PART 3

GRAPH THEORY

AND

APPLICATIONS
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CHAPTER 11
AN INTRODUCTION TO GRAPH THEORY

Section 11.1

(a) To represent the air routes traveled among a certain set of cities by a particular airline.
(b) To represent an electrical network. Here the vertices can represent switches, transis-
tors, ete., and an edge (z,y) indicates the existence of a wire connecting z to y.

(¢} Let the vertices represent a set of job applicants and a set of open positions in a
corporation. Draw an edge (A,b) to denote that applicant A is qualified for position b.
Then all open positions can be filled if the resulting graph provides a matching between
the applicants and open positions.

(a) {be},{e,f},{f 0}, {9, ¢}, {e, 8}, {b,c}, {c,d}
(b) {b’e}ﬁ{e,f}'}{f’g}’{g7e}’{c’d}

(¢) {b,e},{e,d}

(d) {bae}a{‘g, f}a{feg}a{gse}’{ea b}

(e) {be}.{e,f},{f g}.{9.¢}.{e,d}.{d,c},{c, b}
(f) {baa}a {a, e}, {e, b}

6

We claim that x{G) = 2. To verify this consider the following:

(1) Let C; be the set of all vertices v € V where the binary label of v has an even number
of 1s. This includes the vertex z whose binary label is the n-tuple of all Us. For any
ve € C4, where vg # 2, we can find a path from vg to z as follows. Suppose that the binary
label for vy has 2m 1s, where 2 < 2m < n. Change the first two 1s in the binary label for
vy to 08 and call the resulting vertex vy. Then v; € C; and {vg,v;} € E. Now change the
first two 1s in the binary label for v; to Os and call the resulting vertex v, Once again
vg € Cy and {vg,v1} € E. Continuing this process we reach the vertex v,, = z and find
that {v,_1,vm} € E, with v,y € C;. Hence each of the vertices in €y — {2} is connecied
to 2.

{(2) Now let Cy be the set of all vertices w € V where the binary label for w has an odd
pumber of 1s. Let 2* € (y where the binary label for 2* consists of 2 1 followed by n — 1
Os. For each wg € Oy, we # 2°, one of two possibilities can oceur:

(i) There are 2m+ 1 1s in the binary label for wg, with 3 < 2m+41 < n, and the first entry
in the label for wy is 1. Here we change the next two 1s in the binary label for wy to Os
and obtain the veriex wy; € €y with {wg, w;} € E. Now the first entry in the binary label
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8.

9.

for wy is & 1 and upon changing the second and third 1s in this label to 0s we obtain the
vertex wq € Cy with {w;,wy} € E. Continuing this process we reach the vertex w,, = z*
with wp-; € Cy and {wm_1, wn} € E. Consequently each vertex in C; —{2*} whose binary
label starts with 1 is connected to z*.

{(ii) There are 2m+1 1sin the binary label for wg, with 3 < 2m+1 < n, and the first entry
in the label for wg is 0. Change the first entry in the binary label for wg to 1 and the first
1 in the binary label for wg to 0. This results in the vertex w; € C; with {we, un} € E.
Upon changing the second and third 1s in the binary label for w; to 0s we obtain the
vertex w, € Cy with {w;, wy} € E. Continuing this process we reach the vertex w,,,; = 2*
with {wm, Wme1} € E. This shows that each vertex in Cy whose binary label starts with 0
is also connected to z*.

(3) We claim that the components of G are the graphs determined by C; and C;. Can
there exist an edge {z,y} € FE where z € C, y € C37 Here the binary label for x has an
even number of 1s while the label for y has an odd number of 1s. This contradicts the
definition of E — for if {a,b} € E then the total number of 1s in the binary labels for a, b
is even.

Each path from a to » must include the edge {b,g}. There are three paths (in G) from a
to b and three paths (in G) from ¢ to h. Consequently, there are nine paths from a to &
in G.

There is only one path of length 3, two of length 4, three of length 5, two of length 6, and
one of length 7.

o

1
ir 4
()

(b {(9,d),(d,e),(e,a)};
1-33 {{g: b)a (bs C)s {ca d}a (d, 8)? (ev a)}
: {e} Two: One of {{(s,¢),{c,d}} and one
of {(b,1),(f,9).(g,d)}.

{d}) No
e 1-44 4 {e} Yes: Travel the path
e {{ﬁx ’l{}? {da “3); (5: @}, {‘% b}; {é} f}a (fa 9’}}

{f} Yes: Travel the path {{g, ﬁ)v {é‘& s (fa oh {gw d}, {d, b)} (b, )y (e, ”i}a {d, ﬁ}e (e, “‘)s {a, b)}

The smallest number of guards needed is 3 - e.g., at vertices g, g, 1.

¥ {a,b} is not part of a cycle, then its removal disconnects o and b {(and G). If not,
there is a path P from @ to b and P, together with {a, b}, provides a cycle containing
{a, b}.

Conversely, if the removal of {a,b} from G disconnects  then there exist z,y € V
such that the only path P from z to y contains e = {g,b}. If ¢ were part of a cycle
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10.

12.

13.

14.

15.

i86.

C, then the edges in (P — {e})U(C — {e}) would provide a second path connecting z fo
¥. '

Any path. 11. (a) Yes (b) No (¢} n—1

(a) In a loop-free undirected graph (that is not a multigraph) the maximum number of
edges is (‘2’) Hence e < ('2’) = oo~ 1}/2, s0 2e < v —v,

(b} In a loop-free directed graph (that is not a multigraph}, e < v? — .

This relation is reflexive, symmetric and transitive, so it is an equivalence relation. The
partition of V induced by R yields the (connected) components of G.

(a) There are three cycles of length 4 in W, five cycles of length 4 in W, and five such
cycles in Ws.

(b} Denote the consecutive cycle (rim) vertices of W,, by vy, v,..., v, and the additional
(central) vertex by vnq1.

(i) For n 5 4, there are n cycles of length 4:
(1) v~ vg = V3 ~ Unyy — g5
(2) Uy — U3 —3 Ug = Upyy —F Vg

o
(n— 1) Upey = Up — ¥y~ Uy — Ugoy; and
(n) v, — Vg = Vg — Vpyy — Uy,

When n = 4 the vertices vy, v;, v3,v4 provide a cycle. The other four cycles of length 4
consist of vertex vs and three of the four vertices vy, v, v3, v4.

(i1} There are n + 1 cycles of length n in W,:

(1) 11 = 03 = B = ... = Doy = By = 01}

(2) vy = Vpps P V3 Vg P Uy~ Uy, S Uy

(3} v = Upgr = Vg~ U5 =3 L. Upog D Uy — U Ug;

el
(n) Vyoy — Upaq =~ Vg — Vg = ...~ Uyg — Upog = Upy; Biad
{n'f‘@‘”n”“’@n«s-l ot P b Py ot b Upn b Uy v Uy

For n 2 1, let a,, count the nursber of closed v — v walks of length n (where, in this case,
we allow such & walk to contain or consist of one or more loops). Here a; = 1 and ay = 2.
For n > 3 there are a,.; v — v walks where the last edge is the loop {v,v} and ¢, v — v
walks where the last two edges are both {v,w}. Since these two cases are exhaustive and
heave nothing in common we have ¢, = g3 + g3, 7 2 3, a4y = 1, a3 = 2.

We find that a, = F,.;4, the {n -+ 1)st Fibonacci number.

a) There are two other unit-interval graphs for three unit intervals.
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2.

0 1
Bty
0 1
G ey gy
0 10 10 1 0 1
& » # .
i & & .4
010101 001011
b} For four unit intervals there are 14 unit-inteval graphs.
¢) For n > 1, there are b, = ;—;h—(?) unit-interval graphs for n unit intervals. Here &, is

the nth Catalan number. The binary representations set up a one-to-one correspondence
with the situations in Example 1.40 - in particular, change 0 to 1 and 1 to 0 in part (b) of
Example 1.40 to obtain the binary representations of the 14 unit-interval graphs on four
unit intervals.

Section 11.2

(a) Three: (1) {b,a},{a,c},{c,d},{d,a}

(2) {f& ¢}, {c,a},{a,d}, {d,c}

(3) {i,d},{d,c},{c,a}, {a,d}
{b) G: is the subgraph induced by U = {a,b,d, f,g,h,1,7}
G1 = GW {C}
{(¢) Gy is the subgraph induced by W = {b,¢,d, f,9,%,7}
wﬁ? i G e {“@ %}

(@ b,

{a} Gy is netan induced subgraph of & if there exists an edge {a,b} in E such that
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7.

8.

g‘

a,beV,but {a b} ¢ E,.

(b) Let ¢={a,d}. Then G- e is a subgraph of G but it is not an induced subgraph.

{(2) There are 2° = 512 spanning subgraphs.
(b) Four of the spanning subgraphs in part (a) are connected.
(c) 2°

There is only one ~ the graph G itself.
G is (or is isomorphic to) the complete graph K, where n = [V].

There are 11 loop-free nonisomorphic undirected graphs with four vertices.

©“, . ® (3) RECHS
E 3 E w &
(6) (9) (10)
@
(11) Six of these graphs are connected.
(a} {b) No solution.
5 v 8
si1jvr|j2la v{3slaw W
w 8 Y R
(e}
w 8 ¥ R
#it Www 2B Y 2R 8|4 v
¥ 2] & W

{a} There are (1/2}THEH5)(4)3) = 1260 paths of length 4 in K.
{(b) The number of paths of length m in K, for 0 < m < n, is
(1/2)}(nXn ~ 1)n — 2} (n ~m).

(a) Each graph has four vertices that are incident with three edges. In the second graph
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10.

ii.

12.

these vertices (w,x,y,2) form a cycle. This is not so for the corresponding vertices (a,b,g,h)
in the first graph. Hence the graphs are not isomorphic.

(b} In the first graph the verlex d is incident with four edges. No vertex in the second
graph has this property, so the graphs are not isomorphic.

If @G has v vertices and e edges, then by the definition of G, there are (;’) — ¢ edges

in G since there are (g) edges in K.

(3) ¥ Gy = (W, E) and G, = (V3,F;) are isomorphic, then there is a function
f: Vi — ¥, that is one-to-one and onto and preserves adjacencies. If z,y € V; and
{z,y} & Ey, then {f(2), f(y)} & E;. Hence the same function f preserves adjacencies
for G;,(, and can be used to define an isomorphism for G;,G;. The converse follows in
a similar way. ‘

(b} They are not isomorphic. The complement of the graph containing vertex e is a
cycle of length 8 The complement of the other graph is the disjoint union of two cycles
of length 4.

(a) Let e; be the number of edges in G and e, the number in . For any (loop-
free) undirected graph G, ey + & = (’;’), the number of edges in K,. Since G is

self-complementary, e; = 3, 50 €; = {1/2)(;‘) = n{n — 1}/4.
(b) Four vertices: |

G: : ’ 3 d@
c d | c d
or a
bﬁ: d * %

(¢} From part {8}, 4in{n ~1). Oseof »n and n -1 is even and the other factor odd,
¥ n is even, then 4jn and n =4k, for some k€ Z*. If n—1 is even, then 4}(n —~1)
and n—1=4k or n=4k+1, for some k ¢ ZT.

Five vertives:
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14‘9

15.

16'

17.

If G is the cycle with edges {a, b}, {4, ¢}, {c,d}, {d, ¢}
and {e,a}, then G is the cycle with edges {a,c},
{c,e}, {e,b}, {b,d}, {d,a} . Hence, G and G are
isomorphic. Conversely, if G is a cycle on n vertices
and G,G are isomorphic, then n = (1/2)(’;), or n =
(1/4)}(n)n — 1), and n = 5.

(a) All of the examples in Exercise 12 above satisfy these conditions.

(b) Since G is not connected, there exist vertices z,y and no path in G connecting
these vertices. Hence {z,y} is an edge in G. For each vertex a in G, a # z,y, either
{a,2} or {a,y} isin G. ¥ not, both {a,z},{a,y} arein G and {z,a},{e,y} provide
a path in G connecting z and y. Let bce V. If {bz},{c,z} arebothin G,
there is a path connecting b, e: namely, {b,z},{z,c}. The same is true if {b,y},{c,y}
both oceur in G. If neither of these situations occurs we have {b,z}, {c,y} in G (or
{b,4},{c,z}) and then the edges {b,2},{x,y},{y,c} provide a path connecting & and
e.

(a) Here f must also maintain directions. So if (a,b) € Ey, then (f(a), f(})) € E,.

(b) They are not isomorphic. Consider vertex « in the first graph. It is incident to
one vertex and incident from two other vertices. No vertex in the other graph has this

property.
@ Qe =e% o Heb)
() i (26 @) Th, (e

There are two cases to consider:

Case 1: B W @ -
v w x W
Case 2
- L =
v Y z W

Here there are n — 2 choices for y — namely, any vertex other than v,w - and there are
n - 2 cholces for 2 — namely, any vertex other than w or the vertex selected for 2.

Consequently, there ave (n — 1) + {n — 2)? = n® — 3n + 3 walks of length 3 from v to w.

Section 11.3

(a) [Vi=6

(b) |[Vi=1lor2o0r3orBoréorllorldor30 [In the first four cases G must be a
multigraph; when [V = 30, G is disconnected.]
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5.

() [Vi=6
2|E} = 2(17) = 34 = T ¢y deg(v) 2 3]V, so the maximum value of V| is 11,

Since 38 = 2|E| = 3 deg(v) > 4]V], the largest possible value for [V] is 9. We can have
vEV
(i) seven vertices of degree 4 and two of degree 5; or (ii) eight vertices of degree 4 and one

of degree 6. The graph in part (a) of the figure is an example for case (i); an example for
case (it} is provided in part (b) of the figure,

(a} (b)

a) We must note here that G need not be connected. Up to isomorphism G is either a
cycle on six vertices or (a disjoint union of) two cycles, each on three vertices.

b} Here @ is either a cycle on seven vertices or (a disjoint union of) two cycles — one on
three vertices and the other on four.

¢) For such a graph Gy, G, is one of the graphs in part (a). Hence there are two such
graphs Gy.

d) Here G, is one of the graphs in part (b). There are two such graphs G; (up to
isomorphism).

e) Let Gy = (Vi, Ey) be a loop-free undirected (n — 3)-regular graph with [V] =n. Up to
isomorphism the number of such graphs G is the number of partitions of n into summands
that exceed 2.

() Vil =8 =|Wal; |By] = 14 = | Ey].

(b} For V; we find that deg(a) = 3, deg(h) = 4, deg(c) = 4, deg(d) = 3, deg(e) = 3,
deg{f) = 4, deglg) = 4, and deg(h) = 3. For V; we hiwe deg{s} = 3, deg(t) = 4,
deg{u} = 4, deg(v} = 3, deg(w) = 4, deg(z) = 3, degly) = 3, and deg{z) = 4. Hence each
of the two graphs has i'aux vertices of degree 3 and four of deg;rew 4.

{c) Despite the results in parts {a) and (b) the graphs Gy and ; are not isomorphic.

In the graph G; the four vertices of degree 4 ~— namely, t,u,w, and 2z — are on a cycle of
length 4. For the graph (7; the vertices b,¢, f, and g — each of degree 4 — do not lie on
a cycle of length 4.
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A second way to observe that &) and G, are not isomorphic is to consider once again the
vertices of degree 4 in each graph. In G these veriices induce a disconnected subgraph
consisting of the two edges {b,c} and {f,¢}. The four vertices of degree 4 in graph G,
induce a connected subgraph that has five edges — every possible edge except {u, z}.

150

4

b

(i) (§11)

8.

10.

11.

iz.

o fdiy L , . ; .
a) 19 b) 3 ( 2) [Note: No assumption about connectedness is made here.]

EE3 ]
a) There are 8 -27 = 1024 edges in Qs.
b} The maximum distance between pairs of vertices is 8. For example, the distance
between 00000000 and 11111111 is 8.
¢} A longest path in ()5 contains all of the vertices in QJs. Such a path has length
2% — 1 = 255.

a) n-2% = 524,288 = n = 16
b) n-2°"1 = 4,980,736 = n = 19, so there are 2'° = 524, 288 vertices in this hypercube.

The typical path of length 2 uses two edges of the form {a, b}, {b,¢}. We can select the
vertex b as any vertex of Q,, so there are 2" choices for b. The vertex b (labeled by a
binary n-tuple) is adjacent to n other vertices in @},, and we can choose two of these in (g)

ways. Consequently, there are (’;) 2" paths of length 2 in ¢,

The nuniber of edges in K, is (”;) = n{n—1}/2. i the edges of K,, can be partitioned into

such cycles of length 4, then 4 divides {2’} and {”;} = 41 for some { € Z*. For each vertex v
thet appears in a cycle, there are two edges (of K,)) incident to v. Consequently, each vertex
v of K, has even degree, so n is odd. Therefore, n—1 is even and as 4¢ = {’;} = ni{n - 1}/2,
it follows that 8¢ = n{n — 1). So 8 divides n{n - 1}, and since n is odd, it follows (from
the Fundamental Theorem of Arithmetic) that 8 divides n — 1. Henece n — 1 = Bk, or

i = 8k + 1, for some k € Z*.

a) Let v € V. Then vRu since v and itself have the same bit in position & and the same
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13.

14‘

15.

16.

bit in position £ — hence, R is reflexive. If v,w € V and vRw then v, w have the same
bit in position k and the same bit in position £. Hence w, v have the same bit in position
k and the same bit in position £. So wRv and R is symmetric. Finally, suppose that
v,w,z € V with vRw and wRz. Then v, w have the same bit in position k and the same
bit in position £, and w, ¢ have the same bit in position k and the same bit in position £.
Consequently, v,z have the same bit in position k and the same bit in position ¢, so vRa
— and R is transitive. In so much as R is reflexive, symmetric and transitive, it follows
that R is an equivalence relation.

There are four blocks for (the partition induced by) this equivalence relation. Each block
contains 2"? vertices; the vertices in each such block induce a subgraph isomorphic to

Qn»—2~

(b) For n > 1 let V denote the vertices in @,,. For 1 < ky < ky < ... < by £ n and
w,z € V define the relation R on V by wRaz if w, z have the same bit in position &y, the
same bit in position kj,..., and the same bit in position k;. Then R is an equivalence
relation for V and it partitions V into 2! blocks. Each block contains 2"~* vertices and the
vertices in each such block induce a subgraph of (), isomorphic to ¢J,,-;.

8|V] < Toev deg(v) < AV Since 2|E| = ¥ v deg(v), it follows that
S|V < 2lE| < AlV] s0 § < 2(e/n) < A,

(a) f~! is one-to-one and onto. Let z,y € V' and {z,y} € E'. Then f one-to-one
and onto = there exist unique a,b€ V with f(a) =g, f(b) =y. If {a,b} ¢ E, then

{f(a), f(B)} ¢ E".

(b) I deg(a) = n, then there exist z1,23,...,%, € V and {a,2;} € F,1 < { < n. Hence,
the edge {f{a), f(z:)} € E' forall 1 £: < n,so deg(f(a)) 2 n. X deg (f(a)) > n,
let y eV suchthat y # f(z;)forall 1 <: < n,and y = f(z). Since f~' is an
isomorphism by part (2), {a,2} € E and deg(a) > n. Hence deg f(a) =mn.

Proof: Start with a cycle vy — vy — vy — ...~ U1 — Vg —* vy. LThen draw the k edges
{01, Vier b {02, Y02}y oo o {¥a Viga by ooy {0s, vz ). The resulting graph has 2k vertices each
of degree 3.

Proof: (By the Alternative Form of the Principle of Mathematical Induction)

The result is true for n = 1 {for the complete graph K,) and for n = 2 (for the path on four
vertices}. So let us assume the result for all 1 < n < &, and consider the case for n = k41,
Let @' be a graph for n = &~ 1, and add to this graph two isolated vertices 2 and y. Now
introduce two other vertices ¢ and b and the edge {¢,b}. Draw an edge between a and =z,
and between a and k ~ 1 of the vertices (one of each of the degrees 1,2,...,k~ 1) in G
Now draw an edge between b and y, and between b and the other k ~— 1 vertices in G' (the
vertices not adjacent to vertex a). The resulting graph has 2(k + 1) vertices where exactly
two vertices have degree i forall 1 <e <k + 1.

Consequently, the result follows for all n € Z* by the Alternative Form of the Principle of
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19.

20.

21'

23.

Mathematical Induction.

(Corollary 11.1) Let V = VUV, where V; (V2) contains all vertices of odd (even)
degree. Then 2|E| — T ¢y, deg(v) = T,cy, deg{v) is an even integer. For [Vi| odd,
Yovev, deg(v) is odd.

(Corollary 11.2) For the converse let G = (V,E) have an Euler trail with a,b as the
starting and terminating vertices, respectively. Add the edge {a,8} to G to form the
graph G’ = (V, E'), where ' has an Euler circuit. Hence G’ is connected and each
vertex has even degree. Removing edge {a,b} the vertices in G will have the same even
degree except for a,b. degg(a) = deggi(e) — 1,deg,(b) = degq(b) — 1, so the vertices a,b
have odd degree in G. Also, since the edges in G form an Faler trail, G is connected.

Select vy,v3 € V. where {v;,v3} € E. Such an edge must exist since V # #§ and
deg{v) 2 k>1 forall veV. If k=1 theresult follows. If k¥ > 1, suppose that we have
selected vy, vg,...,v € V with {v, v}, {vg,va},...,{ve—ys,vi} € E. Since deg(vy) > k,
there exists vgp41 € V3 where vp #Fv; for 1 <i<k—1, and {vs,ve41} € E. Then
{vi, e}, {va,v3}, . ., {vk—1, 0k}, {Vi, Vig1} provides a path of length k.

(a) Let a,bc,z,y € V with deg(a) = deg(b) = deg(c) = 1, deg(z) = 5, and deg(y) = 7.
Since deg{y) =T, y is adjacent to all of the other (seven) vertices in V. Therefore vertex
z 1is not adjacent to any of the vertices a,b, and ¢. Since z cannot be adjacent to itself,
unless we have loops, it follows that deg(z) < 4, and we cannot draw a graph for the given
conditions.

(b)

(a) a—bwsecmg-rlmrjsgmber feorjmimiforgmish—od—re~—b-—

d-+a

bl d—=a—b-sd—-h—ot—ea>fastitajafabacargerk-rj—g—b-—
g g

€

n odd: n=2 22. 1; Any single bridge.

Yes. Model the situation with a graph where there is a vertex for each room and the
surrounding corridor. Draw an edge between two vertices if there is a door common fo
both rooms, or a room and the surrounding corridor. The resulting multigraph is connected
with every vertex of even degree.
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25.

26.

We find that Y _ id(v) = e = Y od(v).

weV w2V
(a) (i) Let the vertices of Kg be vy, v, v, v4, 5,05, where deg(v;} = 5forall 1 <i <86,
Consider the subgraph § of K obtained (from Kj) by deleting the edges {vs,vs} and
{v3,v6}. Then § is connected with deg(vy) = deg(vy) = 5, and deg(v;) = 4 for ¢ €
{2,3,5,6}. Hence § has an Euler trail that starts at v, (or v4) and terminates at v, (or
v¢}. This Euler trail in § is then a trail of maximum length in Kg, and its length is
(5~ /2)6-2=15-2=13.
Gy ()—(1/2)8-2]=28-3=25
i) () -(1/210-2=45-4=41
() (3) - (1/2en—2l=n@2n~1)~(n=-1)=2n"~2n+1.

(b} (i) Label the vertices of Kg as in section (i) of part (a) above. Now consider the
subgraph T of K obtained (from Kg) by deleting the edges {vy,v4}, {v3, vs}, and {vs,vs}.
Then T is connected with deg(v;) = 4 for all 1 < ¢ < n. Hence T has an Euler circuit
and this Euler circuit for 7 is then a circuit of maximum length in K. The length of the
cireuit is (3) ~ (1/2)(6) = 15 — 3 = 12,

G) (5)~(1/2)8)=28~4=24
Gii) () ~ (1/2)(10) = 45 ~ 5 = 40
(v) () —(1/2)(2n) =n(2n — 1) —n =2n% — 2n = 2n(n - 1).

(a) ¥ G = (V,E) has a directed Euler circuit, then for all z,y € V there is a directed
trail from z to y (that part of the directed Euler circuit from z to y ). Thisresultsina
directed path from z to y, as well as one from y to z . Hence G is connected (in fact,
G is strongly connected as defined in part (b) of this exercise). Let s be the starting
vertex (and terminal vertex) of the directed Euler circuit. For every v € V,v # s, each
time the circuit comes upon vertex v it must also leave the vertex, so od(v) = id(v). In
the case of s the last edge of the circuit is different from the first edge and od(s) = id(s}.

Conversely, if (& satisifies the stated conditons, we shall prove by induction on |E| that
G has a directed Buler circuit. For |E} = 1 the result is true (and the graph consists of a
{directed) loop on one vertex). We assume the result for all such graphs with |E| edges
where 1 < [E| < n. Now consider a directed graph & = (V,E)} where G satisfies the
given copdifions and {F| = n. Let ¢ € V, There exists a circuit in G that contains «.
If the loop {a,a) & E, then there is an edge {a,b) € E for b5 a. If not, a is isolated
and this contradicts G being connected. If (b,a) € E we have the circuit {{a,8),(b,a)}
containing a. If (b o} & E, then there is an edge of the form {b,c}, ¢ # b, ¢ # a, because
od(b) = id{s). Continuing this process, since od{a) = id(a} and @ is finite, we obtain
a directed cireuit € containing . ¥ C = G we are finished. If not, remove the edges
of C from (, along with any vertex that becomes isolated. The resulting subgraph
H = (Vi, By} is such that (in H) od(v) = id{v) for all v € V;. However, H is not
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necessarily connected. But each component of H is connected with od{v) = id(v) for
each vertex in a component. Consequently, by the induction hypothesis, each component
of H has s directed Euler circuit, and each component has & vertex on the circuit C
(from above). Hence, starting at vertex a we travel on C until we encounter a vertex
v; on the directed Euler circuit of the component € of H. Traversing C; we return to
v; snd continue on € to vertex vy on component € of H. Continuing the process,
with ¢ fnite we obtain a divected Euler circuit for G.

a N b (b) ¥ G=(V,E) isadirected graph with a directed Euler
gircuit then for all z,y € V, z # y, there is a directed path
from z to y,and one from y to &, so the graph is
v strongly connected. The converse, however, is false. The
directed graph shown here is strongly connected. However,
Jd since od(b) # id(b) the graph does not have a directed

Ealer circuit.

¢ ol

From Exercise 24 we see that T .cv[ 0d(v) — id(v)] = 0. Foreach v €V, od(v)+
divy=n~1,80 0=(n—-1)-0=T,ev(n— Dfod(v) — id(v)] = T,ev| od(v)+
id(v))] 0d(v) — 1d(v)] = L evi( 0d(v))? — (id(v))?], and the result follows.

Let G be a directed graph satisfying the three conditions. Add the edge (z,y). Then
by part {(a) of Exercise 26 the resulting graph has a directed Euler circuit €. Removing
(z,y) from C yields a directed Euler trail for the given graph . (This trail starts at
y and terminates at z.) In a similar manner we find that if a directed graph G hasa
directed Euler trail then it satisfies the three conditions.

{a) and {b) . {c}
&) o Ee
(0 RO 4 No
/";*\ //,//'#"‘\\_\\ ) G( } !
% ORI 0 /1
) J w01 (1) U/ ) y
Gs\o\'fi/// g HOTT}’_/ N \‘Q‘OO\ s\;.‘, 0
/ ™. . AN LI
;" /2\' P . 1
K\*Z/\ \\J% \\62?)//’ (3) <A“\ \ ] (O\\
fo -
007 & — W;;t-v—(;éf;:\"”t////i 11 oy 010 /
{ “ \\3/) <Z> (\\ ) B ;/ /
o - . ’// { } 2\ //
e _ 2
[N ™ /;T,.,_/««“ -
)
%3
Let V| = n > 2. Since  is loop-free and connected, for all z € V we have

1 £ deg{z) < n— 1. Apply the pigeonhole principle with the n vertices as the pigeons
and the n — 1 possible degrees as the pigeonholes.
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32.

33.

34.

(»)

b Y2 V3 Vg Us
w10 1 1 0 1
vwa 11 0 1 1 1
A= 111 1 1 1
vy 10 1 1 0 1
wg 11 1 1 1 1
€1 €3 €3 €4 €5 €g €7 €5 €9 €30 €11
w11 1 1 06 0 0 0 0 0 0 O
_wf0 01 111 00 0 0 O
T wll 000 01 0 0 1 0 1 1
v, 10 0 0 0 0 1 0 1 1 0 0
vs 10 1 0 1 0 0 1 0 1 1 0O

(b) If there is a walk of length two between v; and v, denote this by {v;, v}, {ve,v;}.
Then ay =ai; =1 in A and the (i,7)-entry in A? is 1. Conversely, if the (i, j)-entry
of A? is 1 then there is at least one value of k, 1 < k < n, such that a; = ap; = 1, and
this indicates the existence of a walk {v;,vi}, {vk,v;} between the ith and jth vertices of
V.

(¢) For all 1< 4,5 < n,the (i,j)-entry of A? counts the number of distinct walks of
length two between the ith and jth vertices of V.

(d) For v at the top of the column, the column sum is the degree of v, if there is no
loop at v. Otherwise, deg(v) = [(column sum for v) — 1] + 2 (number of loops at v).

(e) For each column of I the column sum is 1 for a loop and 2 for an edge that is not a
loop.

{(a) Label the rows and columns of the first matrix with «,b,c. Then the graph for this
adjacency matrix is a path of two edges where deg(a) = deg(b) = 1 and deg(c) = 2.

Now label the rows and columns of the second matrix with z,y, 2. The graph for this
adjacency matrix is a path of two edges where deg(y) = deg{z) = 1 and deg{z) = 2.

Define f: {a,b,c} — {z,y,2} by fla) =y, f(b) = 2z, f(¢) = z. This function provides an
isomorphism for these two graphs. ,

Alternatively, if we start with the first matrix and interchange rows 1 and 3 and then
interchange columns 1 and 3 {on the resulting matrix}), we obtain the second matrix. This
also shows us that the graphs (corvesponding to these adjacency matrices) are isomorphic.

{(b) Yes
{c¢} No

{a) Here each graph is a cycle on three vertices — so they are isomorphiec.
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35‘

36.

a7.

{(b) The graphs here are not isomorphic. The graph for the first incidence matrix is a cycle
of length 3 with the fourth (remaining) edge incident with one of the cycle vertices. The
second graph is a cycle on four vertices.

(¢) Yes

No. Let each person represent a vertex for a graph. If v, w represent two of these people,
draw the edge {v, w} if the two shake hands. If the situation were possible, then we would
have a graph with 15 vertices, each of degree 3. So the sum of the degrees of the vertices
would be 435, an odd integer. This contradicts Theorem 11.2.

Define the function f from the domain A x B (or the set of processors of the grid) to the
codomain of corresponding vertices of {J5 as follows:

f{{ab, cde)) = abede, where ab € A, ede € B, and a,b,¢,d,e € {0,1}.
If f({ab, cde)) = fla1by, cydieg)), then abede = ajbycidyey, s0a = a1, b= by, ¢ = ¢, d = dj,
e = e;, and (ab, cde) = (a;b;, ¢;dyey ), making f one-to-one. Since |A X B| = 15 = the
number of vertices (of @5) in the codomain of f, it follows from Theorem 5.11 that f is
also onto.

