
Chapter 2 ISM: Linear Algebra

Chapter 2

2.1

1. Not a linear transformation, since y2 = x2 + 2 is not linear in our sense.

2. Linear, with matrix





0 2 0
0 0 3
1 0 0





3. Not linear, since y2 = x1x3 is nonlinear.

4. A =







9 3 −3
2 −9 1
4 −9 −2
5 1 5







5. By Fact 2.1.2, the three columns of the 2 × 3 matrix A are T (~e1), T (~e2), and T (~e3), so
that

A =

[

7 6 −13
11 9 17

]

.

6. Note that x1





1
2
3



 + x2





4
5
6



 =





1 4
2 5
3 6





[

x1

x2

]

, so that T is indeed linear, with matrix





1 4
2 5
3 6



.

7. Note that x1~v1 + · · ·+ xm~vm = [~v1 . . . ~vm]





x1

· · ·
xm



, so that T is indeed linear, with matrix

[~v1 ~v2 · · · ~vm].

8. Reducing the system

∣

∣

∣

∣

x1 + 7x2 = y1

3x1 + 20x2 = y2

∣

∣

∣

∣

, we obtain

∣

∣

∣

∣

x1 = −20y1 + 7y2

x2 = 3y1 − y2

∣

∣

∣

∣

.

9. We have to attempt to solve the equation

[

y1

y2

]

=

[

2 3
6 9

] [

x1

x2

]

for x1 and x2. Reducing

the system

∣

∣

∣

∣

2x1 + 3x2 = y1

6x1 + 9x2 = y2

∣

∣

∣

∣

we obtain

∣

∣

∣

∣

x1 + 1.5x2 = 0.5y1

0 = −3y1 + y2

∣

∣

∣

∣

.

No unique solution (x1, x2) can be found for a given (y1, y2); the matrix is noninvertible.
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10. We have to attempt to solve the equation

[

y1

y2

]

=

[

1 2
4 9

] [

x1

x2

]

for x1 and x2. Reducing

the system

∣

∣

∣

∣

x1 + 2x2 = y1

4x1 + 9x2 = y2

∣

∣

∣

∣

we find that

∣

∣

∣

∣

x1 = 9y1 + 2y2

x2 = −4y1 + y2

∣

∣

∣

∣

or
[

x1

x2

]

=

[

9 −2
−4 1

] [

y1

y2

]

.

The inverse matrix is

[

9 −2
−4 1

]

.

11. We have to attempt to solve the equation

[

y1

y2

]

=

[

1 2
3 9

] [

x1

x2

]

for x1 and x2. Reducing

the system

∣

∣

∣

∣

x1 + 2x2 = y1

3x1 + 9x2 = y2

∣

∣

∣

∣

we find that

∣

∣

∣

∣

x1 = 3y1 − 2
3y2

x2 = −y1 + 1
3y2

∣

∣

∣

∣

. The

inverse matrix is

[

3 − 2
3

−1 1
3

]

.

12. Reducing the system

∣

∣

∣

∣

x1 + kx2 = y1

x2 = y2

∣

∣

∣

∣

we find that

∣

∣

∣

∣

x1 = y1 − ky2

x2 = y2

∣

∣

∣

∣

. The

inverse matrix is

[

1 −k
0 1

]

.

13. a. First suppose that a 6= 0. We have to attempt to solve the equation

[

y1

y2

]

=

[

a b
c d

] [

x1

x2

]

for x1 and x2.
∣

∣

∣

∣

ax1 + bx2 = y1

cx1 + dx2 = y2

∣

∣

∣

∣

÷a →
∣

∣

∣

∣

x1 + b
a
x2 = 1

a
y1

cx1 + dx2 = y2

∣

∣

∣

∣ −c(I)
→

∣

∣

∣

∣

x1 + b
a
x2 = 1

a
y1

(d − bc
a

)x2 = − c
a
y1 + y2

∣

∣

∣

∣

→

∣

∣

∣

∣

x1 + b
a
x2 = 1

a
y1

(ad−bc
a

)x2 = − c
a
y1 + y2

∣

∣

∣

∣

We can solve this system for x1 and x2 if (and only if) ad − bc 6= 0, as claimed.

If a = 0, then we have to consider the system
∣

∣

∣

∣

bx2 = y1

cx1 + dx2 = y2

∣

∣

∣

∣

swap : I ↔ II

∣

∣

∣

∣

cx1 + dx2 = y2

bx2 = y1

∣

∣

∣

∣

We can solve for x1 and x2 provided that both b and c are nonzero, that is if bc 6= 0.
Since a = 0, this means that ad − bc 6= 0, as claimed.
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b. First suppose that ad− bc 6= 0 and a 6= 0. Let D = ad− bc for simplicity. We continue
our work in part (a):

∣

∣

∣

∣

x1 + b
a
x2 = 1

a
y1

D
a

x2 = − c
a
y1 + y2

∣

∣

∣

∣ · a
D

→

∣

∣

∣

∣

x1 + b
a
x2 = 1

a
y1

x2 = − c
D

y1 + a
D

y2

∣

∣

∣

∣

− b
a
(II) →

∣

∣

∣

∣

x1 = ( 1
a

+ bc
aD

)y1 − b
D

y2

x2 = − c
D

y1 + a
D

y2

∣

∣

∣

∣

∣

∣

∣

∣

x1 = d
D

y1 − b
D

y2

x2 = − c
D

y1 + a
D

y2

∣

∣

∣

∣

(

Note that 1
a

+ bc
aD

= D+bc
aD

= ad
aD

= d
D

.
)

It follows that

[

a b
c d

]−1

= 1
ad−bc

[

d −b
−c a

]

, as claimed. If ad − bc 6= 0 and a = 0,

then we have to solve the system
∣

∣

∣

∣

cx1+ dx2 = y2

bx2 = y1

∣

∣

∣

∣

÷c
÷b

∣

∣

∣

∣

x1+
d
c
x2 = 1

c
y2

x2 = 1
b
y1

∣

∣

∣

∣

−d
c
(II)

∣

∣

∣

∣

x1 = − d
bc

y1 + 1
c
y2

x2 = 1
b
y1

∣

∣

∣

∣

It follows that

[

a b
c d

]−1

=

[− d
bc

1
c

1
b

0

]

= 1
ad−bc

[

d −b
−c a

]

(recall that a = 0), as

claimed.

14. a. By Exercise 13a,

[

2 3
5 k

]

is invertible if (and only if) 2k − 15 6= 0, or k 6= 7.5.

b. By Exercise 13b,

[

2 3
5 k

]−1

= 1
2k−15

[

k −3
−5 2

]

.

If all entries of this inverse are integers, then 3
2k−15 − 2

2k−15 = 1
2k−15 is a (nonzero)

integer n, so that 2k − 15 = 1
n

or k = 7.5 + 1
2n

. Since k
2k−15 = kn = 7.5n + 1

2 is an
integer as well, n must be odd.
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We have shown: If all entries of the inverse are integers, then k = 7.5 + 1
2n

, where

n is an odd integer. The converse is true as well: If k is chosen in this way, then the

entries of

[

2 3
5 k

]−1

will be integers.

15. By Exercise 13a, the matrix

[

a −b
b a

]

is invertible if (and only if) a2 + b2 6= 0, which

is the case unless a = b = 0. If

[

a −b
b a

]

is invertible, then its inverse is 1
a2+b2

[

a b
−b a

]

,

by Exercise 13b.

16. If A =

[

3 0
0 3

]

, then A~x = 3~x for all ~x in R
2, so that A represents a scaling by a factor

of 3. Its inverse is a scaling by a factor of 1
3 : A−1 =

[ 1
3 0

0 1
3

]

.

17. If A =

[

−1 0
0 −1

]

, then A~x = −~x for all ~x in R
2, so that A represents a reflection about

the origin.

This transformation is its own inverse: A−1 = A.

18. Compare with Exercise 16: This matrix represents a scaling by the factor of 1
2 ; the inverse

is a scaling by 2.

19. If A =

[

1 0
0 0

]

, then A

[

x1

x2

]

=

[

x1

0

]

, so that A represents the orthogonal projection onto

the ~e1 axis. (See Figure 2.1.) This transformation is not invertible, since the equation

A~x =

[

1
0

]

has infinitely many solutions ~x.

Figure 2.1: for Problem 2.1.19.
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20. If A =

[

0 1
1 0

]

, then A

[

x1

x2

]

=

[

x2

x1

]

, so that A represents the reflection about the

line x2 = x1. This transformation is its own inverse: A−1 = A.

Figure 2.2: for Problem 2.1.20.

21. Compare with Example 5.

If A =

[

0 1
−1 0

]

, then A

[

x1

x2

]

=

[

x2

−x1

]

. Note that the vectors ~x and A~x are perpen-

dicular and have the same length. If ~x is in the first quadrant, then A~x is in the fourth.
Therefore, A represents the rotation through an angle of 90◦ in the clockwise direction.

(See Figure 2.3.) The inverse A−1 =

[

0 −1
1 0

]

represents the rotation through 90◦ in

the counterclockwise direction.

Figure 2.3: for Problem 2.1.21.

22. If A =

[

1 0
0 −1

]

, then A

[

x1

x2

]

=

[

x1

−x2

]

, so that A represents the reflection about the
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~e1 axis. This transformation is its own inverse: A−1 = A.

Figure 2.4: for Problem 2.1.22.

23. Compare with Exercise 21.

Note that A = 2

[

0 1
−1 0

]

, so that A represents a rotation through an angle of 90◦ in the

clockwise direction, followed by a scaling by the factor of 2.

The inverse A−1 =

[

0 − 1
2

1
2 0

]

represents a rotation through an angle of 90◦ in the

counterclockwise direction, followed by a scaling by the factor of 1
2 .

24. Compare with Example 5.

Figure 2.5: for Problem 2.1.24.

25. The matrix represents a scaling by the factor of 2. (See Figure 2.6.)

26. This matrix represents a reflection about the line x2 = x1.
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Figure 2.6: for Problem 2.1.25.

Figure 2.7: for Problem 2.1.26.

27. This matrix represents a reflection about the ~e1 axis. (See Figure 2.8.)

Figure 2.8: for Problem 2.1.27.

28. If A =

[

1 0
0 2

]

, then A

[

x1

x2

]

=

[

x1

2x2

]

, so that the x2 component is multiplied by 2,

while the x1 component remains unchanged.

29. This matrix represents a reflection about the origin. Compare with Exercise 17. (See
Figure 2.10.)
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Figure 2.9: for Problem 2.1.28.

Figure 2.10: for Problem 2.1.29.

30. If A =

[

0 0
0 1

]

, then A

[

x1

x2

]

=

[

0
x2

]

, so that A represents the projection onto the ~e2

axis.

Figure 2.11: for Problem 2.1.30.

31. The image must be reflected about the ~e2 axis, that is

[

x1

x2

]

must be transformed

into

[

−x1

x2

]

: This can be accomplished by means of the linear transformation T (~x) =
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[

−1 0
0 1

]

~x.

32. Using Fact 2.1.2, we find A =









3 0 · 0
0 3 · 0
...

...
. . .

...
0 0 · · · 3









. This matrix has 3’s on the diagonal and

0’s everywhere else.

33. By Fact 2.1.2, A =

[

T

[

1
0

]

T

[

0
1

]]

. (See Figure 2.12.)

Figure 2.12: for Problem 2.1.33.

Therefore, A =





1√
2

− 1√
2

1√
2

1√
2



.

34. As in Exercise 33, we find T (~e1) and T (~e2); then by Fact 2.1.2, A = [T (~e1) T (~e2)].

Figure 2.13: for Problem 2.1.34.

Therefore, A =

[

cos θ − sin θ
sin θ cos θ

]

.
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35. We want to find a matrix A =

[

a b
c d

]

such that A

[

5
42

]

=

[

89
52

]

and A

[

6
41

]

=

[

88
53

]

.

This amounts to solving the system

∣

∣

∣

∣

∣

∣

∣

5a + 42b = 89
6a + 41b = 88

5c + 42d = 52
6c + 41d = 53

∣

∣

∣

∣

∣

∣

∣

.

(Here we really have two systems with two unknowns each.)

The unique solution is a = 1, b = 2, c = 2, and d = 1, so that A =

[

1 2
2 1

]

.

36. First we draw ~w in terms of ~v1 and ~v2 so that ~w = c1~v1 + c2~v2 for some c1 and c2. Then,
we scale the ~v2-component by 3, so our new vector equals c1~v1 + 3c2~v2.

37. Since ~x = ~v + k(~w − ~v), we have T (~x) = T (~v + k(~w − ~v)) = T (~v) + k(T (~w) − T (~v)), by
Fact 2.1.3

Since k is between 0 and 1, the tip of this vector T (~x) is on the line segment connecting
the tips of T (~v) and T (~w). (See Figure 2.14.)

Figure 2.14: for Problem 2.1.37.

38. T

[

2
−1

]

= [~v1 ~v2]

[

2
−1

]

= 2~v1 − ~v2 = 2~v1 + (−~v2)

39. By Fact 2.1.2, we have T





x1

. . .
xm



 =







T (~e1) . . . T (~em)











x1

. . .
xm



 = x1T (~e1) + · · · +

xmT (~em).
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Figure 2.15: for Problem 2.1.38.

40. These linear transformations are of the form [y] = [a][x], or y = ax. The graph of such a
function is a line through the origin.

41. These linear transformations are of the form [y] = [a b]

[

x1

x2

]

, or y = ax1 + bx2. The

graph of such a function is a plane through the origin.

42. a. See Figure 2.16.

Figure 2.16: for Problem 2.1.42.

b. The image of the point





1
1
2
1
2



 is the origin,

[

0
0

]

.
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c. Solve the equation

[− 1
2 1 0

− 1
2 0 1

]





x1

x2

x3



 =

[

0
0

]

, or

∣

∣

∣

∣

∣

− 1
2x1 + x2 = 0

− 1
2x1 + x3 = 0

∣

∣

∣

∣

∣

.

