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Chapter Nine

Section 9.1

2   Setting  results in the algebraic equationsa b+ Þ œ /x 0 <>

Œ Œ  Œ &  <  "
$ "  <

œ
!

!

0

0
"

#

.

For a nonzero solution, we must have .  The roots of./>  < œ <  ' <  ) œ !a bA I #

the characteristic equation are  and .  For , the system of equations< œ # < œ % < œ #" #

reduces to .  The corresponding eigenvector is $ œ0 0" # 0a b" Xœ " ß $ Þa b   Substitution of
< œ % œ results in the single equation .  A corresponding eigenvector is0 0" #

0a b# Xœ " ß " Þa b
a b, .  The eigenvalues are  and , hence the critical point is an .real positive unstable node

a b-ß . .
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3 .  a b+ Solution of the ODE requires analysis of the algebraic equations

Œ Œ  Œ #  <  "
$  #  <

œ
!

!

0

0
"

#

.

For a nonzero solution, we must have .  The roots of the./>  < œ <  " œ !a bA I #

characteristic equation are  and .  For , the system of equations< œ " < œ  " < œ "" #

reduces to .  The corresponding eigenvector is 0 0" #œ 0a b" Xœ " ß " Þa b   Substitution of
< œ  " $  œ ! results in the single equation .  A corresponding eigenvector is0 0" #

0a b# Xœ " ß $ Þa b
a b, .  The eigenvalues are , with .real saddle< <  !" # .  Hence the critical point is a 

a b-ß . .
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5 .  The characteristic equation is given bya b+
º º"  <  &

"  $  <
œ <  # <  # œ ! Þ#

The equation has  roots  and .  complex < œ  "  3 < œ  "  3" # For ,< œ  "  3
the components of the solution vector must satisfy .  Thus the0 0" # #  3 œ !a b
corresponding eigenvector is 0a b" Xœ #  3 ß " Þ < œ  "  3a b   Substitution of  results
in the single equation .  A corresponding eigenvector is0 0" # #  3 œ !a b
0a b# Xœ #  3 ß " Þa b
a b, .  The eigenvalues are , with negative real part.  Hence the origincomplex conjugates
is a .stable spiral
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a b-ß . .

    

    

6 .  Solution of the ODEs is based on the analysis of the algebraic equationsa b+
Œ Œ  Œ #  <  &

"  #  <
œ

!

!

0

0
"

#

.

For a nonzero solution, we require that .  The roots of the./>  < œ <  " œ !a bA I #

characteristic equation are .  Setting , the equations are equivalent to< œ „3 < œ 3
0 0" # #  3 œ !a b .  The eigenvectors are 0 0a b a b" #X Xœ #  3 ß " œ #  3 ß " Þa b a b and 

a b, .  The eigenvalues are .  Hence the critical point is a .purely imaginary center
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a b-ß . .

    

7 .  a b+ Setting  results in the algebraic equationsx œ /0 <>

Œ Œ  Œ $  <  #
%  "  <

œ
!

!

0

0
"

#

.

For a nonzero solution, we require that .  The roots./>  < œ <  #<  & œ !a bA I #

of the characteristic equation are .  Substituting , the two< œ "„#3 < œ "  #3
equations reduce to .  The two eigenvectors are a b"  3  œ !0 0" # 0a b" Xœ " ß "  3a b
and 0a b# Xœ " ß "  3 Þa b
a b, .  The eigenvalues are , with positive real part.  Hence the origincomplex conjugates
is an .unstable spiral
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a b-ß . .

    

    

8 .  The characteristic equation is given bya b+
º º a ba b"  <  &

"  $  <
œ <  " <  !Þ#& œ ! ,

with roots  and .  < œ  " < œ  !Þ#&" # For , the components of the solution< œ  "
vector must satisfy .  Thus the corresponding eigenvector is 0# œ ! 0a b" Xœ " ß ! Þa b
Substitution of  results in the single equation .  A< œ  !Þ#& !Þ(& 0 0" # œ !
corresponding eigenvector is 0a b# Xœ % ß  $ Þa b
a b, .  The eigenvalues are  and both .  Hence the critical point is a real negative stable
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nodeÞ

a b-ß . .

    

9 .  Solution of the ODEs is based on the analysis of the algebraic equationsa b+
Œ Œ  Œ $  <  %

"  "  <
œ

!

!

0

0
"

#

.

For a nonzero solution, we require that .  The single./>  < œ <  # <  " œ !a bA I #

root of the characteristic equation is .  Setting , the components of the< œ " < œ "
solution vector must satisfy .  A corresponding eigenvector is0 0" # # œ !
0 œ # ß " Þa bX
a b, .  Since there is only one linearly independent eigenvector, the critical point is an
?8=>+,6/, .improper node
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a b-ß . Þ

    

10 .  The characteristic equation is given bya b+
º º"  < #

 &  "  <
œ <  * œ ! Þ#

The equation has  roots .  complex < œ „$3"ß# For , the components of the< œ  $3
solution vector must satisfy .  Thus the corresponding eigenvector&  "  $3 œ !0 0" #a b
is 0a b" Xœ "  $3 ß  & Þ < œ $3 &a b   Substitution of  results in .  A0 0" # "  $3 œ !a b
corresponding eigenvector is 0a b# Xœ "  $3 ß  & Þa b
a b, .  The eigenvalues are , hence the critical point is a .purely imaginary center
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a b-ß . Þ

    

11 .  The characteristic equation is , with double root .  It isa b a b+ <  " œ ! < œ  "#

easy to see that the two linearly independent eigenvectors are  and0a b" Xœ " ß !a b
0a b# Xœ ! ß " Þa b
a b, Þ  Since there are two linearly independent eigenvectors, the critical point is a stable
proper node.

a b-ß . .
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12 .  a b+ Setting  results in the algebraic equationsx œ /0 <>

Œ Œ  Œ #  <  &Î#
*Î&  "  <

œ
!

!

0

0
"

#

.

For a nonzero solution, we require that .  The roots./>  < œ <  <  &Î# œ !a bA I #

of the characteristic equation are .  Substituting , the< œ "Î#„$3Î# < œ "Î#  $3Î#
equations reduce to .  Therefore the two eigenvectors area b$  $3  & œ !0 0" #

0 0a b a b" #X Xœ & ß $  $3 œ & ß $  $3 Þa b a b and 

a b, .  Since the eigenvalues are , with  real part, the critical point is ancomplex positive
unstable spiral.

a b-ß . .
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14.  Setting , that is,x 0w œ

Œ  Œ  # "
"  #

œ
#

 "
x ,

we find that the critical point is   With the change of dependent variable,x! Xœ  "ß ! Þa b
x x uœ !  , the differential equation can be written as

.

.>
œ

 # "
"  #

u
uŒ   .

The critical point for the transformed equation is the origin.  Setting  results inu œ /0 <>

the algebraic equations

Œ Œ  Œ  #  < "
"  #  <

œ
!

!

0

0
"

#

.

For a nonzero solution, we require that .  The roots./>  < œ <  %<  $ œ !a bA I #

of the characteristic equation are , .  Hence the critical point is a < œ  $  " stable
node.

15.  Setting , that is,x 0w œ

Œ  Œ  "  "
#  "

œ
"

 &
x ,

we find that the critical point is   With the change of dependent variable,x! Xœ  #ß " Þa b
x x uœ !  , the differential equation can be written as

.

.>
œ

 "  "
#  "

u
uŒ   .

The characteristic equation is , with complex conjugate./>  < œ <  #<  $ œ !a bA I #

roots   Since the real parts of the eigenvalues are < œ  "„ 3 # ÞÈ negative, the critical
point is a .stable spiral

16.  The critical point  satisfies the system of equationsx!
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Œ  Œ ! 
!

œ Þ
"

$

!

#
x

It follows that  and .  Using the transformation,  , theB œ Î C œ Î œ ! ! !# $ ! " x x u
differential equation can be written as

.

.>
œ

! 
!

u
uŒ "$

 .

The characteristic equation is   Since , the roots./>  < œ <  œ !Þ  !a bA I # " $ " $

are purely imaginary, with   Hence the critical point is a < œ „ 3 ÞÈ"$ center.

20   The system of ODEs can be written asÞ

.

.>
œ

+ +
+ +

x
xŒ "" "#

#" ##

 .

The characteristic equation is   The roots are given by<  : <  ; œ !Þ#

< œ œ
:„ :  %; :„

# #
"ß#

È È# ?
.

The results can be verified using Table .*Þ"Þ"

21 .  If  and , then the roots are either complex conjugates with negativea b+ ;  ! :  !
real parts, or both real and negative.

a b, ;  ! : œ !.  If  and , then the roots are purely imaginary.

a b- ;  ! < † <  ! :  !.  If , then the roots are real, with .  If , then either the roots" #

are real, with  or the roots are complex conjugates with positive real parts.< † <   !" #
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Section 9.2

2.  The differential equations can be combined to obtain a related ODE

.C #C

.B B
œ  Þ

The equation is separable, with

.C # .B

C B
œ  Þ

The solution is given by   Note that the system is , and hence weC œ G B Þ# uncoupled
also have  and .B œ B / C œ C /! !

> #>

In order to determine the direction of motion along the trajectories, observe that for
positive decrease increase. initial conditions,  will , whereas  will B C

4.  The trajectories of the system satisfy the ODE

.C ,B

.B +C
œ  Þ

The equation is separable, with

+C .C œ  ,B.B Þ

Hence the trajectories are given by , in which  is arbitrary.  Evidently,, B  + C œ G G# # #

the trajectories are .  Invoking the initial condition, we find that .  Theellipses G œ +,#

system of ODEs can also be written as

.

.>
œ

! +
 , !

x
xŒ   .

Using the methods in Chapter , it is easy to show that(

B œ + -9= +, >

C œ  , =38 +, > Þ

È È
È È
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Note that for  initial conditions,  will , whereas  will positive crease crease.B C ./38

5 .  The critical points are given by the solution set of the equationsa b+
B "  C œ !

C "  #B œ ! Þ

a ba b
Clearly,  is a solution.   If , then  and  .  Hence the criticala b! ß ! B Á ! C œ " B œ  "Î#
points are  and .a b a b! ß !  "Î# ß "

a b, .

a b- .  Based on the phase portrait, all trajectories starting near the origin .  Hencediverge
the critical point  is .  Examining the phase curves near the critical pointa b! ß ! unstablea b "Î# ß " ,
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the equilibrium point has the properties of a , and hence it is .saddle unstable

6 .  The critical points are solutions of the equationsa b+
"  #C œ !