Now let {(ab,cde},(vw,zyz)} be an edge in the 3 X 5 grid. Then either ab = vw and
cde, zyz differ in (exactly) one component or ede = zyz and ab, vw differ in (exactly) one
component. Suppose that ab =vw (soa=v,b=w)ande=2,d =y, but e # 2. Then
{abede, vwayz} is an edge in Q5. [The other four cases follow in a similar way.] Conversely,
suppose that {f{aby, eydiey), f(viwy, 219121 )} is an edge in the subgraph of Q5 induced by
the codomain of f. Then a;b;¢:d; 2y and vywix 42, differ in (exactly) one component — say
the last. Then in the 3 x 5 grid, there is an edge for the vertices (a1by,c1d10), (@1b1¢1d1 1).
[Similar arguments can be given for any of the other first four components.] Consequently,
f provides an isomorphism between the 3 x 5 grid and a subgraph of Q5.

[Note that the 3 x 5 grid has 22 edges while Q5 has 5 - 2! = 80 edges.]

Assign the Gray code {00,01,11,10} to the four horizontal levels: top — 00; second (from
the top) — 01; second from the bottom - 11; bottom — 10. Likewise, assign the same code
to the four vertical levels: left (or, first) — 00; second — 01; third — 11; right (or, fourth) —
10. This provides the labels for py, pa, . .., P15, where, for instance, p; has the label (00, 00),
Py has the label {01,00),..., p; has the label (11,01),..., py; hes the label {11,10), and pys
has the label (10, 10).

Define the function f from the set of 16 vertices of this grid to the vertices of Q4 by
F{{ab, cd)) = abed. Here f({ab,ed)) = f({a1h,e1dr)) = abed = aybyyd; = a = a,8 =
by,e = ¢y, d = dy = {(ab,ed) = {a1hy,e1dy) = f is oneto-one. Since the domain and
codomain of f both contain 18 vertices, it follows from Theorem 5.11 that f is also onto.
Finally, let {(ab,cd),(wz,yz)} be an edge in the grid. Then either ab = wz and ed, yz
differ in one component or ¢d = yz and ab, wz differ in one component. Suppose that
ab = wr and ¢ = y, but d 3 z. Then {abed, wzyz} is an edge in Q4. The other cases follow
in & similar way. Conversely, suppose that {f({a1by, c1ds)), f{{(w125,112:))} is an edge in
Qs Then aybieydy, wyzyy2, differ in exactly one component - say the first. Then in the
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grid, there is an edge for the vertices (0by,¢1d;), (1by, c3dy). The arguments are similar
for the other three components. Consequently, f establishes an isomorphism between the
three-by-three grid and a subgraph of Q.

[Note: The three-by-three grid has 24 edges while @, has 32 edges.]

Section 11.4

In this situation vertex b is in the region formed
by the edges {a,d}, {d,c}, {¢,a} and vertex e is
outside of this region. Consequently the edge
{bje} will cross one of the edges {a,d}, {d,},
{a,c} {as shown).
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3.

4.

ﬁ‘

From the symumetry in these graphs the following demonstrate the situations we must
cousider

Ky Kas:
()
Graph Number of vertices Number of edges
Kyv 11 28
Ky 18 77
Kmm m-+n b

by m=86

Let G = (V, E) be bipartite with V partitioned as V; U V;, so that each edge in E is of
the form {a,b} where @ € V4, b € V5. If H is a subgraph of G let W denote the set
of vertices for H. Then W = WNnV = Wn (K UV, = (WnNV)Uu(WnV,), where
(Wnv)yn(Wnvy) =8 If {z,y} is an edge in H then {z,y} is an edge in G — where,
say, ¢ € Vj and y € V5. Hence z € W, y € W) and H is a bipartite graph.

(a) Let Vi = {a,d,e,h} and V; = {b,¢, f,g}. Then every vertex of G is in V; UV, and
Vi nVy = §. Also every edge in G may be written as {x,y} where z € V; and y € V4.
Consequently, the graph G in part (a) of the figure is bipartite.

(b) Let V/ = {a,b,9,h} and V] = {c,d, ¢, f}. Then every vertex of G' is in V] U V] and
V/ NV} = §. Since every edge of G' may be written as {z,y}, with z € V and y € V),
it follows that this graph is bipartite. In fact G’ is (isomorphic to) the complete bipartite
graph Ky s.

(¢} This graph is not bipastite. If G" = (V", E") were bipartite, let the vertices of G”
be partitioned as V)" U V!, where each edge in G is of the form {e,y} with z € V} and
¥ € V. We assume vertex a is in V{". Now consider the vertices b, ¢,d, and e. Since {a, b}
and {a,c} are edges of G we must have b,¢cin Vy'. Also, {b,d} is an edge in the graph, so
disin V{. But then {d,e} € E' = e € V, while {c,e} € E" = e € V.

There are four vertices in K 3 and we can select four vertices from those of K, in (Z’) WaYS.
Since each of the four vertices (in each of the (‘Z’} selections} can be the unique vertex of

degree 3 in K, 3, there are 4(: :} subgraphs of I, that are isomorphic fo K 3.

Alternately, select the vertex of degree 3 in Ky 3 — this can be done in n ways. Then select
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10.

11.

12,

the remaining pendant vertices — this can be done in (”’gi) ways. Hence the number of
subgraphs of X, that are isomorphic to K3 is

n(n ; 1) = (n)(n—1}{n - 2)(n ~3)/6 = (4)[(n}(n — 1){(n — 2)(n ~ 3)/24] = 4(2).

The vertices in K, , may be partitioned as V; UV, where V4] = m, |V3| = n, and each
edge of the graph has the form {z,y} where z € V] and y € V5.

{a) In order to obtain a cycle of length four we need to select two vertices from each of
Vi and ¥;. This can be done in (’;) (';) ways — each resulting in a distinct cycle of length
four,

[Note: Say we select vertices a,b from V; and vertices ¢, d from V3. We do not distinguish
the cyclese ¢ —b—d-—aanda—d—b—c—al

(b} For a path of length two there is one vertex of (path) degree 2 and two vertices of
(path) degree 1. If the vertex of (path) degree 2 is in V; then there are m (’;‘) such paths.

There are n(’;) such paths when the vertex of (path) degree 2 is in V,. Hence there are
m(g) + n(g’) = (1/2)(mn)[m + n — 2] paths of length 2 in K, ..

(¢) Here a path of length 3 has the form ¢ — b — ¢ — d where a,c € V; and b,d € V;. By
the rule of product there are (m)(n)(m — 1}(n - 1) = 4(';‘) (’2‘) such paths in K,, ,,.

(a) 2 (b) 6 (=2(3) (e} 14 (= 2T)) (d) 2m

(a) 6 (b) (1/2)(7)3XB)(2)(5)(1)(4) = 2520 (¢) 50,295,168,000
(@) (1/2)(n)(m)}n—1)(m — 1)(n~2)---(2)(n — (m + 1))(1)}n —m)

Let G = (V,E) be bipartite with V=V UV,, yNV; =8 I G has a cycle of odd
length then there is an edge in the cycle of the form {z,y} with z,y € Vi (or z,y € V).
This contradicts the definition of a bipartite graph.

Partition V as ViUV, with [Vil = m, W] =v—~m. G is bipartite, then the
maximum number of edges that G can have is m{v ~ m) = ~[m — (v/2)]® + (v/2)%,
a function of m. For a given value of v, when v is even, m = v/2 maximizes
m{y — m) = (v/2)[v — (v/2)] = (v/2)%. For v odd, m = (v ~1)}/2 or m = (v +1)/2
maximizes m(o —m) = [(v ~ /2o ~ (v~ 1)/2)] = (v — 1)/2[(0 +1)/2] = [0+ 1)/2]fo -
(v +1)/2)] = (v ~ 1}/4 = [{(v/2)*] < (v/2)%. Hence if [E| > (v/2)% G cannot be
bipartite.

(a) There are 3: (i) K5 (i) K4 and (i) K.
(b) [nf2]for neZ*, n>2
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13. (a)

a: {1,2} £ {4,5}
b: {3,4} g 12,5}
e {1,5} h: {2,3}
d: {24} i: {1,3}
e: {3,5} it {14}

(b) @G is (isomorphic to) the Petersen graph. (See Fig. 11.52(a}).
4. (1) @ (3

Graph (1) shows that the first graph contains a subgraph homeomorphic to K33, so it is
not planar. The second graph is planar and isomorphic to the second graph of the exercise.
The third graph provides a subgraph homeomorphic to K33 so the third graph given here
is not planar. Graph (6) is not planar because it contains s subgraph homeomorphic to

{6) b

|

18, The result follows if and only i mn is even {that is, st least one of m,n is even),

Suppose, without loss of generality, that m is even — say, m = 2. Let V denote the vertex
set of Ky, , where V = VUV, and V] = {vy,03,. .., 0, V13150 - - s Vm , Va = {wy, we, ..., 0.}
The mn edges in K., , are of the form {v;,w;} where 1 <i < m, 1< j < n. Now consider
the subgraphs Gq, G3 of K, ,, where (1 is induced by {vy, vs, ..., v} UV; and G is induced
by {v4s1, Verz, ..., ¥m} U Vo, Each of Gy, Gy is isomorphic to K, ,, and every edge in K,
is in exactly one of Gy, ;.



18.

17.

18.

19.

20.

21.

22.

If both m,n are odd, then X, , has an odd number of edges and cannot be decomposed
into two isomorphic subgraphs — since each such subgraph has the same number of edges
as the other.

Consider how the vertices of the Petersen graph are labeled in Fig. 11.52(a). The following
correspondence of vertices provides an isomorphism for the two graphs:

a->s b—v ¢z d—oy et
f—ouy g—r h—ow i—z j—gqg

(a) There arve 17 vertices, 34 edges and 19 regions and v —e +r =17~ 34 + 19 = 2.
(b) Here we find 10 vertices, 24 edges and 16 regions and v — e +r = 10 —~ 24 + 16 = 2.

Proof: Since each region has at least five edges in its boundary, 2|E| > 5(53), or |E| >
(1/2)(5)(53). And from Theorem 11.6 we have |V| = |E[-~53+2 = |E|-51 > (1/2)(5)(53)~
51 = (265/2) — 51 = 811, Hence |V| > 82.

10

(a) For each component C; = (V,,E;), 1<i<n,of G,if ¢ =|E;| and v; = |V;] then
e;—v;+2 = r;, Summing as ¢ goes from 1 to n wehave e—~v+2n =r+(n-1) because
the infinite region is counted n = k(G) times. Hence e—v+n+1=r =e—v+[(G)+1]

(b) Using the same notation as in part (a) we have 3r; < 2¢;, 1 <7 <nm, 30 3r <
Tia(3r) € Ty 26 = 2e. Also, €, <30,-6, 1 St <nys0 e=T 6 < UL (30— 6) =

3v — 6n < 3v ~ 6.

If not, deg{v) > 6 forall v € V. Then 2e = ¥ ,ydeg(v) > 6]V], so e 2> 3|V|,
contradicting ¢ < 3|V|—6 (Corollary 11.3.)

(a) Suppose that G = (V,E) with |[V]|= 11. Then G = (V,E;) where {a,b} € Ey
if {a,b} € E. Let e = |El, e, = |Ey}. Eboth G and & are planar, then by
Corollary 11.3 (and part (b) of Exercise 20, if necessary), ¢ < 3[V|—6 =33 -6 = 27
and e < 3[V]— 6 = 27. But with [V| = 11, there are (;‘) = 55 edges in Ky, so
|E| + |Ey| = 55 and either e > 28 or e; > 28. Hence, one of G, G must be planar.

¥ G=(V,E} and 1¥] > 11, consider an induced subgraph of & on V' C V where
(V] =11,

OKE
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23.

Z4.

25.

26.

(a) 2¢ 2 khr = k(2+e—v) == (2 k)e 2 k(2 — v} == ¢ < [k/(k — 2)}(v — 2).

(b) 4

{¢) In K33, e=9, v==6 [k/(k—-2)](v—2)=(4/2)(4) =8B < 8 =e. Since Kaz is
connected, it must be nouplanar.

(d) Here k=05, v =10, e =15 and [k/(k—2)}(v —2) = (§/3)(8) = (40/3) < 18 = e.
Since the Petorsen graph is connected, it must be nonplanar.

(b} There are no pendant vertices. But this does not contradict the condition mentioned
because the loops contain other vertices and edges of the graph.

(a} The dual for the tetrahedron (Fig. 11.59(b)) is the graph itself. For the graph (cube)
in Fig. 11.59(d) the dual is the octahedron, and vice versa. Likewise, the dual of the
dodecabedron is the icosahedron, and vice versa.

{(b) For n € Z*, n > 3, the dual of the wheel graph W, is W, itself.

(a) The correspondence a v, b— w, ¢ — y, d — 2z, e — z provides an isomorphism.

(b) (1) (2)

bl

{¢} In the first graph in part (b) vertex ¢ has degree 8, Since no vertex has degree 5 in
the second graph, the two graphs cannot be isomorphie.
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27.

28‘

gg'

/
N RN
g’ﬁ/ 1

The number of vertices in G2, the dual of G, is r, the mumber of regions in a planar depiction
of G. Since G is isomorphic to G? it follows that » = n. Comnsequently, |[V]| — |E| +r =
2=n—|El+n=2=|El=2n~-2.

Proof:
8} As we mentioned in the remark following Example 11.18, when G,, G, are homeo-
morphic graphs then they may be regarded as isomorphic except, possibly, for vertices of
degree 2. Consequently, two such graphs will have the same number of vertices of odd
degree.

b} Now if &) has an Euler trail, then G; (is connected and}) has all vertices of even degree
~ except two, those being the vertices at the beginning and end of the Euler trail. From
part {a} 3 is likewise connected with all vertices of even degree, except for two of odd
degree. Consequently, G; has an Euler trail. [The converse follows in a similar way.]

¢) ¥ G, has an Euler cirenit, then Gy (is connected and) has all vertices of even degree.
From part (a) G is likewise connected with all vertices of even degree, so G has an Euler
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cirenit. [The converse follows in a similar manner.]

Section 11.5

B (7 B 7)Y/

4.

(a) (b) (e) (d)

The graph is a path {cycle).

(a) Hamiltoncycle: a »g—k—~ioh—boc—ad—oj—ofoe—a

(b) Hamilton cycle: a—wd—b—e-sg-—j—i—afah—c—a

(¢) Hamiltoncycle: e v h—e—fog—i—-d—c—boa

(d) The edges {a,c}, {¢,d}, {d,b}, {b,¢}, {e, f}, {f, g} provide a Hamilton path for the
given graph. However, there is no Hamilton cycle, for such a cycle would have to include
the edges {b,d}, {b, e}, {a,c}, {a,e}, {9, f}, and {g,e} - and, consequently, the vertex ¢
will have degree greater than 2.

(¢} Thepatha »b—-c—d—oe—j—oit—shog—afoaksl—-m—on-—ois
one possible Hamilton path for this graph. Another possibility is the patha — b — ¢ —
d—i—h—og—>f—ok-l—-m-on—o0-—j-s e However, there is no Hamilton
cycle. For if we try to construct a Hamilton cycle we must include the edges {q, b}, {q, f},
{f,k}, {k,1}, {d,e}, {e,7}, {/,0} and {n,0}. This then forces us to eliminate the edges
{f,g} and {i,7} from further consideration. Now consider the vertex i{. If we use edges
{d,7} and {i,n}, then we have a cycle on the vertices d,e, j,0,n and ¢ — and we cannot
get & Hamilton cycle for the given graph. Hence we must use only one of the edges {d,:}
and {i,n}. Because of the symmetry in this graph let us select edge {d, i} — and then edge
{k,i} so that vertex ¢ will have degree 2 in the Hamilton cycle we are trying to construct.
Since edges {d,i} and {d, e} are now being used, we eliminate edge {c,d} and this then
forces us to include edges {b,c} and {¢,h} in our construction. Also we must include the
edge {m,n} since we eliminated edge {i,n} from consideration. Next we eliminate edges
{h,m}, {h,g} and {b,g}. Finally we must include edge {m,!} and then eliminate edge
{l,¢9}. But now we have eliminated the four edges {b,¢}, {f. ¢}, {h, 9} and {{,g} and ¢ is
consequently isolated.

{f} For this graph we find the Hamilton cyele g b v e d— e j s i s b~ g s
l~smern-—s0-~3t-—s3-—37r-3g—p-—k-f-a

{a) Cousider the graph as shown in Fig. 11.52(a). We demonstrate one case. Start at
vertex « and consider the partial path a — f — ¢ — d. These choices require the
removal of edges {f,h} and {g,i} from further consideration since each vertex of the
graph will be incident with exactly two edges in the Hamilton eycle. At vertex d we can
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7"

8!

go to either vertex ¢ or vertex e. (i} If we go to vertex ¢ we eliminate edge {e,d}

from consideration, but we must now include edges {e,j} and {e,a}, and this forces the
elimination of edge {a,b}. Now we must consider vertex b, for by eliminating edge {a,b}

we are now required to include edges {b,g} and {b,¢} in the cycle. This forces us to
remove edge {c,h} from further consideration. But we have now removed edges {f, h}

and {c,h} and there is only one other edge that is incident with &, so no Hamilton cycle
can be obtained. (ii} Selecting vertex e after d, we remove edge {d,c¢} and include
{c,h} and {b,c}. Having removed {g,i} we must include {g,b} and {g, j}. This forces
the elimination of {a,b}, the inclusion of {a,¢} (and the elimination of {e,j}). We now
have & cycle containing a, f, 1, d, e, hence this method has also failed.

However, this graph does have a Hamilton path: g »b—w¢—d—e—j—oh— f—
T — g

(b} For example, remove vertex j and the edges {e,j},{9,7},{h,j}. Then e — a —
f—h-¢c—+b-—g->i-—+d— e provides a Hamilton cycle for this subgraph.

(a) I we remove any one of the vertices a, b or ¢, the resulting subgraph has a Hamilton
cycle. For example, upon removing vertex a, we find the Hamilton cycle 8 — d ~— ¢ —
f—g-—>e-b

(b) The following Hamilton cycle exists if we remove vertex g: @ = b —c—d— e —
j—*o0o—=n-—>t—->h->m-—{-k-— f-— a A symmetric situation results upon
removing vertex 1.

Let the vertices on the cycle (rim) of W, be consecutively denoted by v;,vs,...,v,, and
let v,4; denote the additional (central) vertex of W,,. Then the following cycles provide n
Hamilton cycles for the wheel graph W,.

(1) v1 = V1 = U3 = V3~ Vg = o Vg Uy, Uy

(2) vy = vy = Vpgpy Vgt Vg > L Uy P Uy Uy

(3) w1 = w3 = Uz Upga = Vg > L Upog U O

(n—1)v ~ vg = v3 = Vg ~> ... = VUpoy — Upgq — Uy — vy; a0d
(n) vy — vy~ U3 — Vg = oL Uiy = Uy = Upyy — Uy

(a) (1/2)(n — 1)1 (b) 10 (¢) 9

{a) Partition the vertices of K,, as X UY where [X| = [¥V| =n. Write X =
{z1,22,. ., 2n}s, ¥ = {g1,92,...,Uu}; each edge of K, , is of the form {x;, 1} where
1 £4,7 <n. Since zy is on every Hamilton cycle of K, ,, start with 2,. Theve are then
n choices for y; where {2;,1;} is on the cycle. From y; we canreturnto X in n~1
ways {we cannot wse 2z; again), forming the second edge {y;,#:}, where 2 < i < n.
Continuing in this manner there are {n — 1}In! results. Since directions are not assigned
to any of the edges we get a total of (1/2)(n — 1)in! Hamilton cycles for ¥, ,,.

{b) In this case the “starting” vertex of a Hamilton path isin one of X or Y (as
deseribed in part {(a)) and the “terminvating” vertex is then in the other set. The number
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10.

of such paths is (n!)?. (Note: n =1 makes sense in this part but not for the formula in
part (a).)

Let G = (V,E) be a loop-free undirected graph with no odd cycles. We assume that G
is connected — otherwise, we work with the components of G. Select any vertex z in V
and let V¥, = {v € Vid(z,v), the length of a shortest path between z and v, is odd} and
Vo = {w € V|d{z,w), the length of a shortest path between z and w, is even}. Note
that (i) z € Vg; (i) V = ViUV, and (i) VinV; = @. We claim that each edge {a,5}
in E has one vertex in V; and the other vertex in V5.

For suppose that e = {¢,b} € £ with ¢,b € V;. (The proof for @,b € V; is similar.)
Let E; = {{a,v1},{v1,v2},...,{¥m-1,2}} be the m edges in a shortest path from a
to =z, and let E, = {{b,vi}, {vi,v5},...,{v)_;,2}} be the n edges in a shortest path
from b to z. Note that m,n are both odd. If {vy,vg,..., 01} N {0},v),...,v._,} =8,
then the set of edges E’' = {{a,b}} U E, U E;, provides an odd cycle in &. Otherwise,
let w(# z) be the first vertex where the paths come together, and let E” = {{qa,b}} U
{{e,v1}, {vi,v2},..., {w;, w}}u {{b,v1}, {vi, 1273 {v;aw}}a forsome 1 <i<m-—1 and
1< 7 <n~—1. Then either E” provides an odd cycle for G or E' — E" coutains an
odd cycle for G.

(a) Suppose that G has a Hamilton cycle C. Then ' contains |V| edges and the
vertices on C must alternate between vertices in V; and those in V; because G is
bipartite. This forces |V] to be even and |Vi] = |15].

(b) In a similar way, if G has a Hamilton path P, then P has |V|—~1 edges and
the vertices on P must alternate between the vertices in V; and those in V;. Since

Vil # [V, it follows that V]| — |V3] = £1.

(c) Let V ={a,b,c,d,e} with V; = {a,b}, V; = {¢,d,e} and E = {{a,c},{a,d}, {a,¢},
{b,c}}.
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12!

(2)

a a

(b)
od{a) =3 id{e)=0 od{e) =3 id{a)=10
od(h) =2 id{h) =1 od(b) =1 id(b) =2
od{c) =0 id(c)=3 od{c) =1 id(e)=2
od{d) =1 id(d)=2 od(d) =1 id{d)=2
#a N b
ﬁ &
od{a) =1 id{a)s=2 od{a) =0 id{a)=3
od(b) =1 id(}) =2 od{b) =2 id(h) =1
od{c) =2 id{e)=1 od{e) =2 id{c)=1
od{dy =2 id{d)=1 od{d)=2 id(d)=1

Proof: From Example 11.26 we know the result is true for n = 2. Assume that {J, has a
Hamilton cycle for some arbitrary (but fixed) n > 2. Now consider Qry:. From Example
11.12 we know that Q,,; can be constructed from two copies of ¢, — one copy, Qnge,
induced by the vertices of @,4, that start with 0, the other copy, Q.,1, induced by the
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13.

}hﬁb

15.

16.

17.

18,

19.

20.

vertices of Q41 that start with 1. Each of @, 4, Q.1 has a Hamilton cycle — each may
have more than one but we agree to pick the same cycle in each. [The only difference in
the cycles is the first bit in the vertices of an edge — that is, if {0z,0y} is an edge in the
Hamilton cycle for Q.o (where z,y are binary strings of length n that differ in only one
position), then {1z, 1y} is the corresponding edge in the Hamilton cycle for ¢, ;.] Select
edges {Ov,0w} and {lv,lw} from the Hamilton cycles for @, and Q,,, respectively.
Remove these edges and replace them with the edges {Ov, 1v}, {0w, 1w} (in @nsy). The
result is a Hamilton eycle for Q4.

It now follows from the Principle of Mathematical Induction that §), has a Hamilton cycle
foralln > 2.

Proof: If not, there exists a vertex z such that (v,z) ¢ F and, forally e V, y # v, z, if
{v,y) € E then (y,z) € E. Since (v,z) ¢ E, we have (z,v) € E, as T is a tournament.
Also, for each y mentioned earlier, we also have (2, y) € E. Consequently, od(z) 2 od(v)+1
— contradicting od(v) being a maximum!

Let G be any path with more than three vertices.

& C ¢

For the multigraph in the given figure, |V| = 4 and
deg(a) = deg(c) = deg(d) = 2 and deg(b) = 6. Hence
deg{x) + deg(y) > 4 > 3 = 4 — 1 for all nonadjacent
z,y € V, but the multigraph has no Hamilton path.

b

Corollary 11.4: Proof For all z,y € V| deg(a) + deg(y) = 2{(n — 1)/2] = n — 1, so the
result follows from Theorem 11.8.

Corollary 11.5: Proof: Let a,b € V where {a,b} ¢ E. Then deg{a) + deg(b) > (n/2) +
(n/2) = n, so the result follows from Theorem 11.9.

For n > 5 let C, = (V,£) denote the cycle on n vertices. Then C, has (actually is) a
Hamilton cycle, but for all v € V| deg(v) = 2 < n/2.

Construct a graph with 12 vertices, one for each person. If two people know each other,
draw an edge connecting their corresponding vertices. By Theorem 11.0 this graph has a
Hamilton cyecle and this cycle provides such a seating arrangement.

This follows from Theorem 11.9, since for all (nonadjacent) 2,y € V, deg(z) + deg(y) =
12> 1l = V]

Proof: Let z,y € V with {2, ¥} € E. Consequently, z, y are nonadjacent in &. In &7 we find
that degg(z) = dega(y) 2 2n+2—n = n+2, so degg(z) +dega(y) = 2n+4 > 2n+2 = [V].
Therefore, by virtue of Theorem 11.9, the graph G has a Hamilton cycle,

313



21.

22.

23.

24.

When n = 5 the graphs Cs and C; are isomorphic, and both are Hamilton cycles on five
vertices.

For n > 6, let u, v denote nonadjacent vertices in C,,. Since deg(u) = deg(v) =n —3
we find that deg(u) + deg(v) = 2n — 6. Also, 2n — 6 2 n <= n 2> 6, so it follows from
Theorem 11.9 that the cocycle C,, contains a Hamilton cycle when n > 6.

(a) If z # v and y # v, then deg(z) = deg(y) = n — 2, and deg(z) +deg(y) =2n—-4 2> n,
forn > 4.

If one of z,y is v, say «, then deg(z) = 2 and deg(y) = n — 2, and deg(z) + deg(y) = n.
(b} From part (a) it follows that deg(z) + deg(y) > n for all nonadjacent z,y in V.
Therefore (7, has & Hamilton cycle — by virtue of Theorem 11.9.

(¢) Here |E| = (”;1) — 1 4 2, where we subtract 1 for the edge {vy, 1}, and add 2 for the

pair of edges {v;,v} and {v, v;}. Consequently, |E| = (“;1) + 1.
(d) The results in parts (b) and {c) do not contradict Corollary 11.6. They show that the
converse of this corollary is false — as is its inverse.

(a) The path v — vy — v; — v3 — ... — v,_; provides a Hamilton path for H,. Since
deg(v) = 1 the graph cannot have a Hamilton cycle.

(b) Here |E| = (”;I) 4+ 1. (So the number of edges required in Corollary 11.6 cannot be
decreased.)

(a) |
000 Since the given graph has a Hamilton path
100 we use this path to provide the following
010 Gray code for 1,2,3,...,8.
4
011 > \o{n
o \\»
11 110
i: 000 2: 010 3 110 4: 100
5 101 6: 111 7. 011 8 00
(b)
1: 0000 2 0001 3 0011 4: 0111
B: 1111 6: 1110 7: 1100 8 1000
9 1010 10 1011 11: 1001 12: 1101
13 0101 14: 0100 15 0119 16: 0010
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25.

28.

2.

3Q

(8) () {ee,fibh{agls () {2}, {w,w,u}

(b) (i) B(G)=4 (i) B(G)=3

e}y (1) 3 (iiy 3 (1) 3 (iv) 4 (v} 6
{vi) The maximum of m and n.

(d) The complete graph on |I| vertices.

(a) ¥ not, thereis anedge {a,b} in E where a,b € I. This contradicts the independence
of L
(b} A Hamilton cycle on v vertices must have v edges.
(¢)

Let I = {a,b,c,d, f}, as shown in the figure. Here

) v=11,e=18, and e— T crdeg(v) + 2|I] = 18 - (4 +

4+3+4+3)+2(5) = 10 < 11, so by part (b), the
Herschel graph has no Hamilton cycle.

Section 11.6

Draw a vertex for each species of fish. If two species z,y must be kept in separate aquaria,
draw the edge {z,y}. The smallest number of aquaria needed is then the chromatic number
of the resulting graph.

Draw a vertex for each committee. If someone serves on two committees ¢;,¢; draw the
edge joining the vertices for ¢; and ¢;. Then the least number of meeting times is the
chromatic number of the graph.

We can model this problem with graphs. For either part of the problem draw the undirected
graph G = (V,E) where V = {1,2,3,4,5,6,7} and {i,j} € F when chemicals i and j
require separate storage compartments. For part (a), the graph (in part {a) of the figure)
has chromatic sumber 3, so here Jeannettie will need three separate storage compartments
to safely store these seven chenpcals.




l‘ﬂ.

Now consider the graph in part (b) of the figure. Note here that the subgraph induced by
the vertices 2,3,4,5,6 is (isomorphic to) K;. Consequently, with these additional conditions
Jeannette will need five separate storage compartments to store these seven chemicals

safely.

Let G be a cycle on n vertices where n is odd and n > 5.

(a) P(G,A)=MA—-1)
(b} For G = K, we find that P(G,A) = MA - 1)
X(Kl,%) = 2,

(8) (i) Here we have X choices for vertex a, 1 choice for vertex b (the same choice as
that for vertex ¢}, and X — 1 choices for each of vertices z,y, 2. Consequently, there are
A X — 1) proper colorings of K, ; where vertices a and b are colored the same.

(i1} Now we have A choices for vertex a, A — 1 choices for vertex b, and A — 2 choices for
each of the vertices z,y, and z. And here there are A(A — 1){A — 2)* proper colorings.

(b) Since the two cases in part (a) are exhaustive and mutually exclusive, the chromatic
polynomial for Ky 3 is

AA =1+ A = 1DA =22 = M2~ DA = BX* + 100 = 7).

X(K2,3) = 2,
(¢) P(Epp, A)=AMA—=1)"+ A -1)(A -2)"
X(Kgm,} = 2.
(a) 2 (b) 2(n even); 3 (n odd)

(¢) Figure 11.59(d}): 2; Fig. 11.62(a): 3; Fig. 11.85(1); 2; Fig. 11.85(ii): 3 (d) 2

If G =(V,E) is bipartite, then V =V, UV, where ViNV; =8 and each edge is of the
form {z,y} where z € Vj,y € V3. Color all the vertices in ¥} with one color and those
in V, with a second color. Then ¥(G) = 2.

Conversely, if x(G) =2, let Vi be the set of all vertices with one color and V), the set
of vertices with the second color. Then V =V, UV, with VinV¥; = § and each edge of
 has one vertex in V; and the other in V3, so G is bipartite.

(@) (1) MA-17 0 ~2% (2) A2 = 1A~ 2)(A° ~ 2 + 2);
(3) A(h — 1)(A — 2)(AF — BA+7)

{(b) (1) 3 )3 (83

(c) (1)720; (2) 1020;  (3) 420

{a) These graphs are not isomorphic. The first graph has two vertices of degree 4 —~ namely,
f and k. The second graph has three vertices of degree 4 — namely u,w,z.
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12.

13.

14.

(b) For the first graph there are two cases to consider.

