
Chapter 9 ISM: Linear Algebra

Chapter 9

9.1

1. x(t) = 7e5t, by Fact 9.1.1.

2. x(t) = −e · e−0.71t = −e1−0.71t, by Fact 9.1.1.

3. P (t) = 7e0.03t, by Fact 9.1.1.

4. This is just an antiderivative problem: y(t) = 0.8 t2

2 + C = 0.4t2 + C, and C = −0.8, so
that y(t) = 0.4t2 − 0.8.

5. y(t) = −0.8e0.8t, by Fact 9.1.1.

6. x dx = dt

x2

2 = t + C, and 1
2 = 0 + C, so that x2

2 = t + 1
2

x2 = 2t + 1

x(t) =
√

2t + 1

7. x−2 dx = dt

−x−1 = t + C

− 1
x = t + C, and −1 = 0 + C, so that

− 1
x = t − 1

x(t) = 1
1−t ; note that lim

x→1−

x(t) = ∞.

8. x−1/2 dx = dt

2x1/2 = t + C, and 2
√

4 = 0 + C, so that 2x1/2 = t + 4.

x(t) =
(

t
2 + 2

)2
for t ≥ −4.

9. x−k dx = dt

1
1−kx1−k = t + C, and 1

1−k = C, so that

1
1−kx1−k = t + 1

1−k

x1−k = (1 − k)t + 1

x(t) = ((1 − k)t + 1)1/1−k.
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10. cosx dx = dt

sinx = t + C, and C = 0.

x(t) = arcsin(t) for |t| < 1.

11. dx
1+x2 = dt

arctan(x) = t + C and C = 0.

x(t) = tan(t) for |t| < π
2 .

12. We want ekt = 3t or ek = 3 or k = ln(3) : dx
dt = ln(3)x.

13. a. The debt in millions is 0.45(1.06)212 ≈ 104, 245, or about 100 billion dollars.

b. The debt in millions is 0.45e0.06·212 ≈ 150, 466, or about 150 billion dollars.

14. a. x(t) = e−
t

8270 , by Fact 9.1.1

If T is the half-life, then e−
T

8270 = 1
2 or − T

8270 = ln
(

1
2

)

or T = −8270 ln
(

1
2

)

≈ 5732.

The half-life is about 5732 years.

b. We want to find t such that e−
t

8270 = 1 − 0.47 = 0.53 or − t
8270 = ln(0.53) or t =

−8270 ln(0.53) ≈ 5250. The Iceman died about 5000 years before A.D. 1991, or about
3000 B.C. The Austrian expert was wrong.

15. If P (t) = P0e
k

100
t, then the doubling time T satisfies the equation P (T ) = P0e

k
100

T = 2P0

or e
k

100
T = 2 or k

100T = ln(2) or T = 100
k ln(2) ≈ 69

k since ln(2) ≈ 0.69.

16. See Figure 9.1.

17. See Figure 9.2.

18. See Figure 9.3.

19. See Figure 9.4.

20. A~x =

[

0 −1
1 0

] [

x1

x2

]

=

[

−x2

x1

]

. See Figure 9.5.

It appears that the trajectories will be circles. If we start at

[

1
0

]

we will trace out the

unit circle ~x(t) =

[

cos(t)
sin(t)

]

.
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x1

x2

Figure 9.1: for Problem 9.1.16.

Figure 9.2: for Problem 9.1.17.

Figure 9.3: for Problem 9.1.18.

We can verify that d~x
dt =

[

− sin(t)
cos(t)

]

equals

[

0 −1
1 0

]

~x(t) =

[

− sin(t)
cos(t)

]

, as claimed.
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Figure 9.4: for Problem 9.1.19.

(1, 0)

x2

x1

Figure 9.5: for Problem 9.1.20.

21. A~x =

[

0 1
0 0

][

x1

x2

]

=

[

x2

0

]

(see Figure 9.6).

x2

x1

Figure 9.6: for Problem 9.1.21.
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The trajectories will be horizontal lines. If we start at

[

p

q

]

, then the horizontal velocity

will be q, so that ~x(t) =

[

x1(t)
x2(t)

]

=

[

p + qt

q

]

. We can verify that d~x
dt =

[

q

0

]

equals
[

0 1
0 0

]

~x(t) =

[

q

0

]

, as claimed.

22. We are told that d~x1

dt = A~x1 and d~x2

dt = A~x2. Let ~x(t) = ~x1(t) + ~x2(t). Then d~x
dt =

d~x1

dt + d~x2

dt = A~x1 + A~x2 = A(~x1 + ~x2) = A~x, as claimed.

23. We are told that d~x1

dt = A~x1. Let ~x(t) = k~x1(t). Then d~x
dt = d

dt(k~x1) = k d~x1

dt = kA~x1 =
A(k~x1) = A~x, as claimed.

24. We are told that d~x
dt = A~x. Let ~c(t) = ekt~x(t). Then d~c

dt = d
dt (e

kt~x) =
(

d
dte

kt
)

~x + ekt d~x
dt =

kekt~x + ektA~x = (A + kIn)(ekt~x) = (A + kIn)~c, as claimed.

25. We are told that d~x
dt = A~x. Let ~c(t) = ~x(kt). Using the chain rule we find that d~c

dt =
d
dt(~x(kt)) = k d~x

dt |kt = kA(~x(kt)) = kA~c(t), as claimed.

To get the vector field kA~c we scale the vectors of the field A~x by k.

26. λ1 = 3, λ2 = −2; ~v1 =

[

1
1

]

, ~v2 =

[

−2
3

]

, c1 = 5, c2 = −1, so that ~x(t) = 5e3t

[

1
1

]

−

e−2t

[

−2
3

]

.

27. Use Fact 9.1.3.

The eigenvalues of A =

[

−4 3
2 −3

]

are λ1 = −6 and λ2 = −1, with associated eigenvec-

tors ~v1 =

[

−3
2

]

and ~v2 =

[

1
1

]

. The coordinates of ~x(0) =

[

1
0

]

with respect to ~v1 and

~v2 are c1 = − 1
5 and c2 = 2

5 .

By Fact 9.1.3 the solution is ~x(t) = − 1
5e−6t

[

−3
2

]

+ 2
5e−t

[

1
1

]

.

28. λ1 = 2, λ2 = 10; ~v1 =

[

−3
2

]

, ~v2 =

[

1
2

]

; c1 = − 1
8 , c2 = 5

8 , so that ~x(t) = − 1
8e2t

[

−3
2

]

+

5
8e10t

[

1
2

]

.

29. λ1 = 0, λ2 = 5; ~v1 =

[

−2
1

]

, ~v2 =

[

1
2

]

; c1 = −2, c2 = 1,
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so that ~x(t) = −2

[

−2
1

]

+ e5t

[

1
2

]

=

[

4
−2

]

+ e5t

[

1
2

]

.

30. λ1 = 0, λ2 = 5, ~v1 =

[

−2
1

]

, ~v2 =

[

1
2

]

; c1 = −1, c2 = 0, so that ~x(t) = −
[

−2
1

]

=

[

2
−1

]

.

