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CHAPTER 8
THE PRINCIPLE OF INCLUSION AND EXCLUSION

Section 8.1

Let z € § and let n be the number of conditions (from among ¢, ¢3, ¢35, ¢4) satisfied by a:
(n = 0): Here z is counted once in N(&€3%4) and once in N(5;%3Cs)-

(n = 1): If z satisfles ¢; (and not ¢;,¢3, ¢4), then z is counted once in N(;¢3¢4) and once
in ]\7{0162'6354).

If z satisfies ¢;, for 1 # 1, then z is not counted in any of the three terms in the equation.
(n = 2,3,4): If = satisfies at least two of the four conditions, then z is not counted in any
of the three terms in the equation.

The preceding observations show that the two sides of the given equation count the same
elements from §, and this provides a combinatorial proof for the formula N(€;%:8,) =
N(C;Egzgz,g) -+ N(616253.54).

Proof (By the Principle of Mathematical Induction):

If ¢t = 1, then we have N = N(€;) = the number of elements in S that do not satisfy
condition ¢; = N — N{cy). This is the basis step for the proof.

Now assume the result true for k& conditions, where k (> 1} is fixed but arbitrary, and for
any finite set §. That is, N(2:866...%) = N — [N{e1) + N(ez)} + N(ea) + -+ + N{cp)] +
[N(cica)+N{crea)+- -+ N{eser )+ N{cses )+ -+ Negep )+ - -+ N{eacp )+ - -+ N{cryer)}—
IN(ereges) + -+ + NleroaCaror)) + -+ (~1)*N{eiepes. .. ).

Now consider the case for ¢ = k + 1 conditions. From the induction hypothesis we have
N(&%; ... Ghcwpr) = N{eppr) ~ [N{crcosr) + N{cacrsn ) + N{escpp1) + -+ + N(cperar)]
+N(eresehsn) + N{creatupa) + - -+ N{ercsepin ) + N{eaescpaa) + - + N{caciCisn)

b b N{eacsCagr) + oo 4 N{ceacrepa J} — [V{ereaeacpps ) + o0+

N{cipCh-1€hpr )] + -+ (~1VN{e1cpes . . . cxCipr ).

Subtracting this last equation from the one given in the induction hypothesis we find that
N{ggﬁﬁag s Ek%&@g) e mwéégﬁgzg o E}J b N(Eg:ég:ég “ve E@@gg@g‘}

@ ﬁr’ e gﬁwy{ﬂ’g} e ,N'{Cg} S = J’%‘?(Cg}é g gN(ﬂgﬁfg} o ﬁ{-{)g(}a} g v e b hrgé’igéﬁk} S ﬁ%%ﬂ?gﬂg}
dorod N{cgep) 4o+ N{cser)+ -+ N{cpmrex)] — [N{erc3e3) +- - -+ N{epoacrsea)] +- -+
(=1 N{ereses . . . cx)—N{egpr )+ N (er6ep1 )+ N{€atrsn ) + -+ N{czepi )]~ [N {ereserpn )+
N{creackan) + - + N{cgrcrcppn)] + - + (1) N(erezes. . cocrpr) =
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N = [N(e) + N(ea) +--+ N(e) + N(ewa ) + [V {erea) + -+ Ncaes) + N(ereu) 4o+
N(ew-16r41) + N{ewcrpa)] ~ [N(crcaes) + - + N(cpoaChrcr) + -+ N{chosereip )]+ +
(—~1)F* I N(cicocs - .. cxCiagr )

So the Principle of Inclusion and Exclusion is true for any given finite set § and any number
t (> 1) of conditions — by the Principle of Mathematical Induction.

N = 100

N{es) = 35; N{cp) = 30; N(ez) = 30; N(cq) =41

N{ereg) = 9; N{ciez) = 115 N{creq) = 185 N{caes) = 10; N{caey) = 14; N{esey) = 10.
N{cyeges) = 8; N{ercaeq) = 8; N{cyescq) = 6; N{caezeq) =6

N(616263C4) = 4

(&) N(Elb’gm&;) = N(E]Ezag) b N(E}EQZ;;E,;}

N(51€2§4) = N — [AT(C}} + N(Cg) + N{C.@)]

+iN(61(32) -+ N(C]C4) -+ N(6264)1 - ﬁr(616204) = 100 — §35 + 30 -+ 4}.} “f- {9 -+ 13 4 14] - 6
= 100 — 106 + 36 ~ 6 = 24

N{(%1€,€384) = 12 (as shown in Example 8.3)
So N(E;Egc;;ag) =24 ~ 12 =12

Alternately,

N(E18:8) = N — [N(c1) + N{ea) + N{ca)] + [N{c1c2) + N(crca) + N{caes)] — N{ciez¢4), s0
N(E;Ezc;gag) e N(Cg) - {N(Clﬂa) -+ N(CgCg) -4 N(C3C4)] -+ [N(C;CQC;;) + N(C}Cgc,;) -+ N(C2C3C4)}
~N{eicoeacy) =30~ {11+ 104+ 10} + [54+6+6] -4 =30-31+ 17 -4 = 12.

(b) N(&@&) = N — [N(er) + N(cs)] + N{creq), so N(Breaesls) = N(eyes) — [N(ereaes) +
N{ecgeses)] + N{ereaeses) = 10 — [5 4 6] + 4 = 3.

cy: Staff member brings hot dogs

¢z Staff member brings fried chicken

ex: Staff member brings salads

cq: Staff member brings desserts

N = 66

N{ey) = 21; N{eg) = 35; N{cz) = 28; N(cq) =32

N{cieg) = 13; N{eyes) = 10; N{cies) = §; N{eacs) = 12; N{caeq) = 17; N{cges) = 14
N{cyeaea) = 4; N{cyepes) = 6; N{ereaeq) = 5; N{cgeaeq) =7

N{Cg!ﬁgﬂgﬂ@} = 2.

() N(38;658,) = 65— [21+35-+ 28+ 32} -+ {13+ 10494+ 12+17 4 14] - [4 464+ 54+ T+ 2=
65 ~1164+ 75~ 22+2=4.

(b}‘ N{Egﬁ;;&g} = N - gN((’ﬁg) o ..N{C;a) o N(&;}} 4 {N(Cg(ﬁg} +N((ﬁ~;¢€4} & ﬁ‘?(cgifié}i e N{6283C4}, 8O
N{eyBy83Ts) = Nlcy ) — [N{eyeo) + Nlcieg)+ N{eyeg)] 4 [N{cicaea) + N{cyepey) + Nieyese, )| —
N{ciegeses) =21~ {13+ 104+ 9] +[44+6+45]-2=21~324+16~2=2,

{C} N(EgCg53€4} = ﬁ‘?(ﬁg} i EN{c;sg} E N{Cg(ﬁg) + 3’37{63!34}} . {.N'(Cfgﬂgc:i} - f\"’{{:}.ﬂzﬁg} -
Nlcgeses)] — N{ereaeaes) = 35— {134+ 12417+ 4464+ 7]~ 2=35-424+17T-2=8
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N{(&18ye2%4) = N{es)—[N{cres) +N(exes)+ N{cses)] + [N {cregea) + N{cyeses) + N{egeaeq ) —
N{ciegcacy) = 28 —~ (104 12+ 14]+ 4+ 54 7] —2=28—-36+16-2=6.

AT(61526364} = N{Cg) - EN(C;C;;) + N(Czc.g} +N{C;§C4)1§ -+ {N{ciczcé} +JV(6163C4) +N(Cz€364 )] -
N{cicocses) =32~ [94 174+ 14] + [6+54T]~2=32~40+18~-2=8.

So the answer is 2+ 8+ 6 + 8 = 24.

(a) ¢: npumber n is divisible by 2
cg: number n is divisible by 3
¢5: number n is divisible by 5
N{ey) = |2000/2] = 1000, N{c;) = |2000/3] = 666,
N(es) = |2000/3] = 400, N{cicz) = [2000/(2)(3}] = 333,
N{cges) = |2000/(3)(5)} = 133, N({cica) = [2000/(2)(5)] = 200,
N{ejeaes) = [2000/(2)(3)(5)] = 66.
N(&&,8;) = 2000 — (1000 + 666 + 400) + (333 + 200 + 133) — 66 = 534
(b) Let ¢1,¢3,¢3 be asin part (a). Let ¢4 denote the number n is divisible by 7. Then
N{ecs) = 285, N(crca) = 142, N{eoeq) = 95, N{czeq) = 57, N{ciezeq) = 47, N{cicaeq) =
28, N(CQC"}C,;) = 19, N(61826364) = 8, N(Elagagé.;) = 2000 — (1080 -+ 666 + 400 -+ 285) +
(333 + 200 + 133 + 142+ 95 + 57) — (66 + 47+ 28 4+ 19) + 9 = 458
{c) 534458 =T6.

Ty + xg + 23+ x4 = 18,

(a) 0<a,1<i<4 (87 = (%)

(b) For 1<i<4 let ¢;12; 2 8.

N(¢j): ey + a2 +wa+ze=11: (“’ﬁ"l) = (ff), 1<i<4
N{cie;): z1+ 22+ za+oa=3: (4+§~1) = (g), 1<i<j<4
N(@aet) = N~ 5+ S = () —4(31) +6(3)

(¢) The number of solutions for #; + z;+ 23+ 24 = 19 where 0 < 2; €85, 0 <23 <
8, 3<2; <7, 3< x4 <8 equals the number of solutions for z; + 2, + 23+ 24 = 13 with
0<2, <5 0<2,<6, 0< 23 <4, 0< 24 <5, Define the conditions ¢;, 1 <1 <4, as
follows: ¢y: T3 2 6; a1 22> T 3 23> 55 cu: o4 26,

W= () = (9)
N(es)h Nied): sp+zptas+za=T7: (") =(¥)
Ne): st at s =0: (1) = ()
N(ca): ms+ 24 za+za=8: (U577 =(})
N(ere) = 1

3
83

N{Q;iﬁg} S By b Zo b 2y TR 2. {é+;m1} == {2}
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7.

8'

10.

Nicieq): zy+zgtas+ay=1: {4+§~1> = {ﬁ
,-N{CgCg, = {i}, N(@z&%} =1, N{CSC‘J = (g>
Wsemed = () - (5) + () + (D+20+ () + Q)

Let ¢, denote the condition where an arrangement of these 11 letters contains two occur-
rences of the consecutive pair IN. Define similar conditions c¢g, ¢3, ¢4, ¢5, and cg, for the
consecutive pairs NI, I0, OI, NO, and ON, respectively. Then

N = 8y = 111/{2)%

N(ex) = 01/(2)%, $1 = (§)191/(2)7;

N{eiea) = N{eie3) = N{eses) = N(caes) = N{eaes) = N{caes) = N{caes) = N{cges) =
Neses) = 0, N(cyeq) = 71/2!, and 83 = (6)[7!/2!]; and

532547-‘”55525350.

Consequently, the number of arrangements under the given restrictions is N(¢;€,83C4C5¢) =
8o — Sy + Sy = [111/(2Y)°] - (‘f) [91/(2h? + (8){7!/2!] = 4,989,600 — 544,320 + 15,120 =
4, 460, 400.

The number of integer solutions for @y 4+ a2+ 23+ 24 =19, -5 <2, €10, 1 £¢ £ 4,
equals the number of integer solutions for y + 2+ ya + 91 =39, 0 <y <15,
For 1<i<4,let ¢;: y; > 16.

N(e), 1Si<4: y+mtuys+ya=23: (V57 = (%)
N{ciey), 1€i<j<4: ptmtmtuu=7: (") =(¥)
Naeesa) = (5) - () @) + G) (7)
Let z be written (in base 10) as 2;73...2;. Then the answer to the problem is the

number of nonnegative integer solutions to zy + 22+ ...+ 2y =31, 0 < 2; <9 for
1<: <7

H 1<j5 <7 ket ¢; denote the condition that z,2;,...,27 is an integer solution of
Tyt Tt +rr=3,0<2, 1< <7, but z; >9 (or z; > 10).

N{e;) is the number of integer solutions for g + 2+ 23+ ...+ 27 =21, 0 <y, 0< =
for 2<i <7 Here N(c,)=(2) and S = (J}(%).

N{eyeq) is the mumber of integer suﬁutim"m for mtyetaeat.. ey =1L, DSy, 0, 0 < oy
for 3<: <7 Onefinds Ny = {é;} and 55 = {?} {“)u

FTARE!
In a similar way we oblain 53 = ( ;} {;} and Sqm= S = S5 = 8 =0. Sinee N = 8; =

(5), we bave Neta..en) = (3) - () + () - Q)
Here we are working with uniis of 5 credits. So we are seeking the number of credit

assignments where each question receives at least 2, but not more than 5, units (of §
credits). Hence the answer is the number of {nonnegative) integer solutions to 2y + 2 +
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1L

12.

13.

i4.

i5.

i86.
i7.

23 4 ...+ 212 = 16 (units of 5 credits) where 0 € z; < 3 forall 1 £ ¢ < 12. We find
the answer to be (1%3‘;54) " {z}a) (12«1-13.224) + (122) (12@5-—1) - (132) (124—4@4) + (142) (12«-;)—-1} -
12 {19 12} (15 12\ {11

@;) - (112) (ﬁ) + (22} (ls) - (32) (4) + (4)(0)

For each distribution of the 15 plants there are 18! arrangements. Consequently, in order
{0 answer this question we need to know the number of positive integer solutions for

Ty + Zg+ Tz + T4+ x5 = 15, where 1 < z; K4 forall1 < <6

This is equal to the number of nonnegative integer solutions for

yi+ys+yatys+ys =10, where 0 <y < 3foralll €4 <5 [Here yy+ 1 = & for all
1<4<5]

For 1 € i < 5 let ¢; denote the condition that ¥ + y2 + ys + yg + ys = 10 where y; 2 4
{ory; >3)and y; 2 0for 1 £ j <5 andj#i. Then N(c) is the number of nonnegative

integer solutions for

2+ 22+ 23+ 25+ 25 = 6. [Here 2y +4 = 3, and z; = y; for all 2 < ¢ < 5.] This is
(4653 2 i), w05, = () (1.

Fi1<i<j <5, N (eie;) is the number of nonnegative integer solutions for
wy+wy+wyt+ws+ws =2, [Here w; +4 =y, w;+4 =y; and wp =y for all 1 < k <5,
k#i,5.]

This is (5“";'1) = (g) and so S; = (2) (2)

Similar calculations show us that S3 = S, = S5 = 0, and so N{€:€,€3¢4Cs) = So— S1+ 52 =
5410-1 10 5\ (6) _ (14 16 5\ (6

é ) - (ll)(e) +(3) 6 =Gs) - (1)(6) +(3) (2)

onsequently, Flo can arrange these 25 plants, according to the restrictions given, in
5\ {10
si((is) — () (5) + (3) ()1 wavs.
The answer is the number of integer solutions for 3+ 20+t as+24=9,0<2;, €3, 1 <
i <4, For 1<i<4 let ¢; denote that z,,z,,23,24 is a solution with z; > 4. Then

Naeme) = (3) - (1) @) + () €)
Let ¢; denote that the arrangement contains the pattern spin. Likewise, let ¢3,¢3, ¢4

denote this for the patterns game, path, and net, respectively. N{,8,8;8,) = 26!—[3(23)+
241 — (20! 4+ 214

Let a,b,ec,d, e, f denote the six villages. For 1 <4¢ <6, let ¢ be the condition that a
system of two-way roads isolates village @, b,¢,d, e, f, respectively.

Ne) =2, 8 = ($)2'% N{cien) = 2%, Sy = )26 N(creses) = 2°, 55 = (§) 2
N{ejegeneq) = 21, 8y = {g}w 3 Nicyegegeses) = 29, S = {ﬁ}%ﬁ Gg = 1.

N(8,8,8584858) = 2% — {J?w o {g?ﬁ {3} 24 (Q (a} 24 {Q{i}.
o0 = (3)5* + ()4 - (9)3° + ()2 - (/e
10° - (3)(8%) + (3)(8%) ~ ) (7).

Let ey @ the three z's are together; ¢;: the three y’s are together; and c3: the three
#’s are together.
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18.

19.

N =9/[(81"]  Ner) = N(es) = N(ea) = !/[(31)?]
N(Cgﬁj) == (5%/(3‘), 1 §§ i < j S 3 N(61C933} = 3!
N(&1628s) = 91/[(31)%] — 3[71/1(31)2)] + 3(5¢/3!) — 3!

Here we need the number of integer solutions for
Ty + 23+ 23+ e —7"-58..

where 1 <z; <20 fori=1,2,3,4.

——

This is the same as the number of integer solutions for
Yty +ys +ys = 46, (*)
where 0 <y; <19 for:=1,2,3,4.

Let 5 be the set of integer solutions for equation (*) where 0 < y; for 1 < ¢ < 4. Then
N=S=|8= (4+:2“1) = (:2). So define conditions ¢, ¢3, ¢3, ¢4 on the elements of § as
follows:
G- (ylmy%y&y&) € S but Y > 19 (2 20}7 L= 1:25394' Then
Ne)= ("% =) 1sis4
N{cic;) = (4+§w1) = (g), 1<i<i<4
Necicjer) = 0,1 <1 <j <k £4; and N(ejcoezes) = 0. Consequently,
N(@#Est) = So— Si+ 52— Ss+ S = (1) - (D (&) + (1) )
= 18424 — (4)(3654) + (6)(84) = 4312.
So the probability the selection includes at least one boy from each of the four troops is
4312/ (%) = 4312/18424 = 0.234.

Here we need to know the number of integer solutions for
T3t Ty L+ T+ 25 320,

where 1 <p; <6for 1 <¢ <35
This is equal to the number of integer solutions for

1+ Yyt ys+ys +ys = 15,

with 0 <y, <Bforl<¢<5.
1 €¢ <35 then let ¢; denote the condition that yy, ys, ¥z, ¥4, ¥s is a solution for yy + ya +
Ys+ys+ys = 15, where 0 < y; for 1 < j <5 and j 5 4, but y; > 6. Then the number of
integer solutions for

Y1+ Y2+ Y3+ ya s = 15,

N: Here N counts the number of nonnegative integer solutions for ¥, +yo +ya4+ys+ys = 15.
This number is 5*;:”’1) = Gg) [Hence Sy = G?)}
N{ey): To determine N{e;) we need to find the nurnber of nonnegative integer solutions
for

b 2gbzg oz by =8,
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20.

21.

22.

23.
24.

25.

26.

27.

28.

where z; = y; fori # 1, and y; = 2,+6. Consequently, N(¢;) = (54»34) = (]éf )v and S =

@ ():

N{ciez): Now we need to count the number of nonnegative integer solutions for
Wy + Wo + wa b Wy + wy = 3,

where w; = y;, for ¢ = 3,4, 5; 1 = w; + 6, and y; = wy + 6. This number is (5+§—-1) = G),
and, as & result, we have §; = {z) {;")

Since Sy = Sy = S5 = 0, it follows that N(&:%@ses) = So— S1 + Sz = (15) — () (%) +
() (3) = 3876 — (5)(715) + (10)(35) = 3876 — 3575 + 350 = 651.

The sample space here is § = {{y,2q, 23,24, 25)]1 < 2; €6, for 1 < i < 5}. And since
IS] = 6% = 7776, it follows that the probability that the sum of Zachary’s five rolls is 20
equals 651/7776 == 0.08372.

For 1 <:¢<7,let ¢; denote the situation where the :-th friend was at lunch with Sharon.

Then N(&:&,...a) = 84~ (])(35)+ (1)(16)- ()&)+ (@) - @+ (1) - ) =0.

Consequently, Sharon always had company at lunch.
(a) 32 (b) 96 (c) 3200

(2) 5186 = (2)(2593), and $(5186) = (5186)(1/2)(2592/2593) = 2592.

(b) 5187 = (3)(7)(13)(19), so $(5187) = (5187)(2/3)(6/7)(12/13)(18/19) =
(2)(6)(12)(18) = 2592.

(c) 5188 = (22)(1297), and $(5188) = (5188)(1/2)(1296/1297) = 2592.
Hence ¢(5186) = ¢(5187) = $(5188).

(a) 2»77 (b) 2¢(p~1)
#(n) odd = n =2

(a) A(6000) = $(2* - 3-5%) = 6000(1 — (1/2))(1 — (1/3))(1 — (1/5)) = 1600.
(b) 6000 - 1600 — 1 (for 6000) = 4399.

. ‘ 1 X . .
Proof: ¢(n™) = (n") [[ (1~ };} But for every prime p it follows from Lemma 4.3 that if
pln™

pjn™ then pln. Therefore,

Lr WS T 1, IS RV ¢ 1 Bl f,
pin™y=(n") [~ ;5 = (" el - 533 = 0™ h{n).
pin

pla™

$(17) = $(32) = ${48) = 18.

For ¢{n) to be a power of 2 we must have one of the following:
(1) n=2F for k 2> 1;
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29.

i.

2.

(2) n = pyp;---ps, where t > 1 and each prime p; has the form 2% +1,for 1 <i < t;0r
(3) n = 2%ppy-+-py, where £ 2 1, ¢ > 1, and each prime p; has the form 2% + 1, for
1< <t

If 4 divides ¢{n) then one of the following must hold:

(1) n is divisible by 8;

{2} n is divisible by two (or more ) distinct odd primes;

{(8) n is divisible by an odd prime p (such as §, 13, and 17) where 4 divides p - 1; and
{(4) n is divisible by 4 (and not 8) and at least one odd prime.

For 1 < ¢ € b let condition ¢; denote the situation where the seating arrangement has

Here Sy is the number of ways one can arrange 15 distinct objects around a circular table.
This is (15 — 1) = 14!

N{e;) = 6(13 — 1) = 6(12!), for there are (13 — 1}! = 12! ways to arrange 13 distinct
objects [family 1 (considered as one object) and the other 12 people] and 6 ways to seat
the three members of family 1 so that they are side by side. Consequently, §; = (i’) 6(12!).
Similar reasoning leads us to
N(eie:) = 62(10)  S; = (3)6%(101) N(crees) = 6*(8)) S5 = (3)6%(8!)
Nciczeses) = 64(6!) Sy = (5)64(6) N(cicaescacs) = 6%(41) S5 = (7)6%(4).

Therefore, N(21%:T5ETs) = So— Si+ 52— Ss + Sa— 85 = Tho(—1)(})61(14 — 20)! =
87,178, 291,200~ 14, 370, 048,000+ 1, 306, 368, 000 — 87,091, 200 + 4, 665, 600 — 186,624 =
74,031,998, 976.

Section 8.2

5
3 E;=1024=N.

G

{a) Let ¢ denote the condition that the two A’s are together in an arrangement of
ARRANGEMENT. Conditions c¢g,63,¢4 ave defined similarly for the two E's, N's, and
R’s, respectively.

N = (11)/{(21)] = 2494800

For 1<i <4, N(c) = (100)/[(2)] = 453600.

For 1<1i<j <4, Nge;) = (OH/[(21)%] = 90720,

Nciesep) = (81)/(21) = 20160, 1 <1< j <k <4

ﬁif{ﬁ}ﬁgﬂg(}‘i) = ?f = 5040

Sy = (£)(453600) = 1814400 Sy = (3)(90720) = 544320
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S5 = (3)(20160) = 80640 Su = (})(5040) = 5040

() Er= S~ (3)8s+ (1) S = 544320 — (3)(80640) + (6)(5040) = 332640
(i) Lz =S5~ (2)8s+ (3) S = 398160

(b) (i) Bs= 85— (¥)Ss=60480 (i) Ls= S5~ (3)Ss = 65520

Let ¢; denote the presence of consecutive E’s in the arrangement. Likewise, ¢y, ¢3,¢4,
and ¢ are defined for consecutive N’s, O’s, R’'s, and S's, respectively.