Case (i): Vertices f and k have the same color: Here there are A(A ~ 1)3(A — 2)? ways to
properly color the vertices.

Case (ii): Vertices f and k are colored with different colors: Here the vertices can be
properly colored in A(A —~ 1}{X — 2)3(X — 3)* ways.

By the rule of sum, P(G,A) = MA—~ 1A -2+ A2~ (A - 2Y’(A - 3)¥ =

MA = 1A — 2)*(A* — 5X + 8),

Using the same type of argument, with the two cases for vertices u and z, the chromatic
polynomial for the second graph is also found to be A(A — 1)2(A — 2)2(2* — 5 + 8).

(e) I G4,G, are two graphs with P(Gy, A) = P(G3, A), it need not be the case that G,

and (; are isomorphic.

Let e = {v,w} be the deleted edge. There are A(1}(A — 1}(A —2)---(A — (n — 2)) proper
colorings of @, where v,w share the same color and AMA — 1}(A — 2} (A — (n ~ 1))
proper colorings where v, w are colored with different colors. In total there are P(G,, A) =
M= A=n+2)+ XA~ A=n+1) = A=) (A—-n+3)A ~n+2)
proper colorings for G,,.

Here (G, ) =n —1.

a) Here (;) + (g) = (§) + (‘;’) = 15+3 =18, and (”";9) = (2) = 36. So there are 18 edges
that are red or green, and 18 blue edges.

b) () + () =wW2() & @/2re¢-1)+1/29g—~1) = A/ +g)r+9~1) &
2(r =D+ 2(g~-)=(r+g)r+tg-1&r’—rt+g ~g=2rg & (r—g) =r+g.

Let r = g+k, k 2 0. Then [(r—g)? = K = r+g = 29+k] & [g = (1/2)(k*~k) = (1/2)k(k—
1) =ty and r = g+k = (1/2)k(k~1)+k = (1/2)k[(k—1)+2k] = (1/2)k(k+1) = ;] & r,¢

are two consecutive triangular numbers.

(8) V= 2n; |E] = (1/2) L.ev deg(v) = (1/2)[4(2) + (2n — 4)(3)] = (1/2)[8 + 6n — 12] =
3n—-2,n21

(b} For n =1, we find that G = K, and P(G, A} = MA~1) = AMA ~1)(A* —-3X+3)"? 50
the result is true in this first case. For n = 2, we have G = Uy, the cycle of length 4, and
here P{G, 1) = MA~1P=AMA~1}{A1-2) = MA—1}{A*~3A+43)*"1, So the result follows for
n == 2. Assuming the result true for an arbitrary (but fixed) n > 1, consider the situation
for n4 1. Write G = (UG, where G is (g and &, is the ladder graph for » rungs. Then
G N Gy = K3, so from Theorem 11.14 we have P(G, A} = P(Gy, A) - P(G, M)/ P(K;3, M) =
IO~ 12 =32 4+ BOA — DA =33+ 3/ ONA ~ 1) = (AKX~ 1A% - 32 43).
Consequently, the result is true for all n > 1, by the Principle of Mathematical Induction.

{(a) Select a vertex v € V and color it with one of the A+ 1 available colors. f we V
and w hes not been colored, since deg{w) < A we can color w, not using any of
the colors used on the vertices adjacent fo w. This procedure is repeated until all of the
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16.

1‘7'

iB.

vertices in V' have been (properly) colored.

(b) For neZ*, n 23, x(K,)=n=A40+1

(a) AMA-1}x—-2) {(b) Follows from Theorem 11.10
(¢} Follows by the rule of product.

(d

.zz(cn, A) P(Poo1, ) = P(Ci, A) = MA = 1)t — P(C,oy, A)
(A = 1) + 1A = 1)1 = P(Cpy, )
o= 1% 4 (A= 1)1 = P(Cpo_p, A) =

P(C,, - (x—1r =411~ P(Ch1,A)
Replacing n by n —1 yields

oo

P(Coss A) = (A= 1" = (A = 1) ~ P(Cpg, A) = (=1)[P(Cpz, X)) — (A — 1)*7,
Hence

P(Coyd) = (A= 1)" = P(Coz, A) = (A= 1) = (= 1)*[P(Cmp, A) = (A = 1)"7%).

(e) Continuing from part (d),
P(Cp, A} =(A = 1"+ (-=1)"[P(C5,A) — (A — 1)7]
= (A =17+ (=1 AR~ (A = 2) = (A = 1)7]
= (A =1+ {(-1)"(A-1).

(a) x(W,) =x(C..)+1.[C, has n vertices; W, has n+1 vertices.]

(b} P(Wy,A) = AP(Coy A — 1) = A[(A = 2)" + (—1)"(A — 2)].

{c) (3)and (i1) P(W5,2) = AMA =2+ (-1P°A(A ~2) -~ For k colors we have P(W;, k) =
E(k ~ 2 + (=1)°k(k — 2) = k{k — 2){(k — 2)* — 1] proper colorings, whenever &k > 4.

From Theorem 11.13, the expansion for P(G,A) will contain exactly one occurrence of
the chromatic polynonial of K,,. Since no larger graph occurs this term determines the
degree as n and the leading coefficient as 1.

(a)

Vi = 1 P(GA)=A

Wi = 20 |Bl=0: PG, XY = A2
IE|=1:  P(C,A)=A(A—~1)=A2— )

Wi = 3 |E|=0: PG, X)) = )°
El=1:  P(G,N) =X A—1)=A )
El=2:  P(G,A) =AA—-1)2=X — 23+
Bl =3: PG A) = AMA—~1)A—2) = A% - 327 4+ 2)
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(b) Let G = (V,E) be aloop-free undirected graph where |V|{=n >4 and |E|=k > 1
(f & =0, P(G,A = A" and the result is true.) From Theorem 11.10, P(G,A) =
P(G., A) — P(G.,X) where e = {a,b} is an edgein G. Since G. has n vertices but
k — 1 edges, by the induction hypothesis,

P(Ge, X = A — (B = DA™ e A2 e s A2 L (1) e,

where k — 1,¢4.9,¢n3,...,¢1 2 0. (When a coefficient in this list is zero, all successive
coefficients are zero.) Likewise, since G has n—1 vertices, by the induction hypothesis,

PG, A) = A% — by p A" by g AP (= 1) 2,0,

where b,.3,b, 3,...,5, > 0.
Then P(G,A) = P(G., )~ P(G.,\) =

AT e (k)/\ﬁ‘l -+ (Cn...g -+ bn._z)}\nmz 4+ ... 4 (*‘1)"“1((’:} 4 bg))&

(¢} This was shown in part (b}.

(a) Forn € Z*, n > 3, let C, denote the cycle on n vertices.

If r is odd then x(Cr) = 3. But for each v in C,,, the subgraph C, — v is a path with n — 1
vertices and x{Cn — v) = 2. So for n odd C, is color-critical.

However, when n is even we have x(C,) = 2, and for each v in C,,, the subgraph C, — v
is still a path with n — 1 vertices and x{(C, — v} = 2. Consequently, cycles with an even
number of vertices are not color-critical.

(b) For every complete graph K, where n > 2, we have x(K,,) = n, and for each vertex v
in K, K, —v is (isomorphic to} Ky, so x(K, —v) = n—1. Consequently, every complete
graph with at least one edge is color-critical.

{c¢) Suppose that G is not counected. Let Gy be a component of & where x(G,) = x(G),
and let G; be any other component of G. Then y{(Gy) > x(G,)} and for all v in G, we find
that y(G — v) = y(G;) = x{@), so G is not color-critical.

{d} Hnot,let v € V with deg{v) < k—~2. Since G is color-critical we have y{G—-v) < k-1,
and so we can properly color the vertices in the subgraph G -- v with at most &£ — 1 colors.
Since deg(v) < k — 2, we have used at most & — 2 colors to color all vertices in G adjacent
to v. Therefore we do not need & new color (beyond those needed to color the subgraph
7 — v} in order to color v and can color all vertices in G with at most k ~ 1 colors. But
this contradicts x{(G} = k.
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Supplementary Exercises

(1) =56+80 =136 => n(n— 1) =212 =>n = 1T.

For n > 1, let ¢, count the number of cycles of length four in @,. Then ¢; = 0 and
¢z = 1. Recall the recursive construction of Q.41 from ), — given in Section 11.3. Let
V( ), denote all the vertices in Q41 that start with 0, and Vn those vert,wes in Qu¢q that
start with 1, [Each of the subgraphs of @4, induced by V, ?é% and Vn+1 is isomorphic to
Q..] Let v; —» vy — vz — vy — vy denote a cycle of length four in Qu41. There are three
cages to consider:

(1) vy,v9,v3,94 € V,fg)i: Here there are ¢, such cycles;

(2) vy,v2,v3,04 € V,f,?l: Here there are also ¢, such cycles; and,

(3) oue edge of the cycle (call it the first) is in (V] €D)> and another edge (na,mely, the
third) is in (Vn,ﬂ} Here the other two edges are each adjacent to a vertex in V , and one
in VU [Let {v,v,} € (VI), then {vs,v,} € (V1)) and the binary labels on v; and vy
dzﬂ'er only in the first (left-most) position, while the binary labels on vy and v; also differ
only in the first (left-most} position.] Since there are n2"! possible choices (the number
of edges in @,,) for the so called “first” edge, here we find n2"~! new cycles of length four.

The preceding discussion gives us

€np1 = 26, + 02" = 2¢, +(1/202* n 21, ¢ =0, ¢ = 1.
c® = A2", ) = n(B 4 Cn)2"

(n+1)}B+ C(n+ 1))2"* = 2n(B + Cn)2"* + n2™!

= [B(n + 1)+ C(n + 1)%]2"" = [Bn + Cn?|2%! 4 (n/4)27*!
=20 =1/4, B+C=0=C=1/8 B=-1/8.

So &P = (1/8)(n? — n)2"™,
i}"—rc;——:cgh)+c§p}m2¢i+0=¢f§:—-0, 80

en = (1/8)(n? —~n)2" = (})2°"%, n>1.

Alternate Solution: Let vy — vy — v3 — vy — vy be a cycle of length four in @,. Say vy, v,
differ in position i and vy, vy differ in position j, where 1 €< n, 1 < j < n, and 1 3 j.
Then v; is determined: it differs from vy in positions ¢ and j. Starting with v; there are 2%
choices. Then for a specific vy there are {;) ways to select positions 1, j. [Remember that
¥y~ Uy~ Uy — Uy — ¥y 18 the same cycle as vy — vy — vy — vy — 0] So at this point we
have { }2“ eycles, But since each of vy — vz — vy~ ¥y = Vg, Uy ~+ By ~ Uy ~> Dy - Vg,
aad vg - vy~ vy~ vy -+ vy 18 the same cycle as vy - vy — vg - vy~ vy, bhe total
number of distinct cycles of length four in @, is {1/4}{ }'2” == (”}2”"‘3, n 2> 1.

{a) Label the vertices of K¢ with a,b,...,f. Of the five edges on a at least three
have the same color, say red, and lst these edgﬁa be {a,b},{a,c},{a,d}. I the edges
{b,c},{c,d}, {b,c} are all blue, the result follows. If not, one of these edges, say {c,d}, is
red and then {a,c},{e,d}, {¢,d} yield a red triangle.
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(b) Consider the six people as vertices. If two people are friends (strangers) draw a red
(blue) edge connecting their respective vertices. The result then follows from paxrt {a).

(@) () 1B =1/2)(;)
(i) For any undirected graph &, if & is not connected then G is connected. In this
situation G = G, so G is connected.

(b) Proof: When n = 1 we have K. For n = 4 the path on four vertices is an example of
a self-complementary graph. The cycle on five vertices provides an example for n = 5.

Now suppose we have a self-complementary graph G = (V,E). Construct the graph
Gy = (V4, E;y) where ¥V = V U {a,b,¢,d} (s0 none of a,b,¢,d is in V) and E, = E U
{{a,b}, {b,c}, {c,d}} U {{v,a}lv € V} U {{v,d}v € V}. Then G; is self-complementary
and W] = V] + 4.

(a) We can redraw G, as

(b) 72

Ounly the graph for the cube is bipartite as seen
in part (b) of the given figure. In any of the other
four graphs (See Fig. 11.59(b) and Fig. 11.60) h
there are cycles of odd length, so these graphs ) M g

cannot be bipartite.

(a) Let the vertices of K3y be partitioned as V; U ¥ where [V}] = 8 and |¥y| = 7. Then
there are (3){THZUEX1)5) = 1260 paths of length & where each such path coutains all
three vertices in V3.
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(b) With ¥, V; as in part (a) we find that there are (1/2)(3)}{7}2)(6)(1) paths of length
4 that start and end with a vertex in V;, and there are also {1/2)(7)(3)(6)(2)(5) paths of
length 4 that start and end with a vertex in V5. Consequently, there are 126 4 630 = 756
paths of length 4 in Kj7.

(¢) (Case 1: pisodd, p=2k+ 1 for k € N). Here there are mn paths of length p = 1
(when k = 0) and (m)}(n)(m —1){(n—1) - (m —k)}{n - k) paths of length p =2k +1 > 3,
(Case 2: piseven, p= 2k for k € Z%). When p < 2m (i.e., ¥ < m) the number of paths
of length pis (1/2)(m)(n)(m~1)n—-1) - (n— (k- 1}}(m—k)+(1/2}(n)(m)(n—1)}(m ~
1) (m—(k~1))}{n — k). For p=2m we find (1/2)(n)(m)(n ~1}{(m ~1}-- - (m — (m —
1))(n — m) paths of (longest) length 2m.

(a) (n=2): X = {1,2} and G consists of the single vertex v that corresponds to X.
(n=3): X ={1,2,3}. Here G is made up of three isolated vertices.
(n=4): X ={1,2,3,4}. Now G has six vertices and is drawn as follows:
a: {1,2} d: {2,4}
b {34} e: {1,4}

b d 'y er {1,3} f: {2,3}
a / c / e /

(b) Let v{{a,b}) and w{{z,¥}) be two vertices of G. I {a,b} N {z,y} = 8, the edge
{v,w} isin G. I {a,b} N {z,y} # ¥, assume without loss of generality that ¢ = x but
b # y. Hence a,b,y are three distinct elements of X and since [X| 2 5,let ¢,d € X
with ¢# d and ¢,d ¢ {a,b,y}. Then there exist edges from {a,8} to {c,d} snd from
{e,d} to {z(= a),y}, since {a,b}N{c,d} =0 = {¢,d} N{z,y}. Hence G is connecied.

(¢) For n =25 (G is (isomorphic to) the Petersen graph, which is nonplanar. For
n> 6 G contains a subgraph isomorphic to the Petersen graph and consequently G is
nonplanar.

{(a) Let I beindependent and {a,b} € E. If neither ¢ nor b isin V ~1I, then a,b€ [,
and since they are adjacent, I is not independent. Conversely, if I CV with V~1T &
covering of G, then if I is not independent there are vertices z,y € I with {z,y} € E.
But {z,y} € E = either @ or y isin V1.

(b} Let I be a largest maximal independent set in & and K 2 minimal covering. From
part (a), K|SV ~I|={V{—~lI] and [[|2]V - K|={V|-|K| or [K|+[}Z2][V]2
K+ .

{a) Let D be a minimal dominating set for ¢. I V — D is not dominating, then there
is a vertex z € D such that z is not adjacent to any vertex in V — I, Since & has

no isolated vertices, z is adjacent to at least one vertex in D — {z} and D ~ {2} isa
dominating set, contradicting the minimality of D.
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(b} Suppose that I is a dominating set. If I is independent but not maximal indepen-
dent, then there is a vertex v € V' such that v is notin I and is not adjacent to any
vertex in I. But this contradicts I being a dominating set. Conversely, if I is maximal
independent then every vertex in V isin I or is adjacent to a vertex in J. Hence [ is
dominating. :

(¢} (@) £ A(G) follows from part (b). For the other condition, let x(G) = m. We
can partition the vertices of G into m cells Vi, 1 < i < m, where two vertices are in
the same cell if they have the same color in . Each of these cells is an independent set
so (Vi < B(G), forall 1 <¢<m. Since |V] =72, Vi, VIS0, 8(G) = mB(G) =
B(Gx(G).

Since we are selecting n edges and no two have a common vertex, the selection of n edges
will include exactly one occurrence of every vertex. We consider two mutually disjoint and
exhaustive cases:

(1) The edge {2,yn} is in the selection: Then {z,~1,2.} and {yn-1,yn} are not in the
selection and we must select the remaining » — 1 edges from the resulting subgraph (a
ladder graph with n —1 rungs)in a,.; ways.

(2) The edge {z,,¥n} is not in the selection: Then in order to have z, and y, appear in
the selection we must include edges {z,.1,2.} and {y,-1,¥n}. Consequently, we must now
select the other n — 2 edges from the resulting subgraph (a ladder graph with n — 2
rungs) in @,.p Ways.

Hence a, = @,y +ay-3, G0 =1, ¢y = 1, and a, = F,4;, the (n+1)st Fibonacci number.

There are two cases to consider:

(1) The vertex y, is not used. Then there are a,_; independent subsets that contain z,,,
and another a,.; such subsets that do not contain z,,.

(2) The vertex y, is included in the independent subset. Now we cannot use either of the
vertices ¥, OF Yu.1. Consequently, there are a,.; such subsets for each of the following
situations: (i} z,.1 is in the subset; and (i) 2,y is not in the subset.

These considerations give rise to the recurrence relation

@y = 2y + 2053,

with initial conditions ag = 1, @y = 3. (We used ¢; = 8 to determine ag == 1.)
To solve this recurrence relation let @, = A", where 4 # 0, r # 0. This leads to the
characteristic equation

r? -2 ~ 2 =0,

and the characteristic roots 1 +/3. Consequently, a, = A{1+ V3)* 4 A1~ v’ﬁ}” where
Ay, A; are constants.

1=ag = A; + 4,

S=a; = A1+ v3) + A (1 - V3) = (A1 + 4g) + V34 — 43)
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= g \/E(A.l el Az), 80 2/’\/5 = (A} — Ag}
Therefore, 4; = (v/3 + 2)/2v/3, Az = (V3 — 2)/2V/3, and
an = [(V3+2)/2V3)(1 + V3" + (V3 - 2)/2V3(1 = V3)", n 2 0 (or n 2 1).

13. If the vertex y, is included in the independent subset then we cannot use any of the vertices
Yn—1, En-1, OF Ty. Lhere are g, such subsets — and another @, independent subsets
where z, is included. In addition, there are a,.; independent subsets when both z, and
¥, are excluded. This leads us to the recurrence relation

Gy, = Ogy + 2%-—23

with initial conditions a; = 3, a3 = B.

To solve this recurrence relation let a, = Ar™, where A # 0, r # 0. This leads to the

characteristic equation
ri—r—2=0,

and the characteristic roots —~1 and 2. Therefore, a, = A;(~1)" + A(2"), where 4,, A,
are constants.

ay 23,0235@2a9z5~3xﬁ*ag=1.

1= g = A1 -+ Az.

3 = 2y = ‘"Al +2A2 = ""(1 ”A2)+2A2 = "'1+3A2, 20 Ag = 4/3, and Al =
1-—- A, =-1/3.
Consequently, a, = (—1/3)(—1)* 4+ (4/3}(2*),n >0 {or n > 1).

14. g = g = Y
For n>22, a, = (’;) = (1/2)n{n — 1) > 0.
(l-2z)=14+2z++2%+...
(d/d=)[1/(1 —z)] =142z 4+ 3> + 423 + ...
(d/da)1/(1 - 2)] = (d/d)(1 — 2] = (~1)1 = 2)*(~1) = (1 — 2)"?
(1—z)?=142r+32*+42°+ ...
(djde){(1 -2y ¥ = (-1 ~2)3(~1)=2(1~2)" 80 2(1~2) =243 -224+4-32% +

5-42% 4+ ...
o0 [ooe)
20 /(1 ~2P =212 +3-2:° +4.32' +5- 42+ .. . = En{nmi}w” mZn(n-—»l}m“g
nwd meld

Hence f(z)= g1~z = T2 In(n—-1}/2]z" is the generating function for the sequence
@y = {’;}, n 2 0.

15. (a) +(G) =2 H(G) =3 x(G) =4
(b} G has neither an Euler trail nor an Euler circuit; & does have a Hamilton cycle.
(¢} G is not bipartite but it is planar.

16. (a) (i) m=2, n=28 (i) m=n=4
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18.

(b} (i) Kpm, for m < n, has an Fuler circuit but not a Hamilton cycle if m snd n are
both even and m # n.

(ii) When m,n are both even and m = n, then K, has both an Euler circuit and a
Hamilton eycle.

(a) x(@) 2z w(G) {b} They are equal.

(a) (i) Here vertex 1 is for edge {a,¢}, 2 for {a,b}, 3 for {b,c}, and 4 for {c,d}.

(ii}) Here the correspondence %%?zgﬁrmxz verbices w  L{G)
and edges in G is given by

i {y,z; 2: {2} 3: {w,z}

4: {w,y}; 5: {u,y}; 6: {u,z}

(b) Let v € V with deg(v) = k. Then there are % edges in & of the form
{v;,v}, 1 <% < k. Any two of these edges are adjacent at v and give rise to an

edge in L{G). Hence v brings about (dﬁf”)) edges in L{G). In total, L{G) has

Toev (4] = (1/2) Ty deg(v){deg(v) — 1] = (1/2) Tyey deg(v)? — (1/2) Loev deg(v) =
(1/2) TCoev deg(v)® — e edges.

(¢) First we shall prove that L(G) is connected. Let e;,e; be two vertices in L(G)

where e; arises from edge {a,b} and e, from edge {z,y} in G. Since G is connected
thereis a pathin G from b to 2: b— vy - v3 — ...~ vy — 2 and a path from ¢ to
Yy: @~ by vy~ ...~ v — 2~ y. These vertices and edges then determine a path in
L(G) from e, to ey, s0 L{G) is connected. Now for any vertex e in L(G), let {e,b}

be the edge in G that determines e. Then deg(e) (in L(G)) = (deg(a)—1}+(deg(b)~1),
an even integer, since deg{a), deg(b) are both even. Hence by Theorem 11.3, L(G)

has an Euler circuit. Furthermore, the ordered list of edges in an Euler cireuit for &

determine s corresponding Hamilton cycle for the vertices of L{G).

(Y For G = Ky, L{K,) is shown bere. This graph has
both an Euler circuit and a Hamilton cycle. However, for each
vertex v in Ky, deg{v) = 3, so K, does not have an Euler
circuit. /
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{e) Suppose that G = (V, E) has a Hamilton cycle vy — vy —» v3 — ... — v, — v; and
let e = {v;, 941}, 1 St <n~1, and e, = {v,,v;}. Then there is a cycle in L{(G) on
the vertices e;, 1 <4 < n. If |E| = n, then this cycle is a Hamilton cycle. i |E| > n,
let e € E, where e e;, 1 <4i<n,andlet e = {v,v;}, 1 <¢ < j <n (This also
takes care of the case where G is a multigraph.) In L(G) there are edges {e;_3,e},
where e;.; =e, if i =1, and {e, e;}, and we can extend the cycle in L{G) by replacing
{€i-1,€;} by the edges {ei—y,e} and {e,e;}. Since |E| is finite, as we continue enlarging
our present cycle in this way, we obtain a Hamilton cycle for L{G).

{f) The graph in Fig. 11.99(b) has no Hamilton cycle, but its line graph, as seen in part
(2), has a Hamilton eycle.

(g) For G = K;, L{GG) has 10 vertices and 30 edges. Since G is connected, L{G) is
connected. But since 30 > 3(10) — 6, it follows by Corollary 11.3 that L(G} is nonplanar.

For G = K33 we number the edges as shown in the first figure. Then in L{G) we find
the subraph shown in the second figure, so L{G) is nonplanar.

Let G be the graph shown here with six vertices (five pendant
and one of degree 3). Then in IL{G) there are five vertices each
® of degree four, and L{G) = Kj, a nonplanar graph.

3
5

{a} The constant term is 8, not 0. This contradicts Theorem 11.11.

{5} The leading coefficient is 3, not 1. This contradicts the result in Exercise 17 of Section

11.6.
{¢} The sum of the coefficients in -1, not 0. This contradicts Theorem 11.12.

() 2%y —ay® = ay(a® — y*) = ay(z ~ y){(= +y)
H z or y isoven then zy asnd zyle — y)z + y) arve both even, When z,y are both
odd, then &~y and 24y are botheven, asis ayle ~ y){r + yL

(b) 2p ;
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(¢) From part {a) 2’y —zy® = zy(z —y)(z +y) is always even. If the units digit of either
z or y is 0 or 3, then the result follows. Also, if =,y have the same units digit, then
z —y is a multiple of 10 and so is 2%y — zy°. In all other cases we have three positive
integers x,y,z with distinct units digits in the set V = {1,2,3,4,6,7,8,9}. By the
pigeonhole principle two of these integers, say ¢ and y, must be in the same component
(K;) of G. Since the component is complete, {z,y} is an edge, soeither z+y or z—y
is divisible by 5. Hence 23y — 2y® is divisible by 10.

(a) @1 = 2, @ = 3. For n > 3 label the vertices of P, as wv;,v;,v3,...,v, where the
edges are {vi, v}, {ve,v3},. .., {¥n-1,v,}. In constructing an independent subset S from
P, we consider two cases:

(1} v, & S: Then S is an independent subset of P, and there are a,.; such subsets.

(2) v, €S: Then v,y €S and S~ {v,} is one of the a,_, independent subsets of
P, .

Hence a, = @ne1 +Queg, R 23, 01 =2, @3 =3, 07 Gy = Gp-y1+@p3, n 22, a5 =1, g; =
2. So a, = F,43, the (n+ 2)nd Fibonacci number.

(b} Consider the subgraph of G; induced by the vertices 1,2,3,4. From part (a} we know
that this subgraph determines 8 (= Fj, the sixth (nonzero) Fibonacci number) independent
subsets of {1,2,3,4}. Therefore, the graph G; has 1 + Fy independent subsets of vertices.

Likewise the graph G; has 1 + F; independent subsets (of vertices), and the graph G,
determines 1 4 F, ;5 such subsets. '

(C) H]'3+F6=(22‘*1)+F5
Hz:3+F7n(22~1)+F7
H3:34 Fopy =(2"-1)+ Fopo

(d) There are 2° ~— 1 + m independent subsets of vertices for graph &' = (V', E').

Proof: First we prove that (7 is connected. If not, let Cy, Cs be two of the components of
& and let v;, vy € V with v, a vertex in C; and vy a vertex in . If () has ny vertices and
C; bas ny vertices, then 10 = deg(vy) + deg{vs) € (ny — D+ (ny — 1) = {n; + ny) ~ 2 < 8.
This contradiction tells us that & is connected.

Here |B| = (}) T, deg(v) = (£)(50) = 25. I G were planar, then we would have 25 =
[E] < 3]V| 6 = 3(10) — 6 = 24, according to Corollary 11.3. This contradiction now tells
us that & is nonplanar.
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CHAPTER 12
TREES

Section 12.1

(»

(b) &
By = 17 = |Va| = 18.  [V4l = 2|V} = 36 == | Ep| = 35.

(a) Let e1,es,...,e7 denote the numbers of edges for the seven trees, and let vy, vy, ... vy,
respectively, denote the numbers of vertices. Then v; = ¢; + 1, forall 1 <7 < 7, and
!%[=v1+v2+...+v7x(el +62++€7)+724O+7x47.

(b) Let n denote the number of trees in Fy. Then if ¢;, v;, 1 < i < n, denote the numbers of
edges and vertices, respectively, in these trees, it follows that v; = ¢; + 1, forall 1 <: < n,
and 62 = vy +vg+.. 4o, = (e +1)+ (e D)+ A (e +1) = (e1 ey +. . . 4e,)4n = Bl+n,
son = 62— 51 = 11 trees in Fj.

e=v—K
A path is a tree with only two pendant vertices.

(a} Since a tree contains no cycles it cannot have a subgraph homeomorphic to either Kj
or 3{3,3‘

(b I T=(V,E} is n tree then T is connected and, by part (3}, T is planar. By
Theorem 11.6, [V~ |E]+1=2 or |V|=|El+1.
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(a) Let z be the number of pendant vertices. Then 2{E| = ¥ oy deg(v) = z + 4(2) +
1(3)+2(4)+1(5) and |[El=|V|-1l=z+4+4+1+2+1~1=2+T.
So 2z +T7)==z+24 and z = 10.

(b) 2{E| = Loev deg(v) = vi + v3(2) + v3(3) + ... + vu(m)
El=Vl-1={vm+v+...v,)—1

v +va+...Fvm—1)=v+20 4. ..+ muy, 50 v; = vs+20+3v5+. .+ (m—2)p, +2,
and [Viswn+v+.. dvn=[wm+20u+...+(m—-2, +2]+vs+vz+...+v, =
vg+ 203 +3vg . (-1, +2, |[El=|V]|~1=v+2v3+...+(m— 1, + 1

If there is a (unique) path between each pair of vertices in G then G is connected. If
G contains a cycle then there is & pair of vertices z,y with two distinct paths connecting
z and y. Hence, (G is a loop-free connected undirected graph with no cycles, so G is a
tree.

31

Since T is a tree, there is a unique path connecting any two distinet vertices of T'. Hence
there are (’;) distinet paths in 7.

i G contains no cycles then ¢ is a tree. But then G must have at least two pendant
vertices. This graph has only one pendant vertex.

{a} In part (i) of the given
figure we find the complete C P
bipartite graph Kps Parts | a 3
(ii) and (iii} of the figure pro-
vide two nonisomorphic span-
ning trees for K3 B b b &
{b} Up to isomorphism these
are the only spenuing troes W (i
for K. 2,80

G}

Let V = {x,y,whm% -
and all edges have one vertex in ¥y and the other in V5. I T is a spanning tree for K,
then T has n ++ 1 edges and deg{z) + deg(y) = n + 1. So the number of nonisomorphic
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15.

16.

17.

18.

19.

20.

spanning trees for Ky, is the number of partitions of n into two (nonzero) summands.
This npumber is |(n 4+ 1)/2].

{a) 6: Any one of the six spanning trees for Cg (the cycle on six vertices) together with
the path connecting f to k.
{(b) 6-6=236

(1) This graph has 9 = 3-4 -3 = 3+ 3(4 — 2) vertices, so any spanning tree for it will have
eight edges. There are 12 = 3 - 4 edges (in total} so we shall remove four edges. Two edges
must be removed from one 4-cycle (a cycle on four vertices) and one edge from each of
the other two 4-cycles. When two edges from a 4-cycle are removed one must be from the
3-cycle (induced by a, b, and ¢} — otherwise, we get a disconnected subgraph. There are
three ways to select the 4-cycle for removing two edges and three ways to select the edge
not on the 3-cycle. We then select one edge from each of the remaining 4-cycles in 4 - 4
ways. So the number of nonidentical spanning trees for this graph is 3(4 — 1)(4%) = 144.

(2) Here the graph has 8 =43 —4 = 4 4 4(3 — 2) vertices and 12 = 4 - 3 edges. There are
4(3 — 1)(3%) = 216 nonidentical spanning trees.

(3) This graph has 16 = 4-5 — 4 = 4 -+ 4(5 — 2) vertices and 20 = 4 - 5 edges. There are
4(5 — 1)(5°) = 2000 nonidentical spanning trees.

