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The Real And Complex
Numbers

1.1 The Number Line And Algebra Of The Real Num-
bers

To begin with, consider the real numbers, denoted by R, as a line extending infinitely far in
both directions. In this book, the notation, ≡ indicates something is being defined. Thus
the integers are defined as

Z ≡{· · · − 1, 0, 1, · · ·} ,

the natural numbers,
N ≡ {1, 2, · · ·}

and the rational numbers, defined as the numbers which are the quotient of two integers.

Q ≡
{m

n
such that m,n ∈ Z, n 6= 0

}

are each subsets of R as indicated in the following picture.

0

1/2

1 2 3 4−1−2−3−4
-¾

As shown in the picture, 1
2 is half way between the number 0 and the number, 1. By

analogy, you can see where to place all the other rational numbers. It is assumed that R has
the following algebra properties, listed here as a collection of assertions called axioms. These
properties will not be proved which is why they are called axioms rather than theorems. In
general, axioms are statements which are regarded as true. Often these are things which
are “self evident” either from experience or from some sort of intuition but this does not
have to be the case.

Axiom 1.1.1 x + y = y + x, (commutative law for addition)

Axiom 1.1.2 x + 0 = x, (additive identity).

Axiom 1.1.3 For each x ∈ R, there exists −x ∈ R such that x + (−x) = 0, (existence of
additive inverse).

7



8 THE REAL AND COMPLEX NUMBERS

Axiom 1.1.4 (x + y) + z = x + (y + z) , (associative law for addition).

Axiom 1.1.5 xy = yx, (commutative law for multiplication).

Axiom 1.1.6 (xy) z = x (yz) , (associative law for multiplication).

Axiom 1.1.7 1x = x, (multiplicative identity).

Axiom 1.1.8 For each x 6= 0, there exists x−1 such that xx−1 = 1.(existence of multiplica-
tive inverse).

Axiom 1.1.9 x (y + z) = xy + xz.(distributive law).

These axioms are known as the field axioms and any set (there are many others besides
R) which has two such operations satisfying the above axioms is called a field. Division and
subtraction are defined in the usual way by x−y ≡ x+(−y) and x/y ≡ x

(
y−1

)
. It is assumed

that the reader is completely familiar with these axioms in the sense that he or she can do
the usual algebraic manipulations taught in high school and junior high algebra courses. The
axioms listed above are just a careful statement of exactly what is necessary to make the
usual algebraic manipulations valid. A word of advice regarding division and subtraction
is in order here. Whenever you feel a little confused about an algebraic expression which
involves division or subtraction, think of division as multiplication by the multiplicative
inverse as just indicated and think of subtraction as addition of the additive inverse. Thus,
when you see x/y, think x

(
y−1

)
and when you see x−y, think x+(−y) . In many cases the

source of confusion will disappear almost magically. The reason for this is that subtraction
and division do not satisfy the associative law. This means there is a natural ambiguity in
an expression like 6− 3− 4. Do you mean (6− 3)− 4 = −1 or 6− (3− 4) = 6− (−1) = 7?
It makes a difference doesn’t it? However, the so called binary operations of addition and
multiplication are associative and so no such confusion will occur. It is conventional to
simply do the operations in order of appearance reading from left to right. Thus, if you see
6− 3− 4, you would normally interpret it as the first of the above alternatives.

1.2 The Complex Numbers

Just as a real number should be considered as a point on the line, a complex number is
considered a point in the plane which can be identified in the usual way using the Cartesian
coordinates of the point. Thus (a, b) identifies a point whose x coordinate is a and whose
y coordinate is b. In dealing with complex numbers, such a point is written as a + ib and
multiplication and addition are defined in the most obvious way subject to the convention
that i2 = −1. Thus,

(a + ib) + (c + id) = (a + c) + i (b + d)

and

(a + ib) (c + id) = ac + iad + ibc + i2bd

= (ac− bd) + i (bc + ad) .

Every non zero complex number, a+ib, with a2+b2 6= 0, has a unique multiplicative inverse.

1
a + ib

=
a− ib

a2 + b2
=

a

a2 + b2
− i

b

a2 + b2
.

You should prove the following theorem.
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Theorem 1.2.1 The complex numbers with multiplication and addition defined as above
form a field satisfying all the field axioms listed on Page 7.

The field of complex numbers is denoted as C. An important construction regarding
complex numbers is the complex conjugate denoted by a horizontal line above the number.
It is defined as follows.

a + ib ≡ a− ib.

What it does is reflect a given complex number across the x axis. Algebraically, the following
formula is easy to obtain. (

a + ib
)
(a + ib) = a2 + b2.

Definition 1.2.2 Define the absolute value of a complex number as follows.

|a + ib| ≡
√

a2 + b2.

Thus, denoting by z the complex number, z = a + ib,

|z| = (zz)1/2
.

With this definition, it is important to note the following. Be sure to verify this. It is
not too hard but you need to do it.

Remark 1.2.3 : Let z = a+ ib and w = c+ id. Then |z − w| =
√

(a− c)2 + (b− d)2. Thus
the distance between the point in the plane determined by the ordered pair, (a, b) and the
ordered pair (c, d) equals |z − w| where z and w are as just described.

For example, consider the distance between (2, 5) and (1, 8) . From the distance formula

this distance equals
√

(2− 1)2 + (5− 8)2 =
√

10. On the other hand, letting z = 2 + i5 and
w = 1+ i8, z−w = 1− i3 and so (z − w) (z − w) = (1− i3) (1 + i3) = 10 so |z − w| = √

10,
the same thing obtained with the distance formula.

Complex numbers, are often written in the so called polar form which is described next.
Suppose x + iy is a complex number. Then

x + iy =
√

x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)
.

Now note that (
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

= 1

and so (
x√

x2 + y2
,

y√
x2 + y2

)

is a point on the unit circle. Therefore, there exists a unique angle, θ ∈ [0, 2π) such that

cos θ =
x√

x2 + y2
, sin θ =

y√
x2 + y2

.

The polar form of the complex number is then

r (cos θ + i sin θ)

where θ is this angle just described and r =
√

x2 + y2.
A fundamental identity is the formula of De Moivre which follows.
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Theorem 1.2.4 Let r > 0 be given. Then if n is a positive integer,

[r (cos t + i sin t)]n = rn (cos nt + i sin nt) .

Proof: It is clear the formula holds if n = 1. Suppose it is true for n.

[r (cos t + i sin t)]n+1 = [r (cos t + i sin t)]n [r (cos t + i sin t)]

which by induction equals

= rn+1 (cos nt + i sin nt) (cos t + i sin t)

= rn+1 ((cos nt cos t− sinnt sin t) + i (sinnt cos t + cos nt sin t))

= rn+1 (cos (n + 1) t + i sin (n + 1) t)

by the formulas for the cosine and sine of the sum of two angles.

Corollary 1.2.5 Let z be a non zero complex number. Then there are always exactly k kth

roots of z in C.

Proof: Let z = x + iy and let z = |z| (cos t + i sin t) be the polar form of the complex
number. By De Moivre’s theorem, a complex number,

r (cos α + i sin α) ,

is a kth root of z if and only if

rk (cos kα + i sin kα) = |z| (cos t + i sin t) .

This requires rk = |z| and so r = |z|1/k and also both cos (kα) = cos t and sin (kα) = sin t.
This can only happen if

kα = t + 2lπ

for l an integer. Thus

α =
t + 2lπ

k
, l ∈ Z

and so the kth roots of z are of the form

|z|1/k

(
cos

(
t + 2lπ

k

)
+ i sin

(
t + 2lπ

k

))
, l ∈ Z.

Since the cosine and sine are periodic of period 2π, there are exactly k distinct numbers
which result from this formula.

Example 1.2.6 Find the three cube roots of i.

First note that i = 1
(
cos

(
π
2

)
+ i sin

(
π
2

))
. Using the formula in the proof of the above

corollary, the cube roots of i are

1
(

cos
(

(π/2) + 2lπ

3

)
+ i sin

(
(π/2) + 2lπ

3

))

where l = 0, 1, 2. Therefore, the roots are

cos
(π

6

)
+ i sin

(π

6

)
, cos

(
5
6
π

)
+ i sin

(
5
6
π

)
,

and

cos
(

3
2
π

)
+ i sin

(
3
2
π

)
.

Thus the cube roots of i are
√

3
2 + i

(
1
2

)
, −

√
3

2 + i
(

1
2

)
, and −i.

The ability to find kth roots can also be used to factor some polynomials.
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Example 1.2.7 Factor the polynomial x3 − 27.

First find the cube roots of 27. By the above proceedure using De Moivre’s theorem,
these cube roots are 3, 3

(
−1
2 + i

√
3

2

)
, and 3

(
−1
2 − i

√
3

2

)
. Therefore, x3 + 27 =

(x− 3)

(
x− 3

(
−1
2

+ i

√
3

2

))(
x− 3

(
−1
2
− i

√
3

2

))
.

Note also
(
x− 3

(
−1
2 + i

√
3

2

))(
x− 3

(
−1
2 − i

√
3

2

))
= x2 + 3x + 9 and so

x3 − 27 = (x− 3)
(
x2 + 3x + 9

)

where the quadratic polynomial, x2 + 3x + 9 cannot be factored without using complex
numbers.

The real and complex numbers both are fields satisfying the axioms on Page 7 and it is
usually one of these two fields which is used in linear algebra. The numbers are often called
scalars. However, it turns out that all algebraic notions work for any field and there are
many others. For this reason, I will often refer to the field of scalars as F although F will
usually be either the real or complex numbers. If there is any doubt, assume it is the field
of complex numbers which is meant.

1.3 Exercises

1. Let z = 5 + i9. Find z−1.

2. Let z = 2 + i7 and let w = 3− i8. Find zw, z + w, z2, and w/z.

3. Give the complete solution to x4 + 16 = 0.

4. Graph the complex cube roots of 8 in the complex plane. Do the same for the four
fourth roots of 16.

5. If z is a complex number, show there exists ω a complex number with |ω| = 1 and
ωz = |z| .

6. De Moivre’s theorem says [r (cos t + i sin t)]n = rn (cos nt + i sin nt) for n a positive
integer. Does this formula continue to hold for all integers, n, even negative integers?
Explain.

7. You already know formulas for cos (x + y) and sin (x + y) and these were used to prove
De Moivre’s theorem. Now using De Moivre’s theorem, derive a formula for sin (5x)
and one for cos (5x). Hint: Use the binomial theorem.

8. If z and w are two complex numbers and the polar form of z involves the angle θ while
the polar form of w involves the angle φ, show that in the polar form for zw the angle
involved is θ + φ. Also, show that in the polar form of a complex number, z, r = |z| .

9. Factor x3 + 8 as a product of linear factors.

10. Write x3 + 27 in the form (x + 3)
(
x2 + ax + b

)
where x2 + ax + b cannot be factored

any more using only real numbers.

11. Completely factor x4 + 16 as a product of linear factors.
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12. Factor x4 + 16 as the product of two quadratic polynomials each of which cannot be
factored further without using complex numbers.

13. If z, w are complex numbers prove zw = zw and then show by induction that z1 · · · zm =
z1 · · · zm. Also verify that

∑m
k=1 zk =

∑m
k=1 zk. In words this says the conjugate of a

product equals the product of the conjugates and the conjugate of a sum equals the
sum of the conjugates.

14. Suppose p (x) = anxn + an−1x
n−1 + · · ·+ a1x + a0 where all the ak are real numbers.

Suppose also that p (z) = 0 for some z ∈ C. Show it follows that p (z) = 0 also.

15. I claim that 1 = −1. Here is why.

−1 = i2 =
√−1

√−1 =
√

(−1)2 =
√

1 = 1.

This is clearly a remarkable result but is there something wrong with it? If so, what
is wrong?

16. De Moivre’s theorem is really a grand thing. I plan to use it now for rational exponents,
not just integers.

1 = 1(1/4) = (cos 2π + i sin 2π)1/4 = cos (π/2) + i sin (π/2) = i.

Therefore, squaring both sides it follows 1 = −1 as in the previous problem. What
does this tell you about De Moivre’s theorem? Is there a profound difference between
raising numbers to integer powers and raising numbers to non integer powers?



Systems Of Equations

Sometimes it is necessary to solve systems of equations. For example the problem could be
to find x and y such that

x + y = 7 and 2x− y = 8. (2.1)

The set of ordered pairs, (x, y) which solve both equations is called the solution set. For
example, you can see that (5, 2) = (x, y) is a solution to the above system. To solve this,
note that the solution set does not change if any equation is replaced by a non zero multiple
of itself. It also does not change if one equation is replaced by itself added to a multiple
of the other equation. For example, x and y solve the above system if and only if x and y
solve the system

x + y = 7,

−3y=−6︷ ︸︸ ︷
2x− y + (−2) (x + y) = 8 + (−2) (7). (2.2)

The second equation was replaced by −2 times the first equation added to the second. Thus
the solution is y = 2, from −3y = −6 and now, knowing y = 2, it follows from the other
equation that x + 2 = 7 and so x = 5.

Why exactly does the replacement of one equation with a multiple of another added to
it not change the solution set? The two equations of 2.1 are of the form

E1 = f1, E2 = f2 (2.3)

where E1 and E2 are expressions involving the variables. The claim is that if a is a number,
then 2.3 has the same solution set as

E1 = f1, E2 + aE1 = f2 + af1. (2.4)

Why is this?
If (x, y) solves 2.3 then it solves the first equation in 2.4. Also, it satisfies aE1 = af1

and so, since it also solves E2 = f2 it must solve the second equation in 2.4. If (x, y) solves
2.4 then it solves the first equation of 2.3. Also aE1 = af1 and it is given that the second
equation of 2.4 is verified. Therefore, E2 = f2 and it follows (x, y) is a solution of the second
equation in 2.3. This shows the solutions to 2.3 and 2.4 are exactly the same which means
they have the same solution set. Of course the same reasoning applies with no change if
there are many more variables than two and many more equations than two. It is still the
case that when one equation is replaced with a multiple of another one added to itself, the
solution set of the whole system does not change.

The other thing which does not change the solution set of a system of equations consists
of listing the equations in a different order. Here is another example.

Example 2.0.1 Find the solutions to the system,

13
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x + 3y + 6z = 25
2x + 7y + 14z = 58

2y + 5z = 19
(2.5)

To solve this system replace the second equation by (−2) times the first equation added
to the second. This yields. the system

x + 3y + 6z = 25
y + 2z = 8

2y + 5z = 19
(2.6)

Now take (−2) times the second and add to the third. More precisely, replace the third
equation with (−2) times the second added to the third. This yields the system

x + 3y + 6z = 25
y + 2z = 8

z = 3
(2.7)

At this point, you can tell what the solution is. This system has the same solution as the
original system and in the above, z = 3. Then using this in the second equation, it follows
y + 6 = 8 and so y = 2. Now using this in the top equation yields x + 6 + 18 = 25 and so
x = 1.

This process is not really much different from what you have always done in solving a
single equation. For example, suppose you wanted to solve 2x + 5 = 3x − 6. You did the
same thing to both sides of the equation thus preserving the solution set until you obtained
an equation which was simple enough to give the answer. In this case, you would add −2x
to both sides and then add 6 to both sides. This yields x = 11.

In 2.7 you could have continued as follows. Add (−2) times the bottom equation to the
middle and then add (−6) times the bottom to the top. This yields

x + 3y = 19
y = 6
z = 3

Now add (−3) times the second to the top. This yields

x = 1
y = 6
z = 3

,

a system which has the same solution set as the original system.
It is foolish to write the variables every time you do these operations. It is easier to

write the system 2.5 as the following “augmented matrix”



1 3 6 25
2 7 14 58
0 2 5 19


 .

It has exactly the same information as the original system but here it is understood there is

an x column,




1
2
0


 , a y column,




3
7
2


 and a z column,




6
14
5


 . The rows correspond
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to the equations in the system. Thus the top row in the augmented matrix corresponds to
the equation,

x + 3y + 6z = 25.

Now when you replace an equation with a multiple of another equation added to itself, you
are just taking a row of this augmented matrix and replacing it with a multiple of another
row added to it. Thus the first step in solving 2.5 would be to take (−2) times the first row
of the augmented matrix above and add it to the second row,




1 3 6 25
0 1 2 8
0 2 5 19


 .

Note how this corresponds to 2.6. Next take (−2) times the second row and add to the
third, 


1 3 6 25
0 1 2 8
0 0 1 3




which is the same as 2.7. You get the idea I hope. Write the system as an augmented matrix
and follow the proceedure of either switching rows, multiplying a row by a non zero number,
or replacing a row by a multiple of another row added to it. Each of these operations leaves
the solution set unchanged. These operations are called row operations.

Definition 2.0.2 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

Example 2.0.3 Give the complete solution to the system of equations, 5x+10y−7z = −2,
2x + 4y − 3z = −1, and 3x + 6y + 5z = 9.

The augmented matrix for this system is



2 4 −3 −1
5 10 −7 −2
3 6 5 9




Multiply the second row by 2, the first row by 5, and then take (−1) times the first row and
add to the second. Then multiply the first row by 1/5. This yields




2 4 −3 −1
0 0 1 1
3 6 5 9




Now, combining some row operations, take (−3) times the first row and add this to 2 times
the last row and replace the last row with this. This yields.




2 4 −3 −1
0 0 1 1
0 0 1 21


 .

Putting in the variables, the last two rows say z = 1 and z = 21. This is impossible so
the last system of equations determined by the above augmented matrix has no solution.
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However, it has the same solution set as the first system of equations. This shows there is no
solution to the three given equations. When this happens, the system is called inconsistent.

This should not be surprising that something like this can take place. It can even happen
for one equation in one variable. Consider for example, x = x+1. There is clearly no solution
to this.

Example 2.0.4 Give the complete solution to the system of equations, 3x − y − 5z = 9,
y − 10z = 0, and −2x + y = −6.

The augmented matrix of this system is



3 −1 −5 9
0 1 −10 0
−2 1 0 −6




Replace the last row with 2 times the top row added to 3 times the bottom row. This gives



3 −1 −5 9
0 1 −10 0
0 1 −10 0




Next take −1 times the middle row and add to the bottom.



3 −1 −5 9
0 1 −10 0
0 0 0 0




Take the middle row and add to the top and then divide the top row which results by 3.



1 0 −5 3
0 1 −10 0
0 0 0 0


 .

This says y = 10z and x = 3 + 5z. Apparently z can equal any number. Therefore, the
solution set of this system is x = 3 + 5t, y = 10t, and z = t where t is completely arbitrary.
The system has an infinite set of solutions and this is a good description of the solutions.
This is what it is all about, finding the solutions to the system.

The phenomenon of an infinite solution set occurs in equations having only one variable
also. For example, consider the equation x = x. It doesn’t matter what x equals.

Definition 2.0.5 A system of linear equations is a list of equations,
n∑

j=1

aijxj = fj , i = 1, 2, 3, · · ·,m

where aij are numbers, fj is a number, and it is desired to find (x1, · · ·, xn) solving each of
the equations listed.

As illustrated above, such a system of linear equations may have a unique solution, no
solution, or infinitely many solutions. It turns out these are the only three cases which can
occur for linear systems. Furthermore, you do exactly the same things to solve any linear
system. You write the augmented matrix and do row operations until you get a simpler
system in which it is possible to see the solution. All is based on the observation that the
row operations do not change the solution set. You can have more equations than variables,
fewer equations than variables, etc. It doesn’t matter. You always set up the augmented
matrix and go to work on it. These things are all the same.
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Example 2.0.6 Give the complete solution to the system of equations, −41x + 15y = 168,
109x− 40y = −447, −3x + y = 12, and 2x + z = −1.

The augmented matrix is



−41 15 0 168
109 −40 0 −447
−3 1 0 12
2 0 1 −1


 .

To solve this multiply the top row by 109, the second row by 41, add the top row to the
second row, and multiply the top row by 1/109. This yields




−41 15 0 168
0 −5 0 −15
−3 1 0 12
2 0 1 −1


 .

Now take 2 times the third row and replace the fourth row by this added to 3 times the
fourth row. 



−41 15 0 168
0 −5 0 −15
−3 1 0 12
0 2 3 21


 .

Take (−41) times the third row and replace the first row by this added to 3 times the first
row. Then switch the third and the first rows.




123 −41 0 −492
0 −5 0 −15
0 4 0 12
0 2 3 21


 .

Take −1/2 times the third row and add to the bottom row. Then take 5 times the third
row and add to four times the second. Finally take 41 times the third row and add to 4
times the top row. This yields




492 0 0 −1476
0 0 0 0
0 4 0 12
0 0 3 15




It follows x = −1476
492 = −3, y = 3 and z = 5.

You should practice solving systems of equations. Here are some exercises.

2.1 Exercises

1. Give the complete solution to the system of equations, 3x − y + 4z = 6, y + 8z = 0,
and −2x + y = −4.

2. Give the complete solution to the system of equations, 2x+ z = 511, x+6z = 27, and
y = 1.
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3. Consider the system −5x + 2y − z = 0 and −5x − 2y − z = 0. Both equations equal
zero and so −5x + 2y − z = −5x − 2y − z which is equivalent to y = 0. Thus x and
z can equal anything. But when x = 1, z = −4, and y = 0 are plugged in to the
equations, it doesn’t work. Why?

4. Give the complete solution to the system of equations, 7x+14y +15z = 22, 2x+4y +
3z = 5, and 3x + 6y + 10z = 13.

5. Give the complete solution to the system of equations, −5x−10y+5z = 0, 2x+4y−4z =
−2, and −4x− 8y + 13z = 8.

6. Give the complete solution to the system of equations, 9x−2y +4z = −17, 13x−3y +
6z = −25, and −2x− z = 3.

7. Give the complete solution to the system of equations, 9x− 18y + 4z = −83, −32x +
63y − 14z = 292, and −18x + 40y − 9z = 179.

8. Give the complete solution to the system of equations, 65x + 84y + 16z = 546, 81x +
105y + 20z = 682, and 84x + 110y + 21z = 713.

9. Give the complete solution to the system of equations, 3x− y + 4z = −9, y + 8z = 0,
and −2x + y = 6.

10. Give the complete solution to the system of equations, 8x+2y+3z = −3, 8x+3y+3z =
−1, and 4x + y + 3z = −9.

11. Give the complete solution to the system of equations, −7x − 14y − 10z = −17,
2x + 4y + 2z = 4, and 2x + 4y − 7z = −6.

12. Give the complete solution to the system of equations, −8x + 2y + 5z = 18,−8x +
3y + 5z = 13, and −4x + y + 5z = 19.

13. Give the complete solution to the system of equations, 2x+2y−5z = 27, 2x+3y−5z =
31, and x + y − 5z = 21.

14. Give the complete solution to the system of equations, 3x − y − 2z = 3, y − 4z = 0,
and −2x + y = −2.

15. Give the complete solution to the system of equations, 3x − y − 2z = 6, y − 4z = 0,
and −2x + y = −4.

16. Four times the weight of Gaston is 150 pounds more than the weight of Ichabod.
Four times the weight of Ichabod is 660 pounds less than seventeen times the weight
of Gaston. Four times the weight of Gaston plus the weight of Siegfried equals 290
pounds. Brunhilde would balance all three of the others. Find the weights of the four
girls.

17. Give the complete solution to the system of equations, −19x+8y = −108,−71x+30y =
−404, −2x + y = −12, 4x + z = 14.

18. Give the complete solution to the system of equations, −9x+15y = 66,−11x+18y = 79
,−x + y = 4, and z = 3.
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The notation, Cn refers to the collection of ordered lists of n complex numbers. Since every
real number is also a complex number, this simply generalizes the usual notion of Rn, the
collection of all ordered lists of n real numbers. In order to avoid worrying about whether
it is real or complex numbers which are being referred to, the symbol F will be used. If it
is not clear, always pick C.

Definition 3.0.1 Define Fn ≡ {(x1, · · ·, xn) : xj ∈ F for j = 1, · · ·, n} . (x1, · · ·, xn) = (y1, · · ·, yn)
if and only if for all j = 1, · · ·, n, xj = yj . When (x1, · · ·, xn) ∈ Fn, it is conventional to de-
note (x1, · · ·, xn) by the single bold face letter, x. The numbers, xj are called the coordinates.
The set

{(0, · · ·, 0, t, 0, · · ·, 0) : t ∈ F}

for t in the ith slot is called the ith coordinate axis. The point 0 ≡ (0, · · ·, 0) is called the
origin.

Thus (1, 2, 4i) ∈ F3 and (2, 1, 4i) ∈ F3 but (1, 2, 4i) 6= (2, 1, 4i) because, even though the
same numbers are involved, they don’t match up. In particular, the first entries are not
equal.

The geometric significance of Rn for n ≤ 3 has been encountered already in calculus or
in precalculus. Here is a short review. First consider the case when n = 1. Then from the
definition, R1 = R. Recall that R is identified with the points of a line. Look at the number
line again. Observe that this amounts to identifying a point on this line with a real number.
In other words a real number determines where you are on this line. Now suppose n = 2
and consider two lines which intersect each other at right angles as shown in the following
picture.

2

6 · (2, 6)

−8

3·(−8, 3)

19
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Notice how you can identify a point shown in the plane with the ordered pair, (2, 6) .
You go to the right a distance of 2 and then up a distance of 6. Similarly, you can identify
another point in the plane with the ordered pair (−8, 3) . Go to the left a distance of 8 and
then up a distance of 3. The reason you go to the left is that there is a − sign on the eight.
From this reasoning, every ordered pair determines a unique point in the plane. Conversely,
taking a point in the plane, you could draw two lines through the point, one vertical and the
other horizontal and determine unique points, x1 on the horizontal line in the above picture
and x2 on the vertical line in the above picture, such that the point of interest is identified
with the ordered pair, (x1, x2) . In short, points in the plane can be identified with ordered
pairs similar to the way that points on the real line are identified with real numbers. Now
suppose n = 3. As just explained, the first two coordinates determine a point in a plane.
Letting the third component determine how far up or down you go, depending on whether
this number is positive or negative, this determines a point in space. Thus, (1, 4,−5) would
mean to determine the point in the plane that goes with (1, 4) and then to go below this
plane a distance of 5 to obtain a unique point in space. You see that the ordered triples
correspond to points in space just as the ordered pairs correspond to points in a plane and
single real numbers correspond to points on a line.

You can’t stop here and say that you are only interested in n ≤ 3. What if you were
interested in the motion of two objects? You would need three coordinates to describe
where the first object is and you would need another three coordinates to describe where
the other object is located. Therefore, you would need to be considering R6. If the two
objects moved around, you would need a time coordinate as well. As another example,
consider a hot object which is cooling and suppose you want the temperature of this object.
How many coordinates would be needed? You would need one for the temperature, three
for the position of the point in the object and one more for the time. Thus you would need
to be considering R5. Many other examples can be given. Sometimes n is very large. This
is often the case in applications to business when they are trying to maximize profit subject
to constraints. It also occurs in numerical analysis when people try to solve hard problems
on a computer.

There are other ways to identify points in space with three numbers but the one presented
is the most basic. In this case, the coordinates are known as Cartesian coordinates after
Descartes1 who invented this idea in the first half of the seventeenth century. I will often
not bother to draw a distinction between the point in n dimensional space and its Cartesian
coordinates.

The geometric significance of Cn for n > 1 is not available because each copy of C
corresponds to the plane or R2.

3.1 Algebra in Fn

There are two algebraic operations done with elements of Fn. One is addition and the other
is multiplication by numbers, called scalars. In the case of Cn the scalars are complex
numbers while in the case of Rn the only allowed scalars are real numbers. Thus, the scalars
always come from F in either case.

Definition 3.1.1 If x ∈ Fn and a ∈ F, also called a scalar, then ax ∈ Fn is defined by

ax = a (x1, · · ·, xn) ≡ (ax1, · · ·, axn) . (3.1)

1René Descartes 1596-1650 is often credited with inventing analytic geometry although it seems the ideas
were actually known much earlier. He was interested in many different subjects, physiology, chemistry, and
physics being some of them. He also wrote a large book in which he tried to explain the book of Genesis
scientifically. Descartes ended up dying in Sweden.
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This is known as scalar multiplication. If x,y ∈ Fn then x + y ∈ Fn and is defined by

x + y = (x1, · · ·, xn) + (y1, · · ·, yn)
≡ (x1 + y1, · · ·, xn + yn) (3.2)

With this definition, the algebraic properties satisfy the conclusions of the following
theorem.

Theorem 3.1.2 For v,w ∈ Fn and α, β scalars, (real numbers), the following hold.

v + w = w + v, (3.3)

the commutative law of addition,

(v + w) + z = v+(w + z) , (3.4)

the associative law for addition,
v + 0 = v, (3.5)

the existence of an additive identity,

v+(−v) = 0, (3.6)

the existence of an additive inverse, Also

α (v + w) = αv+αw, (3.7)

(α + β)v =αv+βv, (3.8)

α (βv) = αβ (v) , (3.9)

1v = v. (3.10)

In the above 0 = (0, · · ·, 0).

You should verify these properties all hold. For example, consider 3.7

α (v + w) = α (v1 + w1, · · ·, vn + wn)
= (α (v1 + w1) , · · ·, α (vn + wn))
= (αv1 + αw1, · · ·, αvn + αwn)
= (αv1, · · ·, αvn) + (αw1, · · ·, αwn)
= αv + αw.

As usual subtraction is defined as x− y ≡ x+(−y) .

3.2 Exercises

1. Verify all the properties 3.3-3.10.

2. Compute 5 (1, 2 + 3i, 3,−2) + 6 (2− i, 1,−2, 7) .

3. Draw a picture of the points in R2 which are determined by the following ordered
pairs.

(a) (1, 2)
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(b) (−2,−2)
(c) (−2, 3)
(d) (2,−5)

4. Does it make sense to write (1, 2) + (2, 3, 1)? Explain.

5. Draw a picture of the points in R3 which are determined by the following ordered
triples.

(a) (1, 2, 0)
(b) (−2,−2, 1)
(c) (−2, 3,−2)

3.3 Distance in Rn

How is distance between two points in Rn defined?

Definition 3.3.1 Let x =(x1, · · ·, xn) and y =(y1, · · ·, yn) be two points in Rn. Then
|x− y| to indicates the distance between these points and is defined as

distance between x and y ≡ |x− y| ≡
(

n∑

k=1

|xk − yk|2
)1/2

.

This is called the distance formula. The symbol, B (a, r) is defined by

B (a, r) ≡ {x ∈ Rn : |x− a| < r} .

This is called an open ball of radius r centered at a. It gives all the points in Rn which are
closer to a than r.

First of all note this is a generalization of the notion of distance in R. There the distance
between two points, x and y was given by the absolute value of their difference. Thus |x− y|
is equal to the distance between these two points on R. Now |x− y| =

(
(x− y)2

)1/2

where
the square root is always the positive square root. Thus it is the same formula as the above
definition except there is only one term in the sum. Geometrically, this is the right way to
define distance which is seen from the Pythagorean theorem. Consider the following picture
in the case that n = 2.

(x1, x2) (y1, x2)

(y1, y2)

There are two points in the plane whose Cartesian coordinates are (x1, x2) and (y1, y2)
respectively. Then the solid line joining these two points is the hypotenuse of a right triangle
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which is half of the rectangle shown in dotted lines. What is its length? Note the lengths
of the sides of this triangle are |y1 − x1| and |y2 − x2| . Therefore, the Pythagorean theorem
implies the length of the hypotenuse equals

(
|y1 − x1|2 + |y2 − x2|2

)1/2

=
(
(y1 − x1)

2 + (y2 − x2)
2
)1/2

which is just the formula for the distance given above.
Now suppose n = 3 and let (x1, x2, x3) and (y1, y2, y3) be two points in R3. Consider the

following picture in which one of the solid lines joins the two points and a dotted line joins
the points (x1, x2, x3) and (y1, y2, x3) .

(x1, x2, x3) (y1, x2, x3)

(y1, y2, x3)

(y1, y2, y3)

By the Pythagorean theorem, the length of the dotted line joining (x1, x2, x3) and
(y1, y2, x3) equals (

(y1 − x1)
2 + (y2 − x2)

2
)1/2

while the length of the line joining (y1, y2, x3) to (y1, y2, y3) is just |y3 − x3| . Therefore, by
the Pythagorean theorem again, the length of the line joining the points (x1, x2, x3) and
(y1, y2, y3) equals

{[(
(y1 − x1)

2 + (y2 − x2)
2
)1/2

]2

+ (y3 − x3)
2

}1/2

=
(
(y1 − x1)

2 + (y2 − x2)
2 + (y3 − x3)

2
)1/2

,

which is again just the distance formula above.
This completes the argument that the above definition is reasonable. Of course you

cannot continue drawing pictures in ever higher dimensions but there is not problem with
the formula for distance in any number of dimensions. Here is an example.

Example 3.3.2 Find the distance between the points in R4,a =(1, 2,−4, 6) and b =(2, 3,−1, 0)

Use the distance formula and write

|a− b|2 = (1− 2)2 + (2− 3)2 + (−4− (−1))2 + (6− 0)2 = 47

Therefore, |a− b| = √
47.
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All this amounts to defining the distance between two points as the length of a straight
line joining these two points. However, there is nothing sacred about using straight lines.
One could define the distance to be the length of some other sort of line joining these points.
It won’t be done in this book but sometimes this sort of thing is done.

Another convention which is usually followed, especially in R2 and R3 is to denote the
first component of a point in R2 by x and the second component by y. In R3 it is customary
to denote the first and second components as just described while the third component is
called z.

Example 3.3.3 Describe the points which are at the same distance between (1, 2, 3) and
(0, 1, 2) .

Let (x, y, z) be such a point. Then
√

(x− 1)2 + (y − 2)2 + (z − 3)2 =
√

x2 + (y − 1)2 + (z − 2)2.

Squaring both sides

(x− 1)2 + (y − 2)2 + (z − 3)2 = x2 + (y − 1)2 + (z − 2)2

and so
x2 − 2x + 14 + y2 − 4y + z2 − 6z = x2 + y2 − 2y + 5 + z2 − 4z

which implies
−2x + 14− 4y − 6z = −2y + 5− 4z

and so
2x + 2y + 2z = −9. (3.11)

Since these steps are reversible, the set of points which is at the same distance from the two
given points consists of the points, (x, y, z) such that 3.11 holds.

3.4 Distance in Fn

How is distance between two points in Fn defined? It is done in exactly the same way as
Rn.

Definition 3.4.1 Let x = (x1, · · ·, xn) and y = (y1, · · ·, yn) be two points in Fn. Then
writing |x− y| to indicates the distance between these points,

distance between x and y ≡ |x− y| ≡
(

n∑

k=1

|xk − yk|2
)1/2

.

This is called the distance formula. Here the scalars, xk and yk are complex numbers and
|xk − yk| refers to the complex absolute value defined earlier. Thus for z = x + iy ∈ C,

|z| ≡
√

x2 + y2 = (zz)1/2
.

Note |x| = |x− 0| and gives the distance from x to 0. The symbol, B (a, r) is defined by

B (a, r) ≡ {x ∈ Rn : |x− a| < r} .

This is called an open ball of radius r centered at a. It gives all the points in Fn which are
closer to a than r.
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The following lemma is called the Cauchy Schwarz inequality. First here is a simple
lemma which makes the proof easier.

Lemma 3.4.2 If z ∈ C there exists θ ∈ C such that θz = |z| and |θ| = 1.

Proof: Let θ = 1 if z = 0 and otherwise, let θ = z
|z| .

Lemma 3.4.3 Let x = (x1, · · ·, xn) and y = (y1, · · ·, yn) be two points in Fn. Then
∣∣∣∣∣

n∑

i=1

xiyi

∣∣∣∣∣ ≤ |x| |y| . (3.12)

Proof: Let θ ∈ C such that |θ| = 1 and

θ

n∑

i=1

xiyi =

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣

Thus

θ

n∑

i=1

xiyi =
n∑

i=1

xi

(
θyi

)
=

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ .

Consider p (t) ≡ ∑n
i=1

(
xi + tθyi

) (
xi + tθyi

)
where t ∈ R.

0 ≤ p (t) =
n∑

i=1

|xi|2 + 2t Re

(
θ

n∑

i=1

xiyi

)
+ t2

n∑

i=1

|yi|2

= |x|2 + 2t

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ + t2 |y|2

If |y| = 0 then 3.12 is obviously true because both sides equal zero. Therefore, assume
|y| 6= 0 and then p (t) is a polynomial of degree two whose graph opens up. Therefore, it
either has no zeroes, two zeros or one repeated zero. If it has two zeros, the above inequality
must be violated because in this case the graph must dip below the x axis. Therefore, it
either has no zeros or exactly one. From the quadratic formula this happens exactly when

4

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣

2

− 4 |x|2 |y|2 ≤ 0

and so ∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤ |x| |y|

as claimed. This proves the inequality.
There are certain properties of the distance which are obvious. Two of them which follow

directly from the definition are
|x− y| = |y − x| ,

|x− y| ≥ 0 and equals 0 only if y = x.