The solutions are of the form





x1

x2

x3



 =





2t
t
t



 , where t is an arbitrary real number.

For example, for t = 1
2 , we find the point





1
1
2
1
2



 considered in part b.These points are

on the line through the origin and the observer’s eye.

43. a. T (~x) =





2
3
4



 ·





x1

x2

x3



 = 2x1 + 3x2 + 4x3 = [2 3 4]





x1

x2

x3





The transformation is indeed linear, with matrix [2 3 4].

b. If ~v =





v1

v2

v3



, then T is linear with matrix [v1 v2 v3], as in part (a).

c. Let [a b c] be the matrix of T . Then T





x1

x2

x3



 = [a b c]





x1

x2

x3



 = ax1 + bx2 + cx3 =





a
b
c



 ·





x1

x2

x3



, so that ~v =





a
b
c



 does the job.

44. T





x1

x2

x3



 =





v1

v2

v3



 ×





x1

x2

x3



 =





v2x3 − v3x2

v3x1 − v1x3

v1x2 − v2x1



 =





0 −v3 v2

v3 0 −v1

−v2 v1 0









x1

x2

x3



, so that T is

linear, with matrix





0 −v3 v2

v3 0 −v1

−v2 v1 0



.

45. Yes, ~z = L(T (~x)) is also linear, which we will verify using Fact 2.1.3. Part a holds, since
L(T (~v + ~w)) = L(T (~v) + T (~w)) = L(T (~v)) + L(T (~w)), and part b also works, because
L(T (k~v)) = L(kT (~v)) = kL(T (~v)).
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46. T

[

1
0

]

= B

(

A

[

1
0

])

= B

[

a
c

]

=

[

pa + qc
ra + sc

]

T

[

0
1

]

= B

(

A

[

0
1

])

= B

[

b
d

]

=

[

pb + qd
rb + sd

]

So, T

[

x1

x2

]

= x1

(

T

[

1
0

])

+ x2

(

T

[

0
1

])

=

[

b
d

]

=

[

pb + qd
rb + sd

]

47. Write ~w as a linear combination of ~v1 and ~v2 : ~w = c1~v1 + c2~v2. (See Figure 2.17.)

Figure 2.17: for Problem 2.1.47.

Measurements show that we have roughly ~w = 1.5~v1 + ~v2.

Therefore, by linearity, T (~w) = T (1.5~v1 + ~v2) = 1.5T (~v1) + T (~v2). (See Figure 2.18.)

Figure 2.18: for Problem 2.1.47.

48. Let ~x be some vector in R
2. Since ~v1 and ~v2 are not parallel, we can write ~x in terms

of components of ~v1 and ~v2. So, let c1 and c2 be scalars such that ~x = c1~v1 + c2~v2.
Then, by Fact 2.1.3, T (~x) = T (c1~v1 + c2~v2) = T (c1~v1) + T (c2~v2) = c1T (~v1) + c2T (~v2) =
c1L(~v1) + c2L(~v2) = L(c1~v1 + c2~v2) = L(~x). So T (~x) = L(~x) for all ~x in R

2.
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49. a. Let x1 be the number of 2 Franc coins, and x2 be the number of 5 Franc coins. Then
∣

∣

∣

∣

2x1 +5x2 = 144
x1 +x2 = 51

∣

∣

∣

∣

.

From this we easily find our solution vector to be

[

37
14

]

.

b.

[

total value of coins
total number of coins

]

=

[

2x1 +5x2

x1 +x2

]

=

[

2 5
1 1

][

x1

x2

]

.

So, A =

[

2 5
1 1

]

.

c. By Exercise 13, matrix A is invertible (since ad − bc = −3 6= 0), and A−1 =

1
ad−bc

[

d −b
−c a

]

= − 1
3

[

1 −5
−1 2

]

.

Then − 1
3

[

1 −5
−1 2

] [

144
51

]

= − 1
3

[

144 −5(51)
−144 +2(51)

]

= − 1
3

[

−111
−42

]

=

[

37
14

]

, which

was the vector we found in part a.

50. a. Let

[

p
s

]

=

[

mass of the platinum alloy
mass of the silver alloy

]

. Using the definition density = mass/volume,

or volume = mass/density, we can set up the system:

∣

∣

∣

∣

p +s = 5, 000
p
20 + s

10 = 370

∣

∣

∣

∣

, with the solution p = 2, 600 and s = 2, 400. We see that the

platinum alloy makes up only 52 percent of the crown; this gold smith is a crook!

b. We seek the matrix A such that A

[

p
s

]

=

[

total mass
total volume

]

=

[

p + s
p
20 + s

10

]

. Thus

A =

[

1 1
1
20

1
10

]

.

c. Yes. By Exercise 13, A−1 =

[

2 −20
−1 20

]

. Applied to the case considered in part

a, we find that

[

p
s

]

= A−1

[

total mass
total volume

]

=

[

2 −20
−1 20

][

5, 000
370

]

=

[

2, 600
2, 400

]

,

confirming our answer in part a.

51. a.

[

C
1

]

=

[

5
9 (F − 32)

1

]

=

[

5
9F − 160

9
1

]

=

[

5
9 − 160

9
0 1

][

F
1

]

.

65



Chapter 2 ISM: Linear Algebra

So A =

[

5
9 − 160

9
0 1

]

.

b. Using Exercise 13, we find 5
9 (1) − (− 160

9 )0 = 5
9 6= 0, so A is invertible.

A−1 = 9
5

[

1 160
9

0 5
9

]

=

[

9
5 32
0 1

]

. So, F = 9
5C + 32.

52. a. A~x =

[

420
2100

]

, which is the total value of our money in terms of C$ and R.

b. From Exercise 13, we test the value ad − bc and find it to be zero. Thus A is not

invertible. To determine when A is consistent, we begin to compute rref

[

A
...~b

]

:





1 1
5

... b1

5 1
... b2





−5I
→





1 1
5

... b1

0 0
... b2 − 5b1



 .

Thus, the system is consistent only when b2 = 5b1. This makes sense, since b2 is the
total value of our money in terms of Rand, while b1 is the value in terms of Canadian
dollars. Consider the example in part a.

If the system A~x = ~b is consistent, then there will be infinitely many solutions ~x,
representing various compositions of our portfolio in terms of Rand and Canadian
dollars, all representing the same total value.

53. First we notice that all entries along the diagonal must be 1, since those represent con-
verting one currency to itself. Also, since a34 = 200,£1 = U200, so U1 = £ 1

200 . So
a43 = 1

200 . Using this same approach, we can find a21 and a41 as well.

So far, A =







1 0.8 ∗ 1.5
1.25 1 ∗ ∗
∗ ∗ 1 200
2
3 ∗ 1

200 1






.

Now, using a43 and a14, U1 = £ 1
200 and £1 = 1.5 Euros. So, U1 = 1

200 (1.5)Euros = 3
400

Euros, meaning that a13 = 3
400 .

We use this same approach to see that a24 = a21a14 = 5
4 ( 3

2 ) = 15
8 , and a23 = a21a13 =

5
4 ( 3

400 ) = 3
320 .

Then, using our method from above to find a43, we can find a31, a42 and a32.

66



ISM: Linear Algebra Section 2.2

Thus, A =



















1 4
5

3
400

3
2

5
4 1 3

320
15
8

400
3

320
3 1 200

2
3

8
15

1
200 1



















.

54. a. 1: this represents converting a currency to itself.

b. aij is the reciprocal of aji, meaning that aijaji = 1. This represents converting on
currency to another, then converting it back.

c. Note that aik is the conversion factor from currency k to currency i, meaning that 1
unit of currency k = aik units of currency i.

Likewise, 1 unit of currency j = akj units of currency k.

It follows that 1 unit of currency j = akjaik units of currency i = aij units of currency
i,

so that aikakj = aij .

d. The rank of A is only 1, because every row is simply a scalar multiple of the top row.
More precisely, since aij = ai1a1j , by part c, the ith row is ai1 times the top row.
When we compute the rref, every row but the top will be removed in the first step.
Thus, rref(A) is a matrix with the top row of A and zeroes for all other entries.

2.2

1. The standard L is transformed into a distorted L whose foot is the vector T

([

1
0

])

=
[

3 1
1 2

] [

1
0

]

=

[

3
1

]

.

Meanwhile, the back becomes the vector T

([

0
2

])

=

[

3 1
1 2

] [

0
2

]

=

[

2
4

]

.

2. By Fact 2.2.3, this matrix is

[

cos(60◦) − sin(60◦)
sin(60◦) cos(60◦)

]

=





1
2 −

√
3

2√
3

2
1
2



.

3. If ~x is in the unit square in R
2, then ~x = x1~e1 + x2~e2 with 0 ≤ x1, x2 ≤ 1, so that
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T (~x) = T (x1~e1 + x2~e2) = x1T (~e1) + x2T (~e2).

The image of the unit square is a parallelogram in R
3; two of its sides are T (~e1) and

T (~e2), and the origin is one of its vertices. (See Figure 2.19.)

Figure 2.19: for Problem 2.2.3.

4. By Fact 2.2.4, this is a rotation combined with a scaling. The transformation rotates 45
degrees counterclockwise, and has a scaling factor of

√
2.

5. Note that cos(θ) = −0.8, so that θ = arccos(−0.8) ≈ 2.498.

6. By Fact 2.2.1, projL





1
1
1



 =



~u ·





1
1
1







 ~u, where ~u is a unit vector on L. To get ~u, we

normalize





2
1
2



:

~u = 1
3





2
1
2



, so that projL





1
1
1



 = 5
3 · 1

3





2
1
2



 =







10
9
5
9
10
9






.

7. According to the discussion on page 61, refL





1
1
1



 = 2



~u ·





1
1
1







~u−





1
1
1



, where ~u is a

unit vector on L. To get ~u, we normalize





2
1
2



:

~u = 1
3





2
1
2



, so that refL





1
1
1



 = 2( 5
3 ) 1

3





2
1
2



−





1
1
1



 =







11
9
1
9
11
9






.
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8. From Definition 2.2.2, we can see that this is a reflection about the line x1 = −x2.

9. By Fact 2.2.5, this is a vertical shear.

10. By Fact 2.2.1, projL~x = (~u · ~x)~u, where ~u is a unit vector on L. We can choose ~u =

1
5

[

4
3

]

=

[

0.8
0.6

]

.

Then projL

[

x1

x2

]

=

([

0.8
0.6

]

·
[

x1

x2

])[

0.8
0.6

]

= (0.8x1+0.6x2)

[

0.8
0.6

]

=

[

0.64x1 + 0.48x2

0.48x1 + 0.36x2

]

=

[

0.64 0.48
0.48 0.36

] [

x1

x2

]

.

The matrix is A =

[

0.64 0.48
0.48 0.36

]

.

11. In Exercise 10 we found the matrix A =

[

0.64 0.48
0.48 0.36

]

of the projection onto the line L.

By Fact 2.2.2,

refL~x = 2(projL~x) − ~x = 2A~x − ~x = (2A − I2)~x, so that the matrix of the reflection is

2A − I2 =

[

0.28 0.96
0.96 −0.28

]

.

12. From Definition 2.2.1, we can figure out the terms of this matrix from a unit vector.
Converting ~v to a unit vector is simple, as we will just divide by its length: ~u = ~v

||~v|| =

~v√
v2

1
+v2

2

=





v1√
v2

1
+v2

2

v2√
v2

1
+v2

2



 .

So, u1 = v1√
v2

1
+v2

2

, u2 = v2√
v2

1
+v2

2

. Then A =

[

v2
1/(v2

1 + v2
2) v1v2/(v2

1 + v2
2)

v1v2/(v2
1 + v2

2) v2
2/(v2

1 + v2
2)

]

= 1
v2

1
+v2

2

[

v2
1 v1v2

v1v2 v2
2

]

.

13. By Fact 2.2.2,

refL

[

x1

x2

]

= 2

([

u1

u2

]

·
[

x1

x2

])[

u1

u2

]

−
[

x1

x2

]

= 2(u1x1 + u2x2)

[

u1

u2

]

−
[

x1

x2

]

=

[

(2u2
1 − 1)x1 + 2u1u2x2

2u1u2x1 + (2u2
2 − 1)x2

]

.

The matrix is A =

[

a b
c d

]

=

[

2u2
1 − 1 2u1u2

2u1u2 2u2
2 − 1

]

. Note that the sum of the diagonal

entries is a + d = 2(u2
1 + u2

2) − 2 = 0, since ~u is a unit vector. It follows that d = −a.
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Since c = b, A is of the form

[

a b
b −a

]

. Also, a2 + b2 = (2u2
1 − 1)2 + 4u2

1u
2
2 = 4u4

1 − 4u2
1 +

1 + 4u2
1(1 − u2

1) = 1, as claimed.

14. a. Proceeding as on Page 58 of the text, we find that A is the matrix whose ijth entry is
uiuj :

A =





u2
1 u1u2 u1u3

u2u1 u2
2 u2u3

unu1 unu2 u2
3





b. The sum of the diagonal entries is u2
1 + u2

2 + u2
3 = 1, since ~u is a unit vector.

15. According to the discussion on Page 61, refL(~x) = 2(~x · ~u)~u − ~x

= 2(x1u1 + x2u2 + x3u3)





u1

u2

u3



−





x1

x2

x3





=





2x1u
2
1 +2x2u2u1 +2x3u3u1 −x1

2x1u1u2 +2x2u
2
2 +2x3u3u2 −x2

2x1u1u3 +2x2u2u3 +2x3u
2
3 −x3



 =





(2u2
1 − 1)x1 +2u2u1x2 +2u1u3x3

2u1u2x1 +(2u2
2 − 1)x2 +2u2u3x3

2u1u3x1 +2u2u3x2 +(2u2
3 − 1)x3



.

So A =





(2u2
1 − 1) 2u2u1 2u1u3

2u1u2 (2u2
2 − 1) 2u2u3

2u1u3 2u2u3 (2u2
3 − 1)



.

16. a. See Figure 2.20.

b. By Fact 2.1.2, the matrix of T is [T (~e1) T (~e2)].