"  $B œ ! Þ#

There are two equilibrium points,  and Š ‹ Š ‹È È "Î $ ß  "Î# "Î $ ß  "Î# Þ

a b, Þ

a b- .  Locally, the trajectories near the point  resemble the behavior nearŠ ‹È "Î $ ß  "Î#

a .  Hence the critical point is .  Near the point , thesaddle unstable Š ‹È"Î $ ß  "Î#

solutions are .  Therefore the second critical point is .periodic stable

8 .  The critical points are solutions of the equationsa b+
 B  C "  B  C œ !

B #  C œ ! Þ

a ba ba b
If , then  or   If , then  and , orB œ C B œ C œ ! B œ C œ  # Þ B œ "  C B œ ! C œ "
B œ $ C œ  # Þ ! ß ! ß  # ß  # ß ! ß " and   It follows that the critical points are a b a b a b
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and a b$ ß  # Þ

a b, Þ

a b- .  Near the origin, the trajectories resemble those of a , and hence it is .saddle unstable

Near the critical point , the trajectories resemble those of a stable .  Hence thea b! ß " spiral
equilibrium point is .asymptotically stable

Based on the global phase portrait, it is evident that the other critical points are nodes.
Closer examination reveals that the point  is , whereasa b # ß  # asymptotically stable
the point  is .a b$ ß  # unstable
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9 .  The critical points are given by the solution set of the equationsa b+
C #  B  C œ !

 B  C  #BC œ ! Þ

a b
Clearly,  is a critical point.  If , then it follows that .  Thea b a b! ß ! B œ #  C C C  # œ "

additional critical points are  and Š ‹ Š ‹È È È È"  # ß "  # "  # ß "  # Þ

a b, .

a b a b- ! ß !.  The behavior near the origin is that of a .  Hence the point  isstable spiral
asymptotically stable.

At the critical point , the trajectories resemble those near a .Š ‹È È"  # ß "  # saddle
Hence the critical point is .unstable
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Near the point , the trajectories resemble those near a .Š ‹È È"  # ß "  # saddle
Hence the critical point is also .unstable

10   The critical points are solutions of the equationsa b+ Þ

a ba bˆ ‰#  B C  B œ !

C #  B  B œ ! Þ#

The origin is evidently a critical point.  If , then .  If , then eitherB œ  # C œ ! B œ C
C œ ! B œ C œ  " B œ C œ #  # ß ! or  or .  Hence the other critical points are ,a ba b a b " ß  " # ß # and .
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a b, .

a b a b a b- ! ß !  # ß !.  Based on the global phase portrait, the critical points  and  have the
characteristics of a .  Hence these points are .  The behavior near thesaddle unstable
remaining two critical points resembles those near a .  Hence the criticalstable spiral
points  and  are .a b a b " ß  " # ß # asymptotically stable

11 .  The critical points are given by the solution set of the equationsa b+
B "  #C œ !

C  B  C œ ! Þ

a b
# #

If , then either  or .  If , then .  Hence the criticalB œ ! C œ ! C œ " C œ "Î# B œ „"Î#
points are at , ,  and .a b a b a b a b! ß ! ! ß "  "Î# ß "Î# "Î# ß "Î#

a b, .

a b a b a b-  "Î# ß "Î# "Î# ß "Î#.  The trajectories near the critical points  and  are closed
curves.  Hence the critical points have the characteristics of a , which is .center stable
The trajectories near the critical points  and  resemble those near a .a b a b! ß ! !ß " saddle
Hence these critical points are .unstable
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13 .  The critical points are solutions of the equationsa b+
a ba ba ba b#  B C  B œ !

%  B C  B œ ! Þ

If , then either  or   If , then .  If ,C œ B B œ C œ ! B œ C œ % Þ B œ  # C œ # B œ  C
then  or .  Hence the critical points are at ,  and .C œ # C œ ! ! ß ! % ß %  # ß #a b a b a b
a b, .

a b a b- % ß %.  The critical point at  is evidently a , which is stable spiral asymptotically
stable saddle.  Closer examination of the critical point at  reveals that it is a ,a b! ß !
which is .unstable

The trajectories near the critical point  resemble those near an .a b # ß # unstable node
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14 .  The critical points consist of the solution set of the equationsa b+
C œ !

"  B C  B œ ! Þˆ ‰#
It is easy to see that the only critical point is at .a b! ß !

a b, .

a b- .  The origin is an .unstable spiral

16 .  The trajectories are solutions of the differential equationa b+
.C %B

.B C
œ  ,

which can also be written as .  Integrating, we obtain%B .B  C .C œ !

%B  C œ G# # #.

Hence the trajectories are ellipses.



—————————————————————————— ——CHAPTER 9. 

________________________________________________________________________
            page 519

a b, .

Based on the differential equations, the direction of motion on each trajectory is
clockwise.

17 .  The trajectories of the system satisfy the ODEa b+
.C #B  C

.B C
œ ,

which can also be written as .  This differential equation isa b#B  C .B  C.C œ !
homogeneous.  Setting , we obtainC œ B@ Ba b

@  B œ  "
.@ #

.B @
,

that is,

B œ Þ
.@ #  @  @

.B @

#

The resulting ODE is , with solution .  Reverting backseparable B @  " @  # œ G$ #a ba b
to the original variables, the trajectories are level curves of

L B ß C œ B  C C  #B Þa b a ba b#
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a b, .

The origin is a .  Along the line , solutions increase without bound.  Alongsaddle C œ #B
the line , solutions converge toward the origin.C œ  B

18 .  The trajectories are solutions of the differential equationa b+
.C B  C

.B B  C
œ ,

which is .  Setting , we obtainhomogeneous C œ B@ Ba b
@  B œ

.@ B  B@

.B B  B@
,

that is,

B œ Þ
.@ "  @

.B "  @

#

The resulting ODE is , with solutionseparable

+<->+8 @ œ 68 B "  @ Þa b k kÈ #

Reverting back to the original variables, the trajectories are level curves of

L B ß C œ +<->+8 CÎB  68 B  C Þa b a b È # #
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a b, .

The origin is a .stable spiral

20 .  The trajectories are solutions of the differential equationa b+
.C  #BC  'BC

.B #B C  $B  %C
œ

#

# #
,

which can also be written as .  Thea b a b#BC  'BC .B  #B C  $B  %C .C œ !# # #

resulting ODE is , withexact

`L `L

`B `C
œ #BC  'BC œ #B C  $B  %C# # # and .

Integrating the first equation, we find that .  It followsL B ß C œ B C  $B C  0 Ca b a b# # #

that

`L

`C
œ #B C  $B  0 C# # wa b.

Comparing the two partial derivatives, we obtain .  Hence0 C œ  #C  -a b #

L B ß C œ B C  $B C  #C Þa b # # # #
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a b, .

The associated direction field shows the direction of motion along the trajectories.

22 .  The trajectories are solutions of the differential equationa b+
.C  'B  B

.B ' C
œ

$

,

which can also be written as .  The resulting ODE is ,a b' B  B .B  ' C.C œ !$ exact
with

`L `L

`B `C
œ 'B  B œ ' C$  and .

Integrating the first equation, we have .  It follows thatL B ß C œ $B  B Î%  0 Ca b a b# %

`L

`C
œ 0 Cwa b.

Comparing the two partial derivatives, we conclude that .  Hence0 C œ $C  -a b #
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L B ß C œ $B   $C Þ
B

%
a b # #

%

a b, .
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Section 9.3

1.  Write the system in the form .  In this case, it is evident thatx Ax g xw œ  a b
. B B  C

.> C C B
œ  Þ

" !
"  #Œ  Œ Œ  Œ #

#

That is,   Using polar coordinates, g x g xa b l la b Èœ Þ œ < =38  -9=a b C ß B# # X # % %) )
and .  Hencel lx œ <

lim lim
<Ä! <Ä!

% %
l la bl l Èg x

x
œ < =38  -9= œ !) ) ,

and the system is almost linear.  The origin is an isolated critical point of the linear
system

. B B

.> C C
œ Þ

" !
"  #Œ  Œ Œ 

The characteristic equation of the coefficient matrix is , with roots<  <  # œ !#

< œ " < œ  #" # and .  Hence the critical point is a saddle unstable, which is .

2.  The system can be written as

. B B #BC

.> C C B  C
œ  Þ

 " "
 %  "Œ  Œ Œ  Œ # #

Following the discussion in Example , we note that  and$ J B ß C œ  B  C  #BCa b
K B ß C œ  %B  C  B  C J Ka b # #.  Both of the functions  and  are twice differentiable,
hence the system is .  Furthermore,almost linear

J œ  "  #C J œ "  #B K œ  %  #B K œ  "  #CB C B C, , , .

The origin is an isolated critical point, with

Œ  Œ a b a ba b a bJ ! ß ! J ! ß !
K ! ß ! K ! ß !  %  "

œ
 " "B C

B C
.

The characteristic equation of the associated linear system is , with<  # <  & œ !#

complex conjugate roots   The origin is a , which is< œ  "„#3 Þ"ß# stable spiral
asymptotically stable.

5 .  The critical points consist of the solution set of the equationsa b+
a ba ba ba b#  B C  B œ !

%  B C  B œ ! Þ

As shown in Prob.  of Section , the only critical points are at ,  and"$ *Þ# ! ß ! % ß %a b a ba b # ß # .
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a b a b a ba b a b a ba b,ß - J B ß C œ #  B C  B K B ß C œ %  B C  B.  First note that  and .  The
Jacobian matrix of the vector field is

J œ Œ  Œ a b a ba b a bJ B ß C J B ß C
K B ß C K B ß C %  C  #B %  B

œ
 #  #B  C #  BB C

B C
.

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ  # #
% %

,

with eigenvalues  and .  The eigenvalues are real, with< œ "  "( < œ "  "(" #
È È

opposite sign.  Hence the critical point is a , which is .  At the equilibriumsaddle unstable
point , the coefficient matrix of the linearized system isa b # ß #

Ja b # ß # œ Œ % !
' '

,

with eigenvalues  and .  The eigenvalues are real, unequal and positive,< œ % < œ '" #

hence the critical point is an  .  At the point , the coefficient matrixunstable node a b% ß %
of the linearized system is

Ja b% ß % œ Œ  ' '
 ) !

,

with complex conjugate eigenvalues .  The critical point is a < œ  $„ 3 $*"ß#
È stable

spiral asymptotically stable, which is .

Based on Table , the nonlinear terms do not affect the stability and type of each*Þ$Þ"
critical point.

a b. .

7   The critical points are solutions of the equationsa b+ Þ
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"  C œ !