31. λ1 = 1, λ2 = 6, λ3 = 0; ~v1 =





1
−2

1



. Since ~x(0) = ~v1 we need not find ~v2 and ~v3.

c1 = 1, c2 = c3 = 0, so that ~x(t) = et





1
−2

1



.

In Exercises 32 to 35, find the eigenvalues and eigenspaces. Then determine the direction
of the flow along the eigenspaces (outward if λ > 0 and inward if λ < 0). Use Figure 11
of Section 9.1 as a guide to sketch the other trajectories.

32. See Exercise 26 and Figure 9.7.

E3

E–2

Figure 9.7: for Problem 9.1.32.

33. See Exercise 27 and Figure 9.8.

34. See Exercise 28 and Figure 9.9.

35. See Exercise 29 and Figure 9.10.

In Exercises 36 to 39, find the eigenvalues and eigenspaces (the eigenvalues will always
be positive). Then determine the direction of the flow along the eigenspaces (outward if
λ > 1 and inward if 1 > λ > 0). Use Figure 11 of Section 7.1 as a guide to sketch the
other trajectories.

36. See Figure 9.11.
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E–1

E–6

Figure 9.8: for Problem 9.1.33.

E10

E2

Figure 9.9: for Problem 9.1.34.

E5

E0

Figure 9.10: for Problem 9.1.35.

37. See Figure 9.12.

38. See Figure 9.13.

39. See Figure 9.14.
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E1.3

E0.8

Figure 9.11: for Problem 9.1.36.

E1.6

E1.1

Figure 9.12: for Problem 9.1.37.

E0.9E0.7

Figure 9.13: for Problem 9.1.38.

40. ~x(t) = e2t

[

2
3

]

+ e3t

[

3
4

]

We want a 2×2 matrix A with eigenvalues λ1 = 2 and λ2 = 3 and associated eigenvectors
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E1

E1.4

Figure 9.14: for Problem 9.1.39.

~v1 =

[

2
3

]

and ~v2 =

[

3
4

]

; that is A

[

2 3
3 4

]

=

[

4 9
6 12

]

or A =

[

4 9
6 12

][

2 3
3 4

]−1

=
[

4 9
6 12

][

−4 3
3 −2

]

=

[

11 −6
12 −6

]

.

41. The trajectories are of the form ~x(t) = c1e
λ1t~v1 + c2e

λ2t~v2 = c1~v1 + c2e
λ2t~v2. See Figure

9.15.

span (v1)

span (v2)

Figure 9.15: for Problem 9.1.41.

42. a. The term 0.8x in the second equation indicates that species y is helped by x, while
species x is hindered by y (consider the term −1.2y in the first equation). Thus y

preys on x.

b. See Figure 9.16.

c. If y(0)
x(0) < 2 then both species will prosper, and lim

t→∞
y(t)
x(t) = 1

3 .

If y(0)
x(0) ≥ 2 then both species will die out.
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E1 = span 
3
1

E1 = span 
1
2

x

y

Figure 9.16: for Problem 9.1.42b.

43. a. These two species are competing as each is hindered by the other (consider the terms
−y and −2x).

x

y

E6 = span 
1
–1

E3 = span 
1
2

Figure 9.17: for Problem 9.1.43b.

b. Although only the first quadrant is relevant for our model, it is useful to consider the
phase portrait in the other quadrants as well. See Figure 9.17.

c. If y(0)
x(0) > 2 then species y wins (x will die out); if y(0)

x(0) < 2 then x wins. If y(0)
x(0) = 2

then both will prosper and y(t)
x(t) = 2 for all t.

44. a. The two species are in symbiosis: Each is helped by the other (consider the terms 4y

and 2x).

b. See Figure 9.18.

c. Both populations will prosper and lim
t→∞

y(t)
x(t) = 1

2 , regardless of the initial populations.
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x

y

E–3 = span 
1
–1

E3 = span 
2
1

Figure 9.18: for Problem 9.1.44b.

45. a. Species y has the more vicious fighters, since they kill members of species x at a rate
of 4 per time unit, while the fighters of species x only kill at a rate of 1.

b. See Figure 9.19.

x

y

E2 = span 
2
–1

E–2 = span 
2
1

Figure 9.19: for Problem 9.1.45b.

c. If y(0)
x(0) < 1

2 then x wins; if y(0)
x(0) > 1

2 then y wins; if y(0)
x(0) = 1

2 nobody will survive the

battle.

46. Look at the phase portrait in Figure 9.20.

47. a. The two species are in symbiosis: Each is helped by the other (consider the positive
terms kx and ky).
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x

y

E–√pq = span √p
√q

E√pq = span √p
–√q

Figure 9.20: for Problem 9.1.46.

b. λ1,2 = −5±
√

9+4k2

2

Both eigenvalues are negative if
√

9 + 4k2 < 5 or 9 + 4k2 < 25 or 4k2 < 16 or k < 2
(recall that k is positive).

If k = 2 then the eigenvalues are −5 and 0.

If k > 2 then there is a positive and a negative eigenvalue.

c. See Figure 9.21.

both species die out both species prosper
E–5

E0

system approaches an

equilibrium state

k = 1 k = 3 k = 2

Figure 9.21: for Problem 9.1.47c.

48. a. Symbiosis

b. λ1,2 = −5±
√

9+4k
2
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Both eigenvalues are negative if
√

9 + 4k < 5 or 9 + 4k < 25 or 4k < 16 or k < 4.

If k = 4 then the eigenvalues are −5 and 0.

If k > 4 then there is a positive and a negative eigenvalue.

c. k = 1: See corresponding figure in Exercise 47 and Figure 9.22.

E–5

E0

system approaches

an equilibrium state

E–6

E1

system approaches

an equilibrium state

k = 4 k = 10

Figure 9.22: for Problem 9.1.48c.

49. A =

[

−1 −0.2
0.6 −0.2

]

, λ1 = −0.4, λ2 = −0.8

E−0.4 = span

[

−1
3

]

, E−0.8 = span

[

1
−1

]

[

g(0)
h(0)

]

= 15

[

−1
3

]

+ 45

[

1
−1

]

, so that c1 = 15, c2 = 45.

[

g(t)
h(t)

]

= 15e−0.4t

[

−1
3

]

+ 45e−0.8t

[

1
−1

]

, so that

g(t) = −15e−0.4t + 45e−0.8t

h(t) = 45e−0.4t − 45e−0.8t. See Figure 9.23.

50. We want both eigenvalues λ1 and λ2 to be negative, so that tr(A) = λ1 + λ2 < 0 and
det(A) = λ1λ2 > 0. Conversely, if tr(A) < 0 and det(A) > 0, then the two eigenvalues

λ1,2 =
tr(A)±

√
(trA)2−4 det(A)

2 are both negative.

Answer: tr(A) < 0 and det(A) > 0.

446



ISM: Linear Algebra Section 9.1

E–0.4
E–0.8

30
0

Figure 9.23: for Problem 9.1.49.