(a) n2>2m+1
(b) Let k be the number of pendant vertices in T. From Theorem 11.2 and Theorem 12.3
we have

2An—1)=2|E| = 3 deg(v) > k+ m{n ~ k).

vEY
Consequently, [2(n — 1) 2 k+m(n — k)] = [2n -2 2 k 4+ mn — mk] = [k(m ~ 1) >
2—-Imt+mn=2+(m-2n22+(m-2)m+1)=24+m*~m—-2=m?~m = mim-1)],
so k > m.

Yoy deg(v) = 2|E} = 2(]V] — 1) = 2(999) = 1998.

{(a} If the complement of T contains a cut set, then the removal of these edges disconnects
¢ and there are vertices &,y with no path connecting them. Hence T' is not a spannmg
iree for .

{b) I the complement of C contains a spanning tree, then every pair of vertices in @
has a path connecting them and this path includes no edges of €. Hence the removal of
the edges in € from  does not disconnect G, so ' is not a eut set for G

(d} == (e} Let C beacyce (in G) with r vertices and r edges. Since &
is connected, the remaining vertices of ¢ can each be connected to a vertex in €
by a path (in G). Each such connection requires at least one new edge. Consequently,
in G, |E| 2 |V|, contradicting {V] = |E] + 1. So ( has no cycles and is connected,
and G is a tree. Let G be the graph obtained by adding edge {a,b} to G. Since
{a,b} & E, there is a unique path P, of length at least 2 in G, that connects ¢ to b. In
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&, PU{{a,b}}isacycle. f G’ contains a second cycle C), then C; must contain edge
{a,b}. If not, then G would contain a cycle. This second cycle C; = Py U {{qa, b}}, where
P, is a path in G and P, # P. This contradicts Theorem 12.1.

{e) == (a): If G is not connected, let Cy, C; be components of G with a € Cy,b € C,.
Then adding the edge {a, b} to G would not result in a cycle. Consequently, G is connected
with no cycles, so G is a tree.

(a) (i) 3,4,6,3,84 (i) 3,4,6,6,8,4

(b) No pendant vertex of the given tree appears in the sequence so the result is true for
these vertices. When an edge {z,y} is removed and y is a pendant vertex (of the tree
or one of the resulting subtrees), then the deg{z) is decreased by 1 and =z is placed in
the sequence. As the process continues either (i} this vertex & becomes a pendant vertex
in a subtree and is removed but not recorded in the sequence, or (ii) the vertex z is left
as one of the last two vertices of an edge. In either case z has been listed in the sequence
(deg(z)}—1) times.

()

(d) Input: The given Priifer code z4,23,..., Z4uz
Qutput: The unique tree T with n vertices labeled with 1,2,...,n. {(This tree T' has
the Priifer code @3, 23,...,&p-3.)

C = 21,29, ..., Tn-a) {Initializes C as a list (ordered set).}
L:={1,2,...,n] {Initializes L as a list (ordered set).}
T:=§ ‘

fori:=1lton—2do
v ;== smallest element in L not in C
w == first entry in C
T o= T U {{v,w}} {Add the new edge {v,w} to the present forest.}
delete v from L
delete the first ocourrence of w from €
T=TU{{y 2}} {The vertices y, z are the last two remaining entries in L.}

Let V be the vertex set for K,. From the previous exercise we know that there are
{n — 1)*? spanning trees for the subgraph of K, induced by V — v (namely, the complete
graph K, ;). For v to be a pendant vertex it can be adjacent to only one of the n — 1
vertices in V ~ v. Consequently, there are (n — 1)[(n ~ 1)*®] spanning trees of K,, where
v is a pendant vertex.
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23. (a) If the tree contains n + 1 vertices then it is (isomorphic to) the complete bipartite
graph K, , — often called the star graph. '
{b) If the tree contains n vertices then it is (isomorphic to) a path on n vertices.

24. Consider the Pritfer codes for the n™ % labeled trees on n vertices. For a given labeled
tree, the pendant vertices (of degree 1) have the labels which do net appear in the Priifer
code for that tree. I there are & pendant vertices, then there are k labels missing from
the code and these can be selected in (‘Z) ways. That leaves n — k labels that must all be
placed in the n — 2 positions of the Prifer code. This can be counted as the number of
onte functions from the set of n — 2 positions to the set of n — k labels — that is,

(n—Fk)! S(n—~2,n—Ek).

The result then follows by the rule of product.

25. Let E; = {{ﬁ, b} {b, C}; {C; ‘i}a {d7 8}, {by h}v {d,:&}, {f,g}, {973}} and
E; = {{a,h}, {b,3}, {h,i}. {g. R}, {f, 9}, {e,i}. {d, F} {e, }}.

Section 12.2

(&) fyhakapﬁissvt (b) & . (C) d
(d) efjqst (e) gt (f) 2
(g) k,p,q,&,t '

2. (a)

Vertex || Level Number
35

36

36

37

38

38

39

39

MW B OB 2 es oot

{hb) The vertex u has 37 ancestors.
(¢} The vertex y has 39 ancestors.

3. (&) l+w-—aysnT23 (b) 04

4. (8) B {(b) 21.3 {c} 4 (including the root)
(d) 2.1.3., 1< <5 213, 212, 211, 2.1, 2, 1.
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Preorder: r,jh,gedbaciikmpsnqt,v,wu-
Inorder: h,e,a,b,d,c,gdj,irmsplknyviwaqgu
Postorder: a,b,c,d,ef g hijs,p,myv,wiuqgunkr

Preorder: 1,2,5,9,14,15,10,16,17,3,6,4,7,8,11,12,13
Postorder: 14,15,9,16,17,10,5,2,6,3,7,11,12,13,8.4,1

(a)
(i) & (i) (i)

() @) (i)
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8. (i)
(b)Y (4} & (353) {ii}
a. {7 is connected.

18. {a) Here the manhmum height is n ~ 1,
{b} In this case n must be odd and the maxinmm height is (n — 1)/2.

1i. Theorem 12.6
(a) Each internal vertex has m children so there are mi vertices that are the children
of some other vertex. This accounts for all vertices in the tree except the root. Hence
n=mt+ 1
(b} fdi=n=mit+l=l=(m-—1}+1

334



12.

13.

14.

15,

() l={(m-1)i+1l=si=(~-1}/(m—-1)
n=mi+1l=>1i=(n-—1}/m.

(Corollary 12.1)

Since the tree is balanced m"* < £ < m* by Theorem 12.7.
mh1 < £ < mh = log,, (m* 1) < log,,(£) < log,, (m") ==
(h—1) <log, £ < h==>h=[log, £]. '

From Theorem 12.6 (¢} we have

(a) ({—=1)/(m~1)=(n~-1)/m=>(n—1){m~—1)=m{l—1) =2
n—1=ml-m)/(m—-1)=>n=[ml-m)/{(m-1)]+1=

[(md —m) + (m = 1)}/(m = 1) = (mf~ 1}/(m - 1).

by -1)/(m—-1)=(n-1)/m=>L—-1=(m—1)n-—1)/m =%
L=[m—-1)n—-1)+m]/m=|(m~—1n+1]/m.

(a) From part (a) of Theorem 12.6 we have |V| = number of vertices in T = 3i + 1 =
3(34)+1 = 1038. So T has 103 — 1 = 102 edges. From part (b) of the same theorem we find

that the number of leaves in T is (3 — 1){(34) + 1 = 69. [We can also obtain the number of
leaves as |V| ~ ¢ = 103 — 34 = 69.]

(b) It follows from part (¢) of Theorem 12.6 that the given tree has (817 — 1)/(5 - 1) =
816/4 = 204 internal vertices.

{a) (b)

{a} {b) 9,5 (¢} h{m ~ 1) {(h—1}4{m~—1})




ie.

i7.
18.

19.

20.

21.

23»

23.

24@

(a) From Theorem 12.6 (c), with £ = 25, m = 2, it follows that = (25—-1}/(2—1) = 24.
Hence 24 cans of tennis balls are opened and 24 matches are played.
(b} Either 4 or 5.

21845; 1+ m-+m?+. . .+ mh = (mh ~1)/(m -~ 1).

25+ 5%+ 5% 4 54+ 5° + 55+ 5°];  2[5° + 5% + 57

{1,2,3,4} - {8,10, 11, 12} - {5, 8,7, 8}

5,6 - 7.8}
{5}~ &}
7} - {8}

{1,2} - 13,4 {9, 10} - {11,12} |

{9} - (10}

{1} - {2} {11} - (12}

‘ |
{1t 8 2} 3} ¢ (4 {9} (i) (v} g (12 (5} ¢ {88 {7} 8 (8}

The number of vertices at level A — 1 is m*~!, Among these we find m”*1 — §;,_; of the
leaves of T'. Each of the b,y branch nodes account for m leaves (at level k). Therefore,
[=mht —by_y +mbp_q = m" 4 (m — Dbyy.

Let T be a complete binary tree with 31 vertices. The left and right subtrees of T" are then
complete binary trees on 2k + 1 and 30 — (2k + 1) vertices, respectively, with 0 <k < 14.

The number of ways the left subtree can have 11(= 2.5+ 1) vertices is (}) (? ) This leaves
19(== 2.9+ 1) vertices for the right subtree where there are (i%)(l,:’) possibilities. So by the

rule of product there are ( %)(}5‘})(3%)(15’) = 204, 204 complete binary trees on 31 vertices
with 11 vertices in the left subtree of the root. A similar argument tells us that there are
(ﬁ)(fg)(%}gﬁ) = 235, 144 complete binary trees on 31 vertices with 21 vertices in the right
subtree of the root.

Bppt = Goly + F1lney + Ga8n.g + 00 b G318y + Gu0p
[Compare with the equation for b,y in Section 10.5.]

(a) 1,2,5,11,12,13,14,3,6,7,4,8,8,10,15,18,17
{b} The precrder traversal of the rooted tree.

(a) 11,12,13,14,5,2,6,7,3,8,9,15,16,17,10,4,1
{b) The postorder traversal of the rooted tree.

Here the algorithm is iterative, while the one given in Definition 12.3 is recursive.
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Section 12.3

i. {&) Ly: 1,3,5,7,8 Ly 2,4,6,8,10
by Ly: 1L,3,87,....2m~3,m+n
Lyt 2,4,6,8,...,2m~—2,2m ~ 1,2m, 2m-§~§ B |
2. {ﬁ?ﬁ} 3,0, 2,2, 3 f - 8, =3,5; 1,8
=1,0,2 < =2,3 6,=3,5 1,4
=i,8 = 2 - \— 3 6,3 -/5 \- g
vl \
=% J// Y 2 =2 3 f,/gk =3 \\5 | \\H
-S/A\O 6 3
¥ 0 6 -3- Tttt T TTTTTT
VvV V
el 3,58 1,
-2,=1,0,2,3 -3,1,8 5,6
-3,-2,~1,0, |213b.05'6
(bv} "’v?o“: 11050‘8 - ‘59"33"2n6- 10,3
1,7.8 - 11,5,-8 15,=3,-2 = 6,10,3
7 \. 11.5\— -8 15,3 L -2 6, 10\_ 3
AN N A
MEAT ] ] %1 /-\ 3 -8 15 /\‘3 -2 6/f\10' 32
- 7 11 5 15 =3 & 1o
w%b/f7 Ei\w/? s -3 g B ;B“ o
w ,;f\/‘l 5.V8 -}/{/—-Z 6,10 %
B, 5, 11 w3 =, 15 3. 6,10

og,a{\/

B, =1,8,5,7, 11

"'3v ‘23 3 6: 399 5

‘“’as ”’39 ""au*“?a?s ﬁg 55 &3?5 ﬁﬁg %gg E -
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(2}

{~1.02.~236.-3514)

(-3} (-2} {654}

(b)

(-8}
{~3}

To establish this result we use mathematical induction {the alternative form). We know
that g(1) < g{2) < ¢9(3) < ¢(4). So we assume that for all 1,5 € {1,2,3,...,n},

i < § == g(1) £ g{j). Considering the case for n+ 1 we have two results to examine.
(1) En+1lisodd then n+1 =2k +1 for some & € Z%. In the worst case, g(n+1) =
g(2k+1) = g(k)+glb+ 1)+ k+{k+1)~1] = g(B) 4+ g(b+1) 42k = g(k)+g(k)+(2k~1) =
g{2k) = g(n), since g(k+ 1) > g(k} by the induction hypothesis.

(2) I n+1iseven, then n-1=2¢ for somet € Z*. In the worst case, g(n+1) = g{2{) =
g(t)+g(t)+ [ +E -1 = g(t) + () + (2~ 1) 2 g(t) +9(t - 1) + (28— 2) = g(2¢ - 1) = g(n),
because g(t) 2 g{t — 1} by the induction hypothesis.

Consequently g is a monotone increasing function.
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8.

Section 12.4

(a) tear {(b) tatener (¢} rant

g=y=zg=1

ar 111 e 10 h: 010

b: 110101 £ 0111 i: 00

c: 0110 g 11011 jr 110100

d: 0001 '

(a) 2° (b) 27 (c) 2% (d) 2

Since the tree has m” = 279,936 leaves, it follows that m = 6. From part(c) of Theorem
12.6 we find that there are (m” — 1}/(m — 1) = (278,935)/5 = 55,987 internal vertices.

m= Ldmbmiaebmh = (1-mP) (1-m) = (mM =1)/(m—1), s0 v(m—1)+1 = mr*L,
Consequently, h + 1 = log [o{m — 1} 4 1 and & == log, [v(m ~ 1) + 1] - L.

30
10 4 20
10 10
5 5
P 3

Amend part (a) of Step 2 for the Huffman tree sigorithm as follows. If there are n{> 2)
such trees with smallest root weights w and «', then

(i) if w < w' and n — 1 of these trees have root weight v', select a tree {of root weight w')
with smallest height; and

(i) if w = v (and all n trees have the same smallest root weight), select two trees (of
root weight w) of smallest height.

(a) Tomerge lists Ly and L, requires at most 75 +40 — 1 = 114 comparisons (from
Lemma 12.1), for Lz and L4 at most 1104 50 — 1 = 159 comparisons. Merging the
two resulting lists then requires at most 115 + 160 — 1 = 274 comparisons for a total of
at most 114 -4 1589 4 274 = 547 comparisons.

(b) At most 114; at most 224 (338 at most, in total); at most 274 (in total, at most 612).
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2.

4.

(c) Merge L, and L, then merge the resulting list (for L, L) with L, and finally merge
the resulting list (for L;, Ly, Ly) with L. This requires at most a total of 8341644274 =
527 comparisons.

(d) In order to minimize the number of comparisons in the sorting process construct an
optimal tree with the weights w;, 1 <1 <n, given by w; = |L;].

Section 12.5

The articulation points are b,e, f, h,7,%&. The biconnected components are
By: {{a,b}}; Ba: {{d,e}};

B3 : {{ba C}; {C%f}) {fa 3}5 {69 b}}f Bé : {{f) g}% {g7 h’}a {haf}}s

Bs: {{h,i}, {45}, {5, R} Be: {{7,k}}

BT : {{kap}v {p7 n}? {nvm}= {?na k}o {P,m}}-

If every path from z to y contains the vertex z, then splitting the vertex 2z will result
in at least two components C,,C, where z € C,, y € C,. If not, there is a path that
still connects 2 and y and this path does not include vertex z. Conversely, if z is an
articulation point of & then the splitting of z results in at least two components Cy,C;
for G. Select z € (), y € ;. Since G is connected there is at least one path from z to
y, but since z and y become separated upon the splitting of z, every path connecting =
and y in G contains the vertex z.

{a) T can have as few as one or as many as n — 2 articulation points. If T contains a
vertex of degree (n — 1), then this vertex is the only articulation point. I 7 is a path
with n vertices and n —1 edges, then the n— 2 vertices of degree 2 are all articulation
points.

{b) In all cases, a tree on n vertices has n —1 biconnected components. Each edge is a
biconnected component.

{a) From Exercise 2, if v is an articulation point in T then there are vertices z,y
where every path from 2z to y includes vertex v. Hence deg{v) > 1. Conversely, if
deg(v) > 1,let a,b €V such that {a,v}, {v,b} € E. Then in splitting vertex v, the tree
is separated into components C,,Cy containing a, b, respectively. If not, there is another
path from a fo & that does not include v. This contradicts Theorem 12.1.

(b} Sinece @ is connected,  has a spanning tree T = (V, E’}. This tree has at least
two pendant vertices. Let v be a pendant vertex in T. If » is sn articulation poini of
(¥, then there ave vertices z,y in G such that every path conpecting =z and y contains
v. But then one of these paths must be in 7. So degy{v) > 1, contradicting v being a
peudant vertex.

X(G) = max{x(B;)|l <i <k}
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The graph G has ny - ny - - - ng distinct spanning trees.

Proof: Suppose that G has a pendant veriex, say z, and that {w, z} is the (unique) edge
in ¥ incident with z. Since [V] > 3 we know that deg{w) > 2 and that
®(G ~ w) > 2 > 1 = k(). Consequently, w is an articulation point of G.

ect) e(z/)
a(z)
F3)

B4 yg(7)

04 L

ces)

(a) The first tree provides the depth-first spanning tree T for G with e as the root.
(b) The second tree provides (low'(v), low(v)) for each vertex v of G (and T'). These results
follow from step (2) of the algorithm. )

For the third tree we find (dfi(v),low(v)) for each vertex v. Applying step (3) of the
algorithm we find the articulation points d, f, and g, and the four biconnected components.
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10.

gl )
p (1) o2, 1 d(.z,k.)
d(2) a1, b, 1
HE) b(8) 2, 2) \o b(1, 1} e i

/ / fo! Yes, 2)
5?‘(4)1 e(6) g3, 3) e(z, 2 f ‘\
/ g4, e ¥aw, 3
Ris) a(h) hia, 46 a3, 3 g /.

¢
hiS, 4)

(a) The first tree provides the depth-first spanning tree T for ¢ where the order prescribed
for the vertices is reverse alphabetical and the root is c.

(b) The second tree provides (low'(v),low(v)) for each vertex v of G (and T). These results
follow from step (2) of the algorithm.

For the third tree we find (dfi(v),low(v)) for each vertex v. Applying step (3) of the
algorithm we find the articulation points d, f, and g, and the four biconnected components.

The ordered pair next to each vertex v in the figure provides (dfi(v},low(v)). Following
step (3) of the algorithm for determining the articulation points of G we see here that
this graph has four articulation points — namely, ¢, ¢, f, and h. There are five biconnected
components — the figure shows the spanning trees for these components.
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11.

12.

13.

d(g,3)

No! For any loop-free connected undivected graph G = (V, E} where V] 2 2, we have
low(zy) = low{z;) = 1. (Note: Vertices x; and z; are always on the same biconnected
component. }

(a) The vertex set for each graphis V — {v}. If ¢ = {z,y} isanedgein G —v then
e is not in G — v, and since z,y # v, ¢ is an edge in G — v. For the opposite inclusion
if e={z,y} isanedgein G —v, then z,y # v and e is not an edge in G, nor the
subgraph G —v. Here ¢ is an edgein G —wv.

Since G —v and G — v have the same vertex and edge sets, these graphs are equal.

{(b) If v is an articulation point of G, then «(G —v) > k(G), s G—~v is not connected.
But then & — v is connected. So #(G —v) = (G —v) =1 < (&), and consequently v
cannot be an articulation point of &.

Proof: If not, let v € V where v is an articulation point of G Then «{( ~ v} > «(G) = 1.
{From Exercise 19 of Section 11.6 we know that G is connected.) Now v is disconnected
with components Hy, Hy, ..., Hy, for t > 2. For 1 <i <¢, let v; € H;. Then H;+visa
subgraph of G — vyy1, and x(H; +9) < x(G — viyy) < ¥(G). (Here vy == v;.) Now let
x{G) = n and let {e;,¢2,...,¢a} be a set of n colors. For each subgraph H; +v, 1 <& <4,
we can properly color the vertices of H; 4 v with at most n — 1 colors — and can use ¢
to color vertex v for all of these f subgraphs. Then we can join these ¢ subgraphs together
at vertex v and obtain a proper coloring for the vertices of G where we use less than
n{= Y(G)) colors.
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14.

1.

5!

6.

No! Consider the graph and breadth-first spanning tree shown in the figure. Here {¢,d} €
E and {c,d} € E', but ¢ is neither an ancestor nor a descendant of d in the tree 7.

Supplementary Exercises

If ¢ is a tree, consider G as a rooted tree. Then there are A choices for coloring
the root of G and (A — 1) choices for coloring each of its descendants. The result then
follows by the rule of product.

Conversely, if P(G, A} = A(A —1)""1, then since the factor A only occurs once, the graph
G is connected. P(G,A) = AMA~-1""1 =X —(n-1A"" 4. 4+ (~1""*X = G has
n vertices and (n — 1) edges. Therefore by part (d} of Theorem 12.5, & is a tree.

Model the problem with a complete quaternary tree rooted at the president.
(a) Since there are 125 executives (vertices) there are 124 edges (phone calls).

(b) The total number of executives making calls is the number of internal vertices. From
Theorem 12.6 (c), i = (125 — 1}/4 = 61. So 60 executives, in addition to the president,
make calls.

(a) 1011001010100
(b) (i) (if)

{¢c) Simoe the last two vertices visited in » preovder traversal are leaves, the last two
symbols in the characteristic sequence of every complete binary tree are §0.

(&) {}’311} {3723} {4’79} {6315} {”5?18} {277} {“18735} {"2?5}
{-5,1,11,18) {2,3,7,23} {-10,4,9,35} {-2,5,6,15}
{-10,-5,1,4,9,11,18,35} {-2,2,3,5,6,7,15,23}
{-10,-5,-2,1,2,3,4,5,6,7,9,11,15,18,23,35}

(b) Tha(-12*

We assume that G = {V, E)} is connected ~ otherwise we work with a component of G.
Sinee ¥ is conmected, and deg{v) 2> 2 for all v € V, it follows from Theorem 12.4 that
G is not a tree. But every connected graph that is not a tree must contain a cyele.

From the first part of the definition of R the relation is reflexive. To establish the antisym-
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2.

10.

metric property let 2Ry and yRz for 2,y € V. 2Ry =3 z is on the path from r to y. If
z # y then z is encountered before y as we traverse the (unique} path from r to y. Hence
by the uniqueness of such a path we cannot have yRz. Hence (aRy AyRe) == z = y.
Lastly, let z,y,z € V with ¢Ry and yRz. Then 2 is on the unique path from r to y and y
is on the unique path from r to z. Since these paths are unique the path from r to z must
include z so 2Rz and R i3 transitive.

For 1 < i< n), let z; = the number of vertices v where deg(v) = i. Then
Ty 4Tt F2pg = |V]=|El+1,80 2JEl=2(~1+ 21+ 23+ ...+ 2y1). But 2|]E|=
Yooey deg(v) = (21 + 222+ 323+ ...+ {(n—1)zyq). Solving 2(~1+ax;+23+... .+ 2y q) =
4203+ A (n—1)z,. for z;, we find that z; = 24234204+ 325+. . . +{(n—3)zpy =
2+ ngg(w)a‘s {deg;(v,- ) - 2}'

(a) Foralle € E, e = e, s0 eRe and R is reflexive.
I e;,e0 € E with e; # e; and e;RKey, then e; and e; are edges of a cycle C of G.
Hence e, and e; are edges of the evcle €, so e;Re; and R is symmetric.

Let ey,e3,e3 be three distinet edges with e;Re; and e;Resz. Let € be a cycleof G
containing e;,e; andlet €y be a cyele of G containing ez, es. If O 3£ Cy, let € be
the cycle of G made up from the edges of C), s, where common edges are removed. (In
terms of edges, C = C;AC,.) Since e,¢e3 are on ' we have e;Res, and R is transitive.

(b) The partition of E induced by R provides the biconnected components of G.

(a) G* is isomorphic to Kj.
(b) G* is isomorphic to K.

{¢) G* is isomorphic to K, 4, so the number of new edges is (“;1) —n = (’;)

(d) If G* has an articulation point =z, then there exists u,v € V such that every
path (in G?)from u to v passes through z. (This follows from Exercise 2 of Section
12.5.) Since G is connected, there exists a path P (in G) from u to v. U
r is not on this path (which is also a path in G®), then we contradict 2 being an
articulation point in G®, Hence the path P (in @) passes through z, and we can write
Pt —s g~ oo Upq = Uy~ T F Uy = Uppyy =3 ... = Uy~ v, But then in G we
add the edge {u,,v.}, and the path P’ (in G*) given by P': u— 4y — ...~ Uy g —
Uy =+ Upy = U = ...~ Uy —+ ¥ does not pass through z. So z is not an articulation
point of G?, and G? has no articulation points.

{a) For the minimum value of [V| we have six leaves at level 8 and the other 87 — 1 leaves
are at level 7. Since there arve 67 4 5 leaves, it follows from part {¢} of Theorvern 12.6 that
IV]=(6/5)[(6" +5) — 1] + 1 = 335,928

For the maxinmm value of |V we have one leaf at level 7 and the other (67 ~ 1)(6) leaves
are at level 8. So there are (6% — 6) + 1 == 6° — § leaves in total. Once again we use part
{¢) of Theorem 12.6 to find that |V] = (6/5){(6% — 5) — 1] 4 1 = 2,015,533.

(b} Let £ denote the number of leaves in T'. For the minimum case £ = (m*? ~ 1} 4 m =
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12’

m*t 4 (m — 1) and |V] = [m/(m — Dj[m* ! + (m ~ 1) — 1] + 1. For the maximum case
we have £ = m(m*? — 1)+ 1=m* -~ m+ 1 and |V]| = Im/(m - 1)]Im* — m] + L.

(a) £y = buey + Lyeg, for n > 3 and ¢; = £3 = 1. Since this is precisely the Fibonacei
recurrence relation, we have [, = F,, the nth Fibonacei number, for n 2> 1.
(b) i, = th1 + g2+ 1,7 23,4 = ¢; = 0. The summand “+1” arises when we count
the root, an internal vertex.
{(Homogeneous part of amlutwn):

z("} == z{ ) -%—zn_g, n>3

iM) = Aa” 4 BA*, where o = (14 v5)/2 and 8 = (1 — B)/2.
(Particular part of solution}):
i?) = C, a constant
Upon substitution into the recurrence relation ¢, = 4,1 + tn—z + 1, n > 3, we find that
so C = -1,
and i, = Ae”™ + BF® - 1.
With 7y = 13 = 0 we have
0=i1 zAOl“‘f‘Bﬂ“l
ﬁxig 2A6¥2+B,62M1,
and consequently,
= (o 1)/[8(a ~ B)] = [((1 + VB)/2) — /(1 ~ VE)/2)(VB)] =
1+ /5 = 2)/[(1 - V5)(VB)] = ~1/V5, and A = [1 — Bf}/a = 1/+/5. Therefore,

in = (1/VB)a" — (1/VB)* ~1=F, - 1,

where F, denotes the nth Fibonacei number, for n > 1.
() vn =€y + iy, for all n € Z*. Consequently, v, = F, + F, — 1 = 2F, — 1, where, as in
parts {(a) and (b), F, denotes the nth Fibonacci number.

{a) For the graph G5 in Fig. 12.48 (d) there are 12 nonidentical spanning trees in total.
{b) Consider the graph G,,4;. Here the nonidentical spanning trees arise from the following
three cases any two of which are mutually exclusive.

{1) The edge {e,n + 1} is wsed: Here we can then use any of the ¢, nonidentical
spanning trees for 7, and the result is a spanning tree for Gz,

{2) The edge {n + 1,8} is used: Here we have a situation similar to that in {1} and
we get 1, additional nonidentical spanning trees for Gpyi-

(3) The edges {a,n + 1}, {n + 1,5} are both used: Now for each vertex i, where
1 £ ¢ € n, we have two choices — include the edge {a,1} or the edge {¢,5} (but nef both).
In this way we obtain the final 2° nonidentical spanning trees for G4,

The results in (1}, (2}, and {3} lead us to the following recurrence relation:

{#) t,@+§ = .,,5 4 2 i} = 1, 2 ;'_’_ 1.

346



13.

{(Homogeneous Solution): ¢, = 2¢,
#3 = A(2"), A a constant.

(Particular Solution): (P} = Bn(2"), B a constant.
Substituting %) into equation (*) we find that
B{n 4 1)}(2"*1} = 2Bn(2%) + 2"
Bn(271) + B(2**1) = Bn(2") + 2°

Consequently, 2B(2") = 2" and 2B = 1, or B = 1/2. Therefore, t,, = A(2")+(1/2)n(2") =
A(2™) + n271,

Sincety =1=A(2)+1, A=0and ¢, =n2"1 n> 1

{a) For the spanning trees of G there are two mutually exclusive and exhaustive cases:
(i) The edge {z1,y:} is in the spanning tree: These spanning trees are counted in b,.

(ii) Theedge {z;,3} isnotin the spanning tree: In this case the edges {z;,23}, {1,142}
are both in the spanning tree. Upon removing the edges {zy, 23}, {31, %2}, and {z1, 11},
from the original ladder graph, we now need a spanning tree for the resulting smaller ladder
graph with n — 1 rungs. There are a,_, spanning trees in this case.

(b) Here there are three mutually exclusive and exhaustive cases:

(i) The edges {z;,2z2} and {yi,y3} are both in the spanning tree: Delete {zq,2;},
{y1,1:}, and {z1,1} from the graph. Then b,_; counts those spanning trees for ladders
with n — 1 rungs where {2;,y;} is included. For each of these delete {z3,y;} and add
{317:62}7 {yh yﬁ} and {xlvyl}~

(ii} The edge {z1,22} is in the spanning tree but the edge {y1,¥42} is not: Now the
removal of the edges {z;,11}, {#1,%2}, and {y1,¥2} from G results in a subgraph that
is a ladder graph on n — 1 rungs. This subgraph has @,.; spanning trees.

(iii) Here the edge {y1,¥2} is in the spanning tree but the edge {z,,23} isnot: Asin
case (ii) there are a,.; spanning trees.
On the basis of the preceding argument we have b, = b,.; + 2a,..1, n > 2.

{c) Gy = gy b,

by = byey + 2844

o 55 gt ey b 2y = g 4 By

by =2 Gy = Gyay, 50 Byt = Gpe = Gueg

£y, == 3#3%%1 * By ™ Gy 4:&'6%“2 - ey T z 39 dy = }7 Gy W 4
Gy~ 4apy + Oy = 0

72 by 41 =0

r=(1/2) 4+ VI6—4) =243

So a, = A2+ V3)* + B(2 — /3)"

=0 A+ B=lm B -4,
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a; =1= A2+ V3)— A2~ V3) = 24V/3 = A =1/2v/3 and B = ~1/24/3
Therefore a, = (1/(2VINI2 + V3 (2 ~ VB3], 0 2 0.

14. (a)

For m» even, & =nf2 and 4 = £ +1

For n odd, & =4£;+1 and £ = [n/2]

(b) Label the vertex of degree 1 with the label 1. Label the other n vertices (one vertex
per label) with the labels 2,3,...,n,n+ 1.

(¢) For |V]| =4 the only trees are a path of length 3 and K, 3. These are handled by
parts (a) and (b), respectively.

