e^{-t/4} \begin{pmatrix} \sin t \\ \cos t \\ 0 \end{pmatrix} + i e^{-t/4} \begin{pmatrix} \cos t \\ -\sin t \\ 0 \end{pmatrix}. \end{split}$$

Using the real and imaginary parts of $\mathbf{x}^{(2)}$, the general solution is constructed as

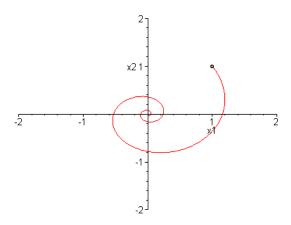
$$\mathbf{x} = c_1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} e^{t/10} + c_2 e^{-t/4} \begin{pmatrix} \sin t \\ \cos t \\ 0 \end{pmatrix} + c_3 e^{-t/4} \begin{pmatrix} \cos t \\ -\sin t \\ 0 \end{pmatrix}.$$

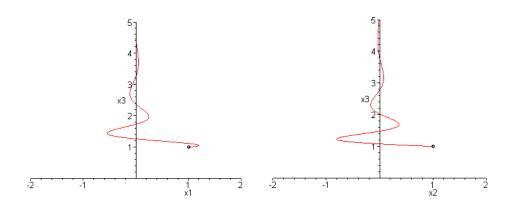
(b). Let $\mathbf{x}(0) = (x_1^0, x_2^0, x_3^0)$. The solution can be written as

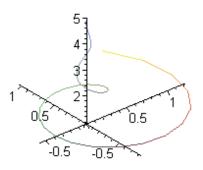
$$\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ x_3^0 e^{t/10} \end{pmatrix} + e^{-t/4} \begin{pmatrix} x_2^0 \sin t + x_1^0 \cos t \\ x_2^0 \cos t - x_1^0 \sin t \\ 0 \end{pmatrix}.$$

With $\mathbf{x}(0) = (1, 1, 1)$, the solution of the initial value problem is

$$\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ e^{t/10} \end{pmatrix} + e^{-t/4} \begin{pmatrix} \sin t + \cos t \\ \cos t - \sin t \\ 0 \end{pmatrix}.$$







25(a). Based on Probs. 18-20 of Section 7.1, the system of differential equations is

$$\frac{d}{dt}\begin{pmatrix} I\\V \end{pmatrix} = \begin{pmatrix} -\frac{R_1}{L} & -\frac{1}{L}\\ \frac{1}{C} & -\frac{1}{CR_2} \end{pmatrix} \begin{pmatrix} I\\V \end{pmatrix}.$$

With $R_1=R_2=4$ ohms, $C=\frac{1}{2}$ farads and L=8 henrys, the eigenvalue problem is

$$\begin{pmatrix} -\frac{1}{2} - r & -\frac{1}{8} \\ 2 & -\frac{1}{2} - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

 $(b). \ \ {\rm The\ characteristic\ equation\ of\ the\ system\ is}\ \ r^2+r+\frac{1}{2}=0$, with eigenvalues

$$r_{1,2} = -\frac{1}{2} \pm \frac{1}{2}i.$$

Setting r=-1/2+i/2, the algebraic equations reduce to $4i\xi_1+\xi_2=0$. It follows that $\boldsymbol{\xi}^{(1)}=(1\,,\,-4i)^T$. Hence one *complex-valued* solution is

$$\begin{pmatrix} I \\ V \end{pmatrix}^{(1)} = \begin{pmatrix} 1 \\ -4i \end{pmatrix} e^{(-1+i)t/2}$$

$$= \begin{pmatrix} 1 \\ -4i \end{pmatrix} e^{-t/2} [\cos(t/2) + i\sin(t/2)]$$

$$= e^{-t/2} \begin{pmatrix} \cos(t/2) \\ 4\sin(t/2) \end{pmatrix} + ie^{-t/2} \begin{pmatrix} \sin(t/2) \\ -4\cos(t/2) \end{pmatrix}.$$

Therefore the general solution is

$$\begin{pmatrix} I \\ V \end{pmatrix} = c_1 e^{-t/2} \begin{pmatrix} \cos(t/2) \\ 4\sin(t/2) \end{pmatrix} + c_2 e^{-t/2} \begin{pmatrix} \sin(t/2) \\ -4\cos(t/2) \end{pmatrix}.$$

(c). Imposing the initial conditions, we arrive at the equations $c_1=2$ and $c_2=-\frac{3}{4}$, and

$$\begin{pmatrix} I \\ V \end{pmatrix} = e^{-t/2} \begin{pmatrix} 2\cos(t/2) - \frac{3}{4}\sin(t/2) \\ 8\sin(t/2) + 3\cos(t/2) \end{pmatrix}.$$

- (d). Since the eigenvalues have *negative* real parts, all solutions converge to the origin.
- 26(a). The characteristic equation of the system is

$$r^2 + \frac{1}{RC}r + \frac{1}{CL} = 0$$
,

with eigenvalues

$$r_{1,2} = -\frac{1}{2RC} \pm \frac{1}{2RC} \sqrt{1 - \frac{4R^2C}{L}}$$
.

The eigenvalues are real and different provided that

$$1 - \frac{4R^2C}{L} > 0$$
.

The eigenvalues are complex conjugates as long as

$$1 - \frac{4R^2C}{L} < 0.$$

(b). With the specified values, the eigenvalues are $r_{1,2}=-1\pm i$. The eigenvector corresponding to r=-1+i is $\boldsymbol{\xi}^{(1)}=(1\,,\,-4i)^T$. Hence one *complex-valued* solution is

$$\begin{pmatrix} I \\ V \end{pmatrix}^{(1)} = \begin{pmatrix} 1 \\ -1+i \end{pmatrix} e^{(-1+i)t}$$

$$= \begin{pmatrix} 1 \\ -1+i \end{pmatrix} e^{-t} (\cos t + i \sin t)$$

$$= e^{-t} \begin{pmatrix} \cos t \\ -\cos t - \sin t \end{pmatrix} + i e^{-t} \begin{pmatrix} \sin t \\ \cos t - \sin t \end{pmatrix}.$$

Therefore the general solution is

$$\begin{pmatrix} I \\ V \end{pmatrix} = c_1 e^{-t} \begin{pmatrix} \cos t \\ -\cos t - \sin t \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} \sin t \\ \cos t - \sin t \end{pmatrix}.$$

(c). Imposing the initial conditions, we arrive at the equations

$$c_1 = 2 - c_1 + c_2 = 1,$$

with $c_1=2$ and $c_2=3$. Therefore the solution of the IVP is

$$\binom{I}{V} = e^{-t} \binom{2\cos t + 3\sin t}{\cos t - 5\sin t}.$$

(d). Since $Re(r_{1,2}) = -1$, all solutions converge to the origin.

27(a). Suppose that $c_1 \mathbf{a} + c_2 \mathbf{b} = \mathbf{0}$. Since \mathbf{a} and \mathbf{b} are the real and imaginary parts of the vector $\boldsymbol{\xi}^{(1)}$, respectively, $\mathbf{a} = (\boldsymbol{\xi}^{(1)} + \overline{\boldsymbol{\xi}^{(1)}})/2$ and $\mathbf{b} = (\boldsymbol{\xi}^{(1)} - \overline{\boldsymbol{\xi}^{(1)}})/2i$. Hence

$$c_1(\boldsymbol{\xi}^{(1)} + \overline{\boldsymbol{\xi}^{(1)}}) - ic_2(\boldsymbol{\xi}^{(1)} - \overline{\boldsymbol{\xi}^{(1)}}) = \mathbf{0}$$

which leads to

$$(c_1 - ic_2)\boldsymbol{\xi}^{(1)} + (c_1 + ic_2)\overline{\boldsymbol{\xi}^{(1)}} = \mathbf{0}.$$

Now since $\boldsymbol{\xi}^{(1)}$ and $\overline{\boldsymbol{\xi}^{(1)}}$ are *linearly independent*, we must have

$$c_1 - ic_2 = 0$$

$$c_1 + ic_2 = 0.$$

It follows that $c_1 = c_2 = 0$.

(c). Recall that

$$\mathbf{u}(t) = e^{\lambda t} (\mathbf{a} \cos \mu t - \mathbf{b} \sin \mu t)$$

$$\mathbf{v}(t) = e^{\lambda t} (\mathbf{a} \cos \mu t + \mathbf{b} \sin \mu t).$$

Consider the equation $c_1\mathbf{u}(t_0)+c_2\mathbf{v}(t_0)=\mathbf{0}$, for some t_0 . We can then write

$$c_1 e^{\lambda t_0} (\mathbf{a} \cos \mu t_0 - \mathbf{b} \sin \mu t_0) + c_2 e^{\lambda t_0} (\mathbf{a} \cos \mu t_0 + \mathbf{b} \sin \mu t_0) = \mathbf{0}$$
. (*)

Rearranging the terms, and dividing by the exponential,

$$(c_1 + c_2)\cos \mu t_0 \mathbf{a} + (c_2 - c_1)\sin \mu t_0 \mathbf{b} = \mathbf{0}$$
.

From Part (b), since **a** and **b** are *linearly independent*, it follows that

$$(c_1 + c_2)\cos \mu t_0 = (c_2 - c_1)\sin \mu t_0 = 0.$$

Without loss of generality, assume that the trigonometric factors are *nonzero*. Otherwise proceed again from Equation (*), above. We then conclude that

$$c_1 + c_2 = 0$$
 and $c_2 - c_1 = 0$,

which leads to $c_1 = c_2 = 0$. Thus $\mathbf{u}(t_0)$ and $\mathbf{v}(t_0)$ are linearly independent for some t_0 , and hence the functions are linearly independent at every point.

28(a). Let $x_1 = u$ and $x_2 = u'$. It follows that $x_1' = x_2$ and

$$x_2' = u''$$
$$= -\frac{k}{m}u.$$

In terms of the new variables, we obtain the system of two first order ODEs

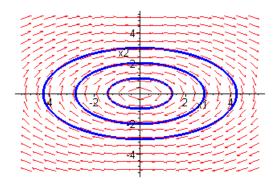
$$x_1' = x_2$$
$$x_2' = -\frac{k}{m} x_1.$$

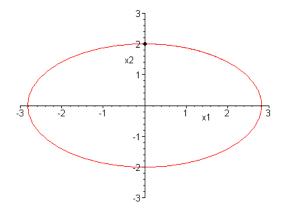
(b). The associated eigenvalue problem is

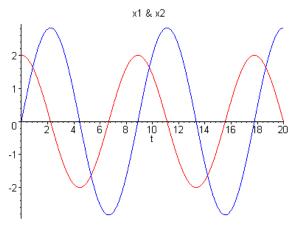
$$\begin{pmatrix} -r & 1 \\ -k/m & -r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The characteristic equation is $r^2 + k/m = 0$, with roots $r_{1,2} = \pm i\sqrt{k/m}$.

