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PREFACE

Rien ne sert de courir,
il faut partir a point.
Jean de la Fontaine

Many physical processes in nature, whose correct understanding, prediction, and control
are important to people, are described by equations that involve physical quantities together
with their spatial and temporal rates of change (partial derivatives). Among such processes
are the weather, flow of liquids, deformation of solid bodies, heat transfer, chemical reac-
tions, electromagnetics, and many others. Equations involving partial derivatives are called
partial differential equations (PDEs). The solutions to these equations are functions, as
opposed to standard algebraic equations whose solutions are numbers. For most PDEs we
are not able to find their exact solutions, and sometimes we do not even know whether a
unique solution exists. For these reasons, in most cases the only way to solve PDEs arising
in concrete engineering and scientific problems is to approximate their solutions numeri-
cally. Numerical methods for PDEs constitute an indivisible part of modern engineering
and science.

The most general and efficient tool for the numerical solution of PDEs is the Finite
element method (FEM), which is based on the spatial subdivision of the physical domain
into finite elements (often triangles or quadrilaterals in 2D and tetrahedra, bricks, or prisms
in 3D), where the solution is approximated via a finite set of polynomial shape functions.
In this way the original problem is transformed into a discrete problem for a finite number
of unknown coefficients. It is worth mentioning that rather simple shape functions, such
as affine or quadratic polynomials, have been used most frequently in the past due to
their relatively low implementation cost. Nowadays, higher-order elements are becoming
increasingly popular due to their excellent approximation properties and capability to reduce
the size of finite element computations significantly.

The higher-order finite element methods, however, require a better knowledge of the
underlying mathematics. In particular, the understanding of linear algebra and elementary
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XXvi PREFACE

functional analysis is necessary. In this book we follow the modern trend of building
engineering finite element methods upon a solid mathematical foundation, which can be
traced in several other recent finite element textbooks, as, e.g., [18] (membrane, beam and
plate models), [29] (finite element analysis of shells), or [83] (edge elements for Maxwell’s
equations).

The contents at a glance

This book is aimed at graduate and Ph.D. students of all disciplines of computational engi-
neering and science. It provides an introduction into the modern theory of partial differential
equations, finite element methods, and their applications. The logical beginning of the text
lies in Appendix A, which is a course in linear algebra and elementary functional analy-
sis. This chapter is readable with minimum prerequisites and it contains many illustrative
examples. Readers who trust their skills in function spaces and linear operators may skip
Appendix A, but it will facilitate the study of PDEs and finite element methods to all others
significantly.

The core Chapters 14 provide an introduction to the theory of PDEs and finite element
methods. Chapter 5 is devoted to the numerical solution of ordinary differential equations
(ODEs) which arise in the semidiscretization of time-dependent PDEs by the most fre-
quently used Method of lines (MOL). Emphasis is given to higher-order implicit one-step
methods. Chapter 6 deals with Hermite and Argyris elements with application to fourth-
order problems rooted in the bending of elastic beams and plates. Since the fourth-order
problems are less standard than second-order equations, their physical background and
derivation are discussed in more detail. Chapter 7 is a newcomer’s introduction into com-
putational electromagnetics. Explained are basic laws governing electromagnetics in both
their integral and differential forms, material properties, constitutive relations, and interface
conditions. Discussed are potentials and problems formulated in terms of potentials, and
the time-domain and time-harmonic Maxwell’s equations. The concept of Nédélec’s edge
elements for the Maxwell’s equations is explained.

Appendix B deals with selected algorithmic and programming issues. We present a uni-
versal sparse matrix interface sMatrix which makes it possible to connect multiple sparse
matrix solver packages simultaneously to a finite element solver. We mention the advantages
of separating the finite element technology from the physics represented by concrete PDEs.
Such approach is used in the implementation of a high-performance modular finite element
system HERMES. This software is briefly described and applied to several challenging
engineering problems formulated in terms of second-order elliptic PDEs and time-harmonic
Maxwell’s equations. Advantages of higher-order elements are demonstrated.

After studying this introductory text, the reader should be ready to read articles and
monographs on advanced topics including a-posteriori error estimation and automatic adap-
tivity, mixed finite element formulations and saddle point problems, spectral finite element
methods, finite element multigrid methods, hierarchic higher-order finite element methods
(hp-FEM), and others (see, e.g., [9, 23, 69, 105] and [111]). Additional test and homework
problems, along with an errata, will be maintained on my home page.

PAVEL SoLiN

El Puso, Texus,
August, 2005
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CHAPTER 1

PARTIAL DIFFERENTIAL EQUATIONS

Many natural processes can be sufficiently well described on the macroscopic level, with-
out taking into account the individual behavior of molecules, atoms, electrons, or other
particles. The averaged quantities such as the deformation, density, velocity, pressure,
temperature, concentration, or electromagnetic field are governed by partial differential
equations (PDEs). These equations serve as a language for the formulation of many engi-
neering and scientific problems. To give a few examples, PDEs are employed to predict and
control the static and dynamic properties of constructions, flow of blood in human veins,
flow of air past cars and airplanes, weather, thermal inhibition of tumors, heating and melt-
ing of metals, cleaning of air and water in urban facilities, burning of gas in vehicle engines,
magnetic resonance imaging and computer tomography in medicine, and elsewhere. Most
PDEs used in practice only contain the first and second partial derivatives (we call them
second-order PDEs).

Chapter | provides an overview of basic facts and techniques that are essential for both the
qualitative analysis and numerical solution of PDEs. After introducing the classification and
mentioning some general properties of second-order equations in Section 1.1, we focus on
specific properties of elliptic, parabolic, and hyperbolic PDEs in Sections 1.2-1.4. Indeed,
there are important PDEs which are not of second order. To mention at least some of them,
in Section 1.5 we discuss first-order hyperbolic problems that are frequently used to model
transport processes such as, e.g., inviscid fluid flow. Fourth-order problems rooted in the
bending of elastic beams and plates are discussed later in Chapter 6.

Partial Differential Equations and the Finite Element Method. By Pavel Solin 1
Copyright (© 2006 John Wiley & Sons, Inc.



2 PARTIAL DIFFERENTIAL EQUATIONS

1.1 SELECTED GENERAL PROPERTIES

Second-order PDEs (or PDE systems) encountered in physics usually are either elliptic,
parabolic, or hyperbolic. Elliptic equations describe a special state of a physical system,
which is characterized by the minimum of certain quantity (often energy). Parabolic prob-
lems in most cases describe the evolutionary process that leads to a steady state described
by an elliptic equation. Hyperbolic equations describe the transport of some physical
quantities or information, such as waves. Other types of second-order PDEs are said to
be undetermined. In this introductory text we restrict ourselves to linear problems, since
nonlinearities induce additional aspects whose understanding requires the knowledge of
nonlinear functional analysis.

1.1.1 Classification and examples

Let O be an open connected set in R™. A sufficiently general form of a linear second-order
PDE in n independent variables z = (21, 22, - . ., 2,)7 is

n 6 Bu
kz(%(ua >+§<azz(bu)+clal>+aou_f (1.

where a,; = a;;(2),b; = bi(2),¢; = ¢;(z), a0 = ao(2) and f = f(z). For all derivatives
to exist in the classical sense, the solution and the coefficients have to satisfy the following
regularity requirements: u € C?(0), a;; € C1(0),b; € CH(O),c; € CHO),a0 € C(O),
f € C{O). These regularity requirements will be reduced later when the PDE is formulated
in the weak sense, and additional conditions will be imposed in order to ensure the existence
and uniqueness of solution. If the functions a;;, b;, ¢;, and ag are constants, the PDE is said
to be with constant coefficients. Since the order of the partial derivatives can be switched for
any twice continuously differentiable function u, it is possible to symmetrize the coefficients
a;; by defining
a;;{w [ ( O’l‘lq + aO’IZg)/2

and adjusting the other coefficients accordmgly so that the equation remains in the form
(1.1). This is left to the reader as an exercise. Based on this observation, in the following
we always will assume that the coefficient matrix A(z) = {aij}gszl is symmetric.

Recall that a symmetric n x n matrix A is said to be positive definite if
vTAv >0 forall0 #£veR"
and positive semidefinite if
vIAv >0 forallv € R™.

Analogously one defines negative definite and negative semidefinite matrices by turning the
inequalities. Matrices which do not belong to any of these types are said to be indefinite.

Definition 1.1 (Elliptic, parabolic and hyperbolic equations) Consider a second-order
PDE of the form (1.1) with a symmetric coefficient matrix A(z) = {a;;}7 ;-

1. The equation is said to be elliptic at z € O if A(z) is positive definite.

2. The equation is said to be parabolic at z € O if A(z) is positive semidefinite, but not
positive definite, and the rank of (A(z),b(z), ¢(z)) is equal to n.
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3. The equation is said to be hyperbolic at z € O if A(z) has one negative and n — 1
positive eigenvalues.

An equation is called elliptic, parabolic, or hyperbolic in the set O if it is elliptic, parabolic,
or hyperbolic everywhere in O, respectively.

Remark 1.1 (Temporal variable t) In practice we distinguish between time-dependent
and time-independent PDEs. If the equation Is time-independent, we put n = d and
z = x, where d is the spatial dimension and x the spatial variable. This often is the case
with elliptic equations. If the quantities in the equation depend on time, which often is the
case with parabolic and hyperbolic equations, we putn = d + 1 and z = (x, t), where t
is the temporal variable. In such case the set O represents some space-time domain. If the
spatial part of the space-time domain O does not change in time, we talk about a space-time
evlinder 0 x (0, T), where Q C R? and (0,T) is the corresponding time interval.

Notice that, strictly speaking, the type of the PDE in Definition 1.1 is not invariant under
multiplication by —1. For example, the equation

o2
—Au=f <whereA Z 7 in ]R3> (1.2)

i=1

is elliptic everywhere in R® since its coefficient matrix A is positive definite,

1 0 0
A= 01 0
0 0 1
However, the type of the equation
Au=—f
cannot be determined since its coefficient matrix
-1 0 0
A= 0 -1 0
0 0 -1

is negative definite. In such cases it is customary to multiply the equation by (—1) so
that Definition 1.1 can be applied. Moreover, notice that Definition 1.1 only applies to
second-order PDEs. Later in this text we will discuss two important cases outside of
this classification: hyperbolic first-order systems in Section 1.5 and elliptic fourth-order
problems in Chapter 6.

Remark 1.2 Sometimes, linear second-order PDEs are found in a slightly different form
- Z (2 (%ldzj +;b — +a0(z)u = f(2), (1.3)

i,j=1

usually with a symmetric coefficient matrix A(z) = {aU}L 'j=1- When transforming (1.3)
into the form (1.1), it is easy to see that the matrices A(z) and A(z) are identical, and
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thus either one can be used to determine the ellipticity, parabolicity, or hyperbolicity of the
problem. Moreover, if the coefficients a;; and b; are sufficiently smooth, the two forms are
equivalent.

Operator notation It is customary to write elliptic PDEs in a compact form
Lu=f,

where L defined by

T a aur n a a
Lu——_z %(aija.—m>+;(ar (bu)JrcL8 1>+(10u (1.4)

i,5=1

is a second-order elliptic differential operator. The part of L with the highest derivatives,
0
- Z F (1.5)

is called the principal (leading) part of L. Most parabolic and hyperbolic equations are
motivated in physics, and therefore one of the independent variables usually is the time £.
The typical operator form of parabolic equations is

2+Lu_f (1.6)

where L is an elliptic differential operator. Typical second-order hyperbolic equation can
be seen in the form

9%u X
(,)? +L(1v:f. (1.7)
where again L is an elliptic differential operator. The following examples show simple
elliptic, parabolic, and hyperbolic equations.

B EXAMPLE 1.1 (Elliptic PDE: Potential equation of electrostatics)

Let the function p € C(£) represent the electric charge density in some open bounded
set Q < R If the permittivity ¢ is constant in €2, the distribution of the electric
potential  in €2 is governed by the Poisson equation

—eAp = p. (1.8)

Notice that (1.8) does not possess a unique solution, since for any solution  the
function ¢ + C, where C is an arbitrary constant, also is a solution. In order to
yield a well-posed problem, every elliptic equation has to be endowed with suitable
boundary conditions. This will be discussed in Section 1.2.
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B EXAMPLE 1.2 (Parabolic PDE: Heat transfer equation)

Let Q C R?be an open bounded set and ¢ € C(Q) the volume density of heat sources
in €. If the thermal conductivity k, material density o, and specific heat ¢ are constant
in {1, the parabolic equation
08 k
P _Eap=L (1.9)
ot pc oc
describes the evolution of the temperature 8(x,¢) in Q. The steady state of the
temperature (06 /9t = 0) is described by the corresponding elliptic equation

—kAf = gq.

Similarly to the previous case, the solution 6 is not determined by (1.9) uniquely.
Parabolic equations have to be endowed with both boundary and initial conditions in
order to yield a well-posed problem. This will be discussed in Section 1.3,

B EXAMPLE 1.3 (Hyperbolic PDE: Wave equation)

Let 2 C R? be an open bounded set. The speed of sound a can be considered constant
in §2 if the motion of the air is sufficiently slow. Then the hyperbolic equation
2
%—(LQA]):O (1.10)

describes the propagation of sound waves in €2. Here the unknown function p(zx, t)
represents the pressure, or its fluctuations around some arbitrary constant equilibrium
pressure. Again the function p is not determined by (1.10) uniquely. Hyperbolic
equations have to be endowed with both boundary and initial conditions in order
to yield a well-posed problem. Definition of boundary conditions for hyperbolic
problems is more difficult compared to the elliptic or parabolic case, since generally
they depend on the choice of the initial data and on the solution itself. We will return
to this issue in Example 1.4 and in more detail in Section 1.5.

1.1.2 Hadamard’s well-posedness

The notion of well-posedness of boundary-value problems for partial differential equations
was established around 1932 by Jacques Salomon Hadamard.

J.S. Hadamard was a French mathematician who contributed significantly to the analysis
of Taylor series and analytic functions of the complex variable, prime number theory, study
of matrices and determinants, boundary value problems for partial differential equations,
probability theory, Markov chains, several areas of mathematical physics, and education of
mathematics.

Definition 1.2 (Hadamard’s well-posedness) A problem is said 1o be well-posed if
1. it has a unique solution,
2. the solution depends continuously on the given data.

Otherwise the problem is ill-posed.
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Figure 1.1 Jacques Salomon Hadamard (1865-1963).

As the reader may expect, well-posed problems are more pleasant to deal with than the ill-
posed ones. The requirement of existence and uniqueness of solution is obvious. The other
condition in Definition 1.2 denies well-posedness to problems with unstable solutions. From
the point of view of numerical solution of PDEs, the computational domain 2, boundary and
initial conditions, and other parameters are not represented exactly in the computer model.
Additional source of error is the finite computer arithmetics. If a problem is well-posed,
one has a chance to compute a reasonable approximation of the unique exact solution as
long as the data to the problem are approximated reasonably. Such expectation may not be
realistic at all if the problem is ill-posed.

The concept of well-posedness deserves to be discussed in more detail. First let us
show in Example 1.4 that well-posedness may be violated by endowing a PDE with wrong
boundary conditions.

B EXAMPLE 14 (Ill-posedness due to wrong boundary conditions)

Consider an interval Q = (—a.a), a > 0, and the (inviscid) Burgers’ equation

d 3]
&u(l. t) + u(zr, t)EU(T, t) = 0. (1.1

This equation is endowed with the initial condition

w(z.0) = ug(r) =z, x € (1.12)
where ug is a function continuous in (—a.a) such that uy(+a) = +a, and the
boundary conditions

u{xa.t) = ta. t>0. (1.13)

The (inviscid) Burgers’ equation 1s an important representant of the class of first-order
hyperbolic problems that will be studied in more detail in Section 1.5. In particular,
after reading Paragraph 1.5.5 the reader will know that every function w(z,t) that
satisfies both equation (1.11) and initial condition (1.12) is constant along the lines
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.’Ex()(t) = l‘o(t + 1)» zo € 1, (1.14)
depicted in Figure 1.2.
t
S
B
—a -1 0 I e

Figure 1.2 Isolines of the solution u(z, t) of Burgers’ equation.

It is easy to check the constantness of the solution u along the lines (1.14) by
performing the derivative

d

azu(xm, (t),1).

From this fact it follows that the solution to (1.11), (1.12) cannot be constant in time
at the endpoints of ). Hence the problem (1.11), (1.12), (1.13) has no solution.

Some problems are ill-posed because of their very nature, despite their initial and bound-
ary conditions are defined appropriately. This is illustrated in Example 1.5.

B EXAMPLE 1.5 (Ill-posed problem with unstable solution)

Consider the one-dimensional version of the heat transfer equation (1.9) with nor-
malized coefficients,

ou_ 0 _

5 e =0 (1.15)

describing the temperature distribution within a thin slab 2 = (0, ) in the time
interval (0,77). We choose an initial temperature distribution u(z,0) = ug{z) such
that ug(0) = ug(m) = 0, fix the temperature at the endpoints to u(0) = u(n) = 0
and ask about the solution u(x, t} of (1.15) for t € (0, T"). The initial condition ug(x)
can be expressed by means of the Fourier expansion

uglx) = Z ¢ sin(nx). (1.16)

n=1

Thus it is easy to verify that the exact solution u(z, ¢) has the form



8 PARTIAL DIFFERENTIAL EQUATIONS

o
u(x,t) = Z e sin(nx) (1.17)
n=1
and hence that
> 2
u(z, T) = Z cne”™ Tsin(nr) (1.18)

n=1
is the solution corresponding to the time ¢ = T". Notice that the coefficients c,,,c‘”z’
converge to zero very fast as the time grows, and therefore after a sufficiently long
time T the solution will be very close to zero in §2. Hence, the heat transfer problem
evidently is a well-posed in the sense of Hadamard.
Now let us reverse the time by defining a new temporal variable s = T — ¢. The
backward heat transfer equation has the form

a P 0
ds  Ox?

We consider an initial condition 1y {z) corresponding to s = 0, i.e., to £ = T. Again,
tty{x) can be expressed as

tg{r) = Z d,, sin{nx), (1.19)

n=1

and the exact solution %(z. s) has the form

Bad 2
a(r.s) = Z dye™  sinfmr).

n=1

Notice that now the coefficients dnc”z” are amplified exponentially as the backward
temporal variable s grows. This means that the solution of the backward heat transfer
equation does not depend continuously on the initial data 4 (), i.e., that the backward
problem is ill-posed.

Suppose that we calculate some numerical approximation of the solution u(x, T')
for some sufficiently large time T and then use it as the initial condition 7, {x) for the
backward problem. What we will observe when solving the backward problem is that
the solution 4(z, s) begins to oscillate immediately and the computation ends with
a floating point overflow or similar error very soon. Because of the ill-posedness of
the backward problem, chances are slim that one can get close to the original initial
condition uy(x) at s = T.

Remark 1.3 (Inverse problems) The ill-posed backward heat transfer equation from Ex-
ample 1.5 was an inverse problem. There are various types of ill-posed inverse problems:
For example, it is an inverse problem to identify suitable initial state and/or parameters for
some physical process to obtain a desired final state. Usually, the better-posed the forward
problem, the worse the posedness of the inverse problem.
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1.1.3 General existence and uniqueness results

Prior to discussing various aspects of the elliptic, parabolic, and hyperbolic PDEs in Sections
1.2-1.5, we find it useful to mention a few important abstract existence and uniqueness
results for general operator equations. Since this paragraph uses some abstract functional
analysis, readers who find its contents too difficult may skip it in the first reading and
continue with Section 1.2.

In the following we consider a pair of Hilbert spaces V' and W, and an equation of the
form

Lu=/, (1.20)

where L : D(L) C V — W is a linear operator and f € W. The existence of solution to
(1.20) for any right-hand side f € W is equivalent to the condition R(L) = W, while the
uniqueness of solution is equivalent to the condition N(L) = {0}.

Theorem 1.1 (Hahn-Banach) Let U be a subspace of a (real or complex) normed space
V., and f € U’ a linear form over U. Then there exists an extension g € V' of f such that
g(u) = f(u) for all w € U, moreover satisfying ||g||v: = || fllv-

Proof: The proof can be found in standard functional-analytic textbooks. See, e.g.,
[34, 65] and [100]. |

Theorem 1.1 has important consequences: If vy € V and f(vy) = Oforall f € V',
then vy = 0. Further, for any vy € V there exists f € V' such that || f]y = 1 and
fvo) = |lvollv- The following result is used in the proof of the basic existence theorem:
For any two disjoint subsets A, B C V, where A4 is compact and B convex, there exists
f €V’ and vy € Rsuchthat f(a) < v < f(b)foralla € Aandb € B.

Theorem 1.2 (Basic existence result) Le: V, W be Hilbert spacesand L : D(L) C V —
W a bounded linear operator. Then R(L) = W if and only if both R(L) is closed and
R(L)* = {0}.

Proof: If R(L) = W, then obviously R(L) is closed and R(L)* = {0}. Conversely,
assume that R(L) is closed, R(L)1 = {0} but R(L) # W. The linearity and boundedness
of L implies that R(L) is a closed subspace of W. Let w € W \ R(L). The set {w} is
compact and the closed set R(L) obviously is convex. By the Hahn—Banach theorem there
exists a w* € W’ such that (w*, w) > 0 and (w*. Lv) = 0 for all v € D(L). Therefore
0 # w* € R(L)*, which is a contradiction. [ ]

In order to see under what conditions R(L) is closed, let us generalize the notion of
continuity by introducing closed operators:

Definition 1.3 (Closed operator) An operator T : D(T) C V. — W, where V and W
are Banach spaces, is said to be closed if for any sequence {v,,}°—, C D(T), v, — vand
T(vy) — w imply that v € D(T) and w = T.

It is an easy exercise to show that every continuous operator is closed. However, there
are closed operators which are not continuous:

B EXAMPLE 1.6 (Closed operator which is not continuous)

Consider the interval 2 = (0, 1) C R, the Hilbert space V' = L?(§2) and the Laplace
operator L : V' — V, Lu = —Awu = —u". This operator is not continuous, since,
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e.g., Lv ¢ V forv = z7'/3 € V. We know that the space C§°(Q) is dense in L?(2)
(see Paragraph A.2.10). To show that L is closed in V, for an element v € V consider
some sequence {v, }52, C C§°(€2) such that v, — v, and such that the sequence
{—Av,}52, converges to some w € V. Passing to the limit n — oo in the relation

/ —Avypdr = —/ v,Apde  forall p € C5°(Q),
0 0

we obtain
/ wede = —/ vApde forall p € C5°(0).
Q Q

Therefore w = —Aw and the operator L is closed.

Theorem 1.3 (Basic existence and uniqueness result) Let V., W be Hilbert spaces and
L : D(L) C V — W a closed linear operator. Assume that there exists a constant C > 0
such that

[{Lv|lw > Cllvilv forallv e D{L) (1.21)

(this inequality sometimes is called the stability or coercivity estimate). If R(L)* = {0},
then the operator equation Lu = f has a unique solution.

Proof: First let us verify that R(L) is closed. Let {w,}52; C R(L) such that w, — w.
Then there is a sequence {v,}°2, C D(L) such that w,, = Lwv,,. The stability estimate
(1.21) implies that C|\v, — v ||v < |lwn — wm||w, which means that {v,, }32_; is a Cauchy
sequence in V. Completeness of the Hilbert space V yields existence of a v € V such that
v, — v. Since L is closed, we obtain v € D(L) and w = Lv € R(L). Theorem 1.2 yields
the existence of a solution. The uniqueness of the solution follows immediately from the
stability estimate (1.21). |

Now let us introduce the notion of monotonicity and show that strongly monotone linear
operators satisfy the stability estimate (1.21):

Definition 1.4 (Monotonicity) Let V be a Hilbert space and L € L(V,V"). The operator
L is said to be monotone if

(Lv,vy >0 forallv eV, (1.22)
it is strictly monotone if
(Lv,v) >0  forall0#v eV, (1.23)
and it is strongly monotone if there exists a constant C, > 0 such that

(Lv,v) > Cy, [v]|2  forallveV. (1.24)

For every u € V the element Lu € V' is a linear form. The symbol {Lv,v), which means
the application of Lu to v € V, is called duality pairing.
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The notion of monotonicity for linear operators is a special case of a more general
definition applicable to nonlinear operators. Anoperator T : V' — V" is said to be monotone
if (Tu — Tv,u —v) > 0forall u,v € V, it is strictly monotone if (T'u — Tv,u —v) >
0 forall u,v € V, u s v, and it is strongly monotone if there exists a positive constant C'p,
such that (Tw — Tv,u — v) > Cp|lu — v||? for all u,v € V. The concept of monotonicity
for operators is related to the standard notion of monotenicity of real functions: A function
f : R — R is monotone if the condition z; < x¢ implies that f(x;) < f(z2). The same
can be written as the condition (f(z1) — f(z2))(z1 — z2) > O0forall z1,z2 € R.

Lemma 1.1 Ler V be a Hilbert space and L € L(V, V") a continuous strongly monotone
linear operator. Then there exists a constant C' > 0 such thar L satisfies the stability
estimate (1.21).

Proof: The strong monotonicity condition (1.24) implies
Crlvllyy < (Lv,v) < ||Loflv-follv,
which means that
Crilvlly < [ Lv]lv

The following theorem presents an important abstract existence and uniqueness result
for operator equations:

Theorem 1.4 (Existence and uniqueness of solution for strongly monotone operators)
Let V be a Hilbert space, f € V' and L € L(V, V') a strongly monotone linear operator.
Then for every f € V' the operator equation Lu = f has a unique solution v € V.

Proof: According to Lemma 1.1 the operator L satisfies the stability estimate (1.21).
Moreover, if v € R(L)*, then (Lv,v) = 0 and

Cljv|I? € (Lv,v) = 0.

Hence R(L)1 = {0}, and the conclusion follows from Theorem 1.3. |

1.1.4 Exercises

Exercise 1.1 Use Definition 1.3 to show that every continuous operator L : V. — W,
where V and W are Banach spaces, is closed.

Exercise 1.2 Consider a second-order PDE in the form (1.1) with a nonsymmetric coeffi-
cient matrix A(z). Symmetrize the coefficient matrix by defining A = (A + AT)/2. Find
out how the remaining coefficients b;, ¢;, and ay have to be adjusted so that the equation
remains in the form (1.1). Hint: Write a;; = (a;; + @) /2 + (a5 — a;0) /2

Exercise 1.3 Consider a second-order PDE in the alternative form (1.3),

_ Z ,/02 82 +Zb7— + agu = f.
A

i.7=1
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where G;; = aj; foralll <i,5 < n.

1. Turn the equation into the conventional form (1.1),

n a a
- Z o7 (a”az ) +;<a - (b“)“‘az) aou = f.

2. Write the relations of the coefficients a;;,b;, ¢;, ag and a;;, 51, ¢, Qg.
Exercise 1.4 Use Definition 1.1 to show that equation (1.8) from Example 1.1 is elliptic.
Exercise 1.5 Use Definition 1.1 to show that equation {1.9) from Example 1.2 is parabolic.

Exercise 1.6 Use Definition 1.1 to show that equation (1.10) from Example 1.3 is hyper-
bolic.

Exercise 1.7 Verify that the function u{x. t) defined in (0, ) by the relation (1.17) is the so-
lution of the heat-transfer equation (1.15) with the boundary conditions ©(0,t) = u(w,t) =
Oforallt > 0.

Exercise 1.8 In R® consider the equation

ou (92u d u

02u ou
du 2\ Ou oy 277 _ -l

and decide if (and where in R?) it is elliptic, parabolic, or hyperbolic.

Exercise 1.9 In R? consider the equation

5%u &*u J*u du )
e +(1-z) 541% +(1-123) —R - 1‘1:1:2% = sin(x7) cos(xam).

and decide if (and where in R?) it is elliptic, parabolic, or hyperbolic.

Exercise 1.10 In R? consider the equation

9%u 5%u
—Au-2 _2 _f
“ Jryas Jroxs f

and decide if (and where in R?) it is elliptic, parabolic, or hyperbolic.

Exercise 1.11 In R? consider the equation

d%u 5. 0% &u ou 2
2 a2 (il 20 iz
(1 —a7 - )dt2 1+ .KQ)OJT% (14 .1,)01% +(1 +'7"‘)<‘):1~;; ¢

and decide if (and where in R®) it is elliptic, parabolic, or hyperbolic.

Exercise 1.12 In R? consider the equation

5u Ou |2 0%u
oz (-l ”07{‘(1_“4— o

and decide if (or where in R2) it is elliptic, parabolic, or hyperbolic.
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1.2 SECOND-ORDER ELLIPTIC PROBLEMS

This section is devoted to the discussion of linear second-order elliptic problems. We begin
by deriving the weak formulation of a model problem in Paragraph 1.2.1. Properties of
bilinear forms arising in the weak formulation of linear elliptic problems are discussed
in Paragraph 1.2.2. In Paragraph 1.2.3 we introduce the Lax-Milgram lemma, which
is the basic tool for proving the existence and uniqueness of solution to linear elliptic
problems. The weak formulations and solvability analysis of problems involving various
types of boundary conditions are discussed in Paragraphs 1.2.5-1.2.8. Abstract energy of
elliptic problems, which plays an important role in their numerical solution (error estimation,
automatic adaptivity), is introduced in Paragraph 1.2.9. Finally, Paragraph 1.2.10 presents
maximum principles for elliptic problems, which are used to prove their well-posedness.

1.2.1 Weak formulation of a model problem

Assume an open bounded set 2 C R with Lipschitz-continuous boundary, and recall the
general linear second-order equation (1.1),

- 9 ou
_ Z &11 ( z]a )+;<axi(biu)+cia—xl> + apu = f, (1.25)

where the coefficients and the right-hand side satisfy the regularity assumptions formulated

in Paragraph 1.1.1. In this case we put n = d. Equation (1.25) is elliptic if the symmetric

coefficient matrix A = {a,;}¢,_, is positive definite everywhere in §2 (Definition 1.1).
Consider the model equation

-V - (a;Vu)+apu = f in Q, (1.26)

obtained from (1.25) by assuming a;;(x) = a;{x)é;; and b{x) = c(x) = 0 in Q. For the

existence and uniqueness of solution we add another important assumption:
ar{x) > Cpyin >0 and ap(xz) >0 inQ. 1.27)

The problem (1.26) is fairly general: Even with ag = 0 it describes, for example, the
following physical processes:

1. Stationary heat transfer (u is the temperature, a; is the thermal conductivity, and f
are the heat sources),

2. electrostatics (u is the electrostatic potential, a; is the dielectric constant, and f is
the charge density),

3. transverse deflection of a cable (u is the transverse deflection, a; is the axial tension,
and f is the transversal load),

4. axial deformation of a bar (u is the axial displacement, a; = F A is the product of the
elasticity modulus and the cross-sectional area, and f is either the friction or contact
force on the surface of the bar),

5. pipe flow (u is the hydrostatic pressure, a; = wD* /128y, D is the diameter,  is the
viscosity and f = 0 represents zero flow sources),
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6. laminar incompressible flow through a channel under constant pressure gradient (u
is the velocity, a1 is the viscosity, and f is the pressure gradient),

7. porous media flow (u is the fluid head, a; is the permeability coefficient, and f is the
fluid flux).

To begin with, let (1.26) be endowed with homogeneous Dirichlet boundary conditions
u(x) =0 ondQ. (1.28)

This type of boundary conditions carries the name of a French mathematician Johann Peter
Gustav Lejeune Dirichlet, who made substantial contributions to the solution of Fermat’s
Last Theorem, theory of polynomial functions, analytic and algebraic number theory, con-
vergence of trigonometric series, and boundary-value problems for harmonic! functions.

Figure 1.3 Johann Peter Gustav Lejeune Dirichlet (1805-1859).

Classical solution to the problem (1.26), (1.28) is a function u € C2(Q2) N C(Q)
satisfying the equation (1.26) everywhere in §2 and fulfilling the boundary condition (1.28)
at every & € 9. Naturally, one has to assume that f € C(£2). However, neither this nor
even stronger requirement f € C(Q) guarantees the solvability of the problem, for which
still stronger smoothness of f is required.

Weak formulation In order to reduce the above-mentioned regularity restrictions, we

introduce the weak formulation of the problem (1.26), (1.28). The derivation of the weak
formulation of (1.26) consists of the following four standard steps:

1. Multiply (1.26) with a test function v € C§°(£2),
-V (a3 Vu)v + apuv = fu.

2. Integrate over {2,

"Au=0
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—/V-(a1Vu)vdm+/aouvdm:/fvdm,
Q Q Q

3. Use the Green’s formula (A.80) to reduce the maximum order of the partial derivatives
present in the equation. The fact that v vanishes on the boundary 02 removes the
boundary term, and we have

/a1Vu~Vvdx+/aouvdm:/fvd:c. (1.29)
Q Q Q

4. Find the largest possible function spaces for u, v, and other functions in (1.29) where
all integrals are finite. Originally, identity (1.29) was derived under very strong
regularity assumptions v € C2() N C(Q) and v € C§°(). All integrals in (1.29)
remain finite when these assumptions are weakened to

uw,v € HY{S), fe L), (1.30)

where H} () is the Sobolev space WOI’Q(Q) defined in Section A.4. Similarly the
regularity assumptions for the coefficients a; and ag can be reduced to

ay,ag € L>7(Q). (1.31)

The weak form of the problem (1.26), (1.28) is stated as follows: Given f ¢ L?(), find a
function u € HE () such that

/a1Vu‘Vv+a0uvdm:/fvda: forallveHé(Q). (1.32)
Q Q

The existence and uniqueness of solution will be discussed in Paragraph 1.2.4.
Let us mention that the assumption f € L2(Q) can be further weakened to f € H~(),
where H ~1(Q), which is the dual space to H{ (€2), is larger than L2(Q2). Then the integral

/S;fvdm

is interpreted as the duality pairing {f, v) between H~1(Q) and H} ().

Equivalence of the strong and weak solutions Obviously the classical solution to
the problem (1.26), (1.28) also solves the weak formulation (1.32). Conversely, if the yeak
solution of (1.32) is sufficiently regular, which in this case means v € C?(2) N C(Q), it
also satisfies the classical formulation (1.26), (1.28).

In the language of linear forms letV = H} (). We define a bilinear form a(-, -) :
VxV =R,

a{u,v) = /(a1Vu - Vv + apuv) dz,
Q

and a linear form [ € V/,
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lwy=({,v) = /Q fvde.

Then the weak formulation of the problem (1.26), (1.28) reads: Find a function v € V such
that

alu,v) =l{v) forallveV. (1.33)

This notation is common in the study of partial differential equations and finite element
methods.

1.2.2 Bilinear forms, energy norm, and energetic inner product

In this paragraph we learn more about bilinear forms for elliptic problems, and introduce the
notions of energy norm and energetic inner product. Every bilinear forma : V x V — R
in a Banach space V is associated with a unique linear operator A : V' — V'’ defined by

(Au)(v) = (Au,v) = a(u,v) forallu,v e V. (1.34)

Lemma 1.2 Relation (1.34) defines a one-to-one correspondence between continuous bi-
linear forms a : V x V' — R and linear continuous operators A : V. — V',

Proof: If A € £(V,V’), then the mapping a : V x V — R defined by (1.34) is bilinear
and bounded,

|a(u, v)| < || Aul

vy < Alllellviivlly  forallw,v e V.

Conversely, let a(-, -) be a continuous bilinear form on V' x V. For any u € V the map
v — afu,v) defines a continuous linear operator on V. Hence there exists an element
Au € V' such that (1.34) holds. The bilinearity and boundedness of a(-,-) implies the
linearity and boundedness of A. ]

Basic properties of bilinear forms in Hilbert spaces are introduced in Definition 1.5 and
discussed in Lemma 1.3:

Definition 1.5 Let V' be a real Hilbert space, a : V x V. — R a bilinear form and
A 'V — V' a linear operator related to a{-, -} via (1.34). We say that

1. a is bounded if there exists a constant C, > 0 such that |a(u,v)| < Cyllul||lv|| for
allu,veV,

2. ais positive if a(v,v) > O forallv e V,
3. a is strictly positive if a(v,v) > O forall0 # v € V,

4. ais V-elliptic (coercive) if there exists a constant C, > Osuchthat a(v,v) > Cqv||3
forallv eV,

5. ais symmetric if a(u,v) = a{v,u) forall u,v € V.
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Lemma 1.3 Under the assumptions of Definition 1.5 it holds:

1. The bilinear form a is bounded if and only if the linear operator A is bounded.
2. The bilinear form a is positive if and only if the linear operator A is monotone.

3. The bilinear form a is strictly positive if and only if the linear operator A is strictly
monotone.

4. The bilinear form a is V-elliptic if and only if the linear operator A is strongly
monotone.

5. The bilinear form a is symmetric if and only if the linear operator A is symmetric
(ie, if (Au,v) = (Av,u) forall u,v € V).

Proof: Left to the reader as an exercise. |

Definition 1.6 (Energetic inner product, energy norm) Let V be a Hilbert space and
a:V xV — R abounded symmetric V-elliptic bilinear form. The bilinear form defines
an inner product

(u, v)e = alu,v) (1.3%)
in V, called energetic inner product. The norm induced by the energetic inner product,

ffulle = v/ (u, u)e, (1.36)

is called energy norm.

It is easy to verify that || - || and (-, -). fulfill all properties of norm and inner product
(use Definitions A.24 and A.41).

Lemma 1.4 Let V be a Hilbert space and a : V x V. — R a bounded symmetric V -elliptic
bilinear form. The energy norm induced by o is equivalent to the original norm in 'V,

Cillully < flulle < Collully forallu eV, (1.37)

where C1,Cy > 0 are some real constants.
Proof: Left to the reader as an exercise. |

If the V-elliptic bilinear form a(-,-) is not symmetric, it does not represent an inner
product, but still it induces an energy norm. If a : V x V — C, then the symmetry
requirement a(u,v) = a(v,u) is replaced with the sesquilinearity requirement a(u, v) =
a(v,u).

Both the energetic inner product (-, -). and the energy norm | - || represent important
tools in the error analysis and numerical solution of elliptic PDEs. They are used to derive
both a-priori and a-posteriori error estimates, to guide refinement strategies for adaptive
finite element methods, and for other purposes. We will return to this topic later, after
introducing the finite element discretization in Chapter 2.
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1.2.3 The Lax—Milgram lemma

The Lax—Milgram lemma is the basic and most important tool for proving the existence and
uniqueness of solution to elliptic problems.

Theorem 1.5 (Lax-Milgram lemma) LetV be a Hilbert space, a : V xV — Rabounded
V-elliptic bilinear form and | € V’. Then there exists a unique solution to the problem

alu,v) =l{v) foralvelV. (1.38)

Remark 1.4 (Lax-Milgram vs. Riesz) If the bilinear form a{-,-) is symmetric, then the
unique solution u € V of equation (1.38) is nothing else than the unique representant of the
linear form ! € V' with respect to the energetic inner product (-, ), = a(-, ). In this sense
the Lax—-Milgram lemma is a special case of the Riesz representation theorem (Theorem
A.15).

Proof: The uniqueness of solution follows immediately from the V-ellipticity of the
bilinear form a. We will use Theorem 1.2 to verify the existence. Let A : V — V' be
the linear operator associated with the bilinear form a via (1.34). Then A is bounded and
strongly monotone. By L = JA : V — V denote the isometric dual mapping from the
Riesz theorem,

alu,v) = {Au,v) = (JAu,v) forallu,v e V.

Recall that R(L) = V if and only if R(L) is closed and R(L)1 = {0}. To show that
R(L) is closed, let {u, }3>; C R(L) be a sequence converging to some function u. Then
u, = JAw,, where {w,}22; C V. Lemma 1.1 yields the existence of a constant C' > 0
such that

[un — umll = | T Alwn — wn )t = [Alwn — w)ll = Cllw, — wa |-

Hence {w,, }>2, is a Cauchy sequence that has a limit w € V. It holds

lun — T Aw]| = |T A(wn — w)|| = [[A(wn — w)|| < Callwn —w[| — 0.

Therefore w = JAw € R(L) and R(L) is closed. To prove that R(L)* = {0}, take an
arbitrary v € R(L)*. Then for any v € V itis

0 = (JAv,u) = a{v,u).

Putting v = u, we obtain that the energy norm |{u{|. = 0 and thus that u = 0. |

1.2.4 Unique solvability of the model problem

The existence and uniqueness of solution to the model problem (1.33) can be proved using
the Lax—Milgram lemma (Theorem [.5) under the following assumptions:

Lemma 1.5 Assume that a1(x) > Cpin > 0 and ag(x) > 0 a.e. in ). Then the weak
problem (1.33) has a unique solutionu € V.
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Proof: Since a;,ag € L(£2), there exists a Cyy,q, < 00 such that |a;(z)| < Cipay and
lag(x)] < Chpazr ae. in §2. Then,

Ja(u, v} < /(a11Vu - Vol + apluv|) de < Chigz / (|Vu - Vol + |uwv])de.  (1.39)
Q 0

Since Vu, Vv € [L2(£2)]¢, the Holder inequality (A.50) yields

1 i

2 2
/|Vu-Vv|da:§ (/ |Vu|2dw> (/ |V’U|2dm> = |u|i2lv]1 2. (1.40)
JQ Q Q

Analogously, for the product |uv| one obtains

juv|de < (/ u? dm)E </ 112d11:>§ = Jlul|p2|lv]l L. (1.41)
0 Q Q

The norm || - ||1 2 is obtained by adding a nonnegative term to the seminorm | - |1 2,

lul12lvl12 < llufli2llvlh.2- (1.42)
Similarly for the L?-norm,

lull2llvllez < fullizlivlle. (1.43)
Finally, relations (1.39) to (1.43) together yield

la(u, v)| < QCmax”U”l‘?”UHl,%

which means that the bilinear form is bounded with the constant C, = 2C,,,.». Next let
us prove the V-ellipticity of a(-,-). Using the Poincaré-Friedrichs’ inequality (Theorem

A.26) in the space V = H} (), together with the nonnegativity of ap and strict positivity
of a,, we obtain that there exists a constant Cp,y > 0 such that

alv,v) = /a1|V1/|2+a0v2dw2/(11|V11|2dm
Q Q

v

Cmin/ |vv|2 dx = Cmin"vﬁg > szncgf”U”%,Q forallv e V.
Q2

Thus the bilinear form a(-, -) is bounded and V-elliptic, and the Lax—Milgram lemma yields
the existence and uniqueness of solution for every f € L2(Q). ]

Discussion of the existence and uniqueness of solution for elliptic operators of the general
form (1.25) can be found, e.g., in {93].
1.2.5 Nonhomogeneous Dirichlet boundary conditions

In this paragraph we consider the model equation (1.26) endowed with more general Dirich-
let boundary conditions of the form
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u(z) = g{x) on o, (1.44)

where ¢ € C(0€). For the purpose of the weak formulation we consider a function
G € C*H)NC(Q) such that G = g on 9N (the so-called Dirichlet lift of g). Notice that G
is not unique, but we will show later that the solution is invariant under its choice. Writing
u = G + U, the problem (1.26), (1.44) can be reformulated to:

Find U € C2#() such that

V- aVU+G)+aU+G) = f in{,
U+G = g ondQ,
or, equivalently,
V- (a1VU) +aoU = f+V-(a1VG)—aeG in{, (1.45)
U = 0 on 69, (]46)

Except for an adjusted right-hand side, this problem is identical to the model problem (1.26),
(1.28). We proceed analogously as in Paragraph 1.2.1 to derive its weak formulation:
Find U € V = H} () such that
a(U,v) =1l{v) forallveV (147

with

a(U,v) = L(QIVU Vv +agUv)dx, vev,

:\.

=
<

N
I

/(fv —ay VG - Vv — apGu)dz, wveV,
Q

This weak formulation is defined under much weaker assumptions on f, g, and G. In
particular, we can assume that f € L?(Q) and G € H*(Q) with the trace g € Hz (092).

We have seen in Paragraph 1.2.4 that the bilinear form a(-, -) is bounded and V -elliptic.
In other words, the Lax—Milgram lemma yields the existence and uniqueness of solution to
(1.47) for every Dirichlet lift G.

Independence of the solution v = U + G on the Dirichlet lift G: Assume that
Uy +Gy=u; € HY(Q) and Uz + G = us € H'(Q) are two weak solutions. By (1.47)
the difference u; — uz € V = H}(Q) satisfies

a(u) —ug,v) =0 forallve V.
Taking u; — us for v and using the V -ellipticity of the bilinear form a, we obtain

0= alur — ug,uy —ug) > Ceyllus — u2||%/~

This means that
lur —uzfv =0,

i.e., that u; = uo a.e. in €.
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1.2.6 Neumann boundary conditions
Consider the model equation (1.26) with Neumann boundary conditions of the form

Ju

W =9 on 9, (1.48)

where g € C(0€2). This time we have to strengthen the positivity assumption on the
coefficient ag to

ap(z) > Conin >0 in L (1.49)

The weak formulation of the problem (1.26), (1.48) is derived as follows: Assume that
u € C™(Q)NCH{Q). Multiply (1.26) with a test function v € C*=(Q) N C{Q), integrate
over {2, and use the Green'’s theorem to reduce the maximum order of the partial derivatives.
The boundary integrals do not vanish as they did in the homogeneous Dirichlet case, and
we get an extra boundary term,

/(a1Vu-Vv+a0uv)dm—/ aI@vdS:/fvd:c,
Q 80 ov Q

Here v is the unit outer normal vector to 9 and Su/0rv = Vu-v. Substituting the boundary
condition (1.48) into the boundary integral, and weakening the regularity assumptions, we
obtain the following weak formulation:

Given f € L2(Q) and g € L?(6Q), findu € V = H'(Q) such that

/(aIVu-VU—}-aouv)dm:/fvder/ aigvdS forallv e V.
Q 0 80

Stated in the language of linear forms, one has to find a function u € V such that

a(u,v) =l{v) forallveV, (1.50)
where
alu,v) = /9(11Vu - Vv +aguvdz  forall u,v €V,
vy = /fvdw—i—/ aigvdS forallv e V.
Q ho)

Notice that although the bilinear form a(-, -) is given by the same formula as in the case of
Dirichlet boundary conditions, it is different since the space V' changed.

The boundedness of the bilinear form a(-,-) in V x V can be shown analogously to
the proof of Lemma 1.5. Notice, however, that one cannot use the Poincaré-Friedrichs’
inequality to prove the V-ellipticity of a(-,-), since now the solution is not zero on the
boundary. Here the additional assumption (1.49) comes into the play, and we obtain

a(U, 1}) > min(Cmm, énn'n)Hv“%/'

The Lax—Milgram lemma guarantees that the problem (1.50) has a unique solution u € V.
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Remark 1.5 (Neumann problem without the assumption (1.49)) The assumption(1.49)
guarantees the presence of a nonzero L?-term in the bilinear form. Without this term, nei-
ther the classical nor the weak formulation has a unique solution in Sobolev spaces. For
example, if u is a solution of —Aw = f with Neumann boundary conditions, then also
u+ C, where C is an arbitrary constant, is a solution. Let us formulate this problem in the
weak sense:

Find u € HY(Q) such that

/Vu-Vvd:c: fvdm-}-/ gvdS  forallv € H(Q). (1.51)
Q Q a0

Using the test function v = 1 € HY(Q), one finds that a necessary condition for (1.51) to
have a solution at all is

/fdw+/ gdS = 0. (1.52)
9 Ely)

It follows from a deeper analysis in the quotient space H'(Q))/R that condition (1.52) is
sufficient for the existence and uniqueness of solution in H'(Q) /R (see, e.g., [6]).

Remark 1.6 (Essential and natural boundary conditions) Dirichlet boundary conditions
are sometimes called essential since they essentially influence the weak formulation: They
determine the function space in which the solution is sought. On the other hand, Neumann
boundary conditions do not influence the function space and can be naturally incorporated
into the boundary integrals. Therefore they are called natural.

1.2.7 Newton (Robin) boundary conditions

Another frequently used type of natural boundary conditions involves a combination of
function values and normal derivatives. Consider the model equation (1.26) equipped with
such boundary conditions,

I

-V - (a1 Vu) + apu [ in€, (1.53)

19}
61u+62-—u = g ondf, (1.54)
dv
where f € C(2),g € C(8Q),and ¢1, co € C(IN2) are such thatcicp > 0and 0 < € < |es|
on 9%, The positivity assumptions (1.27) and (1.49) on  the coefficients ag, a; apply.
For a sufficiently regular function u € C?(§2) N C(€2), the weak identity

/aIVu-Vv+a0uvdw—/ al—vdS /fvdm
Q le)

is derived analogously to the Neumann case. Using the boundary condition (1.54), we
obtain the following weak formulation:
Given f € L?(2), g € L2(89Q), and ag,a; € L>=(RQ), find u € V = H(£2) such that

/a1Vu-Vv+aouvd:c+/ Eu ds = /fvdw+/ glgvdS’ forallv € V.
Q aa €2 Q an C2
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In other words, it is our task to find u € V such that

a(u,v) =1l{v) forallveV, (1.55)
where
aicy
alu,v) = / a1Vu - Vv + aguvdx +/ uwvdS forallu,v € V,
Q an C2

l{v) = / fvdx +/ U948 forallve V.
Q aa €2
Since the bilinear form a(-,-) is both bounded and V-elliptic (use Theorem A.28), the
Lax—Milgram lemma implies that problem (1.55) has a unique solution « € V.

1.2.8 Combining essential and natural boundary conditions

What remains to be discussed is the combination of essential and natural boundary condi-
tions. Let us choose, for example, the Dirichlet and Neumann conditions for this purpose.
Hence, let the boundary 92 be split into two nonempty disjoint open parts I', and I' v, and
consider the problem

-V -(a1Vu)+apu = f in Q, (1.56)
u = gp onlp, (1.57)
Ou _ gy onTy. (1.58)
v

The weak formulation is derived as follows: First extend the function gp € C(I'p) to the
rest of the boundary 992 by introducing a function gp € C(9€2) such that gp = gp onT'p.
The nonuniqueness of this extension is not going to cause any problems. Next find some
Dirichlet lift G € C?(Q) N C(Q) of §p (i-e., G = §p on JQ). The solution u is sought in
the form v = U + G analogously to the pure Dirichlet case. The equations

V- [ aiVU+G)+aU+G) = f inQ, (1.59)
(U+G) = g¢gp onlp, (1.60)
AU +6) = gy only, (1.61)
ov
yield

—V-(a1VU)+aU = f4+V-(a1VG)—apG inQ, (1.62)
U =0 onl'p, (1.63)

U+ G
% = gn OIIFN. (164)

The appropriate space for the function U is
V={ueH@Q);u=00nTp}. (1.65)

Applying the standard procedure that we went through several times, we arrive at the weak
identity
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/ (a1 VU - Vv + agUv) dx
Q

:/(fv—a1VG-Vv—aoG’v)dw+/
Q v

<a1 oU + G)
Cn

U) dS forallve V.

Using the Neumann boundary condition (1.64) on I v, we finally obtain the following weak
problem:
Find a function U in the space V such that

a(U,v) =1l(v) forallveV, (1.66)
where
a(Uv) = '/;2((11VU -Vv+agUv)dz, UnveV, (1.67)
{v) = /Q(fv -~ a1VG - Vv ~ ayGv) da + /1“ aigyvdS forallve V.

The bilinear form a(-,-) is bounded and V-elliptic (the proof is analogous to Paragraph
1.2.4). The Poincaré-Friedrichs’ inequality holds in V' due to the zero boundary condition
for U on I'p (see Remark A.8). Therefore the Lax—Milgram lemma implies that problem
(1.66) has a unique solution U € V. As usual, the final solution satisfying both the essential
and natural boundary conditions is u = U + G.

1.2.9 Energy of elliptic problems

It was mentioned in Paragraph 1.1.1 that elliptic problems usually describe some equilibrium
or minimum-energy state of a system. In this paragraph we introduce the explicit form of
the abstract energy, at least for symmetric problems. The most important numerical scheme
based on the minimization of the abstract energy, the Ritz method, will be discussed later
in Chapter 2.

Theorem 1.6 Let V be a linear space, a : V x V. — R a symmetric V-elliptic bilinear
form and ] € V'. Then the functional of abstract energy,

1
E(w) = Ea(v,v) — l{v), (1.68)
attains its minimum in 'V at an element v € V if and only if

a(u,v) =1l(v) forallveV. (1.69)

Moreover, the minimizer u € V is unique.

Proof: Let (1.69) hold. Then

1
Elu+tv) = §a(u+tv,u+tv)—l(u+tv)

E(u) + ta(u,v) — l(v)) + %t:za(v, v) (1.70)
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forall u,v € Vandt € R. If u € V satisfies (1.69), then the last equation with ¢ = 1
implies

1
Eu+v)=E(u)+ éa(vm) > E(u) forall0#£veV.

Thus © € V is a unique minimizer of (1.68).
Conversely, if E has a minimum at u € V, then for every v € V the derivative of the
quadratic function ¢(t) = E(u + tv) must vanish at ¢ = 0. By (1.70),

0= ¢'(0) = alu,v) — l(v),

and (1.69) holds. |

Another interesting theoretical application of the energy-minimization concept is an
alternative proof of the Lax—Milgram lemma for symmetric elliptic problems in convex
sets:

Theorem 1.7 (Lax—Milgram lemma for convex sets) Let W be a closed convex set in a
Hilbert space V and a : V x V — R a bounded V -elliptic bilinear form. Then for every
1 € V' there exists a unique u € W such that E(u) = inf{E(v); v € W}, where

E(v) = %a(v,v) —l{v).

Proof: The functional £ is bounded from below since

1

ol — 2 _ W > _W
5 (Calloll = 1)

1
> G lelI? — = .
E(v) = 5Call] (alk 20, = 20,

Leteg = inf{E{(v); v € W} and let {v,,}3=, be a minimizing sequence, i.e.,
lim E(v,) = eg.
TL— 00

Then

C{),“Un - UmHZ

IA

(L(’Un = Um,Un — 1)171,)
= 2a(v,,Vn) + 2a(Vnm. Um) — AUy, + Uy U + Ui )

= 4E(v,) +4E(vy) — 8E <%>

< 4E(uvn) +4E(v,) — 8ep,

where Z(v,, + v,,) € W thanks to the convexity of W. Now E(vy,), E(vy,) — €g implies
|vr — Ven|| — 0 as n,m — oco. Thus {v, }52, is a Cauchy sequence in V and there exists
almitu € V, v, — w. Since W is closed, we also have u € W. The continuity of £
implies

E(u) = lim E(v,) = inf E(v).
n—0GC veEW
Let us show that the solution v € W is unique. Suppose that both u; and us are solutions.
Clearly the sequence uy, ug, u1, u2, . . . 1s a minimizing sequence. Above we saw that every
minimizing sequence has to be a Cauchy sequence. Thus u; = us. |
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1.2.10 Maximum principles and well-posedness

Another important aspect of elliptic problems is the existence of maximum principles. We
find it useful to present several of them here and illustrate how they imply the well-posedness
of elliptic problems. The counterpart of the maximum principles on the numerical level are
the discrete maximum principles (see, e.g., [11, 14, 19, 31, 57, 67] and [112]), which find
particularly important application in problems where physically nonnegative quantities like
the temperature, density, or concentration are computed.

Theorem 1.8 (Basic maximum principle) Consider an open bounded set Q@ C R? and a
symmetric elliptic operator of the form

82
Lu=— Zaij(x)vgzj, (1.71)

where a;; € C(§2). Let u € C%(2) N C(Q) be the solution of the equation Lu = f, where
feCf)and
f<0 in.

Then the maximum of v in Q is attained on the boundary 0§). Furthermore it holds that if
the maximum is attained at an interior point of , then the function u is constant.

This result remains true under less restrictive assumptions on the coefficients a;;.

Proof: Recall that L is elliptic if the coefficient matrix A(x) = {a;;}7;_; is positive
definite in 2. First we carry out the proof under a stronger assumption that f < 0 in 2.
Suppose that there exists some & € 2 such that

u(®) = sup u(x) > %up u{x). (1.72)
Ten Ted

Since A(Z) = {a;;(Z) }‘f,j=1 is symmetric and positive definite, it is diagonalizable and has

positive real eigenvalues Ay (&), A2(Z), ..., A¢(&). Thus there exists a nonsingular d x d

matrix C' such that

A=CTrAZ)C,
where A = diag(A{(Z), A\2(Z), - . ., Aa(&)). In a new coordinate system defined by
§=¢&(m) =

we have that

0 > f(&)=(Lu)(Z)

d

— Y CTAEI0), S @)
i,j=1 ”861853
d
= —Z/\z 652 (1.73)

which is a contradiction since \;(£) > Oforall 1 <7 < d,and & € 2\ 92 is a maximum
point of u, meaning that

A%u ,
52_12{(93) <0

foralll <i:<d.
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Next let us prove the result for the weaker assumption f < 0 in £2. Again, suppose that
there exists some & € §2 satisfying (1.72). Consider the function
d
hiz) = Z(zl — i)
i=1

Since the maximum point & of u lies in the interior of Q and h(x) is bounded in £, for a
sufficiently small 5 > 0 the function w(x) = u(x) + Sh(x) attains its maximum at some
interior point &y € 2. Since

9%h

T2 (#)=26, forallzeq,
bz:01, (x) =26,; forallz e

we have
d ~
(Lw)(@) = (Lu)(z) + B(Lh)(z) = f(z) — 28 ) aiu(z) = f(z) <0 inQ.
i=1
Thus we can apply the result of the first part of the proof. |

B EXAMPLE 1.7 (Maximum principle)
Consider an open bounded set 2 = (—1,1)? € R? and the Poisson equation
—Au=-4 inQ (1.74)
(L = —A is obtained from (1.71) putting a;; = 9;5). The solution  has the form
u(zy, z2) = x:f + x% +C,
where C' € R is an arbitrary constant to be determined from the boundary conditions.

Since f < 0 in 2, the maximum principle (Theorem 1.8) implies that v attains its
maximum on the boundary 8. This indeed is true, as shown in Figure 1.4.

Figure 1.4 Maximum principle for the Poisson equation in 2D.
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Immediate consequences of the maximum principle are the minimum principle, compar-
ison principle, and the continuous dependence of the solution on boundary and initial data.
Most of these results are straightforward consequences of Theorem 1.8. We encourage the
reader to perform the proofs using the hints given.

Corollary 1.1 (Minimum principle) LetQ C R? be an open bounded set and L an elliptic

operator of the form (1.71). If Lu = f > Qin$Q, then u attains its minimum on the boundary
onN.

Proof: Apply Theorem 1.8to @ := —u. n

Corollary 1.2 (Comparison principle) Ler Q C R? be an open bounded set and L an
elliptic operator of the form (1.71). Suppose that functions u,v € C%(Q) N C(Q) solve the
equations Lu = f, and Lv = f,, respectively, and

fu fo in§2,

<
u < v onof.
Then u < vin .
Proof: Apply the minimum principle to w := v — u. |
Corollary 1.3 (Continuous dependence on boundary data) Ler Q C R® be an open

bounded set and L an elliptic operator of the form (1.71). Suppose that uy and us solve
the equation Lu = f with different Dirichlet boundary data. Then

sup |uy(x) — ua(x)| = sup |ui(z) ~ ua(x)]-
e e

Proof: The function w = u; — uy satisfies the homogeneous equation Lw = 0 in €.
Apply both the maximum and minimum principles to obtain the result. ]

Before introducing the continuous dependence of solution on the right-hand side, we
need to define the notion of uniform ellipticity:

Definition 1.7 (Uniform ellipticity) A linear elliptic operator L of the form (1.4} is said
to be uniformly elliptic in an open set Q@ C R? if there exists a constant C 4 > 0 such that

ETA(@)E 2 Call€)® forall € € RY,
and all © € Q, where A(x) is the corresponding coefficient matrix.

Corollary 1.4 (Continuous dependence on the right-hand side) Ler Q) C R? be an open
bounded set and L an elliptic operator of the form (1.71). Moreover, assume that L is
uniformly elliptic in Q. Then there exists a constant C only depending on the set §) and the
uniform ellipticity constant C 4, such that

lu(z)] < sup |u(y)| + C sup |f(y)] (1.75)
Yeon Yyen

forallx € Q.

Proof: Since (2 is bounded, it is contained in some open ball B(0,r). Let
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d
wlx) =r? — fo
i=1

Clearly 0 < w < 72 in €. Since

0w

836183,’]- B

—20;;,
itis Lw > 2dC 4, where C 4 is the uniform ellipticity constant of L. Let

1
v(z) = sup |u(y)]+w(x)s5~ sup |[Lu(y)l.
yeon 2dC4 yean

Then Lv > |Lu| in € and v > |u} on 8. The comparison principle implies that —v () <
u(z) < v(z) in Q. Since w < 2, (1.75) holds with C' = r?/(2dC 4). [

Corollary 1.5 (Elliptic operator with a Helmholtz term) Consider an elliptic operator
L of the form

¢ d%u
b= = 3 ) e
10T

ij=1
with ap(x) > 0in L. Then Lu < 0 in S implies that

sup u(x) < max{0, sup u(x)}.
Ten Tean

Proof: Without loss of generality, let 2, € (2 be such that

u{xg) = sup uly) > 0.
yeq

Then (Lu)(xo) — ao(®o)ulxe) < (Lu)(xo) < 0, and the principal part Lu — agu defines
an elliptic operator of the form (1.71). The conclusion follows from Theorem 1.8. ]

1.2.11 Exercises
Exercise 1.13 Show that the bilinear form a(-, -) from (1.55) is bounded and V -elliptic.

Exercise 1.14 Show that relation (1.35) in Lemma 1.4 defines an inner product. Further
show that the energy norm (1.36) induced by this inner product satisfies the relation (1.37)
(i.e., that it is equivalent to the norm || - ||v ).

Exercise 1.15 Ler @ ¢ R? be an open bounded set with Lipschitz-continuous boundary.
Let the boundary 0S) be split into two nonempty disjoint open parts I y and T'p such that
Ty UTp = 0. Consider boundary data (real functions) gy, gp defined on Ty and T p,
respectively. Write the weak formulation of the boundary value problem for the Poisson
equation

—Au=f,
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equipped with boundary conditions

(@) +ulx) =gn(@),  we Ty,

and

u(x) = gpl(x), =x€Tp,

where f is a real-valued load function defined in ). Identify the largest function spaces
where the solution u as well as the test functions v and data gy, gp, and f must lie in order
that all integrals in the weak formulation be defined.

Exercise 1.16 Prove Corollary 1.1.

Exercise 1.17 Prove Corollary 1.2.

1.3 SECOND-ORDER PARABOLIC PROBLEMS

Next let us turn our attention to linear parabolic problems (the notion of parabolicity was
introduced in Definition 1.1). Let © C R? be an open set with Lipschitz-continuous
boundary. We will study a class of linear parabolic equations

du .
§+Lu—f in €2, (1.76)

where t is the time, u = u(z,t), f = f(=x,t) and L is an elliptic operator of the form
(1.1) with time-independent coefficients. The equation (1.76) is considered in a space-time
cylinder Qr = Q x (0,T), where T > 0.

1.3.1 Initial and boundary conditions

Boundary conditions for parabolic problems are analogous to the elliptic case: Dirichlet,
Neumann, Newton, and combined (see Section {.2). For simplicity, let us denote them by

(Bu)(z,t) = g(x.t) forall (x,f) € 9Q x (0,T). (1.77)

Parabolic problems describe evolutionary processes, and thus one needs to provide an initial
condition of the form

u(x,0) = up(x) forallz € Q. (1.78)

If the problem is considered in the classical sense, then the initial condition ug(a) must
moreover satisfy the boundary conditions (this is known as compatibility condition).

1.3.2 Weak formulation

At every time instant the solution is sought in a closed subspace V' C H'(€2) such that
H{(£2) € V. The form of the space V depends on the boundary conditions analogously to
the elliptic case (see Paragraphs 1.2.5-1.2.8).
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For the analysis of existence and uniqueness of solution we need to introduce function
spaces and norms for time-dependent functions:

Definition 1.8 First by L4(0, T; W5P(Q)) we denote the space
L0, TsWEP () = {u:(0,T) — WHP(Q);

T
u is measurable and / ()]} a0 dt < oo},
0

endowed with the norm

T 3
il ago,mswre )y = (/0 lulii, o dt) . (1.79)

The symbol u(t) stands for a function of T such that u(t) : © — u(x,t). Further we define
the space

C([0, T} LP(Q)) = {u : [0, T] — LP(Q); [Ju(t)|lp,q is continuous in [0,T]}.  (1.80)

Analogously we use the W*P-norm in § 10 define the space

C([0, T WrP(Q)) = {u: [0,T] — WEP(Q); |Ju(t)||xp.a is continuous in [0,T]}.
(1.81)

Weak formulation The weak formulation of parabolic problems is derived using a pro-

cedure analogous to elliptic equations. For example, in the case of homogeneous Dirichlet

boundary conditions the weak formulation of the problem (1.76), (1.77), (1.78) reads:
Given f € L?(Qr) and ug € V = HYQ), find w € L2(0,T;V) N C({0,T]; L?(Q))

such that

d

d—t(u(t),v)Lz +al(u(t),v) = (f(t),v)> forallveV, te (0,T), (1.82)

u(0) = g, (1.83)

where the bilinear form a(-, -) corresponds to the elliptic operator (1.1),

i=1

Ou Ov v Ou
a(u,v) = ‘/Q l]z aij%ja_xl - Z <blua—xz - Can—xi> + apuv de. (184)
The other types of boundary conditions are handled analogously to elliptic problems.

1.3.3 Existence and uniqueness of solution

Since the difficulty of the proof of existence and uniqueness of solution to the problem
(1.82), (1.83) exceeds the scope of this text, we restrict ourselves to formulating the principal
theoretical result, and providing appropriate references.
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We need to introduce the notion of weak coercivity of the form a(w, v) in the space V:
There exist two constants ¢; » > 0 and ¢y > 0 such that

alu,u) + collull2s > crollullfy..  forallu € V. (1.85)

If the form a(u, v) is V-elliptic (coercive), then this inequality holds with ¢ = 0. This is
the case, for example, for the heat transfer equation du/0t — Au = f with homogeneous
Dirichlet boundary conditions. In general, condition (1.85) is satisfied for all types of
boundary value problems we deal with, provided that all coefficients a;;, b;, ¢;, and ag of
the operator (1.4) belong to L>°(£2).

Before introducing the existence and uniqueness theorem, let us show an interesting
trick that turns the weakly coercive bilinear form a(-, -) into a coercive one. Applying the
substitution

a(x,t) = e lufx, t),

equation (1.76) comes over to the form

Ju . . .
-01—; +Li+ecu=ef inQr.

Defining f = e~ f and L= (L + co), where I stands for the identity operator, the
equation returns to the form (1.76). However, if the original bilinear form a(u, v) is weakly
coercive, the bilinear form a(u, v) = a(u, v) + c2(u, v) is coercive. This technique is used
in the analysis of parabolic PDEs quite frequently. Now let us formulate the promised
existence and uniqueness result:

Theorem 1.9 (Existence and uniqueness of solution) Let the bilinear form a(-, -) be con-
tinuous in V. x V and weakly coercive. Given f € L*(Qr) and ug € V, there exists a
unique solutionu € L2(0,T; VYNC([0,T); L2(Q)) to the system (1.82), (1.83). Moreover,
Au/ot € L2(0,T; V') and the energy estimate

T T
1 .
max [[u(t)[72 + c12 / lu®)llye2 < [u(O)]F: + — / IF®&13  (1.86)
te(0,7) 0 C1,2 Jo

holds.
Proof: See, e.g., [93], pages 366 to 369. |

1.3.4 Exercises

Exercise 1.18 Let Qr = Q% (0,T), where Q C R% is an open bounded set with Lipschitz-
continuous boundary. Consider the heat-transfer equation

% —Au=f in{, (1.87)

f € L*(Q7), equipped with some initial condition u(z,0) = up(x), ug € H(Q), and
Neumann boundary conditions
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% =g on0f, (1.88)

g € C(O9).
1. What is the space V in this case?

2. Verifyindetail all assumptions of Theorem 1.9 and use it to show the unique solvability
of this problem.

3. Consider the elliptic problem —Au = f in §Q, which is the stationary version of
equation (1.87), equipped with the pure Neumann boundary conditions (1.88). Does
this problem have a unique solution?

4. Explain the difference between the V -ellipticity condition ( Definition 1.5) and condi-
tion (1.85). What does this difference imply for the unique solvability of elliptic and
parabolic problems?

1.4 SECOND-ORDER HYPERBOLIC PROBLEMS

In this section we study linear second-order hyperbolic problems. A model equation with
appropriate boundary and initial conditions is formulated in Paragraph 1.4.1. In Paragraph
1.4.2 we derive its weak formulation and present a basic existence and uniqueness result.
In Paragraph 1.4.3 we show the link between the second-order hyperbolic equations and
first-order hyperbolic systems.

1.4.1 Initial and boundary conditions

The notion of hyperbolicity was first introduced in Definition 1.1. Consider the model
equation

2
% +Lu=f, (1.89)

where L is an elliptic operator of the form
) )
L= — a5 1.90
ijz::l O, <a J 6:]7j> (1.50)

with time-independent coefficients. We are interested in solving equation (1.89) in a space-
time cylinder @7 = Q x (0,T'), where Q C R? is some open bounded set with Lipschitz-
continuous boundary, and 7' > 0.

Let the boundary d<2 be split into two open parts I'p, I'y C 3QsuchthatUpN Ty =0
and Tp UTx = 9. We prescribe a Dirichlet boundary condition

u(z,t) = gplx,t) forall (z.t) € Tp x (0,T), (1.91)

and a Neumann boundary condition
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1%}

T (x,t) = gy(m,t) forall (z,t) € Ty x (0,T). (1.92)

8VL
Here

d
ou Ou
dvL Z Aij a—x]m
1,5=1

is the conormal derivative to 9, v = (n1,na,. . ., nd)T being the unit outer normal vector
to 0N,

Since the equation is of second-order in time, one has to prescribe initial boundary
conditions for both the function values,

u(z,0) = ug(x) foralla €, (1.93)
and the temporal derivative,

Ou

E(m,O) =uy(x) forallx €. (1.94)

1.4.2 Weak formulation and unique solvability

To avoid complications related to the Dirichlet lift, for simplicity consider homogeneous
boundary conditions on Q. Then V = HE(€2), and the weak formulation of the problem
(1.89)—(1.94) reads:

Given some right-hand side f € L?(Qr) and initial conditions ug € V andu; € L2(92),
find a function u € C([0,T); V) N C*([0, T]; L?(2)) such that

2
dd?(u(t),v)l,z +af{u(t),v) = (f(t),v)2 forallveV,te(0,T), (1.95)
w®) = uo, (1.96)
du
E(O) = uy, (1.97)

where the bilinear form a(-, -) corresponds to the elliptic operator (1.90).
Theorem 1.10 Under the above assumptions on the data, the problem (1.95)-(1.97) has a
unique solution.

Proof: The technicality of the proof exceeds the scope of this text. We refer the reader,
e.g., to [79] and [94]. |

1.4.3 The wave equation

Sometimes it is practical to abbreviate the notation for partial derivatives using a subscript,
for example, du/0x = uy, Ou/Ot = uy, O*u/0x? = u,,, etc. We shall take advantage of
this notation in what follows. One of the simplest examples of a second-order hyperbolic
equation is the one-dimensional wave equation

Uy = g, (1.98)
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to be satisfied for all (z,t) € R x (0,T). The positive constant ¢ > 0 is the wave speed.
The equation (1.98) does not require boundary conditions since it is defined in R, but it has
to be supplemented with some initial conditions of the form

u(z,0) = wuplz), (1.99)

u(z,0) = wuy{z).
Using the substitution
v=1u, and w = uy,

the equation (1.98) comes over to a system of two first-order equations

)+ ()0
wy —C*U,

which can be written in the matrix form

Vg 0 -1 ve\ [ v v
<wt> + <_cz 0 > (w) = <w¢> +A (%) =0. (1.100)

The initial conditions to (1.100) are

v(z,0) = wuglx), (1.101)

w(z,0) = wui{x).
This problem belongs to the class of first-order hyperbolic conservation laws that will be

studied in Section 1.5. There the reader will learn how to derive the exact solution to (1.98),
(1.99) in the form

1 1
up(z — ct) + uo(z + ct) — EUl(r —ct) + ;Ul (z+ct)], (1.102)

[N

u(x,t) =

where Uy () is a primitive function to u; (x).

1.4.4 Exercises

Exercise 1.19 Can equation (1.89), when equipped with a Neumann boundary condition on
the whole boundary 0X), have a unique solution? How would this change in the stationary
case Lu = f?

Exercise 1.20 Calculate the eigenvalues and eigenvectors of the matrix A in (1.100).

Exercise 1.21 Verify that the function u(x,t) defined in (1.102} is the exact solution of the
1D wave equation (1.98) with the initial conditions (1.99).
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1.5 FIRST-ORDER HYPERBOLIC PROBLEMS

This section is devoted to first-order hyperbolic problems of the form

%u(x,t) +divf(u(z,t)) =0. (1.103)

These equations differ from the previously studied second-order PDEs significantly and
methods other than FEM are usually used for their numerical solution. PDEs of the form
(1.103) are referred to as conservation laws, and they play an important role in the continuum
mechanics and fluid dynamics.

The (generally nonlinear) flux function f = (f,, fo,..., f4)7» where d is the spatial
dimension, consists of d directional fluxes f, : R™ — R™ that describe the transport of
the solution in the axial directions x;. The equation (1.103) is equipped with an initial
condition

u(x,0) = up(x).

Boundary conditions are not required if the problem is stated in {2 = R?, otherwise suitable
conditions on the boundary have to be imposed. An example of a conservation law are
the Euler equations of compressible inviscid flow, which consist of the law of conservation
of mass (continuity equation), law of conservation of momentum (Euler momentum equa-
tions), and the law of conservation of energy. For the analysis and numerical solution of
the compressible Euler equations see, e.g., [52] and the references therein.

After a brief general introduction in Paragraph 1.5.1 we begin with the study of scalar
and vector-valued linear conservation laws in one spatial dimension. Due to the existence
of characteristics, the solutions of conservation laws have a unique structure. Character-
istics are space-time curves that distribute the information from the initial and boundary
conditions through the space-time cylinder Qr = Q X (0,7T). We will define and study
the characteristics in Paragraph 1.5.2, and consequently utilize them to construct the exact
solutions to a general one-dimensional linear first-order system in Paragraph 1.5.3.

Exciting things happen when the flux function f is nonlinear. Nonlinear hyperbolic sys-
tems exhibit discontinuous solutions, a feature unknown in elliptic and parabolic problems.
The discontinuities, which may arise at finite times and even in problems with infinitely
smooth initial and boundary data, banish the solution from Sobolev spaces and pose serious
difficulties to both the analysis and numerical solution of hyperbolic problems. In Para-
graph 1.5.5 we exploit the characteristics introduced in Paragraph 1.5.2 to understand the
mechanism of creation of discontinuities in solutions to nonlinear hyperbolic problems.

1.5.1 Conservation laws

In one spatial dimension the conservation law (1.103) takes the form

g 0

—u(r. t) + — flu(r, t)) =0. 1.104

srulet) + 2 flule) (1.104)
where f : R™ — R™ is the flux function and v : R x R — R’ is rn-dimensional vector of
conserved quantities (state variables) such as, e.g., the mass, momentum or energy. When
we say that a quantity u(x, t) is conserved, we mean that all its components satisfy
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/ u;(x,t)dz = const;, (1.105)
R
or,
d
— [ wi(z,t)dz = 0. (1.106)
at Jg

Notice that while satisfying (1.106), the functions u; themselves may change in time.
Moreover notice that (1.104) implies (1.106).

Definition 1.9 (Cauchy problem) By Cauchy problem we mean the pure initial-value
problem where one requires that (1.104) holds for all x € R and all t > 0. In this
case one has to specify the initial condition only,

u(z,0) = up(z), z€R.

Of particular interest are conservation laws (1.104) which are hyperbolic:

Definition 1.10 (Hyperbolicity) The system (1.104) is said to be hyperbolic if the flux func-
tion f is continuously differentiable and the m x m Jacobi matrix D f | D is diagonalizable
and has real eigenvalues only.

Recall that a square m X m matrix is diagonalizable if and only if it is similar to a diagonal
matrix (Definition A.20). It is worth mentioning that the first-order system (1.100) associ-
ated with the second-order wave equation (1.98) was a hyperbolic conservation law: The flux
function was linear, f(u) = Awu, and the eigenvalues of its Jacobi matrix Df/Du = A
were real numbers Ec.

More generally, in R? the conservation law (1.103) takes the form

9 L9
&u(m,t)+;8—%fi(u(m‘t)) =0, (1.107)

where u : R¢ x R — R™,and f,,..., f; : R" — R™ are flux functions in the directions
Z1,....24. Equation (1.107) is said to be hyperbolic if every linear combination of the
Jacobi matrices

d

Df,
;a, Duz'

where ¢; € R are arbitrary constants, is diagonalizable and has real eigenvalues only.

(1.108)

The Reynolds’ transport theorem Conservation laws come from physics, where in
most cases they are stated in integral form. For example, the l[aw of mass conservation in
fluids holds in the integral form

— . olx,t)ydx = 0. (1.109)
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where o(t) is an arbitrary control volume. Control volume is a volume of fluid that is
formed by the same particles at all times, and the integral of the density o over o(t) yields
the mass of o (t).

Since the integral formulations of conservation laws are very difficult to handle numer-
ically, it is customary to use the Reynolds’ transport theorem to convert them into PDEs.
For a general density function D(x, t) and under suitable regularity assumptions (see, e.g.,
[52]) the Reynolds’ transport theorem says

d oD
— Ddx = — +div(D d [.110
dt Joee ¥ /n(t) ( ot " v v)) ® ( )

where v(x, t) is the fluid velocity. Applying (1.110)—(1.109) with D = p, we obtain

_d _ do | .
0= & " olx,t)ydx = /Um <§ +d1v(gv)> dx. (L.11D)

Since the control volume o(t) C Qin (1.111) is arbitrary, the standard localization theorem
says that the integrand has to be zero almost everywhere in 2. Thus (1.111) yields the
continuity equation,

0 .

a—f +div(ev) =0 ae inQp =Qx (0,T). (1.112)
The localization theorem is intuitively clear and its proof straightforward. In particular, if
the function p is continuous, (1.112) holds everywhere in Q7. For p € H*(2) one proceeds
by the density argument (see the end of Paragraph A.2.10).

Standard difficulties related to conservation laws The transformation of an in-
tegral equation to a PDE is not an equivalent operation. Usually the PDE is less general,
undefined on discontinuities (shocks) where the integral form holds. Therefore one has to
go back to the integral equation and derive suitable jump conditions to hold at the discon-
tinuities and incorporate them back into the weak formulation of the PDE.

The weak solution usually admits more solutions than the unique physically admissible
solution corresponding to the integral form of the conservation law. Therefore one has to
impose some selection principle that excludes nonphysical solutions. For fluid dynamics
problems one can appeal the second law of thermodynamics which states that the entropy is
not decreasing. In particular, as molecules of a fluid pass through a shock, their entropy must
increase. It turns out that this condition is sufficient to reliably distinguish between phys-
ically correct and incorrect discontinuities. Generally, such conditions are called entropy
conditions.

1.5.2 Characteristics

The existence of characteristics (characteristic curves) is a unique aspect of hyperbolic
PDEs. These space-time curves determine how the values of the initial and boundary
conditions are distributed through the space-time cylinder Q@ = © x (0,7').

To begin with, consider a constant ¢ € R and the Cauchy problem for a scalar hyperbolic
equation with the linear flux function f(u) = au,

ur +au, =0  foralx e R, ¢t > 0. (1.113)
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equipped with the initial condition

u(x,0) = ug(x) forallz € R. (1.114)

Definition 1.11 (Characteristics) Characteristic curve ofequation(1.113), passing through
the point (xq,0), o € R, is the graph of the solution of the ordinary differential equation

(t) = a forallt>0, (1.115)
I(O) = Ig.

Lemma 1.6 The solution of (1.113), (1.114) is constant along the characteristics z(t), and
thus it is fully determined by the initial data,

u(z,t) = up{x — at). (1.116)

Proof: Since a € R is constant, by (1.115) the characteristics are straight lines,
z(t) = at + xzo.

Consider the solution along these lines, u(x(¢),t), and take its derivative in time. Using
the original equation (1.113), we obtain

g—;(x(t), t) + %u(:ﬁ(t),t) = 0.

d u{at + o, 1)

= =a

dt 07
For an arbitrary (x,t) € R x (0,T), the characteristics z(¢) passing through this point
intersects with the real axis at z{0) = « — at, where it takes the value u(z,t) = u(z —
at,0) = up(x — at). [ |

Remark 1.7 (Equation (1.113) describes “flow’’) Equation(1.113)does not generate any
new information, it only shifts the initial condition uy in time. The initial condition moves
to the right if a > 0 and to the left if a < 0. In the degenerated case of a = 0 the equation
reduces to Ou/0t = 0, ie., the solution is constant in time, which is compatible with the
fact that the characteristics have the form x(t) = xy.

1.5.3 Exact solution to linear first-order systems

The next natural step to take is to analyze linear vector-valued problems in one spatial
dimension. Hence, for m > 1 consider the hyperbolic conservation law (1.104) with a
linear flux function f(u) = Au,

ui(z,t) + Aug(z,t) = 0, (1.117)
u(z,0) = wuglx), (1.118)
where 4 : R X R — R™ and A € R™ x R™ is a constant matrix. By the hyperbolicity

of the problem the matrix A is diagonalizable with real eigenvalues, i.e., there exists a
nonsingular m x m matrix R such that

A=RAR. (1.119)
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Here A =diag()\;, Ae,..., A,,) is a diagonal eigenvalue matrix, and it is worth mentioning
that the matrix R contains the right eigenvectors of A in its columns. Thus for the columns
of R we have

Ar, =X r;  foralll <i<m.

Let us introduce the notion of strict hyperbolicity for reference:

Definition 1.12 (Strictly hyperbolic system) The system (1.117), (1.118) is called strictly
hyperbolic if the eigenvalues A;, 1 < i < 'm, are distinct.

Characteristic variables One can solve (1.117), (1.118) by switching to characteristic
variables

v=R'u.
Multiplying (1.117) by R™* and using (1.119), one obtains
R 'uy+ AR 'u, =0,
which further yields
v+ Av, =0. (1.120)

By the diagonality of A, this is a system of 7n independent linear advection equations for
the components of v,

(U,j)f + )\,‘(’Uj);,j = O
vi(0) = wos,
i = 1,2,...,m. The initial condition for v; is the ith component of the vector R lu,.

Using what we learned in Paragraph 1.5.2, for each 1 < ¢ < m the solution is
vz, t) = vi(x — Nt 0) = vy i(z — At).

The solution w is finally recovered using the relation

m

u(z,t) = Rv(x.t) = Z vi(z, t)r;, (1.12H
i=1
which yields

(223

u(z.t) =Y vgile = Nt)rs. (1.122)
i=1
Simple waves The solution (1.122) is the superposition of m independently advected
linear waves. The ¢th wave has the form
v (J' ())T’,

and propagates at the wave speed A;.
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1.5.4 Riemann problem

The solution of the Riemann problem plays an important role in the design of finite volume
methods for the approximate solution of nonlinear conservation laws.

Figure 1.5 Georg Friedrich Bernhard Riemann (1826—1866).

G.EB. Riemann was a German mathematician who, besides other important achieve-
ments, introduced topological methods into the theory of complex functions, studied the
representation of functions by trigonometric series, and established new foundations of ge-
ometry which were used later in relativity and cosmology. The Riemann hypothesis, related
to the prime number theory, remains one of the most famous unsolved problems of modern
mathematics.

Consider the one-dimensional linear hyperbolic equation (1.117),

u; + Au, =0, (1.123)

with a piecewise-constant initial condition consisting of two different states uy, up € R™
on the negative and positive half of the real line, respectively,

_ ] ouL r <0,
u(z,0) = { un >0 (1.124)

For simplicity we assume that the problem (1.123) is strictly hyperbolic. This means that
the matrix A has m eigenvalues which are real and distinct. They can be denoted as follows,

Al <A <o < A

Exact solution in characteristic variables Recall that the exact solution to (1.123)
1s given by (1.122). We can simplify the situation by expressing the initial states u; and
up in terms of eigenvectors of the matrix A,

m m

Uy = E o;Ty, UR = E ,[))i’l',u
i=1 i=1

Then
[62]

z
vil,0) = { [37" x>0



42 PARTIAL DIFFERENTIAL EQUATIONS

and the problem (1.123) decouples into 7 independent scalar Riemann problems

(v)e + Ai(vi)e = 0, (1.125)

«; x <0,
RIC { B x>0

For ith scalar problem, the initial discontinuity {; — «;] at z = 0 propagates into the
space-time domain along the characteristics z;(t) = A;t, as illustrated in Figure 1.6.

vi{xt) '_,u"‘/.Y',(t):}\.,-t

Bl

0 X
Figure 1.6  Propagation of the jump [8; — «;] in the ith characteristic variable v;(x, t) along the
ith zero characteristics z;{t) = Ast.)

Solutionatx = 0 Finite volume schemes are based on the value of the solution u(0, ¢),
which is constant in time. It is defined if A; # 0 for all ¢ (i.e., if no jump is propagated
along the temporal axis x = 0). It is easy to see that the characteristic variable v; satisfies
o A 20,
v;(0,¢) = { 3, A< 0.
Equation (1.121) then yields

m

u(0,t) = Rv(0,t) Zv,Ot

Let the first mg eigenvalues A; be negative and the rest positive. Then the exact solution at
x = 0 can be expressed as

mo m
§ ﬁzrz + § a;Ty-
i=mo+1

An important quantity is the (also time—independent) value of Au(0,t) that represents the
linear flux across the interface z = 0,
mo m
AZBLrl-I—A 3 air (1.126)
i=mp+1

mo ™

= E BT + g QAT
i=mo+1
m m

= Zm T+ Zax\ r;

1=1
= A up + Atug.

Au(0,t)
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Here
A7 = min(A;,0),
A = max{);,0).

The matrices A~, AT are the negative and positive parts of the matrix A, defined using
the decomposition A = RAR 'and ), = AL+ /\:r, as

A" =RAR™',

At =RATR™.
Here A~ = diag(A\[,)\;,...,A5,) and AT = diag(A},A\d, ..., A\%). Obviously, A =
A~ + AT, Analogously we define the absolute value of the matrix 4, {A| = AT - A~ =
R|AIR™!, where |[A| = diag(|A1], | Xal, - . ., [ Am])-

Application to nonlinear conservation laws The matrices A*, A™, | A| are used by
several popular finite volume schemes for the solution of nonlinear hyperbolic conservation
laws, including the compressible Euler equations. The basic idea of the approximation
consists in the linearization of the nonlinear flux functions (their replacement with their
Jacobi matrices) and consequent application of the above-described procedure for the linear
Riemann problem. The approximation of the time-independent value Au(0,t) plays a key
role in the finite volume schemes. Let us stop the comment at this point, since the finite
volume method lies beyond the scope of this text. There is a vast literature devoted to this
topic. We refer the reader, e.g., to [52, 54, 77] and [78].

1.5.5 Nonlinear flux and shock formation

To illustrate the mechanism of the creation of discontinuities in nonlinear first-order hyper-
bolic problems, consider a nonlinear analogy to (1.113), (1.114),

wp(x, t) + [fu(z,t))]. = 0 forallzeR, t>0, (1.127)
u(z,0) = wup(x), (1.128)

where the flux function f : R — R is once continuously differentiable. For demonstration
purposes let us pick the function

1
f(’ll,) = 5”&2.
This choice leads to Burgers’ equation (1.11),
w(x, t) + ule. tyu(z.t) = 0. (1.129)

The characteristics of equation (1.127) are defined as

o'(t) = j—i(u(:l'(t),t)):u(a:(t).,f). (1.130)
I(O) =  Xy-

Using (1.130) and (1.129), it is easy to verify that the solution u{x:(t). t) along these char-
acteristics is constant,

i'u,(:z:(t). t) = Ou

d
i o (x(t), ) ul{z(t). t) +=ulx(t).t) = 0.

ot
2/ (t)
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Since z'(t) = u{x(t), t) is the slope of the characteristics and u{z(t), t) is constant, also in
this case the characteristics are straight lines. A characteristic curve passing through (zg, 0)
has the slope u(xzg, 0) = ug(zg). When two different characteristic curves, carrying two
different values of the solution on them, intersect, a discontinuity (shock) is born. This is
illustrated in Figure 1.7.

Solution is constant
along the characteristics

u(x,t)

The characteristics
intersect

Figure 1.7 Formation of shock in the solution u(x, t) of Burgers’ equation.

Nonlinear hyperbolic problems constitute a more or less autonomous field in applied
mathematics, and there is a wide class of literature dedicated to both their theoretical and
computational aspects. See the literature listed at the end of the previous paragraph and
references therein.

1.5.6 Exercises

Exercise 1.22 Under sufficient regularity conditions for the flux f and the solution u, show
that every solution u of (1.104) is conserved in time, i.e., it satisfies condition (1.106). Hint:
Integrate (1.104) over R, use the fundamental theorem of calculus and decay conditions for
Sfunctions integrable in R.

Exercise 1.23 (Exact solution to the wave equation) Calculate the eigenvectors of the
matrix A defined in (1.100). Use the characteristic variables to construct the exact so-
lution (1.102) of the linear first-order hyperbolic system (1.100), (1.101).

Exercise 1.24 Prove a simplified version of the localization theorem: Let Q1 C R? be an
open bounded set. Let f € C(R2). Let

/de:c:()

be valid for all open bounded sets o C ). Then f is zero everywhere in (2.

Exercise 1.25 Consider a linear hyperbolic problem of the form (1.117), (1.118) with the
fux function f(u) = Au, where the matrix A has the form

1 1 0
A= 1 11
0 11

Consider a general initial conditionu(x.0) = uy(x) forall v € R. Write the exact solution
to this problem.
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CHAPTER 2

CONTINUOUS ELEMENTS FOR 1D
PROBLEMS

After reviewing the basic theory of partial differential equations in Chapter 1, let us now
introduce the Galerkin method and its important special case, the Finite element method.

2.1 THE GENERAL FRAMEWORK

Let V be a Hilbert space, a(-,-) : V x V — R a bilinear form (coming, e.g., from the weak
formulation of a PDE) and [ € V' (representing, e.g., the right-hand side of a PDE). It is
our task to find v € V such that

a(u,v) =l(v) forallv e V. 2.1

We assume that the bilinear form a(-,-) is bounded and V-elliptic, i.e., that there exist
constants Cy, C; > 0 such that

la{u, v)| < Cylluliv v}y forallu,v € V, (2.2)
and
a(v,v) > Cyjvl|? forallv € V. (2.3)

Recall that the weak problem (2.1) has a unique solution by the Lax-Milgram lemma
(Theorem 1.5).

Partial Differential Equations and the Finite Element Method. By Pavel Solin 45
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2.1.1 The Galerkin method

Problem (2.1) was stated in an infinitely-dimensional space V. Therefore, its exact solution,
as a “function of infinitely many unknown parameters”, is impossible to find in general.
The finite-dimensional (numerical) approximation of such problems was first studied sys-
tematically by Boris Grigorievich Galerkin.

Figure 2.1 Boris Grigorievich Galerkin (1871-1945).

B.G. Galerkin was a Russian mathematician who became famous for his results related to
thin elastic plates, numerical solution of partial differential equations, and investigation of
the stress in dams and breast walls with trapezoidal profile. His work found many industrial
applications, including the construction of large dams and hydroelectric power stations.

The Galerkin method, which he first published in 1915, is based on a sequence of finite-
dimensional subspaces {V,}52, C V, V,, C V,,41, that fill the space V in the limit. In
each finite-dimensional space V,, problem (2.1) is solved exactly. It can be shown that
under suitable assumptions the sequence of the approximate solutions {u, }22, un, € Vi,
converges to the exact solution of problem (2.1).

Let {V,,}52, C V be a sequence of subspaces of V" such that

Jva=v, (2.4)
U

where V;, C V41 € V and dim(V,,) = N, < oo foralln = 1,2,.... Every finite-
dimensional subspace of a Hilbert space is closed and therefore a Hilbert space (see Remark
A.5). The Galerkin approximate problem usually is called discrete problem.

Discrete problem Find a solution u,, € V,,, satisfying
alun,v) =l{v) forallv e V,. (2.5)

Lemma 2.1 (Unique solvability) Problem (2.5) has a unique solution u, € V,,.

Proof: The form a(-,-), restricted to V;, x V,,, obviously remains bilinear, bounded, and
V,-elliptic. The linear form [{v), restricted to V,,, remains linear, and therefore [ € V..
Thus the assumptions of the Lax-Milgram lemma (Theorem 1.5) are fulfilled and there
exists a unique solution to (2.5). |
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The solution u,, € V,, to the discrete problem (2.5) can be found explicitly thanks to the
fact that the space V,, has a finite basis {vy, }n .- The solution u,, can be written as a linear
combination of these basis functions with unknown coefficients,

Nn
0= Y (2.6)
j=1

Substituting (2.6) into (2.5), one obtains
n
Zijj,v =(v) forallv e V,. .7

The linearity of a(-, -) in its first component yields

Ny,
Za v;,v)y; = l(v) forallv e V. (2.8)
=1
Substituting the basis functions vy, ve, ..., vy, for vin (2.8), we obtain
Ny,
a(vj,vi)y; =lv;), i=1,2,..., Np. (2.9)

1

.
I

It is worth taking a moment to see that (2.8) and (2.9) are equivalent: The implication from
(2.8) to (2.9) is easy since every basis function v; € V is a special case of a general v € V.
Conversely, an arbitrary v € V,, can be written as a linear combination

N
v = Z Biv;.
i=1

Multiplying the ith equation in (2.9) with 3; and using the linearity of the forms a and [,
we obtain

2

n

a(v;,Bivs)y; = UBw;) i=1,2,..., Ny
1

.
Il

Summing up these equations over all ¢, we see that
Nn Nn Nn,
S <Zﬂ) - (z ﬁ) ,
j=1 i=1 i=1

ie.,

Nn

Za v;,v)y; = L(v),

=1

Next let us define the stiffness matrix
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Sn = {sij}f\,/;:p Sij = (L(’l}j,'l)i), (210)

the load vector

F, = {fi}%, fi=1(v), 2.11)

and the unknown coefficient vector

Y, = {w} (2.12)

1=1

Then the system of linear algebraic equations (2.9) can be written in a matrix form

SnYn =F,. (2.13)
In order to show the invertibility of the matrix S,,, let us prove its positive definiteness first:

Lemma 2.2 (Positive definiteness of S,,) LetV,,, dim(V,,) = N,, < oo be a Hilbert space
and a{-,-) : V X V. — R a bilinear V-elliptic form. Then the stiffness matrix S,, of the
discrete problem (2.13) is positive definite.

~ T ~ ~
Proof: It is our aim to show that Y SY > O forall 0 # Y € RY». Thus take an

arbitrary Y = (%1, 92, -- -, 9, )* and define the vector
Ny
0= Z Uivi,
i=1
where {v1,v2,...,vn, } is some basis in V;,. By the V-ellipticity of the form a(-, -) it is
T T T
Y SnY = Z gisjigj

=1 j=1

a | > G Y vy | =a(d,9) > Colloll} >0,

i=1 j=1
which was to be shown. |

Corollary 2.1 (Invertibility of S,,) The stiffness matrix S,, of the discrete problem (2.13)
is nonsingular.

Proof: This fact follows immediately from the existence and uniqueness of the solution
u, € V,, (Lemma 2.1). Alternatively, let us assume that S, is singular. Then there exists
a nontrivial vector Yo € R™~ such that $,,Y s = 0. Then necessarily YgSnYO =0,
which is a contradiction with the positive definiteness of S,, (Lemma 2.2). |

Thus we conclude that the system of linear algebraic equations (2.13) has a unique so-
lution Y',, that defines a unique solution u,, € V,, of (2.5) via (2.6).

Now let us interrupt the discussion of the Galerkin method for a moment and introduce
an important concept of orthogonality of error for elliptic problems and Céa’s lemma in
Paragraph 2.1.2. The convergence proof for the Galerkin sequence will be presented as a
simple consequence of these results in Paragraph 2.1.3.
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2.1.2 Orthogonality of error and Céa’s lemma

The error e,, = u — u, of the solution to the discrete problem (2.9) exhibits the following
orthogonality property:

Lemma 2.3 (Orthogonality of error for elliptic problems) Let u € V be the exact solu-
tion of the continuous problem (2.1) and u.,, the exact solution of the discrete problem (2.5).
Then the error €,, = u — uy, satisfies

alu—uy,v) =0 forallveV,. (2.14)

Proof: Subtract (2.5) from (2.1) restricted to V,, C V. [ |

Remark 2.1 (Geometrical interpretation) [f the bilinear form a(-,-) is symmetric, it in-
duces an energetic inner product

(1, v)e = alu,v).
It follows from (2.14) that
{en,v)e =0 forallv € V,,

i.e., that the error of the Galerkin approximation e,, = u —u,, is orthogonal to the Galerkin
subspace V,, in the energetic inner product. Hence the approximate solution u, € V, is
an orthogonal projection of the exact solution w € V onto the Galerkin subspace V,, in
the energetic inner product, and thus it is the nearest element in the space V,, to the exact
solution w in the energy norm,

lu — unlle = vlen\gn lu —vlle. (2.15)

Next let us introduce Céa’s lemma, which establishes the relation between the error of
the approximation e,, = u — u,, and the interpolation properties of the subspace V/,, using
the continuity and V-ellipticity constants Cy, C; of the bilinear form a(-, -).

Theorem 2.1 (Céa’s lemma) Ler V' be a Hilbert space, a(-,-) : V x V' — R a bilinear
bounded V -elliptic form and | € V'. Let uw € V be the solution of problem (2.1). Further,
let V,, be a subspace of V and u,, € V,, the solution of the Galerkin approximation (2.5).
Let Cy, C; be the continuity and V -ellipticity constants of the form a(-,-). Then

Cy .
lu — unllv < C—:lvlenf u—vlv.

n

Proof: Using relation (2.14), we obtain that

alu — up, U —Up) = alu— up,u—v)—alu— uy, U, —v)

= alu—up,u—v)
for an arbitrary v € V,,. By the V-ellipticity of the bilinear form a(-, -) we have

a(u — Up,u — Up) > CelHu—unH%,. (2.16)
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The boundedness of a(-, -) yields
a(u — Up,u — ty) < Cyllu —undlviiu —vlly forallv e V,. 2.17

Putting relations (2.16) and (2.17) together, we obtain

C
lu — unlly < —C—blHu —vlly forallv €V,

which was to be shown. |

Theorem 2.1 was first proved by Céa [27] in 1964 for the symmetric case and extended
to the nonsymmetric case four years later in [13].

Remark 2.2 Céa’s lemma states that the approximation error e, = u — u, depends on
the choice of the Galerkin subspace V,,, but it does not depend on the choice of its basis.
Therefore, when working with finite element methods for elliptic problems, one should think
in terms of function spaces rather than in terms of concrete basis functions. Also numerical
results should stay independent of a concrete choice of finite element basis functions.

Where the choice of the basis matters is the condition number of the stiffness matrix S,,,
which influences the performance of iterative matrix solvers. This issue will be discussed
in more detail in Paragraph 2.5.2.

2.1.3 Convergence of the Galerkin method

The convergence of the Galerkin method for elliptic problems is a simple consequence of
Céa’s lemma (Theorem 2.1).

Theorem 2.2 Let V be a Hilbert space and V1 C Vo C ... C V a sequence of its finite
dimensional subspaces such that (2.4),

G Vo =V. (2.18)
n=1

Leta(-,-} : V x V — R be a bounded bilinear V -elliptic form and | € V'. Then
lim |u—unlv =0,
n—oo

i.e., the Galerkin method for problem (2.1) converges.
Proof: Given the exact solution u € V of (2.1), by (2.18) it is possible to find some
sequence {v,}5° ; such that v, € V, foreveryn = 1,2, ... and

lim ||Ju — ]y = 0. 2.19)

n—oo

Lemma 2.5 yields the existence and uniqueness of a solution u,, € V,, of the discrete
problem (2.5) for every n > 1. By Céa’s lemma,

C C
lu=unlly < &= inf Ju=vly < Ghlu=vally foralln=12,...
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By (2.19) we conclude that
hm jlu — u,lly =0,

which was to be shown. |

2.1.4 Ritz method for symmetric problems

We have shown in Paragraph 1.2.9 that for a symmetric bounded bilinear V-elliptic form
a(-,-) problem (2.1) is equivalent to a minimization problem for the abstract energy func-
tional (1.68),

E(v) = %a(v,v) - l{v),

in the space V. On the discrete level, it follows from Theorem 1.6 that the discrete prob-
lem (2.5) is equivalent to a discrete minimization problem of minimizing E(v) in the
finite-dimensional subspace V,,. The equivalence of the Galerkin and Ritz methods in the
symmetric case is the reason why sometimes the Galerkin method is referred to as the
Ritz—Galerkin method.

2.1.5 Exercises

Exercise 2.1 Prove that every symmetric bilinear form a(-,-) : V. x V — R yields a
symmetric stiffness matrix S. Hint: A bilinear form a(-,-) : V. x W — R can only be
symmetric if V.= W (see Definition 1.5).

Exercise 2.2 Prove the equivalence of the Galerkin and Ritz methods in the symmetric
case, stated in Paragraph 2.1.4:

Let V be a linear space, V,, C V its subspace, a : V x V — R a symmetric V -elliptic
bilinear form, and | € V'. Show that the abstract energy

1
E(v) = §a(v, v) — l(v)
attains its minimum over V,, at u, € V, if and only if
a(un,v) =l{v) forallveV,.

Proceed similarly to the proof of Theorem 1.6.

2.2 LOWEST-ORDER ELEMENTS

Let ¢ R4 where d is the spatial dimension, be an open bounded set. If the Hilbert
space V consists of functions defined in €2 and the Galerkin subspaces V,, C V' comprise
piecewise-polynomial functions, the Galerkin method is called the Finite element method
(FEM). Let us begin with the exposition of the simplest case of piecewise-affine elements
in one spatial dimension.
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221 Model problem
Consider the model equation (1.26),

—V (a1 Vu) + agu = —{a1u’) + agu = f, (2.20)
where f € L?(€2), in a bounded interval = (a,b) C R, equipped with the homogeneous
Dirichlet boundary conditions (1.28). The weak formulation of this problem (see Paragraph
1.2.1) takes place in the Sobolev space

V = H}(Q).

We assume that the coefficient functions a;,ag € L°°(€2) satisfy the unique solvability
assumptions (1.27),

a1(z) 2 Cmin >0, ap(z) >0 ae infd
At the beginning let a; and ag be constants and assume a simple load function of the form
flzy=1 mQ. 2.21)
The model problem reads: Find a function u € V satisfying
a(u,v) =1l(v) forallveV, (2.22)

where the bilinear forma : V x V — R is given by

alu,v) = / a1Vu - Vv + gouvde = / a1u'(z)V' (z) + apu(z)v(z) dz
o Q

and the linear form [ € V' is defined by

vy =(,v)= /Qf’u dz.

2.2.2 Finite-dimensional subspace V,, C V'

The Galerkin procedure assumes a sequence of finite-dimensional subspaces
icWwcC...cV

of the infinite-dimensional Hilbert space V, satisfying (2.18),

U=V (2.23)

Let n > 1 be a natural number. Consider a partition

() o g0

a=xy5 < .<3c§\2=b
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of the interval 2 = (a, b), and define the finite element mesh
o= (K KV, KDY

The open intervals

is said to be the mesh diameter.

Remark 2.3 For historical reasons the subscript h = h(n) is often used instead of the
subscript n to distinguish between the Galerkin subspaces (the mesh diameter h is closely
related to the approximation error for lowest-order methods). Since

Vh(n) —V as h(n) - 0,

the limit n — oo can be replaced with the limit h — 0 in the Galerkin procedure. The
Galerkin method itself remains unchanged.