The third fundamental property of distance is known as the triangle inequality. Recall that
in any triangle the sum of the lengths of two sides is always at least as large as the third
side.
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Corollary 3.4.4 Let x,y be points of Fn. Then

|x + y| ≤ |x|+ |y| .
Proof: Using the above lemma,

|x + y|2 ≡
n∑

i=1

(xi + yi) (xi + yi)

=
n∑

i=1

|xi|2 + 2Re
n∑

i=1

xiyi +
n∑

i=1

|yi|2

≤ |x|2 + 2

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ + |y|2

≤ |x|2 + 2 |x| |y|+ |y|2
= (|x|+ |y|)2

and so upon taking square roots of both sides,

|x + y| ≤ |x|+ |y|
and this proves the corollary.

3.5 Exercises

1. You are given two points in R3, (4, 5,−4) and (2, 3, 0) . Show the distance from the
point, (3, 4,−2) to the first of these points is the same as the distance from this point
to the second of the original pair of points. Note that 3 = 4+2

2 , 4 = 5+3
2 . Obtain a

theorem which will be valid for general pairs of points, (x, y, z) and (x1, y1, z1) and
prove your theorem using the distance formula.

2. A sphere is the set of all points which are at a given distance from a single given point.
Find an equation for the sphere which is the set of all points that are at a distance of
4 from the point (1, 2, 3) in R3.

3. A sphere centered at the point (x0, y0, z0) ∈ R3 having radius r consists of all points,
(x, y, z) whose distance to (x0, y0, z0) equals r. Write an equation for this sphere in
R3.

4. Suppose the distance between (x, y) and (x′, y′) were defined to equal the larger of the
two numbers |x− x′| and |y − y′| . Draw a picture of the sphere centered at the point,
(0, 0) if this notion of distance is used.

5. Repeat the same problem except this time let the distance between the two points be
|x− x′|+ |y − y′| .

6. If (x1, y1, z1) and (x2, y2, z2) are two points such that |(xi, yi, zi)| = 1 for i = 1, 2, show
that in terms of the usual distance,

∣∣(x1+x2
2 , y1+y2

2 , z1+z2
2

)∣∣ < 1. What would happen
if you used the way of measuring distance given in Problem 4 (|(x, y, z)| = maximum
of |z| , |x| , |y| .)?

7. Give a simple description using the distance formula of the set of points which are at
an equal distance between the two points (x1, y1, z1) and (x2, y2, z2) .

8. Show that Cn is essentially equal to R2n and that the two notions of distance give
exactly the same thing.
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3.6 Lines in Rn

To begin with consider the case n = 1, 2. In the case where n = 1, the only line is just
R1 = R. Therefore, if x1 and x2 are two different points in R, consider

x = x1 + t (x2 − x1)

where t ∈ R and the totality of all such points will give R. You see that you can always
solve the above equation for t, showing that every point on R is of this form. Now consider
the plane. Does a similar formula hold? Let (x1, y1) and (x2, y2) be two different points
in R2 which are contained in a line, l. Suppose that x1 6= x2. Then if (x, y) is an arbitrary
point on l,

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

(x1, y1)

(x2, y2)
(x, y)

Now by similar triangles,

m ≡ y2 − y1

x2 − x1
=

y − y1

x− x1

and so the point slope form of the line, l, is given as

y − y1 = m (x− x1) .

If t is defined by
x = x1 + t (x2 − x1) ,

you obtain this equation along with

y = y1 + mt (x2 − x1)
= y1 + t (y2 − y1) .

Therefore,
(x, y) = (x1, y1) + t (x2 − x1, y2 − y1) .

If x1 = x2, then in place of the point slope form above, x = x1. Since the two given points
are different, y1 6= y2 and so you still obtain the above formula for the line. Because of this,
the following is the definition of a line in Rn.

Definition 3.6.1 A line in Rn containing the two different points, x1 and x2 is the collec-
tion of points of the form

x = x1 + t
(
x2 − x1

)

where t ∈ R. This is known as a parametric equation and the variable t is called the
parameter.
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Often t denotes time in applications to Physics. Note this definition agrees with the
usual notion of a line in two dimensions and so this is consistent with earlier concepts.

Lemma 3.6.2 Let a,b ∈ Rn with a 6= 0. Then x = ta + b, t ∈ R, is a line.

Proof: Let x1 = b and let x2−x1 = a so that x2 6= x1. Then ta + b = x1 + t
(
x2 − x1

)
and so x = ta + b is a line containing the two different points, x1 and x2. This proves the
lemma.

Definition 3.6.3 Let p and q be two points in Rn, p 6= q. The directed line segment from
p to q, denoted by −→pq, is defined to be the collection of points,

x = p + t (q− p) , t ∈ [0, 1]

with the direction corresponding to increasing t.

Think of −→pq as an arrow whose point is on q and whose base is at p as shown in the
following picture.





Á

q

p

This line segment is a part of a line from the above Definition.

Example 3.6.4 Find a parametric equation for the line through the points (1, 2, 0) and
(2,−4, 6) .

Use the definition of a line given above to write

(x, y, z) = (1, 2, 0) + t (1,−6, 6) , t ∈ R.

The reason for the word, “a”, rather than the word, “the” is there are infinitely many
different parametric equations for the same line. To see this replace t with 3s. Then you
obtain a parametric equation for the same line because the same set of points are obtained.
The difference is they are obtained from different values of the parameter. What happens
is this: The line is a set of points but the parametric description gives more information
than that. It tells us how the set of points are obtained. Obviously, there are many ways to
trace out a given set of points and each of these ways corresponds to a different parametric
equation for the line.

3.7 Exercises

1. Suppose you are given two points, (−a, 0) and (a, 0) in R2 and a number, r > 2a. The
set of points described by

{
(x, y) ∈ R2 : |(x, y)− (−a, 0)|+ |(x, y)− (a, 0)| = r

}

is known as an ellipse. The two given points are known as the focus points of the

ellipse. Simplify this to the form
(

x−A
α

)2
+

(
y
β

)2

= 1. This is a nice exercise in messy
algebra.
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2. Let (x1, y1) and (x2, y2) be two points in R2. Give a simple description using the dis-
tance formula of the perpendicular bisector of the line segment joining these two points.
Thus you want all points, (x, y) such that |(x, y)− (x1, y1)| = |(x, y)− (x2, y2)| .

3. Find a parametric equation for the line through the points (2, 3, 4, 5) and (−2, 3, 0, 1) .

4. Let (x, y) = (2 cos (t) , 2 sin (t)) where t ∈ [0, 2π] . Describe the set of points encoun-
tered as t changes.

5. Let (x, y, z) = (2 cos (t) , 2 sin (t) , t) where t ∈ R. Describe the set of points encountered
as t changes.

3.8 Physical Vectors In Rn

Suppose you push on something. What is important? There are really two things which are
important, how hard you push and the direction you push. Vectors are used to model this.
What was just described would be called a force vector. It has two essential ingredients,
its magnitude and its direction. Geometrically think of vectors as directed line segments as
shown in the following picture in which all the directed line segments are considered to be
the same vector because they have the same direction, the direction in which the arrows
point, and the same magnitude (length).

£
£
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Because of this fact that only direction and magnitude are important, it is always possible
to put a vector in a certain particularly simple form. Let −→pq be a directed line segment or
vector. Then from Definition 3.6.3 that −→pq consists of the points of the form

p + t (q− p)

where t ∈ [0, 1] . Subtract p from all these points to obtain the directed line segment con-
sisting of the points

0 + t (q− p) , t ∈ [0, 1] .

The point in Rn,q− p, will represent the vector.
Geometrically, the arrow, −→pq, was slid so it points in the same direction and the base is

at the origin, 0. For example, see the following picture.
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In this way vectors can be identified with elements of Rn.
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The magnitude of a vector determined by a directed line segment −→pq is just the distance
between the point p and the point q. By the distance formula this equals

(
n∑

k=1

(qk − pk)2
)1/2

= |p− q|

and for v any vector in Rn the magnitude of v equals
(∑n

k=1 v2
k

)1/2 = |v| .
What is the geometric significance of scalar multiplication? If a represents the vector, v

in the sense that when it is slid to place its tail at the origin, the element of Rn at its point
is a, what is rv?

|rv| =
(

n∑

k=1

(rai)
2

)1/2

=

(
n∑

k=1

r2 (ai)
2

)1/2

=
(
r2

)1/2

(
n∑

k=1

a2
i

)1/2

= |r| |v| .

Thus the magnitude of rv equals |r| times the magnitude of v. If r is positive, then the
vector represented by rv has the same direction as the vector, v because multiplying by the
scalar, r, only has the effect of scaling all the distances. Thus the unit distance along any
coordinate axis now has length r and in this rescaled system the vector is represented by a.
If r < 0 similar considerations apply except in this case all the ai also change sign. From
now on, a will be referred to as a vector instead of an element of Rn representing a vector
as just described. The following picture illustrates the effect of scalar multiplication.
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Note there are n special vectors which point along the coordinate axes. These are

ei ≡ (0, · · ·, 0, 1, 0, · · ·, 0)

where the 1 is in the ith slot and there are zeros in all the other spaces. See the picture in
the case of R3.

-
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The direction of ei is referred to as the ith direction. Given a vector, v = (a1, · · ·, an) ,
aiei is the ith component of the vector. Thus aiei = (0, · · ·, 0, ai, 0, · · ·, 0) and so this
vector gives something possibly nonzero only in the ith direction. Also, knowledge of the ith

component of the vector is equivalent to knowledge of the vector because it gives the entry
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in the ith slot and for v = (a1, · · ·, an) ,

v =
n∑

k=1

aiei.

What does addition of vectors mean physically? Suppose two forces are applied to some
object. Each of these would be represented by a force vector and the two forces acting
together would yield an overall force acting on the object which would also be a force vector
known as the resultant. Suppose the two vectors are a =

∑n
k=1 aiei and b =

∑n
k=1 biei.

Then the vector, a involves a component in the ith direction, aiei while the component in
the ith direction of b is biei. Then it seems physically reasonable that the resultant vector
should have a component in the ith direction equal to (ai + bi) ei. This is exactly what is
obtained when the vectors, a and b are added.

a + b = (a1 + b1, · · ·, an + bn) .

=
n∑

i=1

(ai + bi) ei.

Thus the addition of vectors according to the rules of addition in Rn, yields the appro-
priate vector which duplicates the cumulative effect of all the vectors in the sum.

What is the geometric significance of vector addition? Suppose u,v are vectors,

u =(u1, · · ·, un) ,v =(v1, · · ·, vn)

Then u + v =(u1 + v1, · · ·, un + vn) . How can one obtain this geometrically? Consider the
directed line segment,

−→
0u and then, starting at the end of this directed line segment, follow

the directed line segment
−−−−−−→
u (u + v) to its end, u + v. In other words, place the vector u in

standard position with its base at the origin and then slide the vector v till its base coincides
with the point of u. The point of this slid vector, determines u + v. To illustrate, see the
following picture
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Note the vector u + v is the diagonal of a parallelogram determined from the two vec-
tors u and v and that identifying u + v with the directed diagonal of the parallelogram
determined by the vectors u and v amounts to the same thing as the above procedure.

An item of notation should be mentioned here. In the case of Rn where n ≤ 3, it is
standard notation to use i for e1, j for e2, and k for e3. Now here are some applications of
vector addition to some problems.

Example 3.8.1 There are three ropes attached to a car and three people pull on these ropes.
The first exerts a force of 2i+3j−2k Newtons, the second exerts a force of 3i+5j + k Newtons
and the third exerts a force of 5i− j+2k. Newtons. Find the total force in the direction of
i.

To find the total force add the vectors as described above. This gives 10i+7j + k
Newtons. Therefore, the force in the i direction is 10 Newtons.

The Newton is a unit of force like pounds.
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Example 3.8.2 An airplane flies North East at 100 miles per hour. Write this as a vector.

A picture of this situation follows.

¡
¡

¡
¡
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The vector has length 100. Now using that vector as the hypotenuse of a right triangle
having equal sides, the sides should be each of length 100/

√
2. Therefore, the vector would

be 100/
√

2i + 100/
√

2j.

Example 3.8.3 An airplane is traveling at 100i+j+k kilometers per hour and at a certain
instant of time its position is (1, 2, 1) . Here imagine a Cartesian coordinate system in which
the third component is altitude and the first and second components are measured on a line
from West to East and a line from South to North. Find the position of this airplane one
minute later.

Consider the vector (1, 2, 1) , is the initial position vector of the airplane. As it moves,
the position vector changes. After one minute the airplane has moved in the i direction a
distance of 100× 1

60 = 5
3 kilometer. In the j direction it has moved 1

60 kilometer during this
same time, while it moves 1

60 kilometer in the k direction. Therefore, the new displacement
vector for the airplane is

(1, 2, 1) +
(

5
3
,

1
60

,
1
60

)
=

(
8
3
,
121
60

,
121
60

)

Example 3.8.4 A certain river is one half mile wide with a current flowing at 4 miles per
hour from East to West. A man swims directly toward the opposite shore from the South
bank of the river at a speed of 3 miles per hour. How far down the river does he find himself
when he has swam across? How far does he end up swimming?

Consider the following picture.

¾ 4

6

3

You should write these vectors in terms of components. The velocity of the swimmer in
still water would be 3j while the velocity of the river would be −4i. Therefore, the velocity
of the swimmer is −4i+3j. Since the component of velocity in the direction across the river
is 3, it follows the trip takes 1/6 hour or 10 minutes. The speed at which he travels is√

42 + 32 = 5 miles per hour and so he travels 5 × 1
6 = 5

6 miles. Now to find the distance
downstream he finds himself, note that if x is this distance, x and 1/2 are two legs of a
right triangle whose hypotenuse equals 5/6 miles. Therefore, by the Pythagorean theorem
the distance downstream is

√
(5/6)2 − (1/2)2 =

2
3

miles.
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3.9 Exercises

1. The wind blows from West to East at a speed of 50 kilometers per hour and an airplane
is heading North West at a speed of 300 Kilometers per hour. What is the velocity
of the airplane relative to the ground? What is the component of this velocity in the
direction North?

2. In the situation of Problem 1 how many degrees to the West of North should the
airplane head in order to fly exactly North. What will be the speed of the airplane?

3. In the situation of 2 suppose the airplane uses 34 gallons of fuel every hour at that air
speed and that it needs to fly North a distance of 600 miles. Will the airplane have
enough fuel to arrive at its destination given that it has 63 gallons of fuel?

4. A certain river is one half mile wide with a current flowing at 2 miles per hour from
East to West. A man swims directly toward the opposite shore from the South bank
of the river at a speed of 3 miles per hour. How far down the river does he find himself
when he has swam across? How far does he end up swimming?

5. A certain river is one half mile wide with a current flowing at 2 miles per hour from
East to West. A man can swim at 3 miles per hour in still water. In what direction
should he swim in order to travel directly across the river? What would the answer to
this problem be if the river flowed at 3 miles per hour and the man could swim only
at the rate of 2 miles per hour?

6. Three forces are applied to a point which does not move. Two of the forces are
2i + j + 3k Newtons and i− 3j + 2k Newtons. Find the third force.

3.10 The Inner Product In Fn

There are two ways of multiplying elements of Fn which are of great importance in ap-
plications. The first of these is called the dot product, also called the scalar product and
sometimes the inner product.

Definition 3.10.1 Let a,b ∈ Fn define a · b as

a · b ≡
n∑

k=1

akbk.

With this definition, there are several important properties satisfied by the dot product.
In the statement of these properties, α and β will denote scalars and a,b, c will denote
vectors or in other words, points in Fn.

Proposition 3.10.2 The dot product satisfies the following properties.

a · b =b · a (3.13)

a · a ≥ 0 and equals zero if and only if a = 0 (3.14)

(αa + βb) · c =α (a · c) + β (b · c) (3.15)

c · (αa + βb) = α (c · a) + β (c · b) (3.16)

|a|2 = a · a (3.17)



34 FN

You should verify these properties. Also be sure you understand that 3.16 follows from
the first three and is therefore redundant. It is listed here for the sake of convenience.

Example 3.10.3 Find (1, 2, 0,−1) · (0, i, 2, 3) .

This equals 0 + 2 (−i) + 0 +−3 = −3− 2i
The Cauchy Schwarz inequality takes the following form in terms of the inner product.

I will prove it all over again, using only the above axioms for the dot product.

Theorem 3.10.4 The dot product satisfies the inequality

|a · b| ≤ |a| |b| . (3.18)

Furthermore equality is obtained if and only if one of a or b is a scalar multiple of the other.

Proof: First define θ ∈ C such that

θ (a · b) = |a · b| , |θ| = 1,

and define a function of t ∈ R

f (t) = (a + tθb) · (a + tθb) .

Then by 3.14, f (t) ≥ 0 for all t ∈ R. Also from 3.15,3.16,3.13, and 3.17

f (t) = a · (a + tθb) + tθb · (a + tθb)

= a · a + tθ (a · b) + tθ (b · a) + t2 |θ|2 b · b
= |a|2 + 2t Re θ (a · b) + |b|2 t2

= |a|2 + 2t |a · b|+ |b|2 t2

Now if |b|2 = 0 it must be the case that a · b = 0 because otherwise, you could pick large
negative values of t and violate f (t) ≥ 0. Therefore, in this case, the Cauchy Schwarz
inequality holds. In the case that |b| 6= 0, y = f (t) is a polynomial which opens up and
therefore, if it is always nonnegative, the quadratic formula requires that

The discriminant︷ ︸︸ ︷
4 |a · b|2 − 4 |a|2 |b|2 ≤ 0

since otherwise the function, f (t) would have two real zeros and would necessarily have a
graph which dips below the t axis. This proves 3.18.

It is clear from the axioms of the inner product that equality holds in 3.18 whenever one
of the vectors is a scalar multiple of the other. It only remains to verify this is the only way
equality can occur. If either vector equals zero, then equality is obtained in 3.18 so it can be
assumed both vectors are non zero. Then if equality is achieved, it follows f (t) has exactly
one real zero because the discriminant vanishes. Therefore, for some value of t,a + tθb = 0
showing that a is a multiple of b. This proves the theorem.

You should note that the entire argument was based only on the properties of the dot
product listed in 3.13 - 3.17. This means that whenever something satisfies these properties,
the Cauchy Schwartz inequality holds. There are many other instances of these properties
besides vectors in Fn.

The Cauchy Schwartz inequality allows a proof of the triangle inequality for distances
in Fn in much the same way as the triangle inequality for the absolute value.
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Theorem 3.10.5 (Triangle inequality) For a,b ∈ Fn

|a + b| ≤ |a|+ |b| (3.19)

and equality holds if and only if one of the vectors is a nonnegative scalar multiple of the
other. Also

||a| − |b|| ≤ |a− b| (3.20)

Proof : By properties of the dot product and the Cauchy Schwartz inequality,

|a + b|2 = (a + b) · (a + b)
= (a · a) + (a · b) + (b · a) + (b · b)

= |a|2 + 2Re (a · b) + |b|2

≤ |a|2 + 2 |a · b|+ |b|2

≤ |a|2 + 2 |a| |b|+ |b|2

= (|a|+ |b|)2 .

Taking square roots of both sides you obtain 3.19.
It remains to consider when equality occurs. If either vector equals zero, then that

vector equals zero times the other vector and the claim about when equality occurs is
verified. Therefore, it can be assumed both vectors are nonzero. To get equality in the
second inequality above, Theorem 3.10.4 implies one of the vectors must be a multiple of
the other. Say b = αa. Also, to get equality in the first inequality, (a · b) must be a
nonnegative real number. Thus

0 ≤ (a · b) = (a·αa) = α |a|2 .

Therefore, α must be a real number which is nonnegative.
To get the other form of the triangle inequality,

a = a− b + b

so

|a| = |a− b + b|
≤ |a− b|+ |b| .

Therefore,
|a| − |b| ≤ |a− b| (3.21)

Similarly,
|b| − |a| ≤ |b− a| = |a− b| . (3.22)

It follows from 3.21 and 3.22 that 3.20 holds. This is because ||a| − |b|| equals the left side
of either 3.21 or 3.22 and either way, ||a| − |b|| ≤ |a− b| . This proves the theorem.

3.11 Exercises

1. Find (1, 2, 3, 4) · (2, 0, 1, 3) .
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2. Show the angle between two vectors, x and y is a right angle if and only if x · y = 0.
Hint: Argue this happens when |x− y| is the length of the hypotenuse of a right
triangle having |x| and |y| as its legs. Now apply the pythagorean theorem and the
observation that |x− y| as defined above is the length of the segment joining x and
y.

3. Use the result of Problem 2 to consider the equation of a plane in R3. A plane in
R3 through the point a is the set of points, x such that x− a and a given normal
vector, n form a right angle. Show that n · (x− a) = 0 is the equation of a plane.
Now find the equation of the plane perpendicular to n =(1, 2, 3) which contains the
point (2, 0, 1) . Give your answer in the form ax + by + cz = d where a, b, c, and d are
suitable constants.

4. Show that (a · b) = 1
4

[
|a + b|2 − |a− b|2

]
.

5. Prove from the axioms of the dot product the parallelogram identity, |a + b|2 +
|a− b|2 = 2 |a|2 + 2 |b|2 .



Applications In The Case F = R

4.1 Work And The Angle Between Vectors

4.1.1 Work And Projections

Our first application will be to the concept of work. The physical concept of work does
not in any way correspond to the notion of work employed in ordinary conversation. For
example, if you were to slide a 150 pound weight off a table which is three feet high and
shuffle along the floor for 50 yards, sweating profusely and exerting all your strength to keep
the weight from falling on your feet, keeping the height always three feet and then deposit
this weight on another three foot high table, the physical concept of work would indicate
that the force exerted by your arms did no work during this project even though the muscles
in your hands and arms would likely be very tired. The reason for such an unusual definition
is that even though your arms exerted considerable force on the weight, enough to keep it
from falling, the direction of motion was at right angles to the force they exerted. The only
part of a force which does work in the sense of physics is the component of the force in the
direction of motion.

Theorem 4.1.1 Let F and D be nonzero vectors. Then there exist unique vectors F|| and
F⊥ such that

F = F|| + F⊥ (4.1)

where F|| is a scalar multiple of D, also referred to as

projD (F) ,

and F⊥ ·D = 0.

Proof: Suppose 4.1 and F|| = αD. Taking the dot product of both sides with D and
using F⊥ ·D = 0, this yields

F ·D = α |D|2

which requires α = F ·D/ |D|2 . Thus there can be no more than one vector, F||. It follows
F⊥ must equal F− F||. This verifies there can be no more than one choice for both F|| and
F⊥.

Now let
F|| ≡

F ·D
|D|2 D

and let
F⊥ = F− F|| = F−F ·D

|D|2 D

37
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Then F|| = α D where α = F·D
|D|2 . It only remains to verify F⊥ ·D = 0. But

F⊥ ·D = F ·D−F ·D
|D|2 D ·D

= F ·D− F ·D = 0.

This proves the theorem.
The following defines the concept of work.

Definition 4.1.2 Let F be a force and let p and q be points in Rn. Then the work, W, done
by F on an object which moves from point p to point q is defined as

W ≡ projp−q (F) · p− q
|p− q| |p− q|

= projp−q (F) · (p− q)

= F · (p− q) ,

the last equality holding because F⊥ · (p− q) = 0 and F⊥ + projp−q (F) = F.

Example 4.1.3 Let F = 2i+7j− 3k Newtons. Find the work done by this force in moving
from the point (1, 2, 3) to the point (−9,−3, 4) where distances are measured in meters.

According to the definition, this work is

(2i+7j− 3k) · (−10i− 5j + k) = −20 + (−35) + (−3)
= −58 Newton meters.

Note that if the force had been given in pounds and the distance had been given in feet,
the units on the work would have been foot pounds. In general, work has units equal to
units of a force times units of a length. Instead of writing Newton meter, people write joule
because a joule is by definition a Newton meter. That word is pronounced “jewel” and it is
the unit of work in the metric system of units. Also be sure you observe that the work done
by the force can be negative as in the above example. In fact, work can be either positive,
negative, or zero. You just have to do the computations to find out.

4.1.2 The Angle Between Two Vectors

Given two vectors, a and b, the included angle is the angle between these two vectors which
is less than or equal to 180 degrees. The dot product can be used to determine the included
angle between two vectors. To see how to do this, consider the following picture.
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By the law of cosines,

|a− b|2 = |a|2 + |b|2 − 2 |a| |b| cos θ.
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Also from the properties of the dot product,

|a− b|2 = (a− b) · (a− b)

= |a|2 + |b|2 − 2a · b

and so comparing the above two formulas,

a · b = |a| |b| cos θ. (4.2)

In words, the dot product of two vectors equals the product of the magnitude of the two
vectors multiplied by the cosine of the included angle. Note this gives a geometric description
of the dot product which does not depend explicitly on the coordinates of the vectors.

Example 4.1.4 Find the angle between the vectors 2i + j− k and 3i + 4j + k.

The dot product of these two vectors equals 6+4−1 = 9 and the norms are
√

4 + 1 + 1 =√
6 and

√
9 + 16 + 1 =

√
26. Therefore, from 4.2 the cosine of the included angle equals

cos θ =
9√

26
√

6
= . 720 58

Now the cosine is known, the angle can be determines by solving the equation, cos θ = .
720 58. This will involve using a calculator or a table of trigonometric functions. The answer
is θ = . 766 16 radians or in terms of degrees, θ = . 766 16× 360

2π = 43. 898◦. Recall how this
last computation is done. Set up a proportion, x

.76616 = 360
2π because 360◦ corresponds to 2π

radians. However, in calculus, you should get used to thinking in terms of radians and not
degrees. This is because all the important calculus formulas are defined in terms of radians.

Suppose a, and b are vectors and b⊥ = b− proja (b) . What is the magnitude of b⊥?

|b⊥|2 = (b− proja (b)) · (b− proja (b))

=

(
b−b · a

|a|2 a

)
·
(

b−b · a
|a|2 a

)

= |b|2 − 2
(b · a)2

|a|2 +

(
b · a
|a|2

)2

|a|2

= |b|2
(

1− (b · a)2

|a|2 |b|2
)

= |b|2 (
1− cos2 θ

)
= |b|2 sin2 (θ)

where θ is the included angle between a and b which is less than π radians. Therefore,
taking square roots,

|b⊥| = |b| sin θ.

4.2 Exercises

1. Use formula 4.2 to verify the Cauchy Schwartz inequality and to show that equality
occurs if and only if one of the vectors is a scalar multiple of the other.

2. Find the angle between the vectors 3i− j− k and i + 4j + 2k.

3. Find the angle between the vectors i− 2j + k and i + 2j− 7k.



40 APPLICATIONS IN THE CASE F = R

4. If F is a force and D is a vector, show projD (F) = (|F| cos θ)u where u is the unit
vector in the direction of D, u = D/ |D| and θ is the included angle between the two
vectors, F and D.

5. Show that the work done by a force F in moving an object along the line from p to q
equals |F| cos θ |p− q| . What is the geometric significance of the work being negative?
What is the physical significance?

6. A boy drags a sled for 100 feet along the ground by pulling on a rope which is 20
degrees from the horizontal with a force of 10 pounds. How much work does this force
do?

7. An object moves 10 meters in the direction of j. There are two forces acting on this
object, F1 = i + j + 2k, and F2 = −5i + 2j−6k. Find the total work done on the
object by the two forces. Hint: You can take the work done by the resultant of the
two forces or you can add the work done by each force.

8. If a,b, and c are vectors. Show that (b + c)⊥ = b⊥ + c⊥ where b⊥ = b− proja (b) .

9. In the discussion of the reflecting mirror which directs all rays to a particular point,
(0, p) . Show that for any choice of positive C this point is the focus of the parabola
and the directrix is y = p− 1

C .

10. Suppose you wanted to make a solar powered oven to cook food. Are there reasons
for using a mirror which is not parabolic? Also describe how you would design a good
flash light with a beam which does not spread out too quickly.

4.3 The Cross Product

The cross product is the other way of multiplying two vectors in R3. It is very different
from the dot product in many ways. First the geometric meaning is discussed and then
a description in terms of coordinates is given. Both descriptions of the cross product are
important. The geometric description is essential in order to understand the applications
to physics and geometry while the coordinate description is the only way to practically
compute the cross product.

Definition 4.3.1 Three vectors, a,b, c form a right handed system if when you extend the
fingers of your right hand along the vector, a and close them in the direction of b, the thumb
points roughly in the direction of c.

For an example of a right handed system of vectors, see the following picture.
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In this picture the vector c points upwards from the plane determined by the other two
vectors. You should consider how a right hand system would differ from a left hand system.
Try using your left hand and you will see that the vector, c would need to point in the
opposite direction as it would for a right hand system.
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From now on, the vectors, i, j,k will always form a right handed system. To repeat, if
you extend the fingers of our right hand along i and close them in the direction j, the thumb
points in the direction of k.

The following is the geometric description of the cross product. It gives both the direction
and the magnitude and therefore specifies the vector.

Definition 4.3.2 Let a and b be two vectors in Rn. Then a× b is defined by the following
two rules.

1. |a× b| = |a| |b| sin θ where θ is the included angle.

2. a× b · a = 0, a× b · b = 0, and a,b,a× b forms a right hand system.

The cross product satisfies the following properties.

a× b = − (b× a) , a× a = 0, (4.3)

For α a scalar,
(αa)×b = α (a× b) = a× (αb) , (4.4)

For a,b, and c vectors, one obtains the distributive laws,

a× (b + c) = a× b + a× c, (4.5)

(b + c)× a = b× a + c× a. (4.6)

Formula 4.3 follows immediately from the definition. The vectors a× b and b× a have
the same magnitude, |a| |b| sin θ, and an application of the right hand rule shows they have
opposite direction. Formula 4.4 is also fairly clear. If α is a nonnegative scalar, the direction
of (αa)×b is the same as the direction of a× b,α (a× b) and a× (αb) while the magnitude
is just α times the magnitude of a× b which is the same as the magnitude of α (a× b)
and a× (αb) . Using this yields equality in 4.4. In the case where α < 0, everything works
the same way except the vectors are all pointing in the opposite direction and you must
multiply by |α| when comparing their magnitudes. The distributive laws are much harder
to establish but the second follows from the first quite easily. Thus, assuming the first, and
using 4.3,

(b + c)× a = −a× (b + c)
= − (a× b + a× c)
= b× a + c× a.

A proof of the distributive law is given in a later section for those who are interested.
Now from the definition of the cross product,

i× j = k j× i = −k
k× i = j i× k = −j
j× k = i k× j = −i

With this information, the following gives the coordinate description of the cross product.

Proposition 4.3.3 Let a = a1i + a2j + a3k and b = b1i + b2j + b3k be two vectors. Then

a× b = (a2b3 − a3b2) i+(a3b1 − a1b3) j+
+ (a1b2 − a2b1)k. (4.7)
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Proof: From the above table and the properties of the cross product listed,

(a1i + a2j + a3k)× (b1i + b2j + b3k) =

a1b2i× j + a1b3i× k + a2b1j× i + a2b3j× k+

+a3b1k× i + a3b2k× j

= a1b2k− a1b3j− a2b1k + a2b3i + a3b1j− a3b2i

= (a2b3 − a3b2) i+(a3b1 − a1b3) j+(a1b2 − a2b1)k (4.8)

This proves the proposition.
It is probably impossible for most people to remember 4.7. Fortunately, there is a some-

what easier way to remember it. This involves the notion of a determinant. A determinant
is a single number assigned to a square array of numbers as follows.

det
(

a b
c d

)
≡

∣∣∣∣
a b
c d

∣∣∣∣ = ad− bc.

This is the definition of the determinant of a square array of numbers having two rows and
two columns. Now using this, the determinant of a square array of numbers in which there
are three rows and three columns is defined as follows.

det




a b c
d e f
h i j


 ≡ (−1)1+1

a

∣∣∣∣
e f
i j

∣∣∣∣

+(−1)1+2
b

∣∣∣∣
d f
h j

∣∣∣∣ + (−1)1+3
c

∣∣∣∣
d e
h i

∣∣∣∣ .

Take the first entry in the top row, a, multiply by (−1) raised to the 1 + 1 since a is in the
first row and the first column, and then multiply by the determinant obtained by crossing
out the row and the column in which a appears. Then add to this a similar number obtained
from the next element in the first row, b. This time multiply by (−1)1+2 because b is in the
second column and the first row. When this is done do the same for c, the last element in
the first row using a similar process. Using the definition of a determinant for square arrays
of numbers having two columns and two rows, this equals

a (ej − if) + b (fh− dj) + c (di− eh) ,

an expression which, like the one for the cross product will be impossible to remember,
although the process through which it is obtained is not too bad. It turns out these two
impossible to remember expressions are linked through the process of finding a determinant
which was just described. The easy way to remember the description of the cross product
in terms of coordinates, is to write

a× b =

∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
(4.9)

and then follow the same process which was just described for calculating determinants
above. This yields

(a2b3 − a3b2) i− (a1b3 − a3b1) j+(a1b2 − a2b1)k (4.10)

which is the same as 4.8. Later in the book a complete discussion of determinants is given
but this will suffice for now.
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Example 4.3.4 Find (i− j + 2k)× (3i− 2j + k) .

Use 4.9 to compute this.

∣∣∣∣∣∣

i j k
1 −1 2
3 −2 1

∣∣∣∣∣∣
=

∣∣∣∣
−1 2
−2 1

∣∣∣∣ i−
∣∣∣∣

1 2
3 1

∣∣∣∣ j+
∣∣∣∣

1 −1
3 −2

∣∣∣∣

= 3i + 5j + k.

4.3.1 The Distributive Law For The Cross Product

This section gives a proof for 4.5, a fairly difficult topic. It is included here for the interested
student. If you are satisfied with taking the distributive law on faith, it is not necessary
to read this section. The proof given here is quite clever and follows the one given in [4].
Another approach, based on volumes of parallelepipeds is found in [12] and is discussed a
little later.

Lemma 4.3.5 Let b and c be two vectors. Then b× c = b× c⊥ where c|| + c⊥ = c and
c⊥ · b = 0.

Proof: Consider the following picture.
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Now c⊥ = c− c· b
|b|

b
|b| and so c⊥ is in the plane determined by c and b. Therefore, from

the geometric definition of the cross product, b× c and b× c⊥ have the same direction.
Now, referring to the picture,

|b× c⊥| = |b| |c⊥|
= |b| |c| sin θ

= |b× c| .

Therefore, b× c and b× c⊥ also have the same magnitude and so they are the same vector.

With this, the proof of the distributive law is in the following theorem.

Theorem 4.3.6 Let a,b, and c be vectors in R3. Then

a× (b + c) = a× b + a× c (4.11)
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Proof: Suppose first that a · b = a · c = 0. Now imagine a is a vector coming out of the
page and let b, c and b + c be as shown in the following picture.
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Then a× b,a× (b + c) , and a× c are each vectors in the same plane, perpendicular to a
as shown. Thus a× c · c = 0,a× (b + c) · (b + c) = 0, and a× b · b = 0. This implies that
to get a× b you move counterclockwise through an angle of π/2 radians from the vector, b.
Similar relationships exist between the vectors a× (b + c) and b + c and the vectors a× c
and c. Thus the angle between a× b and a× (b + c) is the same as the angle between b + c
and b and the angle between a× c and a× (b + c) is the same as the angle between c and
b + c. In addition to this, since a is perpendicular to these vectors,

|a× b| = |a| |b| , |a× (b + c)| = |a| |b + c| , and

|a× c| = |a| |c| .
Therefore,

|a× (b + c)|
|b + c| =

|a× c|
|c| =

|a× b|
|b| = |a|

and so
|a× (b + c)|
|a× c| =

|b + c|
|c| ,

|a× (b + c)|
|a× b| =

|b + c|
|b|

showing the triangles making up the parallelogram on the right and the four sided figure on
the left in the above picture are similar. It follows the four sided figure on the left is in fact
a parallelogram and this implies the diagonal is the vector sum of the vectors on the sides,
yielding 4.11.

Now suppose it is not necessarily the case that a · b = a · c = 0. Then write b = b||+b⊥
where b⊥ · a = 0. Similarly c = c|| + c⊥. By the above lemma and what was just shown,

a× (b + c) = a× (b + c)⊥
= a× (b⊥ + c⊥)
= a× b⊥ + a× c⊥
= a× b + a× c.

