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Chapter 6

6.1

1. Fails to be invertible; since det

[
1 2
3 6

]

= 6 − 6 = 0.

2. Invertible; since det

[
2 3
4 5

]

= 10 − 12 = −2.

3. Invertible; since det

[
3 5
7 11

]

= 33− 35 = −2.

4. Fails to be invertible; since det

[
1 4
2 8

]

= 8 − 8 = 0.

5. Invertible; since det





2 5 7
0 11 7
0 0 5



 = 2 · 11 · 5 + 0 + 0 − 0 − 0 − 0 = 110.

6. Invertible; since det





6 0 0
5 4 0
3 2 1



 = 6 · 4 · 1 + 0 + 0 − 0 − 0 − 0 = 24.

7. This matrix is clearly not invertible, so the determinant must be zero.

8. This matrix fails to be invertible, since the det(A) = 0.

9. Invertible; since det





0 1 2
7 8 3
6 5 4



 = 0 + 3 · 6 + 2 · 7 · 5 − 7 · 4 − 2 · 8 · 6 = −36.

10. Invertible; since det





1 1 1
1 2 3
1 3 6



 = 1 · 2 · 6+1 · 3 · 1+1 · 1 · 3− 3 · 3 · 1− 2 · 1 · 1−6 · 1 · 1 = 1.

11. det

[
k 2
3 4

]

6= 0 when 4k 6= 6, or k 6= 3
2 .

12. det

[
1 k
k 4

]

6= 0 when k2 6= 4, or k 6= 2,−2.

13. det





k 3 5
0 2 6
0 0 4



 = 8k, so k 6= 0 will ensure that this matrix is invertible.
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14. det





4 0 0
3 k 0
2 1 0



 = 0, so the matrix will never be invertible, no matter which k is chosen.

15. det





0 k 1
2 3 4
5 6 7



 = 6k − 3. This matrix is invertible when k 6= 1
2 .

16. det





1 2 3
4 k 5
6 7 8



 = 60 + 84 + 8k − 18k − 35 − 64 = 45 − 10k. So this matrix is invertible

when k 6= 4.5.

17. det





1 1 1
1 k −1
1 k2 1



 = 2k2 − 2 = 2(k2 − 1) = 2(k − 1)(k + 1). So k cannot be 1 or -1.

18. det





0 1 k
3 2k 5
9 7 5



 = 30 + 21k − 18k2 = −3(k − 2)(6k + 5). So k cannot be 2 or − 5
6 .

19. det





1 1 k
1 k k
k k k



 = −k3 + 2k2 − k = −k(k − 1)2. So k cannot be 0 or 1.

20. det





1 k 1
1 k + 1 k + 2
1 k + 2 2k + 4



 = (k + 1)(2k + 4) + k(k + 2) + (k + 2) − (k + 1) − k(2k + 4) −

(k + 2)(k + 2) = (k + 1)(3k + 6) − (3k2 + 9k + 5) = 1. Thus, A will always be invertible,
no matter the value of k, meaning that k can have any value.

21. det





k 1 1
1 k 1
1 1 k



 = k3 − 3k + 2 = (k − 1)2(k + 2). So k cannot be -2 or 1.

22. det





cos k 1 − sin k
0 2 0

sin k 0 cos k



 = 2 cos2 k + 2 sin2 k = 2. So k can have any value.

23. det(A − λI2) = det

[
1 − λ 2

0 4 − λ

]

= (1 − λ)(4 − λ) = 0 if λ is 1 or 4.

24. det(A − λI2) = det

[
2 − λ 0

1 0 − λ

]

= (2 − λ)(−λ) = 0 if λ is 2 or 0.
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25. det(A− λI2) = det

[
4 − λ 2

4 6 − λ

]

= (4− λ)(6 − λ) − 8 = (λ − 8)(λ − 2) = 0 if λ is 2 or

8.

26. det(A− λI2) = det

[
4 − λ 2

2 7 − λ

]

= (4− λ)(7 − λ) − 4 = (λ − 8)(λ − 3) = 0 if λ is 3 or

8.

27. A−λI3 is a lower triangular matrix with the diagonal entries (2−λ), (3−λ) and (4−λ).
Now, det(A − λI3) = (2 − λ)(3 − λ)(4 − λ) = 0 if λ is 2, 3 or 4.

28. A−λI3 is an upper triangular matrix with the diagonal entries (2−λ), (3−λ) and (5−λ).
Now, det(A − λI3) = (2 − λ)(3 − λ)(5 − λ) = 0 if λ is 2, 3 or 5.

29. det(A − λI3) = det





3 − λ 5 6
0 4 − λ 2
0 2 7 − λ



 = (3 − λ)(λ − 8)(λ − 3) = 0 if λ is 3 or 8.

30. det(A − λI3) = det





4 − λ 2 0
4 6 − λ 0
5 2 3 − λ



 = (4 − λ)(6 − λ)(3 − λ) − 8(3 − λ)

= (3 − λ)(8 − λ)(2 − λ) = 0 if λ is 3, 8 or 2.

31. This matrix is upper triangular, so the determinant is the product of the diagonal entries,
which is 24.

32. This matrix is upper triangular, so the determinant is the product of the diagonal entries,
which is 210.

33. By Fact 6.1.8, the determinant is equal to det

[
1 2
8 7

]

det

[
2 3
7 5

]

= (7−16)(10−21) = 99.

34. By Fact 6.1.8, the determinant is equal to det

[
4 5
3 6

]

det

[
1 4
2 3

]

= (24 − 15)(3 − 8) =

−45.

35. We will use Fact 6.1.5 and expand down the third column. Our determinant equals:

−2 det





2 3 2
6 0 3
7 0 4



 .

Then we expand down the second column, so we have −2(−3) det

[
6 3
7 4

]

= 6(24−21) =

18.

36. We use Fact 6.1.5, first expanding down the second column. Our determinant equals:
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−2 det





2 2 2
1 2 2
1 1 2



 = −2(8 + 4 + 2 − 4 − 4 − 4) = −4.

37. Here we use Fact 6.1.8 to find det

[
5 4
6 7

]

det





5 6 7
0 1 2
0 0 1



 = (35 − 24)(5) = 55.

38. By Fact 6.1.8, the determinant is equal to det





1 2 3
3 0 4
2 1 2



 det

[
6 5
5 6

]

= (9 + 16− 12− 4)(36 − 25) = 99.

39. We repeatedly expand down the first column, finding the determinant to be

5 · 4(−2) det

[
0 1
3 0

]

= 120.

40. We repeatedly expand down the first column, finding the determinant to be

5(4)(3) det

[
0 2
1 0

]

= −120.

41. Here we expand down the fourth column: 2 det






0 0 1 2
1 3 5 7
2 0 4 6
0 0 3 4




 , then down the second

column: 2(3) det





0 1 2
2 4 6
0 3 4



 = 2(3)(−2) det

[
1 2
3 4

]

= −12(4− 6) = 24.

42. We first expand across the fourth row to obtain

3 det






1 1 0 1
0 2 0 0
2 3 4 0
3 4 5 6




, then across the second row to obtain

3(2) det





1 0 1
2 4 0
3 5 6



 = 6(24 + 10 − 12) = 132.

43. For a 2× 2 matrix A =

[
a b
c d

]

, we have det(−A) = det

[
−a −b
−c −d

]

= ad− bc = det(A).

Use Sarrus’ rule to see that det(−A) = − det(A) for a 3 × 3 matrix. We may conjecture
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that det(−A) = det(A) for an n × n matrix with even n, and det(−A) = − det(A) when
n is odd; in both cases we can write det(−A) = (−1)n det(A). A proof of this conjecture
can be based upon the following rule: If a square matrix B is obtained from matrix A by
multiplying all the entries in the ith row of A by a scalar k, then det(B) = k det(A). We
can show this by expansion along the ith row:

det(B) =

n∑

j=1

(−1)i+jbij det(Bij) =

n∑

j=1

(−1)i+jkaij det(Aij)

= k
n∑

j=1

(−1)i+jaij det(Aij) = k det(A).

We can obtain −A by multiplying all the entries in the first row of A by k = −1, then all
the entries in the second row, and so forth down to the nth row; each time the determinant
gets multiplied by k = −1. Thus, det(−A) = kn det(A) = (−1)n det(A), as claimed.

44. det(kA) = kn det(A)

The argument is analogous to the one in Exercise 43.

45. If A =

[
a b
c d

]

, then det(AT ) = det

[
a c
b d

]

= ad − cb = det(A). It turns out that

det(AT ) = det(A).

46. Let A =

[
a1 a2

a3 a4

]

. If a1a4 − a2a3 6= 0, then A−1 = 1
det(A)

[
a4 −a2

−a3 a1

]

.