In the case of piecewise-affine elements, the Galerkin subspace V,, C V consists of
continuous functions that are affine polynomials in every domain K i(") € Tj. One defines

Vo= {ve Vi vl e P(KM) foralli= 1,2, M} 224)

Recall that functions in the space H(£2) in one spatial dimension are continuous (Examples
A.53 and A.54). Therefore one refers to the finite elements in this space as to continuous
elements.

2.2.3 Piecewise-affine basis functions

While the Galerkin method assumes an arbitrary basis of the space V,,, the finite element
method (up to rare exceptions) prefers basis functions with small supports, so that as many
of them as possible are disjoint. When the supports of v; and v; are disjoint, the stiffness
matrix entry s;; = a(v;, v;) is zero. Matrices with few nonzero entries are called sparse, and
in comparison with dense matrices they are much easier to store in the computer memory
and to solve numerically. More about sparse matrices and their properties will be said in
Paragraph 2.5.1.

The most convenient basis of the space V,, in the piecewise-affine one-dimensional case
consists of M,, — 1 continuous “hat functions” v; of the form

1 —

(z —z;_y) z € K;,

b
Ty —Ti—1

) — 1 —
vi(z) (Zig1 — x)m7 z € Kiq1,
+1 T A

(2.25)

0, elsewhere in {a, b),
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1=1,2,..., M, — 1. The basis functions v; satisfy

viz;) = 6ij,

where x; are the grid points and §;; the Kronecker delta. The support of each v;, formed
by the pair of elements K; and K11, is minimal. It is easy to see that dim(V,,) = M,, — 1.
The hat functions are shown in Figure 2.2.

l
T 1 T T
a Xy K. % K. Yol b x

Figure 2.2 Example of a basis function v; of the space V,.

Using the basis functions (2.25), the solution u, to the discrete problem (2.9) can be
written in the form (2.6),

M, -1

un(z) = > yivilz), (2.26)
i=1
where y; are unknown real coefficients.
2.2.4 The system of linear algebraic equations
Now we are in position to construct the linear algebraic system (2.13),

S.Y, = F,. 227

By h; let us denote the length of the element K; = (x;_1, ;). According to (2.10), the
stiffness matrix Sy, = {s;;}772" has the entries

=1
si; = alvj,v;) = / ayvj(x)vi(z) + agu;(z)vi(z) dz.
Q

Using (2.25), one obtains

ay hz . B

-5 T =1 - ]-a
e T I=r

1 1 h;  h;
(o) (o). -
81 = i i1 (2.28)

s hiv1 .

Fores + a 6 7=t+1,

0, otherwise.
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With (2.21), the load vector F, = { fi}iﬂi'i_l has the components

1 1 1
fi=1lv) = / vi(z)dz = Shy + shipy = o (he + higr)- (2.29)
KUK 2 2 2

Hence the system of linear algebraic equations (2.27) has a tridiagonal form illustrated in
Figure 2.3.

Figure 2.3 Tridiagonal stiffness matrix S, for piecewise-affine approximations in 1D.

It follows from Corollary 2.1 that the stiffness matrix S, is invertible, and thus there
exists a unique vector Y, containing the coefficients of the approximate solution u,, € Vp,.
This model situation is particularly interesting, since the linear algebraic system (2.27) can
be written down very easily, and even solved exactly with some effort (when all elements
have the same length). This is left to the reader as an exercise. However, the reader should
be aware of the fact that in practice, computer programs have to be written for both the
assembly and solution of the linear algebraic system (2.27). Let us discuss the assembling
algorithm in the next paragraph.

2.2.5 Element-by-element assembling procedure
(

z‘n) €
Vi, which is associated with the ¢th grid point :EE"). Therefore it seems natural to write the

assembling algorithm as a loop over all internal grid vertices :cg"), $(2"), e, :rggi_lz

The ith row in the linear algebraic system (2.27) corresponds to the zth test function v

Algorithm 2.1 (Vertex-by-vertex scheme)

(),

//Contributions corresponding to the grid vertex x)
s1,1 = a1(1/h1 + 1/h2) + ao(h1/3 + h2/3);
s1,2 = —a1/h2 + apha/6;
fr=(h1 + h2)/2;
//Contributions corresponding to the grid vertices
2 ) .
5 5Ty e :
for i =2,3,...,Mn —2 do {
sii—1 = —a1/h; + agh;/6;
sii = a1(1/h; + 1/hiv1) + ag(hi/3 + hiy1/3);
siyie1 = —a1/his1 + aghit1/6;
fi=(hi +hir1)/2;
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//Contributions corresponding to the grid vertex 175\7;3‘_1:
SMp—~1,Mp—2 = —a1/har,—1 + aohar, —1/6;

SMp-1.0n—1 = a1{1/hpr, —1 + 1/har, ) + ao(har, -1/3 + hag, /3);
farn—1 = (har,—1 + har, )/2;

However, the vertex scheme is difficult to work with in higher spatial dimensions and to
extend to higher-order finite element methods. In particular, higher-order finite elements
come with basis functions associated with vertices, edges, faces (in 3D only), and element
interiors, and thus the vertices lose their unique role in the assembling procedure. From
the point of view of future extensions it is better to assemble the linear system (2.27) in an
element-by-element fashion:

Algorithm 2.2 (Element-by-element scheme)

Set the stiffness matrix S, zero.
Set the load vector F, zero.
//Contributions corresponding to the element Kin):
s11 =811 +a1/h1 +aghy/3;
fi=fi+h/2;
//Contributions corresponding to the elements Kén) R Kén) oL K
for i =2,3,...,M, -1 do {

Si—1i-1 = Si—1,i—1 + a1/h; + aohi/3;

Si—1: = Si—1,; — a1/hi + aghi/6;

$ii-1 = 8i,i—1 — a1/h; +aghi/6;

sii = 84+ a1/h; + aohi/3;

fi-1= fic1+hi/2;

fi=fi+ hz/Q;
}

(n) |

//Contributions corresponding to the element K, :
SMp—1,Mn—1 = SM, —1,Mn—1 + 01/har, + aohar, /3;
Fatn—1 = fr, -1+ har, /2;

(n) |
My—1°

It is left to the reader as an exercise to verify that indeed Algorithms 2.1 and 2.2 yield
the same system of linear algebraic equations. We shall use element-by-element algorithms
similar to Algorithm 2.2 in the following.

2.2.6 Refinement and convergence

In Paragraphs 2.2.2-2.2.5 we discussed one step of the Galerkin method only: The construc-
tion of the approximate solution u,, € V;, in a given finite-dimensional space V;, C V. To
accomplish the Galerkin procedure, we need a sequence of subspaces Vi C Vo, C ... C V
such that V,, — V.

Assume a space V,, associated with a mesh 7,,. The next mesh 7,,; can be defined, for
example, by halving all intervals Ki(n). Then we have the diameter h(n + 1) = h{n)/2
and M, +1 = 2M,. Clearly the space V,,;1 of continuous piecewise-affine functions on
the refined mesh 7,41 satisfies

Vo C Vi CV, (2.30)

and when the refinements are repeated, one obtains a sequence of spaces satisfying (2.23),
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Vo=V (2.31)
U

The discretization procedure is performed on each mesh
/TI ) 757 A

and one obtains the desired Galerkin sequence of approximate solutions {u,}5>, C V.
Theorem 2.2 yields the convergence to the exact solution u of the continuous problem,

lim |lu, —ully =0.

A-posteriori error estimation The above-described approach to mesh refinement is
not very practical, since the number of elements and consequently the number of unknowns
grow exponentially. In practice one needs to use more sophisticated adaptive strategies that
refine the mesh only where the error u — u,, is largest. Since the exact solution u is not
known, the a-posteriori error estimation (i.e., error estimation based on the values of the
computed approximation u,,) comes into the play. The Galerkin subspaces V,, C V are
constructed in such a way that the distance dist(u, V,,) = inf,ev, ||u — v|lv is minimized
most efficiently as the number of unknowns N,, = dim(V},) is increased.

2.2.7 Exercises

Exercise 2.3 Assume problem (2.22) with a; = 1 and ag = 0, and an equidistant partition
of the domain Q) = (—1,1) with M,, > 2 elements (i.e., hy = ha = ... = hp, = 2/My,).

1. Calculate the exact solution u € C*(Q) N C{Q).
2. Solve analytically the linear system (2.27) defined via formulae (2.28) and (2.29).

3. Take the limit n — oo to see that u,, — u.

Exercise 2.4 Show that Algorithms 2.1 and 2.2 yield the same system of linear algebraic
equations for piecewise-affine approximations.

Exercise 2.5 Verify in detail the inclusions (2.30) for the case that the next one-dimensional
mesh T, 11 is obtained by halving all intervals in the current mesh 7T,,.

Exercise 2.6 Consider problem (2.22) with a; = 1 and ag = 0 in the interval Q = (—1,1)
on equidistant meshes. Take the number of elements M, > 2 as an input parameter.
Construct the system of linear algebraic equations (2.27) using Algorithm 2.2. Write an
appropriate Gauss elimination algorithm for the tridiagonal stiffness matrix S,,. Your
output will be the H'-seminorm OUT(M,) = |u, — uly 2, where u, is the Galerkin
approximation and

Let N,, = M, —1 be the number of unknowns. Produce a graph of values |N,,, OUT(M,,)]
for My =2, My =4, Ms =8 My =16, Ms = 32, Mg = 64, M7y = 128, M, = 256,



58 CONTINUOUS ELEMENTS FOR 1D PROBLEMS

Mg = 512, Mg = 1024, Myy = 2048. Use both the decimal and decimal-logarithmic
scales. Try to read parameters (constants) from an input file and write results into an output
data file. What will be the limit of OUT(M,,) for M, — oo? Hint: Use an appropriate
theorem that states that, and verify that its assumptions are satisfied.

Exercise 2.7 Consider problem (2.22) with a; = 1 and ag = 0, and a right-hand side
flz) =4 -6z,
- (z)=4-6z inQ=(a,b) CR, (2.32)

equipped with the boundary conditions
u(z) =0 on Q. (2.33)

Suppose that § is covered with a finite element mesh containing M > 2 equally-spaced
affine elements.

1. First find an exact solution v € C?(Q) N C(Q) of (2.32), (2.33). Hint: Perform
integration to eliminate the derivatives. Use the boundary conditions to calculate
constants that will appear.

2. Write the weak formulation and explain why there exists a unique solution.
3. Write the discrete problem and explain why there exists a unique solution.

4. What is the minimum order of accuracy of numerical quadrature that should be used
for the discretization?

5. Write a computer code that constructs the stiffness matrix S and load vector F,
and that solves the system of linear algebraic equations. The numbers a,b € R
and M will be input parameters. The output will be the graph containing both the
approximate solution uy, and the exact solution u (in whatever form you prefer).
Other output parameters will be the H'-norm of error, OUT{ (M) = |lu — un|1 2,
and the H'-seminorm of error, OUTs(M) = |u — up1 2.

6. Consider input parameters a = 0, b = 1. For M = 2,5, 10, 50, 100 produce graphs
containing the pair of functions w, up.

7. Runthe codefor M = 2,3,5, 10, 30, 50, 100, 150, 200, 300, 500 and produce conver-
gence curves in H-norm and H'-seminorm (i.e., graphs of values [N, OUT} (M)]
and [N, QUT3(M)), respectively, where N = M — 1 is the number of unknowns).

8. Explain why the H'-norm is equivalent to H'-seminorm for problem (2.32), (2.33).

9. Guess the algebraic order of convergence of the method, i.e., a positive integer number
« satisfying
. U—1u 2
0 < const = lim M < o0

M—-oo he
where h = (b — a)/M. Hint: Use the sequence of values ||u — upl|1,2 you have
for M = 2,3,5,10, 30,50, 100, 150, 200, 300, 500. Construct three sequences cor-
responding to o = 0, @ = 1, and o« = 2. See which one converges to zero, which
one diverges and which one converges to a nonzero finite number.

10. After validating the code on a simple example with known exact solution (this should
become your standard first step whenever implementing a new numerical scheme),
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now you can use it to solve a more difficult problem whose exact solution is not known.
Exchange the load function f for

f(z) = —arctan(z — 1/2) cos(nz/2), € (0,1).

Present a plot of the numerical solution uy, that is “optically identical” with the
unknown exact solution. Hint: Refine the meshes and observe the shape of un. Stop
when uy, “does not change anymore’.

2.3 HIGHER-ORDER NUMERICAL QUADRATURE

The explicit form of the stiffness matrix S, and the load vector F),, shown in Section
2.2, should not make the reader think that the integrals in the finite element method are
calculated on the paper. In reality the load function f € L?(Q) may be nonpolynomial or
even defined via tabulated data. In general, the right-hand side integrals of the form

o) = | flz)vx)dz
Q

cannot be calculated exactly. Usually it is not a bad idea to use a numerical quadrature for
the stiffness matrix entries as well. As we will see in a moment, the Gaussian quadrature
rules are exact for polynomials up to certain degree that depends on the quality of the
quadrature rule. Therefore it is convenient to evaluate numerically even integrals that could
be calculated on the paper. One more pro of the numerical quadrature is that when the basis
functions in the code change, the values of the integrals are updated automatically. Among
the wide scale of existing numerical quadrature methods (see, e.g., [111]) we prefer the
Gaussian quadrature rules for their high efficiency.

The derivation and basic properties of these rules are discussed in Paragraph 2.3.1. In
Paragraph 2.3.2 we present a few tables with the integration points and weights for practical
implementation, and in Paragraph 2.3.3 some approaches to adaptive numerical quadrature
are described.

2.3.1 Gaussian quadrature rules

A class of highly efficient quadrature rules was invented by a German mathematician Carl
Friedrich Gauss.

C.F. Gauss achieved alarge amount of fundamental results in algebra and geometry, num-
ber theory, mathematical statistics, approximate integration, differential geometry, geodesy,
theoretical astronomy, and other fields. For example, he proved mathematically that the
Earth has two different magnetic poles and used the Laplace equation to locate the magnetic
south pole.

The k-point Gaussian quadrature rule in the interval K, = (—1, 1) has the form

1 k
/_ 9(&)de = Y wrig(ér i), (2.34)

1 i=1

where g is abounded continuous function, £k ; € (—1,1),7 = 1,2,..., k, are the integration
points, and wy ; € R are the integration weights. The integration weights have to satisfy
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Figure 2.4 Carl Friedrich Gauss (1777-1855).

k
E wk,i = 27
=1

so that the rule (2.34) is exact for constants. If the points and weights are chosen carefully,
the formula (2.34) can be exact for polynomials up to certain degree g > 0. The Gaussian
rules are designed to maximize the degree g for a given number of points &:

For some k > 1 we have k unknown integration points £ ; and k unknown integration
weights wi;, ¢ = 1,2,...,k. Thus we need 2k suitable equations to solve for these
unknowns. These equations can be created by inserting, for example, the 2k linearly
independent monomials 1, z, 2, ..., 22*~! into (2.34). This yields a system of nonlinear

algebraic equations

It

1
/ 1d¢, (2.35)

k
> W
i=1 i

k 1
1 1

D weibh, = / £ dg,

i=1 ~1

Il

k 1
2%k—1 -
zwk,ifk,,’ / ¢ -1de.
i=1 -1

After solving (2.35) for the unknown points and weights, the Gaussian integration rule (2.34)
is ready. Since it integrates exactly all functions of a basis of the space P?*~1(—1,1), it
is easy to see that it is exact for all polynomials in P%*~1( 1, 1). We say that the k-point
Gaussian quadrature rule has the order of accuracy 2k — 1. For higher k the solution of the
nonlinear systems is much easier with the Legendre polynomials Lg, Ly, ..., Lag—; than
with the monomials 1, z, ..., z%*" 1.

Remark 2.4 (Existence and uniqueness of the points and weights) Since the algebraic
system (2.35) is nonlinear, the existence and uniqueness of its solution is not obvious.
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Actually, the nonuniqueness of the integration points and weights is a difficult open problem
in the design of Gaussian quadrature rules in 2D and 3D. In one spatial dimension it can
be shown that the integration points for the k-point rule (2.34) are the roots of the Legendre
polynomial Ly. With k known integration points the nonlinear system (2.35) reduces to a
system of k linear algebraic equations for the weights. The analysis leads even further:
The weights wy, ; for the k-point rule (2.34) have the form

2

. i=1,... k. 2.36
TR BVAGEE 239

Wk, =
Quadrature on arbitrary intervals

Let K = (z;—1,x;) C R be an arbitrary interval. It is easy to calculate the coefficients
c1,¢2 € Rof an affine map zx : K, — K,

rr(€) = o +c, (2.37)
rx(-1) = =z,

It follows from x,_; < z; that ¢ > 0. The new integration points é,“ € K are then
defined as i
e =2k (€ks)y 1=1,2,... k.

The integration weights wy, ; are obtained via the Substitution Theorem (see, e.g., [99]),

/ g)dz = / 17 (©)l(g 0 250 )(€) ke, (2.38)
K K

a

which yields 1y, ; = Jxwy,; = cowy,; (recall that the constant Jacobian Jy of the affine
map x g 1S positive).

2.3.2 Selected quadrature constants

Let us list the integration points and weights for a few selected k-point Gaussian rules in
the reference interval K, = (—1,1) in Tables 2.1-2.5. Since the integration points are
symmetric with respect to zero, only the positive ones are listed. Symmetric integration
points have identical weights, k stands for their total number. Numerous 1D, 2D, and 3D
Gaussian quadrature rules up to the order of accuracy p = 20 are available on the CD-ROM
accompanying [111].

Table 2.1 Gaussian quadrature on K, order 2k — 1 = 3.

Point # + £-Coordinate Weight
1. 0.57735 02691 89625 76450 91488  1.00000 00000 00000 00000 00000
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Table 2.2 Gaussian quadrature on K, order 2k — 1 = 5.

Point #

+ &-Coordinate Weight

—

0.00000 00000 00000 00000 00000  0.88888 88888 88888 88888 88889

2. 0.77459 66692 41483 37703 58531  0.55555 55555 55555 55555 55556
Table 2.3 Gaussian quadrature on K,, order 2k — 1 = 7.
Point # + £-Coordinate Weight
1. 0.33998 10435 84856 26480 26658 0.65214 51548 62546 14262 69361
2. 0.86113 63115 94052 57522 39465  0.34785 48451 37453 85737 30639
Table 2.4 Gaussian quadrature on K, order 2k — 1 = 9.
Point # + £-Coordinate Weight
1. 0.00000 00000 00000 00000 00000  0.56888 88888 88888 88888 88889
2. 0.53846 93101 05683 09103 63144  0.47862 86704 99366 46804 12915
3. 0.90617 98459 38663 99279 76269  0.23692 68850 56189 08751 42640
Table 2.5 Gaussian quadrature on K,, order 2k — 1 = 11.
Point # + £-Coordinate Weight
1. 0.23861 91860 83196 90863 05017  0.46791 39345 72691 04738 98703
2. 0.66120 93864 66264 51366 13996  0.36076 15730 48138 60756 98335
3. 0.93246 95142 03152 02781 23016  0.17132 44923 79170 34504 02961
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2.3.3 Adaptive quadrature

In some situations even high-order Gaussian quadrature rules fail or deliver unacceptable
errors. This may happen, for example, if the integrated function is discontinuous or oscil-
lates. A possible remedy is to apply some suitable adaptive quadrature algorithm in critical
elements. These algorithms usually are not very difficult to implement and can improve the
accuracy and reliability of the numerical quadrature significantly.

Let us begin with introducing a basic prototype of an adaptive quadrature algorithm, and
perform a few numerical tests. We assume an elementary higher-order Gaussian quadrature
procedure

double Gauss(double a, double b);

that integrates numerically some given function f in the interval (a,b). The following
recursive algorithm uses the procedure Gauss(a,b) to perform adaptive quadrature. The
adaptivity consists in recursive halving of intervals where an error indicator exceeds some
given tolerance. The error indicator used is based on the relative difference between the
approximation over the whole interval (a,b), and the sum of the approximations in the
half-intervals (a, (a + b)/2) and ((a + b)/2,b),

Gauss(a, (a + b)/2) + Gauss{{a + b)/2,b) — Gauss(a, b)

ERR.o = Gauss(a, (a + b)/2) + Gauss{(a + b)/2,b)

Algorithm 2.3 (Adaptive quadrature in 1D)

double ZER0O = le-12;
double QuadAdapt(double a, double b, double TOL) {
double L = Gauss(a, 0.5*(a+b));
double R = Gauss(0.5*%(a+b), b);
double LR = Gauss(a, b);
if (fabs(L+R) < ZERO) return O;
double rel_err = fabs((L+R~LR)/(L+R));
if(rel-err < TOL) { :
return L + R;

else {
L = QuadAdapt(a, 0.5*(at+b), TOL);
R = QuadAdapt(0.5x(a+b), b, TOL);
return L + R;

}
}

The adaptive process in {(a,b) stops as soon as the approximate integral over (a, b) is
sufficiently close to the sum of the approximate integrals over its two subintervals (a, (a +
b)/2) and ((a + b)/2,b). One can formulate various other stopping criteria. Let us stress,
however, that the parameter T'O L has no direct relation to the true relative error

](}'auss(a7 b) — f:f(x) da:i

fff(z)d:n‘

€rel =

Performance of Algorithm 2.3 is illustrated in the next example.
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B EXAMPLE 2.1 (Adaptive quadrature in 1D)

For testing purposes consider the anisotropically behaved function

o=

defined in the interval (ag.bg) = (0, 10). The function f is depicted in Figure 2.5.

(2.39)
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Figure 2.5 Benchmark function f for adaptive numerical quadrature.

The knowledge of the primitive function to f,
F(z) = 10 arctan(z).

allows us to evaluate the quadrature error exactly.

First let us investigate the role of the order of accuracy of the elementary quadra-
ture routine Gauss{a,b) on the performance of Algorithm 2.3. Figure 2.6 shows
the convergence of the adaptive quadrature when the quadrature routine Gauss (a,b)
is third-, fifth- and seventh-order accurate. The horizontal axis represents the final
number of integration points in the interval (ag.by), and the vertical axis the true
relative error of the approximate quadrature in decimal-logarithmic scale.

0.01 -

0.0001

1e-06 -

1e-08

1e-10 | e B

1e-12 2 1 i 1
0 20 40 60 80 100

Figure 2.6  Performance of Algorithm 2.3 using the Gaussian quadrature procedure Gauss(a,b)

with two, three, and four integration points, respectively.

Next, Figure 2.7 compares the convergence of the adaptive seventh-order Gaussian
quadrature to the convergence of a nonadaptive seventh-order Gaussian quadrature
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scheme based on equidistant subdivisions. One can see that the adaptive procedure
performs more efficiently.

0.01 T T T T L T
'NON_ADAPT_7" ——
0.001 | . ‘ADAPT 7' ------- 1
0.0001
1e-05 ¢
1e-06
1e-07

1e-08 R
1e-09 F ]

1e-10 | T ]

1e-11 L ( 1 1 1 ( I
o 10 20 30 40 50 80 70 80

Figure 2.7 Comparison of adaptive and nonadaptive quadrature.

2.3.4 Exercises
Exercise 2.8 Calculate the coefficients ¢1, co € R of the affine map x g from (2.37).

Exercise 2.9 Use Legendre polynomials Ly, L+, ..., Lg constructed in Example A.44 to
calculate integration points and weights for the Gaussian quadrature rule (2.34) in the
interval K, = (=1,1) for k = 3.

Exercise 2.10 Let us see the superiority of higher-order Gaussian quadrature rules over
the classical trapezoidal rule. Consider, for example, the function g(z) = sin(x) in the
interval @ = (0, 70) (or some other nonoscillatory continuous function of your choice).

1. Calculate the integral I, = fow g(z) dz.

2. Calculate a series of approximate integrals Ipny using the trapezoidal rule with
equidistant subdivisions of Q into M = 2,5, 10, 20, 50, 100, 200, 500 elements. Plot
the corresponding convergence curve: Put the number of integration points on the
horizontal axis and the error |I — 1| on the vertical one. Use decimal-logarithmic
scale.

3. Produce an analogous convergence curve for the third-order Gaussian quadrature
(Table 2.1). Use equidistant subdivisions with Ml = 1,2,5,10, 50, 100, 250 elements.

4. At last produce a convergence curve for the fifth-order Gaussian quadrature (Table
2.2). Use equidistant subdivisions with M = 1,2,5,10, 50, 100 elements.

5. Use the convergence curves to compare the efficiency of these three quadrature
schemes.

Exercise 2.11 Rewrite Algorithm 2.3 in a nonrecursive manner and implement it. Hint:
Reserve a sufficiently large array to store the integration subinterval data. Enumerate the
integration subintervals at all refinement levels in a suitable unique way (e.g., row-wise in
the refinement tree). Link these indices uniquely to positions in the global array. Compare
the CPU performance for various values of TOL > 0, using the function f(x) from (2.39).
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2.4 HIGHER-ORDER ELEMENTS

In Section 2.2 we constructed a Galerkin sequence V7 C V... in the Sobolev space V'
by subdividing selected mesh elements into subelements of the same polynomial degree
(h-refinement). Sometimes, much faster convergence can be achieved by increasing the
polynomial degree of the elements instead (p-refinement). Such approach usually is more
efficient in elements where the solution is very smooth, without singularities, oscillations,
or boundary/internal layers. An illustrative example is given in the next paragraph.

241 Motivation problem

In this paragraph we compare the performance of two simple finite element schemes with
(a) two piecewise-affine elements and (b) one quadratic element. Consider the Poisson
equation

—u'(z) = f(z) in Q=(-1,1), (2.40)
where f(z) = 7 cos(nz/2)/4, equipped with homogeneous Dirichlet boundary condi-
tions. The weak formulation of problem (2.40) reads: Find u € V = H}(—1,1) such
that

1 1
/ u'(x) (z)dz = flzyv(r)dx forallvec V. (2.41)
—1 -1

The exact solution to (2.40) [and (2.41)], has the form
T
u(z) = cos(;) .

First let us cover € with a pair of affine elements (—1,0) and (0, 1). The corresponding
finite element space V}, is generated by a single piecewise-affine function v, defined as
vp(z) =z + lin(—1,0] and vp(z) = 1 — z in [0, 1). The approximate solution uy € Vj,
has the form up(x) = yivp(z), where y; is an unknown coefficient. After substituting
uy, for u and vy, for v in (2.41), we obtain a single linear algebraic equation for y; whose
solution is y; = 1. The functions u and u; are shown in Figure 2.8.

P
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/l N
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Figure 2.8 Exact solution v and piecewise-affine approximation u,.

It is left to the reader as an exercise to verify that the approximation error in H !-seminorm
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{which by the Poincaré—Friedrich’s inequality is equivalent to the full H*-norm in the space
V)is

1 3
lu —upli2 = (/ [u'(z) — u;l(a:)]zdx> ~ (.683667.
-1

Next assume a single quadratic element (—1, 1). We can choose, for example, the function
vp(z) = 1—2? to be the basis of the corresponding finite element space V,,. The approximate
solution has the form u,(x) = g1vp(z). After substituting u,, for u and v, for v in (2.41),
we calculate that §; = 3/7. The functions u and u,, are depicted in Figure 2.9.

! '0.5. —— 5 T .0.5. — J

Figure 2.9 Exact solution u and quadratic approximation up.

The approximation error |u — up|; 2 & 0.20275 is less than 30% of |u — up|1,2. The next
step is left to the reader as an exercise: Use (a) four equally-long piecewise-affine elements
and (b) one quartic (p = 4) element. The number of unknowns in each case is three. The
error in the quartic case is less than 2.5% of the error of the piecewise-affine approximation.

This indicates that smooth functions are better approximated by means of large higher-
order elements. On the other hand, less regular functions can be approximated more effi-
ciently on smaller piecewise low-degree elements. The ultimately best Galerkin sequences
V1 € V... C V canbe obtained by combining appropriately the spatial subdivision of ele-
ments with the selection of suitable polynomial degrees in the subelements (hp-adaptivity).
See, e.g., [111] and the references therein.

2.4.2 Affine concept: reference domain and reference maps

The affine concept of finite elements is closely related to the element-by-element assembling
procedure. It is particularly suitable for higher-order finite element discretizations. The
basic idea is to define a single set of shape functions on some suitable reference domain,
say, K, = (—=1,1). For each element K; in the mesh we define an affine reference map
2k, : K, — K; (Paragraph 2.3.2), and use it to transfer the shape functions from K, to
K;. In this way one obtains the desired finite element basis in the physical mesh.

In addition, the weak formulation is transformed from K; to K, via the maps z,, and
in the end all computational work is done on the reference domain. This approach also is
efficient from the point of view of computer memory, since the numerical quadrature data
are stored on the reference domain only. The shape functions and their partial derivatives
can be stored via their values at integration points in the reference domain.
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Model problem 1et us stay with the model problem (1.26), (1.28) in a bounded interval
2 = (a,b) C R. Recall the weak formulation from Paragraph 1.2.1: We seek a function
u €V = HL(S), such that

a(u,v) =1{v) forallveV, (2.42)
where
alu,v) = / a1Vu - Vv + gouvdz = / a1t/ (z)v'(z) + agu(z)v(z) dz,
Q o

and
o)y =(L,v)= /Q fvde,

f € L%(Q)). The coefficient functions a1, ag € L(Q), a1(x) > Cpin > 0and ag(x) > 0
a.e. in §2, are assumed constant.

Finite element space Let the interval €2 be covered with a mesh 7, , = {K1, Ko,
..., K} where the elements K, carry arbitrary polynomial degrees 1 < p,,, m =
1,2,..., M. For each element K,,, = (Zr—1,Zm ), m = 1,2,..., M we define an affine
reference map (2.37) of the form

zx, (€) = ™ + SMe (2.43)
where (m) _ Tm—1+ Tm (m) T — Tn—1
= G = JK,, = -
The space V}, ;, has the form
Vip ={veV; vk, € PP"(Ky,) forallm=1,2,..., M}, (2.44)
or, equivalently,
Vip ={veV; vk, oxg, € PP (K,)forallm=1,2,... M} (2.45)

Here (f o g)(x) = f(9(«)). The dimension of the space V}, , is

M A
N=dm(Vi,)= M-1 + > (pm—1) ==1+ ) pm. (2.46)

first-order part m=1 m=1

higher-order part

Discrete problem The discrete problem (2.5) reads: Find a function uy, , € V}, p, such
that
altn,p, Vpp) = lvyy) forallvy, € Vi,

Consider some basis {v1, v2,...,vn} C Vi, (a concrete basis will be presented in Para-
graph 2.4.7). When expressing as usual

N
Uph.p = § YiVj.
J=1
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we obtain
> yavy,v) =lw)  i=1,2,...,N, (2.47)
j=1
or
SY =F. (2.48)
For future reference let us rewrite (2.47) into a sum over all elements K,,,m = 1,2,..., M,
Z ZUJ/ aw (z) + apv;(z)vi(x)dr = Z/ flz)vi(z (2.49)
m=1j5=1 m=1"Km
1=1,2,...,N.

2.4.3 Transformation of weak forms to the reference domain

Next let us transform the integrals in the weak formulation (2.49) from the mesh elements
K, € T, to the reference domain K, = (—1, 1), using the reference maps (2.43):

Transformation of function values The transformation of the approximate solution
Up,p 18 simple:

ayE) = (unp 0 Tk, ) () = unp(xk,, (€)). (2.50)

Transformation of derivatives One has to be more careful when transforming deriva-
tives. The chain rule yields

[ﬂx’,l,)(f)]/ = (unp oKk, ) (&) = Uh o (@) |amrk,, ) Tk, (€)- (2.51)
This means that
u;lxp(m) (5)[ ﬁln;;)]l(g)’ (252)

i.e., the derivative at a reference point £ € K, is obtained by dividing the derivative of uy, ,
at its image = = x g, (£) € K, by the constant Jacobian 0 # Jx

m me

Transformation of integrals from (2.49) to K, The test functions vy, , and their
derivatives are transformed in the same way. Using the Substitution Theorem, it is easy to
conclude that

/K ayuy, (1)), ,(x) + agtp p(2)vh p(z) dz (2.53)
" aq 1 ~
= [ ST + avd, B NO N
JK, YKy

forall m = 1,2, ..., M. The right-hand side transforms as

[ temar= [, oo (2.5

a

where fU7(€) = (f oz, )(E).
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2.4.4 Higher-order Lagrange nodal shape functions

The construction of suitable shape functions [basis in the polynomial space PP (K, ) on
the reference domain] matters: With a wrong choice the linear system SY = F will pose
a serious problem to both iterative and direct matrix solvers. This issue will be discussed
in more detail in Section 2.5. Now we will introduce the nodal and hierarchic approaches
to the construction of suitable basis functions. Let us begin with the nodal basis, which is
based on the idea of the Lagrange interpolation.

Figure 2.10 Joseph—Louis Lagrange (1736-1813).

J.-L. Lagrange was a French mathematician who was largely self-taught. In spite of that,
he influenced numerous fields of mathematics. His work covers a variety of topics including
algebra, number theory, mathematical probability, theoretical astronomy, and others. It is
assumed that one of his greatest contributions is his transformation of mechanics into a
mathematical framework based on differential equations.

The p,, + 1 Lagrange nodal shape functions 81, 6:, ..., 8, 41 € PP (K,) are associ-
ated with an equal number of pairwise-distinct nodal points,

“l=y <y <. <Ypo41 =1, (2.55)
via the standard Lagrange interpolation condition
0;(ye) = bji- (2.56)
Exploiting the Lagrange interpolation polynomial (A.75), condition (2.56) yields the explicit
formulae of the Lagrange nodal shape functions,
6.0)= ][ E=v) 10 il (2.57)
i< L (yi—yy)
<F<pm+lg#i

Obviously all of these functions are polynomials of the degree p,,. In particular, for
piecewise-affine approximations (p,, = 1) the nodal points y; = —~1 and y» = 1 yield
the pair of affine shape functions

t+1

0u(e) =~ 6 = >3

(2.58)
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Our first idea might be to distribute the nodal points in K, = (—1, 1) equidistantly. How-
ever, the equidistant points are known to be notoriously bad from both the conditioning and
interpolation points of view. In practice we prefer more sophisticated point sets.

2.4.5 Chebyshev and Gauss—Lobatto nodal points

Among the best known points for the construction of higher-order nodal elements are the
Chebyshev and Gauss—Lobatto points.

Figure 2.11 Pafnuty Lvovich Chebyshev (1821-1894).

P.L. Chebyshev was a Russian mathematician who made famous contributions to the
analysis of the Taylor series, number theory, theory of integrals, mathematical probability,
and other fields of mathematics. He introduced his polynomials in 1854 and developed
a general theory of orthogonal polynomials. He is assumed to be one of the founders of
modern approximation theory.

For a polynomial degree p > 1, the p 4+ 1 Chebyshev points in the reference interval K,
are defined by

1
y; = cos (%) j=1,2,....p+1. (2.59)

The Gauss—Lobatto points are the roots of the function
(1-2%)L, (), (2.60)

where L, () is the pth Legendre polynomial. There is no explicit formula for these points,
but they have been tabulated (see, e.g., the companion CD-ROM accompanying [111]).
Figure 2.12 shows that the Gauss—Lobatto and Chebyshev points are very similar. The
numerical practice confirms that also the properties of the corresponding Lagrange nodal
shape functions are analogous. This issue will be addressed in more detail in Paragraph
2.53.
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Figure 2.12 The Gauss—Lobatto (left) and Chebyshev points (right) forp = 1,2,...,15.
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Let us show a few examples of higher-order Lagrange nodal shape functions built on
the Gauss—Lobatto points. These functions are presented in the quadratic, cubic, quartic
and quintic cases in Figures 2.13-2.16. Shape functions associated with vertices are called
vertex functions, and remaining shape functions (that vanish at £1) are said to be bubble
functions.
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Figure 2.13  Quadratic Lagrange-Gauss—Lobatto shape functions; vertex functions 81, 83 (left) and
the bubble function 8> (right).
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Figure 2.14  Cubic Lagrange—Gauss—Lobatto nodal shape functions; vertex functions 6, 84 (left)
and bubble functions 8z, 03 (right).
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Figure 2.15  Quartic Lagrange-Gauss-Lobatto nodal shape functions; vertex functions 81, 85 (left)
and bubble functions 8o, 83, 84 (right).
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Figure 2.16  Quintic Lagrange—Gauss-Lobatto nodal shape functions; vertex functions 61, 8 (left)
and bubble functions 8,, 65, . . ., 85 (right).
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2.4.6 Higher-order Lobatto hierarchic shape functions

An alternative way of constructing a suitable basis of the polynomial space PP (K,) is to
use hierarchic shape functions. The idea of the hierarchic approach is as follows: When a
set of shape functions

By, ={01.02,--.0p,.}

forms a basis of the polynomial space PP (K, ), the basis of the next space PP»*1(K,)
is defined by adding a new shape function to the basis 5, ,

Bpm+1 = Bpm, U {9pm+1}-

The lowest-order basis, By = {(1 — £)/2, (1 + £)/2}, is identical to the Lagrange basis
(2.58) for piecewise-affine approx1mat10ns

Currently, among the best known hierarchic shape functions for elliptic problems in 1D
are the Lobatto polynomials,

1- 1+
W) = 155 hEe =135 @6
3
e = [ Lo 2k
are constructed in Example A.44. It is easy to see that [,(—1) = 0, k = 2,3, ... The

orthogonality of the Legendre polynomials further yields that

1 1
(1) = / Lio1(€)d = /_ La(©L(d =0 fral2<k Q6

1

Evidently the functions Iy, 1.l2, . ..,l,,, constitute a basis in the space PP (K,). Their
optimality for the discretization of the Laplace operator follows from their orthonormality in
the H}-inner product (u, v) f_ z) dx. More about this will be said in Paragraph
2.53.

Several Lobatto hierarchic shape functions are shown below for reference, and they are
depicted in Figures 2.17-2.21:

1 /3

(&) = 3 5(52—1)~ (2.63)
() = 55 - 1e

L = l\ﬁf? 1)(56% ~ 1),

Is(¢) = \[ (&2 — 1)(7€% - 3)¢,

() = gy (€ - DEIE - 1462+ 1),
e = = 1—3<52—1)<33§4—30§2+5>§,
() = oy TE? — 1)(4296° — 4956 +135¢€” —5)

128
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2.4.7 Constructing basis of the space V}, ,,

With the shape functions and reference maps in hand, we can define the basis functions of
the space V}, p:

Lagrange nodal basis et us begin with the Lagrange basis functions. In this case
it is customary to assume a uniform polynomial degree p in all elements. As indicated
in Paragraph 2.4.4, the Lagrange shape functions can be split into the vertex and bubble
functions. The basis functions of the space V}, ,, inherit the same structure. A vertex basis
function v; represents the value at the grid vertex x;, 1 < ¢ < M — 1, and it is zero in {2
except for the elements adjacent to x;:

(Bps1 0 1;{})(1), z € K,
vil(z) = (2.64)
(Broxy, Nz), z€ K.

The reader does not have to worry about the inverse reference maps in (2.64), since in the
element-by-element procedure they are never evaluated explicitly. This will be explained
in detail in Paragraph 2.4.9.

Notice that for p = 1 relation (2.64) yields the “hat functions” (2.25). An example of a
quadratic Lagrange nodal vertex basis function is shown in Figure 2.22.

1
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Figure 2.22 A quadratic Lagrange nodal vertex basis function.

The bubble functions are local to element interiors. There are p— 1 bubble basis functions
per every element K, € 7}, p, defined as

(620 .'1:}_(}” ) x), (83005

m

W), (lpo 71:1 Yx). (2.65)
It is easy to verify that the AT — 1 vertex functions (2.64) together with the Zf\yle (P — 1)
bubble functions (2.65) constitute a basis of the space V, ,, defined in (2.44).

Lobatto hierarchic basis In this case we allow for different polynomial degrees 1 <
Pm = p(K,n) in the mesh, 1 < m < M. For each interior grid vertex z; there is one
vertex function v;, which is identical to the piecewise-affine Lagrange vertex function
(independently of p,,),

(lio 1}_\})(1) x € K,
vi(r) = (2.66)
{lpo -”1_\'}“ W), » € K.
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The quadratic and higher-order hierarchic shape functions are bubble functions, given by

(ot @), Usoxg! ) ), .., (lp,, o xx} (). (2.67)

™" m

Also in this case it is easy to verify that the functions (2.66) and (2.67) together constitute
a basis of the space V4, ;.

2.4.8 Data structures

The rest of this section is devoted to the implementation of higher-order finite elements in
one spatial dimension. As the reader expects, the implementation of the nodal and hierarchic
elements is done in different ways. We choose the hierarchic case for illustration.

To begin with, recall the model problem (2.20) with homogeneous Dirichlet boundary
conditions. In this case V = HE((2), and the approximate solution uy, , is sought in the
space Vj, , C V of continuous, piecewise polynomial functions (2.44),

Vip={veV; vk, €PP*(Kp)forailm=1,2,...,M}.

The dimension of V}, ,, which at the same time is the number of unknowns, was calculated
in (2.46),

M
N =dim(Vhp) = -1+ ppm.
=1

Some remarks are in order before we introduce concrete data structures and algorithms.
Generally, data structures differ from implementation to implementation. A safe way to
avoid criticism for the complicatedness or inoptimality of one’s data structures and algo-
rithms is not to expose them. On the other hand, the presentation of the data structures and
algorithms may be of considerable help to beginners. Therefore let us try to be concrete,
without claiming that our data structures or algorithms are optimal.

Element data structure Choose a reasonable upper bound MAXP for the highest poly-
nomial degree in the mesh 7}, ,. A basic Element data structure can be defined as follows:

struct {

int p; //polynomial degree of element

int vert_dir{2]; //vertex Dirichlet flags

int vert_dof[2]; //vertex connectivity array

int *bubb_dof; //bubble connectivity array (length MAXP-1)
} Element;

This amount of information per element is superfluous. However, let us keep a data
structure that can most naturally be extended into two and three spatial dimensions. The
Dirichlet flags Elem[m] . vert_dir[jl, j = 1,2, have the following meaning: Elem[m] .
vert_dir[1] = O if the left vertex of K, = (zm—1, Tm) is unconstrained by a Dirichlet
boundary condition, and Elem [m] . vert_dir{1] = 1otherwise. The flagElem[m] .vert
-dir[2] is related to the right vertex of K, in the same way.

Unique enumeration of shape and basis functions The element-by-element as-
sembling algorithm relies on the vertex and bubble connectivity arrays vert_dof and
bubb_dof, that for every element K,,, € 7}, ,, link the global indices 1,2,. .., N of all basis
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functions of the space V}, ,,, whose supportincludes K,,, tothe localindices 1,2, ..., p,, +1
of the corresponding shape functions on the reference domain K.

First one has to enumerate the NV basis functions of the space V}, , in a unique way.
For the sake of compatibility with piecewise-affine approximations, it is reasonable to first
enumerate all vertex functions analogously to the lowest-order element case in Paragraph
2.2.3. After that, higher-order basis functions can be enumerated in an element-by-element
fashion, always from quadratic to the highest degree p,,, onthe element K,,,. Inthe Lagrange
nodal case, where all bubble functions have the same polynomial degree, it is natural to sort
them according to the ordering of the nodal points.

Element connectivity arrays The values of the Dirichlet lift G(x) at the endpoints of
Q = (a,b), only nonzero in the case of nonhomogeneous Dirichlet boundary conditions,
are stored in a global array double DIR_BC_ARRAY[2] = {G(a),G(b)}. The variable
Elem[m] .vert_dof [1] contains either

¢ apositive index 7 of a vertex basis function v; of the space V), ,, associated with the left
vertex of the element K, (if the vertex is unconstrained, i.e.,Elem[m] . vert_dir [1]
== 0),

e or -1, so that G(a) = DIR_BC_ARRAY [-Elem[n] . vert dof [1]]
(if Elem[m] .vert_dir{1] == 1).

Analogously one defines Elem[m] . vert_dof [2] for the right vertex of the element K,.
IfElem[m] .vert_dir{2] == 1,thenElem[m].vert_dof[2] == -2. The bubble func-
tions are always unconstrained, and the value Elem[m] .bubb_dof[jI, j = 1,2,...,
Elem[m] .p-1, contains the index of the bubble basis function of the polynomial degree
7 + 1 associated with the element K.

The construction of the connectivity arrays always represents a considerable part of the
total programming work. In two dimensions these are the Algorithms 4.1, 4.3, 4.4 and 4.5.
In one dimension the connectivity algorithm may look as follows:

Algorithm 2.4 (Enumeration of DOF)

count := 1;
//Visiting vertex basis functions on the element Kj:
if (Elem[1].vert_dir([1] == 1) then Elem[1].vert.dof[1] := -1;
else {
Elem[1] .vert_dof[1] := count;
count := count + 1;
}
Elem[1] .vert_dof[2] := count;
//Visiting vertex basis functions on interior elements Ko, K3,...,Kp—1:
for m = 2,3,...,M-1 do {
Elem{m] .vert_dof[1] := count;
count := count + 1;
Elem{m] .vert_dof[2] := count;

//Visiting vertex basis functions on the element Kjs:
Elem[M].vert_dof[1] := count;
count := count + 1;
if (Elem{M].vert.dir[2] == 1) then {
Elem[M] .vert_dof[2] := -2;

else {
Elem[M] .vert_dof[2] := count;
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count := count + 1;
}
//Visiting bubble basis functions on all elements:
for m = 1,2,...,M do {
for j = 1,2,...,Elen[n].p-1 do {
Elem[m] .bubb_dof[j] := count;
count := count + 1;
}
}

More about the implementation of nonhomogeneous boundary conditions will be said
in Paragraph 2.6.

B EXAMPLE 2.2

Consider a mesh 7}, ,, consisting of three elements K, K, and K3 of the polynomial
degrees p; = 3, p2 = 4and p3 = 2, and the mode] problem (2.20) with homogeneous
Dirichlet boundary conditions. In this case the connectivity Algorithm 2.4 obtains
the following input data:

Elem{1}.p = 3;
Elem([1].vert_dir = {1,0};
Elem([2].p = 4;
Elem[2] .vert_dir = {0,0};
Elem[3].p = 2;
Elem({3}.vert_dir = {0,1};

The resulting element connectivity arrays have the form

Elem[1] .vert_dof = {-1,1};
Elem[1].bubb_dof = {3,4};
Elem[2] .vert_dof = {1,2};
Elem[2] .bubb_dof = {5,6,7};
Elem[3].vert_dof = {2,-2};
Elem[3].bubb_dof = {8};

Next let us present the assembling procedure.

2,49 Assembling algorithm
In the following we distinguish between two situations:

1. The differential operator L in the equation Lu = f does not explicitly depend on
space or time. This is the case when all coefficients a;;, b;, ¢; and ag in (1.4) are
constant. For example, the operators

0 o
Lu=—Au, Lu=—-Au+ i, Lu=—-Au+ o +u
Ox Ox
belong to this category, and so does the general operator L in (2.20) if a; > 0 and
ag > 0 are constant.

2. The differential operator L does explicitly depend on space or time, as, for example,
the operators
—Au Ou

L= 2 b = bt ()P Lu= At sina)u.
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In the former case it is possible to avoid repeated numerical integration on every element
and assemble the global stiffness matrix S efficiently by means of precomputed prototype
integrals calculated on the reference domain K,. The integrals present in the weak for-
mulation of a concrete problem determine which constants have to be precomputed. For
example, problem (2.20) with constant coefficients requires the L?( K, )-products of the
first derivatives of the shape functions (master element stiffness integrals. MESI) and, if
ap # 0, then also the L?(K,)-products of the shape functions themselves (master element
mass integrals, MEMI), In one dimension these constants can be organized in the form of
square matrices.

If we denote the maximum polynomial degree in the mesh by p,,,,, and consider some
set of shape functions @1, ¥z, ..., @p,...+1 € PPmer(K,), the master element stiffness
matrix Sk, of problem (2.20) has the form

Pmaztl
sw = (oot ={ [ aoeoa} 0es)

Kq i,j=1

The master element mass matrix M g is defined as

Pmax+1
M, = {m;;}Prestt = {/ vi(§)p; (f)dﬁ} : (2.69)

Ka i,j=1

The only information about the reference map z g, that is needed on every element
K,, € T}, in the assembling algorithm is its Jacobian. Therefore, for each element K,
we introduce one more constant, Elem[m] . jac := |Jk,, | The assembling procedure for
model problem (2.20) with homogeneous Dirichlet boundary conditions can be written as
follows.

Algorithm 2.5 (Assembling algorithm)

//Calculate the dimension of the space Vj j:
N := -1;
form=1,2,...,Mdo N := N + Elem{m].p;

//Calculate the master element stiffness integrals MESI:

//(Use sufficiently accurate Gaussian quadrature to obtain exact results)

for i = 1,2,...,MAXP+1 do {

for j= 1,2,...,MAXP+1 do {
MEST(1] (5] := [1, @l (2)¢)(x)da;

}
//Calculate the master element mass integrals MEMI:
for i = 1,2,...,MAXP+1 do {

for j= 1,2,...,MAXP+1 do {

. . 1
MEMI[i1(31 := [, @i(z)es{z)dz;

}
//Calculate the value of Elem(m].jac for all elements K., m=1,2,...,M:
form = 1,2,...,M do Elem{m].jac := (xm — Tm—1)/2;
//Set the stiffness matrix S zero:
for i = 1,2,...,N do for j = 1,2,...,N do S[i]1[j] := O;
//Set the right-hand side vector F zero:
for i = 1,2,...,N do F[i] := 0;

//Element loop:
form = 1,2,...,M do {
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//Loop over vertex test functions:
for i = 1,2 do {
//1f > -1, this is index of a test function wm, € Vj p,
//i.e., row position in S:
ml := Elem{m].vert_dof[i];
//Loop over vertex basis functions:
if (mt > -1) then for j = 1,2 do {
//1f > -1, this is index of a basis function vm, € Vj p,
//i.e., column position in S:
m2 := Elem[m].vert_dof(jl;
if (m2 > -1) then
S[mi] [m2] := S[mi] [m2] + a1*MESI(i][j]/Elem[m].jac
+ a0+Elem[m] .jac*MEMI[i] (j];
} //End of inner loop over vertex functions
//Loop over bubble basis functions:
for j = 1,2,...,Elem[mn] .p-1 do {
m2 := Elem[m].bubb_dof[jl;
if (m2 > -1) then
S(m1] (2] := S[mi] [m2] + al*MESI[i][j+2]/Elem[m].jac
+ a0+Elem[m] . jac*MEMI[i] [j+21;
} //End of inner loop over bubble functions
//Contribution of the vertex test function vm,
//to the right-hand side F':
if (ml > -1) then Flm1l := Flmtl + [y |Jk,, [fU™(€)ps(€) dE;
} //End of outer loop over vertex functions
//Loop over bubble test functions:
for i = 1,2,...,Elem[m].p-1 do {
nl := Elem[m].bubb_dof[i];
//Loop over vertex basis functions:
if (ml > -1) then for j = 1,2 do {
m2 := Elem[m].vert_dof[jl;
if (m2 > -1) then
S[mi1] (m2] := S[m1] [m2] + al*MESI{i+2][jl/Elem[m].jac
+ aO*Elem[m] . jac*MEMI [i+2] [j1;
} //End of inner loop over vertex functions
//Loop over bubble basis functions:
if (ml > -1) then for j = 1,2,...,Elem{m].p~-1 do {
m2 := Elem[m].bubb_dof[j];
if (m2 > -1) then
Smi1] (m2] := S[m1] [m2] + al*MESI[i+2][j+2]/Elem[m].jac
+ aO*Elem[m].jac*MEMI [i+2] [j+2];
} //End of inner loop over bubble functions
//Contribution of the bubble test function Umy
//to the right-hand side F:
if (@1 > -1) then Flm1] := Flmil + fi |k, [f™ ()i (£)d¢;
} //End of outer loop over bubble functions
} //End of element loop

In Algorithm 2.5 we used the notation fU™)(¢) = f(z k., (€)). If the operator L is space-
or time-dependent (for example, if the coefficient functions a; and ag in the model problem
(2.20) are not constant), the precomputed MESI and MEMI arrays cannot be used. Instead,
appropriate numerical quadrature must be performed each time the MESI or MEMI arrays in
Algorithm 2.5 are accessed.

Efficient implementation of Algorithm 2.5 For the sake of transparency, significant
portion of Algorithm 2.5 (the application of a given test function to all vertex and bubble basis
functions) was repeated two times with minor changes. This part of the code can be moved
to a separate subroutine. Moreover, it is not necessary to store the full Elem [m] . bubb_dof
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array of the length Elem[m] . p-1, since according to the enumeration of the bubble shape
functions (Paragraph 2.4.8) it holds

Elem{m] .bubb_dof [2]
Elem[m] . bubb_dof [3]

Elem[m] .bubb_dof[1] + 1;
Elem[m] .bubb_dof{1] + 2;

Elem[m] .bubb_dof [Elem[m] .p] = Elem[m].bubb_dof[1] + Elem[m].p-1;

2.4.10 Exercises

Exercise 2.12 Verify in detail the inclusions Vi C Vo, C V and Vi C Va, C V for the
spaces defined in Paragraph 2.4.1.

Exercise 2.13 Consider the Poisson problem —v" = f, f € L*(Q), in a bounded interval
1 = (a,b) C R. Suppose that Q is covered with a finite element mesh Ty, , containing
M > 2 elements of polynomial degrees 1 < p1,p2,...,pr. Consider (A) homogeneous
Dirichlet boundary conditions on 0%2, (B) nonhomogeneous Dirichlet boundary conditions
on 9%, (C) a nonhomogeneous Dirichlet boundary condition at a and a Neumann boundary
condition at b.

1. Write the weak formulation of these problems.
2. Use the Lax—Milgram lemma to show that in each case there exists a unique solution.
3. Write the discrete problems.

4. How many unknowns has the discrete problem in each case?

Exercise 2.14 Consider the Helmholtz equation —u" +u = f, f € L%(Q), with homoge-
neous Dirichlet boundary conditions u(a) = u(b) = 0 in a bounded interval Q = (a,b) C
R. Leta < z;_1 < x; < b be a pair of neighboring grid points, K., = (z;—1,x;) and
K,=(-1,1).

1. Write the weak formulation of this problem.

2. Write the affine map xk,, : Ko — (2i-1,2;).

3. Transform the weak formulation from the interval K, to the reference interval K,,.
Exercise 2.15 Consider the reference interval K, = (—1,1) and p = 4.

1. Write explicit formulae for the Lobatto hierarchic shape functions lo, 1y, .. ., l4.

2. Consider equidistant nodal points —1 = y1 < ... < ys = 1. Write the Lagrange
nodal shape functions 81,65, ..., 85 such that 6,(y;) = 6;;, 1 < 4,5 <5.

. . . h . 3
3. Write master element stiffness matrices S §<3 and S (l?a) for the Poisson equation,
corresponding to the above two sets of shape functions.

4. In each case calculate the condition number of the 3 x 3 block corresponding to
bubble functions (use, e.g., Matlab).

5. Which condition number is greater and what is the implication for the performance
of iterative matrix solvers?
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Exercise 2.16 Again consider the reference interval K, = (—1,1), polynomial degree p
and p + 1 distinct nodal points —1 = y; < ... < yp41 = 1. Show that all Lagrange nodal
shape functions 61,05, ..., 0,11 from (2.57) must be polynomials of the degree at least p.

Exercise 2.17 Consider the problem from Exercise 2.7 with the load function f(z) = 4—6z
and an equidistant mesh Ty, , with M quadratic elements.

L

Write formulae for the affine reference maps g, : Ko — Kp,.

™m

. Transform the weak formulation to the reference domain K, = (—1,1). Write the

integrals explicitly.

. Perform a suitable unique enumeration of the basis functions and write the element

connectivity arrays.

. Write the 3 X 3 master element stiffness matrix (2.68) for the Lobatto hierarchic shape

functions lg, 11, ls.

. Implement a finite element discretization using Algorithm 2.5.
. Produce plots of v and uy, for M = 2,5,10, 50.

. Consider M = 2,3,5,10, 30, 50, 100, 150, 200, 300 and produce convergence curve

in H'-seminorm (be careful to put the correct number of unknowns on the horizontal
axis).

. Compare with the H*-seminorm curve for piecewise-affine approximation from Exer-

cise 2.7. Was the piecewise-affine or the piecewise-quadratic scheme more efficient?
Why?

. Again guess the algebraic order of convergence o of the method. Compare it with

the value of a obtained in Exercise 2.7.

Exercise 2.18 Extend your code from Exercise 2.17 to finite elements of arbitrary polyno-
mial degrees 1 < pp, = p(K,,) <5,1=1,2,..., M.

1.

2.

Read the polynomial degrees p., = p(K,,) together with all other input parameters
from an input data file.

Write the 6 x 6 master element stiffness matrix S i | for the Lobatto hierarchic shape
functions ly, 1y, . .., 5.

When evaluating integrals of polynomial expressions, make sure to use Gaussian
quadrature data of an appropriate order of accuracy.

Calculate the exact solution for the cubic load function f = —50x(1 — )2

Present results of suitable convergence tests proving that the code works correctly.
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2.5 THE SPARSE STIFFNESS MATRIX

As we mentioned in Paragraph 2.2.3, the finite element method prefers basis functions with
small and possibly nonoverlapping supports. Then almost all entries in the stiffness matrix
S are zero, which is convenient for the computation. Matrices with this property are said
to be sparse. The question of efficient storage and operation with large sparse matrices is
essential.

With N = 100, 000 unknowns, which is a moderate number in practical applications,
afull N x N stiffness matrix S in double precision arithmetics would consume 80 GB of
computer memory. Hence, disregarding the well-known fact that the Gaussian elimination
procedure is unstable on large systems, the storage argument alone calls for a much more
economical treatment.

There is extensive literature on the numerical solution of sparse systems of linear alge-
braic equations (see, e.g., [18] and the references therein), and vast resources of concrete
program packages are available on the web. Most of the solvers are sufficiently robust and
user friendly, so that the reader can use them without any problems after fitting their more
or less standard input format.

2.5.1 Compressed sparse row (CSR) data format

One of the most frequently used data formats for sparse matrices is the Compressed Sparse
Row (CSR) format. Let N be the dimension of the stiffness matrix S and by N N Z denote
the number of nonzero entries in S. The CSR representation of S consists of three arrays:

1. Array A of length NN Z: This is a real-valued array containing all nonzero entries
of the matrix S listed from the left to the right, starting with the first and ending with
the last row.

2. Array I A of length N + 1. This is an integer array, JA[l] = 1. TAfk + 1] =
T A[k] + nnzg. where nnzy is the number of nonzero entries in the kth row.

3. Array JA of length NN Z: This is an integer array containing the row positions of
all entries of array A.

Sometimes one uses an analogous Compressed Sparse Column (CSC) sparse matrix format.

2.5.2 Condition number

The reader knows from Paragraph 2.1.1 that every symmetric V -elliptic bilinear forma(-, -) :
V x V — R leads to a symmetric positive definite stiffness matrix S. All eigenvalues are
then positive real numbers (see, e.g., [100]). It is well known that iterative solvers perform
better on matrices where the ratio of the largest and smallest eigenvalue A, /Amin is close
to one — such matrices are called well-conditioned. Figure 2.23 illustrates the convergence
history of a standard iterative matrix solver (an incompletely LU-preconditioned conjugate
gradient method) on two matrices of the same size and sparsity structure, but different
condition numbers.

Before introducing the condition number of a nonsingular matrix in Definition 2.2, let
us define the spectrum and spectral radius:

Definition 2.1 (Spectrum, spectral radius) Ler M be a square matrix. By o(M) we
denote the spectrum (set of all eigenvalues) of the matrix M. The spectral radius p(M ) is
defined as



THE SPARSE STIFFNESS MATRIX 85

10
7 ’ ' ' " LL-COND' ——

'WELL-COND® -------

0.001
0.0001

{

1e-05

1e-06

1e-07

1e-08 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600

Figure 2.23  Performance of an iterative matrix solver on two differently conditioned matrices of
the same size and sparsity structure. The horizontal axis represents the number of iterations and the
vertical one shows the norm of the residuum of the approximate solution.
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Definition 2.2 (Condition number) Let M be a nonsingular n x n matrix. The product

R(M) = |M||M77],

where || .|| is some matrix norm, is called condition number of the matrix M (with respect
to the norm || . |}).

One may use, for example, the standard Frobenius norm

or the spectral norm

) = max 21

T
X 2] p(MM™),

where || Mz || is the Euclidean norm in R™. The spectral (Todd) condition number

max, . (M) A

K (M) = | M|LM 7. = miny e, ay Pl
€o

(2.70)

has the minimum property
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1< & (M) < 5(M),
where «(M) is a condition number induced by any other matrix norm.
Clearly, for every symmetric positive definite matrix S, the spectral condition number
k(S) = £*(S) can be written as

15;,:(5):@.

/\min
The following aspects influence the condition number of the stiffness matrix .S significantly:

1. the discretized differential operator,
2. quality of the mesh,

3. the set of shape functions.

In practice the differential operator is given, and the mesh can be optimized outside of the
finite element solver. Therefore let us look at the last aspect in more detail.

2.5.3 Conditioning of shape functions

The simplest comparison of the quality of different sets of higher-order shape functions
can be done using a one-element mesh, equipped with appropriate boundary conditions so
that the discrete problem has a unique solution. Such test, of course, does not cover the
influence of the geometrical structure of the entire mesh, but still the results usually provide
a valuable information.

For model problem (2.20) let us consider a one-element mesh K, = (—1,1) equipped
with homogeneous Dirichlet boundary conditions. The corresponding stiffness matrix Sq
is obtained by leaving out of the master element stiffness matrix S, all rows and columns
corresponding to the vertex shape functions. The mass matrix Mg is obtained analogously
from the master element mass matrix M g . The next example compares the quality of the
Lagrange nodal and Lobatto hierarchic shape functions.

B EXAMPLE 2.3 (Comparison of Lagrange and Lobatto shape functions)

Figures 2.24 and 2.25 show the condition number of the stiffness and mass matrices for
the Lagrange nodal shape functions on the equidistant, Gauss—Lobatto and Chebyshev
nodal points, and for the Lobatto hierarchic shape functions. The horizontal axis
represents the polynomial degree p = 2,3, ..., 10.

The Lagrange nodal shape functions on equidistant points cause an exponential
growth of the condition number of both the stiffness and mass matrices, which in-
dicates that these shape functions should be avoided. It is clear from Figure 2.25
that the Chebyshev and Gauss—Lobatto points are a better choice for Lagrange nodal
elements. The Lobatto hierarchic bubble functions perform best: they are orthogonal
in the H3-product, which makes them optimal for the discretization of the Laplace
operator in one dimension.
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Figure 2.24  Conditioning of various types of shape functions in the H{(K,)-inner product
(condition number of the matrix Sp).
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Figure 2.25 Conditioning of various types of shape functions in the L?(K,)-inner product
(condition number of the matrix M ).

Regarding the more complex model problem (2.22), the Lobatto hierarchic shape func-
tions will perform well as long as ag << a;. Otherwise their worse conditioning in the
L?-product becomes important, and for ap >> a; the Lagrange shape functions on the
Gauss—-Lobatto and Chebyshev points may yield a better-conditioned discrete problem. Let
us close this paragraph with a lemma that is useful for practical implementation:

Lemma 2.4 The spectral condition number of a symmetric stiffness matrix S does not
depend on the enumeration of the basis functions of the space Vj, ;.

Proof: Consider a permutation that exchanges the indices of a pair of basis functions vy,
and v;. It follows from Definition A.17 that the new stiffness matrix S has the same set of
eigenvalues. The new eigenvectors are obtained from the original ones by exchanging their
kth and [th components. n
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2.5.4 Stiffness matrix for the Lobatto shape functions

Let us have a closer look at the the sparsity structure of the stiffness matrix .S obtained in the
discretization of the Laplace operator by means of the Lobatto hierarchic shape functions.
It follows from the L?-orthogonality of the Legendre polynomials that

1 1
-1 -1

Moreover, we have

1 1
/ lo(z)l(x)dx = / I (z)lj(z)der = 0, forall2 < j. (2.72)
-1 -1

Therefore the master element stiffness matrix Sy itself is sparse,

12 ~1/2 0 0 0
-1/2 12 0 90 0
0 0 1 0 0
Sk, = 0 0 0 1 0 (2.73)

[

0 0 0 0
Due to (2.73), the global stiffness matrix S corresponding to the Lobatto hierarchic shape
functions has a particularly nice block-diagonal sparse structure shown in Figure 2.26.

=

mai

K

Figure 2.26  Sparsity structure of the stiffness matrix for the Laplace operator discretized by means
of the Lobatto hierarchic shape functions.

The number of blocks is M + 1, where M is the number of elements in the mesh 7}, ,,. The
(M - 1) x (M — 1) block in the upper left corner corresponds to the piecewise-afﬁnﬁ basis
functions U1, 25, Up -1 = this block is identical to the tridiagonal stiffness matrix (2.28)
corresponding to the piecewise-affine case (Paragraph 2.2.4). The remaining M diagonal
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blocks of the type (p1 —1) x (p1—1), (p2—1) x(p2—1), ..., (par— 1) x (ppr — 1) correspond
to higher-order bubble basis functions associated with each element K1, K>, ..., Ky, re-
spectively. This structure is given by the enumeration of the basis functions of the space
Vh.p (see Paragraph 2.4.8).

If the Lobatto hierarchic shape functions were replaced with the Lagrange or other
nonorthogonal shape functions, additional nonzero off-diagonal entries would appear in
the stiffness matrix, and its condition number would rise.

2.5.5 Exercises

Exercise 2.19 Show that for every symmetric positive definite matrix S the spectral con-
dition number (2.70) satisfies

K (S) = IS|. 187 . = Dmee.

/\min

Exercise 2.20 Consider a nonsingular N x N matrix S, and a matrix 8 obtained by
switching the kth and lth_row and the kth and lth column in S, 1 < k,l < N, k # I. Show
that the matrices S and S have the same set of eigenvalues.

Exercise 2.21 Use the result of Exercise 2.20 to prove that the condition number of the
(symmetric positive definite) stiffness matrix S, obtained from the discretization of a V-
elliptic operator L, does not depend on the enumeration of the basis functions of the space
Vhp

Exercise 2.22 Write a computer code that turns a sparse matrix represented as an array
S[i[j], 1 < 4,7 < N, into the CSR sparse matrix format. The numbers 1 < N, NNZ are
input parameters. Assume that exactly NN Z entries in the array S|-|[-] are nonzero.

2.6 IMPLEMENTING NONHOMOGENEOUS BOUNDARY CONDITIONS

The implementation of various types of boundary conditions closely follows the discussion
in Paragraphs 1.2.5, 1.2.6, and 1.2.7. Let us begin with the nonhomogeneous Dirichlet case.
2.6.1 Dirichlet boundary conditions

According to Paragraph 1.2.5, any problem with nonhomogeneous Dirichlet boundary con-
ditions can be treated as a homogeneous Dirichlet problem with an adjusted right-hand side.
Let us stay with the model equation (2.20),

-V - (a1 Vu) + agu = —(a1u’) + agu = f,

a; > 0,ap > 0, f € L?(f), in a bounded domain Q@ = (a,b) C R, but consider the
nonhomogeneous Dirichlet boundary conditions

u(a) = g, (2.74)
u(b) = g,
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where ¢,, g, € R. Recall that the solution u is sought in the form

u=U+G, 2.75)

where G € H'(Q) is a Dirichlet lift such that G(a) = g,, G(b) = gp, and the new
unknown function U € V = HE(Q). The task is to find a function U € V satisfying the
weak formulation (1.47),

a(U,v) =1(v) forallveV (2.76)
with

a(U,v) = /alU’(I)v'(;r) +agU(z)v(z)dz, U,veV,
Q
vy = / fl@)v(z) — a1 G (@) (z) — apG(z)v(z)dz, veV. (2.77)
Q

Choice of the Dirichlet lift When using the Lobatto hierarchic elements, define G as
a continuous piecewise-affine function that vanishes in all interior elements (Figure 2.27).
In the case of the Lagrange nodal elements choose, for example, a piecewise pth-degree
polynomial function G that vanishes in all interior elements, and that in the elements K
and Ky coincides with the appropriate Lagrange functions g,6; o a:;(i and gpfp41 © x;(}w ,
respectively.

Figure 227 Typical piecewise-affine Dirichlet lift G.

Implementation When using the Lobatto hierarchic shape functions, the Dirichlet lift
G transforms from the mesh element K, to the reference interval K, as follows:

0, 2<m<M-1,
(Gork, )& =14 9abo(§), m=1, (2.78)
gl1{(&), m=M.
The case of the Lagrange nodal shape functions is analogous,
0, 2<m<M-1,
(Gozk,)(§) = { 9a01(8), m =1,

gpbpr1(£), m=M.
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The values of the Dirichlet lift G at the endpoints of 2 = (a, b) may be stored as described
in Paragraph 2.4.8,

DIR_BDY ARRAY([1] Ja;
DIR_BDY_ARRAY[2] = gy;

Algorithm 2.5 needs to be changed as follows: Whenever a contribution to the stiffness
matrix S is made, a new contribution to the load vector F' appears. For example, the
portion of the code

//Loop over vertex basis functions:
if (m1 > -1) then for j = 1,2 do {
m2 := Elem[m].vert_dof[jl;
if (m2 > -1) then
S[m1] m2] := S[mi1] [w2] + MESI[i][j]l/Elem[m].jac;
+ aO*Elem[m] . jac*MEMI[i] (j1;
} //End of inner loop over vertex functions

needs to be changed to

//Loop over vertex basis functioms:
if (m1 > -1) then for j = 1,2 do {
m2 := Elem[m].vert_dof[jl;
if (m2 > -1) then
S{m1]} (2] := S[wi]{m2] + MESI[i](jl/Elem[m].jac
+ a0*Elem[m] . jac*MEMI[i] [3];
else
Flm1] := F[ml] ~ DIR_BDY_ARRAY[-m2]*a1*MESI[i][j]/Elem[m].jac
—~ DIR_BDY_ARRAY([-m2]*a0*Elem[m] . jac*MEMI[1] {3];
} //End of inner loop over vertex functions

and so on. The stiffness matrix S is the same as with homogeneous Dirichlet boundary
conditions.

2.6.2 Combination of essential and natural conditions

Since the incorporation of Neumann or Newton boundary conditions occurs exactly as
described in Paragraphs 1.2.6 and 1.2.7, let us discuss in more detail the case when essential
and natural boundary conditions are combined. Consider the model equation (2.20) in a
bounded domain © = (a,b) C R with the boundary conditions

du , _
)= —ula) = 2.79)

u(db) = gp

where g,, g» € R. The solution u is sought in the form w = U + G, where G € H*(Q) is
a Dirichlet lift satisfying G(b) = gy, and the new unknown function U lies in the space V'
defined in (1.65),

V = {ve HY(Q); v(b) = 0}.
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The weak formulation (1.66) then reads
a(U,v) =1{v) forallveV,
where
alu,v) = / a U (2)v'(z) + agU(z)v(z)dz, U,v eV,

Q
flx)v(z) — a1 G (2) (z) — apGlx)v(z) dz + gola)v(a), v e V.
Q

=
=

=
i

The Dirichlet lift G is defined analogously to the case with nonhomogeneous Dirichlet
boundary conditions, but now it vanishes also at the endpoint where the natural boundary
condition is prescribed (Figure 2.28).

Figure 2.28 Dirichlet lift for combined boundary conditions (2.79).

2.6.3 Exercises

Exercise 2.23 Extend the code from Exercise 2.18 to nonhomogeneous Dirichlet boundary
conditions

u(a) = gas

u(b) = g,
where g,, g» € R are additional input parameters.

1. For the new boundary conditions recalculate the exact solution u of the problem
—u' = f using the cubic load function f from Exercise 2.18.

2. Choosea=0,b=19,=1/2 g5 =1

3. For M = 10 elements which are (A) linear, (B) quadratic, (C) cubic, (D) fourth-
order, (E) fifth-order, produce plots of the error ey, , = u — up, . Plot all the curves
together in one figure using decimal-logarithmic scale.

Exercise 2.24 Extend your code from Exercise 2.23 to nonequidistant meshes.

1. Read the number of elements M together with the coordinates of the grid points
a=12xp <z <...<zpy =Dband the polynomial degrees p1,pa, . ..,pn together
with the other input parameters from an input data file.

2. Verify that the code is correct.
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2.7 INTERPOLATION ON FINITE ELEMENTS

Assume some restricted set of functions C (such as, for example, polynomial, piecewise-
polynomial or trigonometric polynomial functions) in a linear space V and a functiong € V
that does not belong to C. The prototype approximation problem is to find a suitable function
ge € C (approximation of g) such that g. is in some sense close to g. The measure of the
quality of the approximation (abstract distance of ¢, from g), can be defined as an error
estimate, the norm ||g — g.||v if the space V' is normed, or it can be defined otherwise. By
best approximation one means an approximation that minimizes this distance.

Approximation becomes interpolation when the sought function g. € C has to satisfy
some additional constraints. These conditions are formulated generally as

Li(ge) =b;, i=1,2,..., N, (2.80)

where L; : V — R are linearly independent linear forms in V’ and b1, bo, ..., by, some
given constants.

For example, in the traditional Lagrange interpolation one requires the approximation g,
to coincide with the original function g at some points &1, T2, .. ., Zy, € §2 via the choice

Li(gc) = ge(x:),

and defining the constants b; in (2.80) as

b; = 9(131)'

There are many natural questions related to the approximation and interpolation: What
assumptions have to be put on V, C and g to ensure the existence and uniqueness of
the best approximation? What conditions must the linear forms L; obey to guarantee a
unique solution of the interpolation problem? What can be said about the error of the
approximation/interpolation?

The analysis is highly nontrivial in the general setting of a basic linear or normed space
V and a general subset C C V. However, the good news is that all important assumptions
on the space V, the set C, and the function g, developed in the framework of the abstract
Approximation Theory, are fulfilled automatically when V' is a Hilbert space and C its closed
subspace.

2.7.1 The Hilbert space setting

Let V = V() be a Hilbert space corresponding to the solved problem, a(+,-) : VxV — R
a bounded V-elliptic bilinear form, [ € V', and Vi,p a finite-dimensional subspace of V
determined by the finite element mesh 7, ,,. Consider the continuous problem (2.1),

alu,v) =1(v) forallv e V.
and the discrete problem (2.5),

a(up,p,v) =U{v) forallve V.
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According to Céa’s lemma (Theorem 2.1, Paragraph 2.1.2), the discretization error [ju —
upp|lv is bounded by the interpolation properties of the subspace V3, C V and the
continuity and V-ellipticity constants C),, C; of the bilinear form a(, -),

Cy . Cy ..
lu —uppliv < =t inf lu —v|lv = C—bldlst(u, Vip)v.

Cez veEV) p
Hence the interpolation properties of the space V}, ,, are largely responsible for the final
form of the error estimate.

In practice we always have a concrete interpolation operator P : V. — V, , that obviously
satisfies

dist(u, Vi p)v < |lu — Pullv.

Hence, for a sufficiently regular function u € V' it is our aim to estimate the interpolation
error ||u— Pul|y using some parameters of the mesh 7, ,, as well as the amount of regularity
of the function u. A typical interpolation error estimate has the form

[l — Pullv < C{u)h®,

where h = max; h; is the mesh diameter and C'(u) is a constant depending on the amount
of regularity of the function w. In addition to its application in error analysis, interpolation
also finds practical use in the finite element technology, when a given function g € V
needs to be represented by a sufficiently close function g, ;, € V}, ,,. Problems of this type
are encountered in the finite element solution of evolutionary problems (to be discussed in
Chapter 5), as well as in multigrid methods, automatic hp-adaptivity, and numerous other
situations.

2.7.2 Best interpolant

In the Hilbert space setting the question of existence and uniqueness of the best approxi-
mation is trivial. Since V}, ;, C V is finite-dimensional and therefore automatically closed,
according to Lemma A.39 the nearest representant of a function g € V' in the norm || - ||y
is its unique orthogonal projection g, = Pg € Vi ,. Theorem A.14 implies that the
orthogonal projection P is defined uniquely via the condition

(g — Gh.ps U}L‘p)V =0 for all Upp € ‘/h‘p- (2.81)
With some basis {v1,v2,...,9n} C Vi, (2.81) can be rewritten equivalently as
(g—ghpvi)y =0 foralli=1.2,..., N. (2.82)
Expressing
N
Ghp = Z Yivj (2.83)

j=1

and substituting into (2.82), one obtains a system of linear algebraic equations
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N
Zyj(vjavi)vz(ngi)V» 2':1727"'7N7 (2'84)
j=1

for the unknown coefficients y1, ¥2, ..., yn-

B EXAMPLE 24

Consideradomain 2 = (—1, 1), covered with a finite element mesh 75, , = { K, K3}
consisting of affine elements K; = (—1,0) and K2 = (0,1). Assume the space
V = H(-1,1) related to some problem with homogeneous Dirichlet boundary
conditions. The finite element subspace V}, ,, is one-dimensional, defined as

Vip={veV;vlk, € P(K,), i=12}

™"

Let us construct the best approximation gx , € V3, p, of the function g(z) = 1 - rte
V. In other words, we are looking for a function gy, ,, € V}, ,, such that

dist(g, gn p) = dist(g. Vi p). (2.85)

The linear system (2.84) reduces to a single equation, which yields the best approxi-
mation gy, p,

11
—(1 ] ’ K 3
10( + ) T € Ky
gr.p(T) =
Ha_a), zek
T - ), x )
10 2
depicted in Figure 2.29.
1 b%
4 08
4 \'
061 A
041
02
= o : LSO |
1 05 0 05 1

W

Figure 2.29 Best approximation g, € Vi of the functiong € V.

Notice that the best approximation gy, does not coincide with the function g at
the grid point z = 0.
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In some cases the construction of the best approximation may be too demanding from
the practical point of view, since the cost of the calculation of gy, ,, is similar to the cost
of solution of the global finite element problem. In such cases the only possibility is to
abandon the optimality requirement (2.85) and find some less expensive interpolant. The
first natural choice is to perform the orthogonal projection locally in elements.

2.7.3 Projection-based interpolant

Piecewise-affine case In the simplest case when all elements K1, Ko,..., K are
affine, the continuity requirement implies that the projection-based interpolant g , € V), ,,
be defined as the usual piecewise-affine vertex interpolant,

gh,p('rj) = g;}z,p(mj) = g(xj)’ .7 = 07 13 B va (286)

where gy, |k, € P*(Ky,) forall K,,, € Ty p, as illustrated in Figure 2.30.

Figure 2.30  Projection-based interpolation reduces to the usual piecewise-affine Lagrange
interpolation on piecewise-affine elements.

Higher-order case On a general higher-order finite element mesh 74 ,,, as the reader
may guess, the interpolation problem is decoupled by subtracting the piecewise-affine vertex
interpolant g, , from the interpolated function g. The function g — gp, p vanishes at all grid
points, and can be projected locally onto the polynomial spaces

Pg}m(Kvn) = {'U S H(%(KmL v E PPW(K"")}'

In this way one calculates the bubble interpolant gﬁ,p. The resulting interpolant gy, , is then
obtained as a sum of the vertex and bubble parts,

Ghp =Ghp+ Ghp (2.87)

Since we are in HE(Ky,), either the full H!(K,,)-norm or the equivalent H!(K,,)-
seminorm can be used. The fact that the standard vertex interpolation is combined with the
orthogonal projection on higher-order subspaces is why one speaks about projection-based
interpolation.
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Choose, for example, the H'-seminorm for the projection part. Then the associated
inner product has the form

()3 s = /K & (@) (z) da. (2.88)

The orthogonality condition that determines 92, » 18

(9= 91p) = Gh pV)mi(xc,y =0 forallv € FE™ (Kom). (2.89)
This equivalent to

(9= 980 = Foms O Ve ay =0k =2,3,...,pm, (2.90)

where ﬂfcm), k = 2,3,...,pm, is a suitable basis of P} (K,,). Utilizing the Lobatto
bubble shape functions (2.63) and the reference maps (2.37), this basis has the form

(@) = by (@), 2.91)
9 (2) = Llag (@),
I(z) = Iy, (zg. (2)).

Expressing now
P

ah plic = D _ oMo,
r=2

and inserting this linear combination into (2.90), one obtains on K, a system of p,, — 1
linear algebraic equations,

P ! ! ’
Zagﬁl) / (79.(,7n)> (19;:71)) dr = / (g - g;;,,p)/ <19§Cm)> dl’, k = 2, 3, cee s Dm,
r=2 K K

2.92)
for the unknown coefficients o™ . By Substitution Theorem, (2.92) attains on the reference
domain K, a simple form

Pm

> ool [ nen©a= [ (-5 ) o6 k=25,
r=2 K, Ka
—_
brr
2.93)

which by the orthogonality of the Lobatto bubble functions yields

o™ = /K (8 -5 ©n©de k=23 pm @9

a

Here, 3 (€) = g(x,,(§)) and 3,37 (€) = (g7, (2, (€)) 810 (E)g(@m-1)+1 (€)g (m)-
The orthogonality of the Lobatto shape functions is once more advantageous here. If one

used the Lagrange nodal bubble shape functions 6,83, ...,8,, from (2.57) instead, the
simplification (2.94) would not have taken place, and a linear algebraic system of the form
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(2.93) would have to be solved on every element K, with p,,, > 2. The projection problem
(2.94) is illustrated in Figure 2.31.

/ \
H, 8-8,,

88,4

P

: P.(K)

// gi

, P

0

Figure 2.31 Graphical interpretation of the projection problem (2.94).

Lemma 2.5 (Local optimality of the projection-based interpolant) Ler 0 = (a,b) C
R be covered with a finite element mesh Ty, ;, consisting of M finite elements K,, =
(Trm—1, Tm) equipped with the polynomial degrees 1 < p,, = p(K,,). Letg € H}() N
c), Gh,p € Vh,p its projection-based interpolant (2.87) and gy, , € Vj , an arbitrary
other interpolant satisfying g ,(;) = g(x;) forall j =0,1,..., M. Then

|9~ gnplizk, <19—gnplhek, forallm=1,2,... M, (2.95)
and consequently

|9 — gnplize < lg— grplizo- (2.96)

If the bubble interpolant gzyp is calculated using the full H'-product (-,-)1 o instead of
(2.88), the inequalities (2.95) and (2.96) hold with the full H'-norm || - ||1 2.

Proof: The fact that the bubble interpolant gfw is defined as the orthogonal projection of
9— g5, € H}(Ky,) onto Py™ (K, ) implies that

l9—anphex, = [g9—g0,) —ghpli2k.,

min —q¥ V—w
wePg’m(K,,,)Kg 9 p) f1,2,K.0

< W9 =9hyp) = (Grp = Ghpli2k.,
= 9= gnph2xK,.

The integral |g — gn |2 5 , can be written as a sum

M
lg - gh,pﬁ,z,o = Z lg — gh,pﬁ,z,K,,p

m=1

Inequality (2.95) finally yields

M M
Z |9 = 9rpli 2.k, < Z 19— dnpltok, =19—dnplTz0
=1 i=1

Things work in the same way when (2.88) is replaced with the H®-product (-, -)1 2. |
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Let us close this paragraph by mentioning that the projection-based interpolation is
significantly more efficient than the full projection from Paragraph 2.7.2. The cost of the
local optimality on the elements K,,,,7 = 1,2, ..., M, is one numerical integration over K,
in (2.94) when the orthogonal Lobatto hierarchic shape functions are used, or in the worst
case (with a set of nonorthogonal shape functions) the solution of M systems of p,,, — 1
linear algebraic equations of the form (2.93).

2.7.4 Nodal interpolant

The last important interpolation technique is the Lagrange nodal interpolation, which is
based on the evaluation of (a) the interpolated function at a given set of nodal points and (b)
a suitable set of interpolation polynomials. Depending on the selection of the nodal points
(such as, e.g., equidistant, Chebyshev, Gauss—-Lobatto, Fekete, or other points), one obtains
various variants of the general Lagrange interpolation methods, which produce different
interpolants.

By Lemma 2.5, all Lagrange interpolants are equally or less accurate than the projection-
based interpolant (2.87). On the other hand, their explicit nature with no system of linear
equations solved makes them extremely efficient. The Lagrange interpolation is a special
case of nodal interpolation on general nodal elements, which will be discussed in detail in
Chapter 3. In particular, the question of optimal interpolation points in 2D will be addressed
in Paragraphs 4.3.1 and 4.3.4.

Although the Lagrange interpolation is natural for Lagrange nodal elements and the
projection-based interpolation for Lobatto hierarchic elements, the projection-based inter-
polation can be performed on Lagrange nodal elements and vice versa.

Interpolation conditions Consider an interval K,,, = (zm—-1,%m) C £ C R and
a set of Lagrange nodal points z,,_1 = g§"‘) < gjém) < ... < g;jjll = Tp,. Using
the reference maps xg,, : K, — K,, from (2.37), define the corresponding points in the
reference domain K, = (—=1,1)asy; =z (g}](-m)). On the element K, the interpolation

conditions
i (y;)) —y (y;)) forall 1< j < pm+1, ghp € Vi
are equivalent to

(grporr, Jyj) =(gorkg, WNy;) forall 1 <j<pr+1, gnpork, € PP (K,).

Hence, the interpolation can be performed elementwise on the reference domain KX,. In
practice a unique set of Lagrange nodal points is defined on the reference domain and used
for all elements.

A basic result related to the accuracy of the Lagrange interpolation in the maximum
norm is formulated in the following lemma.

Lemma 2.6 (Error of the Lagrange interpolation) Let —1 =y <2 < ... < yp) =
land g € CP*Y(K,). Consider the Lagrange interpolant

p+1

gnpl@) =3 TT =2 | glw)- 2.97)

=1 \ja VY
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There exists a £, min{—1,z} < &, < max{x 1} such that

e 20

Proof: The result obviously holds if x = y,. Hence suppose z # y, foralll <: < p+1,
and denote

9(x) = gnp(x) =

e(z) = 9(x) — gnp(x).

HP+1 £ )

-

has p + 2 distinctroots t = xand t = y;, 1 < i < p+ 1. The Mean Value Theorem implies
that o’ (t) has p + 1 distinct roots. Applying the Mean Value Theorem to higher derivatives
of o, we find that o(P+1)(¢) has a single root £, € (min{—1,z}, max{z, 1}), satisfying

(p+1)!
— £ (),
Hp+l (x—y) )
and (2.98) follows. [
The function G, (z) = H’H'l {z—y;) in (2.98) is the only way the distribution of the nodal
points influences the distribution of the interpolation error. Compare with the projection-
based interpolation from Paragraph 2.7.3, where the interpolation error was independent of

the concrete representation of the polynomial space. Let us look at 3,(x) for equidistributed
nodal points in Figure 2.32.

The function

0=0®*1(g,) = g®*V(g,) -

o1

0.05

ol

-0.05 -

-0.1 +

-0.15

A L L
-1 -0.5 o 05 1

0.01
0.008 H
0.006
0.004
0.002
ot
-0.002
-0.004
-0.006
-0.008

-0.01 . L - -0.003 . L L
-1 -0.5 0 05 1 -1 -0.5 o 05 1

1 -0.000s +
7 000t
| 00015

-0.002

-0.0025

Figure 2.32  Error factor 3,(z) for equidistributed nodal points, p = 4,7, 10, and 13.

From these plots it is clear that the behavior of the error e(x) = g(z) — gnp(x) is
significantly worse near the endpoints than in the interior. The Lagrange interpolation with
equidistributed nodal points is known to be notoriously bad. In his famous example from
1901, Carl Runge shows that the sequence of Lagrange interpolants gy, , with equidistributed
nodal points diverges for otherwise a very nice function g{x) = 1/(1+ 2522} in the interval
(=1,1) as p — oo (for details see, e.g., [62]).
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Chebyshev interpolant The Lagrange interpolant (2.97) based on the nodal points
(2.59) is called Chebyshev interpolant. The error factors 3, for the Chebyshev interpola-
tion with p = 4,7,10 and 13 are shown in Figure 2.33. Compare with Figure 2.32, and

notice the different scales.

-0.015
-1

0.00025
1 oooo2 b
000015 |

1 1e-04 |
5e-05 |
o
5605 [
-0.0001 |
1 -00001s F
0.0002 -

. L L -0.00025 L -
-1 -0.5 o 0.5 1 -1 -0.5 0 05 1

Figure 2.33 Error factor 8, (x) for Chebyshev nodal points, p = 4, 7,10 and 13.

Before introducing a basic Chebyshev interpolation error estimate, we need the weighted
L?-space

L2 (K,) = {v € L*(K,); vis measurable and ||v]|2.,, < 00}

w

with

1
vl = [ @) a. (2.99)

where w(z) = 1/v/1 — 22 is the Chebyshev weight function. The norm (2.99) induces an
inner product

(u, )y = /71 u(z)v(x)w(x)de

on L2 x L2 Further define a weighted Sobolev space

w*

u ur

H(Kq) = {v € L2 (K,); v\ e L2 forallk =1.2,.. s’}

with the norm

olls 200 = (Z ||v<’~'>||%.,,,> .
k=0

Here v(¥) denotes the kth weak derivative of v.

Theorem 2.3 (Chebyshev interpolation error estimate) Let w € H; (K,) for some s >
1. Let Pyu be the Chebyshev interpolant based on the N + 1 Lagrange nodal points (2.59).
Then there exists a constant C independent of u such that
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”u - PNu”2,ur < CN_SHU||5,2,1U~

Proof: See, e.g., [90]. |

Among nodal interpolation schemes, Chebyshev interpolation is very popular due to its
accuracy. More details can be found, e.g., in [5] and [62].

2.7.5 Exercises

Exercise 2.25 Consider a bounded interval (a,b) C R and p + 1 distinct points a = y; <
Y2 < ... < Ypy1 = b. Consider two polynomials f,g € PP(a,b) such that

fly;) = gly;) forallj=1,2,....p+1

Prove that necessarily f = g. Do not use the explicit formula of the Lagrange interpolation
polynomial. Use the maximum number of roots of a polynomial instead.

Exercise 2.26 In 1901, without the help of a computer, Carl Runge presented a famous
example of a divergent series of Lagrange interpolation polynomials on equidistant meshes.
Consider a function

1
Py —— K,
9(@) = 755 TEKR

Construct the Lagrange interpolation polynomials

p+1

ghp(z) = Z g(yj)gj('p)(if)s

j=1

where 0;1)) are the Lagrange nodal shape functions (2.57) corresponding to p+ 1 equidistant
points —1 = y; < y2 < ... < yp+1 = 1. Present plots of g, g, together with the H*-
seminorm of the error g — gn p, for p = 2,4,6,8, and 10. You can use a computer.

Exercise 2.27 Consider Exercise 2.26 with p + 1 Chebyshev nodal points (2.59). Again
present plots of g, gn. , together with the H'-seminorm of the error g — Ghpforp=2,4,6,8
and 10. Compare with the results of Exercise 2.26.

Exercise 2.28 At last consider Exercise 2.26 with the projection-based interpolation from
Paragraph 2.7.3 instead of Lagrange nodal interpolation. Present plots of the projection-
based interpolants g, ,, of the function g in the spaces PP(K,), where p = 2,4 and 6.
Use mesh containing a single element K, = (—1,1). In all three cases calculate the
H1-seminorm of the error g — gy, ,. Compare with the results of Exercises 2.26 and 2.27.
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CHAPTER 3

GENERAL CONCEPT OF NODAL
ELEMENTS

The reader knows from Chapter 2 the nodal and hierarchic concepts in the FEM. In the
following we discuss in detail the nodal concept, which is both historically older and more
suitable for an introduction. The strong side of nodal elements is their extremely general
definition of degrees of freedom via linear forms, which allows for a very fast interpolation
and makes these elements applicable to a large variety of problems in various spaces of
functions.

3.1 THE NODAL FINITE ELEMENT

Let us return for a moment to the one-dimensional Lagrange nodal element K = (a, b) of
the degree p, equipped with p + 1 nodal points @ = y; < y2 < ... < yp4+1 = b. The
corresponding polynomial space on the element is P = PP(K). For every nodal point y;,
one can define a mapping

Lj:ge P —gly;) eR. @1

This functional is linear since

Li{g+3)= {9+ 3)y;) = 9ly;) + 3(y;) = L;(g) + L;(g)

and
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Lj(ag) = agly;) = al;(g),

forall g,g € Pandall o € R. Hence L; are linear forms and they belong to the dual space
P’. The number of the linear forms L; is equal to the dimension dim(P) = p + 1.

In Paragraph 2.4.4 we designed a basis of PP(K) consisting of Lagrange nodal shape
functions 6,6, ..., 8,41 that satisfied the delta property (2.56),

O:{y;) = L;(0:) = b4y (3.2)

Here 6;; is the Kronecker delta (§;; = 1 if ¢ = 7 and é;; = O otherwise). General nodal
elements are defined by replacing the interval K with a general bounded domain K € R?
and by extending the Lagrange linear forms (3.1) to general linear forms

L;i:P—R.
A classical book on nodal elements is [30].

Definition 3.1 (Nodal finite element) Nodal finite element is a triad K = (K, P.%),
where

o K is a bounded domain in R® with a Lipschitz-continuous boundary,
e P s a space of polynomials on K of the dimension dim(P) = Np,

e X ={Ly,La,...,Ln.} is aset of linear forms
L,',ZP*?R, 1=12,Np

The elements of ¥ are called degrees of freedom (DOF).

In most cases it is clear from the context what finite element X is associated with a
domain K. Then the set K itself often is called finite element, as we did in the previous
chapter, and as we shall occasionally do in what follows.

3.1.1 Unisolvency and nodal basis

The one-dimensional Lagrange nodal points y;, y2, . . ., yp+1 were chosen pairwise distinct
in Paragraph 2.4.4 in order to ensure that on every element K, any set of p + 1 given
numbers g1, g2, - - ., gp+1 identifies a unique polynomial g € PP(K) with the property
9(1) = g1,9(y2) = g2 9(Yp+1) = gp41.

This requirement guarantees that the vector of computed coefficients,

Y = (yl-,yjz ..... yN)T — Sle‘

where S is the stiffness matrix and F' the load vector, identifies a unique piecewise-
polynomial function

N
Uh,p = § Yil; € ‘//1,41)-
i=1
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Here vy, vg,..., vy is a basis of the space V3, ,, and uy, 5, is the solution to the discrete
problem. In the context of general nodal elements, the generalization of this property is
called unisolvency:

Definition 3.2 (Unisolvency) A nodal finite element (K, P, ¥) is said to be unisolvent if
for every polynomial g € P it holds

Li(g)=La{g)=...=Ln,(g) =0 = g¢g=0.

Lemma 3.1 Let (K, P, %) be a unisolvent nodal element. Given any set of numbers {g;,
G2 - Gnp t € RY? where Np = dim(P), there exists a unique polynomial g € P such
that

Li(g9) = g1, La{g) = g2.- - -, Ly.(g) = gny- (3.3)

Proof: Left to the reader as an exercise. [ |

Unisolvency is characterized by a generalization of the delta property (3.2):

Definition 3.3 (Nodal basis) Let (K, P, %), dim(P) = Np, be a nodal finite element. We
say that a set of functions B = {6,,8,....0n,} C P is anodal basis of P if it satisfies

LL(HJ) = (S” f()r all 1 < l,j < Np. (34)
The functions 8; are usually called nodal shape functions.

Theorem 3.1 (Characterization of unisolvency) Consideranodal finite element (K, P, %),
dim(P) = Np. The finite element is unisolvent if and only if there exists a unique nodal
basis B= {61,0s,...,0n,.} C P.

Proof: First let us consider a unisolvent finite element and construct a unique nodal basis
B=1{0,,02,...,0n,}. Beginwith any basis {g1, g2. . . ., gn,. } C P. Express each sought
functionf;, j =1,...,Np,as

Np
0; = Zakz,jgk- (3.5)
k=1

Condition (3.4) implies

Np

Np
by = Li(8;) = L; (Z ak]gk> =Y Ligar;, 1<ij<Np,  (36)
k=1 k=1
which yields a system of Np linear equations for each j. Putting together the Np linear
systems related to §;,6s, ..., 0y, one obtains a matrix equation
LA=1. (3.7)

Here L = {Li(gk)}g,é’:l is a generalized Vandermonde matrix, I the identity matrix,

and the matrix A = {akj}ﬁfj’:l contains in its columns the unknown coefficients of the
functions 81,6, ..., 0n,, respectively.
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Let us verify that the matrix L is invertible: If the columns of L were linearly dependent,
there would exist a nontrivial set of coefficients by, bs, . .., by, such that

O_ZbkL ) (Zbkgk> foralli =1,2,..., Np. (3.8)

However, this is in contradiction with the unisolvency assumption. Therefore L is nonsin-
gular and the functions 6;,6,,...,8y, form a basis in P.
Conversely, let B = {61, 6a,...,0n, } be a nodal basis of the space P. Assume that

Li(g)=Lalg)=...=Ln,(g) =0

for some function g € P. Express

Np
9= b
j=1

Since
.
0=Li(g)=Li | Y_vb, | =~ foralli=1,2,...,Np,

we conclude that g = 0 and thus the finite element is unisolvent. |

3.1.2 Checking unisolvency

Theorem 3.1 describes how to check the unisolvency of an arbitrary nodal finite element
(K,P,%):

o Consider an arbitrary basis {g;,92,-..,9np} C P.

o Construct the generalized Vandermonde matrix

L= {L (gk)},k 1+

e If L is invertible, then the element is unisolvent, and moreover L™* has in its jth
column the coefficients ax;, £ = 1,2,..., Np, which define the jth nodal basis
function 6, via (3.5).

o [f the matrix L is not invertible, then the element is not unisolvent.
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H EXAMPLE 3.1 (A nonunisolvent element)

Usually one deals with unisolvent finite elements. Therefore, let us show at least one
example of a nodal finite element which is not unisolvent. Consider the polynomial
space

Q' (Ky) = span{1,£,6, 6160}
in the square domain K, = (—1,1)%. The set 5 comprises four linear forms L; :

Q*(K,) — R, associated with function values at the edge midpoints {—1,0], [1,0],
[0, -1}, and [0, 1],

Ll(g) = g(_l*o)a
La(g) = 9(1,0),
Ls(g) = ¢(0,-1).
Li(g) = g(0,1),
as shown in Figure 3.1.
&
Tt
K :
4 :
1" AAAAAAAAAA ]" =
| g

Figure 3.1 Nonunisolvent nodal finite element consisting of a square domain K, polynomial space
Q' (K,) = span{1,£&,, &2, £1€2} and linear forms associated with the values at edge midpoints.

The generalized Vandermonde matrix L = {L;(g;) Z‘l‘j:1 corresponding to the

functions g, (&) = 1, g2(§) = &1, g3(§) = &2 and g3(&) = &1,

1 -1 0 0

1 1 0 0
L=1, -1 0 |

1 0 1 0

is singular.

3.2 EXAMPLE: LOWEST-ORDER Q!- AND P'-ELEMENTS

The unisolvency of the nodal finite element from Example 3.1 can be fixed by replacing the
edge midpoints with vertices. In this way one obtains the basic and most frequently used
lowest-order element for H!-problems on quadrilateral meshes in 2D: the Q*-element.
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3.21 Ql-element

The reference square domain K, = (—1, 1)? is endowed with the polynomial space

Q'(Kg) = span{l,£1,&2, 6162} (3.9)
The set of degrees of freedom Xy = {Li, Lg,..., Ly} consists of the linear forms L; :
Q' (Kq) — R,
Li(g) = glv1), (3.10)
Lo(g) = glv2),
Li(g) = g(va),
Li(g) = g(va),

as illustrated in Figure 3.2.

v &’2/\ vy
1 ey
e, K,
73 1 -
5,
€
€3
vy -1 &

Figure 3.2 Q%-element on the reference domain K.

Lemma 3.2 The finite element (K, Q' (K, ), £,) is unisolvent, and the nodal basis of the
space QY (K,) consists of the biaffine shape functions

(1-6)1-¢&)

oe) = 3.11)
opte) = LX)
apie = LTES)
i = OS]

Proof: Since the generalized Vandermonde matrix

1 -1 -1 1

1 1 -1 -1
L={L (Qk)}7k 1T 1 =1 1 =1
1

1 1 1
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is nonsingular, the element is unisolvent. According to Theorem 3.1, the nodal basis (3.11)
is obtained by inverting the matrix L. It is easy to verify that the nodal shape functions
satisfy the delta property (3.4). |

Since K, = K, x K,, the nodal shape functions (3.11) are Cartesian products of the
one-dimensional lowest-order Lagrange shape functions §; and 8 (same as [y and {; in the
Lobatto hierarchic case):

0 (&) = 01(£1)61(&2) = lo(1)lo(&2), (3.12)
0 2(€) = 02(61)01(&2) = Li(&1)lo(&2),
w2 (&) = 01(61)02(&2) = lo(§1)l1(62),
0 (&) = 02(61)02(82) = Lh(&1)la(&2)-

Q' -element on a convex quadrilateral K Consider an arbitrary convex quadrilat-
eral domain K C R? with straight edges s1, sa, . . . , 54, illustrated in Figure 3.3.

XZA

Figure 3.3 (Q'-element on a quadrilateral domain X C R?.

The Q*-element on K is defined using the Q!-element on the reference square domain
K, and a suitable reference map ¢ : K; — K. A natural choice is the isoparametric map,
defined as a linear combination of the nodal shape functions (3.11) with the coordinates of
the vertices x;,

4
T (&) =) mipl(€). (3.13)
=1

Since the Substitution Theorem is involved in the finite element discretization (this will
be discussed in Chapter 4), the reference map zx (£) must be a bijection. However, the
question of invertibility of (3.13) is not trivial. We will study this topic in Paragraph 3.2.3.

Remark 3.1 Elements where the same shape functions are used for the approximation and
for the construction of the reference maps, like in this case, are called isoparametric. The
map x i is called isoparametric reference map. The coefficients x; are called geometrical
degrees of freedom (GDOF). The map (3.13) can be generalized to quadrilateral elements
with curved edges by adding terms corresponding to higher-order shape functions (see,
eg, [111]).
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Proposition 3.1 The isoparametric reference map (3.13) satisfies

cx(v;)) ==, foralli=1,2,... 4, (3.14)
where v; are the vertices of the reference square domain K4, and

cile;) =8, foralli=1,2,....4, (3.15)

where e; are the edges of K.

Proof: The relation (3.14) follows from the delta property (3.4),
g (vy) =& foralll <i,j <4,

and (3.15) holds due to affinity of the shape functions ', ©¥2, ..., ¥4 on the edges of the
p Pq > Pq q £

reference domain K. [ |

The design of the finite element (K, Q'(K), L) in the sense of Definition 3.1 is ac-
complished by defining the space

QUK) = {gozy; g € Q'(K,)}, (3.16)

and the set 3 g consisting of four degrees of freedom LEK) (QYK) — R,

L) = gla), (3.17)
L) = glaa),
L) = gls),
L) = glaa).

Proposition 3.2 The finite element (K, Q' (K), L) is unisolvent, and the shape functions
PR(x) = (pyomg)(z), 1<i<4, (3.18)

constitute a unique nodal basis of the space (3.16).

Proof: This is left to the reader as an exercise. | |

Remark 3.2 Notice that the inverse of a polynomial map generally is not polynomial (e.g.,
z? vs. \/z), and therefore it is not obvious whether Q*(K) is a polynomial space or not.
This will be discussed in Paragraph 3.2.3.

322 Pl-element

The natural counterpart of the Q'-element on triangular meshes is the P!-element, some-
times called Courant triangle in honor of Richard Courant, a former assistant to David
Hilbert. R. Courant first used a numerical scheme that we would call the Finite element
method in 1943 to solve a torsion problem. His work was based on his previous results with
Hurwitz and Hilbert in the 1920s. R. Courant was forced to leave Europe during the World
War 1I. At the New York University he founded a new Institute of Mathematical Sciences,
which since 1964 carries his name. The name “Finite element method” appeared in the
1960s.
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Figure 3.5 P'-element on the reference domain K, with the nodal points at its vertices.