51. ith component of d
dt (S~x) = d

dt (si1x1(t) + si2x2(t) + · · · + sinxn(t))

= si1
dx1

dt + si2
dx2

dt + · · · + sin
dxn

dt

= ith component of S d~x
dt

52. The solutions of d~x
dt =

[

0 1
0 0

]

~x are of the form

[

p + qt

q

]

, where ~x(0) =

[

p

q

]

, by Exer-

cise 21. Since

[

λ 1
0 λ

]

= λI2 +

[

0 1
0 0

]

, the solutions of the given system are of the form

~x(t) = eλt

[

p + qt

q

]

, by Exercise 24. The zero state is a stable equilibrium solution if and

only if λ < 0. The case λ = 0 is discussed in Exercise 21. See Figure 9.24.

λ > 0 λ < 0

Figure 9.24: for Problem 9.1.52.

447



Chapter 9 ISM: Linear Algebra

53. For the initial value

[

1
0

]

, the system d~x
dt =

[

0 −1
1 0

]

~x has the solution ~x(t) =

[

cos(t)
sin(t)

]

,

by Exercise 20; the system d~x
dt =

[

0 −q

q 0

]

has the solution ~x(t) =

[

cos(qt)
sin(qt)

]

, by Ex-

ercise 25; and the system d~x
dt =

[

p −q

q p

]

~x has the solution ~x(t) = ept

[

cos(qt)
sin(qt)

]

, by

Exercise 24

(

write

[

p −q

q p

]

= pI2 +

[

0 −q

q 0

])

. See Figure 9.25.

p > 0 p = 0 p < 0

Figure 9.25: for Problem 9.1.53.

54. A =

[

0 1
−2 −3

]

, λ1 = −1, λ2 = −2;~v1 =

[

1
−1

]

and ~v2 =

[

1
−2

]

. See Figure 9.26.

door slams

trajectory 3

trajectory 2

trajectory 1

θ

ω

E–1

E–2

Figure 9.26: for Problem 9.1.54.

In the case of trajectory 3 the door will slam: Initially the door is opened just a little (θ
is small) and given a strong push to close it (ω is large negative). More generally, the
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door will slam if the point

[

θ(0)
ω(0)

]

representing the initial state is located below the line

E−2 = span

[

1
−2

]

, that is, if ω(0)
θ(0) < −2.

55. A =

[

0 1
−p −q

]

, λ1,2 = 1
2

(

−q ±
√

q2 − 4p
)

; note that both eigenvalues are negative.

Eλ1
= span

[

1
λ1

]

and Eλ2
=

[

1
λ2

]

.

door slams

trajectory 3

trajectory 2

trajectory 1

θ

ω

Eλ1

Eλ2

Figure 9.27: for Problem 9.1.55.

See Figure 9.27. In the case of trajectory 3 the door will slam: Initially the door is opened
just a little (θ is small) and given a strong push to close it (ω is large negative). More

generally, the door will slam if the point

[

θ(0)
ω(0)

]

representing the initial state is located

below the line Eλ2
= span

[

1
λ2

]

, that is, if ω(0)
θ(0) < λ2.

9.2

1. By Euler’s formula (Fact 9.2.2), e2πi = cos(2π) + i sin(2π) = 1.

2. By Euler’s formula (Fact 9.2.2), e
1

2
πi = cos

(

π
2

)

+ i sin
(

π
2

)

= i.

3. r =
√

(−1)2 + 12 =
√

2

θ = 3π
4 , so that z =

√
2e

3

4
πi. See Figure 9.28.

4. e3it = cos(3t) + i sin(3t)
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1–1

–1 + i

θr

i

Figure 9.28: for Problem 9.2.3.

t =

i

i
–i

–i
π
2

t = π
3

t = 0, 2π
3

t = π
6

Figure 9.29: for Problem 9.2.4.

Period T given by 3T = 2π or T = 2π
3 . See Figure 9.29.

5. e−0.1t−2it = e−0.1te−2it = e−0.1t(cos(2t)− i sin(2t)) spirals inward, in clockwise direction.
See Figure 9.30.

t =

i

–i

π
2

t = 

t = 0
t = π

3π
4

t = 3π
2

t = π
4

1–1

Figure 9.30: for Problem 9.2.5.

6. λ1,2 = ±i; Ei = ker

[

3 − i −2
5 −3 − i

]

= span

[

3 + i

5

]

and E−i = span

[

3 − i

5

]

.
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General solution:

~x(t) = c1e
it

[

3 + i

5

]

+ c2e
−it

[

3 − i

5

]

If c1 = c2 = 1 then ~x(t) = (cos(t) + i sin(t))

[

3+i

5

]

+ (cos(t) − i sin(t))

[

3 − i

5

]

=
[

6 cos(t) − 2 sin(t)
10 cos(t)

]

.

7. det(A) = −2, so that the zero state is not stable, by Fact 9.2.5.

8. Recall that all eigenvalues of a symmetric matrix are real. The zero state is stable if (and
only if) all eigenvalues are negative (by Fact 9.2.4); this is the case if (and only if) the
matrix is negative definite (by Fact 8.2.2).

9. The eigenvalues are conjugate complex, λ1,2 = p ± iq, and tr(A) = 2p < 0, so that p is
negative. By Fact 9.2.4, the zero state is stable.

10. If A =

[

a b

b c

]

then q(x1, x2) = ax2
1 +2bx1x2 + cx2

2, and the system takes the form
∣

∣

∣

∣

dx1

dt =2ax1+2bx2

dx2

dt =2bx1+2cx2

∣

∣

∣

∣

.

a. The matrix of the system is

[

2a 2b

2b 2c

]

, which is 2A, so that d~x
dt = grad(q) = 2A~x.

b. By Fact 8.2.7, the level curves are ellipses. From multivariable calculus we know that
grad (q) is perpendicular to the level curve, pointing inwards, so that all trajectories
will approach the origin: The zero state is stable. See Figure 9.31.

c. By Fact 8.2.7, the level curves are hyperbolas, as shown in Figure 9.32.

λ1 > 0 > λ2

d. The zero state is a stable equilibrium solution of the system d~x
dt = grad(q) = 2A~x

if (and only if) the eigenvalues of 2A (and A) are negative. This means that the
quadratic form q(~x) = ~x · A~x is negative definite.

11. a. q(~x) = 2ai1xix1 + 2ai2xix2 + · · ·+ aiix
2
i + · · ·+ 2ainxixn + terms not involving xi, so

that ∂q
∂xi

= 2ai1x1 + 2ai2x2 + · · · + 2aiixi + · · · + 2ainxn and d~x
dt = grad(q) = 2A~x.

The matrix of the system is B = 2A.
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q = –1

q = –4

q = –9

Eλ1

Eλ2

Figure 9.31: for Problem 9.2.10b.

q = –1

q = –1q = 1

q = 1
q = –4

q = –4

q = 4

q = 4

Eλ1

Eλ2

Figure 9.32: for Problem 9.2.10c.

d. The zero state is a stable equilibrium solution of the system d~x
dt = grad(q) = 2A~x if

(and only if) all the eigenvalues of 2A are negative. This means that the quadratic
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form q(~x) = ~x · A~x is negative definite.