This proves the theorem.
The result of Problem 8 of the exercises 4.2 is used to go from the first to the second

line.
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4.3.2 Torque

Imagine you are using a wrench to loosen a nut. The idea is to turn the nut by applying a
force to the end of the wrench. If you push or pull the wrench directly toward or away from
the nut, it should be obvious from experience that no progress will be made in turning the
nut. The important thing is the component of force perpendicular to the wrench. It is this
component of force which will cause the nut to turn. For example see the following picture.
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In the picture a force, F is applied at the end of a wrench represented by the position
vector, R and the angle between these two is θ. Then the tendency to turn will be |R| |F⊥| =
|R| |F| sin θ, which you recognize as the magnitude of the cross product of R and F. If there
were just one force acting at one point whose position vector is R, perhaps this would be
sufficient, but what if there are numerous forces acting at many different points with neither
the position vectors nor the force vectors in the same plane; what then? To keep track of
this sort of thing, define for each R and F, the Torque vector,

τ ≡ R× F.

That way, if there are several forces acting at several points, the total torque can be obtained
by simply adding up the torques associated with the different forces and positions.

Example 4.3.7 Suppose R1 = 2i − j+3k,R2 = i+2j−6k meters and at the points de-
termined by these vectors there are forces, F1 = i − j+2k and F2 = i − 5j + k Newtons
respectively. Find the total torque about the origin produced by these forces acting at the
given points.

It is necessary to take R1 × F1 + R2 × F2. Thus the total torque equals
∣∣∣∣∣∣

i j k
2 −1 3
1 −1 2

∣∣∣∣∣∣
+

∣∣∣∣∣∣

i j k
1 2 −6
1 −5 1

∣∣∣∣∣∣
= −27i− 8j− 8k Newton meters

Example 4.3.8 Find if possible a single force vector, F which if applied at the point
i + j + k will produce the same torque as the above two forces acting at the given points.

This is fairly routine. The problem is to find F = F1i + F2j + F3k which produces the
above torque vector. Therefore,

∣∣∣∣∣∣

i j k
1 1 1
F1 F2 F3

∣∣∣∣∣∣
= −27i− 8j− 8k
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which reduces to (F3 − F2) i+(F1 − F3) j+(F2 − F1)k =− 27i− 8j− 8k. This amounts to
solving the system of three equations in three unknowns, F1, F2, and F3,

F3 − F2 = −27
F1 − F3 = −8
F2 − F1 = −8

However, there is no solution to these three equations. (Why?) Therefore no single force
acting at the point i + j + k will produce the given torque.

The mass of an object is a measure of how much stuff there is in the object. An object
has mass equal to one kilogram, a unit of mass in the metric system, if it would exactly
balance a known one kilogram object when placed on a balance. The known object is one
kilogram by definition. The mass of an object does not depend on where the balance is used.
It would be one kilogram on the moon as well as on the earth. The weight of an object
is something else. It is the force exerted on the object by gravity and has magnitude gm
where g is a constant called the acceleration of gravity. Thus the weight of a one kilogram
object would be different on the moon which has much less gravity, smaller g, than on the
earth. An important idea is that of the center of mass. This is the point at which an object
will balance no matter how it is turned.

Definition 4.3.9 Let an object consist of p point masses, m1, · · ··,mp with the position of
the kth of these at Rk. The center of mass of this object, R0 is the point satisfying

p∑

k=1

(Rk −R0)× gmku = 0

for all unit vectors, u.

The above definition indicates that no matter how the object is suspended, the total
torque on it due to gravity is such that no rotation occurs. Using the properties of the cross
product, (

p∑

k=1

Rkgmk −R0

p∑

k=1

gmk

)
× u = 0 (4.12)

for any choice of unit vector, u. You should verify that if a× u = 0 for all u, then it must
be the case that a = 0. Then the above formula requires that

p∑

k=1

Rkgmk −R0

p∑

k=1

gmk= 0.

dividing by g, and then by
∑p

k=1 mk,

R0 =
∑p

k=1 Rkmk∑p
k=1 mk

. (4.13)

This is the formula for the center of mass of a collection of point masses. To consider the
center of mass of a solid consisting of continuously distributed masses, you need the methods
of calculus.

Example 4.3.10 Let m1 = 5,m2 = 6, and m3 = 3 where the masses are in kilograms.
Suppose m1 is located at 2i + 3j + k, m2 is located at i − 3j + 2k and m3 is located at
2i− j + 3k. Find the center of mass of these three masses.
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Using 4.13

R0 =
5 (2i + 3j + k) + 6 (i− 3j + 2k) + 3 (2i− j + 3k)

5 + 6 + 3

=
11
7

i− 3
7
j +

13
7

k

4.3.3 The Box Product

Definition 4.3.11 A parallelepiped determined by the three vectors, a,b, and c consists of

{ra+sb + tb : r, s, t ∈ [0, 1]} .

That is, if you pick three numbers, r, s, and t each in [0, 1] and form ra+sb + tb, then the
collection of all such points is what is meant by the parallelepiped determined by these three
vectors.

The following is a picture of such a thing.
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You notice the area of the base of the parallelepiped, the parallelogram determined by
the vectors, a and b has area equal to |a× b| while the altitude of the parallelepiped is
|c| cos θ where θ is the angle shown in the picture between c and a× b. Therefore, the
volume of this parallelepiped is the area of the base times the altitude which equals

|a× b| |c| cos θ = a× b · c.
This expression is known as the box product and is sometimes written as [a,b, c] . You

should consider what happens if you interchange the b with the c or the a with the c. You
can see geometrically from drawing pictures that this merely introduces a minus sign. In any
case the box product of three vectors always equals either the volume of the parallelepiped
determined by the three vectors or else minus this volume.

Example 4.3.12 Find the volume of the parallelepiped determined by the vectors, i + 2j−
5k, i + 3j− 6k,3i + 2j + 3k.

According to the above discussion, pick any two of these, take the cross product and
then take the dot product of this with the third of these vectors. The result will be either
the desired volume or minus the desired volume.

(i + 2j− 5k)× (i + 3j− 6k) =

∣∣∣∣∣∣

i j k
1 2 −5
1 3 −6

∣∣∣∣∣∣
= 3i + j + k
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Now take the dot product of this vector with the third which yields

(3i + j + k) · (3i + 2j + 3k) = 9 + 2 + 3 = 14.

This shows the volume of this parallelepiped is 14 cubic units.
Here is another proof of the distributive law for the cross product. From the above pic-

ture (a× b) ·c = a· (b× c) because both of these give either the volume of a parallelepiped
determined by the vectors a,b, c or -1 times the volume of this parallelepiped. Now to prove
the distributive law, let x be a vector. From the above observation,

x · a× (b + c) = (x× a) · (b + c)
= (x× a) · b+(x× a) · c
= x · a× b + x · a× c

= x· (a× b + a× c) .

Therefore,
x· [a× (b + c)− (a× b + a× c)] = 0

for all x. In particular, this holds for x = a× (b + c) − (a× b + a× c) showing that
a× (b + c) = a× b + a× c and this proves the distributive law for the cross product another
way.

4.4 Exercises

1. Show that if a× u = 0 for all unit vectors, u, then a = 0.

2. If you only assume 4.12 holds for u = i, j,k, show that this implies 4.12 holds for all
unit vectors, u.

3. Let m1 = 5,m2 = 1, and m3 = 4 where the masses are in kilograms and the distance
is in meters. Suppose m1 is located at 2i − 3j + k, m2 is located at i − 3j + 6k and
m3 is located at 2i + j + 3k. Find the center of mass of these three masses.

4. Let m1 = 2,m2 = 3, and m3 = 1 where the masses are in kilograms and the distance
is in meters. Suppose m1 is located at 2i− j + k, m2 is located at i− 2j + k and m3

is located at 4i + j + 3k. Find the center of mass of these three masses.

5. Find the volume of the parallelepiped determined by the vectors, i− 7j− 5k, i− 2j−
6k,3i + 2j + 3k.

6. Suppose a,b, and c are three vectors whose components are all integers. Can you
conclude the volume of the parallelepiped determined from these three vectors will
always be an integer?

7. What does it mean geometrically if the box product of three vectors gives zero?

8. Suppose a =(a1, a2, a3) ,b =(b1, b2, b3) , and c =(c1, c2, c3) . Show the box product,
[a,b, c] equals the determinant

∣∣∣∣∣∣

c1 c2 c3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
.
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9. It is desired to find an equation of a plane containing the two vectors, a and b. Using
Problem 7, show an equation for this plane is

∣∣∣∣∣∣

x y z
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
= 0

That is, the set of all (x, y, z) such that the above expression equals zero.

10. Using the notion of the box product yielding either plus or minus the volume of the
parallelepiped determined by the given three vectors, show that

(a× b) ·c = a· (b× c)

In other words, the dot and the cross can be switched as long as the order of the
vectors remains the same. Hint: There are two ways to do this, by the coordinate
description of the dot and cross product and by geometric reasoning.

11. Verify directly that the coordinate description of the cross product, a× b has the
property that it is perpendicular to both a and b. Then show by direct computation
that this coordinate description satisfies

|a× b|2 = |a|2 |b|2 − (a · b)2

= |a|2 |b|2 (
1− cos2 (θ)

)

where θ is the angle included between the two vectors. Explain why |a× b| has the
correct magnitude. All that is missing is the material about the right hand rule.
Verify directly from the coordinate description of the cross product that the right
thing happens with regards to the vectors i, j,k. Next verify that the distributive law
holds for the coordinate description of the cross product. This gives another way to
approach the cross product. First define it in terms of coordinates and then get the
geometric properties from this.

4.5 Vector Identities And Notation

There are two special symbols, δij and εijk which are very useful in dealing with vector
identities. To begin with, here is the definition of these symbols.

Definition 4.5.1 The symbol, δij , called the Kroneker delta symbol is defined as follows.

δij ≡
{

1 if i = j
0 if i 6= j

.

With the Kroneker symbol, i and j can equal any integer in {1, 2, · · ·, n} for any n ∈ N.

Definition 4.5.2 For i, j, and k integers in the set, {1, 2, 3} , εijk is defined as follows.

εijk ≡




1 if (i, j, k) = (1, 2, 3) , (2, 3, 1) , or (3, 1, 2)
−1 if (i, j, k) = (2, 1, 3) , (1, 3, 2) , or (3, 2, 1)
0 if there are any repeated integers

.

The subscripts ijk and ij in the above are called indices. A single one is called an index.
This symbol, εijk is also called the permutation symbol.
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The way to think of εijk is that ε123 = 1 and if you switch any two of the numbers in
the list i, j, k, it changes the sign. Thus εijk = −εjik and εijk = −εkji etc. You should
check that this rule reduces to the above definition. For example, it immediately implies
that if there is a repeated index, the answer is zero. This follows because εiij = −εiij and
so εiij = 0.

It is useful to use the Einstein summation convention when dealing with these symbols.
Simply stated, the convention is that you sum over the repeated index. Thus aibi means∑

i aibi. Also, δijxj means
∑

j δijxj = xi. When you use this convention, there is one very
important thing to never forget. It is this: Never have an index be repeated more than once.
Thus aibi is all right but aiibi is not. The reason for this is that you end up getting confused
about what is meant. If you want to write

∑
i aibici it is best to simply use the summation

notation. There is a very important reduction identity connecting these two symbols.

Lemma 4.5.3 The following holds.

εijkεirs = (δjrδks − δkrδjs) .

Proof: If {j, k} 6= {r, s} then every term in the sum on the left must have either εijk

or εirs contains a repeated index. Therefore, the left side equals zero. The right side also
equals zero in this case. To see this, note that if the two sets are not equal, then there is
one of the indices in one of the sets which is not in the other set. For example, it could be
that j is not equal to either r or s. Then the right side equals zero.

Therefore, it can be assumed {j, k} = {r, s} . If i = r and j = s for s 6= r, then there
is exactly one term in the sum on the left and it equals 1. The right also reduces to 1 in
this case. If i = s and j = r, there is exactly one term in the sum on the left which is
nonzero and it must equal -1. The right side also reduces to -1 in this case. If there is
a repeated index in {j, k} , then every term in the sum on the left equals zero. The right
also reduces to zero in this case because then j = k = r = s and so the right side becomes
(1) (1)− (−1) (−1) = 0.

Proposition 4.5.4 Let u,v be vectors in Rn where the Cartesian coordinates of u are
(u1, · · ·, un) and the Cartesian coordinates of v are (v1, · · ·, vn). Then u · v = uivi. If u,v
are vectors in R3, then

(u× v)i = εijkujvk.

Also, δikak = ai.

Proof: The first claim is obvious from the definition of the dot product. The second is
verified by simply checking it works. For example,

u× v ≡
∣∣∣∣∣∣

i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣

and so
(u× v)1 = (u2v3 − u3v2) .

From the above formula in the proposition,

ε1jkujvk ≡ u2v3 − u3v2,

the same thing. The cases for (u× v)2 and (u× v)3 are verified similarly. The last claim
follows directly from the definition.

With this notation, you can easily discover vector identities and simplify expressions
which involve the cross product.
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Example 4.5.5 Discover a formula which simplifies (u× v)×w.

From the above reduction formula,

((u× v)×w)i = εijk (u× v)j wk

= εijkεjrsurvswk

= −εjikεjrsurvswk

= − (δirδks − δisδkr) urvswk

= − (uivkwk − ukviwk)
= u ·wvi − v ·wui

= ((u ·w)v − (v ·w)u)i .

Since this holds for all i, it follows that

(u× v)×w =(u ·w)v − (v ·w)u.

This is good notation and it will be used in the rest of the book whenever convenient.
Actually, this notation is a special case of something more elaborate in which the level of
the indices is also important, but there is time for this more general notion later. You will
see it in advanced books on mechanics in physics and engineering. It also occurs in the
subject of differential geometry.

4.6 Exercises

1. Discover a vector identity for u× (v ×w) .

2. Discover a vector identity for (u× v) · (z×w) .

3. Discover a vector identity for (u× v)× (z×w) in terms of box products.

4. Simplify (u× v) · (v ×w)× (w × z) .

5. Simplify |u× v|2 + (u× v)2 − |u|2 |v|2 .

6. Prove that εijkεijr = 2δkr.
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Matrices And Linear
Transformations

5.1 Matrices

You have now solved systems of equations by writing them in terms of an augmented matrix
and then doing row operations on this augmented matrix. It turns out such rectangular
arrays of numbers are important from many other different points of view. Numbers are
also called scalars. In this book numbers will always be either real or complex numbers.

A matrix is a rectangular array of numbers. Several of them are referred to as matrices.
For example, here is a matrix. 


1 2 3 4
5 2 8 7
6 −9 1 2




This matrix is a 3 × 4 matrix because there are three rows and four columns. The first

row is (1 2 3 4) , the second row is (5 2 8 7) and so forth. The first column is




1
5
6


 . The

convention in dealing with matrices is to always list the rows first and then the columns.
Also, you can remember the columns are like columns in a Greek temple. They stand up
right while the rows just lay there like rows made by a tractor in a plowed field. Elements of
the matrix are identified according to position in the matrix. For example, 8 is in position
2, 3 because it is in the second row and the third column. You might remember that you
always list the rows before the columns by using the phrase Rowman Catholic. The symbol,
(aij) refers to a matrix in which the i denotes the row and the j denotes the column. Using
this notation on the above matrix, a23 = 8, a32 = −9, a12 = 2, etc.

There are various operations which are done on matrices. They can sometimes be added,
multiplied by a scalar and sometimes multiplied. To illustrate scalar multiplication, consider
the following example.

3




1 2 3 4
5 2 8 7
6 −9 1 2


 =




3 6 9 12
15 6 24 21
18 −27 3 6


 .

The new matrix is obtained by multiplying every entry of the original matrix by the given
scalar. If A is an m× n matrix, −A is defined to equal (−1)A.

Two matrices which are the same size can be added. When this is done, the result is the

53
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matrix which is obtained by adding corresponding entries. Thus



1 2
3 4
5 2


 +



−1 4
2 8
6 −4


 =




0 6
5 12
11 −2


 .

Two matrices are equal exactly when they are the same size and the corresponding entries
are identical. Thus 


0 0
0 0
0 0


 6=

(
0 0
0 0

)

because they are different sizes. As noted above, you write (cij) for the matrix C whose
ijth entry is cij . In doing arithmetic with matrices you must define what happens in terms
of the cij sometimes called the entries of the matrix or the components of the matrix.

The above discussion stated for general matrices is given in the following definition.

Definition 5.1.1 Let A = (aij) and B = (bij) be two m × n matrices. Then A + B = C
where

C = (cij)

for cij = aij + bij . Also if x is a scalar,

xA = (cij)

where cij = xaij . The number Aij will typically refer to the ijth entry of the matrix, A. The
zero matrix, denoted by 0 will be the matrix consisting of all zeros.

Do not be upset by the use of the subscripts, ij. The expression cij = aij + bij is just
saying that you add corresponding entries to get the result of summing two matrices as
discussed above.

Note there are 2× 3 zero matrices, 3× 4 zero matrices, etc. In fact for every size there
is a zero matrix.

With this definition, the following properties are all obvious but you should verify all of
these properties are valid for A, B, and C, m× n matrices and 0 an m× n zero matrix,

A + B = B + A, (5.1)

the commutative law of addition,

(A + B) + C = A + (B + C) , (5.2)

the associative law for addition,
A + 0 = A, (5.3)

the existence of an additive identity,

A + (−A) = 0, (5.4)

the existence of an additive inverse. Also, for α, β scalars, the following also hold.

α (A + B) = αA + αB, (5.5)

(α + β)A = αA + βA, (5.6)

α (βA) = αβ (A) , (5.7)

1A = A. (5.8)

The above properties, 5.1 - 5.8 are known as the vector space axioms and the fact that
the m×n matrices satisfy these axioms is what is meant by saying this set of matrices forms
a vector space. You may need to study these later.
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Definition 5.1.2 Matrices which are n × 1 or 1 × n are especially called vectors and are
often denoted by a bold letter. Thus

x =




x1

...
xn




is a n× 1 matrix also called a column vector while a 1× n matrix of the form (x1 · · · xn) is
referred to as a row vector.

All the above is fine, but the real reason for considering matrices is that they can be
multiplied. This is where things quit being banal.

First consider the problem of multiplying an m × n matrix by an n × 1 column vector.
Consider the following example

(
1 2 3
4 5 6

) 


7
8
9


 =?

The way I like to remember this is as follows. Slide the vector, placing it on top the two
rows as shown 


7
1

8
2

9
3

7
4

8
5

9
6


 ,

multiply the numbers on the top by the numbers on the bottom and add them up to get
a single number for each row of the matrix. These numbers are listed in the same order
giving, in this case, a 2× 1 matrix. Thus

(
1 2 3
4 5 6

) 


7
8
9


 =

(
7× 1 + 8× 2 + 9× 3
7× 4 + 8× 5 + 9× 6

)
=

(
50
122

)
.

In more general terms,

(
a11 a12 a13

a21 a22 a23

) 


x1

x2

x3


 =

(
a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

)
.

Another way to think of this is

x1

(
a11

a21

)
+ x2

(
a12

a22

)
+ x3

(
a13

a23

)

Thus you take x1 times the first column, add to x2 times the second column, and finally x3

times the third column. Motivated by this example, here is the definition of how to multiply
an m× n matrix by an n× 1 matrix. (vector)

Definition 5.1.3 Let A = Aij be an m× n matrix and let v be an n× 1 matrix,

v =




v1

...
vn
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Then Av is an m× 1 matrix and the ith component of this matrix is

(Av)i =
n∑

j=1

Aijvj .

Thus

Av =




∑n
j=1 A1jvj

...∑n
j=1 Amjvj


 . (5.9)

In other words, if
A = (a1, · · ·,an)

where the ak are the columns,

Av =
n∑

k=1

vkak

This follows from 5.9 and the observation that the jth column of A is



A1j

A2j

...
Amj




so 5.9 reduces to

v1




A11

A21

...
Am1


 + v2




A12

A22

...
Am2


 + · · ·+ vn




A1n

A2n

...
Amn




Note also that multiplication by an m × n matrix takes an n × 1 matrix, and produces an
m× 1 matrix.

Here is another example.

Example 5.1.4 Compute



1 2 1 3
0 2 1 −2
2 1 4 1







1
2
0
1


 .

First of all this is of the form (3× 4) (4× 1) and so the result should be a (3× 1) . Note
how the inside numbers cancel. To get the entry in the second row and first and only column,
compute

4∑

k=1

a2kvk = a21v1 + a22v2 + a23v3 + a24v4

= 0× 1 + 2× 2 + 1× 0 + (−2)× 1 = 2.
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You should do the rest of the problem and verify




1 2 1 3
0 2 1 −2
2 1 4 1







1
2
0
1


 =




8
2
5


 .

With this done, the next task is to multiply an m × n matrix times an n × p matrix.
Before doing so, the following may be helpful.

(m×
these must match

n̂) (n× p ) = m× p

If the two middle numbers don’t match, you can’t multiply the matrices!

Let A be an m× n matrix and let B be an n× p matrix. Then B is of the form

B = (b1, · · ·,bp)

where bk is an n× 1 matrix. Then an m× p matrix, AB is defined as follows:

AB ≡ (Ab1, · · ·, Abp) (5.10)

where Abk is an m× 1 matrix. Hence AB as just defined is an m× p matrix. For example,

Example 5.1.5 Multiply the following.

(
1 2 1
0 2 1

) 


1 2 0
0 3 1
−2 1 1




The first thing you need to check before doing anything else is whether it is possible to
do the multiplication. The first matrix is a 2×3 and the second matrix is a 3×3. Therefore,
is it possible to multiply these matrices. According to the above discussion it should be a
2× 3 matrix of the form




First column︷ ︸︸ ︷
(

1 2 1
0 2 1

) 


1
0
−2


,

Second column︷ ︸︸ ︷
(

1 2 1
0 2 1

) 


2
3
1


,

Third column︷ ︸︸ ︷
(

1 2 1
0 2 1

) 


0
1
1







You know how to multiply a matrix times a vector and so you do so to obtain each of the
three columns. Thus

(
1 2 1
0 2 1

) 


1 2 0
0 3 1
−2 1 1


 =

( −1 9 3
−2 7 3

)
.

Here is another example.

Example 5.1.6 Multiply the following.



1 2 0
0 3 1
−2 1 1




(
1 2 1
0 2 1

)
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First check if it is possible. This is of the form (3× 3) (2× 3) . The inside numbers do not
match and so you can’t do this multiplication. This means that anything you write will be
absolute nonsense because it is impossible to multiply these matrices in this order. Aren’t
they the same two matrices considered in the previous example? Yes they are. It is just
that here they are in a different order. This shows something you must always remember
about matrix multiplication.

Order Matters!

Matrix multiplication is not commutative. This is very different than multiplication of
numbers!

It is important to describe matrix multiplication in terms of entries of the matrices.
What is the ijth entry of AB? It would be the ith entry of the jth column of AB. Thus it
would be the ith entry of Abj . Now

bj =




B1j

...
Bnj




and from the above definition, the ith entry is
n∑

k=1

AikBkj . (5.11)

In terms of pictures of the matrix, you are doing



A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
Am1 Am2 · · · Amn







B11 B12 · · · B1p

B21 B22 · · · B2p

...
...

...
Bn1 Bn2 · · · Bnp




Then as explained above, the jth column is of the form



A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
Am1 Am2 · · · Amn







B1j

B2j

...
Bnj




which is a m× 1 matrix or column vector which equals



A11

A21

...
Am1


 B1j +




A12

A22

...
Am2


 B2j + · · ·+




A1n

A2n

...
Amn


 Bnj .

The second entry of this m× 1 matrix is

A21B1j + A22B2j + · · ·+ A2nBnj =
m∑

k=1

A2kBkj .

Similarly, the ith entry of this m× 1 matrix is

Ai1B1j + Ai2B2j + · · ·+ AinBnj =
m∑

k=1

AikBkj .



5.1. MATRICES 59

This shows the following definition for matrix multiplication in terms of the ijth entries of
the product coincides with Definition ??.

This motivates the definition for matrix multiplication which identifies the ijth entries
of the product.

Definition 5.1.7 Let A = (Aij) be an m×n matrix and let B = (Bij) be an n× p matrix.
Then AB is an m× p matrix and

(AB)ij =
n∑

k=1

AikBkj . (5.12)

Two matrices, A and B are said to be conformable in a particular order if they can be
multiplied in that order. Thus if A is an r × s matrix and B is a s × p then A and B are
conformable in the order, AB.

Example 5.1.8 Multiply if possible




1 2
3 1
2 6




(
2 3 1
7 6 2

)
.

First check to see if this is possible. It is of the form (3× 2) (2× 3) and since the inside
numbers match, it must be possible to do this and the result should be a 3× 3 matrix. The
answer is of the form







1 2
3 1
2 6




(
2
7

)
,




1 2
3 1
2 6




(
3
6

)
,




1 2
3 1
2 6




(
1
2

)


where the commas separate the columns in the resulting product. Thus the above product
equals 


16 15 5
13 15 5
46 42 14


 ,

a 3× 3 matrix as desired. In terms of the ijth entries and the above definition, the entry in
the third row and second column of the product should equal

∑

j

a3kbk2 = a31b12 + a32b22

= 2× 3 + 6× 6 = 42.

You should try a few more such examples to verify the above definition in terms of the ijth

entries works for other entries.

Example 5.1.9 Multiply if possible




1 2
3 1
2 6







2 3 1
7 6 2
0 0 0


 .

This is not possible because it is of the form (3× 2) (3× 3) and the middle numbers
don’t match.

Example 5.1.10 Multiply if possible




2 3 1
7 6 2
0 0 0







1 2
3 1
2 6


 .
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This is possible because in this case it is of the form (3× 3) (3× 2) and the middle
numbers do match. When the multiplication is done it equals




13 13
29 32
0 0


 .

Check this and be sure you come up with the same answer.

Example 5.1.11 Multiply if possible




1
2
1


(

1 2 1 0
)
.

In this case you are trying to do (3× 1) (1× 4) . The inside numbers match so you can
do it. Verify 


1
2
1


(

1 2 1 0
)

=




1 2 1 0
2 4 2 0
1 2 1 0




As pointed out above, sometimes it is possible to multiply matrices in one order but not
in the other order. What if it makes sense to multiply them in either order? Will they be
equal then?

Example 5.1.12 Compare
(

1 2
3 4

)(
0 1
1 0

)
and

(
0 1
1 0

)(
1 2
3 4

)
.

The first product is (
1 2
3 4

)(
0 1
1 0

)
=

(
2 1
4 3

)
,

the second product is (
0 1
1 0

)(
1 2
3 4

)
=

(
3 4
1 2

)
,

and you see these are not equal. Therefore, you cannot conclude that AB = BA for matrix
multiplication. However, there are some properties which do hold.

Proposition 5.1.13 If all multiplications and additions make sense, the following hold for
matrices, A,B,C and a, b scalars.

A (aB + bC) = a (AB) + b (AC) (5.13)

(B + C)A = BA + CA (5.14)

A (BC) = (AB) C (5.15)

Proof: Using the repeated index summation convention and the above definition of
matrix multiplication,

(A (aB + bC))ij =
∑

k

Aik (aB + bC)kj

=
∑

k

Aik (aBkj + bCkj)

= a
∑

k

AikBkj + b
∑

k

AikCkj

= a (AB)ij + b (AC)ij

= (a (AB) + b (AC))ij
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showing that A (B + C) = AB + AC as claimed. Formula 5.14 is entirely similar.
Consider 5.15, the associative law of multiplication. Before reading this, review the

definition of matrix multiplication in terms of entries of the matrices.

(A (BC))ij =
∑

k

Aik (BC)kj

=
∑

k

Aik

∑

l

BklClj

=
∑

l

(AB)il Clj

= ((AB)C)ij .

This proves 5.15.
Another important operation on matrices is that of taking the transpose. The following

example shows what is meant by this operation, denoted by placing a T as an exponent on
the matrix. 


1 1 + 2i
3 1
2 6




T

=
(

1 3 2
1 + 2i 1 6

)

What happened? The first column became the first row and the second column became
the second row. Thus the 3 × 2 matrix became a 2 × 3 matrix. The number 3 was in the
second row and the first column and it ended up in the first row and second column. This
motivates the following definition of the transpose of a matrix.

Definition 5.1.14 Let A be an m × n matrix. Then AT denotes the n ×m matrix which
is defined as follows. (

AT
)
ij

= Aji

The transpose of a matrix has the following important property.

Lemma 5.1.15 Let A be an m× n matrix and let B be a n× p matrix. Then

(AB)T = BT AT (5.16)

and if α and β are scalars,

(αA + βB)T = αAT + βBT (5.17)

Proof: From the definition,
(
(AB)T

)
ij

= (AB)ji

=
∑

k

AjkBki

=
∑

k

(
BT

)
ik

(
AT

)
kj

=
(
BT AT

)
ij

5.17 is left as an exercise and this proves the lemma.

Definition 5.1.16 An n× n matrix, A is said to be symmetric if A = AT . It is said to be
skew symmetric if AT = −A.
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Example 5.1.17 Let

A =




2 1 3
1 5 −3
3 −3 7


 .

Then A is symmetric.

Example 5.1.18 Let

A =




0 1 3
−1 0 2
−3 −2 0




Then A is skew symmetric.

There is a special matrix called I and defined by

Iij = δij

where δij is the Kroneker symbol defined by

δij =
{

1 if i = j
0 if i 6= j

It is called the identity matrix because it is a multiplicative identity in the following sense.

Lemma 5.1.19 Suppose A is an m× n matrix and In is the n× n identity matrix. Then
AIn = A. If Im is the m×m identity matrix, it also follows that ImA = A.

Proof:

(AIn)ij =
∑

k

Aikδkj

= Aij

and so AIn = A. The other case is left as an exercise for you.

Definition 5.1.20 An n×n matrix, A has an inverse, A−1 if and only if AA−1 = A−1A =
I where I = (δij) for

δij ≡
{

1 if i = j
0 if i 6= j

Such a matrix is called invertible.

5.1.1 Finding The Inverse Of A Matrix

A little later a formula is given for the inverse of a matrix. However, it is not a good way
to find the inverse for a matrix. There is a much easier way and it is this which is presented
here. It is also important to note that not all matrices have inverses.

Example 5.1.21 Let A =
(

1 1
1 1

)
. Does A have an inverse?

One might think A would have an inverse because it does not equal zero. However,
(

1 1
1 1

)( −1
1

)
=

(
0
0

)
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and if A−1 existed, this could not happen because you could write
(

0
0

)
= A−1

((
0
0

))
= A−1

(
A

( −1
1

))
=

=
(
A−1A

) ( −1
1

)
= I

( −1
1

)
=

( −1
1

)
,

a contradiction. Thus the answer is that A does not have an inverse.

Example 5.1.22 Let A =
(

1 1
1 2

)
. Show

(
2 −1
−1 1

)
is the inverse of A.

To check this, multiply
(

1 1
1 2

)(
2 −1
−1 1

)
=

(
1 0
0 1

)

and (
2 −1
−1 1

)(
1 1
1 2

)
=

(
1 0
0 1

)

showing that this matrix is indeed the inverse of A.

In the last example, how would you find A−1? You wish to find a matrix,
(

x z
y w

)

such that (
1 1
1 2

) (
x z
y w

)
=

(
1 0
0 1

)
.

This requires the solution of the systems of equations,

x + y = 1, x + 2y = 0

and
z + w = 0, z + 2w = 1.

Writing the augmented matrix for these two systems gives
(

1 1 1
1 2 0

)
(5.18)

for the first system and (
1 1 0
1 2 1

)
(5.19)

for the second. Lets solve the first system. Take (−1) times the first row and add to the
second to get (

1 1 1
0 1 −1

)

Now take (−1) times the second row and add to the first to get
(

1 0 2
0 1 −1

)
.

Putting in the variables, this says x = 2 and y = −1.
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Now solve the second system, 5.19 to find z and w. Take (−1) times the first row and
add to the second to get (

1 1 0
0 1 1

)
.

Now take (−1) times the second row and add to the first to get
(

1 0 −1
0 1 1

)
.

Putting in the variables, this says z = −1 and w = 1. Therefore, the inverse is
(

2 −1
−1 1

)
.

Didn’t the above seem rather repetitive? Note that exactly the same row operations
were used in both systems. In each case, the end result was something of the form (I|v)

where I is the identity and v gave a column of the inverse. In the above,
(

x
y

)
, the first

column of the inverse was obtained first and then the second column
(

z
w

)
.

This is the reason for the following simple procedure for finding the inverse of a matrix.
This procedure is called the Gauss Jordan procedure.

Procedure 5.1.23 Suppose A is an n × n matrix. To find A−1 if it exists, form the
augmented n× 2n matrix,

(A|I)

and then do row operations until you obtain an n× 2n matrix of the form

(I|B) (5.20)

if possible. When this has been done, B = A−1. The matrix, A has no inverse exactly when
it is impossible to do row operations and end up with one like 5.20.

Example 5.1.24 Let A =




1 0 1
1 −1 1
1 1 −1


. Find A−1.

Form the augmented matrix,



1 0 1 1 0 0
1 −1 1 0 1 0
1 1 −1 0 0 1


 .

Now do row operations untill the n×n matrix on the left becomes the identity matrix. This
yields after some computations,




1 0 0 0 1
2

1
2

0 1 0 1 −1 0
0 0 1 1 − 1

2 − 1
2




and so the inverse of A is the matrix on the right,



0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2


 .
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Checking the answer is easy. Just multiply the matrices and see if it works.



1 0 1
1 −1 1
1 1 −1







0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2


 =




1 0 0
0 1 0
0 0 1


 .

Always check your answer because if you are like some of us, you will usually have made a
mistake.

Example 5.1.25 Let A =




1 2 2
1 0 2
3 1 −1


. Find A−1.

Set up the augmented matrix, (A|I)



1 2 2 1 0 0
1 0 2 0 1 0
3 1 −1 0 0 1




Next take (−1) times the first row and add to the second followed by (−3) times the first
row added to the last. This yields




1 2 2 1 0 0
0 −2 0 −1 1 0
0 −5 −7 −3 0 1


 .

Then take 5 times the second row and add to -2 times the last row.



1 2 2 1 0 0
0 −10 0 −5 5 0
0 0 14 1 5 −2




Next take the last row and add to (−7) times the top row. This yields


−7 −14 0 −6 5 −2
0 −10 0 −5 5 0
0 0 14 1 5 −2


 .

Now take (−7/5) times the second row and add to the top.


−7 0 0 1 −2 −2
0 −10 0 −5 5 0
0 0 14 1 5 −2


 .

Finally divide the top row by -7, the second row by -10 and the bottom row by 14 which
yields 


1 0 0 − 1

7
2
7

2
7

0 1 0 1
2 − 1

2 0
0 0 1 1

14
5
14 − 1

7


 .

Therefore, the inverse is 

− 1

7
2
7

2
7

1
2 − 1

2 0
1
14

5
14 − 1

7
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Example 5.1.26 Let A =




1 2 2
1 0 2
2 2 4


. Find A−1.

Write the augmented matrix, (A|I)



1 2 2 1 0 0
1 0 2 0 1 0
2 2 4 0 0 1




and proceed to do row operations attempting to obtain
(
I|A−1

)
. Take (−1) times the top

row and add to the second. Then take (−2) times the top row and add to the bottom.



1 2 2 1 0 0
0 −2 0 −1 1 0
0 −2 0 −2 0 1




Next add (−1) times the second row to the bottom row.



1 2 2 1 0 0
0 −2 0 −1 1 0
0 0 0 −1 −1 1




At this point, you can see there will be no inverse because you have obtained a row of zeros
in the left half of the augmented matrix, (A|I) . Thus there will be no way to obtain I on
the left. In other words, the three systems of equations you must solve to find the inverse
have no solution. In particular, there is no solution for the first column of A−1 which must
solve

A




x
y
z


 =




1
0
0




because a sequence of row operations leads to the impossible equation, 0x + 0y + 0z = −1.

5.2 Exercises

1. In 5.1 - 5.8 describe −A and 0.

2. Let A be an n×n matrix. Show A equals the sum of a symmetric and a skew symmetric
matrix.

3. Show every skew symmetric matrix has all zeros down the main diagonal. The main
diagonal consists of every entry of the matrix which is of the form aii. It runs from
the upper left down to the lower right.

4. Using only the properties 5.1 - 5.8 show −A is unique.

5. Using only the properties 5.1 - 5.8 show 0 is unique.

6. Using only the properties 5.1 - 5.8 show 0A = 0. Here the 0 on the left is the scalar 0
and the 0 on the right is the zero for m× n matrices.

7. Using only the properties 5.1 - 5.8 and previous problems show (−1)A = −A.

8. Prove 5.17.
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9. Prove that ImA = A where A is an m× n matrix.

10. Let A and be a real m × n matrix and let x ∈ Rn and y ∈ Rm. Show (Ax,y)Rm =(
x,AT y

)
Rn where (·, ·)Rk denotes the dot product in Rk.