B  C B  C œ ! Þa ba b
The first equation requires that .  Based on the second equation, .  HenceC œ " B œ „"
the critical points are  and .a b a b " ß " " ß "

a b a b a b,ß - J B ß C œ "  C K B ß C œ B  C.   and .  The  matrix of the vector# # Jacobian
field is

J œ Œ  Œ a b a ba b a bJ B ß C J B ß C
K B ß C K B ß C #B  #C

œ
!  "B C

B C
.

At the critical point , the coefficient matrix of the linearized system isa b " ß "

Ja b " ß " œ Œ !  "
 #  #

,

with eigenvalues  and .  The eigenvalues are real, with< œ  "  $ < œ  "  $" #
È È

opposite sign.  Hence the critical point is a , which is .  At the equilibriumsaddle unstable
point , the coefficient matrix of the linearized system isa b" ß "

Ja b" ß " œ Œ !  "
#  #

,

with complex conjugate eigenvalues .  The critical point is a < œ  "„ 3"ß# stable
spiral asymptotically stable, which is .

a b. .

Based on Table , the nonlinear terms do not affect the stability and type of each*Þ$Þ"
critical point.

8 .  The critical points are given by the solution set of the equationsa b+
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B "  B  C œ !

C #  C  $B œ ! Þ

a ba b
If , then either  or .  If , then  or .  If ,B œ ! C œ ! C œ # C œ ! B œ ! B œ " C œ "  B
then either  or .  If , then  or .  Hence theB œ "Î# B œ " C œ #  $B B œ ! B œ "Î#
critical points are at , ,  and a b a b a b a b! ß ! ! ß # " ß ! "Î# ß "Î# Þ

a b a b a b a b,ß - J B ß C œ B  B  BC K B ß C œ #C  C  $BC Î%.  Note that  and .  The# #

Jacobian matrix of the vector field is

J œ Œ  Œ a b a ba b a bJ B ß C J B ß C
K B ß C K B ß C  $CÎ% "Î#  CÎ#  $BÎ%

œ
"  #B  C  BB C

B C
.

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ " !

! "
#

,

with eigenvalues  and .  The eigenvalues are real and both positive.< œ " < œ "Î#" #

Hence the critical point is an .  At the equilibrium point , theunstable node a b! ß #
coefficient matrix of the linearized system is

Ja b! ß # œ Œ  " !

 $ "
# #

,

with eigenvalues  and .  The eigenvalues are both negative, hence< œ  " < œ  "Î#" #

the critical point is a  .  At the point , the coefficient matrixstable node a b" ß !
of the linearized system is

Ja b" ß ! œ Œ  "  "

!  "
%

,

with eigenvalues  and .  Both of the eigenvalues are negative, and< œ  " < œ  "Î%" #

hence the critical point is a  .  At the critical point , the coefficientstable node a b"Î# ß "Î#
matrix of the linearized system is

Ja b"Î# ß "Î# œ   

 

" "
# #
$ "
) )

,

with eigenvalues  and .  The< œ  &Î"'  &( Î"' < œ  &Î"'  &( Î"'" #
È È

eigenvalues are real, with opposite sign.  Hence the critical point is a , which issaddle
unstable.
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a b. .

    

    

Based on Table , the nonlinear terms do not affect the stability and type of each*Þ$Þ"
critical point.

9 .  Based on Prob. , in Section , the critical points are at a b a b a b+ ) *Þ# ! ß ! ß  # ß  # ßa b a b! ß " $ ß  # Þ and 

a b a b a ba b a b a b,ß - Þ J B ß C œ  B  C "  B  C K B ß C œ B #  C  First note that  and .  The
Jacobian matrix of the vector field is

J œ Œ #B  " "  #C
#  C B

.

At the origin, the coefficient matrix of the linearized system is
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Ja b! ß ! œ Œ  " "
# !

,

with eigenvalues  and .  The eigenvalues are real, with opposite sign.< œ " < œ  #" #

Hence the critical point is a , which is .  At the critical point ,saddle unstable a b! ß "
the coefficient matrix of the linearized system is

Ja b! ß " œ Œ  "  "
$ !

,

with complex conjugate eigenvalues .  The critical point is a< œ  "Î#„ 3 "" Î#"ß#
È

stable spiral asymptotically stable, which is .  At the point , the coefficienta b # ß  #
matrix of the linearized system is

Ja b # ß  # œ Œ  & &
!  #

,

with eigenvalues  and .  The eigenvalues are unequal and negative,< œ  # < œ  &" #

hence the critical point is a  .  At the point , the coefficient matrixstable node a b$ ß  #
of the linearized system is

Ja b$ ß  # œ Œ & &
! $

,

with eigenvalues  and .  The eigenvalues are unequal and positive, hence< œ $ < œ &" #

the critical point is an  .unstable node

a b. .

Based on Table , the nonlinear terms do not affect the stability and type of each*Þ$Þ"
critical point.
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11 .  The critical points are solutions of the equationsa b+
#B  C  BC œ !

B  #C  BC œ ! Þ

$

Substitution of  into the first equation results inC œ BÎ B  #a b
$B  "$B  #)B  #!B œ !% $ # .

One root of the resulting equation is .  The only other real root of the equation isB œ !

B œ #)(  ") #!"*  )$ #)(  ") #!"*  "$
"

*
” •Š ‹ Š ‹È È"Î$ "Î$

.

Hence the critical points are  and a b a b! ß !  "Þ"*$%&ÞÞÞ ß "Þ%(*(ÞÞÞ Þ

a b a b a b a b,ß - J B ß C œ B  B  BC K B ß C œ #C  C  $BC Î%.   and .  The # # Jacobian
matrix of the vector field is

J œ Œ  Œ a b a ba b a bJ B ß C J B ß C
K B ß C K B ß C

œ
#  C "  $BC
"  C  #  B

B C

B C

$ #

.

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ # "
"  #

,

with eigenvalues  and .  The eigenvalues are real and of opposite< œ & < œ  &" #
È È

sign.  Hence the critical point is a , which is .  At the equilibrium pointsaddle unstablea b "Þ"*$%&ÞÞÞ ß "Þ%(*(ÞÞÞ , the coefficient matrix of the linearized system is

Ja b "Þ"*$%& ß "Þ%(*( œ Œ  "Þ#$**  'Þ)$*$
 #Þ%(*(  !Þ)!'&

,

with complex conjugate eigenvalues .  The critical point is< œ  "Þ!#$#„%Þ""#& 3"ß#

a , which is .stable spiral asymptotically stable
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a b. .

In both cases, the nonlinear terms do not affect the stability and type of the critical point.

12 .  The critical points are given by the solution set of the equationsa b+
a b"  B =38 C œ !

"  B  -9= C œ ! Þ

If , then we must have , which is impossible.  Therefore ,B œ  " -9= C œ # =38 C œ !
which implies that  ,   Based on the second equation,C œ 8 8 œ ! ß„ " ß # ß ÞÞÞ Þ1

B œ "  -9= 8 Þ1

It follows that the critical points are located at  and , wherea b a ba b! ß #5 # ß #5  "1 1
5 œ ! ß„ " ß # ß ÞÞÞ Þ

a b a b a b a b,ß - J B ß C œ "  B =38 C K B ß C œ "  B  -9= C.  Given that  and , the
Jacobian matrix of the vector field is

J œ Œ a b=38 C "  B -9= C
 " =38 C

.

At the critical points , the coefficient matrix of the linearized system isa b! ß #51

Ja b! ß #5 œ1 Œ ! "
 " !

,

with purely complex eigenvalues .  The critical points of the associated linear< œ „ 3"ß#

systems are , which are .  Note that Theorem  does  provide acenters  stable not*Þ$Þ#
definite conclusion regarding the relation between the nature of the critical points of the
nonlinear systems and their corresponding linearizations.  At the points ,a ba b# ß #5  " 1
the coefficient matrix of the linearized system is

Jc da b# ß #5  " œ1 Œ !  $
 " !

,
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with eigenvalues  and .  The eigenvalues are real, with opposite< œ $ < œ  $" #
È È

sign.  Hence the critical points of the associated linear systems are , which aresaddles
unstable.

a b. .

As asserted in Theorem , the trajectories near the critical points *Þ$Þ# # ß #5  "a ba b1
resemble those near a saddle.

Upon closer examination, the critical points  are indeed centers.a b! ß #51

13 .  The critical points are solutions of the equationsa b+
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B  C œ !

C  B œ ! Þ

#

#

Substitution of  into the first equation results inC œ B#

B  B œ !% ,

with real roots , .  Hence the critical points are at  and .B œ ! " ! ß ! " ß "a b a b
a b a b a b,ß - J B ß C œ B  C K B ß C œ C  B.  In this problem,  and .  The # # Jacobian
matrix of the vector field is

J œ Œ "  #C
 #B "

.

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ " !
! "

,

with  eigenvalues  and .  It is easy to see that the correspondingrepeated < œ " < œ "" #

eigenvectors are linearly independent.  Hence the critical point is an unstable proper
node not.  Theorem  does  provide a definite conclusion regarding the relation*Þ$Þ#
between the nature of the critical point of the nonlinear system and the corresponding
linearization.  At the critical point , the coefficient matrix of the linearized systema b" ß "
is

Ja b" ß " œ Œ "  #
 # "

,

with eigenvalues  and .  The eigenvalues are real, with opposite sign.< œ $ < œ  "" #

Hence the critical point is a , which is .saddle unstable

a b. .

Closer examination reveals that the critical point at the origin is indeed a proper node.
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14 .  The critical points are given by the solution set of the equationsa b+
"  BC œ !

B  C œ ! Þ$

After multiplying the second equation by , it follows that .  Hence the criticalC C œ „"
points of the system are at  and .a b a b" ß "  " ß  "

a b a b a b,ß - J B ß C œ "  BC K B ß C œ B  C.  Note that  and .  The  matrix of$ Jacobian
the vector field is

J œ Œ  C  B

"  $C#
.

At the critical point , the coefficient matrix of the linearized system isa b" ß "

Ja b" ß " œ Œ  "  "
"  $

,

with eigenvalues  and .  The eigenvalues are real and .  It is< œ  # < œ  #" # equal
easy to show that there is only  linearly independent eigenvector.  Hence the criticalone
point is a .  Theorem  does  provide a definite conclusionstable improper node not*Þ$Þ#
regarding the relation between the nature of the critical point of the nonlinear system and
the corresponding linearization.  At the point , the coefficient matrix of thea b " ß  "
linearized system is

Ja b " ß  " œ Œ " "
"  $

,

with eigenvalues  and .  The eigenvalues are real,< œ  "  & < œ  "  &" #
È È

with opposite sign.  Hence the critical point of the associated linear system is a ,saddle
which is .unstable
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a b. .