12. We will show that the real parts of all the eigenvalues are negative, so that the zero
state is a stable equilibrium solution. Now the characteristic polynomial of A is fA(λ) =
−λ3 − 2λ2 − λ − 1. It is convenient to get rid of all these minus signs: The eigenvalues
are the solutions of the equation g(λ) = λ3 + 2λ2 + λ + 1 = 0. Since g(−1) = 1 and
g(−2) = −1, there will be an eigenvalue λ1 between -2 and -1. Using calculus (or a
graphing calculator), we see that the equation g(λ) = 0 has no other real solutions. Thus
there must be two complex conjugate eigenvalues p± iq. Now the sum of the eigenvalues
is λ1 + 2p = tr(A) = −2, and p = −2−λ1

2 will be negative , as claimed. The graph of g(λ)
is shown in Figure 9.33.

(–2, –1)

(–1, 1)

(0, 1)

g(λ) = λ3 + 2λ2 + λ + 1

λ1

Figure 9.33: for Problem 9.2.12.

13. Recall that the zero state is stable if (and only if) the real parts of all eigenvalues are
negative. Now the eigenvalues of A−1 are the reciprocals of those of A; the real parts

have the same sign
(

if λ = p + iq, then 1
λ = 1

p+iq = p−iq
p2+q2

)

.

14. a. For i > 1, dxi

dt = −kixi + xi−1. This means that in the absence of quantity xi−1(t),
the quantity xi(t) will decay exponentially, but the presence of xi−1 helps xi to grow.

For i = 1, the beginning of the loop, dx1

dt = −k1x1 − bxn, so that the presence of xn

contributes to the decrease of x1.

b. If n = 2 then the matrix of the system is A =

[

−k1 −b

1 −k2

]

with tr(A) = −k1−k2 < 0

and det(A) = k1k2 + b > 0, so that the zero state is stable, by Fact 9.2.5.

c. No; consider the case k1 = k2 = k3 = 1 for simplicity; then the matrix of the system is
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A =





−1 0 b

1 −1 0
0 1 −1



 and fA(λ) = (λ+1)3 − b. If b exceeds 1, then the matrix A will

have a positive eigenvalue, so that the zero state is not stable.

15. The eigenvalues are λ1 = tr(A) > 0 and λ2 = 0. See Figure 9.34.

E0

Eλ1

Figure 9.34: for Problem 9.2.15.

16. If A =

[

0 1
a b

]

then tr(A) = b and det(A) = −a. By Fact 9.2.5, the zero state is stable

if a and b are both negative.

17. If A =

[

−1 k

k −1

]

then tr(A) = −2 and det(A) = 1 − k2. By Fact 9.2.5, the zero state

is stable if det(A) = 1 − k2 > 0, that is, if |k| < 1.

18. If λ1, λ2, λ3 are real and negative, then tr(A) = λ1+λ2+λ3 < 0 and det(A) = λ1λ2λ3 < 0.
If λ1 is real and negative and λ2,3 = p± iq, where p is negative, then tr(A) = λ1 + 2p < 0
and det(A) = λ1(p

2 + q2) < 0. Either way, both trace and determinant are negative.

19. False, consider A =





1 0 0
0 2 0
0 0 −4



.

20. Use Fact 9.2.6, with p = 0, q = π; a = 1, b = 0.

~x(t) = [ ~w ~v ]

[

cos(πt) − sin(πt)
sin(πt) cos(πt)

][

1
0

]

= (cos(πt))~w + (sin(πt))~v. See Figure 9.35.

21. a.

∣

∣

∣

∣

db
dt = 0.05b+ s

ds
dt = 0.07s

∣

∣

∣

∣

and

[

b(0)
s(0)

]

=

[

1, 000
1, 000

]
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–


= v

v

x (    )
x(0) = x(2) = w

x(1) = –w

1

2

Figure 9.35: for Problem 9.2.20.

b. λ1 = 0.07, λ2 = 0.05;~v1 =

[

50
1

]

, ~v2 =

[

1
0

]

; ~x(0) = 1, 000~v1 − 49, 000~v2; so that

b(t) = 50, 000e0.07t − 49, 000e0.05t and s(t) = 1, 000e0.07t.

22. λ1 = 3, λ2 = 0.5; E3 = span

[

1
−1

]

, E0.5 = span

[

0
1

]

System is discrete so choose VII.

23. λ1,2 = − 1
2 ± i, r > 1, so that trajectory spirals outwards. Choose II.

24. λ1 = 3, λ2 = 0.5, E3 =

[

1
−1

]

, E0.5 =

[

0
1

]

.

System is continuous, so choose I.

25. λ1,2 = − 1
2 ± i; real part is negative so that trajectories spiral inwards in the counterclock-

wise direction

(

if ~x =

[

1
0

]

then d~x
dt =

[

−1.5
2

])

. Choose IV.

26. λ1 = 1, λ2 = −2; E1 = span

[

0
1

]

, E−2 = span

[

1
−1

]

.

System is continuous so choose V.

27. λ1,2 = ±3i, E3i = span

([

1
0

]

+ i

[

0
−1

])

, so that p = 0, q = 3, ~w =

[

0
−1

]

, ~v =

[

1
0

]

.

Now use Fact 9.2.6:

~x(t) = e0t

[

0 1
−1 0

] [

cos(3t) − sin(3t)
sin(3t) cos(3t)

] [

a

b

]

=

[

sin(3t) cos(3t)
− cos(3t) sin(3t)

] [

a

b

]
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28. λ1,2 = ±6i, E6i = span

([

2
0

]

+ i

[

0
3

])

, so that

~x(t) =

[

0 2
3 0

][

cos(6t) − sin(6t)
sin(6t) cos(6t)

] [

a

b

]

=

[

2 sin(6t) 2 cos(6t)
3 cos(6t) −3 sin(6t)

][

a

b

]

.

29. λ1,2 = 2 ± 4i, E2+4i = span

([

1
0

]

+ i

[

0
1

])

, so that

~x(t) = e2t

[

0 1
1 0

][

cos(4t) − sin(4t)
sin(4t) cos(4t)

][

a

b

]

= e2t

[

sin(4t) cos(4t)
cos(4t) − sin(4t)

] [

a

b

]

.

30. λ1,2 = −2± 3i, E−2+3i = span

([

5
3

]

+ i

[

0
1

])

, so that

~x(t) = e−2t

[

0 5
1 3

][

cos(3t) − sin(3t)
sin(3t) cos(3t)

][

a

b

]

= e−2t

[

5 sin(3t) 5 cos(3t)
cos(3t) + 3 sin(3t) − sin(3t) + 3 cos(3t)

][

a

b

]

.

31. λ1,2 = −1± 2i, E−1+2i = span

([

1
0

]

+ i

[

0
−1

])

, so that p = −1, q = 2, ~w =

[

0
−1

]

,

~v =

[

1
0

]

. Now

[

1
−1

]

= ~x(0) = ~w + ~v, so that a = 1 and b = 1.

Then ~x(t) = e−t

[

0 1
−1 0

][

cos(2t) − sin(2t)
sin(2t) cos(2t)

][

1
1

]

= e−t

[

sin(2t) + cos(2t)
sin(2t) − cos(2t)

]

.