T (~e2) is the unit vector in the fourth quadrant perpendicular to T (~e1) =

[

cos(2θ)
sin(2θ)

]

,

so that

T (~e2) =

[

sin(2θ)
− cos(2θ)

]

. The matrix of T is therefore

[

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]

.

Alternatively, we can use the result of Exercise 13, with

[

u1

u2

]

=

[

cos θ
sin θ

]

to find the

matrix
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Figure 2.20: for Problem 2.2.16a.

Figure 2.21: for Problem 2.2.16b.

[

2 cos2 θ − 1 2 cos θ sin θ
2 cos θ sin θ 2 sin2 θ − 1

]

.

You can use trigonometric identities to show that the two results agree.

17. We want,

[

a b
b −a

][

v1

v2

]

=

[

av1 +bv2

bv1 −av2

]

=

[

v1

v2

]

.

Now, (a − 1)v1 + bv2 = 0 and bv1 − (a + 1)v2, which is a system with solutions of the
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form

[

bt
(1 − a)t

]

, where t is an arbitrary constant.

Let’s choose t = 1, making ~v =

[

b
1 − a

]

.

Similarly, we want A~w = −~w. We perform a computation as above to reveal ~w =
[

a − 1
b

]

as a possible choice. A quick check of ~v · ~w = 0 reveals that they are indeed

perpendicular.

Now, any vector ~x in R can be written in terms of components with respect to L =
span(~v) as ~x = ~x||+~x⊥ = c~v+d~w. Then, T (~x) = A~x = A(c~v+d~w) = A(c~v)+A(d~w) =
cA~v + dA~w = c~v − d~w = ~x|| − ~x⊥ = refL(~x), by Definition 2.2.2.

(The vectors ~v and ~w constructed above are both zero in the special case that a = 1
and b = 0. In that case, we can let ~v = ~e1 and ~w = ~e2 instead.)

18. From Exercise 17, we know that the reflection is about the line parallel to ~v =
[

b
1 − a

]

=

[

0.8
0.4

]

= 0.4

[

2
1

]

. So, every point on this line can be described as

[

x
y

]

=

k

[

2
1

]

. So, y = k = 1
2x, and y = 1

2x is the line we are looking for.

19. T (~e1) = ~e1, T (~e2) = ~e2, and T (~e3) = ~0, so that the matrix is





1 0 0
0 1 0
0 0 0



.

20. T (~e1) = ~e1, T (~e2) = −~e2, and T (~e3) = ~e3, so that the matrix is





1 0 0
0 −1 0
0 0 1



.

21. T (~e1) = ~e2, T (~e2) = −~e1, and T (~e3) = ~e3, so that the matrix is





0 −1 0
1 0 0
0 0 1



. (See

Figure 2.22.)

22. Sketch the ~e1 − ~e3 plane, as viewed from the positive ~e2 axis.

Since T (~e2) = ~e2, the matrix is





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



.

23. T (~e1) = ~e3, T (~e2) = ~e2, and T (~e3) = ~e1, so that the matrix is





0 0 1
0 1 0
1 0 0



. (See Figure

2.24.)
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Figure 2.22: for Problem 2.2.21.

Figure 2.23: for Problem 2.2.22.

Figure 2.24: for Problem 2.2.23.

24. a. A = [~v ~w ] , so A

[

1
0

]

= ~v and A

[

0
1

]

= ~w. Since A preserves length, both ~v and ~w

must be unit vectors. Furthermore, since A preserves angles and

[

1
0

]

and

[

0
1

]

are

clearly perpendicular, ~v and ~w must also be perpendicular.
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b. Since ~w is a unit vector perpendicular to ~v, it can be obtained by rotating ~v through 90
degrees, either in the counterclockwise or in the clockwise direction. Using the corre-

sponding rotation matrices, we see that ~w =

[

0 −1
1 0

]

~v =

[

−b
a

]

or ~w =

[

0 1
−1 0

]

~v =
[

b
−a

]

.

c. Following part b, A is either of the form

[

a −b
b a

]

, representing a rotation, or A =
[

a b
b −a

]

, representing a reflection.

25. The matrix A =

[

1 k
0 1

]

represents a horizontal shear, and its inverse A−1 =

[

1 −k
0 1

]

represents such a shear as well, but “the other way.”

26. a.

[

k 0
0 k

] [

2
−1

]

=

[

2k
−k

]

=

[

8
−4

]

. So k = 4 and A =

[

4 0
0 4

]

.

b. This is the orthogonal projection onto the horizontal axis, with matrix B =

[

1 0
0 0

]

.

c.

[

a −b
b a

] [

0
5

]

=

[

−5b
5a

]

=

[

3
4

]

. So a = 4
5 , b = − 3

5 , and C =

[

4
5

3
5

− 3
5

4
5

]

. Note that

a2 + b2 = 1, as required for a rotation matrix.

d. Since the x1 term is being modified, this must be a horizontal shear.

Then

[

1 k
0 1

] [

1
3

]

=

[

1 + 3k
3

]

=

[

7
3

]

. So k = 2 and D =

[

1 2
0 1

]

.

e.

[

a b
b −a

][

7
1

]

=

[

7a + b
7b − a

]

=

[

−5
5

]

. So a = − 4
5 , b = 3

5 , and E =

[

− 4
5

3
5

3
5

4
5

]

. Note

that a2 + b2 = 1, as required for a reflection matrix.

27. Matrix B clearly represents a scaling.

Matrix C represents a projection, by Definition 2.2.1, with u1 = 0.6 and u2 = 0.8.

Matrix E represents a shear, by Fact 2.2.5.

Matrix A represents a reflection, by Definition 2.2.2.
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Matrix D represents a rotation, by Definition 2.2.3.

28. a. D is a scaling, being of the form

[

k 0
0 k

]

.

b. E is the shear, since it is the only matrix which has the proper form (Fact 2.2.5).

c. C is the rotation, since it fits Fact 2.2.3.

d. A is the projection, following the form given in Definition 2.2.1.

e. F is the reflection, using Definition 2.2.2.

29. To check that L is linear, we verify the two parts of Fact 2.1.3.

a. Use the hint and apply L on both sides of the equation ~x + ~y = T (L(~x) + L(~y)):

L(~x + ~y) = L(T (L(~x) + L(~y))) = L(~x) + L(~y), as claimed.

b. L(k~x) = L(kT (L(~x)) = L(T (kL(~x))) = kL(~x), as claimed.

↑ ↑

~x = T (L(~x)) T is linear.

30. Write A = [~v1 ~v2 ]; then A~x = [~v1 ~v2]

[

x1

x2

]

= x1~v1 + x2~v2. We must choose ~v1 and ~v2

in such a way that x1~v1 + x2~v2 is a scalar multiple of the vector

[

1
2

]

, for all x1 and x2.

This is the case if (and only if) both ~v1 and ~v2 are scalar multiples of

[

1
2

]

.

For example, choose ~v1 =

[

1
2

]

and ~v2 =

[

0
0

]

, so that A =

[

1 0
2 0

]

.

31. Write A = [~v1 ~v2 ~v3]; then A~x = [~v1 ~v2 ~v3]





x1

x2

x3



 = x1~v1 + x2~v2 + x3~v3.

We must choose ~v1, ~v2, and ~v3 in such a way that x1~v1 + x2~v2 + x3~v3 is perpendicular to

~w =





1
2
3



 for all x1, x2, and x3. This is the case if (and only if) all the vectors ~v1, ~v2, and

~v3 are perpendicular to ~w, that is, if ~v1 · ~w = ~v2 · ~w = ~v3 · ~w = 0.
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For example, we can choose ~v1 =





−2
1
0



 and ~v2 = ~v3 = ~0, so that A =





−2 0 0
1 0 0
0 0 0



.

32. a. See Figure 2.25.

Figure 2.25: for Problem 2.2.32a.

b. Compute D~v =

[

cosα − sinα
sinα cosα

] [

cosβ
sin β

]

=

[

cosα cosβ − sin α sin β
sin α cosβ + cosα sin β

]

.

Comparing this result with our finding in part (a), we get the addition theorems

cos(α + β) = cosα cosβ − sin α sin β

sin(α + β) = sin α cosβ − cosα sin β

33. Geometrically, we can find the representation ~v = ~v1 + ~v2 by means of a parallelogram,
as shown in Figure 2.26.

To show the existence and uniqueness of this representation algebraically, choose a nonzero
vector ~w1 in L1 and a nonzero ~w2 in L2. Then the system x1 ~w1 + x2 ~w2 = ~0 or

[~w1 ~w2]

[

x1

x2

]

= ~0 has only the solution x1 = x2 = 0 (if x1 ~w1 + x2 ~w2 = ~0 then

x1 ~w1 = −x2 ~w2 is both in L1 and in L2, so that it must be the zero vector).
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Figure 2.26: for Problem 2.2.33.

Therefore, the system x1 ~w1 + x2 ~w2 = ~v or [~w1 ~w2]

[

x1

x2

]

= ~v has a unique solution x1, x2

for all ~v in R
2 (by Fact 1.3.4). Now set ~v1 = x1 ~w1 and ~v2 = x2 ~w2 to obtain the desired

representation ~v = ~v1 + ~v2. (Compare with Exercise 1.3.57.)

To show that the transformation T (~v) = ~v1 is linear, we will verify the two parts of Fact
2.1.3.

Let ~v = ~v1 +~v2, ~w = ~w1 + ~w2, so that ~v + ~w = (~v1 + ~w1) + (~v2 + ~w2) and k~v = k~v1 + k~v2.

↑
in L1

↑
in L2

↑
in L1

↑
in L2

↑
in L1

↑
in L2

↑
in L1

↑
in L2

a. T (~v + ~w) = ~v1 + ~w1 = T (~v) + T (~w), and

b. T (k~v) = k~v1 = kT (~v), as claimed.

34. Keep in mind that the columns of the matrix of a linear transformation T from R
3 to R

3

are T (~e1), T (~e2), and T (~e3).

If T is the orthogonal projection onto a line L, then T (~x) will be on L for all ~x in R
3;

in particular, the three columns of the matrix of T will be on L, and therefore pairwise
parallel. This is the case only for matrix B: B represents an orthogonal projection onto a
line.

A reflection transforms orthogonal vectors into orthogonal vectors; therefore, the three
columns of its matrix must be pairwise orthogonal. This is the case only for matrix E: E
represents the reflection about a line.

35. If the vectors ~v1 and ~v2 are defined as shown in Figure 2.27, then the parallelogram P
consists of all vectors of the form ~v = c1~v1 + c2~v2, where 0 ≤ c1, c2 ≤ 1.

The image of P consists of all vectors of the form T (~v) = T (c1~v1+c2~v2) = c1T (~v1)+c2T (~v2).
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Figure 2.27: for Problem 2.2.35.

These vectors form the parallelogram shown in Figure 2.27 on the right.

36. If the vectors ~v0, ~v1, and ~v2 are defined as shown in Figure 2.28, then the parallelogram
P consists of all vectors ~v of the form ~v = ~v0 + c1~v1 + c2~v2, where 0 ≤ c1, c2 ≤ 1.

The image of P consists of all vectors of the form T (~v) = T (~v0 + c1~v1 + c2~v2) = T (~v0) +
c1T (~v1) + c2T (~v2).

These vectors form the parallelogram shown in Figure 2.28 on the right.

Figure 2.28: for Problem 2.2.36.

37. a. By Definition 2.2.1, a projection has a matrix of the form

[

u2
1 u1u2

u1u2 u2
2

]

, where

[

u1

u2

]

is a unit vector.

So the trace is u2
1 + u2

2 = 1.
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b. By Definition 2.2.2, reflection matrices look like

[

a b
b −a

]

, so the trace is a − a = 0.

c. According to Fact 2.2.3, a rotation matrix has the form

[

cos θ − sin θ
sin θ cos θ

]

, so the trace

is cos θ + cos θ = 2 cos θ for some θ. Thus, the trace is in the interval [−2, 2].

d. By Fact 2.2.5, the matrix of a shear appears as either

[

1 0
k 1

]

or

[

1 k
0 1

]

, depending

on whether it represents a vertical or horizontal shear. In both cases, however, the
trace is 1 + 1 = 2.

38. a. A =

[

u2
1 u1u2

u1u2 u2
2

]

, so det(A) = u2
1u

2
2 − u1u2u1u2 = 0.

b. A =

[

a b
b −a

]

, so det(A) = −a2 − b2 = −(a2 + b2) = −1.

c. A =

[

a −b
b a

]

, so det(A) = a2 − (−b2) = a2 + b2 = 1.

d. A =

[

1 k
0 1

]

or

[

1 0
k 1

]

, both of which have determinant equal to 12 − 0 = 1.

39. a. Note that

[

1 1
1 1

]

= 2





1
2

1
2

1
2

1
2



 . The matrix





1
2

1
2

1
2

1
2



 represents an orthogonal

projection (Definition 2.2.1), with ~u =

[

u1

u2

]

=

[ √
2

2√
2

2

]

. So,

[

1 1
1 1

]

represents a

projection combined with a scaling by a factor of 2.

b. This looks similar to a shear, with the one zero off the diagonal. Since the two diagonal

entries are identical, we can write

[

3 0
−1 3

]

= 3

[

1 0
− 1

3 1

]

, showing that this matrix

represents a vertical shear combined with a scaling by a factor of 3.

c. We are asked to write

[

3 4
4 −3

]

= k

[ 3
k

4
k

4
k

− 3
k

]

, with our scaling factor k yet to be

determined. This matrix,

[ 3
k

4
k

4
k

− 3
k

]

has the form of a reflection matrix

([

a b
b −a

])

.

This form further requires that 1 = a2 + b2 = ( 3
k
)2 + ( 4

k
)2, or k = 5. Thus, the matrix

represents a reflection combined with a scaling by a factor of 5.
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40. ~x = projP ~x + projQ~x, as illustrated in Figure 2.29.

Figure 2.29: for Problem 2.2.40.