By Exercise 44, det(A−1) =
(

1
det(A)

)2

(a1a4 − a2a3) =
(

1
det(A)

)2

· det(A) so det(A−1) =
1

det(A) .

47. We have det(A) = (ah− cf)k + bef + cdg− aeg− bdh. Thus matrix A is invertible for all
k if (and only if) the coefficient (ah − cf) of k is 0, while the sum bef + cdg − aeg − bdh
is nonzero. A numerical example is a = c = d = f = h = g = 1 and b = e = 2, but there
are infinitely many other solutions as well.

48. Consider A =

[
1 0
0 0

]

, B =

[
0 0
1 0

]

, C =

[
0 1
0 0

]

, D =

[
0 0
0 1

]

so det(A) = det(B) =

det(C) = det(D) = 0 hence det(A) det(D) − det(B) det(C) = 0 but det

[
A B
C D

]

= −1.

49. The kernel of T consists of all vectors ~x such that the matrix [~x ~v ~w] fails to be invertible.
This is the case if ~x is a linear combination of ~v and ~w, as discussed on Pages 247 and 248.
Thus ker(T ) = span(~v, ~w). The image of T isn’t {0}, since T (~v × ~w) 6= 0, for example.
Being a subspace of R, the image must be all of R.
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50. Fact 6.1.1 tells us that det[~u ~v ~w] = ~u·(~v×~w) = ‖~u‖ cos(θ)‖~v×~w‖ = ‖~u‖ cos(θ)‖~v‖ sin(α)‖~w‖ =
cos(θ) sin(α), where θ is the angle enclosed by vectors ~u and ~v × ~w, and α is the angle
between ~v and ~w. Thus det[~u ~v ~w] can be any number on the closed interval [−1, 1].

51. We expand down the first column:

det(Mn) = 1 det









2 1 0 · · · 0
1 2 1 · · · 0
0 1 2 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 2









− 1 det









1 0 0 · · · 0
1 2 1 · · · 0
0 1 2 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 2









= det(An−1)− det











1 0 · · · 0 0
1
0
... An−2

0
0











= det(An−1)− 1 det(An−2). Using Example 9,

this equals n − (n − 1) = 1.

52. det(Dn) = det















2 0 1 0 0 · · · 0 0
0 2 1 0 0 · · · 0 0
1 1 2 1 0 · · · 0 0
0 0 1
0 0 0
...

...
... An−3

0 0 0
0 0 0















Then we expand down the first column:

= 2 det













2 1 0 0 · · · 0 0
1 2 1 0 · · · 0 0
0 1
0 0
...

... An−3

0 0
0 0













+ det













0 1 0 0 · · · 0 0
2 1 0 0 · · · 0 0
0 1
0 0
...

... An−3

0 0
0 0













= 2 det(An−1) − 2 det(An−3) = 2(n) − 2(n − 2) = 4. det(Dn) will never be 0.
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53. det(En) = det











2 0 0 1 · · · 0
0
0
1 An−1

...
0











= 2 det(An−1) − 1 det



















0 0 1 0 0 · · · 0 0

2 1 0 0 0
. . . 0 0

1 2 1 0 0
. . . 0 0

0 0 1 2 1
. . . 0 0

0 0 0 1 2
. . . 0 0

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 0
. . . 2 1

0 0 0 0 0
. . . 1 2



















= 2 det(An−1) − 1 det















0 0 1 0 0 · · · 0 0
2 1 0 0 0 · · · 0 0
1 2 1 0 0 · · · 0 0
0 0 1
0 0 0
...

. . .
. . . An−4

0 0 0
0 0 0















= 2 det(An−1)− det





0 0 1
2 1 0
1 2 1



 det(An−4) (by Fact 6.1.8) = 2 det(An−1)− 3 det(An−4)

= 2n − 3(n − 3) = 2n− 3n + 9 = 9 − n. So, det(E9) = 0.

54. a. We will expand down the first column:

dn = det(Mn) = 5 det(Mn−1) − 1 det











6 0 0 · · · 0 0
1
0
... Mn−2

0
0










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= 5 det(Mn−1) − 1(6) det(Mn−2).

b. d1 = det[2] = 2, d2 = det

[
5 6
1 2

]

= 4,

d3 = 5(4) − 6(2) = 8, d4 = 5(8) − 6(4) = 16.

c. dn = 2n. The base case has already been shown. If we assume that dn−1 = 2n−1 and
dn−2 = 2n−2, then dn = 5dn−1 − 6dn−2 = 5(2n−1) − 6(2n−2) = 5(2n−1) − 3(2n−1) =
2(2n−1) = 2n.

55. a. dn = det














1 1 0 0 0 · · · 0
1 1 1 0 0 · · · 0
0 1 1 1 0 · · · 0

0 0 1 1 1
. . . 0

0 0 0 1 1
. . . 0

...
...

...
. . .

. . .
. . .

...
0 0 0 0 0 · · · 1














= 1 det












1 1 0 0 · · · 0
1 1 1 0 · · · 0
0 1 1 1 · · · 0

0 0 1 1
. . . 0

...
...

...
. . .

. . .
...

0 0 0 0 · · · 1












− 1 det












1 0 0 0 · · · 0
1 1 1 0 · · · 0
0 1 1 1 · · · 0

0 0 1 1
. . . 0

...
...

...
. . .

. . .
...

0 0 0 0 · · · 1












= dn−1 − 1 det











1 0 0 0 · · · 0
1
0
0 Mn−2

...
0











= dn−1 − dn−2

b. d1 = det[1] = 1. d2 = det

[
1 1
1 1

]

= 0. d3 = 0 − 1 = −1. d4 = −1 − 0 = −1.

d5 = −1− (−1) = 0. d6 = 0 − (−1) = 1. d7 = 1 − 0 = 1. d8 = 1 − 1 = 0. . . ..

Note that d7 = d1 = 1 and d8 = d2 = 0, so that the values are repeated, with a period
of 6, meaning that dk = dk+6 for all k.

c. Following part b, we have d100 = d100−16(6) = d4 = −1.
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56. a. dn = det







0
... Mn−1

0
1







.

Now, if we expand down the first column, we find that dn = det(Mn−1) if n is odd,
or dn = − det(Mn−1) if n is even. We can model this by simply saying: dn =
(−1)n−1dn−1.

b. d1 = 1, d2 = −1, d3 = −1, d4 = 1, d5 = 1, d6 = −1, d7 = −1, d8 = 1. We notice the
pattern that it keeps switching between −1 and 1 with every other increase. We see
that dn+4 = dn.

c. By the periodicity in part b, we see that d100 will be equal to d100−24(4) = d4 = 1.

57. Repeatedly expanding down the first column, we see that the determinant will be 1 or -1,
since it is the product of n terms that are all 1 or -1.

58. a. If a, b, c, d are distinct prime numbers, then ad 6= bc, since the prime factorization of

a positive integer is unique. Thus det

[
a b
c d

]

6= 0: No matrix of the required form

exists.

b. We are looking for a noninvertible matrix A = [~u ~v ~w] whose entries are nine distinct
prime numbers. The last column vector, ~w, must be redundant; to keep things simple,
we will make ~w = ~u + 2~v. Now we have to pick six distinct prime entries for the first
two columns, ~u and ~v, such that the entries of ~w = ~u + 2~v are prime as well. This can

be done in many different ways; one solution is A =





7 2 11
17 3 23
19 5 29



 .

59. Let Mn be the number of multiplications required to compute the determinant of an n×n
matrix by Laplace expansion. We will use induction on n to prove that Mn > n!, for
n ≥ 3.

In the lowest applicable case, n = 3, we can check that M3 = 9 and 3! = 6.

Now let’s do the induction step. If A is an n × n matrix, then det(A) = a11 det(A11) +
· · · + (−1)n+1an1 det(An1), by Definition 6.1.4. We need to compute n determinants of
(n − 1) × (n − 1) matrices, and then do n extra multiplications ai1 det(Ai1), so that
Mn = nMn−1 + n. If n > 3, then Mn−1 > (n − 1)!, by induction hypothesis, so that
Mn > n(n − 1)! + n > n!, as claimed.
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60. To compute det(A) for an n×n matrix A by Laplace expansion, det(A) = a11 det(A11)−
a21 det(A21) + · · · + (−1)n+1an1 det(An1), we first need to compute the n minors, which
requires nLn−1 operations; then we compute the n products ai1 det(Ai1); and finally we
have to do n − 1 additions. Altogether,

Ln = nLn−1 + n + (n − 1) = nLn−1 + 2n − 1.

Now we can prove the formula Ln

n! = 1 + 1 + 1
2! + 1

3! + · · ·+ 1
(n−1)! − 1

n! by induction on n.

For n = 2, the formula gives L2

2 = 1 + 1 − 1
2 , or L2 = 3, which is correct: We have to

perform 2 multiplications and 1 addition to compute the determinant of a 2 × 2 matrix.