Consider the triangular reference domain K; shown in Figure 3.5. Alternative reference
domains may be used, but K has certain advantages which will be discussed later.

The domain K is equipped with the polynomial space

PY(K;) = span{l,£;, &)

The set of degrees of freedom ¥; contains the linear forms L; : P*{K;) — R,

Li(g) = g(v1), (3.19)
Ly(g) = glva),
Li(g) = g(vs).
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The element (K;, P1{K,),%;) is evidently unisolvent and the corresponding nodal basis
consists of three affine functions

e = - ; 2 (3.20)
1

(e =

) = o8

It is easy to verify that these shape functions meet the delta property (3.4) with the linear
forms (3.19).

Pl-element on an arbitrary triangle K Next consider an arbitrary triangular domain
K C R? with the vertices x1, &7, z3 and straight edges s, 52, s3, as shown in Figure 3.6.

XZA

Figure 3.6 P!-element on a triangular domain K ¢ R? with straight edges.

The isoparametric reference map xx : Ky — K is defined analogously to (3.13),
3
xx(€) =D T (£), (321
i=1

where ;" are the nodal basis functions (3.20).

Proposition 3.3 For any nondegenerate triangle K C RZ, the isoparametric reference
map T is invertible, and the inverse map :cl}1 : K — Ky is affine.

Proof: Since the map x is affine and the triangle K nondegenerate, the Jacobian Jy
is a nonzero constant. Therefore also the Jacobian of the inverse map, lel, is a nonzero
constant. This means that the inverse map wgl is affine. ]

Proposition 3.3 yields that the space

PHK)={qozg'; g€ P'(K:)} (3.22)
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is polynomial. The definition of the finite element (K, P1(K), ¥ k) is accomplished by
defining the set of degrees of freedom X using the linear forms LEK) : PHK) — R,

L9 = glx), (3.23)
L) = glaa),
LN = glas).
Proposition 3.4 The shape functions
Pir(®) = (g ozgh)(e), 1<i<3, (3.24)

constitute the unique nodal basis of the space (3.22), satisfying the delta property (3.4) with
the degrees of freedom (3.23).

Proof: This follows easily from Definition 3.3. |

The application of the Q*- and P*-elements to the discretization of two-dimensional
problems formulated in the Sobolev space H* will be described in Section 4.1.

3.2.3 Invertibility of the quadrilateral reference map i

The invertibility of reference maps for nonsimplicial elements always is a nontrivial issue
in the finite element analysis. The question of invertibility of triaffine hexahedral reference
maps, for example, has not been completely resolved yet. The situation is simpler in the
quadrilateral case, where it is known that the Jacobian Jk of the isoparametric reference
map (3.13) is nonzero in K|, if and only if the domain K is nondegenerate and convex. To
our best knowledge, this result was first proved in [113]. Let us present a slightly different
version of the proof here.

Lemma 3.3 The Jacobian Ji (&) of the biaffine isoparametric reference map (3.13) is
an affine function. In particular, its minimum over K, is attained at one of the vertices
v1,V2,...,04.

Proof: Let the vertices of the mesh quadrilateral K be denoted by 1 = (z1,¥1), 22 =
(z2,y2),-..,2x4 = (x4, ys) (in harmony with Figure 3.3). Use the functions (3.12) to write
the isoparametric reference map (3.13) in the form

wK(E;) = (y1>10€1lo§2 < )llﬁllo(ﬁz)
(3 s (3 o

Further in agreement with Figure 3.3 denote (uj,v1) = 3 — @1, (ug,v2) = @4 —
T2, (ug,v3) := XT3 — @1, (ug,v4) = x4 — x3. Recall the lowest-order one-dimensional
Lobatto shape functions {o(&) = (1 — £)/2 and [;(£) = (1 + £)/2, and use the identity
11(&) + 1o(&) = 1 to calculate

o (&)= (B Yutente - (1 )uten-( 12 )+ ().

The Jacobi matrix of x g has the form

%(ﬁ) _ 1 ( (ug —uz)lo(€o) —us  (ug —uz)lo(é1) — uz )
Dg 2\ (vg—v3)lo(€a) —va  (va—v3)lo(&1) —wa )’
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which means that its determinant,

(ugva — ugug)li (€2) + (usvg — uaw3)lo(§e) + (usvs — uzvg)lo(&r)
4 b

k(&) = (3.25)

1s an affine function. [ |

Theorem 3.2 Let K C R? be a nondegenerate quadrilateral with straight edges. We
assume the ordering of the vertices shown in Figure 3.3. The Jacobian Ji (€) of the
isoparametric reference map (3.13) is positive in the reference domain K, if and only if K
is convex.

Proof: Rewrite (3.25) using the cross-products of the edge vectors s3, s3 and s4 as

(84 X 82)l1(&2) + (83 X 82)l0(&2) + (84 X 83)l0(&1)

Jk (&) = 1 -
At the vertices v1, vo, . . ., v4 the Jacobian Jy attains the values

1 1 1

J(vy) = 1(33><52)+1(34 ><53):Z(83><51),
1

Jk(ve) = 1(53 X 82),

Jr(vs) = l( ><s)+£(s xs)*l(sx )

K\U3 —434 2 44 3—4431,

1

JK(’U4) = E(S‘l X 32).

By Lemma 3.3, the minimum of Jx (§) in K| is one of these four values. All of them are
positive if and only if the mesh quadrilateral K is convex. |

Corollary 3.1 Even for a convex quadrilateral element K € Ty, , with straight edges, the
inverse 1:}_(1 of the isoparametric biaffine reference map (3.13) generally is not polynomial.
In particular, the space Q' (K ) defined in (3.16) is not a polynomial space.

This can be seen after expressing the inverse map explicitly, via a formula containing
square roots (see, e.g., [113]). In special cases, when K is the Cartesian product of two
intervals, both the reference map x i and its inverse m}l are dffine.

3.3 INTERPOLATION ON NODAL ELEMENTS

The interpolation on finite elements is a procedure that takes a function g € V(€2;,) and
produces its suitable piecewise-polynomial representant in the finite element space g, , €
Vihp(€n). Here by Q;, we mean a suitable open polygonal domain that approximates the
domain {2 for the purposes of the finite element discretization (more about this will be said
in Chapter 4). Various interpolation techniques with different quality and computational
cost can be used, ranging from the fastest fully explicit interpolation to the full orthogonal
projection where a system of N linear algebraic equations, N = dim(V}, ,,), is solved (see
Section 2.7). Among these approaches, the fully explicit interpolation is typical for nodal
elements.
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3.3.1 Local nodal interpolant

Recall the Lagrange nodal interpolation on the one-dimensional element (K, P, %) from
Paragraph 2.7.4,

Np
g = 9(v:)b;, (3.26)
=1

where K = K, = (—1,1), P = PP(K,), g € H'(K,), gp € P and 6, are the La-
grange nodal shape functions (2.57) forming a basis of P. Using the linear forms (3.1), the
interpolant (3.26) can be written as

Np
9o =Y Li(9)6:. (3.27)
=1

This is a bridge that extends the one-dimensional Lagrange interpolation to the interpolation
on general nodal elements:

Definition 3.4 (Local nodal interpolant) Let B = {61,602, ...,0n, } be the unique nodal
basis of a unisolvent finite element (K, P,%). Let g € V, where P C V, be a function for
which the values L1(g), L2(g), ..., Ln,(g) are defined. Then the local nodal interpolant
is defined as

Np
Ik(g) = Y, Li(9)6:. (3.28)
=1

Remark 3.3

1. The requirement that all the values L1(g), L2(g), ..., Ln.(g) be defined is impor-
tant. Since the linear forms L; are defined for polynomials from the finite element
space P only (see Definition 3.1), there exist functions outside of P that cannot be
interpolated.

2. Further, notice that it follows from the linearity of the forms L, that the interpolation
operator Ly -V — P is linear.

Next let us discuss basic properties of nodal interpolants:

Proposition 3.5 Ler (K, P, X) be a unisolvent nodal finite element and Tx (g) the nodal
interpolant of a functiong € V, P C V. Then

Li(Ik(g)) = Li(g), 1<i< Np.
Proof: It follows immediately from Definition 3.4 and (3.4) that

Np Np
Li | 2_Li(9)6; | = 2 Li()Lu(6;) = Lilg).

Propeosition 3.6 Let (K, P, Y.) be a unisolvent nodal finite element. The nodal interpolation
operator Tk is idempotent,
1% =Tk.
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Proof: It follows immediately from Proposition 3.5 that
Ix{g)=g forallge P.
Let P C V. Forall g € V such that Tk (g) is defined, we have

Ik (T (9)) = Ik (9),
a—’
cP

which had to be shown. a

B EXAMPLE 3.2

Consider the Q!-element on the reference square domain K, = (—1,1)? and the
function

g(x) = (21 — 1)*(z1 + 1) = 2mza(z2 + 1) € HY(K,).

The values Li(g), L2(g), - - -, La(g) (function values of g in the corers of K,) are
defined. Hence the nodal interpolant Z(g) exists, and using the nodal basis functions
cpgi from (3.11), we obtain

I(g) = 9(=1, — D¢ (@) + 9(1, = 1)¢g* () + (=1, D)o (@) + (1, 1)y* ().

The functions g and Z(g) are depicted in Figure 3.7.

Figure 3.7 The interpolated function g € H*'(K,) and the nodal interpolant Z(g) € Q*(K,).

3.3.2 Gilobal interpolant and conformity

The form of the local nodal interpolant determines the conformity of finite element meshes
consisting of such elements to the space of functions where the underlying PDE is solved.
Before discussing the conformity, we have to be more specific about the shape of the meshes
we consider:

Definition 3.5 (Regular mesh) Let 1, C R? be an open bounded domain with polygonal
boundary, and T, , a partition of Qy, into a finite number of open polygonal subdomains
K1, Ko, ..., Ky, such that

K =0,

=

[

=]
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and K,NK; =0ifi#j. A two-dimensional finite element mesh Ty, p, is said to be regular
if every nonempty intersection of K; N\ K, © # j, can either be a whole shared edge or a
single shared vertex. In 3D this holds analogously with faces, edges and vertices.

In the following we assume a regular finite element mesh 7}, ,, consisting of unisolvent
nodal finite elements K, Ko, ..., Ky,

,P,(Kl)CV(Qh”KI foralli =1,2,..., M.

Definition 3.6 (Global nodal interpolant) The global nodal interpolant Z(g) of a function
g € V() is defined as

Ik, =TIk, (g) foralli=1,2,... M,

where Ly, are (local) nodal interpolants corresponding to the finite elements K1, Ko, . . .,
Ky

The global nodal interpolant is obtained by constructing the local nodal interpolants sep-
arately in all elements in the mesh. Since the local interpolation procedures are decoupled,
one can expect that the implication

geV = I(geV (3.29)

may not always hold. This is illustrated in the following example.
B EXAMPLE 3.3

Consider a pair of adjacent piecewise-affine elements K; = {—1,0) and K> = (0, 1).
For completeness let us mention that the corresponding polynomial spaces are P; =
PY(K;)and P, = P!(K,), and the sets of degrees of freedom &, and £ comprise
the linear forms

LMg) = g(-1),
LP(g) = g0),
L& = 4(0),
LP(g) = o).

respectively. Itis easy to calculate (orsee)that By = {—z,z+1}and By = {1—z,z}
are the unique nodal bases of the elements K and K.
Let us construct, for example, the global interpolant Z{g) of the function

glz) =23 €V,

where V' = H1(—1,1). The local interpolants in the elements K and K have the
form
Ik, (g) = g(=1)(—z) + g(O)(z + 1) =z
and
Ik, (9) = 9(0)(1 —z) + g(1)(z) = =,
respectively, and thus the global interpolant Z(g) = z € V. The situation is depicted
in Figure 3.8.
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XZA

I

70
Figure 3.8 The implication (3.29) holds: the global interpolant Z(g) lies in V.

Next define another pair of nodal elements with the same domains and polynomial
spaces, but change the linear forms to

LPg) = g(-2/3),
LPg) = g(-1/3),
LP(g) = ¢(1/3),
LP(g) = g(2/3),

respectively. The new nodal bases are B; = {—3z — 1,3z + 2} and By = {2 —
3z,3x — 1}. It can easily be calculated that the new local interpolants of the function
g(z) = z° have the form

T, (9) = g(~2/3)(~35 — 1) + o(~1/3)(3 +2) = o+

and
Tr() = 9(1/3)(2 ~ 32) + 9(2/H)(3z 1) = gz — =

In this case the global interpolant Z(g) is discontinuous and thus it does not lie in V.
This is depicted in Figure 3.9.

Example 3.3 suggests that condition (3.29) is important for nodal elements. Since point
values of functions are generally not defined in Sobolev spaces (see Section A.4.4), it is
practical to weaken condition (3.29) to hold in their dense subspaces only:

Definition 3.7 (Conformity of finite elements) A finite element mesh 1, ,, is said to be
conforming o the space V if there exists a dense subspace W C V such that

I(g) eV forallge W. (3.30)

Recall, for example, that the space of continuous functions C(£25,) is dense in the Sobolev
space H* ().

Remark 3.4 Conforming elements are used more frequently than the nonconforming ones,
since they better fit into the Galerkin framework. However, in special applications such as
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"
Figure 3.9 The global interpolant does not lie in the space V.

capturing of discontinuities or satisfying divergence or other constraints, nonconforming
elements may perform better than the conforming ones. The Discontinuous Galerkin (DG)
methods, for example, nowadays are very popular in computational PDEs.

3.3.3 Conformity to the Sobolev space H'!

Conformity requirements of the Sobolev space H'! are formulated in the following lemma:

Lemma 3.4 (Conformity requirements of the space H'(€)},)) Consider a bounded do-
main Q, C R? covered with a finite element mesh Thp- A function v : 0, — R belongs to
HY(Q4) if and only if

1. v|g € HY(K) for each element K € Ty, ,

2. for each common face f = K1 N Ko, K1, Ko € Th.p the trace of v| g, and v|k, on
[ is the same.

Proof: For this proof we need to review some terminology related to weak derivatives
(Paragraph A.4.2): By D(Q)) we denote the space of infinitely smooth functions with
compact support in 2, (distributions over £2,),

D) = {p € C5°(S); supp(y) C O},

where the support of a function ¢ : ), — R is defined by

supp() = {& € Qu; p(x) # 0}.

Recall that since €, is open and supp{y) closed, the support cannot touch the boundary

O In other words, there must be a belt along the boundary 99, where ¢ vanishes. We

use the symbol D7 (v) for Ju/8z; in the sense of distributions (see Definition A.56).
Using /., define the functions w; € L%(Q,), 7 = 1,2,...,d as

w;|k = D7 (v]k)

for all K € T, ,,. We will show that v € H*(Qy,) by verifying that w; = D7v.
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Using Green’s theorem (Theorem A.29), for every ¢ € D(£);,) we obtain

/Quw~ > /w]sﬂ— Z/ (vlk) D’s@+Z/ VKOV,

KeTy

where v is the outer unit normal vector to K. Since ¢ vanishes on 9, and v, =
—Vk, = v on the common face f, by 2. we have

/ wip = - / wDigp + 3 / (vik, = vlK,)ov;
Q Qp

ff=KiNK2. K1,K26Th )
—/ vD’p,
O
and thus w; = D7v.

Conversely, if we assume that v € H'(€),), it follows at once that /. holds. Using
further w; = DJv, we obtain that

Z /f(v|l<1 — Uk, Jpr; =0

frf=K1NK2, K, K2€Th

forall g € D(Q),j = 1,2,...,d. Hence, 2. is satisfied. [ |
The conformity of meshes consisting of Lagrange Q*- and P!-elements to the Sobolev

space H* will be discussed in Chapter 4. Let us close this chapter with the discussion of
equivalence of nodal elements.

3.4 EQUIVALENCE OF NODAL ELEMENTS

Let us return to the one-dimensional Lagrange nodal elements for a moment again. Assume
the reference domain K, = (—1,1) and p + 1 disjoint points —1 = y3 < yp < ... <
yp+1 = 1. The polynomial space has the form P = PP(K,) and the degrees of freedom
are defined as L;(¢g) = ¢(y;),i =1,2,...,p+ 1forallg € P.

Consider another interval K C R connected with K, through the affine reference map
237N, z; + Kqg — K. We construct the Lagrange element (K, P, ¥) by defining new

nodal points 41,42, .- ., ¥p+1 € K, U; = x (yi), new polynomial space P,
— {goa7hi g€ P},

and a new set of degrees of freedom ¥,

Li(§) = §(3s) forall g€ P.

The affinity of the map x ;. implies that P= P”(f( ). The degrees of freedom are invariant

under the map @ : P — P,
B(g) =goaz,

in the sense that g(y;) = §(z z(y:)). This means that

Li(g) = Li(®(g)) forallge P, (3.31)
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and we say that the Lagrange elements are equivalent under the map ®. Since the underlying
reference map x ; is affine, sometimes one talks about affine-equivalence. The preserva-
tion of the degrees of freedom (3.31) allowed us to perform the complete finite element
discretization on the reference interval K, in Chapter 2. The next definition extends the
notion of equivalence of one-dimensional Lagrange elements to general nodal elements:

Definition 3.8 (Equivalence of nodal elements) Assume a pair of nodal finite elements
(K,P,%), 2 = {Ly,Lo,...,Ln.} and (K.P,%), £ = {L1,Ly,..., Ly,}. Let® :
P—P be a bijection. We say that the elements are equwalent if

P = &(P), (3.32)
and if the degrees of freedom satisfy

Li(g) = Ly(®(g)) forallg€ P and i =1,2,...,Np. (3.33)

Notice that condition (3.32) includes the existence of a spatial bijection z; : K — K.
B EXAMPLE 34 (Equivalence of Lagrange elements on simplices in R?)

Let (K, PP(K), %) and (K, PP(K), ) be a pair of unisolvent Lagrange nodal ele-
ments on simplices (i.e., K and K are intervals in 1D, triangles in 2D or tetrahedra
in 3D). Then there exists a bijective affine map z : K — K. The elements are
equivalent if and only if the nodal points in K and K are compatible under %

B EXAMPLE 3.5 (Elements containing DOF associated with derivatives)

Elements containing derivatives as DOF usually are not equivalent. Let us demon-
strate this using a simple one-dimensional example. Consider two bounded intervals
K = (a,b) and K = (&, b) of different lengths | K| and |K|. Define a nodal element
(K, P, ¥) using the space P = P'(K) and the degrees of freedom

Li(g) =g(a), Li(g)=4'(b), ge€P

Analogously the nodal element (K, P,%) is equipped with the space P = PYK)
and the degrees of freedom

Li(g)=g(a), L2g)=g'(b), ge€P

The situation is depicted in Figure 3.10.

Figure 3.10 A pair of one-dimensional finite elements which are not equivalent: the black circles
stand for DOF associated with function values and the arrows indicate DOF related to the derivatives.
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Let zx : K — K be an affine reference map. Because of the presence of the
Lagrange degrees of freedom L, and L, the linear operator ® : P — P from
Definition 3.8 must have the form

b(g)=go x;(I.

Then L,(g) = L1(®(g)) forall g € P. However, for the degrees of freedom Ly and
L+ it holds

Lo(®(g) = §'(B) = %g'(h) £ g'(8) = Lalg).

and thus these elements are not equivalent.

3.5 EXERCISES

Exercise 3.1 Prove Lemma 3.1.

Exercise 3.2 Prove Proposition 3.2.

Exercise 3.3 Prove Proposition 3.3.

Exercise 3.4 Prove Proposition 3.4.

Exercise 3.5 Write the explicit form of the affine inverse map :1:1_\,1 from Proposition 3.3.

Exercise 3.6 Construct the explicit formula for the inverse of the biaffine map xy : K; —
K, corresponding to a convex quadrilateral with straight edges, whose nonpolynomial
character was discussed in Corollary 3.1.

Exercise 3.7 Consider a regular finite element mesh Ty, , over a bounded domain Qy, C R?,
consisting of a family of Q*-elements constructed using the master QQ'-element on the
reference domain K, and the reference maps (3.13).

1. Is the finite element mesh conforming to the space H'(Q1,)? Show in detail.

2. Show that Q'-elements are equivalent under the map (3.13).

Exercise 3.8 Consider a Lagrange PP-element on the reference triangular domain K.
The polynomial space P is defined as P = span{ziz}; 0 < i+j < p}, p > 1, and the set
of degrees of freedom Y. consists of Np = (p+ 1) (p+ 2)/2 linear forms Lii(g) = g(yw,),
where the Np nodal points y,,; are defined by

Y =(—1+2k/p.-1+2l/p) k=0,1,....,p;1=0,1,p—k.
1. Check the unisolvency of this finite element.

2. Construct the corresponding nodal basis.

3. Consider a mesh Ty, , consisting of a family of PP-elements obtained using the master
PP-element on the reference domain K, and the affine reference maps (3.21).
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(a) Does this mesh conform to H'? Show in detail.

(b) Show that Lagrange PP-elements are affine-equivalent under the map (3.21).

Exercise 3.9 Consider a nodal finite element (K, P, %) on the reference square domain
K, with P = span{1,z1,22,7} — 23} and & = {Ly, L3, L3, L4}, where

Li(g) = g(-1,0),
Lo(g) = ¢(1,0),
Ls(g) = g¢(0,-1),
Li(g) = g(0,1).

1. Check the unisolvency of this finite element.
2. Construct the corresponding nodal basis (if relevant).

3. Write the formula for the local element interpolant T (g), and apply it to the function
g(x) = cos(m(z1 + z2)) € H'(K,). Present plots of both g and Tk (g).

4. Consider a finite element mesh Ty, , consisting of a family of such elements obtained
using the reference maps (3.13).
(a) Are these elements equivalent under the map (3.13)?
(b) Does the mesh Ty, , conform to the space HY(Q4)? Show in detail.

Exercise 3.10 Consider a nodal finite element (K, P, %) on the reference square domain
K, with P = span{1,x1,z2,27 — 23} and ¥ = {L1, Lo, ..., L4}, where

1
Li(g) = /_g(—l,xz)dxa,

1

Ly(g) = /_ g(1,z3) dxs,

1

1
Li(g) = /_ olzr, ~1) dar,

1

1
/ g(z1,1)dz;.

1

fl

L4(g)

1. Check the unisolvency of this finite element.
2. Construct the corresponding nodal basis (if relevant).

3. Write the formula for the local element interpolant Ty (g), and apply it to the function
g(x) = cos(m(z1 + z2)) € H (Ky). Present plots of both g and Tk (g).

4. Consider a finite element mesh T, ;, consisting of a family of such elements obtained
using the reference maps (3.13).

(a) Are these elements equivalent under the map (3.13)?

(b) Does the mesh Ty, ,, conform to the space HY(Q4,)? Show in detail.
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Exercise 3.11 Consider a nodal finite element (K, P, ¥} on the reference square domain

K with P = span{l,z, s, 22, 7122, 23,7122, 2222} and ¥ = {Ly, Lo, ..., Ls}, where
Ll(g) = g(_17_1)7 Lz(g):g(lv_l)a
Li(g) = 9¢(1,1),  La(g) = g(-1,1),

Ls(g)

1 1
/ g(—1,z2) dxa, La(g):/ 9(1, z2) dza,
— —1

1

1 1
Li(g) /_lgm,—l)dxl, Ls<g>:/_lg<x1,1>dx1‘

Check the unisolvency of this finite element.
Construct the corresponding nodal basis (if relevant).

Write the formula for the local element interpolant Tk {g), and apply it to the function
g(x) = cos(w(z1 + x2)) € HY(K,). Present plots of both g and I (g).

Consider a finite element mesh Ty, ;, consisting of a family of such elements obtained
using the reference maps (3.13).

(a) Are these elements equivalent under the map (3.13)7
(b) Does the mesh Ty, , conform to the space H Q) ? Show in detail.

Exercise 3.12 Consider a bounded one-dimensional domain Q0 = (a,b) covered with a
finite element mesh Ty, ,, consisting of M cubic Hermite elements (K;, P;, L;), K; =
(zic1,7i), 1 =1,2,..., M. The set of degrees of freedom ¥, is defined as

ng‘)(g> = g(ﬂfz‘—l),
L) = glza).
Léi)(g) = 9/(11—1)7
Lg) = g'(x),

foralli=1,2,...,.Mand g € P,.

1.
2.

Find the minimum admissible polynomial degree pg for these elements.

Let P, = PPo(K;) foralli = 1,2,..., M. Decide whether the elements are or are
not unisolvent. Show in detail.

Construct a nodal basis B; for every element (K, P;,%;).
Write the local element interpolants and the global interpolant.

Does the finite element mesh Ty, , conform to the space H*(2)? Show in detail.
Hint: The H?-conformity requirement in 1D is once-continuous differentiability.

Consider the space
Vip ={v e CHOQ)NC(Q); v|k, € P, foralli=1,2,...,M}.
What is the dimension N = dim(V}, p)?

Use the nodal basis functions on every element to design N suitable basis functions
of the space V}, ,. Remember that every basis function has to be once continuously
differentiable to lie in H%((2).
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CHAPTER 4

CONTINUOUS ELEMENTS FOR 2D
PROBLEMS

After learning about the general concept of nodal finite elements in Chapter 3, the reader
should know how to design general nodal finite elements of the form (K, P, ¥), and be able
to perform the following operations:

e check the unisolvency of the element (K, P, 2},

e construct the unique set of nodal shape functions 8y, 85, . . ., O, satisfying the delta
property (3.4),

¢ use the set of degrees of freedom ¥ and the nodal shape functions 61,6z, ...,0n, to
construct the local interpolant Ty,

e construct the global interpolant 7 on a given finite element mesh and check whether
or not the mesh conforms to a given space of functions,

analyze the equivalence of nodal elements defined on different domains K and K.

In this chapter we apply these techniques to continuous finite elements for second-order
PDEs in two spatial dimensions, extending the knowledge of one-dimensional continuous
finite elements acquired in Chapter 2. The lowest-order Q! / P'-elements are introduced in
Section 4.1. In Section 4.2 we discuss higher-order Gaussian quadrature in 2D. After that,
the Q' / P*-elements are extended to higher-order Lagrange nodal elements in Section 4.3.

Partial Differential Equations and the Finite Element Method. By Pavel Solin 125
Copyright © 2006 John Wiley & Sons, Inc.
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4.1 LOWEST-ORDER ELEMENTS

In this section, after introducing a suitable model problem and its weak formulation, we
show in Paragraph 4.1.2 the sequence of geometrical and functional approximation needed
to transform a PDE problem into a discrete finite element problem and we derive the
approximate weak formulation of the mode] problem. The lowest-order basis functions of
the finite element space V}, , are presented in Paragraph 4.1.3, and the weak formulation
is transformed to the reference domains in Paragraph 4.1.4. Paragraph 4.1.5 is devoted to
the constant coefficient case when precomputed template mass and stiffness integrals can
be used. Paragraphs 4.1.6 and 4.1.7 discuss the data structures and implementation, and
the section is closed with describing the interpolation on the lowest-order Q! /P!-meshes
in Paragraph 4.1.6.

411 Model problem and its weak formulation

Consider a two-dimensional bounded domain {2 with a Lipschitz-continuous boundary 5€2.
Suppose that 92 consists of two disjoint open parts I'  and I' iy such that

N =Tpuly, 4.0

as illustrated in Figure 4.1.

I-N
Figure 4.1 The domain €2, its boundary 92, and the unit outer normal vector v to 9€2.
Assume again the model equation (1.26),
-V (a1Vu)+apu=f inQ, (4.2)
with a Dirichlet boundary condition

u(x) = gp(x) forallz € T'p, 4.3)

and a Neumann boundary condition

ou

8—V(a:) =gy(x) forallxz e I'y. 4.4

The existence of a unique solution is guaranteed if I'p # 0 and

ay(@) 2 Cpyin >0 and  ap(xz) 20  inQ,
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or if
al(x) Z anin >0 and a()(:ll') Z énzi7z >0 in Q’
in which case the Dirichlet part of the boundary can be empty.

In the following we assume that the coefficient functions a; and ag are constant; the
extension to L°-functions is done analogously to Paragraph 2.2.1.

Weak formulation The weak formulation of this problem was discussed in detail in
Paragraph 1.2.8. Hence consider some Dirichlet lift function G € H({2) of the boundary
data gp, and look for the solution % in the form v = U + G. The new unknown U lies in
the space (1.65),

V={ve H(N); v=00nTp}. (4.5)

The task is to find U € V such that

a{U,v) =l{v) forallveV, (4.6)

a(U,v) = /(a1VU Vv +agUv)de, Uwvely, 4.7
Q

—
=
@
N
I

/(fv—a1VG-Vv—a0Gv)dm+/ agnvdS, wvev.
Q I'n

4.1.2 Approximations and variational crimes

Now let us go through the series of geometrical and functional approximation steps that
turn the infinite-dimensional problem (4.6) into a finite-dimensional discrete problem of the
form SY = F. At some points this requires a departure from the “mathematically clean”
variational framework. Such operations are called variational crimes, and in practice it is
not really possible to avoid them.

Step 1: Approximation of the domain 2 The domain  is approximated by a po-
lygonal domain €2, as shown in Figure 4.2.

Figure 4.2  Polygonal approximation (2, of the domain 2. Generally Q;, # Q and even ), ¢ Q.
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If ), ¢ €, then the solution and other functions from the weak formulation (4.6) are not
defined where they are to be approximated or evaluated. This is the first variational crime.
If the boundary 912 is piecewise-polynomial, then its approximation can be done exactly
using curvilinear elements (see, e.g., [111]).

Step 2: Finite element mesh Assume the domain €2, be covered with a regular finite
element mesh 7, , (Definition 3.5) consisting of M nonoverlapping finite elements K, Ko,
..., K. Let all the elements be given the same polynomial degree p = 1. The discretiza-
tion on irregular meshes is described, e.g., in [111]. Figure 4.3 shows examples of regular
meshes on the domain 2;,. The mesh is called hybrid when it contains both triangular and
quadrilateral elements.

Figure 4.3 Regular triangular, quadrilateral and hybrid finite element meshes on €2,.

In order to facilitate the implementation, it is natural to require that the points TpnTy
coincide with some vertices of the mesh 7j, ,,.

Step 3: Approximation of boundary conditions After replacing the original do-
main € by its polygonal approximation €2, one loses the boundaries I'p and I' v, where
the Dirichlet and Neumann boundary conditions were prescribed. The boundary conditions
(4.3) and (4.4) have to be transferred in some suitable way to the polygonal parts I'p »,
and T, of the new boundary 0€),. What one usually does is to define new boundary
conditions by

u(x) = gp(z) forallzelpy, (4.8)

Ou

5;(3:)
This is another variational crime, since the functions ¢gp and gy are evaluated where they
were not defined. Usually this goes through in the implementation, but it should be checked
how much this approximation violates the underlying physical problem.

I

gn(xz) forallx € T'np.

Step 4: Approximation of the spaceV  According to the geometrical approximation
Q, =~ Q from Step 1, the space V(2) is approximated by a piecewise- polynomial space
Vh,p(Qh),

Vhp = {U € C(); Uh,I’IFI)J: =0; (4.9)
v|k, € PP(K;)if K; is a triangle,
vk, € QP(Ky) if K; is a quadrilateral}.

This also is a variational crime, since the Galerkin method does not admit a situation when
Vip V.
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Step 5: Approximate weak formulation The discrete problem can be formulated
after the Dirichlet lift G € H(§2) is “approximated” with a function G, , € H!(€2). The
approximate weak formulation of the model problem reads:

Find a function U} ,, € V4 ;, such that the identity

/ (a1VUh‘p Vv + GQU;M,U) dz (4.10)
o

= / (fv—a1VGhyp Vv —agGprpv)de + / argyvds,
JQy, Ty
holds for all v € Vj ,. As we mentioned before, the load function f € L?(2) as well as
the coefficients aj,ay € L*°()) are evaluated in the domain 2, where they may not be
defined if ), ¢ Q.

Step 6: The system of linear algebraic equations As usual, the unknown function
Uy, p € Vi pisexpressed as alinear combination of some N basis functions vy, vs, . . ., vy €
V},p (a standard choice will be mentioned in Paragraph 4.1.3), with unknown coefficients

Y1, Y25+ YN>

N
Unp =Y ysu;. (4.11)
j=1
Testing (4.17) by the basis functions v;, 7 = 1,2,..., N, one obtains a system of IV linear
algebraic equations,
N
Z(yJ/ a1V, - Vo 4+ aguyv;) de 4.12)
= Q,
= / (fvi — a1 VG - Vo — agGh o) de + / argnv; dS
Qp SN n
foralli =1,2,..., N. The system can be written in the matrix form (2.13),
SY = F, 4.13)

where § € RVY*¥ js the stiffness matrix, Y € R¥ the vector of unknown coefficients and
F € RY the load vector.

In order to assemble the system (4.13), one needs to construct suitable basis functions
v1,vg,...,vn of the space Vj, . Let us do this in the next paragraph.

4.1.3 Basis of the space V}, ;,

Assume a regular finite element mesh 7, ,, consisting of M, Q'-elements and M,, P!-
elements, where M, + M, = M > 1. By 1,2, ..., Ty denote the N grid vertices that
do not lie on the Dirichlet part I'p ), of the boundary 8¢, (we say that these vertices are
unconstrained).
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Proposition 4.1 The dimension of the space V}, y, is equal to N, where N is the number of
unconstrained grid vertices.

Proof: This follows easily from the definition (4.9) of the space V}, ;. |

Because of the one-to-one relationship of the basis functions v; and the unconstrained
grid vertices x;, the lowest-order basis functions are called vertex functions. They have the
form of “pyramids” shown in Figure 4.4, that naturally generalize the one-dimensional “hat
functions” (2.25).

Figure 4.4  Vertex basis functions of the space V4, , on meshes consisting of Q'- and P*-elements.

These functions are defined as follows: Assume a vertex patch S(z) consisting of all
mesh triangles or quadrilaterals sharing the vertex x;,

S(i) = U K, (4.14)

EEN(i)
where the index set N (i) is defined as
N(#) = {k; K € Tpp, x; is avertex of K }. (4.15)
The vertex function v; is defined to be zero in €25, \ S(i}, and in S(7) it has the form

vi(x)r, = (pg o 3’?{1)(“’) if Ky € S{7) is a quadrilateral, 4.16)
vi(x)|lk, = (@i o0 x}}i)(a:) if K € S(7) is a triangle.
Here for every element K € S(i), pg" or ;" is the unique vertex nodal shape func-
tion on the reference domain K, or K/, respectively, such that ga:;"(w;{i (z;)) = 1lor

oi (@, () = 1.

Remark 4.1 The reader does not have to worry about the presence of the inverse reference
map in the relations (4.16), since the inverse map is not used explicitly in the computer code.
All operations of the element-by-element loop will be performed on the reference domains,
using suitable connectivity arrays. This will be discussed in Paragraph 4.1.7.

Proposition 4.2 For every unconstrained grid vertex x;, the corresponding function (4.16)
is continuous in Q1. The functions vy, va, . . ., vn forma basis of the space V}, ;,, and satisfy
the delta property

v,-,(:cj):éij, 1SZ]§N

Proof: The first part follows from the affinity of the functions v; along edges in the patch
S(4). The rest is obvious from the construction. |
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4.1.4 Transformation of weak forms to the reference domain

The idea of the assembling algorithm is analogous to the one-dimensional case discussed
in Chapter 2. Again, both the global stiffness matrix .S and the right-hand side vector F
will be filled in an element-by-element fashion. Therefore it is convenient to view identity

(4.12) as a sum over all elements K,,, m = 1,2,..., M:
N M
zyj Z / (a1Vu; - Vv, + agu;v;) dz 4.17)
j=1 m=17Km

M M
= Z / (fvi —a1VGhp - Vu; — agGh pvi) de + Z / _a;gnvdS,
m=1 m m=1YINaNKn
to be satisfied for all basis functions v;, ¢ = 1,2,..., V.

First let us transform the element integrals from (4.17) to the appropriate reference
domain, which is either K, or K. Since the transformation on quadrilateral and triangular
elements is analogous, it is sufficient to discuss, for example, the triangular case.

Transformation of function values A function w(x) € C(K,,), 1 < m < M,
is transformed to the reference domain K, in virtue of the affine reference map (3.21),

zK, (&) = (rx,, 1(8), 2K, 2(£)), as follows:

W™ (&) = (wozk, )(€) = w(zk,, 1(£), 7K, 2(£))- (4.18)

Transformation of partial derivatives This is a good exercise for the chain rule
of differentiation. Assume that w € C'(K,,). The partial derivatives of w(™)(£) =
(w o x,, ) have the form

m

Ol SOw ame,l ow ame,Q
o9& © = le=ec.© ER) ©F 5, o=, &) B3 (), (4.19)
™) ow Ork,. 1 Jw Orx,, 2

—a‘g(é) 8x1‘m=mkm(€) 3&2 (€)+5£1$:$Km(§) 8572"’ (6)

This can be written as

dw™ Ork,1 Orxk, 2 dw . ow
B _ d 0 or, | _ (DPzx. oy
oat | = | otes deans || 0w ‘( Dé ) |
852 8{2 8&2 81‘2 81’2

where Dx g, /DE stands for the Jacobi matrix of the map x g, . Recall that nonsingular

m

matrices satisfy
-1
(a7) =) =4

Thus the gradient Vw(z) at an arbitrary point & € K, is transformed to the point § =
:l:}_\l(il:) € K, as follows,
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Dme

-T
Vw(w)z( De ) V™ (g). (4.20)

According to (4.20), the stiffness term in (4.17) transforms from a mesh element K, to the
reference domain K as

/ lar{x) Vv () - Vui(x) + ao(@)v; (x)vi(x)] dz 4.21)

- [ 7 [ai’”(&) (D%’gﬂ)_TV@ﬁ-m)(@} - {(D,“;’gm )#TWE’"N&)] it

where

7€) = (viomk,)(€). TV(E) = (v 0=k, )(E),

and

™€) = (a1 0wk, )(€), @™ (€) = (a0 0 zk,, )(E)-

Since the reference map x ., in the triangular case is affine, the Jacobian

Jrn(€) = det (Df)’g"m)

is constant, and without loss of generality, we can assume that it is positive: This is the case
when x k., does not change the orientation of edges between the reference domain and the

mesh element. In the quadrilateral case the Jacobian and both the Jacobi matrices on the
right-hand side of (4.21) generally are not constant and have to be integrated numerically.

Remark 4.2 (Explicit inversion of 2 x 2 matrices) The inverse of nonsingular 2 x 2 ma-
trices can be done without the Gauss elimination procedure, using an explicit expansion

Jormula
a b\ 1 d —b
c d T ad-bc\ —¢c a |

In the case of the Jacobi matrix Dx g /| DE the denominator (which is the Jacobian Jy,,)
cannot be zero since the map x g, is a bijection.

Denoting the constant entries of the inverse Jacobi matrix by

d
Dil:Km -1 B ang)
( D£ ) _{ al'n - ' (422)

where d = 2 is the spatial dimension, and assuming the constantness and positivity of Jg, |
one can rewrite (4.21) into
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/ [a1(x)Vv;(2) - Vuia) + ao(z)v;(x) Vv (x)] dz (4.23)
Ko
d 81) (m) 86(7") d 817(7”) 85("1)
~(m) A s
_IZI/ Tk, ™ (&) <Z 5 e ) (;—855 o ) de

/ Tre, @S ()50 (€)50) (€) dE.

4.1.5 Simplified evaluation of stiffness integrals

Repeated numerical integration in (4.23) on every mesh element K, m=12...,M,
can be avoided if the following two conditions are met:

1. The reference map x g, is affine. This is the case when either

(a) the PP-element K, is triangular with straight edges

or

(b) the QP-element K, is a rectangle.

2. All coefficients of the elliptic operator (1.1) are constant.

Then (4.23) can be simplified to

/ [a1Vv;(z) - Vui(a) + apv;(z) Vo (x)] dz (4.24)
Ko

ot 5 0el” / 03" 0™
_J"""alzz oz, =1 aln K (357 8-*’ %

n=1r=1

+kaa()/ /(m) (m)d€~
K

where K is either K, or K,. Hence forallm = 1.2,..., M, the stiffness terms (4.24) can
be evaluated elementwise using the precomputed constants
a (m)
JK - E 1 <n.r<2, (4.25)
T

corresponding to the reference maps x i
integrals of the form

and a few precomputed master element stiffness

m?

Ou b a~<”l) ol v
d¢ = / L dQ (4.26)

Here ", " are the shape functions (3.20) defined on the reference domain K = K,,and

1 <sor < d Appropriate shape functions are linked to the transformed basis functions

,~,<7 d
I'j an 1‘ Vld Connecthty arrays.
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4.1.6 Connectivity arrays

Analogously to the one-dimensional case, the connectivity arrays lie at the heart of the
element-by-element assembling algorithm. Assume that the hybrid Q*/P* mesh 75 , is
represented via an element array

Element *Elem;

of the length Af.

Element data structure The basic element data structure may be defined as follows:

struct {
int nv; //number of vertices
//(4 for quadrilaterals, 3 for triangles)
int *vert; //global vertex indices (length nv)
int *vert_dir; //vertex Dirichlet flags (length nv)
int *vert_dof; //vertex connectivity array (length nv)
} Element;
The variable Elem[m] .vert [j1,j = 1,2...., nv,contains the index of the vertex ¢, (v;)

of K, (as it comes from the mesh generator, i.e., this is not the index of an unconstrained
vertex). The ordering of vertices and edges of Q*- and P*-elements was shown in Figures
3.2 and 3.5 in Section 3.2. The flag Elem[m] .vert dir{j], j = 1,2,...,nv, is zero if
the vertex ., (v;) of Ky, is unconstrained, and one otherwise.

Construction of connectivity arrays Assume that for all elements K, € Ty,
m = 1,2,..., M, the number nv and the arrays vert and vert _dir have been defined.
The first part requires reading a mesh file, and the latter linking Dirichlet boundary conditions
to the constrained grid vertices.

The jth component of the connectivity array Elem[m] .vert_dof, j = 1, 2, ..., nuv,
contains either

o the index of the vertex basis function of the space V}, ;, associated with the vertex
Tk, (v;) of K, (if Elem[m] .vert_dir[j] == 0),

e or a negative integer number -NBC (if Elem [m] .vert_dir[j] == 1).

In the case of nonhomogeneous Dirichlet boundary conditions, the values of the Dirich-
let lift G at the constrained vertices can be stored via an array of real numbers. For every
constrained vertex, NBC may represent the corresponding index in this array. Using this
construction, the implementation of nonhomogeneous Dirichlet boundary conditions is
straightforward, and it does not need to be discussed here in more detail. The algorithm
that creates the element connectivity arrays vert_dof for all Q- and P!-elements in the
mesh 7;, ,,, looks as follows:

Algorithm 4.1 (Enumeration of vertex DOF)

By Nvert denote the total number of grid vertices in 7} .
Allocate a temporary array int *D0Farray of the length Nvert.
//Initialize DOFarray with the numbers 1,2,...,Nvert:

for i=1,2,...,Nvert do DOFarray[il := i;
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//Deactivate constrained vertices of all elements:
for m=1,2,...,M do { //global element loop
for j=1,2,...,Elem[m].nv do { //local vertex loop
if (Elem[m].vert.-dir(j] == 1 then {
DOFarray[Elem[m] .vert[(jl] := -1;
}
}

//Re-enumerate vertices, leaving out the deactivated ones:
count := 1;
for i=1,2,...,Nvert do {
if (DOFarray{il > -1) then {
DOFarray[i] := count;
count := count+l;

}
}

//Read the unconstrained vertex indices back into elements:
for m=1,2,...,M do {
for j=1,2,...,Elem[m].nv do {
if (Elem[m].vert.dir(j] == 0) then {
Elem[m].vert.dof[j] := DOFarray[Elem[m].vert[jll;

}
}
}

N := count - 1; //This is the dimension of the space Vh,p.
Deallocate the array DOFarray.

4.1.7 Assembling algorithm for Q'/P'-elements

Assume that the pair of simplifying conditions mentioned in Paragraph 4.1.5 hold and
the stiffness term (4.23) reduces to (4.24), 1.e., that the functions (4.25) are constant. In
addition, assume that the problem (4.2) is equipped with homogeneous Dirichlet boundary
datal'p; = 09y and gp =0on FD’},.

Preprocessing step (when (4.24) holds) In this case the global stiffness matrix S
can be filled very efficiently based on (4.24). Begin with evaluating the constant Jacobi
matrix of the reference map x g, on every element K,,, m = 1,2,..., M, using the
formulae (3.21), (3.13). Store the constant absolute value of the determinant of the Jacobi
matrix, for example, as

Elemm].jac :=|Jg, |-

Invert the Jacobi matrix (as described in Remark 4.2), and store the constant inverse partial
derivatives, for example, as

aérm)
= Oxn

Elem|m|.inv_j(r{{n] : , 1<n,r<d.

Evaluate the master element stiffness integrals (4.26) for both the reference quadrilateral K,
and reference triangle K; (whatever case is relevant). Store these constants, for example,
in two separate global four-dimensional arrays

Bt Hpvk

MEST Q[k][1}]r][s] := ¢, ¢, 9

1<k l<4,1<rs<d

q
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with @', " defined in (3.11), and
Ot Ptk
0L, O,

1<k 1<31<rs<d.

MESI.T{k][1][][s] := /
Ky
where "%, " were defined in (3.20). Further, evaluate the master element mass integrals,

MEMI_Q[k][1) :=/ plotcdg, 1<k 1<4,

°

and

MEMI T[k][1] := /

JK

PlptRdE, 1< k<3,
t
Then for *-elements the stiffness matrix contribution (4.24) attains the form

double SMC(Elem, k,1l,m,MESI_Q,MEMI_Q) := Elem(m|.jac * al
d d d

* >~ S " Elen[n].inv_j[r][n]+ > Elemn].inv_j[s|(n] + MEST_Q[k](1][r][s]

n=1%1r=1 s=1

+Elem(m].jac * a0 * MEMI Q[k][1], 1<kl <4,
and analogously for P'-elements one has

double SMC(Elem,k,1,m,MESI_T,MEMI_T) := Elem[n|.jac  al
d d d

* Z Z Elem(m].inv_j[r]{n]* Z Elem[m].inv_j(s|[n| * MESI_T[k|[1}[r|[s]

n=1r=1 s=1

+Elem[m].jac * a0 » MEML_T[k|[1], 1<k, I <3.

The idea of the element-by-element assembling algorithm is analogous to the one-dimensional
case (Algorithm 2.5). With the connectivity arrays vert_dof available on all elements K,
k=1,2,..., M, and the constants precomputed above, it reads:

Algorithm 4.2 (Assembling algorithm)

N := M,y;
//Set the stiffness matrix S zero:
for 1 = 1,2,...,N do for j = 1,2,...,N do S[il1[3j] := O;
//Set the right-hand side vector F zero:
for i = 1,2,...,N do F[i] := 0;
//Element loop:
form = 1,2,...,M do {
//Outer loop over shape functions:
for i = 1,2,...,Elemn[m].nv do {

//Index of the test function vy, € V., (row position in §)
ml := Elem[m].vert_dof[il;
//Inner loop over shape functions:
//(Filling the mith row of S)
if (ml > -1) then for j = 1,2,...,Elem[m].nv do {

//Index of the basis function v, € Vj,; (column position in S)

m2 := Elem[m].vert.dof[jl;

if (m2 > -1) then {

if (Elem[m].nv == 4 then {
S[mi1,m2] := S[mi,m2] + SMC(Elem,i,j,m,MESI_Q,MEMI_Q);

else {
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S[m1,m2] := S[ml1,m2] + SMC(Elem,i,j,m,MESI_T,MEMI.T);

}

} //End of imner loop over shape functions
//Contribution of the test function v;,, to the right-hand side F':
if (ml > -1) then {

Flm1] := Flm1] + Elem(n].jack [ f)(€)pvi (&) d€;

1

} //End of outer loop over shape functions
} //End of element loop
//Notation fUm}(g) = f(zk,, (£)) vas used.

If the simplifying conditions formulated in Paragraph 4.1.5 do not apply, then the Ja-
cobian, entries of the inverse Jacobi matrix, and other values are no longer constant in the
elements. In such case, (4.24) has to be replaced with the more general relation (4.23), and
instead of reading the precomputed entries from the MESI and MEMI arrays, the correspond-
ing integrals have to be evaluated numerically.

4.1.8 Lagrange interpolation on Q' / P'-meshes

Assume a regular mesh 7}, ,, over a bounded domain €2, (Definition 3.5), consisting of Q-
and/or Pl-elements (K;, P;,%;),i = 1,2,. .., M. Foreach quadrilateral element Q* (K;),
the polynomial space P; and the set of degrees of freedom X, have the form (3.16) and
(3.17), and the unique nodal basis was defined in (3.18). For triangular elements P'(K;),
the space P;, the set ¥;, and the unique nodal basis were defined in (3.22), (3.23), and
(3.24), respectively.

Proposition 4.3 For any functiong € C (Q), the global Lagrange interpolant I(g) is con-
tinuous in Q. Thus every regular mesh consisting of Q' - and/or P* -elements is conforming
fo the space H*(Q).

Proof: The nodal basis functions (3.18) and (3.24) are affine along the edges of any
quadrilateral and triangular element K € 7, ,, respectively. The definition of the degrees
of freedom (3.17) and (3.23) implies that on every K € 7T}, ,, the local interpolant Zx (g)
coincides with the interpolated function g at the vertices of K. Since the mesh T;Lp I
regular, the global interpolant Z(g) coincides with the interpolated function g at all mesh
vertices and it is affine on the edges of all elements. Thus obviously it is continuous in £, M
The global interpolant is constructed according to Definition 3.6, elementwise, via the
local interpolants (3.28). Given a function g € C(Qy) on an element K, € T, p, the
local interpolant on K, is evaluated on the corresponding reference domain K = K,
or K = K, using the set of vertex shape functions (3.18) or (3.24) on K and using the
values of the function g o &y, at the vertices of K. The result is transformed back to K. -
According to Proposition 4.3, one obtains a function which is continuous in §2j,.

4.1.9 Exercises

Exercise 4.1 Prove Proposition 4.1.
Exercise 4.2 Consider the problem
3b ., b

3 X 3a 5 a’ 3
—Au = ST T 5T 8 (6z1 — 3a) + (622 — 3b) ST 5t T4
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with homogeneous Dirichlet boundary conditions in a bounded domain Q@ = (0,a) X
(0,b), where 0 < a,b € R. Ler the domain 2 be covered with a Cartesian quadrilateral
finite element mesh consisting of M = M, x My Lagrange Q'-elements (the division is
equidistant in both axial directions).

1. Write the weak formulation and approximate weak formulation of the problem.

2. Perform a unique enumeration of the interior grid points. Use an outer loop in the
x1-direction and an inner loop in the xo-direction.

3. Write element connectivity arrays for general M and M.

4. Print all master stiffness integrals of the form

6<p”“‘ a(pv,
K, afr 859

de, 1<k1<4, 1<rs<2,

that you will need for the assembling. (This is a little dull but it helps discover errors. )

5. Write the reference map x;5, 1 < ¢ < My, 1 < j < My for the element K,; on
the position (i, 7) in the mesh. Write its Jacobi matrix, Jacobian, and inverse Jacobi
matrix.

6. Implement the element-by element assembling procedure (Algorithm 4.2).

7. Implement an algorithm for plotting the approximate solution uy, ,, in an element-by-
element fashion. First construct the polynomial on the reference domain by means of
the shape functions, the corresponding connectivity array and the coefficient vector.
Then transform it to the physical element K; in virtue of the reference map x;;.

8. Present plots of the approximate solution up, 5, for

(a) a=2,b=1, M; =10, My =5,
() a=2,b=1, M; =20, My =10,
(¢) a=2,b=1, M; =40, M, = 20.
(d) a=2,b=1, M; =60, My = 30.

9. The exact solution is

u(zy,xp) = 122(a — z1)(b — z2) <% - :r1> <g - :L'2> .

Present the convergence curve of the above computations in the decimal-logarithmic
scale. Use the H(Q)-seminorm. Put the number of DOF on the horizontal axis.
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4.2 HIGHER-ORDER NUMERICAL QUADRATURE IN 2D

In this section we discuss higher-order Gaussian numerical quadrature rules on the reference
domains K, and K. For details regarding the theory and open problems in modern Gaussian
numerical quadrature, we refer to [35, 46, 47, 48, 49, 70, 80, 104, 108] and [114]. For
practical implementation, CD-ROM containing Gaussian quadrature data for various 2D
and 3D reference domains and polynomials of the degree up to p = 20 is part of [111].

With the quadrature rules available on the reference domains K; and K, the quadrature
on arbitrary quadrilateral or triangular mesh elements is performed via the Substitution
Theorem,

/ f(@)de = / Tk (©)(f o 2x)(€) de.
K K

Here either K = K, or K = K, and Jx (€) is the Jacobian of the bijective reference map
xr: K — K.

4.2.1 Gaussian quadrature on quads

Easiest to implement are quadrature formulae for Cartesian-product geometries, such as the
reference square K, = (—1,1)2.

Composite Gaussian quadrature Consider the formula

A,
/K f(§)dg ~ Z/lugu.zﬁf(yga.i)~
@ i=1

where y,. ;. w,, ; are Gaussian integration points and weights on the one-dimensional
reference domain K, = (—1, 1) that integrate exactly all polynomials of the degree p and
lower. It is easy to see that the product formula

Mo M,

/ / g(&1.&2)dE1dEs =~ Z Z Wy, i Wq, j9Yga.isYga.j) 4.27)
Ko J K,

i=1j=1

has the order of accuracy p on K, for functions of two variables (all bivariate polynomials
up to the degree p in each variable are integrated exactly). An advantage of the composite
quadrature is that it easily can be generalized to incomplete product polynomials (when the
1D polynomial spaces in the variables &y, & differ). In this way one can obtain quadrature
rules of practically unlimited order of accuracy. More efficient formulae are available for
spaces of complete polynomials (see [46]).

4.2.2 Gaussian quadrature on triangles

The triangular case is more difficult. First let us show a simple scheme based on the
translation of the integration from the reference triangle K to the reference quadrilateral
K

q-
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Translation of quadrature from K, to K, This procedure can be viewed as “stretch-
ing” functions defined on K to be defined on K, in such a way that their integrals remain
unchanged. The following proposition defines the technique precisely.

Proposition 4.4 Let g(&) be a continuous bounded function defined on the reference trian-
gle K;. Then its integral over K, is equal to the integral over K, of an adjusted function
given by the following formula,

foses [ 5l

Proof: Consider the mapping

l—yg
Ey)y—E&y) = ( BRI <y‘+1)>
Y2

), yz) dy. (4.28)

that transforms K, to K;. Its Jacobian

de t<D€> _ 1__&
Dy 2

is positive except for the upper edge y» = 1 where it vanishes. However, the mapping is
one-to-one and the standard Substitution Theorem yields the result immediately. |

Remark 4.3 The transformation §(y) induced an additional affine factor (1 — y2)/2 in
the integrand on the right-hand side of (4.28). The order of the quadrature rule in the
ya-variable should be increased accordingly.

More difficult to implement, but certainly worth the effort, are the economical Gaussian
quadrature schemes.

Economical Gaussian quadrature The fundamental equation for the construction
of the integration points and weights for the reference triangle K, reads

m

&1
/ / F&1.6) d6rdey = ) wi f(€1k-Ea)- (4.29)
~1J-1

k=1

where m denotes the number of integration points. Each point is characterized by three
unknowns: wg, &1 &, and &, . After inserting a suitable polynomial basis into (4.29), one
may obtain equations that are not independent. Systems with more unknowns than equations
are obtained when the number 7 of terms in complete polynomials of the degree p is not
divisible by three: for p = 3, for example, one has n = (p+ 1){p+2)/2 = 10 independent
polynomials, and thus at least four Gaussian points must be used (12 unknowns). Other
standard difficulties are related to the nonuniqueness of solution to the nonlinear system,
where weights can come out negative or points outside of the domain of integration. The
design of optimal Gaussian quadrature formulae for higher polynomial degrees involves
many open problems (see, e.g., [35, 46] and [47]).

Selected quadrature constants Tables 4.1-4.5 present the optimal Gaussian quadra-
ture rules on the reference triangle Iy of the orders of accuracy p = 1.2.....5.
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Table 4.1 Gaussian quadrature on K, order p = 1.

Point # &;-Coordinate &2-Coordinate Weight
1. -0.33333 33333 33333  -0.33333 33333 33333  2.00000 00000 00000
Table 4.2 Gaussian quadrature on K, order p = 2.
Point # &, -Coordinate &,»-Coordinate Weight
1. -0.66666 66666 66667  -0.66666 66666 66667  0.66666 66666 66667
2. -0.66666 66666 66667  0.33333 33333 33333 0.66666 66666 66667
3. 0.33333 3333333333 -0.66666 66666 66667  0.66666 66666 66667
Table 4.3 Gaussian quadrature on K, order p = 3.
Point # &;-Coordinate &2-Coordinate Weight
I. -0.33333 3333333333 -0.33333 33333 33333  -1.12500 00000 00000
2. -0.60000 00000 00000  -0.60000 00000 00000  1.04166 66666 66667
3. -0.60000 00000 060000  0.20000 00000 00000  1.04166 66666 66667
4. 0.20000 00000 00000  -0.60000 00000 00000  1.04166 66666 66667
Table 44 Gaussian quadrature on K, order p = 4.
Point # &;-Coordinate &,-Coordinate Weight
l. -0.10810 30181 68070 -0.10810 30181 68070 0.44676 31793 56022
2. -0.10810 30181 68070  -0.78379 39636 63860 0.44676 31793 56022
3. -0.78379 39636 63860 -0.10810 30181 68070 0.44676 31793 56022
4. -0.81684 75729 80458  -0.81684 75729 80458  0.21990 34873 10644
5. -0.81684 75729 80458  0.63369 51459 60918  0.21990 34873 10644
6. 0.63369 51459 60918  -0.81684 75729 80458  0.21990 34873 10644
Table 4.5 Gaussian quadrature on Ky, order p = 5.
Point # &,-Coordinate &>-Coordinate Weight
1 -0.33333 3333333333  -0.33333 33333 33333  0.45000 00000 00000
2 -0.05971 58717 89770  -0.05971 58717 89770  0.26478 83055 77012
3. -0.05971 58717 89770  -0.88056 82564 20460  0.26478 83055 77012
4. -0.88056 82564 20460 -0.05971 58717 89770  0.26478 83055 77012
5 -0.79742 69853 53088  -0.79742 69853 53088 0.25187 83610 89654
6 -0.79742 69853 53088  0.59485 39707 06174  0.25187 83610 89654
7 0.59485 39707 06174  -0.79742 69853 53088 0.25187 83610 89654

141
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4.3 HIGHER-ORDER NODAL ELEMENTS

In this section we extend the lowest-order (J*- and P'-elements to higher-order Lagrange
elements. The quadrilateral case, based on the product Gauss—Lobatto points, is described
in Paragraphs 4.3.1 and 4.3.2. The quality of the Lagrange interpolation is discussed in
Paragraph 4.3.3. Higher-order triangular elements are constructed using the Fekete points
in Paragraphs 4.3.4 and 4.3.5. The basis of the space V}, , for regular hybrid quadrilat-
eral/triangular meshes is presented in Paragraph 4.3.6. Algorithmic aspects of the method,
including concrete data structure and an extension of Algorithm 4.2 to higher-order Lagrange
elements, are presented in Paragraphs 4.3.7-4.3.9. The interpolation on meshes consisting
of higher-order Lagrange elements, along with the conformity to the space H*(Qy), is
discussed in Paragraph 4.3.10.

4.3.1 Product Gauss-Lobatto points

The favorable conditioning properties of the one-dimensional Lagrange shape functions
based on the Gauss—Lobatto points in K, (Figure 2.24) suggest that the Lagrange nodal
element on the product geometry K, = K, x K, should be designed using the Carte-
sian product of the Gauss—Lobatto points in both axial directions £; and &;. Numerical
experience confirms that indeed this is a good choice. For future reference let us define an

orientation of the edges e, eq, ..., e4 as shown in Figure 4.5.
Vs &-‘2 A v,
1 €y
e
! K,,
P R ; .
5,
€;
€3
vy -1 V2

Figure 4.5 Orientation of edges on the reference quadrilateral K.

Quadrilateral elements admit two different directional orders of approximation p, r > 1.
Let y» € K, and y(r) € K, be the one-dimensional Gauss—Lobatto points of the orders
pand T, respectlvely (see Paragraph 2.4.5). For algorithmic purposes it is convenient to
split the (p + 1)(r + 1) product points in K, into three groups as follows:

Four vertex nodes are defined as

v = vy =P ) = (-1,-1), (4.30)
v = vy = (%) = (1, -),
v = vy =", = (-1,1),
v = vy = (vl = (L)
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There are r — 1 edge-interior nodes (edge nodes) on the edges e, e2 and p — 1 edge nodes
on the edges es, 4. For algorithmic purposes it is practical to sort them according to the
orientation of the edges shown in Figure 4.5,

of = (P ) = (-1,857), (4.31)
vy = P, u)) = (-1.4"),
v, = () = (-1,47),

and so on.
The (p — 1)(r — 1) element-interior nodes (bubble nodes) can be sorted in any unique
way, for example as

ot = W), (4.32)
Wi, = (W),
'Ug—u—l = (yé”),yy)),

With this point set in hand, the Lagrange Q?'"-element is constructed as follows:

4.3.2 Lagrange—Gauss—Lobatto (J”'"-elements

It is natural to construct the master ()P'"-element on the reference domain K, first, and then
to extend it to an arbitrary convex quadrilateral domain K.

QP'"-element on the reference domain K, Inthe sense of Definition 3.1 the master
element is a triad (K,, QP"(K,), &,), where

QPT(K,) = span{€fel; 1<k <p; 1<I<r —1<6&,6 <1}, (4.33)

and the set of degrees of freedom X, contains linear forms associated with function values
atthe (p + 1)(r + 1) nodal points in the usual sense. It is customary to write QP = QP" if

r=np.

Nodal basison K, Let 9§p ) Oép) e, 0;11)1 be the set of the pth-order one-dimensional
Lagrange nodal shape functions (2.57) on the reference domain K, satisfying the delta
property (2.56),

o7 (u) = bu. (4.34)

The nodal shape functions on the reference domain K, are split into three groups according
to the different types of nodes introduced above.
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There are four vertex functions

pr(e) = 07(€00 (&), (4.35)
P (&) = 0% ()8 (&),
P (&) = 007 (&),
pu (&) = 00 (&)} (&),

Further one has » — 1 edge functions associated with the edges e¢; and e5, and p — 1 edge
functions corresponding to the edges e3 and e4. On the edge e, for example, they have the
form

e €)= o)y (&), (4.36)
o5 (€)= 0P8y (&),

PN (3) 0 (£1)657) (&),

and so on. Finally there are (p — 1)(r — 1) bubble functions

68 (665 (1), (4.37)
85665 (£1),

(p?.l.q(g)
@?,2.()(5)

il

O el1qg6) = 0P()6 (&),

The next two simple propositions state that indeed the above-defined shape functions form
a basis of the finite element space, and that they satisfy the delta property (3.4).

Proposition 4.5 The shape functions (4.35)—(4.37) form a basis in the space (4.33).

Proof: The dimension of the space (4.33)is (p + 1){r + 1), which is equal to the number
4+2(p—1)+2(r — 1)+ (p— 1){(r — 1) of the shape functions (4.35)—(4.37). Their linear
independence follows easily from (4.34). |

Proposition 4.6 The basis functions (4.35)—(4.37) satisfy the delta property (3.4) in the
form

P = b, 438)
eia (i) = buby,
) B I

and therefore they are the nodal basis of the space (4.33) in the sense of Definition 3.3.
Proof: This is left to the reader as a simple exercise. |
Several useful geometrical properties of the nodal shape functions (4.35)-(4.37) are

presented in Proposition 4.7, and the shape functions of the Q?- and Q>-elements are
shown in Examples 4.1 and 4.2.
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Proposition 4.7 The Lagrange—Gauss—Lobatto shape functions (4.35)—(4.37) have the fol-
lowing properties:

1. The vertex shape function (4.35) corresponding to a vertex v¥' of K, vanishes at all
remaining vertices and on the two opposite edges of K.

2. All edge shape functions (4.36) associated with an edge e; vanish at all vertices of
K, and on all remaining edges.

3. All bubble shape functions (4.37) vanish on the whole boundary of K.

4. Eachnodal shape function (4.35)—(4.37) is either zero or polynomial of degree exactly
r when restricted to the edges e1 and ez, and either zero or polynomial of degree
exactly p when restricted to the edges e3 and ey.

Proof: This follows easily from (4.34), using the fact that every one-dimensional pth-
degree polynomial is determined uniquely by its values at p + 1 distinct points. |

B EXAMPLE 4.1 (Lagrange-Gauss-Lobatto (’-element)

The nodal basis of the ()?-element on the reference domain K, is shown in Figures
4.6-4.8.

Figure 4.6 Nodal basis of the Q*-element; the vertex functions ¢!, 2, o® and @53,

Figure 4.7 Nodal basis of the Q*-element; the edge functions 07y 977, 91°, and T4

Figure 4.8 Nodal basis of the Q”-element; the bubble function ¢ ; .
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M EXAMPLE 4.2 (Lagrange-Gauss—Lobatto (°-element)

The nodal basis of the @3-element on the reference domain K, is shown in Figures
4.9-4.12.

Figure 4.9  Nodal basis of the Q>-element; the vertex functions Vo', ©g?, g and pg?.

Figure 4.10  Nodal basis of the Q®-element; the edge functions P1lgs P51 P17, and 952 .

Figure 4.11 Nodal basis of the Q*-element; the edge functions P75 055, pT, and i .

Figure4.12 Nodal basis of the Q3-element; the bubble functions <pl1’,1 @ gpt{,zq, @ZJ g and <p3,2,q.

The Gauss—Lobatto points in a convex quadrilateral K C R? Consider an arbi-
trary convex quadrilateral domain K C R? with pairwise-distinct vertices «, o, ..., %4
and straight edges sy, s, ..., 54 (Figure 3.3 in Section 3.2). The corresponding isopara-
metric biaffine reference map xx : K; — K was defined in (3.13). The vertex, edge, and
interior (bubble) nodal points in K are defined as the images of the nodal points (4.30),
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(4.31), and (4.32) through the map x x. Let us list some of them for future reference:

There are four vertex nodes

Vi

x = x(v"), (4.39)
z? = xzg(v™),
z» = xg(v™),
¥ = xr(v™),
r — 1 edge nodes on the edges s1, s2 and p — 1 edge nodes on the edges s3, 54,
' = xr(v), (4.40)
wgl = Tk (Ugl )v
zl, = xx(vii;)
(similarly on the edges e, €3, and e4), and (p — 1}(r — 1) interior (bubble) nodes
2, = zx(v],) (A1)
mtl),Q = mK('Ul{,z)»
b _
Ty 1r—1 = mK(vp—l,r—l)’

as illustrated in Figure 4.13.

Figure 4.13  Gauss—Lobatto points in a quadrilateral K C R? with straight edges (p = r = 2).

QP "-element on K In the sense of Definition 3.1, the domain K is equipped with the
space

QPT(K) = {gozy'; g QP (K,)}. (4.42)

The set of degrees of freedom X i consists of (p + 1){r + 1) linear forms associated with

function values at the same number of the Gauss—Lobatto nodal points (4.39), (4.40), and
4.41).
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Nodal basis on K The nodal basis of the element (K, QP"(K),X ) is defined as
usual, i.e., by composing the shape functions on the reference domain K, with the inverse
map w;{l. Let us stress again that the presence of the inverse map is formal, and m;\,l does
not need to be evaluated in the finite element code.

Proposition 4.8 The set of (p + 1)(r + 1) shape functions on K,

or() = (piozit)(z), (4.43)

where @, represents the nodal shape functions (4.35), (4.36) and (4.37) on the reference
domain K, constitutes the unique nodal basis of the space (4.42). The finite element
(K,QP"(K),X k) is unisolvent.

Proof: Left to the reader as an easy exercise. a

The choice of optimal nodal points for triangular elements is much less trivial compared
to the quadrilateral case, where the product Gauss—Lobatto points are known to have optimal
interpolation properties. Therefore, before we present the higher-order triangular Lagrange
PP-elements in Paragraphs 4.3.4-4.3.6, let us devote Paragraph 4.3.3 to the analysis of the
quality of the Lagrange interpolation in d > 1 spatial dimensions.

4.3.3 Lagrange interpolation and the Lebesgue constant

Assume a bounded convex domain K C R?, polynomial space P(K) of the dimension
Np, and a set of Np distinct points {z,}fi”l C K that yield a unisolvent Lagrange nodal
finite element (K, P(K), £ k). Thus, given an arbitrary function g € C(K), there exists a
unique polynomial g, € P(K) such that g,(2;) = g(z,) foralli =1,2,... Np. We use

the notation

9(2) = (Inp9)(2)-

Let G € P{K) be the best approximation of the function g in the maximum norm,

-G mazr — inf - F max
19 = Gllnas =, inf,_ lg = F

It is not necessarily G = I, g, but since G € P(K), it holds G = Zn,G. Therefore we
have

19 = Inpgllmaz = 19— G+IN:.G = Inp9lmax
< g = Gllmar + 1 Inp G — Inp9llmas
< g = Gllmas + 1IN G = glimar
< A+ ZnpIDNG = gllma.

where

”INP

= max ||Z .
[ lras =1 H pr“maa

is the standard operator maximum norm, and ||Z, || is referred to as the Lebesgue constant.
The magnitude of the Lebesgue constant depends on the domain K, the polynomial space
P(K), and the interpolation points {z;}7 . If the constant is small, then the interpolation
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operator I, is good and vice versa. It is known that simple choices of interpolation points,
such as equidistant, lead to disastrous exponential growth of || Z v, || as the polynomial degree
p is increased (this we saw already in Paragraph 2.7.4).

Thus, given a domain K and polynomial space P(K'), we face the problem to find
optimal interpolation points that minimize the Lebesgue constant. Such points are called
Lebesgue points. Unfortunately, nothing seems to be known about Lebesgue points in more
than one spatial dimension. The best choices available today are the product Gauss—Lobatto
“points on quadrilaterals, and the Fekete points on triangles. Let us introduce the latter point
set in the next paragraph.

4.3.4 The Fekete points

Let us first define the Fekete points and then discuss their properties and their application
to the construction of higher-order Lagrange elements.

Definition 4.1 (Fekete points) Let a bounded convex domain K C R® be equipped with
a polynomial space P(K) of the dimension Np. Given an arbitrary basis {9;}%, of the
space P(K), the Fekete points {y, } 5, C K are a point set that maximizes the determinant

det L{y,, Yo, .. Yy, ) = max det L(&1,85,-- -, &N, ) (4.44)
LY N (6. 6o b, VR 1,62 N

where L is the generalized Vandermonde matrix (3.7) for the Lagrange degrees of freedom

Li(g) = 9(&),

L&, & - En,) = {0}y = {9;(€)0 ). (4.45)

Recall that the generalized Vandermonde matrix L is used to construct the unique nodal
basis of nodal finite elements (see Theorem 3.1). It will be shown in Theorem 4.1 that the
Fekete points are invariant under the choice of the basis {9} 7.

Construction Since no explicit formulae for the Fekete points are available, they have
to be constructed by maximizing the determinant (4.44) numerically. This is a nonlinear
optimization problem, and numerical methods may produce various solutions depending on
the initial condition and other factors. The choice of the initial condition influences the result
in a most significant way. Since the global optimality is unclear, the solutions are usually
referred to as approximate Fekete points. A numerical algorithm for the construction of
approximate Fekete points for triangles of polynomial degrees p < 19, based on a steepest
ascent approach, was presented in [118].

Properties The key observation made in [15] and {16] (in the context of interpolation)
was that in the one-dimensional case and in Cartesian product geometries, the Gauss—
Lobatto and Fekete points are identical. The advantage of the Fekete points is that they
can be defined for any geometry. Numerical experiments indicate that the Lagrange nodal
shape functions on triangular elements built on the Fekete points have excellent conditioning
properties (examples will be given later). However, there is no optimality proof, so it can
be expected that even better point sets will appear in the future. Some known facts about
the Fekete points are summarized below.
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Theorem 4.1 Let p > 1. The Fekete points have the following properties:

1. The Fekete points {y;} %, C K are invariant under the choice of the basis {19, }fvz’l C

PP(K,).

2. Inone-dimensional intervals and Cartesian product geometries the Fekete and Gauss—
Lobatto points are the same.

3. Onthe edges of triangular domains the Fekete points coincide with the one-dimensional
Gauss—Lobatto points.

Proof: Assertion /. follows easily from the basic properties of determinants (see Para-
graph A.1.9): The change of basis multiplies the determinant with a constant independent
of the points. See [53] and [15] for 2. Under the assumptions that the Vandermonde matrix
1s nonsingular, there exists a maximum number of points that can lie on the boundary. With
a conjecture that the Fekete points in K ; attain this maximum number on the edges, 3. was

proved in [15].

The Fekete points presented in Tables 4.6-4.8 and on the companion CD-ROM (for
1 <p < 19) were drawn from [118] with permission of the authors.

Table 4.6 Fekete points in K, p = 1.

Number of points &1-Coordinate

&9-Coordinate

1.000000000000
-1.000000000000
-1.000000000000

n=3

-1.000000000000
1.000000000000
-1.000000000000

Table 4.7 Fekete points in F,, p=2.

Number of points &1-Coordinate

&2-Coordinate

0.000000000000
-1.000000000000
-1.000000000000

0.000000000000
-1.000000000000

1.000000000000

n==6

-1.000000000000
-1.000000000000
0.000000000000
0.000000000000
1.000000000000
-1.000000000000

Table 4.8 Approximate Fekete points in K¢, p = 3.

Number of points &1-Coordinate

&5-Coordinate

d=10 -0.333333333333
-0.447213595500

-1.000000000000

-0.333333333333
-1.000000000000
-1.000000000000

-1.000000000000  -0.447213595500
0.447213595500  -1.000000000000
-0.447213595500  0.447213595500
-1.000000000000  0.447213595500
0.447213595500 -0.447213595500

-1.000000000000
1.000000000000

1.000000000000
-1.000000000000
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The Fekete points are shown for p = 1,2,...,15 in Figure 4.14.
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Figure 4.14 The Fekete points in K¢, p = 1,2,...,15.
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Unique enumeration of the Fekete points For algorithmic purposes it is necessary
to enumerate the Fekete points in K; in a unique way. We assume that the edges of the
reference triangle K; are oriented as shown in Figure 4.15.

é2/:\

Vs

Figure 4.15 Orientation of edges on the reference triangle K.

Consider the one-dimensional pth-order Gauss—Lobatto points ygp) € K, from Para-
graph 2.4.5. By Theorem 4.1, the Fekete points exactly coincide with the Gauss-Lobatto
points on edges of K ;. The three vertex nodes are denoted by

v = =" Py = (=1,-1). (4.46)
v = vy = (yp+1,y§ )) =(1,-1),
v = vy =) = (-11).

The p — 1 edge nodes on each edge are sorted according to the orientation of the edge. For
example, for the edge e; we have

i =y, ") = (), -1), (4.47)
v = WP ) = @, 1),
v = WP ”) = W, -1).

Such enumeration of the edge nodes makes it possible to easily include both quadrilateral
and triangular elements into hybrid quadrilateral/triangular meshes. The remaining (p —
1)(p — 2)/2 interior (bubble) nodes can be sorted in any unique way, and we denote them

b b
by V1, 03, V) (p-2y /2

4.3.5 Lagrange—Fekete PP-elements

The Lagrange PP-element on the reference triangular domain K, is equipped with the
polynomial space PP(K}), dim{PP(K,)) = Np = (p+ 1)(p + 2)/2, and the set of the
Lagrange degrees of freedom ¥ = {Ly, Lo,..., Ly, } associated with the Fekete points
£1,€s, .-, €y, Thedegrees of freedom are defined as the reader expects: L1(g) = g(&,),
La(g) = g(&s). .- Lno(g9) = g(€n,) forall g € PP(K,). The unique Lagrange nodal
basis satisfying the delta property (3.2) is obtained in the standard way by inverting the
generalized Vandermonde matrix (4.45).
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Enumeration of shape functions For algorithmic purposes we also need to split
the Lagrange—Fekete shape functions into the vertex, edge and bubble functions. By ;™
we denote the shape function associated with the mth vertex node v, m = 1,2,3.
The symbol we"ﬁ,t stands for the shape function corresponding to the mth edge node v
(following the notation (4.47)), and Apfn,t stands for the shape function associated with the
mth bubble node v%,, m = 1,2,...,(p — 1)(p — 2)/2. Proposition 4.9 describes the
geometrical properties of the shape functions:

Proposition 4.9 The Lagrange—Fekete shape functions have the following properties:

1. The vertex shape function p,*, corresponding to the vertex node v':, vanishes at the
two remaining vertices and on the opposite edge of K.

2. The edge shape function <p‘;-ft associated with the edge e; vanishes at all vertices and
on all edges of K, except for e;.

3. All bubble shape functions vanish on the whole boundary of K,.

4. Each Lagrange—Fekete shape function is either zero or a polynomial of the degree
exactly p when restricted to the edges e1, e, or es.

Proof: Analogous to the proof of Proposition 4.7. |

The next two examples show the Lagrange-Fekete shape functions for the Q- and
Q3-clements:

B EXAMPLE 4.3 (P2-element)

The nodal basis of the P2-element on the reference domain K; is shown in Figures
4.16 and 4.17.

Figure 4.16

e
1

Figure 4.17 Nodal basis of the PZ-element; the edge functions %! , %2, and 073,
g g P1,tr Pt Pt
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B EXAMPLE 4.4 (P3-element)

The nodal basis of the P3-element on the reference domain K, is shown in Figures
4.18-4.21.

Figure 4.18 Nodal basis of the P*-element; the vertex functions !, ¢?2, and ¢}2.

Figure 4.21 Nodal basis of the P>-element; the bubble function <pll’vt.

4.3.6 Basis of the space V}, ,,

Assume a regular hybrid mesh 7, , = {K1, K2, ..., K} consisting of M, QP-elements
and M,, PP-elements, M, + M, = M > 1. The requirement of a uniform polynomial
degree p in the mesh is characteristic for nodal elements. The approximation could not be
continuous with Lagrange elements of different polynomial degrees due to nonmatching
nodal points on edges. This is illustrated in Figure 4.22.
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Figure 4.22 Mismatched nodal points on Q' /Q?-element interface.

Itis our aim to use the shape functions defined Paragraphs 4.3.2 and 4.3.5 to construct the
basis functions vy, va, - - ., un of the space V}, ,,. For this purpose, by ;, ¢ = 1,2,..., M,
denote the unconstrained grid vertices, and by s;, j = 1,2, ..., M, the unconstrained mesh
edges (by unconstrained we mean not lying on the Dirichlet boundary I'p ).

Proposition 4.10 The dimension of the finite element space Vi, ,, is

. —D{p-2
N = dim(Vi,p) = M, + (p— )M, + (p — 1)2M, + %Mp.
Proof: Straightforward from the definition (4.9) of the space V, ,. |

There are M, vertex functions associated with unconstrained grid vertices, M.(p — 1)
edge functions related to unconstrained mesh edges, and My (p—1)?+ M,(p—1)(p—2)/2
bubble functions associated with element interiors. These three types of basis functions are
constructed as follows:

Vertex basis functions:
Assume the vertex element patch S(¢) corresponding to a grid vertex x;, as illustrated
in Figure 4.23.

Figure 4.23  Element patch S(i) corresponding to an unconstrained vertex x; in a hybrid Q?%/P?
mesh.
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The vertex basis function v associated with x; vanishes in 2, \ S(4), and in S(7) it is
defined analogously to (4.16),

v (E)|k, = (p) o m}_\,i)(a:) if K, € S(2) is a quadrilateral, (4.48)
Wie)|k, = (pf o x;i)(w) if Ky € S(7) is a triangle.

Here @~ or ;" is the unique vertex nodal shape function of the polynomial degree p on
K, or K, such that @Z(w}_{i (z5)) = 1or " (:EK (z;)) = 1, respectively. The edge
function v¥i (&) associated with a nodal point x; vanishes at all remaining nodal points in
the element patch S{i).

Edge basis functions:

Assume an unconstrained mesh edge s; with the endpoints x;, and x;,. The global
orientation of this edge can be defined, e.g., as the direction from the vertex with the lower
index to the vertex with the greater index, i.e., s; = x;, &;, if 1) < iz and 5; = @, @y,
otherwise.

We define an edge element patch S.(7),

U Esx (4.49)

keEN(4)

where
Ne(j) = {k; Ki € T p, s; is an edge of Ky}, (4.50)

as shown in Figure 4.24.

sz

Figure 4.24 Element patch S.(j) corresponding to an unconstrained mesh edge s;.

For each element K € S¢(¢) by ¢; denote the edge of the reference domain K, such
that z g, (e;) = s;. Use the edge-interior nodal points on e; and the reference map xk;, to
obtain coordinates of the edge-interior nodal points z,m=12... ,p — 1. These points
are ordered on the edge s; according to its global orientation (i.e., =’ 1s next to x;, and
:c;j L isnextto x;, if s; = @;,x;,). There arep 1 edge basis functions v;”, vy’ . .. ,vp 1
C Vi p associated with the points :cl T, .. Ip_l, respectively. Each edge function

vl 1 < m < p— 1, is defined to be zero in 5, \ S.(j), and in the patch S.(j) it satisfies

s

v (@)K, = (@0 w;i‘)(a:) if Ky € S.(j) is a quadrilateral, 4.51)
V(@) K, = (90 m}_(i)(a:) if Ky € Sc(j) is a triangle.
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Here again o}, or ©;', is the unique edge nodal shape function of the polynomial degree
pon K, or K, such that gaf.fq(w;{i (@) = 1or ¢t t(ka (x2)) = 1, respectively. The
edge function vy () associated with a nodal point =7 vanishes at all remaining nodal
points in the element patch S(7).

Bubble basis functions:

Last to be defined are the bubble basis functions. There are (p — 1)? bubble functions
in each quadrilateral and (p — 1)(p — 2)/2 in each triangular element. The nodal points in
the mesh element K are defined, as usual, to be the images of the interior nodal points in
the corresponding reference domain K through the reference map x Ky © ‘K — K.

Consider, for example, a triangular element K € ’ThJ, and the interior nodal points

Ky Ky Ky . K . . R
931 T2 s T 2y 2 The bubble function v;.* associated with the nodal point
x5 is defined to vanish in Q, \ K}, and in K} we have

vik (@) = (9d, o Tk, ) (). (4.52)

Here ¢? + € P(K;) is the bubble shape function satlsfymg @b t(ka (xKx)) = 1. The
bubble function v/ () associated with a nodal point 2% vanishes at all remaining nodal
points in the element K., and thus also on its boundary 0 K.

x5 A

Figure 4.25 There is a single biquadratic bubble function on every Q*-element, and a single cubic
bubble function appears on P>-elements.

Proposition 4.11 The functions (4.48), (4.51), and (4.52) are continuous in Q, and con-
stitute together a basis of the space V}, .

Proof: This follows easily from the linear independence of basis functions associated
with different nodal points in €. [ |

4.3.7 Data structures

Before presenting the element-by-element assembling procedure in Paragraph 4.3.9, let us
discuss the construction of the connectivity arrays. Again let the hybrid Q¥/P? mesh 7}, ,,
be represented via an element array ElementP *Elem of the length Af.

Element data structure The Element data structure from Paragraph 4.1.6 can be
extended to the higher-order case as follows:
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struct {
int nv; //number of vertices
//(4 for quads, 3 for triangles)
int *vert; //global vertex indices (length nv)
int *vert_dir; //vertex Dirichlet flags (length nv)
int *vert_dof; //vertex connectivity array (length nv)
int *edge_dir; //edge Dirichlet flags (length nv)
int **edge_dof; //two-dimensional edge connectivity array
//(dimension nv*(MAXP-1))
int *bubb_dof; //bubble connectivity array
//(length (MAXP-1)*(MAXP-1) for quads,
//and (MAXP-1)=(MAXP-2)/2 for triangles)
int *o; //edge orientation flags (length nv)
} ElementP;

Here MAXP is the maximum allowed polynomial degree of the finite elements. The ElementP
data structure can be optimized (the stored data are not independent) but we prefer this form
for the sake of transparency. The optimization of data structures and algorithms will be
described at the end of Paragraph 4.3.9. The vertex indices vert, vertex Dirichlet flags
vert_dir and the vertex connectivity arrays vert_dof are used analogously to Paragraph
4.1.6. The meaning of the other variables is described below.

Edge Dirichlet flags The function of the edge Dirichlet flags Elem[m] . edge_dir is
analogous to the flags Elem[m] .vert_dir: The variable Elem[m] .edge_dir([j], j =
1,2,...,nv, is zero if the edge xx, (e;) of K,, is unconstrained (i.e., not lying on the
Dirichlet boundary I'p 1), and one otherwise. These flags are defined easily, using the fact
that an edge is constrained if and only if both of its vertices are constrained (see Algorithm
4.3).

Edge orientation flags (for p > 3 only) When the number of edge-interior nodal
points exceeds one (i.e., for p > 3), one has to take care about the orientation of the edges.
Assume an element K, € 7}, the appropriate reference domain K= K, or K = K,
and the reference map x,, : K — K,,. Lets; = x; x;,, i1 < i, be an edge of K,
and let ey, be the corresponding edge of K, ie., 8j = &, (er). Since the orientations of
s; and ey, are independent, it is either

m

(A) =k, (ex) =z x, o (B) zg, (er) =z, .

The ElementP data structure contains the array Elem[m] .0o[] = £ 1 of the length nv for
this purpose. In case (A) the orientations of s; and e, are compatible, i.e., the reference
map g, preserves the ordering of the edge-internal nodes,

m

(}\) i = Ty

r

vk foralll <r <p-1,
m AUy F

and we define Elem[m] .o [k] = 1. In the opposite case the ordering of the edge-internal
nodes is reversed,

(B) @ =g, (viF,) forall<r<p-1,

p—r

and we define Elem[m] .o (k] = -1. This will be done in Algorithm 4.3.
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Unique enumeration of edges Mesh generators always provide a list of vertices and
a list of elements. This defines their unique enumeration as necessary for the definition of
the vertex and bubble connectivities. Also a list of edges is needed for the definition of edge
connectivities, but such a list usually is not provided by mesh generators. Therefore let us
present a simple algorithm that enumerates unconstrained mesh edges. We begin with a
data structure for the edges,

struct {
int nl, n2;
int el, e2;
} TmpEdgeData;

Here n1 < n2 are the indices of the vertices of the edge that define its orientation, and
el < e2 the indices of the adjacent elements. These entries will be defined for every
unconstrained mesh edge in Algorithm 4.3. The list of the edges,

TmpEdgeData *Edgelist;

has the length 4A7. This is quite a crude upper bound, but EdgeList will be deallocated
immediately after the element connectivity arrays are defined.

Algorithm 4.3 (Creating a temporary list of edges)

length := 0; //Current length of EdgeList
form=1,2,...,Mdo {
if (Elem[m].nv == 4) then { //Km is a quadrilateral
//The first edge of Ky,: Defining the orientation flag:
vA := Elem[m].vert[1];
vB := Elem[m].vert{3];
if (vA < vB) then Elem[m].o[1} := 1;
else Elem[m].o[1] := -1;
//The first edge of K,,: Defining the Dirichlet flag:
dirA := Elem[m].vert_dir[1];
dirB := Elem[m].vert_dir{3];
if (dirA*dirB == 1) then Elem[m].edge.dir[1] := 1;
else Elem(m].edge dir(1] := 0;
//The first edge of K,,: Adding to Edgelist
//(if unconstrained and not visited before)
if (Elem[m].edge dir[1] == 0) then {
CheckEdgeList (vA,vB,EdgeList,length,&found,&pos);
if (found == 0) then { //The edge was not found in Edgelist
length := length + 1;
if (vA < vB) then {

EdgeList [length].nl := vA;
EdgeList[length].n2 := vB;
else {
EdgeList[length] .nl := vB;
EdgeList[length] .n2 := vA;
}
Edgelist{length].el := m;
Edgelist[length].e2 := -1;

else { //The edge was found in EdgelList on the position pos
EdgelList[pos].e2 := m;

}
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//The same for the remaining three edges:

//2nd edge: vA = Elem[m].vert[2], vB = Elem[m].vert[4]
//3rd edge: vA = Elem[m].vert[1], vB = Elem[m].vert[2]
//4th edge: vA = Elem[m].vert[3], vB = Elem[m].vert[4]

else { //Km is a triangle
//The first edge of K,,: Defining the orientation flag:
vA := Elem[m].vert[1];
vB := Elem[m].vert[2];
if (vA < vB) then Elem[m].o[1] := 1;
else Elem[m].o[1] := -1;
//The first edge of K,,: Defining the Dirichlet flag:
dirA := Elem[m].vert_dir[1];
dirB := Elem[m].vert_dir[2];
if (dirA*dirB == 1) then Elem[m].edge dir[1] := 1;
else Elem(m].edge dir[1] := O;
//The first edge of Ky,: Adding to Edgelist
//(if unconstrained and not visited before)
if (Elem[m].edge_dir[1] == 0) then {
CheckEdgeList(vA,vB,EdgeList,length,&found,&pos);
if (found == 0) then { //The edge was not found in EdgeList
length := length + 1;
if (vA < vB) then {
EdgeList[length].nl :
EdgeList [length] .n2 :

vA;
vB;

else {
EdgeList[length].nl := vB;
EdgeList[length] .n2 := vA;
}
EdgeList[length].el := m;
EdgeList[length] .e2 := -1;

else { //The edge was found in Edgelist on the position pos
Edgelist[pos].e2 := m;

}
//The same for the remaining two edges:
//2nd edge: vA = Elem[m].vert(2], vB = Elem[m].vert[3]
//3rd edge: vA = Elem[m].vert[3], vB = Elem[m].vert[1]
}
}
M, := length - 1; //The number of unconstrained mesh edges

Here, the function CheckEdgeList (vA,vB,EdgeList,length,&found,&pos) parses
the EdgeList and tests if either {vA,vB} or {vB, vA} are present. If found, it returns f ound
:= 1 and the corresponding position pos, otherwise it returns found := 0.

4.3.8 Connectivity arrays

Now the edge and bubble connectivity arrays edge_dof and bubb_dof can be defined. The
jth component of the array Elem [m] . edge dof [1],1 <7 < nwv, 1 < j < p — 1, contains
either

o the index of the edge basis function of the space V}, ,, associated with the jth internal
node zx,, (v5') on the ith edge of K, (if Elem[m] .edge dir[i] == 0)

e or a negative integer number -NBC (if Elem[m] .edge dir{i] == 1).
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In the case of nonhomogeneous boundary conditions, the values of the Dirichlet lift G at
the edge-internal nodes of constrained edges can be stored via an array of real numbers. The
index NBC can be used to indicate a position in this array, where the value of the Dirichlet
lift G at the corresponding edge-internal node of the element K, is stored (analogously
to the treatment of constrained vertices in Paragraph 4.1.6). With this construction, the
implementation of nonhomogeneous Dirichlet boundary conditions is straightforward.

The algorithm for the edge connectivities is based on the temporary array EdgeList and
proceeds in an edge-by-edge fashion. As before, let AL, be the number of unconstrained
grid vertices (vertex DOF) and M, the number of unconstrained mesh edges. The algorithm
will add p — 1 edge-internal DOF to every unconstrained edge.

Algorithm 4.4 (Enumeration of edge DOF)

//Loop over unconstrained edges:
for e = 1,2,...,Me do {
//Lower-index element adjacent to the edge Edgelist[e]:
el = EdgeList([e].el;
if (Elem(el]l.nv == 4) then { //Ke; is a quadrilateral
//Locate the edge Edgelist[e] in the element Elem[el]:
al := Elem[el] .vert[1]; a2 := Elem[el].vert[2];
a3 := Elem{el] .vert([3]; a4 := Elem[el].vert[4];
b1l := EdgeList[el.nl; b2 := EdgelList[e].n2;
if ((bl==al and b2==a3) or (bl==a3 and b2==al)) then ee:=1;
if ((bl==a2 and b2==a4) or (bl==a4 and b2==a2)) then ee:=2;
if ((bl==al and b2==a2) or (bi==a2 and b2==al)) then ee:=3;
if ((bl==a3 and b2==a4) or (bl==a4 and b2==a3)) then ee:=4;
//Enumerate the edge-internal DOF on the ee-th edge of Elem[el]:
if (Elem[el].olee] == 1) then for j = 1,2,...,p-1 do {
//(the local and global orientations are compatible}
Elem[el] .edge_dof[eel [j] := Mv + (p-1)*(e-1) + j;
//Here: Mv is the number of vertex DOF, and (p-1)*(e-1) is the
//number of edge-internal DOF assigned to previously visited edges.

}

else {
//{incompatible orientations -- the ordering of local DOF is reversed)
Elem[el] .edge-dof[ee] [p-j1 := Mv + (p-1)*(e-1) + j;

}

else { //K., is a triangle
//Locate the edge EdgeList[e] in the element Elem[ei]:
al := Elem[el] .vert[1]; a2 := Elem[el].vert[2];
a3 := Elem[el] .vert[3];
bl := EdgeList[el].nl; b2 := Edgelistle].n2;
if ((bl==al and b2==a2) or (bi==a2 and b2==al)) then ee:=1;
if ((b1==a2 and b2==a3) or (bi==a3 and b2==a2)) then ee:=2;
if ((bl==a3 and b2==al) or (bl==al and b2==a3)) then ee:=3;
//Enumerate the edge-internal DOF on the ee-th edge of Elem[el]l:
if (Elem[ell.oleel == 1) then for j = 1,2,...,p-1 do {
//{the local and global orientations are compatible)
Elem[el] .edge_dof [eel [j]1 := Mv + (p-1)*(e-1) + j;
//Here: Mv is the number of vertex DOF, and (p-1)x*(e-1) is the
//number of edge-internal DOF assigned to previously visited edges.

else {
//(incompatible orientations -- the ordering of local DOF is reversed)
Elem[el] .edge_dof [eel [p-j] := Mv + (p-1)*{(e-1) + j;

}
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//Higher-index element adjacent to the edge EdgeListle]:
e2 = EdgeListle].e2;
if (e2 > -1) then {

//Perform now the same operations as for Elem[el] above.

.
}

Deallocate EdgeList
The distribution of the remaining My(p — 1) + M, (p — 1)(p — 2)/2 bubble DOF to

element interiors is simpler:

Algorithm 4.5 (Enumeration of bubble DOF)

bubb_dof_count := Mv + (p-1)*Me; //Number of previously assigned DOF

form=1,2,...,M do {
if (Elem{m].nv == 4) then { //K,, is a quadrilateral
for i = 1,2,...,(p-1)*(p-1) do {

bubb_dof_count := bubb_dof_count + 1;
Elem[m] .bubb_dof[i] := bubb_dof_count;

}
else { //Km is a triangle
for i = 1,2,...,{(p~1)*(p-2)/2 do {

bubb_dof_count := bubb_dof_count + 1;
Elem[m] .bubb_dof [i] := bubb.dof_count;

}
}
}

The connectivity arrays Elem [m] . vert_dof, Elem[m] . edge_dof and Elem[m] . bubb
_dof on all elements K, € 7}, , are now ready. The connectivity algorithms can be written
without storing the edge orientation flags Elem{[m] . o explicitly. The reader can remove
them after getting more familiar with the algorithm.

B EXAMPLE 4.5 (Connectivity arrays)

Consider a mesh consisting of four quadratic Lagrange elements as shown in Figure
4.23. Let the reference maps be chosen in such a way that the lower-left vertex of the
reference domain always is linked to the lower-left corner of the physical element.
If we consider, for example, a problem with homogeneous Dirichlet boundary con-
ditions, then the dimension of the space V}, , equals 8, and the basis functions are
enumerated as shown in Figure 4.26.

4.3.9 Assembling algorithm for Q?/PP-elements

The extension of Algorithm 4.2 to the QP/PP-meshes is not complicated. Let us consider
the same setting as in Paragraph 4.3.9, i.e., the model problem (4.2) with homogeneous
Dirichlet boundary conditions. Moreover we assume that the simplifying conditions on the
data formulated in Paragraph 4.1.5 are met. The following constants stay unchanged on all
elements K,,,, 1 < m < M: The Jacobian
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xy A

Figure 4.26  Enumeration of basis functions for a simple mesh consisting of four second-order
nodal elements.

Elem[m}.jac :=|Jx, 1|,
and the entries of the inverse Jacobi matrix

g™
- Ozn ’

Elem[m|.inv_j[r|[n] :
foralll <n,r <d.

The four-dimensional array MESI_Q is extended to cover all combinations of shape functions
on the reference domain K,

01 Opk 2
MESI_Q[k][1 = ——dg, 1<kI<{(p+1)* 1<rs<d,
M) = [ e e o€ +1)
where 1,02, . .., pps1)2 are the four vertex functions (4.35) associated with the nodes

(4.30), followed by the 4(p — 1) edge functions (4.36) related to the nodes (4.31) for
each edge ey, ea,...,eq4, and by the (p — 1)? bubble functions (4.37) corresponding to
the interior nodes (4.32). All these shape functions were unigely enumerated. The array
MESI_T is extended to
vest T iells) = [ 22 9% e 1< ki< (pr /2 1< s <d,
K 0§ O&s

where p1.92,. .., P(pa1)(p+2)/2 stand for the three vertex functions associated with the
nodes (4.46), followed by the 3(p—1) edge functions related to the nodes (4.47) foreach edge
€1, €2, €3, and by the (p — 1)(p — 2)/2 bubble functions corresponding to the interior nodes.
In the same way the master element mass integrals MEMI are extended to cover all combina-
tions of the shape functions. The functions double SMC(Elem,k,1,m,MESI Q,MEMI Q)
and double SMC(Elem,k,1,m,MESI_T,MEMI_T), that calculate the stiffness matrix con-
tribution (4.24), stay unchanged.

The assembling algorithm is analogous to Algorithm 4.2, only now it covers all combi-
nations of the shape functions on the reference domain.
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Algorithm 4.6 (Assembling algorithm for higher-order Lagrange elements)

N := My+ (p— DMe+ (p— D)2Mg+ (p— 1){p—2)/2My;

//Set the stiffness matrix S zero:

for i = 1,2,...,N do for j = 1,2,...,N do S[il[j]1 := O3
//Set the right-hand side vector F zero:
for i = 1,2,...,N do F[i] := 0;
//Element loop:
form = 1,2,...,M do {
//Loop over vertex test functions:
for i = 1,2,...,Elen[n].nv do {

//Index of the vertex test function vm, € Vj,
//(row position in §)
ml := Elem[m].vert_dof[i];
//Loop over all vertex, edge and bubble basis functions:
//(Filling the mith row of §)
//1. 1loop over vertex basis functions:
if (ml > -1) then for j = 1,2,...,Elem[m].nv do {
//Index of the vertex basis function vm, € Vi,
//(column position in S)
m2 := Elem[m].vert dof[j];
if (m2 > -1) then {
if (Elem[m].nv == 4 then {
S[m1,m2] := S[mi,m2] + SMC(Elem,i,j,m,MESI_Q,MEMI_Q);
}
else {
S[m1,m2] := S[mi,m2] + SMC(Elem,i,j,m,MESI.T,MEMI.T);
}
}
} //End of loop over vertex basis functions
//2. loop over edge basis functions:
if (ml > -1) then for j = 1,2,...,Elem[m].nv do {
for k = 1,2,...,p-1 do {
//Index of the edge basis function um, € Vi,
//{(column in S)
m2 := Elem[m].edge_dof 3] [k];
if (@2 > -1) then {
if (Elem[m].nv == 4 then {
Slm1,m2] := S[m1,m2] + SMC(Elem,i,4+j,m,MESI_Q,MEMI_Q);
}
else {
S[m1,m2] := $[m1,m2] + SMC(Elem,i,3+j,m,MESI_T,MEMI_T);
}
}
}
} //End of loop over edge basis functions
//3. loop over bubble basis functions:
if (Elem[m].nv == 4 then {
if (ml > -1) then for k = 1,2,...,(p-1)*(p-1) do {
//Index of the bubble basis function vm, € Vi,
//{column in S)
m2 := Elem[n].bubb_dof [k];
S[m1,m2] := S(ml,m2]} + SMC(Elem,i,4+4*(p-1)+j,m,MESI.Q,MEMI_Q);
}
}

else {
if (m1 > -1) then for k = 1,2,...,(p-1)*(p-2)/2 do {
//Index of the bubble basis function v, € Vi,
//(column in S)
m2 := Elem[m].bubb_dof [k];
Sim1,m2] := S[m1,m2] + SMC(Elem,i,4+4*(p-1)+3,m,MESI.T,MEMI_T);
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} //End of loop over bubble basis functions
//Now the mith row of the stiffness matrix S is filled.
//Contribution of the vertex test function Um, to the right-hand side F:
if (m1 > -1) then {
} Fln1] := Flm1] + Elem[n].jacx [z f{")(£)pVi(€)dE;
} //End of loop over vertex test functions
//Now the MAl, rows in the linear algebraic system SY = F
//corresponding to all vertex basis functions of the space Vj,,,
//are filled.
//Next fill the rows of SY = F corresponding to all edge test functions:
//Loop over edge test functions:
for i = 1,2,...,Elenln].nv do {
for 1 = 1,2,...,p~1 do {
//Index of the edge test function uvm, € Vpp
//{row in S)
ml := Elem[r].edge_dof[i][1];
//Loop over all vertex, edge and bubble basis functions:

//Contribution of the edge test function v, to the right-hand side F':
if (m1 > -1) then { :

Flm1] := F{mi] + Elen[n].jacx [ f"(€)e (£)dE;
}

} //End of loop over edge test functions
//At last fill the rows of SY = F corresponding to all bubble test functions:
if (Elem[m].nv == 4 then {
for k = 1,2,...,(p-1)*(p-1) do {
//Index of the bubble test function vm,; € Vi,
//(row in S)
ml := Elem[m].bubb._dof [k];
//Loop over all vertex, edge and bubble basis functions:

//Contribution of the bubble test function v,,;, to right-hand side F':
Flm1] := Flm1] + Elem[m].jack (g fU™)(€)pb(€)dg;

}
else {
for k = 1,2,...,(p~1)*(p-1)/2 do {
//Index of the bubble test function vm, € Vj,

//(xrouw in S)
ml := Elem[m].bubb_dof [k];
//Loop over all vertex, edge and bubble basis functions:

//Contribution of the bubble test function v,,, to right-hand side F':
F(m1] := Flm1] + Elem[m].jac*fx.f(””(g)wi(g)dﬁ;

}

} //End of loop over bubble test functions
} //End of element loop

If the simplifying conditions formulated in Paragraph 4.1.5 do not apply, then the Ja-
cobian, the entries of the inverse Jacobi matrix, and other values are no longer constant
in the elements. In such case, (4.24) has to be replaced with the more general relation
(4.23), and instead of reading the precomputed entries from the MESI and MEMI arrays, the
corresponding integrals have to be evaluated numerically.

Optimization of Algorithm 4.6 Significant part of Algorithm 4.6 (the application of
a given test function to all vertex, edge and bubble basis functions) was repeated with
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minor changes four times. The algorithm was presented in this full form for the sake of
transparency, but in practice the repeated part can be handled via a subroutine whose input
parameters identify the given test function. The corresponding reformulation of Algorithm
4.6 is straightforward.

Moreover, all indices in the connectivity arrays Elem [m] .edge dof [j], j = 1, 2,

., Elem[m] .nv are determined uniquely by the first index Elem [m] . edge_dof [j] [1]
and the orientation flag Elem[m] .o [j]. Therefore they do not need be stored explicitly.
Analogously, it is sufficient to store just the first index of the bubble connectivity array,
Elem[m] .bubb_dof [1], instead of the whole array Elem [m] . bubb_dof. It can be recom-
mended that the reader performs these optimization steps after a first version of the code is
working.