(c). Since the eigenvalues are purely imaginary, the origin is a *center*. Hence the phase curves are *ellipses*, with a *clockwise* flow. For computational purposes, let k=1 and m=2.







(d). The general solution of the second order equation is

$$u(t) = c_1 cos \sqrt{\frac{k}{m}} t + c_2 sin \sqrt{\frac{k}{m}} t$$
.

The general solution of the system of ODEs is given by

$$\mathbf{x} = c_1 \left(egin{array}{c} \sqrt{rac{m}{k}} \sin \sqrt{rac{k}{m}} \, t \ \cos \sqrt{rac{k}{m}} \, t \end{array}
ight) + c_2 \left(egin{array}{c} \sqrt{rac{m}{k}} \cos \sqrt{rac{k}{m}} \, t \ -\sin \sqrt{rac{k}{m}} \, t \end{array}
ight).$$

It is evident that the natural frequency of the system is equal to $\,Im(r_{\scriptscriptstyle 1,2})\,.$

Section 7.7

1. The eigenvalues and eigenvectors were found in Prob. 1, Section 7.5.

$$r_1 = \ -1 \, , \; oldsymbol{\xi}^{(1)} = inom{1}{2} \, ; \; \; r_2 = 2 \, , \; oldsymbol{\xi}^{(2)} = inom{2}{1}.$$

The general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} e^{-t} \\ 2e^{-t} \end{pmatrix} + c_2 \begin{pmatrix} 2e^{2t} \\ e^{2t} \end{pmatrix}.$$

Hence a fundamental matrix is given by

$$\Psi(t) = \begin{pmatrix} e^{-t} & 2e^{2t} \\ 2e^{-t} & e^{2t} \end{pmatrix}.$$

We now have

$$\Psi(0) = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 and $\Psi^{-1}(0) = \frac{1}{3} \begin{pmatrix} -1 & 2 \\ 2 & -1 \end{pmatrix}$,

So that

$$\mathbf{\Phi}(t) = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(0) = \frac{1}{3} \begin{pmatrix} -e^{-t} + 4e^{2t} & 2e^{-t} - 2e^{2t} \\ -2e^{-t} + 2e^{2t} & 4e^{-t} - e^{2t} \end{pmatrix}.$$

3. The eigenvalues and eigenvectors were found in Prob. 3, Section 7.5. The general solution of the system is

$$\mathbf{x} = c_1 \binom{e^t}{e^t} + c_2 \binom{e^{-t}}{3e^{-t}}.$$

Given the initial conditions $\mathbf{x}(0) = \mathbf{e}^{(1)}$, we solve the equations

$$c_1 + c_2 = 1$$

$$c_1 + 3c_2 = 0$$
,

to obtain $\,c_1=3/2\,,\,c_2=\,-\,1/2\,.\,$ The corresponding solution is

$$\mathbf{x} = \begin{pmatrix} \frac{3}{2}e^t - \frac{1}{2}e^{-t} \\ \frac{3}{2}e^t - \frac{3}{2}e^{-t} \end{pmatrix}.$$

Given the initial conditions $\mathbf{x}(0) = \mathbf{e}^{(2)}$, we solve the equations

$$c_1 + c_2 = 0$$

$$c_1 + 3c_2 = 1$$
,

to obtain $\,c_1=\,-\,1/2\,,\,c_2=1/2\,.\,$ The corresponding solution is

$$\mathbf{x} = \begin{pmatrix} -\frac{1}{2}e^t + \frac{1}{2}e^{-t} \\ -\frac{1}{2}e^t + \frac{3}{2}e^{-t} \end{pmatrix}.$$

Therefore the fundamental matrix is

$$\mathbf{\Phi}(t) = \frac{1}{2} \begin{pmatrix} 3e^t - e^{-t} & -e^t + e^{-t} \\ 3e^t - 3e^{-t} & -e^t + 3e^{-t} \end{pmatrix}.$$

5. The general solution, found in Prob. 3, Section 7.6, is given by

$$\mathbf{x} = c_1 \begin{pmatrix} 5\cos t \\ 2\cos t + \sin t \end{pmatrix} + c_2 \begin{pmatrix} 5\sin t \\ -\cos t + 2\sin t \end{pmatrix}.$$

Given the initial conditions $\mathbf{x}(0) = \mathbf{e}^{(1)}$, we solve the equations

$$5c_1 = 1$$
$$2c_1 - c_2 = 0$$

resulting in $c_1 = 1/5$, $c_2 = 2/5$. The corresponding solution is

$$\mathbf{x} = \begin{pmatrix} \cos t + 2\sin t \\ \sin t \end{pmatrix}.$$

Given the initial conditions $\mathbf{x}(0) = \mathbf{e}^{(2)}$, we solve the equations

$$5c_1 = 0 2c_1 - c_2 = 1,$$

resulting in $c_1 = 0$, $c_2 = -1$. The corresponding solution is

$$\mathbf{x} = \begin{pmatrix} -5\sin t \\ \cos t - 2\sin t \end{pmatrix}.$$

Therefore the fundamental matrix is

$$\mathbf{\Phi}(t) = \begin{pmatrix} \cos t + 2\sin t & -5\sin t \\ \sin t & \cos t - 2\sin t \end{pmatrix}.$$

7. The general solution, found in Prob. 15, Section 7.5, is given by

$$\mathbf{x} = c_1 \begin{pmatrix} e^{2t} \\ 3e^{2t} \end{pmatrix} + c_2 \begin{pmatrix} e^{4t} \\ e^{4t} \end{pmatrix}.$$

Given the initial conditions $\mathbf{x}(0) = \mathbf{e}^{(1)}$, we solve the equations

$$c_1 + c_2 = 1$$
$$3c_1 + c_2 = 0$$

resulting in $\,c_1=\,-\,1/2\,,\,c_2=3/2\,.\,$ The corresponding solution is

$$\mathbf{x} = \frac{1}{2} \begin{pmatrix} -e^{2t} + 3e^{4t} \\ -3e^{2t} + 3e^{4t} \end{pmatrix}.$$

The initial conditions $\mathbf{x}(0) = \mathbf{e}^{(2)}$ require that

$$c_1 + c_2 = 0$$
$$3c_1 + c_2 = 1,$$

resulting in $c_1 = 1/2$, $c_2 = -1/2$. The corresponding solution is

$$\mathbf{x} = \frac{1}{2} \begin{pmatrix} e^{2t} - e^{4t} \\ 3e^{2t} - e^{4t} \end{pmatrix}.$$

Therefore the fundamental matrix is

$$\mathbf{\Phi}(t) = \frac{1}{2} \begin{pmatrix} -e^{2t} + 3e^{4t} & e^{2t} - e^{4t} \\ -3e^{2t} + 3e^{4t} & 3e^{2t} - e^{4t} \end{pmatrix}.$$

8. The general solution, found in Prob. 5, Section 7.6, is given by

$$\mathbf{x} = c_1 e^{-t} \begin{pmatrix} \cos t \\ 2\cos t + \sin t \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} \sin t \\ -\cos t + 2\sin t \end{pmatrix}.$$

The specific solution corresponding to the initial conditions $\mathbf{x}(0) = \mathbf{e}^{(1)}$ is

$$\mathbf{x} = e^{-t} \begin{pmatrix} \cos t + 2\sin t \\ 5\sin t \end{pmatrix}.$$

For the initial conditions $\mathbf{x}(0) = \mathbf{e}^{(2)}$, the solution is

$$\mathbf{x} = e^{-t} \begin{pmatrix} -\sin t \\ \cos t - 2\sin t \end{pmatrix}.$$

Therefore the fundamental matrix is

$$\Phi(t) = e^{-t} \begin{pmatrix} \cos t + 2 \sin t & -\sin t \\ 5 \sin t & \cos t - 2 \sin t \end{pmatrix}.$$

9. The general solution, found in Prob. 13, Section 7.5, is given by

$$\mathbf{x} = c_1 \begin{pmatrix} 4e^{-2t} \\ -5e^{-2t} \\ -7e^{-2t} \end{pmatrix} + c_2 \begin{pmatrix} 3e^{-t} \\ -4e^{-t} \\ -2e^{-t} \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ e^{2t} \\ -e^{2t} \end{pmatrix}.$$

Given the initial conditions $\mathbf{x}(0) = \mathbf{e}^{(1)}$, we solve the equations

$$4c_1 + 3c_2 = 1$$

$$-5c_1 - 4c_2 + c_3 = 0$$

$$-7c_1 - 2c_2 - c_3 = 0$$

resulting in $c_1 = -1/2$, $c_2 = 1$, $c_3 = 3/2$. The corresponding solution is

$$\mathbf{x} = \begin{pmatrix} -2e^{-2t} + 3e^{-t} \\ \frac{5}{2}e^{-2t} - 4e^{-t} + \frac{3}{2}e^{2t} \\ \frac{7}{2}e^{-2t} - 2e^{-t} - \frac{3}{2}e^{2t} \end{pmatrix}.$$

The initial conditions $\mathbf{x}(0) = \mathbf{e}^{(2)}$, we solve the equations

$$4c_1 + 3c_2 = 0$$

$$-5c_1 - 4c_2 + c_3 = 1$$

$$-7c_1 - 2c_2 - c_3 = 0$$

resulting in $c_1 = -1/4$, $c_2 = 1/3$, $c_3 = 13/12$. The corresponding solution is

$$\mathbf{x} = \begin{pmatrix} -e^{-2t} + e^{-t} \\ \frac{5}{4}e^{-2t} - \frac{4}{3}e^{-t} + \frac{13}{12}e^{2t} \\ \frac{7}{4}e^{-2t} - \frac{2}{3}e^{-t} - \frac{13}{12}e^{2t} \end{pmatrix}.$$

The initial conditions $\mathbf{x}(0) = \mathbf{e}^{(3)}$, we solve the equations

$$4c_1 + 3c_2 = 0$$

$$-5c_1 - 4c_2 + c_3 = 0$$

$$-7c_1 - 2c_2 - c_3 = 1$$

resulting in $c_1 = -1/4$, $c_2 = 1/3$, $c_3 = 1/12$. The corresponding solution is

$$\mathbf{x} = \begin{pmatrix} -e^{-2t} + e^{-t} \\ \frac{5}{4}e^{-2t} - \frac{4}{3}e^{-t} + \frac{1}{12}e^{2t} \\ \frac{7}{4}e^{-2t} - \frac{2}{3}e^{-t} - \frac{1}{12}e^{2t} \end{pmatrix}.$$