(a) N = (140)/(21f°

N(e;) = (131)/(20% 51 = (5)I(131/(2H*]

N(eie)) = (120)/(20% 5 = (5)[(12)/(2)%]

N{eiees) = (11D)/(20)% S5 = (§)1(110/(2)7]

N{cicacaeq) = 101/2Y  Si = (5)(20/2))

N(01626364C5) = 9 = 55

N(&,&,E8485) = 1,286,046, 720

(b) Er=8-3 )Sg +( )S,, ~ ()85 = 350,179,200

(¢) Las= 8~ (3)Sa+ (3)Ss = 74,753,280

For 1 <i<7 let ¢ denote the condition that 7 is not in the range of f. Then the
number of functions f: A — B where |f(A)l=4 is E3= 53— ( )54-{» ( )5’5 ( )Ss+

()= @)= () 3+ () ()2 - () o+ (I (7)o = 28648200.

Note: Uﬂing Stirling numbers of the second kind the result is (D 415(10,4) = 28648200.
Lo =55~ (3)Se+ (3)Ss = () Se+ ()5 = (4 - (D ()3 + Q) ()2 - () ()1

Here 4 = {1,2,3,...,10}, B = {1,2,3,4}. Using the ideas in the first part (of Exercise
4) for |f(A)] =2 we find that E, = 6132. For |f(A)] £ 2 we find that L, = 6136.

For 1 <i<10 let ¢; denote a replacement where card ¢ is placed in its correct place.

N{Ciﬁzﬂa%) = Bl 54 = (1;) (6!)

In like manner, §; = {w}{@?} for 5 < <10

Ey= 5~ {1}5& + (;}5& - {?}S’z 4 &}&1 (5)59 + @G)Sw»
Lam5u- (95 + (50— 50+ (50— 5+ (5

For 1<i<4,let ¢ denote a voidin (i = 1) clubs, (i = 2) diamonds, (i = 3) hearts, and
(¢ = 4) spades.

"V{cﬁ}m{ } 1<a<’4 ﬁ(égg}méq) 1<y <4 ﬁ:{cgcjck}még} 1€e<j<ks
4: N(C}Cg(,aag)

N(eieas) = {i’i} - ()6 + B - O
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The probability that the 13 cards include at least one card from each suit is N{€,8,8364)/ (i;‘;) .
(b) E,=85~ (?) Sq + (‘;’}53 - (g) Ss = (‘f} ?ﬁ) - 2(3) (fi) e 3(;} Gg) ~ . The probability

of exactly one void is E,;/ @; .

(¢) Ep= S~ (f} Sa = (4) (%) - 3(;) Gg) . The probability of exactly two voids is E,/ (iz)

2/ \13
(b) Eix= 51 —~18; Liy = L+ By
(¢) Limi=Li+ B 1=8+85,1-1t85=81--1)5 = 5.~ (i:;)Sﬁ
(d) Ly = Lm-ﬁwl + B
(8) Lt = St
Loy = S4eq ~ (::;) S,
Assume Lk+l e Sk.g_; - (kil)gk.*.z ~+ (kzZ} Sk+3 T & ("_l)t-—k—'I (i‘;l) Sg
Ly = Lypy + By = [Sep1 — (k}:l)sm + (ktz) Sk4z — ...+
(=0 (ST + 18 = (*37) Sewn + (*37) Skvz — o+ (1R (1) S)
For 1< r <t—k, the coefficient of Sy, is (—1)1 (k+;—-1) +(=1) (kj”) = (—1)"H(k +
r DR — D] = (R + )/ (ElrD)] = (1) Hr(k+r+ I — (B 4+ )]/ (Rrl) = (1) Yk +
r— DI(=k)}/(krt) = (~1) (*771).
Consequently, Ly = S — (.5 ) Sk + ({1]) Surz — ...+ (-1*(}73) 50

Section 8.3

For 1 <i<35 let ¢; be the condition that 2i is in position 2.
N=10l N{g)=9, 1<i<5; Nge;) =8, 1 << j<55... ; Nleyeaogeaes) = 5l
N(@resestacs) = 100 - (591 + (§)81 - (§) 7t + (56! - ()8!

{a} There are only two derangements with this property: 23154 and 31254.
(b} Here there are four such derangements:
() 231546 (i) 231645 (i) 312546 (iv) 312645

The mumber of derangements for 1,2,3,4,5 is BI[1 — 1+ (1/21) — (1/30) + (31 /4!) — (1/8D)] =
Si(1/20 — (1730 + (1/4D) — (1/8D)] = (8){4)3) ~ (B} (4) + 8~ 1 =60~ 204 5 — 1 = 44.

There are 7! = 5040 permutations of 1,2,3,4,5,6,7. Among these there are

THI — 14 (172D — (1/3Y) + (1/41) — (1/8Y) + (1/6Y) — (1/71)] = 1854 derangements. Con-
sequently, we have 5040 — 1854 = 3186 permutations of 1,2,3.4,5,6,7 that are not derange-
ments.

5. {(a) Tl—dy (dr = (et (b) dao = (260)e
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8.

10‘

11.

12.

13.

Eé$

() There are {d;)? = 9% = 81 such derangements.
(b) In this case we get (4!)® = 24 = 576 derangements.

Let n = 5 4+ m. Then 11,660 = ds - d,, = 44(d,.), and so d,, = 265 = dg. Consequently,
n=11.

(a) (4)d, = (4)?e? (b) and (c) (2)(32)(6)/](4!)%e~]
(100 do = (1012 (™)

(@) @) dufn! (i) n(dp-1)/n! (iii) 1- (du/n!) (i) () da-s)/n!
(b} () et (ii) e? (i) 1—e™? (iv) (1/rhe™?
(a) (diw)?

(b) For 1< <10 let ¢ denote that woman ¢ gets back both of her possessions.
N = (1007 N(¢) = (9%, 1 <3 < 10; N(ee;) =(81)%, 1 < i < j <10; ete.

N(&& ... &) = (1007 — ()07 + (V) (8)2 — ... + (=1)°(7) (o).

(a) (120)dys (b) (121)(%F)de

For each n € Z*, n! counts the total number of permutations of 1,2,3,...,n. Each
such permutation will have k elements that are deranged (that is, there are k elements
T1,%3,...,25 10 {1,2,3,...,n} where z, is not in position z,, z; is notf in position z,,...,
and xz, is not in position z;) and n — k elements are fixed (that is, the n — k elements
Y1y Y2y e e -2 Yn—k i {1,2,3,...,n} — {21, 22,..., 2} arve such that y is in position yi, ¥ is
in position ¥, ..., and y,.; is in position ¥, x).

The n — k fixed elements can be chosen in Tfk) ways and the remaining & elements
can then be permuted (that is, deranged) in d; ways. Hence there are (T:‘_ k) dy = (Z)dk
permutations of 1,2,3,...,n with n — k fixed elements (and k deranged elements). As k
varies from 0 to n we count all of the n! permutations of 1,2,3,...,n according to the
number k of deranged elements.

Consequently,

n ) n " e in
nt = (gjd@»&- é};}ﬂ% + (2}524»...4- {ﬂ}éﬁn = ;%{J&k,

(a) For 1<i<n~1lei ¢ denote the occurrence of the pattern (i +1) in the linear
arrangernent

Ne)=(mn-1), 1<i<n~—1
N{ge)=h-2)! 1<i<j<n~1
N{cggjc&}m(nwii)?, I<i<j<ksn~1,...,
Nicieg...epuq)={(n—{n -1}
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15.

16.

6.

N(&E. . Gua) =nl= (") = 1)1+ () =2 = ("5 ) (n =)+ ..+
() =B (1) T (R = (= 1)

(b) dy+dpey = [l = (Tn =11+ () =D~ + (1) (D) (n ~ n)l]+
=1 = ("7 =2+ () =B =+ O () (- D = (e - 1)
The coefficient of (n — k)l in dy +daq s (1) + (=11 (301) =

(=14 {[(n= 1)}/ (k=) =k )T}~ [t/ (B~ R)) = (=1 {[k(n— 1)t =l /LBl — )]} =
(=1 (n = DHCk = n)/ (R — )T} = (=140 — DYkl = & = 1)1 = (~1P(737).

B~ = =2+ G (=8~ .+~ (2 )00 + (1) (2)
(a) (11,088)/(101) = 0.003 (b) (13,264)/(10!) = 0.004

Sections 8.4 and 8.5

These results follow by counting the possible locations for the desired numbers of rooks on
each chessboard.

Counsider a chessboard made up of 10 squares arranged in a diagonal so that in each row
and column there is only one square,

@ (@) +(se+ )61+ ()E-7-00 + ()E-7-6-5)at +... + ((8Da* =
3 (?)P(Sai)ﬂ?i- {b) Tio (”)P(n i)t

r(Cr,z) = 1 + 4z + 32 = r(Cy, 2)

(a) (1) (14 2e) (i) 14 8z + 142? + 423

(i) 1+ 92 + 257+ 212° (iv) 148z + 162% + T2°
(b} If the board C consists of n steps, and each step has % blocks, then r(C,2z) =
(14 kay".

(a} Select the k row positions in ("’;’2 ways. As we go from row 1 torow 20 ... torow
m, for the first row countaining a rook there are n column choices. For the second such
row there are n — 1 column choices, ..., and for the row containing the k-th rook there
are n— k41 column choices. Hence we can arrange the & identical nontaking rooks on

C in (‘“}(n)(ﬂ -1}e{n—k41)= {?c*}( :}( } wWays.

(b) r(C,2) = 14+ (mnjz + (’;*}(n}(n - 1)z? + {m){w}(n ~1)n~ 22>+ + (f;}(n}(n -

Mr—2)(n—m+1)™ = ’;} + (*;‘}m: + (’;‘)(%}{n - 1}a® -+ (’g){n}(n ~1¥r - 2)z® +
+ (D)) r = Dn =2 (p=m+ 1™ = T (T)()p = 1)(n = 2) -+ (n—i+ sl =

w2 (e
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(1) Jeanne
(2) Charles
(3) Todd
(4) Pau B
(8) Bandra | S

r(C,z) = (1 + 4z + 327)(1 + 4z + 22%) = 1 + 8z + 212* + 202° + 62*
For 1 <i<5 let ¢; be the condition that an assignment is made with person (i) assigned
to a language he or she wishes to avoid.

8. The factor (6!) is needed because we are counting ordered sequences.
9. (a) 20 (b} 3/10

10, 1 8 2 4 6 3

r(Cz)=(1+42+22%) - (1+3z+2%) - (1+2)=
1+ 8z + 222% + 252> + 122* + 22°.

For 1 <i<86,let ¢; denote the condition where,
having rolled the dice six times, all six values ocecur
, on both the red die and green die, but ¢ on the red
6 ' ‘ die is paired with one of the forbidden numbers on
the green die.

N{B,8y ... 8) = [6] — B(Bl} 4 22(41) — 25(3!) + 12(2!) — 2(1!) + 0(0Y)] = 160.

The probability that every value came up on both the red die and the green die is
(61)(160)/{(28)¢] = 0.00024.

F-

My My Mg M, Wy s
Wy ‘
r{C,z) = {1452+ 42 )1 + 42 +32%) = 149z +
W 20z* + 312° + 122°,
3 Faor 1 <1 <4, let ¢ denote the condition where
wg each of the four women has been matched with one
of the six men but woman i is paired with an incom-
g , ® yputible partner. Then

N{éyabaty) = (6-5-4-3) ~ 9(6-4-3) + 27(4- 3) — 31(3) + 12 = 63,
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12.

1.

Consider the chessboard € of shaded squares.

(%54

Here r(C,z) = 1 + 8z -+ 20a? + 172° 4 42*. For any one-to-one function f : A — B, let
¢1, €3, Ca, ¢4 denote the conditions:

&: f(l)=vorw ca: f(8) ==

¢: f(2)=uvorw cs: f(4)=wv,z,0ry
The answer to this problem is N{¢,2,83¢) = 6! — 8(5!) + 20(4!) — 17(3!) + 4(2!) = 146. So
there are 146 one-to-one functions f : A — B where

f() #v,w f3)#=

f(2) # w,w f(4) # v,z,y.

Supplementary Exercises

We need only consider the divisors 2,3, and 5. Let ¢; denote divisibility by 2, ¢,
divisibility by 3, and ¢ divisibility by 5.

N = B00; N{ey) = [B00/2] = 250; N(cy) = [500/3] = 166; N{cs) = |500/5] =
100; N{cicy) = [500/6] = 83; N{cycs) = [500/10] = 50; N{cpes) = |500/15] = 33;
N{C}C;ﬁg) == %_5{}{},!3{}} = 16.

N{18,83) = 500 — (250 + 166 + 100) + (83 + 50 + 33) — 16 = 134.

Let 5 = nyngnangngng, where § <n; < 8for 1 <1 € 6. We want n;+ngbngdngdng-tng <

37. Hence the answer to this problem is the number of nonnegative integer solutions for
ny -+ 1y + Ny 4 ng + ng + ng + ny = 37,

where 0 < n; €9 for 1 <1 <6, and 0 < ny (L 37).
For 1 < i < 6 define the condition ¢; as follows: n4,n4, ns, ng, ns, ng, 77 is a nonnegative
integer solution for

iy + 1+ ...+ 0y = 37
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3.

but n; > 9 {or n; 2 10).
T4+37-—1 43
= N o= =
o ( 37 ) (37)
N{ey) is the number of nonnegative integer solutions for z; + 23 + 23 + ... + &y = 27 —
here z; +10 =y, and z; = n; for 2<i < 7. So N{ey) = (7"”27‘1) = ("‘3> and 5; = (f) ("3)

27 27 27
N{eycy) is the number of nonnegative integer solutions for yy +ya + s + ... +yp = 17

—here y; +10=mn;, y3 + 10 =ny, and y; =n; for 3 <i < 7. This is (”i;"l) = (?3), and
s 5, = (3)(37)-

N{eyeaes) counts the number of nonnegative integer solutions for z; + 23+ za+. ..+ 27 = 7,
where z; + 10 =n,; for 1 <2 <3, and z; = n; for 4 <i < 7. So N{cyeae3) = (H;") = (13)

and 5= (9(3). ’
Since Sy == S5 = 36 = {, the answer to this problem is

N(&8yG3...%) =S5 — S1+ 52— S5+ Sy — S5 + S = (32) - (f) (2?) +- (2) (f?) - (g) (1,;3) =
930, 931.

For each distribution of the 24 balls (among the four shelves) there are (24!)/(6!)* possible
arrangements. Hence we need to know in how many ways the boys can distribute the balls
for the given restrictions. This is the number of integer solutions for

$3+$2+$3+$4$Z4,

where 2 <z; <T7forall1 <i <4.
This equals the number of integer solutions for

v+t ys+y = 16,

where 0 < y; <5forall 1 €i <4 [Herey; +2=1z; foreach 1 <1< 4]
For 1 < : € 4 define ¢; to be the condition that y, yo, ¥3, ¥4 is & solution of

Y1 + Y2 + ¥s + ya = 16,

where y; > 5 (or y; > 6) and y; > O for all 1 € 5 < 4, j # i. Then, for example, N{¢;) is
the number of nonnegative integer solutions for

Wy + we + Wi + wy = 10.

[Here w; +8 = 3 and w; = y; for ¢ = 2,3,4.] Sﬁﬁ({fi}m{é+§§m>m }ﬁﬂ{igi {}{ }

Similar arguments show us that N(ciep) = (““*‘fé”*) = (z} and 8, = (‘;} (@; and
53 = Sé == {J.

Therefore the number of distributions for the given restrictions is

weses=(2)- (3 (2)+ () )
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and Joseph and Jeffrey can arrange the 24 balls in
19 4\ (13 4\ (7
i N4l -
snro|(ig) - (1) (o) + () 2]

Here § = {1,2,3,...,1000} and N = Sg = 1000. We define the conditions ¢;, ¢;, ¢3 on the
elements of S as follows:
¢i: n € 5 and n is a perfect square;
c: n € § and n is a perfect cube; and
cs: n € § and n is a perfect fourth power.
Then N(ﬂ}) = 31, N(Cg} = 10? N‘{Cg} = 5,
Nleyey) =3, N{eies) = N{ea) =8, N{czea) =1, and
N{eyeges) = N{czes) = 1. Consequently,
N(Elﬁzfa) = Sg - 51 -+ 32 - 53 =
1000~ [31+10+5]4+3+5+1]—1=1000—-46+9— 1= 962.

Ways.

Let ¢; denote the occurrence of the pattern (i +1) for 1 <i<T.
The occurrence of the pattern 81 is denoted by c¢s.

For 1<i<8, N(¢;) =Tl N{eie;) =61, 1 <1< j <8 etc.
N(&y...5) = 81— ()71 + (5)6! = (3)5!+ ...+ (=17 (5)1! = 14832,

(a) Label the walls of the room (clockwise) as 1,2,3,4, and 5. Let ¢; denote that walls 1,2
have the same color. Condition ¢; denotes that walls 2,3 have the same color. In a similar
way we define conditions ¢z and ¢4, while ¢5 denotes that walls 5,1 have the same color.

N=k;Nc)=k1<1<8 N(ge)=k,1<i<j <5
Nicicie)) =k*1<i<j<l<5

Ncicjeem) == k,1 i < j <€ <m < 5; and Ncjeaeacqcs) = k.
So N(&&estats) =k — ()i + ()8 - ()2 + ()6~ ().
(b) For k= 1,2 this result is 0. For k = 3 the result is 30.

For 1 € i € 10, let ¢; denote the condition where student ¢ occupies the same chair before
and after the break. Then the answer to this exercise iz N{€;6;63...%0) =
So— 814+ 8~ 8+ + S

Here So = (14)10! = (14)(18)(12) - - (5).

N{ey) = (?}9? = (18)(12}---(5), and by symmetry N(¢;) = N{¢;) for 2 < ¢ < 10. So
S = {Eia} {if’} &

N{cier) = ()8l and 5, = () ()8!
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10.

11

In general for 0 < k <10,
10V /14— k&
= {
St (k)(m &)(10 k)t

and N(&%a. .. E10) = Dilo(—1)Sk = Ti%6(~1)* (¥} (157%) (10 ~ k) = 1,764,651, 461.

B = Sp = (") Spuat + () Sugs = ok (<1 (E) S — 4 (1) (1) 5.
Sy = ( )( )(wr) (802}') e (3*(‘~1}T) (n—2)*"", where ( ) is for the selection of the ¢ contain-

ers (from the n possible distinct containers), each of which will contain exactly r elements.
The product (r) (5?) e (""(’:1}') is for the selection of r distinct objects for each of the
¢ distinet containers. Finally, (n — i)*™"" appears because for each of the remaining s — ir
objects there are n — i containers to select from.

(:) (s:’r} (s.—;?r) L (8~(;;1)r) ;z G"»'Tff'”(?'”)"
(__l)imm(i) - (__1)£~m(t)(n> ﬁfﬁw(n _ ?:)8__,5,,

S\ & iT

= (V" e e (9
= (=128 [(~ 1) (n — ) 1/[( ~ m)i(n — )i(s — ir)(r!)]
and By, = (~1)" % T (1) oty
The total number of arrangements is T = (131)/[(21)°].
() S5 = (3)1(101)/(21)?]
= (3)ie)/(2)]
= (3)(8Y
By =[S~ ($)Su+ (5)Ss)/T

(b) Es=[Ss— (})Ss] Es=S;
The answer is [T ~ (E; + E)}/T.

Let ¢; denote that the arrangement contains a consecutive guadruple of (3 = 1) w’s; (§ = 2)
2's; (i = 3) y's; and (¢ = 4) 2’s.

N = 1@”{49}% »N{{ii} = 13!;!(43}3,3. < i < 4; ,N(Cgcjs) = 1&5/’{45}2,1 < < j < 4; N(c,:cj;ck) =
?E‘/i“%:g}‘, H ﬂ ) “:j = k 5 4.; ﬂ?{CQQQC;gﬁgg} B ‘ﬁ

N(&g858,) = [18/(at)y] ~ (1317409 + (iot/al? — () (n/an + (e

(= Gn) = (7)
(b) Let A= {21,22,..., 85, Yms1,---,¥n}. For 1 <i < m let ¢; denote that r elements
are selected from 4 with r > m and 2; is not in the selection.

(=0 Ne)=(7)1sigm 5= ()(7)
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12.

13.

14.

15.

N(eey) = ("), 1 i <j<m; S = (3)("7%), ete.
(i) = N(@e- - 6n) = Tla(-1F(7) (7).

{2} Define conditions ¢;,1 <1 < 5, as follows:
c;: 2 and b have the same color.
ey b and ¢ have the same color.
¢3: b and e have the same color.
cs: ¢ and e have the same color.
cs: ¢ and d have the same color.

N=A;N(e)) = AL 1 <i <5 Nee)) =21 <i<j<5

N{egeses) = A%, N{eicje) = A% for all other 1 <4< j < k < 5;

N(eyeseacs) = N{cgeseqcs) = A2, N(ereyeacs) == N{eyeaeqcs) =

N{ejeseqes) = A N{cyeaeszeqcs) = A

N(E:8,8384T5) = A = BAYVF 100% — (A3 90 + (2X¥ 4+30) — A = A5 = BA* 4+ 903 — 7A? 4 2.

For X = 1,2, this result is 0. When X = 3 the result is positive and so the chromatic
number is 3.

(b) Draw a graph with a vertex for each room. If two rooms share a common doorway
draw an edge connecting their corresponding vertices.

The result is the graph in part (a) and the answer is 6° — 5(6*) 4+ 9(6°) — 7(6%)+ 2(6) = 3000.

Consider the derangements of the symbols L,A ,P;,T,0,P;. There are dg such arrangements.

Of these there are
i} d4 arrangements where P, is in position 3 and P, is in poesition 6;
£

{ii} ds arrangements where Py is in position 6 and P; is not in position 3; and,
(iii) ds arrangements where P; is in position 3 and P; is not in position 6.

There are dg — 2d; — dy such arrangements of L,AP,,T,0,P,. Hence there are (1/2)[ds ~
2ds — da) = (1/2)[265 — 2(44) — 9] = 84 ways to arrange the letiers in LAPTOP so that
none of L,A,T,0 is in its original position and P is not in the third or sixth position. [Why
the 1/27 Because we do not distinguish arrangements such as P; LAP; TOand P, L A
Py T O]

Proof: Let n = gm where ¢ is prime and m > 1. Then é{n) = nﬂ e (1-{(1/p)) <

n{l — (1/¢)). Consequently, n — 1 = ¢(n) < n~(nf¢},or 1 > ‘;’zg’g =m>1-—a
contradiction!

(8) S = {1,5,7,11,13,17} Ss = {2,4,8,10, 14, 16}
S;s = {3, 15} Ss = {6, 12}
S = {9} Sig = {18}
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i6.

17’

18,

(b) 15| =6=¢(18) 53] = 2 = $(86) 1S5 = 1= ¢(2)
iszi = = @(9) !Sﬂi = 2 = ¢(3) ISiel =1 = ¢(1)

(a) Let k € Z*,1 £ & £ m. Then ged(k,m) =d < m, for somed € D,. Ik ¢
Sayy 54, then dy = ged(k,m) = dy. So the collection S,,d € D,,, provides a partition of
{1,2,3,4,...,m —1,m}.