4.3.10 Lagrange interpolation on QP / PP-meshes

The global interpolant of a function g € C{€;) on a regular mesh 7} , consisting of Q-
and/or PP-elements is obtained analogously to the Q' /P!-case from Paragraph 4.1.8.

Proposition 4.12 The global Lagrange interpolant 1(g) is continuous in Qu, for every
function g € C{Qy,). Thus every regular mesh consisting of QP- and/or PP-elements is
conforming to the space H'(,).

Proof: This is left to the reader as an easy exercise. |

As usual, the global interpolant is evaluated elementwise on the reference domains,
using the sets of Gauss—Lobatto and Fekete points, and the Lagrange—Gauss—Lobatto and
Lagrange—Fekete nodal shape functions. With p = 1, one obtains the lowest-order case
discussed in Paragraph 4.1.8.

4.3.11 Exercises

Exercise 4.3 Prove Proposition 4.6.
Exercise 4.4 Prove Proposition 4.7.
Exercise 4.5 Prove Proposition 4.8.
Exercise 4.6 Prove Proposition 4.10.

Exercise 4.7 In Algorithm 4.6, replace the repeated application of a given test function to
all vertex, edge and bubble basis functions with a suitable subroutine.

Exercise 4.8 Extend your code from Exercise 4.2 to Q? elements using Algorithm 4.6.
1. Present plots of the approximate solution for the parameters
(a) a=2,b=1, My =4, My =2,
(b) a=2,b=1, M; =10, My =5,
(C) a = 2., b= 1, ]\’[1 = 20, A[Q =10,
(d) a=2,b=1, M; =40, My = 20.

2. Present the convergence curve of the above computations in the H'()-seminorm.
Compare it with the convergence curve from Exercise 4.2.

Exercise 4.9 Prove Proposition 4.12.
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CHAPTER 5

TRANSIENT PROBLEMS AND ODE
SOLVERS

The nature changes at every time instant, and the numerical simulation of evolutionary pro-
cesses plays an important role in applied sciences and engineering. Transient problems can
be very complicated and the spectrum of numerical methods for their solution is accordingly
wide.

At the introductory level it is natural to begin with the Method of lines (MOL), which has
a prominent position due to its ability to add temporal evolution to all numerical methods for
stationary PDEs without altering the spatial discretization. This is demonstrated in Section
5.1, where we exploit the finite element technology developed in Chapters 2—4. With the
MOL this is the “easy part”, and the “real work” is done by solving the arising system of
ordinary differential equations (ODEs). Therefore, the largest part of this chapter is devoted
to modern ODE solvers.

Section 5.2 introduces the general concept of one-step methods, which are the best
candidates to be used for MOL in combination with adaptive finite element methods. The
discussion continues with the properties and implementation aspects of explicit and implicit
Euler methods and higher-order Runge—Kutta (RK) schemes. Section 5.3 introduces the
reader to stability analysis of ODEs and ODE solvers. Basic understanding of stability helps
the reader to use the ODE solvers adequately and efficiently. Section 5.4 presents the nowa-
days most popular implicit higher-order methods, including the Gauss and Radau implicit
Runge-Kutta (IRK) schemes. Presented are both the classical and simplified Newton’s
methods for the solution of nonlinear algebraic systems arising in implicit ODE solvers.

Partial Differential Equations and the Finite Element Method. By Pavel Solin 167
Copyright © 2006 John Wiley & Sons, Inc.
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5.1 METHOD OF LINES

In this section the reader will need some basic facts about second-order parabolic problems
from Chapter 1. Recall the general second-order parabolic equation (1.76),

du
— 4+ Lu=f, 5.
B +Lu=f (5.1

where L is a second-order elliptic operator of the form (1.1), 2 C R? is a bounded domain
with Lipschitz-continuous boundary, T" > 0, Q7 = Q2 x (0,7") is the corresponding space-
time cylinder, and f € C(Qr). The classical regularity assumptions are weakened after
the problem is stated in the weak sense. For example, in the special case

q

k
Lu=—-——Au, [f=—.
oc oc

equation (5.1) describes the temporal evolution of the temperature « induced by heat sources

of the density ¢ in a domain €2 filled with an isotropic material. Here k is the thermal
conductivity, p the material density, and ¢ the specific heat of the material.

5.1.1 Model problem
Assume that 92 consists of two disjoint open pieces I'p and 'y such that
MN=Tpuly
(see Figure 4.1). Equation (5.1) is equipped with the Dirichlet boundary conditions
u(x,t) =gp(x) forall (x.t) € T'p x (0,T), (5.2

Neumann boundary conditions

g—:j(:v,t) =gny{x) forall (x,t) e 'y x (0.7). (5.3)

and, moreover, with an initial condition
u(x,0) = up(x) foralle € QL (5.4)

For simplicity. let the functions g and g be time-independent in the following.

5.1.2 Weak formulation

We learned in Chapter 1 how to formulate problem (5.1)-(5.4) in the weak sense: The
nonhomogeneous boundary data gp is represented by a suitable Dirichlet lift G € H*(€2),
such that G = gp on I'p in the sense of traces. The solution u is written as a sum

w(z,t) = Glx) + Ulx. ).

where forall t € (0,T)
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Ut)eV ={ve H(Q): v|r, = 0}.

Using the notation ({/(¢))(:) = U(-, 1), the weak formulation reads:
Given f € L2(Qr)and Uy = up — G € V, find U € L2(0,T: V) N C°((0, T); L*(2))
such that

d

p” (Ut)(x)v(z)dx + a(U(t),v) = Ilv) forallveV, (5.5)

U = U, (5.6)

in the sense of distributions. Both the bilinear form a(-,-) and the linear form I(-) were
defined in Chapter 4.

5.1.3 The ODE system

The basic idea of the Method of lines is to keep the temporal variable ¢ continuous while
the spatial part of the problem is discretized analogously to time-independent problems.
This technique is called semidiscretization in space. The outline of the procedure is as
follows: Perform all spatial approximation steps described in Paragraph 4.1.2 and design
the piecewise-polynomial space V;,,, C V according to the finite element mesh Th p-
Construct a suitable basis

Express the sought function Uy, ,, as a linear combination of the basis functions v;, j =
1,2,..., N, with time-dependent coefficients y;(z),

N

Unpl(@,t) =Y u;(t)v;(x) (5.7)

J=1

[compare to (4.11)].

The variational formulation (5.5) is approximated using the sequence of approximations
listed in Paragraph 4.1.2: The domain €2 is replaced with a simpler domain €2}, suitable for
meshing, boundary conditions are moved from 942 to the new boundary 92, coefficients
and data are extended to 2, if Qp, & £, the space V' is replaced with a piecewise-polynomial
space V}, ,, built on the finite element mesh, exact integration is replaced with the Gaussian
quadrature, etc. After inserting the construction (5.7) into the approximate variational
formulation, one obtains

N
Z / d:c+Zyj vj,vz = l{v;), (5.8)
j=1 Q

—_— — S,j

mij

i=1,2,.... N. Written in matrix form, (5.8) reads
MY (t) + SY (t) = F(t). (5.9)

Here, M is the mass matrix,
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my; = (vy,0:) 2 = / vi(z)v () de, 1<4,5 <N,
Qh

S is the stiffness matrix,
85 = alv;,vg), 1<14,j <N,
F is the right-hand side vector,
fi=Uvy), 1<j5<N,

and Y (t) is the vector of unknown time-dependent coefficients y;(t), 7 = 1,2,..., N.
Now (5.9) no longer depends on the spatial variable x, and thus (5.9) is a system of
linear ODEs. Defining

(Y (t),t) = M [F(t) - SY (1)), (5.10)
one obtains a standard initial value problem
Y(t) = ®(Y(t).1), (5.11)
Y0 = YO (5.12)
We assume that the right-hand side function (Y, ¢) is continuous and locally Lipschitz in
Y (these are the assumptions of the existence and uniqueness theorem for ODEs [25}).
5.1.4 Construction of the initial vector

In the finite element context, the initial coefficient vector Y° = (y1.0,%2.0,---,yn0)"
is determined uniquely by any interpolant Uy, 0 € Vi, of the initial condition U{0) =
uy — G € V via the expansion

N
Uhpo = E Yi.0Vi-
1=1

Here {v1, vz, ..., vun} is the finite element basis of the space V}, ;.. Since the interpolation
is done in a Hilbert space setting, there are at least three basic interpolation options with
different quality and cost:

1. Best interpolant minimizing the norm ||(ug — G) — Up pollv, is obtained via the
global orthogonal projection of ug — G onto the space V, ;. In this case, one has to
solve a system of N = dim(V}, ,,) linear algebraic equations of the form (2.82),

N
(ug—G) = yjovj,vi | =0 foralli=12,...,N. (5.13)
j=1

v

2. Projection-based interpolant that combines the Lagrange interpolation of vertex val-
ues with the orthogonal projection on the edges and in the element interiors. The
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one-dimensional version of this technique is simple (see Section 2.82), but in 2D it
involves the nontrivial space Héf, which exceeds the scope of this text (see, e.g.,
[111] for details). This technique only involves the orthogonal projection locally, and
therefore it is faster but less accurate than the full orthogonal projection.

3. Lagrange nodal interpolant. This is the fastest but at the same time the least accurate
technique. One proceeds as described in Paragraph 4.1.8 for Q' /P!-meshes and in
Paragraph 4.3.10 for meshes consisting of higher-order QP / PP-elements.

Evaluation of the vector Y (t) In most computations the mass matrix M is not in-
verted explicitly since M ~1 is a large dense matrix. Instead, one usually resolves Y ()
from a system of linear equations

MY (t)=B (5.14)
with the right-hand side
B =F(t) - SY(t).

Iterative matrix solvers perform efficiently on the system (5.14) since the mass matrix M is
well-conditioned (usually much better than the stiffness matrix S). It is worth mentioning
that certain spectral element methods yield a diagonal mass matrix M (see, e.g., [69]).

5.1.5 Autonomous systems and phase flow

The notions of autonomous system and phase flow will be used frequently in this chapter.
By the symbol

V(X0 t,tp) (5.15)

we denote the solution Y () to (5.11) at the time ¢ € R, starting from the initial vector
X" € RY and initial time ¢, € R. Without loss of generality, we can assume that ¢, = 0.
In the special case of autonomous systems,

Y(t) = ®(Y) (5.16)

the time only enters relatively via time differences, and therefore one can leave out the
initial time ¢y from (5.15). Then the symbol

Y(X,At) (5.17)

is used to denote the solution to (5.16) starting at X € RY after the time-increment At.
Autonomous systems occur frequently in practice (for example, if coefficients and data to
a parabolic PDE do not depend on time explicitly) and they are the basis for the stability
analysis of numerical methods for ODEs (to be discussed in Section 5.3).

Under the assumption that the solution Y'{¢) exists for all ¢ € R, the RY — RY
transformations

FAX =Y(X.At)  forall X e RV, At e R.
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form a one-parameter Abelian (commutative) group. This group [and sometimes also the
function Y( X, At) itself] is called phase flow of equation (5.16). The corresponding binary
operation ‘x* is the continuation,

(FA %« FANX = FASFALX = Y(V(X.At),As) forall X € R, At,As € R.

It is easy to check the commutativity of this operation,
(]_-As * fAt,)X _ ]:AS]_—AfX
fAthsX
(FA S FA9X  forall X e RV, At,As € R.

The identity element of the phase flow is the identity transformation

FX =Y(X,0)=X forall X ¢ RV,

and the inverse element to F2! is defined as the reader expects,
FAX =Y(X.-At) forall X e RY, At € R.
The verification of the associativity law,
(FAT % FA%) « FA = FA % (F& x F2).

is left to the reader as a simple exercise.

5.2 SELECTED TIME INTEGRATION SCHEMES

There exist many excellent papers and books on the numerical solution of ODEs, and
numerous sophisticated ODE packages can be downloaded from the Internet. However,
one should not think that all important problems in the theory and numerics of ODEs
have been solved. On the contrary: Significant progress has been made recently in the
development of new methods and in understanding of the existing ones, and the numerical
solution of ODEs continues being a very active research area.

The initial-value ODE problems resulting from the MOL exhibit specific features that
have to be considered when selecting an appropriate ODE solver. Often, stiffness makes
the application of explicit schemes prohibitive and requires implicit methods. The ODE
solver should be of a higher order of accuracy: Higher-order schemes are preferable even
for lower-order spatial discretizations because of their efficiency. Third, the increasing
popularity of self-adaptive finite element schemes prefers one-step ODE solvers. Summing
up, higher-order implicit one-step methods are one of the nowadays’ most popular choices.

In Paragraph 5.2.1 we introduce the general concept of one-step methods and define their
consistency and convergence. Paragraph 5.2.2 begins with the explicit and implicit Euler
methods, and it describes their application to the initial-value ODE system (5.11), (5.12)
with emphasis on the case with the linear right-hand side (5.10). The concept of stiffness
is discussed in Paragraph 5.2.3, and a discussion of modern explicit one-step Runge—Kutta
(RK) methods for nonstiff problems is given in Paragraph 5.2.4. A feasible algorithm
for automatic adaptivity based on embedded RK methods is described in Paragraph 5.2.5.
General (implicit) RK methods are discussed in Paragraph 5.2.6.
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5.2.1 One-step methods, consistency and convergence

The general one-step method for equation (5.11) calculates an approximation X AL of
the solution at the time ¢ + At using the approximation X at the time ¢ and a time step At.
This can be expressed using the notation

XA = £(X 1, AL). (5.18)

Analogously to the continuous case (5.17), in autonomous systems of the form (5.16) one
can drop the temporal variable ¢ and define

XA = £(X,Ab). (5.19)

The function £ sometimes is referred to as the discrete phase flow of the autonomous system.
Consider a finite time interval (0, T'), and introduce its partition 0 = t5 < t; < t2 <
. < tg = T, where t; is the kth temporal level and Aty = try1 — tx the kth time
step, k = 0,1,..., K — 1. Then the one-step method (5.18) starting at the initial condition
Y = Y (0) creates an approximation of the exact solution Y () = V(Y ¢,0) of the
problem (5.11), (5.12) in the form of a sequence of discrete states Yyly?, . .., Y ¥ at the
times £1,%s, ..., txk:

Y = £(Y°0,At), (5.20)
Y? = E(Y'.ty,Aty),

Y& = E(YEN g 1, Atg_y).

The consistency error of the one-step method (5.18) is defined naturally as the difference
between the approximation and the exact solution to (5.11) after one time step, when
starting from the same state X . The following definition expresses this difference using
the functions Y and &£.

Definition 5.1 (Consistency error) The consistency error of the one-step method (5.18) at
X € RN and t > 0 for sufficiently small At > 0 is defined as

(Xt At) = V(X t,At) — (X, t, At).

In order to distinguish between the lowest- and higher-order time integration schemes,
it is natural to define the order of consistency.

Definition 5.2 (Order of consistency) The order of consistency of the one-step method
(5.18) equals p if

e(X,t, At) = O(AFH) (5.21)

holds for sufficiently small At locally uniformly for all X and t. The method is said to be
consistent if its order of consistency p is at least one.

The following result is frequently used in the numerical analysis of ODEs:
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Lemma 5.1 (Consistency of one-step methods) Assume that the function £ is continu-
ously differentiable in the variable At for all sufficiently small 0 < At < At*. Then
the one-step method (5.18) is consistent if and only if there exists an increment function
(X, t, At) continuous in t for all X, such that p{X .t,0) = ®(X.t) and

E(X,t,At) = X + Atp(X £, At).

Proof: Based on the Taylor expansion of the functions ) and & (see, e.g., [25]). |

Naturally, one wants to analyze whether and when the approximate solution approaches
the exact one as the time step converges to zero. For this purpose we define the discretization
error and convergence of one-step methods:

Definition 5.3 (Discretization error) Assume that the system (5.11), (5.12) has an exact
solution Y (t) in the interval (0,T'). Consider a partition 0 =t < t; <ty <...<tg =
TandletY° Y, .., Y & be the approximate solution obtained by means of the one-step
method (5.18). The discretization error is defined as

The symbol dt stands for the diameter of the time partition,

dt = max (tg —tr—1).
k=12 K

The notion of convergence of the general one-step method (5.18) is defined as follows:

Definition 5.4 (Convergence) The one-step method (5.18) is said to be convergent with
the order p > 1 if there exists a constant dt* > 0 such that

€qr = O(dtF)
for all temporal partitions of the interval (), T') whose diameter dt < dt*.
The following theorem is the basic convergence result for one-step methods:

Theorem 5.1 (Convergence of one-step methods) Ler £(X | t, At) be a one-step method
whose increment function (X ,t, At) is locally Lipschitz-continuous in the variable X.
Assume that along a trajectory

Y (t) € CH{[0,T},RY)
the consistency error satisfies
Y (t + At) — E(Y (t),t, At) = O(APTH).

Then the one-step method is convergent to Y (t) with the order p.
Proof: The proof is based on Lemma 5.1. See, e.g., [25]. |

The simplest concrete examples of the general one-step method (5.18) are the explicit
and implicit Euler methods.
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5.2.2 Explicit and implicit Euler methods

Euler methods are the oldest and least sophisticated ODE solvers. The explicit Euler method
is popular because of its very simple implementation and minimum overhead cost, but it also
is known to be unstable unless the time step is extremely small. The implicit Euler method
is more stable, but for nonlinear ODEs it requires the solution of a system of nonlinear
algebraic equations in every time step. In the case of linear ODEs the application of both
the explicit and implicit Euler schemes is equally simple.

Explicit Euler scheme

The explicit Euler method is obtained by approximating the temporal derivative in (5.11)
by the forward time difference,

i Yk+l _ Yk
Vi~

and leaving the right-hand side of (5.11) on the kth temporal level. In this way one obtains

YY = Y(t), (5.22)
YR = YR L AL®(Y R 1), (5.23)

which is a one-step method of the class (5.18),
E(X,t,At) = X + At®(X,t).
Since @ is continuous, this method is evidently consistent with the order p = 1 in the
sense of Definition 5.2. If the right-hand side ®(Y, ¢) is locally Lipschitz-continuous in
the variable Y, the increment function
P(X,t, At) = B(X,t)

satisfies the assumptions of Theorem 5.1, and therefore the one-step method is convergent
with the order p = 1.

It follows from (5.10) that on each time level one obtains a system of linear algebraic
equations of the form

MY*+ = B (5.24)

where

BY = MY" + At (F(t) — SYF).

The presence of the mass matrix M on the left-hand side of (5.24) is not very pleasant for
an explicit method, since the time step is very small and the system (5.24) has to be solved
many times. Therefore, in practice M sometimes is truncated to its diagonal,

M%diag(mu,mgg,...,mNN), (525)

This operation is called mass lumping.
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Limitations The truncation (5.25) produces a higher-order temporal error term that often
can be neglected with a low-order FEM discretization in space. Generally it is not practical
to combine low-order ODE schemes with higher-order FEM. As we said above, the explicit
Euler method is known to be unstable unless the time step At is very small. For parabolic
problems, the theory says that At must be proportional to the square of the volume of the
smallest element in the mesh, i.e.,

At = O(AR?). (5.26)

This criterion makes the explicit Euler method extremely time-consuming and almost im-
possible to combine with spatial adaptivity, where Ah — 0. The situation is less severe
in the case of hyperbolic problems, where the criterion (5.26) is replaced with the less
constraining CFL condition (see, e.g., [52, 77] and [78]),

At = O(AR).

The stability of one-step methods will be discussed in more detail in Section 5.3.

Implicit Euler scheme

The implicit Euler method is obtained by approximating the temporal derivative in (5.11)
by the backward time difference,

R Yk+1 _Yk
Y (i) R
(tht1) At

and assuming the right-hand side of (5.11) on the (k + 1)th time level. The ODE problem
(5.11), (5.12) yields a discrete system

YO = Y(to) (5.27)
YR = YR L ARS(Y R+ Aly),

In general the function @ is nonlinear and requires a special treatment (such as, e.g., some
sort of fixed point or Newton’s method). However, the linearity of the model problem (5.1)
yields

Ykl _y* !
M- = F(tpy) - SY*,
Aty

and as a result, the system one has to solve on each time level is linear,

S, Yk+l = gh+l. (5.28)
Here

Sk =M + At S (5.29)
and

B*U = At F(ti,) + MYF.
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Stability and accuracy 1t is well known that the implicit Euler scheme is absolutely
stable, i.e., it works with any size of the time step (this will be discussed in more detail in
Section 5.3). One should not forget that this method only is first-order accurate. In most
cases the performance of iterative matrix solvers deteriorates when the time step Aty grows
too large, since usually

w(M) < k(S),
and thus the matrix (5.29) becomes ill-conditioned.

Remark 5.1 Without the truncation (5.25) of the mass matrix M the implementation cost
of both the explicit and implicit Euler schemes is the same. Thus for linear problems it
certainly is a good idea to use the implicit scheme.

5.2.3 Stiffness

It is customary to say that stiffness is a property of ODEs that complicates their numerical
solution. In reality the stiffness is a more complex phenomenon that involves at least three
basic ingredients: the solved equation or system, the numerical method, and the time step.
It is known that stiffness is associated with the behavior of perturbations to a given solution.
To illustrate this, let Y (¢) be an exact solution of equation (5.11),

Y () = (Y (t),1), (5.30)

and let €Z(t), where € is a very small real number, be a perturbation of Y'(¢). When
replacing Y (¢) with the perturbed solution Y (t) + ¢ Z(t),

Y (t)+ eZ(t) = ®(Y (t) + eZ(t), 1),

and neglecting the quadratic and higher-order terms in the Taylor expansion, one obtains

Y (t)+eZ(t) = (Y (t),t) + eJ(t)Z(1). (5.31)
Here
J(6) = D2 (¥ (1)1 (5.32)

is the Jacobi matrix of the right-hand side ®. Subtracting (5.30) from (5.31), one obtains
an equation governing the evolution of the perturbation,

Now, in a time interval where neither the solution Y (¢) nor the Jacobi matrix J(¢) change
significantly, the growth of the components of the perturbation Z(t) is determined by the
eigenvalues of J(¢). In general, the existence of one or more eigenvalues whose real part
is negative and large in magnitude is a sign that stiffness almost certainly is present. This
is demonstrated on a simple linear ODE system:
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Example of a stiff problem Let us solve a system of two linear ODEs,

n) = —ylt), (5.33)
y2(t) = —100y(t),

equipped with the initial condition

yi(0) = 1, (5.34)

Equations (5.33) are autonomous and they can be written in the matrix form

Y (t) = AY (¢),

-1 0
Az( 0 —100)'

Hence the Jacobi matrix (5.32) is directly A. The eigenvalues of A, A\; = —1 and Ay =
—100, determine the form of the exact solution,

where

nty = e (5.35)
w(t) = e,
which is depicted in Figure 5.1.
1 T T T T
yi()
y2(t) ----mm-
08 + —~
06} .
0.4 fi 4
02+ ]
0 \\\ i 1 1 L
0 0.2 0.4 0.6 0.8 1

Figure 5.1 Two different temporal scales in the solution of the stiff problem (5.33), (5.34).

We see that the solution components 4, (¢) and y» () vanish at different temporal scales. It
is well known that explicit methods applied to stiff problems like (5.33), (5.34) are unstable
unless the time step is absurdly small. The best known one-step schemes for stiff problems
higher-order implicit RK methods, will be discussed in Section 5.4.
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5.2.4 Explicit higher-order RK schemes

Fortunately not all ODEs are stiff, and explicit methods are useful for numerous types
of ODE problems. The RK methods are sophisticated one-step methods that generalize
the explicit Euler scheme to higher orders of accuracy. The first method of this kind was
introduced as a generalization of the Taylor’s method in 1895 by Carle David Tolmé Runge
{101j,

z = ®(Y* 1), (5.36)
At At
Zy = L] Yk+—kZ1,tk+_k )
2 2
YR = Y4 Atz

Figure 5.2 Carle David Tolmé Runge (1856-1927).

C.D.T. Runge contributed significantly to the fields of differential geometry, interpo-
lation, and numerical solution of algebraic and ordinary differential equations. He also
was active in experimental physics, where he investigated the wavelengths of the spectral
lines of elements. Nowadays his explicit second-order method (5.36) is widely used in the
slightly more general form

z1 = ®(Y* ), (5.37)
t At
z2 = L i Yk+—k21,tk+—k
2wo 2w
Y']H'l = }/lC + Atk[(l — U.)Q)Zl + (.UQZQ],

where possible choices of the parameters are we = 1/2, wy = 1/3 orwy = 1.
As shown in 1901 by W. Kutta [74], (5.36) can be extended to more general nested
evaluations of the right-hand side, resulting into the s-stage explicit RK method

i—1
zi = Lo Yk + Atk Z ai5235, tk + Cl‘Atk , C1 = 0, (538)
i=1

) - Y’“+Atk2bizi. (5.39)
=1
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The parameters a;; and ¢;, satisfying
i—1
C; = E Ay,
i=1

are determined from the Taylor expansion of the function Y(t) in (5.11) in such a way
that the order of the truncation error is maximized (see, e.g., [106]). The values of these
parameters are sufficiently well tabulated.

Butcher’s arrays Both the explicit and implicit RK methods can be written economi-
cally in terms of the Butcher’s arrays [25],

€1 411 adiz ... O1g
C2 | G21 Q22 ... dgg
Cs | Qg1 ag2 Qgs

| bi by by

The RK method given by such array is referred to as the (b, ¢, .A) RK method. For example,
the array

corresponds to the explicit Euler method (one-stage explicit RK method)

z; = ®(YF 1), (5.40)
YR = YR 4 Atz

The original second-order Runge’s method (5.36) can be written as

0
1/2 | 1/2

| 0 1

The famous Kutta’s fourth-order “classical RK method” (1901) has the form

0
1/2 | 1/2
/21 0 1/2

1 0 0 1
| 1/6 1/3 1/3 1/6

To give one more example, the so-called Kutta’s 3/8 formula is given by

0
1/3 | 1/3
2/3 | -1/3 1
1 1 -1 1

| 1/8 3/8 3/8 1/8
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A Runge-Kutta method is explicit if the diagonal and the upper triangular submatrix of
A are zero. The sufficient and necessary condition for the consistency of RK methods is
formulated in the following lemma.

Lemma 5.2 (Consistency of explicit RK methods) Anexplicit (b, ¢, A) RKmethod (5.38),
(5.39) is consistent for all continuous right-hand sides ® if and only if

Sh=1 (5.41)
i=1

This condition will be extended to general implicit RK methods in Paragraph 5.4.1.
Proof: The method (5.38), (5.39) can be written in the incremental form

E(X,t,At) = X + Aty(X, t, At)

with

P(X, 60 =X + ALY bizi.

i=1

For At = 0 we have z;(X,¢,0) = ®(X,t) and therefore

P(X,1,0)= X + At (Z bi> B(X,1).

i=1

By Lemma 5.1 consistency is equivalent to (X, t, At) = ®(X,t). This is the case if and
only if (5.41) holds. [ |

In reality, the coefficients b; and ¢; are the weights and points of a quadratare formula
in the interval (0, 1) (to be discussed in more detail later). Now let us have a look at the
maximum order of consistency of an s-stage explicit RK method.

Lemma 5.3 (Order of consistency of explicit RK methods) Letan explicit s-stage (b, c,
A) RK method have the order of consistency p for all infinitely smooth right-hand sides ®.
Then necessarily

gt) = y(t), (5.42)
y(0) = 1,
we find that
At? AtP

g(LO,At):gAt:1+At+7+...+7+O(At”“).



182 TRANSIENT PROBLEMS AND ODE SOLVERS

Thus necessarily z;(1,0, At) is a polynomial of the degree less than or equal to 7 — 1.
Hence £(1,0, At) is a polynomial in At of the degree at most s, and for the consistency
error (1,0, At) to be O(AtP*1) it must be p < s. |

Explicit RK methods are very popular because of their very simple implementation.
More precisely, their implementation is very simple in combination with the truncation
(5.25) of the mass matrix M. The loss of accuracy due to this operation is less significant
than in the case of the explicit Euler method.

Most popular are RK methods of the orders p = 1 (Euler methods), p = 2, and p = 4,
since for higher p it is p < s (see Table 5.1), and the ratio of the cost and performance
becomes less optimal.

Table 5.1 Minimum number of stages for a pth-order RK method.

p'l 5 6 7 8 >9

2 3 4
Smin |1 2 3 4 6 7 9 11 >p+3

5.2.5 Embedded RK methods and adaptivity

An ODE solver designed to perform well on a wide range of problems should be adaptive
and control at least the local error. In this context, worth mentioning are the embedded RK
methods. These are simple adaptive schemes that estimate the local error via the difference

EM A YRyt (5.43)

where the values Y*T* and f’kH are obtained by performing the same time step twice
with RK methods of the order m + 1 and m, respectively. This is an idea as old as error
estimation jtself, and moreover, it seems to more than double the amount of work per time
step. However, the Fehlberg’s trick [51] makes it possible to keep the amount of work
proportional to the (m + 1)th-order method.

Fehlberg’s trick The basic idea of the Fehlberg’s trick is to let the first stage of the new
time step be the same as the last stage of the current step, i.e.,

s—1
B(YF+ Atk Y agzh te+cAt) = 25
j=1

k41
2y

(Yt + Aty)

S
B(YF + Aty Y bizh by + Aty).
j=1

This holds for all right-hand sides if the coefficients satisfy
cs = 1,
bs = 07

as; = by forallj=1,2,...,s.
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The remaining coefficients are determined routinely (see, e.g., [25]). The total number of
evaluations of the right-hand side ® in n steps of the algorithm is only n - (s — 1) + 1
instead of n - 5. Therefore we speak about an effectively (s — 1)-stage method, of the type
RKp(p - 1).

Among numerous known embedded RKp(p — 1) methods, the most mature were con-
structed by J. R. Dormand and P. J. Prince (see [42] and [43]). The coefficients of their
effectively 6-stage RK5(4) method are given in Table 5.2.

Table 5.2 Coefficients of the Dormand-Prince RK5(4) method.

0

.

51 5

3003 9

10| 4o 40

41 4 6 32

5| 45 15 9

8 | 19372 25360 64448 212

9 | 6561 2187 6561 729

| 9017 355 46732 49 5103
3168 33 5247 176 18656

R o 500 125 2187 11
384 1113 192 6784 84
35 o 500 125 2187 11
384 1113 192 6784 84
5179 0 7571 393 92097 187 1
57600 16605 640 339200 2100 40

Various adaptive algorithms can be built upon embedded RKp(p — 1) methods, using
either the rather primitive error estimate (5.43), or some more sophisticated estimate that
typically involves the stages z; (see, e.g., [25]).

The following basic adaptive algorithm reduces the time step At to DT RED * At if
(5.43) exceeds a given tolerance TOL, and it increases At to DTINC = At if (5.43) is less
than ERRMIN x TOL. If the ODE system is rooted in a parabolic PDE, the initial time
step may be defined as Aty := (Ah)? (where Ah is the volume of the smallest element in
the mesh 7}, ;). Otherwise, some other appropriate value of Aty may be chosen.

Algorithm 5.1 (Adaptive RK5(4) method)

Read the local error tolerance parameter TOL;
Read the final time Tfinals
Set the time step reduction parameter DTRED (for example) to 1/2;
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Set the time step increase parameter DTINC (for example) to 3/2;
Set the parameter ERRMIN (for example) to 0.05;
Define the initial time step as At := Aty;
Define the initial condition YO := Y (0);
Set t:=0 and k:=0;
Do {
Estimate Y (txy;) by Y**! using Y5, At and the RK5 method;
Estimate Y ({ry1) by yrr! using Y*, At and the embedded RK4 method;
Calculate a local error estimate E*t! via (5.43);
If (ERRMIN +TOL < ||E**!|} < TOL) then {
k=k+1;

}

else {
if (JE*t|| > TOL) then At:= DTRED x At;
else {
t:=t+ At;
k=k+1;
At := DTINC x At;
}

} while (¢t < Tfinal);

The application of this algorithm to a concrete problem may show the need for adjustment
of the parameters Aty, DTRED, ERRMIN and DTINC. Letus remark that embedded
RK methods also exists in the implicit version (see [25] and the references therein).

5.2.6 General (implicit) RK schemes

Implicit RK methods were introduced in 1964 by J. C. Butcher by allowing the coefficient
matrix A4 in (5.38), (5.39) to be a full matrix. This generalization yields an s-stage RK
method

$
z; = Q(Yk —f-AthaUZj,tk+CiAtk), (5.44)
j=1
YR = YR ALY bz (5.45)
=1
The summation in (5.44) runs over all ¢ = 1,2,..., s, and therefore identical z;s appear

on both sides of the equation whenever a;; # 0, and unknown higher-index z;s, ¢ < j, are
present if a;; # 0. In these cases the RK method (5.44), (5.45) is implicit. In turn, the
explicit RK methods (5.38), (5.39) are obtained if a;; = Oforallj > 4,71 =1,2,...,s.
The currently best known Gauss and Radau higher-order IRK methods are introduced in
Paragraph 5.4.2, after we discuss in more detail the role of higher-order numerical quadrature
rules in Paragraph 5.4.1. For now, let us mention a few simpler IRK methods and illustrate
their application to problem (5.11), (5.12) with the right-hand side (5.10).
The Butcher’s array

1)1
| 1
represents the implicit Euler method (5.27),
21 = ®YF 4 Atpz e + Aty),
YR = YR 4 Atz
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Another one-stage method
1/2 ‘ 1/2
| 1

corresponds to the “implicit midpoint rule”. Notice that p = 2s here, which by Lemma 5.3
would not be possible with an explicit RK method. A third array,

o] 0 0
1]1/2 1/2
| 1/2 1/2

defines another second-order IRK based on the “implicit trapezoidal rule”

2 = ®(YF 1), (5.46)
At At
Z9 = @ (Yk + Tkzl + Tkzg,tk + Atk) 5
A Aty
Yk+1 = lec + %Zl + %22.

With a general nonlinear right-hand side @, each iteration of an s-stage IRK method requires

the solution of a system of nonlinear algebraic equations (see Paragraph 5.4.3). The natural

questions of existence and uniqueness of solution to this system are highly nontrivial, but

the answer to both of them is positive, for sufficiently small values of At (see, e.g., [25]).
In our particular case, the linearity of the model problem (5.1) translates into (5.10),

®(Y(t),t) = M~ [F(t) - SY ()]

In turn the algebraic system to be solved is linear, as it was in the case of the implicit Euler
method in Paragraph 5.2.6. For example, the above second-order IRK (5.46) yields

z; = M YF*-8Y"), (5.47)

Aty A
M! {F"’“ -8 (Y’“ + T"zl + %zzﬂ ,

zZ2

and thus z; and z» are obtained by solving two linear algebraic systems
Mz, = F*-8Y¥, (5.48)
At At
(M-FTICS) Zy = Fk+l —S(Ykﬁ-—QJEZl)-

More about higher-order RK schemes will be said in Section 5.4, after introducing basic
stability concepts of ODEs and one-step methods in Section 5.3.

5.3 INTRODUCTION TO STABILITY

The stability domains of the functions ) and £ are fairly independent, and the performance
of the ODE solver is determined by their intersection. Let us begin with defining the
classical concept of Ljapunov stability:
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Definition 5.5 (Stability, asymptotic stability) Ler (Y” ,to) be suchthat the solution'Y (t)
= V(Y. t,t5) of the ODE (5.11) exists for all t > t,. The solution Y (t) is said to be
stable at (YO7 to) (in the forward direction) if for every € > O there exists a & > 0 such that

Y (t) € BAYV(Y,% ¢, t0))

for all t > to and all perturbed initial states Y. € Bs(Y"°). In addition, if there exists a
bo > 0 such that

Jim V(¥ t,t0) = V(X t,t0) ]| = 0
—0C

forall perturbed initial states Y, € By, (Y°), the solution Y (t) is said to be asymptotically
stable at (Y'°,tg). In such case we say that sufficiently small perturbations of the initial
state are “damped out”. Solution Y (t) is unstable if it is not stable. An ODE is called
stable if it has a stable solution for all initial conditions (Y°,tg).

In other words, the function ) of an ODE is said to be stable (in the sense of Ljapunov) if
small changes of the initial state cannot cause excessive changes in the temporal evolution.
An analogous definition can be formulated for the stability in the backward direction. It
can be shown that a solution Y'(¢) that is asymptotically stable in the forward direction is
unstable in the backward direction. The notion of stability is invariant under the choice of
the norm || - || in RY, since all norms in finite-dimensional spaces are equivalent (Definition
A.34, Theorem A.5).

5.3.1 Autonomization of RK methods

The stability of numerical methods for ODEs is analysed in the context of linear autonomous
systems of the form

Y(t) = AY(t), (5.49)
Y(0) = Y9

where A € RY*¥ is a constant real (or complex) matrix. But, does the study of the
autonomous system (5.49) have some relation to the original nonautonomous system (5.11),
(5.12),

Y(t) = ®(Y(t)t), (5.50)
YO0 = Y%

The answer is yes. It is well known that the system (5.11), (5.12) can be autonomized by
defining a new (augmented) state variable

Z(t) = (Q(Y(t)‘t) > (5.51)

N
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o
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Let V(Y t,0) describe the evolution of the original system (5.50) and the function
Z(ZO, t,0) the evolution of the autonomized system (5.51). Then ) and Z are equiv-
alent if the condition

( ))(Y(;)J,rtz;r At) > _z (( th) ),t’HAt) 552

is satisfied. It seems not to be widely known that virtually all RK methods that are used
in practice account for this equivalence by producing identical results when applied to the
systems (5.50) and (5.51). Such RK methods are said to be invariant under autonomization.
However, the fulfillment of (5.52) is not automatic:

Lemma 5.4 A general (b, ¢, A) RK method (5.44) is invariant under autonomization if and
only if it is consistent and

8
=Y a; forall i=12..,s. (5.53)
j=1
Proof: See,e.g., [25]. |

It is customary to use the notation (b, .A) for RK methods with the property (5.53). The
formalism of Butcher’s arrays reveals easily that all the explicit and implicit RK methods
presented until now (including both the explicit and implicit Euler methods), were invariant
under autonomization. Without loss of generality, we restrict ourselves to RK methods
invariant under autonomization also in the rest of this chapter.

5.3.2 Stability of linear autonomous systems

The invariance of RK methods under autonomization justifies the study of their performance
on the linear autonomous system (5.49). Itis well known that in this case the exact solution
has the form

Y (t) = Y(Y°t) = exp(At)Y?, (5.54)

where the matrix exponential exp( At) is defined via the absolutely convergent series

> n

exp(At) = > (t;‘!) : (5.55)
n=1

For every A € RY*¥ this series converges locally uniformly in R, i.e., uniformly in all

finite intervals (—7T,T), T € R (for a proof see, e.g., [25]).

Because of (5.54) and (5.55), the complex exponential function exp(z), z € C, is called
the stability function of the linear autonomous system (5.49). We will see in Paragraphs
5.3.3 and 5.3.4 that explicit and implicit one-step methods of the order p are based on its
pth-degree polynomial or rational approximation of the form

exp(z) = R(z) + O(zP11), (5.56)

respectively. The following theorem characterizes the stability of the matrix exponential
exp(At) in terms of the eigenvalues of A. Recall Definition A.18 of the spectrum o (A).
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Theorem 5.2 The linear autonomous ODE system (5.49) is stable if and only if the following
two conditions are met:

1. Re(\) <0 forall X € o(A),

2. All eigenvalues A € o(A) such that Re(\) = 0 have index exactly one. (The index
of an eigenvalue is the size of the associated Jordan blocks in the Jordan canonical
Sform of the matrix A).

The system is asymptotically stable if and only if Re(X) < 0 forall A € o(A).
Proof: See,e.g., [25]. |

The reader can see that neither the stability nor the asymptotical stability of the solution
Y (t) to linear autonomous systems depend on the initial condition Y.

5.3.3 Stability functions and stability domains

In practice we need to know to what extent the discrete phase flow £ of a given one-step
scheme,

YR = £(YF Ay, (5.57)

preserves the stability of the continuous phase flow ) to the original autonomous ODE
problem. For this we need to introduce the notion of stability domains for both functions
Y and &£. Typically, these two stability domains are different, and the numerical method is
stable in their intersection.

For simplicity let us begin with a scalar version of the linear autonomous problem (5.49)
of the form

y(t) = Ay(t), te(0,00), (5.58)
y(0) = 3°
where 0 # A € C is a constant. By Theorem 5.2 the function
YV(z,t) = exp(t)z (5.59)
is stable if Re{A) < 0. This motivates the following definition:
Definition 5.6 (Stability domain of )) Let the continuous phase flow have the form (5.59).
Then the stability domain of Y is the set

Sexp = {2 € C; Re(z) < 0}. (5.60)

Now let us look at the stability domains of the explicit and implicit Euler methods:

Explicit Euler method The approximation of y(t) = Y(y°,t) with a constant time
step At has the form
! (1+ At\)y°, (5.61)
2 (14 AtA)y! = (14 AtA)%°,
o= (14 Aty = (1+ AtA)30,

S
1l
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Hence the discrete phase flow £ can be written as
E(z, At) = R(AtM)x, (5.62)
where the affine polynomial R(z),
R(z) =14z = exp(2) + O(2?), (5.63)

is said to be the stability function of the explicit Euler method. The function R(z) is a
consistent approximation of exp(z) in the sense of the following definition.

Definition 5.7 We say that a rational approximation R(z) of the complex exponential
exp{z) has consistency order p if

exp(z) = R(z) + O(z"11).
The function R(z) is said to be consistent if p > 1.

As the reader may expect. the consistency order of the stability function R is tightly
related to the consistency order of the function £ (in the sense of Definition 5.2). This will
be formulated precisely in Lemma 5.6. The stability requirement

lim y" =0,

n—oc

applied to the method (5.61), yields the stability condition
1+ AtA] < 1.

This is equivalent to the well known time step restriction for the explicit Euler method,

—2Re(X)

At < =5

(5.64)

In the real case (0 # A € R) condition (5.64) reduces to

2
At < —.
Al

Definition 5.8 (Stability domain of £) Let the discrete phase flow £ have the form (5.62).
Then its stability domain is the set

Sr={z€C: |R(z)| < 1}.

In the case of the explicit Euler method, R(z) is given by (5.63) and therefore the stability
domain of £ is the open complex circle with the center at —1 + 07 and radius 1,

Sp={zeC:|1+:z| <1}

as illustrated in Figure 5.3.
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-1

Figure 5.3  The stability domain Sy of the discrete phase flow £ of the explicit Euler method.

We see that Sg C Sezp, and this is why the time step restriction (5.64) exists. The
relation of the stability domains Sg and S, will be different in the case of the implicit
Euler method:

Implicit Euler method The method (5.27), applied to the linear scalar equation (5.58),
yields

yl\'+1 — yk 4+ /\Atyk'-(hlA

k+1

From here, the value of y is calculated via the relation

ykt+1 _ (1 . At/\)‘lyk.

In the vector-valued linear autonomous case (5.49), this operation corresponds to the so-
lution of a system of linear equations (to be discussed in more detail in Paragraph 5.3.4).
With a constant time step At, the method approximates y(t) = Y(y¥,t) with a series of
discrete values

o= (-, (5.65)
yo= (1= AT = (1 + A0,
o= (1= AT = 1+ AT

Thus the discrete phase flow & attains a form similar to (5.62),
E(x, At) = R(AtA)x.
but now the stability function R(z) is rational,
R(z)= —— =1+z4+22+22+ ..., exp(z) = R(z) + O(2?%). (5.66)
z

We see that the function R(z) is a consistent approximation of exp(z). The stability domain
of the function & is
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Sr=C\{z€C; |R(2)| <1} =C\{z€C; |1 -z <1},

which is the complement of the closed complex circle with the center at 1 4 0¢ and radius
1. In particular,

Sezp C SR»

and therefore the implicit Euler method is stable for all values of A € C and all time steps
At (we say that it is absolutely stable).

5.3.4 Stability functions for general RK methods

The stability functions to general higher-order RK methods are obtained by extending the
results from the previous paragraph. Let us give one additional example prior to introducing
the general result in Theorem 5.3.

Applying the second-order “implicit trapezoidal rule” IRK method (5.46) with constant
time step At to the vector-valued linear autonomous system (5.49), one obtains

A '
YR = (YR AL = Y + { (Av*+ 4 avF), (5.67)

which is equivalent to
(I - %A) Yl =T+ %A‘ (5.68)

Hence the invertibility of the matrix I — AtA/2 has to be checked. Regarding this, the
following lemma is helpful.

Proposition 5.1 Ler A € RV*N be a constant matrix and R(z) = P(2)/Q(z) a rational
Sfunction, where P and Q are mutually prime polynomials. Then the definition of R(A) =
P(A)Q 1 (A) makes sense only if the matrix Q(A) is invertible, and this is the case if and
only if no eigenvalue of A is a root of the function Q(z).

Proof: Depending on the reader’s background, this can be shown simply using the ma-
chinery of functional calculus (see, e.g., [100]), or the statement can be proved discretely
using the Jordan canonical form of the matrix A (see, e.g., [25] and [60]). |

Returning to (5.68): Evidently the only pole of the function

_14z/2
T 1-2/2

R(z) (5.69)

is z* = 2. By Theorem 5.2 all eigenvalues of the matrix A in a stable linear autonomous
system (5.11) are nonpositive. Using the fact that

A€ o(A) & M e o(Al),
by Proposition 5.1 we can write

o T+AtA2
yhtl - LT A 2y
I—AtA/2
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(where the fraction is understood in the sense of multiplication by the inverse matrix to the
denominator). In the following we encounter numerous rational approximations R(z) of
the complex exponential exp(z), whose poles will always have positive real parts for the
same reason as here.

The stability function R(z) approximates exp(z) with the consistency order p = 2,

1422 22 28 4 3
= 1_2/2—1+z+5+z+0(z ) = exp(z) + O(z°).

R(z)

Since |R(z)| < 1 for all z € C such that Re(z) < 0, the inclusion S, C Sg holds.
Therefore the “implicit trapezoidal rule” IRK method (5.67) is absolutely stable.

Theorem 5.3 The discrete phase flow £ of a general s-stage RK method (b, A) has the
form

E(X.At) = R(AtA)X.,

where the stability function R(z) is rational,

R(z)=1+zb" (I —zA)""1 (5.70)
(here by 1 we mean the vector (1,1,. .., DT € R®). Moreover, R(z) can be written
uniquely in the form
P(z)
R(z) = (5.71)
©=a0

with mutually prime polynomials P and @ such that deg P < s, deg Q < s, and P(0) =

Q(0) =1

The expression z.A is interpreted as the tensor product of two matrices, At @ A, when
At is substituted for z in (5.71).

Proof: 1t is sufficient to consider the scalar linear autonomous ODE y(t) = Ay(t),
y(0) = 1. The RK method (b, A) with the time step At yields the linear system,

E(1,At) = R(AtA) =1+ At Y _bjAg;.
j=1
where
g =1 +AtZ(LLJ-)\g_,». 1=1,2,...,s.
j=1

Putting z = AtAand g = (g1, g2....,9s)" € R?, this system yields
R(z)=1+zb'g, g=1+zAg.

and we obtain (5.70).
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To the second part of the assertion: The system can be solver by Cramer’s rule, in which
case we find that

F;

=——7 i=12..s,
det(I — zA) ' 5

gi

where P; are polynomials of deg P; < s — 1. Since Q(z) = det(I — z.A) is a polynomial
of deg (@ < s satisfying Q(0) = 1, it follows that the rational function R(z),
Q(Z) +z Z;’:l b; P,

Ql2) '

assumes the form (5.71) once all common divisors in the numerator and denominator have
been removed. |

R(z) =

An immediate consequence of Theorem 5.3 is Lemma 5.5.

Lemma 5.5 The stability function R(z) of explicit higher-order RK methods (b, A) is
polynomial.

Proof: Left to the reader as an exercise. |

A simple example documenting this fact is the fourth-order “classical” RK method
mentioned Paragraph 5.2.4, whose stability function R(z) (consistent with the order p = 4)
has the form

L2 L3 L .
R(z)=142+ 5 + 5 + Yl exp(z) + O(z°). (5.72)
The verification is left to the reader as an exercise.

Finally we can formulate the intuitively clear relation between the order of consistency

of the rational stability function R(z) and the consistency order of the function &:

Lemma 5.6 Consider a linear autonomous system (5.49) with the continuous phase flow

V(X t). Ler the discrete phase flow £(X , At) be defined as
E(X,At) = R(A) X,

where R(z) is a rational stability function that approximates the complex exponential exp(z)
with the consistency order p > 1. Then the consistency order of the function £ is p,

VX, At) — (X, At) = O((AtA)P*L).

Proof: The result follows immediately from (5.55) and Definition 5.2. | |

5.3.5 Maximum consistency order of IRK methods

While by Lemma 5.3 the consistency order p of explicit RK methods can never exceed the
number of stages s, already the simplest "implicit midpoint rule” IRK in Paragraph 5.2.6
exhibited twice better consistency order p = 2s. This is true for implicit RK methods
in general. The reason is that the rational stability function R(z) = P(z)/Q(z), where
deg P = deg @ = s, can approximate the complex exponential exp(z) with the consistency
order up to p = 2s:
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Lemma 5.7 Let R(z) be a rational approximation of the complex exponential such that
exp(z) = R(z) + O(zP). (5.73)

Then any representation R(z) = P(z)/Q(z) satisfies

p<degP+degQ.

Proof: By contradiction suppose that (5.73) holds with deg P < k, deg @ < j, such that
k + 7 < p. Hence

P(z)
Q(z)

—exp(z) = O(zF7*2) a5z — 0,

and by multiplication with Q(z),
P(2) — Q(2) exp(z) = O(zF7+2). (5.74)

Relation (5.74) already implies that necessarily P = ) = 0 — this is the desired contradic-
tion that will be shown by induction.

Consider first £ = 0, in which case P is a constant. Multiplying (5.74) by exp(—z) we
obtain that

P(z)exp(—z) — Q(z) = O(zj+2). (5.75)
It is deg @ < j, and therefore differentiating (5.75) 7 + 1 times, we find that
(-1)/*'P = O(2), (5.76)

which means that P = 0, and from (5.75) necessarily Q = 0. Now the induction step:
Assume that the statement holds for £ — 1 > 0. Differentiating (5.74) one obtains

P'(z) ~(Q'(2) + Q(2)) exp(z) = 0(2k+]‘+1).

Since deg P’ < k — 1 and deg(@’ + Q) < 7, by the induction hypothesis we can conclude
that P’ = 0. This again yields P = Q = 0. [ ]
Several examples of s-stage implicit RK methods with the maximum consistency order

will be presented in Paragraph 5.4.2. Such methods are constructed elegantly by embedding
higher-order numerical quadrature rules into a general collocation framework.

5.3.6 A-stability and L-stability

Being familiar with the rational stability functions R(z) and the stability domains of both
the continuous and discrete phase flows ) and £, we can introduce the concepts of A- and
L-stability.
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A-stability A one-step method for the autonomous system (5.49) is absolutely stable
only if the inclusion

S(zar,p - SR (577)

holds. [This was the case, e.g., with the implicit Euler method (5.27) and with the “implicit
trapezoidal rule” IRK (5.46)]. Generally, one-step methods with the property (5.77) are
called A-stable (G. Dahlquist, 1963). Lemma 5.8 gives an important characterization of
A-stable methods:

Lemma 5.8 One-step method £(X , At) = R(AtA)X, whose stability function R(z) is
polynomial, cannot be A-stable.

Proof: Every nontrivial polynomial R(z) satisfies

lim |R(2)| = oo,

z2—=0C

and therefore its stability domain
Sp={z€C; |R(z)] < 1}

is compact. Thus Sk never can contain the whole negative complex half-plane S.,,. ®

Consequently, every A-stable one-step method necessarily is implicit. Moreover, every
explicit one-step method comes with some stability restriction on the time step.

L-stability Until now we discussed the stability of the recursive procedure (5.20),

Y! = &Y% At)=RAtAY?C,
Y? = &Y', At) = R’ (AtA)Y?",
Y? = E(Y? At) = RY(AtA)Y",

with a fixed time step At. However, one also is interested in the behavior of implicit methods
as the size of the time step At grows. We are asking whether and when the condition

lim E(X,At)=0

At—oc
holds. This motivates the definition of L-stability:

Definition 5.9 Let the linear autonomous problem (5.49) be asymptotically stable. Then
the one-step method E(X,At) = R(AtA)X is said to be L-stable if and only if it is
A-stable and

lim R(z) =0. (5.78)

=00

This terminology was introduced by B.L. Ehle in 1969. Again, explicit one-step methods
are not considered here. The following example shows that not all A-stable methods are
L-stable:
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W EXAMPLE 5.1 (A- and L-stable methods)

. We know from Paragraph 5.3.3 that the implicit Euler method is A-stable. Its rational
stability function (5.66),

satisfies (5.78). Therefore this method also is L-stable.

2. Another A-stable method that we know is the second-order “implicit trapezoidal rule”
IRK method with the rational stability function (5.69),

_1+z/2
T 1-2z/2

R{z)
Since

lim R(z) # 0,

25
this method is not L-stable.
3. Next consider the second-order IRK method based on the “implicit midpoint rule”
1/2 ] 1/2
| 1
This method is not L-stable (the proof is left to the reader as an exercise).

4. Last consider the 2-stage third-order Radau method

1/3 | 5/12  -1/12
1 | 3/4 1/4

| 3/4 1/4

This method is A-stable and also L-stable, which again is left to the reader as an
exercise. More about Gauss and Radau methods will be said in Section 5.4.

Condition (5.78), which is necessary for the L-stability of the last IRK method in Example
5.1, can be verified literally at a glance, using the following theorem:

Theorem 5.4 Suppose that for a general RK method (b, A) the matrix A is invertible, and
the row vector b7 is identical to some row of the matrix A. Then

lim R(z)=0.

=X

Proof: Since A is invertible, Theorem 5.3 implies that

lim R(z)=1-b" A1

Phande
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Let the jth row of A be identical with b7 . Then
b= e]TA,
where e; denotes the jth unit vector. The conclusion

lim R(z)=1-€e] AA™"1=0

Zr OO0

follows immediately. ]

At this point we believe to have given a sufficient introduction to the stability of ODEs
and one-step methods. For a deeper study of this topic we refer the reader to the books [25]
and [60]. In the last section of this chapter let us discuss the most sophisticated one-step
ODE solvers: the higher-order implicit Runge—Kutta methods.

5.4 HIGHER-ORDER IRK METHODS

It was discovered in early 1970s that general (implicit) RK methods could be generated
by combining classical collocation methods with higher-order numerical quadrature rules.
Several RK methods derived via the traditional Taylor expansion techniques turned out to
actually be collocation methods. A classical book on higher-order IRK methods is [60].

5.4.1 Collocation methods

Let us return to the (nonautonomous) ODE system (5.11), (5.12) resulting from the MOL,

Y() = (Y ()1, (5.79)
Y0 = Y (5.80)

The collocation constructs the approximate solution X () = Y (¢) as a continuous (vector-
valued) function which is a polynomial of degree s in every interval [ty, ¢, + Aty], k =
0.1,...,K -1,

Xty +71)=E(Y* ty,7), T€[0.At).
In the interval [ty. t; + Aty ] the function X not only must fulfill the initial condition

X(t) =EY 1,00 =YY" (5.81)

but also it has to satisfy (“collocate”) equation (5.79) at additional s internal points ¢; +
1At b+ oAb, L. B + e Aty of the interval [ty & 4+ Aty

Xty +c1Aty) = B(X (8 + i Aty) t + 1A, (5.82)
X(tp + caty) = (X (b + Coty) b + c2Ay),
Xt + cAty) = B(X (b + coAty) .ty + coA),

where 0 < ¢7 < ¢y < ..., < ¢, < 1 are suitable constants. These s parameters fully

determine the method (its consistency, convergence, stability, and all other aspects). With
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the approximate solution X (¢) in hand, the approximate solution on the new time level is
defined as

YR = X (4, 4+ Aty) = E(Y* 1, Aly). (5.83)

It is known that X (¢) exists and is unique for sufficiently small time steps and a sufficiently
regular right-hand side ®. However, the proof is by no means trivial, and we refer the
reader to [25] and [60]. In the following let us discuss the selection of the parameters ¢;,
1=1,2,...,s.

The collocation procedure Consider a set of collocation points 0 < ¢; < ¢ < ..., <
¢s < 1, along with the standard Lagrange nodal basis 8y, 85, . . . , 8, of the polynomial space

P=PpPs710,1),
satisfying the condition
b:(c;) = by

For brevity, by z; denote the derivative of X (¢} at the collocation point ¢;,

zi = X(tp + ¢ Aty)  foralll <i<s.

Exploiting the Lagrange interpolation polynomial (A.75), the derivative X (¢) in the interval
[t, tk + Aty] can be written as

X(tn+€0t) = 5 2,8,(0). €€ 0,1, (5.84)
j=1

Integrating (5.84) and using the initial condition (5.81), we find that
Xty + a:Aty) =YF 4 Atk/ X(te +EAt)dE = Y* + Ate Y ai;2;, (5.85)
0 =

where
Jo

Substituting these values into the collocation condition (5.82), one obtains

8
z;, =P Yk—i-Athalij,tk-f—(liAtk , 1=1,2,...,s.
Jj=1

By (5.83) and (5.85) the approximation at the (k + 1)th time level has the form

1 s
YA = X+ Al) = YA+ Al | X (e +EA4)dE = YF+ ALY bjz;, (587)

0 =
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where .
b]:/ 9;(6)de, j=12,. s (5.88)
0

Let us see that the points ¢ and weights b represent a quadrature rule that is exact for
polynomials of the degree s — 1: Every such polynomial ¢ can be written in terms of the
Lagrange basis,

PO = 3 0le)05(6),

and for its integral one obtains

/O p(¢)dE = /0 ;«;:(cj)%(é)df:;w(cj) /0 9j(5>d£:j§=jlcp(cj>bj-

Finally let us define
A= {aij}f’jzl, b= (bl, bz, . ,bs)T, C = (Cl,CQ, cees CS)T.

The relation (5.87) represents the implicit RK method (b, ¢, A) defined in (5.44). The
consistency condition for explicit RK methods (5.41),

J=1

extends naturally to implicit RK methods via (5.88),

- S 1 1 s L
b; = 8, = 0.(£) . 1df = 4= 1 .
; j ;/0 ;(€) d§ /0 ; 5(€) - 1dg /0 1de=1 (5.89)

Moreover, we have the following lemma:

Lemma 5.9 The coefficients of an implicit RK method (b, c, A) defined by collocation
satisfy the conditions

® 1

Zb]cg 1:_7 q:172~,"'7$7 (590)
=1 1

and
8
g—1 1 q

> ayd = g=1,2,...s (5.91)
j=1

(with the convention 0° = 1). In particular, the method is consistent and invariant under
autonomization.

Proof: It follows from (5.88) that

S s 1 . B
o = 4710 = g-1lp.
;b]cj ;/0 ¢; 9](£)d£ /OJ;CJ 9](€)d€
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Looking at the integrand in more detail, we discover that at each collocation point ¢, it
achieves the value ¢4~ ', r = 1,2,..., 5. Thus necessarily

Dt =g
j=1

and (5.90) follows,
s 1
1
> bl :/ grlde = -
i=1 0 4q

Using the same technique for (5.86), one easily obtains (5.91). The consistency follows
from (5.89) which is a special case of (5.90), and the invariance under autonomization
follows immediately from Lemma 5.4. |

The formula (5.90) states that the quadrature rule

b 1
bip(e;) ~
;w(m) A o(€)de

is exact for all polynomials ¢ € P*71(0, 1).

The following result, which relates the consistency order of an implicit RK method
constructed via collocation to the order of accuracy of the underlying quadrature rule, was
first proved under slightly simplified assumptions by J. C. Butcher in 1964. A different idea
of the proof was presented by S.P. Norsett and G. Wanner [89] in 1979.

Theorem 5.5 An implicit RK method (b, ¢, A) generated by collocation has for a p-times
continuously differentiable right-hand side ® the consistency order p if and only if the
quadrature formula defined by the nodes ¢ and weights b has the order of accuracy p.

Proof: See,e.g., [59]. |

5.4.2 Gauss and Radau IRK methods

Theorem 5.5 suggests an efficient strategy for the design of s-stage implicit RK schemes
of the consistency order 1 < p < 2s:

1. Choose a quadrature rule (c, b) that is exact for polynomials of order p — 1.

2. Use (5.86) to define the Butcher’s array (b, ¢, A).

Gauss IRK methods From Section 2.3 we know that every Gaussian quadrature rule
(e, b) with s quadrature points is exact for polynomials of the degree up to 25 — 1.

Lemma 5.10 Every s-stage Gauss IRK method has the consistency order p = 2s for all
2s-times continuously differentiable right-hand sides ®.

Proof: Immediate consequence of Theorem 5.5. |

Thus the Gauss IRK methods attain the maximum consistency order p = 2s of s-stage
IRK methods, derived in Paragraph 5.3.5. In contrast to this result, the maximum order of
s-stage explicit RK methods is an open problem (see Table 5.1). The Gauss IRK method
for s = 1 is the “implicit midpoint rule” that we are familiar with from Paragraph 5.2.6
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and from Example 5.1. Another Gauss IRK method with the consistency order p = 4,
corresponding to the stage count s = 2, is

1/2 - V/3/6 1/4 1/4—/3/6
1/2+V3/6 | 1/4+3/6 1/4

| 1/2 1/2

Lemma 5.11 All Gauss IRK methods are A-stable. Moreover, their stability domain Sr
exactly coincides with the negative complex half plane S, (5.60).

Proof: See,e.g., [60]. |

Let us mention that Sg = Se;;, means that Gauss IRK methods preserve isometry.
Moreover it is known that these methods are reversible. Both these properties are positive
for the performance of the methods, as the reader may expect. These and more interesting
aspects of IRK methods are thoroughly discussed in [60].

One of the few drawbacks of Gauss IRK methods is that generally they are not L-stable.
This is a consequence of the fact that the Gaussian quadrature points do not lie at interval
endpoints, and therefore the approximate solution obtained via collocation has jumps in the
temporal derivative at all times ¢, &k = 1,2,. ...

Radau IRK methods The above-mentioned lack of L-stability is eliminated via collo-
cation methods based on Radau quadrature rules, that place collocation points at the interval
endpoints (see, e.g., [1 11] for details on this numerical quadrature and for a CD-ROM with
Radau quadrature data).

Lemma 5.12 Every s-stage Radau IRK method has the consistency order p = 2s — 1 for
all (2s — 1)-times continuously differentiable right-hand sides ®. All Radau IRK methods
are A-stable and also L-stable.

Proof: The consistency order follows from the fact that a Lobatto-Radau quadrature rule
with s nodes has the order of accuracy p = 25 — 1, and from Theorem 5.5. For the rest see,
e.g., [60]. |

The reader already encountered the 1-stage Radau method (implicit Euler scheme) and

the 2-stage third-order Radau method in Example 5.1. Let us present the 3-stage fifth-order
Radau method,

(4 ~V6)/10 (88 — 7/6)/360 (296 — 169v/6)/1800 (-2 4+ 3v/6)/225
(4+v6)/10 | (296 + 169v/6)/1800 (88 + 7v/6)/360 (=2 — 31/6)/225
1 (16 — v/6)/36 (16 + v/6)/36 1/9

| (16— V6)/36 (16 + v/6)/36 1/9

The L-stability of this method follows from Theorem 5.4 immediately. For an implemen-
tation of this method, enhanced with a step size control based on an embedded third-order
method, see code RADAUS in [60].
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5.4.3 Solution of nonlinear systems

Although we mostly deal with linear problems in this introductory text, let us devote one
paragraph to the approximate solution to system of nonlinear algebraic equations arising
from the application of higher-order IRK methods. We describe both the quadratically
convergent classical Newton’s method, and a simplified Newton’s method that converges
linearly, but without the need to reconstruct the Jacobi matrix of the right-hand side in every
iteration.

One step of the IRK method Recall that the implicit s-stage RK method (5.44),
(5.45) consists of two operations: the calculation of the stage derivatives z; via a system of
generally nonlinear algebraic equations,

z; = <I>(Y]C + Aty Zai_,vzj, te + . Aty), i=1,2,...,s, (5.92)
j=1

and the evaluation of the solution on the new time level,

YR = YR £ Aty Z biz;. (5.93)

=1

In order to ease the operation with the Jacobi matrix of the right-hand side, it is advantageous
to introduce a set of new vectors,

g; :Athaijzj, i=1,2,...,s. (5.94)
i=1

Substituting (5.94) into (5.92), one obtains
2, = ®(Y* + g, te +e:Ay), i=1.2,.. s, (5.95)

and by (5.94) this further yields

g, = At > a®(YF+ gt +¢Al), i=12,...,s (5.96)
j=1

Let us postpone the solution of this nonlinear system for a moment, and assume that the
vectors g;,9s, - - ., g, are known. In order to accomplish the step of the IRK method by
(5.93), one needs to distinguish two situations depending on the coefficient matrix A.

AL exists:

In this case the evaluation of Y**? is easier. Consider the matrix Z = (z1,22,-..,2s)
of the type N X s, that has the stage derivatives z; in its columns, and the matrix H =
(gi-92s---.9). For later use, by zf and g7, ¢ = 1.2,..., N, denote the rows of the
matrices Z and H, respectively. The relation (5.94) between the vectors z; and g, can be
expressed as

HT = A4, AZ7T,
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and in particular it is

- 1
zZT = — A 'HT. 5.97
AtkA (5.97)

Thus the original stage derivatives z; can be recovered from (5.97) via a single matrix

multiplication and (5.93) can be used directly,

YR — vk o Zdjgf df =T AL, (5.98)

=1

This result greatly reduces if b’ is identical to some row of A (see Theorem 5.4). This
was the case, e.g., with the third-order Radau method from Example 5.1 as well as with the
fifth-order Radau method presented in Paragraph 5.4.2. For example, when this is the last
row, then

bl =elT A, e, =(0,0,...,0,1)T e R®.

Hence,

and (5.98) simplifies to
Yk+1 — Y‘k + gs.

A is not invertible:
In this case generally one cannot access the vectors z;. Substituting (5.95) into (5.93),
one obtains

YA = YR L ALY b ®(YF + gt + Ak, (5.99)

i=1
Thus the vectors g, can be used instead, but at the price of s additional evaluations of the

right-hand side ®.

The classical Newton's iteration Letus now turn our attention to the solution of the
nonlinear algebraic system (5.96) for the vectors g,, ¢ = 1,2, ..., s. For the sake of clarity,
let us define the vector

and write the system (5.96) in a compact form

Y au®(YH 4 gt + ¢ AL

Z;:I CLQJ‘I’(Yk + g; ty + (’,]'Atk)

T(G) = G - Aty =0.

Z‘;:l as; ®(YF + g, ti + cjAty)
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Since the solution components g, are expected to be small, it makes sense to use zero vector
as the initial guess. Then the classical Newton’s method assumes the form

G() — 0.’

DV

E(G")AG" = —¥(G"), (5.100)
G = G+ AGT. (5.101)

Thus in each step one has to solve a system of N s linear algebraic equations with the Jacobi
matrix

By By, ... By
DU Bgl BQQ BQS
DY . _ 5.102
ekt oo o
le BSQ BSS

Each block B;; has the size N x N. The diagonal blocks B;; are defined as

D& _ .
By=1- AtkaiiW(Y" + g, te + ciAty).

and the nondiagonal blocks B, i # j, have the form
D® _ .
B;; = ‘Atk“w‘jD‘f(Yk + gtk + Al

The standard convergence theorem for the Newton’s method implies quadratic convergence
for sufficiently small At,. But one has to realize that this convergence rate comes at a high
price: At each step of the loop (5.100)—(5.101) the complete Jacobi matrix (5.102) of the
size Ns x N s has to be reconstructed. Therefore in practice one may consider a simpler
iterative process:

Simplified Newton’s method It is known that the iterative process (5.100)—(5.101)
stays convergent for sufficiently small At atareduced linearrate if the matrix D®¥/DG(G™)
in (5.100) is replaced with D¥/DG(G"). With

D& .
Jp = DT(YA-tA-)
we have

I —AtrapJg —Atpaady, .. —AtparsJi
DT —Atras Ji I — Atrasnd, ... —AtpagsJ )
“Tieb =
DG( ) : : :

—AtpaaJs —Atpagpd, .. T —AtgagJdy

Using the tensor product of the matrices A and J, this can be written as

v
E—G—(G“) =T - At A Jy.
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The simplified Newton’s method assumes the form

D®

Jr = D—Y(Yk,tk),
G° = o,
(I - At AR J)AG" = —T(G"), (5.103)
Gl = G"+ AGM (5.104)

This iterative procedure is economical, since a single LU-decomposition of the matrix
I — At A® Jy only is needed at each time step, i.e., an order of 2(/Ns)®/3 operations.

Termination criterion for the simplified Newton’s method Suppose that the time
step Aty is sufficiently small so that the iteration (5.103)—(5.104) converges linearly, i.e.,
that there exists some contraction factor 0 < w < 1 so that

IAG™ T < w|AG™|, n=1,2,...

Let G be the unknown exact solution. From relevant estimates for linearly convergent fixed
point iterations (see, e.g., [99]) it is known that

w
|G _ Gn+1| < #lAcnl
l-—w
In practice the unknown contraction coefficient w is replaced with the known quotient

w A\AG"] 1,2
n = , n=1,2,...
Cojaer
It is our aim to stop the iterative process as soon as |G — G™*?| < TOL, where 0 < TOL
is a suitable small parameter. Thus the stopping criterion has the form
Wn i1
—JAG"| <TOL,

1-w,

|AG™?

< TOL.
IAG™ | — |AG™| — ©

5.5 EXERCISES

Exercise 5.1 Use Definition 5.5 to prove that a solution of (5.11) that is asymptotically
stable in the forward direction, is necessarily unstable in the backward direction.

Exercise 5.2 Consider the ODE (5.11) with the right-hand side (5.10). Extend the proce-
dure of construction of the linear system (5.48) 10 the general (b, ¢, A) RK method.

Exercise 5.3 Use Theorem 5.3 to prove that the stability function R(z) = 1 + 2bT(I —
2A)7*1 of every explicit higher-order RK method (b, A) is polynomial. Hint: Exploit the
characteristic structure of the Butcher’s matrix A for the inversion of I — z A.

Exercise 5.4 Use the formula R(2) = 1+ zb7 (I — zA) 11 to verify that the fourth-order
“classical” RK method introduced in Paragraph 5.2.4 has the stability function (5.72).
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Exercise 5.5 Verify that the second-order IRK method based on the “implicit midpoint
rule” from Example 5.1 is not L-stable.

Exercise 5.6 Show (without using Theorem 5.4) that the third-order Radau IRK method
from Example 5.1 is L-stable. Hint: Apply the method to the linear autonomous system
(5.49), write its stability function R(z), and verify the conditions for A- and L-stability.

Exercise 5.7 Prove the second formula (5.91) in Lemma 5.9 using the same technique as
for the first formula (5.90).

Exercise 5.8 Consider the 2-stage Gauss IRK method from Paragraph 5.4.2.
1. Write the method in the full form (5.44).
2. What is the consistency order of this IRK method and why?
3. Is the method A-stable?

4. Show that the method is not L-stable. Hint: Apply it to a linear autonomous problem,
write explicitly the stability function R(z) and use Definition 5.9.

5. Write an algorithm that applies this method to the ODE system (5.11), (5.12) with the
right-hand side (5.10) (resulting from the semidiscretization of the linear parabolic
model problem by the MOL). Define carefully all systems of linear algebraic equations
that are to be solved.

Exercise 5.9 Perform Exercise 5.8 with the Gaussian quadrature rule defined in Table 2.3
(with values transformed to the interval (0,1)).

Exercise 5.10 With the experience gained in Exercises 5.8 and 5.9, try to write an algorithm
for a general s-stage Gauss IRK method for an ODE system (5.11), (5.12) with the right-
hand side (5.10).

Exercise 5.11 Write the stability function R(z) of the fifth-order Radau IRK method from
Paragraph 5.4.2. Verify the conditions for A- and L-stability.

Exercise 5.12 Assume a second-order elliptic operator L of the form (1.1).

1. Use the classification of PDEs acquired in Section 1.1 to show that the time-dependent
extension 8/0t + L of the operator L in (5.1) indeed is parabolic.

2. Decide if the operator L can be extended to a time-dependent second-order elliptic
operator. If yes, give an example.

3. Decide if a (time-independent) second-order parabolic operator can be extended to
a time-dependent second-order parabolic operator. If yes, give an example.

4. Decide if a (time-independent) second-order hyperbolic operator can be extended to
a time-dependent second-order parabolic operator. If yes, give an example.
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Exercise 5.13 Consider the domain Q = (0,a) x (0,b) C R?, and extend your code from
Exercise 4.2 to solve the heat transfer equation
Su b2

. 3b .
Frie Au = sin{nt) (Ear% - gz r23> (621 — 3a)

3 2 .
+ sin(nt)(6xzy — 3b) <§f% - %acl - xf)

+7 cos(mt)x1za(a — x1)(b — x2) <g — :m) (g - 172) )

equipped with a zero initial condition
w(x,0) =0 inQ,

and homogeneous Dirichlet boundary conditions on the boundary 0S). Leta = 3, b =
2, My, =60, M, = 40.

1. Implement the implicit Euler method (5.28) for the ODE system (5.11), (5.12). For
time steps At = 0.01,0.05,0.1,0.5,5/6 present plots of the approximate solution
U, p at the time T' = 5/2. Write the computational times.

2. Implement the explicit Euler method (5.24) as well as its version with the diagonal
truncation (5.25) of the mass matrix M. In the latter case, do not forget to simplify
the procedure of solution of the system (5.24) accordingly. Use the criterion (5.26)
to propose a suitable initial size of the time step At.

(a) In both cases try to increase At until the time integration becomes unstable.
What are the critical values of the constant in the relation At = C(Ah)??

(b) Inboth cases present a plot of the approximate solution uy, ,, at the timeT = 5/2
14 P pp P
(4 the size of one time step). Write the computational times in both cases.

3. Implement the adaptive RK5(4) method given by Table 5.2.

(a) Run the program for the values of TOL = 0.0001,0.001,0.01,0.1. Plot the
solution at T = 5/2 (again, * the size of one time step). Write the initial
value Aty := (Ah)?, and in all four cases the total number of time steps, the
computational time and the size of the time step At at the end of the computation.

(b) Investigate the sensitivity of Algorithm 5.1 on the initial time step. Hint: Run
the computation with TOL = 0.001 and At := 0.01Aty, At := 0.1At,,
At := 10Atg, At := 100Atg. In all four cases write the total number of time
steps, the computational time and the size of the time step At at the end of the
computation.

4. As conclusion, compare all four methods from the point of view of accuracy, efficiency
and stability.

5. The exact solution is

u(z, t) = sin(wt)x122(a — 1)(b — z3) (g - z1> <g — :z:2> .
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CHAPTER 6

BEAM AND PLATE BENDING PROBLEMS

In Chapters 2-4 we considered second-order PDEs whose weak formulations took place
in the Sobolev space H((2). This space required the piecewise-polynomial finite element
approximations to be globally continuous (i.e., continuous across element interfaces). Now
we are going to study fourth-order problems with the weak formulations in H?(£2). Fi-
nite element approximations conforming to H?(€2) are required to be once continuously
differentiable. Since the fourth-order PDEs are encountered in practice less frequently com-
pared to second-order problems, we devote more attention to their physical background and
derivation.

In Section 6.1 we derive the Euler—Bernoulli model for the bending of elastic beams,
discuss various types of boundary conditions, derive the weak formulation of the prob-
lem, and prove the existence and uniqueness of the weak solution. In Section 6.2 we
discretize the weak formulation by the lowest-order Hermite elements. Higher-order ap-
proximations with both nodal and hierarchic Hermite elements are discussed in Section
6.3. Two-dimensional Hermite elements (which do not conform to H2({2) but are use-
ful for many other applications) are presented in Section 6.4. Section 6.5 describes the
Reissner-Mindlin and Kirchhoff plate bending models. The finite element discretization
of the Kirchhoff thin plate model via the H?-conforming lowest- and higher-order nodal
Argyris elements is discussed in Section 6.6.

Partial Differential Equations and the Finite Element Method. By Pavel Solin 209
Copyright © 2006 John Wiley & Sons, Inc.
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6.1 BENDING OF ELASTIC BEAMS

There are two basic one-dimensional models for the bending of elastic beams: The Euler—
Bernoulli model consisting of one fourth-order PDE, and the Timoshenko model based on
a pair of coupled second-order equations.

The Timoshenko model is simpler to solve in the sense that standard H!-conforming
elements can be used for its discretization, and it is known to better capture the purely three-
dimensional behavior of the structure (such as large deformations). On the other hand, the
higher-order elements used to discretize the Euler—Bernoulli case yield significantly better
convergence rates. In this text we focus on the Euler—Bernoulli model in order to show the
application of the Hermite and Argyris elements. The Timoshenko model is discussed quite
frequently in monographs and textbooks (see, e.g., [95] and the reference therein).

6.1.1 Euler-Bernoulli model

This paragraph requires the knowledge of some elementary topics in continuum mechanics
that can be found, e.g., in [20, 95] or [124]. The one-dimensional Hooke’s law has the form

o = FEe, 6.1)

where o is the stress induced by the strain €, and E is the modulus of elasticity of the
material.

Consider a prismatic beam of a homogeneous isotropic Hookean material with a rectan-
gular cross section, whose longitudinal axis coincides with the z-axis of the given Cartesian
system of coordinates. The position of the centroids of the end-faces is fixed, and a pair
of bending moments acting on the ends of the beams is illustrated in Figure 6.1. (The
downward-pointing z-axis is used to make the signs of both the force f and deflection u
relative to the direction of gravity.)

A) AI AZ
; i o/
ad ] N TR b
: l, “““““ AV x
/
LM M
¥ z(u)
Al AZ
B)

M

v 2(u)

Figure 6.1 Bending of a prismatic beam; (A) initial configuration, (B) deformed state under moment
M acting on the ends.
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The basic assumption of the simple beam theory is that the (normal) deflection is relatively
small compared to the length of the beam, so that every pair of adjacent cross-sections A;
and A,, which are perpendicular to the axis of the beamn in the original configuration, remain
planar and perpendicular to the beam axis during the deformation.

The deflection of the beam can be described as the vertical displacement of the centroidal
surface that corresponds to « = 0 in the original configuration. In the situation shown in
Figure 6.1 the deflection curve must be a circular arc, since because of the homogeneity of
the material every cross section is subjected to the same stress and strain. By R denote the
radius of the deformed beam axis. A small portion of the axis of the beam before and after
deformation is shown in Figure 6.2.

—%-—-—j-—-  axis after deformation

Loy . :
_._v.._.-X.—- original axis

Figure 6.2  Strain induced by the deflection of the beam. Here L and L’ stand for the distance of
the midpoints of the cross-sections A; and A before and after deformation.

For a large radius R and small angle a we can write
L =Rsine, L' =(R+u)sina,

and thus the axial strain €, which is defined as the ratio of the length increment and the
original length, has the form

As a response to the strain e, there is a stress o, which according to the above assumptions
is one-dimensional in the direction of the z-axis. Hooke’s law (6.1) yields

u
o_Ee—ER. 6.2)
It follows from here that the centroidal plane u = 0 remains unstressed during the bending,
i.e., that material particles on it are not strained in the axial direction. The plane is therefore
called the neutral surface of the beam.
The resultant moment of the bending stress o on every beam cross-section A must be
equal to the external moment M,

M:/uUdA.
A
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Substituting (6.2) into this equation, we obtain

E EI
M== 2dA = —, 6.3
R )" R ©3)

where the area moment of inertia I of the beam is defined as
I= / Yo dA. (6.4)
A

Let us point out that [ is a geometrical property of the beam, while E is a material property.
By f denote the transversal load and by F the corresponding shear force (which is
perpendicular to the beam axis). The curvature of a circular arc is given by

@ - l (6.5)
dz2 ~ R’ '
The standard relations
dF, dad
el d F, = —~
f dz an ’ dz
yield
a2
—M = . .
M= (6.6)

Substituting (6.3) with (6.5) into (6.6) and denoting b(z) = E(z}I(x), we obtain the
Euler-Bernoulli beam model

d? d*u
where 0 = (a,b) is an open bounded one-dimensional interval representing the beam.
Equation (6.7) requires b to be twice-continuously differentiable, u four times continuously

differentiable, and f continuous in €. These quite strong regularity requirements will be
reduced after the problem is formulated in the weak sense in Pararaph 6.1.3.

6.1.2 Boundary conditions

Equation (6.7) is a fourth-order problem, and therefore four suitable boundary conditions
are needed to guarantee the existence and uniqueness of solution (this will be discussed
in more detail in Paragraph 6.1.4). Analogously to second-order problems, the boundary
conditions can be split into essential and natural, depending on whether or not they influ-
ence the form of the space V' in the weak formulation. Most frequently one prescribes the
following quantities:

Essential boundary conditions:

e deflection

ug = ula) andlor wuy = u(b),
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e slope
du, = u'(a) and/or du, = u'(b).

Natural boundary conditions:

e moment

2 2
M, = (EIS—;;) (a) and/or M, = (Eld—u> (), (6.8)

e shear force

d d?u d d?u

Some combinations that lead to a unique solution are shown in Figures 6.3-6.5. The
transversal force is indicated by the arrows.

=

BN v

Figure 6.3 Clamped beam: Prescribed is the deflection and slope at both ends.

=

Figure 6.4  Simply supported beam: Prescribed is the deflection and moment at both ends.

Figure 6.5 Cantilever beam: Prescribed is the deflection and slope at one end, and moment and
shear force at the other end.
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6.1.3 Weak formulation

Let us formulate equation (6.7) in the weak sense, employing the symbols

du d?u
Vu = e and Au= o2

for brevity. The standard first step consists of multiplying the equation with a sufficiently
regular test function v, and integrating over the domain §2,

/ A(bAu)yvdr = | fuvda.
Q Q

Green'’s theorem applied to the term with the highest derivatives yields

—/ V(bAu) - Vudz + [V(bAu)v /fvdx
)

where |g|® = g(b) — g(a). Using Green’s theorem once more, we obtain

/bAuAvdx—[bAqu]Z [V(bAu)v /fvdx. (6.10)
Q

The integrals in (6.10) exist if b € L>=(Q), u,v € H2(Q) and f € L?(Q) (in fact f can be
chosen from a larger space H ~2(2), which is the dual to H2(Q2)).

Now essential boundary conditions are implemented by further constraining the space
H?(Q). For example, the choice of the clamped boundary conditions from Figure 6.3,

u{a) = u(b) = Vula) = Vu(b) = 0, (6.11)

leads to u, v € V, where the space V C H2(f2) is defined by

V = H3(Q) = {v € H*(); v(a) = v(b) = Vu(a) = Vo(b) = 0}. 6.12)

Since both u and v vanish at the endpoints together with their first derivatives, also the
square brackets in (6.10) disappear and one obtains

/bAuAvd:z:/fvdx. 6.13)
Q Q

Finally, if some terms in the square brackets are present after the essential boundary condi-
tions were applied (as it might be the case, e.g., with the cantilever beam from Figure 6.5),
natural boundary conditions are incorporated by properly substituting into these terms from
(6.8) and/or (6.9).

6.1.4 Existence and uniqueness of solution

Let us show the existence and uniqueness of the weak solution first for the case of the
clamped boundary conditions (6.11), i.e., for the following weak formulation:
For given b € L*°(Q) and f € L?() find u € V such that
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alu,v) ={(v) forallveV, (6.14)

where the linear forms a : V x V — R and | € V' are given by

a(u,v):/bAuAvdx,
Q

l{lv)= [ fuvdz.
Q

In order to obtain a unique solution, we have to add the assumption of strict positivity of
b{zx):

0< Cgr <blz) forallze . (6.15)

This requirement is intuitively clear, and it holds unless the elasticity modulus E or the
area moment of inertia I vanish in £2. Condition (6.15) will play a role in the proof of the
following lemma:

Lemma 6.1 Under the assumption (6.15), the problem (6.14) has a unique solutionu € V.

Proof: We need to verify that the assumptions of the Lax—Milgram lemma (Theorem 1.5)
are satisfied. Let us begin with the case 0 < b(z) = const, where the main idea is free of
technical details. Suppose that b is removed from the equation by redefining f := f/b. We
use Holder’s inequality (Theorem A.10) to see that the form a(-, -) is bounded,

/Q AulAvdz| < (/Q(Au)zdalc)% (/Q(Au)ngc)5 |
(/Q u? + |Vul? + (Au)%x) ’ (/Q v? + Vol + (Av)? dx) ’

lullZ vl forallu,v €V,

la(u, v)|

IN

where || - ||y is the H*-norm || - ||1 2 (see Definition A.57). Since
v € H3(Q) and Vv e Hj(Q),

the Poincaré-Friedrichs inequality (Theorem A.26) with £ = 1 can be applied to both v
and Vv. Hence, there exist positive constants Cp, C' such that

/ v? + Vo2 dz < CO/ [Vol?dz forallv €V, (6.16)
Q Q
and
/ |Vo]? + (Av)?dz < C) / (Av)?dz forallv e V. 6.17)
Q Q

From (6.17) it follows that

1
alv,v) = /(Av)zdac > —/ (Vo|? + (Av)2dz  forallv € V.
Q Ci Ja
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Relation (6.16) yields

1 1 1
— Vo2 + (Av) dz > /1}2+ Vol2dz + — AvYidr  forallve V.
Cy Q| "+ (Av) C1Co Jo Vel Cy Q( )

Finally we obtain

1

2 Grmax(Co I lveV.
-Gy maX(C(),l)“U”V forallv €

a(v,v)

Thus with 0 < b(z) = const, the form a(-, -) is continuous and V -elliptic, and according
to the Lax—Milgram lemma problem (6.14) has a unique solution © € V. In the case of
nonconstant strictly positive b € L>°(£2), the idea of the proof is the same except for a
slightly more technical manipulation with the inequalities, which is left to the reader as an
exercise. [ ]

It should be stressed that, analogously to the second-order elliptic case, some combina-
tions of the boundary conditions are prohibited since they do not lead to a unique solution.
This would be the case, e.g., if the deflection u was not prescribed at either end. The form
a{-,-) remains V-elliptic when the beam is only clamped at one end, since the Poincaré-
Friedrichs’ inequality (Theorem A.26) still holds (see Remark A.8).

6.2 LOWEST-ORDER HERMITE ELEMENTS IN 1D

For the first exposition of the Hermite elements let us consider problem (6.7) with the
clamped boundary conditions (6.11) from Paragraph 6.1.4. The weak formulation for this
case was derived in (6.14).

6.2.1 Model problem

Consider a subdivision ¢ = 29 < 1 < ... < 23y = b of the domain Q. Fori =
1,2,..., M denote K; = (x;_1,z;). Recall from Paragraph A.4.2 that H!-functions are
continuous in one spatial dimension,

we  HNQ) = wel(). (6.18)
Applying (6.18) to the derivative of w = v € H'({2), one obtains
ve HYQ) = wvelH). 6.19)

Any approximate solution to problem (6.14) has to be once continuously differentiable
(globally smooth) in 2. It follows from here that the approximation has to be at least
piecewise quadratic. However, the space of smooth, piecewise-quadratic functions is not
frequently used for reasons to be explained in Paragraph 6.2.2. It is standard to employ
cubic and higher-degree polynomials.

With a general polynomial distribution 3 < p; = p;(K;), ¢ = 1,2,..., M, the space
Vh.p has the form
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Vip = {veCHQ); v(a) =v(b) =v'(a) =v'(b) = 0; (6.20)
vlk, € PPIK)}CV,

and the approximate weak formulation reads:

Approximate weak formulation Find a function uy, , € V}, ;, such that

/ bAup ,Avdz = [ fudr forallv e V. (6.21)
Q 0

Since the bilinear form a(-, -) is continuous and V -elliptic on V}, ,, the Lax-Milgram lemma
implies that the discrete problem (6.21) has a unique solution up , € Vi p.

Basis of V, , and the linear algebraic system Assume a basis {v1,v2,..., o5}
of the space V}, ;. Express

N
Unp = > Ysvj, (6.22)
j=1
where y1,y2,...,yn are unknown coefficients in the usual sense. Using (6.22) and em-
ploying v := vy, vq,...,vn, identity (6.21) comes over to a system of linear algebraic
equations of the form
N
Zyj/bAvjAvidx: /fvida:, i=1,2,...,N, 6.23)
Q Ja

j=1
which can be written in the compact form
SY =F. (6.24)

We saw in the proof of Lemma 6.1 that problem (6.14) is V-elliptic. Therefore the bilinear
form a(-,-) defines an energetic inner product on V x V, and the standard orthogonality
property of the type (2.14) holds,

a(u —upp,v) =0 forallv € V). (6.25)

This in turn means that the approximate solution uy, , is independent of the choice of the
basis {vq, vy, ..., vn} of the space V}, , (see Remark 2.2).

However, as we know from Paragraph 2.5.3, the choice of the basis in V}, ,, influences
the condition number of the stiffness matrix S, and in turn the performance of the iterative
matrix solvers for the linear system SY = F dramatically. This is why one has to design
the basis functions v1, v, ..., vy very carefully. Before introducing general higher-order
Hermite elements in Section 6.3, let us review the standard cubic case in Paragraph 6.2.2.
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6.2.2 Cubic Hermite elements

As mentioned earlier, the smallest space V}, ,, consisting of piecewise-quadratic polynomials
is not used very frequently in practice. The reason is that the support of a smooth, piecewise
quadratic basis function has to extend over at least three elements. But more importantly,
it is not possible to find a set of degrees of freedom ¥; such that (K;, P2(K;), %;) would
constitute a unisolvent nodal finite element conforming to the space H2((2).

The lowest-order element K; = (z;_1,z;) conforming to H2(Q) is the Hermite ele-
ment with degrees of freedom associated with both the function values u(x;_1), u{x;) and
derivatives u’(z;_1),u'(z;) at the endpoints. This makes it four degrees of freedom per
element, i.e., the local polynomial space on the interval K; has to be P3(K;).

Cubic Hermite element on the reference domain K, As always, let us first define
the element on a reference domain, which in this case is the interval K, = (—1,1). The
cubic Hermite element is a triad (K,, P*(K,), ¥,), where the set of degrees of freedom
¥, consists of the linear forms L; : P3(K,) — R,

Li(g) = g(-1), (6.26)
La(g) = g(1),
Ls(g) = 4'(-1),

Li(g) = 4'(1).

Let us check the unisolvency of this finite element and construct the unique nodal basis of
the space P3(K,). We choose an arbitrary basis of the space P3(K,), say,

{917927 93794} = {175752,53}-

4

The generalized Vandermonde matrix L = {L;(g;)}; ;—; has the form

OO

1 1
1 -2 3
1 3
(see Theorem 3.1). Since L is nonsingular, the element is unisolvent. The inverse matrix

/2 1/2  1/4 -1/4
—-3/4 3/4 -1/4 -1/4
0 0 -—1/4 1/4
1/4 -1/4 1/4 1/4

L' =

contains in its columns the coefficients defining the nodal basis B = {61,62,63,604} in
terms of the original basis functions {1,¢,£2,£%},

e = wol@)=, -6+ 8 (627)
3
() = wil©=3+36- 18
0(6) = wal€) = -6 1€+ &
1 1, 1, 1.4
04(¢) = WB(f):—Z—Zf+Z§ +4¢
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(the symbols wg,ws,...,ws are introduced for later reference). It is easy to verify that
these functions satisfy the delta property (3.4) in the form

L; () =6k foralll < j,k <4. (6.28)

These four nodal shape functions are depicted in Figures 6.6 and 6.7.

1.2 T 1.2 T
theta_1{(x) theta_2(x)

1 1
08 - 1 o8t
06 - 4 06 B
04t 4 04+ 4
02 4 02r 4

o . : " ° L L :

-1 -0.5 0 0.5 1 -1 0.5 0 a5 1

Figure 6.6  Cubic shape functions 6; and 85, representing function values at the endpoints of K.

0.6

0.8 1

(hel‘a_B(x) (hel‘a,‘l(x)

04l 1 ooal
0.2 /\‘ 02
o 0
02t 4 02 \/

04 | { 0a} g

06 L 1 L 06 . L L
-1 0.5 0 05 1 -1 ©5 ° 65 1

Figure 6.7 Cubic shape functions 63 and 8,4, representing derivatives at the endpoints of K.

The notion of vertex and bubble shape functions for the Hermite elements differs from
what we had for the Lagrange elements:

Definition 6.1 Given a one-dimensional Hermite element (K, P, %), a shape function 8 C
P is said to be bubble function if it vanishes, together with its first derivative ', at both
endpoints of the interval K. Shape functions which are not bubble functions are said to be
vertex functions.

All shape functions depicted in Figures 6.6 and 6.7 are vertex functions.

Cubic Hermite element on a general interval K; C R The cubic Hermite element
in the interval K; = (z;..1, ;) is defined as (K;, P?(K;),%;), where the set of degrees
of freedom ¥; = {L(li),L(;), .. ,Lff)} comprises the linear forms Lgi)(g) = g(zi—1),
L(g) = g(w:). L (g) = ¢'(wim1). L (9) = g () defined on P3(K,).

In Example 3.5 we saw that finite elements with derivatives are not affine-equivalent,
and this applies to the Hermite elements as well. Hence it is natural to split the nodal
shape functions into two groups related to Lagrange and Hermite degrees of freedom,
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respectively. (The Lagrange DOF are associated with the function values and the Hermite
with the derivatives.) The Lagrange shape functions 6,,6, are affine equivalent in the
standard way, and the affine reference map xg, : K, — K; from (2.37) can be used to

define the nodal shape functions 95” and 9&” on K,

8 = Wi =6,0a7L. (6.29)

Géi) = wgi) =fy01)’.

i

The Hermite shape functions 0:(;) and 95;) on K; have the form

9:(;) = wéi) =Jg, 030 :t,}f, (6.30)
9517) = wél) = JK194 o IL'}_{},

where the additional multiplication with the constant Jacobian Jg, is needed in order to
preserve the values of the derivatives at the endpoints,

6.3 HIGHER-ORDER HERMITE ELEMENTS IN 1D

This section is devoted to the design and properties of higher-order Hermite elements. The
cubic Hermite elements are extended to arbitrarily high polynomial degrees in both the
nodal and hierarchic fashion in Paragraphs 6.3.1 and 6.3.2. The conditioning properties
of the nodal and hierarchic higher-order shape functions are compared in Paragraph 6.3.3.
The basis of the space V}, ,, is constructed in Paragraph 6.3.4 and the integrals from the
weak formulation (6.21) are transformed to the reference domain K, in Paragraph 6.3.5.
Algorithmic aspects, such as the construction of the connectivity arrays and the assembling
algorithm, are discussed in Paragraphs 6.3.6 and 6.3.7. The three basic ways of interpolation
(i.e., the best, projection-based and nodal interpolants) are discussed in the context of higher-
order Hermite elements in Paragraph 6.3.8.

6.3.1 Nodal higher-order elements

The cubic Hermite element on the reference domain K, = (—1,1) can be extended to a
nodal Hermite element of the order p > 3 by adding p — 3 new degrees of freedom. Since
the two Lagrange and two Hermite degrees of freedom at the interval endpoints already
guarantee the conformity to the space H?() (this will be discussed in more detail later), it
is natural to add Lagrange degrees of freedom. Hence, choose some p — 3 additional nodal
points ¥2, ¥3, - - -, Yp—2 in the interval K, so that

“l=y<yp<...<ypao=1

The Lagrange shape function associated with the nodal point i, 2 < k < p—1, vanishes at
both endpoints of K, together with its first derivative, and therefore it is a bubble function
according to Definition 6.1.

Fourth-order Hermite element on the reference domain K, The properties of
the nodal Hermite elements strongly depend on the choice of the nodal points 2, y3, . . . , Yp—2-
The situation is simple in the fourth-order case, where the choice y2 = 0 is dictated by the
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symmetry requirement. Thus we obtain an element (K,, P*(K,), £,). where the set of
degrees of freedom ¥, comprises the linear forms L; : P4(K,) — R,
Li(g) = g(=1), (6.31)
Ly(g) = ¢(0).
Ls(g) = g(1),
Li(g) = g¢'(-1),
Ls(g) = 4'(1).

The pair of Hermite degrees of freedom is placed at the end of the list for algorithmic
reasons. Following the standard procedure, we obtain a unique set of nodal shape functions
in the form

_ 3 2,13 14
6:(&) = 4§+§ + 45 25 , (6.32)
2(6) = 1-26+¢°,
p _ 3 e Ly 1.y
3() = Zf & - Zf - 55 ,

= Ll la 1 1y
04(¢) = 4§+ 45 + 45 45 ;

1 1 1 1

O5(¢) = “Zf - 152 + 153 + 254-

These functions are depicted in Figures 6.8-6.10.

theta_3(x)

theta_1(x)
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Figure 6.8 Fourth-order vertex functions 8; and 83 representing function values at the endpoints.

thefa_ 2(x)

L L L
-1 -0.5 0 05 1

Figure 6.9  Fourth-order bubble function #; representing the function value at the midpoint.
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0.6
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Figure 6.10  Fourth-order vertex functions 64 and 85 representing derivatives at the endpoints.

The fourth-order Hermite element on a general interval K; as well as its nodal basis
are constructed analogously to the cubic case: The Lagrange shape functions 8,6, and
5 are transformed to K; via the inverse reference map x;l analogously to (6.29), and the
correction by the Jacobian J, is applied to the Hermite shape functions 84 and 85 similarly
to (6.30). The inverse of the reference map x;{} is not required by the element-by-element
assembling procedure.

For higher polynomial degrees p > 5 the p — 1 Lagrange nodal points can be identified,
for example, with the p — 1 Gauss—Lobatto points —1 =1 <ya <y < ... <yYp-1 =1
of the order p — 2. Later in Paragraph 6.3.3 we show that this choice is advantageous from
the point of view of the condition number of the resulting stiffness matrix. Next let us turn
our attention to the hierarchic Hermite elements.

6.3.2 Hierarchic higher-order elements

The basic idea of hierarchic elements, explained at the beginning of Paragraph 2.4.6, applies
to Hermite elements as well. The lowest-order basis B3 comprises the four cubic Hermite
vertex functions (6.27),

Bz = {wp, w1, -, w3}
For every p > 3, the basis B, 1 is defined by
Bp+1 = Bp @] {w,,.H}., (633)

where the polynomial wp; of the degree p + 1 is a suitable bubble function (i.e., wpy1 €
PP(K,),wpt1(£1) = wpi; (£1) = 0). Since the choice of a hierarchic basis is not unique,
one has certain freedom to optimize the conditioning properties of the higher-order shape
functions.

Recall that the excellent conditioning properties of the Lobatto hierarchic shape functions
(2.63) were due to the orthonormality of the corresponding higher-order bubble functions
in the H}-product,

1
(W, V) g1k, = / VuVude  forallu.v € Hy(K,). (6.34)
J-1

In Paragraph 2.5.3 this orthonormality was achieved by using the integrated Legendre
polynomials. Analogously, the weak formulation (6.14) involves the HZ-product,
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1
(u,v)Hg(Ka) = / AulAvd¢  forallu,v € HE(K,). (6.35)
-1

Higher-order bubble functions orthonormal in this inner product will possess optimality
analogous to the Lobatto shape functions (2.63). Hence, after integrating the Lobatto
bubble functions I, 13, . . .,

. £
k(&) :/ l_2(¢) d¢, 5 <k,

-1

we see that

-1
Tu(-1) / le—a(¢) dC =0,

1
L(=1) = lL-2(-1)=0,
L) = l—2(1)=0,

which is exactly what we want. However, at the same time we see that

(1) = /_ lees(€) ¢ =0

1

only holds for all odd k > 5. In this case we can define the bubble functions directly,

wi(€) = lh—a(§)  forallk > 5,

but extra work needs to be done if & is an even number. For all £ > 5 even, the explicit for-
mulae of the bubble functions wy, (£ ) are obtained from the orthogonality and (anti)symmetry
requirements. This leads to a nonlinear system of algebraic equations, that can be solved
with some effort (see [110] for details).

The formulae of wy, ws, . . ., w1 are shown below for reference.
5 N2
wi€) = g 1=€), (6.36)
_ 7 2)2
ws(§) = m(l—f) g,
1 /9 N2 9
we(§) = g ﬁg(l—f) (=7¢2+1),
1 /11
wr(§) = 3 @(1—52)2 (3¢2-1)¢,
1 13
ws€) = 176\ 138 (1—¢)° (33¢* — 1882 + 1),
we(&) = ilg % (1- §2)2 (143¢* — 11062 + 15) &,
1 17
winl€) = g3\ g (1€ (1436° - 143¢" + 33¢° — 1),
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Bubble functions constructed in this way are orthonormal in the inner product (6.35) not
only among themselves, but also to the four vertex functions wg, wy, - . . , w3. Therefore the

master element stiffness matrix S, for the biharmonic operator in the reference interval
K, has the form

3/2 =3/2 3/2 3/2 0 0

-3/2 3/2 -=3/2 -3/2 0 0

3/2  -=3/2 2 1 0 0

Sk = 3/2  -=3/2 1 2 0 o[ (6.37)
¢ 0 0 0 0 1 0
0 0 0 0 0 1
The bubble functions w4, ws, - . . , wy; are shown in Figures 6.11-6.14.
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Figure 6.11 Hg-orthonormal hierarchic shape functions wy, ws.
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Figure 6.12 H3-orthonormal hierarchic shape functions ws, wz.
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Figure 6.13 Hg—orthonormal hierarchic shape functions wsg, wy.
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Figure 6.14 Hg—orthonormal hierarchic shape functions wig, wi1.
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6.3.3 Conditioning of shape functions

The conditioning properties of higher-order shape functions are essential for the perfor-
mance of the iterative matrix solvers on the discrete problem. Therefore let us follow up
with the discussion from Paragraph 2.5.3 and study the conditioning properties of the nodal
and hierarchic shape functions for higher-order Hermite elements.

Conditioning in the HZ-product For simplicity let us consider the biharmonic prob-
lem (6.7) with b = 1 and the boundary conditions (6.11) on the reference domain K.
A one-element mesh 7), , = {K,} will be used for its discretization. The stiffness matrix
S is obtained by leaving out from the master element stiffness matrix the four rows and
four columns corresponding to the vertex functions. Thus in the hierarchic case the master
element stiffness matrix (6.37) reduces to the (p — 3) x {p — 3) identity matrix.

Figure 6.15 compares the condition numbers of the stiffness matrix S obtained using
four different sets of higher-order shape functions: the nodal shape functions defined on
equidistant, Chebyshev and Gauss—Lobatto points, and the hierarchic shape functions. The
horizontal axis represents the polynomial degree of the element.

T T

'EQUIDIST_H2
'CHEBYSHEV_H2' -------
'GAUSS-LOB_H2" --------
"HIERARCHIC_H2' :

1e+10

1e+08

1e+06

10000

100

0 e B L 1 1 L

4 6 8 10 12 14 16 18 20

Figure 6.15  Conditioning of various sets of bubble functions in the HZ-product on the reference
domain K,. The horizontal axis represents the polynomial degree p of the element.

While the nodal shape functions on the equidistant points are uniformly worst and the
hierarchic shape functions optimal (both as expected), it is interesting to see that the Gauss—
Lobatto points are a better choice than the Chebyshev points for p > 5. These two point
sets performed similarly in the discretization of the Laplace operator.
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Conditioning in the H} -product Despite the Laplace operator is not present in the
Euler-Bernoulli beam model explicitly, it may be involved in more general fourth-order
problems. This is the case, for example, with the equation A(bAu) — V{(cVu) = f. This
equation, when equipped with the boundary conditions (6.11), has the weak form

/ bAuAvdzr + / cVuVvdr = | foda.
Q Q Q

Hence, in this case the condition number of the resulting stiffness matrix also depends
on the conditioning of the shape functions in the H3-product (6.34). For reference, the
corresponding comparison is shown in Figure 6.16.