Therefore the fundamental matrix is

$$\boldsymbol{\Phi}(t) = \begin{pmatrix} -2e^{-2t} + 3e^{-t} & -e^{-2t} + e^{-t} & -e^{-2t} + e^{-t} \\ \frac{5}{2}e^{-2t} - 4e^{-t} + \frac{3}{2}e^{2t} & \frac{5}{4}e^{-2t} - \frac{4}{3}e^{-t} + \frac{13}{12}e^{2t} & \frac{5}{4}e^{-2t} - \frac{4}{3}e^{-t} + \frac{1}{12}e^{2t} \\ \frac{7}{2}e^{-2t} - 2e^{-t} - \frac{3}{2}e^{2t} & \frac{7}{4}e^{-2t} - \frac{2}{3}e^{-t} - \frac{13}{12}e^{2t} & \frac{7}{4}e^{-2t} - \frac{2}{3}e^{-t} - \frac{1}{12}e^{2t} \end{pmatrix}.$$

12. The solution of the initial value problem is given by

$$\mathbf{x} = \mathbf{\Phi}(t)\mathbf{x}(0)$$

$$= \begin{pmatrix} e^{-t}\cos 2t & -2e^{-t}\sin 2t \\ \frac{1}{2}e^{-t}\sin 2t & e^{-t}\cos 2t \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$= e^{-t} \begin{pmatrix} 3\cos 2t - 2\sin 2t \\ \frac{3}{2}\sin 2t + \cos 2t \end{pmatrix}.$$

13. Let

$$\Psi(t) = \begin{pmatrix} x_1^{(1)}(t) & \cdots & x_1^{(n)}(t) \\ \vdots & & \vdots \\ x_n^{(1)}(t) & \cdots & x_n^{(n)}(t) \end{pmatrix}.$$

It follows that

$$m{\Psi}(t_0) = egin{pmatrix} x_1^{(1)}(t_0) & \cdots & x_1^{(n)}(t_0) \ dots & & dots \ x_n^{(1)}(t_0) & \cdots & x_n^{(n)}(t_0) \end{pmatrix}$$

is a *scalar* matrix, which is invertible, since the solutions are linearly independent. Let $\Psi^{-1}(t_0) = (c_{ij})$. Then

$$m{\Psi}(t)m{\Psi}^{-1}(t_0) = egin{pmatrix} x_1^{(1)}(t) & \cdots & x_1^{(n)}(t) \ dots & & dots \ x_n^{(1)}(t) & \cdots & x_n^{(n)}(t) \end{pmatrix} egin{pmatrix} c_{11} & \cdots & c_{1n} \ dots & & dots \ c_{n1} & \cdots & c_{nn} \end{pmatrix}.$$

The *j-th* column of the product matrix is

$$\left[\mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(t_0)\right]^{(j)} = \sum_{k=1}^n c_{kj} \mathbf{x}^{(k)},$$

which is a solution vector, since it is a linear combination of solutions. Furthermore, the columns are all linearly independent, since the vectors $\mathbf{x}^{(k)}$ are. Hence the product is a fundamental matrix. Finally, setting $t = t_0$, $\mathbf{\Psi}(t_0)\mathbf{\Psi}^{-1}(t_0) = \mathbf{I}$. This is precisely the definition of $\mathbf{\Phi}(t)$.

14. The fundamental matrix $\Phi(t)$ for the system

$$\mathbf{x}' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \mathbf{x}$$

is given by

$$\mathbf{\Phi}(t) = \frac{1}{4} \begin{pmatrix} 2e^{3t} + 2e^{-t} & e^{3t} - e^{-t} \\ 4e^{3t} - 4e^{-t} & 2e^{3t} + 2e^{-t} \end{pmatrix}.$$

Direct multiplication results in

$$\begin{split} \boldsymbol{\Phi}(t)\boldsymbol{\Phi}(s) &= \frac{1}{16} \begin{pmatrix} 2e^{3t} + 2e^{-t} & e^{3t} - e^{-t} \\ 4e^{3t} - 4e^{-t} & 2e^{3t} + 2e^{-t} \end{pmatrix} \begin{pmatrix} 2e^{3s} + 2e^{-s} & e^{3s} - e^{-s} \\ 4e^{3s} - 4e^{-s} & 2e^{3s} + 2e^{-s} \end{pmatrix} \\ &= \frac{1}{16} \begin{pmatrix} 8(e^{3t+3s} + e^{-t-s}) & 4(e^{3t+3s} - e^{-t-s}) \\ 16(e^{3t+3s} - e^{-t-s}) & 8(e^{3t+3s} + e^{-t-s}) \end{pmatrix}. \end{split}$$

Hence

$$\mathbf{\Phi}(t)\mathbf{\Phi}(s) = \frac{1}{4} \begin{pmatrix} 2e^{3(t+s)} + 2e^{-(t+s)} & e^{3(t+s)} - e^{-(t+s)} \\ 4e^{3(t+s)} - 4e^{-(t+s)} & 2e^{3(t+s)} + 2e^{-(t+s)} \end{pmatrix}.$$

15(a). Let s be arbitrary, but fixed, and t variable. Similar to the argument in Prob. 13, the columns of the matrix $\mathbf{\Phi}(t)\mathbf{\Phi}(s)$ are linear combinations of fundamental solutions. Hence the columns of $\mathbf{\Phi}(t)\mathbf{\Phi}(s)$ are also solution of the system of equations. Further, setting t=0, $\mathbf{\Phi}(0)\mathbf{\Phi}(s)=\mathbf{I}\mathbf{\Phi}(s)=\mathbf{\Phi}(s)$. That is, $\mathbf{\Phi}(t)\mathbf{\Phi}(s)$ is a solution of the initial value problem $\mathbf{Z}'=\mathbf{AZ}$, with $\mathbf{Z}(0)=\mathbf{\Phi}(s)$. Now consider the change of variable $\tau=t+s$. Let $\mathbf{W}(\tau)=\mathbf{Z}(\tau-s)$. The given initial value problem can be reformulated as

$$\frac{d}{d\tau}\mathbf{W} = \mathbf{A}\mathbf{W}$$
, with $\mathbf{W}(s) = \mathbf{\Phi}(s)$.

Since $\Phi(t)$ is a fundamental matrix satisfying $\Phi' = A\Phi$, with $\Phi(0) = I$, it follows that

$$\mathbf{W}(\tau) = [\mathbf{\Phi}(\tau)\mathbf{\Phi}^{-1}(s)]\mathbf{\Phi}(s)$$
$$= \mathbf{\Phi}(\tau).$$

That is, $\Phi(t+s) = \Phi(\tau) = \mathbf{W}(\tau) = \mathbf{Z}(t) = \Phi(t)\Phi(s)$.

(b). Based on Part (a),
$$\Phi(t)\Phi(-t) = \Phi(t+(-t)) = \Phi(0) = \mathbf{I}$$
. Hence
$$\Phi(-t) = \Phi^{-1}(t).$$

(c). It also follows that
$$\Phi(t-s) = \Phi(t+(-s)) = \Phi(t)\Phi(-s) = \Phi(t)\Phi^{-1}(s)$$
.

16. Let **A** be a *diagonal matrix*, with $\mathbf{A} = [a_1 \mathbf{e}^{(1)}, a_2 \mathbf{e}^{(2)}, \dots, a_n \mathbf{e}^{(n)}]$. Note that for any positive integer, k,

$$\mathbf{A}^k = \left[a_1^k \, \mathbf{e}^{\scriptscriptstyle (1)}, a_2^k \, \mathbf{e}^{\scriptscriptstyle (2)}, \cdots, a_n^k \, \mathbf{e}^{\scriptscriptstyle (n)} \right].$$

It follows, from basic matrix algebra, that

$$\mathbf{I} + \sum_{k=1}^{m} \mathbf{A}^{k} \frac{t^{k}}{k!} = \begin{pmatrix} \sum_{k=0}^{m} a_{1}^{k} \frac{t^{k}}{k!} & 0 & \cdots & 0 \\ 0 & \sum_{k=0}^{m} a_{2}^{k} \frac{t^{k}}{k!} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \sum_{k=0}^{m} a_{n}^{k} \frac{t^{k}}{k!} \end{pmatrix}.$$

It can be shown that the partial sums on the left hand side converge for all t. Taking the limit (as $m \to \infty$) on both sides of the equation, we obtain

$$exp(\mathbf{A}t) = \begin{pmatrix} e^{a_1t} & 0 & \cdots & 0 \\ 0 & e^{a_2t} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & e^{a_nt} \end{pmatrix}.$$

Alternatively, consider the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$. Since ODEs are *uncoupled*, the vectors $\mathbf{x}^{(j)} = exp(a_jt)\,\mathbf{e}^{(j)},\ j=1,2,\cdots n$, are a set of linearly independent solutions. Hence the matrix

$$\mathbf{X} = \left[exp(a_1t) \, \mathbf{e}^{(1)}, exp(a_2t) \, \mathbf{e}^{(2)}, \cdots, exp(a_nt) \, \mathbf{e}^{(n)} \right]$$

is a fundamental matrix. Finally, since $\mathbf{X}(0) = \mathbf{I}$, it follows that

$$\left[exp(a_1t)\,\mathbf{e}^{(1)},exp(a_2t)\,\mathbf{e}^{(2)},\cdots,exp(a_nt)\,\mathbf{e}^{(n)}\right]=\mathbf{\Phi}(t)=exp(\mathbf{A}t).$$

17(a). Assuming that $\mathbf{x} = \phi(t)$ is a solution, then $\phi' = \mathbf{A}\phi$, with $\phi(0) = \mathbf{x}^0$. Integrate both sides of the equation to obtain

$$\phi(t) - \phi(0) = \int_0^t \mathbf{A}\phi(s)ds$$
.

Hence

$$\phi(t) = \mathbf{x}^0 + \int_0^t \mathbf{A}\phi(s)ds$$
 .

(b). Proceed with the iteration

$$\phi^{(i+1)}(t) = \mathbf{x}^0 + \int_0^t \mathbf{A}\phi^{(i)}(s)ds$$
 .

With $\phi^{(0)}(t) = \mathbf{x}^0$, and noting that **A** is a *constant* matrix,

$$\phi^{(1)}(t) = \mathbf{x}^0 + \int_0^t \mathbf{A} \mathbf{x}^0 ds$$

= $\mathbf{x}^0 + \mathbf{A} \mathbf{x}^0 t$.

That is, $\phi^{(1)}(t) = (\mathbf{I} + \mathbf{A}t)\mathbf{x}^{0}$.