See Figure 9.36.

1

1

Figure 9.36: for Problem 9.2.31.

32. λ1,2 = ±2i, E2i = span

([

1
0

]

+ i

[

0
2

])

, ~x(0) = 0

[

0
2

]

+ 1

[

1
0

]

, so that a = 0 and b = 1.
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–1
0

=x (    )π

2

0
–2

=x (    )π

4

1
0

=x (0) = x(π)
1

1

Figure 9.37: for Problem 9.2.32.

~x(t) =

[

0 1
2 0

][

cos(2t) − sin(2t)
sin(2t) cos(2t)

] [

0
1

]

=

[

cos(2t)
−2 sin(2t)

]

. See Figure 9.37.

33. λ1,2 = ±i, Ei = span

([

1
1

]

+ i

[

0
1

])

a = 1, b = 0, so that ~x(t) =

[

0 1
1 1

] [

cos(t) − cos(t)
sin(t) cos(t)

] [

1
0

]

=

[

sin(t)
sin(t) + cos(t)

]

= cos(t)

[

0
1

]

+ sin(t)

[

1
1

]

. See Figure 9.38.

34. λ1,2 = 1 ± 2i, E1+2i = span

([

3
−2

]

+ i

[

1
0

])

a = 1, b = 0, so that ~x(t) = et

[

1 3
0 −2

][

cos(2t) − sin(2t)
sin(2t) cos(2t)

][

1
0

]

= et

[

cos(2t) + 3 sin(2t)
−2 sin(2t)

]

.

See Figure 9.39.

35. If z = f + ig and w = p + iq then zw = (fp − gq) + i(fq + gp), so that (zw)′ =
(f ′p + fp′ − g′q − gq′) + i(f ′q + fq′ + g′p + gp′).

Also z′w = (f ′ + ig′)(p + iq) = (f ′p − g′q) + i(f ′q + g′p) and zw′ = (f + ig)(p′ + iq′) =
(fp′ − gq′) + i(gp′ + fq′). We can see that (zw)′ = z′w + zw′, as claimed.
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1
1

=x (    )π

2

0
1

=x (0) = x(2π)

0
–1

=x(π)

Figure 9.38: for Problem 9.2.33.

Figure 9.39: for Problem 9.2.34.

36. A =

[

0 1
−b −c

]

and fA(λ) = λ2 + cλ + b, with eigenvalues λ1,2 = −c±
√

c2−4b
2 .

a. If c = 0 then λ1,2 = ±i
√

b. The trajectories are ellipses. See Figure 9.40.

The block oscillates harmonically , with period 2π√
b
. The zero state fails to be asymp-

totically stable.

b. λ1,2 = −c±i
√

4b−c2

2
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x

v

Figure 9.40: for Problem 9.2.36a.

The trajectories spiral inwards, since Re(λ1) = Re(λ2) = − c
2 < 0. This is the case of

a damped oscillation. The zero state is asymptotically stable. See Figure 9.41.

Figure 9.41: for Problem 9.2.36b.

c. This case is discussed in Exercise 9.1.55. The zero state is stable here.

37. a. 1
z(t) is differentiable when z(t) 6= 0, since both the real and the imaginary parts are

differentiable
(

if z = p + iq then 1
z = p−iq

p2+q2

)

. To find
(

1
z

)′
, apply the product rule to

the equation z
(

1
z

)

= 1: z′
(

1
z

)

+ z
(

1
z

)′
= 0, so that

(

1
z

)′
= − z′

z2 .

b.
(

z
w

)′
=

(

z 1
w

)′
= z′ 1

w + z
(

1
w

)′
= z′

w − zw′

w2 = z′w−zw′

w2

38. a.
(

z1

z2

)′
= z′

1z2−z1z′

2

z2

2

= λz1z2−λz1z2

z2

2

= 0, so that z1(t)
z2(t)

= k, a constant.

Now z1(t) = kz2(t); substituting t = 0 gives 1 = z1(0) = kz2(0) = k, so that z1(t) =
z2(t), as claimed.
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b. Let z2(t) = ept(cos(qt)+i sin(qt)) be the solution constructed in the text (se Page 409).
Since z2(t) 6= 0 for all t, this is the only solution, by part a.

39. Let A =





λ 1 0
0 λ 1
0 0 λ



. We first solve the system d~c
dt = (A − λI3)~c =





0 1 0
0 0 1
0 0 0



~c, or

dc1

dt = c2(t),
dc2

dt = c3(t),
dc3

dt = 0.

c3(t) = k3, a constant, so that dc2

dt = k3 and c2(t) = k3t + k2. Likewise c1(t) = k3

2 t2 +
k2t + k1.

Applying Exercise 9.1.24, with k = −λ, we find that ~c(t) = e−λt~x(t) or ~x(t) = eλt~c(t)

= eλt





k1 + k2t + k3

2 t2

k2 + k3t

k3



 where k1, k2, k3 are arbitrary constants. The zero state is stable

if (and only if) the real part of λ is negative.

40. a. B(t) = 1000(1 + 0.05i)t = 1000(r(cos θ + i sin θ))t = 1000rt(cos(θt) + i sin(θt)), where

r =
√

1 + 0.052 > 1 and θ = arctan(0.05) ≈ 0.05. See Figure 9.42.

b. B(t) = 1000e0.05i = 1000(cos(0.05t) + i sin(0.05t)). See Figure 9.42.

1000

trajectory to part a

slowly spiral outwards

1000

1000

period =        ≅ 126 (years)
2π


0.05

trajectory to part b

circle

Figure 9.42: for Problem 9.2.40.
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c. We would choose an account with annual compounding, since the modulus of the
balance grows in this case. In the case of continuous compounding the modulus of the
balance remains unchanged.

9.3

1. The characteristic polynomial of this differential equation is λ − 5, so that λ1 = 5. By
Fact 9.3.8 the general solution is f(t) = Ce5t, where C is an arbitrary constant.

2. The solutions of dx
dt + 3x = 0 are of the form x(t) = Ce−3t, where C is an arbitrary

constant, and the differential equation dx
dt + 3x = 7 has the particular solution xp(t) = 7

3 ,
so that the general solution is x(t) = Ce−3t + 7

3 (where C is a constant). Alternatively,
we could use Fact 9.3.13.

3. Use Fact 9.3.13, where a = −2 and g(t) = e3t:

f(t) = e−2t

∫

e2te3t dt = e−2t

∫

e5t dt = e−2t

(

1

5
e5t + C

)

=
1

5
e3t + Ce−2t, where C is a

constant.

4. We can look for a sinusoidal solution xp(t) = P cos(3t)+Q sin(3t), as in Example 7. P and
Q need to be chosen in such a way that −3P sin(3t)+3Q cos(3t)−2P cos(3t)−2Q sin(3t) =

cos(3t) or

∣

∣

∣

∣

−2P + 3Q = 1
−3P − 2Q = 0

∣

∣

∣

∣

with solution P = − 2
13 and Q = 3

13 . Since the general

solution of dx
dt − 2x = 0 is x(t) = Ce2t, the general solution of dx

dt − 2x = cos(3t) is
x(t) = Ce2t − 2

13 cos(3t) + 3
13 sin(3t), where C is an arbitrary constant.