{(b) Recall that ged(n,m) = d if and only if ged{n/d,m/d) = 1, so {Sy4| = [{n|0 < n <
m and ged(n,m) = d}| = |[{n|0 < n/d < m/d and ged(n/d, m/d) = 1}| = $(m/d).

Proof:
{a) I nis even then by the Fundamental Theorem of Arithretic (Theorem 4.11) we may
write n = 2*m, where k > 1 and m is odd. Then 2n = 2%"'m and ¢(2n) =

(211 = $)é(m) = 2°¢(m) = 22*)()g(m) = 2[2°(1 - J)é(m)] = 2[$(2"m)] = 24(n).
(b) When n is odd we find that ¢(2n) = (2n)(1 - HJJ(1 — ;), where the product is taken

pin
1
over all (odd) primes dividing n. (If n = 1 then [J(1- -I;) is 1.} But (2n)(1-H]J(1~ %) =
pin pin
n]I(1 '") = ¢(n).
rin

Proof:
Let a = py**p3? - pff“ and b = p'ph? - - py*, where py,ps,...,p: are distinct primes, and
My, M, ..., My, N1, Mg, ..., Ny & N. Then ¢ = ged(a, b) = pmn{m"m} min{mana} ~pf"n{m"m’}.
So g(ab)g(c) =

Wiy 3 TH g 47 SRR 1
gt (= =)= T AR ) and

. Agige
mm{mg x’h}#o

15&(: J z<e<: P ﬁm
s 20 %y 0

For 1 € ¢ £ ¢ we shall verify that we get the same factors involving the prime p; for both
¢lab)p{c) and ¢(a)é{b)c. This will then establish that ¢(ab}é(c) = d{a}é(b)c. We consider
the following cases:

(1) mind{m;,n;} =0 Say 0 = m; < n;. (The same type of argument applies if § = n; <
m;.) Then in ¢{abd)g(c) we find p(1 — }5 and in ¢{a}g(b)e the term is also p(1 — w}
(2) min{my,n;} = m; > O (The same tjme of argument applies if 0 < n; < my.) Here
we find the term pl"¥™(1 ~ & p, (1 1) in ¢{ab)¢(c), while the corresponding term in

%é{ﬁ}{ﬁ‘(b}(« s P {1 - 5:) {1 ;‘;‘ p:nt == py’é:‘*’?h(l — i\: p:&h{i sncne '3‘;).
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19. a) d,(121)
b) (¢)da(121)
C) d4((i}2)4
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CHAPTER ¢
GENERATING FUNCTIONS

Section 9.1

The number of integer solutions for the given equations is the coefficient of

(&) 22 in (1+z+2+...+2")

(b) 2 in (I+a+z?+. . +2 1+ 22+t + ... +2%) or
A+z+22+. )1+ + 2+ .02

() ¥ in P+ 2%+ 2N+t +.. .+ 284

(d) 22 in (I+z+22+.. .+l + 22 + 2+ ...+ 2%)-
(z+2*+2°+...+2®) or
(+e+22+.. P Q+22+2'+ . Hez+22+25+..0).

(d) A+z+22+...+2%)° or l+z+2?+...)°

(b) (z+2*+...+2%P or 21 +z+22+...)°

(¢) (2*+2*+...+2%) or 29142+ +. .7

(d) Q+z+2°+... +2¥)2®+ 2+ ... +2%) or
(1+z+4+22+. M2+ 2 +22 4. )

(e) (z®+2+ ... +2¥P0d+z+2+...+2%) or
(242 +. Ptz 424008

(a) The generating function is either (1+o+2*+2°+...+2% or (14 + 22 +23+.. )%
[The number of ways to select 10 candy bars is the coefficient of % in either case.]

(b) The generating function is either (1+z+2*+2%+.. 4z or (1+z 422 +2%+.. )"
[The number of selections of r objects is the coefficient of 27 in either case.]

{a} The first factor counts the pennies; the nickels are counted by the second factor.
b)) fle)=0+z+22+.. )1+ +20+. )1 +2¥0+2%04+..)

¢y + ¢+ €2ty '“:2%5 —3 f}: €1y L2y méﬂ €3 f‘é 53 0 S. €y
(B+e)+(3+c)+(B+ea)tes=31

®y b Ty b By b By = 31, g = Ly Lgy Lyg, g = £y < 10,

Consequently, the answer is the coefficient of 2% in the generating fupction
(A+z4+z24+.. P04z +2°4+.. 42

(a) (I+4+ax)(1+b2)(1+4cz) - (14rz)(l+sa)l+ic)
(b) (1+az+ a2z +a®2%)(1 4+ bo + B22% + B22%) - - (1 + o + 227 + 32%).
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10.

Section 9.2

(&) (1+=)° (b) 8(1+z)y (o) (I+a2)
(d) 62*/(1+z) (e) (1-2% (f) 2*/(1-ax)
(a) —27,54,-36,8,0,0,0,. .. (b} 0,0,0,0,1,1,1,1,1,...

() fx)=a*f1l-a¥)y=2*l+a’+a*+a®+.. |=22+" +a" +2°+ .. 50 f(2)
generates the sequence 0,0,0,1,0,1,0,1,0,1,...

(d) fl2) =1/(1+32) = 14 (~3z)-+(=3z)* +(-3z)° +..., so f(z) generates the sequence
1,-3,3% -8%...

(&) f(2)=1/3—2)=(/3)/Q~(z/3))] = (1/3)[1 +(z/3) + (&/3)* + (/3] +. . ], 50
f(z) generates the sequence 1/3,(1/3)%,(1/3)%,(1/3)%...

) fle)=1/1-2)+3z" -1l =(1+z+2?+2°+...)+3c" — 11,50 f(z) generates
the sequence ag, @1,8s, ..., where ag = —10, a7 = 4, and a; = 1 for all 4 #£ 0, 7.

(1) ox) = £(2) ~ ase” + 32
(b) g(z) = f(z) — asz®+ 32° — azz” + T2’
(c) g(z)=2f(z) — 2a1z + = — 2az2> + 32°
(@) ¢(z)=2f(z) +[5/(1 —2)] + (1 ~ 2a; — B)x + (3 — 245 ~ 5)2° + (7 — 2a7 — 5)z”
(155) (35)(239)
(@ (30 = ()= (7)
(b) (_7"’)(«1)7 = (=1)7 (n+;~l)(”1)7 — (n»;-ﬁ)
()= PR = (5)
G- O E)Er+GE) =6 - 06 +6)
@ ()+@+C) ®) (@) +6)+ ()
() (?) + (rix} + {rfz}
(@) 0 b Z)02 =50 = () - 562)
@ G+ (ORI D+ G0+ OG-
G+ O+ Q6+ O+
(a) @+t 4. Y=l +z+a”+.. ) =21~ z)™* The coefficient of z'* in
(1—z)* is @:ﬁmz}w . {»3}”(**22“%@1}” - (i;}

(b) (242t +...+ 2% = 2?1 +z+2°+. .. +2%)%. The coefficient of z'* in{(1—=z)"/(1—
D = (1=-a")i-z) ™ = =4+ A2 () o+ (G (G ()
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il1.

12.

13.

14.

15.

16.

is () + GED=@ED0) + () = (o) - 40)-

Consider each package of 25 envelopes a3 one unit. Then the answer to the problem is
the coefficient of 2'* in (2% + 27 + vt 2P 4 2 = 21+ 2 4.+ 2, This
is the same as the coefficient of 2% in [Q -2}/l —~2)]! = 1 -3 (1 -2)* =

§2~4x%+6$m-...+x34@}§( )«é— +g\%)( )4, +< )(—«m)ﬁ‘+...+(;g)(wm}96+

Consequently the answer is (;2} {»1}96 - 4(;?)(“1}& 'i”ﬁ(;;)(“"l}m = (gﬁ) - 4(§f +6(§g)'

(a) The coefficient of z** in (22 +2°+.. P =21+ +22+.. P =201 -2) =
g;iﬁ[ﬁ)) g;»ﬁ)( x)+( )( zP4..] is (;f)(~1)14 m<~§)14(5+14 1)( M= (i)‘ This
is the pumber of ways to dzstmbuie the 24 bottles of one type of soft drink among the

surveyors so that each gets at least two bottles. Since there are two types, the two cases

- & ® 3 v L3 3 2
can be distributed according to the given restrictions in Gf) ways.

() Th coicint of 5% i (224244 i (3) o the noweris (2)5)

o

(z+22 2%+ 2+ 2%+ 2%)12 = 217[(1—2) /(1 — 2)[V? = 22((1— 2))2((37) + (1) (~2) +
(“; 2)(~$)2+. ... The numerator of the answer is the coefficient of z'® in (1 -—:1:6)12[(?) +
()2 + - d =11 (Pt + (D)2 = (D ..+ 2™U(F) + (P (~2)+.. ] and
s e ()1 () ()04 (- () = (- ()

(122) (1;3?) - (1:;‘?) . The final answer is obtained by dividing the last result by 6%, the size of

the sample space.

(224 2% + 2 + 2522 + 219 = 2%(1 + 2 + 2% + 2%)3(1 + 2°)?, s0 we need the coefficient
of zM in [(1-2Y/(1-2)P1+22° 42 = (1 -2’1 - 2) 31 + 22° + 2% =
1+ (=29 + () =+ + (2 + () o)+ (F) (-2 +. J@+207 +29).

This coeflicient is {";4)( 1M 4 (';f)(~1)9 (“ )( 1) - (3 {("3){ 1}194_2(;3)(»1)54_

(1 + QUE) 0+ 2001 = (IE)ES = 16 +2(2) + (1= Oi6) +
( ) ( ) (2) (m + ‘3’( )} {8>( ) This result is then divided by (43)(2%), the size of

the sample space, in order to determine the probability.

Here we need the coefficient of 2 in (I+a+e?+22+.. P 1+2+24+..) =
(/-2 -2%9) = (/1 - 2%/ + ff:))
Using & partial fraction decomposition, - {3%}3 = gﬁ% + {zf_ Z}; + éfﬁ; + {?k":;ﬂ

where the coefficient of z" is (~1)"{(1/8)+ (1/8)+ {i[«%){ ){ -1} 4 {1/2}{ ){ 1" ==
/8 + (=171 + @/ (1) + @/2(7F).

For the hamburgers we need the coefficient of 2'% in (z+ 2+ .. Y 2? + 2%+ .. P =
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17.

18.

19.

zﬂ!

£7(1/(1 — z))*. This is the coefficient of 2* in (1 -2z}, ie, {"?) (—1)° = (?).

For the hot dogs we need the coefficient of 2'% in (#®+2*+.. Wi+ +z*+.. . +25P =
21/ -2l - xﬁ)‘ﬁl —2))%, This is the coefficient of z*® in (1-2%P(1-2z) =1~

)+ Q=) - (it i (= Q)07+ () (D~
@ -0E+ G0
By the rule of product the total number of distributions for the prescribed conditions is

-+

(1-zx—2"—2°—z2*~2° —~2% =1~ (z+2* +2° +2* +2° + 2%)]°

-1+(.r+x+ A2 H (22t 4. +x6)‘*’+(z+x+ A+ 2%+

one rg}l two rolls three rolls

where the 1 takes care of the case where the die is not rolled.

(1 —4z)"? = {(“tﬂ) 4 ('"11'(2)(——450) 4 (»;{2)(w4$)2 + ...J. The coefficient of z" is
GHICOE

(-1/2)—n+1)((-1/2) —n+2)---((-1/2) — 1)("1/2)(m4)n _

n!

(142n—2}{1+2n—4)---(1+2)(1)
n!

(2”’ o 1){272 - 3) cU (5)(3)(}-)(2)11 —

n!

@y =

[(2n —1)(2n — 3)---(B)BYHN(2")n!) _ (2a)! _ (Zn,)‘

nin! T nind

{a) There are 25~! = 27 compositions of 8 and 2!3/% = 24 palindromes of 8. Assuming each
composition of 8 has the same probability of being generated, the probability a palindrome
of 8 is generated is 24/27 = 1/8.

(b} Assuming each composition of n has the same probability of being generated, the
probability a palindrome of n is generated is 207/ 201 o Qle/2-ntl o 9i-Tn/3}

{a) I & palindrome of 11 starts with 1, then that palindrome ends in 1. Upon removing
‘14" from the start and ‘41’ from the end of the palindrome, we find a palindrome of 9.
And there are 2I%% = 2¢ == 16 palindromes of 9.

Similar arguments tells us that there are 2U/% = 8 palindromes of 11 that start with 2,
213/% = 4 palindromes of 11 that start with 3, and 2133 = 2 palindromes of 11 that start
with 4.
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21.

22.

230

24.

285.

26.

27.

28.

(b) For the palindromes of 12, we find that 2192 = 32 start with 1, 218/% = 16 start with
2, 21872 = g start with 3, and 242 = 4 start with 4.

The number of palindromes of n that start (and end) with ¢ is the number of palindromes
of n — 2¢. This is 2L(»=30/2],

Suppose a palindrome of n has an even number, say 2k, of summands. Let s be the sum
of the last k summands. Then n = 2s, contradicting n odd.

Let n = 2k. The palindromes of n with an even pumber of summands have a plus sign at
the center and their number is the number of compositions of k — namely, 251 = 2(=/23)~1

Since there are 2% palindromes in total, the number with an odd number of summands
is 2%;'2 — Z(nlz}-l — 2%/2(1 - %) - 2%/2(%) - 2(%[’2}——1'

(a) The number of palindromes of 10, where all summands are even, equals the number
of palindromes of 5, which is 215/ = 4,

(b) 2% =g

(c) 2i/4l

(@) Pr(V =y) = (3)"""(3), y=1,2,3,.

(b) and {c) qug the general formuias at the end of Example 9.18, with p = { and
g=1-p= £, it follows that

E(Y)“*mm?:ﬁ and

oy = [Var (V) = \Jg/p? = \J(})/(2)? = \/(£)(36) = +/30 = 5.477226.

Here we want J oo, Pr(Y = 2¢).
o PrY =2i) = Zh.l § () =B = QU+ (B + (6)5 }
(A}(ﬁ){l +( )2'1'"( }4 ‘ ] “{%)W“(%)ﬁ%@ (36)"11” (33)(

Let the discrete random variable ¥ count the number of tosses Leroy ma&zes until he gets
the first tail. Then Pr(Y =y) = (3p}(1), y=1,2,3,....

Here we are interested in Pr{Y = 1) + Pr(Y = 3) + Pv(Y =5) - =5+ +
@D+ =@R+E+B + =@ =G =00 }“‘“‘

Since E(Y) = z = -1 the probability of success for each Bernoulli trial is p = -
{a) Pr(Y =3)= 3 = A& = (,130942.

¥ 343

{b) Pr(Y = 1) m«{?} amd PriY =2} = ()P =B o Pr{Y 23 =1~ - () =
“QM 3& = (.326531.

Aﬁ%m&ﬁe}% P?"{Y?”?ﬁ\ =GP+ }35 JHEE =GP+ D+ EF =
{ }2€?}1 £y} m{ )2( )('}1 = 4}2“%?}

(c) Pr(¥Y >5)- TR = () + (PO + GO+ 1= BB + () +
Gr+-1=0 }4(?}::351-% J = 25 2'0.106622.

il

233



29.

30.

31.

32.

33.

Pr(V >5andY > 3)
Pr(Y 2 3)

(d) Pr(Y > 5lY > 3) =

(5 )2

{e) Pr(Y 2 6)]Y 24)= (3PP = (4 )2

(f) Var (Y)=g/p*,whereg=1-p=% SoVar (¥) = (})/ 3V = (D/(H) =) =%
Consequently, oy = /28/9 = 1‘763834.

= Pr(Y 2 5)/PHY 2 8) = (5)/(3) =

{8) The differences are 3 — 1,6~ 3,8—-6,15 -8, and 15— 15 - that is 2,3,2,7, and 0,
where 2 + 34+ 2+ 7+ 0= 14.

(b) {3,5,8,15}

(¢) {1+a,l+a+blt+a+bteltatbtctd}

Using the ideas developed in Example 9.17, we consider one such subset: 1<1<3 <«
6 < 10 < 15 < 30 <« 42 < 50. This subset determines the dxﬁ"erem:es 0,2,3,4,5,15,12,8,
which sum to 49.

A second such subset is 1 <7 <9 < 15 < 21 < 32 < 43 < 50 < 50, which provides the
differences 6,2,6,6,11,11,7, 0, which also sum to 49.

These observations suggest a one-to-one correspondence between the subsets and the in-
teger solutions of ¢ +eg+ ez + ... +¢cg = 49 where ¢,c8 2 0 and ¢ > 2 for
2 < i < 7. The number of these solutions is the coefficient of 2% in the generating func-
tion (I+2z+z?+.. Woi+22+.. P(l4+a+a?.. ) = [1/(1-z)*][e?/(1~2)%] = 2*/(1~2)®.

The answer then is the coefficient of #% in (1 — 2)™® and this is (;f)(-——l)m =

(—_1)37(3&'37*—- )( 1)37 ( )
cr = S (ki) = Th g ik = 2hi4i?) = B TR i~ 2k T 24T = RAR(E41)/2)—

2k (k4 1)(2k+1)/61-+[(B)(k+1)2 /4] = (B*+-2) 12— (k) (b +1)(2k-+1)/3+(R?)(k+1)2/4 =

(1/12)[6k*+ 6% — 4k (2k3 48k + 1)+ 353 (k> + 2k +1)] = (1/12)[k*~k?] = (1/12)(k*)(k?~1).

(8} (i) co=aiby=1; ¢; = aghy + a8 = 2; €3 = aohy + arhy 4+ a9bp = 3; €3 = aobs +a1by+
@g@ﬁ}*é"mwég &,
(Aﬁ} Op = E €y «wg é‘gm? Og 2 = 15
(iﬁl} ﬂg}wi 61«»'«2 ﬁgm:j Ggm‘i
by (i) eu=n+1l
() e, =142+2%4+.. .+ 20 =27 1
(i) o=l a1 =25 e2=3; ¢, =4, n 23

(8) (Tde+a®+2°+2)0+2+202 +32%+...) = Y ¢’ where g = 0, ¢ = 1,

faald
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Cp=1+2=3 c3=14+24+3=6,¢c4=1+4+24+3+4=10, and
tn=n+{n—-1)+n-2)+(n-3)+{(n—4)=>05n-101for all n > 5.
b) —z+2?-P+ - Jl-z+22-22+.. )= {'1‘_;_1;3'5 = {1 4+ z)7% the generating

function for the sequence ("’('}2), ("12), (”22), ("32), Hence the convolution of the given

pair of sequences is ¢g, ¢, €3, . .., Where
Cp = ("- ) . ( 1)71(2-4%—»1) - ( 1)7& (n‘i—l\} __( 1}7:(?,1 + 1), ne N.
[This is the alternating sequence 1,-2,3, ~4,5,-6,7,...]

Section 8.3

Ty 641; 542 54141 443; 44241 A414+141; 34341; 34242; 3424141,
341414141 2424 2+1; 2424141415 24114141415 T+-141+1+1+141

(8) fl=) =[1/0 —H[1/(1 = )[1/(1 - 2)%] - = 12, [1/(1 — 2%)]
(b) glz) =1+ +2)(1+2%)---= m(l +2%)
(¢) A(z)=(QQ+z)(1+2>)(1+2%)-- =TI2,(1 + ¥ 1)

The number of partitions of 6 into 1’s, 2’s, and 3’s is 7.

(@) [1/(1=#[1/(Q - &)/(1 - )L/ - ¢7)]
(b) [1/(1— /(1 — )]/ (1 — N/ (1 = ¢7)]

(a)and (b) (1+2*+a*+2%4. )1+ +%+. )0+ 422 +..)--
”’"ﬂgwllwa;:’h

(a) f(x)—(1+m+x2+ )1+t 4210 =
T2 (1 + 28 4 2% 4 L+ 2) =TI, [(1 - 2%)/(1 - 2¥)]
(b) M4 +e +o¥ +... + %) = [IL[(1 - «¥)/(1 ~ 2%

Let f{z) be the generating funcion for the number of partitions of n where no summand
appears more than twice. Let g(z) be the generating function for the mumber of partitions
of n where no summand is divisible by 3.

ST TN WD SIS
g{x} Tog  Beeg? Gzt Tt feg?

fxy={1+4+z+ ?2}{1 i+ )1+ 2+ 251 2t 2%
e N N
Let f{z) be the generating function for the munber of partitions of » where no summand

is divisible by 4; ¢(z) is the generating function for the number of partitions of n where
no even summand is repeated (odd summands may be repeated).

{27) N NSRS S SRR S DU
1«-:&' 1«@2 foeg®  Juegd  Jewz®  Jeg!  ez?

235



10.

3.

9@y = (142 2 L+ 2 - (14 2%)

R W D=7 S WD T A W T AU WUt s
{owg  3exg?  deg?  teg?t Ieg® 128 1z’ 1eg®

S A W SR S SU SN SR
Sl poredilt yarpe: SR o SRR g S yoaysr S g S Yy = f(z)

This result follows from the one-to-one correspondence between the Ferrers graphs with
summands (rows) not exceeding m and the transpose graphs {(also Ferrers graphs) that
have m summands (rows).

Consider the Ferrers graph for a partition of 2n into n summands (rows). Remove
the first column of dots and the result is a Ferrers graph for a partition of n. This
correspondence is one-to-one, from which the result follows.

Section 9.4

(a) e‘”: (b) 62”2 {c) e
(d) e*® (e) ae*™ (f) ze*

(a) fl(z) = 3e% = 3}::”0 ==, 50 f(z) is the exponential generating function for the
sequence 3,3%,3%,.

(b) f(z) =6e* —3e* =653, (52} _ 3y, 22l =, 80 f(z) is the exponential generating

2!

function for the sequence 3,24,138,...,6(5") — 3(2"%},...
(¢) 1,1,3,1,1,1,1,...
(d) 1,9,14,-10,2%2525 ...

(e) f@)y=1l4+z+2*+2°+...= ):‘__G ! ( ) so f(z) is the exponential generating
function for the sequence 01,11, 2* 3.

() fla)=31+2z+ 22+ (22 +... 1+ Tizo f{, so f(z) is the exponential generating
function for the sequence 4,7,25,145,...,(3nh)2" +1,...

(8) g(z) = f(z)+[3 — as](="/3))

(b) g(x) = fa)+[~1— as]{«®/31) = & — (1262%)/3

() glz)=2f(x)+[2 - 20 ](a" /1)) + |4 — 2a0}(=?/ 2’5}

(d) g{z) = 2f(z)+ 3e® 42— 2a, — 3}(=* /1) + [4 — 24y — 3)(2?/21) + [B — 205 — 3){z*/31)
(2) (c+(a*/2)+ (@/3) +.. ) = ("~ 1) = e — (e + (J)e¥ — (e + ({). The
coeflicient of x1%/12! in (e~ 1) is 4¥% — (:)3“ + (;)232 - (’; 112,

(b} How many onto functions are there from A = {1,2,3,...,12} to B = {red, white,
blue, black}?

(c) fle) =0 +z+ Y2 +. 21+ @20 + (2%/4) +...)% = ¥[(e® -+ ™) /2P =
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7.

10.