For an n × n matrix A we can use the recursive formula derived above to see that
Ln

n! = nLn−1+2n−1
n! = Ln−1

(n−1)! + 2
(n−1)! − 1

n! . Applying the induction hypothesis to the

first summand, we find that Ln

n! = Ln−1

(n−1)! + 2
(n−1)! − 1

n! = 1 + 1 + 1
2! + 1

3! + · · · + 1
(n−2)! −

1
(n−1)! + 2

(n−1)! − 1
n! = 1 + 1 + 1

2! + 1
3! + · · · + 1

(n−1)! − 1
n! , as claimed.

Now recall from the theory of Taylor series in calculus that e = e1 = 1 + 1 + 1
2! + 1

3! +
· · ·+ 1

(n−1)! + 1
n! + · · ·. Thus Ln = (1+1+ 1

2! + 1
3! + · · ·+ 1

(n−1)! − 1
n!)n! < en!, as claimed.

6.2

1. A =





1 1 1
1 3 3
2 2 5



 −I
−2I

→ B =





1 1 1
0 2 2
0 0 3



 . Now det(A) = det(B) = 6, by Algo-

rithm 6.2.3b.

2. A =





1 2 3
1 6 8
−2 −4 0



 −I
+2I

→ B =





1 2 3
0 4 5
0 0 6



 . Now det(A) = det(B) = 24, by Algo-

rithm 6.2.3b.

3. A =






1 3 2 4
1 6 4 8
1 3 0 0
2 6 4 12






−I
−I
−2I

→ B =






1 3 2 4
0 3 2 4
0 0 −2 −4
0 0 0 4




 . Now det(A) = det(B) = −24, by

Algorithm 6.2.3b.

4. A =






1 −1 2 −2
−1 2 1 6
2 1 14 10
−2 6 10 33






+I
−2I
+2I

→






1 −1 2 −2
0 1 3 4
0 3 10 14
0 4 14 29




 −3II
−4II

→
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




1 −1 2 −2
0 1 3 4
0 0 1 2
0 0 2 13






−2III

→ B =






1 −1 2 −2
0 1 3 4
0 0 1 2
0 0 0 9




 . Now det(A) = det(B) = 9, by

Algorithm 6.2.3b.

5. After three row swaps, we end up with B =






1 2 3 4
0 2 3 4
0 0 3 4
0 0 0 4




 . Now, by Algorithm 6.2.3b,

det(A) = (−1)3 det(B) = −24.

6. A =






1 1 1 1
1 1 4 4
1 −1 2 −2
1 −1 8 −8





−I
−I
−I

→






1 1 1 1
0 0 3 3
0 −2 1 −3
0 −2 7 −9






swap:
II ↔ III

→






1 1 1 1
0 −2 1 −3
0 0 3 3
0 −2 7 −9





÷− 2 →






1 1 1 1
0 1 − 1

2
3
2

0 0 3 3
0 −2 7 −9






+2II

→






1 1 1 1
0 1 − 1

2
3
2

0 0 3 3
0 0 6 −6






−2III

→ B =






1 1 1 1
0 1 − 1

2
3
2

0 0 3 3
0 0 0 −12






det(A) = − 1
2 (−1) det(B) = −72, by Algorithm 6.2.3b.

7. After two row swaps, we end up with an upper triangular matrix B with all 1’s along the
diagonal. Now det(A) = (−1)2 det(B) = 1, by Algorithm 6.2.3b.

8. After four row swaps, we end up with an upper triangular matrix B with all 1’s along the
diagonal, except for a 2 in the bottom right corner. Now det(A) = (−1)4 det(B) = 2, by
Algorithm 6.2.3b.
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9. If we subtract the first row from every other row, then we have an upper triangular matrix
B, with diagonal entries 1, 1, 2, 3 and 4. Then det(A) = det(B) = 24 by Algorithm 6.2.3b.

10. A =








1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70








−I
−I
−I
−I

→








1 1 1 1 1
0 1 2 3 4
0 2 5 9 14
0 3 9 19 34
0 4 14 34 69







−2II
−3II
−4II

→








1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 3 10 22
0 0 6 22 53






 −3III
−6III

→








1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 4 17








−4IV

→ B =








1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1








.

Now det(A) = det(B) = 1 by Algorithm 6.2.3b.

11. By Fact 6.2.1a, the desired determinant is (−9)(8) = −72.

12. By Fact 6.2.1b, the desired determinant is −8.

13. By Fact 6.2.1b, applied twice, since there are two row swaps, the desired determinant is
(−1)(−1)(8) = 8.

14. By Fact 6.2.1c, the desired determinant is 8.

15. By Fact 6.2.1c, the desired determinant is 8.

16. This determinant is 0, since the first row is twice the last.

17. The standard matrix of T is A =





2 3 0
0 2 6
0 0 2



 , so that det(T ) = det(A) = 8.
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18. The standard matrix of T is A =





1 −2 4
0 3 −12
0 0 9



, so that det(T ) = det(A) = 27.

19. The standard matrix of T is A =





1 0 0
0 −1 0
0 0 1



 , so that det(T ) = det(A) = −1.

20. The standard matrix of L is M =






1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




, so that det(L) = det(M) = −1.

21. The standard matrix of T is A =






1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




 , so that det(T ) = det(A) = 1.

22. Using Exercises 19 and 21 as a guide, we observe that the standard matrix A of T is
diagonal, of size (n + 1) × (n + 1), with diagonal entries (−1)0, (−1)1, (−1)2, . . . , (−1)n.
Thus det(T ) = det(A) = (−1)1+2+···+n = (−1)n(n+1)/2.

23. Consider the matrix M of T with respect to a basis consisting of n(n + 1)/2 symmetric
matrices and n(n − 1)/2 skew-symmetric matrices (see Exercises 54 and 55 or Section
5.3). Matrix M will be diagonal, with n(n + 1)/2 entries 1 and n(n − 1)/2 entries -1 on
the diagonal. Thus, det(T ) = det(M) = (−1)n(n−1)/2.

24. The standard matrix of T is A =

[
2 −3
3 2

]

, so that det(T ) = det(A) = 13.

25. The standard matrix of T is A =





2 0 0
0 2 3
0 0 4



 , so that det(T ) = det(A) = 16.

26. The matrix of T with respect to the basis

[
1 0
0 0

]

,

[
0 1
1 0

]

,

[
0 0
0 1

]

is A =





2 4 0
2 4 2
0 4 6



,

so that det(T ) = det(A) = −16.

27. The matrix of T with respect to the basis cos(x), sin(x) is A =

[
−b a
−a −b

]

, so that

det(T ) = det(A) = a2 + b2.

28. The matrix of T with respect to the basis





−2
1
0



 ,





−3
0
1



 is A =

[
−6 −10

5 6

]

, so that

det(T ) = det(A) = 14.
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29. Expand down the first column, realizing that all but the first contribution are zero, since
a21 = 0 and Ai1 has two equal rows for all i > 2. Therefore, det(Pn) = det(Pn−1).

Since det(P1) = 1, we can conclude that det(Pn) = 1, for all n.

30. a. f(t) = det





1 1 1
a b t
a2 b2 t2



 = (ab2 − a2b) + (a2 − b2)t + (b − a)t2 so f(t) is a quadratic

function of t. The coefficient of t2 is (b − a).

b. In the cases t = a and t = b the matrix has two identical columns. It follows that
f(t) = k(t − a)(t − b) with k = coefficient of t2 = (b − a).

c. The matrix is invertible for the values of t for which f(t) 6= 0, i.e., for t 6= a, t 6= b.

31. a. If n = 1, then A =

[
1 1
a0 a1

]

, so det(A) = a1 − a0 (and the product formula holds).

b. Expanding the given determinant down the right-most column, we see that the coeffi-
cient k of tn is the n − 1 Vandermonde determinant which we assume is

∏

n−1≥i>j

(ai − aj).

Now f(a0) = f(a1) = · · · = f(an−1) = 0, since in each case the given matrix has two
identical columns, hence its determinant equals zero. Therefore

f(t) =




∏

n−1≥i>j

(ai − aj)



 (t − a0)(t − a1) · · · (t − an−1)

and
det(A) = f(an) =

∏

n≥i>j

(ai − aj),

as required.

32. By Exercise 31, we need to compute
∏

i>j

(ai−aj) where a0 = 1, a1 = 2, a2 = 3, a3 = 4, a4 =

5 so

∏

i>j

(ai − aj) = (2− 1)(3− 1)(3− 2)(4− 1)(4− 2)(4− 3)(5− 1)(5− 2)(5− 3)(5− 4) = 288.
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33. Think of the ith column of the given matrix as ai









1
ai

a2
i
...

an−1
i









, so by Fact 6.2.1a, the determi-

nant can be written as (a1a2 · · · an) det









1 1 · · · 1
a1 a2 · · · an

a2
1 a2

2 · · · a2
n

...
...