5. Using Fact 9.3.13, f(t) = et

∫

e−tt dt = et(−te−t − e−t + C) = Cet − t − 1, where C is

an arbitrary constant.

6. Using Fact 9.3.13, f(t) = e2t

∫

e−2te2t dt = e2t

∫

dt = e2t(t + C), where C is an arbitrary

constant.

7. By Definition 9.3.6, pT (λ) = λ2 + λ − 12 = (λ + 4)(λ − 3).

Since pT (λ) has distinct roots λ1 = −4 and λ2 = 3, the solutions of the differential
equation are of the form f(t) = c1e

−4t + c2e
3t, where c1 and c2 are arbitrary constants

(by Fact 9.3.8).

8. pT (λ) = λ2 + 3λ − 10 = (λ + 5)(λ − 2) = 0

x(t) = c1e
−5t + c2e

2t, where c1, c2 are arbitrary constants.
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9. pT (λ) = λ2 − 9 = (λ − 3)(λ + 3) = 0

f(t) = c1e
3t + c2e

−3t, where c1, c2 are arbitrary constants.

10. pT (λ) = λ2 + 1 = 0 has roots λ1,2 = ±i. By Fact 9.3.9, f(t) = c1 cos(t) + c2 sin(t), where
c1, c2 are arbitrary constants.

11. pT (λ) = λ2−2λ+2 = 0 has roots λ1,2 = 1±i. By Fact 9.3.9, x(t) = et(c1 cos(t)+c2 sin(t)),
where c1, c2 are arbitrary constants.

12. pT (λ) = λ2 − 4λ + 13 = 0 has roots λ1,2 = 2 ± 3i.

By Fact 9.3.9, f(t) = e2t(c1 cos(3t) + c2 sin(3t)), where c1, c2 are arbitrary constants.

13. pT (λ) = λ2 + 2λ + 1 = (λ + 1)2 = 0 has the double root λ = −1. Following the strategy
on page 429, we find f(t) = e−t(c1t + c2), where c1, c2 are arbitrary constants.

14. pT (λ) = λ2 + 3λ = λ(λ + 3) = 0 has roots λ1 = 0, λ2 = −3.

15. By integrating twice we find f(t) = c1 + c2t, where c1, c2 are arbitrary constants.

16. By Fact 9.3.10, the differential equation has a particular solution of the form fp(t) =
P cos(t) + Q sin(t). Plugging fp into the equation we find

(−P cos(t) − Q sin(t)) + 4(−P sin(t) + Q cos(t)) + 13(P cos(t) + Q sin(t)) = cos(t) or
∣

∣

∣

∣

12P + 4Q = 1
−4P + 12Q = 0

∣

∣

∣

∣

, so

P = 3
40

Q = 1
40 .

Therefore, fp(t) = 3
40 cos(t) + 1

40 sin(t).

Next we find a basis of the solution space of f ′′(t) + 4f ′(t) + 13f(t) = 0. pT (λ) = λ2 +
4λ+13 = 0 has roots −2±3i. By Fact 9.3.9, f1(t) = e−2t cos(3t) and f2(t) = e−2t sin(3t)
is a basis of the solution space.

By Fact 9.3.4, the solutions of the original differential equation are of the form f(t) =
c1f1(t)+c2f2(t)+fp(t) = c1e

−2t cos(3t)+c2e
−2t sin(3t)+ 3

40 cos(t)+ 1
40 sin(t), where c1, c2

are arbitrary constants.

17. By Fact 9.3.10, the differential equation has a particular solution of the form fp(t) =
P cos(t) + Q sin(t). Plugging fp into the equation we find (−P cos(t) − Q sin(t)) +

2(−P sin(t) + Q cos(t)) + P cos(t) + Q sin(t) = sin(t) or

∣

∣

∣

∣

2Q = 0
−2P = 1

∣

∣

∣

∣

, so
P = − 1

2

Q = 0
.
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Therefore, fp(t) = − 1
2 cos(t).

Next we find a basis of the solution space of f ′′(t) + 2f ′(t) + f(t) = 0. In Exercise 13 we
see that f1(t) = e−t, f2(t) = te−t is such a basis.

By Fact 9.3.4, the solutions of the original differential equation are of the form f(t) =
c1f1(t) + c2f2(t) + fp(t) = c1e

−t + c2te
−t − 1

2 cos(t), where c1, c2 are arbitrary constants.

18. We follow the approach outlined in Exercises 16 and 17.

• Particular solution fp = 1
10 cos(t) + 3

10 sin(t)

• Solutions of f ′′(t) + 3f ′(t) + 2f(t) = 0 are f1(t) = e−t and f2(t) = e−2t.

• The solutions of the original differential equation are of the form f(t) = c1e
−t +

c2e
−2t + 1

10 cos(t) + 3
10 sin(t), where c1 and c2 are arbitrary constants.

19. We follow the approach outlined in Exercise 17.

• Particular solution xp(t) = cos(t)

• Solutions of d2x
dt2 + 2x = 0 are x1(t) = cos(

√
2t) and x2(t) = sin(

√
2t).

• The solutions of the original differential equation are of the form x(t) = c1 cos(
√

2t) +
c2 sin(

√
2t) + cos(t), where c1 and c2 are arbitrary constants.

20. pT (λ) = λ3 − 3λ2 + 2λ = λ(λ − 1)(λ − 2) = 0 has roots λ1 = 0, λ2 = 1, λ3 = 2.

By Fact 9.3.8, the general solution is f(t) = c1 +c2e
t +c3e

2t, where c1, c2, c3 are arbitrary
constants.

21. pT (λ) = λ3 +2λ2 −λ− 2 = (λ− 1)(λ+1)(λ+2) = 0 has roots λ1 = 1, λ2 = −1, λ3 = −2.

By Fact 9.3.8, the general solution is f(t) = c1e
t + c2e

−t + c3e
−2t, where c1, c2, c3 are

arbitrary constants.

22. pT (λ) = λ3 − λ2 − 4λ + 4 = (λ − 1)(λ − 2)(λ + 2) = 0 has roots λ1 = 1, λ2 = 2, λ3 = −2.

By Fact 9.3.8, the general solution is f(t) = c1e
t + c2e

2t + c3e
−2t, where c1, c2, c3 are

arbitrary constants.

23. General solution f(t) = Ce5t

Plug in: 3 = f(0) = Ce0 = C, so that f(t) = 3e5t.
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24. General solution x(t) = Ce−3t + 7
3 (see Exercise 2).

Plug in: 0 = x(0) = C + 7
3 , so that C = − 7

3 and x(t) = − 7
3e−3t + 7

3 .

25. General solution f(t) = Ce−2t

Plug in: 1 = f(1) = Ce−2, so that C = e2 and f(t) = e2e−2t = e2−2t.