(1]4)(8%)(62“'; + 2 4 e»—»mz} o {1;’4)(641" + 262z -+ 1).
Here the coefficient of z!?/(121) is (1/4)[4? + 2(2'?)] and this counts the number of

signals where the number of blue flags is even and the number of black flags is even.

9(2) = (L+a+(/2)+.. Pla+(5/3)+.. ) = o[(e"—e=2) /2] = (1/4)(c* —2e¥4+1).
The coefficient of z'2/(121) in g{z) is (1/4)[4** — 2(2'?)], and this counts the signals
where the numbers of blue and black flags are both odd.

Consequently, the number of signals where the total number of blue and black flags is even
is (1/4)[4" +2(2)] + (1/4)[4" — 2(27)] = (1/2)(4"%).

We find that
S = 14z 4 2? +x dn s

Jez

= ()5 +A)5 + (2‘) T+ (BNE A+,
so 1/{1 — z} is the exponential generating functzon for the sequence 01,11, 21,31, .. ..
(2 () (A+2)'Q+z+(2?/20)
) A+2)14+z+ /20 + 2+ (@2/2D) + (23731 + (2/4))?
(1) (1+2P0+z+(@?/2h))*

(b) (1+z)-(1+z+(z2/20) (L +z+(@?/20)+(z3/31) + (24 /41))- ((+7/2!) + (23/31) + (=2 /41)).

25 3 £ 054
The answer is the coefficient of %7 in (%—,— + 54+ 5

hz) = f(z)g(x) = o + 12 + (@ /2Y) + ea(2® 31} + . . ., where

(o ) = Dol i)-ix™ () =

[(Eiao(aibn-i)/(il(n — 8)})]2"

[Sholnt/(ln — i))]ash -.J(x“/n’) (20 () abai(=/n)

() (1/2)[3% +1]/(3%) (b) (1/4)[3% +3]/(3%)

(e} (1/2)[3* - 1}/(3%) (d) (1/2){3*° —1}/(3%%)

(e} (1/2)[3% +1]/(3%)

(8) F(2) = (2 4 (@3 + (/5 4.} (2 (22/2) 4+ (P3) #..) - ()e") =
{1/2)(e® — 1%(e**) = (1/2)e® — 1% — &%) = (1/2)(e* ~ &3 ~ % 4 ¢*).

The answer is the coefficient of 2%°/(20!) in f(s) whichis (1/2)[4* — 3% .. 2% 4 1],
(b) gla) = (142 +E@/3) + (/8) + .. ) = (& ~ (2/2))* = & — ({}e*(2%/2) +
{;)e%{xﬁ/z;}? e (;} e?(z?/2)° + (2?/2)*. The coeficient of z?°/(20!) in g(z) is 4% —
() @/2)3*)(20)(19)+ () (1/4)(2)(20)(19)(18)(17)~ () (1/8)(1)(20)(19)(18) (17)(16)(15)

() A2} =(1+2+(@/B)+ /4 +..) = (¢~ (542) = e — (e(%/6) +
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1.

él

(;) e? (23 /6)F — (;}e”(:zg,f!%}g + (z°/6)*. The coefficient of z?°/(20!) in h{z) is 4*° —
(1) (1/6)(317)(20)(19)(18) + (5) (1/6)*(2")(20)(19)(18)(17)(16)(15) ~ (3) (1/6)°[(201)/(111)].

(d) The coefficient of z*/(201) in (e)*(1 + (2%/21)) = ¥ 4 (2%2/2]) is 3% +
(1/2)(3"%)(20)(19).

Section 9.5

(a) 1+ z+ z? is the generating function for the sequence 1,1,1, 0,0,0,...,
so (1 4+ z + 2%)/(1 ~ z) is the generating function for the sequence
L1+1L,14+14+1,14+14+140,... - that is, the sequence 1,2,3,3,.

(b) 1+ z+ 2 + 2 is the generating function for the sequence 1,1,1,1,0,0,0,..., so
(142 +2°+2%)/(1 — z) is the generating function for the sequence 1,1+ 1,14+1+1,14
141411414141 4+0,14+14+14+14+0+0,... - that is, the sequence 1,2,3,4,4,4,....

(¢} 142z is the generating function for the sequence 1,2,0,0,0,0,..., so {14 22)/(1 — z)
is the generating function for the sequence 1,1+ 2,1 4+24+0,1+2+0+0,... - that is,
the sequence 1,3,3,3,.... Consequently, (1/(1—z))[(14+22)/(1 ~ 2)] = (1 + 22)/(1 ~ z)?
is the generating function for the sequence 1,1 +3,14+3+3,1+3+ 3+ 3,... - that is,
the sequence 1,4,7,10,....

(a) (i) = (il) =/(1—2) (i) 2/(1-2) (iv) z/(1—z)
Sk k = the coefficient of z” in z/(1 — z)?

= the coefficient of z" in z(1 — z)~3

(b) = the coefficient of 2" in (1 — z)™3
= ()= = (=1 (e (e
= (n1) =3+ 1)(n) |

flz) = [z(3+2)}/{1-—2)° generates 0?,1%,2% 3% . ; {33(1+x)}/(1 ~z)? = 03 41%2+2% .20+
3234, (djdx}{{x—%—s:g}/(l z}:ﬂ = 13422243322+ 5 a(d/dz)[(z+2%) /(1 -2)*] =
0?4+ 1%2 4+ 2% 22 4+ 3. i (dfda)[(= + 22)/(1 — a)®] = (&° + 42 + 1)/{1 — x)*, so
z(z? +4z + 1)/(1 —-2)® genemtes 0%,0°+ 12,08 + 13+ 25,. .., and the coefficient of z"
is o2

(4422 4z ){1—2)"% = (2P +42¥+a)] “5)+( ){ 3’)«}-{: ){mw}“" ..]. Here the coefficient

of * is ()12 +4( )=+ (D)1 = () +4(h) + () =
{1/4§}§(n +1nin~1n ~2)+ Hn+2)(n+ )(n}n~1)+(n+3}n+2)(n+ 1)n)] =
[{n 4+ 1}(n)/41(6n2 + 6n) = (1/4){(n + 1)(n)(n®* + n) = [{(n + 1}{n)/2}%.

The function (1 + z)f(2) genervates the sequence ag, a0 + @3,a; + az,43 + a4,.... For the
sequence g, dg + @y, Gg + 61 + a3, 6y -+ 6 + 83,63 + az + ay, .. ., the generating function is
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3.

(L4 +2%)f(=).

(1—2)f(z) = (1~z)ag+az+az®+ a2 +...) = ag+(ay —agJe+{(ay—a; )x* + (a3 —~ay )2+
.., 80 {1—2)f(z) is the generating function for the sequence ag, a3 —ap, a0y, a3—ag, ...

[f(=) = F}/(z = 1) = (/(z = 1)l(a0 — a0) + (a1 — a1} + (622 — a3} +...]. For n 2
0, (ap2™ ~a,)/(z — 1) = a,{a" - 1}f(z ~ 1) = a, (@ + 2" %+ ...+ 2" + 2+ 1), s0
fl@)-fW e~ =a+afz+1)+a(e? + 2+ 1)+ as{z®* +2* +2+1)+... Hence
the coefficient of 2", for n 2 0,18 02, ., a:.

Since €” is the generating function for 1,1,1/211/3!,..., it follows that &”/(1 — z)
generates the sequence aqg,a4,0;,..., where @, = 3¢ (1/if}.

() 72 =14+ +2* + 2% +- .- is the generating function for the sequence 1, 1, 1, 1, ....
Applying the summation operator, we then learn that {;};)2 is the generating function for
the sequence 1,1+ 1,141+ 1,1+ 14141, ... - that is, the sequence 1, 2, 3, 4, ....
Consequently, /(1 — z)? is the generating function for 0, 1, 2, 3, 4, ... and z /(1 — z)? the
generating function for 0,04+ 1,0+14+2,0+1+24+3,0+4+ 14243 +4,... — that is, the
sequence 0, 1, 3, 6, 10, ... (where 1, 3, 6, 10, ... are the triangular numbers).

(b) The sum of the first n triangular numbers is the coefficient of z” in the generating
function z/(1 — 2} = (1 —z)* = x{(“}f) + (;4)(-—@ + (}4)(—«:1:)2 ++++]. So the answer is
the coefficient of "~ in (1—z)™* and this is (n“;‘l)(ml)“"l == (1)1 (4*’%2:2“1)(”1)%1 =
(’”’2) = (1/6)n(n + 1}{(n + 2), as we learned in Example 4.5.

71

Supplementary Exercises

() 6/(1—z)+1/(1—2)  (b) 1/(1-az)
() 1/[1~(1+a)a] (@ 1/(1-2)+1/(1 - az)

Let f(z)= (28428 +2M +2M 42"V = 2514 2%+ 28+ 2%+ 22)°. The coefficient of 2%
in f{m% equals the coefficient of z** in ({1 -2 (1= = (1 - 201 - )10 =

- {110‘ Rt (?}wm — a3 %{“3“) + -»110)(__3:3) + (”‘;9 {(—z*}* +...]. This coefficient

o (0 (O I = () 0 + ()
The generating function for each type of bullet is (¥ + 2% + ... 4+ 2P =1 42+ 2" +
v+ 2%, The coefficient of 2'? in {1 -a2®)1—2)"*=[1~ @}wﬁ + (f;}:ﬂ:“ - ,EE(?) +

()2 + G+ 1 ()02 - (00 +()(E) = (- (06 +6)
By the rule of product the answer is l(:g) - (‘f) (2) + @)22 ‘

f{x}m{l%»:z:%ma-&z:‘r’%—.“}il+$2««§~z§+mm+.“}..,mﬂfiﬁé%ﬂ%»x%di«m“%’«,“}
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Let f(z} be the generating function for the number of partitions of n where no even
summand is repeated (although an odd summand may be repeated); g(z) is the generating
function for the number of partitions of n in which no summand occurs more than three
times. Then g(z) = (1+z+z?+a®)(1+a a2t +28)(1+23+2%+2%) . . = [(1+2)(1+2))(1+
21 +29(142°)(1+ %) ... = [(1-2?)/(1 - 2)|(1 +2){(1 — 2*)/(1 — &?)(1 + =*)[(1
)/ (1—=a(1+2°) ... = [1/(1-2)](1+2)[1/(1 - 2*)j(1+2")[1/(1~2°)(1+2%) ... = (1+
stz a4 Y1+ (1 + 23+ 2842 (1) (1 + 28420420 Y (L +2%) .. = f{2)

This result is the coefficient of 2'%/(10!) in (1+4+(2*/20)+(2%/30)+.. ) = (¥ ~=z)! = &%~
(‘;)me?"’ + G) rle (;) z*e® + (:) #*. This coefficient is 47— (;’)(10}(39) + (;)(16){9){23 )

(£)(10)(9)(8).
(@) (1-22)"5% =14y, CHAUSD-NEEHD-A=6D=041) g,y

=14 oo, BNk or o g(z) is the exponential generating function for 1,5, 5(7),

r=} w1

5(7T)(9), ...
(b) (1—az) =14y, GONEDborill o0y = 1 — abz + B(b — 1)a?2?/2! + ...

7l P3

Counsequently, by comparing coefficients of like powers of z, we have —ab = 7,b(b—1)a? =
7-11 and o =4,b=-7/4.

For each partition of n, place a row of n+ &k dots above the top row in its Ferrers graph
and the result is a Ferrers graph for a partition of 2n+ &k where n 4 k is the largest
summand. This one-to-one correspondence yields P, = P;. Taking the transpose of a
Ferrers graph for a partition in Py yields the Ferrers graph for a partition in Pj, and vice
versa. The result now follows from these two observations.

Foreachn € Z*, (1+4+2)" = (g) + (';).7; + (’;)mz + (g) 4k (2) z". Taking the derivative
of both sides we find that

n{l 4zt = (?) +2(g)x + 3(§)$2 + ‘.*+n(2)$“”3.

When 2z = 1 we obtain
L S Fioe ] s R N [ , % . 73
n{l 4+ 1) = n{2"7) {J% 2(2> g~3{3)~§”m+%{%)4

fay=00+2)i+2°+2W 1+ 4+2542%) - (Q+ef+a® 2%+ 4 2¥). . =
oo K ‘

§(OBLY

kel fml
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11. {a) Thecoefficient of 2% in (z+2°+... )2 =21+ 2+ 22 +...)'? is the coeflicient of
2% in (1+z+zi+.. )% = (1~2)"?, and thisis (32)(—1)% = (=) (~1)8 = (¥).

(b) The coefficient of 2™ in (z+2*+.. . =z%(1+zc+2?+...)° is ('f){-—-l)‘* = (i).
The probability for this type of distribution is (Z) (g),/ &9),

12. Fix m, 0 <m < n. The m objects can be arranged in (k)(k+1)---(k+m — 1) ways.
Since there are (:’;) ways to select m of these objects, there are (;){k}(k + 1) (R +
m-—1) ways to select m of the n objects and place them in the containers as presecribed.

e/l = [1+2+ /2 + @)+ ] [(F) + () (=) + () (-2 +..]. The
coefficient of z"/n! in (1 —z)7* is (“’a ) + ( k)(ml)(n) + ("’6}{—-1}2(?1)(71 -1} +...+

() =D /1) + GH M t/0) = S () D)™ 555y = e (M)
and Y0 o ( )(k)(k +1) - kt+m—-1)=50 4 m'{::m}* (w(z:f;}})r . %F&F

=" o (m+k 1) (nf:n -

13. (a) We start with a+{d— a}z, the generating function for the sequence ¢, d—a,0,0,0,....
Then [a + (d — a)z]/(1 — z) is the generating function for the sequence a,a + (d — a),a +
(d—a)+0,a+(d—a)+0+0,... - that is, the sequence a,d,d,d,.... Consequently,
[a+ (d — a)z]/(1 - z)? generates the sequence a,a +d,a+d+d,a+d+d+d,... - that
is, the sequence a,a + d,a + 2d,a + 34d,.... [Note: Part (¢) of Exercise 1 for Section 9.5 is
a special case of this result: Let a = 1,d = 3.]

(b) Here we need the coefficient of 2" in (1/(1 - z))la + (d — e)z}/(1 — 2)? = [a +

(d - a)e]/(1 ~ 2)* = [a+ (d — a)z}(1 ~ 2)">. This coefficient is a(,7,)(~1)*"" + (d —

“)(n-z)( 1)1:——2 = a(— i)n-— (3+(n-1) 1)( l)n—l —i—(dwa)( 1)n~— (3+(n—2}-1)( l)n-'? = a(:fi)u;,

(d=a)(,,) = a(B)n+ 1)) +H(d—a)(H(n)n-1) = a(})(n)|(n+ 1)~ (n=1)]+d(})(n)(n—
1) = na+ (3){r)(n ~ 1)d.

[{The rea&er may wish to compare this with the result for the first Supplementary Exercise

in Chapter 4.]

14. {a) Forn € N, a, = |3 = 2*, and the generating function for 29,2%,2%,2%,.. ., is

flg) =142z 442 + 82+ =14 22) + 22 + (22 + -+ = -
(b} When |T] = k, for &k a fixed positive integer, we have g, = &" and the generating
function is g{z) = 1+ kz + K2 + . = 1 4 (ka) 4 (h2) + -+ = I

15, (a) z"f(x)
(B) [f(z) ~{ag + 012 + az2® + - - + @y ™)} /2"

16, (a) 1= L2 k(1) = k{1 + L+ (P + ] = Kyl = K1/(3/4)] = (4/3)k, s0 k = 3/4,
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17.

18.

(b) Pr(X = 3) = (3/4)(1/4)° = 3/256

Pr(X < 8) = T2 o Pr(X = z) = (3/8)[1 + (1/4) + (1/4)* + (1/4)°] = (3/4)(85/64) =
255256

PriX>3)=1~Pr(X <3)=1- {255/256) = 1/256

[Alternately, Pr(X > 3) = Pr(X 2 4) = Y2, Pr(X = z) = (3/4)[(1/4)* + (1/4)° +
(1/4)° +--]

= (3/4)(1 /4011 + (1/8) + (147 + -1 = ($/4)1/9 {1z} = (/4)" =1/256]

P?"(X Z 2) = $=2 PT(‘X = T"} x—2(3/4)(1/4)$

= (3/4)(1/4/[1 + (1/4) + (1/4)2 )= (3/64) [ty = (1/4)* = 1/16.

(c) Forn e Zt, Pr(X >n)= 332, PriX =z)= Exzn(ii/éi)(l/%)” =

(3/4)(1/4)" TRo(1/4) = (1/4)". PrX > 4 and X >

Consequently, Pr(z > 4|X > 2) = L1t P":-{‘L.xm; ;)( 22) _ Pr(X » 4)/Pr(X > 9) =

(1/4Y1/(1/4)* = (1/4)*. Likewise Pr(X > 104|X > 102) = (1/4).

For k € Z*, k fixed, we find that Pr(Y > k) = 02, ¢*"'p (where ¢ = 1 — p)

=g p+¢p+lp+ - =l g+ + ]

= ¢*-1 pﬁ%—ﬁ = k“’p( 1y = ¢F1. Consequently, Pr{¥Y >m|V 2n)=Pr(Y 2mand¥Y >
n}/Pr(Y 2 n) = Pr(Y > m)/Pr(Y 2> n) = ¢"1/¢" = ¢™ ™. [This property is the
reason why a geometric random variable is said to be memeryless. In fact, the geometric
random variable is the only discrete random variable with this property.]

(a) The car travels the first mile in one hour, the second mile in 1/2 hour, the third mile in
1/4 [= (1/2)’] hour, and the fourth mile in 1/8 {= (1/2)%] hour. Consequently, the average
velocity for the first four milesis 4/[14+(1/2)+(1/2)*+(1/2)%] = 4/{[1-(1/2)*]/[1-(1/2)]] =
4/[2(15/16)] = 32/15 = 2 miles per hour.

(b} The average velocity for the first n miles is n/[1 + (1/2) + (1/2° + - - + (1/2) '] =
n/l[l - (1/2)"}/11 - (1/2)]] = n/[2((2" — 1)/2"]] = n(2°"")/[2" — 1] miles per hour.

{(c) For n == 19 the average velocity is 4980736/524287 = 9.500018120 miles per hour. For
n = 20 the average velocity is 2097152/209715 = 10.00000954 miles per hour. Hence the
smallest value of n for which the average velocity for the first n miles exceeds 10 miles per
hour is n = 20.

242



7.

CHAPTER 10
RECURRENCE RELATIONS

Section 10.1

(8) ap =D0a,1, n 21, qp =2 (¢) a,=(2/8)ap.1, n 21, ag=7
(b) ay=-3a,1,n21 a=6

(a) @nyr = 1.5a,, a, = (1.5)%ag, n 2 0.

(b) 4a, = Sdn-1, a4 = (1.25)"ag, 1 2 0.

(¢) 3a,41 = 4a,, 3a; = 15 = 4a,, ap = 15/4, so

an = (4/3)ao = (4/3)"(15/4) = 5(4/3)*"', n 2 0.

(@)  an = (3/2)an-1, an = (3/2)"ag, 8L = a4 = (3/2)*as so ap = 16 and a, =
(16)(3/2)", n > 0.

Gpy1 — da, =0, n > 0,50 a, = d"ay. 153/49 = a3 = day, 1377/2401 = a5 = d*ag ==
as/as == &F = 9/49 and d = :f‘:3/7

Byl = Gy + 2.5a,, n 2> 0.
a, = (3.5)%aq = (3.5)*(1000). For n =12, a, = (3.5)*2(1000) = 3,379,220, 508,

P, = 100(1 + 0.015)*, P, = 100

200 = 100(1.015)" == 2 = (1.015)"

(1.015)* = 1.9835 and (1.015)*" = 2.0133.

Hence Laura must wait {47)(3) = 141 months for her money to double.

Pn == PG(IGQ)"
7218.27 = Py(1.02)%, so Py = (7218.27)(1.02)"% = $2200.00

(a) 19+ 184174 ...+ 10 =145
(B} O+8+T+...+1=45

{8} Suppose that for ¢ =k, where 1 < k < n —~ 2, no interchanges result (for the first
time) in the execution of the inver for loop. Up to this point the number of executions
that have been madeis (n—1)+{(n—~2)+...+(n~—k). If we continue and execute the inner
forloop for k+1<i<n-1,then wemake [n—(k+1)l+n—-{k+2)]+...+3+2+1=
{(1/2}{n—k—1)}{n—k) unnecessary comparisons. [Note: {(n—1}+{n—2}+.. . +{n—k)=
kn— (142434, k) = kn—(1/2)(k}k+1) and (1/2)(n—1){n)~[kn—(1/2)(k){(k+1)] =
(1/2)(n - & — 1)(n — k)]
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(b} The input for the following procedure is an array A of n real numbers. The output
is the reordered array A with A[l] < A[2] <... < 4n].

Procedure BubbleSort2(var A: array; n: integer);
Var
Switch: boolean; {The value of Switch is true if}
{an interchange actually takes place.}
1,j: integer;
temp: real;
Begin
Switch = true;
While Switch do
Begin
Switch := false;
Fori:=1ton-ldo
For j := n downto i+1 do
I Afj] < Alj-1] then

Begin
temp = A[j-1};
Alj-1] = Afj];
Alj] := temp;
Switch := true
End {if}

End {while}
End. {procedure}

{¢) The best case occurs when the array A is already in nondecreasing order. When
this happens the procedure is only processed for i:= 1 and ji:= n down to 2. This results
in »~— 1 comparisons so the best-case complexity is O(n).

The worst case occurs when a Switch is made for all 1 1= 1 to n — 1. This resulis (as in
Example 10.5) in {n® — n)/2 comparisons, so the worst-case complexity is 0(n?).

9. (a) 21345 (b) 52143, 52134, 25134
(c) 25134, 21534, 21354, 21345
10.
{ﬂz} };,2,3 3}2@2
1,3,2 321
(b) 1,2.34 41,23
1,2,4,3 4,1,3,2
1,4,2,3 4,3,1,2
14,32 4,3,2,1
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{¢} The value of p; is either 1 or 5.

(d) Let py,ps,ps,..., s be an orderly permutation of 1,2,3,...,n. Then p; is either 1 or
n. fpy =1, then po— 1, p3 — 1,...,p, — 1 is an orderly permutation of 1,2,3,...,n — 1.
For py = n we find that py, ps,...,p, i8 an orderly permutation of 1,2,3,...,n — 1. Since
these two cases are exhaustive and have nothing in common we may write
ay = 2051, Nn2>3J, a;=2
Hence, a3 = 2a; =22 = 22,
ay = 2a3 = 2. 2% = 23,
and, in general,
a, =21, n>2

Section 10.2

(a) @, =05ay1+6ar 3, 122 a=1 a =3

Let a, =er®, ¢,r # 0. Then the characteristic equation is r?>—5r~6 = 0= (r—6){r+1),
so r = —1,6 are the characteristic roots.

an, = A(~1)" + B(6)"

l=ag=A+ B

3=a;=—-A+6B,50 B=4/7 and A=3/T.

an = (3/T)-1)" + (4/7)}(6)", n > 0.

(b) an = 4(1/2)" ~ 2(5)", n > 0.

(€} npa+a,=0,n20, a6 =0, a,=3.

With a, = cr™, ¢,r # 0, the characteristic equation r?+ 1 == 0 yields the characteristic
roots i. Hence a, = A(:)" + B(—i)" = A{cos(n/2) + isin(x/2))* + B(cos(n/2) +
isin{—m/2))" = Ccos{nn/2} + Dsin(nn/2).