(c). We then have

$$\phi^{(2)}(t) = \mathbf{x}^0 + \int_0^t \mathbf{A}(\mathbf{I} + \mathbf{A}t)\mathbf{x}^0 ds$$
$$= \mathbf{x}^0 + \mathbf{A}\mathbf{x}^0 t + \mathbf{A}^2\mathbf{x}^0 \frac{t^2}{2}$$
$$= \left(\mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2}\right)\mathbf{x}^0.$$

Now suppose that

$$\phi^{(n)}(t) = \left(\mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2} + \dots + \mathbf{A}^n \frac{t^n}{n!}\right) \mathbf{x}^0.$$

It follows that

$$\int_0^t \mathbf{A} \left(\mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2} + \dots + \mathbf{A}^n \frac{t^n}{n!} \right) \mathbf{x}^0 ds =$$

$$= \mathbf{A} \left(\mathbf{I}t + \mathbf{A} \frac{t^2}{2} + \mathbf{A}^2 \frac{t^3}{3!} + \dots + \mathbf{A}^n \frac{t^{n+1}}{(n+1)!} \right) \mathbf{x}^0$$

$$= \left(\mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2} + \mathbf{A}^3 \frac{t^3}{3!} + \dots + \mathbf{A}^{n+1} \frac{t^n}{n!} \right) \mathbf{x}^0.$$

Therefore

$$\phi^{(n+1)}(t) = \left(\mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2} + \dots + \mathbf{A}^{n+1} \frac{t^{n+1}}{(n+1)!}\right) \mathbf{x}^0.$$

By induction, the asserted form of $\,\phi^{(n)}(t)\,$ is valid for all $\,n\geq 0\,$.

(d). Define $\phi^{(\infty)}(t) = \lim_{n \to \infty} \phi^{(n)}(t)$. It can be shown that the limit does exist. In fact,

$$\phi^{(\infty)}(t) = \exp(\mathbf{A}t)\mathbf{x}^0.$$

Term-by-term differentiation results in

$$\begin{split} \frac{d}{dt}\phi^{(\infty)}(t) &= \frac{d}{dt}\bigg(\mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2} + \dots + \mathbf{A}^n \frac{t^n}{n!} + \bigg)\mathbf{x}^0 \\ &= \bigg(\mathbf{A} + \mathbf{A}^2t + \dots + \mathbf{A}^n \frac{t^{n-1}}{(n-1)!} + \bigg)\mathbf{x}^0 \\ &= \mathbf{A}\bigg(\mathbf{I} + \mathbf{A}t + \mathbf{A}^2 \frac{t^2}{2} + \dots + \mathbf{A}^{n-1} \frac{t^{n-1}}{(n-1)!} + \bigg)\mathbf{x}^0. \end{split}$$

That is,

$$\frac{d}{dt}\phi^{(\infty)}(t) = \mathbf{A}\phi^{(\infty)}(t).$$

Furthermore, $\phi^{(\infty)}(0) = \mathbf{x}^0$. Based on *uniqueness* of solutions, $\phi(t) = \phi^{(\infty)}(t)$.

Section 7.8

2. Setting $\mathbf{x} = \boldsymbol{\xi} t^r$ results in the algebraic equations

$$\begin{pmatrix} 4-r & -2 \\ 8 & -4-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The characteristic equation is $r^2 = 0$, with the *single* root r = 0. Substituting r = 0 reduces the system of equations to $2\xi_1 - \xi_2 = 0$. Therefore the only eigenvector is $\boldsymbol{\xi} = (1, 2)^T$. One solution is

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix},$$

which is a *constant* vector. In order to generate a second linearly independent solution, we must search for a *generalized eigenvector*. This leads to the system of equations

$$\begin{pmatrix} 4 & -2 \\ 8 & -4 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

This system also reduces to a single equation, $2\eta_1 - \eta_2 = 1/2$. Setting $\eta_1 = k$, some arbitrary constant, we obtain $\eta_2 = 2k - 1/2$. A second solution is

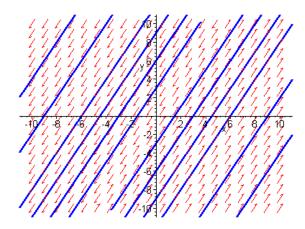
$$\mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} t + \begin{pmatrix} k \\ 2k - 1/2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ 2 \end{pmatrix} t + \begin{pmatrix} 0 \\ -1/2 \end{pmatrix} + k \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Note that the *last* term is a multiple of $\mathbf{x}^{(1)}$ and may be dropped. Hence

$$\mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} t + \begin{pmatrix} 0 \\ -1/2 \end{pmatrix}.$$

The general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} t + \begin{pmatrix} 0 \\ -1/2 \end{pmatrix} \right].$$



All of the points on the line $x_2 = 2x_1$ are equilibrium points. Solutions starting at all other points become unbounded.

3. Solution of the ODEs is based on the analysis of the algebraic equations

$$\begin{pmatrix} -\frac{3}{2} - r & 1\\ -\frac{1}{4} & -\frac{1}{2} - r \end{pmatrix} \begin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

The characteristic equation is $r^2 + 2r + 1 = 0$, with a single root r = -1. Setting r = -1, the two equations reduce to $\xi_1 - 2\xi_2 = 0$. The corresponding eigenvector is $\boldsymbol{\xi} = (2,1)^T$. One solution is

$$\mathbf{x}^{(1)} = \binom{2}{1} e^{-t}.$$

A second linearly independent solution is obtained by finding a *generalized eigenvector*. We therefore analyze the system

$$\begin{pmatrix} -\frac{1}{2} & 1 \\ -\frac{1}{4} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

The equations reduce to the single equation $-\eta_1 + 2\eta_2 = 2$. Let $\eta_1 = 2k$. We obtain $\eta_2 = 1 + k$, and a second linearly independent solution is

$$\mathbf{x}^{(2)} = {2 \choose 1} t e^{-t} + {2k \choose 1+k} e^{-t}$$
$$= {2 \choose 1} t e^{-t} + {0 \choose 1} e^{-t} + k {2 \choose 1} e^{-t}.$$

Dropping the last term, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-t} + c_2 \left[\begin{pmatrix} 2 \\ 1 \end{pmatrix} t e^{-t} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t} \right].$$

4. Solution of the ODE requires analysis of the algebraic equations

$$\begin{pmatrix} -3-r & \frac{5}{2} \\ -\frac{5}{2} & 2-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A} - r\mathbf{I}) = r^2 + r + \frac{1}{4} = 0$. The only root is r = -1/2, which is an eigenvalue of multiplicity two. Setting r = -1/2 is the coefficient matrix reduces the system to the single equation $-\xi_1 + \xi_2 = 0$. Hence the corresponding eigenvector is $\boldsymbol{\xi} = (1, 1)^T$. One solution is

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t/2}.$$

In order to obtain a second linearly independent solution, we find a solution of the system

$$\begin{pmatrix} -\frac{5}{2} & \frac{5}{2} \\ -\frac{5}{2} & \frac{5}{2} \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

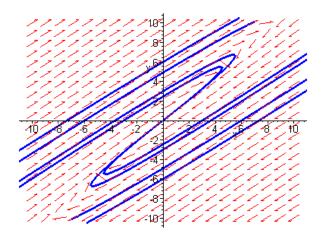
There equations reduce to $-5\eta_1 + 5\eta_2 = 2$. Set $\eta_1 = k$, some arbitrary constant. Then $\eta_2 = k + 2/5$. A second solution is

$$\mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t/2} + \begin{pmatrix} k \\ k+2/5 \end{pmatrix} e^{-t/2}$$

$$= \begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t/2} + \begin{pmatrix} 0 \\ 2/5 \end{pmatrix} e^{-t/2} + k \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t/2}.$$

Dropping the *last* term, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t/2} + c_2 \left[\begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t/2} + \begin{pmatrix} 0 \\ 2/5 \end{pmatrix} e^{-t/2} \right].$$



6. The eigensystem is obtained from analysis of the equation

$$\begin{pmatrix} -r & 1 & 1 \\ 1 & -r & 1 \\ 1 & 1 & -r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The characteristic equation of the coefficient matrix is $r^3-3r-2=0$, with roots $r_1=2$ and $r_{2,3}=-1$. Setting r=2, we have

$$\begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This system is reduced to the equations

$$\xi_1 - \xi_3 = 0
\xi_2 - \xi_3 = 0.$$

A corresponding eigenvector vector is given by $\boldsymbol{\xi}^{(1)} = (1,1,1)^T$. Setting r = -1, the system of equations is reduced to the *single* equation

$$\xi_1 + \xi_2 + \xi_3 = 0.$$

An eigenvector vector is given by $\boldsymbol{\xi}^{(2)} = (1,0,-1)^T$. Since the last equation has two free variables, a third linearly independent eigenvector (associated with r=-1) is $\boldsymbol{\xi}^{(3)} = (0,1,-1)^T$. Therefore the general solution may be written as

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} e^{-t} + c_3 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} e^{-t}.$$

7. Solution of the ODE requires analysis of the algebraic equations

$$\begin{pmatrix} 1-r & -4 \\ 4 & -7-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

For a nonzero solution, we must have $det(\mathbf{A} - r\mathbf{I}) = r^2 + 6r + 9 = 0$. The only root is r = -3, which is an eigenvalue of multiplicity two. Substituting r = 3 into the coefficient matrix, the system reduces to the single equation $\xi_1 - \xi_2 = 0$. Hence the corresponding eigenvector is $\boldsymbol{\xi} = (1, 1)^T$. One solution is

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-3t}.$$

For a second linearly independent solution, we search for a *generalized eigenvector*. Its components satisfy

$$\begin{pmatrix} 4 & -4 \\ 4 & -4 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

that is, $4\eta_1 - 4\eta_2 = 1$. Let $\eta_2 = k$, some arbitrary constant. Then $\eta_1 = k + 1/4$. It follows that a second solution is given by

$$\begin{split} \mathbf{x}^{(2)} &= \binom{1}{1} t e^{-3t} + \binom{k+1/4}{k} e^{-3t} \\ &= \binom{1}{1} t e^{-3t} + \binom{1/4}{0} e^{-3t} + k \binom{1}{1} e^{-3t}. \end{split}$$

Dropping the last term, the general solution is

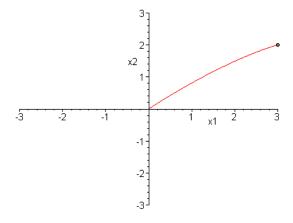
$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-3t} + c_2 \left[\begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-3t} + \begin{pmatrix} 1/4 \\ 0 \end{pmatrix} e^{-3t} \right].$$