26. General solution f(t) = c1e
3t + c2e

−3t (see Exercise 9), with f ′(t) = 3c1e
3t − 3c2e

−3t

Plug in: 0 = f(0) = c1 + c2 and 1 = f ′(0) = 3c1 − 3c2, so that c1 = 1
6 , c2 = − 1

6 , and
f(t) = 1

6e3t − 1
6e−3t.

27. General solution f(t) = c1 cos(3t) + c2 sin(3t) (Fact 9.3.9)

Plug in: 0 = f(0) = c1 and 1 = f
(

π
2

)

= −c2, so that c1 = 0, c2 = −1, and f(t) =
− sin(3t).

28. General solution f(t) = c1e
−4t + c2e

3t, with f ′(t) = −4c1e
−4t + 3c2e

3t

Plug in: 0 = f(0) = c1 + c2 and 0 = f ′(0) = −4c1 +3c2, so that c1 = c2 = 0 and f(t) = 0.

29. General solution f(t) = c1 cos(2t) + c2 sin(2t) + 1
3 sin(t), so that f ′(t) = −2c1 sin(2t) +

2c2 cos(2t) + 1
3 cos(t) (use the approach outlined in Exercise 17)

Plug in: 0 = f(0) = c1 and 0 = f ′(0) = 2c2 + 1
3 , so that c1 = 0, c2 = − 1

6 , and
f(t) = − 1

6 sin(2t) + 1
3 sin(t).

30. a. k is a positive constant that depends on the rate of cooling of the coffee (it varies with
the material of the cup, for example).

A is the room temperature.

b. T ′(t) + kT (t) = kA

Constant particular solution: Tp(t) = A

General solution of T ′(t) + kT (t) = 0 is T (t) = Ce−kt.

General solution of the original differential equation: T (t) = Ce−kt + A

Plug in: T0 = T (0) = C + A, so that C = T0 − A and T (t) = (T0 − A)e−kt + A.

31. dv
dt + k

mv = g

constant particular solution: vp = mg
k
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General solution of dv
dt + k

mv = 0 is v(t) = Ce−
k
m

t.

General solution of the original differential equation: v(t) = Ce−
k
m

t + mg
k

Plug in: 0 = v(0) = C + mg
k , so that C = −mg

k and v(t) = mg
k

(

1 − e−
k
m

t
)

lim
t→∞

v(t) = mg
k (the “terminal velocity”). See Figure 9.43.

Figure 9.43: for Problem 9.3.31.

32. dB
dt = kB − r or dB

dt − kB = −r

↑
interest

↑
withdrawals

constant particular solution Bp = r
k

General solution of dB
dt − kB = 0 is B(t) = Cekt

General solution of the original differential equation: B(t) = Cekt + r
k

Plug in: B0 = B(0) = C + r
k , so that C = B0 − r

k and B(t) =
(

B0 − r
k

)

ekt + r
k

if B0 > r
k then interest will exceed withdrawals and balance will grow.

if B0 < r
k then withdrawals will exceed interest and account will eventually be depleted.

if B0 = r
k then the balance will remain the same.

The graphs in Figure 9.44 show the three possible scenarios.

33. By Fact 9.3.9, x(t) = c1 cos
(√

g
L t

)

+ c2 sin
(√

g
L t

)

, with period P = 2π√
g
L

= 2π
√

L√
g . It is

required that 2 = P = 2π
√

L√
g or L = g

π2 ≈ 0.994 (meters).

34. a. We will take downward forces as positive.

Let g = acceleration due to gravity,
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Figure 9.44: for Problem 9.3.32.

ρ = density of block

a = length of edge of block

Then (weight of block) = (mass of block) · g = (density of block)(volume of block) g =
ρa3g

buoyancy = (weight of displaced water) = (mass of displaced water) · g =
(density of water) (volume of displaced water) g = 1a2x(t)g = a2gx(t)

b. Newton’s Second Law of Motion tells us that

md2x
dt2 = F = weight − buoyancy = ρa3g − a2gx(t), where m = ρa3 is the mass of the

block.

ρa3 d2x
dt2 = ρa3g − a2gx(t)

d2x
dt2 = g − g

ρax(t)

d2x
dt2 + g

ρax = g

constant solution xp = ρa

general solution (use Fact 9.3.9): x(t) = c1 cos
(
√

g
ρa t

)

+ c2 sin
(
√

g
ρa t

)

+ ρa

Now c2 = 0 since block is at rest at t = 0.

Plug in: a = x(0) = c1 + ρa, so that c1 = a − ρa and

x(t) = (a − ρa) cos
(
√

g
ρa t

)

+ ρa ≈ 2 cos(11t) + 8 (measured in centimeters)
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c. The period is P = 2π√
g

ρa

=
2π

√
ρa√
g . Thus the period increases as ρ or a increases (denser

wood or larger block), or as g decreases (on the moon). The period is independent of
the initial state.

35. a. pT (λ) = λ2 + 3λ + 2 = (λ + 1)(λ + 2) = 0 with roots λ1 = −1 and λ2 = −2, so
x(t) = c1e

−t + c2e
−2t.

b. x′(t) = −c1e
−t − 2c2e

−2t

Plug in: 1 = x(0) = c1 + c2 and 0 = x′(0) = −c1 − 2c2, so that c1 = 2, c2 = −1 and
x(t) = 2e−t − e−2t. See Figure 9.45.

Figure 9.45: for Problem 9.3.35b.

c. Plug in: 1 = x(0) = c1 + c2 and −3 = x′(0) = −c1 − 2c2, so that c1 = −1, c2 = 2, and
x(t) = −e−t + 2e−2t. See Figure 9.46.

Figure 9.46: for Problem 9.3.35c.

d. The oscillator in part (b) never reaches the equilibrium, while the oscillator in part
(c) goes through the equilibrium once, at t = ln(2). Take another look at Figures 9.45
and 9.46.

36. fT (λ) = λ2 + 2λ + 101 = 0 has roots λ1,2 = −1 ± 20i.

By Fact 9.3.9, x(t) = e−t(c1 cos(20t) + c2 sin(20t)).
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Any nonzero solution goes through the equilibrium infinitely many times. See Figure
9.47.

Figure 9.47: for Problem 9.3.36.

37. fT (λ) = λ2 + 6λ + 9 = (λ + 3)2 has roots λ1,2 = −3.

Following the method of Example 10, we find the general solution x(t) = e−3t(c1 + c2t)
with x′(t) = e−3t(c2 − 3c1 − 3c2t).

Plug in: 0 = x(0) = c1, and 1 = x′(0) = c2 − 3c1, so that c1 = 0, c2 = 1, and x(t) = te−3t.
See Figure 9.48.

Figure 9.48: for Problem 9.3.37.

The oscillator does not go through the equilibrium at t > 0.