O=ay=C, 3=a; =Dsin(n/2)= D, so a, = 3sin(nr/2), n > 0.

(d) @, —6a,.1 +9ay3=0,n>2 ag=5, a =12.

Let a, = er™, ¢,r # 0. Then r* ~6r + 9 = 0 = (r — 3)%, so the characteristic roots are
3,3 and a, = A(3") + Bn(3").

Be=ap= A; 12 =gy =34 + 3B =154 3B, B = ~1.

Gy = B(3") — n(3%) = (5 ~ n)(3*), n = 0.

(e an+ 20y +202=0 n22 a=1, 6 =3

PP 2rb 2=, v 1k

(~1 48} = V2(cos(3n /4) + i sin(3x/4))

(1 — i) = v/ cos(5n /4) + i sin(Bw /4)) =

V2{cos(—~3n/4) + isin(—37/4)) = /2{cos(37 /4) — i sin{3n /4))
a, = (v/2)"|A cos(3nn/4) + B sin(3nn/4)]

I=mag= A

3 = a; = v2cos(37/4) + Bsin(37/4)] =



50

V2[(-1/v2)+ B(1/v/2)},s0 3= -1+ B, B=4
an = (v/2)"[cos(37n/4) + 4sin(3mnf4)], n > 0

(a) Example 10.14: a, = 10a,.1 + 29a,_3, n > 2, ¢, = 10, a5 = 100.
r? —10r — 29 =0, r =5 £ 6/6. .

oy = A(5 + 6/6)" + B(5 — 6/6)"

ag = 100 = 10a; 4 20q9 = 100 + 29ag, so ag = 0
O=ay=A+ B,s0 B=-4.

a, = A[(5 + 6V6)" — (5 - 6V6)"]

10 = gy = A[5 + 66 — 5+ 6/6] = 1264, A = 5/66.

an = (3/6VB)[(5 + 6/8)" — (5 — 6v6)"], n > 0.

Example 10.23: a, = (2"} + (2%}, n 20, ap = 1, @ = 3.
ag=1= ¢y @ = 3= 2 + (2}, ¢ =1/2.

an, = (2")1 + (n/2)], n > 0.

(b) Example 10.16: a, =ap.y1+8rg, 122, ap=1, a3 = 2.
r2—r—1=0,r=(1++/5)/2

ap=1=A+ B

ay =2 = A[(1+v5)/2] + B[(1 - v5)/2]
4=A14+VB8)+B(1~+5)=(A+B)+V5(A—B)=1++/5(A—B),s0 3=+5(A~B)
and A — B = 3/5.

WUA=(A+B)+(A-B)=1+3/V6=03+V5)/v5, A=3+V5)/2V5 B=1-A=
(V5 — 3)/2V5,

an = [(VE + 3)/2V5][(1 + vB)/2]" + [(v5 - 3)/2V/5[(1 — vB)/2]", n 2 0

(n=0): ay+bay +cap=0=4+b1)+¢(0),s0 b= -4,

(n=1): az—4as+cay =0=37—-4(4) +¢,s0 c=-21.

Oupz — 404y — 21a, =0

12—t 2l =0=(r~-T)r+3),r=7,-3

@y = A(TY + B(-3)"

O=gp=A+B=p B=-—-4

1=a, = TA—3B = 104,50 A =1/10, B = —1/10 and a, = (1/10)[(7)* ~(=3)"], n > 0.

By == Gy + Byg, B 2 2y g = g = 1

¥ty =1 =0, r=(145)/2

a, = A((1 +vV5)/2)" + B((1 — VB)/2)"

dp = ay = 1 == A=(14+5)/2V5, B={/5-1)/2v5

ay = (L/VEI((1 + VvB)/2)™ — ({1 ~ VB)/2)™*]

For all three parts, let a,, n 2 0, count the number of ways to fill the n spaces under the
condition(s) specified.

(a) Here ag = 1 and a; = 2. For n 2 2, consider the nih space. If this space is occupied
by a motoreyele — in one of two ways, then we have 2a,..; of the ways to fill the n spaces.
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Further, there are a,.,; ways to fill the n spaces when a compact car occupies positions
n — 1 and n. These two cases are exhaustive and have nothing in common, so

Op = 205 + g9, 22, ag=1, a =2.

Let g, = cr™, ¢ # 0, r # 0. Upon substitution we have #? — 2r — 1 =0, s0 r = 1 + /2
and ap = (1 + V2 + (1 —v2)", n > 0. From 1 = @ = ¢; +¢; and 2 = gy =
ex(1 + V) + (1 — v2), we have ¢; = 32 and ¢; = 22, So a, = ((VZ+2)/4)(1 +
V2P + (2 - V2)/4)(1 - V2)" = (1/2v2)[(1 + V2" - (1 - V2] n 2 0.

(b) Here ag = 1 and a; = 1. For n > 2, consider the néh space. This space can be occupied
by a motorcycle in one way and accounts for a,.; of the a, ways to fill the n spaces. If
a compact car occupies the (n — 1}st and nth spaces, then we have the remaining 3a,..;
ways to fill n spaces. So here a,, = ay-1 + 3852, 1 > 2, ap = 1, ay = 1.

Let a, = ¢r®, ¢ # 0, r # 0. Upon substitution we haver? —r -~ 3=0,s0 r =
(1£/13)/2, and a, = ¢;[(1 + V13)/2]" + &2[(1 — V13)/2]*, n > 0. From 1 = ap = ¢; + ¢,
and 1 = a; = e;[(1 + v13)/2] + c2[(1 — v/13)/2], we find that ¢; = [(1 + v/13)/2v/13] and
ca = [(—1+ V13)/2v13]. So 4, = (1/VI3)[(1 + VI3)/2I*H — (1/VI3)[(1 - V13)/2]"H,
n 2> 0.

(c¢) Comparable to parts (a) and (b), here we have a, = 2an_1 + 3ap-2, n > 2, a5 = 1,
ay = 2. Substituting a, = e, ¢ # 0, r # 0, into the recurrence relation, we find that
r?—2r—3=0s0(r—3)r+1) =0andr = 3, r = —1. Consequently, a, = ¢;(3")+¢,(~1)",
n >0 From1=gap=0c + ¢ and 2 = a; = 3¢; — ¢y, we learn that ¢; = 3/4 and ¢; = 1/4.
Therefore, a, = (3/4)(3") + (1/4)}(~1)*, n 2 0.

For all three parts, let b,, n > 0, count the number of ways to fill the n spaces under the
condition{s) specified — including the condition allowing empty spaces.

{(a) Here by = 1, b; = 3, and b,, = 3b,_1 + b,3, n > 2. This recurrence relation leads us to
the characteristic equation r? — 3r — 1 = 0, and the characteristic roots r = (3 &+ /13}/2.
Consequently, b, = ¢;[(3 +/13)/2]" + &,[(3 ~ V13)/2]*, n > 0. From 1 = by = ¢; + ¢
and 3 = by = (3 + V13)/2] + &[(3 — V/13)/2], we find that ¢; = (3 + /13)/2+/13 and
& = (=3 + VI3/2VI3. So by = (1/VID((3 + VID 2™ — (VG — VIR,
n > 0.

{b) For this part we have b, = 2b,_; +3b,3, n 2 0, by = 1, b; = 2. Here the characteristic
equation is r® — 2r — 3 = 0 and the characteristic roots are r = 3, r = ~1. Therefore,
by = (3"} 4+ e -1)", n 2 0. From 1 = by = ¢1 + ¢3 and 2 = by = 3¢; ~ ¢3, we find that
ey = 3/4, 05 = 1/4. So b, = (3/4)}3) + (1/4)}{ -1, n > 0.

{c} Here by = 1, by = 3, and b, = 3b,_1 + 3b,.2, n = 2. The chazacteristic equation
% = 3¢ + 3 gives us the characteristic roots r = (3 £ v21)/2. S0 b, = ;{3 + V21)/2]" +
(3 — V21)/21*, n > 0. From 1 = by = ¢; +¢; and 3 = by = ,{(3 + v21)/2] + 3f(3 —
V21)/2), we have ¢; = [(3 + V21)/2v21] and ¢; = [(—3 + +/21)/2v/21]. Consequently,
by = (VI3 + V2T)/2)*" - (3 - V21)/2)*], n 2 0.



(a)

FB = B-FK
Fy, = F-F
Fy = Fa—F

Foper = Fyp— Fpy g
Conjecture: Foralln € Z*, Fi+ Fs+ Fs+ -+ Fopny = Fy, — Fy = Fy,,.
Proof: (By the Principle of Mathematical Induction).
For n = 1 we have Fy = F,, and this is true since F; = 1 = F;. Consequently, the result is
true in this first case {(and this establishes the basis step for the proof).
Next we assume the result true for n = k (2 1) — that is, we assume

Fy4+ Fs+ Fy+ -+ Fyy = Fy.
When n = k - 1 we then find that
Fy4 B+ F+ -+ Fopoy + Fypprya =

(Fy+ Fs+ Fs+ -+ Fopa ) + Fopr = Fop + Fopg1 = Foppy = Fopryay.

Therefore the truth for n = & implies the truth at n = k + 1, so by the Principle of
Mathematical Induction it follows that for all n € Z+

B4 B4 Fy+ A Fypy = Fyy.

(b)

Fz = F3 "Fl
F4 = Fg “‘Fg
Fs = Fy *"F5

Ff;m = F3n+1 s Fsmmx
Conjecture: Foralln e N, By b Fy+ - 4+ Fpu = B+ Fa+ Fy v+ Fopy = Fopyy — Fy =
F, Bl T 1.
Proof: (By the Principle of Mathematieal Induction)
When n = 0 we find that § = Fj = Fy — F; = 0, so the result is true for this initial case,
and this provides the basis step for the proof. :

k
Asgsuming the result true for n = k (> 0) we have E Fos o= Fopyy — 1. Then whenn = k41
k41 . £} m
it follows that Y Fy = 3 Fu+ Fopuny = Foppr ~ 1+ Fapg = (Fapgz + Foppa) — 1 =

jrml) pescy
Fyppz — 1 = FQZM};M ~ 1, Consequently we see how the truth of the result for n = &
implies the truth of the result for n = k + 1. Therefore it follows that for all n € N.

Eﬁ%’@+5¥%’"'+F2an2ﬂ+1”“11
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8,

9.

10,

1}»(

by the Principle of Mathematical Induction.
, Fass 1 QA B /2)"H = (1Bl 2™
(8) limnoo “Ft = LMoo 7 AR TVE) 2P (O V) /2]

= hm {O+/BY 24 —((1-/B)/2)" 4]
TR ({145 /2y (-5} )]

. wdd | anedd - N
= Hipooo Tl (where o = ﬁgﬁ, B= ;_5355)

o i
1-(2)nh

E)~(EEr

Since |8] < 1 and |a] > 1, it follows that |£] < 1 and |2[* — 0 as n — oo,

= lﬁnn—«»w

Consequently, 1imy..oo Eff«ii = ?iﬁ = = 351?%@.

(b) () AC/AX =simAXC/[sin ACX = sin108°/sin36° = 2sin 36° cos 36°/ sin 36° =
2 cos 36°
(i) cos18° = sin72° = 28in 36° cos 36° =
2(2sin 18° cos 18°)(1 ~ 25in? 18°) == 1 =
45in18°(1 — 2 sin? 18°) = 45in 18° — 8 sin® 18°.
0=28sin"18° — 45in18° + 1, so sin18° is a root of 82° ~4z + 1 =0.
8z% —dx +1=(2z — 1){(42* + 22 — 1) = 0.
The roots of 4z 42z —1=0 are (-1++/5)/4.
Since 0 < sin18° < sin30° = 1/2, sin18° = (-1 + 1/5)/4.

(e) (1/20(AC/AX) = cos36° = 1 — 2sin?18° = 1 — 2[(—~1 4 V5)/4]* = (1 + V5)/4.
AC/AX =2(1 +VB)/4 = (1 + VB)/2.

Gy = Gyt + Gz, 1 20, gg=a; =1
{Append ‘+17) (Append ‘+2)

a, = A[(1 +vB)/2]* + B|(1 - VB)/2]"

1=ag=A+B; 1=a =A1+5)/2+ B(1~5)/2 or

2= (A+B)+ V54—~ B)=1+5(4 - B) and A~ B =1//5

1=A4+B, 1/Vi=A~B=>A={14+V5)/2V/5 B =(/56-1)/2v/5 and a, =
(VB +VB)/2 — (1 - V5)/2)*], n2 0.

Here a; = 1 and a3 = 1. For n > 3, 4, = gy + @s-3, because the strings counted by g,
either end in 1 (and there are a,,..; such strings) or they end in 00 (and there ave a,,..; such
strings).

Consequently, a, = F,, the nth Fibonaceci number, for n > 1.

a} The solution here is similar to that for part (b) of Example 10.16. For n = 1, there are
two strings — namely, 0 and 1. When n = 2, we find three such strings: 00, 18, 01. For
n 2 3, we can build the required strings of length n (1) by appending ‘0’ to each of the
6,1 strings of length n — 1; or (2) by appending ‘01’ to each of the a,.; strings of length
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12.

13.

n ~ 2. These {wo cases have nothing in common and cover all possibilities, so
8y, = Uyt + Qpzy B Z 330’1 = 2&“2 = 3.

We find that a, = F4q = (@2~ ") /{a~ §) where a = (1+v/5)/2 and 8 = (1 —/5)/2.
b} Here by = 1 since 0 is the only string of length 1 that satisfies both conditions. For
n = 2, there are three strings: 00, 10, and 01 — s0 b, = 3. For n > 3, consider the bit in
the nth position of such a binary string of length n.

(1) I the nth bit is a 0, then there are a,_; possibilities for the remaining n — 1 bits.
(2) ¥ the nth bit is a 1, then the (n — 1)st and 1st bits are 0, and so there are a,.3
possibilities for the remaining n — 3 bits.

Hence b, = gp1 + @no3 = Fupq + Flmq, from part (a). So
bn = (‘Fﬂ +Fn—1)+(Fn—-2 "é”Fn-«'i) = (Fn +Fn—~2)+(F o +Fn-3) = bn—! "“i'"bn-?'

The characteristic equation z° — z — 1 = 0 has characteristic roots & = (1 + /5)/2 and
B=(1~- \/5)/2, 80 by, = cia™ + ;8% From 1 = by = cyav + €8 and 3 = by = c1a? + 38?2
we learn that ¢; = ¢; = 1. Hence b, = o™ + * = L,,, the nth Lucas number. [Recall that
in Example 4.20 we showed that L, = Fo4 + Fi,y.]

Let a, count the number of ways to arrange n such chips with no consecutive blue chips.
Let b, equal the number of arrangements counted in @, that end in blue; ¢, = a, —b,.

Then any1 = 3b, + 4, = 3(b, + ¢n) + € = 3a, + 364-1.

Hence @anqy — 36, — 30,y = 0, n 2 1, a9 = 1, a; = 4. This recurrence relation has
characteristic roots r = (3 ++/21)/2 and a, = A((3 + V21)/2)" + B((3 — v21)/2)".

=1, gy =4 = A=(5++21)/2/21, B = (v/21 -~ 5}/2/21 and
a, = [(5+ V21)/(2V2D)I(3 + v21)/2]" — [(5 - v21)/(2v2D)}{(38 — v21)/2]",n > 0.

For n > 0, let a,, count the number of words of length n in £* where there are no consecutive
alphabetic characters. Let afl) count those words that end with a numeric character, while
al? counts those that end with an alphabetic character. Then a, = a{}} + a(¥,

For n21, @u = 11lal+ 4a®
= [4al? + 4a{P] + TalV
=, 4a, + TalP)
= b, + ?(‘iﬁwwi}
= da, + 230%«&3

and @y = 1, a3 = 11,

Now let a, = ¢r®, where ¢, 3 0 and n > 0. Then the resulting characteristic equation is
72— 4y — 28 = 0,

where r = (4 £ /128)/2 = 2 + 4/2.
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14.

15.

18.

17.

is.

Hence a, = A[2 + 4/2]"* + B[2 — 4/2]*, n > 0.

Iyl = A+B, and
11 =a; =11 = A2+ 4v2]+ B[2 ~ 4/2)
= Al2+4V2)+ (1~ A)2 -4V7]
= [2-4V2]+ A2 + 42~ 2+ 4/9)
= [2—-4v2]+8V24,

so A =(9+4v2)/(8v2) = (8 +9v2)/16, and B = 1 — A = (8 — 9+/2)/16.

Consequently,

ay, = [(8 + 9v2)/16)[2 + 4V/2]" + [(8 — 9v2)/16][2 — 4V2]*, n > 0.

Using the ideas developed in the prior exercise we find that 7k = 63, or k = 6.

Here we find that
ag = }-’ dy = 29 Qg = 25 ag == 223 Gy = 237 Qg = 25: Qg = 289

and, in general, a, = oF; =, where F, is the nth Fibonacci number for n > 0.

a; =0, 8, =1, @ea=1 For n>4,let n m.x1+$g—i~...+xt, where z; > 2 for 1 <i < ¢,
and 1 <t<|n/2]. f 2, =2, then z,+ ...+ 2, is counted in a,._5. If z; # 2, then
;3 >2 and (2 — 1)+ 2 +... 4+ & is counted in a,.;. Hence a, = ap_y +ap_g, n > 3,
and a, = F,_;, the (n — 1}-st Fibonacci mumber.

(a} From the previous exercise the number of compositions of n+3 with no 1s as summands
is F, npde
{(b) (i) The number that start with 2 is the number of compositions of n 4+ 1 with no 1s as
summands. This is F,.

(ﬁ) F waw-§

{(iii) The number that start with k, for 2 < k < n + 1, is the number of compositions of
{n + 3) ~ k with no 1s as summands. This is Fiyg 41 = Fropge, 2< k< n+ 1
{c} If the compaosition starts with n+2 then there is only one remaining summand - namely,
1. But here we are not allowed to use 1 as a summand, so there are no such compositions
that start with n + 2.

The one-sumumand composition ‘n + 3" is the only composition here that starts {and ends)
with n 4+ 3. _
{d} These results provide a combinatorial proof that

Fro=Sit Fogpntli=F+Fa+ + R+ FR)+ 100

Fogy — V= 30, Fyo== 30 o Fi, since Fy = (.

From 2* — 1=z we have 2% ~z ~ 1 = 0, s0 = (1 & +/5)/2. Consequently, the points of

intersection are ((1+v/5)/2, (1+v5)/2) = (a, @) and (1~ V5)/2, (1 - v5)/2) = (8, ).
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20.

210

From 141 =z welearn that z+1 = 2% or 2’ —2~1=0. Soz = (14+/5)/2 and the points
of intersection are ((14+v5)/2, (1+f3/2) (a,¢) and (1 ~5)/2, (1-v5)/2) = (8,8).

(8) & = [(14+VE)/2 = (14+2v5+5)/4 = (6+2V5)/4 = (3+/5)/2 = [(1+V5)/2}+(2/2) =
o+ 1.

(b) Proof: (By Mathematical Induction) For n = 1, wehave o” =o' =a =a -1+ 0 =
aFy + Fy = aF,, + F,_1, so the result is true in this case. This establishes the basis step.
Now we assume for an arbitrary (but fixed) positive integer k that of = aFy + Fy_;. This
18 our inductive step. Considering n = & + 1, at this time, we find that

k+1 a(a®) = alaF, + Fy_;y] (by the inductive step)
a*Fy, + aFy,

= {(a+1)F;+aFy.y [by part (a)]

= G(Fk -+ kal) “+ Fg

= oFp4 + Fp.

&

il

Since the given result is true for n = 1 and the truth for n = k + 1 follows from that for
n = k, it follows by the Principle of Mathematical Induction that o = oF, + F,,..; for all
neZt.

Proof (By the Alternative Form of the Principle of Mathematical Induction):
(8) Fy=2=(1+v9)/2>1+V5)/2=a=0a72,
Fy=3=(3+v9)/2>(3+V5)/2=0a*=a""?,
so the result is true for these first two cases (where n = 3, 4) This establishes the basis
step. Assuming the truth of the statement for n = 3,4,5,..., k(> 4), where k is a fixed
(but arbitrary) integer, we continue now with n =k + 1:
Fopp = Fo+Fiy
> ab? 4 gh-1)-2
— k~2 +ak ~3 = ab~3a + 1)
— ak ol == b 1,_a(k+1}2
Consequently, F, > a" 7 for all n > 3 ~ by the Alternative Form of the Principle of
Mathematical Induction.
(b) Fy=2={3+v1)/2<(3+VE)/2=a?=0a",
Fy=3=2+1<2+Vb=a’=0a*",
so this result is true for these first two cases {W}zer'ﬁ n = 3,4). This establishes the basis
step. Assuming the truth of the statement for n = 3,4,5,..., k(2> 4), where k is a fized
{but arbitrary) integer, we continue now with n =k + 1t :
Py = Fe+ F&wi
B A R o

- kwl ?aﬁ = o ¥ a + 1)
= o .0 = of = olkti)-1

Consequently, ¥, < o™ ! for all n > 3 - by the Alternative Form of the Principle of
Mathematical Induction.
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23.

24.

{a) Since @,y = 2a, we have a, = ¢(2"), n 2 1. Then a; =2 = 2¢ = 2 = ¢ = 1,
so a, = 2" Consequently, for n even, the number of palindromes of n is counted by
Gnjz = 2%/2 - 2{%/2; :

(b} Here byyy =2b,,n 21, by =1 S0b, =d(2"),n2land by =1=2d=1=d=1/2,
go b, = 2*~'. Hence, for n odd, the number of palindromes of n is counted by buy1y2 =
Qltnt1)/21=1 - 9(n=1)/2 = /3],

Here we shall use auxiliary variables. For n > 1, let a!% count the number of ternary

strings of length n where there are no consecutive 1s and no consecutive 2s and the nth
symbol is 0. We define al!) and ¥ analogously. Then

on = o ) 40
Gn1 + [ — ﬂg}ﬂ + {agey — a?}l]
(1)1 {2) ]

== 2“’73.&1 + [anwi = Byni " Gpay
= 2 + ai,g—)l = 2yt Gy

i

Letting a, = cr®, ¢ # 0, r # 0, we find that r? — 2r — 1 = 0, so the characteristic roots
are 1 3 /2. Consequently, a, = ¢;(1 + \/ﬁ)" 4+ ep(1 —~ \/i)"‘ Here a; = 3, for the three
one-symbol ternary strings 0, 1, and 2. Since we cannot use the two-symbol ternary strings
11 and 22, we have a; = 3% - 2 = 7. Extending the recurrence relation so that we can use
n =0, we have a3 = 2a; + @p s0 @g = a3 — 20, = 7~ 2-3 = 1. With

l=ay = ¢+ and
3=a = a(l+vV2)+ el -v2)
= (&1 +¢2) + vV2(er — ea),

we now have 1 = ¢; + ¢ and V2 = ¢; — ¢3, 80 ¢ = (1 + v/2)/2 and ¢; = (1 — /2)/2.
Consequently, ,
@, = (1/2)(1 + V2" + (1/2)(1 - vV2)*, a>0.

Here ay = 1, for the case of oune vertical domino, and e, = 3 - use (i} one square tile ; or
(ii} two horizontal dominoes; or (iii) two vertical dominoes. For n > § consider the nih
cohumn of the chessboard. This column can be covered by

{1} one vertical domino — this accounts for a..y of the tilings of the 2 X n chessboard;
{2) the right squares of two horizontal dominoes placed in the four squares for the (n—1)st
and nib columns of the chessboard — this accounts for a,.; of the tilings; and

(3} the right column of a square tile placed on the four squares for the {(n — 1)st snd nth
eolumnng of the chesshoard — this also accounts for a,.q of the tilings.