11. Use the result of Problem 10 to verify directly that (AB)T = BT AT without making
any reference to subscripts.

12. Let x =(−1,−1, 1) and y =(0, 1, 2) . Find xT y and xyT if possible.

13. Give an example of matrices, A, B,C such that B 6= C, A 6= 0, and yet AB = AC.

14. Let A =




1 1
−2 −1
1 2


, B =

(
1 −1 −2
2 1 −2

)
, and C =




1 1 −3
−1 2 0
−3 −1 0


 . Find

if possible.

(a) AB

(b) BA

(c) AC

(d) CA

(e) CB

(f) BC

15. Show that if A−1 exists for an n×n matrix, then it is unique. That is, if BA = I and
AB = I, then B = A−1.

16. Show (AB)−1 = B−1A−1.

17. Show that if A is an invertible n× n matrix, then so is AT and
(
AT

)−1 =
(
A−1

)T
.

18. Show that if A is an n×n invertible matrix and x is a n× 1 matrix such that Ax = b
for b an n× 1 matrix, then x = A−1b.

19. Give an example of a matrix, A such that A2 = I and yet A 6= I and A 6= −I.

20. Give an example of matrices, A,B such that neither A nor B equals zero and yet
AB = 0.

21. Write




x1 − x2 + 2x3

2x3 + x1

3x3

3x4 + 3x2 + x1


 in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.

22. Give another example other than the one given in this section of two square matrices,
A and B such that AB 6= BA.

23. Suppose A and B are square matrices of the same size. Which of the following are
correct?

(a) (A−B)2 = A2 − 2AB + B2

(b) (AB)2 = A2B2

(c) (A + B)2 = A2 + 2AB + B2
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(d) (A + B)2 = A2 + AB + BA + B2

(e) A2B2 = A (AB)B

(f) (A + B)3 = A3 + 3A2B + 3AB2 + B3

(g) (A + B) (A−B) = A2 −B2

(h) None of the above. They are all wrong.

(i) All of the above. They are all right.

24. Let A =
( −1 −1

3 3

)
. Find all 2× 2 matrices, B such that AB = 0.

25. Prove that if A−1 exists and Ax = 0 then x = 0.

26. Let

A =




1 2 3
2 1 4
1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

27. Let

A =




1 0 3
2 3 4
1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

28. Let

A =




1 2 3
2 1 4
4 5 10


 .

Find A−1 if possible. If A−1 does not exist, determine why.

29. Let

A =




1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2




Find A−1 if possible. If A−1 does not exist, determine why.

5.3 Linear Transformations

By 5.13, if A is an m× n matrix, then for v,u vectors in Fn and a, b scalars,

A




∈Fn

︷ ︸︸ ︷
au + bv


 = aAu + bAv ∈ Fm (5.21)

Definition 5.3.1 A function, A : Fn → Fm is called a linear transformation if for all
u,v ∈ Fn and a, b scalars, 5.21 holds.
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From 5.21, matrix multiplication defines a linear transformation as just defined. It
turns out this is the only type of linear transformation available. Thus if A is a linear
transformation from Fn to Fm, there is always a matrix which produces A. Before showing
this, here is a simple definition.

Definition 5.3.2 A vector, ei ∈ Fn is defined as follows:

ei ≡




0
...
1
...
0




,

where the 1 is in the ith position and there are zeros everywhere else. Thus

ei = (0, · · ·, 0, 1, 0, · · ·, 0)T
.

Of course the ei for a particular value of i in Fn would be different than the ei for that
same value of i in Fm for m 6= n. One of them is longer than the other. However, which one
is meant will be determined by the context in which they occur.

These vectors have a significant property.

Lemma 5.3.3 Let v ∈ Fn. Thus v is a list of numbers arranged vertically, v1, · · ·, vn. Then

eT
i v = vi. (5.22)

Also, if A is an m× n matrix, then letting ei ∈ Fm and ej ∈ Fn,

eT
i Aej = Aij (5.23)

Proof: First note that eT
i is a 1 × n matrix and v is an n × 1 matrix so the above

multiplication in 5.22 makes perfect sense. It equals

(0, · · ·, 1, · · ·0)




v1

...
vi

...
vn




= vi

as claimed.
Consider 5.23. From the definition of matrix multiplication using the repeated index

summation convention, and noting that (ej)k = δkj

eT
i Aej = eT

i




A1k (ej)k
...

Aik (ej)k
...

Amk (ej)k




= eT
i




A1j

...
Aij

...
Amj




= Aij

by the first part of the lemma. This proves the lemma.
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Theorem 5.3.4 Let L : Fn → Fm be a linear transformation. Then there exists a unique
m× n matrix, A such that

Ax = Lx

for all x ∈ Fn. The ikth entry of this matrix is given by

eT
i Lek (5.24)

Proof: By the lemma,

(Lx)i = eT
i Lx = eT

i xkLek =
(
eT

i Lek

)
xk.

Let Aik = eT
i Lek, to prove the existence part of the theorem.

To verify uniqueness, suppose Bx = Ax = Lx for all x ∈ Fn. Then in particular, this is
true for x = ej and then multiply on the left by eT

i to obtain

Bij = eT
i Bej = eT

i Aej = Aij

showing A = B. This proves uniqueness.

Corollary 5.3.5 A linear transformation, L : Fn → Fm is completely determined by the
vectors {Le1, · · ·, Len} .

Proof: This follows immediately from the above theorem. The unique matrix determin-
ing the linear transformation which is given in 5.24 depends only on these vectors.

This theorem shows that any linear transformation defined on Fn can always be consid-
ered as a matrix. Therefore, the terms “linear transformation” and “matrix” will be used
interchangeably. For example, to say a matrix is one to one, means the linear transformation
determined by the matrix is one to one.

Example 5.3.6 Find the linear transformation, L : R2 → R2 which has the property that

Le1 =
(

2
1

)
and Le2 =

(
1
3

)
. From the above theorem and corollary, this linear trans-

formation is that determined by matrix multiplication by the matrix
(

2 1
1 3

)
.

5.4 Subspaces And Spans

Definition 5.4.1 Let {x1, · · ·,xp} be vectors in Fn. A linear combination is any expression
of the form

p∑

i=1

cixi

where the ci are scalars. The set of all linear combinations of these vectors is called
span (x1, · · ·,xn) . If V ⊆ Fn, then V is called a subspace if whenever α, β are scalars
and u and v are vectors of V, it follows αu + βv ∈ V . That is, it is “closed under the
algebraic operations of vector addition and scalar multiplication”. A linear combination of
vectors is said to be trivial if all the scalars in the linear combination equal zero. A set
of vectors is said to be linearly independent if the only linear combination of these vectors
which equals the zero vector is the trivial linear combination. Thus {x1, · · ·,xn} is called
linearly independent if whenever

p∑

k=1

ckxk = 0
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it follows that all the scalars, ck equal zero. A set of vectors, {x1, · · ·,xp} , is called linearly
dependent if it is not linearly independent. Thus the set of vectors is linearly dependent if
there exist scalars, ci, i = 1, · · ·, n, not all zero such that

∑p
k=1 ckxk = 0.

Lemma 5.4.2 A set of vectors {x1, · · ·,xp} is linearly independent if and only if none of
the vectors can be obtained as a linear combination of the others.

Proof: Suppose first that {x1, · · ·,xp} is linearly independent. If xk =
∑

j 6=k cjxj , then

0 = 1xk +
∑

j 6=k

(−cj)xj ,

a nontrivial linear combination, contrary to assumption. This shows that if the set is linearly
independent, then none of the vectors is a linear combination of the others.

Now suppose no vector is a linear combination of the others. Is {x1, · · ·,xp} linearly
independent? If it is not there exist scalars, ci, not all zero such that

p∑

i=1

cixi = 0.

Say ck 6= 0. Then you can solve for xk as

xk =
∑

j 6=k

(−cj) /ckxj

contrary to assumption. This proves the lemma.
The following is called the exchange theorem.

Theorem 5.4.3 (Exchange Theorem) Let {x1, · · ·,xr} be a linearly independent set of vec-
tors such that each xi is in span(y1, · · ·,ys) . Then r ≤ s.

Proof: Define span{y1, · · ·,ys} ≡ V, it follows there exist scalars, c1, · · ·, cs such that

x1 =
s∑

i=1

ciyi. (5.25)

Not all of these scalars can equal zero because if this were the case, it would follow that
x1 = 0 and so {x1, · · ·,xr} would not be linearly independent. Indeed, if x1 = 0, 1x1 +∑r

i=2 0xi = x1 = 0 and so there would exist a nontrivial linear combination of the vectors
{x1, · · ·,xr} which equals zero.

Say ck 6= 0. Then solve (5.25) for yk and obtain

yk ∈ span


x1,

s-1 vectors here︷ ︸︸ ︷
y1, · · ·,yk−1,yk+1, · · ·,ys


 .

Define {z1, · · ·, zs−1} by

{z1, · · ·, zs−1} ≡ {y1, · · ·,yk−1,yk+1, · · ·,ys}
Therefore, span {x1, z1, · · ·, zs−1} = V because if v ∈ V, there exist constants c1, · · ·, cs such
that

v =
s−1∑

i=1

cizi + csyk.
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Now replace the yk in the above with a linear combination of the vectors, {x1, z1, · · ·, zs−1}
to obtain v ∈ span {x1, z1, · · ·, zs−1} . The vector yk, in the list {y1, · · ·,ys} , has now been
replaced with the vector x1 and the resulting modified list of vectors has the same span as
the original list of vectors, {y1, · · ·,ys} .

Now suppose that r > s and that span {x1, · · ·,xl, z1, · · ·, zp} = V where the vectors,
z1, · · ·, zp are each taken from the set, {y1, · · ·,ys} and l + p = s. This has now been done
for l = 1 above. Then since r > s, it follows that l ≤ s < r and so l + 1 ≤ r. Therefore,
xl+1 is a vector not in the list, {x1, · · ·,xl} and since span {x1, · · ·,xl, z1, · · ·, zp} = V, there
exist scalars, ci and dj such that

xl+1 =
l∑

i=1

cixi +
p∑

j=1

djzj . (5.26)

Now not all the dj can equal zero because if this were so, it would follow that {x1, · · ·,xr}
would be a linearly dependent set because one of the vectors would equal a linear combination
of the others. Therefore, (5.26) can be solved for one of the zi, say zk, in terms of xl+1 and
the other zi and just as in the above argument, replace that zi with xl+1 to obtain

span



x1, · · ·xl,xl+1,

p-1 vectors here︷ ︸︸ ︷
z1, · · ·zk−1, zk+1, · · ·, zp



 = V.

Continue this way, eventually obtaining

span {x1, · · ·,xs} = V.

But then xr ∈ span {x1, · · ·,xs} contrary to the assumption that {x1, · · ·,xr} is linearly
independent. Therefore, r ≤ s as claimed.

Definition 5.4.4 A finite set of vectors, {x1, · · ·,xr} is a basis for Fn if span (x1, · · ·,xr) =
Fn and {x1, · · ·,xr} is linearly independent.

Corollary 5.4.5 Let {x1, · · ·,xr} and {y1, · · ·,ys} be two bases1 of Fn. Then r = s = n.

Proof: From the exchange theorem, r ≤ s and s ≤ r. Now note the vectors,

ei =

1 is in the ith slot︷ ︸︸ ︷
(0, · · ·, 0, 1, 0 · ··, 0)

for i = 1, 2, · · ·, n are a basis for Fn. This proves the corollary.

Lemma 5.4.6 Let {v1, · · ·,vr} be a set of vectors. Then V ≡ span (v1, · · ·,vr) is a sub-
space.

Proof: Suppose α, β are two scalars and let
∑r

k=1 ckvk and
∑r

k=1 dkvk are two elements
of V. What about

α

r∑

k=1

ckvk + β

r∑

k=1

dkvk?

Is it also in V ?

α

r∑

k=1

ckvk + β

r∑

k=1

dkvk =
r∑

k=1

(αck + βdk)vk ∈ V

so the answer is yes. This proves the lemma.
1This is the plural form of basis. We could say basiss but it would involve an inordinate amount of

hissing as in “The sixth shiek’s sixth sheep is sick”. This is the reason that bases is used instead of basiss.
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Definition 5.4.7 A finite set of vectors, {x1, · · ·,xr} is a basis for a subspace, V of Fn if
span (x1, · · ·,xr) = V and {x1, · · ·,xr} is linearly independent.

Corollary 5.4.8 Let {x1, · · ·,xr} and {y1, · · ·,ys} be two bases for V . Then r = s.

Proof: From the exchange theorem, r ≤ s and s ≤ r. Therefore, this proves the
corollary.

Definition 5.4.9 Let V be a subspace of Fn. Then dim (V ) read as the dimension of V is
the number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace even has a basis.
In fact it does and this is in the next theorem. First, here is an interesting lemma.

Lemma 5.4.10 Suppose v /∈ span (u1, · · ·,uk) and {u1, · · ·,uk} is linearly independent.
Then {u1, · · ·,uk,v} is also linearly independent.

Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0 and
that d = 0. But if d 6= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · ·,uk},

v = −
k∑

i=1

(ci

d

)
ui

contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear indepen-
dence of {u1, · · ·,uk} implies each ci = 0 also. This proves the lemma.

Theorem 5.4.11 Let V be a nonzero subspace of Fn. Then V has a basis.

Proof: Let v1 ∈ V where v1 6= 0. If span {v1} = V, stop. {v1} is a basis for V .
Otherwise, there exists v2 ∈ V which is not in span {v1} . By Lemma 5.4.10 {v1,v2} is a
linearly independent set of vectors. If span {v1,v2} = V stop, {v1,v2} is a basis for V. If
span {v1,v2} 6= V, then there exists v3 /∈ span {v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n + 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem. This proves the theorem.

In words the following corollary states that any linearly independent set of vectors can
be enlarged to form a basis.

Corollary 5.4.12 Let V be a subspace of Fn and let {v1, · · ·,vr} be a linearly independent
set of vectors in V . Then either it is a basis for V or there exist vectors, vr+1, · · ·,vs such
that {v1, · · ·,vr,vr+1, · · ·,vs} is a basis for V.

Proof: This follows immediately from the proof of Theorem 5.4.11. You do exactly the
same argument except you start with {v1, · · ·,vr} rather than {v1}.

It is also true that any spanning set of vectors can be restricted to obtain a basis.

Theorem 5.4.13 Let V be a subspace of Fn and suppose span (u1 · ··,up) = V where
the ui are nonzero vectors. Then there exist vectors, {v1 · ··,vr} such that {v1 · ··,vr} ⊆
{u1 · ··,up} and {v1 · ··,vr} is a basis for V .

Proof: Let r be the smallest positive integer with the property that for some set,
{v1 · ··,vr} ⊆ {u1 · ··,up} ,

span (v1 · ··,vr) = V.

Then r ≤ p and it must be the case that {v1 · ··,vr} is linearly independent because if it
were not so, one of the vectors, say vk would be a linear combination of the others. But
then you could delete this vector from {v1 · ··,vr} and the resulting list of r − 1 vectors
would still span V contrary to the definition of r. This proves the theorem.
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5.5 An Application To Matrices

The following is a theorem of major significance.

Theorem 5.5.1 Suppose A is an n × n matrix. Then A is one to one if and only if A is
onto. Also, if B is an n× n matrix and AB = I, then it follows BA = I.

Proof: First suppose A is one to one. Consider the vectors, {Ae1, · · ·, Aen} where ek is
the column vector which is all zeros except for a 1 in the kth position. This set of vectors is
linearly independent because if

n∑

k=1

ckAek = 0,

then since A is linear,

A

(
n∑

k=1

ckek

)
= 0

and since A is one to one, it follows

n∑

k=1

ckek = 02

which implies each ck = 0. Therefore, {Ae1, · · ·, Aen} must be a basis for Fn because
if not there would exist a vector, y /∈ span (Ae1, · · ·, Aen) and then by Lemma 5.4.10,
{Ae1, · · ·, Aen,y} would be an independent set of vectors having n+1 vectors in it, contrary
to the exchange theorem. It follows that for y ∈ Fn there exist constants, ci such that

y =
n∑

k=1

ckAek = A

(
n∑

k=1

ckek

)

showing that, since y was arbitrary, A is onto.
Next suppose A is onto. This means the span of the columns of A equals Fn. If these

columns are not linearly independent, then by Lemma 5.4.2 on Page 71, one of the columns
is a linear combination of the others and so the span of the columns of A equals the span of
the n− 1 other columns. This violates the exchange theorem because {e1, · · ·, en} would be
a linearly independent set of vectors contained in the span of only n− 1 vectors. Therefore,
the columns of A must be independent and this equivalent to saying that Ax = 0 if and
only if x = 0. This implies A is one to one because if Ax = Ay, then A (x− y) = 0 and so
x− y = 0.

Now suppose AB = I. Why is BA = I? Since AB = I it follows B is one to one since
otherwise, there would exist, x 6= 0 such that Bx = 0 and then ABx = A0 = 0 6= Ix.
Therefore, from what was just shown, B is also onto. In addition to this, A must be one
to one because if Ay = 0, then y = Bx for some x and then x = ABx = Ay = 0 showing
y = 0. Now from what is given to be so, it follows (AB) A = A and so using the associative
law for matrix multiplication,

A (BA)−A = A (BA− I) = 0.

But this means (BA− I)x = 0 for all x since otherwise, A would not be one to one. Hence
BA = I as claimed. This proves the theorem.

This theorem shows that if an n × n matrix, B acts like an inverse when multiplied on
one side of A it follows that B = A−1and it will act like an inverse on both sides of A.
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The conclusion of this theorem pertains to square matrices only. For example, let

A =




1 0
0 1
1 0


 , B =

(
1 0 0
1 1 −1

)
(5.27)

Then

BA =
(

1 0
0 1

)

but

AB =




1 0 0
1 1 −1
1 0 0


 .

5.6 Matrices And Calculus

The study of moving coordinate systems gives a non trivial example of the usefulness of the
ideas involving linear transformations and matrices. To begin with, here is the concept of
the product rule extended to matrix multiplication.

Definition 5.6.1 Let A (t) be an m × n matrix. Say A (t) = (Aij (t)) . Suppose also that
Aij (t) is a differentiable function for all i, j. Then define A′ (t) ≡ (

A′ij (t)
)
. That is, A′ (t)

is the matrix which consists of replacing each entry by its derivative. Such an m×n matrix
in which the entries are differentiable functions is called a differentiable matrix.

The next lemma is just a version of the product rule.

Lemma 5.6.2 Let A (t) be an m × n matrix and let B (t) be an n × p matrix with the
property that all the entries of these matrices are differentiable functions. Then

(A (t)B (t))′ = A′ (t)B (t) + A (t) B′ (t) .

Proof: (A (t) B (t))′ =
(
C ′ij (t)

)
where Cij (t) = Aik (t)Bkj (t) and the repeated index

summation convention is being used. Therefore,

C ′ij (t) = A′ik (t) Bkj (t) + Aik (t) B′
kj (t)

= (A′ (t)B (t))ij + (A (t)B′ (t))ij

= (A′ (t)B (t) + A (t) B′ (t))ij

Therefore, the ijth entry of A (t)B (t) equals the ijth entry of A′ (t)B (t) + A (t)B′ (t) and
this proves the lemma.

5.6.1 The Coriolis Acceleration

Imagine a point on the surface of the earth. Now consider unit vectors, one pointing South,
one pointing East and one pointing directly away from the center of the earth.
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Denote the first as i, the second as j and the third as k. If you are standing on the earth
you will consider these vectors as fixed, but of course they are not. As the earth turns, they
change direction and so each is in reality a function of t. Nevertheless, it is with respect
to these apparently fixed vectors that you wish to understand acceleration, velocities, and
displacements.

In general, let i∗, j∗,k∗ be the usual fixed vectors in space and let i (t) , j (t) ,k (t) be an
orthonormal basis of vectors for each t, like the vectors described in the first paragraph.
It is assumed these vectors are C1 functions of t. Letting the positive x axis extend in the
direction of i (t) , the positive y axis extend in the direction of j (t), and the positive z axis
extend in the direction of k (t) , yields a moving coordinate system. Now let u be a vector
and let t0 be some reference time. For example you could let t0 = 0. Then define the
components of u with respect to these vectors, i, j,k at time t0 as

u ≡u1i (t0) + u2j (t0) + u3k (t0) .

Let u (t) be defined as the vector which has the same components with respect to i, j,k but
at time t. Thus

u (t) ≡ u1i (t) + u2j (t) + u3k (t) .

and the vector has changed although the components have not.
This is exactly the situation in the case of the apparently fixed basis vectors on the earth

if u is a position vector from the given spot on the earth’s surface to a point regarded as
fixed with the earth due to its keeping the same coordinates relative to the coordinate axes
which are fixed with the earth. Now define a linear transformation Q (t) mapping R3 to R3

by
Q (t)u ≡ u1i (t) + u2j (t) + u3k (t)

where
u ≡ u1i (t0) + u2j (t0) + u3k (t0)

Thus letting v be a vector defined in the same manner as u and α, β, scalars,

Q (t) (αu + βv) ≡ (
αu1 + βv1

)
i (t) +

(
αu2 + βv2

)
j (t) +

(
αu3 + βv3

)
k (t)

=
(
αu1i (t) + αu2j (t) + αu3k (t)

)
+

(
βv1i (t) + βv2j (t) + βv3k (t)

)

= α
(
u1i (t) + u2j (t) + u3k (t)

)
+ β

(
v1i (t) + v2j (t) + v3k (t)

)

≡ αQ (t)u + βQ (t)v
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showing that Q (t) is a linear transformation. Also, Q (t) preserves all distances because,
since the vectors, i (t) , j (t) ,k (t) form an orthonormal set,

|Q (t)u| =
(

3∑

i=1

(
ui

)2

)1/2

= |u| .

Lemma 5.6.3 Suppose Q (t) is a real, differentiable n×n matrix which preserves distances.
Then Q (t) Q (t)T = Q (t)T

Q (t) = I. Also, if u (t) ≡ Q (t)u, then there exists a vector, Ω (t)
such that

u′ (t) = Ω (t)× u (t) .

Proof: Recall that (z ·w) = 1
4

(
|z + w|2 − |z−w|2

)
. Therefore,

(Q (t)u·Q (t)w) =
1
4

(
|Q (t) (u + w)|2 − |Q (t) (u−w)|2

)

=
1
4

(
|u + w|2 − |u−w|2

)

= (u ·w) .

This implies (
Q (t)T

Q (t)u ·w
)

= (u ·w)

for all u,w. Therefore, Q (t)T
Q (t)u = u and so Q (t)T

Q (t) = Q (t)Q (t)T = I. This proves
the first part of the lemma.

It follows from the product rule, Lemma 5.6.2 that

Q′ (t) Q (t)T + Q (t)Q′ (t)T = 0

and so
Q′ (t)Q (t)T = −

(
Q′ (t)Q (t)T

)T

. (5.28)

From the definition, Q (t)u = u (t) ,

u′ (t) = Q′ (t)u =Q′ (t)

=u︷ ︸︸ ︷
Q (t)T u (t).

Then writing the matrix of Q′ (t) Q (t)T with respect to fixed in space orthonormal basis
vectors, i∗, j∗,k∗, where these are the usual basis vectors for R3, it follows from 5.28 that
the matrix of Q′ (t) Q (t)T is of the form




0 −ω3 (t) ω2 (t)
ω3 (t) 0 −ω1 (t)
−ω2 (t) ω1 (t) 0




for some time dependent scalars, ωi. Therefore,



u1

u2

u3



′

(t)=




0 −ω3 (t) ω2 (t)
ω3 (t) 0 −ω1 (t)
−ω2 (t) ω1 (t) 0







u1

u2

u3


 (t)

where the ui are the components of the vector u (t) in terms of the fixed vectors i∗, j∗,k∗.
Therefore,

u′ (t) = Ω (t)×u (t) = Q′ (t) Q (t)T u (t) (5.29)
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where
Ω (t) = ω1 (t) i∗+ω2 (t) j∗+ω3 (t)k∗.

because

Ω (t)× u (t) ≡
∣∣∣∣∣∣

i∗ j∗ k∗

w1 w2 w3

u1 u2 u3

∣∣∣∣∣∣
≡

i∗
(
w2u

3 − w3u
2
)

+ j∗
(
w3u

1 − w3
1

)
+ k∗

(
w1u

2 − w2u
1
)
.

This proves the lemma and yields the existence part of the following theorem.

Theorem 5.6.4 Let i (t) , j (t) ,k (t) be as described. Then there exists a unique vector Ω (t)
such that if u (t) is a vector whose components are constant with respect to i (t) , j (t) ,k (t) ,
then

u′ (t) = Ω (t)× u (t) .

Proof: It only remains to prove uniqueness. Suppose Ω1 also works. Then u (t) = Q (t)u
and so u′ (t) = Q′ (t)u and

Q′ (t)u = Ω×Q (t)u = Ω1×Q (t)u

for all u. Therefore,
(Ω−Ω1)×Q (t)u = 0

for all u and since Q (t) is one to one and onto, this implies (Ω−Ω1)×w = 0 for all w and
thus Ω−Ω1 = 0. This proves the theorem.

Now let R (t) be a position vector and let

r (t) = R (t) + rB (t)

where
rB (t) ≡ x (t) i (t)+y (t) j (t)+z (t)k (t) .

£
£
£
££±

¡
¡

¡µ

@@R

R(t)

rB(t)

r(t)

In the example of the earth, R (t) is the position vector of a point p (t) on the earth’s
surface and rB (t) is the position vector of another point from p (t) , thus regarding p (t)
as the origin. rB (t) is the position vector of a point as perceived by the observer on the
earth with respect to the vectors he thinks of as fixed. Similarly, vB (t) and aB (t) will be
the velocity and acceleration relative to i (t) , j (t) ,k (t), and so vB = x′i + y′j + z′k and
aB = x′′i + y′′j + z′′k. Then

v ≡ r′ = R′ + x′i + y′j + z′k+xi′ + yj′ + zk′.

By , 5.29, if e ∈{i, j,k} , e′ = Ω× e because the components of these vectors with respect
to i, j,k are constant. Therefore,

xi′ + yj′ + zk′ = xΩ× i + yΩ× j + zΩ× k

= Ω (xi + yj + zk)

and consequently,

v = R′ + x′i + y′j + z′k + Ω× rB = R′ + x′i + y′j + z′k + Ω× (xi + yj + zk) .
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Now consider the acceleration. Quantities which are relative to the moving coordinate
system and quantities which are relative to a fixed coordinate system are distinguished by
using the subscript, B on those relative to the moving coordinates system.

a = v′ = R′′ + x′′i + y′′j + z′′k+

Ω×vB︷ ︸︸ ︷
x′i′ + y′j′ + z′k′ + Ω′ × rB

+Ω×




vB︷ ︸︸ ︷
x′i + y′j + z′k+

Ω×rB(t)︷ ︸︸ ︷
xi′ + yj′ + zk′




= R′′ + aB + Ω′ × rB + 2Ω× vB + Ω× (Ω× rB) .

The acceleration aB is that perceived by an observer who is moving with the moving coor-
dinate system and for whom the moving coordinate system is fixed. The term Ω× (Ω× rB)
is called the centripetal acceleration. Solving for aB ,

aB = a−R′′ −Ω′ × rB − 2Ω× vB −Ω× (Ω× rB) . (5.30)

Here the term − (Ω× (Ω× rB)) is called the centrifugal acceleration, it being an acceleration
felt by the observer relative to the moving coordinate system which he regards as fixed, and
the term −2Ω× vB is called the Coriolis acceleration, an acceleration experienced by the
observer as he moves relative to the moving coordinate system. The mass multiplied by the
Coriolis acceleration defines the Coriolis force.

There is a ride found in some amusement parks in which the victims stand next to a
circular wall covered with a carpet or some rough material. Then the whole circular room
begins to revolve faster and faster. At some point, the bottom drops out and the victims
are held in place by friction. The force they feel is called centrifugal force and it causes
centrifugal acceleration. It is not necessary to move relative to coordinates fixed with the
revolving wall in order to feel this force and it is is pretty predictable. However, if the
nauseated victim moves relative to the rotating wall, he will feel the effects of the Coriolis
force and this force is really strange. The difference between these forces is that the Coriolis
force is caused by movement relative to the moving coordinate system and the centrifugal
force is not.

5.6.2 The Coriolis Acceleration On The Rotating Earth

Now consider the earth. Let i∗, j∗,k∗, be the usual basis vectors fixed in space with k∗

pointing in the direction of the north pole from the center of the earth and let i, j,k be the
unit vectors described earlier with i pointing South, j pointing East, and k pointing away
from the center of the earth at some point of the rotating earth’s surface, p. Letting R (t)
be the position vector of the point p, from the center of the earth, observe the coordinates of
R (t) are constant with respect to i (t) , j (t) ,k (t) . Also, since the earth rotates from West
to East and the speed of a point on the surface of the earth relative to an observer fixed
in space is ω |R| sin φ where ω is the angular speed of the earth about an axis through the
poles, it follows from the geometric definition of the cross product that

R′ = ωk∗ ×R

Therefore, the vector of Theorem 5.6.4 is Ω = ωk∗ and so

R′′ =

=0︷ ︸︸ ︷
Ω′ ×R+Ω×R′ = Ω× (Ω×R)
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since Ω does not depend on t. Formula 5.30 implies

aB = a−Ω× (Ω×R)− 2Ω× vB −Ω× (Ω× rB) . (5.31)

In this formula, you can totally ignore the term Ω× (Ω× rB) because it is so small when-
ever you are considering motion near some point on the earth’s surface. To see this, note

ω

seconds in a day︷ ︸︸ ︷
(24) (3600) = 2π, and so ω = 7.2722 × 10−5 in radians per second. If you are using

seconds to measure time and feet to measure distance, this term is therefore, no larger than
(
7.2722× 10−5

)2 |rB | .
Clearly this is not worth considering in the presence of the acceleration due to gravity which
is approximately 32 feet per second squared near the surface of the earth.

If the acceleration a, is due to gravity, then

aB = a−Ω× (Ω×R)− 2Ω× vB =
≡g︷ ︸︸ ︷

−GM (R + rB)
|R + rB |3

−Ω× (Ω×R)− 2Ω× vB ≡ g − 2Ω× vB.

Note that
Ω× (Ω×R) = (Ω ·R)Ω− |Ω|2 R

and so g, the acceleration relative to the moving coordinate system on the earth is not
directed exactly toward the center of the earth except at the poles and at the equator,
although the components of acceleration which are in other directions are very small when
compared with the acceleration due to the force of gravity and are often neglected. There-
fore, if the only force acting on an object is due to gravity, the following formula describes
the acceleration relative to a coordinate system moving with the earth’s surface.

aB = g−2 (Ω× vB)

While the vector, Ω is quite small, if the relative velocity, vB is large, the Coriolis ac-
celeration could be significant. This is described in terms of the vectors i (t) , j (t) ,k (t)
next.

Letting (ρ, θ, φ) be the usual spherical coordinates of the point p (t) on the surface
taken with respect to i∗, j∗,k∗ the usual way with φ the polar angle, it follows the i∗, j∗,k∗

coordinates of this point are 


ρ sin (φ) cos (θ)
ρ sin (φ) sin (θ)

ρ cos (φ)


 .

It follows,
i =cos (φ) cos (θ) i∗ + cos (φ) sin (θ) j∗ − sin (φ)k∗

j = − sin (θ) i∗ + cos (θ) j∗ + 0k∗

and
k =sin (φ) cos (θ) i∗ + sin (φ) sin (θ) j∗ + cos (φ)k∗.

It is necessary to obtain k∗ in terms of the vectors, i, j,k. Thus the following equation
needs to be solved for a, b, c to find k∗ = ai+bj+ck

k∗︷ ︸︸ ︷


0
0
1


 =




cos (φ) cos (θ) − sin (θ) sin (φ) cos (θ)
cos (φ) sin (θ) cos (θ) sin (φ) sin (θ)
− sin (φ) 0 cos (φ)







a
b
c


 (5.32)
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The first column is i, the second is j and the third is k in the above matrix. The solution
is a = − sin (φ) , b = 0, and c = cos (φ) .

Now the Coriolis acceleration on the earth equals

2 (Ω× vB) = 2ω




k∗︷ ︸︸ ︷
− sin (φ) i+0j+cos (φ)k


× (x′i+y′j+z′k) .

This equals
2ω [(−y′ cosφ) i+ (x′ cos φ + z′ sin φ) j− (y′ sin φ)k] . (5.33)

Remember φ is fixed and pertains to the fixed point, p (t) on the earth’s surface. Therefore,
if the acceleration, a is due to gravity,

aB = g−2ω [(−y′ cos φ) i+(x′ cos φ + z′ sin φ) j− (y′ sinφ)k]

where g = −GM(R+rB)

|R+rB |3 −Ω× (Ω×R) as explained above. The term Ω× (Ω×R) is pretty
small and so it will be neglected. However, the Coriolis force will not be neglected.

Example 5.6.5 Suppose a rock is dropped from a tall building. Where will it stike?

Assume a = −gk and the j component of aB is approximately

−2ω (x′ cos φ + z′ sin φ) .

The dominant term in this expression is clearly the second one because x′ will be small.
Also, the i and k contributions will be very small. Therefore, the following equation is
descriptive of the situation.

aB = −gk−2z′ω sinφj.

z′ = −gt approximately. Therefore, considering the j component, this is

2gtω sin φ.

Two integrations give
(
ωgt3/3

)
sinφ for the j component of the relative displacement at

time t.
This shows the rock does not fall directly towards the center of the earth as expected

but slightly to the east.

Example 5.6.6 In 1851 Foucault set a pendulum vibrating and observed the earth rotate
out from under it. It was a very long pendulum with a heavy weight at the end so that it
would vibrate for a long time without stopping3. This is what allowed him to observe the
earth rotate out from under it. Clearly such a pendulum will take 24 hours for the plane of
vibration to appear to make one complete revolution at the north pole. It is also reasonable
to expect that no such observed rotation would take place on the equator. Is it possible to
predict what will take place at various latitudes?

Using 5.33, in 5.31,
aB = a−Ω× (Ω×R)

−2ω [(−y′ cos φ) i+(x′ cos φ + z′ sin φ) j− (y′ sin φ)k] .

3There is such a pendulum in the Eyring building at BYU and to keep people from touching it, there is
a little sign which says Warning! 1000 ohms.
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Neglecting the small term, Ω× (Ω×R) , this becomes

= −gk + T/m−2ω [(−y′ cosφ) i+(x′ cosφ + z′ sin φ) j− (y′ sin φ)k]

where T, the tension in the string of the pendulum, is directed towards the point at which
the pendulum is supported, and m is the mass of the pendulum bob. The pendulum can be
thought of as the position vector from (0, 0, l) to the surface of the sphere x2+y2+(z − l)2 =
l2. Therefore,

T = −T
x

l
i−T

y

l
j+T

l − z

l
k

and consequently, the differential equations of relative motion are

x′′ = −T
x

ml
+ 2ωy′ cos φ

y′′ = −T
y

ml
− 2ω (x′ cos φ + z′ sin φ)

and
z′′ = T

l − z

ml
− g + 2ωy′ sinφ.

If the vibrations of the pendulum are small so that for practical purposes, z′′ = z = 0, the
last equation may be solved for T to get

gm− 2ωy′ sin (φ) m = T.

Therefore, the first two equations become

x′′ = − (gm− 2ωmy′ sin φ)
x

ml
+ 2ωy′ cos φ

and
y′′ = − (gm− 2ωmy′ sin φ)

y

ml
− 2ω (x′ cos φ + z′ sin φ) .

All terms of the form xy′ or y′y can be neglected because it is assumed x and y remain
small. Also, the pendulum is assumed to be long with a heavy weight so that x′ and y′ are
also small. With these simplifying assumptions, the equations of motion become

x′′ + g
x

l
= 2ωy′ cosφ

and
y′′ + g

y

l
= −2ωx′ cos φ.

These equations are of the form

x′′ + a2x = by′, y′′ + a2y = −bx′ (5.34)

where a2 = g
l and b = 2ω cos φ. Then it is fairly tedious but routine to verify that for each

constant, c,

x = c sin
(

bt

2

)
sin

(√
b2 + 4a2

2
t

)
, y = c cos

(
bt

2

)
sin

(√
b2 + 4a2

2
t

)
(5.35)

yields a solution to 5.34 along with the initial conditions,

x (0) = 0, y (0) = 0, x′ (0) = 0, y′ (0) =
c
√

b2 + 4a2

2
. (5.36)
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It is clear from experiments with the pendulum that the earth does indeed rotate out from
under it causing the plane of vibration of the pendulum to appear to rotate. The purpose
of this discussion is not to establish these self evident facts but to predict how long it takes
for the plane of vibration to make one revolution. Therefore, there will be some instant in
time at which the pendulum will be vibrating in a plane determined by k and j. (Recall
k points away from the center of the earth and j points East. ) At this instant in time,
defined as t = 0, the conditions of 5.36 will hold for some value of c and so the solution to
5.34 having these initial conditions will be those of 5.35 by uniqueness of the initial value
problem. Writing these solutions differently,

(
x (t)
y (t)

)
= c

(
sin

(
bt
2

)
cos

(
bt
2

)
)

sin

(√
b2 + 4a2

2
t

)

This is very interesting! The vector, c

(
sin

(
bt
2

)
cos

(
bt
2

)
)

always has magnitude equal to |c|
but its direction changes very slowly because b is very small. The plane of vibration is
determined by this vector and the vector k. The term sin

(√
b2+4a2

2 t
)

changes relatively fast
and takes values between −1 and 1. This is what describes the actual observed vibrations
of the pendulum. Thus the plane of vibration will have made one complete revolution when
t = T for

bT

2
≡ 2π.