EQUIDIST_H1® ——

- 'CHEBYSHEV_H{® -—---- |
rer1o 'GAUSS-LOB_H1" -
"HIERARCHIC_H1’ -

1e+08 |

1e+06

10000

100

1= .

1 L i 1 - L 1

4 6 8 10 12 14 16 18 20

Figure 6.16  Conditioning of the higher-order shape functions in the Hg-product (6.34). The
hierarchic shape functions (6.36) are not optimal anymore, but they still are better than the other three
choices forp > 7.

It follows from Figure 6.16 that (a) surprisingly, the equidistant nodal points perform
better than the Chebyshev points for 7 < p < 11, and (b) for every p > 7 the hierarchic
shape functions give the best result.

6.3.4 Basis of the space V}, ,,

With suitable shape functions on the reference domain K, in hand, the basis functions
V1,09, ..., un of the space V,, , C HZ(£) can be designed. We shall work work with the
hierarchic shape functions wy, w1, ... in what follows.

Assume a bounded domain = (a,b) C R and a finite element mesh 7}, ,, consisting
of M > 1 Hermite elements K on subintervals K, = (z;_1, z;), equipped with arbitrary
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polynomial degrees 3 < p; = p(K;). The space V}, , was defined in (6.20),

Vep = {veCHQ) v(a) = v(b) = v'(a) = v/(8) = G5 (6.38)
vlk, € PP (K.)}.

It is easy to calculate the dimension of this space,
M
N =dim(Vi,)=-M -2+ p;. (6.39)
i=1

In view of Definition 6.1, the basis functions are split into vertex and bubble functions.

Vertex basis functions: The vertex functions are associated with the internal grid points x;,

i=1,2,..., My, and they always extend over two adjacent elements K; and K. A first
set of M — 1 vertex functions va'o) represent the function values,
w1 © l'[}}, S Ki>
oY = (6.40)
-1
WO Ty, ., TE K.

(v,

The other M — 1 vertex functions v; D represent the derivatives,

JKiw;;oxI_{}, z € K;,
o = (6.41)
K2 02x, T €Kiy
The delta property (6.28) of the cubic Hermite shape functions wg,ws, .. .,ws translates
into

v,0 v,0 !
o' Oe) =65 (o) (@) =0,
and
/
" (z;) = 0, (va'U) (zj) = bij.
foralll<i< M-—1land0 < j <M.

Bubble basis functions: On every element K; we define p; — 3 bubble functions

vfyk:wkox;(f, reK;, k=4,5...,p;. (6.42)
In the nodal higher-order case the bubble functions are defined by
1)3,\. =0_o ox;(f, €K, k=4,5,...,p;.

where 8, are the bubble shape functions associated with the Lagrange degrees of freedom
at the p; — 3 nodal points —1 < y2 < y3z < ... <yp,—2 < L.

Lemma 6.2 Functions (6.40)—(6.42) belong to C*(Q)), and form a basis of the space (6.38).

Proof: This is clear from their construction. [ |
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6.3.5 Transformation of weak forms to the reference domain

For the element-by-element assembling algorithm, the approximate weak formulation (6.23)
needs to be written as a sum over all elements,

A N Al
Zzyj/ bAY; Avidz =Y fvdz  foralli=1.2,...,N. (6.43)

m=1 j=1 ™ m=1"Km

Every integral in the sum is transformed to the reference domain K, via the Substitution
Theorem. Consider a mesh element K,,,, 1 < m < M, and the standard one-dimensional
affine reference map zg, : K, — K,, defined in (2.37). Assume that the Jacobian
Jk,, > 0 forevery K,,. With the notation from Paragraph 2.4.3,

5™(€) = (v 02k, )(E),

one has

<

W(e) = ), x =, (©).

and further )

Av(x) = -IQ—A@E'”)(g)_ x =25k, (£).
This means that the biharmonic stiffness integrals for the model problem (6.14) attain the
form

/ b(z)Av;(x)Av;(z) dr = / ; BT (AR (€)de. (6.44)
K,, K, YK,

where 5" = boux . The right-hand side integrals from (6.43) transform to the reference
domain K, simply as

/ f?)I dr = / ’]1\_”' f'(m)ﬁl(m) de.
Ko, JK,

where .f<""> = fouk

me

6.3.6 Connectivity arrays

The extension of the data structures and algorithms from Paragraphs 2.4.8 and 2.4.9 to
Hermite elements in one spatial dimension is straightforward. In what follows let us as-
sume the model problem (6.7) with the homogeneous Dirichlet conditions (6.11) for both
the solution u and its first derivative u'(x). The extension to nonhomogeneous Dirichlet
boundary conditions is done analogously to Paragraph 2.6.

Element data structure Consider a finite element mesh 7, , = {K;. K..... K}
consisting of Hermite elements of arbitrary polynomial degrees 3 < p;, = p(K;), 1 =
1,2...., M. Choose a reasonable upper bound MAXP and define:
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struct {
int p; //polynomial degree of element
int vert_dir[4]; //vertex Dir. flags for both u and du/dx
int vert_dof [4]; //vertex conmnectivity arrays
int *bubb_dof; //bubble connectivity array
//{length MAXP-3)
} Element;

The Dirichlet flag Elem{m] .vert_dir[jl, j = 1,2, has the following meaning: It is zero
if the left vertex of K,,, = (€11, Z,, ) is unconstrained by a Dirichlet boundary condition
for the solution u, and it equals to one otherwise. The flag Elem [m] . vert_dir [2] isrelated
to the right vertex of K, in the same way, and the Dirichlet flags Elem{m] . vert_dir[jl,
j = 3.4, have an analogous meaning for the first derivative u'(z).

Unique enumeration of basis functions According to (6.39), the dimension of the
space V3, is

Al
N =dim(Vi,) = ~M -2+ p;.
i=1

The N basis functions have to be enumerated uniquely so that the connectivity links can be
defined. We use the following scheme: First enumerate all vertex functions representing
the solution values at the internal grid points,

v = o foralli=1.2.. ... A 1.

i
Then add all vertex functions representing the derivatives at the internal grid points,
varags = v foralli=1,2.... M —1.

At the end of the list put the bubble functions, using an outer element loopm = 1,2... ., M
and an inner loop p = 4.5, ..., p,,. This will be implemented in Algorithm 6.1 below.

Element connectivity arrays Analogously to Paragraph 2.4.8, the values of the Dirich-
let lifts for both the solution u and the first derivative u/ (), which are only nonzero in the
case of nonhomogeneous Dirichlet boundary conditions, are stored in a global array double
DIR.BC_ARRAY [4] = {G(a).G(b), Gyer(a}). Gyer(b)}. The variable Elem[m] .vert dof
[1] contains either

e apositive index 7 of a vertex basis function v; = 'Uil"()) associated with the left vertex
of the element K,,, (if the vertex is not constrained by a Dirichlet boundary condition
for the solution u, i.e., if Elem[m] .vert_dir [1] == 0),

e or -1, so that G(a) = DIR_.BC_ARRAY [-Elem[m] .vert_dof [1]]
(if Elem[m] .vert_dir[1] == 1).

Similarly one defines Elem[m] .vert_dof [2] for the right vertex of the element K,,,.
If Elem [m].vert_dir[2] == 1, then Elem[m].vert_dof[2] == -2. The variable
Elem[m] .vert_dof [3] contains either
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o the index M — 1+ of a vertex basis function var i3 = 'vﬁﬂ'l) corresponding to the

left vertex of the element K, (if the vertex is not constrained by a Dirichlet boundary
condition for the first derivative v/, i.e., if Elem[m] . vert_dir[3] == 0),

e or -3, so that G- {(a) = DIR.BC_ARRAY [-Elem[m] . vert_dof [3]]
(if Elem[m] .vert dir([3] == 1).

The value Elem [m] . vert_dof [4] for the right vertex of the element K, is defined analog-
ously. If Elem [m].vert.dir[4] == 1,thenElem[m].vert_dof[4] == -4. Thebub-
ble functions are always unconstrained, and therefore the value Elem[m] . bubb_dof [j], j
= 1,2,...,Elen[m] .p-3, contains the index of the bubble basis functions of the poly-
nomial degree j + 3 associated with the element K, .

The following connectivity algorithm is similar to Algorithm 2.4, except that the Hermite
shape functions wq and wy are treated differently from the rest of the shape functions.

Algorithm 6.1 (Connectivity algorithm for Hermite elements)

count := 1;
index := 1; //For Lagrange vertex functions wp,w;

//Block A: Enumerate Lagrange vertex functions (vfibz
//Visiting the element K1:
if (Elem[1].vert_dir[index] == 1) then {

Elem[1].vert_dof [index] := -index;
}
else {
Elem[1] .vert_dof [index] := count;
count := count + 1;
Elem[1] .vert_dof [index+1] := count;
//Visiting interior elements Ko, K3,...,Kar—1:
form = 2,3,...,M-1 do {
Elem[m] .vert_dof [index] := count;
count := count + 1;
Elem[m] .vert_dof [index+1] := count;
}
//Visiting the element Kjs:
Elem[M] .vert_dof [index] := count;
count := count + 1;
if (Elem[M].vert dir[index+1] == 1) then {
Elem{M] .vert_dof [index+1] := -index-1;
}
else {
Elem{M] .vert_dof [index+1] := count;
count := count + 1;
}
//Block B: Enumerate Hermite vertex functions (va):
//(run block A once more with index := 3)
//Block C: Enumerate all (Lagrange) bubble functions:
for m = 1,2,...,M do {
for j = 1,2,...,Elen{n].p-3 do {
Elem[m] .bubb.dof [j] := count;
count := count + 1;
}
}

The function of Algorithm 6.1 can be illustrated on a simple example:
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H EXAMPLE 6.1

Consider the model problem (6.7) with homogeneous Dirichlet boundary conditions
{6.11), and a mesh 7}, , consisting of three elements K, K7 and K3 of the polynomial
degrees p; = 4, p; = 6 and p3 = 5. According to (6.39), the dimension of the space
Vh,p 18 N = 10. The input data for the connectivity Algorithm 6.1 is

Elem([1].p = 4;
Elem([1}.vert_dir = {1,0,1,0};
Elem[2].p = 6;
Elem[2].vert_dir = {0,0,0,0};
Elem([3].p = 5;
Elem[3].vert_dir = {0,1,0,1};

The resulting element connectivity arrays have the form

Elem[1] .vert_dof = {-1,1,-3,3};
Elem[1] .bubb_dof = {5};

Elem[2] .vert_dof = {1,2,3,4};
Elem[2] .bubb_dof = {6,7,8};
Elem([3] .vert_dof = {2,-2,4,-4};
Elem[3] .bubb_dof = {9,10};

6.3.7 Assembling algorithm

The complexity of the assembling algorithm depends on whether or not the function b in
(6.7) is constant. If it is constant, then the global stiffness matrix S can be assembled using
the set (6.37) of few precomputed master element stiffness integrals. Otherwise explicit
numerical integration needs to be done on every mesh element K,,,, m = 1,2,..., M.
For simplicity, assume that 0 < b = const. Then b can be removed from the equation by
replacing f with f/b. The master element stiffness matrix (6.37) can be represented via a
two-dimensional array MEST,

1
MESI[i}{j] :=/ Aw;_1{z)Aw;_i(x)dr foralll <i,j <MAXP + 1.
—1

Further we define the function

double Jac(double jac, int index) {
if (index < 3) return 1.;
else return jac;

}

that is used to distinguish between the Lagrange and Hermite shape functions in the assem-
bling algorithm:

Algorithm 6.2 (Assembling algorithm for Hermite elements in 1D)

//Calculate the dimension of the space Vj ,:

N = -2 - M;
form = 1,2,...,Mdo N := N + Elen[m].p;
//Calculate the value of Elem[m].jac for all elements K,,, m=1,2,...,M:

form = 1,2,...,M do Elem[m].jac := (Zm — Zm—-1)/2;
//Set the stiffness matrix S zero:
for i = 1,2,...,N do for j = 1,2,...,N do S[i][j] := 0;
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//Set the right-hand side vector F zero:

for 1 = 1,2,...,N do F[i] := 0;
//Element loop:
form=1,2,...,M do {
//Loop over vertex test functions:
for i = 1,2,...,4 do {
//If > -1, this is index of a test function v, €V},
//i.e., row position in S:

ml := Elem[m].vert_dof[i];
//Loop over vertex basis functions:

if (ml > -1) then for j = 1,2,...,4 do {
//If > -1, this is index of a basis function tm, € Vi,
//i.e., column position in S:

n2 := Elem{m].vert_dof[j];
if (m2 > -1) then {
//Multiply each Hermite shape function with an extra Jacobian:
jac := Elem[m].jac;
jactb := Jac(jac,i)*Jac(jac,j);
Sln1l m2] := S[m1)[m2] + jactb*xMESI[il[j1/jac’;

} //End of inner loop over vertex functions
//Loop over bubble basis functions:
for j = 1,2,...,Elen(m}.p-3 do {
n2 := Elem[m].bubb.dof[jl;
if (m2 > -1) then {
jac := Elem[m]. jac;
S[m1] m2] := S[m1l[m2] + Jac(jac,i)*MESI{i][j+4]/jac®;
}
} //End of inner loop over bubble functions
//Contribution of the vertex test function w,,, to the right-hand side F':
if (mt > -1) then {
jac := Elem[n].jac; R
Flm1] := Flm1] + Jac(Gac,D* [y |Ji,, [F7(Ewi1(£) dE;
}
} //End of outer loop over vertex functions
//Loop over bubble test functions:
for i = 1,2,...,Elem[m].p-3 do {
mi := Elem[m].bubb.dof[i];
//Loop over vertex basis functions:
if (mi > -1) then for j = 1,2,...,4 do {
m2 := Elem[m].vert.dof[j];
if (m2 > ~1) then {
jac := Eleml[m].jac;
Sin1l m2] := S[mi] [m2] + JaC(jac,j)*MESI[i+4][j]/jacx;

} //End of innmer loop over vertex functions
//Loop over bubble basis functions:
if (m1 > -1) then for j = 1,2,...,Elem[n].p-3 do {
m2 := Elem{m].bubb.dof[j1;
if (@2 > -1) then S(mil[w2] := S[m1l[m2] + MESI[i+4]([j+4]1/Elem[n].jac®;
} //End of imner loop over bubble functions
//Contribution of the bubble test function v,,, to the right-hand side F':
if (1 > -1) then Flml] := Flm1] + [ [Trc,, | F(€)wi— 1 (£) dE;
} //End of outer loop over bubble functions
} //End of element loop
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6.3.8 Interpolation on Hermite elements

Similarly to the H!-conforming case discussed in Paragraphs 2.7.2-2.7 .4, also on the Her-
mite elements we have at least three basic interpolation options with different quality and
cost:

1. the best interpolant exploiting a global orthogonal projection (best quality but highest
cost),

2. the projection-based interpolant combining the nodal interpolation of vertex values
and derivatives with local orthogonal projections in element interiors (slightly less ac-
curate than the best interpolant, but much more efficient, especially with orthonormal
higher-order bubble functions),

3. the traditional explicit nodal interpolant (fastest but worst quality).

Best interpolant Consider a bounded domain 2 = (a,b) C R and a finite element
mesh 7}, ,, consisting of M > 1 Hermite elements X; = (2,_1, ;) equipped with arbitrary
polynomial degrees 3 < p; = p(K;). The best interpolant of a function g € V = HZ(Q)
in the finite-dimensional subspace V},,, C V is obtained as follows: The function gy, is
expressed as

N
Ghp = Z YiVj. (645)
j=1
where {v1,v2,...,vn} is a basis of V3 ;,. The unknown coefficients y1,y2. .. .. YN are

determined from the orthogonality condition

(g - gh.p) 1 VILp-

that is equivalent to a system of linear algebraic equations,

yi (v v)v = (g,v)v  foralli=1,2,... N. (6.46)

-

1

J

Since the Poincaré-Friedrichs’ inequality (Theorem A.26) holds in the space V, one can
use either the full H2-product,

(w.v)y = / uv + VuVv + AulAvdx
Q
or, equivalently, the simpler H2-product

(u,v)v = | AuAvdz.
Jo

Projection-based interpolant The interpolant gj, ,, is sought in two steps, as a sum of
the vertex and bubble interpolants

Ghp =Gh o+ b (6.47)
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Vertex interpolant: The elementwise cubic function g, , € C1(Q) satisfies

gn (i) = g(x), (g,) (@) = g'(z;) foralli=0,1...., M. (6.48)

Using the basis functions (6.40) and (6.41), on every K; = (x;_1, x;) we obtain

(v,0) (v,0)

gk, = vV glaiy) + 0V g(as) + TP g (@ion) + Tr, otV g (2). (6.49)

Bubble interpolant: Since the residual g — g, , vanishes at all grid points z; together with
its first derivative, on every element K;, ¢ = 1,2, ..., M it belongs to the space (A.92),

HE(K;) = {ve H*(K); v(zi_y) = v(x;) = v'(x_1) = v'(z;) = 0}.
On every element K; with p; > 4 consider the polynomial subspace
PRK,) = {v e PP (K,); v'(zi—1) = v (z;) = 0} € HE(K;)
of the dimension p; — 3. Let us stay with the HZ-product

(u,v Hz / AulAvdx (6.50)

for simplicity. The unique bubble interpolant gz’p on the element K; is determined from
the orthogonality condition

(9 — gh‘p) 1 Pé)(;(]<1)-

Using the bubble functions (6.42) that generate the space P (K;), this is equivalent to
(9—9h,— 92‘1)’”3’»‘)1-13(1(,) =0 forallk=4,5...., i (6.51)

Expressing

ghp|K - E (Y zm

m=4

and inserting this linear combination into (6.51), one obtains a system of p; — 3 linear
algebraic equations,

P
/ (g gh P Z O(n?z) fm) 4 A(Uﬁ)kxI) dz = 07 k= 757 cea Py (652)
K

m=4

for the unknown coefficients a%). Transformed to the reference domain K,, with the

orthogonal hierarchic shape functions (6.36) this linear system simplifies substantially to
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/ Bon(©Bun(© 8 = [ AG-R)OMO% 6

Sk

which means that

ol = / A(G - 5,)(€) Awgl€) de, (6.54)

i

where k = 4,5, ..., p;. Hence no system of linear algebraic equations needs to be solved.
Here §(¢) = g(xk,(£)) and

Ghp(€) = (ghp(zk,(£))
= wo§)g(wi-1) +wi(§)glx:) + Jr,w2(§)g' (xiz1) + Jr,ws(€)g (z:)-

After obtaining the coefficients a,c Lk =4,5,...,p;, forevery element K;,i=12,....M,
the construction of the projection-based interpolant g5 , = g, , + gh’p is accomplished.

Lemma 6.3 (Local optimality of the projection-based interpolant) Let 2 = (a,b) C
R be covered with a finite element mesh T, ,, consisting of M Hermite elements K; =
(x;_1,2;) equipped with the polynomial degrees 3 < p; = p(K;). Letg € H*(Q)NC°(CY),
Ghp € Vhp its projection-based interpolant (6.47) and g, € Vi, an arbitrary other
interpolant satisfying Gn p(2;) = 9(z;), 33, ,(x;) = ¢'(x;) forall j = 0,1,..., M. Then

|g — gh,p|2,2,K2 S |g — _(j}hplg‘gj('. fOI‘ alli = 1. 2, aeey M, (655)

and therefore also
19 = grplz2.0 < 19— Gnpleca (6.56)

If the bubble interpolant g, p 18 calculated using the full H?-product (-, )22 instead of
(6.50), the inequalities (6.55) and (6.56) hold with the full H?-norm || - ||2.2.

Proof: The proof is analogous to the proof of Lemma 2.5 and it is left to the reader as an
exercise. ]

Nodal interpolant The Hermite elements are automatically endowed with the standard
nodal interpolant (3.28),

Here 6, are the nodal basis functions of the space PP’ (K;) meeting the delta property (3.4),
g is an arbitrary function from some space V such that PP (K} C V{K), and itis assumed
that all linear forms L;, 7 = 1,2,..., Np are defined for g.

Lemma 6.4 (Conformity to H%(SY)) The finite element mesh Ty, ,, consisting of arbitrary-
order Hermite elements, introduced in Paragraph 6.3.4, is conforming to the space H*(2).
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Proof: It is sufficient to verify that the global interpolant Z(g) of an arbitrary function
g € H?*(Q) N C(Q) is smooth at all grid vertices. The continuity of (Z(g))(z) at all
zi, 1 =1,2,..., M, follows from the delta property (3.4) and the continuity of the basis
functions (6.40). Analogously the continuity of the derivative (Z(g))'(z) follows from (3.4)
and the smoothness of the basis functions (6.40). [ |

Since the nodal interpolant Z, (g) matches the values and first derivatives of the inter-
polated function g at all grid vertices, by Lemma 6.3 its quality cannot be better than the
quality of the projection-based interpolant.

6.4 HERMITE ELEMENTS IN 2D

In contrast to the one-dimensional case, Hermite elements do not conform to the Sobolev
space H? in 2D and 3D. Nevertheless, they find important application in nonconforming
approximations to fourth-order problems, computational geometry, surface reconstruction,
and elsewhere. We focus on triangular elements, since the construction of Hermite quadri-
laterals can be done easily using the product geometry of the reference domain K.

6.4.1 Lowest-order elements

The cubic Hermite element (K, P*(K;),%) on the triangular reference domain K, is
equipped with the set ¥ consisting of three degrees of freedom per vertex (one for the
function value and two for directional derivatives) and one complementary interior degree
of freedom that is added for the sake of unisolvency. This degree of freedom usually is
associated with the function value at the center of gravity of KA.

There are two equivalent choices for the directional derivatives: either the directions of
the coordinate axes (i.e., the partial derivatives §/0x1 and 9/0z>) or the directions of the
edges of K. This is illustrated in Figure 6.17.

Vs

Vi -I &
Figure 6.17 Two equivalent types of cubic Hermite elements.

Let us discuss, e.g., the former case (left part of Figure 6.17). This element has four
Lagrange degrees of freedom

Li(g) = g(-1.-1). 6.57)
Ly(g) = g(1.-1).
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il

Ls(g) g(=1,1),
La(g) = g(-1/3,-1/3),

and six Hermite degrees of freedom

Ls(g) = %(—1,—1), (6.58)
La) = H(L-1)
L)) = ge-L),
L) = pe(-1,-1
L@ = o20.-1),
L) = pe(-L1)

The corresponding nodal basis, satisfying the delta property (3.4), is constructed using the
standard procedure which was described in Paragraph 3.1.2:
Consider, for example, the monomial basis of the polynomial space P3(K,),

B = {917927- - - 7910} = {1,51562751275162752276?76%{2)5153763}'

Inverting the Vandermonde matrix L = {L;(g;)}:° =1 and reading the coefficients for the

functions g1, g2, - - ., g10 from its columns, one arrives at the nodal shape functions

WO = gt ot Tabr o8+ gt Dan Bag
+ ifi

PO = S+ bt et igriaa g gt g lag,
SO = 3+ —&+—@+—a+£&&+—@+—é&+3&5—§@
Ao = —Fa-Ta-Tg-Tae-Tg-Tan - Teg,
o) =Z&+kﬂ-a+a@+fﬁ-a+sgﬁ-&@ (659
AN = —p-Sa -6 (8 -6k - 1G4 - 16— a8,
e = i+5&+1&+28+&@+§$+§ﬁ&+%&$,
MO = a6t e G 866Gt 18
o) = §+§&+1@+§§+&@+§$+%ﬁ@+§&$,

3. 1 1 1 1 1 1
PPHE = - fi- @—gﬁ—&@—5$~§ﬁ&—5&$+zs.
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[ U3

The first four shape functions ;. ©;?, py* and <p§’ in (6.59) correspond to the Lagrange
DOF Ly, Lo, L3 and Ly, respectively, while the rest correspond to the Hermite DOFE. The
nodal basis is depicted in Figures 6.18-6.21.

Figure 6.18 Nodal basis of the cubic Hermite element; the vertex functions ¢;*, v;?, and ;.

Figure 6.19

Figure 6.20 Nodal basis of the cubic Hermite element; the vertex functions gafl’ly W:»2.17 and
v3,1
PEAR

Figure 6.21 Nodal basis of the cubic Hermite element; the vertex functions ?!%, 2% and
v3,2

Pt

6.4.2 Higher-order Hermite—Fekete elements

Next let us consider a polynomial degree p > 4. Recall that the dimension of the space
PP(K,)is Np = (p + 1)(p + 2)/2. The vertex degrees of freedom Li, Lo, L3 and
Ls, Lg, ..., Lip from the cubic case guarantee the continuity and smoothness of the ap-
proximation at the vertices.
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Hence, (p+ 1)(p+ 2)/2 — 9 new Lagrange degrees of freedom need to be defined in such
a way that the finite element is unisolvent and the approximation continuous along element
interfaces.

A pth-degree polynomial restricted to an edge of K, is determined via p + 1 parameters,
of which four are the vertex degrees of freedom at the endpoints. Thus p — 3 additional
Lagrange degrees of freedom need to be placed into the interior of each edge of K. The
one-dimensional interior Gauss—Lobatto points of the order p — 2 are a suitable choice for
this purpose (although better point sets may exist). In addition to that,

(p-1{p-2)
2

PrDE+2) g g o
2
interior Lagrange degrees of freedom remain to be chosen. It is natural to associate them
with the (p — 1)(p — 2) /2 interior Fekete points of the order p. For p = 3 this set of degrees
of freedom exactly coincides with the cubic case described in Paragraph 6.4.1.

The distributions of the degrees of freedom for a fourth- and fifth-order Hermite—Fekete
elements are illustrated in Figure 6.22.

Figure 6.22 Fourth- and fifth-order Hermite—Fekete elements on K.

Lemma 6.5 The Hermite—Fekete element (K, PP(K;),%), where p > 3 and ¥ consists
of the (p + 1)(p + 2)/2 above-defined degrees of freedom, is unisolvent.

Proof: Let P = PP(K,)and Np = dim(P) = (p+ 1)(p + 2)/2. Itis clear from above
that card(X) = 9+ 3(p —3) + (p — 1)(p — 2)/2 = Np. Let g € P be arbitrary. It is
sufficient to show that if L(g) = 0 for all L € ¥, then necessarily g = 0. First observe
the values of g on an edge e: the two derivatives at the endpoints, two function values at
the endpoints and the p — 3 values at the interior Gauss—Lobatto (Fekete) points together
constitute p+ 1 parameters that determine a unique one-dimensional polynomial on e. Since
all these values are zero, necessarily g = 0 on e and in turn on the whole boundary of K.
It follows from the unisolvency of the Lagrange—Fekete elements that ¢ = 0 also in the
element interior. |

The nodal shape functions for a general polynomial degree p are constructed analogously
to the cubic case, by choosing a suitable basis B = {g1,92,--.,9np} of PP(K;) and

inverting the corresponding generalized Vandermonde matrix {L;(g;)}, /= ;-
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6.4.3 Design of basis functions

Assume a bounded polygonal domain €2;, C R? covered with a finite element mesh Thop
consisting of M > 1 Hermite elements of a uniform polynomial degree p > 3. Then the
finite element space V}, , (that for simplicity is not constrained with any essential boundary
conditions) has the form

Vip = {veC); vlx, € PPK.); (6.60)
ﬁ and ﬁ are continuous at every grid vertex }
01’1 81?2 | Y€ )

Proposition 6.1 The dimension of the space V}, ,, is

(p—1p-2)

N =dim(Vy,) = 3M, + (p — 3)M, + 5

M, (6.61)

where M, is the number of grid vertices and M, the number of mesh edges.

Proof: There are one Lagrange and two Hermite degrees of freedom associated with each
grid vertex, p — 3 Lagrange degrees of freedom on each edge, and (p—1)(p—2)/2 Lagrange
degrees of freedom in the interior of each element. Each of these degrees of freedom is
represented by one basis function in the basis of Vj, .. |

The basis of the space V}, ,, consists of two types of basis functions:
e Lagrange basis functions associated with the Lagrange degrees of freedom,
e Hermite basis functions representing the partial derivatives at grid vertices.

Lagrange vertex, edge and bubble basis functions

For a polynomial degree p > 3 there are three Lagrange vertex shape functions asso-
ciated with the function values at the vertices of K, p — 3 Lagrange edge functions per
edge of K corresponding to the edge-interior Gauss—Lobatto points, and (p — 1)(p — 2)/2
Lagrange bubble shape functions associated with the Fekete nodal points in the interior of
K. The fact that the partial derivatives 9/9¢; and 9/9¢; of the Lagrange shape functions
vanish at the vertices of K implies that the corresponding Lagrange vertex, edge and bubble
basis functions of the space V}, ,, can be designed in the same fashion as the vertex, edge
and bubble basis functions on Lagrange elements.

Hermite vertex basis functions

The design of the Hermite vertex basis functions of the space V}, ,, which are associated
with the partial derivatives of the approximation at grid vertices, is worth discussing in more
detail. It is clear that the standard affine reference map xx : Ky — K does not preserve
the degrees of freedom,

9

26, (€)

o (ex(€) #

(where ¢ stands for a Hermite shape function defined in the reference domain K). Consider
a grid vertex x; along with the vertex patch (4.14) of all elements adjacent to x;,
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s@ = |J Fu

kEN(i)
where
N(@) = {k; Ki € Thpp. x; 1s a vertex of K. }.

There is a pair of Hermite vertex basis functions in V}, , that represent /0xy and 9/9x2
at x;; let us denote them by vlm and vl@). These functions are continuous in the whole
domain €2, and vanish in Qj, \ S(). They also vanish at all nodal points in S(7), and their
first partial derivatives vanish at all boundary vertices of the patch S(z). At the vertex x;
these functions satisfy

L Upn «

Assume the restriction of vfl) to an element K € S(i). Let ;™" and ¢, ? be the pair
of Hermite vertex functions associated with the corresponding vertex v,, of Ky, in such a
way that € x (v,,) = ;. The trick is to find a linear combination

V-2

1,9(1) = (!1(,9;”7“1 + agp!

such that

and

oy oy
531 351 (Um) +a2 8&1 (Um)
<D-'17K>_T Y 7 Dz \" " [
D¢ a@;)m 1 dﬁp;}m 2 D¢ Qs
1 852 (Um) +O(2 852 (Um)
o} 1
Hence
Oz k1 Oz k1
&y = =

o9& a2 = o0&

The other Hermite vertex basis function viz)

structed analogously in the form

corresponding to the grid vertex x; is con-
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2 2 -1 2 V.1 Vn 2
,Uz() 9()01: 9() 6’ Py [329

a
—1)52)(1132') = (32]

c?:r,j

Performing analogous calculation as above, we find that the coefficients 3; and 3, have to
be

_ 8$K’2

pr = B,

8.’1:}('2

Bo = B

(1)

k2

)

Thus finally we find that in K’ C S(z) the Hermite vertex basis functions v;~’ and vl@ are

defined as
) = (%) ()]
) =o)Ll )] oo
6.4.4 Global nodal interpolant and conformity

Let 2, C R? be a polygonal domain covered with a finite element mesh 7y, ;, consisting
of M triangular (and/or quadrilateral) Hermite elements of a uniform polynomial degree
p > 3. Let g € H?(Q) be a function for which alt degrees of freedom on all elements in
the mesh are defined. Then the global nodal interpolant Z(g) is constructed routinely via
the elementwise local nodal interpolants (3.28),

Np
Ii(g) = > Lu(9)b:,
=1

where K € 7, ,, Np = (p+1)(p+2)/2 and §; are the corresponding nodal shape functions
on the element K (see Section 3.3.1).

The continuity of Z(g) at all element vertices is guaranteed by the fact that there is a La-
grange degree of freedom associated with every mesh vertex. On every edge e in the mesh
there are two Hermite and two Lagrange degrees of freedom associated with the endpoints
of e, and additional p — 3 Lagrange degrees of freedom associated with the p — 3 Gauss—
Lobatto points in the interior of e. These p + 1 parameters determine a unique pth-degree
polynomial on the edge e. Therefore Z{g) € C(Q,).

In the next section we derive and analyze partial differential equations that describe the
bending of elastic plates.

6.5 BENDING OF ELASTIC PLATES

Plates are three-dimensional solids whose thickness is very small compared to their other
dimensions. The bending of such structures, and indeed an extension to shells, were the
first subjects to which the finite element method was applied in the early 1960s. Usually the
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complete three-dimensional numerical treatment of such problems is not practical, since
the discrete problems are both very large and ill-conditioned.

Therefore, several classical assumptions were introduced long time ago in order to sim-
plify the solution of plate problems. There are two basic plate models, of which the his-
torically older Kirchhoff (thin) plate model, based on the early works of Sophie Germain
[24, 119] and [96] in 1811, was completed and formalized by G. Kirchhoff {71] in 1851.
The thin plate assumptions were relaxed by E. Reissner [97] in 1945 and in a slightly dif-
ferent way by R. D. Mindlin [81] in 1951. The Reissner~Mindlin plate model extends the
field of application to shear-deformable thick plates, and therefore sometimes it is referred
to as thick or shear-deformable plate model.

The Reissner—Mindlin plate model is a second-order problem that naturally corresponds
to the Timoshenko beam model, while the Kirchhoff model is a fourth-order problem that
generalizes the Euler-Bernoulli beam model. Although at the first glance the numerical
treatment of the Reissner-Mindlin plate seems to be easier, it turns out that it conceals
all basic difficulties plaguing the Kirchhoff model, and in reality its numerical solution is
in some sense even more difficult. On the other hand, the variational formulation of the
fourth-order Kirchhoff model takes place in the space H2({2) which is much smaller than
the space H*(2). In order to conform to H?()), the approximations have to be once
continuously differentiable (see Paragraph A.4.3). Since the assembling procedures for the
H?-conforming elements are nontrivial, nowadays it is popular to resort to mixed methods
that lead to the standard H'-conforming elements (see, e.g., [18, 95] and [124]).

Instead of reviewing existing results on mixed methods, we find it more useful to focus on
the application of the less frequently encountered C'-elements in this text. These elements
are natural for the variational setting in the space H?((2). It was demonstrated in Paragraphs
6.3.7 and 6.4.3 that the key to a transparent element-by-element assembling procedure are
the correct transformation relations for the weak forms and shape functions from the mesh
element to the reference domain and vice versa. These topics are addressed in Section 6.6.

Prior to introducing the finite elements, in Paragraphs 6.5.1-6.5.4 we present the deriva-
tion of the thick and thin plate models, list various types of boundary conditions, construct
the variational formulation and discuss the existence and uniqueness of the weak solution.
It turns out that the approximation of a smooth boundary via a nonsmooth curve (a common
technique for second-order problems) may change the physics of the fourth-order problem
completely. This phenomenon, known as the Babuska’s paradox of thin plates, is mentioned
in Paragraph 6.5.5.

6.5.1 Reissner-Mindlin (thick) plate model

Although the shear-deformable plate model is historically younger than the Kirchhoff model,
the natural order of their presentation is opposite. Consider a plate of a constant thickness
t > 0 whose middle plane coincides with the (z;z3)-plane and whose projection to the
(7172)-plane occupies a bounded domain 2 C R? with Lipschitz boundary. Thus the
three-dimensional body of the plate is §2 x (—t/2,/2). We assume that the plate is subject
to external forces which are normal to its middle plane x3 = 0. The Reissner—Mindlin
model is based on the following four postulates:

o (P1) Planar cross-sections normal to the middle plane remain planes during the defor-
mation, and segments lying on normals to the middle surface are deformed linearly.

e (P2) The displacement in the z3-direction does not depend on the x3-coordinate.
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o (P3) The displacement of points lying on the middle plane occurs in the z3-direction
only.

e (P4) The normal stress o33 = 0.

The postulate (P1) is the most important assumption of the theory of plates and shells. It
follows from (P1)-(P3) that the displacement w(x) = (ug, us, u3)7 () has the form

u{z) = —z3é1{z1,72), (6.62)
ug{x) = —z3da(ry,22),
us{e) = wlxy,x2),

where w is the transversal displacement or (normal) deflection, and ¢ = (&1, ¢2) is the
rotation of the transverse normal vector. Let us introduce the equations governing the
quantities w, ¢; and ¢o:

The bending strains associated with the displacement field (6.62) have the form

Ouy 0d1
= 1 = gyt 6.63
€1 Bz, T3 Bz, ( )
o o= Qw2 _ 0%
27 8I2 - 38.’[2’
8U1 811,2 8(251 8(252
LR e P (a’tz o )
- w om_ow
ms = 8$1 81‘3 - 81‘1 o
Ow  Ous ow
Y23 = 6’_002—1—8—1’3?5—@_(252’
€3 = 0.
Here €1, €2, and «12 are the in-plane strain components, and
(713, 723) = Vw — (01, 65) (6.64)

are the strain components corresponding to the transverse shear. [This relation models the
shear-deformability in the Reissner—Mindlin model. In the Kirchhoff model, the left-hand
side of (6.64) is zero]. In the linear isotropic case the shear force resultants have the form

/2
Q = / 13 day = KGE (ﬁ - ¢1> , (6.65)
—t/2 81'1
t/2
Q2 = / To3 dy = kGt <g—w—¢2>»
—t/2 L2

where {Ti]—}?’ =1 is the stress tensor and G the shear elasticity modulus. Directional shear
rigidities G'13 and G23 may be used instead of GG to model linear orthotropic elasticity (see,
e.g., [95]). The constant  is a shear correction coefficient introduced to account for the fact
that the shear stresses are not constant across the section. A value of k = 5/6 is exact for a
rectangular, homogeneous section and it corresponds to a parabolic shear stress distribution.
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Using appropriate constitutive relations, all momentum components can be related to
displacement derivatives. In the linear elastic case the bending moments M;; and Adyo,
and the twisting moment M, = Mb; are defined as

t/2
My, = / mmizzdry = -D <% + ’y%> . (6.66)
—t/2 0z Oz,
t/2
My = / Togxzdrs = —D (V% + %> .
—t/2 8301 81‘2
t/2 D(1—7) (8 d
Mys = My, = / 712I3d$3=‘—(—l) <ﬂ+ﬁ>
—t/2 2 Oz  Ox;

Here D is the bending stiffness, defined by

Et?
D = ———, 6.67
1201 =) ©en
where FE is the direct (in-plane) elasticity modulus and + the Poisson’s ratio. In the case of
a linear orthotropic material, the elasticity modulus has two directional components E; and
E5, and the Poisson’s ratio -y is replaced with the directional values 7,2, y21. Accordingly,
the bending stiffness D has the components

D, - &t
12(1 — y12721)
E 3
D =
Et?
Do = 12(1 —2712721)’
Des = %Glzt‘g,
and the moments attain the form
M, = - <D11g;:: +D12%> .
My, = - <D12% + D22%>
My = —2Dgs (g%;— + %) .

See, e.g., [95] for details. The Reissner—Mindlin model consists of three equilibrium equa-
tions that relate the transversal force f to the shear resultants, and the shear resultants to
the momentum components. To begin with, the equilibrium equation

t/2 37’13 87—23 87’33
2y 2B 28 gy =0,
v/—t/2 ( Bacl 812 + (9.733 > 3 '

written in the form
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o t/2 o t/2
6—/ Tl3dl‘3+a—/ To3dxs + T33]72 — Ta3]_¢2 = 0,
L1 J—t/2 T2 J—t/2 —_—
f

(where the transverse loading f arises from the resultant of the normal traction on the top
and bottom surfaces) yields via (6.65) the first thick plate equation,

9Q1 | 0Qq _
T g=0 (6.68)

The momentum equilibrium conditions
t/2 87'11 87’12 (97'13
—— + 55—+ 55— | dzz =0,
[t/QZ (8301 T Oxs 8x3) 3
t/2 87’21 67’22 8T23
2|l m—+ 57—+ 57— | dzz3 =0,
v/;t/Q (5331 6332 (9333 > 3

assumed together with relations (6.65) and (6.66), complete the thick plate model by the
relations

oM, N OMi2

oz, Frae Qi = 0, (6.69)
Oy * dxy @ = 0

Some of the above-defined quantities are depicted in Figure 6.23.

£ xy(uy) M,,

Figure 6.23 The transversal force, shear resultant, and bending and twisting moments.

Further details on the derivation of the thick plate model can be found, e.g., in [124]. In
the next paragraph, equations (6.68), (6.69) will be used to deduce the Kirchhoff thin plate
model.

6.5.2 Kirchhoff (thin) plate model

In addition to the hypotheses (P1)—(P4) of the Reissner—Mindlin plate model, the Kirchhoff
model imposes the normal (Love’s, Kirchhoff’s) hypothesis, which is analogous to the basic
assumption of the Euler—Bernoulli beam theory (Paragraph 6.1.1):

e (P5) Vectors which are normal to the middle surface x3 = 0 remain normal to the
(deformed) middle surface during the deformation.
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This assumption neglects the shear deformations ~; 3 and yo3 in (6.64), and thus the rotations
¢1 and ¢, are related to the partial derivatives of the normal deflection w via the relation

(1, x2) = Vw(xy, z3). (6.70)

The situation is depicted in Figure 6.24.

(®,9,) = grad(w)

Figure 6.24  The hypothesis (PS) relates the rotations ¢1, @2 to the deflection w via its gradient.

With (6.70) the displacements (6.62) take the form
Sw

w(@) = -~y (), (6.71)
dw
uz(z) = —1‘38—372(17171‘2),
UB(m) = w(xlv‘TQ)v
and (6.66) yields the momentum components
8w 8w
My = D35 +vo=s), 6.72
" <ax%+”ax%> ©.72)
8w O’w
Myy = —-D{lv—" 422
2 (V dr2 + 3.10%) ’
%w
My =My = -D(1- .
12 = Mz, (I=7) 5212,

Substituting into (6.69), we obtain

8 (0w 8w 0 8w
B ((f?—x% + ua—x%> +D(1 - 7)% <8x1x2) +@ = 0, (673
7] w 7] Fw  w
D(1 — — | — — —_— —_ = .
( 7)(%1 <8$1$2> + D&Ez (V Oz} * 395%) e 0

Substituting the shear resultants 01, Q- from (6.73) into (6.68), we finally obtain the Kirch-
hoff thin plate model in its well-known form,

3w w Fw
Dl 2= LY o er
< 1 +2 + 31‘3

52t 20,722 ) = DA%y = f. (6.74)

In the following we introduce several types of boundary conditions for equation (6.74),
derive its weak formulation, and prove the existence and uniqueness of the weak solution.
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6.5.3 Boundary conditions

The boundary conditions for plates are typically prescribed in local (v, s) coordinates,
where v = (vy,19) and s = (s), s2) are the unit normal and tangential vectors to the
boundary 052, respectively. The shear force resultants (J; and the moments Af;; in the
Reissner—Mindlin model were defined by (6.65) and (6.66),

ow
Q1 = KGt <i - ¢1> (6.75)
8;171
Jw
Q2 = kGt <8_ - ¢2> .
o)
Oy dpa
M = —-D|— —=
1 <8x1 + /011.'2
Op1 O
Myy = —-D|v=—+ —
22 (701” Oxo
D(1—~) (0¢1 | O¢2
My = M. = —— .
12 21 B 52 + B
In the Kirchhoff model we have relations (6.69) and (6.72),
OMy;  OMis
= . 6.76
@ ox Oxa ( )
Q _ 8]\’112 8]\’[22
27 (9:L'1 BTZ ’
8w Fw
M = -D
11 (8 +v75 5 972 >
()211' d2u7
Myy = -D
22 ( a2 " dfz)
Sw
Mis = My = —D(l—y)a_u :
I1X9
These quantities are transformed into the local coordinates as follows:
2
My = > My, j=1.2 (6.77)
7=1
2
A[V = Z l/il/j = M11/1 + ]\[21/2,
2,7=1
Q. = Qi1+ Qavy,
by = ¢ T Pave,
¢s = a1 — P1ua,
]\/[us = (]ng — ]\fﬁl)l/lug + A/flg( — 1/2) = ]\[21/1 A;[ll/g.
The transformation rule for the partial derivatives is
0,0 0 0 00
v ‘oz, | ‘ory Bs Oxy oz
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Clamped boundary Clamped boundary conditions are used when the transversal de-
flection w and both the rotations ¢, and ¢, are given. This is the case, for example, when a
portion of the plate is built into a solid wall. In the Reissner-Mindlin model one prescribes

w o= w, (6.78)
¢I/ = é; B

In the Kirchhoff model the tangential rotation ¢, is determined uniquely by the values of

w on the boundary,
ow

= 3

and moreover, the normal rotation ¢, is related to the normal derivative of w via (6.70),

bs

o o ow
b, = p1v) + Parva = 8—9101”1 + a—;UQVQ =35

Therefore for thin plates one prescribes the deflection w and its normal derivative,

w = w" (6.79)

Jw dw\ " .
w (a?) =%

Traction boundary The Reissner-Mindlin model admits the prescription of the mo-
ments M. M, and the stress resultant Q,,

M, = M, (6.80)
M,s = M),
@ = Q;;
An important special case of the traction boundary is free boundary with
M v = Ov
M, = 0,
Qu = 0

It is easy to see that these three quantities are linearly dependent in the Kirchhoff model,
and therefore only two conditions are prescribed. Usually these are

M, = M, 6.81)
oM, aM*

v — * vs — V*.

Qv+ =55 @+ 5

The latter quantity is usually called effective shearing force of the plate.

Simply supported boundary These boundary condition combine both the fixed and
traction boundary conditions in order to model situations when the plate lies on a solid sup-
port (with unknown values of the rotations or dw/dv on the boundary), etc. We distinguish
between hard- and soft-supported boundary.
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Hard-supported boundary: The Reissner—-Mindlin model admits the prescription of w, ¢,,
and M,

w = w", (6.82)
¢u = ¢;
M, = M.

In the Kirchhoff model by (6.70) we have ¢,, = Jw/dv, which means that the prescription
of ¢,, on the boundary would lead to a clamped case (with M, not prescribed). But we may
give M, without constraining ¢,, which leads to the boundary conditions

w = w, (6.83)
M, = M.

Soft-supported boundary: In the thick plate model one prescribes w together with two
traction boundary conditions for M, and M,

w = w, (6.84)
M, = M},
M, = M,

In the Kirchhoff model one only prescribes two conditions, usually w and the normal
moment M,

w = w, (6.85)
M, = M}

(i.e., the hard- and soft-support boundary conditions are the same for thin plates).

6.5.4 Weak formulation and unique solvability

In this paragraph we consider the Kirchhoff thin plate model. Let  C R? be a bounded
domain with Lipschitz-continuous boundary that is split into three open (not necessarily
connected) disjoint parts I'.;, I'ss, and I'yr., as shown in Figure 6.25. The boundary part I';.
can be empty, and also at most one of the remaining two parts I'¢; and I' can be empty as
long as [y, is not contained in a single line. These conditions are among the assumptions
of the existence and uniqueness Theorem 6.1.

T,

tr

I,

tr

Figure 6.25 The boundary is split into three parts I'c;, I'ss, and Iy, representing the clamped,
simply supported, and traction boundary conditions.
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We consider the (essential) clamped and simply-supported boundary conditions

w(®k) = w* onlyg, (6.86)
w(z) = w' onlygy,

ow dw\" .

X - (52) @=-e@ ol

and the (natural) traction boundary conditions

OM, oM, .
9s = QZ + “‘8—83 and Ml, = Mz/ on Ftr«, (687)
M, = M, onl.

Qu +

The space where the weak formulation takes place is the corresponding subspace of the
Sobolev space H2(2),

V(Q) = {w e H*Q); wlr,, = 0; wir, = (0w/0v)Ir,, = 0}.

As usual we choose some sufficiently regular Dirichlet lift G () representing the essential
boundary conditions (6.86), i.e.,

G(z) = w* onlg,

Glx) = w" only,

8G

% = el onTa

The solution w(x) is sought in the form

w(z) = W(z) + G(z), (6.88)

where the unknown function W € V() satisfies the homogeneous boundary conditions

W(x) = 0 onDg, (6.89)
W(x) = 0 onlyg,

oW

W(w) = 0 onlgy.

It is advantageous to develop the weak formulation from the equation

M M 2 M.
_(3 11 25 12 +3 22>=f, (6.90)

z? 0110x9 2
which is equivalent to (6.74) through (6.68) and (6.76). We multiply (6.90) with a test

function ¥(z) € V(£1), whose minimum regularity will be determined later from the final
weak forms, and integrate over 2,

8 (OMy  OMis 3 (0My OMas ~
L oy ( 52, | oz >¢+f)x2 ( 52, | o >¢dm_/ﬂf¢d“"
N—————— —_———

Q1 Q2
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Green’s theorem yields

oM OM y
/ < o 12) oY 4 <<9]\[12 +5A122> 31111/

ox 0o % " Oz Oxo

—/ QuwdSz/fwda:-
T Q

Applying Green’s theorem to the first integral once more, we obtain

o2 9° 2
14 Y 511)
/]Vfua 5 +2A[128$ Bz, +Mma 5

da

%)
+/ (Afllljl +]\/112V2) —w
O —— 61‘1

—/ Quwdsszwdm.
Ter 0

The transformation relations (6.77) yield

% a2

%)
-+ (A/[121/1 + Afggl/g) 5;-[]‘ dS
S—_— 2

ds = M, oy + Afysaw

M
Yo, Do oq  Ov ds

ds.
o0 On)

Inserting this relation into (6.91), we obtain

a?w azw 22!}
_/Q]\/11182—|—2M128 D7 +A/[2282

oy
+ - Mua—y

MI,SE ds. — /th Q.dS = /Q fydx.

6.91)

(6.92)

Last, in order to prepare the weak formulation for the incorporation of the boundary data
V* = Q; +0M],/0s (part of the traction and soft support boundary conditions), we need
to include the quantity M, ;/0s into the boundary integrals explicitly. This operation
requires the application of Green’s theorem along the boundary 9%2, which in turn brings

up some extra considerations about the smoothness of the boundary 9€2.

When the boundary 0f2 is a smooth curve and when the function M, = M,(s) is
continuously differentiable in the interval [a, b] which is supposed to correspond to the part

T4 of the boundary 92, it holds
oy oM,
M,——dS = — d M,
‘/I:tr as S ~/1:t 8 w S - [ w]

Similarly, if M, is continuously differentiable in the whole 92, then

—/ Musaip ds = / Q]\—/["—swds = aM”Sz/)dS.
an 83 80 33 Cer 88

However, in reality the boundary OX2 often has corners. Suppose that the boundary 9€ is
defined parameterically by means of the parameter s € (0, ), and that there are N, corner
points 0 < s; < I,i = 1,2,..., N.. In general the function M, .(s) has jumps at these
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points since the normal vector v varies discontinuously. The integration by parts with a
piecewise continuous function M, (s) gives (we assume M, ;(0) = M, (1))

oY /l O
— M,,—dS = — M,,—ds
/asz Js 0 Js

—/l aM”wdsﬂLi(M ($i 4 0) = M,s(s; — 0))0(s;)
- o 03 vs\9i v\ WIS )

i=1

Suppose, moreover, that the given twisting moment M’ (s) has jumps at the corner points
s=s;,where0 < s; <b,j=1,2,...,p(p<N,b< 1 s€(0,b)only,). Then

oY oy
MY —d ]\[* ——ds
/I:” vs a S vs 8
> O, S . v b
= - djd - Z(A{us(sj + O) - AIVS(SJ - 0))1/}(3]) + [Musw}()'

8
) 0 <

Writing M (s; +0) — M (s; — 0) = h;, we see that the corner discontinuities in M,
and M, produce the following terms,

(Mus(s, +0) = Myy(s: = 0)) thw

'Mz

1

7

which are not present when the boundary 0% is smooth. Taking this fact into account, from
(6.92) we obtain

g Y 0%y v
- ] 2M1 Moo .
/Q]\fua 5 + 120.L'16I + Adao oz % dz (6.93)

My,
/fu1d:v+/ (Q +da >1/J—]W* ds — / ]\[* dS+Zth(.s
Iy, .

The boundary integral over I, only contains Af}, because ¢» = 0 on I, and no boundary
integral over [, is present since both ¢ and 9% /Qv are zero on I' ;. The Dirichlet lift G(z)
is implemented into the left-hand side in the usual way, by decomposing the moments A,
into

A_[,J'(U?) = A[,J(”I + G) = ]\[,J(VV) + AI1}(G) 1‘} = 1. 2,

and leading all integrals containing Al;; (G) over to the right-hand side. The weak formu-
lation of equation (6.90) reads: Find a function W € V{(€2) such that

a(W.) = 1) forally € V. (6.94)

where

N P N
Q(W 1/) = —-/Q ]\[11(“ )ax% + 2]\112(” )0.1/18 + ]\Izg(w )8—% x,
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and

:/fwdm+/ (Q +8M* >¢ Mm% 45
Q Ty a
_/ M*awd5+2hw5
T, ua J J

G 8% Y
+/Q My (G )8 3 +2Af12(0)m +A[22(G)8—x%dx'

The weak solution satisfying both the essential boundary conditions (6.86) and the natural
boundary conditions (6.87) is, as usual, w = W + G.

The important question is now whether the bilinear form a(-,-) : V{(§2) x V(2) — Ris
bounded and V-elliptic, and whether ! : V(£2) — R is a bounded linear form.

Theorem 6.1 (Unique solvability) By C%(Q) denote the space of continuous functions
with compact support lying in Q and let [C° ()]’ be its dual (i.e., the space of all continuous
linear forms over C°()). Suppose that f € [CY(Q)], Q} + OM;,/0s € L'(Ty.) and
M} € LYTs, UTy,), 1 < g < oo. Let at least one of Iy and Ty be nonempty, and if T
is empty, then let T, not be contained in a single straight line. Then there exists a unique
weak solution to (6.94).

Proof: The proof requires to verify the boundedness of the forms « and {, and to prove the
V-ellipticity of the form a in V(§2) x V(2). This is done via the Korn inequalities, which
lie beyond the scope of this introductory text. See, e.g., the nice monograph by Necas and
Hlavé&ek [86], Theorem 4.1, for the proof. |

6.5.5 Babuska’s paradox of thin plates

Let I" be a nonempty subset of J¢2. As mentioned above, the thin plate assumption (P5)
implies that the prescription of w on I' defines ¢; on I'. Thus whenever I contains a corner
and w is prescribed, this yields two independent rotations ¢ and ¢} at both sides of the
corner, which define both ¢, and ¢, (and consequently ¢,, ¢, and a fixed boundary con-
dition at the corner). The situation is depicted in Figure 6.26.

Boundary deflection only defines Boundary deflection defines two
tangential rotation independent rotations at each corner

Figure 6.26 Nonsmooth approximation of a smooth boundary changes the physics of the thin plate
problem when the deflection w is prescribed.

The approximation of a smooth boundary I" by means of a nonsmooth curve I';, changes
simply-supported boundary to fixed boundary at the corners. Consequently, the numerical
scheme does not converge to the exact solution to the original problem. For more details
see {7] and [8].
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6.6 DISCRETIZATION BY H?-CONFORMING ELEMENTS

The weak formulation of plate bending problems takes place in the Sobolev space H2(2,).
In this section we discuss the H?2-conforming Argyris elements which are the most natural
choice for their discretization. For alternative mixed methods leading to simpler (but not
necessarily more efficient) discretizations based on standard H!-conforming elements see,
e.g., [18,95] and [124].

6.6.1 Lowest-order (quintic) Argyris element, unisolvency

For spatial reasons let us restrict our discussion to triangular elements. The basic Argyris
triangle is a quintic element (K, P, %), where K is a triangular domain, P = P°(K) and
the set 32 = {L1, Lo, ..., La1 } comprises the degrees of freedom depicted in Figure 6.27.

Figure 6.27 Twenty-one DOF on the lowest-order (quintic) Argyris triangle.

The black dots stand for Lagrange DOF associated with function values at the vertices.
Each inner circle surrounding a black dot represents a pair of Hermite DOF associated with
first directional derivatives at the vertices (we choose 9/0zy and 8/0z»). Further, each
outer circle stands for three Argyris DOF corresponding to second directional derivatives
(we choose 82 /9x2, 8% /Ox x5 and 52 /Jx3). The arrows indicate the DOF associated with
the normal derivatives at the edge midpoints. The partial derivatives can be exchanged for
the derivatives in the directions of the edges, analogously to Hermite triangles (see Figure
6.17).

Lemma 6.6 The Argyris element (K;, P°(K;), %), where & consists of the 21 above-
defined degrees of freedom, is unisolvent.

Proof: Takeanarbitrary g € P5(K)suchthatL;(g) = Oforallj = 1,2,...,21. Weneed
to show that necessarily ¢ = 0. First, g restricted to the edge e, is a fifth-degree polynomial
that vanishes at the endpoints of e; together with its first and second derivatives. Since
these six independent parameters define a unique one-dimensional fifth-degree polynomial,
it follows that ¢ = O on e;. Analogously g = 0 on the remaining two edges e, and e3.
Thus g vanishes on the whole boundary of the element, and it can be written as a product

9(@) = g{@)Ai(@)ha(2)Ns3(2), § € PX(K),

where A\, k = 1,2, 3, are the barycentric coordinates in K. Recall that A; + Az + A3 = 1
and Ay is an affine function that vanishes on the edge e, and attains a value of one at the
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opposite vertex. There is a one-to-one relation between A, Ao, Az and x € K, and therefore
we can express both g and ¢ in terms of the barycentric coordinates,

G(A1, A2, Az) = (A1, A2, Ag) A da Ay, (6.95)

The partial derivative §/0 X\ is the derivative in the normal direction to the edge e,. Using
(6.95), from the zero second derivative DOF at v; one obtains

&g 8%
0= amons Y = Gayang 0 dulv) Aalvn) a(vr)
=() =0
a~ e ~
+——(v1) Ar{vr) Aa(vr) + (1)1)/\2(01) As(v1) +3(v1) Aev1) = §(v1).
8)\1 N—— 0/\ ~ ,

=0 =0 =1

Analogously it is g(v2) = g(vs) = 0. For the normal derivative at the midpoint ¢; of the
edge e; we have

dg g

0=72x (=730

(Cl) /\1((11) /\2((,‘1)/\3((',1) + g((?l) /\2((11)/\3((11),
S——r N e’
=0 #0
and it follows that g(¢;) = 0. Analogously we conclude that §{co) = §(c3) = 0. Finally,
from the unisolvency of a second-order Lagrange element with the nodes vy, vo, v3, €1, €2, €3,

we obtain that necessarily § = 0. Therefore ¢ = 0 and the triangular quintic Argyris element
is unisolvent. |

6.6.2 Local interpolant, conformity

Consider an element K; € 75 ,. The quintic Argyris element K; is endowed with the
standard nodal interpolant (3.28),

Np
(9) = Z Li(g)8

Np = 21. Here the nodal basis functions §; of the space P°(K};), meeting the delta property
(3.4), are constructed in the standard way as described in Paragraph 3.1.1. Nodal shape
functions on the reference triangular domain K, will be calculated in Paragraph 6.6.3. As
usual, the local interpolant exists if all linear forms L;, ¢ = 1,2,..., Np are defined for g.

Conformityto H2(Qy) LetT;,, = {K1, Ka, ..., K} comprise M quintic triangular

Argyris elements. According to Definition 3.6, the global nodal interpolant is defined
elementwise as

I(9k, =Ik.(g) foralli=1,2,... M.

Since C?(€2,) is dense in H2(£24,), according to Definition 3.7 the finite element mesh 7, ,,
conforms to the space H2(Qy,) if the following implication holds:

g€ CQ(Q)L) = I(Q) € Hz(Qh)'
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The piecewise polynomial interpolant Z(g) belongs to H?(€2y) if and only if it is once
continuously differentiable (see Section A.4), i.e., if and only if it is smooth across all
element interfaces and at all grid vertices.

Lemma 6.7 Every regular finite element mesh T, , consisting of triangular quintic Argyris
elements conforms to the space H?(§),).

Proof: Consider a pair of elements K4, Ko € {2, that share an edge ¢, as depicted in
Figure 6.28.

3

&/

Figure 6.28 Smoothness of the global Argyris interpolant across the edge e. The edge e is equipped
with a unique unit normal vector v, to which the normal derivative DOF on both elements are related.

By gk, .. and gk, . denote the restrictions of Z(g) to the edge e on the elements K
and K, respectively. These are one-dimensional fifth-degree polynomials whose values as
well as first and second derivatives agree at the endpoints of e. Since a unique fifth-degree
polynomial is determined via these six parameters, g, « = ¢x,.. and Z(g) is continuous
across e.

Nextby g, . and gy, . denote the derivative of Z(g) in the unique normal direction v to
the edge e on the elements K; and K5, respectively. These one-dimensional fourth-degree
polynomials coincide at the endpoints of e due to the agreement of the derivative DOF.
Analogously their first derivatives at the endpoints of e coincide due to the agreement of the
second derivative DOF. Finally, their values at the midpoint of e are the same because of
the agreement of the normal derivative DOF. Thus g% . = g, .. Obviously the tangential
derivatives of gy . and gy, , along the edge e are the same, and therefore the global
interpolant is continuously differentiable across e. The smoothness of Z(g) at all grid
vertices is obvious, and therefore we can conclude that the mesh 7}, ,, conforms to the space
H? (). |

6.6.3 Nodal shape functions on the reference domain

The twenty-one nodal shape functions of the quintic Argyris element on the reference
triangle K; can be obtained using the procedure described in Paragraph 3.1.1, i.e., choosing
a suitable basis of the space P?(K;), B = {g1,92,---,921} (for example the monomial
basis), inverting the Vandermonde matrix L;(g;) and reading the coefficients of the nodal
shape functions from the columns. The resulting unique nodal basis is shown in Figures
6.29-6.35 (the graphs have different scaling).
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Figure 6.29 Nodal basis of the quintic Argyris element; shape functions ¢}, ¢;?, and ¢;?,
representing the function values at the vertices vy, v2, and vs.

vy.l v v3,1

Figure 6.30  Nodal basis of the quintic Argyris element; shape functions ¢, ,<pt2’1, and @, %",
representing 8/0x at the vertices vy, vz, and vs.

Figure 6.31  Nodal basis of the quintic Argyris element; shape functions }*%, ©¥2'?, and p?*?,

representing 8/0x2 at the vertices vy, vz, and vs.

e2.,n e3.n

Figure 6.32 Nodal basis of the quintic Argyris element; shape functions 7!, pi2™, and >,
representing the normal derivatives at the midpoints of the edges e1, e2, and e3.

Figure 6.33  Nodal basis of the quintic Argyris element; shape functions @/'"?,
@12 representing 8% /8%, 82 /8x10x2, and §? /523 at the vertex .

v1,1,2
3 s

©y and
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Figure 6.34 Nodal basis of the quintic Argyris element; shape functions @?'"'*, ©¥21?  and
P2 %2 representing §° /823, 8 /91012, and 82 /33 at the vertex vs.
Figure 6.35 Nodal basis of the quintic Argyris element; shape functions p!*'** p¥*? and
oV %2 representing 82 /822, 8% /0102, and 52 /D at the vertex vs.

6.6.4 Transformation to reference domains

Next the integrals involved in the weak formulation (6.94) are transformed from a mesh
triangle K to the reference triangular domain K via the standard affine reference map
xy Ky — K. The procedure is slightly more technical, but otherwise similar to what
was done for second-order elliptic problems in Paragraph 4.1.4. Without loss of generality,
we assume that the constant Jacobian Jg of the map i is positive. By

W=woxg (6.96)

we denote the transformation of a function w € P%(K) to K;. In Paragraph 4.1.4 we
learned how to express the first partial derivatives dw/0z;, 7 = 1,2, by means of the
partial derivatives 0w /0¢; and the Jacobi matrix J g = Dx x /DE. The rule (4.20) for the
transformation of gradients yields

Vu(z) = I VD(E), ==xk(£)

Now we have to do the same for the second partial derivatives of w. It follows from (6.96)
that

3% w 8w 3w w
8—§f = (8—1%»711 + mjzl> Ji + (mjll + Tx%J21> Jo1,  (6.97)
W A?w Hw 8w 8w
5606 <B—fo12 + 52107, J22> Ji + <——8x1812 Jiz + a—x%bz) Ja1,
A%w w ?w &?w *w
ng = <—5£%—J12 + 3202, J22> Jio + (—817161*2 Jio + Tx%J22> Joa,

where J;; is the ijth entry of the Jacobi matrix Jx. Thus the second derivatives of w
depend on the second derivatives of @ linearly,
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@ &*w
€ f dr?
9w 4 %w
861862 651312(91'2
o83 93

where the constant matrix A has the form

JZ 2J11J91 J%
A= Juindiz (Judaa + Jiador)  JarJas
JZ 2J12J29 J3,

This matrix is invertible since det(A) = det®(J '}, and its inverse has the form

. 72 251 T a2
Al = T ) —JigJoa  (JnnJaz + J12da) —Judn
K 72, “oJn T T2

Hence, for the second partial derivatives of w it holds

Oz? 3
0%w a4t O*w
81‘ ]281‘2 851 852
O i)
da B3

This allows us to replace the second partial derivatives of w in (6.94) with terms containing
the second partial derivatives of «w and the entries of the Jacobi matrix J j, as we wanted. An
additional multiplication with det(J ) dictated by the Substitution Theorem accomplishes
the transformation of the integrals to the reference domain K.

6.6.5 Design of basis functions

The last ingredient needed for the assembly of the stiffness matrix and of the load vector
is a suitable basis of the space V}, ,, consisting in this case of globally smooth piecewise-
polynomial functions defined in the domain £2,. The basis functions are designed by
means of the shape functions from Paragraph 6.6.3 and the reference maps xx and their
derivatives, analogously to what we did for Hermite elements in Paragraph 6.4.3. The new
interesting aspect of the Argyris elements is the presence of the DOF associated with the
second derivatives at the grid vertices and the DOF related to the normal derivatives at edge
midpoints.

Consider a bounded polygonal domain 2;, C R? covered with a finite element mesh
7y consisting of Al > 1 triangular quintic Argyris elements. The finite element space
Vi, (which, for simplicity, is not constrained with any essential boundary conditions) has
the form

Vip = {v € CHU); vk, € PP(K) i=1.2..... M}. (6.98)
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Proposition 6.2 The dimension of the space V}, , is
N =dim(Vy, ,,) = 6Al, + M., (6.99)

where M, is the number of grid vertices and M, the number of mesh edges.

Proof: There are 6 degrees of freedom associated with every grid vertex and one degree
of freedom for the midpoint of every edge. Each of these degrees of freedom is represented
by one basis function in the basis of V}, ,,. |

The basis of the space V}, ,, consists of three types of basis functions:

e Lagrange basis functions associated with the function values at the grid vertices,

e Hermite basis functions representing the first partial derivatives (9/9z1 and 0/0z5
at the grid vertices and the normal derivatives at edge midpoints),

e Argyris basis functions related to the second partial derivatives 8% /8x%, 52 /0z 24
and 52 /822 at the grid vertices.

Lagrange vertex functions

Figure 6.29 shows the three Lagrange vertex shape functions which are present in the
basis of the polynomial space P°(K;). The shape functions are smooth, and therefore
the fact that 3/3&; = 3/9¢; = 0 at the vertices of K; implies that any first directional
derivative at any vertex of Ky is zero. Analogously, since the second partial derivatives at
the vertices are zero, any second directional derivative at any vertex is zero. Therefore one
could be tempted to construct the Lagrange basis functions in 25, as usual, by composing
the Lagrange shape functions with the inverse of the reference maps ¢ : K; — K (this
was done for the Lagrange—Fekete elements in Paragraph 4.3.6 and for the Hermite—Fekete
elements in Paragraph 6.4.3). However, in such case the resulting basis functions would
not be smooth at the midpoints of element interfaces, since the reference map x ;- does not
preserve the normal vectors at the edge midpoints. Fortunately this can be cured by means
of the shape functions ;""" . {?™", and ©;*":

Consider a grid vertex x; and the vertex patch (4.14) of all elements adjacent to x;,

siy= |J E.

KEN(H)

where
N(&) = {k: Ky € Ty, x; is a vertex of Ky }.

The Lagrange vertex basis function ’115” corresponding to the grid vertex ; is smooth in the
whole domain €2;, and it vanishes in €, \ S(i). For any element K € S(i) the restriction
of v/ to K is defined as

1

() o il

'U,(MlK =

where the function kp<“) is defined on K; by

PUE) = @I (E) + Bial ™€) + g (€) + oy (£).



262 BEAM AND PLATE BENDING PROBLEMS

Here v, is a vertex of K such that &y (v,,}) = @, and the shape functions were defined
in Paragraph 6.6.3. Analytical formulae for the unknown real coefficients (3, are obtained
from the conditions

du")

all’/'(:c(,) _— (6.100)
01)7(:7')

01/_," (.’I:f) = 0.

ovt?

——(x,) = 0.

v,

The symbols e, f, and g stand for the edges of K such that e = xx(e1), f = xxi{ea),
and g = xk (es), and the points ..z, and &, are the midpoints of the edges ¢, f, and g,
respectively.

Hermite vertex basis functions

Now we combine the technique developed for the Hermite elements with the trick intro-
duced in the previous step. For every grid vertex x; there is a pair of Hermite vertex basis
functions representing J/9xy and 9/dx, at x;, say, ’vfl) and vfz), Both these functions are
smooth in the whole domain €25, and they vanish in §2;, \ S(z). Their first partial derivatives
0/0x; and 9/8z, vanish at all boundary vertices of the patch S(2), and their first normal
derivatives vanish at the midpoints of all grid edges. At the vertex x; these functions satisfy

8 (k _
6—1702( )(531) =k J k=12

The second partial derivatives 82 /9x2 §%/0x) x5 and 82 /93 of these functions vanish at
all grid vertices.

Let us begin with the restriction of vfl) to an element K € S(i). Consider the pair of

Uy s Uy, 2

Hermite vertex functions ¢, ! and V4 associated with the vertex v,, of K, such that
Tk () = x;. We look for the vertex function in the form

()

S ) -1
v, =9 OLy

where

(&) = a1 (€) + aaey (&) + By (€) + Bat " (€) + Bal” T (€).
Now the analytical formulae for the unknown coefficients are obtained from the conditions

d .
&;uf)(mi) = &, j=1.2 (6.101)

01;7(1)
ov,

(x.) = 0.
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vt

(()l; (wf) = 0.
vtV

—(xzy) = 0,
ov, 7

where the symbols .,z ¢, x4, Ve, vy, and v, have the same meaning as in (6.100). The

;i . . 2
other Hermite vertex basis function vf )

gously.

, representing 9/0x» at x;, is constructed analo-

Argyris vertex basis functions

Next let us construct the vertex basis functions associated with the second partial deriva-
tives. For every grid vertex x; there are three Argyris vertex basis functions representing
82 /022, 9% /Ox1 79 and 8% /0% at x;, let us call them, e.g., vil‘l), 1)1(1'2) and v§2’2>. These
functions are smooth in the whole domain £2;, and they vanish in Q, \ S(i). Their first
partial derivatives 0/0x, and d/dz vanish at all grid vertices, and their normal derivatives
vanish at the midpoints of all grid edges. Their second partial derivatives vanish at all grid

vertices except for ;, where they satisfy

> (a
i
SANERY
€r; = 0
57125 v ()
0% a1
oozt (@) = 0,
2
% (12
i1
0 (12
U [ = 17
Oxyxo v (@)
& 2
épvf (x:) = 0,
2
* (22
ﬁ’l)ﬁ )(:c,) = 0
1
& 0(2’2)(33-) = 0
Oryze ¢ A
&’ (22
&‘fvf ) = 1
2
Consider the three Argyris vertex shape functions @!™ ! "1 and o™ *? associated

with the vertex v, of Kj, such that x(v,,) = x;. The vertex function vgl’l) in any

element K € S(i) is sought in the form
v§1.1) = o g gk,

where
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G0 (&) = a1 (&) + a2 (€) + gt P (€)
/} y(ln(é) /j &9;) ”<€)+13;y””(€).

The analytical formulae for the six unknown coefficients are obtained from the conditions

& o
S a2V ’ (:II,) = 1.
da?
02
01’11’2(‘51.1)(%) =0
& S1D)
sv; () 0
0;[7%
01)(@1.1)
v (x.) = 0
oot
! = 0
v, ()
(1.1)
ov;
(z,) = 0.
dv, /

where the symbols ..z, 4. V..V and v, have the same meaning as in (6.100). The
remaining Argyris vertex basis functions are constructed analogously.

Hermite basis functions associated with normal derivatives at edge midpoints

The design of the remaining set of basis functions, representing the normal derivatives at
the midpoints of mesh edges, involves the orientation issue analogous to the one encountered
in the design of higher-order Lagrange edge functions in Paragraph 4.3.6. This time a
unique unit normal vector v, needs to be assigned to every edge s; in the mesh 7, ,,. This
is equivalent to assigning a unique global orientation to mesh edges (see Paragraph 4.3.6).
Consider the edge element patch (4.49),

U Ee

ReN:(J))

where
N.(j) = {ki Ky € Tj, - 5 is an edge of K} }.
(n)

To every mesh edge s; there is one Hermite edge basis function v, whose normal derivative
atx, satisfies

o @) =1

This function is smooth in the whole domain €2, and it vanishes in €, \ S.(j). Its first
partial derivatives 8/0z; and 9/0x, vanish at all grid vertices, and its normal derivative
vanishes at the midpoints of all grid edges except for s;. The second partial derivatives
89?022 0% /0z )20 and 0% /O3 vanish at all grid vertices.
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Let us begin with the restriction of ’11§:") to any element K € S.(j). Consider the Hermite

AR Com

edge shape functions o5 '™, ;2" and ;*". The edge basis function associated with s; is
sought in the form

o) — ) -1
vy =@ omy
where

A = B ) + e €) + Ba " (€).

Now the analytical formulae for the unknown coefficients are obtained from the conditions

9 .
&Zﬁﬁ@“ = o(s;. K). (6.102)
v, b-g';l) (s,) = 0.
9
() _
(91/3, Us_,v (:E«"'l) - O

where sy, s; are the remaining two edges of K and x, , , their midpoints. The orientation
flag o(s;. K') = 1if v, points outside of the element K and o(s;. K') = ~1 in the opposite
case. Herewith the construction of the basis of the space V}, ,, from (6.98) is accomplished.

6.6.6 Higher-order nodal Argyris—Fekete elements

In this section we comment on the extension of the quintic nodal Argyris element to a
general polynomial degree p > 5. Consider a triagular element K € 7}, ,,, and recall that
the dimension of the space PP(K) is Np = (p + 1)(p + 2)/2. The higher-order element
inherits the three Lagrange DOF associated with the function values at the vertices, the six
Hermite DOF related to the first partial derivatives at the vertices and the nine Argyris DOF
corresponding to the second partial derivatives at the vertices. Thus Np — 18 degrees of
freedom remain to be defined on the edges and in the element interior.

Recall that with one Hermite DOF per edge, representing the normal derivative at the
midpoint, the quintic Argyris element was both unisolvent and conforming to the space
H?%($2;,). In the general case one needs p — 5 Lagrange DOF and p — 4 Hermite DOF per
edge in order to satisfy the conformity requirements of the space H>. For example, the
edge-interior Fekete points corresponding to p — 4 and p — 3 can be used to define these
Lagrange and Hermite DOF, respectively.

This means that

(p—4)(p-5)

WrVCED g5 g 5) a4 = B2

Lagrange degrees of freedom remain to be defined in the element interior. Their number
suggests to choose the interior Fekete points corresponding to p — 3.

The sixth- and seventh-order Argyris—Fekete elements on the reference triangular do-
main K are illustrated in Figure 6.36.
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o

5

Figure 6.36 The sixth- and seventh-order Argyris—Fekete elements on K.

Unisolvency, conformity Both the unisolvency of Argyris-Fekete elements and their
conformity to H2(;,) can be checked analogously to the quintic case:

Lemma 6.8 The Argyris—Fekete element (K, P?(K}),%), where p > 5 and % consists of
the (p + 1){p + 2)/2 above-defined degrees of freedom, is unisolvent.

Proof: The proof is analogous to the proof of Lemma 6.6. |

Lemma 6.9 Every regular finite element mesh 1y, , consisting of triangular Argyris—Fekete
elements of a uniform polynomial degree p > 5 conforms to the space H*(Q),).

Proof: The proof is a straightforward generalization of the proof of Lemma 6.7. ]

It is worth mentioning that the finite element space V}, ,, on a finite element mesh 7}, ,,
comprising M triangular Argyris—Fekete elements (where for simplicity no degrees of
freedom are constrained by boundary conditions) has the form

Vip = {v € CH(S); vlk, € PP(K;)}. (6.103)
Proposition 6.3 The dimension of the space V), 5, is

—4\p—5
N = dim(Vy, ) = 6M, + (2p — 9)M, + (ﬁ—);—p—“’)zu, (6.104)

where M, is the number of grid vertices and M, the number of mesh edges.

Proof: There are 6 DOF per grid vertex, (p — 4) + (p — 5) in the interior of every mesh
edge and (p — 4)(p — 5)/2 in every element interior. |

Abasis of the space V}, ,, can be constructed analogously to the quintic case (see Paragraph
6.6.5).

6.7 EXERCISES

Exercise 6.1 Consider an interval Q@ = {a,b) and a clamped prismatic beam with u(a) =
u(b) = Vu(a) = Vu(b) = 0. Assume that E(z)I(z) = 1 and f(x) = Fy forall x € S
Calculate the exact solution ro the Euler—Bernoulli model (6.7).
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Exercise 6.2 Return 1o Exercise 6.1 and consider a prismatic beam of a constant square
cross-section hg X hg and a constant modulus of elasticity E. Calculate the exact solution
to the Euler-Bernoulli beam model. Hint: Use relation (6.4) to calculate I(x).

Exercise 6.3 Extend the problem from Exercise 6.1 to a cantilever beam with u(a) =
Vu{a) = O and M (b} = AL, Fs(b) = Fy. Calculate the exact solution to the Euler—
Bernoulli beam model.

Exercise 6.4 Prove Lemma 6.1 for nonconstant, strictly positive b € L>{Q).

Exercise 6.5 Write the weak formulation of the Euler-Bernoulli model (6.7) in the simply
supported case (Figure 6.4). Prescribe the deflection v, = u, = 0 and bending moments
M, = M,y = M ar both ends.

Exercise 6.6 Write the weak formulation of the Euler—Bernoulli model (6.7) in the can-
tilever case (Figure 6.5). Prescribe the deflection u, = 0 and slope Vu = 0 at the clamped
end, and prescribe a moment M, and shear force F, at the free end.

Exercise 6.7 Show in detail that (6.25) holds. Hint: Subtract the exact and approximate

weak formulations.

Exercise 6.8 Show in detail how (6.25) implies that the approximate solutionuy, , € V), , C
V does not depend on the choice of the basis {vy,ve. ..., un} of the space Vi, p.

Exercise 6.9 Consider a bounded one-dimensional domain Q0 = (a,b), problem (6.7)
with the boundary conditions (6.11), and a space Vi, ,, C HE() consisting of smooth,
piecewise-quadratic functions over a mesh Ty, ,, = {K1, K, ..., Kar}, K = (-1, 75)-

1. What is the dimension N of the space V}, ,,?

2. Design N basis functions of the space V}, ;,, whose supports do not extend over more
than three elements.
Exercise 6.10 Verify that the shape functions (6.29), (6.30) satisfy the delta property (6.28),
L; (9,(:.')) = Ojk forall1 < j k< A4.

Exercise 6.11 Calculate the dimension of the space V), ,, in (6.39).

Exercise 6.12 Construct a fifth-order Hermite element on the reference domain K, =
(—1.1) using two interior Gauss—Lobatto points £0.4472135954999579392818347.
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Exercise 6.13 Consider the cubic, fourth-order and fifth-order Hermite elements on the
reference domain K,. Construct and plot the corresponding Hermite interpolants of the
Sunction g(x) = arctan(10z).

Exercise 6.14 Consider the biharmonic problem
Au(z) = 87 (2 sin®(ma) — 1)
in the interval Q2 = (a,b) = (0,10), equipped with the boundary conditions
u(a) = u(b) = v'(a) =/ (b) = 0.

1. Calculate the exact solution u.

2. Consider a mesh consisting of M = 2.5,10.15,20, 30. 40 and 50 cubic Hermite
elements.

(a) Calculate the approximate solution uy, ,, for each M. Present the plots of u and
Upp for M = 2,5,10 and 15.

{b) Present a plot of the ervor in the H*(Q)-norm, |lu — Up pll2.2. Use a decimal
logarithmic scale. As usual, put the number of unknowns on the horizontal axis.

3. Do the same for fourth-order and fifth-order Hermite elements.
4. Compare the convergence curves. Which scheme was most efficient?

5. Guess the speed of convergence in all three cases.
Exercise 6.15 Prove Lemma 6.3.

Exercise 6.16 Show that the cubic triangular Hermite elements from Figure 6.17 are equiv-
alent. Hint: Establish a one-to-one relation between the degrees of freedom associated with
the pairs of the directional derivatives at the vertices.

Exercise 6.17 Verify that the nodal shape functions (6.59) satisfv the delta property (3.4).

Exercise 6.18 Show that p — 3 pairwise distinct Lagrange degrees of freedom placed sym-
metrically into the interior of each element edge are enough to ensure the global continuity
of approximation for Hermite elements of the order p > 3 (this statement holds generally for
mixed meshes consisting of Hermite triungles and quads of a uniform polynomial degree).

Exercise 6.19 Calculate the dimension of the space V), , in (6.61).
Exercise 6.20 Perform in detail the proof of Lemma 6.8.

Exercise 6.21 Verify in detail the conformiry of the triangular Argyris—Fekete elements of
the general order p > 5 following the proof of Lemma 6.7.
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CHAPTER 7

EQUATIONS OF ELECTROMAGNETICS

In this chapter we introduce the basic quantities of electromagnetics, formulate their rela-
tions in terms of partial differential equations, and show how these equations can be solved
via the finite element method. Emphasis is given to potential equations and to the Maxwell’s
equations, with particular interest in the time-harmonic field. We do not attempt to cover
all interesting aspects of theoretical and computational electromagnetics: It is our goal to
provide a sufficiently informative introduction that (a) should allow the reader to start solv-
ing practical problems and (b) prepare her/him for the study of more specialized literature.
To mention just two books, [83] can be recommended to mathematically oriented readers
who are especially interested in time-harmonic Maxwell’s equations, and [102] addresses
engineering audience.

Section 7.1 presents important basic facts about the macroscopic (continuous) model of
the electromagnetic field, such as the four basic laws of electromagnetics, the Maxwell’s
equations in the integral and differential forms, media characteristics, basic properties of
conductors, dielectrics and magnetic materials, and interface conditions. With an appro-
priate insight, many typical problems of electromagnetics can be formulated in terms of
potentials and solved by means of the standard continuous finite elements. The scalar elec-
tric potential and the scalar and vector magnetic potentials are introduced in Section 7.2.
The equations for the field vectors and the time-harmonic Maxwell’s equations are derived
in Section 7.3.

The rest of the chapter is devoted to the weak formulation and finite element analysis
of the time-harmonic Maxwell’s equations by means of edge elements. In Section 7.4 we
define the Hilbert space H {curl), derive the weak formulation of the equations, show how
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various types of boundary conditions are incorporated into the sesquilinear weak form, and
prove the existence and uniqueness of the weak solution in a simplified setting.

In Section 7.5 we perform the standard series of steps involved in the finite element
method: We introduce the lowest-order Whitney element and the general higher-order edge
element of Nédélec on the reference domain, use appropriate transformation to construct
the basis functions in physical mesh elements, and transform the weak formulation of the
Maxwell’s equations to the reference domain. At the end the interpolation on higher-order
nodal edge elements is discussed.

7.1 ELECTROMAGNETIC FIELD AND ITS BASIC CHARACTERISTICS

The macroscopic theory of the electromagnetic field is based on the following four vector
quantities:

e clectric field strength E = E(x.t),

e electric flux density D = D(x.1),

e magnetic field strength H = H (x.t),
e magnetic flux density B = B(x.1).

Based on empirical experience, it is reasonable to assume that these quantities are con-
tinuous and continuously differentiable almost everywhere in the computational domain,
except for sets of zero measure such as interfaces separating materials with different elec-
tromagnetic properties. The points where the field is continuous are called regular, the
others are singular. The electromagnetic field may be classified with respect to a number
of various properties and characteristics, for example:

o field sources (electric charges, currents, permanent magnets),

e dimensionality given by the lowest number of coordinates that fully describe the field
distribution (1D, 2D, 3D models),

e boundedness (fields bounded in a finite domain or open-boundary fields),

o time evolution of the field quantities [static (stationary) fields, time-harmonic fields,
general time dependencies],

o types of media (homogeneous or inhomogeneous, linear or nonlinear, isotropic or
anisotropic, disperse or indisperse),

e motion of sources or media,

and others.

7.1.1 Integration along smooth curves

In this chapter we will need to integrate both scalar and vector fields along smooth curves.
Without loss of generality, we can assume that a smooth curve C C R? always can be
parameterized from the interval (0, 1), i.e.,
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C=C(s)=(Cy1,...,Cq)(s), s€(0,1),

as shown in Figure 7.1.

X3
dC
ds(g)
C(s)

+ et P X3 (1)
0 £l s

C(0)

Xy

Figure 7.1 Parameterization of a smooth curve and its derivative.

For simplicity we use the same symbol C for the curve and its parameterization. A
curve C is called smooth if the derivatives C(s) = (dC;/ds)(s) of all of its components are
continuous in (0, 1). Without loss of generality, we assume that the parameterization C(s)
of a smooth curve C satisfies the condition

IC'(s)] #0 foralls € (0,1).
Then for every £ € (0, 1) the derivative (dC/ds)(§) is a vector tangential to the curve C at

the point C(&£) € R?. A curve C is said to be closed if it is defined in [0, 1] and C(0) = C(1).
A scalar field ¢ : R — R is integrated along the curve C using the standard formula

/C pdC = /0 (C(5))[C"(s)] ds,

where |C’(s)| is the magnitude of the derivative C'(s),

con-(£) - (5)

For example, the length of C is obtained by integrating the function @(s) = 1,

2
/ldC / \/ dcy +(@> ds.
ds

Vector fields F : R — R? are integrated along the curve C using another standard formula,

/CF-dC:/O1 F(C(s)) - C'(s) ds.
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7.1.2 Maxwell’s equations in integral form

The mathematical model of the electromagnetic field, that nowadays is known as the
Maxwell’s equations, first appeared in the Treatise on Electricity and Magnetism by James
Clerk Maxwell in 1873. These equations are assumed to be one of the greatest achieve-
ments of the 19th-century mathematics. Among Maxwell’s other remarkable contributions
were (a) the observation that light is an electromagnetic phenomenon (around 1862) and (b)
the development of the Maxwell-Boltzmann kinetic theory of gases. which he published
independently of Ludwig Boltzmann in 1866.

Figure 7.2 James Clerk Maxwell (1831-1879).
The Maxwell’s equations consist of Ampere’s law, Faraday’s law of induction, and

Gauss’ laws for electricity and magnetism. Consider a planar simply-connected area A
whose boundary C is a closed smooth curve. Ampére’s law,

/H dC-I+—

postulates that the line integral of the tangential component of the magnetic field strength
H along C is proportional to the total current passing through the area A in the normal
direction. This current is given by the sum of the conductive current I and displacement
current d¥ /dt. The conductive current [ is a scalar quantity defined by

I:/J-udS.
JA

where J stands for the vector-valued density of conductive currents. The dielectric flux ¥

is defined by
:/ D -vdS,
A

where D is the electric flux density and the symbol v stands for the unit normal vector
to A, oriented positively with respect to the orientation of the curve C (right-hand rule).
Faraday’s law of induction,
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/E ac=-2

represents an analogous rule for the electric field strength E: The line integral of the
tangential component of the electric field E along any closed smooth planar loop C is
equal to the negative of the rate of temporal change of the magnetic flux ® through the
corresponding area .4 in the normal direction. The magnetic flux & is defined by

P = / B -vdSs.
JA
Gauss’ law for electricity,
= / D-vdS=0Q. (7.1)
Js

says that the total dielectric flux ¥ out of any (simply-connected) volume V with a suffi-
ciently regular boundary S is equal to the total electric charge ) contained in the volume
V. The total electric charge @ is defined by

Q:/Qd:n.
Jv

where g is the electric charge density. The symbol v{x) stands for the outer normal vector
to the surface S at a point © € S. Finally, Gauss’ law for magnetism,

/ B-vdsS =0 (7.2)
JS

postulates that the magnetic flux ¢ out of any volume V with a boundary § is zero, or, in
other words, that the magnetic field 1s divergence-free (solenoidal).

The main advantage of the integral form of the Maxwell’s equations is that it provides
a good idea about the relations between the field sources and field quantities. Its compu-
tational application, however, is limited to rather simple problems, characterized by trivial
geometries and linear material properties. For practical purposes it is desirable to transform
the Maxwell’s equations (7.1.2)—(7.2) into partial differential equations.

7.1.3 Maxwell’s equations in differential form

The transformation of equations (7.1.2)—(7.2) into partial differential equations is done by
means of Stokes’ and Gauss’ theorems of calculus (see, e.g., [36]). Let us begin with
Ampere’s law: Applying Stokes’ theorem to (7.1.2), we obtain

/(VxH)-udS:/ <J+0—D>-Vd8,
JA JA Ot

where v is the outer normal unit vector to the area ./A. From the fact that the area A is
arbitrary it follows that
dD
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Analogously, Faraday’s law (7.1.2) leads to

VxE= —aa—?. (7.4)
and Gauss’ theorems (7.1) and (7.2) yield
V-D=p (7.5)
and
V-B=090. (7.6)

Let us remark that the density of conductive currents J may include both source currents
and eddy currents. The above equations hold exactly only at the regular points of the
domain, on interfaces one has to impose special interface conditions (to be formulated later
in Paragraph 7.1.8).

Most methods of computational electromagnetics (both analytical and numerical) are
based on the differential form of the Maxwell’s equations. The main advantage of the PDE
model is its ability to include nonlinearities, anisotropy and other nontrivial aspects of field
computations. Next let us formulate the constitutive relations between the field vectors and
physical properties of involved media, which form an indivisible part of the electromagnetic
field model.

7.1.4 Constitutive relations and the equation of continuity

The field vectors E, D, H, and B are coupled with the media via the relations

D = ¢E, (71.7)
B = uH, (1.8)
J = y(E+E,). (1.9)

The symbols €, i, and -y denote the permittivity, magnetic permeability, and electric con-
ductivity, respectively. The material parameters are generally tensors that may either be
constant, or functions of the position, direction, local values of the field, frequency, or
state variables (such as temperature or pressure). It is worth mentioning that in the special
isotropic case when a tensor is diagonal with equal diagonal entries, the tensor-vector prod-
uct can formally be replaced with the corresponding product of the vector and the diagonal
entry. The quantity E, is the intensity of applied forces of, for instance, electrochemical,
photovoltaic, or thermoelectric origin. For further reference by

Jo = 'YEV
we denote the applied current density.

Equation of continuity Taking the divergence of Ampere’s law (7.3) and using Gauss’
law for electricity (7.5), under sufficient regularity assumptions on all involved quantities,
one obtains the continuity equation for the conductive current,

9o

e J=0. 7.1
8t+VJ 0 (7.10)
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This equation, analogously to the Maxwell’s equations in the differential form, only holds
where J is smooth.

7.1.5 Media and their characteristics

From the point of view of their electromagnetic properties, media can be split into three basic
categories: conductors, dielectrics, and magnetic materials. We find it useful to describe
these three material types in more detail in Paragraphs 7.1.6-7.1.7, after mentioning some
of their more general attributes:

e A medium is called homogeneous when its parameters (permittivity, permeability,
electric conductivity, and others) are independent of the position. In the opposite
case the medium is inhomogeneous. An example of a homogeneous medium is a
copper conductor, while imperfectly mixed electrolyte represents an inhomogeneous
medium. A medium is called homogeneous by parts if it consists of several homo-
geneous subdomains with different material constants.

o A medium is called linear when its parameters are independent of the electromagnetic
field. This property is typical for air, various gases, many liquids, and nonmagnetic
metals, such as aluminum, copper, or stainless steel. In nonlinear media, some of the
parameters are field-dependent (such as, for example, the magnetic permeability of
iron).

e A medium is called isotropic when its physical properties do not depend on the
direction of the electromagnetic field. As mentioned above, in such case the material
parameters can be observed as scalar quantities (in the general case they are tensors).
To give some examples of anisotropic materials, let us mention cold rolled oriented
steel sheets for magnetic cores and piezoelectric materials.

e A medium is called disperse when its physical parameters are dependent on the
frequency of the electromagnetic field. Media independent of the frequency are
called indisperse.

7.1.6 Conductors and dielectrics

Perfect conductors are supposed to contain an unlimited amount of free charges. Anexternal
electric field produces motion of these charges to an equilibrium position characterized by
zero internal field in the material (the field due to free charges in the conductor is exactly
opposite to the original external field). The time necessary for such a redistribution of
charges in good conductors (silver, copper, aluminum, etc.) is in normal conditions of the
order of 10718 5. That is why we can consider this redistribution practically instantaneous
except for modeling extremely high frequency effects.

7.1.6.1 Dielectrics The atoms and molecules of materials with no free charges contain
bound charges. Therefore an external electric field E(x,t) turns them into elementary
electric dipoles that generate another electric field in the opposite direction. This effect,
which is called electric polarization, may be quantified by the polarization vector P(x, t)
that gives the volume density of the moments of the elementary dipoles. This vector may
be expressed in terms of the electric field E,

P = ¢x.E (7.11)
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where ¢, = 107?/367 [F/m] is the permittivity of vacuum. The susceptibility of the
material y. may exhibit scalar or tensorial character. When, for simplicity, Y. is a scalar,
the electric flux density D(x, t) in the material consists of the applied flux density and the
polarization vector. This can be expressed as

D =¢)E + egxe E = €0(1 + xo ) E = €pe, E = €¢E. (7.12)
The quantity
€ =14 Xe.

which is a tensor in the general case, is referred to as the relative permittivity of the material.
According to the relations between the vectors F, P, and D, we split media into

o dielectrically linear and nonlinear: In dielectrically linear materials the relations of
E, P and D are linear and vice versa.

e dielectrically soft and hard: In dielectrically soft materials both P = Q0 and D =0
when E = 0. Dielectrically hard materials exhibit nonzero polarization and/or
electric flux density even with no electric field E present.

e dielectrically isotropic and anisotropic: In dielectrically isotropic materials all three
vectors E, P and D are collinear and vice versa.

Most dielectric materials are linear and perfectly soft. Some of them, called pyroelectrics,
exhibit within specific temperature ranges spontaneous polarization (while £ = 0). The
polarization also can be affected by mechanical strains and stresses or various state variables.
In various applications, electrically conductive materials are modeled by sufficiently high
value of ¢, (the higher the polarization, the lower the electric field inside them).

7.1.7 Magnetic materiails

Similarly, an external magnetic field H (z, t) influences the motion of electrons in particular
atoms and, consequently, their magnetic moment. According to the value of the moment, we
split materials into diamagnetic, paramagnetic and ferromagnetic. Diamagnetic materials
exhibit no magnetic moment in the absence of external field H. When such a field is
applied, it affects the motion of electrons and a new magnetic field, acting against the
original field H, is induced. Consequently, the original field H is weakened. Particles
(atoms, ions, molecules) in paramagnetic materials are characterized by a nonzero magnetic
moment even with zero external field H. After applying a nonzero magnetic field H, the
microscopic moments orient themselves in its direction, causing its moderate strengthening.
Ferromagnetic materials contain, in addition to nonzero magnetic moments analogous to
paramagnetic materials, so-called Weiss’ domains in which particular moments exhibit
the same direction. These directions generally differ from one Weiss’ domain to another,
so that their effects are mutually compensated. An external magnetic field H orients the
microscopic moments in individual domains according to its direction, causing its significant
strenghtening.

The described effects are modeled in terms of a vector quantity M (a, t) referred to as
magnetization. The basic relation between vectors H, M and the magnetic flux density B
is given by the formula
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B = /L()(H + M). (713)

where 119 = 471077 [H/m)] is the magnetic permeability of vacuum. The magnetization
M is a function of the field H,

M =x,H. (7.14)

Here x ., denotes the magnetic susceptibility that, again, is of either scalar or tensor character.
Substituting (7.14) into (7.13), one obtains

B = po(l+ xm)H = poprH = uH. (7.15)

The quantity y,, = 1 + Xy, is called relative magnetic permeability of the material.

Analogously to dielectrics, also magnetic materials are split into linear and nonlinear,
soft and hard, and isotropic and anisotropic. In the rest of this paragraph let us say a few
words about ferromagnetic materials, which are of great practical importance.

Ferromagnetics Ferromagnetics are nonlinear materials in which the fields M and
B are functions of both the magnetic field H and the past history of the material. The
magnetization M initially grows with H, but from some given magnitude of H, which is
typical for the given material, the magnitude of M practically does not change anymore.
Then we say that the ferromagnetic material is saturated (the microscopic magnetic moments
in all internal Weiss’ domains are oriented according to the direction of the external field H ).
This behavior, moreover, significantly depends on the temperature of the material. After
exceeding the Curie’s point the originally ferromagnetic material becomes paramagnetic.

The steady-state dependence of B on H is given by the hysteresis curve. This curve
is narrow in the case of soft ferromagnetics and wide for hard ferromagnetics. For the
sake of simplicity, however, we often approximate at least narrow hysteresis curves by
magnetization curves that are obtained for the first magnetization of the material. In general,
the modeling of hysteresis curves is very difficult.

7.1.8 Conditions on interfaces

The differential form of the Maxwell’s equations is not defined on material interfaces where
the partial derivatives of field quantities are generally discontinuous. Therefore the PDEs
have to be completed by suitable interface conditions, which are derived from the original
integral form of the equations.

n

medium 2 (&,)

ra E..D, medium 1 (g,)

Figure 7.3  Electric field on a media interface.
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Consider an interface T", shown in Figure 7.3, which separates two media of different
relative permittivities ¢;; and €9, and some point P € T where I is smooth. By o{P)
denote the surface density of the electric charge at the point P. Let 7 be the tangential
plane to the interface I at the point P. Consider the line n passing through P in the normal
direction to I, and another line ¢ passing through P in any direction tangential to I'. The
symbols £y and v represent the unitary vectors in the directions ¢ and n, respectively.

The interface conditions for the electric field at the point P follow from the integral
equations (7.1.2) and (7.1). The tangential component of the electric field E is continuous
at P, and the normal component of the electric flux density I has a jump of the magnitude
o(P):

Ew(P) = Ex(P), Dau(P)— Du(P)=0(P). (7.16)
Consider an analogous arrangement (Figure 7.4) with two materials of different relative

magnetic permeabilities p,1 and y9. The interface carries an electric current of the surface
density K.

Figure 7.4 Magnetic field on a media interface.

The interface conditions for the magnetic field follow from the integral equations (7.1.2)
and (7.2). The normal component of the magnetic flux density B is continuous at P, while
the tangential component of the magnetic field H has at P a jump of the magnitude K (P):

B (P) = By (P), Ho{P) — H1,(P) = K (P), 717

Finally consider an interface of two media with different electric conductivities v;; and vr2
(Figure 7.5). Assumne that an electric current crosses the interface.

medium 2 () "

interface

a Jin medium 1 ()

Figure 7.5 Current field on a media interface.
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1t follows from the continuity equation (7.10) that the normal component of the current
density J is continuous across [,

Jln(P) = JQU(P)~ (718)

As we shall see further, the weak formulation of the Maxwell’s equations used in this text
takes care about these conditions automatically.

7.2 POTENTIALS

The finite element approximation of the field vectors E and H requires the application of
special vector-valued finite elements (edge elements). These elements are more difficult
to deal with than the standard continuous elements. For example, the electric field E is
discontinuous on material interfaces where the scalar potential  is continuous. At reentrant
corners, where the scalar potential ¢ remains continuous and bounded, the electric field E
often diverges to infinity.

Therefore we find it useful to mention situations when the Maxwell’s equations reduce
to simpler problems solvable by means of the standard continuous elements.

7.2.1 Scalar electric potential

It is well known that every smooth vector field F that is irrotational,
VxF =0,
is the gradient of some scalar function ¢,
F=v(¢+0),

where C is an arbitrary constant. The function ¢ is called the potential of F. In a stationary
electric field (E = E(x) and D = D(x)), Faraday’s law (7.4) reduces to

VxE=0, (7.19)
which means that F can be written in the form
E=-V(p.+C), (7.20)

where . is referred to as the electric potential. The minus sign in (7.20) is a standard
convention, corresponding to the fact that (positive) work has to be done when a charge is
moved toward a field produced by charge(s) of the same sign. The electric potential may
be interpreted as the work needed to move a unit charge from one point of the electric field
to another point. The constant C' in the electric potential may be determined according to
various criteria, for example, from the requirement @, (x) — 0 as x| — oco.

It follows from (7.20) that for any two points A, B € R® that are connected through a
smooth curve C : (0, 1) — RY, the following holds:
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.1 .1
[Bac= [ Bew) o= [ Valcw) clds=aa) - oD,
JC 0 JA) (721)

The difference of the electric potentials at points A and B is called voltage and denoted by
1 4p. If the loop C is closed, the following holds:

/ E.-dC=90 (7.22)
JC

(fields with this property are called conservative).

Point sets with the same potential (curves in 2D and surfaces in 3D) are called equipoten-
tials. In 2D an equipotential curve C C R? starting from a point A € R? can be constructed
easily (numerically) using the relation

we(C(8)) = const & Vo, (C(s)) - C'(s) =0 E(C(s))-C'(s) =0 (7.23)

[i.e., C is perpendicular to the field vector E at every its point C(s)]. The construction of
equipotential surfaces in 3D is more difficult (and it may not a bad idea to leave this task to
a visualization software).

Lines orthogonal to equipotentials are called force lines. Both in 2D and 3D they can be
calculated easily via the relation

Vi (C(5)) % C'(s) = 0 & E(C(s)) x C'(s) =0 (7.24)

[i.e., the field vector E is tangential to C at every its point C(s)]. The force lines connect
different potential levels and, indeed, are not closed curves.

Equation for p. Putting together Gauss’ law for electricity (7.5), the constitutive rela-
tion (7.7), and the gradient expression (7.20) for the stationary electric field E, we obtain
a second-order elliptic partial differential equation

=V (eVee) = 0. (7.25)

This equation attains an especially simple form in the isotropic homogeneous case,

A =2 (1.26)
€

Equation (7.25) is considered in some bounded domain € C R® and equipped with standard
boundary conditions for second-order elliptic problems (see Paragraphs 1.2.5 and 1.2.6).
The Dirichlet conditions represent a prescribed potential (voltage). Homogeneous Neumann
conditions are prescribed on the line/plane of symmetry in the case of symmetric problems,
and nonhomogeneous Neumann conditions generally on the part of the boundary where
the normal component E - v of the electric field (which is equal to —d¢,./0v) is given.
Homogeneous Neumann boundary condition may also be used, for example, far from the
source where it is reasonable to assume that the field does not change anymore.
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Variational formulation and unique solvability A variational formulation of the
form (1.66) is obtained in the standard way. It is worth mentioning that it requires the com-
ponents of € to be L>-functions. Thus piecewise discontinuous coefficients corresponding
to various materials are indeed possible, and the resulting potential still is a H'-function.
The existence and uniqueness of solution is a consequence of the Lax—Milgram lemma, as
it was described in Paragraph 1.2.8 (under the assumption that the part I'p of 9€2 corre-
sponding to the Dirichlet boundary conditions is not empty).

Calculation of E  After calculating the (continuous, elementwise-polynomial) distribu-
tion of the scalar electric potential ¢, in the computational domain €2y, the electric field £
is obtained via the relation (7.20). It is interesting to observe that the tangential component
of E = —V, is continuous, i.e., F lies in the desired Hilbert space H {curl).