For |V|=>5 there are three trees: (1} A path of length 4; (2) Ki4; and (3) The tree
with a vertex of degree 3. Trees (1) and (2) are handled by parts (a) and (b}, respectively.
The third tree may be labeled as follows.

|
4 3 ﬁ<
2

For |V| = 6, there are six trees. The path of length 5 and K5 are dealt with by parts
(a) and (b), respectively. The other four trees may be labeled as follows.

e
By
ﬁﬁ-ﬁ;—--. o
(7 )
R E- Y
{2
&
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15. (a) (i) 3 (i) 5
(b} Gy = gy + Opegs T 2 53 az = 2, iy = 3.
@y, = Fie1, the (n 4+ 1)st Fibonacd number,

¢ 7 &

2 K]
» f\[/
AN

# R I3 2T
2 g 2/ 29 7 8 2 7F

£ & B IZ n g

16.

17. Here the input consists of
{a) the k (= 3) vertices of the spine — ordered from left to right as vy, vg,..., v
(b) deg(w;), in the caterpillar, for all 1 < ¢ < k; and
{¢) n, the number of vertices in the caterpillar, with n > 3.

I k = 3, the caterpillar is the complete bipartite graph (or, star) K ,.,, for some
n > 3. We label v; with 1 and the remaining vertices with 2,3,...,n. This provides the
edge labels {the absolute value of the difference of the vertex labels) 1,2,3,...,n~1-a
graceful labeling. ,

For k& > 3 we consider the following.
{=2 {£ is the largest low label}
hiz=mn-1 {his the smallest high label}
label vy with 1
label vy with n
fori:=2to k~1do
if 2{/2] == ¢ then {i is even}
begin
if v, has unlabeled leaves that are not on the spine then
assign the deg{v;) — 2 labels from £
to £ + deg{v;} — 3 to these leaves of v;
assign the label £+ deg(v;) — 2 to vy

349



L= £+ deg(v;) — 1

end
else
begin
if v; has unlabeled leaves that are not on the spine then
assign the deg(v;) — 2 labels from h — [deg{v;} — 3]
to h to these leaves of v;
assign the label b — deg(v;) + 2 to v; 4
hi=h—deg(v;)+1
end
18. (a) Fig. 12.50 16001000010001
Fig. 12.51 100001000010000100001

(b) Yes, when the caterpillar is a path.
(¢) Yes, when the caterpillar is the complete bipartite graph (or, star) K -1, where n > 3.

(d)

1111

& & L & = ]
. - ® 1011
e ° 1001

There are three nonisomorphic caterpillars on five vertices. Two of the corresponding
binary strings are palindromes.
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PP 11111

10111

11011

10101

10001

& 10011

There are six nonisomorphic caterpillars on six vertices. Four of the corresponding binary
strings are palindromes.

(£) Since the caterpillar has n vertices it has n — 1 edges, and its binary string has n — 1
bits, where the first and last bits are 1s. For each of the remaining n ~— 3 bits there are two
choices ~ 0 or 1. This gives us 2°~* binary strings. However, for each binary string s that is
not a palindrome, the reversal of that string — namely, s® — corresponds with a caterpillar
that is isomorphic to the caterpillar determined by s. So each pair of these strings — s
and §® ~ determines only one (nonisomorphic) caterpillar, Purther, each palindrome also
determines a unique caterpillar. ¥or the palindromes we have two choices for each of the
first [{n — 8)/2] positions (after the first 1). So there are 21"~/ binary strings that are
palindromes. Consequently, 2%~ 4 2[(+~3/%1 sounts each of the nonisomorphic caterpillass
or n vertices twice. Therefore, the number of nonisomorphic caterpillars on n vertices, for
n > 3§, is (1/2)(273 4 2ft=-3)/20),
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19. () 1,-1,1,1,~1,—1 1,1,-1,1, -1, -1 1,-1,1,-1,1,~1
(b)
®7 r r
In total there are 14 ordered rooted trees on five vertices.
(¢) This is another example where the Catalan numbers arise. There are (15 (i") ordered
rooted trees on n + 1 vertices.

20. {(a) Consider the case for n = 4, shown in part (a) of the figure. The five spanning
subgraphs in parts (b)—(f) of the figure provide pairwise mutually exclusive situations that
account for all the spanning trees of the graph given in part (a). As we scan the figure
from left to right we find that

3
ta=ts+ila+b+t+to=13+ ) .
1==0
This result generalizes to provide t,41 = ¢, + Yoo fs.
¥ # # 4 Vs
A
7 g 3 3 63
2 Z 2 2 ez
&
0 Y] 7 |2 {10 71 4 |
it (z) () @) )
(b)
in-é,«}; =y b Z::;a} tsf
= .+ TGt

Uy + [y + 5000
3tn - tmwhn Z 2
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21.

(C) tn..g._} = 3tn - tﬂwl,n E”. 2,?&2 == 3,#1 = 1.

Let £, = Ar®, A5 0,r 5# 0.

PP=3r+1=0

r={(3£+5)/2

So t, = B[(3 + v5)/2}" + C[(3 — V5)/2]".

Sinee 1 = t; = B{(3+ v/5)/2] + C{(3 ~ /5)/2] and

3 =t = B[(3+ v5)/2)] + C[(3 - V5)/2%,

we find that

Consequently, t, = (1/v5)[(3 + v8)/2]* - (1/VB)(3 - vB)/2]" n 2 1, to = 1.

Recall that the nth Fibonaccl number F,, is given by
F, = (1/VB)[(1+ V5)/2" ~ (1/VB)[(1 ~ VB)/2",n 2 0.

For n 2 1, Fa = (1/VB){(1 + v5)/2P" ~ (1/VE)I(1 = vB)/2]™ = (1/V/5)[(1 + VB)*/4]" ~
(VB — VB /4" = (1/VB)(3 + VB)/2]" = (1/VE)I(3 = V5)/2]" = ta.

(a) There are (Z) ~2 = 8 nonidentical (though some are isomorphic) spanning trees for the
kite induced by a, b, ¢, d. Since there are four vertices, a spanning tree has three edges and
the only selections of three edges that do not provide a spanning tree are {a, ¢}, {4, ¢}, {a, b}

and {a, 8}, {a,d}, {b,d}.

(b) Thereare8-1-8-1:8-1-8 = 8! nonidentical (though some are isomorphic) spanning
trees of G that do not contain edge {c,h}. These spanning trees must include the edges
{g, &}, {{, p}, and {d,0}, and there are eight nonidentical (though some are isomorphic)
spanning trees for each of the four subgraphs that are kites.

(¢) Consider the kite induced by a,b,¢,d. There are eight two-tree forests for this kite
that have no path between ¢ and d. These forests can be obtained from the five edges of
the kite by removing three edges at a time, as follows:

(i) {eb},{a,c},{bc} (i) {a,c}, {b,¢},{b,d}
(i) {a,c}, {a,d} {b,c} ) {a,b},{ad}, b,d}
(V) {“: d}s {’E’; C}: {bw d} (W) {aﬁ c}'; {(E? d}* {ba d}
{(vit) {a,b},{e,d},{b,c} (viii) {a,b},{a,c},{b,d}

Vertex c is isolated for (i), (i1}, (i1}, For (iv), (v}, {vi), vertex d is isolated. The forests for
(vii), (viii) each contain two disconnected edges: {a,c}, {b, d} for (vii) and {a, d}, {b, ¢} for
{viii),

Consequently, there are 4-8-1:8-1-8-1.8.1 = 4 - 8 nonidentical (though some are
isomorphic) spanning trees for G that contain each of the four edges {¢, 1}, {g,k}, {L, 0},
and {d, o}.

(d) In total there are 4 - 8% + 4 - 8% = 2(4 - 8*) nonidentical (though some are isomorphic})
spanning trees for G.

(e) 2n8"
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1.

Section 13.1

CHAPTER 13
OPTIMIZATION AND MATCHING

(a) If not, let o; € S, where 1 <i<m and i is the smallest such subscript. Then
d(vg,v;) < d{vg,Vsns1), and we contradict the choice of v,y a8s a vertex v in S for
which d{vg,v) is a minimum.
(b) Suppose there is a shorter directed path (in &) from wvg to wvg. If this path passes
through a vertex in S, then from part (a) we have a contradiction. Otherwise, we have a
shorter directed path P” fromm vy to vy and P” only passes through vertices in 5.
But then P" U {(vk, Vi1 )s (Vkt1,V642)s - - 5 (Vm—1) Y )y (Um, Uima1 )} 18 & directed path (in
G) from vy to vm4a, and it is shorter than path P.

(a) Initialization:

First Iteration:

(Counter = 0) a = vy, Sp = {a}. Label a with (0,—) and

the other six vertices with (oo, ~).

:-S?O = {b’c’f’g? h93’}

L{b} = 14, L(g) = 10, L(h) = 17.

So we have the labels: g :(10,a); b: (14,a); & : (17,a).

L{v) =00 for v =c¢,f, and ¢, Hence v; =g, S = {a,9}
and the counter is increased to 1.

Second Iteration: 8y = {b,c, f,h,i}

L{b) = 13 = L({g) + wt(g, b} < 14, so b is now labeled (13,¢).
L(k) = 16 = L{g)+wi(g,h) < 17,50 k is now labeled (18,g).
L3} = 14 = L{g) + wi(g,i) < oo, so ¢ now has the label
(14, 9).

The vertices ¢, f are still labeled by (oo, ~). Now we find
vy = b and we set S; = {0,¢,b} and increase the counter to
2.
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Third Iteration:

Fourth Iteration:

Fifth Iteration:

Sixth Iteration:

(b) ¢:

() f:

Sg = {C,f-,.k,i}

L{c) = 22 = L{b) + wi(b,c) and c is labeled (22,5).

L{f) = 23 = L{b) + wi(b, f) and f is labeled (23,5).

L{k) =16 and h is labeled (16,¢).

L{:) =14 and i is labeled (14,g¢).

Now we have vs =¢ with S3 = {a,g,b,7} and the counter is
increased to 3.

Ss={e, f,h}

L{c) =22 and c¢ is labeled (22,5).

L(h) =15 = L{i) + wi(s,h) < 16 and h is labeled (15,1).
L(fy=21=L{i) + wi(d, f) < 23 and f islabeled (21,3).
Here we have vq = h, Sy = {a,9,b,¢,h} and counter is now
assigned the value 4.

Ss={c, f}

L{c) =22 and c islabeled (22,5).

L{f) =21 and f islabeled (21,:).

Now vs = f, S5 = {a,9,b,%,h, f} and the counter is increased
to 5.

55 == {C}

L{c) =22 and c islabeled (22,0).

Here vg = ¢, Sg = {a,¢,b,1, h, f, ¢}, and now counter = 6 =
7~ 1= |V]| -1, so the algorithm terminates.

{e,9},{9, b}, {b,c} i Aa,9},{9,i}, {3, f} i: {a,9},{9,4}
(a) d{a,b)=25; dla,c)=

{(a, ), (c. )}
{(a, ), (b, h}}

6; dla, f)=12; d{a,g) = 16; d(a,h) = 12
{(a,b),(b,k),(h, 9)}

{a) Order the vertices of G as [a,b,¢, f, g, k.
For Ly we get the following array of labels: [oo, 00,0, 00, 00, 00}, and 5, = {z}.
In a similar manner we obtain the arrays:

.55;:

Ly -
Ly :
Ly
Ls:

[oo,00,0,6,00,1
i1, 00,0,6,15,1
17, 00,0,6,14, 1
17, 00,0,6,14,1
[17,22,0,6,14,1

EZ 491 == ’iﬂsf}

0 Sz ={c, f, b}

}L: E%i == {i:h}i&' g}

6%5 54 - {Cvf h gsa}
}r = {¢, f, h,g,0,b}

{(b) Order the vertices of & as [a,b,¢, f,9,h,1].
We cbtain the following srrays for the six iterations:
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Lg: [0,00, 00,00, 00, 00, 00]; S = {a}

Ly {(}9 14, co, 00, 10,17, 00}; 5y = {&79}
Lg: (0,13, 00,00,10, 16, 14]; 5; = {a,9, b}
Ls: [0,13,22,23,10,186,14]; S5 = {a,9,b,i}

Ly: [0,13,22,21,10,15,14); Sy = {a,9,b,%,h}
Ls: [0,13,22,21,10,15,14); S5 = {a, g, b4, h, f}
Lg: [0,18,22,21,10,15,14}; S5 = {a,9,5,4,h, f, ¢}

5. False — consider the weighted graph

Section 13.2

1. Kruskal’s Algorithm generates the following sequence (of forests) which terminates in a
minimal spanning tree T of weight 18:

(1) Fy = {{e, h}}, (2) B2 = Fy U {{a,b}},
(3) Fs = F U {{b,c}}, (4) Fo=F3U {{d, e}},
(5)F5“‘-=F4U{{€,f}}, (6)F63F5U{{a,e}},
(7) Fr = Fs U {{d,g}}, (8) Fo =T = Fu{{f,i}}.

Note: The answer given here is not unique.
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4.

8.

7.

No! Consider the following counterexample:

1 w
Here V = {v,z,w}, E = {{v, s}, {x,w}, {v,w}} and B’ = {{v,z}, {z,w}}.

Gary — South Bend (58); South Bend - Fort Wayne (79); Fort Wayne ~ India.napolis
(121); Indianapolis — Bloomington (151); Bloomington ~ Terre Haute (58); Terre Haute —
Evansville (113).

(a) Evansville - Indianapolis (168); Bloomington — Indianapolis (51); South Bend - Gary
(58); Terre Haute — Bloomington (58); South Bend - Fort Wayne (79); Indianapolis ~
Forth Wayne (121).

(b} Fort Wayne — Gary (132); Evansville - Indianapolis (168); Bloomington - Indianapolis
(51); Gary - South Bend (58}); Terre Haute - Bloomington (58); Indianapolis ~ Fort Wayne
(121).

Start with the prescribed edge(s), unless one or more cycles result. (If so, delete the edge
of maximum weight in each such cycle.} Then apply Kruskal's Algorithm starting at Step

(2).

{a) To determine an optimal tree of maximal weight replace the two occurrences of “small”
in Kruskal’s Algorithm by “large”.

{(b) Use the edges: South Bend ~ Evansville (303); Fort Wayne ~ Evansville (290); Gary -
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2.

Evansville (277); Fort Wayne — Terre Haute (201); Gary ~ Bloomington {(198); Indianapolis
~ Evansville (168).

The proof for Prim’s Algorithm is similar to that of Kruskal’s Algorithm.

Proof: Let |V|=n, and let T be a spanning tree for G obtained by Prim’s Algorithm.
The edges in T are labeled as ey, ey,...,¢€,.1, where the subtree 5; of T, obtained after
the ith iteration of the algorithm, contains the edges ey,e;,...,¢;, forsome 1 <¢<n—1.
For each optimal tree T' of G define d(7"}, as in the proof of Theorem 13.1. Let Tj

be an optimal tree for G where d(7}) = r is maximal. We shall prove that T = T3.

If not, then r < n — 1, and there exists an edge e, = {z,y} with e, € T,e, ¢ T}. Since
Ty is a spanning tree for &, however, there is a unique path P connecting z and y

in Ty. Assume that « € S,.5, ¥ € Sr1. Select an edge €, in P which joins a vertex in
S,..1 with a vertex that is not in S5,_;. By the minimality condition in Step 2 of Prim’s
Algorithm wit(el) > wi(e,). Adding the edge e, to Ty, e, together with the edges in
P form a cycle. Deleting edge ¢!, the cycle becomes a path and a new subgraph of G

is obtained. Since this subgraph is connected with n vertices and n —~1 edges, it isa
tree Ty, where wi(Ty) = wit(1}) + wi(e,) — wit(e]). With wi{e,) > wt(e, ), we find that
wi(Ty) < wt(Ty), and since Ty is optimal it follows that wi(T3) = wi(7;). But then T;

is an optimal tree for the graph G with d(T3) > r, and this contradicts the choice of T}
(where d(T}) is maximal).

When the weights of the edges are all distinct, in each step of Kruskal’s Algorithm a unique
edge is selected.

Section 13.3

(3) s=2t=4 w=5 =9 y=4 (b) 18

(c) (i) P= {a,b,h,d,g,i}; P= {z}
(i) P={a,bh,d g} P={iz}
(i) P={a,k}; P={b,d, gi,z2}

Corollary 13.3: This result is a special ease of Theorem 13.3.
Corollary 13:4: This resuit follows from the observation following the proof of Theorem
13.3, namely,

val(f) = 32 f(z,3) ~ T (v, w)

E23 3 wii
&P veP

¥ val(f) =P, P)= 3 ofz,y), since 0 < flz,y) < efz,y), for
F1:3 o4
veP

¢ € P yeP, it follows that f(e) = c(e) foreach e = (z,y), z € P, y € P, and
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fle) =0 for each e = (v,w), v € P, w & P. Conversely if conditions {a) and (b) hold,
then

val(fy = 3 flz,4) = 3 flo,w) = 3_ elz,y) ~ 0 = (P, P).

E1:34 wgEF &P
yeP weP yeP
1) 2
1) b 1514 d @ b 66 o
88 7 ) \J10. 10
g 7,2
a 9: o 3 h z
'97 6.6 % .
L 6,6 6 61 My 13
h &6 i i 86 ji122k
The maximal flow is 32, The maximal flow is 23,
which is e(P, P) for which is (P, P) for
P = {a,bdgh} and P={iz}. P = {a} and P = {b,g,4,j,d,h, k,2}.
(Example 13.12)
“1 — (P,F)




(Example 13.14) Four messengers should be sent out — one for each of the following paths
(which are mutually disjoint in pairs).

(l}a—b—h—op—z

(Da—d—i—rm-—g—2z

Ba—f—rjmrn—ar—z

a—ng—k—s—z

5. Here cle) is a positive integer for each ¢ € E and the initial flow is defined as f(e) =0
for all e € E. The result follows because A, is a positive integer for each application of
the Edwards-Karp algorithm and, in the Ford-Fulkerson algorithm, f{e} — A, will not be
negative for a backward edge.

6. (a)




1.

2.

Section 13.4

5/(3) =1/14

(a), (b), and (<] K

F

The edges {K, A}, {T,Je}, {C, R}, {Ja,D}, and {N,F} determine a complete match-
ing which pairs Janice with Dennis and Nettie with Frank.

(d) No. Every complete matching must include {N, F}.

Let the committees be represented as ¢;,¢s,...,¢q, according to the way they are listed
in the exercise.

(a) Select the members as follows: ¢; — 4; ¢~ G; c3— M; ¢4~ N; ¢s — K; ¢g — R.

(b) Select the nonmembers as follows: ¢; — K ¢; — A; ¢s~ G ¢y — J; c5 — M; ¢ — P.

(a) (4)3)=12 (b) (A)(3)(2)(1) = 4! =24
{c) (9)BNTHE)E) =9i/4! = P(9,5)
(d) (n}(n—1)}n—-2)---(n—m+1)=nl/(n—-m)l = P(n,m).

(a) A one-factor for a graph G = (V, E) consists of edges which have no common vertex.
So the one-factor contains an even number of vertices, and since it spans G we must have
[V} even.

(b) Consider the Petersen graph as shown in Figure 11.52 (a) of the text. The edges

{e,a}  {de}  {di} {g,5} {fih}

provide a one-factor for this graph.

(€) There are (5)(3) = 15 one-factors for K.

(d) Label the vertices of K3, with 1,2,3,...,2n ~ 1,2n. We can pair vertex 1 with any
of the other 2n — 1 vertices, and we are then confrouted, in the case where n > 2, with
finding & one-factor for the graph K, ;. Cousequently,

O = (21 - 1}eq.1, gy = 1.
We find that
Gy = (20~ 1)au.; = (2n — 1)(2n = 3)a, = (2n — 1}(2n — 3)(2n ~ Bla,_3 = ...
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10.

11D

12.

i3.

(2n)(2n — 1)(2n — 2)(2n - 3) - (HE)H2)QD)

= (2n — 1)(2n — 3)(2n — 5)--- (5)(3)(1) = (2n)(2n —2)--- (4)(2)

_ ()
T 2n(nl)

(Corollary 13.6) Let A4 C X. Since deg(z) > k for all z € X, there are at least
klA] edges that are incident from the vertices in A. These edges are incident to [R{A)]
vertices in Y. Since deg{y) < k forall y €Y, it follows that k4| < k]R(A)|, so we have
[A] < |R(A)|, and there is a complete matching of X into Y (by virtue of Theorem
13.7).

Yes, such an assigninent can be made by Fritz. Let X be the set of student applicants and
Y the set of part-time jobs. Thenforall z € X, y € YV, draw the edge (=,y) if applicant
z is qualified for part-time job y. Then deg(z) >4 > deg(y) forall z€ X, y€ Y, and
the result follows from Corollary 13.6.

(a) 4€A1, 36A2, 1€A3, 26.!44
(b) 2€ Ay, 4€ Ay, 5€ 43, 1 € Ay, 3€ A4s.
(¢) Since |UL, Ai]l = 4 < §, there is no system of distinct representatives.

(a) (1) Select ¢ from A;, for1 < <4
(2) Select i-+1 from A;, for 1 <i< 3, and ! from A,.

(b) 2

(a) If there is a system of distinct representatives then |UY, 4| > n, i.e., k > n, since
jur, 4] = |[A] = &, for all 1 < ¢ < n. Conversely, if there is no system of distinct
representatives, then for some 1 < i < n, the union of ¢ of the sets Ay, 4;,...,4,
contains less than ¢ elements. Hence k<t <n,or k < n.

(b} P(k,n).

Proof: For each subset 4 of X, let G4 be the subgraph of G induced by the vertices in
AU R(A). If e is the number of edges in G4, then ¢ > 4|A] because deg(a) > 4 for all
a € A, Likewise ¢ < 5|R(A)]| because deg(b) < & for all b € R(A). So 5R(4A)] > 4|4
and §(A) = [A] — [R{A) < |A] — (4/B)j4] = (1/B)A] € (1/8){X| = 2. Then since
() = max{6(A}]4 C X} we have §{G) < 2.

Let §5£ ACX and B, CF where E;y = {{a,b}jo € 4,b € R(4}}. Since deg{a) >3
forall a € A, |Ey] 2 3|4l Foreach be R(A)CY, deg(h) < 7,0 1] < 7|R(A)]. Hence
3|Al < TIR(A)] and 6(4) = |A] — [R(4)] £ |A] ~ (3/T)A] = (4/T)|A|. Since |X|< 50
and A C X, §(4) < (4/7){(50) = 200/7 and 8(G) = max{8(A)4 C X} < 28.

{a) §(G) = 1. A maximal matching of X into } is given by
{{z1, vl {22, 10} {os, 1}, {@s, ys} )
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{(b) I &(G@) = 0, there is a complete matching of X into Y, and B(G) = [Y],
or V= 8(G)-8G). I §(G)=%k>0,let ACX where |[A] - |R(A)| = k. Then
AU(Y — R(A)) is a largest maximal independent set in G and B(G) = |A[+|Y ~R(4)| =
Y+ (14] — |B(A)]) = Y] + 8(G), so Y] = B(G) ~ &(G).

(C) Fig"‘u'e 13‘3{} (&)‘: {xlv Lo, T3, Y2, Y4 yﬁ};
Figure 13.32: {3, %4, Y2, Y3, Y4}

Proof (By Mathematical Induction}):

The hypercube @, has vertex set V = {00,01,10, 11} and edge set E = {{00,01}, {01,11},
{11,10}, {10,00}}. Here there are two perfect matchings: {{10,00},{11,01}} and
{{10,11},{00,01}}. So the result is true in this first case, where n = 2.

Assume the result is true for n = k (> 2) - that is, that @, has at least 202" perfect
matchings. Now consider the case for n = k + 1. In dealing with the hypercube Q..
consider the subgraphs induced by the two sets of vertices V) = {v|v is a vertex in Qpyy
with first component ¢}, ¢ = 0,1. The subgraph of Q4 induced by V(¥ is {isomorphic
to) @ — likewise, for the subgraph induced by V1. From the induction hypothesis each
of these subgraphs has at least 2(2*%) perfect matchings. Since the two subgraphs have no
common edges, it follows from the rule of product that ., has at least 2(2¥%) L 2"
Q2" 24252y - o[22 )] = 92D perfect matchings.

The result now follows for all n > 2 by the Principle of Mathematical Induction.

Supplementary Exercises

dla,b)=5; dla,c)=11; d{a,d)=7 d(a,e}=8

d(a‘t [)=1% d((!, =9 d(aa h) =14

(Note that the loop at vertex g and the edges (c,a) of weight 9 and (f,e) of weight 5
are of no significance.)

The algorithm is not correct. The following weighted directed graph provides a counterex-
ample.

{a) The edge e, will always be selected in the fiest step of Kruskal’s Algorithm.

(b} Again using Kruskal’s Algorithm, edge e; will be selected in the first application of
Step (2) unless ench of the edges e;,e; is incident with the same two vertices, i.e., the
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edges ey, e; form a circuit and & is a multigraph.

(a) In applying Kruskal’s Algorithm, the only way we would have to consider edge ¢
as our last choice is if there is a vertex v in the graph where ¢; = {w,v} and v isa
pendant vertex of (. This cannot happen here since e; is part of a cycle.

{b) This result is false. Let G be the graph K3 where the edges are assigned the weights
wt{el} == 3, W§(ﬁg} = 25 wf{ﬁg} = 1,

The transport petwork ln the fivst diagram is determined by using the in degrees of the
vertices for the capacities of the edges terminating at the sink z; the out degrees of the
vertices are used for the capacities of the edges that originate at the source a.

(a) One possible selection is ¢s: ¢; fg: & wt: u; pgr: p; svi:r.

(b) There are nine selections that each determine a system of distinct representatives.
Consequently, the probability that the selection yields a system of distinet representatives

is 9/[(2°)(3)].

The number of different systems of distinct representatives is d,, the mumber of derange-
ments of {1,2,3,...,n}.

{a} 85 mn!

(b} Each entry in B is nonnegative and the sumn of the entries in each row or column is
1.

(c)
010 160 001 001
B=@]0 0 1]+02]010!+(03)]0 1 0]+@®4|1 00
100 001 100 010

(d} The » rows of B sum to r, since each row of B sums to 1. When we add the
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entries, considered in s columns, we get a result of s if we are dealing with all of the
entries in the & columns. Hence here the entries sum to a number less than or equal to
s. Consequently we have both r > s and r < s, a contradiction.

Since this is & complete matching of X into Y we have n edges of the form {a:,y;},
where each of z; and y;, 1 <14,7 £ n, appears exactly once. These edges are determined
by the n nonnegative numbers b;;, where no two of these numbers are in the same row
or column of B. Writing B = 1P + B; where ¢; is the smallest entry in B and P
is an n X n permutation matrix, the sums of the entries in each row and column of By
is 1~ ¢y, where 0 <1 —¢; < 1.

(e} We now repeat the argument in part (d} for the matrix B; and get B = P +
e3Py + B3, where the sum of the entries in each row and column of B; is 1—¢; ~ ¢,
where 0 <1 ~—~¢; — ¢y < 1 —¢;. This process is continued until we obtain B = ¢, Py +
Py 4 ... 4+ ¢ Py + B, where all entriesin B, are (.

The vertices (in the line graph IL(G)) determined by E’ form a maximal independent
set.
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CHAPTER 14
RINGS AND MODULAR ARITHMETIC

Section 14.1

(Example 14.5):
(Example 14.6):

—a=a, ~b=¢g, —c=d, ~d=c¢, —e=b
~8=8, ~l=y, ~v=g, ~W=w, ~T =0, -y =t

(a) This set is not a ring under ordinary addition and multiplication because there are

no additive inverses,

(c) and (d) These sets are rings under ordinary addition and multiplication.

(d) This set is not a ring because it is not closed under multiplication.

(a+b)+c

f

(b+a)+c
b+{a+c)
b+ (c+a)

d + (ab + ac)
(d+ ab) + ac
{ab+d) -+ ac
ab + (d + ac)
ab + c(d -+ b)
ab -+ (cd + ¢cb)
ab + (cb + cd)
(ab -+ ¢b) + ed
{a+c)b+cd
{ab)e + (ab)d
(at)(c+d)
(ab)(d +¢)

(2)

(b) d+a(b+c)

I

o

o{d+b)+ab

i

(¢)

o

i

ol

(d) a(be) + (ab)d

fi

i

Commutative Law of 4
Associative Law of +
Commutative Law of +
Distributive Law of - over -+
Associative Law of +
Commutative Law of 4
Associative Law of +
Commutative Law of +
Distributive Law of - over +
Commutative Law of +
Associative Law of +
Distributive Law of - aver +
Associate Law of -
Distributive Law of - over +
Commutative Law of +

No. Although there is an identity for this definition of +, namely 8, there are no additive

nverses,

{(a) (i) The closed binary operation & is associative. For all a,b,¢ € Z we find that

(adb)@e={(a+b—-1)Be={(a+b~14be~1=a+btc~2,

aB{b@ci=a®{bte—-1l)=a+(btec—-1)-1l=a4+bt+c—2.
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(ii) For the closed binary operation © and all a,b,¢ € Z, we have
(aOb)Be=(a+b—ab}Oc= (a+b~ab)+c—{(a+b—ab)c = atb—ab+c—ac—betabe =
a-+ b+ c— ab— ac — be + abe; and
a®(d®c) = a@(b+c~bc) = a+{b+c~be)~alb+ec—be) = at+b+e—be—ab—aciabe =
a+ b+ c— ab— ac— be+ abe.
Consequently, this closed binary operation is also associative.
(iii} Given any integers a, b, ¢, we find that
(tec)Ca=(b+c-1}Ca=(bte~1)4+a—(btc—1j}a=btc—1+a—ba—cata=
2a+b+¢c~1-—ba~—ca, and
boa)Pl(cva)={(b+a—ba)d(cta—ca)=(b+ta—ba)+{ct+a—ca)—1=
2a+b+c—1-ba—ca.
Therefore the second distributive law holds. (The proof for the first distributive law is
similar.)

(b) Foralla,be Z,
a@b=a+b—ab=b+a—-ba=5b0Qa,

because both ordinary addition and ordinary multiplication are commutative operations
for Z. Hence (Z,®, @) is a commutative ring,.

(¢) Aside from 0 the only other unit is 2, since 202 = 2+ 2 — (2- 2} = {, the uaity for

(Z,8,0).

(d) This ring is an integral domain, but not a field. For all a,b € Z we see that
a©b=1(the zero element) x> a+ b—ab=1=a(l-b)={1~-b)=(a~ 1)1 -b) =

0 =>a=1o0rb=1, so there are no proper divisors of zero in (Z, ®,®).

The trouble here is with the Distributive Laws. For a,b,¢ € Z we find that

a@(b®e) = a@Qb+te—TN=a+{(b+te—~T7)~3alb+c—~T7)
= a+b+c- 3ab—3ac+ 2la—7
= 22a -+ b+ ¢~ 3ab — 3ac —~ 7,
while
(a0 Pla®e) = (a+b~—3ab)®(a+ c~— Jac)
{a-+b—~3ab)+{a+e—3ac)~7
= 2a-+b+ ¢~ 3ab—~ Jac—T.

Hepce, fa# 0, then a O (0D ec) # (0B G a O e)

i

From the previous exercise we koow that we need to determine the condition(s) on &, m
for which the Distributive Laws will hold. Since © is commutative we can focus on just
one of these laws.

ey, z2zed, then
zO{yer)=(z0ye(z0z)=
zOy+z—k)={(z+y—mey)D{(z+2z—mez)
B r+{ytz—kl—-ma{y+e~k)={z+y-—may)+{&+z—-mzz)—-k
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10.

rtytz—k-~may—mazzt+mkz=z+y—-may+z+z—maz—k
H>mkr=z=mk=1=>m=t=1lorm=k=-1,sincem,k €Z.