Closer examination reveals that the critical point at  is indeed a  impropera b" ß " stable
node, which is asymptotically stable.

15 .  The critical points are given by the solution set of the equationsa b+
 #B  C  B B  C œ !

B  C  C B  C œ ! Þ

ˆ ‰
ˆ ‰

# #

# #

It is clear that the origin is a critical point.  Solving the  equation for , we find thatfirst C

C œ Þ
 "„ "  )B  %B

#B

È # %

Substitution of these relations into the  equation results in two equations of thesecond
form  and .  Plotting these functions, we note that only 0 B œ ! 0 B œ ! 0 B œ !" # "a b a b a b
has real roots given by   It follows that the additional critical points areB ¸ „!Þ$$!(' Þ
at  and a b a b !Þ$$!(' ß "Þ!*#% !Þ$$!(' ß  "Þ!*#% Þ
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a b,ß - .  Given that

J B ß C œ  #B  C  B B  C

K B ß C œ B  C  C B  C

a b ˆ ‰
a b ˆ ‰

# #

# # ,

the  matrix of the vector field isJacobian

J œ Œ  #  $B  C  "  #BC

"  #BC  "  B  $C

# #

# # .

At the critical point , the coefficient matrix of the linearized system isa b! ß !

Ja b! ß ! œ Œ  #  "
"  "

,

with complex conjugate eigenvalues .  Hence the critical point< œ  $„ 3 $ Î#"ß# Š ‹È
is a , which is .  At the point ,stable spiral  asymptotically stable a b !Þ$$!(' ß "Þ!*#%
the coefficient matrix of the linearized system is

Ja b !Þ$$!(' ß "Þ!*#% œ Œ  $Þ&#"'  !Þ#(($&
!Þ#(($& #Þ')*&

,

with eigenvalues  and .  The eigenvalues are real, with< œ  $Þ&!*# < œ #Þ'(("" #

opposite sign.  Hence the critical point of the associated linear system is a ,saddle
which is .  Identical results hold for the point at  .unstable a b!Þ$$!(' ß  "Þ!*#%

a b. .

A closer look at the origin reveals a spiral:



—————————————————————————— ——CHAPTER 9. 

________________________________________________________________________
            page 537

Near the point  the nature of the critical point is evident:a b!Þ$$!(' ß  "Þ!*#%

Based on Table , the nonlinear terms do not affect the stability and type of each*Þ$Þ"
critical point.

16 .  The critical points are solutions of the equationsa b+
C  B "  B  C œ !

 B  C "  B  C œ ! Þ

ˆ ‰
ˆ ‰

# #

# #

Multiply the  equation by  and the  equation by .  The difference of thefirst secondC B
two equations gives .  Hence the only critical point is at the origin.B  C œ !# #

a b a b a b a b a b,ß - J B ß C œ C  B "  B  C K B ß C œ  B  C "  B  C.  With  and ,# # # #

the  matrix of the vector field isJacobian

J œ Œ "  $B  C "  #BC

 "  #BC "  B  $C

# #

# # .

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ " "
 " "

,

with complex conjugate eigenvalues .  Hence the origin is an < œ "„ 3"ß# unstable
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spiral.

a b. Þ

17 .  The Jacobian matrix of the vector field isa b+
J œ Œ ! "

"  'B !# .

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ " !
! "

,

with eigenvalues  and .  The eigenvalues are real, with opposite sign.< œ " < œ  "" #

Hence the critical point is a .saddle point

a b, .  The trajectories of the system are solutions of the differential equationlinearized 

.C B

.B C
œ ,

which is separable.  Integrating both sides of the equation , the solutionB.B  C .C œ !
is .  The trajectories consist of a family of hyperbolas.B  C œ G# #
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It is easy to show that the general solution is given by  andB > œ - /  - /a b " #
> >

C > œ - /  - / Þ - œ !a b " # "
> >   The only  solutions consist of those for which .bounded

In that case, .B > œ - / œ  C >a b a b#
>

a b- .  The trajectories of the given system are solutions of the differential equation

.C B  #B

.B C
œ

$

,

which can also be written as .  The resulting ODE is ,a bB  #B .B  C .C œ !$ exact
with

`L `L

`B `C
œ B  #B œ  C$  and .

Integrating the first equation, we find that .  It followsL B ß C œ B Î#  B Î#  0 Ca b a b# %

that

`L

`C
œ 0 Cwa b.

Comparing the partial derivatives, we obtain .  Hence the solutions0 C œ  C Î#  -a b #

are level curves of the function

L B ß C œ B Î#  B Î#  C Î# Þa b # % #

The trajectories  to, or  from, the origin are no longer straight lines.approaching diverging
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19 .  The solutions of the system of equationsa b+
C œ !

 =38B œ !=#

consist of the points ,   The functions  anda b a b„8 ß ! 8 œ ! ß " ß # ßâ Þ J B ß C œ C1
K B ß C œ  =38Ba b =#  are  on the entire plane.  It follows that the system isanalytic
almost linear near each of the critical points.

a b, .  The Jacobian matrix of the vector field is

J œ Œ ! "

 -9= B !=# .

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ ! "

 !=# ,

with purely complex eigenvalues .  Hence the origin is a .  Since the< œ „ 3"ß# = center
eigenvalues are purely complex, Theorem  gives no definite conclusion about the*Þ$Þ#
critical point of the nonlinear system.  Physically, the critical point corresponds to the
state ,   That is, the rest configuration of the pendulum.) )œ ! œ ! Þw

a b a b- ß !.  At the critical point , the coefficient matrix of the linearized system is1

Ja b1 ß ! œ Œ ! "

!=# ,

with eigenvalues .  The eigenvalues are real and of opposite sign.  Hence the< œ „"ß# =
critical point is a .  Theorem  asserts that the critical point for the nonlinearsaddle *Þ$Þ#
system is also a saddle, which is unstable.  This critical point corresponds to the state
) 1 )œ œ ! Þ,   That is, the  rest configuration.w upright
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a b. .  Let =# œ " ! ß ! Þ.  The following is a plot of the phase curves near a b

The local phase portrait shows that the origin is indeed a center.

a b/ .

It should be noted that the phase portrait has a periodic pattern, since  .) 1œ B 79. #

20 .  a b+ The trajectories of the system in Problem  are solutions of the differential"*
equation

.C  =38 B

.B C
œ

=#

,

which can also be written as .  The resulting ODE is ,=#=38 B .B  C .C œ ! exact
with

`L `L

`B `C
œ =38 B œ C=#  and .

Integrating the first equation, we find that .  It followsL B ß C œ  -9= B  0 Ca b a b=#

that
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`L

`C
œ 0 Cwa b.

Comparing the partial derivatives, we obtain .  Hence the solutions0 C œ C Î#  Ga b #

are level curves of the function

L B ß C œ  -9= B  C Î# Þa b =# #

Adding an arbitrary constant, say , to the function  does not change the nature=# L B ß Ca b
of the level curves.  Hence the trajectories are can be written as

"

#
C  "  -9= B œ -# #= a b ,

in which  is an arbitrary constant.-

a b, 7P.  Multiplying by  and reverting to the original physical variables, we obtain#

" .

# .>
7P 7P "  -9= œ 7P - Þ# # # #

#Œ  a b)
= )

Since , the equation can be written as=# œ 1ÎP

" .

# .>
7P 71P "  -9= œ I#

#Œ  a b)
) ,

in which .I œ 7P -#

a b- @ œ P. Î.>.  The  of the point mass is given by .  The kineticabsolute velocity )
energy of the mass is .  Choosing the rest position as the , that is, theX œ 7@ Î## datum
level of , the gravitational potential energy of the point mass iszero potential energy

Z œ 71P "  -9= Þa b)
It follows that the total energy, , is  along the trajectories.X  Z constant

21 .  a b+ E œ !Þ#&
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Since the system is , and , the amplitude is .  The period isundamped C ! œ ! !Þ#&a b
estimated at .7 ¸ $Þ"'

a b, .

    

    

V
E œ !Þ& !Þ& $Þ#!
E œ "Þ! "Þ! $Þ$&
E œ "Þ& "Þ& $Þ'$
E œ #Þ! #Þ! %Þ"(

7

a b- Þ  Since the system is conservative, the amplitude is equal to the initial amplitude.  On
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the other hand, the period of the pendulum is a  function of themonotone increasing
initial
position .E

It appears that as , the period approaches , the period of the corresponding Ep! 1 linear
pendulum .a b# Î1 =

a b. .

The pendulum is released from rest, at an inclination of   from the vertical.%  1 radians
Based on , the pendulum will swing past the lower equilibriumconservation of energy
position  and come to rest, momentarily, at a maximum rotational displacementa b) 1œ #
of .  The transition between the two dynamics occurs) 1 1 17+B œ $  %  œ %  %a b
at , that is, once the pendulum is released  the upright configuration.E œ 1 beyond

24 .  It is evident that the origin is a critical point of each system.  Furthermore, it isa b+
easy to see that the corresponding linear system, in each case, is given by

.B

.>
œ C

.C

.>
œ  B Þ

The eigenvalues of the coefficient matrix are .  Hence the critical point of the< œ „ 3"ß#
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linearized system is a .center

a b, .  Using polar coordinates, it is also easy to show that

lim
<Ä!

l la bl lg x
x

œ ! .

Alternatively, the nonlinear terms are analytic in the entire plane.  Hence both systems
are
almost linear near the origin.

a b a b- 33.  For system , note that

B  C œ BC  B B  C  BC  C B  C Þ
.B .C

.> .>
# # # # # #ˆ ‰ ˆ ‰

Converting to polar coordinates, and differentiating the equation  with< œ B  C# # #

respect to , we find that>

< œ B  C œ  B  C œ  < Þ
.< .B .C

.> .> .>
ˆ ‰# # %#

That is,   It follows that , where .  Since  as< œ  < Þ < œ "Î #>  - - œ "Î< <p!w $ # #a b !

> p ! < +=C7:>9>3-+66C =>+,6/, regardless of the value of , the origin is an  equilibrium!

point.

On the other hand, for system ,a b3
< œ B  C œ B  C œ < Þ
.< .B .C

.> .> .>
ˆ ‰# # %#

That is,   Solving the differential equation results in< œ < Þw $

< œ
-  #>

#>  -
#

#a b .

Imposing the initial condition , we obtain a specific solution< ! œ <a b !

< œ 
<

# < >  "
#

#

#
!

!

.