7.2.2 Scalar magnetic potential

For a stationary electromagnetic field Ampére’s law (7.3) reducesto Vx H = J (0D /0t =
0 is frequently assumed also for nonstationary fields with sufficiently slow time-variation).
In domains where J = 0, such as in the air and other insulators, the field H is irrotational,

VxH=0. (7.27)
Then one can introduce the scalar magnetic potential »,,, such that
H = -V{(p, +C). (7.28)

where C'is an arbitrary constant. This constant can be defined, for example, by requesting
©m = 0 somewhere. Gauss’ law for magnetism (7.6) together with the constitutive relation
(7.8) yield a second-order elliptic equation

-V (.”’vipm) =0,

which is analogous to the potential equation (7.25). The properties of the magnetic potential
m are analogous to the electric potential . It is worth mentioning that the above model
does not cover a conductor—insulator interface. On such interfaces one has to consider
interface conditions from Paragraph 7.1.8. Equipotentials and force lines are defined in the
same way as for the scalar electric potential (.

7.2.3 Vector potential and gauge transformations

After introducing the scalar potentials , and ¢,,, for the fields EZ and H in the stationary

case in Paragraphs 7.2.1 and 7.2.2, let us proceed to the general time-dependent case. It is

well known that any sufficiently regular vector field f that is divergence-free (solenoidal),
V-f=0,

can be written in the form

f=VXPF,
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where the field F is called the vector potential of f. Gauss’ law for magnetism (7.6) yields
that the (nonstationary) divergence-free magnetic flux density B(x, t) can be expressed by
means of a vector magnetic potential A(x,t),

B=V x A. (7.29)

Faraday’s law (7.4) yields

oB A(V x A)
E=-22__ 9V 4
VX ot o

and therefore (if all partial derivatives of A are continuous),

0A
VX<E+E>—O.

This irrotational vector field can be expressed as the gradient of a scalar function p(z, ),

0A
E4+—=- ,
+8t Ve

where ¢ is a time-dependent generalization of the scalar electric potential ¢, from (7.20).
Thus the electric field E has the form

0A

E=-Vyp—- —.
ot

(7.30)
The potentials A and p are not unique: Many different pairs of A and ¢ generate the same

fields B and E. It is easy to verify that equations (7.29) and (7.30) are invariant under the
transformations

P
@ tp+—a~f—|—0, (1.31)

A = A-Vy (7.32)

il

where (' is an arbitrary real constant. Transformations (7.31) and (7.32) are called gauge
transformations.

Coulomb and Lorentz gauges While the constant C' may be made unique by request-
ing p(x) — 0 as |x| — oo, various uniqueness conditions may be imposed on A and .
The most frequently used condition in the stationary case is the Coulomb gauge

V-A=0. (7.33)

In the nonstationary case, one often uses the more general Lorentz gauge

1 9p
V-A+ —2FY = 7.34

where c? = 1/(eguo) is the square of the speed of light in the vacuum. The Lorentz gauge
is naturally motivated in the potential formulation of the Maxwell’s equations, which we
discuss in the next paragraph.
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7.2.4 Potential formulation of Maxwell’s equations

The scalar and vector potentials introduced in Paragraph 7.2.3 can be used to highlight
the wave structure of the Maxwell’s equations. For simplicity let us stay in an isotropic
homogeneous material of permittivity g and permeability 1.
Begin with Ampere’s law (7.3) and use the constitutive relation (7.7) to obtain
OF

H = ) —-
V x J-i-f()at

Substituting further for E from (7.30) and using the constitutive relation (7.8), we have

0 J0A
VXBZ,LL()J+€0/L05£ (-V ——az—>

Equation (7.29) together with a standard vector identity for the curl-curl operator yields
VxB=Vx(VxA)=V(V-A)-AA

Putting together the last two equations and using ¢ = 1/(eq i), we obtain

18%A

2 ot2 2ot

10
—AA:qu—V(V-A+ "’). (7.35)
At this point it becomes clear why the Lorentz gauge was chosen in the form (7.34). With
the Lorentz gauge, (7.35) simplifies to a wave equation for the vector potential A,
A

e EAA = pigc?d. (7.36)

Here the Laplace operator A is applied to every component of A. Second-order hyperbolic
equations, boundary conditions, weak formulation, and the existence and uniqueness of
their solution were discussed in detail in Section 1.4.

7.2.5 Other wave equations

Equation (7.36) is not the only wave equation that can be derived from the Maxwell’s
equations. Staying with an isotropic homogeneous material, Gauss’ law for electricity (7.5)
together with the constitutive relation (7.7) yield

v.E=2

€0
Substituting for E from (7.30), we obtain

JAN o
V~<—V —§>—60.

If the partial derivatives of A are continuous, they can be interchanged and one obtains

IV-A) o
T T T
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In the stationary case this reduces to the Poisson equation (7.26). In the nonstationary case
the application of the Lorentz gauge (7.34) yields a wave equation for the scalar potential
@,

7P _2pnp= 22 (1.37)

Wave equations can also be formulated directly for the field vectors E and H. Assume an
empty space where

0=0,J=0.

Using Ampere’s law (7.3) together with the constitutive relations (7.7) and (7.8), we obtain

OF
VxB= GQ,U,()E. (738)

Taking the curl of Faraday’s law (7.4), under regularity assumptions sufficient for the inter-
change of the temporal derivative with the curl operator on the right-hand side, we have

V x (VXE)Z—%(VXB). (7.39)

Substituting from (7.38) into (7.39) and using the identity

Vx(VxE)=V(V-E)-AE, (7.40)
we can write
’E

Since ¢ = 0, from (7.5) it follows that
V-E =0,

and thus (7.41) finally yields

32
%g ~ *AE = 0. (7.42)

An identical equation holds for B.

7.3 EQUATIONS FOR THE FIELD VECTORS

In the following we turn our attention to the original Maxwell’s equations expressed in
terms of the field vectors E and H. For our purposes it is not practical to cover the material
properties of the involved media in their most general form (such as anisotropy, dependence
on state variables, etc.). We assume that the permittivity €, permeability 4 and the electric
conductivity -y are scalar functions depending on the position in space only.
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7.3.1 Equation for the electric field

Consider Faraday’s law (7.4) divided by the permeability . Using the constitutive relation
(7.8) and applying the curl operator, we obtain

Vx(p ' VxE)=-Vx ?g. (7.43)

If the partial derivatives of H are continuous, they can be interchanged and we obtain

Vx (1 VxE) :—%(VXH). (7.44)

Substituting for V x H from Ampere’s law (7.3) and using the constitutive relations (7.7)
and (7.9), we can write

0 OF
-1 _
Vx (p ' VxE)= g PE +J,+ € } ; (7.45)
and finally,
E °E 0J
V x (/1,_1 VXE)+70——|—60 :—dJ . (7.46)

ot at? ot

In practice the third term on the left-hand side sometimes is neglected when dealing with
lower frequencies (typically less than 1 MHz).

7.3.2 Equation for the magnetic tield

Taking the curl of Ampere’s law (7.3) and substituting from the constitutive relations (7.7)
and (7.9), we obtain

O(eE)
ot

Vx(VxH)=Vx(yE+J,)+V x (7.47)

Under regularity assumptions sufficient for the interchange of the temporal and spatial
derivatives, we can write

AV x eE)

VX (Vx H) =V x (yE) +V x J, + =

A (7.48)

In the case of piecewise-constant parameters -y and € we can substitute for V x E from
Faraday’s law (7.4) and for B from the constitutive relation (7.8) to obtain

6H  O*H
=iV x (V x H) tygr tegy = pTIV x J,. (7.49)

Itis easy to see that (7.49) is equivalent to (7.46) in the case of constant material parameters.
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7.3.3 Interface and boundary conditions

The partial differential equations (7.46) and (7.49) only are defined at regular points of
the computational domain 2. At singular points such as material interfaces, additional
conditions have to be supplemented (see Paragraph 7.1.8). Suitable weak formulation of
the Maxwell’s equations (to be introduced in Section 7.4) takes care about interior interfaces
automatically, while conditions on external interfaces are imposed as boundary conditions.

Interface conditions First let S be an internal interface in a computational domain
2, separating two subregions {21, {2y C (2 with generally different material properties, as
shown in Figure 7.6.

Figure 7.6 Internal interface separating regions with different material properties.

By v denote the unit normal vector to S, defined almost everywhere at S, pointing in
the direction from Q; to £25. By €, 11,.y; denote the permittivity, permeability and electric
conductivity in £2;. On &, equations (7.16) yield the conditions

(E1 — Eg) X Vv = 0, (750)
(€1E1 —GQEQ)-V:O' (751)

for the electric field strength E, and analogously the relations (7.17) can be rewritten into
the conditions

(Hl—Hz)Xl/:KL. (752)
(NIHI - /LQHQ) =0 (753)

for the magnetic field strength H. Finally, (7.18) may be rearranged to

(Jl*JQ)XVZO. (754)

Truncation boundary conditions Some problems take place in unbounded domains
(air, vacuum, etc.). The easiest way to solve them is to restrict the electromagnetic field
to a sufficiently large bounded domain 2 by imposing artificial boundary conditions of the
form

E-v=20 (7.55)
and

H v=0 (7.56)
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on S. (In the case of boundary conditions the surface S forms part of the boundary 9€2.)
These conditions determine that the fields £ and H are tangential to the boundary 0€2.

Perfect conductor boundary conditions When the material in the outer domain
Qe 1s a perfect conductor with 7v.,; — o0, it follows from the constitutive relation (7.9)
that the electric field E.;; must vanish in 2., for the current J.,; to remain finite. Then
the interface condition (7.50) reduces to

Exv=0. (7.57)

Imperfect conductor (impedance) boundary conditions In practice we use var-
ious boundary conditions to model imperfect conductors. One of the standard ways is to
exploit the impedance Z, which quantifies the manner a material resists the flow of electric
current if a given voltage is applied. The impedance differs from simple resistance in that
it takes into account possible phase offset. In our case, if {2.,; consists of such material,
we restrict ourselves to a basic impedance boundary condition of the form

vxH-Z(vxE}yxv=0. (7.58)
The impedance Z is a positive material-dependent function defined on the interface S.

Symmetry boundary conditions The impedance condition (7.58)isused with Z = 0
to model interfaces of symmetry,

Hxv=0. (7.59)

We shall see later that in the time-harmonic case, via Faraday’s law (7.4), condition (7.59)
yields

(VxE)xv=0 (7.60)

for the phasor of the electric field (see below).

7.3.4 Time-harmonic Maxwell’s equations

Assume that all time-varying quantities of the electromagnetic field are harmonic with a
frequency w > 0,

E(z,t) = Re(E(x)e™ "), (7.61)
D(z,t) = Re(D(z)e "),
H(x,t) = Re(H{x)e 7,
B(z,t) = Re(B(x)e ).
Here Re(-) denotes the real part of a complex number, j is the imaginary unit, 52 = —1, and

the underlined quantities are called phasors. In the language of phasors, equation (7.46)
turns into

Vx (VX E)—w(jy+ew)E = jwd,, (7.62)
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and equation (7.49) attains the form

pTIV X (Vx H) —w(jy+ew)H = —u 1V xJ,). (7.63)

7.3.5 Helmholtz equation

The Helmholtz equation of electromagnetics is a special case of the wave equation for a
harmonic electromagnetic field. There are several versions associated with various wave
equations (see Paragraphs 7.2.4 and 7.2.5). First consider an empty space characterized
by the material parameters € = €p. ;& = pg, v = 0, zero electric charge density o = 0
and zero conductive current density J = 0. When substituting from (7.61) into the wave
equation (7.42), we immediately obtain

AE +k’E = 0. (7.64)
where the symbol k = w/c = w,/€gpig stands for the wave number. One can obtain the

same result from the time-harmonic Maxwell’s equations (7.62): With (7.61), (7.7) and
o = 0 Gauss’ law for electricity (7.5) reduces to

V-E=0.
Therefore identity (7.40) yields
Vx(Vx E)=V(V-E)-AE=-AFE.

Putting this into (7.62) and using v = 0, we obtain (7.64) again.

Helmholtz equation for A Consider a more general case with a nonzero harmonic
conductive current density

J(x,t) = Re(J{z)e 7).
and assume the vector potential A in the harmonic form
Az, t) = Re(A(x)e™*").
The wave equation (7.36) immediately yields
AA+ KA = —ud. (7.65)
k=w/e

Helmholtz equation for o Last consider a nonzero electric charge density ¢ of a
harmonic form

o(x.t) = Re(g(z)e "),

and assume a harmonic scalar potential  in the harmonic form
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pl@.1) = Relp(a)e™i=),

The wave equation (7.37) reduces to

Aptitg= L (766
)

where b = w/c.

7.4 TIME-HARMONIC MAXWELLS EQUATIONS

In Sections 7.2 and 7.3 we formulated partial differential equations governing the electro-
magnetic field either directly or via its potentials. Due to the limited length of this text we
do not address in more detail the wave and Helmholtz equations, whose weak formulation
and discretization take place in the Sobolev space H'. Instead, in the rest of this chapter we
focus on the time-harmonic Maxwell’s equation (7.62). This equation contains the curl-
curl operator which exhibits new challenges from the points of view of both mathematical
analysis and finite element discretization.

Vector operations such as the cross-product of two vectors or the curl of a vector are
native in 3D. For example, the cross-product of two linearly independent vectors lying in
the 21zo-plane is a vector normal to this plane. Therefore, the 3D setting is more natural for
the mathematical analysis of the Maxwell’s equations. We formulate a sufficiently general
model problem in Paragraph 7.4.2, derive its variational formulation in Paragraph 7.4.3, and
show the existence and uniqueness of its solution in Paragraph 7.4.4. In order to simplify
the analysis, in what follows we assume piecewise-isotropic materials, so that the tensor
material parameters € and p can be treated as scalars. See, e.g., [83] and the references
therein for the discussion of the general tensor case.

We will return back to the 2D setting for the finite element discretization in Section 7.5.
This step is justified by the fact that every 2D problem is equivalent to a 3D problem whose
solution does not depend on the x3-variable, 1.e., such that the resulting field has the form

E = (Ei(x1.02), Eolwr. 20). 0)F.

7.4.1 Normalization

The time-harmonic Maxwell’s equation (7.62) is normalized to a relative form that is more
suitable for the numerical solution. We warn the reader that for the rest of the chapter we
stop underlining phasors, and rescale E, H, and J , following [32] to

J
V@E — E. JiocH—H., =~ ], (7.67)

€0

Let us define the relative permittivity ¢, and relative permeability 1, by

€y L (6 + ﬁ) . (7.68)

€0 w
1
Ho
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Notice thate, = p,- = 1 in vacuum. Multiplying (7.62) with 11 and redefining E according
to (7.67), we obtain

Vx (u;'V x E) — k*¢,E = ®, (7.69)

where the right-hand side @ has the form

J
P = jk 0w —= = jk as
J \/ﬂ()\/e—() Jkyvuod

and the wave number k = w,/egfip = w/c was defined before.

7.4.2 Model problem

Assume a bounded simply-connected domain £ C R® with a Lipschitz-continuous bound-
ary 02 that consists of two disjoint open parts I'p and T';.

The part I p represents an interface to a perfect conductor equipped with the boundary
condition (7.57),

Exv=90 on I'p, (7.70)
and I'; represents an impedance boundary associated with the boundary condition (7.58).

For a time-harmonic field, with regard to the normalization (7.67), the impedance condition
attains the form

it (VX E)xv—jkAEr=g on Ty (7.71)
Here the impedance
A=z, B0 (1.72)
€0

(where Z is a material parameter) is a positive function defined on I';, and the symbol
Er=vxE)xv
stands for the tangential projection of the phasor E to the boundary I';.
The data A and g are zero on parts of I'; representing surfaces of symmetry, where the
impedance condition (7.71) reduces to (7.59),

(VxE)yxv=0 (7.73)

Precise assumptions on the coefficients and data, as needed for the existence and uniqueness
theorem, will be given in Paragraph 7.4.4.

7.4.3 Weak formulation

Every inner product (a, b)y must satisfy

(a.a)v = llal¥,
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(see Lemma A.32), where || - ||y is the norm induced by the inner product. Since the
norm is a real-valued function, the “dot product” in C™ requires one of the vectors to be
complex-conjugate,

(a,b) = G'E: Zaii),'
i=1

(the complex-conjugate Z of a complex number z = a + bi isZ = a — bi).

The variational identity Testing equation (7.69) by a sufficiently smooth complex
vector-valued test function

F(x) = (Fi(z1,22), Fao(z1,22),0)

and integrating over {2, we obtain

/ [Vx (u7'V X E)-F-keE-F|de= / ® - Fdz.
Q2 Q

The minimum regularity of F, as usual, will be determined later from the integrals in the
weak formulation. Using Green'’s theorem together with the identities

V-laxb)=(Vxa)-b—a - (Vxb)
and
a-(bxe)=(axb) c

(all operations being performed in 3D), we obtain

/ [(17'V x E)-(V x F) — k*¢,E - F| dw+/ vx(u; 'V x E)-FrdS = [ ® Fd,
Q a0 Q
(7.74)

where
Fr=WwxF)xv

stands for the tangential projection of the vector F' to the boundary 0<2.

Next let us incorporate the boundary conditions (7.70) and (7.71) into (7.74). The perfect
conductor boundary condition states that the field E is normal to the boundary I'p, and
(7.70) implies that

F’]':O oan.

This choice eliminates the I' p-portion of the surface integral in (7.74). Applying the
impedance boundary condition (7.71) on Iy, we obtain

/ﬂ (11, 'V x E} - (V x F) — k’¢,E - F| dx —/ FkNE - FpdS (7.75)
ry
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:/@-de+/ g- FpdS.
o I

The space for E We see from (7.75) that the appropriate space for E is
V={F e H{cul,Ql); v x E=0o0nTp}. (7.76)

where the Hilbert space H (curl, §2) consists of vector-valued L2-functions whose curl lies
in (L2(Q))%,

Hcurl, Q) = {E € (L*())%: V x E € (L*(Q))*}.

The space V', when equipped with the inner product

(E,F)y = E-Fdx+/(VxE)-(VxF)d:n+ E, - Fy;dS.
Q 2 Iy

(E.F)y =(E,F)o+ (VX EN x F)o+ (Er.Fp)r,.

is a Hilbert space. Indeed this inner product induces a norm ||E||?. = (E.E)y. Before
writing down the weak formulation of problem (7.69), (7.70), (7.71), let us list appropriate
assumptions on the domain, coefficients and data.

Assumptions on the domain, coefficients and data Recall from Paragraph 7.4.2
that the domain © C R® is assumed to be bounded and simply-connected, with a Lipschitz-
continuous boundary 92 consisting of two disjoint relatively open parts I'p and 'y, 9Q =
Tp UT;. In order to incorporate various materials, the domain €2 is allowed to be split
into several disjoint open simply-connected subdomains €2;. 9, .. .. 2, with a Lipschitz-
continuous boundary, such that = U:;l Q;. The parameters ¢, and 1, are allowed to be
generally discontinuous, but smooth in each subdomain §2;. For reasons that will become
clear later, the parameter €, requires two more conditions to hold:

1. The restriction of €, to each subdomain €; is a H*-function (then ¢, ¢ C*(£2;) and
it is possible to extend it smoothly to the whole ).

2. There exists a positive constant C. > 0 such that for each subdomain €2; either
Im(e,) > Ccorlm(e,) =0,i=1.2.....n.

The positive impedance function A is assumed to lie in L™ {I';). The right-hand sides ®
and g are required to lie in (L?(£2))? and (L?(T"[))*, respectively.

Weak formulation Under the above assumptions on the coefficients and data, the weak
formulation of the model problem (7.69), (7.70), (7.71) reads:
Find the electric field phasor EE € V satisfying
(B, F)=1|(F) forall FeV. (7.77)

where the sesquilinear form a(-,-) is defined on V' x V by
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ale. f) = (u7'V x e,V x flo — k*{ere, o — jk(Aer. fr)r,
and the linear form {(-) is defined on V" as

W) =(®,fla+(g.fr)r,

7.4.4 Existence and uniqueness of solution

Under the above assumptions, there exists a unique solution to problem (7.77).

Theorem 7.1 (Existence and uniqueness of E') Consider the assumptions on the domain
Q, boundary parts T'p and Ty, and coefficients and data €., p., A\, ® and g, listed in
Paragraph 7.4.3. Moreover, assume that at least one of the following conditions holds:

1. The impedance boundary I'; is not empty.

2. The imaginary part Im(e,.) > 0 in some open subdomain {1, C ).

Then for any wave number k > 0, problem (7.77) has a unique solution E € V. In addition,
there exists a constant Cy, independent of E, ® and g (but depending on k) such that

IENv < ColllFllcz2oys + Hgllzzyz)-

Outline of proof In order to prove the existence and uniqueness of solution, one has to
overcome the following basis difficulties:

1. The curl operator contains a large null space (all functions e € H(curl) such that
e = Vg, ¢ € H(Q)). This null space has to be removed using the Helmholtz
decomposition.

2. Because of the term —k?(¢,.E, F)q, the sesquilinear form a(-,-) is not V-elliptic,
which excludes an application of the Lax—Milgram lemma. The Fredholm alternative
(Theorem A.17), which is used instead, requires an operator reformulation of the
problem into the form

I+ K)e=f. (7.78)

where [ is the identity operator and K a compact operator.

3. The Fredholm alternative requires a separate proof of the uniqueness of solution to
(7.78) (which is equivalent to proving that the homogeneous equation (I + K)e = 0
only has a trivial solution). Then it implies the existence of solution to (7.78) for
every right-hand side f from the underlying Hilbert space.

Let us discuss all these steps in more detail, following [83]. For simplicity we consider the
case of y, piecewise constant in the subdomains €21.€2,, ..., €2,,, and assume I'p and ['y
to be connected.
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Helmholtz decomposition
Lemma 7.1 Under the assumptions from Paragraph 7.4.3 let e € V such that er = 0 on
the impedance boundary I'y and V x e = 0 in ). Then the scalar potential ¢ such that
e = Vi lies in the space

S={pe H(Q); ¢ =00nTy, p = const.onTp}.
Proof: The proof follows easily from the fact that the tangential component

er =(vxe)xv=(Vyo)r.

Thus e is constant on each component I'; and I" p. Without loss of generality, the constant
on one component can be chosen to be zero. |

Theorem 7.2 (Helmholtz decomposition) The space
VS ={Vg; pe S}V,
is a closed subspace of V. Define
Vo ={eeV; (e.e,Vy)g =0forall p € S}.
Then V is the direct sum of the subspaces Vy and V S,

V=WaeVs. (7.79)

Proof: This lemma was proved in [72]. The situation is simple when ¢, is real, since the
bilinear form (e,.e, f)q is an inner product in (L?(€2))?, and the result follows immediately
from the basic projection theorem for Hilbert spaces (Theorem A.14 in Paragraph A.3.5).

The complex case is not difficult either. Since S is closed in H*(£2), also VS is closed
in V. Define a sesquilinear form

ale,f)=(Vxe,Vx fla+(ee fla+(er,fr)r,, e feV.

Since there exist positive constants C; and Cs such that C; < Re(e,) < Cj in €, the
following holds:

1. There exists a constant C' independent of e such that

la(e,e)| > Cle|l} (7.80)

for all e € V. (This is verified easily when taking the real part of €,.).

2. There exists a constant C independent of e and f such that

la(e.e)] < Cllellv|Ifllv (7.81)

foralle, f € V.
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According to the Lax-Milgram lemma, for every e € V there exists a unique function
Pe € V.S such that

a(Pe, f) = (e;e, f) forall f € VS.

The operator P : V' — VS is linear, bounded and indeed Pe = e ife € VS. Thus Pisa
projection and any function e € V can be written uniquely as

e = Pe+ (I — P)e.
The proof is accomplished by realizing that (I — P)e € V} since
(e,(I = Ple, Vip)a = a((I — P)e, Vip) = 0
forallp € S. [ |

Fredholm operator equation Using Theorem 7.2, every solution £ € V can be
decomposed uniquely into

E =FEy+ Vo, (7.82)
where Eq € V and ¢ € S. Substituting (7.82) into (7.77) and using the facts that
V x Vo =0and (V) x v = 0 on 912, we obtain

(17'V x Eo,V x F)g — k*(e(Eo + V), F)o — jk(AEor, Fr)r,  (7.83)
={(®,Fla+(g,Fr)r,
forall F € V. Choosing now F' = Vi for some ¢ € 5, (7.83) simplifies to
—k*(e,(Bo + V), V) = (&, V).
Now, since Eq € Vj, the potential ¢ satisfies
—k2(e, Vi, Vi) = (@, Vi) forall e € S. (7.84)

Using the assumptions for ¢, it is not difficult to show that the variational problem (7.84)
has a unique solution that moreover satisfies the estimate

IVellizz2y)s £ Clellz@))s,

where C' is some positive constant independent of ®. From here it is clear that determining
FE is equivalent to determining Fy.
Therefore in the following let us look for Ey € V; such that

(u7'V x Eg,V x F)q — k*(¢,Eq, F)o, — jk(A\Eq 1. Fr)r, (7.85)
= (®,F)o+ (g, Fr)r, + kK*(&:Vp, Fq
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for all F' € V{,. (We can restrict ourselves to the test functions from Vj; since Vi, C V)

The analysis of (7.85) is more demanding than the analysis of (7.84) was, and this is
where the Fredholm alternative comes into play. The idea of transformation of equation
(7.85) into an operator equation is as follows:

(u'V x Ey,V x F)o + k*(e,Eq, F)g — jk(AEg 1. Fr)r, (7.86)
s(Ey, F)
—2k% (e, Ey. F)g
s(KEgy. F)
= (®,F)o+ (g, Fr)r, + (e, V. Fg
s(F.F)

for all F € V{;. Hence, define a sesquilinear form

sle. f) = (1 'V x e.V x flo + k*(e,e. flo — jk(Aer. fr)r,

for all e, f € V. Postponing the analysis of the form s(-,-) to Lemmas 7.2 and 7.3, let us
define an operator K : (L2(Q))® — V; C (L%(Q))® by

s(Kf.F)= —2k*(e,f.F) forall F € V}.
and a right-hand side 7 € V;) by
$(F.F)=(®, F)o+ (9. Fr)r, + k*(¢,Vo.F) forall F € V.

Using the operator /X and the right-hand side F, problem (7.85) can be written in the form
of a Fredholm operator equation,

I+K)Ey=F. (7.87)

The next step consists in showing that both K and F are well-defined and that K is a
compact operator.

Verification of Fredholm assumptions Let us verify that indeed equation (7.87) is
well-defined and that the operator K satisfies the assumptions of the Fredholm alternative
(Theorem A.17). We begin by showing that s(-,-) is V-elliptic.

Lemma 7.2 There exists a constant C independent of e (but depending on €,. ji,.. A and
k) such that

|s(e.e)| > Cile|} foralle € V. (7.88)
Proof: Again the situation is simple when ¢,. is real-valued. The definition of s{-, -) yields
) . 2
|s(e.e)]* = (HMT»I/QV x ell{paiony + kz||Re(fr)1/2€||(2L2(9>>3>

. - 2
* (l‘"’z“Im(ﬁr)1/2‘9”@2(52))3 - k||’\1/2€'1‘|1<2L2(F1>)“>
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Expanding the expression on the right-hand side and using the modified Young inequality
(A.49) with p = g = 2 we find that for any 6 > (O itis

|s(e.e)f® 2 7 /2 X ellipaayys + K IRe(er) Zellfy2a)
6—1 , !
+k4—5— HIIII(E,-)l/zell?Lz(Q)):; + kz(l - é)||>\1/26T||(L2<F[))3'

From the assumptions on the coefficients there exist constants cg. > 0 and ¢, > 0 such
that Re(e,.) > cg, and Im{e,.) < ¢j,, in Q. Choosing 6 < 1, we can estimate

61 6—-1
||Re<€r)1/26“?9(52))3 + T||Im(€r)I/Qe”?maz)p > <C?zp + TC%m) “e”?m(n))i%
Thus is we choose é such that

2
c
— 1m2 <d<1
(7%(' + CInL
inequality (7.88) follows. [ |

The operator K and the right-hand side F have the following properties:

Lemma 7.3 The operator K : (L*(2))3 — Vi is bounded and compact, and there exists
a constant C > Q such that

WK fllv < Cllfll ez (7.89)
The right-hand side F is well-defined, and

| Flv < CUF |L2gmys + Hallezamme + IVellzns)-

Proof: The V-ellipticity of the form s(-, -), required by the Lax—Milgram lemma, was
shown in Lemma 7.2. To verify boundedness, use the Cauchy—Schwarz inequality,

|s(e, £)I < C(

[V x ell(L2s IV x Flle2ians + el 1 Iz os
Hlerlzaemel Frllizz@y?)-

Here the constant C depends on the lower and upper bounds for ¢,., 41, and A. Thus by the
Lax—Milgram lemma K f is well-defined and inequality (7.89) holds.

It remains to be shown that K is compact. Consider a bounded sequence {u,, }5%; C
(L2(Q))*. By (7.89) the sequence { Ku,, }35, C (L2(Q))® is bounded in Vy C (L2(Q))%.
It follows from the compact embedding of V5 in (L2(€2))* (see, e.g., [83], Theorem 4.7 for
details) that there exists a subsequence that converges strongly in (L?(§2))?. Therefore the
operator K is compact. The rest of the proof for F is analogous. |

Since the operator K& and the right-hand side F satisfy the assumptions of the Fredholm
alternative (Theorem A.17), we obtain the existence of a unique solution to (7.87) if we can
prove that the homogeneous equation
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(I+K)Ey=0 (7.90)
only has a trivial solution.

Uniqueness of the trivial solution to (7.90) This most difficult part of the proof is

decomposed into two steps. First, using the assumptions on the coefficient €, and boundary

I'; we show that the solution is unique either in the region where Im(e,) > 0 or on I';.

Next a unique continuation result is applied to show that the solution is unique everywhere.
Let us begin with introducing a basic continuation result for real-valued functions.

Lemma 7.4 Let Q be a connected domain in R® and suppose f € (H*(Q))®, where
f = (f1, fo, f3)7 is a real-valued function that satisfies

3
IAFI SCY (F+IVED
r=1

almost everywhere in S, where C' is a positive constant. Let xg € §2 be such that f = 0 in
some open neighborhood B(xq) C 2. Then f = 0in 2.

Proof: This result was proved in [33] for £ € (C?(2))3. Since it only relies on the fact
that A f is well-defined in L2(Q), it can be extended to (H2(Q2))*. [ |

In the next step the result of Lemma 7.4 is extended to the vector-valued complex case.

Lemma 7.5 Suppose that € C R® is an open connected domain. Let €, be real-valued and
smooth in Q and i, be real-valued and constant in §. Let e, f € H (curl, Q) satisfy

jkere+ VX F o= 0, (7.91)
jkurf—Vxe = 0

in Q and that e vanishes in an open subdomain of ). Thene = 0and f = 0in L

Remark 7.1 The result of Lemma 7.5 was proved more generally in [121], under the
assumptions that €, and p, are symmetric, real-valued, uniformly positive definite, and
bounded matrix functions of the spatial variable in (L>(2))**3.

Proof: By (7.91) we have
Vxe'Vxf—kuf=0
in Q. Taking the divergence of this equation and using the fact that . is constant, we have
V-f=0
in 2. Rewriting
VXWX fF=e'Vx (VX )+ (Ve )Y xVx f
and using the identity

VXVxf=V(V-f)—AFf,
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we obtain
Af = er(Ver) x V x f — k2. f.

Thus Af € L?(€2), and by standard interior elliptic regularity results (see, e.g., [76]) it
holds that for any compact Qg C Q, f € (H?(£%))3. Applying Lemma 7.4 to the real and
imaginary part of f separately, we conclude that f = 0 in €2y. Since the domain 2 was
arbitrary, f = 01in Q. |

The one-before-last step required to finish the proof consists in introducing the Calderon
extension theorem.

Theorem 7.3 (Calderon extension theorem) Let ) be a bounded domain in RN with
Lipschitz-continuous boundary. Let s > 1 be an integer number and 1 < p < oo. Then
there exists a continuous linear extension operator

IT: WP(Q) —» WP(RY)
such that
(TIu)(z) = ul{x) forallx € Q and u € WSP(Q).

In the special case of p = 2 the operator 11 exists for all s > 0.
Proof: See,e.g., [1]. [ ]

Finally we can formulate and prove the desired input for the Fredholm alternative, i.e.,
that the homogeneous equation (I + K)Ey = 0 only has a trivial solution Eg = 0.

Theorem 7.4 Recall the assumptions on the coefficients and data listed earlier in Para-
graph 7.4.3. Further, suppose that Im{e,) > C. > 0 in some open subdomain of 2 or T'y
is not empty. Then the homogeneous equation

a(E,F) = (u;'V x E,V x F)q — k*(, E, F)o — jk(AEr, F7)r, =0 forall F € V
(7.92)

only has a trivial solution E = 0.

Proof: Evidently eg = 0 is a solution to (7.92), but it is not quite clear whether it is
unique. Therefore consider any function e € V that satisfies (7.92). Using F' = e and
taking the imaginary part of the resulting equation, we have

kz(Im(e,»)e, e)o + k(Aer,er)r, =0. (7.93)

Assuming that X is real and positive, this yields e = 0 onI'; and e = 0 in any subdomain
of 2 on which Im(e,.} is positive. If this happens to be true in the whole £2, then the proof
is finished. Otherwise consider some subdomain €2, C € where Im(e,) is positive. We
see that e = 0 on all subdomains where Im(e,.) # 0. Let £2,, be subdomain of 2 on which
Im(e,) = 0 and

1. Q, N Q, is a Lipschitz surface with nonempty interior,

2. ¢, is real and smooth on €1,.



300 EQUATIONS OF ELECTROMAGNETICS

The Calderon extension Theorem 7.3 (using the assumption €, € H“(ﬁlq)) allows us to

extend ¢, smoothly from €2, to (2, U €2,. Also p, is (constantly) extended to 2, U Q.
Let B,.(xq) be an open ball of a sufficiently small radius r centered at apoint zy € €2,N8,

such that B,.{xq) C (Q2, U,) and ¢, is positive in Q, U B,.(x(). Since e = 0 on Q,,, it is

V x /l,,flv xe—k*,e=0

in 2, U B (xy) and e vanishes in Q, U B, (). Now, since both ¢, and g, are real-valued,
we use Lemma 7.4 to conclude that e = 0 in Q, U B, (xy) and therefore also in {2, U Q.
In this way we may continue until all subdomains where ¢, is real are reached, and we
conclude that e = 0 in §2.

If ¢, is real in the whole domain €2, then we need to use the assumption that I'; is not
empty. By (7.93) we know that er = 0 on I';. We proceed analogously to the previous
case. Let €2, be a subdomain of €2 such that ﬁq N I'y contains an open subdomain of I'y,
and such that ¢, is smooth in §2,. We can extend ¢, smoothly to R3. Since this function
is positive on §2,,, there exists an open ball B,.(x) centered at a point g € ﬁq N T such
that €, is positive on 2, U B,.(x¢) and (B,(xq) N Q) C £,. When extending e by zero to
B.(zy) \ ©,, we have that

/ pr'Vxe VxF—k%.e-Fdx =0
Q,UB,(Z0)

forall I € Hg(curl, Q, U B.(xy)). Thus e is a weak solution of the Maxwell’s equations
there and e vanishes in B, (xg) \ ©,. Hence by Lemma 7.4, e vanishes in 2, U B,.(xz)
and thus also in ©,. We conclude that e = 0 in {2 by crossing boundaries of subdomains
€2, on which e, is differentiable. ]

7.5 EDGE ELEMENTS

In the early era of finite element methods for the Maxwell’s equations it was generally
assumed that [H?(2;,)]? was the correct space for the discretization of the electric field
E. However, the globally continuous discretizations exhibited spurious waves and other
unwanted phenomena, the origin of which was not known (see, e.g., [61, 85] and [115]).
Later it was realized that the space H (curl.(2;,) was larger than [H(€2),)]*: The space
H (curl, €,) admits discontinuous functions and functions with stronger singularities than
[H*(€2;,)]¢. Solutions lying in H (curl. ;) \ [H'(€2;,)] thus cannot be approximated in
finite element subspaces of [F1(£2;,)]?. One such example is presented in Paragraph B.2.8.

This discovery initiated the development of discontinuous vector-valued elements con-
forming to the space H {curl, §2;,). Since both in 2D and 3D the degrees of freedom on the
lowest-order H (curl, 25, )-conforming elements were associated with the element edges,
these elements were called edge elements.

The lowest-order edge elements were first introduced by Whitney [123] in a different
context of geometrical integration theory. Later the lowest-order edge elements were in-
dependently rediscovered and applied to the Maxwell’s equations by several authors (see,
e.g., [2, 10] and {12]). In this section we introduce the reader to the concept of nodal edge
elements, more precisely to the first family of Nédélec elements [87].

We begin with formulating the conformity requirements of the space H {curl) in Para-
graph 7.5.1. Lowest-order Whitney elements and suitable reference maps are introduced
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in Paragraph 7.5.2. Higher-order Nédélec edge elements are discussed in Paragraph 7.5.3.
The transformation of the Maxwell’s equations from a general triangular element to the ref-
erence domain is described in Paragraph 7.5.4. Interpolation on edge elements is discussed
in Paragraph 7.5.5. The finite element discretization is presented in two spatial dimensions.

7.5.1 Conformity requirements of the space H (curl)

In this paragraph we formulate the conformity requirements of the space H (curl, €25,) that
dictate the structure of the edge elements. Because of the vector operations used, again it
is natural to begin in three spatial dimensions. The two-dimensional case is addressed in
Remark 7.2 following Lemma 7.6.

Lemma 7.6 Consider a polygonal domain Qy, C R covered with a finite element mesh
T, p, and a function E : Qp — Re, d = 3, such that

I. E|x € [HYK))¢ for each element K € Ty, ,,

2. for each element interface f = KiNKy K. Ky € T, p the traces of the tangential
components vy x E|x, and v x E|g, on f are the same, where v ¢ is a unit normal
vector to f.

Then E € H(curl, ). On the other hand, if E € H (curl, Q) and condition 1. holds,
then condition 2. is satisfied.

Proof: Let E|x € [H'(K)] for each element K € Ty, ,,. Forevery K € Ty, define
Wy = V x (E|K)

Clearly the function

w= )  wkXk,

KeThp

where x i is the characteristic function of K (xyx = 1 in K and it vanishes outside of K),
is defined almost everywhere in ), and lies in the space [L2(€2),)]¢. Further, consider an
arbitrary function

¢ € [C5°(W))* =D,

and use Green’s theorem to calculate

(VxE@9) = - | E-Vxpdo=- Y /(E!K)-ngodw
o KeT,, K
= Z /VX(E|K)-<pd:I:
KeTh
— Z /(E|K1 XUf—ElK2 XVf)-cpdS

f.f=KinKa2,K: JKo€Th

= w - pdx
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and therefore V x E = w and E € H{(curl, Q).
Conversely, if E € H{curl,Q), define w = V x E. Since E|x € [H'(Q4)]4, the
trace on f is well defined and we obtain

) /(Vf'E|K1 — Vs Elk)e =0
f‘f=?10?2,K1,K267"1,P

for all ¢ € D. Hence /. holds. |

Remark 7.2 When interpreting Lemma 7.6 properly for three-dimensional vector fields
of the form E = (Ey(x1,22), E2(21,22),0)7, it is easy to see that condition 2. attains
the following form for two-dimensional approximations: For each element interface f =
KiNKy K1, K,y € Th p the traces of the tangential components ty - Elg, andty - E|g,
on f are the same, where t; = (—vy2,vs1)7T is a unit tangential vector to f.

7.5.2 Lowest-order (Whitney) edge elements

We have shown in Paragraph 7.5.1 that the finite element approximation has to have contin-
uous tangential components on all mesh edges in order to conform to the space H (curl, 2).
The lowest-order approximations that satisfy this requirement are with continuous and con-
stant tangential components on the edges. Let us stay on the reference domain K, first.
The two-dimensional space [P°(K)}? is too small to generate three linearly independent
constant tangential components on the edges of K. Therefore we need to take one higher
degree polynomial from the space [P!(K;)]?.

Hence the lowest-order element (K, P, ﬁl) on the reference triangular domain K, is
equipped with the polynomial space

P= {E € [PY(K,)%; E -1,],, is constant, j = 1,...,3}, (7.94)

where ¢, stands for the unit tangential vector to the edge e; of K;. The orientation of the
edges is shown in Figure 7.7.

Figure 7.7 Orientation of the edges on the reference domain K.

For future reference let us write the unit tangential vectors to the edges explicitly,
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I
v2' V2

It is left to the reader as an easy exercise to verify that

= (1,07, t,= ( )T, t; = (0,1)T.

Np = dim(P) = 3.

Accordingly the set of degrees of freedom contains three linear forms, ¥ = {Jzel 0 ﬁe2 05 ﬁe3 oh
where L. o : P — R is defined as the integral

Le, o(E) = / E-t;d¢ foralEc P (7.95)
€j
of the tangential component of the field E on the edge ;.

Lemma 7.7 (Unisolvency) The finite element (K, P, ) is unisolvent.

Proof: According to Definition 3.2 we have to show that the following implication holds:

Leyo(g) = Leyo(g) = Les0(g) =0 = g =0 forallg € P. (7.96)

Let us find some basis in the space P first. A general polynomial g € [P(K;)]? has the
form

g(€1,&) = (a0 + a1&1 + azda, by + b1&1 + baéa)7T.
The condition g - £; = const. on the edge e;, where
gt =9g(&,&) (1,007 = ag + a1é1 + a2é2 = ap + 161 — ay,

implies that a; = 0. Similarly the condition g - (0,1)7 = const. on the edge es yields
by = 0, and the last condition g - (—1,1)7 = const. on the edge e, means that ap = —b.
Hence any polynomial g € P has the form

9(€1,62) = (ag + aséa, by — azéy)”,

and, for example, the set

=) (&) mmn o

is a basis in P. Now any g € P can be expressed uniquely as

g = a1g; + a2gy + asgs,
and the left-hand side of the implication (7.96) can be written as

a1Le, 0(g1) + @2Le, o(gy) + asle, 0(gs) = 0,
alLez,O(gl) + a2Lez,0(gz) + 03£62,0(93) 0,
alLe3,0(gl) + a2£63,0(g2) + a3£’€3,0(g3) =
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Since the coefficient matrix of this equation,

) 2 0 -2
L={L.olgNW_, =1 -2 2 0 |. (7.98)
0 2 2
is nonsingular, we conclude that a; = g = a3 = 0. |

Nodal basis of the element (K., P,3.) Next let us apply the standard procedure
from Paragraph 3.1.1 to construct the nodal basis satisfying the delta property (3.2). Using
the basis (7.97) as the underlying basis, the generalized Vandermonde matrix (3.7) has the
form (7.98). The inverse of L,

) 1 -1 1
L= i 1 1 1
-1 -1 1

determines that the nodal shape functions él . ég, é;; have the form

h© = j@© o -a@ -1 (178 ). (799
hie) = 0@+ -a@ -5 ( 752
b = Ja@+a@©ra@ - ( 178 ).

Another equivalent expression of the Whitney shape functions (7.99) is

de) = 1 /\}(E)PQ + /\2(5)}93 ’ (7.100)
ledd \ Dot Uyt
; L (M(&Ps | M)
6 = —_— = =< “
(&) lez] ( U3 -ty " Uy -ty )
5 1 (M@)o | M
o: = — — + = .
3(&) |€3| < lA/l ] t,j lA/Q ] t‘_; )
where ©; is the unit outer normal vector to the edge e;,
. 1 1\’ :
by =(0,-1)", b= <ﬁﬁ> . by =(-1.0)7,

and the barycentric coordinates A;(£) are affine functions satisfying
0 onthe edge ¢;,
(€)= (7.101)

1 at the remaining vertex of K; not lying at e;.

For K the barycentric coordinates have the form
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N 1+ < =& - . 1+
A(8) = b2 Sale) = 282 Sy = & (7.102)
2 2 2
A third way to express the Whitney shape functions 61, 6. and B is
b = MV - A3V, (7.103)
b = AVA - MV,
s = XMVA - AV

The equivalence of relations (7.99), (7.100), and (7.103) is left to the reader as an easy
exercise.

Whitney element on a triangular domain K € 7, , Proper treatment of orientation
of the tangential vectors to mesh edges is essential when working with edge elements.
Assume a mesh edge s; with endpoints x;, and x;,. Define the global orientation of this
edge as 5; = x;,@;, if iy < iy and 5; = x;,x;, otherwise.

Consider a triangular element K € 7}, and the affine reference map xx : K — K
with Jx = det(Dz g /DE) > 0 defined in (3.21). By a1, a2, and a3 denote the edges of
K sothata; = ¢ (ey), as = xx(e2), and ag = T (e3). Locally on K, each edge a; is
assigned a unique orientation flag o ;,

1 if the orientations of a; and @ (e;) are the same,
OK.4 =
—1 otherwise.

Then the Whitney edge element on K is defined as a triad (K, Pg . X g ), where

Py ={E € [PY(K))*; E - t;|,, isconstant. j =1,...,3}. (7.104)
The symbol ¢; stands for the unit tangential vector to the edge a; that corresponds to its
unique global orientation in 7}, ,,. The set of degrees of freedom ¥y comprises three linear
forms Ly, ¢, Lo, 0 and L, o defined by

Lo, o(E) = / E ok ;t;d( forall BE € Pg. (7.105)
(I.J

Lemma 7.8 (Unisolvency) The finite element (K, Py .Y i) is unisolvent.

Proof: Analogous to the proof of Lemma 7.7. |

Nodal basis of the element (K, Py ,Y ) The unique nodal basis satisfying the
delta property (3.2) can be designed routinely using the inverse of the Vandermonde matrix
(3.7), analogously to what was done above for the Whitney element (K, P, i)) on the
reference domain.

Alternatively, for the Whitney element (K, P, ¥ ) the delta property Lo, o(6;) = 6;;
is equivalent to the condition

S
b; - or jt; = |a—”| forall1 <¢,j <3. (7.106)
J
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Thus, for example, the formulae (7.100) can naturally be extended to

A
b(z) = ok (2a(@va  Ao(@rs) (7.107)
a| \ va -ty vy-ty
o) = 22 (Ml M@y,
|(12‘ Vi - tQ vy - t2
ok [ Mz)vy | Mz
9. = BBl L TEY
() |as] < vy - t3 - vo-tz )

where ¢, and v/; are the unit tangential and normal vectors to the edge a; of K, respectively,
and A;{x) are the corresponding barycentric coordinates on K defined analogously to
(7.101).

Equivalence of the elements (K,, P, %) and (K, Px, %) Beforethediscretiza-
tion can be performed in an element-by-element fashion on the reference domain Ky, as
usual we need to find a suitable linear operator ®  : PP K so that the equivalence of
the elements (K4, P, $) and (K, Pg, X ) according to Definition 3.8 can be established.
At this point it is customary to use the De Rham diagram to make a quick argument leading
directly to the correct map ® ;. However, let us save this for later and first show in Example
7.1 why a straightforward extension of the usual operator ®x(§) = go a:}}l, which was
used to establish the equivalence of Lagrange elements, does not work for edge elements.

B EXAMPLE 7.1 (Trying the map ¥(E) = Eoz}})

By Wy : P — Py denote the linear operator from Definition 3.8, and suppose for
a morment that it has the form

Oy (E)=Eoxy (7.108)

Let K be an element with the vertices [0,0],[0,1],[~1,0] and g : K, — K the
corresponding affine reference map,

_1f -1
as shown in Figure 7.8.

oo G 24

a;

Figure 7.8 Affine transformation zx : K; — K.
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With the edges of K oriented as shown in Figure 7.8, itisoxg 1 = ox2 = ox,3 =1
and by (7.107) the basis function #; on K has the form

_ —I2
91_<Il+1 )

However, relation (7.108) yields a different result,

iy 1 +1
K(91)=91°$Kl:§<$1 )

T2

which has nonconstant tangential components on all edges a;, a2 and a3, and thus
does not lie in the polynomial space P!

The reason for this incompatibility is that the map W g transformed both vector
components of 6, on all edges from K; to K exactly, but the direction of the unit
tangential vectors to the edges changed.

The way to solve the problem encountered in Example 7.1 is to define
‘I>K = ‘I’K o @,

where the linear transformation © : R? — R? adjusts the field on the reference domain K,
so that

W/ O(E oK,]-tjdg:/ B-ide,  j=123, (7.109)

le;!
where o ;t; is the unit tangential vector to the edge a; of K oriented compatibly with i]-

through the map x .
The tangential vectors £; are transformed by x5 according to the relation

Dag .
(ﬂ> leslt; = lajlok jt;- (7.110)

Let the matrix T of the type 2 x 2 represent the transformation ®. Then, after substituting
for o ;t; from (7.110), relation (7.109) becomes

iiL' TE - Ie]' (DwK

t;d E. t d¢, =1,2,3,
|ej| e lajl D£> ¢= / ¢ 7=

which in turn is equivalent to

TD””KT ;d E-id 1,2,3, 7111
‘/ej D€ 5 / {7 .]477 ( )

To satisfy equation (7.111), the matrix T has to have the form

_ DwK -7
T—(D—e) '

Thus finally the correct transformation relation is
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E=%®,(E), (7.112)
where
D:BK _7:
E(z) = ( DE >E(€), z=xx(E). (7.113)

Lemma 7.9 The finite elements (K,, P,%) and (K. P .Sy) are equivalent under the
transformation ® g : P — Py defined in (7.112), (7.113).

Proof: According to Definition 3.8, we need to verify that

&, (P) = Py, (7.114)

and

Le,o(E) = Lo, o(®x(E)) forall E€ P and j =1,2.3. (7.115)

25y

However, (7.114) is clear from the linearity of the transformation @ and affinity of the
reference map x . To verify relation (7.115), calculate

LeJ.O(E)

I
&
o
<.
(o8
S

Il
a\
?y

/ le;] (Dzx\"% 1] [layl
- m( D§> Eo:):K -Le—]ioK,jtj} d¢

| #xB)-forst) &

J

= LaJO(QK(E))

Design of basis functions Let a polygonal domain €2, € R? be covered with a finite
element mesh 7}, , consisting of A triangular Whitney elements K, K3, ..., K. Then
the Galerkin subspace V), ,, of the space V = H (curl, 2),) has the form

Vip = {En,€V; Ey, € [PYK,;))*forall K; € Ty, .

Ey - ts,|s, = const. for every mesh edge s, }

{we do not consider essential boundary conditions at this point, the incorporation of bound-
ary conditions will be discussed later). In this case the dimension of the space V}, 5, is

dim(Vj, ) = M.,

where M, is the number of unconstrained edges in the mesh 7 ,. By unconstrained, as
before, we mean an edge where degrees of freedom are present.
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Assume such edge s; in the mesh, along with the corresponding element patch,

Sy = |J Ke (7.116)
kENe(5)
where
N.(j) = {k; Kx € T p, s; is an edge of Ky}, (7.117)
as shown in Figure 7.9.
o

Figure 7.9 Element patch S (j) corresponding to an interior mesh edge s;.

For each element K, € S.(7), by e, denote the edge of the reference domain K, such
that 2, (e:m) = $;. Define ok, .m = 1if the orientations of T g, (em) and s; are the same,
and ok, ., = —1 otherwise . The lowest-order (Whitney) basis function ng associated
with the edge s; is zero in £ \ Se(j), and in S.(j) it is defined by

-T
s Dzk, \ ; _ _
‘EOJ (12) = OK;,m ( ng) b 0 mKiv K, C Se(.])a

where ém is the Whitney shape function on the reference domain K corresponding to the
edge e,,. Let us remark that as usual no explicit inversion of the maps xk, is needed for
the assembling algorithm.

7.5.3 Higher-order edge elements of Nédélec

Next let us generalize the lowest-order edge elements from Paragraph 7.5.2 to the first family
of Nédélec elements {87). For this we need a special polynomial space on the reference
triangular domain K;. We begin with defining a space of scalar homogeneous polynomials
of degree £,

p* :span{g;gg; iti=k E¢ Kt},

and a special subspace of homogeneous vector polynomials of degree k,

g = {p € (P52 ¢-p(g) = 0}, (7.118)
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o
where £ - p(§) = &1p1(61,62) + &apa(€1, &2)- Let us calculate the dimension of S : The
space (7.118) is the nullspace of the linear transformation p € (P*)? — £ -p € PFH,
which is a surjection (for every ¢ € P**! there existsa p € (P*)? suchthat g = £ - p). It

follows from Lemma A.9 that the dimension of S’k is

dim(§") = dim((PF)?) — dim(PF*1)
= 2dim(P*) — dim(P**1) = 2(k+ 1) — (k +2) = k.

ok
The following lemma gives a geometrical characterization of polynomials in the space § :

~k
Lemma 7.10 Let p € S . Then the tangential component of p along any straight line is a
(k — 1)th-degree polynomial.

Proof: Any straight line w in R? can be written as w(s) = (g1 + svy, g2 + sv2)T, where
g = (g1,92)7 is a point in R?, v = (v;,v2)7 a unitary directional vector (tangential to w)
and s a real parameter. The condition € - p(§) = 0 on w yields

0 = & p@lw

w(s) - p(w(s))

= (g1 +sv)p1(w(s)) + (g2 + sv2)p2(w(s))

q1p1{w(s)) + g2p2(w(s)) +slvipr (w(s)) + vapa(w(s))].

EPK(R) U-p{w(s))

Il

Since sv - p(w(s)) € P*(R), necessarily it is v - p(w(s)) € P*~1(R), which concludes
the proof. |

The polynomial space on the general Nédélec element is defined as
pF k-1 2 0 &F
P =[PYUK)PeS . (7.119)

The basis (7.97) confirms that P . indeed is the space on the lowest-order Whitney element.
The dimension is calculated easily,

k k(k+1)

Np = dim(P") = 2dim(P*~1(K,)) + dim(8") = 2 S k= k(k+2).

-k
It follows from Lemma 7.10 that the traces of the tangential components of P -functions
to the edges of K are polynomials of the degree less than or equal to £ — 1. The Whitney
space (7.94) obeyed the same rule.

~ K
Lemma 7.11 The space P is a part of an algebraic decomposition
~k -
[Pk(Kt)]2 - P @ VP]C+1_
N ~k .
Proof: Let E ¢ P N VP**L, Then there is some homogeneous scalar polynomial ¢ in

~ ~ ~ ~ k ~k
P**1 such that E = V. The facts that Vo € P* and Vo € P imply that Vo € S
From here it follows that £ - V(&) = 0. Since ¢ € P**1, it satisfies
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-V(€)

ﬂﬂ(ﬁ) = kiﬂ’

and therefore ¢ = 0. Thus PP AvErt = {0}. Since dim([P*(K)]?) = (k+1)(k+2),
dim(P") = k(k + 2) and dim(VEPF1) = k + 2, itis

dim([P*(K})]?) = dim(P") + dim(VP*+),

which concludes the proof. |

The following result is needed for the unisolvency proof of higher-order nodal edge
elements:

Lemma 7.12 Let EE € P" be such that
VxE=0

(where V x F = 6‘E‘2/8x1 — 8E1/3x2 is the surface curl). Then there exists ¢ € P*(K})
such that E = V.

Proot: : It follows from the De Rham diagram (see, e.g., [111]) that for E € Pk such that
V x E = 0 there exists a scalar potential ¢ € H!(K}) such that E = V. It follows from
E ¢ [PF(K,))? that ¢ € P**1(K}). Let us write p = @1 + o where ¢, € P*(K;) and

N . -k
g € P*1. Since E € P, Lemma 7.11 implies that Vi, = 0. The fact that 3 is a
homogeneous polynomial implies that @3 = 0, which concludes the proof. |

Nédélec element on the reference domain K,; For a given k > 1 the Nédélec

element of degree k on the reference triangular domain X, is defined as a triad (K, Pk, k),
where the set of degrees of freedom Sk comprises Np = k(k + 2) linear forms associated
with the edges and interior of K;. To begin with, for each edge e; there are k degrees of
freedom of the form

ie“j(E)z/ E-t,¢"d¢ forallj=0,1,....k—1, (7.120)
e

where the functions q](,") are the Legendre polynomials L, transformed to the edge e;. For
7 = 0 one obtains the degrees of freedom L., ¢ on the lowest-order (Whitney) element

(7.95). The (k — 1)k interior (bubble) degrees of freedom are defined by

Ly (E) = ; E-q,dg, (7.121)

where §;, j = 1,2,..., (k — 1)k, is a basis of the space [P*~2(K,)]?>. The reason why
these degrees of freedom are called interior is that the traces of the corresponding nodal
shape functions vanish on the whole boundary of K (to be shown in detail in Paragraph
1.5.5).

The edge and bubble degrees of freedom (7.120) and (7.121) together constitute the set
$*. Now the unisolvency result from Lemma 7.7 can be extended to the general polynomial
degree k > 1:
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Ak oA
Lemma 7.13 (Unisolvency) The finite element (K. P~ . %%} is unisolvent.

Proof: Let E € P be arbitrary such that all the k(k + 2) degrees of freedom (7.120)

and (7 121) vanish on E. It is our aim to show that necessarily E=o0. By Lemma 7.10 it
is E-1; € P*=1(¢;) forall 1 <i < 3. Since

/E ¢\ ac =0

for all basis functions § q ) e ph- 1(e;), the tangential component E -1 is L?-orthogonal

to the whole space P*~1{e;), and therefore it has to be zero on e,. This holds for all three
edges of K. Hence Stokes’ theorem of calculus (see, e.g., [36]) yields

/ (Vx E)gde = | E-(Vxg)de (7.122)
Ky K,
for all ¢ € P*~1(K,). Here, similarly to Lemma 7.12, we prefer to use the surface
curl V.x E = OFE,/0x; — OF)/8x2 and the vector-valued curl of a scalar function,
Vg = (—0q/8¢3,0q/0¢1)T, over going with the curl operator to 3D as we did in Section
7.4.

Since V x ¢ € [P*=2(K,)]? and all the volume degrees of freedom (7.121) vanish, by
(7.122) we have that

/ (Vx E)gde =0 forall §e P* (K.
K,

and thus V x E = 0 in K;. By Lemma 7.12 there exists o € P*(J}) such that E = V.
Since the tangential component of E on JK, is zero, o is constant on 9K ;. Without loss of
generality, we can assume that this constant is zero. Herewith the proof is finished for & < 2.
For higher polynomial degrees k£ > 3 the function ¢ can be expressed using the barycentric
coordinates (7.102), ¢ = ;\1;\2;\31/1, where 1 € P"_:5(Kt). Since all the volume degrees
of freedom (7.121) are zero, it is ¥y = 0 and consequently E = 0, which concludes the
proof. |

~ &
The unique nodal basis of the space P can be constructed routinely via the generalized
Vandermonde matrix (3.7). In the following let us design the Nédélec element on a general
triangular domain and discuss the affine equivalence of Nédélec elements.

Nédélec element on a triangular domain K € 7T, , Let every mesh edge be
equipped with a unique global orientation given by the global enumeration of vertices.
Consider a triangular element X € 7}, ,, and the affine reference map x5 : K; — K with
a positive Jacobian Ji = det(Dxz g /DE) > 0 defined in (3.21). By ay, a2 and a;3 denote
the edges of K sothata; = xx(e1), az = xx(ez) and ag = x i (e3). Locally on K, each
edge a; is assigned a unique orientation flag o ; analogously to the lowest-order case. The
Nédélec edge element on K is defined as a triad (K, P’;{, %), where

Pk = [P E)? @ S, (7.123)

and the subspace S *of homogeneous vector polynomials is defined analogously to (7.118).
The set of degrees of freedom ©* consists of Np = k(k + 2) linear forms associated with
the edges and interior of K. The edge degrees of freedom have the form
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Lo, ,(E) = / E-oxtiql” d¢ (7.124)

where j = 0,1....,k— 1. Foreachj = 0,1,...,k — 1 the function qﬁi) again is chosen to

be the Legendre polynomial Lo, L1, . .., Lx—_1, transformed to the edge a;. The (k - 1)k
interior degrees of freedom have the form

Ly ;(E) = /1K E . g;dz, (7.125)

where q;, 7 = 1,2,...,(k — 1)k, is the basis of the space [P¥=2(K))? defined using the
basis ;.7 = 1.2,...,(k — 1)k, of [P*2(K;)]* and the reference map xx as follows,

1 Dxyg )\ .
. =— | —= 14q,(£). = . 7.126
0,0 = 5 (g ) 4,0 2= (.126)
Itisleftto the reader as an easy exercise to prove that the functions ¢, j = 1,2, .. ., (k—1)k,

indeed constitute a basis in the space [P*~2(K)]%.

Lemma 7.14 (Unisolvency) The finite element (K, P’}{ %K) is unisolvent.

Proof: Analogous to the proof of Lemma 7.13. |

~k -
Equivalence of the elements (K, P ,3*) and (K, P%., 3k ) At this point it
remains to be shown that the general Nédélec elements are equivalent under transformation
(7.112),(7.113): E = &4 (E),

D:lIK

T
Bla) = (D—g) BE).  o=2x©) (7.127)

which was derived for the lowest-order elements.

R '
Lemma 7.15 The finite elements (K;, P",¥*) and (K, P’}(, E’}() are equivalent under
.k
the transformation @ : P — P];( defined in (7.127).

Kk
Proof: It follows from the deﬁnitiqn (7.119) of the space P and the definition (7.127)

of the transformation ® g thath’ k(P) = P. Recall the transformation relation (7.110)
for the unit tangential vectors t; to the edges of K,

. ail (Dzk Y
tz = OK"LE <D7£> tl' (7128)
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For the edge degrees of freedom Jie“j, 0<j<k—-Tlandl <i<3, wehave

Le;(B) = /E'ii‘?]('z)df
e

[ [K o ("I;”_g)t} 0 a
) / ![Z?z[l KDS—?>_%O$1_<I} : {oKzl}a:: ] 9 dc
- /‘I’K ox it d

= Lo, ;(®x(E)).

Using (7.126) and (7.127), we find out that also the bubble degrees of freedom satisfy

L, (E) = E-q,d¢

K.
Dz g - 1 /Dxg)\ .
(%) o) o (he)a

I
D Lo 1 (D L
/;{ [(%) Eo:l:Kl} . \Vj; (—SLK—> qjomKl} dx
= /E-qjdm

K

= Lo (®x(E))

If

forallj =1,2,..., (k- 1)k. [}

7.5.4 Transformation of weak forms to the reference domain

In this paragraph we transform the integrals involved in the weak formulation (7.77) of the
model problem to the reference domain, as required by the element-by-element assembling
procedure. We focus on triangular elements, but we will point out where the quadrilateral
case differs. Recall from Paragraph 7.4.3 the weak formulation: Find E € V such that
aolE,Fy=[(F) foral FeV, (7.129)

where the sesquilinear form a(-, -} is defined on V' x V by

ale, f) = (u;'V x e,V x fla — k?(cre, fla — jk(Ner, f1)r, (7.130)
and the linear form {(-) is defined on V as

U(f)=(®, fla+ (g fr)r,- (7.131)

The Hilbert space V was defined in (7.76),



EDGE ELEMENTS 315

V={Ee€H(cul,Q); v x E=00nTp}.

Let K € 7, be a triangular mesh element and xx : K; — K the corresponding affine
reference map. Recall that in the quadrilateral case the reference map is biaffine, and the
element K must be convex so that the map is a bijection. The determinant of the Jacobi
matrix of the reference map x k (£) is denoted by Jx (£). Without loss of generality, we
assume that Ji (€) > 0 in K. Moreover, Jx is constant in the triangular case. When the
field E transforms from K| : to K according to the rule (7.127), its curl changes to

Vxe(x)=Jg OV x &), =zx(€)
(see, e.g., [45, 83] and [111]). For clarity, we use the symbol V for the nabla operator in

the reference coordinates £ on K.
The first part of the form (7.130), restricted to the element K, transforms as

WV x eV x flx = /K U @)V x e()] - [V x Fl@)] da

| utex(€) [759 x 2(9)] - [519 < F6)] Jxc

K

— [ @) [T xe@] [V xFe)
K.

Although the existence and uniqueness analysis in Section 7.4 was restricted to piecewise-
isotropic materials, generally the relative permittivity €, is a tensor,

er(a) = ( er11(@) € 12(w) )

er21(Z)  €r2(x)

For the second term on the right-hand side of (7.130) we obtain

Plae i = ¥ [ le@e) Fa)dz
K
9 Dz - Dxx L
e [ o {erw(e» (o) e(&)} ~ {(D—g) f(&)J .
The last volume integral to be transformed is the first term on the right-hand side of (7.131),
DmK —];
() f(@J de.

Next assume an edge a of the element K that lies on the impedance boundary I';. Let ¢;
be the edge of K such that a = xx (e;). It follows from (7.128) that

[ez-l D:cK ~
b, = opc [ ZEE N G
K \'pe ) "

Il

(@, f)x = /K $(z) - Flx)dz = /K Tk ®(@x(£)-
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As before, the symbol #; stands for the unit tangential vector to the edge ¢;, oriented as
shown in Figure 7.7. It follows from (7.127) and (7.128) that the tangential components
are transformed via the relation

e(zk(€)) - talxr(§)) = OK.i%é(ﬁ) -£:(8). (7.132)

Using this identity, the reader can transform all boundary integrals involved in the forms
(7.130) and (7.131) easily. The only point where one has to be careful is to keep the global
orientation of the boundary edges on I'; consistent with the outer normal vector to 'y,
vx f=uvifo—vafi =1 fonl. Inother words, the direction of the boundary edges
lying on I'; cannot be chosen arbitrarily, since the tangential vector is determined by the
outer normal vector, t = (v, —15)7. In the next paragraph let us briefly mention the
interpolation on the nodal edge elements.

7.5.5 Interpolation on edge elements

The interpolation on the edge elements of Nédélec exactly fits into the general framework
of interpolation on nodal elements (see Paragraph 3.3.1). It is sufficient to discuss the
situation on the reference domain K, since the field from an arbitrary triangular mesh
element K € 7Ty, , can be transformed to K, and the interpolant back to K, using the
relation (7.113) in both directions.

kA
The set of degrees of freedom on the kth-degree edge element (K, P, %*) contains
the 3k linear forms (7.120),

Ile,,j(E):/ E-1,¢7de,  j=01.... k-1, (7.133)

where qO ,q(z) S ,(j,(j) . are the Legendre polynomials Lg, Ly, . .., Ly_j, transformed to

the edge e;. The (k — 1)k interior degrees of freedom (7.121) have the form

Ly;(B) = ; E. g, dE, (7.134)

where g,,j = 1,2,..., (k — 1)k, is a suitable basis of the space [PE=2(K,)]?. The choice
of this basis influences the conditioning of the discrete problem, but we will not discuss this
issue at the moment.

As we said before, the unique set of nodal shape functions can be constructed routinely
by inverting the generalized Vandermonde matrix (see Paragraph 3.1.2). Explicit formulae
of the lowest-order (Whitney) shape functions were introduced in (7.103). For simplicity,
by 6. ;,; and 6y .; we denote the nodal shape functions corresponding to the edge degrees of
freedom (7.133) and the bubble degrees of freedom (7.134), respectively.

LetE ¢ H (curl, K;) for which all the degrees of freedom (7.133), (7.134) are defined.
Then the local nodal interpolant is given by (3.28),

3
T, (B) = 3 3 Leis(B)0ei56) + 3 Loy (B)n;(6). (7.135)
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The edge degrees of freedom (7.133) are not defined for all functions from the space
H (curl, ;). The question of finding largest function spaces where all the linear forms are
defined is discussed, e.g., in [39, 40] and [83].

7.5.6 Conformity of edge elements to the space H (curl)

Let Ty, , = {K1, K2, ..., K} beafinite element mesh over a polygonal domain 0, C R?,
consisting of M Nédélec edge elements of the same polynomial degree k& > 1. In order to
verify the conformity to the space V = H {curl, ), one performs the following steps:

1. Consider an arbitrary function g € V such that all degrees of freedom L., ;(g) and
Ly ; on all elements K,,,, 1 < m < M, are defined.

2. Construct the local interpolant Z, for each element K, using (7.135).

3. Construct the global interpolant 7 by “glueing together” the local interpolants 7
1 < m < M (this operation is described exactly in Definition 3.6).

m?

4. Check whether the piecewise-polynomial function Z lies in the space V.

We know from Paragraph 7.5.1 that the conformity requirement of the space H (curl, 2;,)
is the continuity of the tangential component of the global interpolant 7 on all element
interfaces. The desired conformity result is based on the properties of the nodal shape
functions defined on the reference domain:

Lemma 7.16 Let (K, Pk. Sk be the Nédélec edge element of the degree k > 1 on the
reference domain Ky, equipped with the polynomial space (7.119) and the edge and bubble
degrees of freedom (7.120) and (7.121), respectively. Let ée,._j, ij=0.1,....k—1, and
9;,__7, ji=1,2,..., (k — 1}k be the unique set of nodal shape functions satisfying the delta
property

>

L (éé, §) = b forall0<rs<k-—1, (7.136)
,( sy =0 Joral0 <r<k-11<s<(k—-1k, (7.137)
LI,,( Ls) = 0 forall1<r <(k—1k, 0<s<k-1,
Ly, (9,, o) = b Joralll <r,s < (k- 1k
Then for everyi = 1,2,3and j = 0,1,....k — 1 the trace of the tangential component

ée, g i; of the edge function é(., .j to the edge ¢; is the Legendre polynomial L, transformed
to the edge e;. The trace of the tangential component of é( j vanishes on the remaining
two edges of K,. Foreveryj = 1,2,..., , (k — 1)k the trace of the rangential component of
the bubble function é;,_ j vanishes on the whole boundary of K.

Proof: It follows from the definition of the edge degrees of freedom (7.120) and the delta
property (7.136) that

brs = Lo (E) :/ O o -1:¢g0de forall0<r.s<k—1

i

Since the transformed Legendre polynomials ¢, ) form an L2-orthonormal system in the
space P*~1(¢,), for every 0 < s < k — 1 the trace of the function 6, , - £; € P*~1(e;) to
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the edge e; necessarily is the transformed Legendre polynomial (jéi). By the same token it
follows from (7.137) that the traces of the bubble functions éb,s, 1 <r < (k- 1)k vanish
onalledges e;, i = 1,2,3. Similarly, the trace of the tangential component of ée,. s vanishes
on the remaining two edges of K. |

It is easy to see that these properties translate to a general mesh element K € 7, ,. From
here it follows that the bubble part of the local nodal interpolants (7.135) cannot influence
the tangential component of the global interpolant on element interfaces. We know from
Paragraph 7.5.1 that the tangential components of H (curl, §2;, )-functions are continuous on
element interfaces. Consider an edge a; shared by a pair of mesh elements, say, K, and K.
Taking into account that the traces of the tangential components of the local interpolants
Tk, and Tk to the edge a are the transformed Legendre polynomials, and that the edge
degrees of freedom (7.133) perform the L2-projection on the edge a of a function that is the
same for both elements K. and K5, we conclude that the trace of the tangential component
of the global interpolant 7 necessarily is continuous on the edge a;. This means that the
Nédélec elements conform to the space H {curl, Q).

7.6 EXERCISES

Exercise 7.1 Consider a continuous, piecewise-polynomial approximation . p of the
scalar electric potential .. Show that the approximate electric field Ey , = —V. p
lies in the space H (curl).

Exercise 7.2 Verify that equations (7.29) and (7.30) are invariant under the gauge trans-
formations (7.31), (7.32).

Exercise 7.3 Show that (7.49) is equivalent to (7.46) in the case of piecewise-constant
material parameters.

Exercise 7.4 Verify inequalities (7.80) and (7.81) in the proof of Theorem 7.2.

Exercise 7.5 Show that dim(P) = 3 for the lowest-order edge elements defined in (7.94).
Exercise 7.6 Check the equivalence of definitions (7.99), (7.100), and (7.103).

Exercise 7.7 Construct the unique nodal basis of the Whitney element (K, Py, X ), where

K e T, pisatriangular domain, P the polynomial space (7.104) and £ i the set of degrees
of freedom (7.105).

A2
Exercise 7.8 Construct the unique nodal basis of the edge element (K, P~ %?) on the
reference domain.

Exercise 7.9 Show that if the functions q;, j = 0,1,...,(k — 1)k — 1, constitute a basis
in the space [P*~%(K,))?, then the functions q;,j=0,1....,(k — 1)k — 1, obtained by
(7.126), constitute a basis in the space [P*~%(K))>.

Exercise 7.10 Let K € T}, ,, be a triangular element whose edge a lies on the boundary Iy,
and let e; be the corresponding edge of the reference domain K, such that x i (e;) = a. Use
relation (7.132) to transform to the reference domain the corresponding part of the boundary
integrals (Mep, f1)r, and (g, f)r, which are involved in the weak formulation (7.130),
(7.131).
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APPENDIX A
BASICS OF FUNCTIONAL ANALYSIS

This chapter presents elementary linear functional analysis which is needed for a first course
in PDEs and modern numerical methods. Linear spaces are presented in increasing order
of complexity, as shown in Figure A.1.

Linear space

Normed space

Banach space

Hilbert space

Figure A.1  Structure of linear spaces discussed in this chapter.

This text is not a traditional course in functional analysis. It assumes less at the beginning
and does not address all abstract concepts of a standard functional-analytic course. On the
other hand, topics needed for the study of PDEs and numerical methods, such as the L and
Sobolev spaces, are discussed in more detail, and many examples are provided.
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A.1 LINEAR SPACES

In the first section let us refresh the knowledge of linear algebra and show its application
to finite-dimensional spaces of functions.

A.1.1 Real and complex linear space

A linear space V usually is defined over a general commutative body (field) 5. However, the
real line R and the complex plane C are the only commutative bodies of practical importance
for most applications related to partial differential equations and numerical methods.

Definition A.1 (Linear space) Ler B = Ror B = C. A nonempty abstract set V endowed
with two binary operations ‘+': V xV — V (addition) and *-': BxV — V (multiplication
by scalars) is (real or complex) linear space if and only if the following ten conditions are
satisfied for all a,b € Band u,vand w € V:

1. v+ w belongs to V. (Closure of V under addition. )
2. u+ (v+w) = (u+v) + w. (Associativity of addition in V)

3. There exists a neutral element 0 in 'V, such that for all elements vinV, v +0 = v.
(Existence of an additive identity element in V)

4. Forallvin'V, there exists an element w in 'V, such that v + w = 0. (Existence of
additive inverses in V')

5. v+ w = w+ v. (Commutativity of addition in V)
6. a-vbelongs toV. (Closure of V under scalar multiplication.)
7. a-{b-v) = (ab) - v. (Associativity of scalar multiplication in V)

8. If 1 denotes the multiplicative identity of the commutative body B, then 1 - v = .
(Neutrality of one.)

9. a-(v+w)=a-v+a-w (Distributivity with respect to addition.)
10. (a +b)-v=a-v+b-v (Distributivity with respect to scalar addition. )

The multiplication by scalars « - u usually is abbreviated to au, and u + (—1)v is written
shortly as v — v. Definition A.1 only imposes linearity to some set of abstract objects,
without limiting the properties of the objects in any other way. For example, a linear space
V may contain real or complex numbers, while another linear space W may consist of real
or complex vectors, matrices, infinite real sequences, functions, etc. In what follows, by
space we always mean linear space. The type of objects contained in a space always will
be clear from the context. Most of the time we shall simply say “the set V' is a linear space”
when the binary operations '+’ and ’-’ are clear from the context.

Definition A.1 says nothing about the size of the objects lying in a linear space. The
notion of size will first be introduced in Section A.2 in the context of normed spaces.
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A.1.2 Checking whether a set is a linear space

Frequently one needs to decide whether a set V' is or is not a linear space. Before verifying
all properties listed in Definition A.1, it is useful to ask the following two simpler questions:

e Does the set V contain a zero element?

e Is the set V closed under linear combination?

Negative answer to any of them prevents V' from being a linear space. Try to verify the
following assertions:

|98}

11

12.

13.

B EXAMPLE A.1

. The set R of all real numbers is a linear space.
. The set R™ of all positive real numbers is not a linear space.
. The set of all natural numbers is not a linear space.

. Let n be a natural number. The set R™ of all real vectors with n components (7n-

dimensional Euclidean space) is a linear space.

. The set Vi of all real vectors in R™ with zero average of entries is a linear space.

. The set V]! of all real vectors in R™ whose average of entries equals one is not a linear

space.

. The set V}, of all real vectors in R™ whose both the first and the last entries are zero

is a linear space.

. Let m and n be natural numbers. The set M™*™ of all real n x m matrices is a

linear space.

. The set M{™™ of all real n x n matrices whose diagonal only contains zeros is a

linear space.

. The set M5 *" of all real n x n matrices whose diagonal only contains the number

2 1s not a linear space.

The set M " of all real n % n matrices whose sum of all entries is zero is a linear
space.

The set F'(a,b) of all real-valued functions defined in a bounded real interval (a. b)
is a linear space.

The set F~(a,b) of all real-valued functions which are negative in (a.b) is not a
linear space.

. The set Fy{a. b) of all real-valued integrable functions whose integral mean value in

(a, b) is zero is a linear space.

. The set F|(a, b) of all real-valued integrable functions whose integral mean value in

{a, b) is one is not a linear space.

. The set O(a, b) containing the zero function only is a linear space.
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. The set C(a, b) of all real-valued functions continuous in (a, b) is a linear space.

. The set D(a,b) of all real-valued functions containing at least one discontinuity in

(a, b) is not a linear space.

. In the closed interval [a, b], the set C , = {u € C(fa,b]); u(b) = 1} is not a linear

space (see Figure A.2).

X2

Figure A.2 The set Cy , does not contain the zero function, therefore it cannot be a linear space.

20.

21.

22,

23.

24.

25.

26.

217.

The set Cp 4 » of all real-valued continuous functions which vanish at both endpoints
of [a, b] is a linear space.

The set C*(a, b) of all real-valued functions in {a, b) which are k-times continuously
differentiable is a linear space.

The set P*(a, b) of all polynomials of the degree k or lower in (a, b), is a linear space.

The set P*(a,b) \ P*~1(a,b) of all polynomials of degree exactly k in (a, b) is not
a linear space.

The set of all infinite real sequences

§={{z:}iZ:},

endowed with the binary operations

ar = {az;}72;, w4y ={z+y}i;,
is a linear space.
The set Sg of all real sequences whose eleventh entry is zero is a linear space.
The set S; of all real sequences whose first entry is one is not a linear space.

The set Ssg of all real sequences such that the sum of the first fifty entries is zero is
a linear space.
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A.1.3 Intersection and union of subspaces

Next let us define the subspace of a linear space and introduce basic operations with sub-
spaces, such as their intersection, union, sum, and direct sum.

Definition A.2 (Subspace of a linear space) Let B = Ror B = C and V a (real or
complex) linear space. A nonempty subset W C V is a subspace of V' if

L uveW=su+veW,
2aeBueW=aueW,

i.e., when W is a linear space itself.

B EXAMPLEA.2 (Subspaces)

1. Let V = R? be the two-dimensional Euclidean space and (0,0)7 # w € V. The
space

W = {ow; a € R},

which is a line passing through the origin, is a subspace of V (Figure A.3).

Figure A.3 Subspace W corresponding to the vector w = (2,1)%.

2. Also for w = (0,0)7, the space W = {ow; a € R} = {(0,0)T} is a (trivial)
subspace of V.

3. Let V = R® and u, v be a pair of nonzero vectors in ¥V which do not lie on the same
line. Then the space

W1 = {au + fv; o, 8 € R},
which is a plane passing through the origin, is a subspace of V. The space
Wo = {au; a € R},

is a subspace of V' and also a subspace of W7.
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4. The space W = D"*" of all diagonal n x n matrices (where the zero matrix also is
considered diagonal) is a subspace of the space V- = M">" of all n x n matrices.

5. Consider the space V = P"(a. b) of polynomials of degree less or equal to n in some
interval (a,b) C R. For any 0 < m < n the polynomial space W = P"'(a.b) is a
subspace of V.

6. The space W = C™(a,b), n > 0 of n-times continuously differentiable functions is
a subspace of V = C(a,b) = C%(a.b).

When checking whether a subset W~ of a linear space V' is a subspace of V', a good first
question to ask is whether W contains the zero entry. If the answer is negative, then 1
cannot be a linear space. Otherwise we need to verify the above two properties of subspaces.
The intersection of subspaces of a linear space always is a linear space:

Lemma A.1 Every intersection W = Wi nWsy ... W,, k > 2, of subspaces W of a
linear space V is a linear space.

Proof: The zero element 0 € V lies in all subspaces 1. Wo.. ... W7 and therefore also
in W. Every pair of elements u, v € W liesin all linear spaces W7, Wa, ..., W.. Therefore
also u + v lies in all linear spaces W,. W5, ... . ¥} and consequently in }¥". Implication 2.
of Definition A.2 can be verified similarly. |

H EXAMPLE A3 (Intersection of subspaces)

1. Let V = R? and w1, w a pair of nonzero vectors that do not lie on the same line.
Figure A.4 shows that the intersection of the spaces

W) = {aw;: a € R}
and
Wy = {aws; a € R}

is the trivial linear space W™ = {0}.

1% X2 W,
1 W
} t + t t N
Figure A.4 Intersection of subspaces W, and W7 given by the vectors w; = (2. D7 and wy =

(3,1)7, respectively.
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2. Let W, = S™*" and Wy = A"*"™ be the spaces of symmetric and antisymmetric
real n x n matrices, respectively. Both W; and W, are subspaces of V' = M™*",
The intersection W = W, N W, = {0}, where 0 stands for the zero matrix. Indeed
W is a linear space and subspace of V.

3. Consider the polynomial spaces V = P"(a,b), W, = P"(a,b) and W5 = P*(a,b),
where 0 < 7 < s < n and (a,b) C R. Then both W; and W, are subspaces of V,
and so is their intersection, which is W7.

One has to be more careful with the union of subspaces, since it is not necessarily a
linear space:

B EXAMPLEA.4 (Union of subspaces)

1. Consider the linear space V = R? and a pair of vectors w; = (—2.1)%, ws = (3,1)7.
Define the subspaces W, = {aw;; o € R} and Wy = {aws; o € R}. By W
denote the union W; U W5. Evidently both the vectors w; and wy lie in W but
w=w; +ws & W (Figure A.5). Therefore W = W, U W5 is not a linear space.

FigureA.5 Unionof subspaces W, and W- given by the vectors w; = (—2,1)" andw, = (3,1)7.

2. Consider the linear space V = C(a,b), a,b € R, a < b of continuous functions
defined in the interval (a.b). Choose c.d € (a,b), ¢ # d. Define linear spaces

Wi =1{feV; fle)=0}, Wo={geV,; g(d) =0}

Obviously W7, W, C V. The union of W; and W5 is defined as

W =W UW, = {heV: h(c)=0orh(d) = 0}.

Choose now some functions f1, fo € V such that fi{c) = 0 # fi1(d) and ¢;(c) #
0= g1(d). Then f1.9; € Whbut f; + g; ¢ W. Therefore W is not a linear space.

Proposition A.1 Let Wy C W C V belinear spaces. Inthis case the union WUOW, = W,
which is a subspace of V.
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A.1.4 Linear combination and linear span

Definition A.3 (Linear combination) Ler V be a real or complex linear space, v, vs,

.., U elements of V, and a1, as, . . ., ay real or complex coefficients. The element
k
v = Z a;U;
i=1
of V is said to be a linear combination of the elements vy, va, ..., v with the coefficients
a;,ag,...,dg.

Definition A.4 (Linear span) Let S be a subset of a linear space V' (nor necessarily a
subspace of V). The linear span of S, usually denoted by [S] or span(§), is defined to be
the intersection of all subspaces of the space V that contain the set S.

Recall that the zero element always lies in a linear span since it is contained in every
linear space.

B EXAMPLEA.5 (Linear span)

Consider an interval {a, b) C R, the linear space V = C(a, b) of continuous functions
in (a,b), and the set S = {1,z,2%} C V. The linear span of S,

[S] = {ag + a1z + axz?; ag,a;,09 € R},
is nothing else than the space of quadratic polynomials, i.e., [S] = P%(a,b).

Lemma A.2 Let S be a subset of a linear space V. Then the linear span S| is the smallest

subspace of V containing the set S with respect to inclusion. In other words, there is no
subspace W of V such that W C [S], W #£ [S], and S C W.

Proof: Defined as intersection of subspaces of V, the linear span [S] is a subspace of V
(Lemma A.1). Definition A.4 further says that {S] is subset of every subspace W C V such
that S C W. ]

Lemma A.3 Let S be a subset of a linear space V. The linear span (S| is identical with
the set of all linear combinations of elements of S.

Proof: By W let us denote the set of all linear combinations of elements of S. The zero
element (trivial linear combination) lies in W. For all u,v € W the sum u + v (another
linear combination) lies in W. Similarly, forall a € Band u € W the product au liesin W.
Hence, according to Definition A.2, W is a subspace of V. Obviously S C W. According
to Lemma A.2, [S] € W. Conversely, it is easy to see that W is subset of every subspace
Z C Vsuch that S C Z. Therefore W C [S]. |

Lemma A.4 Let W, W5 be subsets of a linear space V (not necessarily subspaces). Then

LW W),

2. if W C Wy, then (W] is a subspace of [Wa),
5 (W) = W)

4. if W =0, then W) = {0} (not an empty set!),

5. W C Wy C [W], then [W] = [Ws].
Proof: All the above properties follow easily from Definition A.4. [ |
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A.1.5 Sum and direct sum of subspaces

Definition A.5 (Sum and direct sum) Ler W, and W5 be subspaces of a linear space V.
By the sum W1 + Wo we mean the linear span of the union of Wy and W, i.e., [W1 U W2,
We say that V' is a direct sum of its subspaces W1 and W (writtenas V. = W, @ Wy) if

1.V =W; + W,

2. WinW, = {0}.

IfV = W, @& W5 then W, is direct complement of W1 and vice versa. We also say that
V = W, & Ws is direct decomposition of V into subspaces W1, Wo.

Lemma A.5 A linear space V is a direct sum of its subspaces W, W, if and only if every
element v € V can be expressed uniquely as v = wy + we, where wy; € Wy and wy € W

Proof: IfV =W, & W, it follows from property I. of Definition A.5 that every element
v € V can be expressed as v = wy + wg with w; € Wy and we € Wy, Assume that
moreover v = v1 + vo, where v; € Wy and vy € Wy, Then from wy + wy = v1 + vg it
follows that the element w; — v3 = vy — wy lies in the intersection Wy N Wy, Property
2. of Definition A.5 implies that v; = w; and vy = ws, and thus the decomposition of the
element v is unique.

Now assume that every element v € V can be decomposed uniquely into a sum v =
wy + we with w; € Wi and we € Ws. This means that V = W, + W5, It remains to be
verified that Wy N Wy = {0}. Every element v € W; N W, can be written in the form
u = u + 0 = 0 + u. Uniqueness of the decomposition yields that u = 0. |

Both Definition A.5 and Lemma A.5 can be naturally extended to a finite and countable
infinite number of subspaces.

H EXAMPLE A.6 (Sums and direct sums)

1. Consider the linear space V = R? and a pair of vectors v; = (=1, 1)7, v, =
(=1, =1)T. Define the subspaces W, = {av;; « € R} and W, = {avs; o € R}.
Itis V = W) + W, and moreover W, N W = {(0,0)7'}, therefore V = W, @ Wo.
According to Lemma A.5 this is equivalent to the fact that every vector v € V can be
written uniquely as v = w; + ws, where w; € W, and we € Wy (Figure A.6).

Figure A.6 Unique decomposition of a vector in a direct sum of subspaces.
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2. Consider the space V = M"*" of real n x n matrices and its subspaces

Vi = szn = {]\[ eV: mi; = 0 if J > Z}
V2 = MBX"/ = {A[ S V: 7711'_}' =0 if ] # 2}
Vi = M ={MeV:imy;=0if j<i)

of lower-diagonal, diagonal, and upper-diagonal matrices, respectively. Clearly, it
is V.= Vi + Vo + V3. Since, in addition, Vi NV, = {0}, Vi n V3 = {0}, and
VonVs = {0},itis V = V] @ Vo @& V5. Accordingly, every matrix Al € V can be
decomposed uniquely into A/ = Af; + Al + My, where M, € V,,i=1...., 3.

3. Consider an interval (a,b) C R and the space of continuous functions V' = C(a.b)
with its subspaces Wi = {w;, € C(a,b); wi(a) = 0} and We = {wy € C(a.b);
wa(b) = 0}. Clearly itis V = W, + Ws. Since

W1 NWy = Cyla,b) = {w € Cla.b); wla) = w(h) =0} £ {0}.
according to Definition A.5 the space V cannot be direct sum of Wy and W5.

There is a one-to-one relation between direct sums and idempotent linear operators. (An
operator P : V — V is said to be idempotent if P2 = P.) These operators are called
projections, and we will study them in more detail in Paragraph A.3.5.

A.1.6 Linear independence, basis, and dimension

Next let us introduce the notion of linear independence, basis, and dimension of a linear
space.

Definition A.6 (Linear independence) Let V' be a real or complex linear space and let
v, Ua, ..., 0 € V. These elements are said to be linearly dependent if there exists a
nontrivial set of real or complex coefficients aj.as. . ... ay, respectively, such that

]\.
E a;v; =0
i=0

(by nontrivial we mean that at least one coefficient a; is nonzero). In the opposite case the
elements vy, va, . .., Uk are said to be linearly independent. Sometimes a subset S C V' is
called linearly dependent/independent if all its elements are linearly dependent/independent.

H EXAMPLEA.7 (Linear independence)

1. In the space V = R? consider three vectors v; = (1,0,0)7, v» = (1.1.1)7, and
vy = (4, =2, -2)T. These vectors are linearly dependent since

—6u; + 209 + 03 = (O 00)7

2. Let us decide if the functions w; = &, wo = 2 — 3z, and ws = 1 + 22 in the space
V = P%(—1,1) are linearly independent. If
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aiw; + aswe + azws = 0,

then clearly ag = 0 since the square of x in w3 cannot be eliminated by any linear
combination of the functions w; and wy. Thus

ayuy + agwse = 0.

The constant 2 in wo cannot be eliminated by wy, and therefore ao = 0. Therefore
also a; = 0 and the functions w;, wq, and w3 are linearly independent.

The following lemma gives a useful characterization of linear independence.

Lemma A.6 Consider a subset S of a linear space V. Then

1. S is linearly independent if and only if none of its elements can be expressed as a
linear combination of its remaining elements.

2. S is linearly independent if and only if the following implication holds: If R C S
and R} = |S] then R = S.

3. Letv € V. If S is linearly independent and S + {v} linearly dependent, then v € [S].

Proof: The proof is a simple exercise using Definition A.6. ]

Definition A.7 (Basis of a linear space) Let V be a linear space. Every linearly indepen-
dent subset S C V such that [S] = V is said to be a basis of the space V.

A linear space V may have many different bases: Any set of linearly independent ele-
ments of V that generate the whole space is a basis. This is illustrated in Example A.8.

H EXAMPLE A.8 (Nonuniqueness of basis)
1. Let V = R>. The set
B=1{(1.0,007,(0.1,007. (0.0, 1)}
1s a basis of V' (canonical basis). Any other set of vectors
Ba gy = {(,0,0)7,(0.8.0)7,(0,0,7)7}.
where (v, 3,y are nonzero real numbers, also is a basis of V. Herewith the list is

not complete, since obviously the basis vectors can have more than just one nonzero
components.

2. Consider the polynomial space V = P*(0, 1) and its monomial basis

By = {1,x}.

Another example of a basis in this space is, e.g.,
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BQ = {:L',l —ﬁ}.

3. Let S be the space of all real sequences from Example A.1. The infinite set B; =
{r1,7r2,73,...}, where r; is a real sequence whose entries are all zero except for the
ith entry which is one, is a basis of S. Another infinite set By = {s1, s2, ...}, where
s; 1s a real sequence whose entries are all equal to one except for the ith entry which
is zero, also is a basis of S.

After presenting a few concrete examples of bases, the following Theorem A.1 guarantees
that every linear space has at least one.

Theorem A.1 (Existence of basis) Every linear space V has a basis.

Proof: Let V be a linear space and £ the set of all its linearly independent subsets.
Obviously the empty set lies in £ thus £ is not empty. It is easy to see that the set £ is
partially ordered by inclusion (the union of a chain of linearly independent subsets of V' is
again a linearly independent subset of V). Hence the Zorn’s Lemma implies the existence
of a maximal element S in £. Assume that there exists an element v € V such that u € S.
The maximality of S implies that S U {u} is linearly dependent. According to Lemma A.6,
assertion 3., u € [S]. Thus [S] = V and therefore S is a basis of the linear space V. ®

For future reference lat us introduce the notion of separable space.

Definition A.8 (Separable space) A linear space V is called separable if there exists a
finite or a countable infinite basis of V.

The following Lemmas A.7 and A.8 have a technical nature, but they are useful for the
definition of the dimension of a linear space.

Lemma A.7 Let V be a linear space. Any set of n linearly independent elements uy, usg,
.. Uy € V cannot be expressed by linear combinations of any n — 1 elements vy, vy, . . .,
Un—1 € V.

Proof: Let us proceed by induction. Obviously the assertion is valid for n = 1. Assume
that the assertion is valid for n and not valid for n + 1. Thus it is possible to express

uy = a11V1+ ...+ a1aUn
Uz = A2 1V1 + ...+ araUpn
Up = QAp V1t ..+ Apatn
Up+1l = OAuy11V1+ .o+ Qug1,nVn.
The elements uy, us, . . ., uyy1 are linearly independent. Hence wu,,+; # O and at least one

of the coefficients in the last equation is nonzero. Assume for example that @, 41, # 0.
Let us calculate v, from the last equation and insert it to the first n equations. We obtain a
smaller system of n equations of the form

uy + ClUn+1 = b1<1'111 4+ ...+ bl,nvn

U + Colnyr = baivr ...+ ba,vy

Up + Crllngr = by Vi + ...+ bpnvn
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This is a contradiction with the assumption for n if we show that the n elements u; +
C1Un+1,U2 + CoUnt1,- -, Un + CplUy4 are linearly independent. Assume that they are
not, i.e., that there exists a nontrivial linear combination

0 = di(ur +crups1) +da(us + cotinyr) + .o+ du(n + Cpting)

= dlul + dQUQ + ...+ dnun + (d101 + d2c2 + ...+ d,,,cn)un,_,.l.
Since w1, us, ..., u,1 are linearly independent, necessarily d; = do = ... =d, = 0
which is a contradiction. [ |

Lemma A.8 All bases of a linear space V have the same cardinality.

Proof: The assertion follows straightforward from Lemma A.7 both when the cardinality
of the basis is finite and infinite. |

Now, using the assertion of Lemma A.8, we finally can define the dimension of a linear
space.

Definition A.9 (Dimension of a linear space) Cardinality of any basis of a linear space
V is said to be the dimension of V, denoted by dim{V').

Before we approach linear operators, let us define expansion coefficients of elements of
linear spaces in terms of a basis.

Definition A.10 (Expansion coefficients) Letr V be a linear space of dimension n and
B = {v1,va,..., vy} its basis. Every element u € V can be written uniquely as

n
U= E CiU;-
i=1

The coefficients ¢y, ca, . . ., ¢y, are called expansion coefficients of u with respect to the basis
B, and we write them in a vector form

<U>B = (C17027' - >7C7L)T

B EXAMPLE A9 (Expansion coefficients)
1. The set By = {v1,v9,v3}, where v; = (1,1,0)7, vy = (1,0,1)7 and vy =

(0,1,1)7, is a basis of the space V' = R3. The expansion coefficients of the element
v = (1,2,3)7T are obtained from the vector equation

C1V] + CU2 + C3U3 = V.

Componentwise, this yields a system of three linear algebraic equations. Aftersolving
the system, we obtain

Wyp, = (0,1,2)T.
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2. The set By = {wy,wy, w3}, where w; = 22 — 2, wo = 2% — land w3 = 2° + x

is a basis in the space P2(—1,1). The expansion coefficients of the function w =
322 + 2z + 1 are obtained from the equation

ciwy + cows + czwy = w.

Comparing the coefficients of monomials of the same degree, we obtain a system of
three linear algebraic equations which yields

() g, = (1,-2,3)T.

A.1.7 Linear operator, null space, range

In this paragraph let us introduce linear operators and mention some of their basic properties,
including the one-to-one relation to matrices in finite-dimensional spaces.

Definition A.11 (Linear operator, null space, range) Let U and V be real or complex
linear spaces. Amap f : U — V is said to be linear operator if and only if

I. flu+v)= fu)+ flv)forallu.veU,
2. flau) = af(u) forall v € U and all coefficients a.

The null space N(f) of the linear operator f is the set
N(f) = {u e U: f(u) = 0}.
The range R(f) of the operator f is defined as
R(f) = {v € V: there exists u € U such that f(u) = v}.

The linear operator [ is said ro be an injection if N{f) = {0}, surjection if R(f) = V and
bijection (one-to-one) if it is both injection and surjection.

Basic properties of the null space and range of linear operators are summarized in the
following lemma.

Lemma A.9 Let U and V be real or complex linear spaces and f : U — V a linear
operator. Then the following holds:

1. N(f)is asubspace of U.
2. R(f) is a subspace of V.
3. If dim(U) and dim(V') are finite then

dim(U) = dim(N(f)) + dim(R(f)).

Proof: These assertions follow easily from the linearity of f. Let us begin with the first
one:
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w,v € N(f) = flau+ fv) = af(u)+ Bf(v) =0= au+ fv e N(f)

for all coefficients o, 3. Ad 2: For every vy, ve € R(f) there exist uy, us € U such that
flur) = vy and f(uz) = ve. Then

avy + fve = af(uy) + Bf(uz) = flaur + Pus),
—_————
3
and therefore avy + Bvs € R(f).
Ad3: Since N(f) isalinear space, ithas a basis {w1,wa, ..., wi }. Let {v1,va,. .., v}
be abasis of R(f). Forevery1 < j < mletd; € Ubesuchthat f(¥;) = v;. Itis sufficient
to show that the set

BU = {w17w27‘ .. 7wk7{’17{}21 cee w{)nz}
is a basis of U. First let us see that its elements are linearly independent: Assume a set of
coefficients such that

m

k
Zaiwi + 2[37{)] =0. (Al)
i=1 7

=1

Applying the linear operator f to both sides, we obtain that

k m ™m
D aif(w) + Y Bif(8;) =Y Byu; = 0.
i=1 j=1 j=1

Since the elements vy, vg, . . . , Uy, are linearly independent, itis 51 = B2 = ... = B = 0.
It follows from (A.1) that also a; = ap = ... = o = 0. It remains to be shown that every
u € U can be represented by the elements of By,: Since f(u) lies in R(f), we can express

F) =3 70,
J=1

The coefficients -y; can be used to define

m

up =Y v €U

J=1

The proof is finished by realizing that u — ug € N(f). [ |

B EXAMPLE A.10 (Linear operators)

1. Consider the spaces V = R® and W = R3, along with amap f : V — W defined
by
flw)=2u forallueV.

For every u,v € Vitis flu +v) = 2(u+v) = 2u+ 2v = f(u) + f{v) and
moreover f(au) = 2au = a2u = af(u) for every u € V and o € R. Therefore f
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is a linear operator. It is easy to see that N(f) = {(0,0,0)T}. Moreover, since for
every vector w € W we can define a vector v = w/2 € V such that f(v) = w, itis
R(f) = W. Therefore f is a bijection.

2. Next consider the polynomial spaces V = P*(—1,1) and W = P*(—1,1), and a

map D : V — W defined by

d

D) =2 =« forallue V.

dx
Forevery u,v € Vitis D{u+v) = (u+v) = o' +v = D{u)+ D(v) and moreover
D(au) = (au) = ou’ = aD(u)foreveryu € Vanda € R. Therefore D is alinear
operator. Since D(u) = 0 if and only if u is constant, we have N(D) = P°(—1,1).
Further, forevery w € V wecanfindav € V sothat w = D(v) (take some primitive
function of w), and thus R(D) = W. Hence D is a surjection but not a bijection.

3. LetV = P%(—1,1), W =R,and 4 : V — W be defined by

1
Alu) = / u{z)dzr forallue V.
-1

The linearity of A easily follows from the linearity of the integral. In this case
N(A) ={ueV; f_ll u(z) dz = 0}, which is the space of all quadratic polynomials
with zero integral mean value in the interval (—1,1). Since for any given number

w € R we can define a constant function v = w/2 € V such that A(v) = w, we
have R(V) = W. Hence the operator A is a surjection but not a bijection.

Next let us define the linear space £(V, W) of all linear operators L : V — W.

Definition A.12 (Space of linear operators) LetV and W be real or complex linear spaces.
Let f,g: V — W be linear operators. We define

(f+g) = fv)+gv),
(af)(v) = af(v) (A2)

forallv € V and all coefficients a. With these operations we can define the linear space of
all linear operators from V to W and denote it by L(V, W).

Lemma A.10 (Inverse operator) Let V and W be real or complex linear spaces and let
f € L(V,W) be a bijection. Then f is invertible and f~1 € L(W, V') is a bijection.

Proof: Follows easily from Definition A.11. [ |

Next, Definition A.13 introduces the matrix representation of linear operators in finite-
dimensional spaces. The equivalence of linear operators and matrices is established in
Lemma A.11 and illustrated in Example A.11.

Definition A.13 (Matrix representation in finite-dimensional spaces) Ler V and W be
finite-dimensional real or complex linear spaces of dimensions dim(V') = manddim(W) =
n. Let By = {v1,v2,...,0m} be a basis of V, By = {w1,ws, ..., w,} a basis of W,
and f € L(V,W). For every element v; € By the element f(v;) lies in W, and thus we
can express it in terms of the basis By with a unique set of coefficients m1;,maj, . .., My,
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n
Fl) =" miyw;.
=1
The n x m matrix My, (Myf)i; = my;, 1 <t < n, 1 < j < m, is said to be the matrix
representation of the linear operator f with respect to the bases By and Byy. Or, we just
say that My is the matrix of the linear operator f.

In other words, the matrix Ay of alinear operator f is constructed by taking basis vectors
of V, expressing their images through f by means of the basis vectors in W, and writing
the sets of the corresponding expansion coefficients as columns of the matrix M.

Lemma A.11 Let V.W be real or complex linear spaces of dimensions m,n and let
By, By, be their bases, respectively. Let f € L(V,W). The n x m matrix My rep-
resents the linear operator f if and only if it holds

(f(v)Bw = Ms{vyp, forallveV. (A.3)
Proof: First assume that M is the matrix of the linear operator f. Forevery v € V we
denote (v)p, = (b1, b2, ...,bn)T and calculate
m m m n n m
FRy=F{D by | =) bif) = by mywi= mib; | wi.
j=1 j=1 j=1 =1 i=1 \j=1
Thus the expansion coefficients of f(v) to the basis By are
T

m m m
(f) By = Zmljijzm%bjw-wzmnjbj = Ms(v)B, -
i=1 i=1 =1

Now the opposite implication. Assume some 7 X M matrix M such that
(f(v))By = M{v)g, forallve V. (A.4)

Let M be the matrix of the linear operator f from Definition A.13. By the implication
that we already proved, (f(v))p, = Mf(v)p, forall v € V. Relation (A.4) yields
M(v)p, = M;(v)p, forallv € V. The choice (v)p, = (1,0,0,...,0)T now yields
that the first column of M is identical to the first column of My, and so on. n

H EXAMPLE A.11 (Matrix representation of linear operators)

1. Let us begin with a linear operator f that rotates vectors in the space V = R? coun-
terclockwise by a given angle o« € R. Hence W = V.

Using the canonical bases By = {(1,0)7, (0, )T} = {v), v} and By = {(1,0)T,
(0,1)T} = {w;, w2}, and Figure A.7, it is easy to see that

(f(11)) By = {(cosa,sina)T) g, = (cosa,sina)”
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X2 X2
I‘F f(V/)
s o
, p
Y o fvs) = - V2
’ ~ o
0 vl X, -1 0| x,;

Figure A.7 Linear operator in R? (rotation of vectors).

and

(f(2)) By = ((—=sina.cosa)) g, = (—sina, cosa)?