Figure 2.30: for Problem 2.2.41.

41. refQ~x = −refP ~x since refQ~x, refP ~x, and ~x all have the same length, and refQ~x and refP ~x
enclose an angle of 2α + 2β = 2(α + β) = π. (See Figure 2.30.)

42. T (~x) = T (T (~x)) since T (~x) is on L hence the projection of T (~x) onto L is T (~x) itself.

43. Since ~y = A~x is obtained from ~x by a rotation through θ in the counterclockwise direction,
~x is obtained from ~y by a rotation through θ in the clockwise direction, that is, a rotation
through −θ. (See Figure 2.31.)

Therefore, the matrix of the inverse transformation is A−1 =

[

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]

=
[

cos θ sin θ
− sin θ cos θ

]

. You can use the formula in Exercise 2.1.13b to check this result.

44. By Exercise 1.1.13b, A−1 =

[

a −b
b a

]−1

= 1
a2+b2

[

a b
−b a

]

.
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Figure 2.31: for Problem 2.2.43.

If A represents a rotation through θ followed by a scaling by r, then A−1 represents a
rotation through −θ followed by a scaling by 1

r
.

Figure 2.32: for Problem 2.2.44.

45. By Exercise 2.1.13, A−1 = 1
−a2−b2

[

−a −b
−b a

]

= 1
−(a2+b2)

[

−a −b
−b a

]

= −1

[

−a −b
−b a

]

=
[

a b
b −a

]

.

So A−1 = A, which makes sense. Reflecting a vector twice about the same line will return
it to its original state.

46. We want to write A = k

[

a
k

b
k

b
k

−a
k

]

, where the matrix B =

[

a
k

b
k

b
k

−a
k

]

represents a

reflection. It is required that ( a
k
)2+( b

k
)2 = 1, meaning that a2+b2 = k2, or, k =

√
a2 + b2.

Now A−1 = 1
a2+b2

[

a b
b −a

]

= 1
k2 A = 1

k
B, for the reflection matrix B and the scaling

factor k introduced above. In summary: If A represents a reflection combined with a
scaling by k, then A−1 represents the same reflection combined with a scaling by 1

k
.

47. Write T

[

x1

x2

]

=

[

a b
c d

][

x1

x2

]

=

[

ax1 + bx2

cx1 + dx2

]

.
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a. f(t) =

(

T

[

cos t
sin t

])

·
(

T

[

− sin t
cos t

])

=

[

a cos t + b sin t
c cos t + d sin t

]

·
[

−a sin t + b cos t
−c sin t + d cos t

]

= (a cos t + b sin t)(−a sin t + b cos t) + (c cos t + d sin t)(−c sin t + d cos t)

This function f(t) is continuous, since cos(t), sin(t), and constant functions are con-
tinuous, and sums and products of continuous functions are continuous.

b. f
(

π
2

)

= T

[

0
1

]

· T
[

−1
0

]

= −
(

T

[

0
1

]

· T
[

1
0

])

, since T is linear.

f(0) = T

[

1
0

]

· T
[

0
1

]

= T

[

0
1

]

· T
[

1
0

]

. The claim follows.

c. By part (b), the numbers f(0) and f
(

π
2

)

have different signs (one is positive and the
other negative), or they are both zero. Since f(t) is continuous, by part (a), we can
apply the intermediate value theorem. (See Figure 2.33.)

Figure 2.33: for Problem 2.2.47c.

d. Note that

[

cos(t)
sin(t)

]

and

[

− sin(t)
cos(t)

]

are perpendicular unit vectors, for any t. If we set

~v1 =

[

cos(c)
sin(c)

]

, ~v2 =

[

− sin(c)
cos(c)

]

, with the number c we found in part (c), then

f(c) = T (~v1) · T (~v2) = 0, so that T (~v1) and T (~v2) are perpendicular, as claimed. Note
that T (~v1) or T (~v2) may be zero.

48. We find

f(t) =

([

0 4
5 −3

][

cos(t)
sin(t)

])

·
([

0 4
5 −3

][

− sin(t)
cos(t)

])

=

[

4 sin(t)
5 cos(t) − 3 sin(t)

]

·
[

4 cos(t)
−5 sin(t) − 3 cos(t)

]
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Figure 2.34: for Problem 2.2.48.

= 15(sin2 t − cos2 t) = 15(2 sin2 t − 1). See Figure 2.34.

The only zero of f(t) between 0 and π
2 is at c = π

4 .

Therefore, ~v1 =

[

cos(π
4 )

sin(π
4 )

]

=





√
2

2√
2

2



 and ~v2 =

[

− sin(π
4 )

cos(π
4 )

]

=





−
√

2
2
√

2
2



 work. Note

that T (~v1) = 1√
2

[

4
2

]

and T (~v2) = 1√
2

[

4
−8

]

are indeed perpendicular. See Figure 2.35.

Figure 2.35: for Problem 2.2.48.

49. If ~x =

[

cos(t)
sin(t)

]

then T (~x) =

[

5 0
0 2

] [

cos(t)
sin(t)

]

=

[

5 cos(t)
2 sin(t)

]

= cos(t)

[

5
0

]

+ sin(t)

[

0
2

]

.
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These vectors form an ellipse; consider the characterization of an ellipse given in the

footnote on page 70, with ~w1 =

[

5
0

]

and ~w2 =

[

0
2

]

. (See Figure 2.36.)

Figure 2.36: for Problem 2.2.49.

50. Use the hint: Since the vectors on the unit circle are of the form ~v = cos(t)~v1+sin(t)~v2, the
image of the unit circle consists of the vectors of the form T (~v) = T (cos(t)~v1 +sin(t)~v2) =
cos(t)T (~v1) + sin(t)T (~v2).
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Figure 2.37: for Problem 2.2.50.

These vectors form an ellipse: Consider the characterization of an ellipse given in the
footnote, with ~w1 = T (~v1) and ~w2 = T (~v2). The key point is that T (~v1) and T (~v2) are
perpendicular.

51. Consider the linear transformation T with matrix A = [~w1 ~w2], that is,

T

[

x1

x2

]

= A

[

x1

x2

]

= [~w1 ~w2]

[

x1

x2

]

= x1 ~w1 + x2 ~w2.

The curve C is the image of the unit circle under the transformation T : if ~v =

[

cos(t)
sin(t)

]

is on the unit circle, then T (~v) = cos(t)~w1 + sin(t)~w2 is on the curve C. Therefore, C is
an ellipse, by Exercise 50. (See Figure 2.38.)

52. By definition, the vectors ~v on an ellipse E are of the form ~v = cos(t)~v1 + sin(t)~v2, for
some perpendicular vectors ~v1 and ~v2. Then the vectors on the image C of E are of the
form T (~v) = cos(t)T (~v1) + sin(t)T (~v2). These vectors form an ellipse, by Exercise 51
(with ~w1 = T (~v1) and ~w2 = T (~v2)).

2.3

1. rref

[

2 3
... 1 0

5 8
... 0 1

]

=





1 0
... 8 −3

0 1
... −5 2



, so that

[

2 3
5 8

]−1

=

[

8 −3
−5 2

]

.

2. rref

[

1 1
... 1 0

1 1
... 0 1

]

=





1 1
... 0 1

0 0
... 1 −1



, so that

[

1 1
1 1

]

fails to be invertible.
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Figure 2.38: for Problem 2.2.51.

Figure 2.39: for Problem 2.2.52.

3. rref

[

0 2
... 1 0

1 1
... 0 1

]

=





1 0
... − 1

2 1

0 1
... 1

2 0



, so that

[

0 2
1 1

]−1

=

[− 1
2 1
1
2 0

]

.

4. Use Fact 2.3.5; the inverse is







3
2 −1 1

2
1
2 0 − 1

2

− 3
2 1 1

2






.

5. rref





1 2 2
1 3 1
1 1 3



 =





1 0 4
0 1 −1
0 0 0



, so that the matrix fails to be invertible, by Fact 2.3.3.

6. Use Fact 2.3.5; the inverse is





1 −2 1
0 1 −2
0 0 1



.
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7. rref





1 2 3
0 0 2
0 0 3



 =





1 2 0
0 0 1
0 0 0



, so that the matrix fails to be invertible, by Fact 2.3.3.

8. Use Fact 2.3.5; the inverse is





0 0 1
0 1 0
1 0 0



.

9. rref





1 1 1
1 1 1
1 1 1



 =





1 1 1
0 0 0
0 0 0



, so that the matrix fails to be invertible, by Fact 2.3.3.

10. Use Fact 2.3.5; the inverse is





3 −3 1
−3 5 −2

1 −2 1



.

11. Use Fact 2.3.5; the inverse is





1 0 −1
0 1 0
0 0 1



.

12. Use Fact 2.3.5; the inverse is







5 −20 −2 −7
0 −1 0 0

−2 6 1 2
0 3 0 1







13. Use Fact 2.3.5; the inverse is







1 0 0 0
−2 1 0 0

1 −2 1 0
0 1 −2 1






.

14. Use Fact 2.3.5; the inverse is







3 −5 0 0
−1 2 0 0

0 0 5 −2
0 0 −2 1






.

15. Use Fact 2.3.5; the inverse is







−6 9 −5 1
9 −1 −5 2

−5 −5 9 −3
1 2 −3 1







16. Solving for x1 and x2 in terms of y1 and y2 we find that

x1 = −8y1 + 5y2

x2 = 5y1 − 3y2

17. We make an attempt to solve for x1 and x2 in terms of y1 and y2:
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∣

∣

∣

∣

x1 + 2x2 = y1

4x1 + 8x2 = y2

∣

∣

∣

∣

−−−→−4(I)

∣

∣

∣

∣

x1 + 2x2 = y1

0 = −4y1 + y2

∣

∣

∣

∣

.

This system has no solutions (x1, x2) for some (y1, y2), and infinitely many solutions for
others; the transformation fails to be invertible.

18. Solving for x1, x2, and x3 in terms of y1, y2, and y3 we find that

x1 = y3

x2 = y1

x3 = y2

19. Solving for x1, x2, and x3 in terms of y1, y2, and y3, we find that

x1 = 3y1 − 5
2y2 + 1

2y3

x2 = −3y1 + 4y2 − y3

x3 = y1 − 3
2y2 + 1

2y3

20. Solving for x1, x2, and x3 in terms of y1, y2, and y3 we find that

x1 = −8y1 − 15y2 + 12y3

x2 = 4y1 + 6y2 − 5y3

x3 = −y1 − y2 + y3

21. f(x) = x2 fails to be invertible, since the equation f(x) = x2 = 1 has two solutions,
x = ±1.

22. f(x) = 2x fails to be invertible, since the equation f(x) = 2x = 0 has no solution x.

23. Note that f ′(x) = 3x2 + 1 is always positive; this implies that the function f(x) = x3 + x
is increasing throughout. Therefore, the equation f(x) = b has at most one solution x for
all b. (See Figure 2.40.)

Now observe that limx→∞ f(x) = ∞ and limx→−∞ f(x) = −∞; this implies that the
equation f(x) = b has at least one solution x for a given b (for a careful proof, use
the intermediate value theorem; compare with Exercise 2.2.47c).

24. We can write f(x) = x3 − x = x(x2 − 1) = x(x − 1)(x + 1).

The equation f(x) = 0 has three solutions, x = 0, 1,−1, so that f(x) fails to be invertible.

25. Invertible, with inverse

[

x1

x2

]

=

[

3
√

y1

y2

]

26. Invertible, with inverse

[

x1

x2

]

=

[

3
√

y2 − y1

y1

]
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Figure 2.40: for Problem 2.3.23.

27. This transformation fails to be invertible, since the equation

[

x1 + x2

x1x2

]

=

[

0
1

]

has no

solution.

28. We are asked to find the inverse of the matrix A =







22 13 8 3
−16 −3 −2 −2

8 9 7 2
5 4 3 1






.

We find that A−1 =







1 −2 9 − 25
−2 5 −22 60

4 −9 41 −112
−9 17 80 222






.

T−1 is the transformation from R
4 to R

4 with matrix A−1.

29. Use Fact 2.3.3:




1 1 1
1 2 k
1 4 k2



 −I
−I

→





1 1 1
0 1 k − 1
0 3 k2 − 1





−II

−3(II)
→





1 0 2 − k
0 1 k − 1
0 0 k2 − 3k + 2





The matrix is invertible if (and only if) k2 − 3k + 2 = (k − 2)(k − 1) 6= 0, in which case
we can further reduce it to I3. Therefore, the matrix is invertible if k 6= 1 and k 6= 2.

30. Use Fact 2.3.3:




0 1 b
−1 0 c
−b −c 0





−−−−→
I ↔ II





−1 0 c
0 1 b

−b −c 0





−−−−→÷(−1)




1 0 −c
0 1 b

−b −c 0





+b(I) + c(II)
−→





1 0 −c
0 1 b
0 0 0





This matrix fails to be invertible, regarless of the values of b and c.

31. Use Fact 2.3.3; first assume that a 6= 0.
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0 a b
−a 0 c
−b −c 0





swap :
I ↔ II

→





−a 0 c
0 a b

−b −c 0





÷(−a)
→







1 0 − c
a

0 a b
−b −c 0







+b(I)
→







1 0 − c
a

0 a b

0 −c − bc
a






÷a →







1 0 − c
a

0 1 b
a

0 −c − bc
a







+c(II)

→







1 0 − c
a

0 1 b
a

0 0 0







Now consider the case when a = 0:




0 0 b
0 0 c

−b −c 0





swap :
I ↔ III

→





−b −c 0
0 0 c
0 0 b



: The second entry on the diagonal of rref

will be 0.

It follows that the matrix





0 a b
−a 0 c
−b −c 0



 fails to be invertible, regardless of the values

of a, b, and c.

32. Use Fact 2.3.6.

If A =

[

a b
c d

]

is a matrix such that ad − bc = 1 and A−1 = A, then

A−1 = 1
ad−bc

[

d −b
−c a

]

=

[

d −b
−c a

]

=

[

a b
c d

]

, so that b = 0, c = 0, and a = d.