Since the solution becomes  as , the critical point is .unbounded unstable> p "Î#<!
#

25.  The characteristic equation of the coefficient matrix is , with complex<  " œ !#

roots .  Hence the critical point at the origin is a .  The characteristic< œ „ 3"ß# center
equation of the perturbed matrix is , with complex conjugate<  # <  "  œ !# #% %
roots .  As long as , the critical point of the perturbed system is a< œ „ 3 Á !"ß# % %
spiral point.  Its stability depends on the sign of  % Þ

26.  The characteristic equation of the coefficient matrix is , with rootsa b<  " œ !#
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< œ < œ  "" # .  Hence the critical point is an .  On theasymptotically stable node
other hand, the characteristic equation of the perturbed system is ,<  #<  "  œ !# %
with roots .  If , then  are complex roots.< œ  "„   ! < œ  "„ 3"ß# "ß#È È% % %

The critical point is a .  If , then  are real andstable spiral % % ! < œ  "„"ß#
Èk k

both negative .  The critical point remains a .a bk k% ¥ " stable node

27 .  Set  and .a b a b a b. 5 œ =38 Î# œ =38 EÎ# 1ÎP œ %!
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Section 9.4

1 .a b+

a b, Þ  The critical points are solutions of the system of equations

B "Þ&  B  !Þ& C œ !

C #  C  !Þ(& B œ ! Þ

a ba b
The four critical points are , ,  and .a b a b a b a b! ß ! ! ß # "Þ& ß ! !Þ) ß "Þ%

a b- .  The Jacobian matrix of the vector field is

J œ Œ $Î#  #B  CÎ#  BÎ#
 $CÎ% #  $BÎ%  #C

.

At the critical point , the coefficient matrix of the linearized system isa b! ß !

Ja b! ß ! œ Œ $Î# !
! #

.

The eigenvalues and eigenvectors are

< œ $Î# œ < œ # œ Þ
" !

! "
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are positive, hence the origin is an .unstable node

At the critical point , the coefficient matrix of the linearized system isa b! ß #

Ja b! ß # œ Œ "Î# !
 $Î#  #

.

The eigenvalues and eigenvectors are
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< œ "Î# œ < œ  # œ Þ
" !

 !Þ' "
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are of opposite sign.  Hence the critical point is a , which issaddle
unstable.

At the critical point , the coefficient matrix of the linearized system isa b"Þ& ß !

Ja b"Þ& ß ! œ Œ  "Þ&  !Þ(&
! !Þ)(&

.

The eigenvalues and eigenvectors are

< œ  "Þ& œ < œ !Þ)(& œ Þ
"  !Þ$"&(*

! "
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are of opposite sign.  Hence the critical point is also a , which issaddle
unstable.

At the critical point , the coefficient matrix of the linearized system isa b!Þ) ß "Þ%

Ja b!Þ) ß "Þ% œ Œ  !Þ)  !Þ%
 "Þ!&  "Þ%

.

The eigenvalues and eigenvectors are

< œ œ < œ œ Þ
" "

" #
" #   

"" &" "" &"

"! "! "! "!

È È
 ,   ;    ,  0 0a b a b   $ &" $ &"

% %

È È

The eigenvalues are both negative.  Hence the critical point is a , which isstable node
asymptotically stable.

a b.ß / .

a b0 .  Except for initial conditions lying on the coordinate axes, almost all trajectories
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converge to the stable node at .a b!Þ) ß "Þ%

2 .a b+

a b, Þ  The critical points are the solution set of the system of equations

B "Þ&  B  !Þ& C œ !

C #  !Þ& C  "Þ& B œ ! Þ

a ba b
The four critical points are , ,  and .a b a b a b a b! ß ! ! ß % "Þ& ß ! " ß "

a b- .  The Jacobian matrix of the vector field is

J œ Œ $Î#  #B  CÎ#  BÎ#
 $CÎ# #  $BÎ#  C

.

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ $Î# !
! #

.

The eigenvalues and eigenvectors are

< œ $Î# œ < œ # œ Þ
" !

! "
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are positive, hence the origin is an .unstable node

At the critical point , the coefficient matrix of the linearized system isa b! ß %

Ja b! ß % œ Œ  "Î# !
 '  #

.

The eigenvalues and eigenvectors are
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< œ  "Î# œ < œ  # œ Þ
" !

 % "
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are both negative, hence the critical point  is a , whicha b! ß % stable node
is .asymptotically stable

At the critical point , the coefficient matrix of the linearized system isa b$Î# ß !

Ja b$Î# ß ! œ Œ  $Î#  $Î%
!  "Î%

.

The eigenvalues and eigenvectors are

< œ  $Î# œ < œ  "Î% œ Þ
" $

!  &
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are both negative, hence the critical point is a , which isstable node
asymptotically stable.

At the critical point , the coefficient matrix of the linearized system isa b"ß "

Ja b" ß " œ Œ  "  "Î#
 $Î#  "Î#

.

The eigenvalues and eigenvectors are

< œ œ < œ œ Þ
"



!
" #

" # $  "$ $  "$

% %


È È
 ,  ;   , 0 0a b a b   " "$

#
" "$

#

È È

The eigenvalues are of opposite sign, hence  is a , which is .a b"ß " saddle unstable

a b.ß / .

a b a b0 " ß ".  Trajectories  the critical point  form a .  Solutions onapproaching separatrix
either side of the separatrix approach either  or .a b a b! ß % "Þ& ß !
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4 .a b+

a b, Þ  The critical points are solutions of the system of equations

B "Þ&  !Þ& B  C œ !

C !Þ(&  C  !Þ"#& B œ ! Þ

a ba b
The four critical points are , ,  and .a b a b a b a b! ß ! ! ß $Î% $ ß ! # ß "Î#

a b- .  The Jacobian matrix of the vector field is

J œ Œ $Î#  B  C  B
 CÎ) $Î%  BÎ)  #C

.

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ $Î# !
! $Î%

.

The eigenvalues and eigenvectors are

< œ $Î# œ < œ $Î% œ Þ
" !

! "
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are positive, hence the origin is an .unstable node

At the critical point , the coefficient matrix of the linearized system isa b! ß $Î%

Ja b! ß $Î% œ Œ $Î% !
 $Î$#  $Î%

.

The eigenvalues and eigenvectors are

< œ $Î% œ < œ  $Î% œ Þ
 "' !

" "
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are of opposite sign, hence the critical point  is a , whicha b! ß $Î% saddle
is .unstable
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At the critical point , the coefficient matrix of the linearized system isa b$ ß !

Ja b$ ß ! œ Œ  $Î#  $
! $Î)

.

The eigenvalues and eigenvectors are

< œ  $Î# œ < œ $Î) œ Þ
"  )

! &
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are of opposite sign, hence the critical point  is a , whicha b! ß $Î% saddle
is .unstable

At the critical point , the coefficient matrix of the linearized system isa b# ß "Î#

Ja b# ß "Î# œ Œ  "  #
 "Î"'  "Î#

.

The eigenvalues and eigenvectors are

< œ œ < œ œ Þ
"



!
" #

" # $  $ $  $

% %


È È
 ,  ;   , 0 0a b a b   " $

)
" $

)

È È

The eigenvalues are negative, hence the critical point  is a , whicha b# ß "Î# stable node
is .asymptotically stable

a b.ß / Þ

a b0 .  Except for initial conditions along the coordinate axes, almost all solutions
converge
to the stable node .a b# ß "Î#
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7.  It follows immediately that

a b a b5 5 5 5 5 5 5 5 5 5

5 5

" # " # " # " #" #

" #

\  ]  % \] œ \  # \]  ]  % \]

œ \  ] Þ

# # # # #

#

Since all parameters and variables are , it follows thatpositive

a b a b5 5 5 5 ! !" # " # " #\  ]  %  \]   ! Þ#

Hence the radicand in Eq.  is .a b$* nonnegative

10 .  The critical points consist of the solution set of the equationsa b+
B  B  C œ !

C  C  B œ ! Þ

a ba b%

%
"

#

5 !

5 !
" "

# #

If  , then either  or , then solving for B œ ! C œ ! C œ Î  B  C œ ! B% %# "5 5 !# " ".  If 
results in B œ  C Îa b%" ! 5" ".  Substitution into the  equation yieldssecond

a b a b5 5 ! ! 5 % % !" # " # " # " # C   C œ ! Þ#

Based on the hypothesis, it follows that   So if ,a b5 % % ! 5 % % !" # " # " # " # C œ ! Þ  Á !
then , and the critical points are located at ,  and C œ ! ! ß ! ! ß ß ! Þa b a b a b% %# "Î Î5 5# "

For the case ,  can be arbitrary.  From the relation ,5 % % ! ! 5" # " # " " œ ! C B œ  C Îa b%"
we conclude that all points on the line 5 !" "B  C œ %"  are critical points, in addition to
the point a b! ß ! .

a b, .  The Jacobian matrix of the vector field is

J œ Œ %
%

"

#

 # B  C 
 # C  B

5 ! !
! 5 !
" " "

# # #

B
 C

.

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ %
%

"

#

!
!

,

with eigenvalues <" " # #œ < œ% % and .  Since both eigenvalues are positive, the origin
is an .unstable node

At the point , the coefficient matrix of the linearized system isa b! ß %#Î5#

Ja b! ß œ


Î
%

% %
% %#

" "

# #

Î5
! 5 !

! 5#
# # #

# #
Œ a bÎ !


,

with eigenvalues , then<    !" " " # # " "œ < œ a b% % % % %! 5 ! 5 !# # # # #Î  and .  If 
both eigenvalues are negative.  Hence the point  is a , which isa b! ß %#Î5# stable node
asymptotically stable.  If the eigenvalues are of opposite sign.5 !" "% %# #  ! , then 
Hence the point  is a , which is a b! ß %#Î5# saddle  unstable.
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At the point , the coefficient matrix of the linearized system isa b%"Î5"ß !

Ja b%
% %

% %"
" "

" " "

Î5
! 5

5 !"
" "

# #

ß ! œ
Î

Œ a b 
! Î5

,

with eigenvalues , then<    !" " " " # " " "œ < œ a b5 ! 5 !% % % % %# # # #Î5  and .  If 
the eigenvalues are of  sign.  opposite Hence the point  is a , which isa b%"Î5"ß ! saddle
unstable.   .  In that case the If both eigenvalues are 5 !" "% %# #  ! , then pointnegativea b%"Î5"ß !  is a , which is stable node asymptotically stable.

a b- .  As shown in Part , when , the set of critical points consists ofa b+  œ !5 !" "% %# #a b! ß !  and all of the points on the straight line 5 !" "B  C œ ,%" .  Based on Part , a b the
origin is still an .  Setting unstable node C œ  Îa b% 5 !" " "B , the Jacobian matrix of the
vector field, , isalong the given straight line

J œ
B Œ  B

 Î
5 !