Therefore, the time it takes for the earth to turn out from under the pendulum is

T =
4π

2ω cosφ
=

2π

ω
sec φ.

Since ω is the angular speed of the rotating earth, it follows ω = 2π
24 = π

12 in radians per
hour. Therefore, the above formula implies

T = 24 sec φ.

I think this is really amazing. You could actually determine latitude, not by taking readings
with instuments using the North Star but by doing an experiment with a big pendulum.
You would set it vibrating, observe T in hours, and then solve the above equation for φ.
Also note the pendulum would not appear to change its plane of vibration at the equator
because limφ→π/2 sec φ = ∞.

The Coriolis acceleration is also responsible for the phenomenon of the next example.

Example 5.6.7 It is known that low pressure areas rotate counterclockwise as seen from
above in the Northern hemisphere but clockwise in the Southern hemisphere. Why?

Neglect accelerations other than the Coriolis acceleration and the following acceleration
which comes from an assumption that the point p (t) is the location of the lowest pressure.

a = −a (rB) rB

where rB = r will denote the distance from the fixed point p (t) on the earth’s surface which
is also the lowest pressure point. Of course the situation could be more complicated but
this will suffice to expain the above question. Then the acceleration observed by a person
on the earth relative to the apparantly fixed vectors, i,k, j, is

aB = −a (rB) (xi+yj+zk)− 2ω [−y′ cos (φ) i+(x′ cos (φ) + z′ sin (φ)) j− (y′ sin (φ)k)]
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Therefore, one obtains some differential equations from aB = x′′i + y′′j + z′′k by matching
the components. These are

x′′ + a (rB)x = 2ωy′ cos φ

y′′ + a (rB) y = −2ωx′ cos φ− 2ωz′ sin (φ)
z′′ + a (rB) z = 2ωy′ sin φ

Now remember, the vectors, i, j,k are fixed relative to the earth and so are constant vectors.
Therefore, from the properties of the determinant and the above differential equations,

(r′B × rB)′ =

∣∣∣∣∣∣

i j k
x′ y′ z′

x y z

∣∣∣∣∣∣

′

=

∣∣∣∣∣∣

i j k
x′′ y′′ z′′

x y z

∣∣∣∣∣∣

=

∣∣∣∣∣∣

i j k
−a (rB)x + 2ωy′ cosφ −a (rB) y − 2ωx′ cos φ− 2ωz′ sin (φ) −a (rB) z + 2ωy′ sinφ

x y z

∣∣∣∣∣∣

Then the kth component of this cross product equals

ω cos (φ)
(
y2 + x2

)′
+ 2ωxz′ sin (φ) .

The first term will be negative because it is assumed p (t) is the location of low pressure
causing y2+x2 to be a decreasing function. If it is assumed there is not a substantial motion
in the k direction, so that z is fairly constant and the last term can be neglected, then the
kth component of (r′B × rB)′ is negative provided φ ∈ (

0, π
2

)
and positive if φ ∈ (

π
2 , π

)
.

Beginning with a point at rest, this implies r′B×rB = 0 initially and then the above implies
its kth component is negative in the upper hemisphere when φ < π/2 and positive in the
lower hemisphere when φ > π/2. Using the right hand and the geometric definition of the
cross product, this shows clockwise rotation in the lower hemisphere and counter clockwise
rotation in the upper hemisphere.

Note also that as φ gets close to π/2 near the equator, the above reasoning tends to
break down because cos (φ) becomes close to zero. Therefore, the motion towards the low
pressure has to be more pronounced in comparison with the motion in the k direction in
order to draw this conclusion.

5.7 Exercises

1. Remember the Coriolis force was 2Ω× vB where Ω was a particular vector which
came from the matrix, Q (t) as described above. Show that

Q (t) =




i (t) · i (t0) j (t) · i (t0) k (t) · i (t0)
i (t) · j (t0) j (t) · j (t0) k (t) · j (t0)
i (t) · k (t0) j (t) · k (t0) k (t) · k (t0)


 .

There will be no Coriolis force exactly when Ω = 0 which corresponds to Q′ (t) = 0.
When will Q′ (t) = 0?

2. An illustration used in many beginning physics books is that of firing a rifle hori-
zontally and dropping an identical bullet from the same height above the perfectly
flat ground followed by an assertion that the two bullets will hit the ground at ex-
actly the same time. Is this true on the rotating earth assuming the experiment
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takes place over a large perfectly flat field so the curvature of the earth is not an
issue? Explain. What other irregularities will occur? Recall the Coriolis force is
2ω [(−y′ cosφ) i+(x′ cosφ + z′ sinφ) j− (y′ sin φ)k] where k points away from the cen-
ter of the earth, j points East, and i points South.
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Determinants

6.1 Basic Techniques And Properties

Let A be an n × n matrix. The determinant of A, denoted as det (A) is a number. If the
matrix is a 2×2 matrix, this number is very easy to find.

Definition 6.1.1 Let A =
(

a b
c d

)
. Then

det (A) ≡ ad− cb.

The determinant is also often denoted by enclosing the matrix with two vertical lines. Thus

det
(

a b
c d

)
=

∣∣∣∣
a b
c d

∣∣∣∣ .

Example 6.1.2 Find det
(

2 4
−1 6

)
.

From the definition this is just (2) (6)− (−1) (4) = 16.
Having defined what is meant by the determinant of a 2× 2 matrix, what about a 3× 3

matrix?

Example 6.1.3 Find the determinant of



1 2 3
4 3 2
3 2 1


 .

Here is how it is done by “expanding along the first column”.

(−1)1+1 1
∣∣∣∣

3 2
2 1

∣∣∣∣ + (−1)2+1 4
∣∣∣∣

2 3
2 1

∣∣∣∣ + (−1)3+1 3
∣∣∣∣

2 3
3 2

∣∣∣∣ = 0.

What is going on here? Take the 1 in the upper left corner and cross out the row and the
column containing the 1. Then take the determinant of the resulting 2 × 2 matrix. Now
multiply this determinant by 1 and then multiply by (−1)1+1 because this 1 is in the first
row and the first column. This gives the first term in the above sum. Now go to the 4.
Cross out the row and the column which contain 4 and take the determinant of the 2 × 2
matrix which remains. Multiply this by 4 and then by (−1)2+1 because the 4 is in the first
column and the second row. Finally consider the 3 on the bottom of the first column. Cross
out the row and column containing this 3 and take the determinant of what is left. Then

87
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multiply this by 3 and by (−1)3+1 because this 3 is in the third row and the first column.
This is the pattern used to evaluate the determinant by expansion along the first column.

You could also expand the determinant along the second row as follows.

(−1)2+1 4
∣∣∣∣

2 3
2 1

∣∣∣∣ + (−1)2+2 3
∣∣∣∣

1 3
3 1

∣∣∣∣ + (−1)2+3 2
∣∣∣∣

1 2
3 2

∣∣∣∣ = 0.

It follows exactly the same pattern and you see it gave the same answer. You pick a row
or column and corresponding to each number in that row or column, you cross out the row
and column containing it, take the determinant of what is left, multiply this by the number
and by (−1)i+j assuming the number is in the ith row and the jth column. Then adding
these gives the value of the determinant.

What about a 4× 4 matrix?

Example 6.1.4 Find det (A) where

A =




1 2 3 4
5 4 2 3
1 3 4 5
3 4 3 2




As in the case of a 3 × 3 matrix, you can expand this along any row or column. Lets
pick the third column. det (A) =

3 (−1)1+3

∣∣∣∣∣∣

5 4 3
1 3 5
3 4 2

∣∣∣∣∣∣
+ 2 (−1)2+3

∣∣∣∣∣∣

1 2 4
1 3 5
3 4 2

∣∣∣∣∣∣
+

4 (−1)3+3

∣∣∣∣∣∣

1 2 4
5 4 3
3 4 2

∣∣∣∣∣∣
+ 3 (−1)4+3

∣∣∣∣∣∣

1 2 4
5 4 3
1 3 5

∣∣∣∣∣∣
.

Now you know how to expand each of these 3 × 3 matrices along a row or a column. If
you do so, you will get −12 assuming you make no mistakes. You could expand this matrix
along any row or any column and assuming you make no mistakes, you will always get
the same thing which is defined to be the determinant of the matrix, A. This method of
evaluating a determinant by expanding along a row or a column is called the method of
Laplace expansion.

Note that each of the four terms above involves three terms consisting of determinants
of 2×2 matrices and each of these will need 2 terms. Therefore, there will be 4×3×2 = 24
terms to evaluate in order to find the determinant using the method of Laplace expansion.
Suppose now you have a 10× 10 matrix. I hope you see that from the above pattern there
will be 10! = 3, 628 , 800 terms involved in the evaluation of such a determinant by Laplace
expansion along a row or column. This is a lot of terms.

In addition to the difficulties just discussed, I think you should regard the above claim
that you always get the same answer by picking any row or column with considerable
skepticism. It is incredible and not at all obvious. However, it requires a little effort to
establish it. This is done in the section on the theory of the determinant which follows. The
above examples motivate the following incredible theorem and definition.

Definition 6.1.5 Let A = (aij) be an n×n matrix. Then a new matrix called the cofactor
matrix, cof (A) is defined by cof (A) = (cij) where to obtain cij delete the ith row and the
jth column of A, take the determinant of the (n− 1)× (n− 1) matrix which results, (This
is called the ijth minor of A. ) and then multiply this number by (−1)i+j. To make the
formulas easier to remember, cof (A)ij will denote the ijth entry of the cofactor matrix.
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Theorem 6.1.6 Let A be an n× n matrix where n ≥ 2. Then

det (A) =
n∑

j=1

aij cof (A)ij =
n∑

i=1

aij cof (A)ij . (6.1)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Notwithstanding the difficulties involved in using the method of Laplace expansion,
certain types of matrices are very easy to deal with.

Definition 6.1.7 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such
a matrix equals zero below the main diagonal, the entries of the form Mii, as shown.




∗ ∗ · · · ∗
0 ∗ . . .

...
...

. . . . . . ∗
0 · · · 0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

You should verify the following using the above theorem on Laplace expansion.

Corollary 6.1.8 Let M be an upper (lower) triangular matrix. Then det (M) is obtained
by taking the product of the entries on the main diagonal.

Example 6.1.9 Let

A =




1 2 3 77
0 2 6 7
0 0 3 33.7
0 0 0 −1




Find det (A) .

From the above corollary, it suffices to take the product of the diagonal elements. Thus
det (A) = 1 × 2 × 3 × −1 = −6. Without using the corollary, you could expand along the
first column. This gives

1

∣∣∣∣∣∣

2 6 7
0 3 33.7
0 0 −1

∣∣∣∣∣∣
and now expand this along the first column to get this equals

1× 2×
∣∣∣∣

3 33.7
0 −1

∣∣∣∣

Next expand the last along the first column which reduces to the product of the main
diagonal elements as claimed. This example also demonstrates why the above corollary is
true.

There are many properties satisfied by determinants. Some of the most important are
listed in the following theorem.
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Theorem 6.1.10 If two rows or two columns in an n × n matrix, A, are switched, the
determinant of the resulting matrix equals (−1) times the determinant of the original matrix.
If A is an n×n matrix in which two rows are equal or two columns are equal then det (A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · ·, xan + ybn). Then

det (A) = xdet (A1) + y det (A2)

where the ith row of A1 is (a1, · · ·, an) and the ith row of A2 is (b1, · · ·, bn) , all other rows
of A1 and A2 coinciding with those of A. In other words, det is a linear function of each
row A. The same is true with the word “row” replaced with the word “column”. In addition
to this, if A and B are n× n matrices, then

det (AB) = det (A) det (B) ,

and if A is an n× n matrix, then

det (A) = det
(
AT

)
.

This theorem implies the following corollary which gives a way to find determinants. As
I pointed out above, the method of Laplace expansion will not be practical for any matrix
of large size.

Corollary 6.1.11 Let A be an n× n matrix and let B be the matrix obtained by replacing
the ith row (column) of A with the sum of the ith row (column) added to a multiple of another
row (column). Then det (A) = det (B) . If B is the matrix obtained from A be replacing the
ith row (column) of A by a times the ith row (column) then a det (A) = det (B) .

Here is an example which shows how to use this corollary to find a determinant.

Example 6.1.12 Find the determinant of the matrix,

A =




1 2 3 4
5 1 2 3
4 5 4 3
2 2 −4 5




Replace the second row by (−5) times the first row added to it. Then replace the third
row by (−4) times the first row added to it. Finally, replace the fourth row by (−2) times
the first row added to it. This yields the matrix,

B =




1 2 3 4
0 −9 −13 −17
0 −3 −8 −13
0 −2 −10 −3




and from the above corollary, it has the same determinant as A. Now using the corollary
some more, det (B) =

(−1
3

)
det (C) where

C =




1 2 3 4
0 0 11 22
0 −3 −8 −13
0 6 30 9


 .
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The second row was replaced by (−3) times the third row added to the second row and then
the last row was multiplied by (−3) . Now replace the last row with 2 times the third added
to it and then switch the third and second rows. Then det (C) = − det (D) where

D =




1 2 3 4
0 −3 −8 −13
0 0 11 22
0 0 14 −17




You could do more row operations or you could note that this can be easily expanded along
the first column followed by expanding the 3×3 matrix which results along its first column.
Thus

det (D) = 1 (−3)
∣∣∣∣

11 22
14 −17

∣∣∣∣ = 1485

and so det (C) = −1485 and det (A) = det (B) =
(−1

3

)
(−1485) = 495.

The theorem about expanding a matrix along any row or column also provides a way to
give a formula for the inverse of a matrix. Recall the definition of the inverse of a matrix in
Definition 5.1.20 on Page 62.

Theorem 6.1.13 A−1 exists if and only if det(A) 6= 0. If det(A) 6= 0, then A−1 =
(
a−1

ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.

Proof: By Theorem 6.1.6 and letting (air) = A, if det (A) 6= 0,

n∑

i=1

air cof (A)ir det(A)−1 = det(A) det(A)−1 = 1.

Now consider
n∑

i=1

air cof (A)ik det(A)−1

when k 6= r. Replace the kth column with the rth column to obtain a matrix, Bk whose
determinant equals zero by Theorem 6.1.10. However, expanding this matrix along the kth

column yields

0 = det (Bk) det (A)−1 =
n∑

i=1

air cof (A)ik det (A)−1

Summarizing,
n∑

i=1

air cof (A)ik det (A)−1 = δrk.

Now
n∑

i=1

air cof (A)ik =
n∑

i=1

air cof (A)T
ki

which is the krth entry of cof (A)T
A. Therefore,

cof (A)T

det (A)
A = I. (6.2)
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Using the other formula in Theorem 6.1.6, and similar reasoning,
n∑

j=1

arj cof (A)kj det (A)−1 = δrk

Now
n∑

j=1

arj cof (A)kj =
n∑

j=1

arj cof (A)T
jk

which is the rkth entry of A cof (A)T
. Therefore,

A
cof (A)T

det (A)
= I, (6.3)

and it follows from 6.2 and 6.3 that A−1 =
(
a−1

ij

)
, where

a−1
ij = cof (A)ji det (A)−1

.

In other words,

A−1 =
cof (A)T

det (A)
.

Now suppose A−1 exists. Then by Theorem 6.1.10,

1 = det (I) = det
(
AA−1

)
= det (A) det

(
A−1

)

so det (A) 6= 0. This proves the theorem.
Theorem 6.1.13 says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

Example 6.1.14 Find the inverse of the matrix,

A =




1 2 3
3 0 1
1 2 1




First find the determinant of this matrix. Using Corollary 6.1.11 on Page 90, the deter-
minant of this matrix equals the determinant of the matrix,




1 2 3
0 −6 −8
0 0 −2




which equals 12. The cofactor matrix of A is


−2 −2 6
4 −2 0
2 8 −6


 .

Each entry of A was replaced by its cofactor. Therefore, from the above theorem, the inverse
of A should equal

1
12



−2 −2 6
4 −2 0
2 8 −6




T

=



− 1

6
1
3

1
6

− 1
6 − 1

6
2
3

1
2 0 − 1

2


 .
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This way of finding inverses is especially useful in the case where it is desired to find the
inverse of a matrix whose entries are functions.

Example 6.1.15 Suppose

A (t) =




et 0 0
0 cos t sin t
0 − sin t cos t




Find A (t)−1
.

First note det (A (t)) = et. The cofactor matrix is

C (t) =




1 0 0
0 et cos t et sin t
0 −et sin t et cos t




and so the inverse is

1
et




1 0 0
0 et cos t et sin t
0 −et sin t et cos t




T

=




e−t 0 0
0 cos t − sin t
0 sin t cos t


 .

This formula for the inverse also implies a famous proceedure known as Cramer’s rule.
Cramer’s rule gives a formula for the solutions, x, to a system of equations, Ax = y.

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =
n∑

j=1

a−1
ij yj =

n∑

j=1

1
det (A)

cof (A)ji yj .

By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det



∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T , and the
determinant of this modified matrix is taken and divided by det (A). This formula is known
as Cramer’s rule.

Procedure 6.1.16 Suppose A is an n × n matrix and it is desired to solve the system
Ax = y,y = (y1, · · ·, yn)T for x = (x1, · · ·, xn)T

. Then Cramer’s rule says

xi =
detAi

detA

where Ai is obtained from A by replacing the ith column of A with the column (y1, · · ·, yn)T
.

The following theorem is of fundamental importance and ties together many of the ideas
presented above. It is proved in the next section.
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Theorem 6.1.17 Let A be an n× n matrix. Then the following are equivalent.

1. A is one to one.

2. A is onto.

3. det (A) 6= 0.

6.2 Exercises

1. Find the determinants of the following matrices.

(a)




1 2 3
3 2 2
0 9 8


 (The answer is 31.)

(b)




4 3 2
1 7 8
3 −9 3


(The answer is 375.)

(c)




1 2 3 2
1 3 2 3
4 1 5 0
1 2 1 2


, (The answer is −2.)

2. A matrix is said to be orthogonal if AT A = I. Thus the inverse of an orthogonal matrix
is just its transpose. What are the possible values of det (A) if A is an orthogonal
matrix?

3. If A−1 exist, what is the relationship between det (A) and det
(
A−1

)
. Explain your

answer.

4. Is it true that det (A + B) = det (A) + det (B)? If this is so, explain why it is so and
if it is not so, give a counter example.

5. Let A be an r×r matrix and suppose there are r−1 rows (columns) such that all rows
(columns) are linear combinations of these r − 1 rows (columns). Show det (A) = 0.

6. Show det (aA) = an det (A) where here A is an n× n matrix and a is a scalar.

7. Suppose A is an upper triangular matrix. Show that A−1 exists if and only if all
elements of the main diagonal are non zero. Is it true that A−1 will also be upper
triangular? Explain. Is everything the same for lower triangular matrices?

8. Let A and B be two n× n matrices. A ∼ B (A is similar to B) means there exists an
invertible matrix, S such that A = S−1BS. Show that if A ∼ B, then B ∼ A. Show
also that A ∼ A and that if A ∼ B and B ∼ C, then A ∼ C.

9. In the context of Problem 8 show that if A ∼ B, then det (A) = det (B) .

10. Let A be an n× n matrix and let x be a nonzero vector such that Ax = λx for some
scalar, λ. When this occurs, the vector, x is called an eigenvector and the scalar, λ
is called an eigenvalue. It turns out that not every number is an eigenvalue. Only
certain ones are. Why? Hint: Show that if Ax = λx, then (λI −A)x = 0. Explain
why this shows that (λI −A) is not one to one and not onto. Now use Theorem 6.1.17
to argue det (λI −A) = 0. What sort of equation is this? How many solutions does it
have?
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11. Suppose det (λI −A) = 0. Show using Theorem 6.1.17 there exists x 6= 0 such that
(λI −A)x = 0.

12. Let F (t) = det
(

a (t) b (t)
c (t) d (t)

)
. Verify

F ′ (t) = det
(

a′ (t) b′ (t)
c (t) d (t)

)
+ det

(
a (t) b (t)
c′ (t) d′ (t)

)
.

Now suppose

F (t) = det




a (t) b (t) c (t)
d (t) e (t) f (t)
g (t) h (t) i (t)


 .

Use Laplace expansion and the first part to verify F ′ (t) =

det




a′ (t) b′ (t) c′ (t)
d (t) e (t) f (t)
g (t) h (t) i (t)


 + det




a (t) b (t) c (t)
d′ (t) e′ (t) f ′ (t)
g (t) h (t) i (t)




+ det




a (t) b (t) c (t)
d (t) e (t) f (t)
g′ (t) h′ (t) i′ (t)


 .

Conjecture a general result valid for n × n matrices and explain why it will be true.
Can a similar thing be done with the columns?

13. Use the formula for the inverse in terms of the cofactor matrix to find the inverse of
the matrix,

A =




et 0 0
0 et cos t et sin t
0 et cos t− et sin t et cos t + et sin t


 .

14. Let A be an r×r matrix and let B be an m×m matrix such that r+m = n. Consider
the following n× n block matrix

C =
(

A 0
D B

)
.

where the D is an m× r matrix, and the 0 is a r ×m matrix. Letting Ik denote the
k × k identity matrix, tell why

C =
(

A 0
D Im

)(
Ir 0
0 B

)
.

Now explain why det (C) = det (A) det (B) . Hint: Part of this will require an explan-
tion of why

det
(

A 0
D Im

)
= det (A) .

See Corollary 6.1.11.
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6.3 The Mathematical Theory Of Determinants

It is easiest to give a different definition of the determinant which is clearly well defined
and then prove the earlier one in terms of Laplace expansion. Let (i1, · · ·, in) be an ordered
list of numbers from {1, · · ·, n} . This means the order is important so (1, 2, 3) and (2, 1, 3)
are different. There will be some repetition between this section and the earlier section on
determinants. The main purpose is to give all the missing proofs. Two books which give
a good introduction to determinants are Apostol [1] and Rudin [11]. A recent book which
also has a good introduction is Baker [2]

The following Lemma will be essential in the definition of the determinant.

Lemma 6.3.1 There exists a unique function, sgnn which maps each list of numbers from
{1, · · ·, n} to one of the three numbers, 0, 1, or −1 which also has the following properties.

sgnn (1, · · ·, n) = 1 (6.4)

sgnn (i1, · · ·, p, · · ·, q, · · ·, in) = − sgnn (i1, · · ·, q, · · ·, p, · · ·, in) (6.5)

In words, the second property states that if two of the numbers are switched, the value of the
function is multiplied by −1. Also, in the case where n > 1 and {i1, · · ·, in} = {1, · · ·, n} so
that every number from {1, · · ·, n} appears in the ordered list, (i1, · · ·, in) ,

sgnn (i1, · · ·, iθ−1, n, iθ+1, · · ·, in) ≡

(−1)n−θ sgnn−1 (i1, · · ·, iθ−1, iθ+1, · · ·, in) (6.6)

where n = iθ in the ordered list, (i1, · · ·, in) .

Proof: To begin with, it is necessary to show the existence of such a function. This is
clearly true if n = 1. Define sgn1 (1) ≡ 1 and observe that it works. No switching is possible.
In the case where n = 2, it is also clearly true. Let sgn2 (1, 2) = 1 and sgn2 (2, 1) = 0 while
sgn2 (2, 2) = sgn2 (1, 1) = 0 and verify it works. Assuming such a function exists for n,
sgnn+1 will be defined in terms of sgnn . If there are any repeated numbers in (i1, · · ·, in+1) ,
sgnn+1 (i1, · · ·, in+1) ≡ 0. If there are no repeats, then n + 1 appears somewhere in the
ordered list. Let θ be the position of the number n + 1 in the list. Thus, the list is of the
form (i1, · · ·, iθ−1, n + 1, iθ+1, · · ·, in+1) . From 6.6 it must be that

sgnn+1 (i1, · · ·, iθ−1, n + 1, iθ+1, · · ·, in+1) ≡

(−1)n+1−θ sgnn (i1, · · ·, iθ−1, iθ+1, · · ·, in+1) .

It is necessary to verify this satisfies 6.4 and 6.5 with n replaced with n + 1. The first of
these is obviously true because

sgnn+1 (1, · · ·, n, n + 1) ≡ (−1)n+1−(n+1) sgnn (1, · · ·, n) = 1.

If there are repeated numbers in (i1, · · ·, in+1) , then it is obvious 6.5 holds because both
sides would equal zero from the above definition. It remains to verify 6.5 in the case where
there are no numbers repeated in (i1, · · ·, in+1) . Consider

sgnn+1

(
i1, · · ·, r

p, · · ·, s
q, · · ·, in+1

)
,

where the r above the p indicates the number, p is in the rth position and the s above the
q indicates that the number, q is in the sth position. Suppose first that r < θ < s. Then

sgnn+1

(
i1, · · ·, r

p, · · ·, θ
n + 1, · · ·, s

q, · · ·, in+1

)
≡
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(−1)n+1−θ sgnn

(
i1, · · ·, r

p, · · ·, s−1
q , · · ·, in+1

)

while

sgnn+1

(
i1, · · ·, r

q, · · ·, θ
n + 1, · · ·, s

p, · · ·, in+1

)
=

(−1)n+1−θ sgnn

(
i1, · · ·, r

q, · · ·, s−1
p , · · ·, in+1

)

and so, by induction, a switch of p and q introduces a minus sign in the result. Similarly, if
θ > s or if θ < r it also follows that 6.5 holds. The interesting case is when θ = r or θ = s.
Consider the case where θ = r and note the other case is entirely similar.

sgnn+1

(
i1, · · ·,

r
n + 1, · · ·, s

q, · · ·, in+1

)
=

(−1)n+1−r sgnn

(
i1, · · ·, s−1

q , · · ·, in+1

)
(6.7)

while
sgnn+1

(
i1, · · ·, r

q, · · ·, s
n + 1, · · ·, in+1

)
=

(−1)n+1−s sgnn

(
i1, · · ·, r

q, · · ·, in+1

)
. (6.8)

By making s− 1− r switches, move the q which is in the s− 1th position in 6.7 to the rth

position in 6.8. By induction, each of these switches introduces a factor of −1 and so

sgnn

(
i1, · · ·, s−1

q , · · ·, in+1

)
= (−1)s−1−r sgnn

(
i1, · · ·, r

q, · · ·, in+1

)
.

Therefore,

sgnn+1

(
i1, · · ·,

r
n + 1, · · ·, s

q, · · ·, in+1

)
= (−1)n+1−r sgnn

(
i1, · · ·, s−1

q , · · ·, in+1

)

= (−1)n+1−r (−1)s−1−r sgnn

(
i1, · · ·, r

q, · · ·, in+1

)

= (−1)n+s sgnn

(
i1, · · ·, r

q, · · ·, in+1

)
= (−1)2s−1 (−1)n+1−s sgnn

(
i1, · · ·, r

q, · · ·, in+1

)

= − sgnn+1

(
i1, · · ·, r

q, · · ·, s
n + 1, · · ·, in+1

)
.

This proves the existence of the desired function.
To see this function is unique, note that you can obtain any ordered list of distinct

numbers from a sequence of switches. If there exist two functions, f and g both satisfying
6.4 and 6.5, you could start with f (1, · · ·, n) = g (1, · · ·, n) and applying the same sequence
of switches, eventually arrive at f (i1, · · ·, in) = g (i1, · · ·, in) . If any numbers are repeated,
then 6.5 gives both functions are equal to zero for that ordered list. This proves the lemma.

In what follows sgn will often be used rather than sgnn because the context supplies the
appropriate n.

Definition 6.3.2 Let f be a real valued function which has the set of ordered lists of numbers
from {1, · · ·, n} as its domain. Define

∑

(k1,···,kn)

f (k1 · · · kn)

to be the sum of all the f (k1 · · · kn) for all possible choices of ordered lists (k1, · · ·, kn) of
numbers of {1, · · ·, n} . For example,

∑

(k1,k2)

f (k1, k2) = f (1, 2) + f (2, 1) + f (1, 1) + f (2, 2) .
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Definition 6.3.3 Let (aij) = A denote an n × n matrix. The determinant of A, denoted
by det (A) is defined by

det (A) ≡
∑

(k1,···,kn)

sgn (k1, · · ·, kn) a1k1 · · · ankn

where the sum is taken over all ordered lists of numbers from {1, · · ·, n}. Note it suffices to
take the sum over only those ordered lists in which there are no repeats because if there are,
sgn (k1, · · ·, kn) = 0 and so that term contributes 0 to the sum.

Let A be an n × n matrix, A = (aij) and let (r1, · · ·, rn) denote an ordered list of n
numbers from {1, · · ·, n}. Let A (r1, · · ·, rn) denote the matrix whose kth row is the rk row
of the matrix, A. Thus

det (A (r1, · · ·, rn)) =
∑

(k1,···,kn)

sgn (k1, · · ·, kn) ar1k1 · · · arnkn (6.9)

and
A (1, · · ·, n) = A.

Proposition 6.3.4 Let
(r1, · · ·, rn)

be an ordered list of numbers from {1, · · ·, n}. Then

sgn (r1, · · ·, rn) det (A)

=
∑

(k1,···,kn)

sgn (k1, · · ·, kn) ar1k1 · · · arnkn (6.10)

= det (A (r1, · · ·, rn)) . (6.11)

Proof: Let (1, · · ·, n) = (1, · · ·, r, · · ·s, · · ·, n) so r < s.

det (A (1, · · ·, r, · · ·, s, · · ·, n)) = (6.12)

∑

(k1,···,kn)

sgn (k1, · · ·, kr, · · ·, ks, · · ·, kn) a1k1 · · · arkr · · · asks · · · ankn ,

and renaming the variables, calling ks, kr and kr, ks, this equals

=
∑

(k1,···,kn)

sgn (k1, · · ·, ks, · · ·, kr, · · ·, kn) a1k1 · · · arks · · · askr · · · ankn

=
∑

(k1,···,kn)

− sgn


k1, · · ·,

These got switched︷ ︸︸ ︷
kr, · · ·, ks , · · ·, kn


 a1k1 · · · askr · · · arks · · · ankn

= − det (A (1, · · ·, s, · · ·, r, · · ·, n)) . (6.13)

Consequently,
det (A (1, · · ·, s, · · ·, r, · · ·, n)) =

− det (A (1, · · ·, r, · · ·, s, · · ·, n)) = − det (A)
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Now letting A (1, · · ·, s, · · ·, r, · · ·, n) play the role of A, and continuing in this way, switching
pairs of numbers,

det (A (r1, · · ·, rn)) = (−1)p det (A)

where it took p switches to obtain(r1, · · ·, rn) from (1, · · ·, n). By Lemma 6.3.1, this implies

det (A (r1, · · ·, rn)) = (−1)p det (A) = sgn (r1, · · ·, rn) det (A)

and proves the proposition in the case when there are no repeated numbers in the ordered
list, (r1, · · ·, rn). However, if there is a repeat, say the rth row equals the sth row, then the
reasoning of 6.12 -6.13 shows that A (r1, · · ·, rn) = 0 and also sgn (r1, · · ·, rn) = 0 so the
formula holds in this case also.

Observation 6.3.5 There are n! ordered lists of distinct numbers from {1, · · ·, n} .

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n− 1 choices for the second. Thus there are n (n− 1) ways
to fill the first two slots. Then for each of these ways there are n−2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1, · · ·, n} as
stated in the observation.

With the above, it is possible to give a more symmetric description of the determinant
from which it will follow that det (A) = det

(
AT

)
.

Corollary 6.3.6 The following formula for det (A) is valid.

det (A) =
1
n!
·

∑

(r1,···,rn)

∑

(k1,···,kn)

sgn (r1, · · ·, rn) sgn (k1, · · ·, kn) ar1k1 · · · arnkn . (6.14)

And also det
(
AT

)
= det (A) where AT is the transpose of A. (Recall that for AT =

(
aT

ij

)
,

aT
ij = aji.)

Proof: From Proposition 6.3.4, if the ri are distinct,

det (A) =
∑

(k1,···,kn)

sgn (r1, · · ·, rn) sgn (k1, · · ·, kn) ar1k1 · · · arnkn .

Summing over all ordered lists, (r1, · · ·, rn) where the ri are distinct, (If the ri are not
distinct, sgn (r1, · · ·, rn) = 0 and so there is no contribution to the sum.)

n! det (A) =
∑

(r1,···,rn)

∑

(k1,···,kn)

sgn (r1, · · ·, rn) sgn (k1, · · ·, kn) ar1k1 · · · arnkn .

This proves the corollary since the formula gives the same number for A as it does for AT .

Corollary 6.3.7 If two rows or two columns in an n × n matrix, A, are switched, the
determinant of the resulting matrix equals (−1) times the determinant of the original matrix.
If A is an n×n matrix in which two rows are equal or two columns are equal then det (A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · ·, xan + ybn). Then

det (A) = xdet (A1) + y det (A2)

where the ith row of A1 is (a1, · · ·, an) and the ith row of A2 is (b1, · · ·, bn) , all other rows
of A1 and A2 coinciding with those of A. In other words, det is a linear function of each
row A. The same is true with the word “row” replaced with the word “column”.
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Proof: By Proposition 6.3.4 when two rows are switched, the determinant of the re-
sulting matrix is (−1) times the determinant of the original matrix. By Corollary 6.3.6 the
same holds for columns because the columns of the matrix equal the rows of the transposed
matrix. Thus if A1 is the matrix obtained from A by switching two columns,

det (A) = det
(
AT

)
= − det

(
AT

1

)
= − det (A1) .

If A has two equal columns or two equal rows, then switching them results in the same
matrix. Therefore, det (A) = −det (A) and so det (A) = 0.

It remains to verify the last assertion.

det (A) ≡
∑

(k1,···,kn)

sgn (k1, · · ·, kn) a1k1 · · · (xaki
+ ybki

) · · · ankn

= x
∑

(k1,···,kn)

sgn (k1, · · ·, kn) a1k1 · · · aki · · · ankn

+y
∑

(k1,···,kn)

sgn (k1, · · ·, kn) a1k1 · · · bki
· · · ankn

≡ xdet (A1) + y det (A2) .

The same is true of columns because det
(
AT

)
= det (A) and the rows of AT are the columns

of A.

Definition 6.3.8 A vector, w, is a linear combination of the vectors {v1, · · ·,vr} if there
exists scalars, c1, · · ·cr such that w =

∑r
k=1 ckvk. This is the same as saying

w ∈ span {v1, · · ·,vr} .

The following corollary is also of great use.

Corollary 6.3.9 Suppose A is an n× n matrix and some column (row) is a linear combi-
nation of r other columns (rows). Then det (A) = 0.

Proof: Let A =
(

a1 · · · an

)
be the columns of A and suppose the condition that

one column is a linear combination of r of the others is satisfied. Then by using Corollary
6.3.7 you may rearrange the columns to have the nth column a linear combination of the
first r columns. Thus an =

∑r
k=1 ckak and so

det (A) = det
(

a1 · · · ar · · · an−1

∑r
k=1 ckak

)
.

By Corollary 6.3.7

det (A) =
r∑

k=1

ck det
(

a1 · · · ar · · · an−1 ak

)
= 0.

The case for rows follows from the fact that det (A) = det
(
AT

)
. This proves the corollary.

Recall the following definition of matrix multiplication.

Definition 6.3.10 If A and B are n × n matrices, A = (aij) and B = (bij), AB = (cij)
where

cij ≡
n∑

k=1

aikbkj .
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One of the most important rules about determinants is that the determinant of a product
equals the product of the determinants.

Theorem 6.3.11 Let A and B be n× n matrices. Then

det (AB) = det (A) det (B) .

Proof: Let cij be the ijth entry of AB. Then by Proposition 6.3.4,

det (AB) =

∑

(k1,···,kn)

sgn (k1, · · ·, kn) c1k1 · · · cnkn

=
∑

(k1,···,kn)

sgn (k1, · · ·, kn)

(∑
r1

a1r1br1k1

)
· · ·

(∑
rn

anrn
brnkn

)

=
∑

(r1···,rn)

∑

(k1,···,kn)

sgn (k1, · · ·, kn) br1k1 · · · brnkn
(a1r1 · · · anrn

)

=
∑

(r1···,rn)

sgn (r1 · · · rn) a1r1 · · · anrn
det (B) = det (A) det (B) .