(a) =z b) —s=t, ~t=s —z=2, ~y=y
(¢) Hs+ay)=y (d) Yes, the ring is commutative.
{e) No, there is no unity. (f} The elements s,y are a pair

of (proper) zero divisors.

(a) We shall verify one of the distributive laws. If a,b,¢c € Q, then

a@b®c) = aQ(b+c+T)
= a+{b+e+T)+lalb+ec+T))/7
= a+b+c+ T+ (ab/T)+ (ac/T) + a,
while
(c0b)d(aGc) = (a®@bj+(a@e)+7T

!

= a+b+{ab/T)+a+ec+ (ac/T)+ 7
= a+b4ec+ T+ (ab/7}+ (ac/T) + a.

Also, the rational number —7 is the zero element, and the additive inverse of each rational
number @ is —14 — a.

(b) Since a®b=a+b+(ab/7) =b+a+(ba/7) =bOaforall a,b € Q, the ring (Q, ®, ©)
is commutbative,

(c) Foreacha € Q,a=aCu=a+u+(au/7) = u[l 4 (a/7)] = 0 = u = 0, because a is
arbitrary. Hence the rational number 0 is the unity for this ring.

Now let a € Q, where a 3 —7, the zero element of the ring. Can we find b € Q so that
a®b =0 - that is, so that a + b + (ab/7) = 07 It follows that e + b+ (ab/7) = 0 =
1+ {afT)} = —a = b= (~a)/[1 4+ (a/7)]. Hence every rational number, other than 7,
is & unit, |

{d} From part (c} we know that (Q,$,0) is a field. In order to verify that it is also an
integral domain, let ¢, b € Q with a©b = —7. Here we have a®b = ~7 = a4+b+{ab/7} = -7
= afl + (B/T)} = —b—~T= a[7 + b = (—~1)[7 + §|(7) v

(a4 b+ T =0=>6+T=00rb+T=0=a=~Torb=~T.

Consequently, there are no proper divisors of zero {the rational munber ~7) and (Q, &, ©®)
is an integral domain.

{a) k=3 m = 3.

{(b) The zero element is k. Hence we have 6 @ (-9) =%k = 6 4 (-~08) — k, s0 2k = —3 and
k= ~3/2. [Here m = 3/2.]

{¢)} The unity is the rational number 0. So we want 0 = 20{1/8) = 2+(1/8)+{2(1/8)/m].
This happens when —17/8 = 1/4m, or 4m = ~8/17. Hence m = ~2/17 and &k = 2/17.
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13.

14.

i5.

(a) Forexample, (a+b)+(c+di) = (a+c)+{b+d)i = (cta)+(d+b)¢ = (c+di)+(a+b),
because addition in Z is commutative. In like manner, each of the other properties for R
to be a commutative ring with unity follow from the corresponding property of (Z,-+,-).
Finally, with respect to divisors of zero, if (a-+bi){c+di) = (ac—bd)+(bc+ad)i = 0 and
a+ b # 0, then at least one of a,b is nonzero. Assume, without loss of generality, that
a# 0. ac—bd=0=>c=>bdfe; betad =0 =>d=~bcfa. cd={(bd/a}(~bc/a) =
(~¥/a*)ed) = ed(l +(*/a®)) = 0 = cd(a® + P*) = 0 =3 ¢ = 0 or d = 0, since
a,be,d€Z and a#0. ¢=0,d=~befa=3>d=10. Also d=10, ¢ =bdfa =+ c= 0.
Hence c-+di =0 and R is an integral domain.

(b) a-+bi isaunitin R if there is an element ¢+ di € B with (a+ bi){c+di) = 1.
i=(atb)c+di)=(ac—bd)+(betad)i=>ac—bd=1, betad =0 = ¢c=
af(a*+ ), d= —bf(a®+¥). c,d€Z=>a*+P =1=pa==41, b=0; a=0, b= +1.
Hence, the units of R are 1,-1,7, and —i.

(a)
1 2 a b ___fl 0 B B ~ ~
{3 7Hc d}“[(} 1}"‘*”2&—1,3&”%8,b+2d.«o,3b+7dﬂ.1m>
627,6::*—2, c= 3, d=1.
o[22 =], L, o len (Q) but this matrix is not in My(Z)
38 (-3/2) (1/2)] =7 2(Z).

{2 Z}m m(lf(ad——bc)}{__i “z}; when ad ~ be # 0.

Let U = {1,2,3} and R = P{U). Then (R,H,N) is a ring with eight elements. To
obtain a ring with 16 elements consider U = {1,2,3,4}. In general, for each n € Z%, if
U=1{1,2,...,n} and R = P{U), then (R,N,N) is aring with |[R]= 2",

(a) zz=2(t+y)=attay=tty=2z
yt={z+til=at-tlt=t+t=3
yy=yite)=ylt+yz=8+s=3s
tr=(y+elz=yrtrz=str =21
ty=(y+zly=yy+ay=sty=y

{(b) Since lz = x 3 ! = #¢, this ring is nol commutative,
{¢} There is no unity, and consequently no units.

{d} The ring is neither an integral domain nor a field.
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Section 14.2

(Theorem 14.5 (a)) Suppose that u;,u; € R and that uy, u; are both unity elements.
Then wu; = wytz = uq. Lhe first equality holds because u, is a unity element; the second
equality follows since u; is a unity element.

(Theorem 14.5 (b)) Let y,y, € B with zy; = phe = u = 2y, = Yz, where u is the
unity of R. Then y = uy = (122)p1 = plzy1) = pau = .

(Theorem 14.10 (b)) If § is a subring of R, then @,b € § => a+ b, ab € S. Conversely,
let § = {z1,23,...,2n}. T={zi+21]1 £¢ <n}C S i+ 2 =2;+ 3 => 2 = g,
so |Tl=n and T =S5. Hence 2,4+ 2, = z; forsome 1 <i¢ < n,and z;= 2, the zero
element of R. Foreach 2 € 5,2+ S5={z+z{1 £i<n} =8 With z¢€ 5, z+z; =2
for some z; € 5,80 x; = —z € §. Consequently, by Theorem 14.9 § is a subring of R.

(a) a(b~c¢)=ab+ (~c)] = ab + a{~c) = ab + [a(—¢)] = ab + (—ac) = ab — (ac).

(b) This part is verified in a similar way.

(a) (ab)(b e ) =cua' =aa"! =u and (b'a ) ab) =bub=b"b=u,s0 ab isa

unit. Since the multiplicative inverse of a unit is unique, it follows that (ab)™! = b'a™?.
] — 2 ""7 -} o 1 ""2 -l — 4 “"15
(b) A7 = { -1 4} B™ = -2 51 (AB)™ = -9 34y

1 -39]’ B"‘A"‘xi 4 -15}'

4 [ 18
(B4) "‘{-9 22 -9 34

Let u be the unity of R and let # be a unit. Hence there is an element y € B with
2y = yz = u. If zw = z, the zero of R, then y(zw) =yz =2 and ylazw) = (ya)w =
uw = w. Hence =z is not a zero divisor.

(~oy" =~(a)
(a) § = {2z, w}

R R -8 8
& W sm W 8= oW Frw=m W8 =5
i R et o= W

- T G, U = W

It follows from Theorem 14.9 that {5, +4,) is a subring of (R, +, ).

Forall re R, rs=sr =235 and rw=wr =s or w. Henee (5,+4,°} is an ideal of
{(Ry+,-).

% % ¥

() T = {s,v,z}
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+ .8 v Zz Ki z
$is8 v 818 8 38
v v 8 vis x v
s$ir s v 18 v

—8 = 8, —U ==X, —& = U,

It follows from Theorem 14.9 that (T, +,-) is a subring of (R, +,-).
Also, for all r € R we have rs, sr, rv, vr, rz, and 2r in T,so (7,4, ) is an ideal

of (R,+,").

2 €8T =>zeS8SNT =>SNT+#8. a,bec SNT =>abecl and a,beT =
a+bab€ S and a+babeT =>a+babecSNT.

aESNT=>acl and a €T =>~a€ 5 and —a €T = ~a€ SnNT.

So SNT is asubring of R.

Fbrmmyz{}wehave{g g}ES,soSisnatempty.
Now consider two elements of § — that is, two matrices of the form
[ z mwy} and { v vww]’
z—y Yy vV—w W
where z,y,v,w € Z. Then

. m..y}*" v v.~w}={ z~v (m-—y)——(w»w)}z

@ [3:-y v v-w W (z -y}~ (v—w) y—w

z—v (w-v>--(y-w)},

(z-v)-y-w)  y-w

an element of S; and
(if)

& z—y v v—w | | av+{z-y)v—w) e(v—w)+(z—yhw |
z—y ¥y jlv-w w | {(E-yetylv-w) (z-ylrv-w)tyw |

"mrwkmy—«yvmxw«i«yw BU -~ TW b W~ YW _
TE ~ YU 5 YU -~ pw EY - YU — B b Y -+ yw -

ZY + BV~ YU ~ 2w -+ yw B — YW _ a a-—b
v — yw PO —yu~zw Fyw-yw | | a~b b

for @ = zv 4 zv — yv — 2w + yw and b = zv — yv — 2w + yw + yw — and this result is also
in S,

Therefore, S(# #) is closed under subtraction and multiplication, and it follows from
Theorem 14.10 that § is & subring of R.
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If not, there exist a,b€ Switha € Ty,a ¢ T3, and b € T3,b ¢ T;. Since S is a subring of
R, it follows that a + 5 € S. Hencea+beTyora+be T3

Assume without loss of generality that a + b € T;. Sinece a € 7} we have —a € T}, so by
the closure under addition in 7} we now find that (~a)+{a+b) = (~a+a)+b=be T},
& contradiction.

Therefore, SCTiUT = SCTior SCT5.

(a) If r is a proper divisor of zero we are finished. Otherwise, consider the function
f: R - R where f(a) = ar, for all a € R. This function f is one-to-one — if not, we
have f{a;) = f(ay) for distinct elements ay, a5 in R. But f(a;) = f(a) = a7 = ayr =
(a3 — az)r = z, the zero element of R. And since a; — a2 # z and r ¢ z we find that ris a
proper divisor of zero. Furthermore, with R finite it follows from Theorem 5.11 that f is
also an onto function. Consequently, there is an element s in R such that sr = f(3) = u,
and since R is commutative we have rs = u. With rs = u = sr we find that r is & unit of
R.

(b) The result in part (a) is not valid when R is infinite. Consider the commutative ring
(Z,+,-) with unity 1. For any integer n, if n # —1,0, 1, then n is neither a proper divisor
of zero nor a unit.

(a) Follows by Theorem 14.9.
10 16
o [57] © |50

(d) S is an integral domain while R is a noncommutative ring with unity.

(e) § is not an ideal of R — for example, {i i}{g g}m []1‘ g}, and this result is
not in S.
{a) Let
a=1%% B=|?%¢cs Thna+B=
b ¢ e f
a+d 0 | ad 0 .
bt e’,‘.w%wf}j and AB"EM%«% cjé with

a+d bte ct f, ad, Bd4ce,andcf € Z. So 4+ B, AB € 5. Also,

e ﬁ?ﬁﬁ and {wa @Emw,@,

b e ~b —c

Hence S is a subring of My{Z), by Theoreom 14.9.
However, § is not an ideal of My(Z). We have

10 11 ,
[1 IE;&S and h E}EMQQZ} but
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14&

15.

1&&9

e

20 2b |2 2f
(b) Let A= {2 2d} {Qg Qh}ET'

T 2a+2e 26+2f | | 2a+e) 206+ )
Then A+B"{2¢+2g 2«:54»2::}”{2(::%) 2(d + k)
4ae + 4bg 4af+4éh§__ [ 2(2ae + 2bg) 2(2af+2éh)}

aud  AB = {4ce+4dg scf +4dh | = | 2(2ce +2dg) 2(2cf +2dh)

~2a —2b _E‘z(wa} 2(4)?

so A+B, ABET. AE%M ~2d | T | 2=0) 2(-d)

is the additive inverse of A anditisin 7. So by Theorem 14.9 T is a subring of My(Z).

W oz w 2z 2a 2b
If Cm{y Z]EMQ(Z) then CA—-[y z}{?c Zdém

2aw +2cz 2bw +2dz | | 2(ew +cz) 2(bw + dz) d
Qay +2cz 2by+2dz | | 2ay +cz) 2(by +dz) o

2a 2b w oz
ACT:{ZC Zd}{y z}z
20w + 2by 2ax +2bz | | 2(aw 4+ by) 2(azx + bz)
2cw + 2dy Z2ex+2dz | T | 2(cw +dy) 2(cz +dz)
and CA, AC € T,s0 T is an ideal of M,(Z).

Since za = z, it follows that z € N(a) and N{a) # 8. If ri,ry € N(a), then (r;—r)a=
ria -0 = 2 — 2 = 2, 80 1 —rg € N{a). Finally, if r € N(e) and 3 € R, then
(ra)e = {sr)a = s(ra) = sz = z, 50 rs, sr € N(a). Hence N(a) is an ideal - by
Definition 14.6. :

() ICR Foreach re R,ru=r€l,s0 RCI Hence I=R&.

(bY Let z €l with z aunitof R Let y € R where zy = yr = u. Then y € R,
# € [ == yz=u&l andihe result follows by part (a).

Two ideals: B and {z}, where z is the zero of R.

{a) Simce uw™? = u, ¢t =5, b! = g, each nonzero element of (R,+,) is a unit, so
(R,4+,) is a field.

(b} {u,2} isasubring. However, a € R and u € {u,2z} but au =a ¢ {u,2},80 {u,2}
is not an ideal.

376



17.

18.

19.

20!

(¢) z+by=z=2>a=~by,s0 u=y+b(-by)=y—ay=y+ay =(u+aly=>"by and
yu=ub! =b"!=q Hence z= by = ~ba = —~u = u.

(a) a=au € aR,so aR# 8. If ary,ar; € aR, then ar, — ary = a{ry —rz) € aR. Also,
for ar, € aR, r € R, r{ar;) = (ary)r = a{rir) € aR. Hence aR is an ideal of R.

(b) Let a€ R,a# z. Then a=au & aR so aR=R. Since ¥y E R=0af, u=ar for
gsome r € R, and r = a"'. Hence R is a field.

(a) If zg,zr denote the zero elements of S, T, respectively, then for all s € S5, ¢ €T,
(8,8) @ (25, 21) = (s + 25,2+ 21) = (8,1) = (25 + 8,27 +'1) = (25,27) D (8,1}, s0 (25, 27)
is the zero element for R. For (s,t),(s1,%1),(82,82) € R, (5,¢) © [(s1,%1) @ {83,82)] =
()0 (si+spthh+H ) =(s- (st +a)ht (it t)={(s-s1+s- 8,1 4+t ') =
(8-81,t " t1) @ (8 83,t - ta) = ((5,8) © (81,%1)) ®((s5,¢) ©® (82, %2)). Hence this distributive
law follows from the corresponding law in each of the rings S,7. In the same way one
finds that the remaining ring properties are also satisfied by (R, ®,0).

(b) For all (s1,%), {52,%2) € R, (81,41) © (82,t2) = (91 - 89,81 " tg) = (83 - 83,82 " 1) =
(52, tg) @ (81,t}).

(¢) up={us,ur)

(d) No. Let 5,T both be the field of rational numbers. In §xT there is no multiplicative
inverse for (2,0). (Also, (2,0) and (0,2) are proper divisors of zero = (0,0).)

ONHIC) () 7 (d) Yes, the element (u,u,u,u). (d) 44

(a) By the given recursive definition the result is true for all m € Z% and n = 1. Assume
the result for all m € Z* and n =k (> 1). Now consider m € Z* and n =k + 1.
(m+n)ja=(m+(k+1))a = ({m-+1)+k)a=(m+1)a+ka (by the induction hypothesis)
= (ma-+a)+ka (by the definition given in the exercise) = ma+(ka+a) = ma+[(k+1)a] =
ma + na. Hence the result is true for all m,n € Z*. ¥ m or n is 0 the result remains
true. If m,n are both negative we have m = —my, n = —ng, for ma,ny € Z* and
(m+n)(a) = (—my —n1)(6) = (M1 +m )(—a) = my(—a)+ni(—a) = (~mi)a+(-m)a) =
ma + na., Finally, suppose mn < 0. We consider the case m > 0, n = —n; < 0. Then
(m4n)a = (m ~n;){a). I m = ny the result follows. f m > ny, m = s+ n; and
(m4nla = ({s +ny) ~ny)a = sa = sa +me —~na = (84 m)e — me = mae + na. For
m < g, ny=tdbm and (m+nje={m-(t+m)e = (~i}a = t{—a) = {—a) +m(~a) —
m{~a) = —m{—a) + (m+i}{—a) = ma + na. (The proof is similar for the case where
m < 0 and n > 0.) Conseguently, for all m,n € Z, (m-n)e = ma + na.

(¢} For n=1, n{ath) = a+b = ne+nb Assume the result for n =k (2 1) and
consider »n = k + 1. n(e+d) = (k41 {a+d) = (Ma+b)) + (a+b) = (ka+kd) + (atbd) =
{(kat-a} + (kb+8) = (k+1)a + (k+1}d = na -+ nb, so the result is true for all n € Z¥. K
r <0, let ne= —m Then n{atd) = (~m}a+b) = m(~(a+b}} = m{(~a) + {-8)} =
m{—a) + m{~b} = (~m}{a) + (—m )b} = na + nb, so the result is frue for all n € Z.
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21.

3‘

4.

8.

{b),(d), and (e). The proofs for these parts are done in a similax way,

(a) Foreach m € Z*,(¢™}a') = a™a = a™*! so the result is true for n = 1. Assume
theresult for m € Z% and n=k (> 1). For m € Z*, n = k+1, (a™)(a") = (a™){**!) =
(a™)(d*a) = (a™a*)(a) = (a™+*)(a) = almFRHl = gmHl+l) o gmdn | Consequently, by the
Principle of Mathematical Induction the result is true for all m,n € Z*.

In like manner, (™) = @™ for all m € Z* and n = 1. Assuming the result for
m € Z* and n =k (> 1), we consider the case for m € Z* and n = k+ 1. Then
(@) F+1) = (™Y (a™) = (a™ )} (a™) = a™ ™ (from the first result) = o™+ = g™* and
the result is true for all m,n € Z* by the Principle of Mathematical Induction.

(b) K R hasa unity u,define ¢®°=u,for a € R,a+# z. If a is a unit of R, define
a™™ as (a”?)?, for n€Z*.

Section 14.3

(a) (i) 118 — 62 = 56 = 7(8), s0 118 = 62 (mod 8)
(ii) ~237—(—43) = ~194, but 8 does not divide —194, so —237 and —43 are nof congruent
modulo 8.

Also, ~43 =5 (mod 8)while ~237=3 (imod 8), so —237 and —43 are not congruent
modulo 8 .
(ifi) 230 — (—90) = 320 = 40(8), s0 230 = —90 (mod 8).

Also, 230 = 28(8) + 6 and —90 = —12(8)+ 6 50 230 = 6 = —90 (mod 8).

b) (i) 243 — 76 = 167 = 18(9) + 5 so 243 and 77 are not congruent modulo 9.
Also, 243 = 27(9) + 0 while 76 = 8(9) + 4. Since the remainders for 243 and 76 are
different for division by 9, it follows that 243 and 76 are not congruent modulo 9.
(i) 700 — (—~137) = 837 = 93(9), so 700 and —137 are congruent modulo 9.
(iii) 056 — (—1199) = 1143 = 127(9), so ~56 and —1199 are congruent modulo 9.

{(a) 28 — 6 = 22, so n{> 1} is a divisor of 22. With 22 = 2 11, there are four divisors of 22
~ including 1. Consequently, there are three possible values for n-namely, 2, 11, and 22,
{b) 68 — 37 = 31, a prime. Consequently, n = 31 in this case.

{c) 301 — 233 = 68 = 2. 17, so there are five possible values for n(> 1) - namely, 2, 4, 17,
34, and 68.

{d) Since 49 — 1 = 48 = 2* . 3, there are nine possible values for n{> 1) — namely, 2, 4, 8,
16, 3, 6, 12, 24, 48.

(a) ~6,1,8,14 (b} —9,2,13,24 (¢} ~7,10,27,44

Proof: Here we find the following: b= ¢ (mod n) = b = ¢4 mn, for some m € Z =
ab = ac+ m{an} => ab = ec (mod an). :

Proof: Sincea=b (mod n) we may write a = b+ kn for some & € Z. And min = n = fn
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for some £ € Z. Consequently, a = b+ kn = b+ (kf)m and a = b {mod m).

Proof: fa =15 (mod m), then ¢ —b = km, for some k € Z. Likewise, a = b (mod n) =
a — b= fn, for some £ € Z. With km = a — b = {n, it follows that n}km.

Now ged(m,n) = 1 = mz + ny = 1, for some 2,y € Z. Consequently, k = kma + kny,
and since nlkmaz (because n|km) and nlkny, we have nlk. Therefore, k = nk,, for some
ky € Z, and @ — b= km = ky(mn). Hence,a =56 (mod mn).

Conversely, suppose that @ = 5 (mod mn). Then a — b = tmn, for some ¢ € Z. Conse-
quently, a ~b=(Imn =>a=b (modn)andae—~b={(in)m=>ae=b (modm).
[Note that this result does not require ged(m,n) = 1.]

Leta=28,b=2,m=6,andn = 2. Then ged(m,n) =gcd(6,2)=2>1,a=b (modm)
and ¢ = b (modn). But a — b= 8—2 = 6 # k({(12) = k(mn), for some & ¢ Z. Hence
a#b (mod mn)

Proof: If3|nthenn =0 (mod3)and2n =0 (mod3). Hence2n+1 =1 (mod 3)
and 2n —1=2 (mod 3).

If 3 [ n, then exactly one of the following occurs:

() n=1 (mod3)==2n=2 (mod3), andso2n+1=0 (mod3), while2n~1=2
(mod 3), so 3}(2n + 1).

(b) n=2 (mod3)==2n=1 (mod3),andso2n—-1=0 (mod 3), while2n+1=2
(mod 3}, so 3|(2n —1).

Proof: For n odd consider the n — 1 numbers 1,2,3,...,n - 3,n—2,n—1 as (n — 1)/2
pairs: l1and (n—1), 2and{(n—2), 3and (n—3),...,n— (22}~ 1 and n — (21). The
-1
sum of each pair is n which is congruent to 0 modulo n. Hence Y i =0 (mod n).
i=1
When n is even we consider the n — 1 numbers 1,2,3,...,(n/2) — 1,{n/2),(n/2)+ 1,...,
n—38,n-—-2,n—1as(n/2)—1 pairs — pamely, Landn~1,2andn~2,3andn-3,...,
(n/2) — 1 and (n/2) + 1 — and the single number (n/2). For each pair the sum is n, or 0

w1
modulo n, so Y ¢ = (n/2) (mod n).

faml
{Theorem 14.11} Foreach a € Z,a~a=0-n so a=a (modn) and the relation is
reflexive. If g, b€ Z,then e=b (modn)=>a—-b=ikn k€ Z = beag={-kn,~k ¢
Z == b= a (mod n), so the relation is symmetric. Finally let a.bc€ Z with a= b
{mod n) and b=c¢ (modn}) Then a—b=kn,b—c=mn, forsome k,m € Z and
{a—~b) + (b~¢c)=a—c=(k+mn,s0 a=c (mod n) and the relation is transitive.

(Theorem 14.12) For all [a],[b],[c] € Zy, ([a] + B} + | =la+ bl + ] = [(a+ b) +c| =
[@-+(b+c)] (since a,b,c € Z and additionin Z is associative) = [a]+{b+c] = [a}-+([b]+]c]).
Hence the addition of equivalence classes in Z,, is associative. Likewise, all other properties
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11.

12.

13.

i4.

for (Z,,+,') to be a commutative ring with unity [1] follow from the corresponding
properties of the ring (Z,+,-).

(a) For each a« € Z* r(a) = 7(a), so the relation is reflexive. If a,b € Z*, 7(e) =
7(b) == r(b) = 7(a) so the relation is symmetric. Finally, for a,b,c € Z*, 7(a) = 7(?)
and 7(b) = 7(c}) = v(a) = 7(c} so the relation is transitive.

(b) No, 2R3, 3R5 but 5‘%& Also, 2R3, 2R5 but 4715,

Zy: [t ={1], (2] = 6], [3]7" = [4], [4]7" = (3], [5]" = [9], [6]" = [2],
(717t =1[8], {8]7" =1[7], [9]* = [5], [10]7" = [10].
Zys: [t =[1], 2177 =[7], 3] = [9], 14‘”“ (10}, [5]~" = [8], [6]" = [11],
7171 =1[2], [8]7" =[5], [o]" = {8], [10]7* = [4], [11]"" = [6], [12]" = [12].
Zip: [T =1) 217 =09, B] 7 = {6} (47! = [13], s 7t =17}, [6]7" = 3],
(77! =[5], [8]7" ={15], [9]" = [2], [10]"" = [12], [11]~" = [14], [12]™" = [10},
[13]1 = [4], [14]7" = [11], [15]7" = [8], [16]™" = [16].
(a
1)009 = 59(17) + 6 0 <6 <17

17 = 2(6)+ 5 0<5<«6

6 = 15)+1 0<1<35,

so 1=6—5=6—[17~2(6)] = 3(6) — 17 = 3[1009 — 59(17)] — 17 = 3(1009) — 178(17).
Hence 1= (~178)(17) (mod 1009}, so [17]"! = [~178] = [—178 + 1009] = [831].
(b) [100]" = [111] () [777)! = [735].
(a) Zyz: {0}, {0,6}, {0,4,8}, {0,3,6,9}, {0,2,4,6,8,10,12}, Zi..
Zw: {0}, {0,9}, {0,6,12}, {0,3,6,9,12,15}, {0,2,4,6,...,16}, Zus.

Zae: {0}, {0,12}, {0,8,16}, {0,6,12,18}, {0,4,8,12, 16, 20},
{0,3,6,...,18,21}, {0,2,4,86,...,20,22}, Z,s.
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18.

186.

17,

18.

12 | L2
B 4 6 {0,3,6,9} {0,2,4,6,8,10}
2 3 (0,6} {.4.8}
B {o}
18
6
3
1

Y18
g {0.2,4,...,16) {0,3.,6,9,12,15)
%2 {0,6,12}%(0,9}
| W {o}

24

(e} The number of subrings of 2, is 7{n), the number of positive divisors of n.

(a} 18 units; 0 proper zero divisors (b} 72 units; 44 proper zerc divisors
{c} 1116 units; 0 proper zero divisors,

Let ay,a3,...,%, be alist of n consecutive integers, n 2> 1. For 1 < i < n,let ¥
be the remainder upon division of a; by n; ¥ = a; (mod n), 0 < b; < n—1. Then
{by, gy ..} = {0,1,2,...,n~1},50 Bb; =0 forsome 1<i<n b=20<¢>aq=0
{mod n) = nla;.

{1,2,3,...,1000} = {1,4,7,10,...,997,1000} U {2,5,8,...,995,008} U {3,8,9,...,990}.
In this partition the first cell has 334 elemenis while the other two cells contain 332
elements each. I three elements are selected from the same cell then their sum will be
divisible by three. If one number is selected from each of the three cells then their sum is
divisible by three. Consequently the probability that the sum of three elements selected

from {1,2,3,...,990} is divisible by three is [(*3) +2(*3) + (24) (%)} (19).

(a) For m=1 the result is true. Assume the result true for m = F, i.e,,
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19‘

20.

21.

22.

23.

c=d (modn)=>c* =d° (mod n), and consider the case of m = k+1. c™ = *! =
(¢*¥e) = (d*)d) (mod n),since ¢ =d (modn) and (¥} = (¢*) (mod n). Hence
™ = Ft = @4 = ™ (mod n). By the Principle of Mathematical Induction the result
follows for all m € Z+.

The other result also follows by induction.

(b) Since 10=1 (mod 9),10) =1¥F =1 (mod 9) forall k> 0,andforall 0 < a <

9,(a)(10F) = ¢ (mod 9). Consequently, =z, 10" 4 zyoy - 10" 4o 4 21 - 10 4 2
Tn+ Tpey + oo+ 31+ 2 {mod 9).

i

(a) For n =0 wehave 10° = 1 = 1(~1)® s0o 10° = (-1)® (mod 11). [Since
10— (~1) = 11, 10 = (-1) (mod 11}, or 18! = (-1} (mod 11). Hence the result
is true for n = 0,1.] Assume the result true for n = & > 1 and consider the case
for k-4 1. Then since 10 = (~1)* (mod 11) and 10 = (-1} (mod 11), we have
10541 = 10% - 10 = (—1)*(=1) = (—~1)**'  (mod 11). The result now follows for all n € N
by the Principle of Mathematical Induction.

(b) U zpzpeq... 227120 = 2, - 10"+ 2pq - 10" 4 -+ 425 - 10° + 2y - 10+ 25 denotes
an (n+41)-st digit integer, then

T Zpet-- 222320 = (~1)2, + (=) 2y + -+ 23— 2, + 29 (mod 11).

Proofi ZpZp-i... 238180 = Ty 107+ 2y 10" ooz 100424 - 10+ 29 = Zn{—1)" +
Toet (1) b b (1P () b xo = (1) + (1) Mmpg + - F 22— 2+ 20
(mod 11).

If a® = a in Z,, then ¢* = a (mod p), and it follows that pj(a® — a). But pl(a? —~ a) =
pla{a — 1) = pla or pl(e — 1), because p is prime. With 0 < a < p, pla = a = 0 and
pl(a—1) = a = 1. So the only elements in Z, that satisfy o> = g are a = 0,1, [Ora =0,1
are the only idempotent elements under multiplication in Z,.]

Let g = ged(a,n), h=ged(d,n). a=b (modn)=3a=>b+kn, forsomek € Z =
glb, kla. glb,gln = glh; hla, hin == hlg. Since ¢,h >0, g=h.

(8) 1=1; 2% =64="T7(9)+1; 3% = 729 = 7(104) + 1; 4° = 4096 = 7(585) + 1;
56 = 15625 == 7(2232) + 1; 6° = 46656 = 7(6665) + 1.

(b ¥ ged{n,7)=1,then n=: (mod 7),for 1<i<6 and n®*=f=1 (mod7)
nf=1 (mod 7) <= T{(nf - 1).

(1)Plaintext e £ £ ¢ ¢ w £ & s d ¢ v i d e d
(2) g 11 11 86 0 20 11 8 18 3 8 21 8 3 4 ¢
(3) 3 14 14 9 3 23 14 11 21 6 11 24 11 & T 6
(4)Ciphextext D O O J D X O L V G L Y L G H @
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24.

25.

26.

i mn ¢t o t h r e e p a v t s
8 13 19 14 18 7 17 4 4 15 0 17 19 18
11 16 22 17 22 10 20 7 7 18 3 20 22 21
L Q W R W K U H H § D U W V

For each @ in row (2), the corresponding result below it in row (3} is § +3 (mod 26).

Since the most frequently occurring letter in the English alphabet is e, we correspond the
plaintext letter e with the ciphertext letter Q. As @ is 12 letters after e in the alphabet
we have (a) £ = 12; (b) E(8) =60+ 12 (mod 26) and D{§) =6 — 12 (mod 26).