These three cases account for all the possible tilings and no two cases have anything in
COMINON 80
@y == Oy + 2y, 23,0 =1ay=3

Here the characteristic equation is 2% — ¢ — 2 = 0 which gives z = 2, # = —1 as the

characteristic roots. Consequently, a, = ¢i{~1)" + €(2)% n > 1. From 1 = gy = e;{~1) +
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26.

27.

e3(2) and 3 = a3 = 1(—1)* + c3(2)? we learn that ¢; = 1/3, ¢;. = 2/3. So a, = (1/3)[2°" +
{(~1)"], n 2 1. [The sequence 1,3,5,11,21,..., described here, is known as the Jacobsthal
sequence.]

Let a, count the number of ways one can tile a 2 X n chessboard using these colored
dominoes and square tiles. Here a; = 4, a3 = 4* 4+ 4 + 85 = 37, and, for n > 3, a, =
4,1+ 160,34+ 5a,. 9 = 4a,_1+21a,_;. The characteristic equation is £? ~4z—21 == 0 and
this gives 7 = 7, ¢ = —~3 as the characteristic roots. Consequently, a, = ¢1{T)" + ¢3(~3)",
n>1.

Here aq = (1/21){ay — 4ay) = 1 can be iniroduced to simplify the calculations for ¢, ¢,
From 1 = ag = ¢; + ¢; and 4 = Tey — 3eg we learn that ¢; = 7/10, ¢3 = 3/10, so
an = {T/10)(7T)" + (3/10)(—3)", n > 0.

When n = 10 we find that the 2x 10 chessboard can be tiled in (7/10)(7)°+(3/10)}(—3)** =
197,750, 389 ways.

Here a; = 1 (for the string 0) and ay = 3 (for the strings 00, 01 and 11). For n > 3, there
are three cases to consider: :

(1) The nth symbol is 0: There are a,.; such sirings.

(2) The (n — 1)st and nth symbols are 0, 1, respectively: There are a,_, such strings.

(3) The (n — 1)st and nth symbols are both 1: Here there are also a,.; strings.

These three cases include all possibilities and no two cases have anything in common.
Consequently,

Gy = Gy..y + Zan._g, fdy = 1, g == 3.
The characteristic equation, r* — r — 2 = 0, yields the characteristic roots 2 and —1, so
an = c1{2)* + e2(—1)". From 1 = @y = 2¢) — ¢; and 3 = a3 = 4c; + 3, we learn that
¢ = 2/3 and ¢; = 1/3. So

an = (2/3)(2)" + (1/3)(-1)", n 2 1.
[So here we find another occurrence of the Jacobsthal numbers.

There is a; = 1 string of length 1 {(namely, 0) in 4*, and ay = 2 strings of length 2 (namely,
00 and 01) and a3 == 5 strings of length 3 (namely, 000, 001, 010, 0611 and 111). Forn > 4
we consider the entry from A4 at the {right) end of the string.

{1) 0: there are a,. strings.

(2) 01: there are a,.y strings.

(3) 011, 111: there are a,.5 sirings in each of these two cases.

Consequently,
Gy == gy + Gymg + 2“‘3&»«39 L ;’f 47 Gy == }H g == 2’} dg = 5.

From the characteristic equation r* —r? —r — 2 = §, we find that (r - 2)}{(r* +r+1) = 0 and
the characteristic roots are 2 and (—144+/3)/2. Since (—144v/3)/2 = cos 120°+isin 120° =
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28.

29,

cos(%Z) + isin(%), we have

ay = ;(2)" «%~czcos?%-—+cgsm%ﬁ, n> 1.

From
1=ay = 2¢; — /2 + e3(V3/2)
2 = ay = de; — ¢/2 — ¢x(/3/2)
5 = ag = 8¢; + ¢,
we learn that ¢; = 4/7, ¢; = 3/7, and ¢5 = /3/21, so

ay, = (4/7)02)" + (3/7) cos(2nr/3) + (v/3/21) sin(2nx/3), n > 1.

[Note that a, also counts the number of ways one can tile a 1 X n chessboard using 1 x 1
square files of one color, 1 X 2 rectangular tiles of one color, and 1 x 3 rec%angula,r tiles
that come in twe colors. ]

Here a; = 1 (for 0}, a; = 2 (for 00,01), a5 = 4 (for 000, 001, 010, 011), a4 = 9 (for 0000,
0001, 0010, 0100, 0011, 0110, 0111, 1111, 0101), and for n > 5

8y = Gpoy + Gpog + Anos + 254,

The characteristic equation r* — r® —r? —r — 2 = 0 tells us that (r - 2)(r + 1)}{(r* +1) =0,
so the characteristic roots are 2, —1, +i. Consequently,

ayn = c3{2)" + eo{ ~ 1) + ez cos(nw/2) + ¢4sin(n7/2), n > 1.
J

From
l=a = 2cy g +Cyq
2=ay =4¢; +¢ -—c3
d=a; =8 —c3 g

G=ay = 18c; ¢ e
we learn that ¢; = 8/15, ¢ = 1/6, ¢z = 3/10, and ¢4 = 1/10, so a, = (8/15)}(2)" +
(1/6}(~1)* + (3/10) cos{nx /2) + (1/10) sin{n7/2), n 2> 1.
[Note that e, also counts the number of ways one can tile a 1 x n chessboard using red
1 x 1 square tiles, white 1 x 2 rectangular tiles, blue 1 x 3 rectangular tiles, black 1 x 4
rectangular tiles and green 1 X 4 rectangular tiles.]

Fapg — Bppy = Wippy — 24), 20, 2g = 1, and 2, = 5.

Epig = SEpey + 2y =0

Forn 2> 0,let z, = or", where ¢, r # 0. Then we get the characteristic equation r? ~3r 42 =
0={r—2}{r 1), s0 2, = A(2°) + B(1*) = A(2") + B.

2g=l=A+ B

2y =h=24A4+8 *

Hence 4 =4, B= ~3,and 2, =4(2")~3 =2 -3, for n 2> 0.
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30.

31.

32.

33.

340

Expanding by row 1, D, = 2D, ; — D, where D isan (n—1) by {(n—1) determinant
whose value, upon expansion by its first column, is D, 4. Hence D, =2D,_ 1 — D, 9.
This recurrence relation determines the characteristic roots r = 1, 1 so the value of

Dy = A(1)" + Bn(1)* = A + Bn.

Dl-»"‘:!zzﬂz ,Dz:‘w{

%

2=Dy=A+B;3=D;=A4+2B=pB=A=1and D,=1+4n, n>1.

2 1
| g |=4-1=3

Let b, = a%, by = 16, b; = 169. 4

This yields the linear relation b,y; — 3b,4q + 4b, = 0 with characteristic roots

r=4,1, 50 b, = A(1)" + B(4)".

b = 16, by = 169 = A = —35, B = 51 and b, = 51(4)* — 35. Hence a, =
J31(4) =35, n. > 0.

ay = ¢ + c(7)", n > 0, is the solution of apyz + bapyr +ca, =0, 80 r2 +br +c =0 is
the characteristic equation and (r — 1)}{(r = 7) = (r® — 8r + 7) = % + br + c. Consequently,
b=-—8andc= 7.

Since ged(Fy, Fy) = 1 = ged(Fy, Fy), consider n > 2. Then
Fg = Fz + Fg(: 1)

Fy=F+F

Fy = F; + F3

Fn+l an +Fn~1'

Reversing the order of these equations we have the steps in the Euclidean Algorithm for
computing the ged of Fouy and F,, for n 2 2. Since the last nonzero remainder is Fj = 1,
it follows that ged(F, 44, F,) =1 foralin > 2.

Program Fibonacei (input, output);
Var
pumber: integer; {the input}
i: integer; {i is a counter}
eurrent: integer;
Fibenacci: array [1..100] of integer;
Begin
Write (“This program is designed to determine i ’);
Write {‘a given nonnegative integer is a ');
Writeln (‘Fibonacel number.’};
Writeln (*What nonnegative integer n do you wish to test?’);
Write (‘u=");
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1.

Readln (number);
If pumber < § then
Writeln (‘Your input is not appmpnate B
Else if number = 0 then
Writeln {(‘Your number is the 0-th Fibonacci number.’)
Else if number = 1 then
Writeln (“Your number is the 1-st Fibonacei number.’)
Else {number > 2}
Begin
Fibonacci [1] := 1;
Fibonacci [2] 1= 1
current = 1;

i=3;
While number > current do
Begin

Fibonacci [i] := Fibonacci [i-1] + Fibonacci [i-2};

current := Fibonacci [if;

If number < current then
Writeln (“Your number is not a Fibonacci number.”)

Else if number = current then
Writeln (‘Your number is the ’, 1:0, ‘~th Fibonacci number.’)

Elsei:=i+1 {number > count}

End {while}
End {else}
End.

Section 10.3

(8) g1 —apn=2n+3, n>0, g =1
=gg+0+3

g2 =01 + 2+ 3= a5+ 2+ 2(3)

ﬁgwﬁ;“@ggz}*%“ﬁm %’2%2{2}?3{3}

g = (l‘g +2(3) + 3 = ag + [2 4 2(2) + 2(3)] + 4(3)

a%ma@~§~2{1+2~k3+“.+{nwi}§%n{S}::E%Zé%{nw},}jﬂ%ﬁnm1~%~n{ﬁ»3}~é~3nm
Rt 424 1=(n+10 n20

(b} a,=34+nn-17% n20

(¢} Gpp1—2a,=5n20,a =1

a; =200 +5=2+435

Gy =20y +5=24+2-5+5

g = 20+ 5 =22+ (22424135
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4.

G, =2" +5(1+2+22 4, 42" =27 £ 5(2° ~ 1) = 6(2") - 5, n > 0.
(@) a,.=2"+n{2*'), n20

Oy, = Z?ﬁﬂ iz‘

Grsy wan+(n+1)2 n>0 ag = 0.

Gppy — O = (n+ 1P =n?4+2n+1

al) = A, a® = Bn + Cn® 4 Dn®

B(n+1}+C(n+i)2+D(n+ 1P=Bn+Cn?+Dn*+n?42n+1 =3
Bn+B+Cn*+20n+C+Dn®+3Dn? +3Dn+D=Bn+Cn?4+Dn®+n?42n+ 1
By comparing coefficients on like powers of n we find that C+3D =C+1,s0 D =1/3.
Also B4+2C +3D =B +2,50 C=1/2 Finally, B4+C+D=1=> B = 1/6.

So a, =A+(1/8)n+ (1/2)n? + (1/3)n®. With ap = 0, it follows that 4 =0 and

an = (1/6)(n)[1 + 3n + 2n% = (1/6)}(n)}(n + 1)(2n + 1),n > 0.

(a) Let a, = the number of regions determined by the n lines under the conditions
specified. When the n-th line is drawn there are n — 1 points of intersection and n
segments are formed on the line. Each of these segments divides a region into two regions
and this increases the number of previously existing regions, namely a,_1, by n.

Ay = Qpq +1, n 2> 1, ag = 1.

a® = A, alP) = Bn + Cn?

Bn + Cn? *B(n-—l)+(f(n——~1)2+n

Bn4+Cn?®~Bn+B~Cn®+2Cn—~C =n.

By comparing the coefficients on like powers of n we have B = C = 1/2 and a, =
A+(1/2n +(1/2)n%

l=as=A 50 g, =14+(1/2)(n)(n+1}, n>0.

(b) Let b, = the number of infinite regions that result for n such lines. When the nth
line is drawn it is divided into n segments. The first and nth segments each create a new
infinite region. Hence b, = b,,; +2, n > 2, by = 2. The solution of this recurrence relation
i8b,=2n, n>1, by=1.

Let p, be the value of the account n months after January 1 of the year the account is

started.

po = 1000

= 1000 -+ (.005)(1000) + 200 = (1.008)py + 200

Pasr = (L0O05)p, + 200, 0 <n < 46

Pag == {1‘{}95}?@?

Pray ™ 1.{}&3&?}% =g 2{}&, G ﬁ ¥ ﬁ 46

i) = A(1.005)", pif’ = C

€ ~ 10060 = 200 == C = ~40,000

39@ A(1.005)° ~ 40,000 = 1000, so A = 41,000
= {41, 000){1.005}™ — 40, 000

pﬁ == (41,000)(1.005)*" — 40,000 = - $11, 830.90

258



18.

pas = (1.008)psr = $11,890.05

(8) @ppa+3an41 +20,=3", 120, 8 =0, gy = L

With a, = or®, ¢,r # 0, the characteristic equation r?+3r+2=0=(r +2)(r + 1)
yields the characteristic roots r = —1, -2,

Hence a{P = A(~1)" + B(~2)", while alP) = C(3)".

C(3)™? + 3C(3)™ +20(3)" = 3" == 9C + 9C +2C = 1 == C = 1/20.

Gy = A(-1)" + B{~-2)" + (1/20)(3)"

D=ayg=A+ B+ (1/20) ‘

1=ay = —A — 2B + (3/20)

Hence 1=ag+ a6y = —~B+(4/20) and B= —4/5. Then A= B —(1/20) = 3/4.
an = (3/4)(~1)" + (—4/5)(—2)" + (1/20)(3)*, n 2 0

(b) an =(2/9)(-2)" — (5/6)(n)(-2)" + (7/9),n 20

Gngg = 6Oy + 90, =32 +7(3)", n=>0, 0 =1, ay = 4.

al® = A(3)" + Bn(3)" al? = C(2)" + Dn?(3)".

Substituting al?) into the given recurrence relation, by comparison of coefficients we find
that C =3, D = 7/18.

an = A(3)* + Bn(3)" + 3(2)" + (7/18)n*(3)"

l=agg,d=0a = A=-1,8B=17/18, so

an = (—2}3)" + (17/18)n(3)" + (7/18)n3(3)" + 3(2)*, n > 0.

Here the characteristic equationis r* —3r? +3r ~1=0=(r —1)%, 50 r = 1,1,1 and

a® = A4 Bn+Cn?, a® = Dn® + En‘.

D(n+3P+En+3)*-3D(n+2P°-3E(n+2)*+3D(n+1P°+3E(n+1)*—Dn® - En* =
34 5n == D = ~3/4, E = 5/24. |
ay = A+ Bn + Cn? — (3/4)n® + (5/24)n*, n > 0.

Gpy1 = 3a, + 3%, ag = 1, a; = 4. The term 3" accounts for the sequences of length n
that end in 3; 3a, accounts for those sequences of length n that endin 0, 1, or 2.

altl = A3, al?) = Bn3®

B(n4+1)3"" =3(Bn3")+ 3" = 3B(n+1)=3Bn+1=>3B=1== B=1/3

Gn == A3 4030

l=ag= 4,80 a,=3+nr3"" n>0

From Example 10.28, P = ($i)[t ~ (14 i)~7]"?, where P is the payment, S is the loan
{$2500), T is the number of payments (24) and ¢ is the interest rate per month {1%).

P = (2500)(0.01)[1 — (1.01)"%]"! = §117.68.

Gupg 'fi”z‘lﬁn«%‘i "i”b?a*ﬂ = b&“"%"b&
a, = 2% 43 +n 7
PPbbrtb=(r~2 -3 =r—5r+6=>bh =5 by=86
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11.

12,

aP) =n 7
(n+2)~T~5l(n+1)~T1+6(n—T)=ban + by => bz = 2, by = —17.

() Let aZ=15b,,n20

bn+2 - 51)?3.;,1 - ﬁbn = Tn

b = A3%) + B(2"), b = Cn+D
Cln+2+D-5Cn+1)+D|+6(Cn+D)=Tn==C=7/2, D=21/4
b, = A(3") -+ B(2") + (Tn/2) -+ (21/4)

bh=ai=1b=a=1

I=by=A+B+21/4

1=b; =34 +2B +7/2+21/4

3A4 2B = -31/3

94 + 2B = —34/4

A=3/4, B=-5

an = [(3/4)(3)" — 5(2)" + (Tn/2) + (21/4)]'/?, n 2 0

(b) ¢ —2a, 1=0,n2>1, ag9=2

aﬁ = 2qy_1

log, a2 = log;(2a,1) = log, 2 + log, an—1

2log, a, = 1+ log, @,

Let b, =log,a,.

The solution of the recurrence relation 2b, =1+ b,y is b, = A(1/2)* + 1.
bop=logyap =log,2=1,50 1=lby=A+1 and A =0.

Counsequently, b, =1, n>0,and a, =2, n > 0.

Consider the nth symbol for the strings counted by a,. For n > 2, we consider two cases:
(1) I this symbol is 0, 2, or 3, then the preceding n — 1 symbols provide a string of length
n — 1 counted by a,.1.

(2) I this symbeol is 1, then the preceding n — 1 symbols contain an even number of is —
there are 4° ! — a,,_; such strings of length n — 1.

Since these two cases are exhaustive and have nothing in common we have
O = 3pg + {477 ~ ) = 200 + 4", n > 2

Here a, = al* 4 af?), where al?) = A(47~1) and alM = o(2").

Substituting ¢! into the above recurrence relation for a, we find that A(4* %) =
ZA(4" ) 44" 5044 =24+ 4 and A =2,

There is ouly oue string of length 1 where there i an odd number of Is — namely, the
string 1. So

a; = 1= ¢(2)+2(4%), and c=-1/2.
Consequently, @, = (~1/2}{2°} + 2(4"'), n 2 1.
We can check this result by using an exponential generating function. Here @, is the
coeficient of =" /n! in e*(<=E=)(e®)? = 1e* - 1%, Hence a, = (1)(4") ~ 3(2"), n 2 1.
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13.

14.

(a) Consider the 2" binary strings of length n. Half of these strings (2*!) end in 0 and
the other half (2°%) in 1. For the 2*"! binary strings of length (n — 1), there are £,_;
runs. When we append 0 to each of these strings we get .1 + (3)(2""?) runs, where the
additional (2)(27"7) runs arise when we append 0 to the (£)(2""!) strings of length (n — 1)
that end in 1. Upon appending 1 to each of the 2"! binary strings of length n — 1, we get
the remaining ¢, + (3)(2*7!) runs. Consequently we find that

tn = Zi.n.mi -+ 2""‘, n 2 25 tl = 2
Here t) = ¢(2"), so ¥} = An(2"). Substituting ¢} into the recurrence relation we have

An(2*) = 24(n -~ 1)2%1t 4 271
= An(2*) — A(2") + 271
By comparison of coefficients for 2" and n2* we learn that A = 1. Consequently, ¢, =
tW 4t = o(2") +n(2" "), and 2=t = c(2) + 1 = c= L, s0 ¢, = (3)(2") + n(2*}) =
(n+1)(27),n2 1. |
(b) Here there are 4™ quaternary strings of length n and 4™ of these end in each of the
one symbol suffices 0,1,2, and 3. In this case

tn = 4tn.y + (2)4”*’} =4t,q + 34", n>2, 4 =4

Comparable to the solution for part (a), here t{# = ¢(4") and t{) = An(4™). So An4™ =
44(n — 14" + (3)(4™!) = And" — A(4") + (3)4", and A = 2. Consequently, ¢, =
{4+ (Ena and d =t = dc+ (3)4) = c =1, 50 t, = (34" + (8)nd” = 4"7(1 + 3n),
n > 1.

(c) For an alphabet %, where |E| = r > 1, there are r™ strings of length n and these r®
strings determine a total of ¥" ![1 + (r — 1)n] runs. [Note: This formula includes the case
where r = 1.]

(8) 8np1 = &y b tagr = 8+ {0+ 1){n +2)/2

Sup1 = 8p = (1/2)}(n® 4 3n + 2)

8y = sff‘} 4 sgf) '

sﬁfil — s =0, 50 s = A(1") = 4

s = n{Bn® + Cn 4+ D) = Bn® 4+ Cn® + Dn

Bln+1P+CHn+ 112+ D(n+ 1)~ Bn® - Cn? ~ D= (1/20n* + 3n + 2) ==
B=1/8 C=1/2 D=1/3

5y == A+ {1/6)n% + (1/2)n? + (1/3)n

Since 8; = #; =1, 1 = A+{1/6)4+(1/2)4(1/3) => A = 0, and s, = (1/6}n)(n+1){n+2).

(b} (i) #0000 atoms.
(i) sop009 — S10.000 = 1.665 x 10 atoms.
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15.

Program Towers_of Hanoi (input, output);
Var

number: integer; {number = number of disks}

Procedure Move_The Disks (n: integer; start, inter, finish; char);
{This procedure will move n disks from the start peg to the finish peg using inter as
the intermediary peg.}
Begin
If n=1 then
Writeln (‘Move disk from ', start, ¢ to ’, finish, *."})
Else
Begin
Move_The_Disks (n-1, start, finish, inter);
Move_The_Disks (1, start, * °, finish);
Move_The_Disks (n-1, inter, start, finish)
End {else}
End; {procedure}
Begin {main program}
Write (‘How many disks are there? );
Readln (number);
If number < 1 then
Writeln (*Your input is not appropriate.’)
Else
Move_The_Disks (number, ‘1°,2°,‘3")
End.

Section 10.4

(a) @par—ay,=3" n20,0=1

Let fz} = 2 lho ana™.

E:?m{% Gng1 Rl L ;ﬁzi) anx’*’“ - Z:mm{; gl
[f(z) — ag] — 2f(z) = ¢ T3Le(32)" = x/(1 ~ 3z)
fz)—1—af(x)=2/(1 -3z}

flz) =1/(1 - 2)+2/({1 - 21 -3z)) = 1/(1 —2) + (~1/2)/(1 - 2} + (1/2)/(1 - 3z) =

(/2 (1~ )+ (1/2)(1 = 32}, and a, = {1/2)1 +3|,n 2 0
(b} a,=1+[nln—1}2r~1}/6,n >0
{¢) piz — 30441 + 20, =0, 20, ap=1, a;, =6

o8 O Les
Y tuyaz™? =83 4™ 423 ana™t =0
wsell yantd wol}
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o o0 D
Z Onyat™? — 3z Z G2 4 2x? Z apz” =0

[ feeid w0

Let f(z) = Y _ a,z". Then

n=l

(f(z)—1~6x)~32(f(z)~1)+22" f(z) = 0, and f{z}(1 -3z +22") = 1+62~3z = 1+3z.
Consequently,

1480 5 (8 e s
mr g bl cury e b DI COUREPILY

f(z) =

and @, = 5(2")~4, n>0.

(d} ﬂn+2“2an,§.1 —E—ap"—ZQn ﬂ>0 a{}-—"‘il a1m2

Zome0 Bnga2™t? — 250000 a2 4 T an CAAEIED D i

Let f(z)=3rganz". Then

[£(2) — a0 — axz] — 22[f(2) — ao] + 2* f(z) = &® L7%o(22)"

flz) =12z —2zf(z)+ 2z + z* f(2) = «*/(1 - 22)

(2® — 2z + 1)f(z) = 1 + 22 /(1 — 22) == f(z) =1/(1 —2)*+

2/(1-22)1-2)) = (1 -2z +2})/(1~2)2(1-22)) = 1/(1 - 22) = 1 + 22 +(22)* +
so a, =2" n2>0. '

aln,r)y=a(n—1,r-1)+a(n-1,r), r 2 L
T2, a(n,rja" =X a(ln ~1,r - 1)z" + T2, o(n — 1,r)z”
a(n, 0)»1 n>0; a(0,r)=0,r>0
Let f, =¥ 2Xoa(n,r)z".
fn - a(naﬁ) = xfn—-l + fnml - a’(”’ - 1,0)
.fn. == (1 + x)fn-} and frs = (1 + x)nfﬂ
fo = % ,a(0,r)e" = a{0,0) + a0, L)z + (0, 2}w +...=a{0,0) = 1,80 fr={14a)"
generates a{n,r), r > 0.