This proves the theorem.

Lemma 6.3.12 Suppose a matrix is of the form

M =
(

A ∗
0 a

)
(6.15)

or

M =
(

A 0
∗ a

)
(6.16)

where a is a number and A is an (n− 1) × (n− 1) matrix and ∗ denotes either a column
or a row having length n − 1 and the 0 denotes either a column or a row of length n − 1
consisting entirely of zeros. Then

det (M) = adet (A) .

Proof: Denote M by (mij) . Thus in the first case, mnn = a and mni = 0 if i 6= n while
in the second case, mnn = a and min = 0 if i 6= n. From the definition of the determinant,

det (M) ≡
∑

(k1,···,kn)

sgnn (k1, · · ·, kn)m1k1 · · ·mnkn

Letting θ denote the position of n in the ordered list, (k1, · · ·, kn) then using the earlier
conventions used to prove Lemma 6.3.1, det (M) equals

∑

(k1,···,kn)

(−1)n−θ sgnn−1

(
k1, · · ·, kθ−1,

θ

kθ+1, · · ·,
n−1

kn

)
m1k1 · · ·mnkn

Now suppose 6.16. Then if kn 6= n, the term involving mnkn in the above expression equals
zero. Therefore, the only terms which survive are those for which θ = n or in other words,
those for which kn = n. Therefore, the above expression reduces to

a
∑

(k1,···,kn−1)

sgnn−1 (k1, · · ·kn−1)m1k1 · · ·m(n−1)kn−1 = adet (A) .
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To get the assertion in the situation of 6.15 use Corollary 6.3.6 and 6.16 to write

det (M) = det
(
MT

)
= det

((
AT 0
∗ a

))
= a det

(
AT

)
= a det (A) .

This proves the lemma.
In terms of the theory of determinants, arguably the most important idea is that of

Laplace expansion along a row or a column. This will follow from the above definition of a
determinant.

Definition 6.3.13 Let A = (aij) be an n×n matrix. Then a new matrix called the cofactor
matrix, cof (A) is defined by cof (A) = (cij) where to obtain cij delete the ith row and the
jth column of A, take the determinant of the (n− 1)× (n− 1) matrix which results, (This
is called the ijth minor of A. ) and then multiply this number by (−1)i+j. To make the
formulas easier to remember, cof (A)ij will denote the ijth entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the outrageous
totally unjustified assertion was made that the same number would be obtained by expanding
the determinant along any row or column. The following theorem proves this assertion.

Theorem 6.3.14 Let A be an n× n matrix where n ≥ 2. Then

det (A) =
n∑

j=1

aij cof (A)ij =
n∑

i=1

aij cof (A)ij . (6.17)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Proof: Let (ai1, · · ·, ain) be the ith row of A. Let Bj be the matrix obtained from A
by leaving every row the same except the ith row which in Bj equals (0, · · ·, 0, aij , 0, · · ·, 0) .
Then by Corollary 6.3.7,

det (A) =
n∑

j=1

det (Bj)

Denote by Aij the (n− 1) × (n− 1) matrix obtained by deleting the ith row and the jth

column of A. Thus cof (A)ij ≡ (−1)i+j det
(
Aij

)
. At this point, recall that from Proposition

6.3.4, when two rows or two columns in a matrix, M, are switched, this results in multiplying
the determinant of the old matrix by−1 to get the determinant of the new matrix. Therefore,
by Lemma 6.3.12,

det (Bj) = (−1)n−j (−1)n−i det
((

Aij ∗
0 aij

))

= (−1)i+j det
((

Aij ∗
0 aij

))
= aij cof (A)ij .

Therefore,

det (A) =
n∑

j=1

aij cof (A)ij

which is the formula for expanding det (A) along the ith row. Also,

det (A) = det
(
AT

)
=

n∑

j=1

aT
ij cof

(
AT

)
ij

=
n∑

j=1

aji cof (A)ji
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which is the formula for expanding det (A) along the ith column. This proves the theorem.
Note that this gives an easy way to write a formula for the inverse of an n × n matrix.

Recall the definition of the inverse of a matrix in Definition 5.1.20 on Page 62.

Theorem 6.3.15 A−1 exists if and only if det(A) 6= 0. If det(A) 6= 0, then A−1 =
(
a−1

ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.

Proof: By Theorem 6.3.14 and letting (air) = A, if det (A) 6= 0,

n∑

i=1

air cof (A)ir det(A)−1 = det(A) det(A)−1 = 1.

Now consider
n∑

i=1

air cof (A)ik det(A)−1

when k 6= r. Replace the kth column with the rth column to obtain a matrix, Bk whose
determinant equals zero by Corollary 6.3.7. However, expanding this matrix along the kth

column yields

0 = det (Bk) det (A)−1 =
n∑

i=1

air cof (A)ik det (A)−1

Summarizing,
n∑

i=1

air cof (A)ik det (A)−1 = δrk.

Using the other formula in Theorem 6.3.14, and similar reasoning,

n∑

j=1

arj cof (A)kj det (A)−1 = δrk

This proves that if det (A) 6= 0, then A−1 exists with A−1 =
(
a−1

ij

)
, where

a−1
ij = cof (A)ji det (A)−1

.

Now suppose A−1 exists. Then by Theorem 6.3.11,

1 = det (I) = det
(
AA−1

)
= det (A) det

(
A−1

)

so det (A) 6= 0. This proves the theorem.
The next corollary points out that if an n × n matrix, A has a right or a left inverse,

then it has an inverse.

Corollary 6.3.16 Let A be an n × n matrix and suppose there exists an n × n matrix, B
such that BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an n× n matrix
such that AC = I, then A−1 exists and A−1 = C.
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Proof: Since BA = I, Theorem 6.3.11 implies

detB detA = 1

and so detA 6= 0. Therefore from Theorem 6.3.15, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1

)
= BI = B.

The case where CA = I is handled similarly.
The conclusion of this corollary is that left inverses, right inverses and inverses are all

the same in the context of n× n matrices.
Theorem 6.3.15 says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =
n∑

j=1

a−1
ij yj =

n∑

j=1

1
det (A)

cof (A)ji yj .

By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det



∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T , and the
determinant of this modified matrix is taken and divided by det (A). This formula is known
as Cramer’s rule.

Definition 6.3.17 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such
a matrix equals zero below the main diagonal, the entries of the form Mii as shown.




∗ ∗ · · · ∗
0 ∗ . . .

...
...

. . . . . . ∗
0 · · · 0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

With this definition, here is a simple corollary of Theorem 6.3.14.

Corollary 6.3.18 Let M be an upper (lower) triangular matrix. Then det (M) is obtained
by taking the product of the entries on the main diagonal.
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Definition 6.3.19 A submatrix of a matrix A is the rectangular array of numbers obtained
by deleting some rows and columns of A. Let A be an m × n matrix. The determinant
rank of the matrix equals r where r is the largest number such that some r × r submatrix
of A has a non zero determinant. The row rank is defined to be the dimension of the span
of the rows. The column rank is defined to be the dimension of the span of the columns.

Theorem 6.3.20 If A has determinant rank, r, then there exist r rows of the matrix such
that every other row is a linear combination of these r rows.

Proof: Suppose the determinant rank of A = (aij) equals r. If rows and columns are
interchanged, the determinant rank of the modified matrix is unchanged. Thus rows and
columns can be interchanged to produce an r × r matrix in the upper left corner of the
matrix which has non zero determinant. Now consider the r + 1× r + 1 matrix, M,




a11 · · · a1r a1p

...
...

...
ar1 · · · arr arp

al1 · · · alr alp




where C will denote the r×r matrix in the upper left corner which has non zero determinant.
I claim det (M) = 0.

There are two cases to consider in verifying this claim. First, suppose p > r. Then the
claim follows from the assumption that A has determinant rank r. On the other hand, if
p < r, then the determinant is zero because there are two identical columns. Expand the
determinant along the last column and divide by det (C) to obtain

alp = −
r∑

i=1

cof (M)ip

det (C)
aip.

Now note that cof (M)ip does not depend on p. Therefore the above sum is of the form

alp =
r∑

i=1

miaip

which shows the lth row is a linear combination of the first r rows of A. Since l is arbitrary,
this proves the theorem.

Corollary 6.3.21 The determinant rank equals the row rank.

Proof: From Theorem 6.3.20, the row rank is no larger than the determinant rank.
Could the row rank be smaller than the determinant rank? If so, there exist p rows for
p < r such that the span of these p rows equals the row space. But this implies that the
r × r submatrix whose determinant is nonzero also has row rank no larger than p which is
impossible if its determinant is to be nonzero because at least one row is a linear combination
of the others.

Corollary 6.3.22 If A has determinant rank, r, then there exist r columns of the matrix
such that every other column is a linear combination of these r columns. Also the column
rank equals the determinant rank.

Proof: This follows from the above by considering AT . The rows of AT are the columns
of A and the determinant rank of AT and A are the same. Therefore, from Corollary 6.3.21,
column rank of A = row rank of AT = determinant rank of AT = determinant rank of A.

The following theorem is of fundamental importance and ties together many of the ideas
presented above.
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Theorem 6.3.23 Let A be an n× n matrix. Then the following are equivalent.

1. det (A) = 0.

2. A,AT are not one to one.

3. A is not onto.

Proof: Suppose det (A) = 0. Then the determinant rank of A = r < n. Therefore,
there exist r columns such that every other column is a linear combination of these columns
by Theorem 6.3.20. In particular, it follows that for some m, the mth column is a linear
combination of all the others. Thus letting A =

(
a1 · · · am · · · an

)
where the

columns are denoted by ai, there exists scalars, αi such that

am =
∑

k 6=m

αkak.

Now consider the column vector, x ≡ (
α1 · · · −1 · · · αn

)T . Then

Ax = −am +
∑

k 6=m

αkak = 0.

Since also A0 = 0, it follows A is not one to one. Similarly, AT is not one to one by the
same argument applied to AT . This verifies that 1.) implies 2.).

Now suppose 2.). Then since AT is not one to one, it follows there exists x 6= 0 such that

AT x = 0.

Taking the transpose of both sides yields

xT A = 0

where the 0 is a 1× n matrix or row vector. Now if Ay = x, then

|x|2 = xT (Ay) =
(
xT A

)
y = 0y = 0

contrary to x 6= 0. Consequently there can be no y such that Ay = x and so A is not onto.
This shows that 2.) implies 3.).

Finally, suppose 3.). If 1.) does not hold, then det (A) 6= 0 but then from Theorem 6.3.15
A−1 exists and so for every y ∈ Fn there exists a unique x ∈ Fn such that Ax = y. In fact
x = A−1y. Thus A would be onto contrary to 3.). This shows 3.) implies 1.) and proves the
theorem.

Corollary 6.3.24 Let A be an n× n matrix. Then the following are equivalent.

1. det(A) 6= 0.

2. A and AT are one to one.

3. A is onto.

Proof: This follows immediately from the above theorem.
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6.4 Exercises

1. Let m < n and let A be an m × n matrix. Show that A is not one to one. Hint:
Consider the n× n matrix, A1 which is of the form

A1 ≡
(

A
0

)

where the 0 denotes an (n−m) × n matrix of zeros. Thus detA1 = 0 and so A1 is
not one to one. Now observe that A1x is the vector,

A1x =
(

Ax
0

)

which equals zero if and only if Ax = 0.

6.5 The Cayley Hamilton Theorem

Definition 6.5.1 Let A be an n× n matrix. The characteristic polynomial is defined as

pA (t) ≡ det (tI −A)

and the solutions to pA (t) = 0 are called eigenvalues. For A a matrix and p (t) = tn +
an−1t

n−1 + · · ·+ a1t + a0, denote by p (A) the matrix defined by

p (A) ≡ An + an−1A
n−1 + · · ·+ a1A + a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.

The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by PA (t) = 0. It is one of the most important theorems in linear
algebra. The following lemma will help with its proof.

Lemma 6.5.2 Suppose for all |λ| large enough,

A0 + A1λ + · · ·+ Amλm = 0,

where the Ai are n× n matrices. Then each Ai = 0.

Proof: Multiply by λ−m to obtain

A0λ
−m + A1λ

−m+1 + · · ·+ Am−1λ
−1 + Am = 0.

Now let |λ| → ∞ to obtain Am = 0. With this, multiply by λ to obtain

A0λ
−m+1 + A1λ

−m+2 + · · ·+ Am−1 = 0.

Now let |λ| → ∞ to obtain Am−1 = 0. Continue multiplying by λ and letting λ → ∞ to
obtain that all the Ai = 0. This proves the lemma.

With the lemma, here is a simple corollary.

Corollary 6.5.3 Let Ai and Bi be n× n matrices and suppose

A0 + A1λ + · · ·+ Amλm = B0 + B1λ + · · ·+ Bmλm

for all |λ| large enough. Then Ai = Bi for all i. Consequently if λ is replaced by any n× n
matrix, the two sides will be equal. That is, for C any n× n matrix,

A0 + A1C + · · ·+ AmCm = B0 + B1C + · · ·+ BmCm.



108 DETERMINANTS

Proof: Subtract and use the result of the lemma.
With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.

Theorem 6.5.4 Let A be an n×n matrix and let p (λ) ≡ det (λI −A) be the characteristic
polynomial. Then p (A) = 0.

Proof: Let C (λ) equal the transpose of the cofactor matrix of (λI −A) for |λ| large.
(If |λ| is large enough, then λ cannot be in the finite list of eigenvalues of A and so for such
λ, (λI −A)−1 exists.) Therefore, by Theorem 6.3.15

C (λ) = p (λ) (λI −A)−1
.

Note that each entry in C (λ) is a polynomial in λ having degree no more than n − 1.
Therefore, collecting the terms,

C (λ) = C0 + C1λ + · · ·+ Cn−1λ
n−1

for Cj some n× n matrix. It follows that for all |λ| large enough,

(A− λI)
(
C0 + C1λ + · · ·+ Cn−1λ

n−1
)

= p (λ) I

and so Corollary 6.5.3 may be used. It follows the matrix coefficients corresponding to equal
powers of λ are equal on both sides of this equation. Therefore, if λ is replaced with A, the
two sides will be equal. Thus

0 = (A−A)
(
C0 + C1A + · · ·+ Cn−1A

n−1
)

= p (A) I = p (A) .

This proves the Cayley Hamilton theorem.

6.6 Block Multiplication Of Matrices

Consider the following problem
(

A B
C D

)(
E F
G H

)

You know how to do this. You get
(

AE + BG AF + BH
CE + DG CF + DH

)
.

Now what if instead of numbers, the entries, A,B, C,D, E, F,G are matrices of a size such
that the multiplications and additions needed in the above formula all make sense. Would
the formula be true in this case? I will show below that this is true.

Suppose A is a matrix of the form



A11 · · · A1m

...
. . .

...
Ar1 · · · Arm


 (6.18)

where Aij is a si × pj matrix where si does not depend on j and pj does not depend on
i. Such a matrix is called a block matrix, also a partitioned matrix. Let n =

∑
j pj

and k =
∑

i si so A is an k × n matrix. What is Ax where x ∈ Fn? From the process of
multiplying a matrix times a vector, the following lemma follows.
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Lemma 6.6.1 Let A be an m × n block matrix as in 6.18 and let x ∈ Fn. Then Ax is of
the form

Ax =




∑
j A1jxj

...∑
j Arjxj




where x =(x1, · · ·,xm)T and xi ∈ Fpi .

Suppose also that B is a block matrix of the form



B11 · · · B1p

...
. . .

...
Br1 · · · Brp


 (6.19)

and A is a block matrix of the form



A11 · · · A1m

...
. . .

...
Ap1 · · · Apm


 (6.20)

and that for all i, j, it makes sense to multiply BisAsj for all s ∈ {1, · · ·,m}. (That is the
two matrices, Bis and Asj are conformable.) and that for each s,BisAsj is the same size so
that it makes sense to write

∑
s BisAsj .

Theorem 6.6.2 Let B be a block matrix as in 6.19 and let A be a block matrix as in 6.20
such that Bis is conformable with Asj and each product, BisAsj is of the same size so they
can be added. Then BA is a block matrix such that the ijth block is of the form

∑
s

BisAsj . (6.21)

Proof: Let Bis be a qi × ps matrix and Asj be a ps × rj matrix. Also let x ∈ Fn and
let x = (x1, · · ·,xm)T and xi ∈ Fri so it makes sense to multiply Asjxj . Then from the
associative law of matrix multiplication and Lemma 6.6.1 applied twice,







B11 · · · B1p

...
. . .

...
Br1 · · · Brp







A11 · · · A1m

...
. . .

...
Ap1 · · · Apm










x1

...
xm




=




B11 · · · B1p

...
. . .

...
Br1 · · · Brp







∑
j A1jxj

...∑
j Arjxj




=




∑
s

∑
j B1sAsjxj

...∑
s

∑
j BrsAsjxj


 =




∑
j (

∑
s B1sAsj)xj

...∑
j (

∑
s BrsAsj)xj




=




∑
s B1sAs1 · · · ∑

s B1sAsm

...
. . .

...∑
s BrsAs1 · · · ∑

s BrsAsm







x1

...
xm
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By Lemma 6.6.1, this shows that (BA)x equals the block matrix whose ijth entry is given
by 6.21 times x. Since x is an arbitrary vector in Fn, this proves the theorem.

The message of this theorem is that you can formally multiply block matrices as though
the blocks were numbers. You just have to pay attention to the preservation of order.

This simple idea of block multiplication turns out to be very useful later. For now here
is an interesting and significant application. In this theorem, pM (t) denotes the polynomial,
det (tI −M) . Thus the zeros of this polynomial are the eigenvalues of the matrix, M .

Theorem 6.6.3 Let A be an m×n matrix and let B be an n×m matrix for m ≤ n. Then

pBA (t) = tn−mpAB (t) ,

so the eigenvalues of BA and AB are the same including multiplicities except that BA has
n−m extra zero eigenvalues.

Proof: Use block multiplication to write
(

AB 0
B 0

)(
I A
0 I

)
=

(
AB ABA
B BA

)

(
I A
0 I

)(
0 0
B BA

)
=

(
AB ABA
B BA

)
.

Therefore, (
I A
0 I

)−1 (
AB 0
B 0

)(
I A
0 I

)
=

(
0 0
B BA

)

By Problem 11 of Page 111, it follows that
(

0 0
B BA

)
and

(
AB 0
B 0

)
have the same

characteristic polynomials. Therefore, noting that BA is an n × n matrix and AB is an
m×m matrix,

tm det (tI −BA) = tn det (tI −AB)

and so det (tI −BA) = pBA (t) = tn−m det (tI −AB) = tn−mpAB (t) . This proves the
theorem.

6.7 Exercises

1. Show that matrix multiplication is associative. That is, (AB)C = A (BC) .

2. Show the inverse of a matrix, if it exists, is unique. Thus if AB = BA = I, then
B = A−1.

3. In the proof of Theorem 6.3.15 it was claimed that det (I) = 1. Here I = (δij) . Prove
this assertion. Also prove Corollary 6.3.18.

4. Let v1, · · ·,vn be vectors in Fn and let M (v1, · · ·,vn) denote the matrix whose ith

column equals vi. Define

d (v1, · · ·,vn) ≡ det (M (v1, · · ·,vn)) .

Prove that d is linear in each variable, (multilinear), that

d (v1, · · ·,vi, · · ·,vj , · · ·,vn) = −d (v1, · · ·,vj , · · ·,vi, · · ·,vn) , (6.22)
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and
d (e1, · · ·, en) = 1 (6.23)

where here ej is the vector in Fn which has a zero in every position except the jth

position in which it has a one.

5. Suppose f : Fn × · · · × Fn → F satisfies 6.22 and 6.23 and is linear in each variable.
Show that f = d.

6. Show that if you replace a row (column) of an n × n matrix A with itself added to
some multiple of another row (column) then the new matrix has the same determinant
as the original one.

7. If A = (aij) , show det (A) =
∑

(k1,···,kn) sgn (k1, · · ·, kn) ak11 · · · aknn.

8. Use the result of Problem 6 to evaluate by hand the determinant

det




1 2 3 2
−6 3 2 3
5 2 2 3
3 4 6 4


 .

9. Find the inverse if it exists of the matrix,



et cos t sin t
et − sin t cos t
et − cos t − sin t


 .

10. Let Ly = y(n) + an−1 (x) y(n−1) + · · · + a1 (x) y′ + a0 (x) y where the ai are given
continuous functions defined on a closed interval, (a, b) and y is some function which
has n derivatives so it makes sense to write Ly. Suppose Lyk = 0 for k = 1, 2, · · ·, n.
The Wronskian of these functions, yi is defined as

W (y1, · · ·, yn) (x) ≡ det




y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y
(n−1)
1 (x) · · · y

(n−1)
n (x)




Show that for W (x) = W (y1, · · ·, yn) (x) to save space,

W ′ (x) = det




y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y
(n)
1 (x) · · · y

(n)
n (x)


 .

Now use the differential equation, Ly = 0 which is satisfied by each of these functions,
yi and properties of determinants presented above to verify that W ′+an−1 (x)W = 0.
Give an explicit solution of this linear differential equation, Abel’s formula, and use
your answer to verify that the Wronskian of these solutions to the equation, Ly = 0
either vanishes identically on (a, b) or never.

11. Two n × n matrices, A and B, are similar if B = S−1AS for some invertible n × n
matrix, S. Show that if two matrices are similar, they have the same characteristic
polynomials.
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12. Suppose the characteristic polynomial of an n× n matrix, A is of the form

tn + an−1t
n−1 + · · ·+ a1t + a0

and that a0 6= 0. Find a formula A−1 in terms of powers of the matrix, A. Show that
A−1 exists if and only if a0 6= 0.

13. In constitutive modeling of the stress and strain tensors, one sometimes considers sums
of the form

∑∞
k=0 akAk where A is a 3×3 matrix. Show using the Cayley Hamilton

theorem that if such a thing makes any sense, you can always obtain it as a finite sum
having no more than n terms.



Row Operations

7.1 Elementary Matrices

The elementary matrices result from doing a row operation to the identity matrix.

Definition 7.1.1 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

The elementary matrices are given in the following definition.

Definition 7.1.2 The elementary matrices consist of those matrices which result by apply-
ing a row operation to an identity matrix. Those which involve switching rows of the identity
are called permutation matrices1.

As an example of why these elementary matrices are interesting, consider the following.



0 1 0
1 0 0
0 0 1







a b c d
x y z w
f g h i


 =




x y z w
a b c d
f g h i




A 3×4 matrix was multiplied on the left by an elementary matrix which was obtained from
row operation 1 applied to the identity matrix. This resulted in applying the operation 1
to the given matrix. This is what happens in general.

The ijth entry of the elementary matrix which results from switching row k with row l,
P kl (

P kl
)
ij

= δθ(i)j

where θ (i) = i for all i /∈ {k, l} and θ (k) = l while θ (l) = k. The ijth entry of the
elementary matrix which results from adding c times the pth row to the kth row, Ecp+k

(
Ecp+k

)
ij

= δij + cδikδpj

and the ijth entry of the elementary matrix which results from multiplying the kth row by
the nonzero constant, c, Eck

(
Eck

)
ij

= δij + (c− 1) δikδkj , no sum on k

1More generally, a permutation matrix is a matrix which comes by permuting the rows of the identity
matrix, not just switching two rows.

113
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Theorem 7.1.3 Let P kl be the elementary matrix which is obtained from switching the kth

and the lth rows of the identity matrix. Let Eck denote the elementary matrix which results
from multiplying the kth row by the nonzero scalar, c, and let Ecp+k denote the elementary
matrix obtained from replacing the kth row with c times the pth row added to the kth row.
Then if A is an m×n matrix, multiplication on the left by any of these elementary matrices
produces the corresponding row operation on A.

Proof: First consider P kl.

(
P klA

)
is

=
∑

j

δθ(i)jAjs = Aθ(i)s =





Ais if i /∈ {k, l}
Aks if i = l
Als if i = k

.

Next consider Eck

(
EckA

)
is

=
∑

j

(δij + (c− 1) δikδkj)Ajs

= Ais + (c− 1) δikAks, no sum on k

=
{

cAks if i = k
Ais if i 6= k

Finally consider the case of Ecp+k.

(
Ecp+kA

)
is

=
∑

j

(δij + cδikδpj) Ajs

= Ais + cδikAps

=
{

Ais if i 6= k
Aks + cAps if i = k

This proves the theorem.
The following corollary follows.

Corollary 7.1.4 Let A be an m× n matrix and let R denote the row reduced echelon form
obtained from A by row operations. Then there exists a sequence of elementary matrices,
E1, · · ·, Ep such that

(EpEp−1 · · · E1)A = R.

The following theorem is also very important.

Theorem 7.1.5 Let P kl, Eck, and Ecp+k be defined in Theorem 7.1.3. Then

(
P kl

)−1
= P kl,

(
Eck

)−1
= Ec−1k,

(
Ecp+k

)−1
= E−cp+k.

In particular, the inverse of an elementary matrix is an elementary matrix.

Proof: To see the first claim,

(
P klP kl

)
is

=
∑

j

δθ(i)jδθ(j)s

= δθ(θ(i))s = δis

the isth entry of I. Thus P klP kl = I and so
(
P kl

)−1 = P kl as claimed.
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Consider the next claim. Ec−1kEck = I because Eck is just the identity in which the kth

row is multiplied by c. Then Ec−1k multiplies that row by c−1 which brings the row back to
where it was.

Now consider the last claim. Consider the kth row of E−cp+kEcp+k. The kth row of
Ecp+k is c times the pth row of I added to the kth row of I. This did not change any row
but the kth row. Therefore, using Theorem 7.1.3, multiplying on the left by E−cp+k has the
effect of taking −c times the pth row of I and adding this to the row just obtained. In other
words, E−cp+k undoes what was just done and restores I. This proves the theorem.

Corollary 7.1.6 Let A be an invertible n × n matrix. Then A equals a finite product of
elementary matrices.

Proof: Since A−1 is given to exist, it follows A must have rank n and so the row reduced
echelon form of A is I. Therefore, by Corollary 7.1.4 there is a sequence of elementary
matrices, E1, · · ·, Ep such that

(EpEp−1 · · · E1)A = I.

But now multiply on the left on both sides by E−1
p then by E−1

p−1 and then by E−1
p−2 etc.

until you get
A = E−1

1 E−1
2 · · · E−1

p−1E
−1
p

and by Theorem 7.1.5 each of these in this product is an elementary matrix.

7.2 The Rank Of A Matrix

To begin with there is a definition which includes some terminology.

Definition 7.2.1 Let A be an m× n matrix. The column space of A is the subspace of Fm

spanned by the columns. The row space is the subspace of Fn spanned by the rows.

There are three definitions of the rank of a matrix which are useful and the concept of
rank is defined in the following definition.

Definition 7.2.2 A submatrix of a matrix A is a rectangular array of numbers obtained by
deleting some rows and columns of A. Let A be an m× n matrix. The determinant rank of
the matrix equals r where r is the largest number such that some r × r submatrix of A has
a non zero determinant. A given row, as of a matrix, A is a linear combination of rows
ai1 , · · ·,air if there are scalars, cj such that as =

∑r
j=1 cjaij . The row rank of a matrix is the

smallest number, r such that every row is a linear combination of some r rows. The column
rank of a matrix is the smallest number, r, such that every column is a linear combination
of some r columns. Thus the row rank is the dimension of the row space and the column
rank is the dimension of the column space. The rank of a matrix, A is denoted by rank (A) .

The following theorem is proved in the section on the theory of the determinant and is
restated here for convenience.

Theorem 7.2.3 Let A be an m× n matrix. Then the row rank, column rank and determi-
nant rank are all the same.

It turns out that row operations are the key to the practical computation of the rank of
a matrix.

In rough terms, the following lemma states that linear relationships between columns in
a matrix are preserved by row operations.
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Lemma 7.2.4 Let B and A be two m × n matrices and suppose B results from a row
operation applied to A. Then the kth column of B is a linear combination of the i1, · · ·, ir
columns of B if and only if the kth column of A is a linear combination of the i1, · · ·, ir
columns of A. Furthermore, the scalars in the linear combination are the same. (The linear
relationship between the kth column of A and the i1, · · ·, ir columns of A is the same as the
linear relationship between the kth column of B and the i1, · · ·, ir columns of B.)

Proof: Let A equal the following matrix in which the ak are the columns
(

a1 a2 · · · an

)

and let B equal the following matrix in which the columns are given by the bk

(
b1 b2 · · · bn

)

Then by Theorem 7.1.3 on Page 114 bk = Eak where E is an elementary matrix. Suppose
then that one of the columns of A is a linear combination of some other columns of A. Say

ak =
∑

r∈S

crar.

Then multiplying by E,

bk = Eak =
∑

r∈S

crEar =
∑

r∈S

crbr.

This proves the lemma.

Corollary 7.2.5 Let A and B be two m× n matrices such that B is obtained by applying
a row operation to A. Then the two matrices have the same rank.

Proof: Suppose the column rank of B is r. This means there are r columns whose span
yields all the columns of B. By Lemma 7.2.4 every column of A is a linear combination
of the corresponding columns in A. Therefore, the rank of A is no larger than the rank of
B. But A may also be obtained from B by a row operation. (Why?) Therefore, the same
reasoning implies the rank of B is no larger than the rank of A. This proves the corollary.

This suggests that to find the rank of a matrix, one should do row operations untill a
matrix is obtained in which its rank is obvious.

Example 7.2.6 Find the rank of the following matrix and identify columns whose linear
combinations yield all the other columns.




1 2 1 3 2
1 3 6 0 2
3 7 8 6 6


 (7.1)

Take (−1) times the first row and add to the second and then take (−3) times the first
row and add to the third. This yields




1 2 1 3 2
0 1 5 −3 0
0 1 5 −3 0




By the above corollary, this matrix has the same rank as the first matrix. Now take (−1)
times the second row and add to the third row yielding




1 2 1 3 2
0 1 5 −3 0
0 0 0 0 0
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Next take (−2) times the second row and add to the first row. to obtain



1 0 −9 9 2
0 1 5 −3 0
0 0 0 0 0


 (7.2)

Each of these row operations did not change the rank of the matrix. It is clear that linear
combinations of the first two columns yield every other column so the rank of the matrix is
no larger than 2. However, it is also clear that the determinant rank is at least 2 because,
deleting every column other than the first two and every zero row yields the 2× 2 identity
matrix having determinant 1.

By Lemma 7.2.4 the first two columns of the original matrix yield all other columns as
linear combinations.

Example 7.2.7 Find the rank of the following matrix and identify columns whose linear
combinations yield all the other columns.




1 2 1 3 2
1 2 6 0 2
3 6 8 6 6


 (7.3)

Take (−1) times the first row and add to the second and then take (−3) times the first
row and add to the last row. This yields




1 2 1 3 2
0 0 5 −3 0
0 0 5 −3 0




Now multiply the second row by 1/5 and add 5 times it to the last row.



1 2 1 3 2
0 0 1 −3/5 0
0 0 0 0 0




Add (−1) times the second row to the first.



1 2 0 18
5 2

0 0 1 −3/5 0
0 0 0 0 0


 (7.4)

The determinant rank is at least 2 because deleting the second, third and fifth columns
as well as the last row yields the 2 × 2 identity matrix. On the other hand, the rank is
no more than two because clearly every column can be obtained as a linear combination of
the first and third columns. Also, by Lemma 7.2.4 every column of the original matrix is a
linear combination of the first and third columns of that matrix.

The matrix, 7.4 is the row reduced echelon form for the matrix, 7.3 and 7.2 is the row
reduced echelon form for 7.1.

7.3 The Row Reduced Echelon Form

Definition 7.3.1 Let ei denote the column vector which has all zero entries except for the
ith slot which is one. An m×n matrix is said to be in row reduced echelon form if, in viewing
succesive columns from left to right, the first nonzero column encountered is e1 and if you
have encountered e1, e2, · · ·, ek, the next column is either ek+1 or is a linear combination of
the vectors, e1, e2, · · ·, ek.
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Theorem 7.3.2 Let A be an m × n matrix. Then A has a row reduced echelon form
determined by a simple process.

Proof: Viewing the columns of A from left to right take the first nonzero column. Pick
a nonzero entry in this column and switch the row containing this entry with the top row of
A. Now divide this new top row by the value of this nonzero entry to get a 1 in this position
and then use row operations to make all entries below this entry equal to zero. Thus the
first nonzero column is now e1. Denote the resulting matrix by A1. Consider the submatrix
of A1 to the right of this column and below the first row. Do exactly the same thing for it
that was done for A. This time the e1 will refer to Fm−1. Use this 1 and row operations
to zero out every entry above it in the rows of A1. Call the resulting matrix, A2. Thus A2

satisfies the conditions of the above definition up to the column just encountered. Continue
this way till every column has been dealt with and the result must be in row reduced echelon
form.

The following diagram illustrates the above procedure. Say the matrix looked something
like the following. 



0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

0 ∗ ∗ ∗ ∗ ∗ ∗




First step would yield something like



0 1 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

0 0 ∗ ∗ ∗ ∗ ∗




For the second step you look at the lower right corner as described,


∗ ∗ ∗ ∗ ∗
...

...
...

...
...

∗ ∗ ∗ ∗ ∗




and if the first column consists of all zeros but the next one is not all zeros, you would get
something like this. 


0 1 ∗ ∗ ∗
...

...
...

...
...

0 0 ∗ ∗ ∗




Thus, after zeroing out the term in the top row above the 1, you get the following for the
next step in the computation of the row reduced echelon form for the original matrix.




0 1 ∗ 0 ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗
...

...
...

...
...

...
...

0 0 0 0 ∗ ∗ ∗


 .

Next you look at the lower right matrix below the top two rows and to the right of the first
four columns and repeat the process.
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Definition 7.3.3 The first pivot column of A is the first nonzero column of A. The next
pivot column is the first column after this which becomes e2 in the row reduced echelon form.
The third is the next column which becomes e3 in the row reduced echelon form and so forth.

There are three choices for row operations at each step in the above theorem. A natural
question is whether the same row reduced echelon matrix always results in the end from
following the above algorithm applied in any way. The next corollary says this is the case.

Definition 7.3.4 Two matrices are said to be row equivalent if one can be obtained from
the other by a sequence of row operations.

It has been shown above that every matrix is row equivalent to one which is in row
reduced echelon form.

Corollary 7.3.5 The row reduced echelon form is unique. That is if B, C are two matrices
in row reduced echelon form and both are row equivalent to A, then B = C.

Proof: Suppose B and C are both row reduced echelon forms for the matrix, A. Then
they clearly have the same zero columns since row operations leave zero columns unchanged.
If B has the sequence e1, e2, · · ·, er occuring for the first time in the positions, i1, i2, · · ·, ir
the description of the row reduced echelon form means that if bk is the kth column of B such
that ij−1 < k < ij then bk is a linear combination of the columns in positions i1, i2, · · ·, ij−1.
By Lemma 7.2.4 the same is true for ck, the kth column of C. Therefore, ck is not equal
to ej for any j because ej is not obtained as a linear combinations of the ei for i < j. It
follows the ej for C can only occur in positions i1, i2, · · ·, ir. Furthermore, position ij in C
must contain ej because if not, then cij would be a linear combination of e1, · · ·, ej−1 in C
but not in B, thus contradicting Lemma 7.2.4. Therefore, both B and C have the sequence
e1, e2, · · ·, er occuring for the first time in the positions, i1, i2, · · ·, ir. By Lemma 7.2.4, the
columns between the ik and ik+1 position are linear combinations involving the same scalars
of the columns in the i1, · · ·, ik position. This is equivalent to the assertion that each of
these columns is identical and this proves the corollary.

Corollary 7.3.6 The rank of a matrix equals the number of nonzero pivot columns. Fur-
thermore, every column is contained in the span of the pivot columns.

Proof: Row rank, determinant rank, and column rank are all the same so it suffices
to consider only column rank. Write the row reduced echelon form for the matrix. From
Corollary 7.2.5 this row reduced matrix has the same rank as the original matrix. Deleting all
the zero rows and all the columns in the row reduced echelon form which do not correspond
to a pivot column, yields an r × r identity submatrix in which r is the number of pivot
columns. Thus the rank is at least r. Now from the construction of the row reduced echelon
form, every column is a linear combination of these r columns. Therefore, the rank is no
more than r. This proves the corollary.

Definition 7.3.7 Let A be an m×n matrix having rank, r. Then the nullity of A is defined
to be n− r. Also define ker (A) ≡ {x ∈ Fn : Ax = 0} .

Observation 7.3.8 Note that ker (A) is a subspace because if a, b are scalars and x,y are
vectors in ker (A), then

A (ax + by) = aAx + bAy = 0 + 0 = 0

Recall that the dimension of the column space of a matrix equals its rank and since the
column space is just A (Fn) , the rank is just the dimension of A (Fn). The next theorem
shows that the nullilty equals the dimension of ker (A).
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Theorem 7.3.9 Let A be an m× n matrix. Then rank (A) + dim (ker (A)) = n..