! ! !
" "

# " " # #

B 
 Î Ba b% 5 ! %" " "5

.

The characteristic equation of the matrix is

<  < œ !
#

#” •%"! ! 5 5

5
# # " "

"

B  B
.

Using the given hypothesis, a b% %" #! ! 5 5 5 ! 5# # " " # "" Î œ B  B B  B# .  Hence the
characteristic equation can be written as

<   < œ !# c d% # ! 5# "B  B .

First note that .  Since the coefficient in the quadratic equation is ,! Ÿ B Ÿ %"Î5" linear
and

%
%
% %#
#

" "

 ! 5
5# "

"

B  B œ
B œ !
B œ Îœ   at 

  at  ,

it follows that the coefficient is  for .  Therefore, along the straightpositive ! Ÿ B Ÿ %"Î5"

line 5 !" "B  C œ %", one eigenvalue is zero negative and the other one is .  Hence the
continuum of critical points consists of , which are . stable nodes asymptotically stable

11 .  a b+ The critical points are solutions of the system of equations

B "  B  C  + œ !

C !Þ(&  C  !Þ& B  , œ ! Þ

a ba b $

$

Assume solutions of the form

B œ B  B  B â

C œ C  C  C â

! " #

! " #

$ $

$ $

#

# .

Substitution of the series expansions results in
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B "  B  C  B  #B B  B C  B C  + â œ !

C !Þ(&  C  !Þ& B  !Þ(& C  #C C  B C Î#  B C Î#  , â œ ! Þ
! ! ! " " ! ! " " !

! ! ! " ! " " ! ! "

a b a ba b a b$$
a b, p !.  Taking a limit as   , the equations reduce to the original system of equations.$
It follows that .B œ C œ !Þ&! !

a b- .  Setting the coefficients of the linear terms equal to zero, we find that

 C Î#  B Î#  + œ !

 B Î%  C Î#  , œ !
" "

" " ,

with solution  and .B œ %+  %, C œ  #+  %," "

a b. +, ,  +.  Consider the parameter space .  The collection of points for which -
represents an  in the level of species .  At points where , increase " ,  + B  ! Þ"$
Likewise, the collection of points for which  represents an  in the level#,  + increase
of species .  At points where , # #,  + C  ! Þ"$

It follows that if , the level of ,  +  #, both increase species will .  This condition is
represented by the wedge-shaped region on the graph.  Otherwise, the level of one
species
will increase, whereas the level of the other species will simultaneously decrease.  Only
for  will both populations remain the same.+ œ , œ !

13 .  a b+ The critical points consist of the solution set of the equations

 C œ !

 C  B B  !Þ"& B  # œ ! Þ# a ba b
Setting , the second equation becomes , with roots ,C œ ! B B  !Þ"& B  # œ ! B œ !a ba b
!Þ"& # ! ß ! !Þ"& ß ! # ß ! and .  Hence the critical points are located at ,  and .  a b a b a b The
Jacobian matrix of the vector field is
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J œ Œ !

 $B  %Þ$ B  !Þ$ 

 "
# #

.

At the origin, the coefficient matrix of the linearized system is

Ja b! ß ! œ Œ !
 !Þ$ 

 "
#

,

with eigenvalues

<"ß# œ  „ #&  $!
# "!

"#
#È # .

Regardless of the value of , the eigenvalues are real and of opposite sign.  Hence # a b! ß !
is a , which is .saddle unstable

At the critical point , the coefficient matrix of the linearized system isa b!Þ"& ß !

Ja b!Þ"& ß ! œ Œ !
!Þ#((& 

 "
#

,

with eigenvalues

<"ß# œ  „ "!!  """
# #!

"#
#È # .

If "!!  """   ! œ## , then the eigenvalues are real.  Furthermore, since < <" # !Þ#((& ,
both eigenvalues will have the same sign.  Therefore the critical point is a node, with its
stability dependent on the  of .  If sign # "!!  """  !## , the eigenvalues are complex
conjugates.  In that case the critical point is a a b!Þ"& ß !  , with its stability dependentspiral
on the  of .sign #

At the critical point , the coefficient matrix of the linearized system isa b# ß !

Ja b# ß ! œ Œ !
 $Þ( 

 "
#

,

with eigenvalues

<"ß# œ  „ #&  $(!
# "!

"#
#È # .

Regardless of the value of , the eigenvalues are real and of opposite sign.  Hence # a b# ß !
is a , which is .saddle unstable



—————————————————————————— ——CHAPTER 9. 

________________________________________________________________________
            page 557

a b, .

It is evident that for , the critical point  is a .# œ !Þ) !Þ"& ß !a b stable spiral

Closer examination shows that for , the critical point  is a .# œ "Þ& !Þ"& ß !a b stable node

a b a b- ,.  Based on the phase portraits in Part , it is apparent that the required value of #
satisfies .  Using the initial condition  and , it is!Þ)   "Þ& B ! œ # C ! œ !Þ!"# a b a b
possible to solve the initial value problem for various values of .  A reasonable first#

guess is .  This value marks the change in qualitative behavior of the critical# œ "Þ""È
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point .  Numerical experiments show that the solution remains positive fora b!Þ"& ß !
# ¸ "Þ#! .
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Section 9.5

1 .a b+

a b, Þ  The critical points are solutions of the system of equations

B "Þ&  !Þ& C œ !

C  !Þ&  B œ ! Þ

a ba b
The two critical points are  and .a b a b! ß ! !Þ& ß $

a b- . The Jacobian matrix of the vector field is

J œ Œ $Î#  CÎ#  BÎ#
C  "Î#  B

.

At the critical point , the coefficient matrix of the linearized system isa b! ß !

Ja b! ß ! œ Œ $Î# !
!  "Î#

.

The eigenvalues and eigenvectors are

< œ $Î# œ < œ  "Î# œ Þ
" !

! "
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are of opposite sign, hence the origin is a , which is .saddle unstable

At the critical point , the coefficient matrix of the linearized system isa b!Þ& ß $

Ja b!Þ& ß $ œ Œ !  "Î%
$ !

.

The eigenvalues and eigenvectors are

< œ 3 œ < œ  3 œ Þ
$ " $ "

#  # 3 $ # # 3 $
" #

" #
È ÈŒ  Œ È È ,   ;    ,  0 0a b a b
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The eigenvalues are purely imaginary.  Hence the critical point is a , which iscenter
stable.

a b.ß / .

a b0 .  Except for solutions along the coordinate axes, almost all trajectories are closed
curves about the critical point .a b!Þ& ß $

2 .a b+

a b, .  The critical points are the solution set of the system of equations

B "  !Þ& C œ !

C  !Þ#&  !Þ& B œ ! Þ

a ba b
The two critical points are  and .a b a b! ß ! !Þ& ß #

a b- .  The Jacobian matrix of the vector field is

J œ Œ "  CÎ#  BÎ#
CÎ#  "Î%  BÎ#

.

At the critical point , the coefficient matrix of the linearized system isa b! ß !
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Ja b! ß ! œ Œ " !
!  "Î%

.

The eigenvalues and eigenvectors are

< œ " œ < œ  "Î% œ Þ
" !

! "
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are of opposite sign, hence the origin is a , which is .saddle unstable

At the critical point , the coefficient matrix of the linearized system isa b!Þ& ß #

Ja b!Þ& ß # œ Œ !  "Î%
" !

.

The eigenvalues and eigenvectors are

< œ 3Î# œ < œ  3Î# œ Þ
" "

 # 3 # 3
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are purely imaginary.  Hence the critical point is a , which iscenter
stable.

a b.ß / .

a b0 .  Except for solutions along the coordinate axes, almost all trajectories are closed
curves about the critical point .a b!Þ& ß #
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4 .a b+

a b, .  The critical points are the solution set of the system of equations

B *Î)  B  CÎ# œ !

C  "  B œ ! Þ

a ba b
The three critical points are ,  and .a b a b a b! ß ! *Î) ß ! " ß "Î%

a b- . The Jacobian matrix of the vector field is

J œ Œ *Î)  #B  CÎ#  BÎ#
C  "  B

.

At the critical point , the coefficient matrix of the linearized system isa b! ß !

Ja b! ß ! œ Œ *Î) !
!  "

.

The eigenvalues and eigenvectors are

< œ *Î) œ < œ  " œ Þ
" !

! "
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are of opposite sign, hence the origin is a , which is .saddle unstable

At the critical point , the coefficient matrix of the linearized system isa b*Î) ß !

Ja b*Î) ß ! œ Œ  *Î)  *Î"'
! "Î)

.

The eigenvalues and eigenvectors are

< œ  œ < œ œ Þ
* " " *

) ! )  #!
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
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The eigenvalues are of opposite sign, hence the critical point  is a , whicha b*Î) ß ! saddle
is .unstable

At the critical point , the coefficient matrix of the linearized system isa b" ß "Î%

Ja b" ß "Î% œ Œ  "  "Î#
"Î% !

.

The eigenvalues and eigenvectors are

< œ œ < œ œ Þ
 #  #  #  #

" "
" #

" # #  #  #  #

% %

È È
 ,   ;   ,  0 0a b a b   È È

The eigenvalues are both negative.  Hence the critical point is a , which isstable node
asymptotically stable.

a b.ß / .

a b0 .  Except for solutions along the coordinate axes, all solutions converge to the critical
point .a b" ß "Î%

5 .a b+
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a b, .  The critical points are solutions of the system of equations

B  "  #Þ& B  !Þ$ C  B œ !

C  "Þ&  B œ ! Þ

ˆ ‰
a b

#

The four critical points are , ,  and .a b a b a b a b! ß ! "Î# ß ! # ß ! $Î# ß &Î$

a b- . The Jacobian matrix of the vector field is

J œ Œ  "  &B  $B  $CÎ"!  $BÎ"!
C  $Î#  B

#

.

At the critical point , the coefficient matrix of the linearized system isa b! ß !

Ja b! ß ! œ Œ  " !
!  $Î#

.

The eigenvalues and eigenvectors are

< œ  " œ < œ  $Î# œ Þ
" !

! "
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are both negative, hence the critical point  is a , whicha b! ß ! stable node
is .asymptotically stable

At the critical point , the coefficient matrix of the linearized system isa b"Î# ß !

Ja b"Î# ß ! œ Œ $Î%  $Î#!
!  "

.