38. a. (D − λ)(p(t)eλt) = [p(t)eλt]′ − λp(t)eλt = p′(t)eλt + λp(t)eλt − λp(t)eλt = p′(t)eλt, as
claimed.

b. Applying the result from part (a) m times we find (D−λ)m(p(t)eλt) = p(m)(t)eλt = 0,
since p(m)(t) = 0 for a polynomial of degree less than m.

c. By Fact 9.3.3, we are looking for m linearly independent functions. By part (b), the
functions eλt, teλt, t2eλt, . . . , tm−1eλt do the job.
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d. Note that the kernel of (D−λi)
mi is contained in the kernel of (D−λ1)

m1 · · · (D−λr)
mr ,

for any 1 ≤ i ≤ r. Therefore, we have the following basis:

eλ1t, teλ1t, . . . , tm1−1eλ1t,

eλ2t, teλ2t, . . . , tm2−1eλ2t, . . .

eλrt, teλrt, . . . , tmr−1eλrt.

39. fT (λ) = λ3 + 3λ2 + 3λ + 1 = (λ + 1)3 = 0 has roots λ1,2,3 = −1. In other words, we can
write the differential equation as (D + 1)3f = 0.

By Exercise 38, part (c), the general solution is f(t) = e−t(c1 + c2t + c3t
2).

40. fT (λ) = λ3 + λ2 − λ − 1 = (λ + 1)2(λ − 1) = 0 has roots λ1,2 = −1, λ3 = 1.

In other words, we can write the differential equation as (D + 1)2(D − 1) = 0.

By Exercise 38, part (d), the general solution is x(t) = e−t(c1 + c2t) + c3e
t.

41. We are looking for functions x such that T (x) = λx, or T (x)−λx = 0. Now T (x)−λx is
an nth-order linear differential operator, so that its kernel is n-dimensional, by Fact 9.3.3.
Thus λ is indeed an eigenvalue of T , with an n-dimensional eigenspace.

42. a. We need to solve the second-order differential equation Tx = D2x = d2x
dt2 = λx. This

differential equation has a two-dimensional solution space Eλ for any λ, so that all λ

are eigenvalues of T .

if λ > 0 then Eλ = span
(

e
√

λt, e−
√

λt
)

if λ = 0 then Eλ = span(1, t)

if λ < 0 then Eλ = span
(

sin
(√

−λt
)

, cos
(√

−λt
))

b. Among the eigenfunctions of T we found in part (a), we seek those of period 1. In the
case λ < 0 the shortest period is P = 2π√

−λ
. Now 1 is a period if P = 2π√

−λ
= 1

k for

some positive integer k, or, λ = −4π2k2. Then Eλ = span(cos(2πkt), (sin(2πkt)).

In the case λ > 0 there are no periodic solutions. In the case λ = 0 we have the
constant solutions, so that λ = 0 is an eigenvalue with E0 = span(1).

Summary:
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λ = −4π2k2 is an eigenvalue, for k = 1, 2, 3, . . ., with Eλ = span(cos(2πkt), (sin(2πkt)).
λ = 0 is an eigenvalue, with E0 = span(1).

43. a. Using the approach of Exercise 17, we find x(t) = c1e
−2t + c2e

−3t + 1
10 cos t + 1

10 sin t.

b. For large t, x(t) ≈ 1
10 cos t + 1

10 sin t.

44. a. Using the approach of Exercises 16 and 17 we find x(t) = e−2t(c1 cos t + c2 sin t) −
1
40 cos(3t) + 3

40 sin(3t).

b. For large t, x(t) ≈ − 1
40 cos(3t) + 3

40 sin(3t).

45. We can write the system as

∣

∣

∣

∣

dx1

dt = x1 + 2x2

dx2

dt = x2

∣

∣

∣

∣

x1(0) = 1

x2(0) = −1
.

The solution of the second equation, with the given initial value, is x2(t) = −et.

Now the first equation takes the form dx1

dt − x1 = −2et.

Using Example 9 (with a = 1 and c = −2) we find x1(t) = et(−2t + C).

plug in: 1 = x1(0) = C, so that x1(t) = et(1 − 2t) and ~x(t) = et

[

1 − 2t

−1

]

.

46. We can write the system as

∣

∣

∣

∣

∣

∣

∣

dx1

dt = 2x1 + 3x2 + x3

dx2

dt = x2 + 2x3

dx3

dt = x3

∣

∣

∣

∣

∣

∣

∣

x1(0) = 2

x2(0) = 1

x3(0) = −1

.

We solve for x2 and x3 as in Exercise 45:

x2(t) = et(1 − 2t)

x3(t) = −et

Now the first equation takes the form dx1

dt − 2x1 = 3et(1− 2t)− et = et(2− 6t), x1(0) = 2.

We use Fact 9.3.13 to solve this differential equation:

x1(t) = e2t

∫

e−2tet(2 − 6t) dt = e2t

∫

(2e−t − 6te−t) dt = e2t[−2e−t + 6te−t + 6e−t + C]

plug in: 2 = x1(0) = (−2 + 6 + c), so that c = −2 and x1(t) = e2t(4e−t + 6te−t − 2) =
4et + 6tet − 2e2t.
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~x(t) =





4et + 6tet − 2e2t

et − 2tet

−et





47. a. We start with a preliminary remark that will be useful below: If f(t) = p(t)eλt, where
p(t) is a polynomial, then f(t) has an antiderivative of the form q(t)eλt, where q(t) is
another polynomial. We leave this remark as a calculus exercise.

The function xn(t) satisfies the differential equation dxn

dt = annxn, so that xn = Ceannt,
which is of the desired form.

Now we will show that xk is of the desired form, assuming that xk+1, . . . , xn have this
form. xk satisfies the differential equation dxk

dt = akkxk + ak,k+1xk+1 + · · ·+ aknxn or
dxk

dt − akkxk = ak,k+1xk+1 + · · · + aknxn.

Note that, by assumption, the function on the right-hand side has the form p1(t)e
λ1t +

· · ·+ pm(t)eλmt. If we set akk = a for simplicity, we can write dxk

dt − axk = p1(t)e
λ1t +

· · · + pm(t)eλmt.

By Fact 9.3.13, the solution is

xk(t) = eat

∫

e−at(p1(t)e
λ1t + · · · + pm(t)eλmt) dt

= eat

∫

(p1(t)e
(λ1−a)t + · · · + pm(t)e(λm−a)t) dt

= eat(q1(t)e
(λ1−a)t + · · ·+ qm(t)e(λm−a)t + C) = q1(t)e

λ1t + · · · + qm(t)eλmt + Ceat as
claimed (note that a is one of the λi). The constant C is determined by xk(0). Note that
we used the preliminary remark in the second to last step.

b. It is shown in introductory calculus classes that lim
t→∞

(tmeλt) = 0 if and only if λ is

negative (here m is a fixed positive integer). In light of part (a), this proves the claim.

48. There is an invertible S such that S−1AS = B is upper triangular. Then the system d~x
dt =

A~x = SBS−1~x can be written as d
dt (S

−1~x) = B(S−1~x) or d~u
dt = B~u, where ~u = S−1~x.

Note that B has the m distinct diagonal entries λ1, . . . , λm.

a. By Exercise 47, the system d~u
dt = B~u has a unique solution ~u(t). Then the system

d~x
dt = A~x has the unique solution ~x(t) = S~u(t).

b. It suffices to note that lim
t→∞

~x(t) = ~0 if and only if lim
t→∞

~u(t) = ~0, where ~u = S−1~x.
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