The condition ad − bc = a2 = 1 now implies that a = d = 1 or a = d = −1.

This leaves only two matrices A, namely, I2 and −I2. Check that these two matrices do
indeed satisfy the given requirements.

33. Use Fact 2.3.6.

The requirement A−1 = A means that − 1
a2+b2

[

−a −b
−b a

]

=

[

a b
b −a

]

. This is the case

if (and only if) a2 + b2 = 1.

34. a. By Fact 2.3.3, A is invertible if (and only if) a, b, and c are all nonzero. In this case,

A−1 =







1
a

0 0

0 1
b

0

0 0 1
c






.
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b. In general, a diagonal matrix is invertible if (and only if) all of its diagonal entries are
nonzero.

35. a. A is invertible if (and only if) all its diagonal entries, a, d, and f , are nonzero.

b. As in part (a): if all the diagonal entries are nonzero.

c. Yes, A−1 will be upper triangular as well; as you construct rref[A
...In], you will perform

only the following row operations:

• divide rows by scalars

• subtract a multiple of the jth row from the ith row, where j > i.

Applying these operations to In, you end up with an upper triangular matrix.

d. As in part (b): if all diagonal entries are nonzero.

36. If a matrix A can be transformed into B by elementary row operations, then A is invertible
if (and only if) B is invertible. The claim now follows from Exercise 35, where we show
that a triangular matrix is invertible if (and only if) its diagonal entries are nonzero.

37. Make an attempt to solve the linear equation ~y = (cA)~x = c(A~x) for ~x:

A~x = 1
c
~y, so that ~x = A−1

(

1
c
~y
)

=
(

1
c
A−1

)

~y.

This shows that cA is indeed invertible, with (cA)−1 = 1
c
A−1.

38. Use Fact 2.3.6; A−1 = 1
−1

[

−1 −k
0 1

]

=

[

1 k
0 −1

]

(= A).

39. Suppose the ijth entry of M is k, and all other entries are as in the identity matrix. Then

we can find rref[M
...In] by subtracting k times the jth row from the ith row. Therefore,

M is indeed invertible, and M−1 differs from the identity matrix only at the ijth entry;
that entry is −k. (See Figure 2.41.)

40. If you apply an elementary row operation to a matrix with two equal columns, then
the resulting matrix will also have two equal columns. Therefore, rref(A) has two equal
columns, so that rref(A) 6= In. Now use Fact 2.3.3.

41. a. Invertible: the transformation is its own inverse.
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Figure 2.41: for Problem 2.3.39.

b. Not invertible: the equation T (~x) = ~b has infinitely many solutions if ~b is on the plane,
and none otherwise.

c. Invertible: The inverse is a scaling by 1
5 (that is, a contraction by 5). If ~y = 5~x, then

~x = 1
5~y.

d. Invertible: The inverse is a rotation about the same axis through the same angle in
the opposite direction.

42. Permutation matrices are invertible since they row reduce to In in an obvious way, just
by row swaps. The inverse of a permutation matrix A is also a permutation matrix since

rref[A
...In] = [In

...A−1] is obtained from [A
...In] by a sequence of row swaps.

43. We make an attempt to solve the equation ~y = A(B~x) for ~x:

B~x = A−1~y, so that ~x = B−1(A−1~y).

44. a. rref(M4) =







1 0 −1 −2
0 1 2 3
0 0 0 0
0 0 0 0






, so that rank(M4) = 2.

b. To simplify the notation, we introduce the row vectors ~v = [1 1 . . . 1] and ~w =
[0 n 2n . . . (n − 1)n]

with n components. Then we can write Mn in terms of its rows as Mn =







~v + ~w
2~v + ~w

. . .
n~v + ~w







−2(I)
· · ·

−n(I)

.
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Applying the Gauss-Jordan algorithm to the first column we get











~v + ~w
−~w
−2~w
. . .

−(n − 1)~w











.

All the rows below the second are scalar multiples of the second; therefore, rank(Mn) =
2.

c. By part (b), the matrix Mn is invertible only if n = 1 or n = 2.

45. a. Each of the three row divisions requires three multiplicative operations, and each of
the six row subtractions requires three multiplicative operations as well; altogether,
we have 3 · 3 + 6 · 3 = 9 · 3 = 33 = 27 operations.

b. Suppose we have already taken care of the first m columns: [A
...In] has been reduced

the matrix in Figure 2.42.

Figure 2.42: for Problem 2.3.45b.

Here, the stars represent arbitrary entries.

Suppose the (m+1)th entry on the diagonal is k. Dividing the (m+1)th row by k re-
quires n operations: n−m−1 to the left of the dotted line

(

not counting the computation k
k

= 1
)

,

and m + 1 to the right of the dotted line
(

including 1
k

)

. Now the matrix has the form
shown in Figure 2.43.

Eliminating each of the other n− 1 components of the (m + 1)th column now requires
n multiplicative operations (n−m− 1 to the left of the dotted line, and m + 1 to the
right). Altogether, it requires n+(n−1)n = n2 operations to process the mth column.
To process all n columns requires n · n2 = n3 operations.
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Figure 2.43: for Problem 2.3.45b.

c. The inversion of a 12 × 12 matrix requires 123 = 4333 = 64 · 33 operations, that is, 64
times as much as the inversion of a 3 × 3 matrix. If the inversion of a 3 × 3 matrix
takes one second, then the inversion of a 12 × 12 matrix takes 64 seconds.

46. Computing A−1~b requires n3 + n2 operations: First, we need n3 operations to find A−1

(see Exercise 45b) and then n2 operations to compute A−1~b (n multiplications for each
component).

How many operations are required to perform Gauss-Jordan eliminations on [A
...~b]? Let

us count these operations “column by column.” If m columns of the coefficient matrix
are left, then processing the next column requires nm operations (compare with Exercise
45b). To process all the columns requires

n · n + n(n − 1) + · · · + n · 2 + n · 1 = n(n + n − 1 + · · · + 2 + 1) = n n(n+1)
2 = n3+n2

2
operations.

only half of what was required to compute A−1~b.

We mention in passing that one can reduce the number of operations further (by about
50% for large matrices) by performing the steps of the row reduction in a different order.

47. Let f(x) = x2; the equation f(x) = 0 has the unique solution x = 0.

48. Let A =





1 0
0 1
0 0



 and ~b =





0
0
0



. The equation A~x = ~b has the unique solution ~x =

[

0
0

]

.

Note that Fact 2.3.4 applies to square matrices only.
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49. a. A =





0.293 0 0
0.014 0.207 0.017
0.044 0.01 0.216



 , I3 − A =





0.707 0 0
−0.014 0.793 −0.017
−0.044 −0.01 0.784





(I3 − A)−1 =





1.41 0 0
0.0267 1.26 0.0274
0.0797 0.0161 1.28





b. We have ~b =





1
0
0



, so that ~x = (I3−A)−1~e1 = first column of (I3−A)−1 ≈





1.41
0.0267
0.0797



.

c. As illustrated in part (b), the ith column of (I3−A)−1 gives the output vector required
to satisfy a consumer demand of 1 unit on industry i, in the absence of any other
consumer demands. In particular, the ith diagonal entry of (I3 − A)−1 gives the
output of industry i required to satisfy this demand. Since industry i has to satisfy
the consumer demand of 1 as well as the interindustry demand, its total output will
be at least 1.

d. Suppose the consumer demand increases from ~b to ~b + ~e2 (that is, the demand on

manufacturing increases by one unit). Then the output must change from (I3 −A)−1~b
to

(I3 − A)−1(~v + ~e2) = (I3 − A)−1~b + (I3 − A)−1~e2 = (I3 − A)−1~b+ (second column of
(I3 − A)−1).

The components of the second column of (I3−A)−1 tells us by how much each industry
has to increase its output.

e. The ijth entry of (In − A)−1 gives the required increase of the output xi of industry
i to satisfy an increase of the consumer demand bj on industry j by one unit. In the
language of multivariable calculus, this quantity is ∂xi

∂bj
.

50. Recall that 1 + k + k2 + · · · = 1
1−k

.

The top left entry of I3 − A is I − k, and the top left entry of (I3 − A)−1 will therefore
be 1

1−k
, as claimed:









1 − k 0 0
... 1 0 0

∗ ∗ ∗
... 0 1 0

∗ ∗ ∗
... 0 0 1









÷(1 − k)
−→









1 0 0
... 1

1−k
0 0

∗ ∗ ∗
... 0 1 0

∗ ∗ ∗
... 0 0 1
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→ . . . (first row will remain unchanged).

In terms of economics, we can explain this fact as follows: The top left entry of (I3−A)−1

is the output of industry 1 (Agriculture) required to satisfy a consumer demand of 1 unit
on industry 1. Producting this one unit to satisfy the consumer demand will generate
an extra demand of k = 0.293 units on industry 1. Producting these k units in turn will
generate an extra demand of k · k = k2 units, and so forth. We are faced with an infinite
series of (ever smaller) demands, 1 + k + k2 + · · · .

51. a. Since rank(A)< n, the matrix E =rref(A) will not have a leading one in the last row,
and all entries in the last row of E will be zero.

Let ~c =













0
0
...
0
1













. Then the last equation of the system E~x = ~c reads 0 = 1, so this system

is inconsistent.

Now, we can “rebuild” ~b from ~c by performing the reverse row-operations in the opposite

order on

[

E
...~c

]

until we reach

[

A
...~b

]

. Since E~x = ~c is inconsistent, A~x = ~b is inconsistent

as well.

b. Since rank(A)≤ min(n, m), and m < n, rank(A) < n also. Thus, by part a, there is a ~b

such that A~x = ~b is inconsistent.

52. Let~b =







0
0
1
0






. Then

[

A
...~b

]

=













0 1 2
... 0

0 2 4
... 0

0 3 6
... 1

1 4 8
... 0













. We find that rref

[

A
...~b

]

=













1 0 0
... 0

0 1 2
... 0

0 0 0
... 1

0 0 0
... 0













,

which has an inconsistency in the third row.

53. a. A − λI2 =

[

3 − λ 1
3 5 − λ

]

.

This fails to be invertible when (3 − λ)(5 − λ) − 3 = 0,

or 15 − 8λ + λ2 − 3 = 0,

or 12 − 8λ + λ2 = 0

or (6 − λ)(2 − λ) = 0. So λ = 6 or λ = 2.

b. For λ = 6, A − λI2 =

[

−3 1
3 −1

]

.
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The system (A−6I2)~x = ~0 has the solutions

[

t
3t

]

, where t is an arbitrary constant. Pick

~x =

[

1
3

]

, for example.

For λ = 2, A − λI2 =

[

1 1
3 3

]

.

The system (A − 2I2)~x = ~0 has the solutions

[

t
−t

]

, where t is an arbitrary constant.

Pick ~x =

[

1
−1

]

, for example.

c. For λ = 6, A~x =

[

3 1
3 5

] [

1
3

]

=

[

6
18

]

= 6

[

1
3

]

.

For λ = 2, A~x =

[

3 1
3 5

] [

1
−1

]

=

[

2
−2

]

= 2

[

1
−1

]

.

54. A − λI2 =

[

1 − λ 10
−3 12 − λ

]

. This fails to be invertible when det(A − λI2) = 0,

so 0 = (1 − λ)(12 − λ) + 30 = 12 − 13λ + λ2 + 30 = λ2 − 13λ + 42 = (λ − 6)(λ − 7). In
order for this to be zero, λ must be 6 or 7.

If λ = 6, then A − 6I2 =

[

−5 10
−3 6

]

. We solve the system (A − 6I2) ~x = ~0 and find that

the solutions are of the form ~x =

[

2t
t

]

. For example, when t = 1, we find ~x =

[

2
1

]

.

If λ = 7, then A − 7I2 =

[

−6 10
−3 5

]

. Here we solve the system (A − 7I2) ~x = ~0, this

time finding that our solutions are of the form ~x =

[

5t
3t

]

. For example, for t = 1, we find

~x =

[

5
3

]

.

2.4

1.

[

4 6
3 4

]

2.

[

4 4
−8 −8

]
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3. Undefined

4.





2 2
2 0
7 4





5.





a b
c d
0 0





6.

[

ad − bc 0
0 ad − bc

]

7.





−1 1 0
5 3 4

−6 −2 −4





8.

[

0 0
0 0

]

9.

[

0 0
0 0

]

10. [0 1]

11. [10]

12.





1 2 3
2 4 6
3 6 9





13. [h]

14. A2 =

[

2 2
2 2

]

, BC = [14 8 2], BD = [6], C2 =





−2 −2 −2
4 1 −2

10 4 −2



 , CD =





0
3
6



 , DB =





1 2 3
1 2 3
1 2 3



,

DE =





5
5
5



, EB = [5 10 15], E2 = [25]

15.

[

1 0
0 1

]

; Fact 2.4.9 applies to square matrices only.
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16. True; (In − A)(In + A) = I2
n + A − A − A2 = In − A2.

17. Not necessarily true; (A+B)2 = (A+B)(A+B) = A2 +AB+BA+B2 6= A2 +2AB+B2

if AB 6= BA.

18. True; apply Fact 2.4.8 to B = A.

19. Not necessarily true; consider the case A = In and B = −In.

20. Not necessarily true; (A − B)(A + B) = A2 + AB − BA − B2 6= A2 − B2 if AB 6= BA.

21. True; ABB−1A−1 = AInA−1 = AA−1 = In.

22. Not necessarily true; the equation ABA−1 = B is equivalent to AB = BA (multiply by
A from the right), which is not true in general.

23. True; (ABA−1)3 = ABA−1ABA−1ABA−1 = AB3A−1.

24. True; (In + A)(In + A−1) = I2
n + A + A−1 + AA−1 = 2In + A + A−1.

25. True; (A−1B)−1 = B−1(A−1)−1 = B−1A (use Fact 2.4.8).

26.