For part (c) consider the following:

(1) Ciphertext F T Q@ I M K I @ I @ D @
(2) 5 19 16 8 12 10 & 16 8 16 3 186
(3) 19 7 4 22 0 24 22 4 22 4 17 4
(4) Plaintext t h e w a y w e w e r €

Here the results in row (3) are obtained from those in row (2) by applying the decryption
function D.

The plaintext reveals the original message as ‘The Way We Were’. [This is the title of
an Academy award winning song sung by Barbra Streisand, as well as the title of a film
starring Barbra Streisand and Robert Redford ]

From part {c) of Example 14.15 we know that for an alphabet of n letters there are n - ¢(n)
affine ciphers. Here we have:

(a) 246(24) = (24)[24(1 — 1)(1 - 1)] = (24)(8) = 192

(b) 254(25) = (25)[25(1 ~ 1)] = (25)(20) = 500

{c) 274(27) = (2T)[27(1 — 1)] = (27)(18) = 486

(d) 304(30) = (30)[30(1 — 1)(1 — 1)(1 — 1)] = (30)(8) = 240.

The nonnegative integers that correspond with the given plaintext and ciphertext letters

are as follows:
e: 4 W .22 t:19 X:23

The encryption function £ : Zgg — Zye is given by E(f) = af + x  {(mod 26), with
E(4) = 4o+ x =22 (mod 26) and E(19) = 190+ x =23 (mod 26). Therefore (19a +
g)—(4atr) = 15a=23-22 =1 (mod 26), and a = 157"  (mod 26). The multiplicative
inverse of 15 in Zgg is T sinee 15 - 7T= 100 =14+ 104 =1+ 4(26) =1 (mod 26}, s0 & 7
{mod 26) snd « = 22 — 47) = ~6 = 20 (mod 26). Consequently, E(6) = 76 + 20
{mod 26}

Heve D{#) = 778 — 20) (mod 28). From above we see that 77' = 15 {mod 26), so
D{8) = 15(8 — 20) {(mod 26}. Applying I to the nonnegative integers in row (2) of the
following gives us the result in row (3), from which we extract the plaintext.
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28.

28.

(1)Ciphertext R W J W @ T O O M Y H K U X G O

(2) 17 22 6 22 16 19 14 14 12 24 7 10 20 23 6 14
(3) 7T 4 17 4 18 11 14 14 10 & 13 6 0 19 24 14
(4)Plaintext h e r e s £ o o k i =mn g a t y o
E M Y P
4 12 24 15
260 10 &8 3
vw k& 1 d

So the original message is

‘Here's looking at you, kid.’ [Spoken by Humphrey Bogart to Ingrid Bergman in the
Academy award winning film Caesablanca.]

(a) Ty == 10
zy = 8{zp) +3 (mod 19)= (mod 19) =15 (mod 19), so z; = 15.
za =5(zy)+3 (mod 19) =78 (mod 19)=2 (mod 19), so 23 = 2.
z3 = 5(22) +3 (mod 19) =13 (mod 19), so z3 = 13.
24 = 5{z3) +3 (mod 19) =68 (mod 19) =11 (mod 19), so z4 = 11.
Further computation tells us that 2; =1, zg = 8, 27 = 5, 25 = 9, and z4 = 10, the seed.

So this linearcongruential generator produces nine distinct terms.
(b} 10,15,2,13,11,1,9,5,9,10,15,2,.. ..

Xy == 1

xy = 28

z; =21+ 20 (mod 37)=28+4+1 (mod 37) =29 (mod 37), so 2, = 29

Za= 22+ 2 (mod 37) =29+ 28 (mod 37) =57 (mod 37), so 23 = 20
Further computation leads to 24 = 12, 25 = 32, 2 = 7, 27 = 2, 23 = 9, and 24 = 11.

Proof: (By Mathematical Induction)
[Notethat for n > 1, (a" ~ 1) /{a — 1) = a*" ' 4 "% 4 .- + 1, which can be computed in
the ring (Z, +,-}.]
When n — 0, a®zg + f(a® — 1}/{a — 1)] = 2o + €[0/(e - 1}] & 2o (mod m), so the
formula is true in thisfirst basis (n == 0) case, Assuming the result for n we have
Ty = a®zo + cl{a® ~ 1}f{a—1)] {(mod m), 8 € 2, < m. Continuing to the next case
we learn than
Tupr B aZn,+¢  (mod m)
= ele"ze +ecl{a® — 1}f{a~ )]l +¢ (mod m)
= @My 4 acl{a® — 1)f{a - D+ cle~ 1Y {e—1) (mod m)
z a"Magdd{abn+l~ata-1)f/(a—1)] (modm)
= a™lzg 4 of(e! — Df{a~1)] (mod m)
and we select x,4y so that § < .4, < m. It now follows by the Principle of Mathematical
Induction that

£y =@ s + (6™ ~ 1}/(a—1)] (mod m), 0 < 2, < m.
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30.

31.

32.

33.

38.

From the previous exercise we have
T4 atzo + cf{a* - 1)/(a —1)] (mod m)
a'zg+c(a®+a® +a+1) (modm)
Tzg +4(P+ 7 +7+1) (mod 9)
Teo+4)1+44+7+1) (mod9)
Txg +4(13) {1nod 9)
Teg +4(4) (mod 9)=Tag+ 7 (mod 9)
With z; = 1 it follows from 1= Tzg +7 (mod 9) that 3= T2y (mod 9). Since 77! =4
(mod 9), we have 12 = (mod 9), so zp = 3, the seed.

oo

o

Proof: Let n,n+1, and n+ 2 be three consecutive integers. Then 0 +(n+1P2+(n+2)° =
n+(n®+ 302+ 3n+ 1)+ (0®+6n? + 12n + 8) = (In® + 15n) + 9(n® + 1). So we
consider 3n® + 15n = 3n(r® + 5). If 3|n, then we are finished. If not, then n = 1
(mod3)orn=2 (mod3). Hn=1 (mod3),thenn?+5=14+5=0 (mod3),so
3[(n*+5). Hn=2 (mod3),thenn?+5=9=0 (mod 3), and 3|(n?+5). All cases are
now covered, so we have 3{[n(n® + 5)]. Hence 9{[3rn(n? + 5)] and, consequently, 9 divides
B+ 1n)+ 9n?+ 1) =n3+ (n+ 12 + (n + 2)°.

Since 55 = 32+ 16 + 4 + 2+ 1 = (110111)2, we have 3% = 332.3%.3%.32. 31,

Now, 3' = 3 (mod 10) and 3° = 9 (mod 10), so 3. 3" = 7 (mod 10). Further,
3*=81=1 (mod10)s03*-37-3" =7 (mod10). With3* =1 (mod 10) it follows
that 33 =1 (mod 10),3"% =1 (mod 10)and 3 =1 (mod 10). Consequently,

3% =3%.3%.31.32.3'=1.1.7=7 (mod 10),
so the last digit (that is, the units digit) in 3% is 7.

From the presentation given in Example 14.18 it follows that for n € Z%,

-3

}:p(k-(n 4+ 1)n,n) = “IE (2 ) the nth Catalan number.

(n-—-k4+1¥ = {(-k+1P (modn)
= M -2k+1 (modn)
= k-2k-+1 (modn)- because k is idempotent
= k1 {(modn)
= n—k+1 {modn)
Consequently, n ~ k + 1 is idempotent in Z,, whenever £ is idempotent in Z,.

(a) 142+3=6=1 (modd); 0+4=4=1 (mod3)}; 2+24+74+5=16=2
(mod 7). h(123 — 04 — 2275) = 112.

(b) Let n=112— 43— 8295. Then (112 — 43 — 8295) = 413.
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a7.

Program Hashing (input,output);
Var
sspum: array|l..9] of integer;
i, a, b, ¢, result: integer;
Begin :
Writeln (‘Input the social security number, |
‘without hyphens, one digit at a time. ’);

Writeln (‘Input the 1st digit and then type a return. ’);
Read (ssoum[1]);
Writeln (‘The 1st digit is ’, ssnum([1]:0);

Writeln (‘Input the 2nd digit and then type a return. )
Read (ssnum[2]);
Writeln (‘The 2nd digit is °, ssnum[2]:0);

Writeln (‘Input the 3rd digit and then typeAa return. ');
Read (ssnum|3});
Writeln (‘The 3rd digit is °, ssnum|3]:0);

Fori:=4to9do
Begin
Writeln (‘Input the ’, 1:0, “-th digit and then type a return. );
Read (ssnumli});
Writeln (‘The ’, 1:0, -th digit is ’, ssnumli]:0)
End;

s = (ssnum{1] + ssnum(2] + ssnumi{3]} Med 5;

== (ssnwuinf4] + ssoum{3]) Mod 3;
¢ = (ssnum[6] + ssnum|7] + ssoum[8] + ssnum[9]) Mod T7;
result := 100%a + 10*b + ¢;

Writeln (*The hashing function assigns the result 7,
result:@, * to this social security number.’)

Fad.

{(a) h(206) = 1 mod 41, since 206 = 5(41)+ 1. Likewise, h(807) = 28 mod 41, A{137) = 14
mod 41, h(444) = 34 mod 41, A{617) = 2 mod 41. Since A{330) = 2 mod 41 but that
parking space has been assigned, this patron is assigned to the next available space - here,
it is 3. Likewise, the last two patrons are assigned to the spaces numbered 14 4 1 = 15
and 3+1=4

(b} 1,2,3,4,0r 5.
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(a)3z =7 (mod 31)

Since ged(3,31) = 1, 3~? exists in Zy;. Using the Buclidean algorithm we have 31 =
10(3)+1,801 = 31-10(3) and 37! = [3]"! = [~10] = [21]. (Note: 3-21 = 63 = 2(31)+1).
Hence 3z = 7 (mod 31) = 21(3z) = 21(7) (mod 31) =+ z = 147 (mod 31) = z = 23
(mod 31).

(b) 52 =8 (mod 37)
With ged(5,37) = 1, we use the Euclidean algorithm to determine 571 in Zan.
37 = 7(5)+2, 0<2<5
5 o= 22)+1, 0<1<2
Sol=5§—2(2) =5~ 2[37 — 7(5)] = 5 ~ 2(37) + 14(18) = 37(—2) + 5(15). Consequently,
1] = [5][15] in Zs7 and 57 = [5]7* = [15].

Therefore, 52 = 8 (mod 37) = 15(bz) = 15(8) (mod 37) = z = 120 (mod 137) =
z=9 (mod 37).

(¢) 62z =97 (mod 125)
Since 6 = 2-3 and 125 = 5%, it follows that gcd(6,125) = 1. Using the Euclidean algorithm

we learn that
125 = 20(6) + 5, 0<5<«<86

6 = 1(5)+1, 0<1<5
Consequently, 1 = 6 — 5 = 6 — [125 — 20(6)] = 6 — 125 + 20(6) = 21(6) + 125(-1) =
6(21)+125(~1) and [1] = [6][21] in Zizs. So 61 = [6]~* = [21] and 62 = 97 (mod 125) =
z=21-97 (mod 125) = z = 2037 (mod 125) = £ =37 (mod 125).

Section 14.4

g0t l,v—=2,w—3 —4,y—>5

(Theorem 14.15 (d)) The result is true for n = 1. Assume the result for n = k and
consider n = k+1. Then f(a**!) = f(a*a) = f(a*)f(a) = [f(a)}* f(a) = [f(a)}F*'. Hence
the result follows for all n € Z% by the Principle of Mathematical Induction.

{Theorem 14.16 (a)) For s € §, there exists r € R with f(r) = s, since f is onto.
T upr = rug, 50 8= f{r) = flupr) = flug)f(r) = f(u,)s and s= f(r) = flrug) =
F(rif(ug) = sf(up), so f(ug) is the unity of 5.

{Theovern 14.16 (b)) Since ¢ isaunitof R, thereisan element b€ R with ob = ba = up.
Then us = f(un) (by ?M‘f&{&}‘? = flab) = f(a)f(b} = flba) = f(b)f(a), s0 fla) isa
unit of §. Since b= ", it follows that f({3) = f{a“‘l} is a multiplicative inverse of f{a).
By Theorem 14.5 (b) we have f(a™) = [f(a)]™?

{Theorem 14.16 {c)} Let s1,8; € §. Then there exist ry,ry € B with f{r;) = 5,1 <

t <2, So a8z = f{r)f{r2) = flrirs) = flrari) = f(ro)f(r1) = s28;, and consequently §
is conmutative.
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Let (R, +,),(8,®,0),(T,+',) be therings. Forall a,b € R, (gof)a+b) = ¢(fa+d)) =
9(f(a) + £(8)) = g(f(a)) +' g(f(b)) = (g o f)(a) +' (g0 f)b). Also, (go f)a b) =
g(f(a-8)) = g(f(a) © f(8)) = g(f(a)) " g(f (b)) = (g 0 F)a) " (g0 F)(b). Hence, gof isa

ring homomorphism.

Define f: R— S by f(‘r)m{; ‘:} for each r € R. Then f is

& one-to-one function from R onto §. Forall r,se€ R,

R RPN B 1 BY P B OIS

N N A M | F B ETe)

0 rs

So f is a ring isomorphism and R is isomorphic to S.

(a) Since f(2g) = zg, it follows that 2z € K and K # 6. If 2,y € K, then
flz~y) = flz+(~y) = fa) & f(~y) = f(2) © f(y) = 25 © 25 = 25,80 z —y € K.
Finally, if # € K and r € R, then f(re) = f(r} 0O fla) = f(r) © 25 = 25, and
flzr) = fz) O fr) = 2¢ ® f(r) = z5, s0 rz,zr € K. Consequently, K is an ideal of R.
(b) The kernel is {6n|n € Z}.

(¢) ¥ f 1is one-to-one, then for each 2z € K,{f(z) = z5 = f(2n)] = [z = zgr],
so K = {zz}. Conversely, if K = {zg}, let z,y € R with f(z) = f(y): Then
zs = f(z) © f(y) = fg —y), 80 2~y € K = {zp}. Consequently, s~y =2p =>z =y,
and f is one-to-one, ‘

(8) fl(12)(23) + 18] = f(18) - f(23) + F(18) = (1,1,3)-(1,2,3) +(0,0,3) = (1,2,4) +
(0,0,3) = (1,2,2) = £(17), so (13)(23) + 18 = 17 in Zs.

(b) f{(ll)(?‘i) - 20} = f{ll} ’ f(z}'} - f(?{}) == (15 211) : (}-7@3 1} - {Gs 2, ﬁ) = (13 0, 1} -
{Q, 23{3} B {L - 1} =z (1? 1, },) = f{l), 80 (11)(21} - 20=1 in Za.

(e} 24
{dy 29
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i3d.

(a)

z (iﬂ Zzg) f(:i?) (."Eﬁ Z4 X Zs) x (1{1 Zgg) f{ﬁ) {in Z4 X Zg}
0 (0,0) 10 .0)
1 (1,1) 11 (3,1)
2 (2.2) 12 (0,2)
3 (3,3) 13 (1,3)
4 (0,4) 14 (2,4)
5 (1,0) 15 (3,0)
6 (2,1) 16 (0,1)
7 (3,2) 17 (1,2)
8 (0,3) 18 (2,3)
9 (1,4) 19 (3.4)

(b) () FD(9) + (12)(24) = (1,2)(3,4) + (0,2)(2,4) = (3,3) + (0,3) = (3,1) and
F1(3,1) = 11.

, ﬁﬁ)g) A(18)(11) - (9)(15)) = (2,3)(3,1) — (1,4)(3,0) = (2,3) — (3,0) = (3,3) and
-1(3,3) = 3.

F(ma + tb) = mf(a) + £f(5) = m(1,0) +4(0, 1) = (m, )
(a) 4 (b) 1 (¢} No
{a) There are ¢(15) = 15(2/3)(4/5) =8 units in both Z;s and Zj3 x Zs.

(b} Yes. Define f: Zis — ZaxZs by f(0)=(0,0); fF(1)=(1,1) f(2)=(2,2); f(3)=
(0,3); f(4) = (L,4); f(8) = (2,0); f(6) = (0,1); f(7) = (1,2); f(8) = (2,3); f(9) =
(0,4) F(10) = (1,0); f(11) = (2,1} F(12) = (0,2); f(13) = (1,3); f(14) = (2,4). In
general, f(z) = (a,}), where 0 <2 <14, and z2=a (mod3),z=b (mod5), for
0<a<2,0<b<4.

No, Z; has two units, while the ring in Example 14.4 has only one unit.

Since J#£ B, U #0. I ar,a5 € f7H{J) then f(a1), faz) € J. Since J is an ideal,
flay) + fles) = flag 4+ a3) € J, 80 a; +ag € f7(JF). Also, flai)flas) = flaja) € J,
and @ya; € FHJ). Finally, a € f"H{J) = fla) € J = ~fla) € J => f(—~a) € J =
~a € f7HJ), s0 fHJ) is asubring of R.

Nowlet r € R and a € f~YJ). Then f(ra)= f(r)f{a), where f{r}€ § and fla) & J.
Since J isanideslof §, f(re) € J and it follows that re € f~'(J). In a similar manner
we find that ar € f~YJ). So f~HJ) is an ideal of R.

Here a; = 5; ay = 73; my = 8; mp = 81; m = mymy = 8. 81 = 848; M) = m/m; = 81; and
My =mjmg = 8.

[#1] = [My]™ = [10(8) + §3 = (17 = [1] in Zg

[22] = [Mp]™" = [8]" = [~10] = [71] in Zg,

T —aiMizy + apMpzg = 5811473 8- 71 = 41860 = 64(648) + 397.
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15.

1.

So the smallest positive solution is 397 and all other solutions are congruent to 397 modulo
648.
Check: 397 = 48(8) + 3 = 4(81) + 73.

Here we want a simultaneous solution for the system of three congruences
z=3 (mod 17)
z =10 (mod 16)
z=0 (mod 15).

So ay =2 a9 = 10 a3 = 0; my = 17; my = 16; my = 15; m = mymomy = 17.16-15 = 4080;
= mfmy = 240; M; = m/mz = 255; and M3 = m/mg = 272.
{ 1) = My = (24017 = [14(17) + 2] = [2]"! = [9] in Zys
[zo] = [M,]™* [250]’1 [15(16) + 18]~ == [15]"! = [15] in Zys
[&73} = ng} == £272} {18(10) + 2] {2}“1 {8} in Z;;,
z=3-9-240+10-15-2565+0-8-272 = 44730 = 3930 (mod 4080).

So the smallest number of (identical) gold coins that could have been in the treasure chest
is 3930. Any other solution is congruent to 3930 modulo 4080.
Check: 3930 = 231(17) + 3 = 245(16) + 10 = 262(15).

Haeeay=liay=2ja3 =3 a4 =8, my =2, mg=3; mg=05; my =T, m = mymymzmy =
2:3-5.7=210; My = m/my, = 105; My = mfmg = 70; Mz = m/ms = 42 and
M4 = m/m4 = 30.

[#2] = [My]™} = [105]" = [52(2) + 1]7' = [1]"! = [1] in Z,
[23] = [Mo]™! = [70] = {23(3)-3—3] = [1]"* = (1] in Z4
[#3] = [M]™" = [42]"" = [8(5) + 2]™" = [2]7" = [3] in Zs
[og] = [My]™' = 30]7" = [(T) + 2] = [2]"! = [4] in Zy
2=1-105-1+2-70-1+4+3-42-3+5-30-4=1223 =173 {(mod 210).

So z = 173 is the smallest positive simultaneous solution for the four congruences. Any
other solution would be congruent to 173 modulo 210,
Check: 173 = 86(2) + 1 = B7(3) + 2 = 34(5) + 3 = 24(7) + 5.

Supplementary Exercises

{a) False. Let B=2Z and §=Z*,

(b} False. Let A=2Z and § = {2zjz ¢ Z}. ,
{¢} False. Let R= M, (Z) and Sw““ ﬂ}iaEZ}.

g 0
(d) True.
(e} False. (Z,4,) is & subring (but not a field) in {Q, +,').
{(f) TFalse. For each prime p, {a/(p")lo,n € Z, n > 0} is a subring of {Q,+,-).
{(g) False. Cousider the field in Table 14.6.
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{(h) True

R commutative <= ba = ab for all a,b € R <= a® + ab+4 ba + 5 = a* + 2ab + b* for
all ¢,b€ R <= (a+b)? =a®+2ab+ 5 forall b€ R.

(8) et+e=(a+al=d*+a*+adf+a®=(ata)+{ata)=ra+a=2a=2z

(b) Foreach a € R, a+a =2 =>a=—a For g,b€ R, (a+b) =(a+b)} =
a4dab+bat+P =a+ab+ba+b=>ab+ba =2=>ab= ~ba =ba, so R is
commutative.

—-b @ —d ¢

so f is a one-to-one function. It is also onto. (Why?)

a+bimc+di¢==>amc,bmd¢:¢»{ @ b}:{ ¢ ‘i}7

Further,
fla+b)+(z+w)) = flla+z)+(B+y))
etz b4y | a b n z y
~(b+y) at+x] | -b a} {—-y 33]
= fla+b)+ flz + i),
and
fl(a+bi)(z +yi)) = f((az —by)+ (bz + ay)i)
_ ax—by brt+ay| | a b z vy
T ~(bz+ay) ez —by | | —b a}{-—y :s}
= fla+b&)f(z +yi),

so f is a ring isomorphism.

Since az = 2z = za forall a € R, wehave z € C and C # 0. f 2,y € C, then
(z 4 y)a = za + ya = az + ay = alz + y)}, (zy)e = z(ya) = z{ay) = (za)y = (ax)y, and
(—2)a = —{(za)} = ~(az) = a{—~z), forall & € R,s0 z-+y,zy, and —z € C. Consequently,
C is a subring of A.

(@) () 2¢0 (i) 3 @) o
(b) () (212 -2)=(3)2)=6
() (3% ~1)(3° ~3) = (8)(6) =48
(i) (- 1)0" - p)
{(a) Since a® = b° and a® = I, it follows that o = (F¥)(F*) = (®}(#*). Consequently,
(e®)(a?) = (a®}(b*) with &® # z, s0 ¢® = B

Now with ¢® = & and o’ = §? we have (e¢*)(a) = &® = & = ($*)}(b) = (a®)(}), and since
a® # z it follows that a = b.
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{b) Since m,n are relatively prime we can write 1 = ms+nt where s, € Z. With m,n > 0
it follows that one of s, must be positive, and the other negative. Assume (without any
loss of generality) that s is negative so that 1 — ms =nt > 0.

Then a® = §® ==> (an)t -— (bn)«% smd g™ = B :’;’. gl=ms o ploms a(am)(-—s) - b(bm}(ws).
But with —s > 0 and @™ = b™, we have (™ )(~ = ()" ){~%). Consequently,

(@™ = (™)) # 2] Afa(e™)) = 5(5™) ) =5 a = b,
since we may use the Cancellation Law of Multiplication in an integral domain.

(a) R* isclosedunder ® and ©. Forall a,b,c € R*, a®b = ab = ba = bDa; aB(bdc) =
a®(be) = a(be) = (ab)c = (ab)®c = (a®b)Bc; and a®l = 1Ba = a, 50 @ is commutative
and associative with additive identity 1. Also, for each a € R*, o' € R*, and ™! is
the {additive} inverse of a.

Now consider ©. For a,b,c€ RY, a® (0@ ¢) =a ® (P"°) = alog(to529) _ (log; c){log, b)
and (¢ ®b) ©c¢ = (d°8’) O ¢ = oo8donc) « © is associative. Also, for a,b €

" R*, log, b log,a = logya log, b = log,[aP%?] = log,[0lo52°] == @8 = posae =

aOb=5bOa, 80 O© commutative. In addition, a©2=a"%% =q' =a forall a € R*
so 2 is the multiplicative identity. Finally, ¢ © (b®¢) = a © (bc) = a©8t) = glogabHlogc
(a'%*)(a°8:¢) = (a © b) ® (a © ¢), so the distributive law holds and (R*,®,0) is a
commutative ring with unity.

(b} TFor each a € R*, a # 1, we find that a @ 298 = &2 = glog2)os2)

@'°%? = 2, the unity of the ring. So (R*,®,0) is a field.

Let z = a;+by, y = ay+by, for a;,a3 € A, b,b; € B. Then z—y = (a;—a2)+(b;—b) €
A+B. If reR and a+be A+ B, with a€ A,be B,then ra€ 4, rb€ B and
rla+b) € A+ B. Similarly, (e +br € A4 B,and A+ B is an ideal of R.

(2) For 0<k<p,(}) = (p)/[ki(p— k)] = pl(p— DY/ (ki(p— ] [(p—)/(Eip—~E))]
is an integer because for any 0 <k < p, none of 2,3,... max{k,p—k} divides p when
p is prime.

(b) (a+bPF = Yhe (z)ak&*’“k, By part {a) (’;} =0 (modp) for 0 < k < p, 50
(e+df =a” + 0 (mod p).

Consider the numbers oy, #1428y, 21 b @+ 23, ..., 23+ 22b 23+, . +2,. I one of these
oumbers is congruent to § modulo n, the result follows, If not, there exiat 1 <1< j<n
with (g +m+ . +xm)s(n+ . b+ +...+2;) (mod n). Hence n divides
($Mﬂ S LI 5&‘5}.

Since 2 = 1+ 1 and 3 = 4 — 1 we know that (2,1,1} and (3,4, 1) are elements in 5.
However, (2,1,1)0(3,4-1) =(2-3,1-4,1-(~1)) = (6,4 — 1), and {6,4,~1) is not in
5 because 6 # 4 + (—1). Consequently, S is not closed under multiplication so it is net a
subring of (Z°,®, ©). :
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[Note: The set S is nonempty and it is closed under subtraction.]

(a) Foreacht € N,

741 =7 (mod 10) 34+ =3 (mod 10)
T2 =9  (mod 10) 34+ =9 (mod 10)
7T+ =3 (mod 10) , 33 =7 (mod 10)
7 =1 (mod 10) 34+ =1 (mod 10)

So in order to get the units digit of 7™ + 3" as 8 we must have (i) m =1 (mod 4) and
n=0 (modd4),or(ii)m=0 (mod4)andn =3 (mod4),or (ili)m =2 (mod 4)
and n=2 (mod 4).

For case (i) there are 25 choices for m (namely, 1,5,9,...,93,97) and 25 choices for n
(namely, 4,8,12,...,96,100) — a total of 25% = 625 choices for the pair. There are also
625 choices for the pair in each of cases (ii) and (iii). Consequently, in total, there are 625
4 625 + 625 = 1875 ways to make the selection for m, n.

(b) For case (i) there are 32 choices for m and 31 choices for n, and 32 x 31 = 992 choices
for the pair. There are 31 choices for each of m,n, resulting in 31% = 961 possible pairs,
for case (ii) and case (iii). Therefore we can select m,n in this situation in 992 4 961 +
961 = 2914 ways.

(c) There are (100)* = 10,000 ways in which one can select the pair m,n.

Here we consider three cases:

(i) m=2 (mod4)andn=1 (mod 4}

(i) m=3 (mod4)andn=2 (mod4); and

(i) m=0 (mod4)andn=0 (mod4).

For each case there are (25)? = 625 ways to select the pair m,n. Therefore, we have 1875
ways in tofal.

Consequently, the probability for the problem posed is 3'16%36 = 0.1875 = 3[(ENE)] =
3/16.

Proof:
(2) Forn = 2and k= 1 wehave 1 = 1, and 1° = 1 (mod 2). When n > 2 then
£ ko= k(k? ~ 1) = k(k — 1)}k 4+ 1) 5 0, where k£ — 1 and k + 1 are both even. Hence
n = 2k divides &* —~ k,s0 k® = k (mod n).
(b} When n = 4k it follows that (2k)® = (4k)(2F*) = n(2k?) =0 (mod n).
(¢} Recall that for all real numbers z,y we have 2° + ¢° = (& + y¥&? — 2y + ¥*).
L
(i) I nis even with n/2 odd, then Y i° = 14 2% 4 ... 4 {% - 1P+ {g’é‘f’ + {% + 17+
FEH ;

oo (0 - 1)

393



Consider the following pairs:

Btan-1P = 14 (n— D12~ 1(n— 1)+ (n~1)7 = 0 (mod n)

24 (n~2)° - 24 (5~ 2)}[2% ~ 2(n — 2) + (n — 2)%] = 0 (mod n)

il

G-1P+E+1° = (G-D+G+DUG -0~ G- DE+D+E+17T = 0 (mod n).

n—1
Hence ¥ * = (%}3 = (g) {(mod n), for n even with n/2 odd — by virtue of part (a).
==l
(i1} I n is even and divisible by 4, then by an argument similar to that in part (i) we have
-1
Y= (%)3 =0 (mod n) — because of part (b).
szl
(iti) Finally, consider the case where n is odd. By an argument similar to the one in part
n-1 {(n—1}/2 {n-1}/2

(i) we have 3 i° = Y BPHn=ifl= 3 i+ - )i® ~i(n—i) +(n —1)%), where

fuxl fu=l fmy
each summand has the factor n — making it congruent to 0 modulo n. Consequently,

1
> =0 (mod n).
=l
15. Proof: For all n € Z we find that n®? =0 (mod 5) — when 8|n —~orn? =1 (mod 5) or
n? =4 (mod 5). Suppose that 5 does not divide any of a, b, or ¢. Then
G) a®+ P +c*=3 (modb)-whena®=b=c=1 (mod5)
(i) a®+ b +c* =1 (mod 5) - when each of two of a?,5?,¢? is congruent to 1 modulo 5
and the other square is congruent to 4 modulo 5;
(i} a® +8 +c* =4 (mod 5) — when one of a®,b%,¢* is congruent to 1 modulo 5 and
each of the other two squares is congruent to 4 modulo 5; or,
(iv) @4+ B+c*=2 (modi)-whena’=0V=c?=4 (mod?}).

16.
Program Reversal (input, output);
Var
posint, rightdigit: integer;
Begin

Writeln (‘Input the positive integer whose digits are to be reversed.’);
Read (posint); '
Write (*The reversal of ’, posint:, * is ')
While posint > 0 do
Begin

rightdigit := posint Mod 10;

Write (rightdigit:0);

posint = posint Div 10
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End;
Writeln
End.

From Section 4.5 we know that a— b has (e; +1}{e;-+1)- - - (ex+1) positive integer divisors.
Consequently, there are (e; +1){ea-+1) - - (ex + 1) — 1 possible values for n which will make
a=b (mod n) true.

We use the Chinese Remainder Theorem to find a simultaneous solution for the system of
three congruences:

z=3 (mod 8)

z=4 (mod 11)

z=15 (mod 15).

Here ay = 3; az =4; az = §; m; = 8; my = 11; mz = 15; m = mymomg = 8-11- 15 = 1320;
= m/m; = 165; M, = m/m; = 120; and M3 = m/m; = 88.
{ 1] = [Ms}“"’ [165]~ = [20(8) + 5] = [5]" = [5] in Zg
[z5] = [M]? {120]"1 {10(11) + 10} = [10]"! = [10] in Z,
[23] = [M5]™" = [88]7" = [5(15) + 18] = [13]' = [7] in Zss
z=3-165-240+4-120-10+5-88-7 = 10355 = 7(1320)+ 1115 = 1115 (mod 1320).

So = = 1115 is the smallest number of freshman that Jerina and Noor could be trying to
organize for the pregame presentation.
Check: 1115 = 139(8) + 3 = 101(11) + 4 = 74(15) + 5.
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CHAPTER 15
BOOLEAN ALGEBRA AND SWITCHING FUNCTIONS

Section 15.1

(a) 1 (b) 1 (e) 1 (4 1

(a}) Since z has value 1, z + 2y + w has value 1 regardless of the values of y and w.
(b) Three assignments: (1) y:1, w:1; (2) y:0, w:1; and (3) y:1, w:0.