...
an−1
1 an−1

2 · · · an−1
n









. The new determinant

is a Vandermonde determinant (see Exercise 31), and we get

n∏

i=1

ai

∏

i>j

(ai − aj).

34. a. The hint pretty much gives it away. Since the columns of matrix

[
B

−In

]

are in the

kernel of [ In M ], we have [ In M ]

[
B

−In

]

= B − M = 0, and M = B, as claimed.

b. If B = A−1 we get rref[A
...In] = [In

...A−1] which tells us how to compute A−1 (see Fact
2.3.5).

35.

[
x1

x2

]

must satisfy det





1 1 1
x1 a1 b1

x2 a2 b2



 = 0, i.e., must satisfy the linear equation

(a1b2 − a2b1) − x1(b2 − a2) + x2(b1 − a1) = 0.

We can see that

[
x1

x2

]

=

[
a1

a2

]

and

[
x1

x2

]

=

[
b1

b2

]

satisfy this equation, since the matrix

has two identical columns in these cases.

36. Expanding down the first column we see that the equation has the form
A − Bx1 + Cx2 − D(x2

1 + x2
2) = 0. If D 6= 0 this equation defines a circle; otherwise it

is a line. From Exercise 35 we know that D = 0 if and only if the three given points[
a1

a2

]

,

[
b1

b2

]

,

[
c1

c2

]

are collinear. Note that the circle or line runs through the three given

points.
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37. Applying Fact 6.2.4 to the equation AA−1 = In we see that det(A) det(A−1) = 1. The
only way the product of the two integers det(A) and det(A−1) can be 1 is that they are
both 1 or both -1. Therefore, det(A) = 1 or det(A) = −1.

38. det(AT A) = det(AT ) det(A) = [det(A)]2 = 9

↑ ↑

Fact 6.2.4 Fact 6.2.7

39. det(AT A) = det(AT ) det(A) = [det(A)]2 > 0

↑ ↑

Fact 6.2.4 Fact 6.2.7

40. By Exercise 38, det(AT A) = [det(A)]2. Since A is orthogonal, AT A = In so that
1 = det(In) = det (AT A) = [det(A)]2 and det(A) = ±1.

41. det(A) = det(AT ) = det(−A) = (−1)n(det A) = − det(A), so that det(A) = 0. We have
used Facts 6.2.7 and 6.2.1a.

42. det(AT A) = det((QR)T QR) = det(RT QT QR) = det(RT ImR) = det(RT R) = det(RT ) det(R)

↑ ↑ ↑

Definition of A Since columns of Q are orthonormal Fact 6.2.4

= [det(R)]2 =

(
m∏

i=1

rii

)2

> 0

↑ ↑

Fact Since R

6.2.7 is triangular.

43. det(AT A) = det

([
~vT

~wT

]

[~v ~w]

)

= det

[
~v · ~v ~v · ~w
~v · ~w ~w · ~w

]

= det

[
‖~v‖2 ~v · ~w
~v · ~w ‖~w‖2

]

= ‖~v‖2‖~w‖2 − (~v · ~w)2 ≥ 0 by the Cauchy-Schwarz inequality (Fact 5.1.11).
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44. a. We claim that ~v2 × ~v3 × · · · × ~vn 6= ~0 if and only if the vectors ~v2, . . . , ~vn are linearly
independent. If the vectors ~v2, . . . , ~vn are linearly independent, then we can find a
basis ~x,~v2, . . . , ~vn of R

n (any vector ~x that is not in span (~v2, . . . , ~vn) will do). Then
~x · (~v2 × · · · × ~vn) = det[~x~v2 · · ·~vn] 6= 0, so that ~v2 × · · · × ~vn 6= ~0. Conversely, suppose
that ~v2 × ~v3 × · · · × ~vn 6= 0; say the ith component of this vector is nonzero. Then
0 6= ~ei · (~v2 × · · · × ~vn) = det[~ei ~v2 · · ·~vn], so that the vectors ~v2, . . . , ~vn are linearly
independent (being columns of an invertible matrix).

b. ith component of ~e2 × ~e3 × · · · × ~en = det





1 1 1
~ei ~e2 · · · ~en

1 1 1



 =
{

1 if i = 1
0 if i > 1

so ~e2 × ~e3 × · · · × ~en = ~e1.

c. ~vi · (~v2 × ~v3 × · · · × ~vn) = det





1 1 1 1
~vi ~v2 ~v3 · · · ~vn

1 1 1 1



 = 0

for any 2 ≤ i ≤ n since the above matrix has two identical columns.

d. Compare the ith components of the two vectors:

det





1 1 1 1
~ei ~v2 ~v3 · · · ~vn

1 1 1 1



 and det





1 1 1 1
~ei ~v3 ~v2 · · · ~vn

1 1 1 1



 ·

The two determinants differ by a factor of −1 by Fact 6.2.1b, so that
~v2 × ~v3 × · · · × ~vn = −~v3 × ~v2 × · · · × ~vn.

e. det[~v2×~v3×· · ·×~vn ~v2 ~v3 · · ·~vn] = (~v2×~v3×· · ·×~vn)·(~v2×~v3×· · ·×~vn) = ‖~v2×· · ·×~vn‖2

f. In Definition 6.1.1 we saw that the “old” cross product satisfies the defining equation
of the “new” cross product: ~x · (~v2 × ~v3) = det [ ~x ~v2 ~v3 ].

45. f(x) is a linear function, so f ′(x) is the coefficient of x (the slope). Expanding down the

first column, we see that the coefficient of x is − det






1 2 3 4
0 2 3 4
0 0 3 4
0 0 0 4




 = −24, so f ′(x) =

−24.
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46. a. det





a 3 d
b 3 e
c 3 f



 = 3 det





a 1 d
b 1 e
c 1 f



 = 21

↑

Facts 6.2.1

b. det





a 3 d
b 5 e
c 7 f



 = det





a 2(1) + 1 d
b 2(2) + 1 e
c 2(3) + 1 f



 = det





a 2(1) d
b 2(2) e
c 2(3) f



+ det





a 1 d
b 1 e
c 1 f





↑

Fact 6.2.8

= 2 det





a 1 d
b 2 e
c 3 f



+ det





a 1 d
b 1 e
c 1 f



 = 2 · 11 + 7 = 29

↑

Fact 6.2.1a

47. Yes! For example, T

[
x b
y d

]

= dx + by is given by the matrix [d b], so that T is linear in

the first column.

48. Since ~v2, . . . , ~vn are linearly independent, T (~x) = 0 only if ~x is a linear combination of the
~vi ‘s, (otherwise the matrix [~x~v2 · · ·~vn] is invertible, and T (~x) 6= 0). Hence, the kernel of
T is the span of ~v2, . . . , ~vn, an (n− 1)-dimensional subspace of R

n. The image of T is the
real line R (since it must be 1-dimensional).

49. For example, we can start with an upper triangular matrix B with det(B) = 13, such as

B =





1 1 1
0 1 1
0 0 13



 . Adding the first row of B to both the second and the third to make

all entries nonzero, we end up with A =





1 1 1
1 2 2
1 1 14



 . Note that det(A) = det(B) = 13.

50. There are many ways to do this problem; here is one possible approach:

Subtracting the second to last row from the last, we can make the last row into

[ 0 0 · · · 0 1 ].
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Now expanding along the last row we see that det(Mn) = det(Mn−1).

Since det(M1) = 1 we can conclude that det(Mn) = 1 for all n.

51. Notice that it takes n row swaps (swap row i with n + i for each i between 1 and n) to
turn A into I2n. So, det(A) = (−1)n det(I2n) = (−1)n.

52. a. We build B column-by-column:

[

T

[
1
0

]

T

[
0
1

] ]

=

[ [
d
−c

] [
−b
a

] ]

=

[
d −b
−c a

]

.

b. det(A) = ad − bc = det(B). The two determinants are equal.

c. BA =

[
d −b
−c a

] [
a b
c d

]

=

[
da − bc 0

0 −cb + ad

]

= (ad − bc)I2.

AB =

[
a b
c d

] [
d −b
−c a

]

=

[
ad − bc 0

0 −cb + da

]

= (ad − bc)I2 also.

d. Any vector ~u in the image of A will be of the form c1

[
a
c

]

+ c2

[
b
d

]

. We note that

B

[
a
c

]

=

[
d −b
−c a

][
a
c

]

=

[
ad − bc
−ca + ac

]

= ~0. The same is true of B

[
b
d

]

. Thus,

anything in the image of A will be in the kernel of B. Since both matrices have a rank
of 1, the dimensions of the kernel and image of each will be exactly 1. So, it must be
that im(A) = ker(B).