(a) @pyp = —2a, — 4b,
@,Wg == ‘iztﬁn o 65‘%
n >0, (/Zg =1, by = 0.
Let f(z)= nw.cx a,z”, g(z) = Folo baz®.
T B 2™ = =2 TR g™ - 4T bt
Tome bgpra™tt = 4000 5 age™t 4 6 g bux™t?
flz) ~ ag = ~2zf(z} — dxg(x)
g{z) — by = 4z f(z) + bzg(x)
F@)(1 +22) + dogla) = 1
flz)(~4z) + (1 ~ 6z)g(z} = 0

263



1 é
. g 0 (1 wﬁw) L 2
f(z) = g G723 4= | (1—-62)/(1—22) =
~4z (1 -6z} |

(1 —62)(1 —22) = (1 - 62)[( ) + () (~22) + (F)(~22)* + .. ]
= () (=27 = 6( 2 (-2 T =21 -2n), n 2 0

flx)(—42) + (1 - 5z)g(w} =0= 9(z) = (4z) f(z)(1 ~ 62)"" = g(z) =
4a(1 —22)~% and by = 4(72)(-2)"" = n(2"*), n 2 0.

(b} @n = (=3/4) +(1/2){n + 1)+ (1/4)(3"), n 2 0

by =(3/4) + (1/2)(n+ 1) = (1/4)(3")}, n 20

Section 10.5

o by = boby + by + boby + bsbo = 2(5 +2) = 14

= [(2)}/((n + DnD)], by = 8I/(514]) = 14

PSR AR
NN DN Y Nl

(2n + 2)(2n + 1}{%}&}

2. 0/a/en + ) E) = /s + 1y SRR

= (1/2){(2n + 2)/(n + 1P2r)} /(0] = (1/(n + ()
2n-1) (2n-1 {(2n - 1) {(2n — 1} _
3. { n ) {n - 2} ggﬁ{n - 1} } E{n e W + E}?E -

E(En - 1){n + 1}} 3 {{2% ~ 1)¥n —~ 1}} _ { {(Zn — 1}
(n+1){n— 1} (n—Din+ D |(n+1)ln -~

",E}ﬁ} n+1)—~(n~1}=

%4



6.

7.

8?

(2n-—-1Y2)  (2n-1)(2n) (2n)! 1 (zn)
(n+Din—-11" (a+nl — (+DnHED T (r+1)in

(a) No (b} Yes {¢) No (d) Yes

(@) (1/9)(%) (b) Ew‘z)(ig]?
() (/e (N3N @) (1/6)(%

(a) tu41: For n = 2, let wy,vg,...,0541 be the vertices of a convex (n + 1)-gon.
In each partition of this polygon into triangles, with no diagonals intersecting, the side
ViUnsy 18 part of one of these triangles. The triangle is given by v0vs41, 2 €1 < 0.
For each 2 < ¢ £ n, once the triangle wvyv;v,,; is drawn, we consider the resulting
polygon on vy,vs,...,v; and the other polygon on v;,v;41,...,9541. The former polygon
can be partitioned into triangles, with no intersecting diagonals, in ; ways; the latter
polygon in #n41-i41 = fni2-i ways. This results in a total of ;- {,45.; triangular
partitions with no overlapping diagonals. As ¢ varies from 2 to n we have {,4, =
taty + tatn-1 + . F taala +inty = o tifnga .

(b) From Example 10.36, t, = by, n = 2. With b, = (2n)l/[{(n + 1)!n!] we have
tp = (2n — 4} /l(n - Dl(n-2)I}, n > 2. ‘

(2)

a{b{cd}) a{{bc)d) {a(bc))d
(b} (iii) (((ab)c)d)e (iv) (ab)(c(de))
. 41 (2n 42} 1 v (2n+2) .
(@) B = (‘TH*?} <%~§»1} N (n+2 é{n%i)i(n%—iﬁg N
(2n+2)(2n +1)(2n)  2@2n+1)  (2n)t 2n+1)7 1 [2n
(n+n+120P T (m+2) (a+1)RDE (n+2) gn +1 ( 7 }}
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10.

11.

222+ 1)
T o {n+2) Y

In Fig. 10.23 note how vertex 1 is always paired with an even numbered vertex. This must
be the case for each n > 0, otherwise we end up with intersecting chords.

Foreach n > 1,let 1 <k < n, sothat 2 < 2k < 2n. Drawing the chord connecting
vertex 1 with vertex 2k, we divide the circumference of the circle into two segments - one
containing the vertices 2,3,...,2k — 1, and the other containing the vertices 2k + 1,2k +
2,...,2n. These vertices can be connected by nonintersecting chords in ag-;a,-; ways,
SO

Ay, = Qgln-y + G1Gp.3 + d20y-3 + ... + Gy30; + Gp_1G0.

Since ag = 1,a; = 1,a; = 2, and a3 = 5, we find that @, = b,, the nth Catalan number.

Consider, for example, the second mountain range in Fig. 10.24. This path is made up
from the moves NS N N § S. Replaceeach ‘N’ by a ‘1’ and each ‘S’by a‘0’toget 10110
0 — a sequence of three 1’s and three 0’s, where the number of 0’s never exceeds the number
of 1’s as the sequence is read from left to right. We know that the number of such sequences
is 5(= b3). In general, for n € N, there are b, such sequences and, consequently, b, such
mountain ranges. [Note: the above argument could also be established by replacing ‘N’
by ‘push’ and ‘S’ by ‘pop’, setting up a one-to-one correspondence between the mountain
ranges and the permutations obtained with the stack.]

() =z Aflz) fale) flz) fulz) fslz)
11 3 2 2 1
2 2 3 2 33

3 3 3 3 3 3
(b} The functions in part (a) correspond with the following paths from (0,0) to (3,3}

Y k“Y Ve 4'}7
i s auny o
g Ve
Ve 8 .
/ d //
s s
Ve
4 v e w/ i
e L
K/f ® b4

{¢} The mountain ranges in Fig. 10.24 of the text.

(d) For n € Z*, the number of monotone increasing functions f : {1,2,3,...,n} —
{1,2,3,...,n} where f(s) > i for ali 1 <i < n, is b, = (1/(n + 1)){%), the n-th Catalan
number. This follows from Exercise 3 in Section 1.5. There is a one-to-one correspondence
between the paths described in that exercise and the functions being dealt with here,
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13.

(a) = gqi(z) giz) galz) ga(z) gs(2)

i 1 1 1 1 1
2 2 1 2 1 1
3 3 1 2 2 3
(b For 1 < ¢ £ B, f; [in part {a) of the previous exercise] corresponds with g, We

demonstrate the correspondence for 1 = 1,2, and 4.

(i=1) (i=2) (i =14)

Z f1($) gi(z) z fa(z)  gulz) T fa(x) 5}4(:’6)
1 1 1 1 3 1 1 2 1
2 2 2 2 3 i 2 3 1
3 3 3 3 3 1 3 3 2

Consider the column for any f;. In that column replace each entry k¥ by 3 — (k — 1): so
1’s and 3’s are interchanged while 2’s remain as 2’s. Then reverse the order of this new
column. The result is the column for ¢;. [In order to generalize this to the case where the
domain and codomain are {1,2,3,...,n}, n € Z*, we write down two columns — one for
1,2,8,...,n and another listing f;(1}, fi(2), i(8),..., fi(n). Each entry k [in the column
for f;] is replaced by n — (k — 1). Then the order of the column is reversed, giving us the
image under the corresponding function g;.

(¢) For n € Z*, the number of monotone increasing functions ¢ : {1,2,3,...,n} —
{1,2,3,...,n}, where g(i) < i for all 1 <i <n, is (1/(n + 1))(*") = by, the n-th Catalan
number.

For n € N, let a, count the number of these arrangements for a row of n contiguous
pennies. Here ag = 1, gy = 1, a3 = 2, and a3 = 5. For the general situation, let n € N
and consider a contiguous row of n + 1 pennies. These n + 1 pennies provide n possible
locations for placing a penny on the second level. There are two cases to consider:

{1} The first location (as the second level is scanned from left to right) that is empty is
at position ¢, where I < ¢ < n. So there are ¢ — 1 pennies {above the first i pennies in the
bottom contiguous row) in the positions to the left of position 1. These 2 — 1 contiguous
pennies provide a;.; possible arrangements. The n— [{({ — 1) + 1] = n — { positions (on the
second level) to the right of position ¢ are determined by a row of n—i-+1 contiguous pennies
at the botiom level and these n — ¢ 4 1 contiguous pennies provide ay..;4; arrangements.
As i goes from 1 to n we get a total of

Eﬁ;i By Byie} 5F Gy b B38p.1 b B38q.5 b 0 b 4,16 srrENgeDEnts,

{2} The only situation not covered in case 1 pccurs when there is no empty position on
the second level. So we have a row of 'n + 1 contiguous pennies on the botiom level and
n contiguous pennies on the second level — and above these 2n 4 1 pennies there are
@, {= a,aq) possible arrangements,

From cases {1} and (2) we have g,41 = gty + Gylpey + Co8pg + -+ 0y3 8y + Auag, ag = 1,
80 @y = by, = (1/(n+ l}}(i"% the nth Catalan numbers.
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14.

15,

(a) 83=26

(b) sa= (gl + (Jor + (oo

(€) ss=($bs+ (O)ba+ (b + ()bo = 22.

(d) Consider those paths from (0,0) to {n,n) where there are r diagonal moves, for
0 < r < n. How can one generate such a path? It must contain (n —r) R’s and (n —r)
U’s and these 2(n — r) letters provide 1 (location at the start) +2(n — r) — 1 [locations
between the (n—r) R’s and {n —r) U’s] +1 (location at the end) = 2(n — r) + 1 locations
in total, for inserting the r D’s. Further, these 2(n — r) + 1 locations are selected with
repetitions allowed. So there are (25”"")‘:”“1) by, = (2”’: r) b, paths with r D’s, n—r

R’s, and n — r U’s (with the path never crossing the line y = r). Sumining over r we have

7 L o
8y == ez} ( P bn«»rr

() 132,231 E;=2

(b) 13254 34152
14253 34251
14352 35142
15243 35241
15342
23154 45132
24153 45231
24351
25143
25341 E; =16

{c) For each rise/fall permutation, n cannot be in the first position (unless n = 1); n is the
second component of a rise in such a permutation. Consequently, n must be at position 2
or 4 .. or 2|n/f2|.

(d) Consider the location of n in & rise/fall permutation &12223.. . 2412, 0of 1,2,3,.. ., n.
The number n is in position 2¢ for some 1 < ¢ £ |{n/2]. Here there are 2¢ — 1 nunbers
that precede n. These can be selected in {;z;ﬁ) ways and give rise to Ey_; rise/fall
permutations. The (n — 1} — (28 — 1) = n — 2: pumbers that follow n give rise to E,_ 3

rise/fall permutations. Cousequently, E, = E:E’zﬁg} (Zt_i}ﬁggmjﬁgmgh > 2.

(e} Comparable to part (¢}, here we realize that for n > 2, 1is at the end of the permmtation
or is the first component of a rise in such a permutation. Therefore, 1 must be at position
lor3or.. or 2{n—1}/2] +1.

{f} As in part {d) look now for 1 in a rise/fall permutation of 1,2,3,...,n. We find 1
is position 2i + 1 for some § < ¢ < |{{n ~ 1)/2]. Here there are 2/ numbers that precede
1. These can be selected in (”;.3 ways and give rise to Ey; riseffall permutations. The

268



remaining (n — 1} — 2¢{ = n — 2i — 1 pumbers that follow 1 give rise\ to K. q.; rise/fall
permutations. Therefore, E,, = }:}i’g‘g}/ 4 (n;;)EggEn._zgmg, n > 1.
(g) From parts {d) and (f) we have:

(d) B, = (n;'l) EE, 3+ (n};l) EsE, s+ -+ (zgl;‘ﬁ,j_i)Ezg_n,fzjmﬁEn~2gnj2j

() Bu= (") EoBuer + ("3) BaBs + - + (3o ) Battom13/21 Bnaitn-1)/2j-1
Adding these equations we find that 2E, = ol (”;71) EE, ; or B, =
(1/2) i (n;})EiEnwéul-

Es = (1/2)Th, (})EiEs-i | .
= (1f 2){({5}) EoEs + G) EL\Es + (;’) EyE; + (:53) EsE; + (i) EEn + (i) E;Eo)
= (1/2)1-1-16+5-1-5+10-1-24+10-2-14+5-5-1+1-16-1]
(h) = (1/2)[16 + 25 + 20 + 20 + 25 ++ 16] = 61

E; = (1/2)T%0 () EiFe- _
= (1/2)[1-1-6146-1-16+15-1-5+20-2-2+15-5-1+6-16-1+1-61-1]
= 272 :

(i) Consider the Maclaurin series expansions

secz =1+ 2?21 + 5z*/4! + 6125/6! + --- and

tanz =z + 223 /31 4 162° /B + 27227 /TV 4 -+

One finds that secz + tan z is the exponential generating function of the sequence
1,1,1,2,5,16,61,272,... — namely, the sequence of Euler numbers.

Section 10.6

1. (a) f(n) =(5/3)(4n":? ~1) and f € O(n*%*Y for n € {3'|i € N}
(b) f(n)=T(ogsn+1) and fe€ Ologyn) for n € {5'i € N}

2. As in the proof of Theorem 10.1 we find that f{n) =& f(1)+ [l +a+ P a1 =
a*d 4 efl +a+a+... 4+ a1
{a) Fora=1, f(n)=d+ck=d+clogn,since n= b*.

(b) For a>1, f(n)=afd+cl{(d — 1)/{a-1)]

n == b¥ ==p k = logy n

of = a8” = n® = log, (%) = log, n” == (log, n){log, @) = z(log, n) == z = log, a.
Sofor a> 1, f(n) = dn®* 4 (¢/(a ~ 1))nle ~ 1],

3. {(a) fe Ollogan) on {¥*|k e N}
(b) fe& O(n*%%) on {¥'|k e N}

4, (a) d=0,0=2,b=5¢c=3
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8.

£(n) = 3fnions? ~ 1]

f € 0(,”11&552)

(by d=1,a=1,56=2 ¢=2
fn)y =1+ 2loggn

f € O(logs n)

(a) f(1)=0

fln)=2f(n/2)+1

From Exercise 2(b), f(n)=n—1.

(b} The equation f(n)} = f(n/2) + (n/2) arises as follows: There are (n/2) matches
played in the first round. Then there are (n/2) players remaining, so we need f(n/2)
additional matches to determine the winner.

(i) Corollary 10.1: From Theorem 10.1

(1) fn)=c(logyn+1) for n=1,bb%..., when a=1. Hence f € O(log,n) on
S = {bt|k € N}. |

(2) f(n) = [ef(a~ D}lan'® — 1] for n = 1,b,,..., when @ > 2. Therefore
f € 0(n*®°) on § = {¥|k € N}.
(i1} Theorem 10.2(b): Since f € O{g) on S, and ¢ € O{nlogn), it follows that
f € O(nlogn) on S. So by Definition 10.1 we know that there exist constants m € R*
and s € Z* such that f(n) = |f(n)] < minlogn| = mnlogn forall n € § where
n > 5. We need to find constants M € Rt and s; € Z+ so that f(n) < Mnlogn for
all n > s; — not just those n € S.

Choose t € Z* so that s < ¥ < ¢ < ¥**' (and logs > 1). Since f is monotone
increasing and positive,

f) < f(B¥FY) m bt log(bF+1)

m b*+Hlog bF + log b]

m b+ log b -+ m b log b
m b[p*(log b* + log b)]

m b6 log b*(1 + log b)]

m b(1 + log b)(b* log B*)

m B(1 + logb)tlogt

So with M = m b1+ logh), and sy = 0¥ + 1, we find that for all t € Z%,if ¢t > g then
f(t) < M(tlogt) (so f(¥) < M(tlogt}, and f € O(nlogn)).
o)

(@) Hore f(1)=0, f(2) =1, f(3) =3, f(4) = 4,50 f(1) < f(2) € F(3) < f(4). To
show that f is monotone increasing we shall use the Alternative Form of the Principle of
Mathematical Induction. We assume that for all 4,7 € {1,2,3,...,n}, j > ¢ == f(j} 2
f(i}. Now we consider the case for n -+ 1, where n > 4.

{Case 1: n+1 isodd) Here wewrite n+1 = 2k+1 and have f{n+1) = flk+1)+f (k)42 >

VAN I VA

A
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10.

J(EY 4+ f(k) + 2 = f(2k) = f(n), since k,k+ 1 < n, and by the induction hypothesis
flk+1) 2 f(k).
(Case 22 n+ 1 is even) Now we write n+ 1 = 2r, where r € Z* (and r > 3).

Then f(n+1)= f(2r)= fr)+ flr}+2f(r})+ f(r =1} +2 = f(2r — 1} = f(n), because
flr) > f(r — 1) by the induction hypothesis.

Therefore f is a monotone increasing function.

(b) From part (a), Example 10.48, and Theorem 10.2 (c) it follows that f € O(n) for
all neZt.

(a)
flrn) < af(nfb) + en
af(n/b) < a’f(n/V) + ac(n/b)
alf(n/b?) < &Bf(n/b*) + d*e(n/t?)
@ f(n/B®) < &*f(nfdt) + dPe(n/b?)

a1 f(nftFT) < A f(nftt) 4+ @Fle(n/6Y)
Hence f(n) < aff(n/bY + en[l + (a/b) + (a/b)* + ... + (a/b)7] = o*F(1) + en[l +
(a/) + (a/b)* + ...+ (a/b}k“’], since n = b*. Since f(1) <c and (n/b*) = 1, we have
F(n) < en[l+ (afb) + (a/b)? + ...+ (a/b)*~" + (a/b)"] = (en) Thg(a/b)'.
(b) When a =15, f(n) <(cn)Xk 1 = (en)(k + 1), where n =b* or k = log, n. Hence
f(n) < (en)(logyn + 1) so f € Of(nlog,n) = O(nlogn), for any b&se greater than 1.

{1 - (a/b)k“}

k
(¢) Fora#b, en Y (a/b) = en|——

pE=is)

o [ - B - )

Qb R
) e I
a— b

(d) From part (¢}, f(n) < (c/(a — Ha™*" ~ b++]
= {eaf(a — b))a* — (cb/{a ~ B))B*. But o = %" = nP8% and B = n,s0 fn) <
(caf(a — bYm*s" — (cbf{a - b))n.

(i) When a< b, then logya <1, and f€ O(n) on Z*,

(ii) When @ > b, then logya > 1, and f € O(n'®*) on Z*t,

(8) 6 =9, b =3, n'°Be? = ploes® = 2
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3.

4.

h(r) =n € O(n™%%<) for e = 1.
So by case (i) for the Master Theorem we have f € ©(n?).
(b)a=2,b=2 n®? =nlel=npl=p
B(n)=1¢€ O(n®=% —¢) for €= 1.
By case (i) for the Master Theorem it follows that f € 8(n).
(c)a=1,b=23/2 nl°s® = nloge2t = p® = 1,
h(n) =1 € O(n'8si21)
Here case (ii) for the Master Theorem applies and we find that f € 8(n"®%logyn) =
B(log, n).
(d) a =2, b == 3, nlcdsn o plogs? = 0631
B(n) = n € Qnl*8:2*<) where € = 0.369.
Further, for all sufficiently large n, a@ A(n/b) = 2h(n/3) = 2(n/3) = (2/3)n < (3/4)n =
c h{n), for 0 < ¢ = 3/4 < 1. Thus, case (iii} of the Master Theorem tells us that f € B(n).
(e) a =4, b= 2, nl°B® = nloBz4 = pn?
h(n) = n? € O(nls*)
From case (ii) of the Master Theorem we have f € @(n'*%*log, n) = &(n?log, n).

Supplementary Exercises

(" - 1) R 1>f(:!-- E-D ?:: 7 ig ks(:i i (Z?Z) (z)

(a) Consider the element n+1 in S = {1,2,3,...,n,n+ 1}. For each partition of §
we consider the size of the subset containing n + 1. If the size is 1, then n+ 1 is by
itself and there are B, partitions where this happens. If the size is 2, there are (;“) =n
ways this can occur, and B,.; ways to partition the other n — 1 integers. This results

in (?)Bn_l partitions of S, In general, if n 4+ 1 isin a subset of size ¢ +1, 0<i < n,

there are (:”) ways this can occur with (’1‘) B,,.; resulting partitions of S. By the rule
of sum Bﬁ+} s Z?:::G (’:) Bﬂ-—-i = E?:{} (7511') ani = Z?:i} (’:) Bi.
(b) For n20, B, =7 5,5n,1). [5(0,0)=1].

There are two cases to consider. Case 1: {1 is a sumunand) —~ Here there are p(n—1,k~1)
ways to partition n — 1 into exactly &~ 1 summands. Case 2: (1 is not a summand)
— Here each summand 8y,83,...,8; > 1. For 1 €e¢ <k, let 4 = 8 —1 2 L. Then
t5,%2,...,t provide a partition of n ~ &k into exactly k sumiands. These cases are
exhaustive and disjoint, so by the rule of sum p{n, &) = p(n — Lk ~ 1)+ pln - & ).

Here gy =1 and ay = 1.

For n> 3 write n = 2y + 23+ ...+ 2, where each =z, for 1 € ¢ <, is an odd
positive integer (and 1 <t < n,for n odd; 2 <t < n, for n even) H =1,
then n— 1= 2+ ...+ 2 and this summmation is counted in ay3. ¥ zy # 1, then
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8.

z: 23 and n—2={(z; ~2)+s;+...+ 2, a summation counted in a,_;. Consequently,
Gy, = Opy + Gny for all n >3, and e, = F,, the nth Fibonaceci number, for n > 1.

(a)

, 121 [ B B 3 3 2 Fy, F3
A" = = A7 = =

11| | R R 2 1 By By
R 3] |/ F]

Ti13 2| F R

F, F,
octure: At = | Mt
(b) Conjecture: Forn € Z%, A" = { F, F._, } ?

where F, denotes the nth Fibonacci number.

Proof: Forn =1, AxAlz[i é]z{gf ?},sothemsultistrnein
1 Lo

this first case. Assume the result truefor n =%k 2> 1, e,

F F E F 111
ko kel k , — no oakdl o ak o4 k41 &
A ”‘{Fk Fk—!}. For n=k+1, A"=4 A4 [Fk Fk—x}[l 0}

_ Frp1 + Fy Fiqa _ | Ferz Fien
Fp+ Fon Fi Fepr Fp )

Consequently, the result is true for all n € Z* by the Principle of Mathematical Induction.