"

1 0
0 1

# "

1 2
3 4

#

+

"

1 0
0 1

#"

0 0
0 0

#∣

∣

∣

"

1 0
0 1

#"

2 3
4 5

#

+

"

1 0
0 1

#"

1 2
3 4

#

"

0 0
0 0

# "

1 2
3 4

#

+

"

1 0
0 1

#"

0 0
0 0

#∣

∣

∣

"

0 0
0 0

#"

2 3
4 5

#

+

"

1 0
0 1

#"

1 2
3 4

#









=









"

1 2
3 4

#

"

0 0
0 0

#

"

3 5
7 9

#

"

1 2
3 4

#









=







1 2 3 5
3 4 7 9
0 0 1 2
0 0 3 4







27.









"

1 0
0 1

# "

1
2

#

+

"

0
0

#

[ 3 ]
∣

∣

∣

"

1 0
0 1

#"

0
0

#

+

"

0
0

#

[ 4 ]

[ 1 3 ]

"

1
2

#

+[ 4 ][ 3 ]
∣

∣

∣[ 1 3 ]

"

0
0

#

+[ 4 ][ 4 ]









=







"

1
2

#∣

∣

∣

"

0
0

#

[ 19 ]
∣

∣

∣[ 16 ]






=





1 0
2 0

19 16





28. A =

[

0 1
0 0

]

is one such matrix.

29. The column vectors of B must be solutions of the system

[

1 3
2 6

]

~x =

[

0
0

]

.

The solutions are of the form B =

[

−3t −3s
t s

]

, where t and s are arbitrary constants,

with at least one of them being nonzero.

30. Yes; by Fact 2.3.4b, the equation A~x = ~0 has a nonzero solution ~v. Let B = [~v ~v . . . ~v].
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Then AB = [A~v A~v . . . A~v] = 0

31. The two column vectors of A must be solutions of the linear systems B~x =

[

1
0

]

and

B~x =

[

0
1

]

, respectively. Each of these systems has infinitely many solutions.

The solutions are of the form





2 + t −1 + s
−1− 2t 1 − 2s

t s



.

32. By Fact 1.3.3, there is a nonzero ~x such that B~x = ~0 and therefore AB~x = ~0. This implies
that AB 6= I3, since I3~x = ~x 6= ~0.

33. By Fact 1.3.3, there is a nonzero ~x such that B~x = ~0 and therefore AB~x = ~0. By Fact
2.3.4b, the 3 × 3 matrix AB fails to be invertible.

34. We can write AB(AB)−1 = A(B(AB)−1) = In and (AB)−1AB = ((AB)−1A)B = In.

By Fact 2.4.9, A and B are invertible.

35. a. Consider a solution ~x of the equation A~x = ~0.

Multiply both sides by B from the left: BA~x = B~0 = ~0, so that ~x = ~0 (since BA = Im).

It follows that ~x = ~0 is the only solution of A~x = ~0.

b. ~x = A~b is a solution, since B~x = BA~b = ~b (because BA = Im).

c. rank(A) = m, by part (a) (all variables are leading).

rank(B) = m, by part (b) (compare with Exercise 2.3.51a).

d. m = rank(B) ≤ (number of columns of B) = n

36. The column vectors of X must be solutions of the system A~x = ~0. These solutions are of

the form

[

−2t
t

]

, where t is arbitrary. Therefore, X =

[

−2s −2t
s t

]

, where s and t are

arbitrary.

37. We want S−1

[

0 1
1 0

]

S =

[

1 0
0 −1

]

, or

[

0 1
1 0

]

S = S

[

1 0
0 −1

]

.
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So

[

0 1
1 0

] [

a b
c d

]

=

[

a b
c d

][

1 0
0 −1

]

or

[

c d
a b

]

=

[

a −b
c −d

]

.

Thus, c = a and d = −b. Matrix S must be of the form

[

a b
a −b

]

where −ab − ab 6= 0,

or −2ab 6= 0, or a 6= 0 and b 6= 0.

38. We want

[

1 3
0 2

]

S = S

[

2 0
0 1

]

. Let S =

[

a b
c d

]

, then we need

[

1 3
0 2

] [

a b
c d

]

=
[

a b
c d

] [

2 0
0 1

]

, or

[

a + 3c b + 3d
2c 2d

]

=

[

2a b
2c d

]

.

Thus, d = 0 and c = 1
3a. Thus, S must be of the form

[

a b
1
3a 0

]

. By inspection, we can

see that S will be invertible as long as a and b are not equal to zero.

39. Let X =

[

a b
c d

]

. Then we want X

[

1 0
0 0

]

=

[

1 0
0 0

]

X , or

[

a b
c d

][

1 0
0 0

]

=

[

1 0
0 0

] [

a b
c d

]

,

or

[

a 0
c 0

]

=

[

a b
0 0

]

, meaning that b = c = 0. Also, we want X

[

0 1
0 0

]

=

[

0 1
0 0

]

X ,

or

[

a 0
0 d

][

0 1
0 0

]

=

[

0 1
0 0

] [

a 0
0 d

]

, or

[

0 a
0 0

]

=

[

0 d
0 0

]

so a = d. Thus, X =
[

a 0
0 a

]

= aI2 must be a multiple of the identity matrix. (X will then commute with any

2 × 2 matrix M , since XM = aM = MX .)

40. A = (AB)B−1 = ((AB)−1)−1B−1 =

[

1 3
2 5

]−1 [
1 2
3 5

]

=

[

−5 3
2 −1

] [

1 2
3 5

]

=

[

4 5
−1 −1

]

.

41. a. DαDβ and DβDα are the same transformation, namely, a rotation through α + β.

b. DαDβ =

[

cosα − sinα
sin α cosα

][

cosβ − sin β
sin β cosβ

]

=

[

cosα cosβ − sinα sinβ − cosα sin β − sin α cosβ
sinα cosβ + cosα sinβ − sinα sin β + cosα cosβ

]

=

[

cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

]

DβDα yields the same answer.

42. a. See Figure 2.44.
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Figure 2.44: for Problem 2.4.42a.

The vectors ~x and T (~x) have the same length (since reflections leave the length un-
changed), and they enclose an angle of 2(α + β) = 2 · 30◦ = 60◦

b. Based on the answer in part (a), we conclude that T is a rotation through 60◦.

c. The matrix of T is

[

cos(60◦) − sin(60◦)
sin(60◦) cos(60◦)

]

=





1
2 −

√
3

2√
3

2
1
2



.

43. Let A represent the rotation through 120◦; then A3 represents the rotation through 360◦,
that is A3 = I2.

A =

[

cos(120◦) − sin(120◦)
sin(120◦) cos(120◦)

]

=





− 1
2 −

√
3

2√
3

2 − 1
2





44. We want A such that A

[

1 2
2 5

]

=

[

2 1
1 3

]

, so that A =

[

2 1
1 3

][

1 2
2 5

]−1

=

[

8 −3
−1 1

]

.

45. We want A such that A~vi = ~wi, for i = 1, 2, . . . , m, or A[~v1 ~v2 . . . ~vm] = [~w1 ~w2 . . . ~wm],
or AS = B.

Multiplying by S−1 from the right we find the unique solution A = BS−1.
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46. Use the result of Exercise 45, with S =

[

1 2
2 5

]

and B =





7 1
5 2
3 3



;

A = BS−1 =





33 −13
21 − 8
9 − 3





47. Use the result of Exercise 45, with S =

[

3 1
1 2

]

and B =

[

6 3
2 6

]

;

A = BS−1 = 1
5

[

9 3
−2 16

]

.

48. P0
T−→ P1, P1

T−→ P3, P2
T−→ P2, P3

T−→ P0

P0
L−→ P0, P1

L−→ P2, P2
L−→ P1, P3

L−→ P3

a. T−1 is the rotation about the axis through 0 and P2 that transforms P3 into P1.

b. L−1 = L

c. T 2 = T−1 (See part (a).)

d. P0
T ◦L−→ P1 P0

L ◦T−→ P2 The transformations T ◦ L and L ◦ T are not the same.

P1 −→ P2 P1 −→ P3

P2 −→ P3 P2 −→ P1

P3 −→ P0 P3 −→ P0

e.

P0
L ◦ T ◦L−→ P2

P1 −→ P1

P2 −→ P3

P3 −→ P0

This is the rotation about the axis through 0 and P1 that sends P0 to P2.

49. Let A be the matrix of T and C the matrix of L. We want that AP0 = P1, AP1 = P3,

and AP2 = P2. We can use the result of Exercise 45, with S =





1 1 −1
1 −1 1
1 −1 −1



 and

B =





1 −1 −1
−1 −1 1
−1 1 −1



.
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Then A = BS−1 =





0 0 1
−1 0 0

0 −1 0



.

Using an analogous approach, we find that C =





0 1 0
1 0 0
0 0 1



.

50. a. EA =





a b c
d − 3a e − 3b f − 3c

g h k





The matrix EA is obtained from A by an elementary row operation: subtract three
times the first row from the second.

b. EA =







a b c
1
4d 1

4e 1
4f

g h k







The matrix EA is obtained from A by dividing the second row of A by 4 (an elementary
row operation).

c. If we set E =





1 0 0
0 0 1
0 1 0



 then





1 0 0
0 0 1
0 1 0









a b c
d e f
g h k



 =





a b c
g h k
d e f



, as desired.

d. An elementary n × n matrix E has the same form as In except that either

• eij = k(6= 0) for some i 6= j [as in part (a)], or

• eii = k(6= 0, 1) for some i [as in part (b)], or

• eij = eji = 1, eii = ejj = 0 for some i 6= j [as in part (c)].

51. Let E be an elementary n × n matrix (obtained from In by a certain elementary row
operation), and let F be the elementary matrix obtained from In by the reversed row
operation. Our work in Exercise 50 [parts (a) through (c)] shows that EF = In, so that
E is indeed invertible, and E−1 = F is an elementary matrix as well.

52. a. The matrix rref(A) is obtained from A by performing a sequence of p elementary row
operations. By Exercise 50 [parts (a) through (c)] each of these operations can be
represented by the left multiplication with an elementary matrix, so that rref(A) =
E1E2 . . . EpA.
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b. A =

[

0 2
1 3

]

swap rows 1 and 2, represented by

[

0 1
1 0

]

↓
[

1 3
0 2

]

÷2
, represented by

[

1 0
0 1

2

]

↓
[

1 3
0 1

]

−3(II)
, represented by

[

1 −3
0 1

]

↓

rref(A) =

[

1 0
0 1

]

Therefore, rref(A) =

[

1 0
0 1

]

=

[

1 −3
0 1

] [

1 0
0 1

2

][

0 1
1 0

] [

0 2
1 3

]

= E1E2E3A.

53. a. Let S = E1E2 . . . Ep in Exercise 52a.

By Exercise 51, the elementary matrices Ei are invertible: now use Fact 2.4.8 repeat-
edly to see that S is invertible.

b. A =

[

2 4
4 8

]

÷2
, represented by

[

1
2 0
0 1

]

[

1 2
4 8

]

−4(I)
, represented by

[

1 0
−4 1

]

rref(A) =

[

1 2
0 0

]

Therefore, rref(A) =

[

1 2
0 0

]

=

[

1 0
−4 1

] [

1
2 0
0 1

][

2 4
4 8

]

= E1E2A = SA, where

S =

[

1 0
−4 1

] [

1
2 0
0 1

]

=

[

1
2 0

−2 1

]

.

(There are other correct answers.)

54. a. By Exercise 52a, In = rref(A) = E1E2 . . . EpA, for some elementary matrices E1, . . . , Ep.
By Exercise 51, the Ei are invertible and their inverses are elementary as well. There-
fore,
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A = (E1E2 . . . Ep)
−1 = E−1

p . . . E−1
2 E−1

1 expresses A as a product of elementary ma-
trices.

b. We can use out work in Exercise 52b:
[

0 2
1 3

]

=

([

1 −3
0 1

] [

1 0
0 1

2

] [

0 1
1 0

])−1

=

[

0 1
1 0

]−1 [
1 0
0 1

2

]−1 [
1 −3
0 1

]

=

[

0 1
1 0

][

1 0
0 2

][

1 3
0 1

]

55.

[

1 k
0 1

]

represents a horizontal shear,

[

1 0
k 1

]

represents a vertical shear,

[

k 0
0 1

]

represents a “scaling in ~e1 direction” (leaving the ~e2 component unchanged),

[

1 0
0 k

]

represents a “scaling in ~e2 direction” (leaving the ~e1 component unchanged), and

[

0 1
1 0

]

represents the reflection about the line spanned by

[

1
1

]

.

56. Performing a sequence of p elementary row operations on a matrix A amounts to mul-
tiplying A with E1E2 . . . Ep from the left, where the Ei are elementary matrices. If
In = E1E2 . . . EpA, then E1E2 . . . Ep = A−1, so that

a. E1E2 . . . EpAB = B, and

b. E1E2 . . . EpIn = A−1.

57. Let A and B be two lower triangular n×n matrices. We need to show that the ijth entry
of AB is 0 whenever i < j.

This entry is the dot product of the ith row of A and the jth column of B,

[ai1 ai2 . . . aii 0 . . . 0] ·





















0
...
0

bjj

...
bnj





















, which is indeed 0 if i < j.
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58. a.





1 2 3
2 6 7
2 2 4



 −2I
−2I

, represented by





1 0 0
0 1 0

−2 0 1









1 0 0
−2 1 0

0 0 1





↓




1 2 3
0 2 1
0 −2 −2





+II
represented by





1 0 0
0 1 0
0 1 1





↓




1 2 3
0 2 1
0 0 −1



 , so that





1 2 3
0 2 1
0 0 −1



 =





1 0 0
0 1 0
0 1 1









1 0 0
0 1 0

−2 0 1









1 0 0
−2 1 0

0 0 1









1 2 3
2 6 7
2 2 4





↑
U

↑
E3

↑
E2

↑
E1

↑
A

b. A = (E3E2E1)
−1U = E−1

1 E−1
2 E−1

3 U =





1 0 0
2 1 0
0 0 1









1 0 0
0 1 0
2 0 1









1 0 0
0 1 0
0 −1 1









1 2 3
0 2 1
0 0 −1





↑
M1

↑
M2

↑
M3

↑
U

c. Let L = M1M2M3 in part (b); we compute L =





1 0 0
2 1 0
2 −1 1



.