Also, any vector ~u in the image of B will be of the form c1

[
d
−c

]

+ c2

[
−b
a

]

. However,

we see that

[
a b
c d

][
−b
a

]

=

[
−ab + ba
−bc + ad

]

= ~0. The same is true for A

[
d
−c

]

. Thus,

by the same reasoning as above, the image of B will equal the kernel of A.

e. A−1 = 1
ad−bc

[
d −b
−c a

]

= 1
ad−bcB.

53. a. See Exercise 37.

b. If A =

[
a b
c d

]

, then A−1 = 1
det(A)

[
d −b
−c a

]

has integer entries.
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54. f(t) = (det(A + tB))2 − 1 =

(

det

[
a1 + tb1 a2 + tb2

a3 + tb3 a4 + tb4

])2

− 1 assuming A =

[
a1 a2

a3 a4

]

,

B =

[
b1 b2

b3 b4

]

.

Then the determinant above is a polynomial of degree ≤2 so its square is a polynomial
of degree ≤4. Hence f(t) is a polynomial of degree ≤4.

Since A, A + B, A + 2B, A + 3B, A + 4B are invertible and their inverses have integer
entries, by Exercise 53a, it follows that their determinants are ±1. Hence f(0) = f(1) =
f(2) = f(3) = f(4) = 0.

Since f is a polynomial of degree ≤ 4 with at least 5 roots, it follows that f(t) = 0 for
all t, in particular for t = 5, so det(A + 5B) = ±1. Hence A + 5B is an invertible 2 × 2
matrix whose inverse has integer entries by Exercise 53b.

55. We start out with a preliminary remark: If a square matrix A has two equal rows, then
D(A) = 0. Indeed, if we swap the two equal rows and call the resulting matrix B, then
B = A, so that D(A) = D(B) = −D(A), by property b, and D(A) = 0 as claimed.

Next we need to understand how the elementary row operations affect D. Properties a
and b tell us about how row multiplications and row swaps, but we still need to think
about row additions.

We will show that if B is obtained from A by adding k times the ith row to the jth, then
D(B) = D(A). Let’s label the row vectors of A by ~v1, . . . ~vn. By linearity of D in the jth

row (property c) we have

D(B) = D























...
~vi

...
~vj + k~vi

...























= D(A) + kD























...
~vi

...
~vi

...























= D(A).

Note that in the last step we have used the preliminary remark. Now, using the termi-
nology introduced on Page 262, we can write D(A) = (−1)sk1k2 · · · krD(rref A).

Next we observe that D(rref A) = det(rref A) for all square matrices A. Indeed, if A is
invertible, then rref(A) = In, and D(In) = 1 = det(In) by property c of function D. If A
fails to be invertible, then D(rref A) = 0 = det(rref A) by linearity in the last row.

It follows that D(A) = (−1)sk1k2 · · · krD(rref A) = (−1)sk1k2 · · · kr det(rref A) = det(A)
for all square matrices, as claimed.
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56. a. We show first that D is linear in the ith row.

D










~v1
...
~x
...

~vn










↑
A

= 1
detM det










~v1M
...

~xM
...

~vnM










↑
AM

The entries in the ith row of AM are linear combinations of the components xi of the
vector ~x, while the other entries of AM are constants. Therefore, det(AM) is a linear
combination of the xi (expand along the ith row). Since 1

detM is a constant, we have

D










~v1
...
~x
...

~vn










= c1x1 + c2x2 + · · · + cnxn for some constants ci, as claimed.

b. Secondly, we need to show that D(B) = −D(A) if B is obtained from A by a row swap:

A =















~v1
...
~vi
...

~vj

...
~vn















−→ B =















~v1
...

~vj

...
~vi
...

~vn















D(B) = 1
det M det















~v1M
...

~vjM
...

~viM
...

~vnM















= − 1
detM det















~v1M
...

~viM
...

~vjM
...

~vnM















= −D(A).

c. The property D(In) = 1 is obvious.
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It now follows from Exercise 41 that det(A) = D(A) = det(AM)
det(M) and therefore

det(AM) = det(A) det(M).

57. Note that matrix A1 is invertible, since det(A1) 6= 0. Now

T

[
~y
~x

]

= [A1 A2]

[
~y
~x

]

= A1~y + A2~x = ~0 when A1~y = −A2~x, or,

~y = −A−1
1 A2~x. This shows that for every ~x there is a unique ~y (that is, ~y is a function of

~x); furthermore, this function is linear, with matrix M = −A−1
1 A2.

58. Using the approach of Exercise 57, we have A1 =

[
1 2
3 7

]

, A2 =

[
1 2
4 3

]

,

and M = −A−1
1 A2 =

[
1 −8

−1 3

]

. The function is

[
y1

y2

]

=

[
1 −8

−1 3

] [
x1

x2

]

.

Alternatively, we can solve the linear system

y1 + 2y2 + x1 + 2x2 = 0
3y1 + 7y2 + 4x1 + 3x2 = 0

Gaussian Elimination gives

y1 − x1 + 8x2 = 0 y1 = x1 − 8x2

and
y2 + x1 − 3x2 = 0 y2 = −x1 + 3x2

59. det

[
0 0
0 0

]

= 0 = det

[
1 0
0 0

]

, but these matrices fail to be similar.

60. We argue using induction on n. The base case (n = 2) is discussed on page 261. Now we
assume that B is obtained from the n×n matrix A by adding k times the pth row to the
qth row.

We will evaluate the determinant of B by expanding across the ith row (where i is neither
p nor q).

det(B) = Σn
j=1(−1)i+jbij det(Bij)

= Σn
j=1(−1)i+jaij det(Bij) = Σn

j=1(−1)i+jaij det(Aij ) = det(A)
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Note that the (n − 1) × (n − 1) matrix Bij is obtained from Aij by adding k times some
row to another row. Now, det(Bij) = det(Aij) by induction hypothesis.

61. We follow the hint:

[
In 0
−C A

] [
A B
C D

]

=

[
A B

−CA + AC −CB + AD

]

=

[
A B
0 AD − CB

]

. So, det

([
In 0
−C A

] [
A B
C D

])

= det(A) det(AD − CB).

Thus, det(In) det(A) det

([
A B
C D

])

= det(A) det(AD − CB), which leads to

det

([
A B
C D

])

= det(AD − CB), since det(A) 6= 0.

62. a. We compute

[
In 0

−CA−1 In

] [
A B
C D

]

=

[
A B
0 −CA−1B + D

]

. Since the matrix
[

In 0
−CA−1 In

]

is invertible (its determinant is 1),the product

[
A B
0 −CA−1B + D

]

will have the same rank as

[
A B
C D

]

, namely, n. With A being invertible, this implies

that −CA−1B + D = 0, or CA−1B = D, as claimed.

b. Take determinants on both sides of the equation D = CA−1B from part (a) to find
that det(D) = det(C)(det A)−1 det(B), or det(A) det(D)− det(B) det(C) = 0, proving
the claim.

6.3

1. By Fact 6.3.3, the area equals | det

[
3 8
7 2

]

| = | − 50| = 50.

2. By Fact 6.3.3 Area = 1
2

∣
∣
∣
∣
det

[
3 8
7 2

]∣
∣
∣
∣
= 1

2 |−50| = 25

3. Area of triangle = 1
2 | det

[
6 1
−2 4

]

| = 13 (See Figure 6.1.)

4. Note that area of triangle = 1
2

∣
∣
∣
∣
det

[
b1 − a1 c1 − a1

b2 − a2 c2 − a2

]∣
∣
∣
∣
. (See Figure 6.2.)

On the other hand, det





a1 b1 c1

a2 b2 c2

1 1 1



 = det





a1 b1 − a1 c1 − a1

a2 b2 − a2 c2 − a2

1 0 0



 , by subtracting

the first column from the second and third.
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Figure 6.1: for Problem 6.3.3.

Figure 6.2: for Problem 6.3.4.

This, in turn, equals det

[
b1 − a1 c1 − a1

b2 − a2 c2 − a2

]

, by expanding across the bottom row.

Therefore, area of triangle = 1
2

∣
∣
∣
∣
∣
∣

det





a1 b1 c1

a2 b2 c2

1 1 1





∣
∣
∣
∣
∣
∣

.

5. The volume of the tetrahedron T0 defined by ~e1, ~e2, ~e3 is 1
3 (base)(height) = 1

6 .

Here we are using the formula for the volume of a pyramid. (See Figure 6.3.)

Figure 6.3: for Problem 6.3.5.
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The tetrahedron T defined by ~v1, ~v2, ~v3 can be obtained by applying the linear transfor-
mation with matrix [~v1 ~v2 ~v3] to T0.