{a’)Mm{z 1},@:3'2:{2 3},51%{5 8 }’M4z{13 21.}‘

12 35 8 13 21 34
) _ i1 F, F ;2_“‘23 _ Fy F
{h}M“{iz}”{Fg Fg} M”’"{a 5}”‘[& FJ
. [5 81 [FH & [ 2] |R R
M“‘{am‘“ﬁﬁﬂ M=l su|"|R R

Fln F Ind-l

Proof: We see that the claim is true for n = 1 (as well as, 2, 3, and 4}. Assume the result
true for &(> 1) and consider what happens when n = k + 1.

e [P AT oI ) Y U 1] B B
i1 o2 ”12712“’12 Fo Fopa
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_  Fopr + Far P+ Foria
| Fpiy + 2F0 Fae + 2F34

| P Fopia
| (Fopr + Fup) + Far (Faie + Fowa) + Faigs

_ [ Fain Fopya _ | P Fopga
| Farer + Far Fagge + Faen Faerz Fapys
- ] F?Iﬂ-] F2n } .
1 F?n FZn-&-i

It follows from the Principle of Mathematical Induction that M"™ = g
F n F 241

alln > 1.

F2ﬂ—-l an ? fOr

From z?—1 = 1+1 wefind that 2°~z = z+1, or 2°—~2z—1 = 0. Since (-1)*~2(-1)-1=
—142—1 =0, it follows that —1 is a root of 2® — 2z — 1. Consequently,  — (—1) =2z +1
is a factor and we have 2 — 2z — 1 = (z + 1)(2? ~—$——1) So the roots of 2° — 2z — 1 are

~1,(1 +/5)/2, and (1 — v5)/2.
Forz=-~1,y=(~-1~-1=0.
For z -(1+\/”)/2, y={1+VE)/2P—1=(1/8)6+2/5) -1=[3++5)/2-1=
(1+vB)/2.
Forz = (1-+8)/2, y=[(1-VB)/2P - 1= (1/4)(6 -2v5) -1 = [3 - V5)/2| -1 =
(1-V5)/2.
So the points of intersection are (—1,0), ((1+v5)/2, (1 +15)/2) = (a, &), and ((1-v5)/2,
(1 —V5)/2) = (8, 5).
(a) a®=(1+VB)?/4=(6+2V5)/4=(3+5)/2
a+1=(1+VB)/2+1=(3+V5)/2
B =(1- B /4= (6-2V5)/4=(3-5)/2
A4+1=(1~-VB)/2+1=(3-5)/2
(b) Theo () Fh = Tieo (§)(e* - 84)/(a - B)
= [1/(e ~ B[S0 (1) ¥ — Tieo () 8°)]
= [1/(a = AL+ a)* = (1 + 8)*] = [1/(a - B)](e*)" — (87)7]
= (a® — @) /{a - B} = Fa,
(¢) @ =ala?) =1+ VB)/2[(3+ vE)/2 = (8 +4vB)f4=2+ V8
142 =1+2[(1+5)}/2 =2+ 5
8% = B(A%) = [(1 - VB)/2[(3 - «f };’2} =(8—4vB)/4 =2~ VB
14+28=142[(1-v3)/2 =

(@) Tio (})2F = Theo {g}% - ) f{a ~ B)

274



10.

= [1/(a - B)[Tio (})2%e* — T, (7)2°44]
= [1/(a — AT () (20) ~ Ti, (3)(28)%]
= [1/{a— AL +20)" — (1 +28)"] = [1/(a ~ A)][a" — %] = (o — %) /(a — B) = Fa,.

(a) Since o = a + 1, it follows that o + 1 = 2+ o and (2 + a)? = 4 +4a + a® =
41+ a) + o® = ba’.
(b} Since 8% = f+1 we find that 8°+1 = §+2and (2+8) = 4+48+ 62 = 4(1 +B)+ 5 =

542,
Gn 2 26 on a2k+m o f/))‘ch-i-m
0 5 (%)am- -2 () ==

- fte-m) |3 () @ram - 3 (7)o

= (1/{a - )™ (1 + )" — B™(1 4 %)™
= (1/(a — BPla™(2 + )™ — B2 + §)*]

= (1/(a - B))lo™((2 + a)*)" — B™((2+ BY)"]
= (1/(a = )™ (5a")" — ™(56%)"]

= 5"(1/(a ~ )™ — B*™"] = 5" Fynpm.

(a) Let py = $4000, the price first set by Renu, and let p; = $3000, the first offer made
by Narmada. For n > 0, we have

Pryz = (1/2)(?n+1 + Pﬂ)'

This gives us the characteristic equation 2x? —z — 1 = 0; the characteristic roots are 1 and
~1/2. So
pﬂ, _— A(l}n ""5" B(_"}.I/Q}n’ b 2 6.

From pg = 4000, p; = 3000 it follows that 4 = 10,000/3, B = 2000/3.

Narmada’s fifth offer occurs for n = 8(= 2.5 1) and pg = $3332.03. Her 10th offer occurs
for n = 19 and pe = $3333.33. For & > 1, her kth offer occurs when n = 2k — 1 and
pn = (10,000/3) + (2000/3)(~1/2)*,

{b} As n increases the term (~1/2)* decreases to 0, so p(n) approaches $10,000/3 =
$3333.33.

(¢} Here p, = A(1}" 4 B(-1/2)", n > 0, with py = $4000. As n increases p, approaches
A = $3200. So 4000 = py = 3200 + B, and B = 800.

With p, = 3200 + 800(~1/2)" we find the solution p; = 3200 + 800(—1/2) = $2800.
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13.

Consider the case where n is even. (The argument for n odd is similar.} For the fence
Fn = {a1,a3,...,0a,}, there are ¢,_; order-preserving functions f : F, — {1,2} where
fla,) = 2. [Note that ({1,2}, <) is the same partial order as F;.] When such a function
satisfies f(a,) = 1, then we must have f(a,-1) = 1, and there are ¢,.; of these order-
preserving functions. Consequently, since these two cases have nothing in common and
cover all possibilities, we find that

Cp == Cp-i + Cywgy €1 = 27 €z = 3.

So ¢, = Fy4a, the (n + 2)nd Fibonacci number.

This combinatorial identity follows by observing that F,,; and 1., (””;:“‘)? for m =

|(r+1)/2], each count the number of subsets of {1,2,3,...,n} that contain no consecutive
integers.

(a) For n 2 1, let a, count the number of ways one can tile a 1 X n chessboard using the
1 x 1 white tiles and 1 x 2 blue tiles. Then a4 = 1 and a; = 2.

For n > 3, consider the nth square {at the right end) of the 1 x n chessboard. Two
situations are possible here:

(1) This square is covered by a 1 x 1 white tile, so the preceding n — 1 squares (of the 1xn
chessboard) can be covered in a,., ways;

{2) This square and the preceding ({n — 1)st) square are both covered by a 1 x 2 blue
tile, so the preceding n — 2 squares (of the 1 X n chessboard) can be covered in a,., ways.
These two situations cover all possibilities and are disjoint, so we have

Qp =gy +Ougy, 23, a =1, ag=2,

Consequently, a,, = F, 41, the (n + 1)st Fibonacei number.

(b} (i) There is only 1 = (g) = (n,t;{-}ﬂ) way to tile the 1 x n chessboard using all white
squares.

(ii) Consider the equation 2y + 23+ -+ 2,y =n—~1, wherez; = 1for 1 <i <n~1. We
ean select one of the z;, where 1 <1 <n~1 in ("’;") = (2:;) P (;:‘;‘1) ways. Increase
the value of this z; to 2 and we have

Iyt gt Tpay =0,

In terms of our tilings we have ¢ — 1 white tiles, then the one blue tile, and then n — i1~ 1
white tiles on the right of the blue tile —for a total of (s — 1} + 1+ {(n—i—1) = n—1 tiles.
{it) There are (“;‘3? = (”’”2} == (””2} tilings where we have exactly two blue tiles and
n — 4 white ones.

{iv} Likewise we have (&;3) = (::g) = (;f:;ia) tilings that use 3 blue tiles and n — 6 white
ones.

(v) For 0 < k < [n/2], there are ("’;k:‘p = (;ffk) tilings with & blue tiles and n — 2% white
ones.

s L]
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i4.

15.

16.

i7.

(¢} Frgy = %_i’;f ! (”;k) == ;Ei{f ] (ﬁ:’;ﬁg). [Compare this result with the formula presented

in the previous exercise.]

6221+V/1+\/1+x/1+v}+”-m}+c. Soc?~¢c—~1=0andec=aorc= . Since
¢ > 0 it follows that ¢ = & = {1+ v/3)/2.

(a) For each derangement, 1 is placed in position i, 2 < i < n. Two things then occur.

Case 1: (¢ is in position 1} — Here the other n — 2 integers are deranged in d,., ways.
With n —1 choices for ¢ this results in (n — 1)d,., such derangements.

Case 2: (¢ is not in position 1 {or position ¢)). Here we consider 1 as the new natural
position for ¢, so there are n — 1 elements to derange. With n —~ 1 choices for 1
we have (n — 1)d,-; derangements. Since the two cases are exhaustive and disjoint, the
result follows from the rule of sum. '

(b} dp=1 (¢) dy—ndp =dug—(n~2d,3
(d) dp—ndpy = {“l)i{dn—vi =~ {n ~i)dp 1)
let i=n~—2.

dn - ndn.,l p=d (“_1)”"‘2{(12 e 2{11} = (_ﬂl)n-—? = (__l)n

(e) dn~ndey =(-1)"
(d — s o™ ) = (~1)"(a” )
Toza(dn ~ nda )@ /nl) = T0(—2)*nl = e~ 142

rﬂ&! d%a:n/n! -z E:,o:z dn-—lxnul/(n - 1)§ me ¥ e 42
[f() = diz ~ do] — 2l f(z) — do] = e™* ~ 1 + <
f("z)wlwxf(x)"‘}“w::e"”»l—%x and f(;t‘)::e"“’/f(l.«x)

Drawing the (n + 1)st oval, n > 0, we get 2n new points of intersection which split
the perimeter of this oval into 2n segments. Each segment takes an existing region and
divides it into two regions. So

Byl ma@+2ﬂ, n>1, g =2

alhl = A, ¢ = n(Bn 4+ C)

(n+D)[Bn+1)+Cl=n(Br+C)+2n = Bn’+2n+ 1)+ Cn+C = Bn? 4+ Cn+2n =
B4+ C=C4+2 B+C=0=3B=1,C=~1,50 g, =A+n? —n. 2=aqa, = 4 ==
a, =n* —n+ 2= 2[n(n~1}/2] + 2.

(8) ay=(*)

(b) (r+sx) = (14 (s/r)e) = I{{) + (Js/r)a + (Yls/r)Pa +..] = g0 + aqz +
gz 4 ... = 1422 +62% 4 ...

piomlomd =l

(Ho=2=ts, ({J* =6=o[t(t —1)/2] = s(t ~ 1) =2~ 35,50 5= —4, ¢t = —1/2, and
(1 —42)"'? generates {7"::* 20
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18.

18,

24,

(¢) Let a coin be tossed 2n times with the sequence of H's and T’s counted in a,. For
1 € ¢ €< n, there is a smallest ¢ where the number of H’s equals the number of T’s for the
first time after 27 tosses. This sequence of 2¢ tosses is counted in b;; the given sequence
of 2n tosses is counted in a,.;b;. Since by = 0, as ¢ varies from 0 to n,

= Yo g Gibpi.
(d) Let g(z) = L2, b.2", f(2) = Tolgana™ = (1 —4z)'/2,
2y G = ml{a@bn + Gibpy + ...+ anbo)a® == f(z) —ao = f(z)g(z) or g¢(z)
=1-[1/f(z)] =1~ (1 - 42)"/2
(1 —42)? = (1) + () (~42) + () (42 +.. ]

The coefficient of 2" in (1 —4z)Y? is (2?)(-4)” =

(1/2)((1/2) - 1)((1/2) —2)---((1/2) —n + 1)(,__4? _ EDEKS) - (2n - 3)(2n) _
n!

n!

(CDAE) - @r =A@ @roDEn) | (1 @ o (z::)

nin! T (2n—-1) nia!l

Consequently, the coefficient of z" in ¢g(z) is b, = [1/(2n ~ 1)] (i:‘), n>1, b =0.

Iﬁ'm'lriﬁ!zx%j<113022?:05&:3‘-‘17521_{;:#5):Lilxé:1+2v’§ Ifmzi-z-{
=ieds o _(i=vBy o g
2 - (2)‘ .

2

Since o + B = (1125@:) + (L"%’:g) = 1, it follows that « - 1 = —f3.

Tio B = TR.CFY = iy = 2 = o B = 20 = 28 = ()(3+VB),
and o = (1487 = (S248) = (1)(3 + VB).

Forz,y,2 € R,

f(f(z,y9), z) = flatbay+cla+y), z) = a+b(a+bay+o(e+y))z]+c[(at+bry +e(z-+y))+2)]
= @+ ac+ ctx + bexy + Payz + bexz + Py + beyz + abz 4+ cz, and

fz, fly,2)) = flz,a+ byz + ez + y))
= a+ bla{a + byz + ey + 2)) +clo + (a + byz + ey + 2))]
= g+ ac + abz + cx + %y + fz + Payz + bexy + bexz + beyz.

§ associative = f(f{z,y),2) = fla, fy,2)) = Pz + (ab + )z = abz 4 cz + %z, With
ab = 1 it follows that

F ) 5
rxdztez=zrlzter, or (F—c—1z=(—~c~1)z
Since z, z are arbitrary, we have ¢* — ¢ — 1 = 0. Consequently, ¢ = @ or ¢ = §.

(@a-B=(E)1+VE)~ )1~ V5)=5
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21.

22.

23.

a?—a~? = (1%’5}2 .2 )2 o 62 4 3R 3 3= 34/E  8-3E
= 2 1+v5/ 4 8+3v8 2 345 3nd5 3 FE
3B+ vE—3+V5) = V5.

B0 = (2l - (50 = iy - e =y B - = S o
3B +VE-3+VE) =5

(b) Using the Binet form we have

FQ e (anﬂ_.gnm)? _ (anwlugnwl)z
. a2ﬂ+2+ﬁ2ﬂ-§~2 wg(aﬁ}n-&z ~a2n-2__‘g2n-—2+2(a5§w-—1

- as"‘{ag-—a"g}nﬁz"{ﬁ"(;t—ﬁﬁz}; Y

= oo (since aff = -1}

= (o — 32} /(a — f) [from the results in part (a)] = F3,.

(¢} Here the base angles are 60° and the altitude is (1/ 2)(v/3)F,. Consequently, the area
of T is (1/2)(V3/2)Fu[Fus + Frpa] = (V3/OF,[Faci + Fryal.

Returning to part {b) we find that Fy, = F?2, — F2 ; = (Fo — Fays{(Fagr + Fuy) =
FoFp1 + F F, . Consequently, the area of T = (\/ﬁ/ ) Fy,.

Since AN B = @, Pr(8) = Pr(AU B) = Pr(A) + Pr(B). Consequently, we have 1 =
p+psop?4+p—1=0and p=(-1++5)/2. Since (-1 —v5)/2 < 0 it follows that
p=(-1+v5)/2=-4.
The probability that Sandra winsis p+(1—p)(1 —p)?p+(1-p)(1~p)* (1 —p)(1—p)ip+-- - =
i+ =-pP+(1-pf+ (1 —pf+-]=p{l/1-(1-p)]
For the game to be fair we must have 1/2 = p[1/[1 — (1 — p)?]], so
p = (1/2)[1-(1-p)]
2p = [1-(1-p)]=1~(1-3p+3p"-p’)
2p = 3p~—3p*+p°, and
0 = p’~3p'+p=p(p’~3p+1)

Since p > 0, it follows that p? — 3p+ 1= 0, or p = (3 v/5)/2. Since p < 1, we find that

p=(3-V5)/2=[(1- VB2l = g

Here a; = 1 (for the string 0} and a3 = 2 (for the strings 00, 11). For n > 3, consider the
nth bit of a binary string {of length n) where there is no run of 1’s of odd length.

{i) If this hit is § then the preceding n ~ 1 bits can arise in a,,..; ways; and

(it} If this bit is 1, then the (n — 1)st bit must also be 1 and the preceding n — 2 bits can
arise in dn.p ways.

Since the situations in (i} and (i} have nothing in common and cover all cases we have

Gy =5 Oy b Gpegy 72 3,0, = 1,03 = 2.
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24.

25&

Here ¢, = F,.1,n 2 1, and so we have another instance where the Fibonacci numbers
arise.

Here 2 = @, o1 = b, 73 = 212¢ = ba, Ta = x32; = ba, x4 = 2324 = b°a? and x5 =
2423 = b°a®. These results suggest that zp = a and, for n > 1, z, = ¥"af1, where F,
denotes the nth Fibonaceci number (for n > 1). To establish this in general we proceed by
mathematical induction. The result is truefor n = 0, as well as for n = 1,2,3,4, 5.

Assume the result true for n = 0,1,2,...,k — 1,%, where k is a fixed {(but arbitrary)
positive integer. Hence z4.; = bF*1a™2 and z; = a1 s0 24y = Zpapey =
(b gFre-1 ) (BFb-1 T2} = pFatFios gFlitFies o pFht1gFk | by the recursuve definition of the
Fibonacci numbers. Consequently, by the alternative form of the Principle of Mathematical
Induction the result is true for (n = 0 andj all n > 1.

(Second Solution). For n > 0 let y,, = logz,. Then yo = loga, y1 = logh, and y, =
Ynt1 + Ynoas 7 = 2. S0 Yy, = c10™ + 38", where a = (1 + /5)/2 and B = (1 — v/5)/2.
loga = ¢; + ¢, logh = cia + 308 =

¢ = (—1/v/5)logh + [(1 + v5)/2V/5] loga,

o1 = (1/v5B)logb + [(—1 + v/5)/2v/5}log q,

where the base for the log function is 10 (although any positive real number, other than
1, may be used here for the base).

Consequently,

il

c a® + e i
[(1/v5) logh + [(~1 + v5)/2v/5] log a]a™
+{(-1/v5)logb + [(1 + v5)/2V/5]log a]8", so

z, = jgarettest
= 10pH(-1+V5/2v5]loga+{(1/v/5}logbla™
10l(1+V8)/2VB]log a+{~1/V/) log bl ™
= gl{=1+VB)/2/Blam +{(1+VE)/ 2Bl plom ~Em) /B
= lo™ = VE e -BR) VB
e ‘E«Fn»l &Fn 5
since F, = (o™ — *)}/{a — B) = (a" — A)/VE.

(a) (n=0) FF-FRFAH-F=12-0-1-0=1
(n=1) FE-FF~F=1"~1-1-1"= -1
(n=2) Ff ~Fpfy~Fl=2-1-2~17=1
(n=3) FI -FF ~Fl=3-2.3~2= -1

{b) Conjecture: For n > 0,

B2, = FyFoyy — F? = {

Un

il

1, neven
—~1, nodd

{¢} Proof: The result is true for n = 0,1, 2,3, by the calculations in part (a). Assume
the result true for n = ¥{> 3). There are two cases to consider ~ namely, k& even and
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26.

27.

28.

29.

kE odd. We shall establish the result for & even, the proof for k odd being similar. Our
induction hypothesis tells us that F? | — F,Fy, — F} = 1. When n =k + 1(2 4) we find
that Fg,s— Frr1Frye — FRy = (P + Fi) — Fopy(Frn + Fy) — Fly = FRy + 2Fa Fre +
FR = Flyy — BBy — Flyy = Fep Py + F — Fl = —[F}; — FiFppy — Ff] = —1. The
result follows for all n € N, by the Principle of Mathematical Induction.

The answer is the number of subsets of {1,2,3,...,n} which contain no consecutive entries.
We learned in Section 10.2 that this is F,. 4, the {n + 2)nd Fibonacci number.

{a) r(Cyz)=1+2 r{Cy,z) = 1+ 4z + 32*
r{(Cy,2) =1+ 2z r{Cs,z) = 1 + Bz + 62* + 2*
r(Cs,z) =1+ 3z + z* r{Cs,z) = 1 + 6z + 102* + 42°

In general, for n 2 3, r(C,, 2) = r{Choy, 2) + 2r(Chg, z).

(b) r{Ci1)=2 r{Cs3,1)=5 r{Cs,1) =13

?”(Cg, 1) = 3 T(C4, 1) =8 T(Ce, }.) =21

[Note: For 1 < i < n, if one "straightens out” the chessboard C; in Fig. 10.28, the result
is & 1 x ¢ chessboard - like those studied in the previous exercise.)

For 0 < n < 18, let p, be the probability that Jill bankrupts Cathy when Jill has
n quarters. Then pg = 0 and pygs = 1 and the answer to this problem is pye. For
0 < n < 18, if Jill has n quarters, then after playing another game of checkers,

Pn = (1/2)pa-i +(1/2)prin

Jill has lost Jill wins
the game the game

Pril — 2Py + Py = 0 has characteristicroots r=1,1,50 p, =A+Bn.pp=0=> A=
0, 1=pa=>B=1/18, so p, = n/18. Hence Jill has probability 10/18 = 5/9 of
bankrupting Cathy.

(a) The partitions counted in f(n,m) fall into two categories:

(1) Partitions where m is a summand. These are counted in  f(n — m,m), for m
may occur more than once.

{2) Partitions where m is not a summand — so that m — 1 is the largest possible
summand. These partitions are counted in f(n,m — 1}.

e % e

Since these two categories are exhaustive and mutually disjoint it follows that f(n,m} =
f(n—m,m)+ f(n,m—1).

(b)

Program Summands(input,output};
Var

m ioteger;



Function f(n,m: integer): integer;
Begin
If n=0 then
fi== 1
Else if (n < 0) or (m < 1) then
f:=0
Else f := f(u,m-1) + f{n-m,m)
End; {of function f}

Begin
Writeln (‘What is the value of n?’);
Readln (n});
Writeln (‘“What is the value of m7’);
Readln (m);
Write (“There are ’, f(n,m):0, ¢ partitions of ’);
Write (n:0, ¢ where ’, m:0, ¢ is the largest ’);
Writeln (‘summand possible.’)

End.

(c)
Program Partitions(input,output);
Var

n: integer;

Function f(n,m: integer): integer;

Begin
i n=0 then
fi=1
Else if (n < 0} or (m < 1) then
= 0

Else f := f(nm-1} 4+ f{n-m,m)
End; {of function f}

Begin
Writeln (‘What is the value of n?’);
Readln {n};
Write (‘For n =", n:0, * the number of )
Write (‘partitions p{°, n:0, ‘Jis *, f{n,n)0, V) -
End.

let Bl=n=1 and [Al=wm. Then f: A— B where fla) =056 forall a € A and
{&} = B, is the only onto function from A to B. Hence a(m,1}=1.
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For m > n > 1, n™ = the total nunber of functions f: A —- B. If 1 <i<n~1,
there are {:") a{m,1) onto functions ¢ with domain A and range a subset of B of size ¢.
Furthermore, any function A : A4 -+ B that is not onto is found among these functions ¢.
Consequently, a(m,n)=n™ — 30} (?) a{m, i).

31. The following program will print out the units digit of the first 130 Fibonacci numbers:
Fy — Fize.

Program Units{input, output});
Var
FibUnit: array[0..129] of integer;
1,j: integer;

Begin
FibUnit[0] := 0;
FibUnit[l] := 1;
Fori:= 2 to 128 do
FibUnit[i] := (FibUniti-1] + FibUnit[i-2}) Mod 10;
For i :=0 to 12 do
Forj:= 0109 do
Ifj < 9 then
Write (FibUnit[10 * i 4 j]: 4)
Else {j = 9}
Writeln (FibUnit[10 * i + 9]: 4)
End.
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