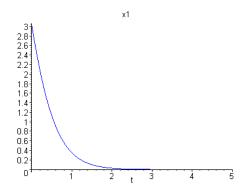
Imposing the initial conditions, we require that

$$c_1 + \frac{1}{4}c_2 = 3$$
$$c_1 = 2$$

which results in $c_1 = 2$ and $c_2 = 4$. Therefore the solution of the IVP is

$$\mathbf{x} = {3 \choose 2}e^{-3t} + {4 \choose 4}te^{-3t}.$$





8. Solution of the ODEs is based on the analysis of the algebraic equations

$$\begin{pmatrix} -\frac{5}{2} - r & \frac{3}{2} \\ -\frac{3}{2} & \frac{1}{2} - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The characteristic equation is $r^2 + 2r + 1 = 0$, with a single root r = -1. Setting r = -1, the two equations reduce to $-\xi_1 + \xi_2 = 0$. The corresponding eigenvector is $\boldsymbol{\xi} = (1,1)^T$. One solution is

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t}.$$

A second linearly independent solution is obtained by solving the system

$$\begin{pmatrix} -\frac{3}{2} & \frac{3}{2} \\ -\frac{3}{2} & \frac{3}{2} \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

The equations reduce to the single equation $-3\eta_1 + 3\eta_2 = 2$. Let $\eta_1 = k$. We obtain $\eta_2 = 2/3 + k$, and a second linearly independent solution is

$$\mathbf{x}^{(2)} = {1 \choose 1} t e^{-t} + {k \choose 2/3 + k} e^{-t}$$

$$= {1 \choose 1} t e^{-t} + {0 \choose 2/3} e^{-t} + k {1 \choose 1} e^{-t}.$$

Dropping the last term, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t} + c_2 \left[\begin{pmatrix} 1 \\ 1 \end{pmatrix} t e^{-t} + \begin{pmatrix} 0 \\ 2/3 \end{pmatrix} e^{-t} \right].$$

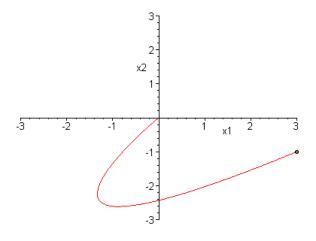
Imposing the initial conditions, find that

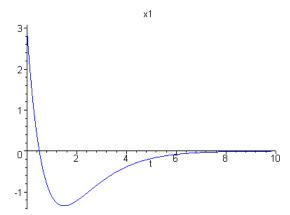
$$c_1 = 3$$

$$c_1 + \frac{2}{3}c_2 = -1,$$

so that $c_1 = 3$ and $c_2 = -6$. Therefore the solution of the IVP is

$$\mathbf{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} e^{-t} - \begin{pmatrix} 6 \\ 6 \end{pmatrix} t e^{-t}.$$





10. The eigensystem is obtained from analysis of the equation

$$\begin{pmatrix} 3-r & 9 \\ -1 & -3-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The characteristic equation is $r^2=0$, with a single root r=0. Setting r=0, the two equations reduce to $\xi_1+3\xi_2=0$. The corresponding eigenvector is $\boldsymbol{\xi}=(-3,1)^T$. Hence one solution is

$$\mathbf{x}^{(1)} = \begin{pmatrix} -3\\1 \end{pmatrix},$$

which is a constant vector. A second linearly independent solution is obtained from the system

$$\begin{pmatrix} 3 & 9 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}.$$

The equations reduce to the single equation $\eta_1+3\eta_2=-1$. Let $\eta_2=k$. We obtain $\eta_1=-1-3k$, and a second linearly independent solution is

$$\begin{aligned} \mathbf{x}^{(2)} &= \binom{-3}{1} t + \binom{-1-3k}{k} \\ &= \binom{-3}{1} t + \binom{-1}{0} + k \binom{-3}{1}. \end{aligned}$$

Dropping the last term, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} -3 \\ 1 \end{pmatrix} + c_2 \left[\begin{pmatrix} -3 \\ 1 \end{pmatrix} t + \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right].$$

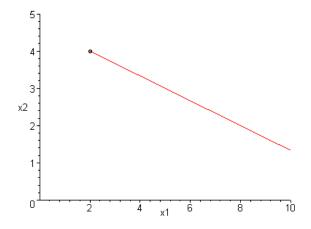
Imposing the initial conditions, we require that

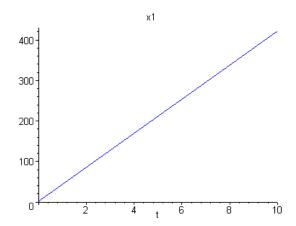
$$-3c_1 - c_2 = 2$$

 $c_1 = 4$,

which results in $c_1 = 4$ and $c_2 = -14$. Therefore the solution of the IVP is

$$\mathbf{x} = \begin{pmatrix} 2\\4 \end{pmatrix} - 14 \begin{pmatrix} -3\\1 \end{pmatrix} t.$$





12. The characteristic equation of the system is $8\,r^3+60\,r^2+126\,r+49=0$. The eigenvalues are $r_1=-1/2$ and $r_{2,3}=-7/2$. The eigenvector associated with r_1 is $\boldsymbol{\xi}^{(1)}=(1\,,1\,,1)^T$. Setting r=-7/2, the components of the eigenvectors must satisfy the relation

$$\xi_1 + \xi_2 + \xi_3 = 0.$$

An eigenvector vector is given by $\boldsymbol{\xi}^{(2)} = (1,0,-1)^T$. Since the last equation has two free variables, a third linearly independent eigenvector (associated with r = -7/2) is $\boldsymbol{\xi}^{(3)} = (0,1,-1)^T$. Therefore the general solution may be written as

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{-t/2} + c_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} e^{-7t/2} + c_3 \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} e^{-7t/2}.$$

Invoking the initial conditions, we require that

$$c_1 + c_2 = 2$$

$$c_1 + c_3 = 3$$

$$c_1 - c_2 - c_3 = -1$$

Hence the solution of the IVP is

$$\mathbf{x} = \frac{4}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^{-t/2} + \frac{2}{3} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} e^{-7t/2} + \frac{5}{3} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} e^{-7t/2}.$$

13. Setting $\mathbf{x} = \boldsymbol{\xi} t^r$ results in the algebraic equations

$$\begin{pmatrix} 3-r & -4 \\ 1 & -1-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The characteristic equation is $r^2 - 2r + 1 = 0$, with a single root of $r_{1,2} = 1$. With

r=1, the system reduces to a single equation $\xi_1-2\,\xi_2=0$. An eigenvector is given by $\boldsymbol{\xi}=(2\,,1)^T$. Hence one solution is

$$\mathbf{x}^{(1)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} t.$$

In order to find a second linearly independent solution, we search for a *generalized eigenvector* whose components satisfy

$$\begin{pmatrix} 2 & -4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

These equations reduce to $\eta_1-2\,\eta_2=1$. Let $\eta_2=k$, some arbitrary constant. Then $\eta_1=1+2k$. [Before proceeding, note that if we set $u=\ln t$, the original equation is transformed into a constant coefficient equation with independent variable u. Recall that a second solution is obtained by multiplication of the first solution by the factor u. This implies that we must multiply first solution by a factor of $\ln t$.] Hence a second linearly independent solution is

$$\begin{aligned} \mathbf{x}^{(2)} &= \binom{2}{1} t \ln t + \binom{1+2k}{k} t \\ &= \binom{2}{1} t \ln t + \binom{1}{0} t + k \binom{2}{1} t. \end{aligned}$$

Dropping the last term, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} t + c_2 \left[\begin{pmatrix} 2 \\ 1 \end{pmatrix} t \ln t + \begin{pmatrix} 1 \\ 0 \end{pmatrix} t \right].$$

15. The characteristic equation is

$$r^2 - (a+d)r + ad - bc = 0.$$

Hence the eigenvalues are

$$r_{1,2} = \frac{a+d}{2} \pm \frac{1}{2} \sqrt{(a+d)^2 - 4(ad-bc)}$$
.

16(a). Using the result in Prob. 15, the eigenvalues are

$$r_{1,2} = -\frac{1}{2RC} \pm \frac{\sqrt{L^2 - 4R^2CL}}{2RCL}$$
.

The discriminant vanishes when $L = 4R^2CL$.

(b). The system of differential equations is

$$\frac{d}{dt} \begin{pmatrix} I \\ V \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{4} \\ -1 & -1 \end{pmatrix} \begin{pmatrix} I \\ V \end{pmatrix}.$$

The associated eigenvalue problem is

$$\begin{pmatrix} -r & \frac{1}{4} \\ -1 & -1-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The characteristic equation is $r^2 + r + 1/4 = 0$, with a single root of $r_{1,2} = -1/2$. Setting r = -1/2, the algebraic equations reduce to $2\xi_1 + \xi_2 = 0$. An eigenvector is given by $\boldsymbol{\xi} = (1, -2)^T$. Hence one solution is

$$\binom{I}{V}^{(1)} = \binom{1}{-2} e^{-t/2} .$$

A second solution is obtained from a generalized eigenvector whose components satisfy

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{4} \\ -1 & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

It follows that $\eta_1 = k$ and $\eta_2 = 4 - 2k$. A second linearly independent solution is

$$\begin{pmatrix} I \\ V \end{pmatrix}^{(2)} = \begin{pmatrix} 1 \\ -2 \end{pmatrix} t e^{-t/2} + \begin{pmatrix} k \\ 4 - 2k \end{pmatrix} e^{-t/2}$$

$$= \begin{pmatrix} 1 \\ -2 \end{pmatrix} t e^{-t/2} + \begin{pmatrix} 0 \\ 4 \end{pmatrix} e^{-t/2} + k \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t/2}.$$

Dropping the last term, the general solution is

$$\begin{pmatrix} I \\ V \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix} e^{-t/2} + c_2 \left[\begin{pmatrix} 1 \\ -2 \end{pmatrix} t e^{-t/2} + \begin{pmatrix} 0 \\ 4 \end{pmatrix} e^{-t/2} \right].$$

Imposing the initial conditions, we require that

$$c_1 = 1 - 2c_1 + 4c_2 = 2,$$

which results in $c_1 = 1$ and $c_2 = 1$. Therefore the solution of the IVP is

$$\begin{pmatrix} I \\ V \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{-t/2} + \begin{pmatrix} 1 \\ -2 \end{pmatrix} t e^{-t/2}.$$

18(a). The eigensystem is obtained from analysis of the equation

$$\begin{pmatrix} 5 - r & -3 & -2 \\ 8 & -5 - r & -4 \\ -4 & 3 & 3 - r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The characteristic equation of the coefficient matrix is $r^3 - 3r^2 + 3r - 1 = 0$, with a single root of *multiplicity three*, r = 1. Setting r = 1, we have

$$\begin{pmatrix} 4 & -3 & -2 \\ 8 & -6 & -4 \\ -4 & 3 & 2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The system of algebraic equations reduce to a single equation

$$4\xi_1 - 3\xi_2 - 2\xi_3 = 0.$$

An eigenvector vector is given by $\boldsymbol{\xi}^{(1)} = (1,0,2)^T$. Since the last equation has two free variables, a second linearly independent eigenvector (associated with r=1) is $\boldsymbol{\xi}^{(2)} = (0,2,-3)^T$. Therefore two solutions are obtained as

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} e^t \text{ and } \mathbf{x}^{(2)} = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix} e^t.$$

(b). It follows directly that $\mathbf{x}' = \boldsymbol{\xi} t e^t + \boldsymbol{\xi} e^t + \boldsymbol{\eta} e^t$. Hence the coefficient vectors must satisfy $\boldsymbol{\xi} t e^t + \boldsymbol{\xi} e^t + \boldsymbol{\eta} e^t = \mathbf{A} \boldsymbol{\xi} t e^t + \mathbf{A} \boldsymbol{\eta} e^t$. Rearranging the terms, we have

$$\boldsymbol{\xi}e^t = (\mathbf{A} - \mathbf{I})\boldsymbol{\xi}te^t + (\mathbf{A} - \mathbf{I})\boldsymbol{\eta}e^t.$$

Given an eigenvector $\boldsymbol{\xi}$, it follows that $(\mathbf{A} - \mathbf{I})\boldsymbol{\eta} = \boldsymbol{\xi}$.