Then





1 2 3
2 6 7
2 2 4



 =





1 0 0
2 1 0
2 −1 1









1 2 3
0 2 1
0 0 −1





↑
A

↑
L

↑
U

d. We can use the matrix L we found in part (c), but U needs to be modified. Let

D =





1 0 0
0 2 0
0 0 −1



.
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(Take the diagonal entries of the matrix U in part (c)).

Then





1 2 3
2 6 7
2 2 4



 =





1 0 0
2 1 0
2 −1 1









1 0 0
0 2 0
0 0 −1









1 2 3
0 1 1

2
0 0 1



.

↑
A

↑
L

↑
D

↑
U

59. a. Write the system L~y = ~b in components:

∣

∣

∣

∣

∣

∣

∣

y1 = −3
−3y1 + y2 = 14
y1 + 2y2 + y3 = 9
−y1 + 8y2 − 5y3 + y4 = 33

∣

∣

∣

∣

∣

∣

∣

, so that y1 = −3, y2 = 14 + 3y1 = 5,

y3 = 9 − y1 − 2y2 = 2, and y4 = 33 + y1 − 8y2 + 5y3 = 0:

~y =







−3
5
2
0






.

b. Proceeding as in part (a) we find that ~x =







1
−1

2
0






.

60. We try to find matrices L =

[

a 0
b c

]

and U =

[

d e
0 f

]

such that

[

0 1
1 0

]

=

[

a 0
b c

][

d e
0 f

]

=

[

ad ae
bd be + cf

]

.

Note that the equations ad = 0, ae = 1, and bd = 1 cannot be solved simultaneously: If
ad = 0 then a or d is 0 so that ae or bd is zero.

Therefore, the matrix

[

0 1
1 0

]

does not have an LU factorization.

61. a. Write L =

[

L(m) 0
L3 L4

]

and U =

[

U (m) U2

0 U4

]

. Then A = LU =

[

L(m)U (m) L(m)U2

L3U
(m) L3U2 + L4U4

]

,

so that A(m) = L(m)U (m), as claimed.
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b. By Exercise 34, the matrices L and U are both invertible. By Exercise 2.3.35, the
diagonal entries of L and U are all nonzero. For any m, the matrices L(m) and U (m)

are triangular, with nonzero diagonal entries, so that they are invertible. By Fact 2.4.8,
the matrix A(m) = L(m)U (m) is invertible as well.

c. Using the hint, we write A =

[

A(n−1) ~v
~w k

]

=

[

L′ 0
~x t

][

U ′ ~y
0 s

]

.

We are looking for a column vector ~y, a row vector ~x, and scalars t and s satisfying
these equations. The following equations need to be satisfied: ~v = L′~y, ~w = ~xU ′, and
k = ~x~y + ts.

We find that ~y = (L′)−1~v, ~x = ~w(U ′)−1, and ts = k − ~w(U ′)−1(L′)−1~v.

We can choose, for example, s = 1 and t = k − ~w(U ′)−1(L′)−1~v, proving that A does
indeed have an LU factorization.

Alternatively, one can show that if all principal submatrices are invertible then no
row swaps are required in the Gauss-Jordan Algorithm. In this case, we can find an
LU -factorization as outlined in Exercise 58.

62. a. If A = LU is an LU factorization, then the diagonal entries of L and U are nonzero
(compare with Exercise 61). Let D1 and D2 be the diagonal matrices whose diagonal
entries are the same as those of L and U , respectively.

Then A = (LD−1
1 )(D1D2)(D

−1
2 U) is the desired factorization

↑
new L

↑
D

↑
new U

(verify that LD−1
1 and D−1

2 U are of the required form).

b. If A = L1D1U1 = L2D2U2 and A is invertible, then L1, D1, U1, L2, D2, U2 are all
invertible, so that we can multiply the above equation by D−1

2 L−1
2 from the left and

by U−1
1 from the right:

D−1
2 L−1

2 L1D1 = U2U
−1
1 .

Since products and inverses of upper triangular matrices are upper triangular (and
likewise for lower triangular matrices), the matrix D−1

2 L−1
2 L1D1 = U2U

−1
1 is both

upper and lower triangular, that is, it is diagonal. Since the diagonal entries of U2

and U1 are all 1, so are the diagonal entries of U2U
−1
1 , that is U2U

−1
1 = In, and thus

U2 = U1.

Now L1D1 = L2D2, so that L−1
2 L1 = D2D

−1
1 is diagonal. As above, we have in fact

L−1
2 L1 = In and therefore L2 = L1.
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63. We will prove that A(C + D) = AC + AD, repeatedly using Fact 1.3.9a: A(~x + ~y) =
A~x + A~y.

Write B = [~v1 . . . ~vm] and C = [~w1 . . . ~wm]. Then

A(C + D) = A[~v1 + ~w1 · · ·~vm + ~wm] = [A~v1 + A~w1 · · · A~vm + A~wm], and

AC + AD = A[~v1 · · · ~vm] + A[~w1 · · · ~wm] = [A~v1 + A~w1 · · ·A~vm + A~wm].

The results agree.

64. The ijth entries of the three matrices are

p
∑

h=1

(kaih)bhj ,

p
∑

h=1

aih(kbhj), and k

(

p
∑

h=1

aihbhj

)

.

The three results agree.

65. Suppose A11 is a p× p matrix and A22 is a q× q matrix. For B to be the inverse of A we
must have AB = Ip+q . Let us partition B the same way as A:

B =

[

B11 B12

B21 B22

]

, where B11 is p × p and B22 is q × q.

Then AB =

[

A11 0
0 A22

] [

B11 B12

B21 B22

]

=

[

A11B11 A11B12

A22B21 A22B22

]

=

[

Ip 0
0 Iq

]

means that

A11B11 = Ip, A22B22 = Iq , A11B12 = 0, A22B21 = 0.

This implies that A11 and A22 are invertible, and B11 = A−1
11 , B22 = A−1

22 .

This in turn implies that B12 = 0 and B21 = 0.

We summarize: A is invertible if (and only if) both A11 and A22 are invertible; in this
case

A−1 =

[

A−1
11 0
0 A−1

22

]

.

66. This exercise is very similar to Example 4 in the text. We outline the solution:
[

A11 0
A21 A22

] [

B11 B12

B21 B22

]

=

[

Ip 0
0 Iq

]

means that

A11B11 = Iq , A11B12 = 0, A21B11 + A22B21 = 0, A21B12 + A22B22 = Iq .
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This implies that A11 is invertible, and B11 = A−1
11 . Multiplying the second equation with

A−1
11 , we conclude that B12 = 0. Then the last equation simplifies to A22B22 = Iq , so

that B22 = A−1
22 .

Finally, B21 = −A−1
22 A21B11 = −A−1

22 A21A
−1
11 .

We summarize: A is invertible if (and only if) both A11 and A22 are invertible. In this
case,

A−1 =

[

A−1
11 0

−A−1
22 A21A

−1
11 A−1

22

]

.

67. Write A in terms of its rows: A =







~w1

~w2

· · ·
~wn






(suppose A is n × m).

We can think of this as a partition into n

1 × m matrices. Now AB =







~w1

~w2

· · ·
~wn






B =







~w1B
~w2B
· · ·
~wnB






(a product of partitioned matrices).

We see that the ith row of AB is the product of the ith row of A and the matrix B.

68. By Exercise 65 or by Example 4 in the text, we find that S−1 =

[

1 0
0 R−1

]

. Then

S−1AS =

[

1 0
0 R−1

] [

k ~v
0 B

] [

1 0
0 R

]

=

[

1 0
0 R−1

][

k ~vR
0 BR

]

=

[

k ~vR
0 R−1BR

]

.

69. Suppose A11 is a p × p matrix. Since A11 is invertible, rref(A) =

[

Ip A12 ∗
0 0 rref(A23)

]

,

so that

rank(A) = p + rank(A23) = rank(A11) + rank(A23).

70. Try to find a matrix B =

[

X ~x
~y t

]

(where X is n × n) such that

AB =

[

In ~v
~w 1

] [

X ~x
~y t

]

=

[

X + ~v~y ~x + t~v
~wX + ~y ~w~x + t

]

=

[

In 0
0 1

]

.

We want X + ~v~y = In, ~x + t~v = ~0, ~wX + ~y = ~0, and ~w~x + t = 1.

Substituting ~x = −t~v into the last equation we find −t ~w~v + t = 1 or t(1 − ~w~v) = 1.
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This equation can be solved only if ~w~v 6= 1, in which case t = 1
1−~w~v

. Now substituting

X = In − ~v~y into the third equation, we find ~w − ~w~v~y + ~y = ~0 or ~y = − 1
1−~w~v

~w = −t ~w.

We summarize: A is invertible if (and only if) ~w~v 6= 1. In this case, A−1 =

[

In + t~v ~w −t~v
−t ~w t

]

,

where t = 1
1−~w~v

. The same result can be found (perhaps more easily) by working with

rref[A
...In+1], rather than partitioned matrices.

71. Multiplying both sides with A−1 we find that A = In: The identity matrix is the only
invertible matrix with this property.

72. Suppose the entries of A are all a, where a 6= 0. Then the entries of A2 are all na2. The

equation na2 = a is satisfied if a = 1
n
. Thus the solution is A =













1
n

1
n

· · · 1
n

1
n

1
n

· · · 1
n

. . .
1
n

1
n

· · · 1
n













.

73. We must find all S such that SA = AS, or

[

a b
c d

][

1 0
0 2

]

=

[

1 0
0 2

] [

a b
c d

]

.

So

[

a 2b
c 2d

]

=

[

a b
2c 2d

]

, meaning that b = 2b and c = 2c, so b and c must be zero.

We see that all diagonal matrices (those of the form

[

a 0
0 d

]

) commute with

[

1 0
0 2

]

.

74. As in Exercise 73, we let A =

[

a b
c d

]

. Now we want

[

a b
c d

][

1 2
0 1

]

=

[

1 2
0 1

] [

a b
c d

]

.

So,

[

a 2a + b
c 2c + d

]

=

[

a + 2c b + 2d
c d

]

, revealing that c = 0 (since a + 2c = a) and

a = d (since b + 2d = 2a + b).

Thus B is any matrix of the form

[

a b
0 a

]

.

75. Again, let A =

[

a b
c d

]

. We want

[

a b
c d

][

0 −2
2 0

]

=

[

0 −2
2 0

] [

a b
c d

]

.

Thus,

[

2b −2a
2d −2c

]

=

[

−2c −2d
2a 2b

]

, meaning that c = −b and d = a.

We see that all matrices of the form

[

a b
−b a

]

commute with

[

0 −2
2 0

]

.
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76. Following the form of Exercise 73, we let A =

[

a b
c d

]

. Now we want

[

a b
c d

][

2 3
−3 2

]

=
[

2 3
−3 2

][

a b
c d

]

.

So,

[

2a − 3b 3a + 2b
2c − 3d 3c + 2d

]

=

[

2a + 3c 2b + 3d
−3a + 2c −3b + 2d

]

, revealing that a = d (since 3a+2b =

2b + 3d) and −b = c (since 2a + 3c = 2a− 3b).

Thus B is any matrix of the form

[

a b
−b a

]

.

77. Now we want

[

a b
c d

] [

1 2
2 −1

]

=

[

1 2
2 −1

] [

a b
c d

]

.

Thus,

[

a + 2b 2a − b
c + 2d 2c − d

]

=

[

a + 2c b + 2d
2a − c 2b − d

]

. So a + 2b = a + 2c, or c = b, and 2a− b =

b + 2d, revealing d = a − b. (The other two equations are redundant.)

All matrices of the form

[

a b
b a − b

]

commute with

[

1 2
2 −1

]

.

78. As in Exercise 73, we let A =

[

a b
c d

]

. Now we want

[

a b
c d

][

1 1
1 1

]

=

[

1 1
1 1

] [

a b
c d

]

.

So,

[

a + b a + b
c + d c + d

]

=

[

a + c b + d
a + c b + d

]

, revealing that a = d (since a + b = b + d) and

b = c (since a + c = a + b).

Thus B is any matrix of the form

[

a b
b a

]

.

79. We want

[

a b
c d

] [

1 3
2 6

]

=

[

1 3
2 6

] [

a b
c d

]

.

Then,

[

a + 2b 3a + 6b
c + 2d 3c + 6d

]

=

[

a + 3c b + 3d
2a + 6c 2b + 6d

]

. So a + 2b = a + 3c, or c = 2
3b, and

3a + 6b = b + 3d, revealing d = a + 5
3b. The other two equations are redundant.

Thus all matrices of the form

[

a b
2
3b a + 5

3 b

]

commute with

[

1 3
2 6

]

.

80. Following the form of Exercise 73, we let A =





a b c
d e f
g h i



 .
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Now we want





a b c
d e f
g h i









2 0 0
0 3 0
0 0 4



 =





2 0 0
0 3 0
0 0 4









a b c
d e f
g h i



.

So,





2a 3b 4c
2d 3e 4f
2g 3h 4i



 =





2a 2b 2c
3d 3e 3f
4g 4h 4i



 , which forces b, c, d, f, g and h to be zero. a, e and

i, however, can be chosen freely.

Thus B is any matrix of the form





a 0 0
0 e 0
0 0 i



 .

81. Now we want





a b c
d e f
g h i









2 0 0
0 3 0
0 0 2



 =





2 0 0
0 3 0
0 0 2









a b c
d e f
g h i



,

or,





2a 3b 2c
2d 3e 2f
2g 3h 2i



 =





2a 2b 2c
3d 3e 3f
2g 2h 2i



. So, 3b = 2b, 2d = 3d, 3f = 2f and 3h = 2h,

meaning that b, d, f and h must all be zero.

Thus all matrices of the form





a 0 c
0 e 0
g 0 i



 commute with





2 0 0
0 3 0
0 0 2



.