Now we have vol(T ) = | det[~v1 ~v2 ~v3]|vol(T0) = 1
6 | det[~v1 ~v2 ~v3]| = 1

6V (~v1, ~v2, ~v3).

↑ ↑

Fact 6.3.8 and Page 282 Fact 6.3.5

6. From Exercise 5 we know that volume of tetrahedron = 1
6

∣
∣
∣
∣
∣
∣

det





a1 b1 c1

a2 b2 c2

1 1 1





∣
∣
∣
∣
∣
∣

, and Exer-

cise 4 tells us that area of triangle = 1
2

∣
∣
∣
∣
∣
∣

det





a1 b1 c1

a2 b2 c2

1 1 1





∣
∣
∣
∣
∣
∣

, so that area of tetrahedron =

1
3 (area of triangle).

We can see this result more directly if we think of the tetrahedron as an inverted pyramid
whose base is the triangle and whose height is 1. (See Figure 6.4.)

Figure 6.4: for Problem 6.3.6.

The three vertices of the shaded triangle are





a1

a2

1



 ,





b1

b2

1



 ,





c1

c2

1



.

7. Area = 1
2

∣
∣
∣
∣
det

[
10 −2
11 13

]∣
∣
∣
∣
+ 1

2

∣
∣
∣
∣
det

[
8 10
2 11

]∣
∣
∣
∣
= 110. (See Figure 6.5.)

8. We need to show that both sides of the equation in Fact 6.3.4 give zero.

| det(A)| = 0 since A is not invertible. On the other hand, since A is not invertible, the ~vi

will be linearly dependent, i.e., one of the ~vi will be redundant. This implies that ~v
‖
i = ~vi

and ~v⊥i = ~0, so that the right-hand side of the equation is 0, as claimed.

9. By Fact 6.3.3, | det[~v1 ~v2]| = area of the parallelogram defined by ~v1 and ~v2. But ‖~v1‖ is the
base of that parallelogram and ‖~v2‖ sin θ is its height, hence | det[~v1 ~v2]| = ‖~v1‖‖~v2‖ sin θ.
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Figure 6.5: for Problem 6.3.7.

10. | det(A)| ≤ ‖~v1‖‖~v2‖ · · · ‖~vn‖ since | det(A)| = ‖~v1‖‖~v⊥2 ‖ · · · ‖~v⊥n ‖ and
‖~vi‖ ≥ ‖~v⊥

i ‖. The equality holds if ‖~vi‖ = ‖~v⊥
i ‖ for all i, that is, if the ~vi ‘s are mutually

perpendicular.

11. The matrix of the transformation T with respect to the basis ~v1, ~v2 is B =

[
3 0
0 4

]

, so

that det(A) = det(B) = 12, by Fact 6.2.5.

12. Denote the columns by ~v1, ~v2, ~v3, ~v4. From Fact 6.3.4 and Exercise 8 we know that
| det(A)| ≤ ‖~v1‖‖~v2‖ ‖~v3‖‖~v4‖; equality holds if the columns are orthogonal. Since the
entries of the ~vi are 0, 1, and −1, we have ‖~vi‖ ≤

√
1 + 1 + 1 + 1 = 2. Therefore,

| det A| ≤ 16.

To build an example where det(A) = 16 we want all 1’s and −1’s as entries, and the

columns need to be orthogonal. A little experimentation produces A =






1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1






(there are other solutions). Note that we need to check that det(A) = 16 (and not −16).

13. By Fact 6.3.7, the desired 2-volume is
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√
√
√
√
√
√det






[
1 1 1 1
1 2 3 4

]






1 1
1 2
1 3
1 4









 =

√

det

[
4 10
10 30

]

=
√

20.

14. By Fact 6.3.7, the desired 3-volume is
√
√
√
√
√
√det










1 0 0 0
1 1 1 1
1 2 3 4










1 1 1
0 1 2
0 1 3
0 1 4









 =

√
√
√
√
√det





1 1 1
1 4 10
1 10 30



 =
√

6.

15. If ~v1, ~v2, . . . , ~vm are linearly dependent and if A = [~v1 · · ·~vm], then det(AT A) = 0 since
AT A and A have equal and nonzero kernels (by Fact 5.4.2), hence AT A fails to be invert-
ible.

On the other hand, since the ~vi are linearly dependent, at least one of them will be redun-

dant. For such a redundant ~vi, we will have ~vi = ~v
‖
i and ~v⊥i = ~0, so that V (~v1, . . . , ~vm) = 0,

by Definition 6.3.6. This discussion shows that V (~v1, . . . , ~vm) = 0 =
√

det(AT A) if the
vectors ~v1, . . . , ~vm are linearly dependent.

16. False

If T is given by A = 2I3 then | det(A)| = 8. But if Ω is the square defined by ~e1, ~e2 in R
3

(of area 1), then T (Ω) is the square defined by 2~e1, 2~e2 and the area of T (Ω) is 4.

17. a. Let ~w = ~v1 × ~v2 × ~v3. Note that ~w is orthogonal to ~v1, ~v2 and ~v3, by Exercise 6.2.44c.
Then V (~v1, ~v2, ~v3, ~w) = V (~v1, ~v2, ~v3)‖~w⊥‖ = V (~v1, ~v2, ~v3)‖~w‖.

↑

Definition 6.3.6

b. By Exercise 6.2.44e,

V (~v1, ~v2, ~v3, ~v1 × ~v2 × ~v3) = | det [~v1 ~v2 ~v3 ~v1 × ~v2 × ~v3 ] |
= | det [~v1 × ~v2 × ~v3 ~v1 ~v2 ~v3 ] | = ‖~v1 × ~v2 × ~v3‖2 .

c. By parts a and b, V (~v1, ~v2, ~v3) = ‖~v1 × ~v2 × ~v3‖. If the vectors ~v1, ~v2, ~v3 are linearly
dependent, then both sides of the equation are 0, by Exercise 15 and Exercise 6.2.44a.

18. a. (See Figure 6.6.)

[
p 0
0 q

] [
cos(t)
sin(t)

]

=

[
p · cos(t)
q · sin(t)

]

, the ellipse with semi-axes ±
[

p
0

]

and

±
[

0
q

]

.
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Figure 6.6: for Problem 6.3.18a.

(area of the ellipse) = | det(A)|(area of the unit circle) = pqπ

b. By Fact 6.3.8, | det(A)| =
area of the ellipse

area of the unit circle
= abπ

π = ab so | det(A)| = ab.

c. The unit circle consists of all vectors of the form ~x = cos(t) 1√
2

[
1
1

]

+ sin(t) 1√
2

[
1

−1

]

;

its image is the ellipse consisting of all vectors

T (~x) = cos(t) 2
√

2

[
1
1

]

︸ ︷︷ ︸

+ sin(t)
√

2

[
1

−1

]

︸ ︷︷ ︸

semi-major axis semi-minor axis

. (See Figure 6.7.)

19. det[~v1 ~v2 ~v3] = ~v1 · (~v2 × ~v3) = ‖~v1‖‖~v2 × ~v3‖ cos θ where θ is the angle between ~v1 and
~v2×~v3 so det[~v1 ~v2 ~v3] > 0 if and only if cos θ > 0, i.e., if and only if θ is acute (0 ≤ θ ≤ π

2 ).
(See Figure 6.8.)

20. By Exercise 19, ~v1, ~v2, ~v3 constitute a positively oriented basis if and only if det[~v1 ~v2 ~v3] >
0. Assume that ~v1, ~v2, ~v3 is such a basis. We want to show that A~v1, A~v2, A~v3 is positively
oriented if and only if det(A) > 0. We have det[A~v1 A~v2 A~v3] = det(A[~v1 ~v2 ~v3]) =
det(A) det[~v1 ~v2 ~v3] so since det [~v1 ~v2 ~v3] > 0 by assumption, det [A~v1 A~v2 A~v3] > 0 if and
only if det(A) > 0. Hence A is orientation preserving if and only if det(A) > 0.

21. a. Reverses
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Figure 6.7: for Problem 6.3.18c.

Figure 6.8: for Problem 6.3.19.

Consider ~v2 and ~v3 in the plane (not parallel), and let ~v1 = ~v2 × ~v3; then ~v1, ~v2, ~v3

is a positively oriented basis, but T (~v1) = −~v1, T (~v2) = ~v2, T (~v3) = ~v3 is negatively
oriented.

b. Preserves

Consider ~v2 and ~v3 orthogonal to the line (not parallel), and let ~v1 = ~v2 × ~v3; then
~v1, ~v2, ~v3 is a positively oriented basis, and T (~v1) = ~v1, T (~v2) = −~v2, T (~v3) = −~v3 is
positively oriented as well.

c. Reverses
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The standard basis ~e1, ~e2, ~e3 is positively oriented, but T (~e1) = −~e1, T (~e2) = −~e2, T (~e3) =
−~e3 is negatively oriented.