The eigenvalues and eigenvectors are

< œ œ < œ  " œ Þ
$ " $

% ! $&
" #

" # ,   ;    ,  0 0a b a bŒ  Œ 
The eigenvalues are of opposite sign, hence the critical point  is a , whicha b"Î# ß ! saddle
is .unstable

At the critical point , the coefficient matrix of the linearized system isa b# ß !

Ja b# ß ! œ Œ  $  $Î&
! "Î#

.

The eigenvalues and eigenvectors are

< œ  $ œ < œ "Î# œ Þ
" '

!  $&
" #

" # ,   ;   ,  0 0a b a bŒ  Œ 
The eigenvalues are of opposite sign, hence the critical point  is a , whicha b# ß ! saddle
is .unstable
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At the critical point , the coefficient matrix of the linearized system isa b$Î# ß &Î$

Ja b$Î# ß &Î$ œ Œ  $Î%  *Î#!
&Î$ !

.

The eigenvalues and eigenvectors are

< œ œ < œ œ Þ" #
" #

*3 $ $* *3 $ $*
%! %! $  3 $*  $  3 $*

) " ) "

È ÈÎ Ñ Î Ñ
Ï Ò Ï Ò ,   ;   ,  0 0a b a bÈ È

The eigenvalues are complex conjugates.  Hence the critical point  is a a b$Î# ß &Î$ stable
spiral asymptotically stable, which is  .

a b.ß / .

a b a b0 "Î# ß !.  The single solution curve that converges to the node at  is a separatrix.
Except for initial conditions on the coordinate axes, trajectories on either side of the
separatrix converge to the node at  or the stable spiral at .a b a b! ß ! $Î# ß &Î$

6.  Given that  is measured from the time that  is a , we have> B maximum

B œ  -9= +- >
- -O

C œ O =38 +- > Þ
+ + -

# #

! ! !

ˆ ‰È
Ê ˆ ‰È

The  of oscillation is evidently   Both populations oscillate aboutperiod X œ # Î +- Þ1 È
a mean value.  The following is based on the properties of the  and  functions-9= =38

The prey population  is  at  and .  It is a  at a bB > œ ! > œ X > œ XÎ# Þmaximum minimum
Its rate of increase is greatest at .  The rate of  of the prey population> œ $XÎ% decrease
is greatest at .> œ XÎ%

The predator population  is  at .  It is a  at a bC > œ XÎ% > œ $XÎ% Þmaximum minimum
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The rate of increase of the predator population is greatest at  and .  The rate> œ ! > œ X
of  of the predator population is greatest at .decrease > œ XÎ#

In the following example, the system in Problem  is solved numerically with the initial#
conditions  and .  The critical point of interest is at .B ! œ !Þ( C ! œ # !Þ& ß #a b a b a b
Since  and , it follows that the period of oscillation is + œ " - œ "Î% X œ % Þ1

  

8 .  The  of oscillation for the linear system is    In system ,a b a bÈ+ X œ # Î +- Þ #period 1

+ œ " - œ !Þ(& X œ # Î !Þ(& ¸ (Þ#&&# and .    Hence the period is estimated as .1 È
a b, *Þ&Þ$.  The estimated period appears to agree with the graphic in Figure .

a b a b- $ ß # Þ.  The critical point of interest is at   The system is solved numerically, with
C ! œ # B ! œ $Þ& ß %Þ! ß %Þ& ß &Þ! Þa b a b and    The resulting periods are shown in the table:

B ! œ $Þ& B ! œ %Þ! B ! œ %Þ& B ! œ &Þ!
X (Þ#' (Þ#* (Þ$% (Þ%#

a b a b a b a b
The actual amplitude steadily  as the amplitude increases.increases
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9.  The system

.B C

.> #
œ + B " 

.C B

.> $
œ , C  " 

Š ‹
Š ‹

is solved numerically for various values of the parameters.  The initial conditions are
B ! œ & C ! œ #a b a b , .

a b+ + œ " , œ " À.   and 

The period is estimated by observing when the trajectory becomes a closed curve.  In this
case, .X ¸ 'Þ%&

a b, + œ $ + œ "Î$ , œ " À.   and , with 

  

For , .  For , .+ œ $ X ¸ $Þ'* + œ "Î$ X ¸ ""Þ%%
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a b- Þ , œ $ , œ "Î$ + œ " À   and , with 

   

For , .  For , ., œ $ X ¸ $Þ)# , œ "Î$ X ¸ ""Þ!'

a b. .  It appears that if one of the parameters is fixed, the period varies  withinversely
the other parameter.  Hence one might postulate the relation

X œ Þ
5

0 + ß ,a b
10 .  Since , we first note thata b È+ X œ # Î +-1

( (ˆ ‰ ˆ ‰È È
E E

EX EX

-9= +- >  .> œ =38 +- >  .> œ !9 9 .

Hence

B œ .> œ C œ .> œ
" - - " + +

X X
( (
E E

EX EX

# # ! !
 and  .

a b, .  One way to estimate the mean values is to find a horizontal line such that the area
above the line is approximately equal to the area under the line.  From Figure , it*Þ&Þ$
appears that  and .  In Example , , ,  andB ¸ $Þ#& C ¸ #Þ! " + œ " - œ !Þ(& œ !Þ&!
# œ !Þ#& + B œ $ C œ # Þ.  Using the result in Part ,  and a b
a b- .  The system

.B C

.> #
œ B " 

.C $ B

.> % %
œ C  

Š ‹
Œ 

is solved numerically for various initial conditionsÞ

B ! œ $ C ! œ #Þ& Àa b a b and 
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B ! œ $ C ! œ $Þ! Àa b a b and 

    

B ! œ $ C ! œ $Þ& Àa b a b and 
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B ! œ $ C ! œ %Þ! Àa b a b and 

        

It is evident that the mean values  as the amplitude increases.  That is, the meanincrease
values increase as the initial conditions move farther from the critical point.

12.  The system of equations in model  is given bya b"
.B

.>
œ B +  C

.C

.>
œ C  -  B

a b
a b

!

# .

Based on the hypothesis, let the rate of the insect population and the predators bedeath 
: B ; C and , respectively.  The modified system of equations becomes

.B

.>
œ B +  C  : B

.C

.>
œ C  -  B  ; C

a b
a b

!

# ,

in which , .  :  ! ;  ! The critical points are solutions of the system of equations

B œ !

C œ ! Þ

a ba b+  :  C

 -  ;  B

!

#

It is easy to see that the critical points are now at  and   Furthermore,a b Š ‹! ß ! ß Þ-; +:
# !

since , the equilibrium level of the insect population has a b-  ; Î  -Î# # increased.
On the other hand, since , a b+  : Î  +Î! ! equilibrium level of the predators has
decreased.  Indeed, the introduction of insecticide creates a potential to significantly
affect the predator population .a b+ ¸ :
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Section 9.6

2.  We consider the function .  The rate of change of  Z Bß C œ + B  - C Za b # # along any
trajectory is

Z œ Z  Z
Þ .B .C

.> .>

œ #+B  B  #BC  #-C  C
"

#

œ  +B  %+B C  #-C Þ

B C

$ # $

% # # %

Œ  ˆ ‰

Let , , , , and .  We then have? œ B @ œ C œ  + œ %+ œ  #-# # ! " #

 +B  %+B C  #-C œ ?  ?@  @% # # % # #! " # .

If  and , then .  Furthermore, .  Recall that+  ! -  !  !Z Bß Ca b is positive definite !
Theorem  asserts that if , then the function*Þ'Þ% %  œ )+-  "' +  !!# "# #

! " #?  ?@  @# #

is .  Hence if , then  is .  One suchnegative definite negative definite-  #+ Z Bß C
Þ a b

example is Z Bß C œa b B  $ C Þ *Þ'Þ"# #   It follows from Theorem  that the origin is an
asymptotically stable critical point.

4.  Given , the rate of change of  Z Bß C œ + B  - C Za b # # along any trajectory is

Z œ Z  Z
Þ .B .C

.> .>
œ #+B B  C  #-C #BC  %B C  #C

œ #+ B  %-  #+ BC  )- B C  %- C Þ

B C

$ $ # # $

% $ # # %

ˆ ‰ ˆ ‰
a b

Setting ,+ œ #-

Z œ %- B  )- B C  %- C
Þ

  %- B  %- C Þ

% # # %

% %

As long as , the function  is  and  is also+ œ #-  ! Z Bß C Z Bß C
Þa b a bpositive definite

positive definite.  It follows from Theorem  that  is an unstable critical point.*Þ'Þ# ! ß !a b
5.  Given , the rate of change of  Z Bß C œ - B  C Za b a b# # along any trajectory is

Z œ Z  Z
Þ .B .C

.> .>
œ #- B C  B0 Bß C  #-C  B  C0 Bß C

œ  #- 0 Bß C Þ

B C

c d c da b a bˆ ‰ a bB  C# #

If  , then .  Furthermore, if  is  in some-  ! 0 Bß CZ Bß Ca b is positive definite positivea b
neighborhood of the origin, then  is .  Z Bß C

Þ a b negative definite Theorem  asserts that*Þ'Þ"
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the origin is an asymptotically stable critical point.

On the other hand, if  is  in some neighborhood of the origin, then0 Bß Ca b negative
Z Bß Ca b
and Theorem  that the origin is anZ Bß C

Þ a b are both .  It follows from positive definite *Þ'Þ#
unstable critical point.

9 .  Letting  and , we obtain the system of equationsa b+ B œ ? C œ ?w

.B

.>
œ C

.C

.>
œ  1 B  C Þa b

Since , it is evident that  is a critical point of the system.  Consider the1 ! œ ! ! ß !a b a b
function

Z Bß C œ C  1 = .= Þ
"

#
a b a b(#

!

B

It is clear that .  Since  is an Z !ß ! œ ! 1 ?a b a b odd function in a neighborhood of ,? œ !

( a b
!

B

1 = .=  ! B  ! for  ,

and

( (a b a b
! B

B !

1 = .= œ  1 = .=  ! B  ! for .

Therefore .Z Bß Ca b is positive definite

The rate of change of  Z along any trajectory is

Z œ Z  Z
Þ .B .C

.> .>
œ 1 B † C  C

œ  C Þ

B C

#

a b a b c d 1 B  Ca b
It follows that  is only   Hence the origin is a  criticalZ Bß C Þ

Þ a b negative semidefinite stable
point.

a b, .  Given

Z Bß C œa b " "

# #
C  C =38 B  =38 = .=#

!