Therefore f is represented by the matrix

cosax —sinq
M; = . .
siny cosa

Choosing now an arbitrary two-dimensional vector v = (a,b)T € V, for f(v) we
have

,  f acosa—bsina
F0) = (D m = Myle)n, = Myo= ((Goe2 7P )

. Let us return to the derivative operator D € L({V, W), D(u) = «/, from Example

A.10. Inthe spaces V = P*(—1.1)and W = P3(—1, 1) we consider the monomial
bases By = {1,z,2%, 2%, 2%} = {vi,ve,vs3,v4.v5} and By = {1,z,22,2%} =
{w1, wa, w3, wq}, respectively. It is easy to calculate

(D(v1)) (0) 3y = (0,0.0,0)7,
(D(va)) (1), = (1,0,0,0)7,
(D(ws)y gy = (22)B, = (0,2,0,0)T,
(D(v4)) (
(D(vs)) (

B
1l

3z%) 5, = (0,0,3,0)T,
42%) g, = (0,0,0,4)7.

Hence the derivative operator D{u) = u’ is represented by the 4 x 5 matrix

0100 0
0020 0
Mp=1 1990 3 0
0000 4

This means that now we can perform derivatives of fourth-degree polynomials using
a matrix-vector multiplication. Take, e.g., v = 3 + 222 — 323 + 2% € V, whose
expansion with respect to the basis By is
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()p,. = (3.0,2,-3. D)7,

For the derivative v' = D(v)} we have

N D W

(D)) By = Mp(v)p,. = =(0,4,-9,4)7.

[ e B e}
[en e e
o O N
O WO
_ o O O

Thus v' = D(v) = 4z — 922 + 42°.

In what follows, by the symbol I we denote the n X n identity matrix, I = diag(1,
1,...,1) (the dimension n will always be clear from the context).

Definition A.14 (Nonsingular, singular, and inverse matrix) Ler M be a real or complex
n X n matrix. Then M is said to be nonsingular if its n columns are linearly independent
vectors. Otherwise M is singular. The matrix M~ such that MM~ = M~'M = I is
said to be the inverse of M.

In Definition A.14 one can use linearly independent rows instead of linearly independent
columns.

Lemma A.12 Let V and W be real or complex linear spaces of the same dimension n and
let f € L(V, W) be represented by a matrix M. The matrix My is nonsingular if and only
if N(f) = {0} (i.e., if f is bijection).

Proof: Follows easily from Lemma A.11. |

A.1.8 Composed operators and change of basis

Composition of linear operators is analogous to composition of functions in real analysis:

Lemma A.13 (Composition of linear operators) Let U, V, and W be real or complex
linear spaces, f € L(U,V) and g € L{V,W). Then the composition go f € LU, W).

Proof: Follows easily from Definition A.11. ]

Lemma A.14 (Representation of composed operators) LetU, V, and W be finite-dimen-
sional real or complex linear spaces with bases By, By, and Bw, respectively. Let
f € L(U, V) be represented by matrix My with respect to the bases By and By, and let
g € L{V, W) be represented by matrix M, with respect to the bases By and By . Then
the composition g o f € L(U, W) is represented by the matrix M,Mj .

Proof: Follows easily from Lemma A.11. ]

Corollary A.1 (Inverse operator & inverse matrix) Let V and W be real or complex
linear spaces of dimension n and let f € L(V,W), represented by matrix My, be a
bijection. Then the matrix M; is nonsingular and f=1 € L(W,V) is represented by the
inverse matrix M n L
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Definition A.15 (Transition matrix) Let V be a real or complex linear space of dimension
n and let B, and By be its (different) bases. By transition matrix from the basis B to the
basis By we mean the n x n matrix M representing the identity T € L(V. V),

<U>B'z = A1<1}>B1

forallveV.

B EXAMPLE A.12 (Change of basis)

1. Let V = R3. It is our aim to construct the transition matrix from the basis B to the
basis By, where

Bl = {(1’0’O)T7 (Ov lvo)Tv (070’ 1)T} = {61762763}

and

BQ = {(17 1?0)T7 (150, I)T’(Ovlv I)T} = {w17w27w3}' (AS)

The two bases are depicted in Figure A.8.

X3

o Foo

Figure A.8 Canonical basis of R3.

In this case it is convenient to construct the transition matrix M ~! from Bs to By
first, since it just contains the vectors wy, we, and w3 in its columns,

1 10
M7'=|101
6 1 1
Inverting the matrix M ~!, we obtain the desired transition matrix M,

/2 1/2 -1/2
M=| 1/2 -1/2 1/2
~1/2 12 1)2
2. Next consider the space V = P3(0,1) equipped with the monomial basis B; =
{1,z, 2, 2%} and another basis

By ={z,1—z,2(1 —z),x(1 — 2)(2z — 1)/2}
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(which is better, e.g., for finite element approximation). Let us construct a transition
matrix from Bj to By. Since 1 = z + (1 — z) itis (v1)p, = (1,1,0,0)T. The
second element of B; is identical to the first element of By, and therefore (v2) g, =
(1,0,0,0)T. Using the identity 22 = z — (z — x?), we obtain

(v3)B, = (1,0,-1,0)T,
and finally,

<U4>Bz = (17 0, _3/2, —1)T.

Hence the transition matrix M has the form

S O =
OO O
I
—
|

A.1.9 Determinants, eigenvalues, and eigenvectors

Eigenvalues and eigenvectors (eigenfunctions) play an important role in computational
engineering and science. On the practical side, they often are connected with vibrations,
resonance, or related phenomena. One also needs them for theoretical purposes in numerical
linear algebra, analysis of partial differential equations, numerical methods, and other fields.

Definition A.16 (Permutation and its sign) By S, n > 0, we denote the set of all bi-
Jjections of the set {1,2,...,n} into itself. Every P € S, is called permutation on the
set {1,2,...,n}. For a permutation P € S, let m be the number of pairs (i,j) C
{1,2,...,n}, i < j, such that P(i) > P(j). We define

sgn(P) = (-1)™"
and call P even or odd if sgn(P) = 1 or sgn(P) = —1, respectively.

Definition A.17 (Determinant) Ler M be a real or complex n x n matrix. Determinant
of M is defined as

n
det(M) = Z sgn(P) H mp(y;-
j=1

Pcs,

Lemma A.15 (Basic rules for determinants) Let M be a real or complex n X n matrix.
Then

1. det(MT) = det(M).

2. Let M be a matrix obtained by performing a permutation ) € Sy, to the rows (or

columns) of M. Then det(M) = sgn(Q) - det(M).

3. The matrix M is nonsingular if and only if det(M) # 0.
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4. Let M bea matrix obtained by multiplying a row (or column) of M with a coefficient
c. Then det(M) = cdet{M).

5. det(eM) = ™ det(M).

6. Foralll <j <nitis

det(M) = Z(—l)”jmu det(My;)

=1

where the matrix M,; is obtained by leaving out ith row and jth column from the
matrix M. Here, (—1)"%7 det(M;;) is the algebraic complement of the entry m;;.

7. Let M be matrix of the same type as M. Then det(MM) = det(M) det(AT).

8. Let M be nonsingular and M~ its inverse. Then det(M ™) = 1/det(M).

Proof: Proofs of these assertions can be found, e.g., in [75]. |

Definition A.18 (Eigenvalue, spectrum) Ler Al a real or complex n x n matrix. The
characteristic matrix of M is the polynomial matrix A\I — M. The characteristic polynomial
of M is the determinant of A\I — M. The eigenvalues of M are the roots of its characteristic
polynomial. The spectrum o (M) of M is the file of all of its eigenvalues. By (algebraic)
multiplicity of an eigenvalue one means its multiplicity as a root of the characteristic
polynomial.

B EXAMPLEA.13 (Complex and real eigenvalues)

Consider a matrix

1 0 -1
M= -1 0 -2
2 0 -1

The corresponding characteristic matrix has the form

A-1 0 1
Al =M = 1 A 2
-2 0 x+1

and the characteristic polynomial is

det(A] — M) = A(A2 +1).
The roots of det{(A\] — M) are 0,¢, —i. Hence, as a real matrix, M has a single
eigenvalue A\; = 0. As a complex matrix, it has three eigenvalues A; = 0, Ay = ¢

and A3 = —1.

Lemma A.16 Let M be a real or complex n X n matrix. There exists a polynomial g(\)
of the degree n? or lower such that g(M) = 0.
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Proof: The linear space V of all n x n matrices has the dimension n2. Hence the

. 2 2 . .
n? + 1 matrices M™ , M™ ~1 ..., M,I € V must be linearly dependent and there exists
a nontrivial set of coefficients ag, a1, . .., a,2 such that

aoM™ +a;M™ " + .+ ape M+ apel = 0.
Thus , ,
ANt + @A T b L ane A+ ane

is the sought polynomial. |

Lemma A.16 can be strengthened to the following famous theorem.

Theorem A.2 (Cayley—-Hamilton) Every matrix is a root of its characteristic polynomial.

Proof: This proof is slightly more technical and we refer, e.g., to [75]. [ ]

Definition A.19 (Eigenvector) Let M be a real or complex n x n matrix and X one of its
eigenvalues. Any vector u # O such that

Mu = du
is said to be eigenvector of M corresponding to the eigenvalue .
The following proposition is introduced for future reference:

Proposition A.2 Let M be an x n matrix. There exists at least one eigenvector to every
eigenvalue A € o(M).

Proof: Since det(A] — M) = 0, by Lemma A.12 the matrix Al — M is singular. Let
f : R™ — R™ be the linear operator represented by the matrix A — M. Then N(f) # {0}
by the same lemma. Thus there exists a nontrivial vector v € N(f) such that Mv = Av.

A.1.10 Hermitian, symmetric, and diagonalizable matrices

Definition A.20 (Diagonalizable matrix) Let M be a real or complex n x n matrix. M is
diagonalizable if there exists a nonsingular matrix C (real or complex, respectively) such
that the matrix D = C~MC is diagonal.

Generally, any two matrices A and B satisfying the above relation B = C~!AC with
some nonsingular matrix C are called similar. Thus a matrix M is diagonalizable if it is
similar to a diagonal matrix D.

Theorem A.3 (Diagonalization theorem) Let M be a real or complex n x n matrix. M
is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem A.3 states that the matrix M is diagonalizable if and only if it is possible to
construct a basis in R™ that consists of the eigenvectors of M. Then the matrix C from
Definition A.20 has the eigenvectors in its columns, and it is identical to the transition
matrix from the eigenvector basis to the canonical basis. The matrix C'~! represents the
transition matrix back to the eigenvector basis. Thus the diagonal matrix D represents the
same linear operator as M, expressed with respect to the eigenvector bases in R™ instead
of the canonical ones.
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Proof: Assume that M is diagonalizable, i.e., there exists a diagonal matrix D such that
D = C~'MC. As explained above, the matrix C' can be interpreted as a transition matrix
from some basis B of R™ to the canonical basis of R” and analogously C~! as a transition
matrix from the canonical basis back to B. According to Definition A.15, the columns ¢;
are the basis vectors of B expressed with respect to the canonical basis. It remains to be
verified that the vectors ¢;, 1 < i < n, are eigenvectors of M. However, this is exactly
what relation M C' = CD says (look at it column-wise), and moreover it says that diagonal
entries of the matrix D are eigenvalues of M.

Now assume that there exists a basis B consisting of eigenvectors ¢, ¢s, . . ., ¢, of the
matrix M. By A;, 1 <7 < ndenote eigenvalues of M such that M¢; = A;c;. Putting these
relations together for all 7, we obtain a matrix equation

MC =CD,
where the matrix D =diag(A1, A2, ..., A,). Hence,
C~'MC =D

and M is diagonalizable. |

Definition A.21 (Hermitian and symmetric matrices) Let M be a complex n x n matrix.
M is Hermitian if m;; = my; for all 1 < 4,3 < n (the symbol m;; stands for the complex
conjugate of m;;). Let M be a real n x n matrix. M is symmetric if m;; = my; for all
1<,5 <

Lemma A.17 All eigenvalues of Hermitian matrices are real.

This lemma obviously covers symmetric real matrices.

Proof: Let M be a Hermitian n x n matrix and A € (M) any of its eigenvalues. By
Proposition A.2 there exists an eigenvector v of M such that Mv = Av. The ith row of this
vector identity has the form

n

E meV; = /\Ui7

Jj=1

where v;,v; are the ith and jth components of the vector v. Multiplying with ¥; and
summing over ¢ = 1,2, ..., n, we obtain

Z Z mijvjii =A Z l’Ui|2.
i=1

i=1 j=1
Since the sum on the right-hand side obviously is real, it is sufficient to verify that the

left-hand side is a real number. Indeed this is true since

n n

n n n n n n
E E mijvﬁi: E E ﬁiﬁjvi: E E mjivﬁ]: E E mijvj@.

i=1 j=1 i=1 j=1 i=1 j=1 i=1 j=1
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A.1.11 Linear forms, dual space, and dual basis

Linear forms are special linear operators with values in R or C. They play an essential role
in the theory of partial differential equations and finite element methods.

Definition A.22 (Linear form and dual space) Let V' be a real or complex linear space.
Linear operator f from V to R or C is called linear form. The space of all linear forms
over the space V is called dual space and denoted by V'.

H EXAMPLE A.14 (Linear forms)

1. Let V = R™. The operator f : V — R defined as the average of vector entries,
f(v) li forallv € V,
v)=—>» v; forallv \
n ¢
=1
is a linear form over V, ie., f € V'.

2. Let V = C(a, b) be the space of continuous functions in some interval (a,b). The
integral operator A : V — R defined by

b
A(f):/ f(z)dz forall feV,

is a linear form over V.

3. Again let V = C(a,b), and let ¢ be some point in the interior of the interval (a, b).
The operator g. : V — R, associated with the function value at c,

9c(f) = fle) forall feV,

is a linear form over V.

Lemma A.18 LetV be a real or complex linear space of dimension n. Then the dual space
V' has the same dimension n.

Proof: We leave this to the reader as an exercise. Use Definitions A.6 and A.22. |

Definition A.23 (Dual basis) Let V be a real or complex linear space of dimension n and
B = {v1,v2,...,v,} a basis in V. The basis B' = {fi, fa,..., fu} of the space V' is
said to be the dual basis to B if

filv;) = 6;; (A.6)
Sforall 1 < i, 5 < n(the symbol b;; is the Kronecker delta, i.e., 6;; = 1ifi = jand 6;; = 0
otherwise).

Let us prove the existence of the dual basis in the following Lemma A.19 and give some
examples in Example A.15.

Lemma A.19 (Existence of dual basis) Let V be a real or complex linear space of dimen-
sion n. To every basis B of V there exists a dual basis B' of V'.



344 BASICS OF FUNCTIONAL ANALYSIS

Proof: LetB = {v;,vq,...,v, } beabasisof V. First we define the operators f, fa.. ... fa
on the basis elements only,

filvy) = bij. (A7)
Next we extend them to the whole space V' by defining

filw) = a; filvy).
j=1

Here the coefficients ay, ag, . . ., a, are the unique expansion coefficients of the element u
with respect to the basis B,

<U>B - (a17a2 ----- (ln)T-
Obviously the forms f1, fo, ..., fn are linear, and it is sufficient to show that they also are
linearly independent. By contradiction suppose that they are linearly dependent. Then it is

possible to express one of them (for example f1) as a nontrivial linear combination of the
others, i.e.,

fl = C?f? +C3f3+ ~-‘+(5nfn‘

However, by (A.7) we obtain

which finishes the proof. |

B EXAMPLE A.15 (Dual basis)

In the space V = P?(—1, 1) consider the basis

shown in Figure A.9.

Figure A9 Basis B = {vi, v2,v3}.
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The dual basis B’ = {f1, f2, f3} consists of linear forms f; : V' — R such that
filv) = v(x;) forallveV,

where ;1 = —1, 9 = 0, and 3 = 1. The reader can easily verify that the delta
property (A.6) indeed holds true.

Now, since B’ = {f1, f2, f3} is a basis in V', any linear form in V’ can be
expressed uniquely in terms of the basis functions fy, fs, f3. Let us try, for example,
the linear form A € V' associated with the integral

A= [ @)

1

We look for coefficients 31, 32, 33 such that

A= fr+Bafo+ Bafs. (A.8)

Applying A to the basis B, by (A.8) and the delta property f;(v;) = 6;;, we have
A(v) = B1, Alv2) = B2, Alvs) = Bs.

Calculating the integrals of the basis functions vy, v2 and v3, we obtain 3, = 1/3,
B2 = 4/3, B3 = 1/3, and thus

1 4 1
A:§f1+§f2+§f3~ (A.9)

Thus by (A.9) we can integrate all quadratic polynomials using their function values
at —1,0and 1,

Alg) = 371(0) + 52(9) + 355(9) = 50(~1) + 59(0) + 2g(1)

[this is the Simpson’s rule for the interval (—1,1)].

A.1.12 Exercises
Exercise A.1 Consider the set M™*™ of all real n x n matrices.
1. Show that M™™ is a linear space.

2. Show that the set D™ of diagonal n X n matrices is a subspace of M™*™,

Exercise A2 Let S = {u € C(0,1); u(l) = a}, a € R. For what values of a is S linear
space?

Exercise A.3 Prove in detail all assertions in Example A.1.2.

Exercise A4 Letr S be the set of all twice continuously differentiable functions satisfying
the differential equation

' (x) +u(z) = 0.
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1. Prove that S is a linear space. Hint: The equation does not need to be solved.

2. Is the set S of all solutions to the differential equation

v () +u(z) +1=0
a linear space as well?
Exercise A.5 Prove in detail Proposition A. 1.

Exercise A.6 Let V = R5 W, = {v € Vv = 0} and Wy = {v € V;va = 0}. Show
that Wy and Wy are subspaces of V' and construct the space W1 N W,

Exercise A.7 Prove Lemma A4.

Exercise A.8 Let I = (0,1) x (0,1) C R2 In I consider the sets Sy of all polynomials
of degree exactly one, S of all polynomials of degree exactly three, and Ss of polynomials
that in one variable are of degree exactly one and that are of degree three or less in the
other variable. Construct the linear span S = [S1 U Sy U S3] in the linear space P*(I) of
polynomials of degree lower or equal to four. Hint: The degree of a bivariate polynomial
f is the highest sum k + | of powers among all monomials z*y' appearing in f. What is
the dimension of S?

Exercise A.9 Consider the linear space V.= M™ ™ from Exercise A. 1.
1. Show that the set S™*™ of symmetric n x n matrices is a subspace of V..
2. Show that the set A™*"™ of antisymmetric n X n matrices is a subspace of V.

3. Show that V. = S & A. Hint: Symmetric part of a matrix M € V is defined as
M, = (M + M7T)/2 € S™™™ Forall M € V, the transpose MT is defined in a
standard way as (MT); ; = M;;, 1< 4,5 <n.

Exercise A.10 Prove Lemma A.8, case of finite cardinality.

Exercise A.11 Consider V. = R* and its subspaces Vi = [(—3,0,2,0)7] and V5 =
[(1,0,2,-3)T, (3,2,1,-5)%, (-1,2,1, ~2)T]. Compute dim(V; + Va) and dim(Vy N V3).
Hint: Select a basis among the vectors generating Vo. Check whether the vector generating
Vi lies in V5.

Exercise A.12 Consider the linear space P*(—1, 1) of real-valued polynomials defined in
the interval (—1,1). Consider the bases

B, = 171+x’(1+x)2,(1+x)3 7
2 4 8

and

I+z 1—-2 1-2% z(1-2?%)
By = ) ; , :
2 2 4 8

Construct the transition matrix M from By to Bs.
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Exercise A.13 Prove Lemma A.10.

Exercise A.14 Let V = R®. Consider the canonical basis

B; = {(1,0,0,0,0)7,(0,1,0,0,0)T,(0,0,1,0,0)7, (0,0,0,1,0)%, (0,0,0,0,1)T}

and another basis

By ={(1,1.0,0,0)7,(0,1,1,0,0)7,(0,1,0,1,0)", (0,0,1,1,0)7, (0,0,0,1,1)7}.

Construct the transition matrix M from By to Bs.

Exercise A.15 Prove Lemma A.12.

Exercise A.16 Consider the polynomial spaces V. = P%(—1,1) and W = P*(-1,1)
equipped with the monomial bases By = {1,x,22%, 2%, 1% 2% 2%} and By = {1,z,2?,

3, 4}

1. Write the matrix representation of the linear operator p : V. — W,

w(v) =

dz?
with respect to the bases By and Byy.
2. Determine N{p) and R(p). Is ¢ a bijection?
Exercise A.17 Prove Lemma A.13.

Exercise A.18 Consider the polynomial spaces
V ={ve PY-1,1),v(z) = v(~z) forall z € (—1,1)}
and
W = {we P°(-1,1),w(z) = —w(-=z) forallz € (—1,1)},
equipped with the bases By = {1,z% z*} and By = {z,2%,2°}.

1. Write the matrix representation My, of the linear operator ¢ : V. — W, (f) = F,
where F' is a primitive function to f such that F(0) = 0.

2. Determine N () and R(y). Is ¢ a bijection?

3. If ¥ is a bijection then find the inverse operator ™' : W — V, write its matrix
representation M,,-1 with respect to the bases Bw and By, and verify that the matrix
M1 is inverse to My,

Exercise A.19 Prove Lemma A.14.



348 BASICS OF FUNCTIONAL ANALYSIS

Exercise A.20 Consider the real matrices

0z y 2 01 1 1
- z 0 2z y L 1 0 22 42 /
My = y z 0 x Ay = 1 22 0 z2 , x,y,z€R.
z y x 0 1 y2 22 Q0

Without evaluating the determinants, use rules from Lemma A.15 to show that det(M;) =
det(Mz).

Exercise A.21 Prove Lemma A.18.
Exercise A.22 Let A € R™™™ be a regular n X n matrix.

1. Use its characteristic polynomial and the Cayley—Hamilton theorem to derive an
explicit formula for its inverse A7, based on the following matrix operations: (a)
matrix multiplication and (b) the sum of a matrix with a diagonal matrix.

2. Consider the matrix

1 0 1
A= 0 2 0
0 -2 3

Write its inverse using the above-defined operations (a) and (b).

A.2 NORMED SPACES

Normed spaces are linear spaces endowed with norm (size). The notion of norm allows
us to define convergence and limit for sequences of vectors, matrices, functions, linear
operators, and other objects. In normed spaces we can distinguish between open and closed
sets, and introduce the notion of completeness. Through complete normed (Banach) spaces
we arrive at the Lebesgue LP-spaces, which are essential for the study of partial differential
equations and finite element methods.

A.2.1 Norm and seminorm

Definition A.24 (Norm and normed space) Let V be a real or complex linear space.
A norm on V is any function || - [lv 1 V — R with the following properties:

1. |ty = 0forallv eV, and |[v|ly = 0 if and only if v = 0,
2. |lavlly = lall|vlly for all v € V and all coefficients a € R (or C),
3 lu+vllv < ullv + |lvllv forallu,v e V.
A linear space V endowed with a norm || - ||y is said to be normed space.
Remark A.1

1. In a normed space |vilv < o forallv e V.
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2. The subscript V in the symbol || - ||v is often omitted when the meaning of || - || is
clear from the context.

3. Thelastcondition in Definition A.24 (triangular inequality) usually is the most difficult
one to prove.

For future reference, let us mention the triangular inequality for real numbers:
H EXAMPLE A.16 (Triangular inequality in R)

Leta,b € R. Then
la +b| < la| + 16].

This easily follows from the analysis of four possible cases: a > 0& b > 0, a <
0&b>0,a>0&b<0anda<0&b<0.

A linear space may be endowed with many different norms, in which case one obtains
different normed spaces. Several examples of norms are collected in Example A.17. In
what follows the symbols (a, b) and [a, b] will stand for nonempty bounded intervals.

H EXAMPLE A.17 (Norms)

1. Let V = R. The absolute value function || - || : V — R, |lu|| = |ul, clearly satisfies
(@ ||lv)l =|v| > 0forall0 #v €V,
(b) |lav|| = |al|vl = |a||lv]] forall v € V and all coefficients a,

© lu+v] =lu+v <|ul+ vl =|u]] + |lv] forall u,v € V,
and thus itis anorm in V.

2. Let V = R™. The function
olloe = max |v; ] (A.10)

is anormin V (discrete maximum norm). The first two properties of Definition A.24
are obvious, and the triangular inequality is verified as follows:

+ = . < _
lu+vllx llgl-asxh [ui +vi} < 11%1%}(“““11 |vil)
= m%X” Juil fgfgﬁ il = llullc + [lv]l5

1<

3. Let V = R". The function

wlls = Juil. (A.11)
i=1
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where v; are the components of v (discrete integral norm), is a norm in V. The proof
is analogous to the previous case. For 1 < p < oo this norm generalizes to the
discrete p-norm,

1
n »
o, = <Z Ivz-l”) - (A.12)

i=1

. With p = 2 the discrete p-norm (A.12) yields the Euclidean norm

llvlle = (A.13)

In this case the proof of the triangular inequality is trivial for n = 1. Extension to
general n > 1 can be done by induction.

. The norms defined in R™ can be extended naturally to n X n matrices, i.e., to the

space V = R™*™. For example, the discrete maximum norm (A.10) can be extended
to

1Ml = (ax |- (A.14)
Another extension of the norm (A.10), which will be useful later, is

M| = max Z |75 (A.15)
Sism

The Euclidean norm in R™ is extended to the Frobenius norm,

Al = (A.16)

Here ;5 is the entry of the matrix A at the position 4, j.

. Let V. = C([a, b]) be the space of functions continuous in a closed interval [a, b].

The function
|[v]loc = max |v(z)] (A.17)
z€[a.b]

is a norm in V (maximum norm).

7. Let V = P¥(a,b). The function

b
lvlly = to(x)| dx (A.18)

Ja
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isanormin V. For 1 < p < oc this norm can be extended to the p-norm,

b 3
||vu,,:</ 11)(x)|”dm> . (A.19)

Here the subscripts in the norms || - ||oc and || - ||, are originated in the Lebesgue spaces
L*° and L which will be discussed in Paragraph A.2.9. For later use let us define seminorm:

Definition A.25 (Seminorm) Let V be a real or complex linear space. A seminorm on V
is any function | - |v : V. — R with the following properties:

1. |vly > 0forallveV,
2. lavly = |al|v|v for all v € V and all coefficients a,

3 Ju+ vy < uly + |vlv.

H EXAMPLEA.18 (Seminorm)

Inareal interval (a, b) consider the space of smooth functions with bounded derivative,

V ={ve Ca,b); sup |v'(z)] < oc}.

z€(a.b)
The function
|vl = sup [/ {(x)] (A.20)
z€(a.b)

is a seminorm in V. All three properties of Definition A.25 are easy to verify. The
only difference between norm and seminorm is that while

lvllv = 0 implies that v =0,
it can be
lvly =0 where v # 0,

as it was with constant functions in (A.20).

The advantage of seminorms is that they are easier to evaluate than full norms. When
restricted to a subspace W C V' which does not contain the nonzero elements of V' where
the seminorm vanishes, the seminorm becomes a full norm. This is shown in Example
A.19.
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B EXAMPLEA.19 (Seminorm which is norm in a subspace)

Consider the space V' from Example A.18. The functions preventing the seminorm
(A.20) from being a full norm are nonzero constants. For example, in the subspace
W C V of functions antisymmetric with respect to the midpoint of the interval (a, b),

b b
W = {w eV; w<% —;1:) = —w(% +;1:> forall x € (a.b)}.

these functions are not present, and therefore the function || - || = |- | is a norm in W.
The space W is a normed space according to Definition A.24.

On the other hand, sometimes it is practical to create a full norm by adjusting a seminorm
so that it does not vanish on nonzero functions. This is shown in Example A.20.

B EXAMPLE A.20 (Changing seminorm to a norm)

Consider the space V' from Example A.18 again and adjust the seminorm (A.20) to

a+b
U< 5 )‘ (A.21)

Now the nonzero constants make ||- || no longer vanish, and therefore itisanormin V.
The first two properties of Definition A.24 are obvious, and the triangular inequality
also is easy to show:

+b +¢
v = sup |u'<w>+'v’<f>‘+'“(Qz )+<2 ))'

lv = sup ' (x)] +
r€{a.b)

z€(a.b)
-+ b +b
< sup (Ju'(@)] + [ (@) + (Ju S ) [+ o 222 )
re(ab) 2 2
+b +b
< sup |u’<x>|+lu(“—)|+ sup |v'<.v>|+|v<“ )|:||u||+||v||.
z€(a.b) 2 x€{a.b) 2

The space V endowed with the norm (A.21) is a normed space according to Definition
A24.
A.2.2 Convergence and limit

This paragraph is devoted to the asymptotic behavior of infinite sequences in normed spaces.
Let us begin by introducing the notion of boundedness:

Definition A.26 (Bounded sequence) LetV be anormed space. The sequence {u, }52; C
V is said to be bounded in V if there exists a C > 0 such that ||u,,|| < C for all n.

Next let us use the notion of norm to define the convergence and limit of a sequence:

Definition A.27 (Convergence and limit of a sequence) Ler V' be a normed space. The
sequence {u, }5%, C V is said to be convergent in V' if there exists an element v € V such
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that for every §§ < € € R there exists an index n. such that {|v — u,, || < € for all n > n..
The element v is the limit of the sequence {u, }32 ;. We usually write

Hm v, =v
T DC

or

Uy — U AS N — OC.
Lemma A.20 summarizes basic facts about convergent sequences.

Lemma A.20 Let V be a normed space, {u,}oe, a sequence in V and v € V. The
following holds:

L.
lim w, =v ifandonly if lim |lu, —v||v =0.
n—oc n—oc
2.
lim u, =v then {u,}52, is bounded.
n—2oc
3.
lim u, =v then lm |Ju,+1 —uyllv =0.
=0 n—oc
Proof: Left to the reader as an easy exercise. [ |

Let us present a few examples illustrating the concept of convergence in normed spaces.
We begin with showing that the third assertion of Lemma A.20 is not an “if and only if™:

B EXAMPLE A.21

Let V = R. The sequence

T 1 oc
joe)
Uy by = — CR
{ 71}n—l n
i=1 n=1
satisfies
lim Jju,e — unllv = lim =9,
n— n—osc 1+

but it is well known that

1 .
oc = E — = lim u,
mn n—oc
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B EXAMPLE A.22 (Convergence and limit)

1. Consider the space V = R? equipped with the discrete maximum norm (A.10) and
a sequence of vectors {u, 52, C V,

1 _, sin(n) r
un:<1_ﬁve ”’ 2 )

n

The only candidate for a limit is v = (1,0,0)7. The sequence converges to v since

1
ln — v|l0 < . foralln > 1.

2. Let V = (C(0,1) equipped with the maximum norm (A.17),

[vllo = sup |u(z)],
z€(0.1)

and consider a sequence of functions {u,}22; C V,
U (z) = 2™ (1 - 2) + 2> + 1.

Since

3 n \"( 1 1
n T AL 1| = S s
x?(%ﬁ)'u (@ + 1) <n+1> <n+1) n+1

the only candidate for a limit is v(z) = 2% + 1. Since

fuy — v]loo <

5

n+1

the sequence converges to v.

B EXAMPLE A.23 (Nonconvergent sequences)
It is easy to show, using Lemma A.20, that the following sequences do not converge.

1. Consider the space V = P2([0, 1]) equipped with the maximum norm (A.17), and
the sequence {u,}>2; C V, u,(z) = nz(l — ). The sequence is not bounded
(JJun|loe = n/4 for all n).

2. In the same space V let {u,}2%; C V, un(x) = (—1)"z(1 — z). The sequence is
bounded (||uy, |leo = 1/4 for all n), but |jups1 ~ Unllec = 1/2 for all n.

3. Let V = C([0,1]) be equipped with the integral norm (A.18), and consider the
sequence {u, }52; C V, u,(z) = ™. Itis ||lu,|ly = 1/(n + 1) for all n, but the
only function v that could be its limit is defined by v(z) = 0 for x € [0,1) and
v(1) = 1. However, this function does not lie in the space V. More about this
situation will be said in Paragraph A.2.7.
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A.2.3 Open and closed sets

In this paragraph let us continue with the definition of bounded sets, open balls, and open
and closed sets:

Definition A.28 (Bounded set) Let V be a normed space and S C 'V a subset of V. We
say that S is bounded in V' if there exists a positive constant C' > 0 such that ||z|lv < C
forallxz € S.

Definition A.29 (Open ball B(g, 7)) Let V be a normed space withthe norm||-||v, g € V
and 0 < r € R. By the open ball with the center g and radius v we mean the set B(g,r) =
{veV;lv-glv <r}
B EXAMPLEA.24 (Open balls in R?)
1. Consider the linear space V = R? and the norms

lully = lur] + Juzl, Mullo = max(fuil, jual), [lullz = \/uf + 3,

where u € V, u = (us, us)T. The unit open balls B(0, 1) in these norms are de-
picted in Figure A.10.

’
N

-1 -1

Figure A.10 Examples of unit open balls B(0,1) in V = R?.

2. Let V = P5({a, b]) be equipped with the maximum norm (A.17). Consider a real
number r > 0 and a function u € V. The open ball B(u, r) comprises all fifth-degree
polynomials that lie inside of a “belt” of width 2r around u, as shown in Figure A.11.

Xz

Figure A.11  Open ball B(u,r) in the space V = P®([a, b]) with the maximum norm (A.17).
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3. In general, sets of functions are too abstract to be visualized like B(u.r) in Figure
A.11. It is sufficient to replace in the previous case the maximum norm (A.17) with
the integral norm (A.18), and the visual interpretation of the open ball B(u,r) is
lost. In such cases it is good idea to forget about concrete shape of the functions and
imagine them as points (see Figure A.12).

Figure A.12  Open ball B(u,r) in V = P?([a, b]) equipped with the integral norm (A.18).

Definition A.30 (Open and closed set) Ler V' be a normed space and S C V. The set S
isopenin V ifforevery g € S there exists v > 0 such that B(g.r) C S. The set S is closed
if its complement V' \ S is open.

Example A.25 shows an open set, a closed set and a set that neither is open nor closed.

H EXAMPLE A.25 (Open and closed sets)
Let V = C([a, b]) be equipped with the maximum norm (A.17).

1. Letuw € V and C > 0. The set

Si={veVillv—-ul. <C}
is closed.
2. Let C; < C5 be real numbers. The set
So={veV; C <v(r) < Cyforallx € [a,b]}
is open.
3. The set
Sy={veV:0<v(r)<1lforall x € [a.b]}

is neither open nor closed.
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A.2.4 Continuity of operators

Definition A.31 (Continuous operator) Let U and V' be normed spaces. An operator
f:U — Viscontinuous at g € U if for every € > 0 there exists a & > O such that

u € B(g,8) = f(u) € B(f(g).€). (A.22)
We say that f is continuous in U if it is continuous at everv g € U.

Usually, integral operators are continuous. Example A.26 shows an integral operator
that is continuous in the space C'([a, b]).

B EXAMPLE A.26 (Integral operator)

LetU = C([a. b]) be equipped with the maximum norm (A.17) and V' = R. Consider
a linear operator A : U — V,

Alu) = /b w(x)d.

a

Let g € U be arbitrary. Given a é > 0, the open ball B(g, 6) has the form

B(g.6) = {v € U; max |v(z) — g(x)] < é}.

v €la.b]

Every v € B(g. 6) satisfies

./ab vr)dr — /”b () dx

Hence, for every € > (0 we can find a  := ¢/{b — a) so that the implication (A.22)
holds. Since g € U was arbitrary, the operator A is continuous in the whole space U.

b
< [o{x) — g(x)| dx < 6(b — a).
—————

a

[A(v) = Alg)llv =

<&

Differential operators are more tricky. Let us devote Examples A.27, A.28, and A.29 to
their study.

B EXAMPLEA.27 (Derivative operator I)

Let U = P*{[a,b]) and V = P*~!([a.b]) be equipped with the maximum norm
(A.17), and consider the operator ¢ : U — V,

_du

= (A.23)

o(u)
(here k > 1 is a natural number). Let us show that the operator y is continuous.
Define £ + 1 points a« = g < @} < 22 < ... < x; = b, and consider the
Lagrange interpolation polynomials L, € P¥(a.b), Li(z;) = 6,0 < i,j < k.
Recall that the functions Ly, L1, ..., L; constitute a basis in /. The derivative of
each polynomial L; is bounded by a positive real constant C; > 0,
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sup |Li(z)| < C;, 0<i<k. (A.24)
r€(a.b)

Let g € U and v € B(g,8), where 6 > 0 is arbitrary. The functions ¢ and v can be
written uniquely as

&
glz) = Z(Y,L,',(J:), v(z) = Z,:’?iLi(:zt).

=0 i=0

The open ball B(g, §) has the form

B{g,6) = {veU, m{a)i] lv(z) — g{z)] < 8},
rela.
and therefore each pair of coefficients «,, and 5, are related via the inequality

k k

o > |U(I1n) - g(l'm)| = Z}/j’iLi(Tm) - Z()fiL'i(-Em)‘ = |Bm — Qyp |-

i=0 i=0
From here it follows that
k

> (B —a)Li(x)

i=0

lo(v) = wlg)llv = sup |[v'(z) = ¢'(x)] = sup
re(a.b) re(abd)

k
< sup Z {3 — | |Li(x)| < 86C,
refa.b) j:()H/—’?(/'—’

where C' = Zf:() C;. Hence, for every € > 0 we can find a § := ¢/C so that the
implication (A.22) holds. Since g € U was arbitrary, the operator ¢ is continuous in
the whole space U.

However, all polynomial spaces are finite-dimensional and as we shall see later, in finite-
dimensional spaces all linear operators are continuous. Therefore it is more interesting
to look for the largest space where the derivative operator is continuous. We have to be
careful, however, not to make the space too big. In Example A.28 we consider the space
U = C'(a,b) N C{[a,b]) equipped with the maximum norm (A.17).

H EXAMPLEA.28 (Derivative operator II)
Consider the space V = C([a.b]) equipped with the maximum norm (A.17) and its

subspace U = C'(a,b)NC([a, b]). The derivative operator (A.23) is now considered
as @ : U — V. The function

glz)=Vr—a
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is continuous in {a,b] and therefore ||g|ly < oo. However, its derivative ¢’(x) =
1/{2v/z — a) is unbounded, as shown in Figure A.13. Thus ¢(g) € V and ¢ is not
continuous according to Definition A.31.

\
\ &%)

Figure A.13 The function g{(z) = /= — a and its derivative ¢'(z) = 1/(2/x — a).

Finally let us show the continuity of the derivative operator in its natural setting of the
space of smooth functions with bounded derivatives in Example A.29.

H EXAMPLE A.29 (Derivative operator 11I)

Consider the derivative operator (A.23) as ¢ : U — V, where the space
U={veCa,b)NC([a,b)); sup |[v'(z)] < oo}
x€(a.b)

1s endowed with the norm

lullg = max |u(z)|+ sup |u'(z)],
z€la,b] L€(a.b)

and the space V = C([a, b)) is equipped with the maximum norm (A.17). In this
case the situation is simple, since

6> flu—yglly = max |u(z) — g(z)| + sup |v(z)—g'(z)|
r€la,b] z€(a.b)

> sup [u'(z) - g'(2)] = [lp(u) — (9)llv
r€{ab)

forall g € U and § > 0. Thus for every € > 0 it is sufficient to define § := € to
satisfy the condition of continuity (A.22).
In numerous situations an equivalent definition of continuity, based on sequences, is

practical.

Definition A.32 (Heine definition of continuity) Let U,V be normed spaces. A function
f:U — Viscontinuous at g € U if for every sequence {u,, }>°, C U such that

lim u, =g,

n—oo
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it holds that
lim flu,) = flg).

We say that f is continuous in U if it is continuous ar every g € U.

Theorem A.4 Definitions A.31 and A.32 are equivalent.

Proof: The proof for real-valued functions can be found, e.g., in [100]. It can be gener-
alized to functions in normed spaces easily. | |

Another important example of a continuous function is the norm || - ||y itself.
Lemma A.21 (Continuity of norm) Ler V be a normed space. The norm || - ||y : V — R
is continuous in V.

Proof: Itis advantageous to use the Heine definition of continuity in this case. Let v € V
and let «,, — v be an arbitrary sequence in V. It is our aim to show that for every € > 0
there exists an index n. such that

wnlly = llvllv] <€ foralln > n..
Recall the well known “backward triangular inequality” for real numbers,

[la| = 1b]] < la—b] foralla.beR. (A.25)

Using the triangular inequality for a general norm || - ||y, this inequality can easily be
extended to |{|uq]lv — l|usllv] < |lua — ws||v for all u,, u; € V. In particular,

W lle = Mol b < = el

Hence, for given ¢ it is sufficient to take n. from the definition of convergence u,, — ©. H
Next let us introduce an important result for linear operators, which states that the

continuity at one element is equivalent to the continuity in the entire space:

Lemma A.22 Let U.V be normed spaces and L € L(U.V'). The operator L is continuous

in the entire space U if and only if it is continuous at least at one element u € U.

Proof: The first implication is obvious. Next, without loss of generality, we show that the
continuity of L at 0 € U implies its continuity at an arbitrary u € U. Let {u, }72; C U
be an arbitrary sequence with the limit . The following holds:

lim wu, =u = lim 2, = 0.

[ amde n—xx
where v,, = u,, — u for all n. The continuity of L at zero (Heine definition) implies that

0= lim Lv, = lim L(u, —u) = lim (Lu, — Lu) = lim Lu, — Lu.

n—oc n—oc Hn—oc n—oc

An interesting consequence of Lemma A.22 is that if there is some « € U where a linear
operator L is not continuous, then L cannot be continuous at any other element v € U.
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Lemma A.22 further easily implies the continuity of linear operators in finite-dimensional
spaces:

Proposition A.3 LetU.V be finite-dimensional normed spaces. Then every linear operator
L e L{U, V) is continuous.

Proof: Letdim(U) = m,dim(V) = n and By,. By be some bases in the spaces U and V,
respectively. By Lemma A.11 every L € L(U, V') can be represented by an n x m matrix
M, so that

(L(g))p, = M {g)p,. forallgeU.
An arbitrary sequence {gy }72, C U satisfies

g —0 = {g)p, — (0.0..... nt.

m times

and therefore

Mp{gr)m, — (0,0.....0)".
——

notimes

Thus the operator L is continuous at 0 € U, and Lemma A.22 yields the continuity in the
entire space U. |

Proposition A.3 will be used to prove that all norms in a finite-dimensional space are
equivalent (Theorem A.5).

A.2.5 Operator norm and L(U, V') as a normed space

Let U and V be normed spaces. In this paragraph we show that the space £(U, V'), con-
taining all linear operators from U to V, is a normed space. This allows us to consider the
convergence and limit for sequences of linear operators, and define closed and open sets of
linear operators. This methodology finds important application in the numerical solution of
operator equations (including integral equations, PDEs and integro-differential equations),
where typically some complicated operator L is approximated by means of a sequence of
simpler operators L,, that converge to L in some appropriate sense.

Definition A.33 (Operator norm, bounded operator) Ler U.V be normed spaces. The
norm in L € L(U,V), called operator norm, is defined by

L,
1) = sup LEellv (A.26)
0#uelU ||u U
An operator L € L{U. V) is said to be bounded if | L|| < oc.
An equivalent definition of the operator norm,
Ll = sup ||Lu|v. (A.2T)

[[re][=1

can easily be obtained from (A.26).
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Indeed (A.27) is a norm in £(U,V): If L is nonzero then there exists at least one
0 # u € U suchthat Lu 5 0, and since || - || is a norm, it is || Lu||y > 0 then. The second
property in Definition A.24 also follows from the fact that || - ||y is a norm. The triangular
inequality reads

IL1+ Lol = sup {|Liu+ Loullv < sup {||Liu]lv + || Lauflv)

[luffo=1 [lefler=1

< sup ||Lyullv + sup [[Loufly = || Lol + (| L2l

llully=1 Nl =1
forall L1, Ly € L{U, V). Also the following proposition is trivial, but frequently used.

Proposition A.4 Let U,V be normed spaces and L € L(U, V). The following holds:
[ Zullv < [|L][[[ulle (A.28)

forallu e U.

Proof: This follows immediately from the definition of the supremum in (A.26). u

Lemma A.23 (Composition of linear operators) Let U, V, and W be normed spaces and
Fe L(U V), G e L(V,W) bounded linear operators. Then the composition G o F also
is a bounded linear operator, and |G o F|| < [|G|||| F|l-

Proof: By (A.28)itis [|[(G o Flull = [[G(Fu)|| < (G|l[[Full < [IG][[[Fl[lull for all
u € V. The conclusion follows. |

Lemma A.24 (Equivalence of continuity and boundedness) Let U,V be normed spaces
and L € L(U, V). Then L is continuous if and only if it is bounded.

Proof: First assume that L is not bounded. Thus there exists a bounded sequence
{u,}22, C U such that | Lu,|| — oc. Without loss of generality, we can assume that
Lu,, # 0 for all n. Define a new sequence

Uy,
| Lunll”

Vy =

which satisfies
v, — 0 & |[Lv,|| =1 forall n.

This means that L is not continuous at 0, and therefore it is not continuous anywhere in U.
Conversely, assume that the operator L is bounded. Then there exists a positive constant
C such that

[ Zully < Cllully

forallu € U. Thus L is continuous at 0 € U and, by Lemma A.22, in the whole space U. I
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A.2.6 Equivalence of norms

Since a linear space V may be endowed with many different norms, it is natural to ask the
following questions:
e Does a sequence {u, }52; C V, which converges in some norm, remain convergent
in another norm?
e Does aset S C V, which is open in some norm, remain open in another norm?

The answer is related to the notion of equivalent norms.

Definition A.34 (Equivalent norms) Let V be a normed space and || - ||v,1 and || - ||v2
norms in V. We say that these norms are equivalent if there exist positive constants C and
Cy such thar

Cill “llva £ - llve £ Call - v

forallv e V.

Proposition A.5 Let V' be a normed space and || - ||v1 and || - ||v.2 norms which are
equivalent in V.

1. Letv € V. The sequence {u, };=, C V converges to v in the norm || - ||\y.1 if and
only if it converges to v in the norm || - ||v.a.
2. Any subset S C V is open in the norm || - ||v.1 if and only if it is open in the norm
I Hlve.
Proof: Left to the reader as an easy exercise. |

Couple of equivalent norms is shown in Examples A.30 and A.3].

B EXAMPLE A30 (Equivalent norms in Euclidean spaces)
Let U = R™. The discrete maximum norm (A.10) and the discrete integral norm
(A.11) are equivalent, since
lulle < faully < nllall= (A.29)

for all «w € U. The Euclidean norm (A.13) is equivalent to the discrete maximum
norm since
lull < llullz < Vollullx (A.30)

for all v € U. This, obviously, makes the norms || - ||; and || - || equivalent.
The situation is even more interesting in polynomial spaces, where one can practise
elementary estimates:

B EXAMPLE A.31 (Equivalent norms in polynomial spaces)

Consider, for example, the space U = P¥([—1.1]) with the maximum norm (A.17)
and the integral norm (A.18). We will show that these two norms are equivalent in U.
The first inequality is easy and it does not even require U to be finite-dimensional:

1 1
1 = [ 1@lde < [ e 1f@)de =2 _max 1) = 20f)<. @30

—1<r<1
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When f(z) = 1 or f(x) = —1, (A.31) becomes an equality. Hence the constant 2
cannot be improved (the estimate is sharp).

The other inequality requires to go deeper into the structure of the polynomial space
U, and we shall use the Legendre polynomials for this purpose. These polynomials
will be discussed in more detail in Example A.44. Now we need their following
properties:

1. The k + 1 Legendre polynomials Lg, L1 ... ., Ly form a basis of P*([—1,1]).
2. Itis=1< L, (x) <lin[-1,1]forallm=0,1.2....
3. The following holds:
1
/ 1 Li{z)L;(x)de = by, foralli,j > 0.
where 0;; is the Kronecker delta.
By the first property, every f € U can be written as
&
f@) = a;L;(w).
Jj=0

and thus for any 0 < . < k we can estimate

.1 .1 .1
1 = [ @iz [ 1@ L) b2 [ [ f@iLaen @
J—1 J =1 S— J—1
<1
1k IS .1
= / > oL@ Ly (x)de| = > a; / Ly(a)Lp(x) dz| = |an].
=1 =0 =0 71
h.l”’
Summing the inequalities (A.32) overall m = 0.1... ., k, we obtain
k k
: > > as : 2l
(k+Dliflh > Z o] > ~111%.F(§1 Z [m | |Lp ()]
m={) m={ Y
<1
L.
> wmax |y apLy(e)|= wax |f(2)] =||fllx-

—1<x<1 —1<r<1

m=0
Thus we conclude that
e < A1 < 208
k‘+1 >x = ([ = JAlx -

which means that the norms (A.17) and (A.18) are equivalent in U.

The following theorem confirms the intuition that we gained in the previous two exam-
ples:
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Theorem A.5 (Finite-dimensional case) Let U be afinite-dimensional normed space. Then
all norms in U are equivalent.

Proof: Consider a linear space U of dimension n, and two arbitrary norms || - || 1
and || - ||;. For clarity, by Uy and U, denote the normed spaces obtained when U is
equipped with the norms || - |71 and || - {2, respectively. Consider the identity operator
T, : Uy — Uy, Tyu = uforall w € U. This indeed is a linear operator, which by
Proposition A.3 is continuous. Thus by Lemma A.24 it is bounded, and there exists some
Cy > 0 such that

Ujju.2
1T = sup L4
0#uel ||U||U,1

= Wl

This means that we have
lullvz < Crillullua forallu € U.

Analogously there is a positive constant C5 > 0,

U U,
1L = sup v

ozuevu Nullve ~

2',
for the identity operator Z : Uy — Uy. Thus we have
1
F”UHUJ <ullve < Crlfully, forallu € U,
2

which concludes the proof. n

However, this result does not extend to infinitely-dimensional normed spaces, as the
following example shows:

B EXAMPLE A.32 (Nonequivalent norms and the convergence of sequences)

Let V be the space of bounded integrable functions defined in the interval [0, 1].
Consider the maximum norm (A.17) and the p-norm (A.19),

e = g @ 0= ([ 1@ 02) "

zE€|

where 1 < p < oo. Define a sequence of functions {f,,}32, C V as

1, T € (O, l) ,
falz) = "

0 elsewhere.

Clearly the only candidate for a limit is the zero function. However, it is

lim || fallec = lim 1=1.
n—0C n—oo
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At the same time,
lim || fnll, = lm n"r =0
n—2C n—oc

forall 1 < p < oo. It is easy to show the nonequivalence of the norms using the
sequence { f, }5°; and Definition A.34.

Also the following example is related to nonequivalent norms:

B EXAMPLE A.33 (Nonequivalent norms and open and closed sets)

Let V = C([a, b]), where {a.b) C R. Consider now the maximum norm (A.17) and
the integral norm (A.18). The set

S={feV;0<|f(@)| <L fla) =0; f(b) =1}

is closed in the maximum norm, since 0 < ||f|l. < 1 forall f € S. However, it is
open in the integral norm, since 0 < || f||, < (b — a)!/? forall f € S. The situation
is illustrated in Figure A.14.

Figure A.14 The set S does not contain the functions f1(z) = O and f2(z) = 1. Therefore it is
0 < |Ifll, < (b—a)!/? forall f € Sand S is open in the integral norm.

A.2.7 Banach spaces

In normed spaces one finds sequences which exhibit all signs of convergence except that
they miss a limit in V' (as it was the case, e.g., in Example A.23). Let us look closer at this
behavior. The following definition explains what we mean by “all signs of convergence™:

Definition A.35 (Cauchy sequence) Ler V be a normed space. A sequence {u,}52,; C V
is said to be a Cauchy sequence if for every € > 0 there exists an index ng such that

un — umllv <€ foralln,m > ng. (A.33)

Here is a trivial observation on convergent sequences:

Proposition A.6 Let V be a normed space. Every sequence {u,, }>2, C V that converges
to some element v € V is a Cauchy sequence.

Proof: This is an easy exercise using Definition A.27. [ |
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A nonconvergent Cauchy sequence is shown in Example A.34.
B EXAMPLE A.34 (Nonconvergent Cauchy sequence)

Consider the linear space C([0,2]) endowed with the integral norm (A.18), and a
sequence of functions { f,,}°2, C V defined as

1, z € (0,1),

fn(x) =

The sequence f,, is depicted in Figure A.15.

fix
I

Figure A.15 Nonconvergent Cauchy sequence in the space C(]0, 2]).

It is easy to calculate

1 1

n m

Vo= full = 5

and to verify the Cauchy property
lim <1im 1 fn — fm|]) = 0.
m—00 \n—o0

However, the sequence {f,}52, does not have a limit in the space C([0, 2}).

The class of linear spaces where this cannot happen was first defined in the dissertation
of a Polish mathematician Stefan Banach in 1920. S. Banach is assumed to be one of
the founders of modern functional analysis. He made major contributions to the theory of
topological spaces, measure and integration theory, set theory, and the analysis of orthogonal
series.
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Figure A.16 Stefan Banach (1892-1945).

Definition A.36 (Banach space) A normed space V' is said to be Banach space if for every
Cauchy sequence {v,}>_, C V there exists an element v € V such that lim,, . v, = v.

Here are a few examples of Banach spaces:

1. the real or complex n-dimensional Euclidean space R” with the discrete maximum
norm (A.10) or the discrete p-norm (A.12), whose special cases are the discrete
integral norm (A.11) and the Euclidean norm (A.13),

2. the space R"*" of real or complex matrices with the norms analogous to the previous
case, for example with the Euclidean norm (A.16).

3. the space V = [ of infinite real sequences with the discrete p-norm

x g
{untizillv = <Z |“n|p> .

n=1
where 1 < p < o,
4. the space P¥([a.b]) with the maximum norm (A.17),

5. the space C{[a. b]) with the maximum norm (A.17).

A sufficient condition for a normed linear space to be Banach space is mentioned in Lemma
A.25.

Definition A.37 (Reflexivity) A normed space V' is said to be reflexive if the dual space to
its dual is V itself, i.e., if (V') = V.

Lemma A.25 Every reflexive normed space is a Banach space.

Proof: This proof can be found in most textbooks on functional analysis, e.g., in {65]. &

Let us remark that there exist Banach spaces which are not reflexive. We already know
that with U, V' being normed space, the space L(U, V') is a normed space as well. The
following theorem moreover gives a sufficient condition for £L(U, V') to be Banach space.
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Theorem A.6 (Conditions for L{U, V') to be a Banach space) Ler U be a normed space
and V be a Banach space. Then L(U. V') is a Banach space.

Proof: Let {L,}>, be a Cauchy sequence in L{U.V} and u € U arbitrary. We show
that { L, u}><, is a Cauchy sequence in V:

This is clear if u = 0. If « # 0 consider an arbitrary € > 0. There exists an index 7 so
that || L,, — L,,|| < €/||u|ly for all m.n > 1. Then

Lyt — Lyullv: < [ Ly — Lpllulle <e forall mon > ng.

and indeed {L,u};%, is a Cauchy sequence. Since V' is a Banach space, this sequence
converges to some element in V. Thus we can define the limit L of the sequence {L,, }7Z,

by

Lu= lim L,u foralluelU.

=2

It is easy to see that L is linear, and thus it remains to be shown that [|L|| < x:
Let € > () be given. There exists some index n such that ||L,, — L, || < €/2 for all
m.n > ny. Therefore for every u € U we have

ellulle

L, u—Lyullyv <L = Lallllelle < forall m.n > ny.

3]

and

ellu||e
limv ||L,u — Lyu|ly M
v m—c 2

[[Lu— L, ul|ly =

IN
IN

lim L,,u—L,u
m—x
for all n > n;y. Finally,

¢
|Lullv: = |[Low+ Lu — Lyullv < || Lyullv + |[Lu— Lyul)yv < (HL,,H + 5) (22|

€

Thus L is a bounded linear operator. Since ||L — L, || < § for all n. > ny, we have that
L,—LinL{UV)asn— x. |

Completion of normed spaces Next let us mention the completion of normed spaces
to Banach spaces.

Definition A.38 (Dense subset) Ler V be a normed space and S a subset of V. The set S
is said to be dense in V' if for every v € V there exists a sequence {s,,}>°_| C S such that

lim s, — v]lyv = 0.
n—"2C
The main result is formulated in the following abstract theorem, which is followed by
an illustrating example.

Theorem A.7 (Completion of normed spaces) To every normed space U there exists a
Banach space W such that:
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1. There is a subspace V. C W and a linear bijection T : U — V satisfying

|Zullw = |lully forallu e U.

The operator T is called isometric isomorphism between the spaces U and V.
2. The space V is dense in W.

The space W is called completion of U, and it is unique up to an isometric isomorphism 1.
Proof: See,e.g., [99]. |

For example, the Banach space W = R is defined to be the set of equivalence classes of
all Cauchy sequences in the space of rational numbers Q. The space V' is then identified
with Cauchy sequences in @@ whose limit lies in . The incompleteness of the space Q is
illustrated in the following example.

8 EXAMPLE A.35 (Completion of rational numbers)

Consider the normed linear space Q of rational numbers endowed with the standard
norm

llalle = lql-

In order to see that Q is incomplete, let us describe the way the ancient Babylonians
calculated square roots. To find a rational approximation of the square root of an
integer @ > 0, let 0 < xg € Q be such that z2 < a. Thenzy < /a < a/zo € Q.
The average of these two values gives an even closer estimate,

T +a/xy
Thbl = 5 [k ¢ Q. (A34)
as depicted in Figure A.17.
sqrt(a)
S
0' ;‘k a/x‘k+.l 'ka a'/x,\

Figure A.17 Approximate calculation of a square root.
Iterating this formula, we obtain a convergent sequence {z4}72, C Q such that
lim zx = va.
k—oc

It is left to the reader as an exercise to prove that the sequence is convergent and that
its limit is 1/a. There are several ways to do this, one of them using the fact that

zo— | forallk>1. (A35)

Zo

<...<

LTht1 — == okt

Tk+1
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The formula (A.34) is still used in modern digital calculators due to its high efficiency.
Its origin sometimes is attributed to Heron of Alexandria who described it in his
famous “Metric”, but as a matter of fact the formula was already known to the old
Babylonians.

A.2.8 Banach fixed point theorem

The concept of contractive operators and the Banach fixed point theorem play an important
role in the analysis and numerical solution of nonlinear problems. Let us mention the basic
results and show their applications:

Definition A.39 (Contractive operator) Consider a Banach space V and a (not neces-
sarily linear) operator L : V. — V. Then L is said to be contraction if there exists a real
number 0 < g < 1 such that

|Lu — Lvlly < gllu — vy  forallu,v e V. (A.36)

It is important that the number ¢ is strictly less than one. Moreover, if a contractive
operator L is linear, we have || Lully < gl|ul|v for all uw € V, which means that

LIl < g <1
The following theorem holds for both linear and nonlinear operators:

Theorem A.8 (Banach fixed point theorem) Let V' be a Banach space and L -V — V
a contraction with a constant 0 < q < 1. Then the equation Lx = x has a unique solution
x € V. Moreover, the sequence {x, }5%, C V defined by x,,11 = Lx,, for all n, converges
to x for every xg € V.

The element x € V such that Lz = z is called fixed point of L.

Proof: Let us choose an arbitrary element z; € V and define a sequence {z,,}22,
ZTp4+1 = Lax,. We begin with showing that this is a Cauchy sequence:

“~Tn+k' - zn” = “~In+l — Tn + Ln+2 — Tn+1 + ...+ Tn+k — xn+k‘—1”
k
S Z Hzn-H" — Tn+r—1 ”
r=1
k
< (Z qn+1'—1> ||.E1 _ -'170”
r=
1—g*
= q" llz1 = zoll
l—g¢
n
< Tl -l

Hence, for an arbitrarily small € > 0 we always can find an index ng such that

70

_ <e.
lqu?El zof < e
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and we see that ||z,, — x| < € forall m,n > ng. Thus the sequence {x,, }>%, has a limit
in V that can be denoted by z. It remains to be shown that Lax = x:

|Lz —z|| = ||L&—a, 01+ 20 — I
< L =gl + o — 2]
= |Lx = Loy | + |zns1 — x|l
< gl =zl + ey — 2l

Since both ||z — z,,|| and ||2,,+1 — x| converge to zero as n — oo, necessarily itis Lz = .
Suppose that there exist two different elements z and y in V such that Lz = z and Ly = y.
Subtracting these relations and taking the norm, we obtain

lz —yll = 1Lz — Lyll < glle = yll <[l —yll.

which is a contradiction. Thus we conclude that the element . € V' is unique. |

The procedure for finding the fixed point x € V' of a contractive operator L, which was
used in the proof of Theorem A.8, is called fixed point iteration. The next lemma says
that under special circumstances the operator L does not even have to be contractive in the
whole space V to have a fixed point:

Theorem A.9 (Local fixed point theorem) Ler V' be a Banach space and S its closed
subset such that L(S) C S (i.e, Ls € S forall s € S). Further, let L : V — V be an
operator which satisfies locally in S the contraction condition

| Lu — Lu|lv < gllu —vlly  forallu,ve S (A37)

with some 0 < g < 1. Then the equation Lx = x has a unique solution x € S. Moreover,
the sequence {x,,}°% o, Tp+1 = Ly, converges to x for an arbitrary xg € S.

Proof: Let xq be arbitrary element of S. By induction, the sequence {z,}°2, liesin S,
and so does its limit x by the closedness of .S. For the rest see the proof of Theorem A.8. 1l

Many applications of the fixed point theorem are related to the solution of nonlinear
problems. Let us present a few examples for illustration:

B EXAMPLE A.36 (Fixed point iteration)

1. Let V = R. Consider an arbitrary real function g : V — V which is Lipschitz-
continuous with a constant 0 < ¢ < 1, i.e., such that

lg(z) — g(y)] < gl —yl (A.38)

forall z,y € R. This requirement obviously is satisfied, e.g., by all smooth functions
whose derivative satisfies |¢'(z)| < ¢ for all z € R. Theorem A.8 guarantees the
existence of a unique solution to the equation g{x) = z. The solution can be found
via the fixed point iteration z,,+1 = g{(z,,), starting from an arbitrary zy € R.

2. Now let us apply the fixed point iteration procedure to find all real solutions of the
equation
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2 4+r—1=0.

The easiest way to transform this equation into the form g(z) = =z is to define
g(z) = 1 — 2% However, then there exists no finite ¢ > 0 for condition (A.38) to
hold, since |¢'(x)| — oo as © — oo. Another attempt,

is successful since |¢'(x)] < 0.7 forall z € V = R. Now Theorem A.8 yields the
existence of a unique solution x € R. Again, the solution can be found via the fixed
point iteration x,+; = g(zy), starting from an arbitrary xg € R. The situation is
shown in Figure A.18.

Figure A.18  Solution of the equation z* 4+ z — 1 = 0 via fixed point iteration in R (Theorem A.8).

3. Next let us solve the nonlinear equation

z—cos(z) =0

in V = R. The original Banach Theorem A.8 cannot be applied since there exist
points z, = 7/2 + k7 such that | cos’(zx)| = 1, and thus condition (A.38) does not
hold for any 0 < ¢ < 1. This can be shown easily using some arbitrary sequence
{ym }3°_, converging to some of the points xx. Fortunately there is a remedy in the
form of Theorem A.9. We can define a closed set S = [—1, 1] and use the fact that
cos(S) C S. Since |cos'(z)| < 0.9 for all x € S, Theorem A.9 guarantees the
existence of a unique solution z € S. Again, this solution can be found iteratively
using an arbitrary ¢ € S. The graphs of the functions g{x) and z are shown in
Figure A.19.

. In the last example we visit numerical linear algebra. Consider a nonsingular real
n x n matrix A and a real vector b € V = R™. The Jacobi method for the solution
of the system

Az =5
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Figure A.19  Solution of the equation x — cos(z

(Theorem A.9).

is based on the decomposition

T T T T T T

05

) = 0 via fixed point iteration in [-1,1] C V

A=L+D+U

of the matrix A into the sum of a lower-diagonal matrix L (whose entries on and
above the diagonal are zero), diagonal matrix D and upper-diagonal matrix U (whose

entries on and below the diagonal are ze
transformed into

ro). The equation (L. + D+ U)x = bcanbe

r=D7 b~ (L+U)xl.

(without loss of generality, we can assume that the diagonal entries are not zero —

otherwise we perform a permutation of
fixed point iteration scheme

-1
Tpyl = D

rows in the linear system). This leads to the

b—(L+U)x,),

where xp € V isanarbitrary initial guess. We cannow defineanoperator /' : V — V,

Fr=D7b— (L+U)z.

F' is not linear (more precisely, it is nonlinear for all b # 0), but nevertheless we can

use the Banach Theorem A.8 to analyze

convergence of the Jacobi method:

Let || - || be the discrete maximum norm (A.10) in V. For any matrix M € R™*"

and w € V we can estimate

max
1<<n

| Mwlloo

<  max
1<i<n 4
G=
< max
<

T
E mijwj
j=1

1992 ;]

(A.39)

n

D fmafws]

=1
n

max. |w;]

(i)

j=1

M llwlloc.
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where {|A{] is the matrix norm (A.15),
1M|| = max Z il

Letu,v € V. Substituting D~!(L + U) for M and u — v for w in (A.39), we obtain
[Fu— Follee = ID™HL +U)(u = 0)]loc <IDTHL+U)u~ vl

Hence the operator F'is a contractionif | D~ *(L+U)|| < 1. Looking at the structure
of the matrix D™(L + U), we have

n

1 1
1D~ (L+U)H— 28 |Z|lu + | = rax ol > lail

j=1,j#i
Thus a sufficient condition for the operator £ to be contraction is

T
lal > > la;|  foralll <i<n. (A.40)
J=1,j#i

Every matrix A with this property is called strictly diagonally dominant (SDD). We
have shown using Theorem A.8 that the Jacobi method applied to any SDD matrix
converges to the solution = of the linear system Az = b for any right-hand side
be R".

A.2.9 Lebesgue integral and LP-spaces

The Lebesgue LP-spaces have a prominent position within the class of Banach spaces
because of their importance for the study of partial differential equations. Henri Léon
Lebesgue was a French mathematician who generalized the Riemann integration and es-
tablished the basis of modern measure and integration theory.

Figure A.20 Henri Léon Lebesgue (1875-1941).
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Because of space constraints, we only can summarize the basic ideas of the Lebesgue
integration theory in the next paragraph. For a systematic introduction we refer the reader
to [28, 98] and [99].

A few loose words about the Lebesgue integration theory The measure of a set
is arigorous definition of its volume that remains exact even for very complicated sets whose
volume in the traditional sense is difficult to imagine. The definition of the measure of sets
precedes the definition of the integral. The Lebesgue measure, which is used to define
the Lebesgue integral, is an alternative to the Jordan measure upon which the Riemann
integral was built. There exist rare sets whose Lebesgue measure is undefined, but the
reader does not have to worry about encountering them, since this is is almost impossible
in practice. In what follows, all our considerations are based on the Lebesgue measure,
Lebesgue-measurable sets and Lebesgue integrals of functions defined in such sets. We
shall not repeat the name of Lebesgue or the measurability assumption anymore.

We shall say that a set ¢y C RY has zero measure in R? if its d-dimensional measure is
zero. For example, the d-dimensional measure of a set {2, consisting of a finite number of
points or even of a countable infinite set of points, such as the set of rational numbers, is
zero if d > 1. The one-dimensional measure of the interval (a.b) equals to b — «, but its
two-dimensional measure as an edge of the square (a.b)? C R?, or its three-dimensional
measure as an edge of the cube (a.b)* < R?, is zero. Analogously the measure of any curve
@ (a.b) — R is zero in R? if d > 2. The three-dimensional measure of sets consisting
of up to countable infinite number of points, one-dimensional curves or two-dimensional
surfaces is zero.

Let f : £ — R, where  C R is an open measurable set. The Lebesgue integral of f
over {2 is invariant with respect to the values of the function in zero-measure subsets of ).
This can be written as follows,

/ flz)dx = / flxydx  forall 2y C Q. || = 0. (A.41)
Q Jone,

So, for example, it does not matter whether the integral is performed over an open set
Q c R? or over its closure Q. Or, when integrating a function g in an interval (a,b) C R, it
does not matter what values it attains on rational numbers. Because of the above-described
properties the Lebesgue integral is defined for functions where the Riemann integration
fails, as shown in the following example.

B EXAMPLE A.37 (Riemann vs. Lebesgue integral)

Let @ = (a,b) C R be a nonempty bounded interval. Define ), = 2 N Q and
consider the function

1, x € g,
g(z) = (A.42)
—1, T Q \ Q(),

where Q is the set of rational numbers. The graph of this function is shown in Figure
A2l
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8(x)

Figure A.21  Graph of the function (A .42).

To define the Riemann integral, cover the interval {a. b) with a partition a = zy <
xp < ...<ux, =bsuchthatz, —r;_; < {b—a)/nforalll < ¢ < n. The Riemann
integral is defined as

It

(B)] ate)de = lim 3 gl6) e = ric). (A.43)
JQ T2

i=1

where &; is an arbitrary point in the subinterval (r;_y.x;). Clearly the limit (A.43)
does not exist, because £; always can either be minus one or one (and thus the result of
the Riemann integration can be anything between — (b — a) and b — a). The Lebesgue
integral, according to (A.41), yields a unique result,

(L?/()!](Jr)dx = /Q\Q“@ dr + /szu glx)dr = —(b—a).

H—/
=0 since [2y]=0

We shall say “almost everywhere (a.e.) in {2” meaning “everywhere in 2 up to a subset
1y C §, where |€2y] = 0”. Two functions f and f defined almost everywhere in ( are said
to be equivalent in the Lebesgue sense if f = f in 2\ €, where [Qy] = 0. In the above

example, the function g(.r) was equivalent to g{x) = —1.

Definition A.40 (L”-norms and L?-spaces) Let 2 C R? be an open set. Consider the
linear space V' of measurable functions defined in §). For every 1 < p < oc we define the
L?-normin 'V as

11, = ([ 1r@iraz)" (Ad4)
Q
The L™ norm in 'V is defined as
[ fll~ = ess sup |f(z)]. (A.45)
TN
where the essential supremum of a function is defined as

ess sup g{x) = inf sup g{x).
ﬂUegg( ) 2oLy n\gg( )

The spaces L¥(Q) are defined as
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LPQ) = {feV; |[fl, <oc} foralll <p< oo

and
L>() = {f €V, ess sup |f]| < oo},
e

Despite its rather complicated definition, the essential supremum is just the “supremum
that disregards extrema in zero-measure subsets”. If the essential supremum of a function
is finite, this function is said to be essentially bounded.

Of course the reader has the right to ask if the relations (A.44) and (A.45) define norms:
We are going to prove the corresponding triangular inequalities to Paragraph A.2.10. Prior
to manipulating with LP-functions, however, let us get some feeling for their shapes.

Shape of LP functions in{) C R

1. Let 2 = (a,b) C R be bounded. Then every essentially bounded function f : 2 —
R, |f(z)] < Cae. in Q, belongs to LP(Q) for all 1 < p < co. This is obvious for
p = o0, and for p € [1, 00) we can estimate

1

P

11l = /Qlf(x)l”dw <0t < oo (A46)
<cr

2. In unbounded sets  C R, essentially bounded functions still lie in L>(€2) (that is
the definition). But generally they do not lie in LP(§2) forp € [1, 00). This is obvious
when taking the function f(x) = 1 and rewriting (A.46) for a set 2 C R, |Q] = co.

3. One of the main purposes for LP-spaces is to control the strength of singularities.
Consider, for example, the interval €2 = (0, 1) and the function f(z) = 1/2®. Then
the LP-norm of f(xz} is

1
T o < —
1P v (1-ap)? p
1= ([ || #)" -
Q| 1
00 o> —.
p

Hence, real functions defined in 2 C R lie in the space LP(Q}) if either they are
essentially bounded or if their singularities are weaker than the singularity of z—=1/?
(at singular points they go to infinity slower than z~1/7),

4. The other purpose of LP-spaces is to control the rate of decay at infinity on unbounded
sets. Consider, for example, the interval 2 = (1, 0o) and the same function as above,
f(z) = 1/x*. Now the LP-norm of f(z) is

i 1
L —T a > —
1P\ (ap—1)» p

15 = ([ | 5] 00) " =
Qi 1
00 a< —.
p
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We conclude that on unbounded sets € C R, real functions lie in the space LP(£2) if
they decay faster than 1/x!/? at infinity.

Shape of L? functions in 2 C R?

1. Let @ C R? be an open bounded set. Then every essentially bounded function
f:2 =R, |f(z)] £ Cae. inQ, belongs to LP(2) for all 1 < p < oo (proof is
analogous to the 1D case above).

2. Let @ C R? be an unbounded open set. For the same reason as in the 1D case,
essentially bounded functions lie in L°°(€2), but generally they do not lie in LP(2),
1 < p < o0. For this they need a sufficient rate of decay at infinity, analogously to
the 1D case. We will discuss this in a moment.

3. In order to analyze the behavior of functions with singularities in bounded open sets,
it is enough to use the open ball Q = B(0, R) C R with a finite radius R > 0.

Consider the function f(z) = 1/r®, r(z) = \/2? + ... + 2. Using the integration
in polar coordinates (which is left to the reader as an exercise), we obtain that

d

L < o0 a< -,

P 5 P
da:)

1= ([ |

1e3

Thus a function defined in an open bounded set © C R® belongs to LP(€2) if and only
if either it is essentially bounded or its singularities are weaker than the singularity
of r—d/7,

4. On the other hand, for functions on unbounded open sets we can restrict ourselves
to the open set = R?\ B(0, R), where R > 0. For the function f(x) = 1/r°,
r{x) = /22 + ... + 2, using the integration in polar coordinates again, we obtain

d

<o o> -,

= ([ [ 5] e=)’ !
= — T

* Q|7 d

=00 a < —

p

We conclude that functions defined in open unbounded sets 2 < R belong to LP(£2)
if and only if they decay faster than 7~/ at infinity.

Let © < R be an open set. Then the space LP(€2) is infinite-dimensional and its basis,
obviously, consists of an infinite number of functions. To give an example, the Legendre
polynomials Lg, L, Lo, ... form a basis in the space LQ(—l, 1). We will discuss them
in more detail in Paragraph A.3.3. Another important example is the basis of the space
L%(0,27) consisting of the functions {cos(nz)}32 and {sin(nz)}° ;, which is used to
expand L?-functions into Fourier series. The Fourier series will also be discussed in more
detail in Paragraph A.3.3. Before we present the most important inequalities in LP-spaces

in Paragraph A.2.10, let us say a few words about discrete LP-spaces.
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Discrete LP-spaces Although in this text we focus primarily on infinite-dimensional
LP-spaces defined in open subsets 2 of R? (case most relevant for the study of partial dif-
ferential equations and finite element methods), the finite-dimensional spaces R™ equipped
with the discrete p-norm (A.12) are also worth mentioning.

Discrete LP-spaces are defined on the so-called counting measure (see, e.g., [99] for
details), where the integration is equivalent to summation. Then the integral p-norm (A.44)
comes over to the discrete p-norm (A.12), and the L>°-norm (A.45) naturally is replaced with
the discrete maximum norm (A.10). The finite-dimensional case of R™ can be generalized
to the space of infinite real (complex) sequences. Used is an analogy of the discrete p-norm
(A.12), with the sum going from one to infinity, and the analogy of the discrete maximum
norm (A.10), where the maximum is replaced with the supremum over absolute values of all
entries of the sequence. Sometimes the discrete LP-space in R™ is denoted by the symbol
[P(R™).

A.2.10 Basic inequalities in LP-spaces

In this paragraph we prove that the relations (A.44) and (A.45) indeed define norms, and
we introduce several important inequalities in LP-spaces: The triangular inequality for the
LP-norms is called Minkowski inequality. The proof of the Minkowski inequality requires
the Holder inequality, which in turn is based on the Young inequality.

The following proofs contain numerous algebraic manipulations involving a pair of real

numbers 1 < p, ¢ < oo such that

1 1
4+ =-=1 (A.47)
P g

To get more familiar with this relation, check that

pq=p+gq

and
(p—g—-1)=1
are equivalent to (A.47).

Lemma A.26 (Young inequality) Lera,b > 0and 1 < p,q < oo such that

1 1
e
P g
Then r
ab< 4+ 2 (A48)
q
Proof: For an arbitrary 0 < b € R define a function f : [0,00) — R by
N
floy="+ = —ab
p

Itis easy to verify that f'(xq) = Oifandonlyif zy = b7, that f'{z) < Oforallz € (0,z0)
and that f'(z) > 0 for all z € (zg,00). Evaluating the function f(z) at zp = b, we
discover that f(xg) = 0. Therefore it is

X
0§£+——xb
P q
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for all x > 0, and thus (A.48) holds for all @ > 0. |
The following modification of the Young inequality is equally useful:

Lemma A.27 (Modified Young inequality) Lera.b > 0, ¢ > 0 and 1 < p,q < oc such
that

11
L
p g
Then » b
ab< el 40l (A.49)
p q

Proof: Relation (A.49) follows immediately when (A.48) is applied to properly changed
values @, b instead of the original values a, b. This is left to the reader as an exercise. W

The Hoélder inequality was first proved by a German mathematician Otto Ludwig
Holder in 1884, in the context of convergence analysis of Fourier series. O.L. Holder
contributed significantly to mathematical analysis and group theory.

Figure A.22 Otto Ludwig Holder (1859-1937).

Theorem A.10 (Holder inequality) Let @ C R? be an open set and 1 < p.q < oo such
that

(it is understood that 1 /oc = 0). Letu € L?P

—

Q) and v € LI(Q). Then

/ lu(@)o(@)| dee < ully]o],- (A.50)
Q

Proof: Ifp =1,p = ocor||ul, = 0then the inequality obviously is satisfied. Otherwise
use the modified Young inequality to obtain

d P p q
[ @) ey o< [ SDE L amdtEE gy €
S S~ S~ Q D q p

l—g

7 olld  (ASD

a b
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for all ¢ > 0. The function

elvq

fle) = gnunz + o)

q

livllg

LT,
Nl

attains its minimum at €5 = Using the value €y in (A.51), we obtain

1—q
€0 € 1 1
/ lu(@)[[o(@)|dz < = ullh + —[vlld = =[lullyllolly + = llull vl = lullplvl,,
Q p q D q

which concludes the proof. ]

Let us remark that in the space [P (R™), equipped with the discrete p-norm (A.12) or the
discrete maximum norm (A.10), the Holder inequality (A.50) attains the following form:
Letu,v € R*, and 1 < p,q < oc such that 1/p+ 1/¢g = 1. Then

1

7n T T n %
S Juses < ful ol = (z w) (z w) | (a52)
=1 i=1 i=1

This inequality sometimes is called discrete Holder inequality.

The Minkowski inequality carries the name of a German mathematician Hermann
Minkowski. Although he was mainly interested in topics of pure mathematics such as
quadratic forms and continued fractions, it is commonly assumed that the greatest contri-
bution of H. Minkowski was the coupling of the space and time into a four-dimensional
continuum, that provided the foundation for all later work in relativity. Albert Einstein
attended several of his courses in Ziirich.

Figure A.23 Hermann Minkowski (1864-1909).
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Lemma A.28 (Minkowski inequality) Let Q@ C R? be an open set and 1 < p < co. Then
lu+vllp < [lully + vl (A.53)

forallu,v € LP(Q).

Proof: The inequality obviously is satisfied for p = 1 and p = co. Applying the Holder
inequality, for p € (1, 00) we obtain

[ /|u(a:)+v(m)|z'dm:/ () + v(@)Pule) + v(a)| do
< /! )+ v(@) P fule |dw+/|u )+ (@) (@) de
< (/Q fu() +v<m>1<P-1>Qdm) " (lullp + ol,)
- ( [ |u(w)+v(w)l”dw) " lall, + lolly)
JQ
= ol (aly + ol
which concludes the proof. |

Herewith the triangular inequality for the LP-spaces is verified and we can be sure that
(A.44) and (A.45) are norms. In the space [P(R"), equipped with the discrete p-norm
(A.12), the discrete Minkowski inequality has the form

n % n % n %
<Z | + wI”) = llu+vllp < flullp + vl = <Z qul”> + (Z Ivzl”) :
=1 i=1 i=1
(A.54)

The Young, Holder, and Minkowski inequalities are encountered frequently in the analysis
of functions in L”-spaces. The next lemma summarizes several other important properties
of these spaces:

Lemma A.29 Let Q C R? be an open set.
1. Foreveryl <p < oo, LP(Q) is a Banach space.

2. Forevery 1 < p < oc, every Cauchy sequence in LP(2) has a subsequence that
converges pointwise almost everywhere in 2.

3. Let Q) be bounded. Then for every 1 < p < g < oo, LI(2) C LP(§2), and we have
11
lollp <127~ lvlly
forall v € LY(QY). Moreover, it is

ol = lim {lv]l,
p—oc

forallv e L*(Q).
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4. Foreveryl <p <r <q<ocandy € [0.1] satisfving

1 1—~
S A S
rooop q

the following interpolation property of LP-spaces holds:

lell < Hlelipllelly™-
Proof: These results are standard, but their proofs are rather technical. See, e.g., [34, 65]
and [99]. |

The assumption of boundedness of €2 in the third assertion of Lemma A .29 is important.
The reason why on bounded sets in R? the L?-spaces get smaller as the exponent p rises is
that the maximum admissible strength of singularities decreases (Figure A.24).

Figure A.24  Structure of L”-spaces on an open bounded set 2 C RY. (L™ stands for L>°.)

On the other hand, if €2 is unbounded, then the implication does not hold since evidently
not all bounded functions are integrable.

A.2.11 Density of smooth functions in LP-spaces

Let © C RY be an open set. The ability of functions from the space C'> () to approximate
the LP-functions with an arbitrary accuracy is of great practical importance in the analysis
of partial differential equations. This result is formulated in Lemma A.30. At the end of
this paragraph we briefly discuss the duality of the L”-spaces.

Lemma A.30 Let Q C RY be an open set. Then for any 1 < p < oc and any v € LP({)
there exists a sequence {uy, }o, C C>() such that

im [Ju, — v, = 0.
nH—o

Proof: See,e.g., [34, 65] and [99]. [ |

This means that no functionv € L¥(§) is isolated from C'>*-functions in the sense that for
arbitrarily small € > 0 there always is some C>°-function in the open ball B(v, €) C LP(£2).
If {2 is bounded, then the result of Lemma A.30 holds even for the space C§° (€2) of infinitely
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smooth functions that vanish on the boundary of €. The result also holds for every space
C™(2), m > 0, of m-times continuously differentiable functions (including the space
C(Q) = C°(€2) of continuous functions).

Density argument A frequently used technique for proving various properties of func-
tions in LP-spaces, called density argument, works as follows:

e Letv € LP(€2) be a function whose property (P) is to be shown.

o Take some sequence in C'>(§2) converging to v in the || - || ,-norm (the existence of
such sequence is guaranteed by Lemma A.30).

e Prove that starting with some index ), the elements in the sequence have the property
(P). This step usually is much easier for infinitely smooth functions than for the
original function v.

o Show that also the limit of the sequence has the property (P).

This technique will be used, for example, to prove the Poincaré-Friedrichs’ inequality in
Paragraph A.4.5. Let us give an example of such sequence:

B EXAMPLEA.38 (Sequences of C'™-functions converging to an L?-function)

1. In the interval 2 = (—1.1) consider the function

1 x=1.
ofa) =

0 elsewhere in €2.

This function belongs to the space LP(2) for all 1 < p < oc. The sequence of
> (Q)-functions {u, } 22,
Uy = (1 - 11'2)”

converges to v in the p-norm for all 1 < p < oc. The functions ;. w19. U190, %1000,
and wuyp0p0 are shown in Figure A.25.

Figure A.25 Example of a sequence converging out of C(—1.1).

Since the function v is equivalent to the zero function in the Lebesgue sense, one
can say that the sequence {u,, }3°; converges to zero in all spaces LP(2) for all
1 < p < oc. The sequence does not converge in the L -norm.



386 BASICS OF FUNCTIONAL ANALYSIS

2. Next, in the interval 2 = (0, 27) consider the discontinuous function

x z € (0, 7).
v{x) =
z—2r x€[m,2m).

This function again belongs to the space L°(£2) on a bounded set and therefore it
lies in all spaces LP(Q2), 1 < p < oc. The sequence of C*°(Q)-functions {u,, }52,,

1

2
Up = Z(_l)k“E sin(kz),

k=1

converges to v in the L2-norm (actually it converges in the p-norm forall 1 < p < o0).
For the explanation, however, the reader will have to wait until Paragraph A.3.3 where
we arrive at the Fourier series.

The last topic in the theory of LP-spaces that we would like to discuss in this section is
their duality:

Lemma A.31 (Duality of LP-spaces) Let Q@ C R? be an open set and 1 < p < oc. Then
any dual space V' to the space V- = LP () is isomorphic with the space L1(Q)) where

S+S=1
P g

Proof: Consider the subset S C V' consisting of all linear forms that can be written as

flu) = /Q vy(x)u(xz) de,

where vy are arbitrary functions. Since u € V and || f||y has to be finite, the Holder
inequality restricts the functions vy to lie in the space L9(€2). The next step of the proof is
to show that S = V. This is more technical and we refer, e.g., to [99]. |

Remark A.2 (Dual space for L°°(Q2)) Generally, it is not true that the dual space to
Le°{) is LY(S2). This only holds if the measure of the set Q) is a-finite. More details
can be found in [99].
A.2.12 Exercises

Exercise A.23 Let V = R", n > 0. Show that the functions
U|ee = max |u
lolloe = _max ol

and

n
lolly = ZIM
=1
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are norms on V. These norms are called discrete maximum norm (1°°-norm), and dis-
crete integral norm (1'-norm), respectively, because of their relation to Lebesgue spaces of
sequences.

Exercise A.24 Ler V = C([0,1)). Show that the function

1]

= a, xr
max = IAX, |f (@)l

isanorminV.

Exercise A.25 Consider the space V = C*([0, 1]) and decide which of the following is a
norm and which only is a seminorm:

I. max |u(z)
0<z<1

»

2. Jnax, Ju(z)} + ' (x)

]

3 . 1, ,
Jnax [u' ()]

4. 0 ()],
[u(0) + max |u'(z)]

“

b
0?;3%(1 Ju' ()] +/a lu(x)|dz, a,b€ (0,1), a<b

Exercise A.26 Use Definition A.27 to prove the equivalent characterization of limit in
Lemma A.20.

Exercise A.27 Use Definition A.27 to show that the sequence in the third item of Example
A.22 does not converge in V.

Exercise A.28 Prove the “backward triangular inequality” (A.25) and the corresponding
result for normed spaces: |||ugllv — |lusllv] < llua — usllv for all ug,u, € V.

Exercise A.29 Prove Proposition A.5.

Exercise A.30 Prove inequalities (A.29) and (A.30) in Example A.30 (equivalence of the
discrete maximum norm, discrete integral norm, and the Euclidean norm in R™).

Exercise A.31 Consider the space C1(0,1) N C((0,1]). Prove that the following norms
are equivalent:

1
flla = |f(o)1+/0 L ()] da
and
1 1
1l = /) @)l de + A ()] d

Hint: Use the main theorem of calculus or the integral mean value theorem. The latter says
that for every g € C{[0,1]) there is a £ € [0, 1] such that
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A gle)dz = g(é).

Exercise A.32 Adjust the procedure from Example A.31 to prove the equivalence of the
maximum norm (A.17) and the p-norm (A.19) with p = 2 in the space P*([~1,1]), where
k is an arbitrary natural number.

Exercise A.33 Let (a,b) C R be a nonempty bounded interval.

1. Construct an infinite sequence of functions in the space V = C([a, b]) that converges
in the p-norm for all 1 < p < oo but which does not converge in the maximum norm.

2. Use this sequence and Definition A.34 to show that the maximum and p-norms are
not equivalent in V.

3. Is it possible to construct a sequence in V which converges in the maximum norm but
does not converge in the p-norm? Present a proof.

4. Find a subset S C V that is open in the p-norm but is not open in the maximum norm.
Can you do this vice versa as well?

Exercise A.34 Show that the definitions of the operator norm (A.26) and (A.27) are equiv-
alent.

Exercise A.35 Prove Proposition A.6 (every convergent sequence in a normed space is a
Cauchy sequence).

Exercise A.36 Let V be a normed space and {u,,}2<; C V a Cauchy sequence. Suppose

that there is a subsequence {u,, }7<, C {u,};%, and some element u € V such that

lim 1w, = u.
o
Show that

Hm w, = u.
T

Exercise A.37 Show that the sequence (A.34) is convergent and that the limit is \/a. Hint:
Use, for example, (A.35).

Exercise A.38 Consider the open ball B(0.R) C RY, d = 3, with «a finite radius R >
0, and the function f(x) = 1/r%, r(z) = Ja?+ ...+ 22 Show that the following
statements hold:

1. Let Q = B(0. R). Then f(x) € LP(Q) if and only if o« < d/p.
2. Let Q =R\ B(0.R). Then f(x) € LP(Q) ifand only if o > d/p.

Describe in detail the application of the Substitution Theorem for integration in spherical
coordinates, and write the corresponding resulting finite integral.
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Exercise A.39 Prove the modified Young inequality (A.49) using the Young inequality

(A.48).

Exercise A.40 Ler Q) C R? be an open setand 1 < py.ps. . ... D such that
1 1 1
— 4+ —+...+ =1.
P p2 Pm

Use the Hélder inequality (A.50) to prove the generalized Holder inequality
/ [y (@yua(x) . .t (@) de < [y ||[)1 ”u2“pz R ||p,,w (A.55)
Ja

Hint: Proceed by induction.

Exercise A.41 Consider the space V = L*(—1, 1} and the step function v(z) € V, v(z) =
Oforall z < 0and v(z) = 1 forall > 0. Construct some concrete sequence {u, }>=; C
C>(—1.1) such that

lim ||, — |l = 0.

n—oc

Hint: The norms ||u,, — vl||y do not have to be calculated exactly if you can estimate them
by some values that converge to zero.

A.3 INNER PRODUCT SPACES

Some linear spaces can be endowed with inner product, which is a binary operation similar
to the “dot-product”

(wv)pe =u-v= Z Ui ; (A.56)
=1

of vectors in R". Such spaces are called inner product spaces. Orthogonality in a general
inner product space V' is defined analogously to the orthogonality of vectors in R",

ulv & (u.v)y =0. (A.57)

The notion of orthogonality and orthogonal projection makes inner product spaces extremely
convenient for the study of partial differential equations and finite element methods. After
discussing the most important concepts and techniques available in inner product spaces,
at the end of this section we also mention compactness and weak convergence.

A.3.1 Inner product

Definition A.41 (Inner product) LetV be a real or complex linear space. Aninner product
in V' is any function (-,-)y : V x V — R (or C) with the following properties:

1. Foranyw €V, (u,u)y > 0and moreover (u,u)y = 0 if and only if u = 0.
2. Foranyu,v €V, (u.v)y = (v, u)y.

3. Forany u.v,w € V and all a,b € R (or C) we have (au + bv, w)y = alu,w)y +
blv, w)y.
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In real inner product spaces the second axiom reduces to the symmetry assumption:
(u,v)y = (v.u)y forallu.ve V.

The subscript V usually is left out when the space V' is clear from the context. We restrict
ourselves to real inner product spaces in the following.

B EXAMPLE A.39 (Inner product spaces [2(R") and L%({2))

1. It is a simple exercise to verify that the standard “dot-product” (A.56) in R" is an
inner product in the sense of Definition A.41. Adding this inner product to R", we
obtain the inner product space {2(IR") that we first encountered at the end of Paragraph
A29.

2. Let £2 € R be an open set. It is another simple exercise to verify that the relation

(u,v) = / u(z)v(x) de (A.58)
Q
defines an inner product in the normed space L%(9).

Next let us show that every inner product space is a normed space:

Lemma A.32 (Inner product induces norm) Let V' be an inner product space. Then the
function

[|u] = V(ww), uweV

isanorminV.

Proof: Among all required properties of a norm, only the triangular inequality is not
obvious. Hence, let us choose any u,v € V and write

lu+ o> = (u+v,u+v)=(uu)+2uv)+ (v.0)
luli? + |2(w, v)| + fo| (A.59)

IN

Now let us verify that
|Cu, )] < ol (A.60)

forall u,v € V. Ifu = 0orv = 0, (A.60) holds. If u # 0 and v # 0 we define a
nonnegative real function

0<pt) = (u+tv.u+ tv) = (u,u) + 2(u, )t + (v, V)%
Since ((t) is a parabola, its discriminant must be nonpositive,
D = [2(u.v)]? — 4(u. u)(v,v) < 0.

which proves (A.60). Returning to (A.59), finally we obtain
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e+ ol < Jull? + 120w o) + oll < Jlull® + 2ol + ol® < (uli + fol)*.

which concludes the proof. ]

Inequality (A.60) is of essential importance in inner product spaces, and therefore let us
formulate it once more in a separate theorem:

Theorem A.11 (Cauchy-Schwarz inequality) Let V' be an inner product space and || - ||
the norm induced by the inner product (-, ). Then

(w, )] < fluflfjoll (A61)

forallu,v e V.
Proof: See the proof of inequality (A.60). |

B EXAMPLE A.40 (Holder implies Cauchy—Schwarz)

1. The discrete Holder inequality (A.52) withp = g = 2,

(&

n T % n
Z lugv| < (Z uf) (Z v?) ,
i=1

=1 i=1

together with the triangular inequality

n n
Zuivi < Z fusvi
i=1 i=1

imply the Cauchy—Schwarz inequality in the inner product space I2(R"),

|(u, v)] =

T
E U3 Vg
i=1

sZ|uzvz|s<Zu?> (Z) = llullz[lvll2-
=1 =1 =1

2. Let © be an open subset of R%. Also in the space L2(2) the Cauchy-Schwarz
inequality,

(w,0)] =

< | |ulz)v(z)|dx

/ u(z)v(z)de
Q Q

</Q Iu(:c)IQde </Q |v(a:)]2d:c>% = Jlulla]fv]]2,

is a consequence of the Holder inequality (A.50) with p = ¢ = 2 and the triangular
inequality.

IA

We know from Lemma A.32 that every inner product induces a norm. Conversely, there
are norms which induce an inner product:
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Lemma A.33 (Parallelogram rule) LetV bea real normed space. Ifthe norm ||-|| satisfies
the parallelogram rule

v+ ol> + [[u = o] = 2|jul® + 2|0)?  forallu.v e V. (A.62)

then it induces an inner product in V. This inner product is defined by the relation

1 .
(uw.v) = 1 (Jlw+ o> = [u = 2]?). (A.63)

Proof: It is easy to see that (u.u) > 0 for all v € V and that (u.«) = 0 if and only if
u = (. Second,

(v.u) = i (Il + vl* = lJu = 0]?) = (u.v)

verifies the symmetry. Next the linearity of the relation (A.63) has to be verified, i.e., we
are asking if the following two conditions hold:

(u+v.ow) = {w.w)+ (v.w) forallu.coweV

and
(aw.v) =a(u,v) foralla e R. ueV. (A.64)
To begin with, it is
i . )
(u+v.ow) = i (Jle+ v+ wl|F =l + v —wl?).
1 . ; . .
(o) + (vow) = 1 (lee + ] = [Ju = w|> + v+ w||* = [Je —wl|f*) .

It is left to the reader to verify that the right-hand sides are equal, using the parallelogram
rule (A.62). Also use the decomposition

=

+
|

¢

T
|

S
bo

which holds for all elements #. v € V. It remains to verify relation (A.64): For arbitrary
u.v € V define a real-valued function

flr)y = lew+ of? = {lev = o7 = 4(ru.v).
It is sufficient to show that

fla) =af(l) forallaeR. (A.65)

2 oy
) Y (‘I’ o ) (A.66)

After some calculation, we obtain that

2
+ Ty
U v - u—v
2

f@) = fly) =2 (



Itis f(0) = 0. Taking y = 0, we obtain

flx)
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-5/(3)

Relation (A.66) yields f(z) — f(y) = f(x —v). Therefore f(z) is a linear function passing
through the origin [0, 0], and (A.65) holds. |

Remark A.3

1. In a complex normed space the relation (A.63) only defines the real part of the inner
product. The complex part is defined analogously, replacing u with iu.

2. If (u.v) is inner product in a real |

(o + ol* = flu = v[1?)

W |

3. The norm || - || = \/(-.-) induced
rule (A.62),

e+ 001 + [l = v

inear space V, then it satisfies (A.63),

[(u+v.u+v)— (u—vu—0v)

by this inner product satisfies the parallelogram

il

(u+v,u+v)+ (u—v.u—7v)
= (u.u)+ (u.v)+ (v.u) + (v,v)

+{(u,u) — (u,v) — (v,u) + (v,v)
= 2llul® + 2fl%.

N EXAMPLE A41 (Parallelogram rules in [2(R") and L2({2))

1. Consider the normed space [>(R™).

e + o)) + [lu = ol?

2. Consider the normed space L2(12)
gram rule (A.62) has the form

The parallelogram rule (A.62) reads:
= Z(ui + ;) + Z(u,- —;)?
i=1 i=1
= QZuf —1—22'1/7?
i=1 i=1

= 2lull? + 2/lv]*.

in an open set 2 C RY. In this case the parallelo-

v 2 U - 2 = v 2 i — v 2
-+ 0l + e — o] /Q<u<:c>+z<w>> de + / (u(@) — v{z))? de

Q

= 2/§;u2(m)dm+2/§2v2(az)d$

2[lull® + 2[|v]|?.
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Let © C RY be an open set. The parallelogram rule determines that L2($2) is the only
inner product space among the Lebesgue L”-spaces:

Remark A.4 (L7(Q)), ¢ # 2, is not inner product space) Foranyl < g < oo, ¢ # 2, the
relation (u, v) defined by (A.63) is not linear in u, and therefore it cannot represent an inner
product. Analogous conclusion holds for the discrete Lebesgue spaces [P(R").

Every inner product is continuous with respect to the norm it induces:
Lemma A.34 Let V be an inner product space, u € V and {u,}2°, C V. If
lim {u, —uf =0
n—oc

then foranyv € V

lim (uy,,v) = (u,v).
n— 2

Proof: Using the Cauchy—Schwarz inequality we immediately obtain

|(un,v) = (u,0)] = (un = w,0)| < Juy, = ulllJo]f.

The conclusion follows from the fact that ||v|f is a finite number and ||u, — || — 0 as
. — 0. |

A.3.2 Hilbert spaces

From the point of view of convergence analysis it is convenient to work in complete inner
product spaces. This class of linear spaces carries the name of a German mathematician
David Hilbert, who contributed to many branches of mathematics, including invariants,
algebraic number fields, functional analysis, integral equations, mathematical physics, and
the calculus of variations.

Figure A.26 David Hilbert (1862-1943).

Because of the importance of the Hilbert spaces, we reserved this paragraph for their
definition and a few examples. Most of the time we shall stay in real Hilbert spaces.

Definition A.42 Every complete inner product space is said to be a Hilbert space.
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H EXAMPLEA42 (Hilbert spaces)

A sufficient condition for an inner product space to be Hilbert space is that the under-
lying normed space be a Banach space:

I. The space V = [?(R%), i.e., R? equipped with the “dot-product” (A.56), is a Hilbert
space.

2. The space V = [2(R"*"), i.e., R"*" equipped with the Frobenius inner product

(A,B) = aiby

ij=1
(which induces the Frobenius norm (A.16)) is a Hilbert space.

3. The space V = [? of infinite real sequences, equipped with the I2-product

(u,v) = Z w; V5, (A.67)
i=1

is a Hilbert space.

4. Let §2 be an open subset of R%. The space L?(£2) equipped with the L2-product
(A.58) is a Hilbert space. By Remark A.4 this is the only Hilbert space among the
Lebesgue LP-spaces.

A.3.3 Generalized angle and orthogonality

In this paragraph we define generalized angle and orthogonality of elements in Hilbert
spaces.

Definition A.43 (Generalized angle) Let V be a Hilbert space. The angle of two elements
0 # u.v € V is a real number o € [0, ) such that

cos(a) = LD

S =X 7 A.68
)= ol (A8

B EXAMPLEA43 (Generalized angle)
Some of the inner products used below can be found in Example A.42.
1. In the space V = [2(R%) the formula (A.68) reduces to the standard relation

_(wvly  wew
il Talliol”

cos(a)

To give a concrete example, the angle of the vectorsu = (1,1,0)T andv = (0,1,1)7
in R® is
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= 211’(‘(‘08(

2. Consider the matrices

1 01 01 0
A= 0 1 0 B = 1 01
101 0 1 0

in the space V = [2(R®*3). The angle of 4 and B is

3. Next let us calculate the angle of arbitrary geometrical sequences « = {u,}}2,
and v = {v,}22, in the space {? equipped with the [*>-product (A.67). Consider
geometrical sequences given by the parameters u,, = uor"~ !, v, = vys" L 0 <
s < 1,0 < ug, vy € R. We have

(u,v) > = arccos uotg 221 (rs)~1
H“‘”Hl“ Uy Z;CZI(T‘Z)J_ITU\/W

x = arccos (

(\/1—7‘2\/1—82>
= arccos| ————— }.

1—rs

4. Last consider an open set {2 = (—1,1) C R and the Hilbert space L?({2). The angle
of the functions f(z) = 1and g(z) = xis

a = arccos (u,v) — arccos .['QJ; dr
o <Hu“”1)|i> o <([Q 1dl')1/2 (Jor? d:l’)1/2>

0 T

2] T2
V3,2
(they are orthogonal). The same result will be obtained for any two L?(—1.1)-
functions f and g, where f is even and g odd or vice versa.

arccos

Orthogonality of elements in Hilbert spaces is defined as the reader expects:

Definition A.44 (Orthogonality and OG complement) Let V' be an Hilbert space. The
elements 0 # u,v € V are said to be orthogonal if (u,v) = 0. An element 0 # v € V is
said to be orthogonal 1o a nonempty subset S C V if (v.s) = O forall s € S. We define
orthogonal complement of S as

gl {fveV: (v.s)=0 forall s € S}.
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Lemma A.35 (OG complement) Let S be a nonempty subset of a Hilbert space V. Then
S+ is a closed subspace of V.

Proof: Immediately from Definition A.2. [ |

Definition A.45 (OG and ON basis) Let B = {vy,va,...} be a basis of a Hilbert space
V. B is said to be orthogonal (OG) if

(vs,v5) =0 whenever i # j,
The basis B is orthonormal (ON) if
('Ui,’Uj) = él] forall7]

Every basis of a separable Hilbert space can be transformed into an orthonormal basis. (A
linear space is separable if it has a finite or countable infinite basis.) The orthonormalization
procedure is called after a German mathematician Erhardt Schmidt (1876-1959), who
contributed significantly to the development of the theory of Hilbert spaces. He published
this result in 1907.

Theorem A.12 (Gram-Schmidt orthogonalization) Let B = {w;, wo, ...} be some ba-
sis in a Hilbert space V. Then there exists an orthonormal basis B = {vy,vs,...} such
that

V,, = span{vy, va, ..., vy} = span{wy, we. ..., Wy, (A.69)

foralln > 1.
Proof: The proof is done inductively. For n = 1 define v1 = wy /|lw1||. Next assume the
existence of n — 1 orthonormal functions v, va, ..., v,— satisfying

Vi_1 = span{vy, va, ..., v,—1} = span{wy, wa, ..., Wy—1}.