22. Here A =

[
3 7
4 11

]

, det(A) = 5, ~b =

[
1
3

]

, so by Fact 6.3.9

x =
det

"

1 7
3 11

#

5 = −2, y =
det

"

3 1
4 3

#

5 = 1.

23. Here A =

[
5 −3
−6 7

]

, det(A) = 17,~b =

[
1
0

]

, so by Fact 6.3.9

x1 =

det

[
1 −3
0 7

]

17
=

7

17
, x2 =

det

[
5 1
−6 0

]

17
=

6

17
.

24. Here A =





2 3 0
0 4 5
6 0 7



, det(A) = 146, ~b =





8
3

−1



, so by Fact 6.3.9,

x =

det

2

6

6

4

8 3 0
3 4 5

−1 0 7

3

7

7

5

146 = 1, y =

det

2

6

6

4

2 8 0
0 3 5
6 −1 7

3

7

7

5

146 = 2, z =

det

2

6

6

4

2 3 8
0 4 3
6 0 −1

3

7

7

5

146 = −1.

25. By Fact 6.3.10, the ijth entry of adj(A) is given by (−1)i+j det(Aji), so since

A =





1 0 1
0 1 0
2 0 1



 for i = 1, j = 1, we get (−1)2 det

[
1 0
0 1

]

= 1, and for i = 1, j = 2 we

get (−1)3 det

[
0 1
0 1

]

= 0, and so forth.

Completing this process gives adj(A) =





1 0 −1
0 −1 0
−2 0 1



 , hence by Fact 6.3.10,

A−1 = 1
det(A)adj(A) = 1

−1





1 0 −1
0 −1 0
−2 0 1



 =





−1 0 1
0 1 0
2 0 −1



 .

26. By Fact 6.3.10, A−1 = 1
det(A)adj(A), so if det(A) = 1, A−1 = adj(A). If A has integer

entries then (−1)i+j det(Aji) will be an integer for all 1 ≤ i, j ≤ n, hence adj(A) will have
integer entries. Therefore, A−1 will also have integer entries.
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27. By Fact 6.3.9, using A =

[
a −b
b a

]

, det(A) = a2 + b2,~b =

[
1
0

]

, we get

x = det

[
1 −b
0 a

](
1

a2+b2

)

= a
a2+b2 , y = det

[
a 1
b 0

](
1

a2+b2

)

= −b
a2+b2 ,

so x is positive, y is negative (since a, b > 0), and x decreases as b increases.

28. Here A =

[
s a
m −h

]

, det(A) = −sh − ma,~b =

[
I◦ + G

Ms + M◦

]

so, by Fact 6.3.9

Y =
det

"

I◦ + G a
Ms − M◦ −h

#

−sh−ma = −h(I◦+G)−a(Ms−M◦)
−sh−ma = h(I◦+G)+a(Ms−M◦)

sh+ma ,

r =
det

"

s I◦ + G
m Ms − M◦

#

−sh−ma = s(Ms−M◦)−m(I◦+G)
−sh−ma = m(I◦+G)−s(Ms−M◦)

sh+ma .

29. By Fact 6.3.9,

dx1 =

det

2

6

6

4

0 R1 −(1 − α)
0 1 − α −(1 − α)2

−R2de2 −R2 − (1−α)2

α

3

7

7

5

D = R1R2(1−α)2de2−R2(1−α)2de2

D

dy1 =

det

2

6

6

4

−R1 0 −(1 − α)
α 0 −(1− α)2

R2 −R2de2 − (1−α)2

α

3

7

7

5

D = R2de2(R1(1−α)2+α(1−α))
D > 0

dp =

det

2

6

6

4

−R1 R1 0
α 1 − α 0
R2 −R2 −R2de2

3

7

7

5

D = R1R2de2

D > 0.

30. Using the procedure outlined in Exercise 25, we find adj(A) =





18 0 0
−12 6 0
−2 −5 3



 .

31. Using the procedure outlined in Exercise 25, we find adj(A) =





−6 0 1
−3 5 −2
4 −5 1



 .

32. Using the procedure outlined in Exercise 25, we find that adj(A) =






0 0 0 −1
0 −1 0 0
0 0 −1 0
−1 0 0 0




 .
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33. Using the procedure outlined in Exercise 25, we find that adj(A) =






24 0 0 0
0 12 0 0
0 0 8 0
0 0 0 6




 .

Note that the matrix adj(A) is diagonal, and the ith diagonal entry of adj(A) is the
product of all ajj where j 6= i.

34. For an invertible n × n matrix A, Aadj(A) = A(det(A)A−1) = det(A)AA−1 = det(A)In.
The same is true for adj(A)A.

35. det(adj(A)) = det(det(A)A−1). Taking the product det(A)A−1 amounts to multiplying
each row of A−1 by det(A), so that det(adj(A)) = (det A)n det(A−1) = (det A)n 1

det(A) =

(det A)n−1.

36. adj(adjA) = adj(det(A)A−1)

= det(det(A)A−1)(det(A)A−1)−1 = (det A)n det(A−1)(det(A)A−1)−1

= (det A)n−1(det(A)A−1)−1 = (det A)n−1 1
det(A)(A

−1)−1

= (det A)n−2A.

37. adj(A−1) = det(A−1)(A−1)−1 = (det A)−1(A−1)−1 = (adjA)−1.

38. adj(AB) = det(AB)(AB)−1

= det(A)(det(B)B−1)A−1

= det(B)B−1(det(A)A−1)

= adj(B)adj(A).

39. Yes, let S be an invertible matrix such that AS = SB, or SB−1 = A−1S. Multiplying both
sides by det(A) = det(B), we find that S(det(B)B−1) = (det(A)A−1)S, or, S(adjB) =
(adjA)S, as claimed.

40. The ijth entry of the matrix B of T is (ith component of T (~ej)) = det(A(~ej,i)), which
is the ijth entry of adj(A) (see the first paragraph on Page 286 and Fact 6.3.10). Thus
B = adj(A).

41. If A has a nonzero minor det(Aij), then the n − 1 columns of the invertible matrix Aij

will be independent, so that the n − 1 columns of A, minus the jth, will be independent
as well. Thus, the rank of A (the dimension of the image) is at least n − 1.

Conversely, if rank(A) ≥ n − 1, then we can find n − 1 independent columns of A. The
n × (n − 1) matrix consisting of those n − 1 columns will have rank n − 1, so that there
will be exactly one redundant row (compare with Exercises 3.3.49 through 51). Omitting
this redundant row produces an invertible (n − 1) × (n − 1) submatrix of A, giving us a
nonzero minor of A.
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42. By Definition 6.3.10, adj(A) = 0 if (and only if) all the minors Aji of A are zero. By
Exercise 41, this is the case if (and only if) rank(A) ≤ n − 2.

43. A direct computation shows that A(adjA) = (adjA)A = (det A)(In) for all square matri-
ces. Thus we have A(adjA) = (adjA)A = 0 for noninvertible matrices, as claimed.

Let’s write B = adj(A), and let’s verify the equation AB = (det A)(In) for the diagonal
entries; the verification for the off-diagonal entries is analogous. The ith diagonal entry
of AB is

[ith row of A]





ith

column
of B



 = ai1b1i + · · · + ainbni =
n∑

j=1

aijbji.

Since B is the adjunct of A, bji = (−1)j+i det(Aij).

So, our summation equals
n∑

j=1

aij(−1)i+j det(Aij)

which is our formula for Laplace expansion across the ith row, and equals det(A), proving
our claim for the diagonal entries.

44. The equation A(adjA) = 0 from Exercise 43 means that im(adjA) is a subspace of ker(A).
Thus rank(adjA) = dim(im(adjA)) ≤ dim(kerA) = n − rank(A) = n − (n − 1) = 1,
implying that rank(adjA) ≤ 1. Since adj(A) 6= 0, by Exercise 42, we can conclude that
rank(adjA) = 1.

45. Let A =

[
a b
c d

]

. We want AT = adj(A), or

[
a c
b d

]

=

[
d −b
−c a

]

. So, a = d and

b = −c. Thus, the equation AT = adj(A) holds for all matrices of the form

[
a b
−b a

]

.

46. In the simple case when f(x, y) = 1 we have

∫

Ω2

f(x, y)dA =

∫

Ω2

dA = area of Ω2 = | det M |
and
∫

Ω1

g(u, v)dA =

∫

Ω1

dA = area of Ω1 = 1, so that

∫

Ω2

f(x, y)dA = | det M | ·
∫

Ω1

g(u, v)dA.

This formula holds, in fact, for any continuous function f(x, y); see an introductory text
in multivariable calculus for a justification.

47. Note that 1
2 det

[
x1 x2

y1 y2

]

is the area of the triangle OP1P2, where O denotes the origin.