Ba b a b( ,

It is easy to see that .  The rate of change of  Z ! ß ! œ ! Za b along any trajectory is
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Z œ Z  Z
Þ .B .C

.> .>

œ =38 B  -9= B C  C  =38B
C "

# #

œ C -9= B  =38 B  =38B  C Þ
" " C

# # #

B C

# # #

’ “a b c d” •  =38B  C

For  , we can write  and , Î#  B  Î# =38 B œ B  B Î' -9= B œ "  B Î#1 1 ! "$ #

in which ,   Note that .  Then! ! " " ! "œ B œ B Þ !  ß  "a b a b
Z B ß C œ "   B   B   C Þ
Þ C B " B C B

# # # ' # '
a b Œ  Œ  Œ # # $ $#

#" ! !
 

Using polar coordinates,

Z < ß œ  "  =38 -9=  2 < ß
Þ <

#

œ  "  =38 #  2 < ß
< "

# #

a b c da b
” •a b

) ) ) )

) )

#

#

.

 

It is easy to show that

k ka b2 < ß Ÿ <  <
" "

# (#
) # %.

So if  is , then  and   Hence< 2 < ß  "Î# =38 #  2 < ß  " Þsufficiently small k k a ba b ¸ ¸) ) )"
#

Z B ß C
Þ a b is negative definite.

Now we show that .  Since ,Z Bß Ca b is positive definite 1 ? œ =38 ?a b
Z Bß C œa b " "

# #
C  C =38 B  "  -9= B# a b .

This time we set

-9= B œ "  
B B

# #%

# %

# .

Note that for .  Converting to polar coordinates,!   "  Î#  B  Î## 1 1

Z <ß œ

œ "  =38 #
"

#

a b)
)

< < <

# "# #%
"  =38 -9=  =38 -9=  -9=

< < <

# "# #%
 =38 -9=  -9= Þ

# # #
$ %

# # #
$ %

” •
” •

) ) ) ) # )

) ) # )
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Now

 =38 -9=  -9=  
< <

"# #%

# #
$ %) ) # )

"

)
<  " for .

It follows that when ,<  !

Z <ß   =38 #
"

#
a b) )

< ( $ <

# ) "'
   !

# #” • .

Therefore , and by Z Bß C *Þ'Þ"a b is indeed Theorem , the origin is anpositive definite
asymptotically stable critical point.

12 .  We consider the linear systema b+
Œ  Œ Œ B B

C C
œ

+ +
+ +

w
"" "#

#" ##

.

Let , in whichZ Bß C œ EB  FBC  GCa b # #

E œ 
+  +  + +  + +

#

F œ
+ +  + +

G œ 
+  +  + +  + +

#

#" ## "" ## "# #"

"# ## "" #"

"" "# "" ## "# #"

# #

# #

a b

a b
?

?

?
,

and .  Based on the hypothesis, the coefficients and? œ +  + + +  + + Ea ba b"" ## "" ## "# #"

F Z Bß C are negative.  Therefore, except for the origin,  is a b negative on each
of the coordinate axes.  Along each trajectory,

Z œ #EB  FC  #GC  FB
Þ

œ  B  C Þ

a ba b a ba b+ B  + C + B  + C"" "# #" ##

# #

Hence .  Theorem  asserts that the origin is an Z *Þ'Þ#
Þ a bBß C  is negative definite unstable

critical point.

a b, .  We now consider the system

Œ  Œ Œ  Œ a ba bB B J B ß C

C C K B ß C
œ 

+ +
+ +

w
"" "#

#" ##

"

"

,

in which  and  as .  LetJ B ß C Î< p! K B ß C Î< p! <p!" "a b a b
Z Bß C œ EB  FBC  GCa b # #,

in which
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E œ
+  +  + +  + +

#

F œ 
+ +  + +

G œ
+  +  + +  + +

#

#" ## "" ## "# #"

"# ## "" #"

"" "# "" ## "# #"

# #

# #

a b

a b
?

?

?
,

and .  Based on the hypothesis, , .  Except? œ +  + + +  + + E F  !a ba b"" ## "" ## "# #"

for the origin,  is Z Bß Ca b positive on each of the coordinate axes.  Along each trajectory,

Z œ B  C  #EB  FC  #GC  FB K
Þ

# # a b a bJ B ß C B ß C" "a b a b .

Converting to polar coordinates, for ,< Á !

Z œ <  < #E-9=  F=38  < #G=38  F-9= K
Þ

œ <  < #E-9=  F=38  #G=38  F-9=

#

# #

a b a b
” •a b a b

) ) ) )

) ) ) )

J

J K

< <
Þ

" "

" "

Since the system is , there is an  such thatalmost linear V

º ºa b a b#E-9=  F=38  #G=38  F-9= 
"

#
) ) ) )

J K

< <
" " ,

and hence

a b a b#E-9=  F=38  #G=38  F-9=) ) ) )
J K "

< < #
 

" "

for .  It follows that<  V

Z  <
Þ "

#
#

as long as  .  Hence  is  on the domain!  <  V Z
Þ

positive definite

H œ B ß C l B  C  V˜ ™a b # # # .

By Theorem , the origin is an  critical point.*Þ'Þ# unstable



—————————————————————————— ——CHAPTER 9. 

________________________________________________________________________
            page 576

Section 9.7

3.  The equilibrium solutions of the ODE

.<

.>
œ < <  " <  $a ba b

are given by < < <" # $œ ! œ " œ $,  and .  Note that

.< .<

.> .>
 ! !  <  " <  $  ! "  <  $ for  and  ;     for .

< œ ! œ " corresponds to an  isunstable critical point.  The equilibrium solution <#
asymptotically stable unstable, whereas the equilibrium solution  is Since the<$ œ $ .  
critical values are isolated, a limit cycle is given by

< œ " œ >  >, ) !

which is Another periodic solution is found to beasymptotically stable.  

< œ $ œ >  >, ) !

which is unstable.

5.  The equilibrium solutions of the ODE

.<

.>
œ =38 <1

are given by , < œ 8 8 œ ! ß " ß # ßâ .  Based on the sign of in the neighborhood of< w

each critical value, the equilibrium solutions  ,  correspond to< œ #5 5 œ " ß # ßâ
unstable periodic solutions, with .  The equilibrium solutions  ,) œ >  > < œ #5  "!

5 œ ! ß " ß # ßâ œ >  > < œ ! correspond to  limit cycles, with .  The solution stable ) !

represents  critical point.an unstable

10.  Given  and , it follows thatJ B ß C œ + B  + C K B ß C œ + B  + Ca b a b"" "# #" ##

J  K œ +  +B C "" ## .

Based on the hypothesis,  is either  or  on the entire plane.J KB C positive negative
By Theorem , the system cannot have a nontrivial periodic solution.*Þ(Þ#

12.  Given that  and ,J B ß C œ  #B  $C  BC K B ß C œ C  B  B Ca b a b# $ #

J  K œ  "  B  CB C
# #.

Since  on the entire plane, Theorem  asserts that the system cannotJ K  ! *Þ(Þ#B C

have a nontrivial periodic solution.
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14 .  Based on the given graphs, the following table shows the estimated values:a b+
.

.

.

œ !Þ# X ¸ 'Þ#*
œ "Þ! X ¸ 'Þ''
œ &Þ! X ¸ ""Þ'!

a b a b a b, Þ B ! œ # C ! œ ! Þ  The initial conditions were chosen as , 

    

X ¸ 'Þ$) .

    

X ¸ (Þ'& .
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X ¸ )Þ)' .

    

X ¸ "!Þ#& .

a b- X.  The period, , appears to be a function of .quadratic .

15 .  Setting  and , we obtain the system of equationsa b+ B œ ? C œ ?w

.B

.>
œ C

.C "

.> $
œ  B  "  C C.Œ # .

a b, C œ ! B œ !.  Evidently, .  It follows that .  Hence the only critical point of the system
is at .  The components of the vector field are infinitely differentiable everywhere.a b! ß !
Therefore the system is .almost linear
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The Jacobian matrix of the vector field is

J œ Œ ! "

 "  C. . # .

At the critical point , the coefficient matrix of the linearized system isa b! ß !

Ja b! ß ! œ Œ ! "
 " .

,

with eigenvalues

< œ „  % Þ
# #

"
"ß#

.
.È #

If , the equation reduces to the ODE for a simple harmonic oscillator.  For the case. œ !
!   #. , the eigenvalues are , and the critical point is an .  Forcomplex unstable spiral
.   # , the eigenvalues are , and the origin is an .real unstable node

a b- .  The initial conditions were chosen as , B ! œ # C ! œ ! Þa b a b

    

E ¸ #Þ"' X ¸ 'Þ'& and .

a b. Þ
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E ¸ #Þ!! X ¸ 'Þ$! and .

    

E ¸ #Þ!% X ¸ 'Þ$) and .

    

E ¸ #Þ' X ¸ (Þ'# and .
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E ¸ %Þ$( X ¸ ""Þ'" and .

a b/ .

E X
œ !Þ# #Þ!! 'Þ$!
œ !Þ& #Þ!% 'Þ$)
œ "Þ! #Þ"' 'Þ'&
œ #Þ! #Þ' (Þ'#
œ &Þ! %Þ$( ""Þ'"

.

.

.

.

.
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Section 9.8

6.  , with initial point :< œ #) & ß & ß &a b

< œ #) &Þ!" ß & ß &, with initial point :a b
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7.  < œ #) À
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9 .  , initial point a b a b+ < œ "!!  & ß  "$ ß && À

The period appears to be .X ¸ "Þ"#

a b a b, < œ **Þ*%  & ß  "$ ß && À.  , initial point 

The periodic trajectory appears to have split into two strands, indicative of a period-
doubling.  Closer examination reveals that the peak values of  are slightly different:D >a b
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< œ **Þ(  & ß  "$ ß && À, initial point a b
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a b a b- < œ **Þ'  & ß  "$ ß && À.  , initial point 

The strands again appear to have split.

Closer examination reveals that the peak values of  are different:D >a b
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10 .  , initial point a b a b+ < œ "!!Þ&  & ß  "$ ß && À
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< œ "!!Þ(  & ß  "$ ß && À, initial point a b
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a b a b, < œ "!!Þ)  & ß  "$ ß && À.  , initial point 

< œ "!!Þ)"  & ß  "$ ß && À, initial point a b

The strands of the periodic trajectory are beginning to split apart.



—————————————————————————— ——CHAPTER 9. 

________________________________________________________________________
            page 590

< œ "!!Þ)#  & ß  "$ ß && À, initial point a b
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< œ "!!Þ)$  & ß  "$ ß && À, initial point a b
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< œ "!!Þ)%  & ß  "$ ß && À, initial point a b