(¢) Two assignments: (1) y:1, w:1; (2) y:0, w: 1.
(d) Two assignments: (1) y:1, w:l; (2) y:0, w: 1L
(a) 27 (b) 269
a) (i) wZyz (ii) wayz
(ili) wryz (ivy WzyZz
b) (i) wH+z+7+7% (i) wH+ZE+7+2
(i) w+Z+y+7% (iv) wt+z+y+z
zlylzlz+y | Tz | (z+y)+(F2)
0100 1 0 0
01011 1 1 0
0j1:0 it 0 1
01111 0 1 0
11040 g 0 1
11611 0 0 1
11110 0 0 1
11171 0 0 1
{a) dat TYZ 4 TH# + Y Z 4+ ayZ + FyE
et (z4y+ziz+y+Z z+T+EF)

by f=3m{2,4,5,6,7)=1]M(0,1,3)
a) glw,z,y,2) = (wz + zyz}{z +F Jz) = wrz + oyz + wF ¥z = wa(y + §2+

(w+@)zyz + wT Yz = wryz + waGz +wryz +Wryz + wk Jz. Consequently, the d.nf. for
g is wryz + wryz + Wryz + wi¥ Yz, a sum of four minterms.
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10.

i1.

12.

From the d.n.f. for g we know that the c.n.f. for g is a product of 12 maxterms. The
binary labels for the above minterms are

wzyz: 1111(= 15) wzyz  1101(=13)

wryz: 0111(=T) wE Jz: 1001(=9)

Consequently we have the maxterms
0000(=0) wi+z+y+2{000l(=1) wH+ar+y+7|0010(=2) wHz+§+z
0110(=38) w+z+7+Z[0100(=4) w+F+y-+2|010l(=58) w+T+y+3z

0110(=6) w+ZT+T+2z | 1000(=8) @W+z+y+z|1010(=10) T+a+§+=z
1011(=11) W+24+F+7[1100(=12) B+FT+y+z | 1110(=14) W+T+F+2z

and the c.n.f. for g is the product of these 12 maxterms.

b) ¢ = Sm(7,9,13,15) = [I M(0,1,2,3,4,5,6,8,10,11,12,14)

(a) 2% (b) 26 (c) 28

(a) flw,z,y,2) =Wzyz + BryE + wE Y F + wiyz

(b) flw,z,y,2) =@ Tyz + Bz + Dayz + wiyZ + wiyz + wr§ 2+ wehz + wayZ + wayz
m -+ k=2

Hzrz=0thenes+yt+z=zyzr=—z+y+2z=0=>y=2z=0.
Uae=lthmaztytz=zyz=>l=ayz=>y=z=1

(a) sy+(z+y)Zty=ylz+ 1)+ (e +y)Z=y+Z+yZ=y(1+3%)+ 27 =y + 2Z.
() 2+y+ETvT D= +y+(E@T2) =2(1+72) +y=2+v.

(¢) yz+wz+z+weley+wz)] =2(y+1)+wz +wayz+wz =z+4+wa{l+yz) +wz =
z4+wz +we=z{1+w)+wzr=z+wr

z24+iy=0=p2=0=Fy=>2=y=0Ty=%E2, e=y=0= 2= 0; Fy+FF4+2uw =
Fw,r=y=zs=0=3w==1],
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13.

14.

(a)

flglh|fg{fh|gh| fog+Fh+gh| foa+ Fh
0i16|06l0 010 0 0
olof1lol1]o 1 1
@lolrjofolojo 0 0
olil1io01]1 1 1
110l0loloio 0 0
1lel1{o0lo o0 0 0
1/1]el 100 1 1
11111101 1 1

Alternately, fg + fh=(fg+ ) (fo+h)=(F+ g+ Dfg+h) =g+ (fg+h) =
fog+gh+ffg+ fh=fg+gh+0g+ fh=fg+gh+fh
() fo+fi+fa+fa=flog+D+flg+g=Ff-1+f-1=f+f=1
(b} @) (F+f+R)g+r)=(F+a(f+h)
(i) (f+9f+Df+af+9)=0

(a) Forany f € F,, f has value 1 whenever f has value 1 so the relation is reflexive.
¥ fige F, and f <g¢g and ¢ < f, then if f has value 1 for a certain assignment of
Boolean values to its n variables, ¢ also has value 1 since f < ¢g. Likewise, when ¢
has value 1, f does also, since ¢ < f. So f and ¢ have the value 1 simultaneously
and f = g, making the relation antisymmetric. Finally, if f,g,h € F, with f <g¢ and
g < h,thenif f has the value 1 so does g (since f < g) and so does h (since g < h).
Hence f < A and the relation is transitive.

(b) fg¢ hasthe value 1 iff f,¢ both have value 1so fg < f. When f has the value 1
sodoes f+g,s0 f<f+g.
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/fn f12 T3 £y
fg\\??fs s N /fw
o N /f3 T
6//
Minterms Maxterms
f;(a:,y) = XY fll{x;y) = & '{"@- fﬁ(mv y) =Y, fﬁ(:l:) y) = :’Ea
folz,y) =Ty Jilz,y) =2z +y Flz,y) =7, felz,y) ==,
folz,y)=F7 fis(z,y) =T +y folz,y) =2y +T Y
fal=, ) = TY fudz,y)=%+7 fw(m, y) =Fy + 2§

Let X == {a,bed}

//K\

{a,e] [a,d) {a,b) (v,¢3 fc,d] b,d)

Nﬁ //

Ignoring the labels at the vertices, these Hasse dingrams arve structurally the same.

15. (a) fof=0f0f=1fol=f fo0o=f
by (1) f@ﬁmﬁwﬁ%?gmﬁx}f@@»%mﬁ (f=1, end ff=0]=g=1.
[f = 0 and fg = 0] = g= 0. Hence f=g.
. () Fog=7i+19=To+fg=f7+Fa=foyg
{iv} Thisis the only result that is not true. When f has value 1, g has value 0 and &

value 1 {or ¢ hasvalue 1 and h value 0), then f@®gh has valuelbut (f@g)(f ©h) '
has value 0.

v) fo@fh=TFofa+ fofh = F+9fh+ fo(f +h) = Ffh+ fgh + ffg + fgh =
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foh + fgh = f(gh+gh) = flg® k).
(vi) FTohg=Ffa+fo=Fg+fa=[07
Fog=fi+fo={F+9(f+D=Fi+f9=Fdg.

(i) fog=rohkl=fe(fog =rae(fen=([(fofNeg=Uaf)eh=
0Gg=0®h]=lg=nhlL

Section 15.2

L@ zey=(+1)E) A DD
r D——'X@Ef
) = D |
L O— %

G

() z+y e
y ] ey
(b) A |
¥ ‘
[ D"‘LD, .
(©

. (8) | x»——{i}o

i
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() «—]

, PiE S
(c) y “E% et X 4
(a) y . )__{i
Xz . :
X /
X
(b) ¥ y+z

X + 7 :

{e) 4 {(xy){yz)
| )__D&l(xy)(m

iy + yi

5. flw,z,y,2)=BEYZ+{(w+z+7)z

401



: { r

I — =

a) The output is (z + §)(z +y) +y. This simplifies to 2 + (P} +y =2+ 0+y=2 +y
and provides us with the simpler equivalent network in part {a) of the figure.

b) Here the output is {(z + §) + (Z §+y) which simplifies to FF+Z J+y =Fy+TF+y =
Hy+¥) +y= #(1) + y = ¥ + y. This accounts for the simpler sguivalent network in part

(b} of the figure.

G e =
. R
o= I
Rt
cmsmemeslips
wy: )——'——‘
el

O i«

wRyz S

- F{w, %, ¥ .2}

BRYZ el

T S —

m%x R

=

o
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9.

(a)
w \my I

00 01 11 10

o
i

(b) »f(w,:c,y) =z

(c)
w:c\ yz

06 01 11 10

00
01
11
10

flw,z,y,2) =22+FZ

(d) flw,z,y,2)=22+TFTZ+wyz or 2z+EZ+wE Y

(e)
wx\ yz

00 01 11 10

00
01
11
10

f(w,z,y,2

)
w:c\ yz

) = w7 Z + zYz + wyz + zyF

00 01 11 10 wz\yz |00 01 11 10

00
01
11
10

(v=0)

"‘3‘

flv,w,z,y,2) =T WY Z + vwzZ + 0 EYZ + B Fz + vy + vyz
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10.

11.
12.

13.

we\ yz |00 01 11 10
00
01 Q
11
10 .\QU
flw,z,y,2) = (w+y)FE+yHT+7+2)(z+7 +2)
(a) 2 (b) 3 (c) 4
(a) 64 (b) 32 (c)

(@ IO =11 (1)f=8
(e) [FHO) =14, If7Y(D]=2
(e} IfHO®]=6, [f"H(l=10

Section 15.3

(d) k+1
16 @ 8
(b) ' Of=12, [f'()=4
@ 10 =4, [F(1)]=12
& IF@l=7 [ Wl=9

flu,vw,z,y,2) =(v+w+z+y)u+w)vt ) uty+z)=
(ww+uw+uz+uy+vwtwtwz+wy)v+z{uty+z)=
(wwtuz+uy+utv+l+ct+yw)v+z)uty+z)=

(uwv +uz +uy +wl(uvtvy+vztuztyz+z)=

(uv + uz + uy + w)(uv + vy + z) =

(vv + vvz + uvy + uvw + uvy + uvzy + uvy + woy + uvz + urz +uyz + wz) =

uv + wuy + urz + uyz + wz
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2.

Due to the size of this table we show only two of the simplifications.

cd \ef |00 01 11 10 cd\ef |00 01 11 10
00 |0 0_0 O 00 o 131 1
01 |0 1 01 |0 1
11 [0 1 11 |0 1
10 0 1771y 0 0 0 1771\ 1

(a =0,b=0) (a=0,b=1)

ed\ef |00 01 1110 cd \ef |00 01 1110
00
01
11
10

(a=1,6=0) (a=1,b=1)

g(a,b,c,d,e, f) = bf + be + ad + df +de + cf + ace

(a)

wz\ yz |00 01 11 10
00
01
1Y v
10 v

f(w$$')y?z}=z

(b)

wr\ yz |00 01 11 10
00
01 IV | 1
11 \1 1
10 v v

f(w,a:,y,z} =ZYZ+ayz+wyz
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(c)
wz\yz |00 01 11 10 wz\ y2 |00 01 11 10

(v
flv,w,z,y,2) =v§ Z+WTyz +V W 2z + 02y
(a) f(a,b,e,e) = @bce (2) + @bee (3) + abée (5) + @bee (7) + abce (11) + abee (13)
(b) f =3 m(2,3,5,7,11,13)

ab\ce |00 01 11 10 abe *‘“:}_

00

01 abe .
11 ' f
10 Fce

I
Q

(¢) f =Y m(2,3,5,7) +d(10,11,12,13,14,15)
ab\ce |00 01 11 10

00
01
11
10

be bec A

(a) (a+bdbtectdtefatbtetfHatbtetd+filatctdtedtyg)
(a+d+etg)btct+f+gidtetf+g)=(a+btect+dte)

(a+btct+ filatdtetgibt+etf+gdtetf+g)=

(a+b+ct+df +efilatdtetg)bte+f+gid+et f+yg)=

(a+btctdf +ef)(d+etgtaf)(btet frg) = [(b+e)+(at+df +ef)(f+g)l(d+etg+af) =
[b+c+af +df +ag+dfg+efgl(d+etg+af) = [b+ctaf +df +ef +agl(d+e+g+af) =
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1.

4.

5&

bd+cd-adf +df +def+adg+be+cetaef+def+ef +aeg+bgtcgtafg+dfgtefgtagtabf
4 acf+af +adf +aef +afg=0bd+ecd+df +ag+ef+be+cetaf+bg-+cg.

Section 15.4

(The second Distributive Law). Let z = 2R3k5k ¢ = 2™3m25ms 7 = 2M3™5" where
for 1<i<3, 0<k;,my,n; < 1.

ged(y,z) = 2m325% where s; = min{m;n;},1 < i < 3. lem(z,ged(y, z)) = 213255
where f; = max{k;, s;}, 1 € ¢ < 3. Also, lem{z,y) = 2“3%5%, lem{z, z) = 2"3%5"
where u; = max{k,m;}, v; = max{k;,n;}, 1 <¢ <3, and ged(lem(z,y),lem(z, 2}) =
2¢1325%  where w; = min{u;,v;}, 1 < 1 < 3. To prove that lem{z,ged(y,2)) =
ged(lem(z, y), lem(z, z)) we need to show that ¢ = w;, 1 <i < 3. H k = 0, then
ti=8;, u; =my, v; =n; and w; = min{u;, v;} = min{m;, n;} =8 =4 If k =1, then
t= 1= u; = v = w,;.

(The Identity Laws) z + 0 = thelcm of z and 1 (the zero element) = z; 2-1 = the
ged of z and 30 (the one element) = z, since z is a divisor of 30.

{The Inverse Laws) z+ 7 = thelecm of z and 30/z = 30 (the one element of this
Boolean algebra); 27 = the ged of 2z and 30/z = 1 (the zero element of the Boolean
algebra).

(b)
z4zy =z-1+4+ay Def. 15.5 (c)
= z{1+y) Def. 15.5 (b)
=g-1 Th. 15.3 (a)
=T Def. 15.5 (C)’

(b) Follows by duality.
(h) O=zF=F+z=1
(b)Y Follows by duality.

(i) zi=0=z=x-l=zly+¥)=ay+e¥=zy+0=12y
gy =3 = 0 =2 = 2(FY) = 2(F+§) = 2T+ 27 = 0 4 2§ = 2¥
(1Y Follows by duality.

(&) 30 (b} 30 () 1 () 21 (e) 30 (£} 70

(8) z+y=sy+y=ye+)=y-1=y
{b) 3:ﬁymx+yxymwgm§m§§mgmyﬁﬁ

(a) w<0= w-0=w Butw.0=0, by part (a) of Theorem 15.3.
(b) 1<ze=12=1,and 12 = 2z from owr defintion of a Boolean algebra.
(¢) y<z=mpyr=y,andy<Z=>yf=y. Thereforey=yz = Zr =y(Zz) =y - 0=0.
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6.

9.

10.

11.

12.

13.

i4.

15,

Proof:

(a) w<e=we=w, andy < z=> yz =y. Consequently, (we){yz) = wy, and we find
that wy = (wz)(yz) = (wy)(zz) = wy < zz.

(b) Asin part (a), w £z = we = w, and y < z = yz = y. Therefore, (w + y}z + z) =
wz +wz +yz +yz = (w+wz) + (y + yz) = w+ y, by the Absorption Law

(Theorem 15.3 (b)). But (w+ye+2)=wty=>wt+y <z 42

r<y<srey==r Thedualof zy=2 is 24y ==z.

gty=z=pay=(z+yly=ay+y=ylz+l)=y-l=y anday =y <y <z
Consequently, the dual of # <y is y < =

21’!;

From Theorem 15.5(a), with z;,2, distinct atoms, if z;,2; # 0, then z; = 2329 =
Zy%y = X3, & contradiction.

If 0 and ¢/ are both zero elements of B then 0 =0+ = {'. In a similar way, if 1 and 1’
are both one elements of Bthen 1=1.1" =1/,

(d) Since z isanatomof B,z #0 so f(z)# 0. Let y € By with 0# y and y < f(=).
With f an isomorphism there exists z € B; with f(z) =y. Also, f~': By — B, is
an isomorphism so f(2) € f(z) = z < z. With z an atom and 0 < 2 < z we have
z=gx so f{z)=y= f(z), and f(z) is an atom.

(a) f(38)=f(5+T7)=f(5)U f(7) = {c} U{d} = {c,d}
F(110) = f(2+ 5 +11) = {a,c, e}
F(210) = £(2+3 +5+7) = {a, b, d}
F(330) = f(24+3+5+11) = {a,b,¢,¢}

(b) 5! (Since any isomorphism of finite Boolean algebras must correspond atoms.)
() flay)=fZ+7)=fZ+79) = @)+ @) = f(3) 17) = f3F) - 1{§) = f(=) - f{).
{b) Let By, B; be Boolean algebras with f: B; -~ B, one-to-one and onto. Then

f is an isomorphism ¥ f(F) = flz) and flzy) = f(a)f(y) for all z,y € B,. [Follows
from part (a}) by duality.]

Let SCU. I S=10,then f(0)=S8 I S#40, thenlet z =37, cx; where ¢; =1 if
1€ 8§ and ;=0 if 1¢S5 Then fle)=§ Hence fisonto.
Since [B] = [P = 27, it follows from Theorem 5.11 that f is also one-to-one.

Foreach 1 <d<n, (2idzat.. . +a, e = o128+ Tai 4o o b By &+ 22 b Ty 50
Fpt; =040+, . +0+z,+0+... 4 0=z, by part (b) of Theorem 15.5. Consequently,
it follows from Theorem 15.7 that (& +a22+... 4 2,)z =z for all z € B. Since the one
element is unique (from Exercise 10) we conclude that 1=z + 234 ...+ z,.
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7.

Supplementary Exercises

{a) When n =2, z;+z; denotes the Boolean sum of z; and z,. For n > 2, we define
14234+ To F Ty rvecursively by (&1 2+ ...+ 20 ) + Zagr. [A similar definition
can be given for the Boolean product.]

For n = 2, z; + 3, = T;%; is true, for this is one of the DeMorgan Laws. Assume the
result for n =k (> 2) and considerthe caseof n=k+ 1. (zy+ag+... +2p + 2p4q) =
(1 + 22+ ...+ )+ Zogr = (@1 F 22+ ...+ 25) - Fiyr = T1F2 - ExFreq. Consequently,
the result follows for all n > 2 by the Principle of Mathematical Induction.

(b) Follows from part (a) by duality.

y=4, z=T, =16 or 28

Let v,w, z,¥,7 indicate that Eileeen invites Margaret, Joan, Kathleen, Nettie, and Cathy,
respectively. The conditons in (a) — (e} can then be expressed as

(8) (v—w)e= T+w) (b) (2 —vy) == (T +vy)
(¢) Wz+wz (d) yz+7%2 () z4+y+ay=z+y

(5 + w)(E + vy)(@ + wE)(yz +TEe +y) <= (7 + )@y + )@ + wI)(yz +7 7)
< (T + w)(Ty + vy)(Wyz + w§ ) <> (T+ w)(@ Fyz + Doyz) & T W Tyz

Consequently, the only way Eileen can have her party and satisfy conditions (a) - (e} is to
invite only Nettie and Cathy out of this group of five of her friends.

h = T m(2,4,6,8) + d(0,10,12, 14)

Proof: If z < z and y < z then from Exercise 6(b) of Section 15.4 we have z +y < z + 2.
And by the idempotent law we have z + 2z = 2.

Conversely, suppose that  + y < 2. We find that ¢ < z + y, because a(z +y) = z + ay
{(by the idempotent law) = 2 {by the absorption law). Since z Lz +yand z +y < 2z we
have z < z, because a partial order is transitive. [The proof that y < z follows in a similar
way.|

Statement: Let B be a Boolean algebra partially ordered by <. H 2,y,2 € B, then 2y > =
fandonlyifz > zand y > =

Proof: If 2 > z and y 2 2z, then from Exercise 6{a} of Section 15.4 we have 2y > zz. The
result now follows from the idempotent law because zz = z,

Conversely, suppose that zy > 2. We claim that z > zy. This follows because (zy)z =
z{yz) = z{zy) = {22}y = ry. Since < is traunsitive, z > sy and 2y > 2 = ¢ > z. [The
proof that y > z follows in a similar manner.] '

Proof:

(a) e Ly=22+f<y+Z=15y+Z=2>y+Z=F+y=1 Conversely, T+y=1=
2HEF4y)=z-l=¥=0)tey=z=>ry=2=2 <y

b) 2= eT=a=ay=aTy=2(Fy)=2z-0=0. Conversely, 2y = 0=z =2 1=
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tHy+P)=zy+zy=af,andz =27 =<7

8. Proof: Hz=ythenzy+Zy=22+Tr=0+0=0.

Conversely, suppose that 27 -+ Zy = 0. Then

e=z+0 = z+4 (7+Ty)
= (z + z¥) + Ty, by the Associative Law of +
= gz -+ z¥, by the Absorption Law (Theorem 15.3 (b})')
= (z +%)(z + y), by the Distributive Law of + over -
= 1lz+y)
= Z+4Y
= (z+y)l
= (z+y)¥+v)
= z¥Y + y, by the Distributive Law of + over -
(and the Commutative Law of +)
= z7+ (Zy + y), by the Absorption Law (Theorem 15.3 (b)’)
= (z§ + Ty) + y, by the Associative Law of +
= O0+4+y=y.
9. (a)
wr\yz |00 01 11 10
0 | 1 1D f(w,2,y,2) =W % + 2y
01
N
10
(b)
wx\ yz {00 01 11 10 wz\ yz |00 01 11 10
00 00 1
01 01
11 11
10 10 1
(v=0) (v=1)
g(v,w,2,y,2) =0 Wyz+zz+wfZ+IT§Z

10.

(a) g(a,b,c,e) = abce (1) + abce (2) + abc & (4) + abc € (8)
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(b) ,
@ bée iii>w—~

il

gbce

}
abre g}——

(C) g(a7 b’ €, e) = Zm(la 27 4) 8) + d(107 111 123 13: 143 15)
ab ce | 00 01 11 10

i

00
01
11
10

11. (a) 26 {by &% gnt1
12. 4!
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13.

14.

(a) 60=2%.3-5 so there are 12 divisors of 60. Since 12 is not a power of 2 these divisors
cannot yield a Boolean algebra.

(b) 120 =12%-3-5 and there are 16 divisors of 60. Let z = 4. Then ¥ = 120/4 = 30
and z-7 = gedof 2 and 7 = ged(4,30) = 2, not 1. Hence although 16 = 2* the
divisors of 120 do not yield a Boolean algebra.

If ¢ < a,then ac= ¢, s0 abtc = abtac = a(&»&—é_)_: Conversely, if ab+c = a(b+c) = abtac,
then ae = ac+ 0 = ac+ (ab + ab) = (ab+ ac) + ab = (ab+¢) + ab = ¢+ (ab+ ab) = ¢, and
gc=c¢=3c¥Xa.
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5@

CHAPTER 16
GROUPS, CODING THEORY, AND
POLYA’S METHOD OF ENUMERATION

Section 16.1

(a) Yes. The identity is 1 and each element is its own inverse.

(b) No. The set is not closed under addition and there is no identity.

(¢) No. The set is not closed under addition.

(d) Yes. The identity is 0; the inverse of 10n is 10(—nr) or —10n.

(e) Yes. Theidentity is 14 and theinverseof g: A— A4 is ¢g7': 4 — A
(f) Yes. The identity is 0; the inverse of a/(2") is (—a)/(2").

(c) ab=ac=>a"(ab)=a"ac)== (a'a)p=(a"Ya)c=>eb=ec=>b=c
(d) ba=ca==>(ba)a™! = (ca)a™ == blae™) =claa™!) => be =ce => b=¢

Subtraction is not an associative (closed) binary operation —e.g., (3-2)—4=-3#5=

3—(2—4).

(i) Forall a,b,ce G,
{acbioc=(a+b+abloc=a+b+abtc+{a+btablc=a+b+ab+c+ac+be+abe
ao(boc)=ao{(btctbe)=a+btect+betaldb+ctbe) =a+b+c+bec+ ab+ ac+ abe.
Since (acbjoc=ao(boc) forall a,b,c € G it follows that the {(closed) binary operation
is associative.

(i) I z,y€ G then zoy=zc+y+zy =y-+z+yr=yoz, sothe (closed) binary
operation is also commutative,

(iiil) Canwefind a€ G sothat z=uwoce forall z € G?

z=zoe=> g =zc+a-tre=>0=a(l +z)=>a =0, because z is arbitrary, so 0 is
the identity for this {(closed) binary operation.

(iv) For z€ G, canwefind y € ¢ with zoy =07 Here O=zoy =z +y+zy =
g = y{1l 4 z) = y = ~2{1l + 2}, so the inverseof z s —z{l +2)"

It follows from (i) - (iv) that (G, o) is an abelian group.

Since @,y € Z == & + y+ 1 € Z, the operation is a (closed) binary operation {or Z is
closed under o). Forall w,z,y€ B, wolaoy)=wolz+y+l)=w+{(z+y+1)+1=
(w+z+1)+y+1 = (woz)oy, so the {closed) binary operation is associative. Furthermore,
zoy = g+y+1 = y+a+l =yox, forall z,¥y € Z, so ¢ isalso commutative. If z € Z then
go{—1) = z+4(~1)+1 = 2f= (~1}oz],s0 —1 is the identity element for o. And finally, for
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10,

11.

12.

each = € Z, wehave —z~2€ Z and zo(~2-2) =2+ {(~z~2)41 = ~1{= (~2~2)+z],
50 —z — 2 is the inverse for z under o. Consequently, (Z,0) is an abelian group.

{i) Forall {a,b),(u,v),(z,y) € S we have

(a,b) o [(u,v) o (z,y)] = (@, b} o (ux, vz + y) = (auz, buz + vz +y)

[(a,8) o (u, v} o (z,y) = (au,bu +v)o (z, y) = (auz, (bu +vjz + y) = (auz, buz + vz + y),
so the given {closed) binary operation is associative.

(ii) To find the identity element we need (a,5) € S such that (a,8)o0(u,v) = (u,v} =
(u,v)o{a,b) forall (u,v)€Ss.

(u,v) = (u,v)c(a,b) =(ua,va+b) =>u=ua and v=va+b=>a=1 and b=0.
In addition, (1,0)0 (u,v) = (1 4,0 -u+v) = (u,v)}, so (1,0) is the identity for this
(closed) binary operation. ‘

(iii) Given {a,b) € S can wefind (¢,d) € S sothat (a,b)o(c,d) = (¢,d}o(a,b) = (1,0)7
(1,0) = (a,b) o (¢,d) = (ac,bc+d)=> 1l =ac, 0 =be+d=>c=a"", d= —ba".

Since (a™t,~ba"')o (a,b) = (a 'a,(~ba" )a+ b) = (1,0), (a7, ~ba"!) is the inverse of
{(a,b) for this (closed) binary operation.

From (i)-(iii) it follows that (5,0) is a group. Since (1,2),(2,3) € § and (1,2)0(2,3) =
(2,7), while (2,3)0(1,2) = (2,5), this group is nonabelian.

Uso = {1,3,7,9,11,13,17,19}
Uss = {1,5,7,11,13,17,19, 23}

Proof: Suppose that G is abelian and that 2,5 € G. Then (ab)? = (ab)(eb) = a(ba)b =
a(ab)b = (aa)(bb) = a*b*, by using the associative property for a group and the fact that
this group is abelian.

Conversely, suppose that G is a group where (ab)? = a?)? for all 0,0 € G. H z,y € G,
then (zy)? = 2%y? = (zy)(zy) = 2%* = 2(yz)y = z(zy®) = (yz)y = zy? (by Theorem
16.1 (¢)) = (yz)y = (zy)y = yz = zy (by Theorem 16.1 (d)). Therefore, the group G is
abelian.

{a) The result follows from Theorem 16.1(b) since both {a™')"! and a are inverses of
1

a™t.

(b) (e ) ab) = b aa)b = b"e}b = b0 = ¢ and {(ad}(b'a"?) = a(Bb " )a"t =

a{ela™t = aa"! = e. So b 'a"! is an inverse of ab, and by Theorem 16.1(b), (ab)™* =

big-t,

G abelian ==p a”6"! = b'e"}. By Exercise 9(b}, b 'a"? = (ab)"} so G abelian
== g b = (ab)"!. Conversely, if o,b € G, then e ' = (ab)™! == ¢! =
blag ! ==y ba N = a7 == Dot = 07 b s b= a7 e == ab = ba == (G is abelian.

(a) {0} {0,6}; {0,4,8}; {0,3,69}; {0,2,4,68,10}; Zy,.
(b} {1}; {1,10}; {1,34,5,9}; Z},.

(&) {mo}; {ma,m1,ma}; {mo,v1}; {mo,72}; {moy73}; Sa

{a) There are eight rigid motions for a square:  wy, m, w3, w3, where #; is the
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13.

14.

15’

counterclockwise rotation through #(90°), 0 € ¢ £ 3; r; is the reflectin in the vertical;
ry 18 the reflection in the horizontal; r; the reflection in the diagonal from lower left to
upper right; and ry the reflection in the diagonal from upper left to lower right.

(b)
o g Ty g Wg [ ] 3 Ta
g | Mp Wy Wy ¥®y Ty Tz Tz T4
Wy My Mg A3 W ¥3 ¥y Ty Iy
g Wy Wy o Wy T Ty Ty Ty
T3 | "3 T®e Ty @y Py ¥z Ny T
Ty (P Fg T Ty Wp Ty Wz T
g (¥ Tz T3 Tqg W %p Ty 73
3 T3 Ty ¥4 T2 Wy Wy Wp W3
re P4 T3 T3 T3y W3 Ty Ty Tg

mg is the group identity.

The inverse of each reflection is the same reflection. The inverse of the rotation =, is the
rotation w3, and conversely. The inverse of the rotation #y is itself. Also, the inverse of
To is [

(a) There are 10: five rotations through 1(72°),0 < ¢ < 4, and five reflections about lines
containing a vertex and the midpoint of the opposite side.

(b) For a regular n-gon {n > 3) there are 2n rigid motions. There are the n rotations
through i(360°/n), 0 <i < n— 1. There are n reflections. For n odd each reflection is
about a line through a vertex and the midpoint of the opposite side. For n even, there
are n/2 reflections about lines through opposite vertices and n/2 reflections about lines
through the midpoints of opposite sides.

_ {12345 (12345 3 _ (12345
aff = (15234)7 fa = (33514)* ar = (32345)7

4 _ {12345 -1 _ (12345 -1 _ {1235
gt = (125&4 s o = (3}245 ) B = (zmsa ’

-1 _ {12345 N1 {12345) —1-1 {12345
{(af) = (13453 ' (Ba) = (42153)5 e = (13453 .

Since eg = ge forall ¢ € G, it follows that e € H and H # 8. If z,y € H,
then zg = gz and yg = gy for all g ¢ €. Consequently, {(ay)g = 2{yg) = x{gy) =
{ag)y = (ga)y = gley) for all g € G, and we have zy € H. Finsally, for all 2 € # and
g €G, 2g7t =g 'z, So {zg?V T = (g7 ay L or gzt =27y, and 27! € H. Therefore
H is a subgroup of G.
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16.

17.

18.

18.

(2)

w=(1/v/2)(1 +14) w? =g
W = (1/v/2)(~1 +¢) w = -1
Wt = (1/V/2)(—1~1) Wl = —4
w' = (1/3/2)(1 —4) wd=1

(b) Let §={w"|l <n <8} Thenforall 1<, k<8, o -wk=0w" where m=j+k
(mod 8) and 1 <m <8 So § isclosed under the binary operation of multiplication,
which is commutative and associative for all complex numbers ~ so, in particular, the
complex munbers is 5.

The element w® = 1 is the identity element and, forall 1 < n £ 7, we have (w")™! == &7,
so every 