This is likewise true for one-half the second matrix. However, because of the reversal
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in orientation, 1
2 det

[
x3 x4

y3 y4

]

is negative the area of the triangle OP3P4; likewise for

the last matrix. (See the discussion on Page 277.) Finally, note that the area of the
quadrilateral P1P2P3P4 is equal to:

the area of triangle OP1P2 + area of triangle OP2P3

− area of triangle OP3P4 − area of triangle OP4P1.

48. In what follows, we will freely use the fact that an invertible linear transformation L from
R

2 to R
2 maps an ellipse into an ellipse (see Exercise 2.2.52).

Now consider a linear transformation L that transforms our 3-4-5 right triangle R into
an equilateral triangle T . If we place the vertices of the right triangle R at the points
[

0
0

]

,

[
4
0

]

,

[
0
3

]

, and the vertices of the equilateral triangle T at

[
0
0

]

,

[
2
0

]

,

[
1√
3

]

,

then the transformation L has the matrix A =

[
1
2

1
3

0 1√
3

]

, with det(A) = 1
2
√

3
.

According to the hint, L will map the largest ellipse E inscribed into R into the circle C
inscribed into T . The Figure 6.9 illustrates that the radius of C is tan(π/6) = 1/

√
3, so

that the area of C is π/3. Using the interpretation of the determinant as an expansion

fact, we find that (area of C) = (det A)(area of E), or (area of E) = area of C
det(A) = 2π√

3
≈ 3.6

R

1

1 2 3 4

0

2

0

3[ [

[ [ 2

0[ [

[ [
T

C

π
6 r =

√
3
1

√
3
1

A =

A–1 =

L

L–1

0

1
2

1
3
1

√3

2

0 √3

−2
√3

Figure 6.9: for Problem 6.3.48 and Problem 49.

49. We will use the terminology introduced in the solution of Exercise 48 throughout. Note

that the transformation L−1, with matrix A−1 =

[
2 −2/

√
3

0
√

3

]

, maps the circle C (with
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radius 1/
√

3) into the ellipse E. Now consider a radial vector ~v = 1√
3

[
cos θ
sin θ

]

of C,

and find the maximal value M and the minimal value m of ‖A−1~v‖2
= 4

3 + 1
9 sin2 θ −

8
3
√

3
(sin θ)(cos θ) = 25

18 − 1
18 (cos 2θ) − 4

3
√

3
(sin 2θ) (we are taking the square to facilitate

the computations). Then
√

M and
√

m will be the lengths of the semi-axes of E. The

function above is sinusoidal with average value 25
18 and amplitude

√
1

182 + 16
27 =

√
193
18 .

Thus M = 25+
√

193
18 and m = 25−

√
193

18 , so that the length of the semi-major axis of E is

√
M =

√

25+
√

193
18 ≈ 1.47, and for the semi-minor axis we get

√
m =

√

25−
√

193
18 ≈ 0.79.

True or False

1. T, by Fact 6.1.6 (a diagonal matrix is triangular as well)

2. T, by Fact 6.2.1b.

3. T, by Definition 6.1.1

4. F; We have det(4A) = 44 det(A), by Fact 6.2.1a.

5. F; Let A = B = I5, for example

6. T; We have det(−A) = (−1)6 det(A) = det(A), by Fact 6.2.1a.

7. F; In fact, det(A) = 0, since A fails to be invertible

8. F; The matrix A fails to be invertible if det(A) = 0, by Fact 6.2.2.

9. T, by Fact 6.2.1a, applied to the columns.

10. T, by Fact 6.2.4

11. T, by Fact 6.2.5.

12. F, by Fact 6.3.1. The determinant can be −1.

13. T, by Fact 6.2.4.

14. F; The second and the fourth column are linearly dependent.
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15. T; The determinant is 0 for k = −1 or k = −2, so that the matrix is invertible for all
positive k.

16. F; Expand down the first column to see that det(A) = − det(I3) = −1.

17. T; It would be tedious to compute the exact value of the determinant, but we can show
that the determinant is nonzero without finding its exact value.

One method is to show that the determinant is an odd integer. Expanding down the third

column, we see that det(A) = 3 det





5 4 8
100 9 7
6 5 100



+ even terms

= 3(−7 det

[
5 4
6 5

]

+ even terms ) + even terms

= −21 + even terms = odd, as claimed.

Alternatively, we can use the permutation formula for the determinant (Fact 6.2.10),
and argue that one of the 24 terms is very large (namely 1004 = 108) compared to the
other terms [those are less than (1002)(102) = 106 each in absolute value], so that the
determinant turns out to be positive. (In fact, this determinant is 97,763,383.)

18. F; The correct formula is det(A−1) = 1
det(AT ) , by Facts 6.2.6 and 6.2.7.

19. T; Matrix A is invertible.

20. T; Any nonzero noninvertible matrix A will do.

21. T, by Fact 6.3.4, since ‖~v⊥
i ‖ ≤ ‖~vi‖ = 1 for all column vectors ~vi.

22. T; We have det(A) = det(rref A) = 0.

23. F; Let A =

[
3 2
5 3

]

, for example.

24. F; Let A = 2I2, for example

25. T; Let A =






1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




. The column vectors of A are orthogonal and they all

have length 2.

26. F; Let A =

[
8 0
0 1

2

∣
∣
∣
∣

and ~v =

∣
∣
∣
∣

1
0

]

, for example.
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27. F; In fact, det(A) = det[~u ~v ~w] = − det[~v ~u ~w] = −~v · (~u × ~w). We have used Fact 6.2.1b
and Definition 6.1.1.

28. T; Let A =

[
1 0
0 1

]

and B =

[
1 0
0 −1

]

, for example.

29. F; Note that det





1 1 0
0 1 1
1 0 1



 = 2.

30. T, by Fact 6.3.10

31. F; Let A = 2I2, for example.

32. F; Let A =






0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0




, for example.

33. F; Let A = I2 and B = −I2, for example.

34. T; Note that det(B) = − det(A) < det(A), so that det(A) > 0.

35. T; Let’s do Laplace expansion along the first row, for example (see Fact 6.1.5).

Then det(A) =
n∑

j=1

(−1)1+ja1j det(A1j) 6= 0. Thus det(A1j) 6= 0 for at least one j, so that

A1j is invertible.

36. T; Note that det(A) and det(A−1) are both integers, and (det A)(det A−1) = 1. This
leaves only the possibilities det(A) = det(A−1) = 1 and det(A) = det(A−1) = −1.

37. T, since adj(A) = (det A)(A−1), by Fact 6.3.10.

38. F; Note that det(A2) = (det A)2 cannot be negative, but det(−I3) = −1.

39. F; Note that det(S−1AS) = det(A) but det(2A) = 23(det A) = 8(det A).

40. F; Note that det(ST AS) = (det S)2(det A) and det(−A) = −(det A) have opposite signs.

41. T; We can use induction on n to show that det(A) is an odd integer. If we expand det(A)
down the first column, then the first term, a11 det(A11), will be odd, since a11 is odd, and
det(A11) is odd by the induction hypothesis. However, all the other terms ai1 det(Ai1),
where i > 1, will be even, since ai1 is even in this case. Thus, det(A) is odd as claimed,
and A is invertible.

42. F; Let A =





2 1 1
1 2 1
1 5 2



, for example
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43. T; Let A =

[
a b
c d

]

. If a 6= 0, let B =

[
0 0
0 1

]

; if b 6= 0, let B =

[
0 0
1 0

]

; if c 6= 0, let

B =

[
0 1
0 0

]

, and if d 6= 0, let B =

[
1 0
0 0

]

.

44. T; Use Gaussian elimination for the first column only to transform A into a matrix of
the form

B =






1 ±1 ±1 ±1
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗






Note that det(B) = det(A) or det(B) = −(det A). The stars in matrix B all represent
numbers (±1) ± (±1), so that they are 2, 0, or −2. Thus the determinant of the 3 × 3
matrix M containing the stars is divisible by 8, since each of the 6 terms in Sarrus’ rule
is 8, 0 or -8. Now perform Laplace expansion down the first column of B to see that
det(M) = det(B) = +/ − det(A).

45. T; A(adjA) = A(det(A)A−1) = det(A)In = det(A)A−1A = adj(A)A.

46. T; Laplace expansion along the second row gives det(A) = −k det





1 2 4
8 9 7
0 0 5



 + C =

35k+C, for some constant C (we need not compute that C = −259). Thus A is invertible
except for k = −C

35 (which turns out to be 259
35 = 37

5 = 7.4).

47. F; A =





1 0 0
0 0 −1
0 1 0



 and B =





−1 0 0
0 −1 0
0 0 1



 are both orthogonal and det(A) =

det(B) = 1. However, AB 6= BA.
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