(c). Note that a linear combination of two eigenvectors, associated with the *same* eigenvalue, is also an eigenvector. Consider the equation $(\mathbf{A} - \mathbf{I})\boldsymbol{\eta} = c_1\boldsymbol{\xi}^{(1)} + c_2\boldsymbol{\xi}^{(2)}$. The *augmented* matrix is

$$\begin{pmatrix} 4 & -3 & -2 & | & c_1 \\ 8 & -6 & -4 & | & 2c_2 \\ -4 & 3 & 2 & | & 2c_1 - 3c_2 \end{pmatrix}.$$

Using elementary row operations, we obtain

$$\begin{pmatrix} 4 & -3 & -2 & | & c_1 \\ 0 & 0 & 0 & | & -2c_1 + 2c_2 \\ 0 & 0 & 0 & | & 3c_1 - 3c_2 \end{pmatrix}.$$

It is evident that a solution exists provided $c_1 = c_2$.

(d). Let $c_1 = c_2 = 2$. The components of the generalized eigenvector must satisfy

$$\begin{pmatrix} 4 & -3 & -2 \\ 8 & -6 & -4 \\ -4 & 3 & 2 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}.$$

Based on Part (c), the equations reduce to the single equation $4\eta_1 - 3\eta_2 - 2\eta_3 = 2$. Let $\eta_1 = \alpha$ and $\eta_2 = 2\beta$, where α and β are arbitrary constants. We then have

$$\eta_3 = -1 + 2\alpha - 3\beta$$

so that

$$\boldsymbol{\eta} = \begin{pmatrix} \alpha \\ 2\beta \\ -1 + 2\alpha - 3\beta \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}.$$

Observe that $\eta = \alpha \xi^{(1)} + \beta \xi^{(2)}$. Hence a third linearly independent solution is

$$\mathbf{x}^{(3)} = \begin{pmatrix} 2\\4\\-2 \end{pmatrix} t e^t + \begin{pmatrix} 0\\0\\-1 \end{pmatrix} e^t.$$

(e). Given the three linearly independent solutions, a fundamental matrix is given by

$$\Psi(t) = \begin{pmatrix} e^t & 0 & 2t e^t \\ 0 & 2e^t & 4t e^t \\ 2e^t & -3e^t & -2t e^t - e^t \end{pmatrix}.$$

(f). We construct the transformation matrix

$$\mathbf{T} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 4 & 0 \\ 2 & -2 & -1 \end{pmatrix},$$

with inverse

$$\mathbf{T}^{-1} = \begin{pmatrix} 1 & -1/2 & 0 \\ 0 & 1/4 & 0 \\ 2 & -3/2 & -1 \end{pmatrix}.$$

The *Jordan form* of the matrix **A** is

$$\mathbf{J} = \mathbf{T}^{-1} \mathbf{A} \mathbf{T} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

20(a). Direct multiplication results in

$$\mathbf{J}^{2} = \begin{pmatrix} \lambda^{2} & 0 & 0 \\ 0 & \lambda^{2} & 2\lambda \\ 0 & 0 & \lambda^{2} \end{pmatrix}, \, \mathbf{J}^{3} = \begin{pmatrix} \lambda^{3} & 0 & 0 \\ 0 & \lambda^{3} & 3\lambda^{2} \\ 0 & 0 & \lambda^{3} \end{pmatrix}, \, \mathbf{J}^{4} = \begin{pmatrix} \lambda^{4} & 0 & 0 \\ 0 & \lambda^{4} & 4\lambda^{3} \\ 0 & 0 & \lambda^{4} \end{pmatrix}.$$

(b). Suppose that

$$\mathbf{J}^n = \begin{pmatrix} \lambda^n & 0 & 0 \\ 0 & \lambda^n & n\lambda^{n-1} \\ 0 & 0 & \lambda^n \end{pmatrix}.$$

Then

$$\mathbf{J}^{n+1} = \begin{pmatrix} \lambda^n & 0 & 0 \\ 0 & \lambda^n & n\lambda^{n-1} \\ 0 & 0 & \lambda^n \end{pmatrix} \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$
$$= \begin{pmatrix} \lambda \cdot \lambda^n & 0 & 0 \\ 0 & \lambda \cdot \lambda^n & \lambda^n + n\lambda \cdot \lambda^{n-1} \\ 0 & 0 & \lambda \cdot \lambda^n \end{pmatrix}.$$

Hence the result follows by mathematical induction.

(c). Note that **J** is *block diagonal*. Hence each *block* may be *exponentiated*. Using the result in Prob. (19),

$$exp(\mathbf{J}t) = \begin{pmatrix} e^{\lambda t} & 0 & 0\\ 0 & e^{\lambda t} & te^{\lambda t}\\ 0 & 0 & e^{\lambda t} \end{pmatrix}.$$

(d). Setting $\lambda = 1$, and using the transformation matrix T in Prob. (18),

$$\mathbf{T}exp(\mathbf{J}t) = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 4 & 0 \\ 2 & -2 & -1 \end{pmatrix} \begin{pmatrix} e^t & 0 & 0 \\ 0 & e^t & te^t \\ 0 & 0 & e^t \end{pmatrix}$$
$$= \begin{pmatrix} e^t & 2e^t & 2t e^t \\ 0 & 4e^t & 4t e^t \\ 2e^t & -2e^t & -2t e^t - e^t \end{pmatrix}.$$

Based on the form of ${\bf J}$, $exp({\bf J}t)$ is the fundamental matrix associated with the solutions

$$\mathbf{y}^{(1)} = \boldsymbol{\xi}^{(1)} e^t, \ \mathbf{y}^{(2)} = \left(2\boldsymbol{\xi}^{(1)} + 2\boldsymbol{\xi}^{(2)}\right) e^t \text{ and } \mathbf{y}^{(3)} = \left(2\boldsymbol{\xi}^{(1)} + 2\boldsymbol{\xi}^{(2)}\right) t e^t + \boldsymbol{\eta} e^t.$$

Hence the resulting matrix is the fundamental matrix associated with the solution set

$$\{ \boldsymbol{\xi}^{(1)} e^t, (2 \boldsymbol{\xi}^{(1)} + 2 \boldsymbol{\xi}^{(2)}) e^t, (2 \boldsymbol{\xi}^{(1)} + 2 \boldsymbol{\xi}^{(2)}) t e^t + \boldsymbol{\eta} e^t \},$$

as opposed to the solution set in Prob. (18), given by

$$\{ \boldsymbol{\xi}^{(1)} e^t, \boldsymbol{\xi}^{(2)} e^t, (2 \boldsymbol{\xi}^{(1)} + 2 \boldsymbol{\xi}^{(2)}) t e^t + \boldsymbol{\eta} e^t \}.$$

21(a). Direct multiplication results in

$$\mathbf{J}^{2} = \begin{pmatrix} \lambda^{2} & 2\lambda & 1 \\ 0 & \lambda^{2} & 2\lambda \\ 0 & 0 & \lambda^{2} \end{pmatrix}, \ \mathbf{J}^{3} = \begin{pmatrix} \lambda^{3} & 3\lambda^{2} & 3\lambda \\ 0 & \lambda^{3} & 3\lambda^{2} \\ 0 & 0 & \lambda^{3} \end{pmatrix}, \ \mathbf{J}^{4} = \begin{pmatrix} \lambda^{4} & 4\lambda^{3} & 6\lambda^{2} \\ 0 & \lambda^{4} & 4\lambda^{3} \\ 0 & 0 & \lambda^{4} \end{pmatrix}.$$

(b). Suppose that

$$\mathbf{J}^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} & \frac{n(n-1)}{2}\lambda^{n-2} \\ 0 & \lambda^n & n\lambda^{n-1} \\ 0 & 0 & \lambda^n \end{pmatrix}.$$

Then

$$\mathbf{J}^{n+1} = \begin{pmatrix} \lambda^n & n\lambda^{n-1} & \frac{n(n-1)}{2}\lambda^{n-2} \\ 0 & \lambda^n & n\lambda^{n-1} \\ 0 & 0 & \lambda^n \end{pmatrix} \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$
$$= \begin{pmatrix} \lambda \cdot \lambda^n & \lambda^n + n\lambda \cdot \lambda^{n-1} & n\lambda^{n-1} + \frac{n(n-1)}{2}\lambda \cdot \lambda^{n-2} \\ 0 & \lambda \cdot \lambda^n & \lambda^n + n\lambda \cdot \lambda^{n-1} \\ 0 & 0 & \lambda \cdot \lambda^n \end{pmatrix}.$$

The result follows by noting that

$$n\lambda^{n-1} + \frac{n(n-1)}{2}\lambda \cdot \lambda^{n-2} = \left[n + \frac{n(n-1)}{2}\right]\lambda^{n-1}$$
$$= \frac{n^2 + n}{2}\lambda^{n-1}.$$

(c). We first observe that

$$\sum_{n=0}^{\infty} \lambda^n \frac{t^n}{n!} = e^{\lambda t}$$

$$\sum_{n=0}^{\infty} n \lambda^{n-1} \frac{t^n}{n!} = t \sum_{n=1}^{\infty} \lambda^{n-1} \frac{t^{n-1}}{(n-1)!} = t e^{\lambda t}$$

$$\sum_{n=0}^{\infty} \frac{n(n-1)}{2} \lambda^{n-2} \frac{t^n}{n!} = \frac{t^2}{2} \sum_{n=2}^{\infty} \lambda^{n-2} \frac{t^{n-2}}{(n-2)!} = \frac{t^2}{2} e^{\lambda t}.$$