Define an element w,, € V,,_; by

n—1
Wy, 1= Z(w,,.v,-,)’u,-. (A.70)
i=1
and another element u'r# ‘= w,, — W,. Forany 1 <k <n — 1 we have

n—1

(12!,{. vk ) = (wp,vg) — (Z(w”,'v,;)vi,m) = (wy,v) — (wy,v;) =0,
i=1
and thus @w;- € V.- . Since w, € V;,_1, it is |Jw;|| # 0, and we can define
S L
W
Uy =

lloz: I

which finishes the proof. ]

For example, the Legendre polynomials can be constructed via the Gram—Schmidt pro-
cedure:
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B EXAMPLE A.44 (Legendre polynomials)

LetususethemonomialbasisofthespaceV LQ( 1,1), Bion = {wy, we, ws, wy,

..} ={1,2,2% z%....} and the Gram-Schmidt process to create an orthonormal
baslsofthcspace V. In the first step normalize w1, Lo(z) = v1 = wy/||un] = 1/v/2,
and define V; = span{v;}. Next define the element ws € V; by

1 o1
Wo = g (we.v;)v; = </ 1—d1> — = 0.
Pt Jo1 V2 V2
Thus 105~ = wsy — 1wy = x. Normalizing 3", we obtain

Wy 3

a€.
led ]~ V2

Ll(;l,') =y =
Define Vo = span{vi, v}, and the element w3 € V3 by

2 1 o1
5 1 1 5 13 3 1
Z: Wy, Ui )u; = </_lmzﬁ da:> —\/_—2— + (/_1:1’,2\/;;1@.1:) \/;a; = 3
|
0

Therefore

Tike 45/ 1
Lo(z) = vy = —3 P
2l0) = v = ey = 8<T 3)

The fourth Legendre polynomial L3, obtained analogously, has the form

Ly(z)y=nvy = \/Z(S,I?3 — 3u).

The Legendre polynomials of higher degrees are usually defined by means of recurrent
formulae (to be found in many books, see, e.g., [111] and [117]). First few Legendre
polynomials are depicted in Figure A.27.
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A.3.4 Generalized Fourier series

The expansion of an element « of a Hilbert space V into an orthonormal basis of V' can be
viewed as the construction of generalized Fourier series.

Jean Baptiste Joseph Fourier was a French mathematician who made significant contri-
butions to the mathematical theory of propagation of heat in solid bodies. His theory of
heat provoked great controversy at his time. The Fourier expansions of real functions into
trigonometric series were present already in his famous work “On the Propagation of Heat
in Solid Bodies” from 1807.

Figure A.28 Jean Baptiste Joseph Fourier (1768-1830).

After introducing the general theorem, we show an application to the classical Fourier
series in Example A.45. Although all results in this paragraph are formulated for infinite-
dimensional Hilbert spaces, they obviously hold in the finite-dimensional cases as well.

Theorem A.13 (Generalized Fourier series) Ler V be a Hilbert space and B = {vy, va,
... } an orthonormal basis of V. Then any element u € V' can be written as

x

u= Z(u‘ V5 ). (A7)

Jj=1
Proof: Any element « € V can be written as

x
u = E CjUy.
Jj=1

From the orthonormality of the basis functions one obtains

DG o
(u.vy) = chvj,vk :ch

(vj. o) = Cp
Jj=1 Jj=1

bin

and (A.71) follows. [ |



400 BASICS OF FUNCTIONAL ANALYSIS
Important consequences of Theorem A.13 are the generalized Parseval equality and the
generalized Bessel inequality:

Lemma A.36 (Generalized Parseval equality) Let V be a real Hilbert space, B = {vy,
Vg, ... } an orthonormal basis of V and w € V. Then

lull = (A72)

Proof: Write ||u||? = (u.w) and apply Theorem A.13 ]

Let us remark that in complex Hilbert spaces, (A.72) holds in the form

lJull =

Lemma A.37 (Generalized Bessel inequality) Let V' be a real Hilbert space, B = {vy,

va, ... } an orthonormal basis of V and w € V. Then
Z(u, v)? < |ull*  foranyn > 1. (A.73)
i=0

Proof: Immediately from (A.72). [ ]

In complex Hilbert spaces (A.73) holds in the form

Z [(u,v)]* < lu||* foranyn > 1.
i=0
B EXAMPLE A.45 (Fourier series)

It is well known (see, e.g., [26, 38] and [84]) that the 27-periodic functions
1 cos{x) sin(x) cos(2x) sin(2r)

constitute an orthonormal basis in the space L?{—r, 7). But we are not limited to the

interval (—. 7). Consider, for example, the function § € L%(0.2n) defined by

(A.74)

&, x € (0, 7).
glx) =
r—2x  x € [w.2m).

Using the 27-periodicity of the basis functions (A.74), equivalently we can consider
the function ¢{x) = x in the interval (— . 7). The Fourier series, obtained using the
procedure from Theorem A.13, has the form

971 —22 ’-HSIH ) n=12....
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This series can be visualized, e.g., in Maple:

> g1(x) := ‘1f(x<3.141593,x,NULL):
> g2(x) := ‘1if‘(x>3.141593,x-2%3.141593,NULL) :
>mn = 100:

> g n(x) := 2esum(sin(i*x)*(1./1)*(-1)"{(i+1),i=1..n):
> plot([g_n(x),gt(x),g2(x)], x=0..2%3.141593, thickness=1);

The functions ¢,, for n = 1,2,3,4,5,6.20,200, and 5000 are presented in Figure
A.29 (only the period (0. 27) is shown).

3 / 3 y 3

/ X
2 /‘“"\ s 2 p \
A -
17 /s x 1 yy X 1 /.71/ x
1 2 4 5 6 PN 2 4 5 6 BT 2 4.5 6

7
~
\
\\"\.

Figure A.29 Fourier series of the discontinuous function § € L?(0, 27).

A.3.5 Projections and orthogonal projections

Projections form the basis of many modern numerical methods including the finite element
method. As promised at the end of Paragraph A.1.5, let us study in more detail their
properties and relations to direct sums.
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Definition A.46 (Projection operator) Let V be a linear space. An operator P -V — V
is said to be a projection if it is both linear and idempotent (P = P). The range R(P) of
a projection operator P is called the projection subspace.

Sometimes one uses the symbol P(V') for the range R(P). By saying P? = P we mean
that P(Pv) = P(v) for all v € V. There is a one-to-one relation between projections and
direct sums:

Lemma A.38 (Projections and direct sums) Let V be a linear space. If V is a direct sum
V = Vi &V, of subspaces Vi, Vo C V, then there exists a unique projection operator
P:V -V, P2=P PV)=W, [ - P)V) =V, Conversely, every projection
operator P determines a decomposition of the space V' into the direct sum

V= P(V)& (I - P)V).

Proof: First assume that V' = V| @& V5. Then every element v € V' can be decomposed
uniquely into v = v1 4 vg, where v; € V; and vy € V5. Define the operator P : V. — V
by Pv := v;. This operator is unique by its definition and it is easy to verify that P is both
linear and idempotent. Moreover, P(V) = V1, and since v, = (I — P)v forallv € V, it
also holds (I — P)(V) = Va.

Conversely, assume a projection operator P : V' — V. Since both P and I — P are linear
operators, their ranges V; = {Pv; v € V} and V, = {v — Puv; v € V} are subspaces of
V (see Lemma A.9). Every element v € V can be decomposed into v = v; + v, where
v1 = Pv € Vyand vy = v — Pv € V. Using the property P2 = P, it is easy to see that
VinVv, = {0} [ ]

The interpolation is an example of a projection operator:
B EXAMPLE A.46 (Lagrange interpolation as a projection operator)

Let V = C([a,b}) and W = P"(Ja,b]) C V. Consider a partition ¢ = x5 < 21 <
o< Zxp_1<xy =0 DefineP:V — Vby

n

Po=> ] == | o(z) forallve V. (A75)

T;— T
i=0 \j#i * J

Here Pv is the unique Lagrange interpolant of v, satisfying Pv € W and (Pv)(z;) =
v(z;) foralli = 0,1,...,n. It is easy to verify that the operator P is linear and
idempotent. The projection subspace P(V) = W. According to Lemma A.38 the
space V can be written as the direct sum V = P"(a,b) @ (I — P)(V), where the
space (I — P)(V') contains continuous functions that vanish at all interpolation points
Loy L1y ey Ty

Next let us return to Hilbert spaces and introduce orthogonal projections and orthogonal
direct sums:

Definition A.47 (Orthogonal projection) LetV be a Hilbert space. Anoperator P : V. —
V is said to be orthogonal projection if it is linear, idempotent (P? = P} and if

(v—Pu,w)y =0 forallveV, we P(V). (A.76)

The space P(V') is said to be the projection subspace.



INNER PRODUCT SPACES 403

Definition A.48 (Orthogonal direct sum) Let V' be a Hilbert space. A direct sum V. =
Vi @ Vs is said to be orthogonal if (vy,v2) = 0 forall vy € Vi, vy € Va.

The following theorem summarizes several properties of orthogonal projections and their
relation to orthogonal direct sums:

Theorem A.14 (OG projections and OG direct sums) LerV bea Hilbert space andVy C
V a closed subspace of V endowed with an orthonormal basis By, = {w1,ws....}. Then
the relation

Z vowi)yw; forallveV (A.T7)

defines a unique orthogonal projection operator P € L(V,V), P> = P, (v — Pv,w) =0
forallv € Vand w € P(V). Moreover, (VeI -P)V)isan
orthogonal direct sum.

The assumption of closedness of the subspace V7 is essential and we will discuss it in
more detail in Remark A.5 and Example A.48. On the contrary, the assumption of the
existence of an orthonormal basis By, is not necessary, since one always can have such
basis by Theorem A.12. Nevertheless, we find it useful to introduce the orthonormal basis
explicitly, since this is how the orthogonal projections always are done in practice.

Proof: Given the operator (A.77), let us verify all properties listed in the lemma. First,
the linearity of P follows easily from the linearity of the inner product (-, - }y-. The operator

is idempotent, since
o>
(vow)vwi, w; | wy
i=1 v

¢
Z( Jwi )y (Wi, wy )y w;
H_/

i=1

P(Pv) =

Mx

<.
Il
—

Mx

1

)

8.

(v,wj)yw; = Py forallv e V.

Il
NE

1

.
Il

Obviously V; is the projection subspace. It is sufficient to verify the orthogonality condition
(v — Pv,wy) = 0 forall v € V and all elements of the basis wx € By,:

fo v}
(v— Pv,wg) = (v.wg) Z v, wi){w;, wr) = (v, wy) — (vowg) = 0.
i=1

It is easy to see that || P|| = 1 since it follows from the Bessel inequality and the Parseval
equality immediately that

P .
1Pully <1 forallveV and 1Pl
loliv llvllv

=1 forallve Vj.

The rest is straightforward. In particular, V, = (I — P)}(V) = V1 is a closed subspace of
V (Lemma A.35) and I — P is a unique projection operator onto V5. [ |



404 BASICS OF FUNCTIONAL ANALYSIS

Remark A.S5 (Closedness of projection subspaces) Every finite-dimensional subspace W
of a Hilbert space V obviously is a Hilbert space. However, this generally is no longer
true when the subspace W is infinitely-dimensional. The problem is that Cauchy sequences
lying in W can “converge out” of W into V. This can happen, for example, when the
subspace W is dense in 'V (see Example A.48). Therefore one has to add to W the limits of
all Cauchy sequences lying in W. The completion is possible by Theorem A.7.

B EXAMPLE A47 (An OG projection operator in V = R?)
Let V = R? endowed with the standard Euclidean inner product. Let us define an
operator P : V — V via the relation

Pv=(v,0)T forallveV, v=(v.0)".

(Thus P erases the second component of vectors in V.) Let us see that P is both
linear and idempotent, identify the projection subspace P(V'), and check whether P
1s an orthogonal projection. First the linearity:

P(au + Bv) = (auy + fv1,0)T = (auy, 007 + (Buy,0)T = aPu + BPv.

The idempotency follows from the fact that the second vector component only can be
erased once,

P(Pv) = P((v;,0)") = (11,007 = Pv  forallve V.

Hence P is a projection. Clearly the projection subspace P(V) = [(1,0)T] = [w].
Since

(v — Pv,wy) = (v1 — v1,02) - (l,O)T =0 forallveV,
we see that P is an orthogonal projection operator.

Another reason why orthogonal projections are so useful, is that Pv is the closest element
to v € V among all elements in the projection space P(V):

Lemma A.39 Let V be a Hilbert space and W a closed subspace of V equipped with an
orthonormal basis By = {w1, w2, . ..}. Let P be an orthogonal projection operator such
that P(V') = W. Then for any v € V we have

o= Poll = inf o~ wl.

Proof: Write w = Pv + z. Since w € W and Pv € W, necessarily also z € W. We
have llv — wl]* = (v —w,v —w) = (v — Pv — z,v — Pv — z). Since z € Witis
(v — Puv, z) = 0. Therefore

(v—Pv—2z,v—Pv—2z)=|v—Pol|> +|z|? > v - Pv|?

which had to be shown. |

Let us close this paragraph by showing a subspace of a Hilbert space which is not closed:



INNER PRODUCT SPACES 405

H EXAMPLE A48 (Subspaces which cannot be projection subspaces)

Let V be a Hilbert space and W C V a dense subspace of V' such that W # V. In
this case an orthogonal projection cannot be defined. Namely, it follows from Lemma
A.39 that the projection Pv € W of any v € V' \ W would have to satisfy

|lv — Pv|| = inf |Jv—w].
weW

However, this minimum is zero by the density of Win V. Inturn v = Pv whichisin
contradiction to W # V. For illustration take, e.g., the Hilbert space V = L%(a, b),
where (a,b) C R is a bounded interval, and its dense subspace W = Pf%(a,b) of
polynomials of finite degrees.

A.3.6 Representation of linear forms (Riesz)

The Riesz representation theorem is a fundamental tool in the solvability analysis of elliptic
partial differential equations. It was first proved in 1907 for the Lebesgue L?-space by
Frigyes Riesz, a Hungarian mathematician who is assumed to be one of the founders of
functional analysis and operator theory. F. Riesz introduced the concept of weak conver-
gence (to be discussed in Paragraph A.3.8), and he made many contributions to other areas
of mathematics including orthonormal series, ergodic theory, and topology.

Figure A.30 Frigyes Riesz (1880-1956).

Theorem A.15 (Riesz) Let V' be a Hilbert space and p € V' an arbitrary linear form on
V. Then there exists a unique element u € V such that

wv) = (u,v)  forallveV.

ollv: = [lullv.

Proof: We restrict ourselves to real Hilbert spaces (see, e.g., [65] for the complex case).
First let us prove the uniqueness: If there exist two elements u, @ € V such that

Moreover, |
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w(v) = (v.u) = (v.a) forallv eV,
then by the linearity of the inner product it is
(vu—u)=0 forallveV.

Taking v = u — 1, we see that u = .

Next let us prove the existence: If the null space N () = V, then ¢ is the zero functional
and we can define u = 0. If N(p) # V, then there exists an element vy € V such that
o(ug) # 0. Since N{yp) is a closed subspace of V, it is possible to write V as an orthogonal
direct sum V = N(p) @ N(p)*. Thus the element vy € V can be decomposed uniquely
into the sum vy = vy + g, (v.v3) = 0. where v; € N () and vy € N{p)*. In particular,
it is w(ve) # 0. The following holds:

w(v) ol 99(’0)/ o) = allv
") <p - @(?}2)1;2> = p(v) w(w)p(vz) =0 forallveV.

Thus

vy € N{p) forallveV.

Since va € N{(p)*L, itis

(7} — #(v) v2.172> =0 forallveV.
o(v2)

From this equation we obtain

ev) = <'u wlva) > forallv e V,

ST U
o2l

and thus

- ”("’ngz. (A.78)

[[o2]]
It remains to be shown that |||y = [Ju]lv. The Cauchy—Schwarz inequality yields
lo()| < llullvljvllv forallv e V.
and thus |||y < ||u]lyv. Choosing v = u, one obtains
o(u) = (u.u) = [lu]l7.

which establishes the equality |||y, = |Ju]lv. ]

The procedure shown in the proof of the Riesz theorem allows us to construct the rep-
resentants of linear forms over Hilbert spaces explicitly, via the formula (A.78). Another
important consequence of the Riesz theorem is the reflexivity of Hilbert spaces:
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Lemma A.40 Every Hilbert space V is reflexive, ie., (V'Y = V.
Proof: See,e.g., [99]. |

A.3.7 Compactness, compact operators, and the Fredholm alternative

Besides the Lax—Milgram lemma, the Fredholm alternative is another basic tool for proving
the existence and uniqueness of solution to certain classes of operator equations. This
technique does not assume the V-ellipticity of the underlying operator. Instead, it assumes
its compactness.

Definition A.49 (Compact and precompact set) Let V be a normed space. Then a subset
S C V is said to be compact if every sequence {s, 152, C S contains a subsequence that
converges to some element s € S. A subset S of a normed space V' is precompact (relatively
compact) if its closure S is compact.

The following characterization of compactness holds for finite-dimensional spaces:

Theorem A.16 (Heine-Borel) Ler V' be a finite-dimensional normed space and let S be a
subset of V. Then S is compact if and only if S is both closed and bounded.

Proof: See,e.g., [99]. [ |

The situation is much less trivial in infinite-dimensional spaces, where one can find sets
which are both closed and bounded, but not compact. This is illustrated in the following
example.

B EXAMPLE A49 (Noncompactness of the closed unit ball in %)
Consider the normed space V' = I2 of infinite real sequences with the discrete [2-norm

||{u77}1OLo=1”V = (Z |u,,|2> .

n=1

The closure of the unit ball
B(0,1) = {{un}?lozl? Huntozilly €1} CV

clearly is both closed and bounded. By v; € V we denote a sequence which has 1 at
the ith position and zeros everywhere else. It is

loglv =1 foralli=1,2,... (A.79)

and therefore v; € B(0,1) foralli = 1,2, .. .. The only candidate for the limit of the
sequence {v;}$2, C B{0, 1) is the zero sequence, but by (A.79) the sequence {v; }5;
does not contain any convergent subsequence. Therefore, according to Definition
A.49, B(0,1) is not compact.

Corollary A.2 An immediate consequence of Theorem A.16 is that in a finite-dimensional
normed space every bounded sequence contains a convergent subsequence.

Next let us introduce the notion of a compact operator:
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Definition A.50 (Compact operator) Let V. W be normed spaces. A linear operator A :
V' — W is said to be compact if the image of any bounded subset of V' is relatively compact
inW.

Indeed any compact operator is bounded. A standard way to prove the compactness of an
operator is to show that the image { Au,, }7, C W of any bounded sequence {u, };<, C V
contains a convergent subsequence. The following lemma characterizes the composition of
bounded and compact operators:

Lemma A.41 Let V.W, Z be normed spaces, and let A : V. — W and B - W — Z
be bounded linear operators. The composition C' = AB is compact if at least one of the
operators A, B is compact.

Proof: This is a classical result, see, e.g., [100]. |
Another basis result characterizes the compactness of the identity operator:

Lemma A.42 Let V be a normed space. The identity operator I : V. — V is compact if

and only if the space V is finite-dimensional.

Proof: The right-left implication is a simple consequence of Theorem A.16. For the other
implication see, e.g., [100]. ]

Now we can introduce the Fredholm alternative, or, more precisely, its version that is
most suitable for our primary purpose, which is the application to the Maxwell’s equations
in Chapter 7. This theorem can be found in greater generality, e.g., in [73] and [100].

Theorem A.17 (Fredholm alternative) Let V' be a Hilbert space and B : V. — V a
bounded linear operator of the form B = I + A, where I is the identity operator and A is
compact. Then exactly one of the following holds:

1. The homogeneous equation Bu = O has a unique solution uw = 0. Then the inhomo-
geneous equation Bu = f has a unique solution for every f € V.

2. The homogeneous equation Bu = () has n linearly independent solutions uy, us, . . .
Uy, in 'V, where p > 0 is an integer number.

Proof: See, e.g., [73] and [100]. |

A.3.8 Weak convergence

The concept of weak convergence was introduced by F. Riesz around 1910. It finds important
applications in the theory of PDEs and finite element methods by generalizing the standard
(strong) convergence in norm:

Definition A.51 (Weak convergence) Let V be a Hilbert space and V' the dual of V. We
say that a sequence {u,, }32; C V converges weakly to an element v € V' if

lim @(u,) = w(u) forallpe V.
The element u is said to be the weak limit of the sequence.

It is easy to see that the weak limit is unique and identical to the strong one if they
both exist. Moreover, the convergence in norm implies the weak convergence, since for an
arbitrary ¢ € V' we have

lp(un) = o(u)l < fpllvflun —ullv.
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However, the next example shows that the weak convergence does not imply the convergence
in norm:

B EXAMPLE A.50 (Weak convergence 7# convergence in norm)

Consider the sequence {u,, }3% ;, u, = sin(nx)/\/7, in the space V = L?(—m, 7).
By the Riesz theorem, for an arbitrary linear form » € V'’ we have

olu,) = (ug uy,) foralln=1.2,...,

where u, € V is the unique representant of the form . Since the elements u,,
belong to the orthonormal basis (A.74) of the space V, and the entries (u, u,)? of
the Parseval sum (A.72) of 1, must converge to zero as 17 — oo, we see that

lim p(u,) =0 forallp € V.

—oC
Thus {u, } ;< , converges weakly to zero. However, the sequence cannot converge to
zero strongly since ||u,, || = 1 for all n.

From Corollary A.2 we know that every bounded sequence in a finite-dimensional
normed space contains a convergent subsequence. This is not true in infinite-dimensional
spaces, but there is an important weaker analogy:

Theorem A.18 (Eberlein~Smulyan) Every bounded sequence in a reflexive Banach space
V' contains a weakly-convergent subsequence.

Proof: See,e.g., [34] and [93]. | |

A.3.9 Exercises

Exercise A.42 Use Definition A.41 to verify in detail that the “dot-product” (A.56) in R"
and the L?*-inner product (A.58) indeed are inner products.

Exercise A.43 In the space L?(0,1) calculate the angle of the functions f,, (x) = ™ and
gn(x) = a", where m,n are arbitrary natural numbers.

Exercise A.44 In R? consider a general parallelogram ABC D, as shown in Figure A.31.
Use the Theorem of Pythagoras to prove that |AD|?> + |BC|? = 2|AB|? + 2|AC|.

C

B

X,

Figure A.31 Parallelogram ABCD in R?.
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Exercise A.45 Consider a normed space V where the norm || - || satisfies the parallelogram
rule (A.62),

lu+ o) + Jlu—ol|? = 2jul® + 2jvll*>  forallu.veV.

Show that the identity
flu+v+wl? = flu+v—wl* = llu+wl? = jlu—-1w|?+llv+wl]* = |v—w|?
holds for all u,v,w € V.

Exercise A.46 Prove Lemma A.35: [ S is a nonempty subset of an inner product space V,
then S* is a subspace of V.

Exercise A.47 Consider the Hilbert space V = R?, endowed with the standard Euclidean
inner product, and its subspace W given by a basis By = {(0.1,0)1.(1/v/2.0,1/v2)T}.

1. Show that By is a orthonormal basis of W.

2. Use avector ez = (0,0,1)7 and the Gram-Schmidr orthogonalization procedure to
extend the basis By to an orthogonal basis By of V.

Exercise A48 Givenv = (1.2.3)7 € R?, calculate its projection to the subspace W from
Exercise A.47.

Exercise A.49 LetV = L2(—w.m). Usethe relation (A.71) and the Fourier basis of V from
Example A.45 to construct the Fourier series of the function g(x), defined as g(z) = —1
forallz € (—7.0) and g(x) = 1in [0, 7). Present a formula for general n and computer-
generated plots of first ten different entries of the series. Hint: Since g is an odd function
in (—7.7), the cosinus part of the series is not present. Additional cancellations occur.

Exercise A.50 Repear Exercise A.49 with the function §(x) = x in the space L?(—m.m).
Check your result with Figure A.29. Hint: Use the integration-by-parts formula to integrate
functions of the form x sin{ma).

Exercise A.51 Use Definition A.46 1o verify that that the Lagrange interpolation operator
P introduced in Example A.46 is a topological projection. What functions belong to the
subspace Vo = (I — PY{V)ycC V?

Exercise A.52 Consider the Hilbert space V. = P>(=1.1) endowed with the L*-inner
product, and the subspace W = P*(—1.1) C V. Let By = {Lg, L1. L2, L3}, where L,
are the Legendre polynomials derived in Example A.44. Calculate the orthogonal projection
Pw (fo) of the function fo(x) = 1 4+ 2% — 2% + 2 — 2% onto W, Calculate the distance
dist(fo, W) = inf.ew || fo — wl|. Hinr: By Lemima A.39 the distance is || fo — P {(fo}l]-

Exercise A.53 Let V = R® equipped with the “dot-product” (A.56). Consider the linear
operator f -V — V, f(v) = Av, where

1 -1 0 2 3
3 =13 2 4
A= 4 -2 3 4 7
0 2 3 -4 -5
2 0 3 0 1
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Construct an orthonormal basis of the nullspace N( f).

Exercise A.54 Consider the Hilbert space V = P%(—1.1) equipped with the L>-inner
product.

o What is the dimension of the subspace W = {w € V; w(0) = 0}?
o Choose some basis B of W.

o Use the basis B to construct an orthonormal basis By of W.

Explain why there exists a unique orthogonal projection operator P : V. — W.

Assume the function g(x) = 2% + 22 + 2 + 1 € V. Calculate P(g).

Calculate the distance d = dist(g, W), Le.,

d= inf |lg —w|v.
Juf Nl = wlh

Exercise A.55 Consider the Hilbert space V = 1? of infinite real sequences equipped with

the inner product
o o)
(u,v)p2 = E Ui Vg,
i=1

and the linear form f € V',
100

i=1

Find the unique Riesz representant of f in the space V.

Exercise A.56 Consider the Hilbert space V = L*(—1,1) and the linear form f € V',

1/2
flw) = %/ u(x) dzx.

—1/2
Find the unique Riesz representant of f in the space V.

Exercise A.57 Consider the Hilbert space V. = P%(—1.1) equipped with the L*-inner
product. Let the linear form f € V' be given by f(u) = u(0). Find the unique Riesz
representant of f in the space V. Hint: The results of Exercise A.54 include an orthonormal
basis in the nullspace N(f). Choose some suitable vy, € V' \ N(f) and apply the Riesz
formula (A.78).

Exercise A.58 Ler V., W be Hilbert spaces. Use Definition A.50 to show that every compact
operator A -V — W is bounded.

Exercise A.59 Consider the Hilbert space I* from Exercise A.55. Find asequence {u, }%.,
that converges weakly to the zero sequence but does not converge in norm (prove both
statements ).

Exercise A.60 Ler V' be a Hilbert space and {u,, } =, C V a sequence in V. Show that if
u,v € V are weak limits of the sequence, then w = v. Further, suppose that the sequence
is convergent in norm to an element w € V. Show that necessarily u = w.
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A.4 SOBOLEV SPACES

We know from Paragraph A.2.9 that the Lebesgue L”-spaces control the regularity of func-
tions: They do not admit functions with singularities whose strength exceeds certain limit
or, in unbounded domains, whose decay at infinity is slower than certain rate. The Sobolev
spaces WP are subspaces of LP-spaces that, moreover, control the regularity of the deriva-
tives. Their structure and properties make them particularly suitable for the analysis of
partial differential equations.

These spaces were introduced in the 1930s by Sergei Lvovich Sobolev, a Russian math-
ematician who essentially influenced the field of analysis and solution of partial differential
equations. To mention at least a few of his results, he derived important inequalities on the
norms in the Sobolev spaces, formulated and proved results on their embeddings (some of
them to be mentioned in Paragraph A.4.6), introduced the notion of generalized functions
(distributions), etc. In the 1950s he turned his attention to the computational mathemat-
ics and achieved important results in interpolation of multivariate functions and numerical
quadrature in higher spatial dimensions.

Figure A.32 Sergei Lvovich Sobolev (1908-1989).

The Sobolev spaces will be presented in Paragraph A.4.3, after imposing certain reg-
ularity to the boundaries of open sets in Paragraph A.4.1 and introducing the concepts of
distributions and weak derivatives in Paragraph A.4.2.

A.4.1 Domain boundary and its regularity

Until now we have worked with open bounded sets without paying special attention to their
boundaries. This will change in this section, since we will need to use the unit outer normal
vector to the boundary and calculate surface integrals. Let us begin with introducing the
notion of a domain:

Definition A.52 (Domain in R?) A subset Q C RY is said to be a domain if it is nonempty,
open and connected.

Set 2 C R is said to be connected if every two points in € can be connected by a
continuous curve that lies in €.
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Figure A.33 illustrates what is and what is not a domain:

2T (@) YA by

X, X,

Figure A.33 An open bounded set which (a) is and (b) is not a domain.
The boundary of some domains may be highly irregular, as shown in Example A.51.

B EXAMPLE A.51 (Bounded set with infinitely long boundary)

Consider an infinite sequence of bounded domains {2, }2%, €2, C 41, where
the domain €2 is, e.g., a symmetric equilateral hexagon with unit edge length. For
every n the domain 2, is obtained from €2,, as follows: Each edge of €, is split
into three equally long parts ej. ., €,,44, and €,441,¢. An open equilateral triangle of
the edge-length |e,,;4| is attached from outside to e,,;4. Points lying in the interior
of ¢,,;4 are added. This is illustrated in Figure A.34.

Figure A.34  Construction of a bounded set with infinitely long boundary: domains €2y, £2;.

It is easy to see that
) 4 1
|02, =6 <§> forallm =0.1....,

and to show that the limit set € is bounded. The unit outer normal vector to the
boundary 9§ is defined nowhere on 9¢1.

The above-described situation cannot occur when the boundary 0f2 is Lipschitz-continuous:

Lipschitz-continuity of 0 We assume that the reader knows the definition of Lipschitz-
continuity for real-valued functions of one and more variables. The exact definition of the
Lipschitz continuity for boundaries of domains in R¢ is rather technical. Roughly speak-
ing, the boundary 02 is said to be Lipschitz-continuous if there exists a finite covering
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of 90 consisting of open d-dimensional rectangles such that in each rectangle, 92 can
be expressed as a Lipschitz-continuous function of d — 1 variables. See, e.g., [S5] for an
exact definition. For simply-connected domains (i.e., domains © C R? such that R?\ Q2 is
connected), the Lipschitz-continuity is equivalent to the cone condition:

Cone condition We say that the boundary 9% of a d-dimensional bounded domain 2
satisfies the cone condition if and only if there exist constants €; > 0 and €3 > 0 such
that for every point g € 9€2 there are two open d-dimensional cones Cj,,¢ (g, 1, h1) and
Cert(g, 2, ho) sharing the vertex xg, with vertex angles 0 < ¢; < =, 7, and heights
0 < €3 < hy, ha, such that Cips (g, 71, h1) C Q and Cope{T0, Y2, ho) € R\ £, Figure
A.35 gives examples of domains whose boundary 2 (a) is, and (b)—(d) is not Lipschitz-
continuous. In the case (d) the cone condition is satisfied, but the Lipschitz-continuity is
violated at the center of the circle (this situation could not occur if 2 was simply-connected).

b) )

Figure A.35 2D domains whose boundary (a) 1s. and (b)—(d) is not Lipschitz-continuous.

A unique unit outer normal vector is defined almost everywhere on 02 when the boundary
0 is Lipschitz-continuous (see, e.g., [1] and [55]).

A.4.2 Distributions and weak derivatives

The following compact notation is practical for operations with partial derivatives:

Definition A.53 (Multi-index) Ler d be the spatial dimension. Multi-index is a vector
(a1, a2, ..., aq) consisting of d nonnegative integers. By |a| = Z;{':l o, we denote the
length of the multi-index a. Let f be an m-times continuously differentiable function. We
define the ath partial derivative of f by

olel
D(yf = Ps Yy < (X f A (o A
Ox{t0xy? .. 0xy
Note that D f = f fora = (0,0..... 0). To give at least two other examples, we have
of
D() = 7
f O.‘I?l

for o = (1,0,0...., 0),and fora = (1,1...., 1) one obtains

8{[ f

DYf= —v—"—
f 0x101s ... Jxy
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The Lebesgue LP-spaces contain nonsmooth and discontinuous functions whose derivatives
are not defined in the classical sense. However, in many cases the classical derivatives exist
almost everywhere. What needs to be done is to generalize the notion of the derivative to be
independent of zero-measure subsets. This was done by S.L. Sobolev, who introduced weak
derivatives. The basic ingredient for the definition of weak derivatives are distributions:

Definition A.54 (Distributions) Let Q C R? be an open set. The space of distributions
(infinitely smooth functions with compact support) is defined by

CS () = {p € C(Q); supplp) C Q; supp(yp) is compact}.

Sometimes one uses the symbols D(Q) or D(§) instead of C3°(€2). Recall that the
support

supp(p) = {z € & o(z) # 0}
always is both closed and bounded.
H EXAMPLE A.52 (Distributions)
Consider a bounded domain Q = (—1,1) C R and the functions
o(z) = cos(mz) +1, )= e*ﬁz,

depicted in Figure A.36.

# 05 Y

Figure A.36 The functions o and ¢.

Neither ¢ nor ¢ is a distribution in €2, since

supp(p) = supp(y) = [-1,1] ¢ Q.

However, the function ¢ can be extended by zero to be a distribution in the interval
0 = (-1~ €, 1 +¢), where ¢ > 0. This is not possible for the function ¢, since
already its second derivative would be discontinuous in §2.

Remark A.6 Since the support supp(p) of every distribution ¢ € C5°(QY) is a closed ser,
it cannot touch the boundary of the open set §). Therefore for every p € C3°(S) there is at
least a thin belt along the boundary OS2 where o vanishes entirely.



416 BASICS OF FUNCTIONAL ANALYSIS
Next let us review elementary results related to the integration by parts in higher spatial
dimensions, which will be used for the definition of the weak derivatives:

Theorem A.19 (Gauss’ theorem) Ler @ C R¢ be a bounded domain with Lipschitz-
continuous boundary. For every u.v € C'(Q) N C(Q) we have

ou . .
pdr = - / dz + / wev; dS. (A.80)
Q UL o, 9
Here v(z) = (11,1, .. .. v) () is the unit outer normal vector to the boundary 952.
Proof: See,e.g., [36]. [ |

The formula (A.80) generalizes easily to the divergence of vector fields

Theorem A.26 (Stokes’ theorem) Ler 2 C RY be a bounded d(_)main with Lipschitz-
continuous boundary. Every smooth vector field w € [CH{2) 0 C ()] satisfies

/ V w(x)dr = w(x)-v(x)dS. (A.81)
JQ Joo

where v{(x) is the unit outer normal to IS
Proof: This is an easy exercise using Theorem A.19. [ |
By repeated application of Theorem A.19 one easily arrives at the following result:

Theorem A.21 Let @ C RY be an open set, f € C'7(2) and o a multi-index such that
|| < m. The following holds:

/. D f(z)p(a)de = (-1 )‘”' f( YD(x)dx  forall p € C(Q).  (A82)
JQ

With this result we are very close to defining the weak derivatives. One last thing we
need is the space Lf (§):

Definition A.55 (Space of locally-integrable functions) Let @ C RY be an open set and
1 < p < oc. A function f : @ — R is said to be locally p-integrable in Q if f € LP(K)
for every compact subset K C €Y. The space of all locally p-integrable functions in  is
denoted by LY, (S2).

Remark A.7 Two remarks to spaces of locally p-integrable functions are in order:

1. Obviously it is LP(Q0) C LY () for every open set Q0 C R? and every 1 < p < oc.
The spaces LY b . arevery large. For example, the function 1/ x does not belong to the

space LP(0,00) for any p > 1, but it lies in the space L (0.oc) forallp > 1.

2. Let 2 C RY be an open (not necessarily bounded) set. The following inclusion holds:

L

loc

Q) c Ll (Q) whenever 1<q<p.

Note that for the LP-spaces, such inclusion was only valid on bounded sets (see
Lemma A.29).
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Finally, the weak derivatives can be defined:

Definition A.56 (Weak derivative) Ler Q C RY be an open set, f € L (Q) and let o be

loc
a multi-index. The function D f € L1 (S2) is said to be the weak ath derivative of f if

/ DY fodx = (-1)1*l| fDodx  forall p € C(Q). (A.83)
JQ JQ

The following result is needed for the proof of uniqueness of the weak derivative:

Lemma A .43 (Generalized variational lemma) Ler f € L} (S2) where @ C R is an
open set. If

f@yple)de =0 forall p € C(QY) (A.84)
Q

then f = 0 almost everywhere in 2.

Proof: Assume that there exists a nonzero-measure subset D C €2 such that f # O in
D. Without loss of generality, we can assume that D is open and f > 0 in D. Taking a
nonnegative ¢ € C§°(£2) with a nonempty support supp{y) C D, we arrive at a positive
value of the integral (A.84), which is a contradiction. [ ]
Lemma A.44 (Uniqueness of weak derivatives) Let 2 C R beanopenset, f € LL (Q)
and let « be a multi-index. The weak ath derivative DS f € L1 () is defined uniquely in
Q up to a zero-measure subset of S.

1
loc

Proof: Assume that functions g;, go € Li,.(Q) are the weak «th derivatives of f. Then

(A.83) implies that

/({]1 —go)pde =0 forall p € C5°(Q).
Jo

It follows from Lemma A.43 that g; = g» almost everywhere in €. |

Lemma A.45 (Compatibility of weak and classical derivatives) Ler 2 C R? be an open
set, f € C™(QY) and o a multi-index such that || < m. Then the classical ath derivative
D« f is identical to the weak ath derivative DS f.

ur

Proof: This is an immediate consequence of Theorem A.21. | |

B EXAMPLE A.53 (Weak differentiability in one dimension I)

Continuous, piecewise-smooth functions in 1D are weakly differentiable. This can
be illustrated on the function f(x) = 1 — |z} in the interval Q = (—1.1): Since f
is smooth in (—1,0) and in (0, 1), the only candidate for the weak derivative is the
function

1. € (-1.0),

-1, z€(0,1).
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It remains to be verified that (A.83) holds, with D%p = /. For an arbitrary p €
C§°(Q) let us calculate

1 0 1
—/ fo'dz - fo'de— | fodx
-1 1 0

1

()
“lfelts+ [ Fiveda = [+ [ (~Doda

1
Dy fedr — f(0-)p(0-) + f(0+)p(0+)

-1
1

/ D..fpda.
-1

Thus (A.83) holds and the above-defined function D} f is the weak derivative of f.

£

B EXAMPLE A.54 (Weak differentiability in one dimension II)
Discontinuous functions in 1D are not weakly differentiable: Consider the function
-1, ze(-1,0]
1, x € (0,1).

By the same token as in Example A.53, the only candidate for the weak derivative
D}U f is the zero function (with an arbitrary value at © = 0). If zero is the weak
derivative of f, forall ¢ € C§°(~1,1) we have

1 1 0 1
0:/ D} fode —/ fo' de = — fo' dz — fo'dx
-1 J-1 1 0

0 1
/ @ dr — / ' dx
J-1 0

©(0) — o(=1) = (9(1) = »(0)) = 2¢(0), (A.85)

which is a contradiction.

A.4.3 Spaces W*P and H*
The Sobolev spaces are defined as follows:

Definition A.57 (Sobolev spaces) Ler §) C R¢ be an open set, k > 1 an integer number
and p € [1,00]. We define

WEP(Q) = {f € LP(Q); D f exists and lies in LP(Y) for all multi-indices cv, |a| < k}.
For every 1 < p < oc the nornt || - || is defined as

1l = /QZID.EZJ'\”dw [ S uzsr] - ase

lxe| <k [ <k
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For p = oo we define

[fllkoe = max 1Dz flloc- (A87)

In the important special case p = 2 we abbreviate WP (Q) = H*(Q).

In the W*P-spaces we use the following standard seminorms:

v

fler=| [ 3 Ipusras) = | 3 10551

l|=k lal=k

for 1 < p < oc, and
|f|k>o = max ”Dgfuoc
|| =k

Classification of Sobolev spaces

We already know that all IP-spaces are Banach spaces and, moreover, that the space L? is
a Hilbert space. Let us see about the Sobolev spaces:

Theorem A.22 (W**(Q) is a Banach space) LetQ) C R beanopenset, k > 1aninteger
number and p € [1,00]. The Sobolev space W*?(Q) is a Banach space.

Proof: We need to show that every Cauchy sequence {f,,}°%, € W¥P({2) has a limit
f € WEP(Q). It follows from the Cauchy property of { f,,}22; in the W*®-norm that for
every multi-index || < k the sequence { DS £, 152, C LP(Q?) is a Cauchy sequence in the
space LP. Therefore for every |a| < k there exists a limit f, € LP(£2) such that

lim ||Dy fn — fallp = 0. (A.88)

For « = (0,0,...,0) denote f := f,. It remains to be shown that f, = D f for every
la| < k. Since {fn}32, C WFP, we have

/ D fapde = (—1)"’| fuD%pdx  forall p € C§°(2)
Q Q
for all n. Passing to the limit for n — oo, which is justified by (A.88), we obtain

A fapda = (=1l i fDodx  forall o € CFE(Q).

Therefore f., = D¢

ur

f forall || < k, and thus
7112131(; ”frz - f||1~'-1) =0.
|

Lemma A.46 Let Q C R be an open set, k > 1 an integer number. The Sobolev space
WHkP(Q) is reflexive if and only if 1 < p < oc.

Proof: Follows immediately from the reflexitivy of L?-spaces. |
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Theorem A.23 (H*(Q) = W*2(Q) is a Hilbert space) Ler Q C RY be an open set, k >
1 an integer number. The Sobolev space W*2(Q), endowed with the inner product

(f gl = / > DUfDgdz= 3 (D"f.D"g)ra). (A.89)

Cal<k e <k

is a Hilbert space.

Proof: It is sufficient to show that (A.89) indeed defines an inner product. This follows
easily from the fact that (A.89) is a finite sum of L2-products of the weak derivatives. B

Density of smooth functions in Sobolev spaces We first explained the density
argument in the context of the Lebesgue LP-spaces in Paragraph A.2.11. The following
theorem gives an analogy for the Sobolev spaces.

Theorem A.24 (Density of smooth functions in W*?) LerQ) ¢ R? be a bounded domain
with Lipschitz-continuous boundary and v € WkP(Q), 1 < p < o0. Then there exists a
sequence {v,,}>2, C C>(Q) such that

lim ||v — vnllx, = 0.
n—oC

Proof: See,e.g.,[1]. |

Here, C'>({2) is the space of infinitely-smooth functions with all derivatives continuous
up to the boundary 9€2. Theorem A.24 also holds for unbounded domains.

A.4.4 Discontinuity of H '-functions in R, d > 2

The density of smooth functions in W*-?-spaces, stated in Theorem A.24, does not imply
the smoothness, and not even the continuity of WHk-»_functions. However, there are special
cases such as the space H ' in 1D or H? in 2D, whose functions are continuous (this will be
explained in more detail in the comments to Theorem A.27). The functions in the frequently
used H!-spaces in 2D and 3D are not continuous in general, but their discontinuity only
can have the form of singularities. This is illustrated in the following example:

B EXAMPLEA.55 (Discontinuity of H'-functions in 2D and 3D)

Let © € R? be an open set. The H!-functions cannot be discontinuous along lines or
curves in §2, which can be shown using the fact that H*-functions are continuous in
1D. However, discontinuities can occur in the form of singularities at isolated points
in the domain. For example, consider the function

1 . .
flx) =log <log <@>> . (@) =2+ a0l (A.90)
in a domain Q = B(0.R) C R% 0 < R < 1/e. ltis easy to calculate that
. " . 2w
Vilie = [ |VfPde = — .
VA = [ VAo =~

as well as to verify that || f||.> < oc. Thus f € H'(2) despite f & C(Q).
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In 3D, H'-functions can have singularities both at isolated points and along one-
dimensional curves. To illustrate the point-singularities, we can consider the function
(A90)in B(O,R) C R3, 0 < R < 1/e, with r(z) = /22 + 23+ 22. A line-
singularity is obtained by adjusting the function (A.90) to

fler, o, 23) = flor. 29). (A91)

The function (A.91) lies in H(B(0, R)), and it has a singularity along the z3-axis.

A.4.5 Poincaré—Friedrichs’ inequality

A frequently used subspace of H*(8) is
HE(Q) = {v e H*(Q); D*v=00n 90 forall |of < k}. (A.92)
In the case of k£ = 1 this is the space
H}(Q) = {ve HY(Q); v=00n08Q},

where, for example, the weak formulation of second-order PDEs with Dirichlet boundary
conditions usually takes place. The Poincaré-Friedrichs’ inequality says that the H*-
seminorm

e = | [ 30 e aa

Q |k

is a norm in the space HE(Q2) on every bounded domain @ € R?. This norm, moreover, is
equivalent to the full H*-norm

ez = | [ 3 1D e

la <k

The notion of equivalence of norms was first introduced in Definition A.34. The equivalence
of |- |x.2 and || - || .2 in the space HF () finds application in the solvability and uniqueness
analysis of partial differential equations as well as in practical computations.

Theorem A.25 (Basic Poincaré-Friedrichs’ inequality in H}(()) Assume a bounded do-
main Q C RY that is contained in a d-dimensional cube with the edge-length C > 0. Then

lullzz < Clulia  forallu € H(Q). (A.93)

Proof: Since C§°(f2) is dense in H(Q), it is sufficient to prove the inequality for all
u € C§°(€). Without loss of generality, let @ C S = {{x1,22,...,24); 0 < z; < C}
and define u(z) = O forall x € S\ Q. Then

1 du
u(zy, e, ..., 2a) = u(0,22,. .., zq) + —(t,@a,...,zq)dt.
0 6I1
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The boundary term vanishes, and the Cauchy—Schwarz inequality yields

e x1 au 2
lu(z)]? < / 12 dt/ —(t.x2,...,mq)| dt
0 0 8171
Cy = 2
Ou
< C/ —(t,x9,.... 2, dt.
o [0z ( 2
Since the right-hand side is independent of 1, it follows that
c Cy o 2 c 2
ou Ou
2 2 2
dr, < C —{(t,T1,..., L, dt =C — dxy.
| @pan et [ 2w [ |2e@] an
Now it suffices to integrate over the whole cube S to obtain
2 2 2 du ? 2) 12
lullz> = [ fu(@)"dz < 7 [ 1==(2)| de < Culy,. (A.94)
s J5[0T1

Theorem A.26 (General Poincaré—Friedrichs’ inequality in H}(Q)) Let Q € R¢ be a
bounded domain. Then the seminorm | - |i 2 is a norm in the space HE(QY), equivalent to
the norm || - ||y 2. If Q is contained in a d-dimensional cube with the side length C, then

lulke < lullee < (1+C)Flulkz

forallu € HE(S).

Proof: We use the Poincaré-Friedrichs’ inequality (A.94) for the derivatives to obtain

0Dy
D(l 1 . < C
R
forall || < k — 1and u € HY(Q). The rest is shown by induction. [ ]

Remark A.8 The proof of the Poincaré~Friedrichs’ inequality actually requires weaker
assumptions — the space HE(Q) can be replaced with the space

V ={ve H¥Q); D*v=00nT forall |a| < k},
where I is a nonempty open subset of 05), and the equivalence of norms | - |2 and || - ||k 2
remains valid.

A.4.6 Embeddings of Sobolev spaces

Sometimes we need to decide whether all functions f that belong to a Banach space U also
lie in another Banach space V. Thus we are asking if the following implication holds:

Iflly <oo=|fllv < .

This is equivalent to the question whether the identity operator 7 : U — V is continuous.
The reader already knows the answer in some situations. For example, when @ C R%is a



SOBOLEV SPACES 423

bounded domain, U = LP(§}) and V = L4{€2). In this case the answer is positive if ¢ < p
(see Lemma A.29, Paragraph A.2.10). We also know the answer when U is a Lebesgue
LP-space and V some space of continuous or smooth functions (in this case it is negative).
Some more results of this type for Sobolev spaces will be presented in this paragraph. Most
of them will be given without proofs, since their difficulty goes beyond the scope of this
text. For the following definition recall Definition A.50 of compactness for operators in
normed spaces:

Definition A.58 (Embedding of Banach spaces) Ler U,V be Banach spaces such that
U C V. We say that U is continuously embedded into V, and write U — V, if there
exists a constant C'yy v such that for every u € U it holds

lulv < Covlullo. (A.95)

We say that the embedding is compact, and write U —<— V, if the identity operator T
moreover is compact.

If (A.95) holds, then obviousty
IZll < Cuv

(see Definition A.33). Since 7 is linear, it is continuous if and only if it is bounded (see
Lemma A.24). The following definition generalizes the Lipschitz continuity of functions
and introduces the Holder spaces:

Definition A.59 (Holder continuity, Hélder space C*4(Q)) We say thar a function f €

C(Q) is Holder-continuous with the exponent 3 > 0 if there exists a constant C'y such that
[f(21) = f(x2)| < Cpllzs —22))”  forall i,z € Q.

The space C*# () consists of functions whose ath partial derivatives are Holder-continuous
with the exponent 3 > 0 for all multi-indices o such that |a| < k.

Theorem A.27 (Embedding theorem) Let Q@ C R? be a bounded domain with Lipschitz-
continuous boundary and 1 < p < co. We have the following embedding results:

1. Ifkp < d, then
WkP(Q) —— LI(Q)

forall g < p* such thar 1/p* = 1/p — d/k.
2. Ifkp =d, then

WhEP(Q) - LI(Q)
Sorall g < 0.

3. Ifkp > d, then

WHhP(Q) — Cr-ld/P1-18(()
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where 3 = [d/p] + 1 — d/p if d/p is not an integer, or 3 € (0. 1) arbitrary if d/p is
an integer.

4. Ifkp > d, then

ng.p(Q) e Ck——[d/p]—l,/f(Q)

where 3 € [0,{d/p| + 1 —d/p). Here for a € R the symbol [a] stands for the integer
part of a.

Proof: The proof can be found, e.g., in [1]. |

The W*P_functions become smoother as the product kp increases. The critical value is
the spatial dimension d. The W*?-functions are continuous (or, more precisely, equivalent
to continuous functions) when kp > d,

Whe s O@)  if k> 1—;.
[¢

By applying this result to the partial derivatives, it is easy to see that

Whe o @) if k—m > f—;

If kp < d, then a W*-P-function belongs to LP" (£2) for an exponent p* greater than p. To
determine the exponent p*, one starts from the inequality kp < d written as

1/p—d/k > 0.

Then 1/p* is defined as 1/p* = 1/p — d/k.
Another consequence of Theorem A.27 is the following compact embedding result.

Corollary A.3 (Compact embedding) Ler 2 C R® be a bounded domain with Lipschitz-
continuous boundary. Let k, k' be nonnegative integers such that k > k', and 1 < p < oo.
Then

WHP(Q) —— WH'7(Q)

A.4.7 Traces of W¥*P-functions

Let 2 C R be a bounded domain. Since the Sobolev space W#-P(2) always is a subset of
the corresponding space LP(§2), the W*P-functions are only defined almost everywhere in
. Since the boundary 9 is a zero-measure subset of 2, it might seem that the boundary
values (traces) of W¥*P_functions never can be well defined. However, the notion of trace
is associated with the whole class of W*?-equivalent functions, and it is defined using a
representant that is continuous up to the boundary:

Definition A.60 (Trace of a W¥*-function) For a function f € W*¥(Q) that is contin-
uous up to the boundary 91 we define its trace to the boundary 0f2 as a function f defined
on 0%, such that

fl®) = f(x) forallx e 0.
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Theorem A.28 (Traces of 1V !-P-functions) Let$} C R? be a bounded domain with Lipsch-
itz-continuous boundary and 1 < p < oc. Then there exists a continuous linear operator
T WIP(Q) — LP(ORQ) such that

I (Tf)(x) = f(z) forallz € 00 if f € WEr N C(Q).

2. There exists a constant C > 0 such that

17 fllzro0) < Clfllwrr)
forall f € WIP(Q).

3. The operator T : WHP(Q) — LP(982) is compact.

Proof: See, e.g., [1] for the proof of this theorem as well as for more details on traces in
general. |

A.4.8 Generalized integration by parts formulae

In this paragraph let us recall a few standard integral identities that are used frequently in
the weak formulation of partial differential equations. Assume a bounded domain @ C R?
with Lipschitz-continuous boundary. By

denote the unit outer normal to J¢2 (defined almost everywhere on 0€2). The formulae
(A.80) and (A.81) are generalized as follows:

Theorem A.29 (Green’s theorem for H!-functions) For every u.v € H() it holds

du C v
—uvdxr = — U~
o O0x; o Oz

dx—i—/ uvy; dS. (A.96)
Joo

Proof: See, e.g., [36]. The proof is based on the density of C1 (€2} in H'({2), and it uses
the Trace Theorem (Theorem A.28). |

Theorem A.29 is the basis for various other useful identities. At least two of them are
introduced in the following lemma:

Lemma A.47 Forallw € H(Q) andv € H*(Q) itis

/ ulAvdxr = —/ VuVudr + uﬁ das.
Q Q o0 OV

where Jv/8v = Vo(x) -v(z), © € O Forallu € [H*()]* and v € H*(Q) it holds

/(divu)vd:t: = —/ u - Vodr +/ (u-vivdS.
Jo Q o0

Proof: Immediately from Theorem A.29. |
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A.4.9 Exercises

Exercise A.61 Show that the sequence of domains {2, }7% in Example A.51 is uniformly
bounded, i.e., that there exists a bounded domain §) such that Q, C Qf()r all n.

Exercise A.62 Prove Lemma A.46.
Exercise A.63 Show in detail that (A.89) defines an inner product in H*(Q).

Exercise A.64 Consider a function f € C{[—1,1]) defined as f(z) = z° for -1 < 2 <0
and f(z) = 2 for 0 < z < 1. Find the largest k for which f € H*(—1,1).

Exercise A.65 Consider a domain Q = B(0, R) C R%, 0 < R < 1/e. Show in detail that

the function
fa) = iog 1oz (ﬁ)) vl =i+,

lies in the space H' ().
Exercise A.66 Prove Theorem A.20 using Theorem A.19.

Exercise A.67 Let Q C R? be a bounded domain with Lipschitz-continuous boundary.
Use the Green’s Theorem A.29 to see that every divergence-free vector field w & [H(Q)]¢
satisfies

w-vdS =0,
o0

where v{x) is the unit outer normal vector to § at the point © € OfL.
Exercise A.68 Prove Lemma A.47 using Theorem A.19.

Exercise A.69 Consider a domain Q = (—1,1) x (—=1,1) C R? and a function
: LT 2
flt,zy,z0) =2~ et +t—351n(t )] (1 —23)(1 - 23).

A sequence of functions { f, 152, is defined by putting f,(x) = f(n,x).
1. Verify that this sequence lies in H* ().
2. Show that it converges in H-norm and find the limit g € H*(Q) of the sequence.

3. Use the fact that { f,}52; C H}(Q) and a consequence of the Poincaré-Friedrichs’
inequality to simplify the convergence analysis.
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APPENDIX B
SOFTWARE AND EXAMPLES

This chapter is devoted to the discussion of selected topics related to finite element software.
In Section B.1 we present an efficient way of connecting the packages PETSc, Trilinos and
UMFPACK to a finite element solver. Section B.2 gives a brief description of the high-
performance modular finite element system HERMES. The full manual posted on our web
page offers additional technical details. At the end of Section B.2 we present numerical
results obtained with HERMES, where the efficiency of the lowest-order FEM and the hp-
FEM is compared. Since it was not possible to include color pictures with this book, a color
PDF file with the visualizations is available on our web page.

B.1 SPARSE MATRIX SOLVERS

Efficient solvers for sparse systems of linear algebraic equations are key ingredients of finite
element programs. Nowadays an engineer or researcher hardly can afford developing matrix
solvers on his/her own, and thus public domain software packages play an increasingly
important role. Moreover, as the finite element software becomes more complex, the
question of efficient simultaneous interfacing to multiple matrix solver packages matters.
Every matrix solver comes with its own unique interface. Hardcoding this interface into a
FEM solver means an unwanted coupling. If the FEM solver deals with multiple PDEs that
produce matrices with substantially different properties (this is the case, e.g., with second-
order elliptic PDEs and Maxwell’s equations), the application of multiple matrix solvers
becomes a need.

Partial Differential Equations and the Finite Element Method. By Pavel Solin 427
Copyright © 2006 John Wiley & Sons, Inc.
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For this reason we decided to put an additional interface between the finite element solver
and the matrix solvers, that we call the sMatrix utility. The basic version of the sMatrix
utility is described in Paragraph B.1.1. The class sMatrix allows the user to operate with
sparse matrices in the same way as with full matrices. Internally, the sparse matrices are
represented via arrays of pointer chains, so that not even an estimate of the number of nonzero
entries per row has to be provided. The library comprises 10 iterative matrix solvers based
on [ILU-preconditioned CG, BiCG, and other standard methods. These solvers work fine for
moderately ill-conditioned problems. In Paragraph B.1.2 we provide an example where the
sMatrix utility is incorporated into a simple finite element code. Both the data structures
and algorithms in the sMatrix utility can be replaced easily while maintaining the original
interface to the finite element solver. This is demonstrated in Paragraphs B.1.3-B.1.5, where
we provide a brief description of the packages PETSc, Trilinos, and UMFPACK, and show
how to connect them with a finite element solver through the sMatrix interface.

B.1.1 The sMatrix utility
The software package sMatrix comprises the files

src/s.cpp,

inc/sMatrix.h,
inc/sMatrix_f.cpp,
inc/sMatrix_PETSc.cpp,
inc/sMatrix_Trilinos.cpp,
inc/sMatrix_UMFPACK.cpp,
inc/Solvers.f,

Makefile,

obj/.

The file s . cpp contains a simple piecewise-affine one-dimensional finite element solver
for the model problem from Paragraph 2.2.1, which uses the sMatrix utility. The file
inc/sMatrix_f.cpp is the default version of the sMatrix utility which contains sev-
eral standard ILU-preconditioned matrix solvers for both symmetric and nonsymmetric
problems. These solvers are collected in the Fortran file inc/Solvers.f. The files
sMatrix_PETSc.cpp, sMatrix_Trilinos.cpp, and sMatrix UMFPACK. cppemploy, un-
der the same interface, iterative and direct matrix solvers provided by the packages PETSc,
Trilinos, and UMFPACK. These packages must be downloaded and installed separately.
The directory obj/ is used to store object files.

Including the sMatrix utility The sMatrix utility is included into a C/C++ code
via the header file sMatrix.h after the standard system includes.

Initialization of a sparse matrix The size of the matrix Ndof must be known at the
time of initialization. An empty sparse matrix S is initialized by the command sMatrix *3S
= new sMatrix(Ndof, Nnz). The input parameter Nnz is ignored unless the packages
PETSc, Trilinos, or UMFPACK are employed (this will be discussed later). The parameter
Nnz either is a single integer number defining the maximum number of nonzeros per row,
or it is an integer array of the length Ndof whose entries define the maximum number of
nonzero entries in each row.

Adding nonzero entries The operation S;; = S;; +value, where value is an arbitrary
real number, is performed via the command S->Add(i, j, value). The indices start
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from O, which is a standard C/C++ convention (as opposed to Fortran, where indices start
from 1). This means that the indices 1 = O and j = 0 correspond to the upper left corner
of the matrix. Nonzero entries can be added to any position and as many times as the user
wishes. A new entry in the sparse matrix structure is created when a first contribution to a
position (i, j) is made, and further contributions to an existing entry only change its value.

Transforming the matrix into the CSR format  After the process of filling the sparse
matrix is finished, the number of nonzero entries in the matrix can be calculated by calling

S~>ComputeNonZeros () ;

Next the matrix can be transformed into the Compressed Sparse Row (CSR) format (see
Paragraph 2.5.1) by calling the functions

S->Alloc_CSR_arrays();
S->Fill_CSR_array_IA(Q);
S->Fill_CSR_array_JA(Q);
S->Fill_CSR_array_AQ);

If for some reason one needs to reset all entries of the matrix to zero while preserving its
sparse structure (i.e., the arrays IA and JA), the command

S->SetZero();

can be used. After the IA, JA, and A arrays have been created, the matrix is stored twice in
the computer memory. Hence the original sparse structure may be deleted via the command

S->DeleteSparseStructure();

Solving the system of linear algebraic equations With a right-hand side vector
F of the length S->Rank, the system SY = F is solved by calling the function

SolveSparseSystem(S->Rank, S->NonZeroNum, S->IA, S->JA, S->A,
F, Solver, Max_iter_num, Iter_error,
Num_of_iter);

The solution vector Y is returned in the vector F. This function is defined outside of the
sMatrix class so that it can be used independently, with any sparse matrix represented in
terms of the three CSR arrays. The input parameters int Solver, int Max_iter_num,and
double Iter_error, and the output parameter int &Num_of_iter have the following
meaning:

Solver is a nonzero integer number between -10 and 10 that determines which numer-
ical method from the file Solver.f is be used. This parameter is ignored when PETSc,
Trilinos, or UMFPACK are employed:

.. pbeg(): BiCG (biconjugate gradient method), nonsymmetric
. pbcgmr(): BICGMR2 (BiCGStab2 with full two-dimensional minimiza-
tion of the symmetric method), nonsymmetric

. pegs(): (squared BiCG), nonsymmetric

. pscgs(): SCGS (smoothed squared BiCG), nonsymmetric

. pdegs(): DCGS (twice smoothed squared BiCG), nonsymmetric

. pqmr(): QMR (quasi minimum residual method), nonsymmetric

. pstab(): BiCGStab, nonsymmetric

[\

~ N s W
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8 ... pstab2(): BiCGStab2, nonsymmetric
9 ... pgcgm(): GCGM (generalized conjugate gradient method), symmetric
10 ... pmr(): (minimum residual method), symmetric

See, e.g., [103] for the description of these methods. The ’p’ in the name of the method
stands for "ILU-preconditioned”. When flipping the sign, the same method is used without
preconditioning. Max_iter_num is the maximum allowed number of iterations (to avoid
an infinite loop in the case of convergence problems), Iter_error is the accuracy of the
solver (more precisely, the upper bound for the residual), and Num_of _iter returns the
number of iterations actually performed. After the sparse linear algebraic system is solved,
the function

S->Delete_CSR_arrays();

may be used to delete the CSR arrays from the computer memory. Additional functions
can be found in the header file sMatrix.h, and the source code sMatrix. cpp contains the
description of additional internal variables that we have not mentioned. The source code
sMatrix_f.cpp is too lengthy to be printed here, but the reader finds it included with the
sMatrix package.

B.1.2 An example application

Let us return to the model problem stated in Paragraph 2.2.1: Given the real coefficients
ay > 0 and ag > 0, an interval = (xg, 1), and a finite element mesh 7, over
consisting of M > 1 equally-spaced affine elements, find a piecewise-affine approximate
solution to the equation

—(ayv'Y +apu=1 inQ, (B.1)

equipped with homogeneous Dirichlet boundary conditions.

The corresponding C++ finite element code that employs the sMatrix utility is shown
below. The input parameters a; > 0,a9 > 0,20 < z1 and M > 1 are hardcoded for
simplicity, but the user is free to change them.

/*

This short code illustrates the use

of the utility sMatrix. Solved is

a model problem -(al u’)’ + a0 u = 1
with homogeneous Dirichlet conditions
in a 1D interval (x0, x1) by piecewise
-affine equally-spaced elements.

*/

//system includes

# include <stdio.h>
# include <string.h>
# include <math.h>

# include <stdlib.h>
# include <unistd.h>

//the sMatrix utility
# include "../inc/sMatrix.h"

int main(int argv, char **argc) {
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/®*% DEFINING PROBLEM PARAMETERS LEEY

double x0 = 0, x1 = 1; //computational domain Omega = (x0, x1)
double al = 1; //coefficient, must be greater than zero
double a0 = 0; //coefficient, must be greater than
//or equal to zero
int M = 10000; //number of equally-spaced elements in (x0,x1)

/**%x  PRINTING PROBLEM PARAMETERS  *¥x*/

printf ("\n \n");
printf(" This is a demo for the sMatrix utility\n");
printf (- - \n");

printf("Domain: Omega = (%g, %g).\n", x0, x1);
printf ("Equation: -(al w’)’ + a0 u = 1\n");
printf("Bdy conditioms: u(x0) = u(x1) = 0.\n");
printf("Coeffs: al = %g, a0 = %g.\n", al, a0);
printf ("Subdivision into %d elements.\n", M);

/*%*  DEFINING ELEMENT LENGTH  #*%/

double h = (x1 - x0)/M;

/**x  DEFINING THE NUMBER OF UNKNOWNS  #k*/
int ndof = M - 1;

/*%*  ALLOCATING THE SPARSE MATRIX  #**/

//the second parameter is ignored unless
//the PETSc or Trilinos packages are used
//(to be explained later)

sMatrix *S = new sMatrix{(ndof, 3);

VALL ALLOCATING THE RHS *xx/

double *f = (double*)malloc(sizeof (double)*ndof);
if (f == NULL) Error("Not enough memory for the right-hand side.");

VALl FILLING THE SPARSE MATRIX AND THE RHS **x/
/xx (THE ELEMENT LOOP) *xk/

//setting the RHS zero
for(int i=0; i<ndof; i++) f[i] = 0;

//first element
S->Add (0,0, al/h + a0*h/3);
f[0] = h/2;

//loop over internal elements

for(int i=2; i<M; i++) {
S->Add(i-2, i-2, al/h + a0*h/3);
S->Add(i-2, i-1, -al/h + aO*h/6);
S->Add(i-1, i-2, -al/h + a0*h/6);
S->Add(i-1, i-1, al/h + a0*h/3);
£{i-2] += n/2;
fli-1] += h/2;

//last element

431
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S->Add(M-2,M-2, al/h + a0=h/3);
£[M-2] += h/2;

/*%*  CONTROL OUTPUT OF THE MATRIX IN MATLAB FORMAT o/
/*
string name = "matrix";

S->0utputMatrixMatlab(name);

printf("Control output of the matrix in Matlab format.\n");
*/

VAL CONTROL OUTPUT OF THE MATRIX IN ASCI FORMAT *okk [
/*
//string name = "matrix";

S->0utputMatrixASCI (name);
printf("Control output of the matrix in ASCI format.\n");
*/

/**x  CONTROL OUTPUT OF THE RHS IN ASCI FORMAT %%/

/*

printf("RHS = ");

for(int i=0; i<ndof; i++) printf(“%g ", £[il);
printf("\n");

*/

VAt TRANSLATING THE MATRIX INTO THE CSR FORMAT *kx/

S->ComputeNonZeros () ;
S->Alloc_CSR_arrays();
S->Fill_CSR_array_IA();
S->Fill_CSR_array _JA();
S->Fill_CSR_array_A();

/**+  RELEASING MEMORY FOR THE SPARSE MATRIX STRUCTURE  **x/
S->DeleteSparseStructure();

/#*%  DEFINING SPARSE MATRIX SOLVER PARAMETERS  #k*/
//choosing the iterative sparse matrix solver

//{(ignored when the PETSc or Trilinos packages are used)

int solver = 9; //9 for ILU-preconditioned Conjugate Gradients

//defining accuracy of the iterative sparse matrix solver
double iter_error = le-10;

//setting a limit to the number of iterations of the solver
int max_iter_num = 1000;

//declaring a variable where the solver returns the number
//of iterations actually performed
int num_of_iter;

VAL SOLVING THE SPARSE LINEAR ALGEBRAIC SYSTEM *kk [
SolveSparseSystem(S—>Rank, S->NonZeroNum, S->IA,

S->JA, S->A, f, solver,
max_iter_num, iter_error, num_of_iter);
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printf ("Matrix solver performed %d iterations.\n", num_of_iter);
VALE RELEASING MEMORY FOR THE CSR SPARSE MATRIX ARRAYS *xk [
S->Delete_CSR_arrays(};

VAL OUTPUT OF SOLUTION *okok [

FILE *g = fopen("solution.gnu”, "wb");

if(g == NULL) Error("Could not open the output file.");

fprintf(g, "%g O\n", x0);

for(int i=0; i<ndof; i++) fprintf(g, "%g %g\n", x0 + (i+1)*h, £[il);
fprintf(g, “%g O\n", x1);

fclose(g);

printf("Gnuplot file solution.gnu created.\n");

delete 3;
free(f);
printf("Bye.\n");
return 1;

B.1.3 Interfacing with PETSc
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The PETSc solver package (Portable, Extensible Toolkit for Scientific Computation) was de-
veloped at Argonne National Labs. It can be downloaded from the web page http://wuw-
unix.mcs.anl.gov/petsc/petsc-2/index.html where also installation instructions,
documentation and an extensive amount of additional information can be found. Rather
than trying to give another description of the package here, let us present the source code
sMatrix_PETSc.cpp. This is a PETSc version of the sMatrix utility, with an interface
identical to the original sMatrix. Every finite element solver that works with the original

sMatrix will work with sMatrix _PETSc as well.

The source code of sMatrix PETSc.cpp

//implementation of PETSc solvers under the sMatrix interface
#include "sMatrix.h"

#ifdef __cplusplus

extern "C" {
#endif

#include <petsc.h>

#include <petscvec.h>
#include <petscmat.h>
#include <petscksp.h>

#ifdef __cplusplus
¥
#endif

#include <sstream>
#include <fstream>
#include <iomanip>
#include <cstdio>
#include <cstdlib>
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using namespace std;

void Error{(char *msg) {
fprintf (stderr, "%s\n", msg);
fflush{(stderr);
exit(0);

}

//class sMatrix
sMatrix::sMatrix(int iRank, int nz = 0)

{
PetscInitializeNoArguments();
Rank = iRank;
A = (doublex)malloc{sizeof(Mat));
MatCreateSeqAIJ(PETSC_COMM_SELF, Rank, Rank,
nz > 0 ? nz : PETSC_DEFAULT, PETSC_NULL, (Matx*)A);
IA = NULL;
JA = NULL;
NonZeroNum = 0;
}
sMatrix::sMatrix(int iRank, int *nz)
{
PetscInitializeNoArguments();
Rank = iRank;
A = (doublex*)malloc(sizeof(Mat));
MatCreateSegAIJ(PETSC_COMM_SELF, Rank, Rank,
PETSC_DEFAULT, nz, (Mat*)A);
IA = NULL;
JA = NULL;
NonZeroNum = O;
}

double sMatrix::GiveEntry(int iRow, int iColumn}
{
if (iRow < O || iColumn < O |
iRow >= Rank || iColumn >= Rank)
Error("internal in sMatrix::GiveEntry().");
PetscScalar val;
MatGetValues(*(Mat*)A, 1, &iRow, 1, &iColumn, &val);
return (double)val;

¥

void sMatrix::SetZero()

{
MatZeroEntries (*(Mat*)A);

}

void sMatrix::ComputeNonZeros()

{
//counting nonzeros
MatAssemblyBegin(*(Mat*)A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(*(Mat*)A, MAT_FINAL_ASSEMBLY) ;
MatInfo info;
MatGetInfo(*(Mat*)A, MAT_LOCAL, &info);
NonZeroNum = (int)info.nz_used;

}

void sMatrix::Alloc_CSR_arrays()

{
MatAssemblyBegin(*(Mat*)A, MAT_FINAL_ASSEMBLY);
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MatAssemblyEnd (*(Mat*)A, MAT_FINAL_ASSEMBLY);

}
void sMatrix::Delete_CSR_arrays()
{
}
void sMatrix::Fill_CSR_array_IAQ)
{
MatAssemblyBegin(*{(Mat*)A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd (*(Mat*)A, MAT_FINAL_ASSEMBLY);
}
void sMatrix::Fill_CSR_array_JAQ)
{
MatAssemblyBegin(*(Mat*)A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd (*(Mat*)A, MAT_FINAL_ASSEMBLY);
+
void sMatrix::Fill_CSR_array_AQ)
{
MatAssemblyBegin(*(Mat*)A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd (*(Mat*)A, MAT_FINAL_ASSEMBLY);
}
void sMatrix::Add(int Row, int Column, double Value)
{
MatSetValue (*(Mat*)A, Row, Column, Value, ADD_VALUES);
}

//this function compares the sparse matrix with

//a given full matrix (for debug purposes)

void sMatrix::TestVsFullMatrix(double **A, double precision)
{

Error{("TestVsFullMatrix() not done in PETSc version.");

}

void sMatrix::OutputMatrixMatlab(string ProjectName)

{
string MatlabFileName = ProjectName + ".mat";
PetscViewer w;
PetchiewerASCIIDpen(PETSC*COMM;SELF,

MatlabFileName.c_str(), &w);

PetscViewerSetFormat (w, PETSC_VIEWER_ASCII_MATLAB);
MatView(* (Mat*)A, w);
PetscViewerDestroy(w);

}

void sMatrix::OutputMatrixASCI(string ProjectName)

{
string TxtFileName = ProjectName + ".txt";
PetscViewer w;
PetscViewerASCIIOpen (PETSC_COMM_SELF,

TxtFileName.c_str(), &w);

MatView(*(Mat*)A, w);
PetscViewerDestroy(w);

}

void sMatrix::DeleteSparseStructure() {

435
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}

void SolveSparseSystem(int Rank, int NonZeroNum, int *JA,
int * JA, double *A, double *X,
int Solver, int Max_iter_num,
double Iter_error, int &Num_of_iter)

Vec rhs, x;
VecCreateSeqWithArray (PETSC_COMM_SELF, Rank, X, &rhs);
VecDuplicate(rhs, &x);

KSP ksp;

KSPCreate (PETSC_COMM_SELF, &ksp);

KSPSetTolerances(ksp, Iter_error, PETSC_DEFAULT,
PETSC_DEFAULT, Max_iter_num);

KSPSetFromOptions(ksp);

KSPSet{perators(ksp, *(Mat*)A, *(Mat*)A, SAME_PRECONDITIONER);

//VERSION 2.2.0:

//KSPSetRhs(ksp, rhs);

//KSPSetSolution(ksp, xJ;

//XSPSolve(ksp);

//VERSION 2.2.1:

KSPSolve (ksp,rhs,x);

PetscReal r_norm;

KSPGetResidualNorm(ksp, &r_norm);

KSPGetIterationNumber(ksp, &Num_of _iter);

printf{"Matrix solver step %d, residual %g.\n",
Num_of_iter, r_nmorm);

PetscScalar *p;

VecGetArray(x, &p);

for(int i=0; i<Rank; i++) {
X[i1 = plil;

}

VecRestoreArray(x, &p);

KSPDestroy (ksp) ;
VecDestroy(rhs);
VecDestroy(x);

B.1.4 Interfacing with Trilinos

Trilinos is a large collection of linear and nonlinear algebraic solvers developed at Sandia
National Labs. Documentation on the Trilinos project can be found on the web page
http://software.sandia.gov/trilinos/. Here we present its rather simple serial
application. The following source code sMatrix_Trilinos.cpp is the Trilinos version of
the sMatrix utility, that again preserves the original sMatrix interface.

The source code of sMatrix Trilinos.cpp
//implementation of Trilinos solvers under the sMatrix interface
#include "sMatrix.h"

#include <Epetra ConfigDefs.h>

#include <Epetra_SerialComm.h>
#include <Epetra_CrsMatrix.h>
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#include <Epetra_Map.h>

#include <Epetra_Vector.h>
#include <Epetra_LinearProblem.h>
#include <Aztec00.h>

#include <sstream>
#include <fstream>
#include <iomanip>
#include <cstdio>
#include <cstdlib>

using namespace std;

void Error(char *msg) {
fprintf{stderr, "%s\n", msg);
fflush(stderr);
exit(0);

}

//class sMatrix
sMatrix::sMatrix{(int iRank, int nz)

{
Rank = iRank;
Epetra_SerialComm *Comm = new Epetra_SerialComm;
Epetra_Map *Map = new Epetra_Map(Rank, O, *Comm);
Epetra_CrsMatrix *Crs = new Epetra_CrsMatrix(Copy, *Map, nz);
A = (double*)Crs;
IA = NULL;
JA = NULL;
NonZeroNum = O;
}
sMatrix::sMatrix(int iRank, int *nz)
{
Rank = iRank;
Epetra_SerialComm *Comm = new Epetra_SerialComm;
Epetra_Map #Map = new Epetra_Map(Rank, O, *Comm);
Epetra CrsMatrix *Crs = new Epetra CrsMatrix(Copy, *Map, nz);
A = (doublex)Crs;
IA = NULL;
JA = NULL;
NonZeroNum = O;
}
double sMatrix::GiveEntry(int iRow, int iColumn)
{
if (iRow < 0 |] iColumn < O |
iRow >= Rank || iColumn >= Rank)
Error("internal in sMatrix::GiveEntry().");
Error("GiveEntry() not done in Trilinos version.");
return 0.0;
¥
void sMatrix::SetZero()
{
Epetra_CrsMatrix *Crs = (Epetra_CrsMatrix*)A;
Crs—->PutScalar(0.0);
}

void sMatrix::ComputeNonZeros()

{
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//counting nonzeros

Epetra_CrsMatrix *Crs = (Epetra_CrsMatrix*)A;
Crs->FillComplete();

NonZeroNum = Crs->NumGlobalNonzeros();

void sMatrix::Alloc_CSR_arrays{)

{
Epetra_CrsMatrix *Crs = (Epetra_CrsMatrix#*)A;
Crs->FillComplete();

}

void sMatrix::Delete_CSR_arrays()
{
}

void sMatrix::Fill_CSR_array_IA(Q)

{
Epetra_CrsMatrix *Crs = (Epetra_CrsMatrix*)A;
Crs->FillComplete();

}

void sMatrix::Fill_CSR_array_JAQ)

{
Epetra_CrsMatrix *Crs = (Epetra_CrsMatrixx)A;
Crs->FillComplete();

}

void sMatrix::Fill_CSR_array_AQ)

{
Epetra_CrsMatrix *Crs = (Epetra_CrsMatrix*)A4;
Crs->FillComplete();

}

void sMatrix::Add{int Row, int Column, double Value)
{
Epetra_CrsMatrix *Crs = (Epetra_CrsMatrixx)A;
int ret = Crs—>SumIntoGlobalValues{Row, 1, &Value, &Column);
if (ret!=0) {
Crs—>InsertGlobalValues(Row, 1, &Value, &Column);
}
}

//this function compares the sparse matrix with
//a given full matrix (for debug purposes)
void sMatrix::TestVsFullMatrix(double **A, double precision)
{
Error{("TestVsFullMatrix() not done in Trilinos version.");

1

void sMatrix::QutputMatrixMatlab(string ProjectName)
{
Error ("OutputMatrixMatlab() not done in Trilinos versiomn.");

}

void sMatrix::OutputMatrixASCI(string ProjectName)
{
Epetra_CrsMatrix *Crs = (Epetra_CrsMatrix*)4;
cout << *Crs << endl;

}
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void sMatrix::DeleteSparseStructure() {

}

void SolveSparseSystem(int Rank, int NonZeroNum, int =*IA,
int * JA, double *A, double *X,
int Solver, int Max_iter_num,
double Iter_error, int &Num_of_iter)

{
Epetra_CrsMatrix *Crs = (Epetra_CrsMatrix#*)A;
Epetra_Vector rhs(Copy, Crs—>RowMap(), X);
Epetra_Vector x(Crs->RowMap());
x.Random() ;
Epetra_LinearProblem Problem{(Crs, &x, &rhs);
Aztec00 KSP(Problem);
KSP.Iterate(Max_iter_num, Iter_error);
Num_of _iter = KSP.NumIters();
x.ExtractCopy(X);

¥

B.1.5 Interfacing with UMFPACK

UMFPACK is a set of routines for solving nonsymmetric sparse linear systems by means
of the Unsymmetric MultiFrontal method. The software was developed at the University
of Florida at Gainesville. Being a direct solver, UMFPACK is substantially different from
the iterative solvers Trilinos and PETSc. We use it successfully for indefinite problems
arising in the discretization of the time-harmonic Maxwell’s equations, where the iterative
solvers do not perform well. Documentation and source codes can be found on the web page
http://www.cise.ufl.edu/research/spar se/umfpack. Building the UMFPACK
functionality into the sMatrix utility was slightly more technical because of its specific
data structures, but the original sMatrix interface could be preserved exactly. The source
code sMatrix UMFPACK. cpp is not printed here because of its length.

B.2 THE HIGH-PERFORMANCE MODULAR FINITE ELEMENT SYSTEM
HERMES

Nodal elements (such as the Lagrange, Whitney, or Nédélec elements) are naturally suited
for meshes where all elements have the same polynomial degree. This is why they are most
suitable for problems with “nice” solutions. However, many problems in computational
engineering and science exhibit significant local behavior in the form of steep gradients,
singularities, boundary and/or internal layers, etc. These phenomena can be most efficiently
resolved by means of hierarchic finite element methods (hp-FEM), which are capable of
combining elements of variable size and polynomial degree. The impact on the efficiency
of the method is tremendous. A few numerical examples at the end of this section give the
reader some feeling for the difference. An introduction to hierarchic finite element methods
can be found, e.g., in [111], on which the implementation of HERMES is based.
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B.2.1 Modular structure of HERMES

HERMES is a modular object-oriented FEM system designed to facilitate the portability
of the hp-FEM technology to various PDE models in engineering and science. The system
consists of two main modules:

o FEM/hp-FEM Module containing the finite element discretization technology, such
as the mesh processing algorithms, interior mode elimination algorithms, assembling
algorithms, a-posteriori error estimation algorithms, etc.

e Algebraic Module with a variety of solvers for systems of linear and nonlinear al-
gebraic equations, such as ILU preconditioned CG and BiCG methods, and solvers
provided by the packages PETSc, Trilinos, and UMFPACK. Additional solvers can
be added easily.

The FEM/hp-FEM and Algebraic Modules communicate through the universal sMatrix
interface that was described in Paragraph B.1.1.
The FEM/hp-FEM module is the most complex part of the system. It comprises:

¢ FEM/hp-FEM kernel containing PDE-independent algorithms,

o smaller modules representing PDE-dependent data, such as various types of finite
elements.

In this way the discretization technology is fully separated from the physics of the solved
problems, which reduces the development cost and increases the portability of the system
to various PDE applications. The modular structure is depicted in Figure B.1.

FEM/hp-FEM Module

Continous Conti . Oth f
Problem ontmuous ther !ype% O <o
elements elements = €
Mesh ; —E
’» Generator | | Edge aylor—Hood g2
clements elements ]
PDE . )
Weak I v v v 2 &
. - )
Bdy. Cond. ] Formulation
- —

FEM/hp-FEM Kernel

iscrete . N :
Er(s)blem l sMatrix Interface I Solution

solution
coefficient
vector

stiffness matrix Trilinos PETSc UMFPACK Other

load vector

Algebraic Module

Figure B.1  Structure of the modular FEM system HERMES.

Currently two different PDE modules are implemented in the FEM/hp-FEM module:

¢ Elliptic Module with hierarchic continuous elements for systems of arbitrary number
of nonlinear elliptic equations,
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e Maxwell’s Module containing hierarchic edge elements for time-harmonic Maxwell’s
equations.

The Stokes Module with hierarchic higher-order Taylor—-Hood elements is under construc-
tion. Each type of PDE problem can be supplemented with appropriate boundary conditions.

B.2.2 The elliptic module

The system of nonlinear PDEs is entered via the definition of nonzero components of the
vectors and matrices in the matrix equation

021 (Pl(a: u, VU)O&l( )) + Oi) (Pz(:c U, Vu)aa—t( )) (B.2)

du

2 (Bl it@) + o (Plaa vt @)

o
f)—l (Py(a v, Vuju(e)) + - (Fy(a v Vuu(a)
+ Pr{x.u, Vu)u(z) = Fla,u, Vu).

Here u(x) = (uy(x). uz(x). .. .. up,,(x))? is the unknown solution with the components
w € HY{(Q,i=1,... N,4. The matrix parameters Py, Ps. .. .. P7 of the type Neg X Neg
may be arbitrary, some of them can be zero, but each equation in the system must stay a
scalar second-order elliptic PDE. All parameters may depend on the spatial variable x, on
the solution u and/or on the gradient Vu. The same applies to the right-hand side function
F=(F.....Fn,)"(z,u,Vu). By applying 8/dx, and 8/dx; to vectors, we mean that
the derivatives are applied to every component.

The variable V., is set to one when a single scalar equation is solved, in which case
obviously the matrix and vector parameters become scalars. In this way the model equa-
tion (B.2) covers a large variety of nonlinear, possibly vector-valued second-order elliptic
problems.

Boundary conditions Boundary conditions can be prescribed in a general form. For

each solution component, the boundary of the domain is split into two parts I'p ; and I' v 4,

i =1,2...., Neg. These boundary parts do not have to be connected, and moreover either

'y orI'p,; can be empty, provided that the other parameters guarantee unique solvability.
On I'p ; one prescribes the Dirichlet boundary condition

u(x) =gpilx), x€lp,i=12..., Neg.

where ¢gp ; are given functions.
The Neumann boundary conditions, gy ;, on I' v ; are defined in the form

ou ou ou Ju
<P1 Ers Pza o P5U>i + N9 <P3 ) P4a—2— + P@1L>L = gN.is

where gy ;{x) are the given functions, v = (1 (), v2(x))7 is the unitary outer normal
vectorto 980, @ € Iy, andi =1,2...., Ny
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Vector formulation With the notation
(A B
A= ( ooR.
the problem (B.2) can be rewritten to

div (AVu) + 2 (Psu) + 9 (Psu)+ Pou = F inQ,
Or Oy

Ui = ¢gp.: On 1_‘D,z-,
([AVY] - v), + (Psury + Psura), = gni onTn.

Spatial discretization The polynomial degrees 1 < p < 10 on the finite elements
can be defined either via a data file or by means of a function in the code that assigns the
polynomial degrees to elements based on the coordinates of their vertices. The polynomial
degrees may differ from element to element. The solver constructs the corresponding
hierarchic basis of the (vector-valued) finite element space V,, C (H!(Q))Nee, B =
{¥1,¥2,...,pn}. The unknown solution is sought in the form

N
u(z) = Zyj@j(w),

where y = (y1,¥2,.-.,yn)" is the vector of unknown coefficients of the length N. Equa-
tion (B.2) is formulated in the variational sense and the usual finite element discretization
is performed. The result of the discretization is a system of nonlinear algebraic equations
in the form

Aly)y = f(y). (B.3)
Here A is a square matrix of the type N x N depending on the vector y. It contains the
nonlinearity coming from the coefficients Py, Ps, ..., P;. The right-hand side f(y) is a

vector of the length /V that also depends on y. The discrete system is solved via a fixed
point iteration
Ayt = f), E=0,13,.., (B4)

starting from a suitable initial guess y°. Each iteration of this process includes the solution
of a system of linear algebraic equations with a given matrix A* = A(y*). For this purpose
we use the previously mentioned sMatrix utility.

B.2.3 The Maxwell’s module

The time-harmonic Maxwell’s equation (7.62) is considered in the two-dimensional form
V(u'VE) - x’.E=F inQ, (B.5)

where E is the complex phasor of the electric field (i.e., the underlined quantity in (7.61)).
In the two-dimensional setting, the relative permeability 1, = p,(x) is a scalar in 2D,
whereas the relative permittivity €, = ¢,{x) isa 2 x 2 tensor. By w and k = w,/lg€g we
denote the frequency and wave number, respectively. Here, as in Chapter 7, the symbol
V = (8/8x9,—8/0x,)7 stands for the vector-valued curl of a scalar quantity, and VE =
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OF>/8x1 — OF /Ox4 is the surface curl. Equation (B.5) is considered in an open bounded
domain Q ¢ R?.
The code works with the normalized values (7.67),

I~

VekE - E, JuH — H,

5

and (7.68),
) )
& = — (e + ﬁ) , (B.6)
€0 w
M
Hr = —
Ho

where the conductivity -y is a function of the spatial variable.

Boundary conditions The boundary 9% can be split into two open (not necessarily
connected) disjoint parts [ » and I';. We consider the perfect conductor boundary condition
(7.57),

E-t=0 onIp,

and the impedance boundary condition (7.71),
L *VE —jrAE-t=g-t onTy.

Here t = t(x) is the positively-oriented unit tangential vector ¢ = (—uy, ;)% where v =
(v1,v2)7 is the unit outer normal vector to the boundary 2. The impedance A = A(x) > 0
was defined in (7.72). Only the tangential component of g = g(x) is relevant.

Spatial discretization The discretization of the time-harmonic Maxwell’s equations
is analogous to second-order elliptic problems. The solver constructs a hierarchic basis
of the corresponding finite element subspace of H(curl,Qy), B = {1;,%,, ..., ¥y}
Recall that the space H (curl) only requires the continuity of the tangential component of
the approximation across element interfaces. The unknown solution E, ;, is sought in the
form

N
Enp(@) =Y z1;(x),
i=1

where z = (21, 22,...,2x5)7 € C¥ is the vector of unknown complex coefficients.
The usual finite element discretization yields a system of complex-valued linear algebraic
equations of the form
Az = f. (B.7)

Here A is an N x N complex matrix and f a complex vector. Only the complex version
of UMFPACK can handle the complex arithmetics. However, the code is written in such
a way that also real solvers can be employed. This is done by representing the complex
system as a 2N x 2N real system.

All matrix solvers available in HERMES (ILU preconditioned CG and BiCG methods,
PETSc, Trilinos, UMFPACK, and Gaussian elimination) can be employed to solve the
linear system (B.7). However, the convergence of the iterative solvers in this case may be
unsatisfactory due to the indefinite nature of the matrix A. As we said earlier, UMFPACK
seems to be most appropriate for the discretized time-harmonic Maxwell’s equations.
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B.2.4 Example 1: L-shape domain problem

The first numerical example deals with a problem whose exact solution u is known, and
thus the error function ey, ,, = u — uy, , can be calculated exactly. We consider an L-shape
domain © C R? with a reentrant corner, shown in Figure B.2.

-1t
Figure B.2 Geometry: of the L-shape domain.

Considered is the equation —Awu = 0 in §2 with the Dirichlet boundary conditions
u(z) = R(x)*?sin(20(x) /3 + 7/3)  forall z € AN

Here R(x) and 6(x) are the standard spherical coordinates in the plane. The exact solution
has the form

u(x) = R(x)?®sin(20(x)/3 + n/3)  forallz € Q.

The magnitude of the gradient |Vu/| of the exact solution (whose calculation is left to the
reader as an exercise) exhibits a singularity at the reentrant corner. Singularities are typical
for second-order elliptic problems in domains with reentrant corners, and they make their
numerical solution challenging. Despite being very local in space, they are a significant
source of error. The error can be measured in a variety of different ways. The H*-norm

o=

Heh,.p”H‘(Q) = </ |’II, - uh,.p|2 + |VU - v“’h.p|2 dfC)
JQ

is a natural choice from the point of view of the weak formulation of the problem. The
L>*-norm
llenpllL= (o) = sup fu(x) — up ,(x)|.
TeQ

on the other hand, gives the maximum difference of « and u; ;. We use the H'-norm in
what follows. The problem was solved twice, using the piecewise-affine FEM and the hp-
FEM. In both cases it was our goal to attain the best possible accuracy using as few degrees
of freedom as possible. The approximate solution, its gradient, finite element meshes, and
a-posteriori error estimate ey, , = U,y — 4y, based on a very accurate reference solution
Uy f, are shown in Figures B.3-B.7. The efficiency of the piecewise-affine FEM and the
hp-FEM is compared in Table B.1.
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Figure B.3 Approximate solution u, ,, of the L-shape domain problem.

Figure B.4 Detailed view of |Vuy, | at the reentrant corner (zoom = 70).
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Figure B.5 The hp-mesh. Large fifth-order elements are used far from the singularity, and small
quadratic elements cover the vicinity of the reentrant corner.

Figure B.6 The hp-mesh, details of the reentrant corner (zoom = 70).
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Figure B.7  A-posteriori error estimate for uy, ,,. details of the reentrant corner (zoom = 70).

The geometry of the piecewise-affine mesh was identical to the hp-mesh, but the piecewise-
affine mesh was moreover uniformly subdivided to reach the required accuracy (each edge
was split into 60 equally long parts).

An efficiency comparison of the piecewise-affine FEM and hp-FEM is shown in Table
B.1. Both computations, as well as all other computations shown in the following, were
performed using our modular FEM system HERMES under identical conditions on a desk-
top Linux PC with a 3 GHz Pentium 4 processor and 2 GB of memory.

Table B.1 Comparison of the number of DOF, relative error in the H'-norm, number of
iterations of the matrix solver, and the CPU-time.

Affine elements  hp elements

DOF 143161 839
Error 0.1876% 0.1603%
Iterations 421 30
CPU time 2.1 min 0.35 sec

Acknowledgment The numerical results presented in this section were obtained with the

help of the triangular mesh generator Triangle [107] by Richard Shewchuk (seehttp://www-2.cs.cmu.
and the visualization tool General Mesh Viewer (GMV) by Frank Ortega (seehttp://www-xdiv.lanl.
GMVHome . html).
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B.2.5 Example 2: Insulator problem

This time it is our goal to calculate the distribution of the electric field induced by an
insulated conductor in the vicinity of a point where the conductor leaves the wall. The
computational domain 2 C R? corresponding to this axisymmetric problem is depicted in
Figure B.8.

Figure B.8 Computational domain (all measures are in millimeters).

The wall itself, where we are not interested in the solution, is not included in the domain
). The same holds for the conductor along the horizontal axis of symmetry. Both the
wall and the conductor are handled via suitable boundary conditions (to be defined below).
The hatched subdomain €22 C €2 represents the insulator with the relative permittivity
€, = 10. The relative permittivity in the rest of the domain is ¢, = 1. This problem is
more difficult compared to the previous one, because in addition to a reentrant corner there
is a material interface in the domain along which the electric field F is discontinuous (i.e.,
across which the scalar potential  has a significant jump in the derivative). Solved is the
standard potential equation of electrostatics (7.25) in cylindrical coordinates, equipped with
the following boundary conditions:

w=220V onTy.

=0V onlUT;.
and

25 _

0 on rg U F;; U P(i-
v

Again we compare the results obtained by means of the piecewise-affine FEM and hyp-
FEM. The approximate solution, its gradient, finite element meshes, and an a-posteriori
error estimate are shown in Figures B.9-B.13. The efficiency of the piecewise-affine FEM
and the hp-FEM is compared in Table B.2.
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Figure B.9 Approximate solution ¢, ,, of the insulator problem.

Figure B.10  Details of the singularity of |Ey,_ ,] = | — Vi, | at the reentrant corner, and the
discontinuity along the material interface (zoom = 1000).

Figure B.11  The hp-mesh, global view. Large fifth-order elements are used far from the singularity
and material interface, small quadratic elements are placed close to the reentrant corner and the material
interface



450 SOFTWARE AND EXAMPLES

Figure B.12 The hp-mesh, details of the reentrant corner (zoom = 1000).

Eref 1

|-

]

1

Figure B.13  A-posteriori error estimate for ¢y, ,,, details of the reentrant corner (zoom = 4).

The piecewise-affine mesh had geometry identical to the ip-mesh, but it was uniformly
subdivided so that an accuracy similar to the hp-FEM could be reached (each edge was split
into 23 equally long parts). An efficiency comparison is shown in Table B.2.

Table B.2 Comparison of the number of DOF, relative error in the H '-norm, number of
iterations of the matrix solver, and the CPU-time.

Affine elements  hp elements

DOF 259393 6331
Error 1.617% 1.521%
Iterations 228 60

CPU time 34 min 11.58 sec
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B.2.6 Example 3: Sphere-cone problem

The next problem also deals with electrostatics. A metallic sphere of the radius 200 mm
carries an electric potential (o, = 100 kV. The distance of the sphere to the ground is 1000
mm. There is a metallic cone 100 mm above the sphere with zero electric potential. The cone
is 500 mm high and its bottom has the radius 100 mm. The axisymmetric computational
domain 2 is depicted in Figure B.14 (notice that the figure describes the boundary conditions
used). We solve equation (7.25) in cylindrical coordinates and compare the performance of
the piecewise-affine and hp-FEM. The approximate solution, its gradient, the finite element
meshes, and an a-posteriori error estimate are shown in Figures B.15-B.19. The efficiency
of the piecewise-affine FEM and the hp-FEM is compared in Table B.3.
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Figure B.14 Computational domain of the cone-sphere problem.
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Figure B.15 Approximate solution ¢, , of the cone-sphere problem.

Figure B.16  Details of the singularity of |E), )| = | — Vi, at the tip of the cone (zoom =
50.000).
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Figure B.17 The Ap-mesh, global view. Large seventh-order elements are used far from the
singularity and small quadratic elements at the tip of the cone.

Figure B.18 The hp-mesh, details of the tip of the cone (zoom = 50,000).
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Figure B.19  A-posteriori error estimate for oy, ,, details of the reentrant corner (zoom = 200,000).

The geometry of the piecewise-affine mesh was identical to the ip-mesh, but the piecewise-
affine mesh was moreover uniformly subdivided in order to reach the required level of ac-
curacy (each edge was split into 48 equally long parts). An efficiency comparison is shown

in Table B.3.

Table B.3  Comparison of the number of DOF, relative error in the H !'_norm, number of

iterations of the matrix solver, and the CPU-time.

Affine elements  hp elements

DOF 488542 3317
Error 0.5858% 0.2804%
Iterations 859 44

CPU time 30 min 10.53 sec
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B.2.7 Example 4: Electrostatic micromotor problem

This computation is rooted in the construction of electrostatic micromotors. These devices,
which are capable of transforming the electric energy into motion analogously to standard
electromotors, do not contain any coils or electric circuits that could be destroyed by strong
electromagnetic waves. The goal of this computation is a highly-accurate approximation of
the distribution of the electric field in a domain containing two electrodes and a thin object
placed between them. The problem is plane-symmetric, and Figure B.20 shows one-half
of the domain §2.

axis

50 1"2 400 1

200

200
0.5

- 0
ol 198

1.5

Figure B.20 Computational domain (the scaling was adjusted, but true measures in millimeters are
provided). The electrode is modeled via a Dirichlet boundary condition.

The gray subdomain €2, represents the moving part of the device, while the white sub-
domain 2, represents the electrodes that are fixed. The distribution of the electric potential
@ is governed equation (7.25),

=V - (e(x)Ve(z))=0 inf,
equipped with the Dirichlet boundary conditions
=0V only,

and
=50V onls.

The relative permittivity €, is piecewise-constant, ¢ = 1 in Q; and € = 10 in Q5. We solve
the problem twice, using the piecewise-affine and hp-FEM. The solution, gradient of the
solution, a-posteriori error estimate, and the meshes are shown in Figures B.21-B.22. The
efficiency of the piecewise-affine FEM and the hp-FEM is compared in Table B.4.
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Figure B.21  Approximate solution of the micromotor problem. Top: electric potential ), , (zoom
= | and 6). Bottom left: detailed view of the singularity of |E}, | = | — Vn | at a corner of the
electrode (zoom = 1000). Bottom right: Error estimate based on a reference solution (zoom = 1000).
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Figure B.22  The hp-mesh (zoom = 1, 6, 50, 1000). Large sixth-order elements are used far from
the electrodes and small quadratic elements are placed at the reentrant corners.
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The piecewise-affine mesh had geometry identical to the hp-mesh, but it was uniformly
subdivided so that an accuracy similar to the hp-FEM could be reached (each edge was split
into 44 equally long parts). An efficiency comparison is shown in Table B.4.

Table B.4  Comparison of the number of DOF, relative error in the H !_norm, number of
iterations of the matrix solver, and the CPU-time.

Affine elements  hp elements

DOF 472384 4511
Error 0.2024% 0.173%
Iterations 387 71
CPU time 32 min 17 sec

B.2.8 Example 5: Diffraction problem

The last example taken from [76] is concerned with an electromagnetic diffraction problem
in the domain = (—10,10)2\ (0, 10) x (—10,0) with reentrant corner. The Maxwell’s
module of HERMES (see Paragraph B.2.3) is employed to discretize the time-harmonic
Maxwell’s equations by means of hierarchic hp edge elements. The edge elements use the
same hp-FEM kernel as the elliptic module that was described in Paragraph B.2.2. The
technology of the hierarchic edge elements is slightly different from the Nédélec elements.
The hierarchic vector-valued shape functions used in HERMES can be found in [111]. The
reference transformation (7.113) derived in Paragraph 7.5.2 is used without changes.

The problem involves perfect perfect conducting boundary conditions on the edges meet-
ing at the reentrant corner, and impedance boundary conditions on the rest of the boundary
(see [76] for their exact definition). The exact solution to this problem is given by

E(z) =V x Jy(r)cos(ad), r(z)=/2%+ 2%, (B.8)

where the symbol V = (8/8z, —0/0x,)7 stands for the vector-valued curl, o = 2/3,
Jo is the Bessel function of the first kind, and (r, ¢) are the cylindrical coordinates in the
plane. The approximate solution E}, , (whose singularity was truncated for visualization
purposes) is depicted in Figure B.23. The approximate solution obtained on the lowest-
order mesh is optically identical to Ey, ,. Figures B.24 and B.25 show the hp-mesh and
lowest-order mesh consisting of the Whitney elements. An efficiency comparison is shown
in Table B.5.

By the way, this example illustrates that [H*(€2)]? is not a subspace of H (curl,): The
asymptotic expansion of the exact solution (B.8) at r = 0 reveals a singularity O(r=4/3),
which is too strong for E to lie in the space [H*(2)]2. Thus, as we said at the beginning
of Section 7.5, no Galerkin sequence could be constructed using subspaces of [H({(2)]2.
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Figure B.23  Approximate solution to the diffraction problem (the magnitude of the phasor of the
electromagnetic field | Ey_,|). The singularity at the reentrant corner was truncated for visualization

purposes.
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Figure B.24 The hp-mesh consisting of hierarchic edge elements.
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Figure B.25 The mesh consisting of the lowest-order (Whitney) edge elements.

The lowest-order mesh shown in Figure B.25 was uniformly subdivided in order to reach
an accuracy comparable to the hp-FEM (each edge was split into 10 equally long parts).
An efficiency comparison is shown in Table B.5.

Table B.5 Comparison of the number of DOF, relative error in the H (curl)-norm, and the
CPU-time.

Whitney edge elements  hp edge elements

DOF 2586540 4324
Error 0.6445% 0.6211%
CPU time 21.2 min 2.49 sec
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soft-supported. 250
symmetry. 287
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collocation, 197
entropy. 38
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interface. 277, 286
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electric, 274
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cone condition, 414
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definition. 118
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to the space H' 119
conservation law, 37
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error, 173
order, 173
constitutive relations, 274
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Lipschitz of boundary, 413
of operators. 357
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Heine definition, 360
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data structure
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density
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discrete problem, 46
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definition, 412
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Lagrange
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heat transfer, 5
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potential, 4
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Maxwell’s
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gauge
Coulomb, 282
Lorentz, 282
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strict. 40
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local optimality. 98, 235
inverse matrix, 337
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femma
Céa’s, 49
generalized variational, 417
Lax—Milgram, 25
Zorn's, 330
linear
combination, 326
form. 343
independence, 328
operator, 332
space, 320
span. 326
Lipschitz boundary. 414
magnetization, 276
map
reference, 68
reference affine D, 68
reference aftine 2D, 112
reference biaftine 2D, 109
reference isoparametric, 109
mass lumping. 175
matrix
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inverse, 337
nonsingular, 337
positive definite, 48
similar, 341
singular, 337
stiffness. 48
symmetric, 342
transition. 338
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Fekete, 149
Gauss—Lobatto, 71
norm, 348
-, 407
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operator, 361
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one-step method, 173
open ball. 355
operator
bounded, 361
closed. 9
compact, 408
composition, 362
continuous, 357
contractive. 371
idempotent. 328
integral, 357
inverse, 334
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Parseval equality, 400
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relative, 277
permittivity
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relative, 276
permutation, 339
phase flow, 171
continuous, 172
discrete. 173
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potential
electric, 279
of divergence-free field, 282
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Riemann problem. 41
Riesz Frigyes. 405
semidiscretization, 169
seminorm
definition, 351
Sobolev, 419
sequence
bounded. 352
Cauchy, 366
convergent, 352
limit of, 352
set
bounded. 355
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shear force, 212
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inner product, 389
Lebesgue, 375
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classification, 419
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stage derivative, 202
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stress, 210
subspaces
definition, 323
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theorem
Banach fixed point. 371
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Heine-Borel, 407
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Reynolds’ transport, 37
Riesz representation. 405
Stokes™. 416
substitution, 139
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time difference
backward. 176
forward. 175
trace
definition. 424
theorem, 425
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check. 106
definition, 105
of Argyris elements in 2D, 255
of Hermite elements in 1D, 218
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variational crime. 127
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load. 48
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wave number, 288
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