Proof: Since ker (A) is a subspace, there exists a basis for ker (A) , {x1, · · ·,xk} . Now
this basis may be extended to a basis of Fn, {x1, · · ·,xk,y1, · · ·,yn−k} . If z ∈ A (Fn) , then
there exist scalars, ci, i = 1, · · ·, k and di, i = 1, · · ·, n− k such that

z = A

(
k∑

i=1

cixi +
n−k∑

i=1

diyi

)

=
k∑

i=1

ciAxi +
n−k∑

i=1

diAyi =
n−k∑

i=1

diAyi

and this shows span (Ay1, · · ·, Ayn−k) = A (Fn) . Are the vectors, {Ay1, · · ·, Ayn−k} inde-
pendent? Suppose

n−k∑

i=1

ciAyi = 0.

Then since A is linear, it follows

A

(
n−k∑

i=1

ciyi

)
= 0

showing that
∑n−k

i=1 ciyi ∈ ker (A) . Therefore, there exists constants, di, i = 1, · · ·, k such
that

n−k∑

i=1

ciyi =
k∑

j=1

djxj . (7.5)

If any of these constants, di or ci is not equal to zero then

0 =
k∑

j=1

djxj +
k∑

i=1

(−ci)yi

and this would be a nontrivial linear combination of the vectors, {x1, · · ·,xk,y1, · · ·,yn−k}
which equals zero contrary to the fact that {x1, · · ·,xk,y1, · · ·,yn−k} is a basis. Therefore,
all the constants, di and ci in 7.5 must equal zero. It follows the vectors, {Ay1, · · ·, Ayn−k}
are linearly independent and so they must be a basis A (Fn) . Therefore, rank (A)+dim (ker (A)) =
n− k + k = n. This proves the theorem.

7.4 Exercises

1. Find the rank and nullity of the following matrices. If the rank is r, identify r columns
in the original matrix which have the property that every other column may be
written as a linear combination of these.

(a)




0 1 0 2 1 2 2
0 3 2 12 1 6 8
0 1 1 5 0 2 3
0 2 1 7 0 3 4




(b)




0 1 0 2 0 1 0
0 3 2 6 0 5 4
0 1 1 2 0 2 2
0 2 1 4 0 3 2
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(c)




0 1 0 2 1 1 2
0 3 2 6 1 5 1
0 1 1 2 0 2 1
0 2 1 4 0 3 1




2. Suppose A is an m × n matrix. Explain why the rank of A is always no larger than
min (m,n) .

3. Suppose A is an m×n matrix in which m ≤ n. Suppose also that the rank of A equals
m. Show that A maps Fn onto Fm. Hint: The vectors e1, · · ·, em occur as columns
in the row reduced echelon form for A.

4. Suppose A is an m×n matrix in which m ≥ n. Suppose also that the rank of A equals
n. Show that A is one to one. Hint: If not, there exists a vector, x such that Ax = 0,
and this implies at least one column of A is a linear combination of the others. Show
this would require the column rank to be less than n.

5. Explain why an n× n matrix, A is both one to one and onto if and only if its rank is
n.

6. Suppose A is an m×n matrix and {w1, · · ·,wk} is a linearly independent set of vectors
in A (Fn) ⊆ Fm. Now suppose A (zi) = wi. Show {z1, · · ·, zk} is also independent.

7. Suppose A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace
is {w1, · · ·,wk} . Now suppose {u1, · · ·,ur} is a basis for ker (B) . Let {z1, · · ·, zk} be
such that Bzi = wi and argue that

ker (AB) ⊆ span (u1, · · ·,ur, z1, · · ·, zk) .

Here is how you do this. Suppose ABx = 0. Then Bx ∈ ker (A) ∩ B (Fp) and so
Bx =

∑k
i=1 Bzi showing that

x−
k∑

i=1

zi ∈ ker (B) .

7.5 LU Decomposition

An LU decomposition of a matrix involves writing the given matrix as the product of a
lower triangular matrix which has the main diagonal consisting entirely of ones, L, and an
upper triangular matrix, U in the indicated order. The L goes with “lower” and the U with
“upper”. It turns out many matrices can be written in this way and when this is possible,
people get excited about slick ways of solving the system of equations, Ax = y. The method
lacks generality but is of interest just the same.

Example 7.5.1 Can you write
(

0 1
1 0

)
in the form LU as just described?

To do so you would need
(

1 0
x 1

)(
a b
0 c

)
=

(
a b
xa xb + c

)
=

(
0 1
1 0

)
.
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Therefore, b = 1 and a = 0. Also, from the bottom rows, xa = 1 which can’t happen
and have a = 0. Therefore, you can’t write this matrix in the form LU. It has no LU
decomposition. This is what I mean above by saying the method lacks generality.

Which matrices have an LU decomposition? It turns out it is those whose row reduced
echelon form can be achieved without switching rows and which only involve row operations
of type 3 in which row j is replaced with a multiple of row i added to row j for i < j.

7.6 Finding The LU Decomposition

There is a convenient procedure for finding an LU decomposition. It turns out that it is
only necessary to keep track of the multipliers which are used to row reduce to upper
triangular form. This procedure is described in the following examples and is called the
multiplier method. It is due to Dolittle.

Example 7.6.1 Find an LU decomposition for A =




1 2 3
2 1 −4
1 5 2




Write the matrix next to the identity matrix as shown.



1 0 0
0 1 0
0 0 1







1 2 3
2 1 −4
1 5 2


 .

The process involves doing row operations to the matrix on the right while simultaneously
updating successive columns of the matrix on the left. First take −2 times the first row and
add to the second in the matrix on the right.




1 0 0
2 1 0
0 0 1







1 2 3
0 −3 −10
1 5 2




Note the method for updating the matrix on the left. The 2 in the second entry of the first
column is there because −2 times the first row of A added to the second row of A produced
a 0. Now replace the third row in the matrix on the right by −1 times the first row added
to the third. Thus the next step is




1 0 0
2 1 0
1 0 1







1 2 3
0 −3 −10
0 3 −1




Finally, add the second row to the bottom row and make the following changes



1 0 0
2 1 0
1 −1 1







1 2 3
0 −3 −10
0 0 −11


 .

At this point, stop because the matrix on the right is upper triangular. An LU decomposition
is the above.

The justification for this gimmick will be given later.

Example 7.6.2 Find an LU decomposition for A =




1 2 1 2 1
2 0 2 1 1
2 3 1 3 2
1 0 1 1 2


 .
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This time everything is done at once for a whole column. This saves trouble. First
multiply the first row by (−1) and then add to the last row. Next take (−2) times the first
and add to the second and then (−2) times the first and add to the third.




1 0 0 0
2 1 0 0
2 0 1 0
1 0 0 1







1 2 1 2 1
0 −4 0 −3 −1
0 −1 −1 −1 0
0 −2 0 −1 1


 .

This finishes the first column of L and the first column of U. Now take − (1/4) times the
second row in the matrix on the right and add to the third followed by − (1/2) times the
second added to the last.




1 0 0 0
2 1 0 0
2 1/4 1 0
1 1/2 0 1







1 2 1 2 1
0 −4 0 −3 −1
0 0 −1 −1/4 1/4
0 0 0 1/2 3/2




This finishes the second column of L as well as the second column of U . Since the matrix
on the right is upper triangular, stop. The LU decomposition has now been obtained. This
technique is called Dolittle’s method.

This process is entirely typical of the general case. The matrix U is just the first upper
triangular matrix you come to in your quest for the row reduced echelon form using only
the row operation which involves replacing a row by itself added to a multiple of another
row. The matrix, L is what you get by updating the identity matrix as illustrated above.

You should note that for a square matrix, the number of row operations necessary to
reduce to LU form is about half the number needed to place the matrix in row reduced
echelon form. This is why an LU decomposition is of interest in solving systems of equations.

7.7 Solving Linear Systems Using The LU Decomposi-
tion

The reason people care about the LU decomposition is it allows the quick solution of systems
of equations. Here is an example.

Example 7.7.1 Suppose you want to find the solutions to




1 2 3 2
4 3 1 1
1 2 3 0







x
y
z
w


 =




1
2
3


 .

Of course one way is to write the augmented matrix and grind away. However, this
involves more row operations than the computation of the LU decomposition and it turns
out that the LU decomposition can give the solution quickly. Here is how. The following is
an LU decomposition for the matrix.




1 2 3 2
4 3 1 1
1 2 3 0


 =




1 0 0
4 1 0
1 0 1







1 2 3 2
0 −5 −11 −7
0 0 0 −2


 .
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Let Ux = y and consider Ly = b where in this case, b =(1, 2, 3)T . Thus



1 0 0
4 1 0
1 0 1







y1

y2

y3


 =




1
2
3




which yields very quickly that y =




1
−2
2


 . Now you can find x by solving Ux = y. Thus

in this case,



1 2 3 2
0 −5 −11 −7
0 0 0 −2







x
y
z
w


 =




1
−2
2




which yields

x =




− 3
5 + 7

5 t
9
5 − 11

5 t
t
−1


 , t ∈ R.

Work this out by hand and you will see the advantage of working only with triangular
matrices.

It may seem like a trivial thing but it is used because it cuts down on the number of
operations involved in finding a solution to a system of equations enough that it makes a
difference for large systems.

7.8 The PLU Decomposition

As indicated above, some matrices don’t have an LU decomposition. Here is an example.

M =




1 2 3 2
1 2 3 0
4 3 1 1


 (7.6)

In this case, there is another decomposition which is useful called a PLU decomposition.
Here P is a permutation matrix.

Example 7.8.1 Find a PLU decomposition for the above matrix in 7.6.

Proceed as before trying to find the row echelon form of the matrix. First add −1 times
the first row to the second row and then add −4 times the first to the third. This yields




1 0 0
1 1 0
4 0 1







1 2 3 2
0 0 0 −2
0 −5 −11 −7




There is no way to do only row operations involving replacing a row with itself added to a
multiple of another row to the second matrix in such a way as to obtain an upper triangular
matrix. Therefore, consider M with the bottom two rows switched.

M ′ =




1 2 3 2
4 3 1 1
1 2 3 0


 .
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Now try again with this matrix. First take −1 times the first row and add to the bottom
row and then take −4 times the first row and add to the second row. This yields




1 0 0
4 1 0
1 0 1







1 2 3 2
0 −5 −11 −7
0 0 0 −2




The second matrix is upper triangular and so the LU decomposition of the matrix, M ′ is



1 0 0
4 1 0
1 0 1







1 2 3 2
0 −5 −11 −7
0 0 0 −2


 .

Thus M ′ = PM = LU where L and U are given above. Therefore, M = P 2M = PLU and
so 


1 2 3 2
1 2 3 0
4 3 1 1


 =




1 0 0
0 0 1
0 1 0







1 0 0
4 1 0
1 0 1







1 2 3 2
0 −5 −11 −7
0 0 0 −2




This process can always be followed and so there always exists a PLU decomposition of
a given matrix even though there isn’t always an LU decomposition.

Example 7.8.2 Use the PLU decomposition of M ≡



1 2 3 2
1 2 3 0
4 3 1 1


 to solve the system

Mx = b where b = (1, 2, 3)T
.

Let Ux = y and consider PLy = b. In other words, solve,



1 0 0
0 0 1
0 1 0







1 0 0
4 1 0
1 0 1







y1

y2

y3


 =




1
2
3


 .

Then multiplying both sides by P gives



1 0 0
4 1 0
1 0 1







y1

y2

y3


 =




1
3
2




and so

y =




y1

y2

y3


 =




1
−1
1


 .

Now Ux = y and so it only remains to solve




1 2 3 2
0 −5 −11 −7
0 0 0 −2







x1

x2

x3

x4


 =




1
−1
1




which yields 


x1

x2

x3

x4


 =




1
5 + 7

5 t
9
10 − 11

5 t
t
− 1

2


 : t ∈ R.
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7.9 Justification For The Multiplier Method

Why does the multiplier method work for finding the LU decomposition? Suppose A is a
matrix which has the property that the row reduced echelon form for A may be achieved
using only the row operations which involve replacing a row with itself added to a multiple
of another row. It is not ever necessary to switch rows. Thus every row which is replaced
using this row operation in obtaining the echelon form may be modified by using a row
which is above it. Furthermore, in the multiplier method for finding the LU decomposition,
we zero out the elements below the pivot entry in first column and then the next and so on
when scanning from the left. In terms of elementary matrices, this means the row operations
used to reduce A to upper triangular form correspond to multiplication on the left by lower
triangular matrices having all ones down the main diagonal.and the sequence of elementary
matrices which row reduces A has the property that in scanning the list of elementary
matrices from the right to the left, this list consists of several matrices which involve only
changes from the identity in the first column, then several which involve only changes from
the identity in the second column and so forth. More precisely, Ep · · · E1A = U where U
is upper triangular, each Ei is a lower triangular elementary matrix having all ones down
the main diagonal, for some ri, each of Er1 · · · E1 differs from the identity only in the first
column, each of Er2 · · · Er1+1 differs from the identity only in the second column and so

forth. Therefore, A =

Will be L︷ ︸︸ ︷
E−1

1 · · · E−1
p−1E

−1
p U. You multiply the inverses in the reverse order.

Now each of the E−1
i is also lower triangular with 1 down the main diagonal. Therefore

their product has this property. Recall also that if Ei equals the identity matrix except
for having an a in the jth column somewhere below the main diagonal, E−1

i is obtained by
replacing the a in Ei with −a thus explaining why we replace with −1 times the multiplier
in computing L. In the case where A is a 3×m matrix, E−1

1 · · · E−1
p−1E

−1
p is of the form




1 0 0
a 1 0
0 0 1







1 0 0
0 1 0
b 0 1







1 0 0
0 1 0
0 c 1


 =




1 0 0
a 1 0
b c 1


 .

Note that scanning from left to right, the first two in the product involve changes in the
identity only in the first column while in the third matrix, the change is only in the second.
If the entries in the first column had been zeroed out in a different order, the following
would have resulted.




1 0 0
0 1 0
b 0 1







1 0 0
a 1 0
0 0 1







1 0 0
0 1 0
0 c 1


 =




1 0 0
a 1 0
b c 1




However, it is important to be working from the left to the right, one column at a time.

A similar observation holds in any dimension. Multiplying the elementary matrices which
involve a change only in the jth column you obtain A equal to an upper triangular, n×m
matrix, U which is multiplied by a sequence of lower triangular matrices on its left which is
of the following form in which the aij are negatives of multipliers used in row reducing to
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an upper triangular matrix.




1 0 · · · · · · · · · 0

a11 1
...

... 0
. . .

...
...

... 0
. . .

...
...

...
...

. . . 0
a1,n−1 0 0 · · · · · · 1







1 0 · · · · · · · · · 0

0 1
...

... a21
. . .

...
...

... 0
. . .

...
...

...
...

. . . 0
0 a2,n−2 0 · · · · · · 1




· ··

· · ·




1 0 · · · · · · · · · 0

0 1
...

... 0
. . .

...
...

... 0
. . .

...
...

...
... 1 0

0 0 0 · · · an,n−1 1




From the matrix multiplication, this product equals




1 0 · · · · · · · · · 0

a11 1
...

a12 a21
. . .

...
... a22 a31

. . .
...

...
...

... 1 0
a1,n−1 a2,n−2 a3,n−3 · · · an,n−1 1




Notice how the end result of the matrix multiplication made no change in the aij . It just
filled in the empty spaces with the aij which occured in one of the matrices in the product.
This is why, in computing L, it is sufficient to begin with the left column and work column
by column toward the right, replacing entries with the negative of the multiplier used in the
row operation which produces a zero in that entry.

7.10 Exercises

1. Find a LU decomposition of




1 2 0
2 1 3
1 2 3


 .

2. Find a LU decomposition of




1 2 3 2
1 3 2 1
5 0 1 3


 .

3. Find a PLU decomposition of




1 2 1
1 2 2
2 1 1


 .
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4. Find a PLU decomposition of




1 2 1 2 1
2 4 2 4 1
1 2 1 3 2


 .

5. Find a PLU decomposition of




1 2 1
1 2 2
2 4 1
3 2 1


 .

6. Is there only one LU decomposition for a given matrix? Hint: Consider the equation
(

0 1
0 1

)
=

(
1 0
1 1

)(
0 1
0 0

)
.



Linear Programming

8.1 Simple Geometric Considerations

One of the most important uses of row operations is in solving linear program problems
which involve maximizing a linear function subject to inequality constraints determined
from linear equations. Here is an example. A certain hamburger store has 9000 hamburger
pattys to use in one week and a limitless supply of special sauce, lettuce, tomatos, onions,
and buns. They sell two types of hamburgers, the big stack and the basic burger. It has
also been determined that the employees cannot prepare more than 9000 of either type in
one week. The big stack, popular with the teen agers from the local high school, involves
two pattys, lots of delicious sauce, condiments galore, and a divider between the two pattys.
The basic burger, very popular with children, involves only one patty and some pickles
and ketchup. Demand for the basic burger is twice what it is for the big stack. What
is the maximum number of hamburgers which could be sold in one week given the above
limitations?

Let x be the number of basic burgers and y the number of big stacks which could be sold
in a week. Thus it is desired to maximize z = x + y subject to the above constraints. The
total number of pattys is 9000 and so the number of pattys used is x+2y. This number must
satisfy x+2y ≤ 9000 because there are only 9000 pattys available. Because of the limitation
on the number the employees can prepare and the demand, it follows 2x + y ≤ 9000.
You never sell a negative number of hamburgers and so x, y ≥ 0. In simpler terms the
problem reduces to maximizing z = x+ y subject to the two constraints, x+2y ≤ 9000 and
2x + y ≤ 9000. This problem is pretty easy to solve geometrically. Consider the following
picture in which R labels the region described by the above inequalities and the line z = x+y
is shown for a particular value of z.

HHHHHHHHHHA
A

A
A

A
A

A
A

A
A

x + 2y = 4

2x + y = 4

R

@
@

@
@

@
@

@

x + y = z

As you make z larger this line moves away from the origin, always having the same slope

129



130 LINEAR PROGRAMMING

and the desired solution would consist of a point in the region, R which makes z as large as
possible or equivalently one for which the line is as far as possible from the origin. Clearly
this point is the point of intersection of the two lines, (3000, 3000) and so the maximum
value of the given function is 6000. Of course this type of procedure is fine for a situation in
which there are only two variables but what about a similar problem in which there are very
many variables. In reality, this hamburger store makes many more types of burgers than
those two and there are many considerations other than demand and available pattys. Each
will likely give you a constraint which must be considered in order to solve a more realistic
problem and the end result will likely be a problem in many dimensions, probably many
more than three so your ability to draw a picture will get you nowhere for such a problem.
Another method is needed. This method is the topic of this section. I will illustrate with
this particular problem. Let x1 = x and y = x2. Also let x3 and x4 be nonnegative variables
such that

x1 + 2x2 + x3 = 9000, 2x1 + x2 + x4 = 9000.

To say that x3 and x4 are nonnegative is the same as saying x1 +2x2 ≤ 9000 and 2x1 +x2 ≤
9000 and these variables are called slack variables at this point. They are called this because
they “take up the slack”. I will discuss these more later. First a general situation is
considered.

8.2 The Simplex Tableau

Here is some notation.

Definition 8.2.1 Let x,y be vectors in Rq. Then x ≤ y means for each i, xi ≤ yi.

The problem is as follows:
Let A be an m × (m + n) real matrix of rank m. It is desired to find x ∈ Rn+m such

that x satisfies the constraints,
x ≥ 0, Ax = b (8.1)

and out of all such x,

z ≡
m+n∑

i=1

cixi

is as large (or small) as possible. This is usually refered to as maximizing or minimizing z
subject to the above constraints. First I will consider the constraints.

Let A =
(

a1 · · · an+m

)
. First you find a vector, x0≥ 0, Ax0= b such that n of

the components of this vector equal 0. Letting i1, · · ·, in be the positions of x0 for which
x0

i = 0, suppose also that {aj1 , · · ·,ajm} is linearly independent for ji the other positions
of x0. Geometrically, this means that x0 is a corner of the feasible region, those x which
satisfy the constraints. This is called a basic feasible solution. Also define

cB ≡ (cj1 . · ··, cjm) , cF ≡ (ci1 , · · ·, cin)
xB ≡ (xj1 , · · ·, xjm) , xF ≡ (xi1 , · · ·, xin) .

and

z0 ≡ z
(
x0

)
=

(
cB cF

) (
x0

B

x0
F

)
= cBx0

B

since x0
F = 0. The variables which are the components of the vector xB are called the basic

variables and the variables which are the entries of xF are called the free variables. You
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set xF = 0. Now
(
x0, z0

)T is a solution to
(

A 0
−c 1

)(
x
z

)
=

(
b
0

)

along with the constraints x ≥ 0. Writing the above in augmented matrix form yields
(

A 0 b
−c 1 0

)
(8.2)

Permute the columns and variables on the left if necessary to write the above in the form

(
B F 0
−cB −cF 1

) 


xB

xF

z


 =

(
b
0

)
(8.3)

or equivalently in the augmented matrix form keeping track of the variables on the bottom
as 


B F 0 b
−cB −cF 1 0
xB xF 0 0


 . (8.4)

Here B pertains to the variables xi1 , ···, xjm and is an m×m matrix with linearly independent
columns, {aj1 , · · ·,ajm} , and F is an m× n matrix. Now it is assumed that

(
B F

)(
x0

B

x0
F

)
=

(
B F

) (
x0

B

0

)
= Bx0

B = b

and since B is assumed to have rank m, it follows

x0
B = B−1b ≥ 0. (8.5)

This is very important to observe. B−1b ≥ 0!
Do row operations on the top part of the matrix,

(
B F 0 b
−cB −cF 1 0

)
(8.6)

and obtain its row reduced echelon form. Then after these row operations the above becomes
(

I B−1F 0 B−1b
−cB −cF 1 0

)
. (8.7)

where B−1b ≥ 0. Next do another row operation in order to get a 0 where you see a −cB .
Thus

(
I B−1F 0 B−1b
0 cBB−1F ′ − cF 1 cBB−1b

)
(8.8)

=
(

I B−1F 0 B−1b
0 cBB−1F ′ − cF 1 cBx0

B

)

=
(

I B−1F 0 B−1b
0 cBB−1F − cF 1 z0

)
(8.9)

The reason there is a z0 on the bottom right corner is that xF = 0 and
(
x0

B ,x0
F , z0

)T is a
solution of the system of equations represented by the above augmented matrix because it is
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a solution to the system of equations corresponding to the system of equations represented
by 8.6 and row operations leave solution sets unchanged. Note how attractive this is. The z0

is the value of z at the point x0. The augmented matrix of 8.9 is called the simplex tableau
and it is the beginning point for the simplex algorithm to be described a little later. It is
very convenient to express the simplex tableau in the above form in which the variables are

possibly permuted in order to have
(

I
0

)
on the left side. However, as far as the simplex

algorithm is concerned it is not necessary to be permuting the variables in this manner.
Starting with 8.9 you could permute the variables and columns to obtain an augmented
matrix in which the variables are in their original order. What is really required for the
simplex tableau?

It is an augmented m + 1 ×m + n + 2 matrix which represents a system of equations
which has the same set of solutions, (x,z)T as the system whose augmented matrix is

(
A 0 b
−c 1 0

)

(Possibly the variables for x are taken in another order.) There are m linearly independent
columns in the first m + n columns for which there is only one nonzero entry, a 1 in one of
the first m rows, the “simple columns”, the other first m+ n columns being the “nonsimple
columns”. As in the above, the variables corresponding to the simple columns are xB ,
the basic variables and those corresponding to the nonsimple columns are xF , the free
variables. Also, the top m entries of the last column on the right are nonnegative. This is
the description of a simplex tableau.

In a simplex tableau it is easy to spot a basic feasible solution. You can see one quickly
by setting the variables, xF corresponding to the nonsimple columns equal to zero. Then the
other variables, corresponding to the simple columns are each equal to a nonnegative entry
in the far right column. Lets call this an “obvious basic feasible solution”. If a solution is
obtained by setting the variables corresponding to the nonsimple columns equal to zero and
the variables corresponding to the simple columns equal to zero this will be referred to as
an “obvious” solution. Lets also call the first m + n entries in the bottom row the “bottom
left row”. In a simplex tableau, the entry in the bottom right corner gives the value of the
variable being maximized or minimized when the obvious basic feasible solution is chosen.

The following is a special case of the general theory presented above and shows how such
a special case can be fit into the above framework. The following example is rather typical
of the sorts of problems considered. It involves inequality constraints instead of Ax = b.
This is handled by adding in “slack variables” as explained below.

Example 8.2.2 Consider z = x1−x2 subject to the constraints, x1+2x2 ≤ 10, x1+2x2 ≥ 2,
and 2x1 + x2 ≤ 6, xi ≥ 0. Find a simplex tableau for a problem of the form x ≥ 0,Ax = b
which is equivalent to the above problem.

You add in slack variables. These are positive variables, one for each of the first three con-
straints, which change the first three inequalities into equations. Thus the first three inequal-
ities become x1+2x2+x3 = 10, x1+2x2−x4 = 2, and 2x1+x2+x5 = 6, x1, x2, x3, x4, x5 ≥ 0.
Now it is necessary to find a basic feasible solution. You mainly need to find a positive so-
lution to the equations,

x1 + 2x2 + x3 = 10
x1 + 2x2 − x4 = 2
2x1 + x2 + x5 = 6

.

the solution set for the above system is given by

x2 =
2
3
x4 − 2

3
+

1
3
x5, x1 = −1

3
x4 +

10
3
− 2

3
x5, x3 = −x4 + 8.
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An easy way to get a basic feasible solution is to let x4 = 8 and x5 = 1. Then a feasible
solution is

(x1, x2, x3, x4, x5) = (0, 5, 0, 8, 1) .

It follows z0 = −5 and the matrix 8.2,
(

A 0 b
−c 1 0

)
with the variables kept track of on

the bottom is 


1 2 1 0 0 0 10
1 2 0 −1 0 0 2
2 1 0 0 1 0 6
−1 1 0 0 0 1 0
x1 x2 x3 x4 x5 0 0




and the first thing to do is to permute the columns so that the list of variables on the bottom
will have x1 and x3 at the end.




2 0 0 1 1 0 10
2 −1 0 1 0 0 2
1 0 1 2 0 0 6
1 0 0 −1 0 1 0
x2 x4 x5 x1 x3 0 0




Next, as described above, take the row reduced echelon form of the top three lines of the
above matrix. This yields




1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1


 .

Now do row operations to



1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1

1 0 0 −1 0 1 0




to finally obtain 


1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1

0 0 0 − 3
2 − 1

2 1 −5




and this is a simplex tableau. The variables are x2, x4, x5, x1, x3, z.
It isn’t as hard as it may appear from the above. Lets not permute the variables and

simply find an acceptable simplex tableau as described above.

Example 8.2.3 Consider z = x1−x2 subject to the constraints, x1+2x2 ≤ 10, x1+2x2 ≥ 2,
and 2x1 + x2 ≤ 6, xi ≥ 0. Find a simplex tableau.

Adding in slack variables, an augmented matrix which is descriptive of the constraints
is 


1 2 1 0 0 10
1 2 0 −1 0 6
2 1 0 0 1 6
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The obvious solution is not feasible because of that -1 in the fourth column. Consider the
second column and select the 2 as a pivot to zero out that which is above and below the 2.
This is because that 2 satisfies the criterion for being chosen as a pivot.




0 0 1 1 0 4
1
2 1 0 − 1

2 0 3
3
2 0 0 1

2 1 3




This one is good. The obvious solution is now feasible. You can now assemble the simplex
tableau. The first step is to include a column and row for z. This yields




0 0 1 1 0 0 4
1
2 1 0 − 1

2 0 0 3
3
2 0 0 1

2 1 0 3
−1 0 1 0 0 1 0




Now you need to get zeros in the right places so the simple columns will be preserved as
simple columns. This means you need to zero out the 1 in the third column on the bottom.
A simplex tableau is now




0 0 1 1 0 0 4
1
2 1 0 − 1

2 0 0 3
3
2 0 0 1

2 1 0 3
−1 0 0 −1 0 1 −4


 .

Note it is not the same one obtained earlier. There is no reason a simplex tableau should
be unique. In fact, it follows from the above general description that you have one for each
basic feasible point of the region determined by the constraints.

8.3 The Simplex Algorithm

8.3.1 Maximums

The simplex algorithm takes you from one basic feasible solution to another while maxi-
mizing or minimizing the function you are trying to maximize or minimize. Algebraically,
it takes you from one simplex tableau to another in which the lower right corner either
increases in the case of maximization or decreases in the case of minimization.

I will continue writing the simplex tableau in such a way that the simple columns having
only one entry nonzero are on the left. As explained above, this amounts to permuting the
variables. I will do this because it is possible to describe what is going on without onerous
notation. However, in the examples, I won’t worry so much about it. Thus, from a basic
feasible solution, a simplex tableau of the following form has been obtained in which the
columns for the basic variables, xB are listed first and b ≥ 0.

(
I F 0 b
0 c 1 z0

)
(8.10)

Let x0
i = bi for i = 1, · · ·,m and x0

i = 0 for i > m. Then
(
x0, z0

)
is a solution to the above

system and since b ≥ 0, it follows
(
x0, z0

)
is a basic feasible solution.

If ci < 0 for some i, and if Fji ≤ 0 so that a whole column of
(

F
c

)
is ≤ 0 with the

bottom entry < 0, then letting xi be the variable corresponding to that column, you could



8.3. THE SIMPLEX ALGORITHM 135

leave all the other entries of xF equal to zero but change xi to be positive. Let the new
vector be denoted by x′F and letting x′B = b− Fx′F it follows

(x′B)k = bk −
∑

j

Fkj (xF )j

= bk − Fkixi ≥ 0

Now this shows (x′B ,x′F ) is feasible whenever xi > 0 and so you could let xi become
arbitrarily large and positive and conclude there is no maximum for z because

z = −cx′F + z0 = (−ci) xi + z0 (8.11)

If this happens in a simplex tableau, you can say there is no maximum and stop.
What if c ≥ 0? Then z = z0 − cxF and to satisfy the constraints, xF ≥ 0. Therefore,

in this case, z0 is the largest possible value of z and so the maximum has been found. You
stop when this occurs. Next I explain what to do if neither of the above stopping conditions
hold.

The only case which remains is that some ci < 0 and some Fji > 0. You pick a column

in
(

F
c

)
in which ci < 0, usually the one for which ci is the largest in absolute value. You

pick Fji > 0 as a pivot entry, divide the jth row by Fji and then use to obtain zeros above
Fji and below Fji, thus obtaining a new simple column. This row operation also makes
exactly one of the other simple columns into a nonsimple column. (In terms of variables,
it is said that a free variable becomes a basic variable and a basic variable becomes a free
variable.) Now permuting the columns and variables, yields

(
I F ′ 0 b′

0 c′ 1 z0′

)

where z0′ ≥ z0 because z0′ = z0 − ci

(
bj

Fji

)
and ci < 0. If b′ ≥ 0, you are in the same

position you were at the beginning but now z0 is larger. Now here is the important thing.
You don’t pick just any Fji when you do these row operations. You pick the positive one
for which the row operation results in b′ ≥ 0. Otherwise the obvious basic feasible
solution obtained by letting x′F = 0 will fail to satisfy the constraint that x ≥ 0.

How is this done? You need

b′p ≡ bp − Fpibj

Fji
≥ 0 (8.12)

for each p = 1, · · ·,m or equivalently,

bp ≥ Fpibj

Fji
. (8.13)

Now if Fpi ≤ 0 the above holds. Therefore, you only need to check Fpi for Fpi > 0. The
pivot, Fji is the one which makes the quotients of the form

bp

Fpi

for all positive Fpi the smallest. Having gotten a new simplex tableau, you do the same
thing to it which was just done and continue. As long as b > 0, so you don’t encounter the
degenerate case, the values for z associated with setting xF = 0 keep getting strictly larger
every time the process is repeated. You keep going until you find c ≥ 0. Then you stop.
You are at a maximum. Problems can occur in the process in the so called degenerate case
when at some stage of the process some bj = 0. In this case you can cycle through different
values for x with no improvement in z. This case will not be discussed here.
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8.3.2 Minimums

How does it differ if you are finding a minimum? From a basic feasible solution, a simplex
tableau of the following form has been obtained in which the simple columns for the basic
variables, xB are listed first and b ≥ 0.

(
I F 0 b
0 c 1 z0

)
(8.14)

Let x0
i = bi for i = 1, · · ·,m and x0

i = 0 for i > m. Then
(
x0, z0

)
is a solution to the above

system and since b ≥ 0, it follows
(
x0, z0

)
is a basic feasible solution. So far, there is no

change.
Suppose first that some ci > 0 and Fji ≤ 0 for each j. Then let x′F consist of changing xi

by making it positive but leaving the other entries of xF equal to 0. Then from the bottom
row,

z = −cx′F + z0 = −cixi + z0

and you let x′B = b − Fx′F ≥ 0. Thus the constraints continue to hold when xi is made
increasingly positive and it follows from the above equation that there is no minimum for
z. You stop when this happens.

Next suppose c ≤ 0. Then in this case, z = z0 − cxF and from the constraints, xF ≥ 0
and so −cxF ≥ 0 and so z0 is the minimum value and you stop since this is what you are
looking for.

What do you do in the case where some ci > 0 and some Fji > 0? In this case, you use
the simplex algorithm as in the case of maximums to obtain a new simplex tableau in which
z0′ is smaller. You choose Fji the same way to be the positive entry of the ith column such
that bp/Fpi ≥ bj/Fji for all positive entries, Fpi and do the same row operations. Now this
time,

z0′ = z0 − ci

(
bj

Fji

)
< z0

As in the case of maximums no problem can occur and the process will converge unless
you have the degenerate case in which some bj = 0. As in the earlier case, this is most
unfortunate when it occurs. You see what happens of course. z0 does not change and the
algorithm just delivers different values of the variables forever with no improvement.

To summarize the geometrical significance of the simplex algorithm, it takes you from
one corner of the feasible region to another. You go in one direction to find the maximum
and in another to find the minimum. For the maximum you try to get rid of negative
entries of c and for minimums you try to eliminate positive entries of c where the method
of elimination involves the auspicious use of an appropriate pivot entry and row operations.

Now return to Example 8.2.2. It will be modified to be a maximization problem.

Example 8.3.1 Maximize z = x1−x2 subject to the constraints, x1+2x2 ≤ 10, x1+2x2 ≥ 2,
and 2x1 + x2 ≤ 6, xi ≥ 0.

Recall this is the same as maximizing z = x1 − x2 subject to




1 2 1 0 0
1 2 0 −1 0
2 1 0 0 1







x1

x2

x3

x4

x5




=




10
2
6


 ,x ≥ 0,
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the variables, x3, x4, x5 being slack variables. Recall the simplex tableau was



1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1

0 0 0 − 3
2 − 1

2 1 −5




with the variables ordered as x2, x4, x5, x1, x3 and so xB = (x2, x4, x5) and xF = (x1, x3).
Apply the simplex algorithm to the fourth column because − 3

2 < 0 and this is the most
negative entry in the bottom row. The pivot is 3/2 because 1/(3/2) = 2/3 < 5/ (1/2) .
Dividing this row by 3/2 and then using this to zero out the other elements in that column,
the new simplex tableau is




1 0 − 1
3 0 2

3 0 14
3

0 1 0 0 1 0 8
0 0 2

3 1 − 1
3 0 2

3
0 0 1 0 −1 1 −4


 .

Now there is still a negative number in the bottom left row. Therefore, the process should
be continued. This time the pivot is the 2/3 in the top of the column. Dividing the top row
by 2/3 and then using this to zero out the entries below it,




3
2 0 − 1

2 0 1 0 7
− 3

2 1 1
2 0 0 0 1

1
2 0 1

2 1 0 0 3
3
2 0 1

2 0 0 1 3


 .

Now all the numbers on the bottom left row are nonnegative so the process stops. Now
recall the variables and columns were ordered as x2, x4, x5, x1, x3. The solution in terms of
x1 and x2 is x2 = 0 and x1 = 3 and z = 3. Note that in the above, I did not worry about
permuting the columns to keep those which go with the basic varibles on the left.

Here is a bucolic example.

Example 8.3.2 Consider the following table.

F1 F2 F3 F4

iron 1 2 1 3
protein 5 3 2 1
folic acid 1 2 2 1
copper 2 1 1 1
calcium 1 1 1 1

This information is available to a pig farmer and Fi denotes a particular feed. The numbers
in the table contain the number of units of a particular nutrient contained in one pound of
the given feed. Thus F2 has 2 units of iron in one pound. Now suppose the cost of each feed
in cents per pound is given in the following table.