82. Following the form of Exercise 73, we let A =





a b c
d e f
g h i



 .

Then we want





a b c
d e f
g h i









2 0 0
0 2 0
0 0 3



 =





2 0 0
0 2 0
0 0 3









a b c
d e f
g h i



.

So,





2a 2b 3c
2d 2e 3f
2g 2h 3i



 =





2a 2b 2c
2d 2e 2f
3g 3h 3i



 . Thus c, f, g and h must be zero, leaving B to be

any matrix of the form





a b 0
d e 0
0 0 i



 .

83. The ijth entry of AB is

n
∑

k=1

aikbkj .
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Then
n
∑

k=1

aikbkj ≤
n
∑

k=1

sbkj = s

(

n
∑

k=1

bkj

)

≤ sr.

↑ ↑
since aik ≤ s this is ≤ r, as it is the

jth column sum of B.

84. a. We proceed by induction on m. Since the column sums of A are ≤ r, the entries of
A1 = A are also ≤ r1 = r, so that the claim holds for m = 1. Suppose the claim
holds for some fixed m. Now write Am+1 = AmA; since the entries of Am are ≤ rm

and the column sums of A are ≤ r, we can conclude that the entries of Am+1 are
≤ rmr = rm+1, by Exercise 83.

b. For a fixed i and j, let bm be the ijth entry of Am. In part (a) we have seen that
0 ≤ bm ≤ rm.

Note that limm→∞ rm = 0 (since r < 1), so that limm→∞ bm = 0 as well (this follows
from what some calculus texts call the “squeeze theorem”).

c. For a fixed i and j, let cm be the ijth entry of the matrix In + A + A2 + · · ·+ Am. By
part (a),

cm ≤ 1 + r + r2 + · · · + rm < 1
1−r

.

Since the cm form an increasing bounded sequence, limm→∞ cm exists (this is a fun-
damental fact of calculus).

d. (In −A)(In +A+A2 + · · ·+Am) = In +A+A2 + · · ·Am −A−A2 −· · ·−Am −Am+1

= In − Am+1

Now let m go to infinity; use parts (b) and (c). (In−A)(In+A+A2+· · ·+Am+· · ·) = In,
so that

(In − A)−1 = In + A + A2 + · · · + Am + · · ·.

85. a. The components of the jth column of the technology matrix A give the demands
industry Jj makes on the other industries, per unit output of Jj . The fact that the
jth column sum is less than 1 means that industry Jj adds value to the products it
produces.

b. A productive economy can satisfy any consumer demand ~b, since the equation

(In − A)~x = ~b can be solved for the output vector ~x : ~x = (In − A)−1~b (compare with
Exercise 2.3.49).
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c. The output ~x required to satisfy a consumer demand ~b is

~x = (In −A)−1~b = (In + A + A2 + · · ·+ Am + · · ·) ~b = ~b + A~b + A2~b + · · ·+ Am~b + · · ·.

To interpret the terms in this series, keep in mind that whatever output ~v the industries
produce generates an interindustry demand of A~v.

The industries first need to satisfy the consumer demand, ~b. Producing the output ~b
will generate an interindustry demand, A~b. Producing A~b in turn generates an extra
interindustry demand, A(A~b) = A2~b, and so forth.

For a simple example, see Exercise 2.3.50; also read the discussion of “chains of in-
terindustry demands” in the footnote to Exercise 2.3.49.

86. a. We write our three equations below:

I = 1
3R + 1

3G + 1
3B

L = R − G

S = − 1
2R − 1

2G + B

, so that the matrix is P =







1
3

1
3

1
3

1 −1 0

− 1
2 − 1

2 1






.

b.





R
G
B



 is transformed into





R
G
0



, with matrix A =





1 0 0
0 1 0
0 0 0



.

c. This matrix is PA =







1
3

1
3 0

1 −1 0

− 1
2 − 1

2 0






(we apply first A, then P .)

Figure 2.45: for Problem 2.4.86d.
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d. See Figure 2.45. A “diagram chase” shows that M = PAP−1 =







2
3 0 − 2

9

0 1 0

−1 0 1
3






.

87. a. A−1 =





0 0 1
1 0 0
0 1 0



 and B−1 =





1 0 0
0 0 1
0 1 0



.

Matrix A−1 transforms a wife’s clan into her husband’s clan, and B−1 transforms a
child’s clan into the mother’s clan.

b. B2 transforms a women’s clan into the clan of a child of her daughter.

c. AB transforms a woman’s clan into the clan of her daughter-in-law (her son’s wife),
while BA transforms a man’s clan into the clan of his children. The two transformations
are different. (See Figure 2.46.)

Figure 2.46: for Problem 2.4.87c.

d. The matrices for the four given diagrams (in the same order) are BB−1 = I3,

BAB−1 =





0 0 1
1 0 0
0 1 0



 , B(BA)−1 =





0 1 0
0 0 1
1 0 0



 , BA(BA)−1 = I3.

e. Yes; since BAB−1 = A−1 =





0 0 1
1 0 0
0 1 0



, in the second case in part (d) the cousin

belongs to Bueya’s husband’s clan.

88. a. We need 8 multiplications: 2 to compute each of the four entries of the product.

b. We need n multiplications to compute each of the mp entries of the product, mnp
multiplications altogether.
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89. g(f(x)) = x, for all x, so that g ◦ f is the identity, but f(g(x)) =

{

x if x is even
x + 1 if x is odd

.

90. a. The formula

[

y
n

]

=

[

1 − Rk L + R − kLR
−k 1 − kL

] [

x
m

]

is given, which implies that

y = (1 − Rk)x + (L + R − kLR)m.

In order for y to be independent of x it is required that 1 − Rk = 0, or k = 1
R

= 40
(diopters).

1
k

then equals R, which is the distance between the plane of the lens and the plane on
which parallel incoming rays focus at a point; thus the term “focal length” for 1

k
.

b. Now we want y to be independent of the slope m (it must depend on x alone). In view

of the formula above, this is the case if L + R − kLR = 0, or k =
L + R

LR
=

1

R
+

1

L
=

40 +
10

3
≈ 43.3 (diopters).

c. Here the transformation is
[

y
n

]

=

[

1 0
−k1 1

][

1 D
0 1

] [

1 0
−k1 1

] [

x
m

]

=

[

1 − k1D D
k1k2D − k1 − k2 1 − k2D

] [

x
m

]

.

We want the slope n of the outgoing rays to depend on the slope m of the incoming
rays alone, and not on x; this forces k1k2D − k1 − k2 = 0, or, D = k1+k2

k1k2

= 1
k1

+ 1
k2

,
the sum of the focal lengths of the two lenses.

Figure 2.47: for Problem 2.4.90c.

True or False

118



ISM: Linear Algebra True or False

1. T; The matrix is

[

1 −1
−1 1

]

.

2. F; The columns of a rotation matrix are unit vectors; see Fact 2.2.3.

3. T, by Fact 2.3.3.

4. T; Let A = B in Fact 2.4.8.

5. F, by Fact 2.4.3.

6. T, by Fact 2.4.9.

7. F; Matrix AB will be 3 × 5, by Definition 2.4.1b.

8. F; Note that T

[

0
0

]

=

[

0
1

]

. A linear transformation transforms ~0 into ~0.

9. T, by Fact 2.2.4.

10. T, by Fact 2.4.5.

11. F, by Fact 2.3.6. Note that the determinant is 0.

12. T, by Fact 2.3.3.

13. T; The shear matrix A =

[

1 1
2

0 1

]

works.

14. T; Simplify to see that T

[

x
y

]

=

[

4y
−12x

]

=

[

0 4
−12 0

] [

x
y

]

.

15. T; The equation det(A) = k2 − 6k + 10 = 0 has no real solution.

16. T; The matrix fails to be invertible for k = 5 and k = −1, since the determinant is 0 for
these values.

17. F; Note that det(A) = (k− 2)2 + 9 is always positive, so that A is invertible for all values
of k.

18. T; Note that the columns are unit vectors, since (−0.6)2 + (±0.8)2 = 1. The matrix has
the form presented in Fact 2.2.3.

19. F; Consider A = I2 (or any other invertible 2 × 2 matrix).

20. T; Note that A =

[

1 2
3 4

]−1 [
1 1
1 1

][

5 6
7 8

]−1

is the unique solution.

21. F; For any 2 × 2 matrix A, the two columns of A

[

1 1
1 1

]

will be identical.
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22. T; One solution is A =

[

1 1
0 0

]

.

23. F; A reflection matrix is of the form

[

a b
b −a

]

, where a2+b2 = 1. Here, a2+b2 = 1+1 = 2.

24. T; Just multiply it out.

25. T; The product is det(A)I2.

26. T; Writing an upper triangular matrix A =

[

a b
0 c

]

and solving the equation A2 =
[

0 0
0 0

]

we find that A =

[

0 b
0 0

]

, where b is any nonzero constant.

27. T; Note that the matrix

[

0 −1
1 0

]

represents a rotation through π/2. Thus n = 4 (or

any multiple of 4) works.

28. F; If a matrix A is invertible, then so is A−1. But

[

1 1
1 1

]

fails to be invertible.

29. F; If matrix A has two identical rows, then so does AB, for any matrix B. Thus AB
cannot be In, so that A fails to be invertible.

30. T, by Fact 2.4.9. Note that A−1 = A in this case.

31. F; Consider the matrix A that represents a rotation through the angle 2π/17.

32. F; Consider the reflection matrix A =

[

1 0
0 −1

]

.

33. T; We have (5A)−1 = 1
5A−1.

34. T; The equation A~ei = B~ei means that the ith columns of A and B are identical. This
observation applies to all the columns.

35. T; Note that A2B = AAB = ABA = BAA = BA2.

36. T; Multiply both sides of the equation A2 = A with A−1.

37. F; Consider A = I2 and B = −I2.

38. T; Since A~x is on the line onto which we project, the vector A~x remains unchanged when
we project again: A(A~x) = A~x, or A2~x = A~x, for all ~x. Thus A2 = A.

39. F; Consider matrix





0 0 1
0 1 0
1 0 0



, for example.
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40. T; Apply Fact 2.4.9 to the equation (A2)−1AA = In, with B = (A2)−1A.

41. T; If you reflect twice in a row (about the same line), you will get the original vector
back: A(A~x) = ~x, or, A2~x = ~x = I2~x. Thus A2 = I2 and A−1 = A.

42. F; Let A =

[

1 1
0 1

]

, ~v =

[

1
0

]

, ~w =

[

0
1

]

, for example.

43. T; Let A =

[

1 0 0
0 1 0

]

, B =





1 0
0 1
0 0



, for example.

44. F; By Fact 1.3.3, there is a nonzero vector ~x such that B~x = ~0, so that AB~x = ~0 as well.
But I3~x = ~x 6= ~0, so that AB 6= I3.

45. T; We can rewrite the given equation as A2 + 3A = −4I3 and − 1
4 (A + 3I3)A = I3. By

Fact 2.4.9, matrix A is invertible, with A−1 = − 1
4 (A + 3I3).

46. T; Note that (In + A)(In − A) = I2
n − A2 = In, so that (In + A)−1 = In − A.

47. F; A and C can be two matrices which fail to commute, and B could be In, which
commutes with anything.

48. F; Consider T (~x) = 2~x, ~v = ~e1, and ~w = ~e2.

49. F; Since there are only eight entries that are not 1, there will be at least two rows that
contain only ones. Having two identical rows, the matrix fails to be invertible.

50. F; Let A = B =

[

0 0
0 1

]

, for example.

51. F; We will show that S−1

[

0 1
0 0

]

S fails to be diagonal, for an arbitrary invertible matrix

S =

[

a b
c d

]

. Now, S−1

[

0 1
0 0

]

S = 1
ad−bc

[

d −b
−c a

][

c d
0 0

]

= 1
ad−bc

[

cd d2

−c2 −cd

]

.

Since c and d cannot both be zero (as S must be invertible), at least one of the off-
diagonal entries (−c2 and d2) is nonzero, proving the claim.

52. T; Consider an ~x such that A2~x = ~b, and let ~x0 = A~x. Then A~x0 = A(A~x) = A2~x = ~b, as
required.

53. T; Let A =

[

a b
c d

]

. Now we want A−1 = −A, or 1
ad−bc

[

d −b
−c a

]

=

[

−a −b
−c −d

]

. This

holds if ad − bc = 1 and d = −a. These equations have many solutions: for example,
a = d = 0, b = 1, c = −1. More generally, we can choose an arbitrary a and an arbitrary

nonzero b. Then, d = −a and c = − 1+a2

b
.
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54. F; Consider a 2×2 matrix A =

[

a b
c d

]

. We make an attempt to solve the equation A2 =
[

a2 + bc ab + bd
ac + cd cb + d2

]

=

[

a2 + bc b(a + d)
c(a + d) d2 + bc

]

=

[

1 0
0 −1

]

. Now the equation b(a+d) = 0

implies that b = 0 or d = −a.

If b = 0, then the equation d2 + bc = −1 cannot be solved.

If d = −a, then the two diagonal entries of A2, a2 + bc and d2 + bc, will be equal, so that
the equations a2 + bc = 1 and d2 + bc = −1 cannot be solved simultaneously.

In summary, the equation A2 =

[

1 0
0 −1

]

cannot be solved.

55. T; Recall from Definition 2.2.1 that a projection matrix has the form

[

u2
1 u1u2

u1u2 u2
2

]

,

where

[

u1

u2

]

is a unit vector. Thus, a2 + b2 + c2 + d2 = u4
1 + (u1u2)

2 + (u1u2)
2 + u4

2 =

u4
1 + 2(u1u2)

2 + u4
2 = (u2

1 + u2
2)

2 = 12 = 1.

56. T; We observe that the systems AB~x = 0 and B~x = 0 have the same solutions (multiply
with A−1 and A, respectively, to obtain one system from the other). Then, by True or
False Exercise 45 in Chapter 1, rref(AB) =rref(B).
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