Therefore

$$exp(\mathbf{J}t) = \begin{pmatrix} e^{\lambda t} & te^{\lambda t} & \frac{t^2}{2}e^{\lambda t} \\ 0 & e^{\lambda t} & te^{\lambda t} \\ 0 & 0 & e^{\lambda t} \end{pmatrix}.$$

(d). Setting $\lambda = 2$, and using the transformation matrix T in Prob. (17),

$$\mathbf{T}exp(\mathbf{J}t) = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ -1 & 0 & 3 \end{pmatrix} \begin{pmatrix} e^{2t} & te^{2t} & \frac{t^2}{2}e^{2t} \\ 0 & e^{2t} & te^{2t} \\ 0 & 0 & e^{2t} \end{pmatrix}$$
$$= \begin{pmatrix} 0 & e^{2t} & te^{2t} + 2e^{2t} \\ e^{2t} & te^{2t} + e^{2t} & \frac{t^2}{2}e^{2t} + te^{2t} \\ -e^{2t} & -te^{2t} & -\frac{t^2}{2}e^{2t} + 3e^{2t} \end{pmatrix}.$$

Section 7.9

5. As shown in Prob. 2, Section 7.8, the general solution of the homogeneous equation is

$$\mathbf{x}_c = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} t \\ 2t - \frac{1}{2} \end{pmatrix}.$$

An associated fundamental matrix is

$$\Psi(t) = \begin{pmatrix} 1 & t \\ 2 & 2t - \frac{1}{2} \end{pmatrix}.$$

The inverse of the fundamental matrix is easily determined as

$$\Psi^{-1}(t) = \begin{pmatrix} 4t - 3 & -2t + 2 \\ 8t - 8 & -4t + 5 \end{pmatrix}.$$

We can now compute

$$\Psi^{-1}(t)\mathbf{g}(t) = -\frac{1}{t^3} \begin{pmatrix} 2t^2 + 4t - 1 \\ -2t - 4 \end{pmatrix},$$

and

$$\int \mathbf{\Psi}^{-1}(t)\mathbf{g}(t) dt = \begin{pmatrix} -\frac{1}{2}t^{-2} + 4t^{-1} - 2\ln t \\ -2t^{-2} - 2t^{-1} \end{pmatrix}.$$

Finally,

$$\mathbf{v}(t) = \mathbf{\Psi}(t) \int \mathbf{\Psi}^{-1}(t) \mathbf{g}(t) dt,$$

where

$$v_1(t) = -\frac{1}{2}t^{-2} + 2t^{-1} - 2\ln t - 2$$

 $v_2(t) = 5t^{-1} - 4\ln t - 4$.

Note that the vector $(2,4)^T$ is a multiple of one of the fundamental solutions. Hence we can write the general solution as

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} t \\ 2t - \frac{1}{2} \end{pmatrix} - \frac{1}{t^2} \begin{pmatrix} 1/2 \\ 0 \end{pmatrix} + \frac{1}{t} \begin{pmatrix} 2 \\ 5 \end{pmatrix} - 2\ln t \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

6. The eigenvalues of the coefficient matrix are $r_1=0$ and $r_2=-5$. It follows that the solution of the homogeneous equation is

$$\mathbf{x}_c = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} -2e^{-5t} \\ e^{-5t} \end{pmatrix}.$$

The coefficient matrix is *symmetric*. Hence the system is diagonalizable. Using the *normalized* eigenvectors as columns, the transformation matrix, and its inverse, are

$$\mathbf{T} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}, \ \mathbf{T}^{-1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}.$$

Setting $\mathbf{x} = \mathbf{T}\mathbf{y}$, and $\mathbf{h}(t) = \mathbf{T}^{-1}\mathbf{g}(t)$, the transformed system is given, in scalar form, as

$$y_1' = \frac{5+8t}{\sqrt{5}t}$$
$$y_2' = -5y_2 + \frac{4}{\sqrt{5}}.$$

The solutions are readily obtained as

$$y_1(t) = \sqrt{5} \ln t + \frac{4}{\sqrt{5}} t + c_1$$
 and $y_2(t) = c_2 e^{-5t} + \frac{4}{5\sqrt{5}}$.

Transforming back to the original variables, we have x = Ty, with

$$\mathbf{x} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix} y_1(t) + \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \end{pmatrix} y_2(t).$$

Hence the general solution is,

$$\mathbf{x} = k_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + k_2 \begin{pmatrix} -2e^{-5t} \\ e^{-5t} \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} \ln t + \frac{4}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} t + \frac{4}{25} \begin{pmatrix} -2 \\ 1 \end{pmatrix}.$$

7. The solution of the homogeneous equation is

$$\mathbf{x}_{c} = c_{1} \begin{pmatrix} e^{-t} \\ -2e^{-t} \end{pmatrix} + c_{2} \begin{pmatrix} e^{3t} \\ 2e^{3t} \end{pmatrix}.$$

Based on the simple form of the right hand side, we use the method of *undetermined* coefficients. Set $\mathbf{v} = \mathbf{a} e^t$. Substitution into the ODE yields

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^t = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^t + \begin{pmatrix} 2 \\ -1 \end{pmatrix} e^t.$$

In scalar form, after canceling the exponential, we have

$$a_1 = a_1 + a_2 + 2$$

 $a_2 = 4a_1 + a_2 - 1$

with $a_1 = 1/4$ and $a_2 = -2$. Hence the particular solution is

$$\mathbf{v} = \begin{pmatrix} 1/4 \\ -2 \end{pmatrix} e^t,$$

so that the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} e^{-t} \\ -2e^{-t} \end{pmatrix} + c_2 \begin{pmatrix} e^{3t} \\ 2e^{3t} \end{pmatrix} + \frac{1}{4} \begin{pmatrix} e^t \\ -8e^t \end{pmatrix}.$$

8. The eigenvalues of the coefficient matrix are $r_1 = 1$ and $r_2 = -1$. It follows that the solution of the homogeneous equation is

$$\mathbf{x}_c = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t}.$$

Use the method of *undetermined coefficients*. Since the right hand side is related to one of the fundamental solutions, set $\mathbf{v} = \mathbf{a} t e^t + \mathbf{b} e^t$. Substitution into the ODE yields

$$\binom{a_1}{a_2} (e^t + te^t) + \binom{b_1}{b_2} e^t = \binom{2}{3} - \binom{1}{2} \binom{a_1}{a_2} te^t + \binom{2}{3} - \binom{1}{2} \binom{b_1}{b_2} e^t + \binom{1}{-1} e^t.$$

In scalar form, we have

$$(a_1 + b_1)e^t + a_1te^t = (2a_1 - a_2)te^t + (2b_1 - b_2)e^t + e^t$$

$$(a_2 + b_2)e^t + a_2te^t = (3a_1 - 2a_2)te^t + (3b_1 - 2b_2)e^t - e^t.$$

Equating the coefficients in these two equations, we find that

$$a_1 = 2a_1 - a_2$$

$$a_1 + b_1 = 2b_1 - b_2 + 1$$

$$a_2 = 3a_1 - 2a_2$$

$$a_2 + b_2 = 3b_1 - 2b_2 - 1$$

It follows that $a_1 = a_2$. Setting $a_1 = a_2 = a$, the equations reduce to

$$b_1 - b_2 = a - 1$$

 $3b_1 - 3b_2 = 1 + a$.

Combining these equations, it is necessary that a=2. As a result, $b_1=b_2+1$. Choosing $a_1=a_2=2$, and $b_2=k$, some arbitrary constant, a particular solution is

$$\mathbf{v} = {2 \choose 2} t e^t + {k+1 \choose k} e^t = {2 \choose 2} t e^t + k {1 \choose 1} e^t + {1 \choose 0} e^t.$$

Since the *second* vector is a fundamental solution, the general solution can be written as

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} t e^t + \begin{pmatrix} 1 \\ 0 \end{pmatrix} e^t.$$

9. Note that the coefficient matrix is *symmetric*. Hence the system is diagonalizable. The eigenvalues and eigenvectors are given by

$$r_1 = -rac{1}{2} \; , \; oldsymbol{\xi}^{(1)} = inom{1}{1} \; ext{and} \; r_2 = \, -\, 2 \; , \; oldsymbol{\xi}^{(2)} = inom{1}{-1}.$$

Using the *normalized* eigenvectors as columns, the transformation matrix, and its inverse, are

$$\mathbf{T} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \ \mathbf{T}^{-1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Setting ${\bf x}={\bf T}{\bf y}$, and ${\bf h}(t)={\bf T}^{-1}{\bf g}(t)$, the transformed system is given, in scalar form, as

$$y_1' = -\frac{1}{2}y_1 + \sqrt{2}t + \frac{1}{\sqrt{2}}e^t$$

$$y_2' = -2y_2 + \sqrt{2}t - \frac{1}{\sqrt{2}}e^t.$$

Using any elementary method for first order linear equations, the solutions are

$$y_1(t) = k_1 e^{-t/2} + \frac{\sqrt{2}}{3} e^t - 4\sqrt{2} + 2\sqrt{2} t$$
$$y_2(t) = k_2 e^{-2t} - \frac{1}{3\sqrt{2}} e^t - \frac{1}{2\sqrt{2}} + \frac{1}{\sqrt{2}} t.$$

Transforming back to the original variables, $\mathbf{x} = \mathbf{T}\mathbf{y}$, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t/2} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-2t} - \frac{1}{4} \begin{pmatrix} 17 \\ 15 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 5 \\ 3 \end{pmatrix} t + \frac{1}{6} \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^t.$$

10. Since the coefficient matrix is *symmetric*, the differential equations can be decoupled.

The eigenvalues and eigenvectors are given by

$$r_1=\ -4$$
 , $oldsymbol{\xi}^{(1)}=\left(egin{array}{c} \sqrt{2} \ -1 \end{array}
ight)$ and $r_2=\ -1$, $oldsymbol{\xi}^{(2)}=\left(egin{array}{c} 1 \ \sqrt{2} \end{array}
ight)$.

Using the *normalized* eigenvectors as columns, the transformation matrix, and its inverse, are

$$\mathbf{T} = \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{pmatrix}, \ \mathbf{T}^{-1} = \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2} & -1 \\ 1 & \sqrt{2} \end{pmatrix}.$$

Setting $\mathbf{x} = \mathbf{T}\mathbf{y}$, and $\mathbf{h}(t) = \mathbf{T}^{-1}\mathbf{g}(t)$, the transformed system is given, in scalar form, as

$$y_1' = -4y_1 + \frac{1}{\sqrt{3}} \left(1 + \sqrt{2} \right) e^{-t}$$

$$y_2' = -y_2 + \frac{1}{\sqrt{3}} \left(1 - \sqrt{2} \right) e^{-t}.$$

The solutions are easily obtained as

$$y_1(t) = k_1 e^{-4t} + \frac{1}{3\sqrt{3}} \left(1 + \sqrt{2} \right) e^{-t}$$
$$y_2(t) = k_2 e^{-t} + \frac{1}{\sqrt{3}} \left(1 - \sqrt{2} \right) t e^{-t}.$$

Transforming back to the original variables, the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} \sqrt{2} \\ -1 \end{pmatrix} e^{-4t} + c_2 \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} e^{-t} + \frac{1}{9} \begin{pmatrix} 2 + \sqrt{2} + 3\sqrt{3} \\ 3\sqrt{6} - \sqrt{2} - 1 \end{pmatrix} e^{-t} + \frac{1}{3} \begin{pmatrix} 1 - \sqrt{2} \\ \sqrt{2} - 2 \end{pmatrix} t e^{-t}.$$

Note that

$$\begin{pmatrix} 2 + \sqrt{2} + 3\sqrt{3} \\ 3\sqrt{6} - \sqrt{2} - 1 \end{pmatrix} = \begin{pmatrix} 2 + \sqrt{2} \\ -\sqrt{2} - 1 \end{pmatrix} + 3\sqrt{3} \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix}.$$

The second vector is an eigenvector, hence the solution may be written as

$$\mathbf{x} = c_1 \begin{pmatrix} \sqrt{2} \\ -1 \end{pmatrix} e^{-4t} + c_2 \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} e^{-t} + \frac{1}{9} \begin{pmatrix} 2 + \sqrt{2} \\ -\sqrt{2} - 1 \end{pmatrix} e^{-t} + \frac{1}{3} \begin{pmatrix} 1 - \sqrt{2} \\ \sqrt{2} - 2 \end{pmatrix} t e^{-t}.$$

11. Based on the solution of Prob. 3 of Section 7.6, a fundamental matrix is given by

$$\Psi(t) = \begin{pmatrix} 5\cos t & 5\sin t \\ 2\cos t + \sin t & -\cos t + 2\sin t \end{pmatrix}.$$

The inverse of the fundamental matrix is easily determined as

$$\Psi^{-1}(t) = \frac{1}{5} \begin{pmatrix} \cos t - 2\sin t & 5\sin t \\ 2\cos t + \sin t & -5\cos t \end{pmatrix}.$$

It follows that

$$\mathbf{\Psi}^{-1}(t)\mathbf{g}(t) = \begin{pmatrix} \cos t \sin t \\ -\cos^2 t \end{pmatrix},$$

and

$$\int \mathbf{\Psi}^{-1}(t)\mathbf{g}(t) dt = \begin{pmatrix} \frac{1}{2}sin^2t \\ -\frac{1}{2}costsint - \frac{1}{2}t \end{pmatrix}.$$

A particular solution is constructed as

$$\mathbf{v}(t) = \mathbf{\Psi}(t) \int \mathbf{\Psi}^{-1}(t) \mathbf{g}(t) dt,$$

where

$$v_1(t) = \frac{5}{2}\cos t \sin t - \cos^2 t + \frac{5}{2}t + 1$$

 $v_2(t) = \cos t \sin t - \frac{1}{2}\cos^2 t + t + \frac{1}{2}$.

Hence the general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 5\cos t \\ 2\cos t + \sin t \end{pmatrix} + c_2 \begin{pmatrix} 5\sin t \\ -\cos t + 2\sin t \end{pmatrix} - t\sin t \begin{pmatrix} 5/2 \\ 1 \end{pmatrix} + (t\cos t + \sin t) \begin{pmatrix} 0 \\ 1/2 \end{pmatrix}.$$

13(a). As shown in Prob. 25 of Section 7.6, the solution of the homogeneous system is

$$\begin{pmatrix} x_1^{(c)} \\ x_2^{(c)} \end{pmatrix} = c_1 e^{-t/2} \begin{pmatrix} \cos(t/2) \\ 4\sin(t/2) \end{pmatrix} + c_2 e^{-t/2} \begin{pmatrix} \sin(t/2) \\ -4\cos(t/2) \end{pmatrix}.$$

Therefore the associated fundamental matrix is given by

$$\Psi(t) = e^{-t/2} \begin{pmatrix} \cos(t/2) & \sin(t/2) \\ 4\sin(t/2) & -4\cos(t/2) \end{pmatrix}.$$

(b). The inverse of the fundamental matrix is

$$\Psi^{-1}(t) = \frac{e^{t/2}}{4} \begin{pmatrix} 4\cos(t/2) & \sin(t/2) \\ 4\sin(t/2) & -\cos(t/2) \end{pmatrix}.$$

It follows that

$$\mathbf{\Psi}^{-1}(t)\mathbf{g}(t) = \frac{1}{2} \begin{pmatrix} \cos(t/2) \\ \sin(t/2) \end{pmatrix},$$

and

$$\int \mathbf{\Psi}^{-1}(t)\mathbf{g}(t) dt = \begin{pmatrix} \sin(t/2) \\ -\cos(t/2) \end{pmatrix}.$$

A particular solution is constructed as

$$\mathbf{v}(t) = \mathbf{\Psi}(t) \int \mathbf{\Psi}^{-1}(t) \mathbf{g}(t) dt,$$

where

$$v_1(t) = 0$$

 $v_2(t) = 4 e^{-t/2}$

Hence the general solution is

$$\mathbf{x} = c_1 e^{-t/2} \begin{pmatrix} \cos(t/2) \\ 4\sin(t/2) \end{pmatrix} + c_2 e^{-t/2} \begin{pmatrix} \sin(t/2) \\ -4\cos(t/2) \end{pmatrix} + 4 e^{-t/2} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Imposing the initial conditions, we require that

$$c_1 = 0 \\ -4c_2 + 4 = 0,$$

which results in $\,c_1=0\,$ and $\,c_2=1\,$. Therefore the solution of the IVP is

$$\mathbf{x} = e^{-t/2} \begin{pmatrix} \sin(t/2) \\ 4 - 4\cos(t/2) \end{pmatrix}.$$

15. The general solution of the homogeneous problem is

$$\begin{pmatrix} x_1^{(c)} \\ x_2^{(c)} \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} t^{-1} + c_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} t^2,$$

which can be verified by substitution into the system of ODEs. Since the vectors are linearly independent, a fundamental matrix is given by

$$\Psi(t) = \begin{pmatrix} t^{-1} & 2t^2 \\ 2t^{-1} & t^2 \end{pmatrix}.$$

The inverse of the fundamental matrix is

$$\Psi^{-1}(t) = \frac{1}{3} \begin{pmatrix} -t & 2t \\ 2t^{-2} & -t^{-2} \end{pmatrix}.$$

Dividing both equations by t, we obtain

$$\mathbf{g}(t) = \begin{pmatrix} -2 \\ t^3 - t^{-1} \end{pmatrix}.$$

Proceeding with the method of variation of parameters,

$$\mathbf{\Psi}^{-1}(t)\mathbf{g}(t) = \begin{pmatrix} \frac{2}{3}t^4 + \frac{2}{3}t - \frac{2}{3} \\ -\frac{1}{3}t - \frac{4}{3}t^{-2} + \frac{1}{3}t^{-3} \end{pmatrix},$$

and

$$\int \mathbf{\Psi}^{-1}(t)\mathbf{g}(t) dt = \begin{pmatrix} \frac{2}{15}t^5 + \frac{1}{3}t^2 - \frac{2}{3}t \\ -\frac{1}{6}t^2 + \frac{4}{3}t^{-1} - \frac{1}{6}t^{-2} \end{pmatrix}.$$

Hence a particular solution is obtained as

$$\mathbf{v} = \begin{pmatrix} -\frac{1}{5}t^4 + 3t - 1\\ \frac{1}{10}t^4 + 2t - \frac{3}{2} \end{pmatrix}.$$

The general solution is

$$\mathbf{x} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} t^{-1} + c_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} t^2 + \frac{1}{10} \begin{pmatrix} -2 \\ 1 \end{pmatrix} t^4 + \begin{pmatrix} 3 \\ 2 \end{pmatrix} t - \begin{pmatrix} 1 \\ 3/2 \end{pmatrix}.$$

16. Based on the hypotheses,

$$\phi'(t) = \mathbf{P}(t)\phi(t) + \mathbf{g}(t)$$
 and $\mathbf{v}'(t) = \mathbf{P}(t)\mathbf{v}(t) + \mathbf{g}(t)$.

Subtracting the two equations results in

$$\phi'(t) - \mathbf{v}'(t) = \mathbf{P}(t)\phi(t) - \mathbf{P}(t)\mathbf{v}(t)$$
,

that is,

$$[\phi(t) - \mathbf{v}(t)]' = \mathbf{P}(t)[\phi(t) - \mathbf{v}(t)].$$

It follows that $\phi(t) - \mathbf{v}(t)$ is a solution of the *homogeneous equation*. According to Theorem 7.4.2,

$$\phi(t) - \mathbf{v}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t) + \dots + c_n \mathbf{x}^{(n)}(t).$$

Hence

$$\phi(t) = \mathbf{u}(t) + \mathbf{v}(t),$$

in which $\mathbf{u}(t)$ is the general solution of the homogeneous problem.

17(a). Setting $t_0 = 0$ in Eq. (34),

$$\mathbf{x} = \mathbf{\Phi}(t)\mathbf{x}^{0} + \mathbf{\Phi}(t)\int_{0}^{t} \mathbf{\Phi}^{-1}(s)\mathbf{g}(s)ds$$
$$= \mathbf{\Phi}(t)\mathbf{x}^{0} + \int_{0}^{t} \mathbf{\Phi}(t)\mathbf{\Phi}^{-1}(s)\mathbf{g}(s)ds.$$

It was shown in Prob. 15(c) in Section 7.7 that $\Phi(t)\Phi^{-1}(s)=\Phi(t-s)$. Therefore

$$\mathbf{x} = \mathbf{\Phi}(t)\mathbf{x}^0 + \int_0^t \mathbf{\Phi}(t-s)\mathbf{g}(s)ds.$$

(b). The principal fundamental matrix is identified as $\Phi(t) = exp(\mathbf{A}t)$. Hence

$$\mathbf{x} = exp(\mathbf{A}t)\mathbf{x}^{0} + \int_{0}^{t} exp[\mathbf{A}(t-s)]\mathbf{g}(s)ds.$$

In Prob. 26 of Section 3.7, the particular solution is given as

$$Y(t) = \int_{t_0}^t K(t-s)g(s)ds,$$

in which the kernel K(t) depends on the nature of the fundamental solutions.