F1 F2 F3 F4

2 3 2 3

A typical pig needs 5 units of iron, 8 of protein, 6 of folic acid, 7 of copper and 4 of calcium.
(The units may change from nutrient to nutrient.) How many pounds of each feed per pig
should the pig farmer use in order to minimize his cost?



138 LINEAR PROGRAMMING

His problem is to minimize C ≡ 2x1 + 3x2 + 2x3 + 3x4 subject to the constraints

x1 + 2x2 + x3 + 3x4 ≥ 5,

5x1 + 3x2 + 2x3 + x4 ≥ 8,

x1 + 2x2 + 2x3 + x4 ≥ 6,

2x1 + x2 + x3 + x4 ≥ 7,

x1 + x2 + x3 + x4 ≥ 4.

where each xi ≥ 0. Add in the slack variables,

x1 + 2x2 + x3 + 3x4 − x5 = 5
5x1 + 3x2 + 2x3 + x4 − x6 = 8
x1 + 2x2 + 2x3 + x4 − x7 = 6
2x1 + x2 + x3 + x4 − x8 = 7
x1 + x2 + x3 + x4 − x9 = 4

The augmented matrix for this system is



1 2 1 3 −1 0 0 0 0 5
5 3 2 1 0 −1 0 0 0 8
1 2 2 1 0 0 −1 0 0 6
2 1 1 1 0 0 0 −1 0 7
1 1 1 1 0 0 0 0 −1 4




How in the world can you find a basic feasible solution? Remember the simplex algorithm
is designed to keep the entries in the right column nonnegative so you use this algorithm a
few times till the obvious solution is a basic feasible solution.

Consider the first column. The pivot is the 5. Using the row operations described in the
algorithm, you get




0 7
5

3
5

14
5 −1 1

5 0 0 0 17
5

1 3
5

2
5

1
5 0 − 1

5 0 0 0 8
5

0 7
5

8
5

4
5 0 1

5 −1 0 0 22
5

0 − 1
5

1
5

3
5 0 2

5 0 −1 0 19
5

0 2
5

3
5

4
5 0 1

5 0 0 −1 12
5




Now go to the second column. The pivot in this column is the 7/5. This is in a different
row than the pivot in the first column so I will use it to zero out everything below it. This
will get rid of the zeros in the fifth column and introduce zeros in the second. This yields




0 1 3
7 2 − 5

7
1
7 0 0 0 17

7
1 0 1

7 −1 3
7 − 2

7 0 0 0 1
7

0 0 1 −2 1 0 −1 0 0 1
0 0 2

7 1 − 1
7

3
7 0 −1 0 30

7
0 0 3

7 0 2
7

1
7 0 0 −1 10

7




Now consider another column, this time the fourth. I will pick this one because it has
some negative numbers in it so there are fewer entries to check in looking for a pivot.
Unfortunately, the pivot is the top 2 and I don’t want to pivot on this because it would
destroy the zeros in the second column. Consider the fifth column. It is also not a good
choice because the pivot is the second entry from the top and this would destroy the zeros
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in the first column. Consider the sixth column. I can use either of the two bottom entries
as the pivot. The matrix is




0 1 0 2 −1 0 0 0 1 1
1 0 1 −1 1 0 0 0 −2 3
0 0 1 −2 1 0 −1 0 0 1
0 0 −1 1 −1 0 0 −1 3 0
0 0 3 0 2 1 0 0 −7 10




Next consider the third column. The pivot is the 1 in the third row. This yields



0 1 0 2 −1 0 0 0 1 1
1 0 0 1 0 0 1 0 −2 2
0 0 1 −2 1 0 −1 0 0 1
0 0 0 −1 0 0 −1 −1 3 1
0 0 0 6 −1 1 3 0 −7 7




.

There are still 5 columns which consist entirely of zeros except for one entry. Four of them
have that entry equal to 1 but one still has a -1 in it, the -1 being in the fourth column.
I need to do the row operations on a nonsimple column which has the pivot in the fourth
row. Such a column is the second to the last. The pivot is the 3. The new matrix is




0 1 0 7
3 −1 0 1

3
1
3 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 8
3

0 0 1 −2 1 0 −1 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 28

3




. (8.15)

Now the obvious basic solution is feasible. You let x4 = 0 = x5 = x7 = x8 and x1 =
8/3, x2 = 2/3, x3 = 1, and x6 = 28/3. You don’t need to worry too much about this. It is
the above matrix which is desired. Now you can assemble the simplex tableau and begin
the algorithm. Remember C ≡ 2x1 + 3x2 + 2x3 + 3x4. First add the row and column which
deal with C. This yields




0 1 0 7
3 −1 0 1

3
1
3 0 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 0 28

3
−2 −3 −2 −3 0 0 0 0 0 1 0




(8.16)

Now you do row operations to keep the simple columns of 8.15 simple in 8.16. Of course
you could permute the columns if you wanted but this is not necessary.

This yields the following for a simplex tableau. Now it is a matter of getting rid of the
positive entries in the bottom row because you are trying to minimize.




0 1 0 7
3 −1 0 1

3
1
3 0 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 0 28

3
0 0 0 2

3 −1 0 − 1
3 − 1

3 0 1 28
3
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The most positive of them is the 2/3 and so I will apply the algorithm to this one first. The
pivot is the 7/3. After doing the row operation the next tableau is




0 3
7 0 1 − 3

7 0 1
7

1
7 0 0 2

7
1 − 1

7 0 0 1
7 0 2

7 − 5
7 0 0 18

7
0 6

7 1 0 1
7 0 − 5

7
2
7 0 0 11

7
0 1

7 0 0 − 1
7 0 − 2

7 − 2
7 1 0 3

7
0 − 11

7 0 0 4
7 1 1

7 − 20
7 0 0 58

7
0 − 2

7 0 0 − 5
7 0 − 3

7 − 3
7 0 1 64

7




and you see that all the entries are negative and so the minimum is 64/7 and it occurs when
x1 = 18/7, x2 = 0, x3 = 11/7, x4 = 2/7.

There is no maximum for the above problem. However, I will pretend I don’t know this
and attempt to use the simplex algorithm. You set up the simiplex tableau the same way.
Recall it is 



0 1 0 7
3 −1 0 1

3
1
3 0 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 0 28

3
0 0 0 2

3 −1 0 − 1
3 − 1

3 0 1 28
3




Now to maximize, you try to get rid of the negative entries in the bottom left row. The
most negative entry is the -1 in the fifth column. The pivot is the 1 in the third row of this
column. The new tableau is




0 1 1 1
3 0 0 − 2

3
1
3 0 0 5

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 1 5
3 0 1 − 1

3 − 7
3 0 0 31

3
0 0 1 − 4

3 0 0 − 4
3 − 1

3 0 1 31
3




.

Consider the fourth column. The pivot is the top 1/3. The new tableau is



0 3 3 1 0 0 −2 1 0 0 5
1 −1 −1 0 0 0 1 −1 0 0 1
0 6 7 0 1 0 −5 2 0 0 11
0 1 1 0 0 0 −1 0 1 0 2
0 −5 −4 0 0 1 3 −4 0 0 2
0 4 5 0 0 0 −4 1 0 1 17




There is still a negative in the bottom, the -4. The pivot in that column is the 3. The
algorithm yields




0 − 1
3

1
3 1 0 2

3 0 − 5
3 0 0 19

3
1 2

3
1
3 0 0 − 1

3 0 1
3 0 0 1

3
0 − 7

3
1
3 0 1 5

3 0 − 14
3 0 0 43

3
0 − 2

3 − 1
3 0 0 1

3 0 − 4
3 1 0 8

3
0 − 5

3 − 4
3 0 0 1

3 1 − 4
3 0 0 2

3
0 − 8

3 − 1
3 0 0 4

3 0 − 13
3 0 1 59

3




Note how z keeps getting larger. Consider the column having the −13/3 in it. The pivot is
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the single positive entry, 1/3. The next tableau is



5 3 2 1 0 −1 0 0 0 0 8
3 2 1 0 0 −1 0 1 0 0 1
14 7 5 0 1 −3 0 0 0 0 19
4 2 1 0 0 −1 0 0 1 0 4
4 1 0 0 0 −1 1 0 0 0 2
13 6 4 0 0 −3 0 0 0 1 24




.

There is a column consisting of all negative entries. There is therefore, no maximum. Note
also how there is no way to pick the pivot in that column.

Example 8.3.3 Minimize z = x1 − 3x2 + x3 subject to the constraints x1 + x2 + x3 ≤
10, x1 +x2 +x3 ≥ 2, x1 +x2 +3x3 ≤ 8 and x1 +2x2 +x3 ≤ 7 with all variables nonnegative.

There exists an answer because the region defined by the contraints is closed and
bounded. Adding in slack variables you get the following augmented matrix corresponding
to the constraints. 



1 1 1 1 0 0 0 10
1 1 1 0 −1 0 0 2
1 1 3 0 0 1 0 8
1 2 1 0 0 0 1 7




Of course there is a problem with the obvious solution obtained by setting to zero all
variables corresponding to a nonsimple column because of the simple column which has the
−1 in it. Therefore, I will use the simplex algorithm to make this column non simple. The
third column has the 1 in the second row as the pivot so I will use this column. This yields




0 0 0 1 1 0 0 8
1 1 1 0 −1 0 0 2
−2 −2 0 0 3 1 0 2
0 1 0 0 1 0 1 5


 (8.17)

and the obvious solution is feasible. Now it is time to assemble the simplex tableau. First
add in the bottom row and second to last column corresponding to the the equation for z.
This yields 



0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
−2 −2 0 0 3 1 0 0 2
0 1 0 0 1 0 1 0 5
−1 3 −1 0 0 0 0 1 0




Next you need to zero out the entries in the bottom row which are below one of the simple
columns in 8.17. This yields the simplex tableau




0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
−2 −2 0 0 3 1 0 0 2
0 1 0 0 1 0 1 0 5
0 4 0 0 −1 0 0 1 2




.

The desire is to minimize this so you need to get rid of the positive entries in the left bottom
row. There is only one such entry, the 4. In that column the pivot is the 1 in the second
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row of this column. Thus the next tableau is



0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
0 0 2 0 1 1 0 0 6
−1 0 −1 0 2 0 1 0 3
−4 0 −4 0 3 0 0 1 −6




There is still a positive number there, the 3. The pivot in this column is the 2. Apply the
algorithm again. This yields




1
2 0 1

2 1 0 0 − 1
2 0 13

2
1
2 1 1

2 0 0 0 1
2 0 7

2
1
2 0 5

2 0 0 1 − 1
2 0 9

2
− 1

2 0 − 1
2 0 1 0 1

2 0 3
2

− 5
2 0 − 5

2 0 0 0 − 3
2 1 − 21

2




.

Now all the entries in the left bottom row are nonpositive so the process has stopped. The
minimum is −21/2. It occurs when x1 = 0, x2 = 7/2, x3 = 0.

Now consider the same problem but change the word, minimize to the word, maximize.

Example 8.3.4 Maximize z = x1 − 3x2 + x3 subject to the constraints x1 + x2 + x3 ≤
10, x1 +x2 +x3 ≥ 2, x1 +x2 +3x3 ≤ 8 and x1 +2x2 +x3 ≤ 7 with all variables nonnegative.

The first part of it is the same. You wind up with the same simplex tableau,



0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
−2 −2 0 0 3 1 0 0 2
0 1 0 0 1 0 1 0 5
0 4 0 0 −1 0 0 1 2




but this time, you apply the algorithm to get rid of the negative entries in the left bottom
row. There is a −1. Use this column. The pivot is the 3. The next tableau is




2
3

2
3 0 1 0 − 1

3 0 0 22
3

1
3

1
3 1 0 0 1

3 0 0 8
3

− 2
3 − 2

3 0 0 1 1
3 0 0 2

3
2
3

5
3 0 0 0 − 1

3 1 0 13
3

− 2
3

10
3 0 0 0 1

3 0 1 8
3




There is still a negative entry, the −2/3. This will be the new pivot column. The pivot is
the 2/3 on the fourth row. This yields




0 −1 0 1 0 0 −1 0 3
0 − 1

2 1 0 0 1
2 − 1

2 0 1
2

0 1 0 0 1 0 1 0 5
1 5

2 0 0 0 − 1
2

3
2 0 13

2
0 5 0 0 0 0 1 1 7




and the process stops. The maximum for z is 7 and it occurs when x1 = 13/2, x2 = 0, x3 =
1/2.
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8.4 Finding A Basic Feasible Solution

By now it should be fairly clear that finding a basic feasible solution can create considerable
difficulty. Indeed, given a system of linear inequalities along with the requirement that each
variable be nonnegative, do there even exist points satisfying all these inequalities? If you
have many variables, you can’t answer this by drawing a picture. Is there some other way
to do this which is more systematic than what was presented above? The answer is yes. It
is called the method of artificial variables. I will illustrate this method with an example.

Example 8.4.1 Find a basic feasible solution to the system 2x1+x2−x3 ≥ 3, x1+x2+x3 ≥
2, x1 + x2 + x3 ≤ 7 and x ≥ 0.

If you write the appropriate augmented matrix with the slack variables,



2 1 −1 −1 0 0 3
1 1 1 0 −1 0 2
1 1 1 0 0 1 7


 (8.18)

The obvious solution is not feasible. This is why it would be hard to get started with
the simplex method. What is the problem? It is those −1 entries in the fourth and fifth
columns. To get around this, you add in artificial variables to get an augmented matrix of
the form 


2 1 −1 −1 0 0 1 0 3
1 1 1 0 −1 0 0 1 2
1 1 1 0 0 1 0 0 7


 (8.19)

Thus the variables are x1, x2, x3, x4, x5, x6, x7, x8. Suppose you can find a feasible solution
to the system of equations represented by the above augmented matrix. Thus all variables
are nonnegative. Suppose also that it can be done in such a way that x8 and x7 happen to
be 0. Then it will follow that x1, · · ·, x6 is a feasible solution for 8.18. Conversely, if you can
find a feasible solution for 8.18, then letting x7 and x8 both equal zero, you have obtained a
feasible solution to 8.19. Since all variables are nonnegative, x7 and x8 both equalling zero
is equivalent to saying the minimum of z = x7 +x8 subject to the constraints represented by
the above augmented matrix equals zero. This has proved the following simple observation.

Observation 8.4.2 There exists a feasible solution to the constraints represented by the
augmented matrix of 8.18 and x ≥ 0 if and only if the minimum of x7 + x8 subject to the
constraints of 8.19 and x ≥ 0 exists and equals 0.

Of course a similar observation would hold in other similar situations. Now the point of
all this is that it is trivial to see a feasible solution to 8.19, namely x6 = 7, x7 = 3, x8 = 2
and all the other variables may be set to equal zero. Therefore, it is easy to find an initial
simplex tableau for the minimization problem just described. First add the column and row
for z 



2 1 −1 −1 0 0 1 0 0 3
1 1 1 0 −1 0 0 1 0 2
1 1 1 0 0 1 0 0 0 7
0 0 0 0 0 0 −1 −1 1 0




Next it is necessary to make the last two columns on the bottom left row into simple columns.
Performing the row operation, this yields an initial simplex tableau,




2 1 −1 −1 0 0 1 0 0 3
1 1 1 0 −1 0 0 1 0 2
1 1 1 0 0 1 0 0 0 7
3 2 0 −1 −1 0 0 0 1 5






144 LINEAR PROGRAMMING

Now the algorithm involves getting rid of the positive entries on the left bottom row. Begin
with the first column. The pivot is the 2. An application of the simplex algorithm yields
the new tableau 



1 1
2 − 1

2 − 1
2 0 0 1

2 0 0 3
2

0 1
2

3
2

1
2 −1 0 − 1

2 1 0 1
2

0 1
2

3
2

1
2 0 1 − 1

2 0 0 11
2

0 1
2

3
2

1
2 −1 0 − 3

2 0 1 1
2




Now go to the third column. The pivot is the 3/2 in the second row. An application of the
simplex algorithm yields




1 2
3 0 − 1

3 − 1
3 0 1

3
1
3 0 5

3
0 1

3 1 1
3 − 2

3 0 − 1
3

2
3 0 1

3
0 0 0 0 1 1 0 −1 0 5
0 0 0 0 0 0 −1 −1 1 0


 (8.20)

and you see there are only nonpositive numbers on the bottom left column so the process
stops and yields 0 for the minimum of z = x7+x8. As for the other variables, x1 = 5/3, x2 =
0, x3 = 1/3, x4 = 0, x5 = 0, x6 = 5. Now as explained in the above observation, this is a
basic feasible solution for the original system 8.18.

Now consider a maximization problem associated with the above constraints.

Example 8.4.3 Maximize x1− x2 + 2x3 subject to the constraints, 2x1 + x2− x3 ≥ 3, x1 +
x2 + x3 ≥ 2, x1 + x2 + x3 ≤ 7 and x ≥ 0.

From 8.20 you can immediately assemble an initial simplex tableau. You begin with the
first 6 columns and top 3 rows in 8.20. Then add in the column and row for z. This yields




1 2
3 0 − 1

3 − 1
3 0 0 5

3
0 1

3 1 1
3 − 2

3 0 0 1
3

0 0 0 0 1 1 0 5
−1 1 −2 0 0 0 1 0




and you first do row operations to make the first and third columns simple columns. Thus
the next simplex tableau is




1 2
3 0 − 1

3 − 1
3 0 0 5

3
0 1

3 1 1
3 − 2

3 0 0 1
3

0 0 0 0 1 1 0 5
0 7

3 0 1
3 − 5

3 0 1 7
3




You are trying to get rid of negative entries in the bottom left row. There is only one, the
−5/3. The pivot is the 1. The next simplex tableau is then




1 2
3 0 − 1

3 0 1
3 0 10

3
0 1

3 1 1
3 0 2

3 0 11
3

0 0 0 0 1 1 0 5
0 7

3 0 1
3 0 5

3 1 32
3




and so the maximum value of z is 32/3 and it occurs when x1 = 10/3, x2 = 0 and x3 = 11/3.

8.5 Duality

You can solve minimization problems by solving maximization problems. You can also go
the other direction and solve maximization problems by minimization problems. Sometimes
this makes things much easier. To be more specific, the two problems to be considered are
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A.) Minimize z = cx subject to x ≥ 0 and Ax ≥ b and
B.) Maximize w = yb such that y ≥ 0 and yA ≤ c,

(
equivalently AT yT ≥ cT and w = bT yT

)
.

In these problems it is assumed A is an m× p matrix.
I will show how a solution of the first yields a solution of the second and then show how

a solution of the second yields a solution of the first. The problems, A.) and B.) are called
dual problems.

Lemma 8.5.1 Let x be a solution of the inequalities of A.) and let y be a solution of the
inequalities of B.). Then

cx ≥ yb.

and if equality holds in the above, then x is the solution to A.) and y is a solution to B.).

Proof: This follows immediately. Since c ≥ yA,

cx ≥ yAx ≥ yb.

It follows from this lemma that if y satisfies the inequalitites of B.) and x satisfies the
inequalities of A.) then if equality holds in the above lemma, it must be that x is a solution
of A.) and y is a solution of B.). This proves the lemma.

Now recall that to solve either of these problems using the simplex method, you first
add in slack variables. Denote by x′ and y′ the enlarged list of variables. Thus x′ has at
least m entries and so does y′ and the inequalities involving A were replaced by equalities
whose augmented matrices were of the form

(
A −I b

)
, and

(
AT I cT

)

Then you included the row and column for z and w to obtain
(

A −I 0 b
−c 0 1 0

)
and

(
AT I 0 cT

−bT 0 1 0

)
. (8.21)

Then the problems have basic feasible solutions if it is possible to permute the first p + m
columns in the above two matrices and obtain matrices of the form

(
B F 0 b
−cB −cF 1 0

)
and

(
B1 F1 0 cT

−bT
B1

−bT
F1

1 0

)
(8.22)

where B,B1 are invertible m×m and p× p matrices and denoting the variables associated
with these columns by xB ,yB and those variables associated with F or F1 by xF and yF ,
it follows that letting BxB = b and xF = 0, the resulting vector, x′ is a solution to x′ ≥ 0
and

(
A −I

)
x′ = b with similar constraints holding for y′. In other words, it is possible

to obtain simplex tableaus,
(

I B−1F 0 B−1b
0 cBB−1F − cF 1 cBB−1b

)
,

(
I B−1

1 F1 0 B−1
1 cT

0 bT
B1

B−1
1 F − bT

F1
1 bT

B1
B−1

1 cT

)
(8.23)

Similar considerations apply to the second problem. Thus as just described, a basic feasible
solution is one which determines a simplex tableau like the above in which you get a feasible
solution by setting all but the first m variables equal to zero. The simplex algorithm takes
you from one basic feasible solution to another till eventually, if there is no degeneracy, you
obtain a basic feasible solution which yields the solution of the problem of interest.
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Theorem 8.5.2 Suppose there exists a solution, x to A.) where x is a basic feasible solution
of the inequalities of A.). Then there exists a solution, y to B.) and cx = by. It is also
possible to find y from x using a simple formula.

Proof: Since the solution to A.) is basic and feasible, there exists a simplex tableau like
8.23 such that x′ can be split into xB and xF such that xF = 0 and xB = B−1b. Now since
it is a minimizer, it follows cBB−1F − cF ≤ 0 and the minimum value for cx is cBB−1b.
Stating this again, cx = cBB−1b. Is it posible you can take y = cBB−1? From Lemma 8.5.1
this will be so if cBB−1 solves the constraints of problem B.). Is cBB−1 ≥ 0? Is cBB−1A ≤
c? These two conditions are satisfied if and only if cBB−1

(
A −I

) ≤ (
c 0

)
. Referring

to the process of permuting the columns of the first augmented matrix of 8.21 to get 8.22
and doing the same permutations on the columns of

(
A −I

)
and

(
c 0

)
, the desired

inequality holds if and only if cBB−1
(

B F
) ≤ (

cB cF

)
which is equivalent to saying(

cB cBB−1F
) ≤ (

cB cF

)
and this is true because cBB−1F − cF ≤ 0 due to the

assumption that x is a minimizer. The simple formula is just

y = cBB−1.

This proves the theorem.
The proof of the following corollary is similar.

Corollary 8.5.3 Suppose there exists a solution, y to B.) where y is a basic feasible solution
of the inequalities of B.). Then there exists a solution, x to A.) and cx = by. It is also
possible to find x from y using a simple formula. In this case, and referring to 8.23, the
simple formula is x = B−T

1 bB1 .

As an example, consider the pig farmers problem. The main difficulty in this problem
was finding an initial simplex tableau. Now consider the following example and marvel at
how all the difficulties disappear.

Example 8.5.4 minimize C ≡ 2x1 + 3x2 + 2x3 + 3x4 subject to the constraints

x1 + 2x2 + x3 + 3x4 ≥ 5,

5x1 + 3x2 + 2x3 + x4 ≥ 8,

x1 + 2x2 + 2x3 + x4 ≥ 6,

2x1 + x2 + x3 + x4 ≥ 7,

x1 + x2 + x3 + x4 ≥ 4.

where each xi ≥ 0.

Here the dual problem is to maximize w = 5y1 + 8y2 + 6y3 + 7y4 + 4y5 subject to the
constraints 



1 5 1 2 1
2 3 2 1 1
1 2 2 1 1
3 1 1 1 1







y1

y2

y3

y4

y5



≤




2
3
2
3


 .

Adding in slack variables, these inequalities are equivalent to the system of equations whose
augmented matrix is 



1 5 1 2 1 1 0 0 0 2
2 3 2 1 1 0 1 0 0 3
1 2 2 1 1 0 0 1 0 2
3 1 1 1 1 0 0 0 1 3
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Now the obvious solution is feasible so there is no hunting for an initial obvious feasible
solution required. Now add in the row and column for w. This yields




1 5 1 2 1 1 0 0 0 0 2
2 3 2 1 1 0 1 0 0 0 3
1 2 2 1 1 0 0 1 0 0 2
3 1 1 1 1 0 0 0 1 0 3
−5 −8 −6 −7 −4 0 0 0 0 1 0




.

It is a maximization problem so you want to eliminate the negatives in the bottom left row.
Pick the column having the one which is most negative, the −8. The pivot is the top 5.
Then apply the simplex algorithm to obtain




1
5 1 1

5
2
5

1
5

1
5 0 0 0 0 2

5
7
5 0 7

5 − 1
5

2
5 − 3

5 1 0 0 0 9
5

3
5 0 8

5
1
5

3
5 − 2

5 0 1 0 0 6
5

14
5 0 4

5
3
5

4
5 − 1

5 0 0 1 0 13
5

− 17
5 0 − 22

5 − 19
5 − 12

5
8
5 0 0 0 1 16

5




.

There are still negative entries in the bottom left row. Do the simplex algorithm to the
column which has the − 22

5 . The pivot is the 8
5 . This yields




1
8 1 0 3

8
1
8

1
4 0 − 1

8 0 0 1
4

7
8 0 0 − 3

8 − 1
8 − 1

4 1 − 7
8 0 0 3

4
3
8 0 1 1

8
3
8 − 1

4 0 5
8 0 0 3

4
5
2 0 0 1

2
1
2 0 0 − 1

2 1 0 2
− 7

4 0 0 − 13
4 − 3

4
1
2 0 11

4 0 1 13
2




and there are still negative numbers. Pick the column which has the −13/4. The pivot is
the 3/8 in the top. This yields




1
3

8
3 0 1 1

3
2
3 0 − 1

3 0 0 2
3

1 1 0 0 0 0 1 −1 0 0 1
1
3 − 1

3 1 0 1
3 − 1

3 0 2
3 0 0 2

3
7
3 − 4

3 0 0 1
3 − 1

3 0 − 1
3 1 0 5

3
− 2

3
26
3 0 0 1

3
8
3 0 5

3 0 1 26
3




which has only one negative entry on the bottom left. The pivot for this first column is the
7
3 . The next tableau is




0 20
7 0 1 2

7
5
7 0 − 2

7 − 1
7 0 3

7
0 11

7 0 0 − 1
7

1
7 1 − 6

7 − 3
7 0 2

7
0 − 1

7 1 0 2
7 − 2

7 0 5
7 − 1

7 0 3
7

1 − 4
7 0 0 1

7 − 1
7 0 − 1

7
3
7 0 5

7
0 58

7 0 0 3
7

18
7 0 11

7
2
7 1 64

7




and all the entries in the left bottom row are nonnegative so the answer is 64/7. This is
the same as obtained before. So what values for x are needed? Here the basic variables are
y1, y3, y4, y7. Consider the original augmented matrix, one step before the simplex tableau.




1 5 1 2 1 1 0 0 0 0 2
2 3 2 1 1 0 1 0 0 0 3
1 2 2 1 1 0 0 1 0 0 2
3 1 1 1 1 0 0 0 1 0 3
−5 −8 −6 −7 −4 0 0 0 0 1 0




.
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Permute the columns to put the columns associated with these basic variables first. Thus



1 1 2 0 5 1 1 0 0 0 2
2 2 1 1 3 1 0 0 0 0 3
1 2 1 0 2 1 0 1 0 0 2
3 1 1 0 1 1 0 0 1 0 3
−5 −6 −7 0 −8 −4 0 0 0 1 0




The matrix, B is 


1 1 2 0
2 2 1 1
1 2 1 0
3 1 1 0




and so B−T equals 


− 1
7 − 2

7
5
7

1
7

0 0 0 1
− 1

7
5
7 − 2

7 − 6
7

3
7 − 1

7 − 1
7 − 3

7




Also bT
B =

(
5 6 7 0

)
and so from Corollary 8.5.3,

x =




− 1
7 − 2

7
5
7

1
7

0 0 0 1
− 1

7
5
7 − 2

7 − 6
7

3
7 − 1

7 − 1
7 − 3

7







5
6
7
0


 =




18
7
0
11
7
2
7




which agrees with the original way of doing the problem.
Two good books which give more discussion of linear programming are Strang [13] and

Nobel and Daniels [10]. Also listed in these books are other references which may prove
useful if you are interested in seeing more on these topics. There is a great deal more which
can be said about linear programming.

8.6 Exercises

1. Maximize and minimize z = x1 − 2x2 + x3 subject to the constraints x1 + x2 + x3 ≤
10, x1 + x2 + x3 ≥ 2, and x1 + 2x2 + x3 ≤ 7 if possible. All variables are nonnegative.

2. Maximize and minimize the following is possible. All variables are nonnegative.

(a) z = x1− 2x2 subject to the constraints x1 + x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

(b) z = x1−2x2−3x3 subject to the constraints x1 +x2 +x3 ≤ 8, x1 +x2 +3x3 ≥ 1,
and x1 + x2 + x3 ≤ 7

(c) z = 2x1 + x2 subject to the constraints x1− x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

(d) z = x1 + 2x2 subject to the constraints x1− x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

3. Consider contradictory constraints, x1 + x2 ≥ 12 and x1 + 2x2 ≤ 5. You know these
two contradict but show they contradict using the simplex algorithm.
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4. Find a solution to the following inequalities x, y ≥ 0 and if it is possible to do so. If
it is not possible, prove it is not possible.

(a) 6x + 3y ≥ 4
8x + 4y ≤ 5

(b)
6x1 + 4x3 ≤ 11

5x1 + 4x2 + 4x3 ≥ 8
6x1 + 6x2 + 5x3 ≤ 11

(c)
6x1 + 4x3 ≤ 11

5x1 + 4x2 + 4x3 ≥ 9
6x1 + 6x2 + 5x3 ≤ 9

(d)
x1 − x2 + x3 ≤ 2

x1 + 2x2 ≥ 4
3x1 + 2x3 ≤ 7

(e)
5x1 − 2x2 + 4x3 ≤ 1
6x1 − 3x2 + 5x3 ≥ 2
5x1 − 2x2 + 4x3 ≤ 5

5. Minimize z = x1 + x2 subject to x1 + x2 ≥ 2, x1 + 3x2 ≤ 20, x1 + x2 ≤ 18. Change
to a maximization problem and solve as follows: Let yi = M − xi. Formulate in terms
of y1, y2.
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Spectral Theory

Spectral Theory refers to the study of eigenvalues and eigenvectors of a matrix. It is of
fundamental importance in many areas. Row operations will no longer be such a useful tool
in this subject.

9.1 Eigenvalues And Eigenvectors Of A Matrix

The field of scalars in spectral theory is best taken to equal C although I will sometimes
refer to it as F.

Definition 9.1.1 Let M be an n× n matrix and let x ∈ Cn be a nonzero vector for which

Mx = λx (9.1)

for some scalar, λ. Then x is called an eigenvector and λ is called an eigenvalue (charac-
teristic value) of the matrix, M.

Eigenvectors are never equal to zero!

The set of all eigenvalues of an n× n matrix, M, is denoted by σ (M) and is referred to as
the spectrum of M.

Eigenvectors are vectors which are shrunk, stretched or reflected upon multiplication by
a matrix. How can they be identified? Suppose x satisfies 9.1. Then

(λI −M)x = 0

for some x 6= 0. Therefore, the matrix M − λI cannot have an inverse and so by Theorem
6.3.15

det (λI −M) = 0. (9.2)

In other words, λ must be a zero of the characteristic polynomial. Since M is an n×n matrix,
it follows from the theorem on expanding a matrix by its cofactor that this is a polynomial
equation of degree n. As such, it has a solution, λ ∈ C. Is it actually an eigenvalue? The
answer is yes and this follows from Theorem 6.3.23 on Page 106. Since det (λI −M) = 0
the matrix, λI −M cannot be one to one and so there exists a nonzero vector, x such that
(λI −M)x = 0. This proves the following corollary.

Corollary 9.1.2 Let M be an n×n matrix and det (M − λI) = 0. Then there exists x ∈ Cn

such that (M − λI)x = 0.
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As an example, consider the following.

Example 9.1.3 Find the eigenvalues and eigenvectors for the matrix,

A =




5 −10 −5
2 14 2
−4 −8 6


 .

You first need to identify the eigenvalues. Recall this requires the solution of the equation

det


λ




1 0 0
0 1 0
0 0 1


−




5 −10 −5
2 14 2
−4 −8 6





 = 0

When you expand this determinant, you find the equation is

(λ− 5)
(
λ2 − 20λ + 100

)
= 0

and so the eigenvalues are
5, 10, 10.

I have listed 10 twice because it is a zero of multiplicity two due to

λ2 − 20λ + 100 = (λ− 10)2 .

Having found the eigenvalues, it only remains to find the eigenvectors. First find the
eigenvectors for λ = 5. As explained above, this requires you to solve the equation,


5




1 0 0
0 1 0
0 0 1


−




5 −10 −5
2 14 2
−4 −8 6










x
y
z


 =




0
0
0


 .

That is you need to find the solution to



0 10 5
−2 −9 −2
4 8 −1







x
y
z


 =




0
0
0




By now this is an old problem. You set up the augmented matrix and row reduce to get the
solution. Thus the matrix you must row reduce is




0 10 5 0
−2 −9 −2 0
4 8 −1 0


 . (9.3)

The reduced row echelon form is



1 0 − 5
4 0

0 1 1
2 0

0 0 0 0




and so the solution is any vector of the form



5
4z
−1
2 z
z


 = z




5
4−1
2
1
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where z ∈ F. You would obtain the same collection of vectors if you replaced z with 4z.
Thus a simpler description for the solutions to this system of equations whose augmented
matrix is in 9.3 is

z




5
−2
4


 (9.4)

where z ∈ F. Now you need to remember that you can’t take z = 0 because this would
result in the zero vector and

Eigenvectors are never equal to zero!

Other than this value, every other choice of z in 9.4 results in an eigenvector. It is a good
idea to check your work! To do so, I will take the original matrix and multiply by this vector
and see if I get 5 times this vector.




5 −10 −5
2 14 2
−4 −8 6







5
−2
4


 =




25
−10
20


 = 5




5
−2
4




so it appears this is correct. Always check your work on these problems if you care about
getting the answer right.

The variable, z is called a free variable or sometimes a parameter. The set of vectors in
9.4 is called the eigenspace and it equals ker (λI −A) . You should observe that in this case
the eigenspace has dimension 1 because there is one vector which spans the eigenspace. In
general, you obtain the solution from the row echelon form and the number of different free
variables gives you the dimension of the eigenspace. Just remember that not every vector
in the eigenspace is an eigenvector. The vector, 0 is not an eigenvector although it is in the
eigenspace because

Eigenvectors are never equal to zero!

Next consider the eigenvectors for λ = 10. These vectors are solutions to the equation,

10




1 0 0
0 1 0
0 0 1


−




5 −10 −5
2 14 2
−4 −8 6










x
y
z


 =




0
0
0




That is you must find the solutions to



5 10 5
−2 −4 −2
4 8 4







x
y
z


 =




0
0
0




which reduces to consideration of the augmented matrix,



5 10 5 0
−2 −4 −2 0
4 8 4 0




The row reduced echelon form for this matrix is



1 2 1 0
0 0 0 0
0 0 0 0
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and so the eigenvectors are of the form


−2y − z

y
z


 = y



−2
1
0


 + z



−1
0
1


 .

You can’t pick z and y both equal to zero because this would result in the zero vector and

Eigenvectors are never equal to zero!

However, every other choice of z and y does result in an eigenvector for the eigenvalue
λ = 10. As in the case for λ = 5 you should check your work if you care about getting it
right. 


5 −10 −5
2 14 2
−4 −8 6






−1
0
1


 =



−10
0
10


 = 10



−1
0
1




so it worked. The other vector will also work. Check it.
The above example shows how to find eigenvectors and eigenvalues algebraically. You

may have noticed it is a bit long. Sometimes students try to first row reduce the matrix
before looking for eigenvalues. This is a terrible idea because row operations destroy the
value of the eigenvalues. The eigenvalue problem is really not about row operations. A
general rule to remember about the eigenvalue problem is this.

If it is not long and hard it is usually wrong!

The eigenvalue problem is the hardest problem in algebra and people still do research on
ways to find eigenvalues. Now if you are so fortunate as to find the eigenvalues as in the
above example, then finding the eigenvectors does reduce to row operations and this part
of the problem is easy. However, finding the eigenvalues is anything but easy because for
an n × n matrix, it involves solving a polynomial equation of degree n and none of us are
very good at doing this. If you only find a good approximation to the eigenvalue, it won’t
work. It either is or is not an eigenvalue and if it is not, the only solution to the equation,
(λI −M)x = 0 will be the zero solution as explained above and

Eigenvectors are never equal to zero!

Here is another example.

Example 9.1.4 Let

A =




2 2 −2
1 3 −1
−1 1 1




First find the eigenvalues.

det


λ




1 0 0
0 1 0
0 0 1


−




2 2 −2
1 3 −1
−1 1 1





 = 0

This is λ3 − 6λ2 + 8λ = 0 and the solutions are 0, 2, and 4.

0 Can be an Eigenvalue!
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Now find the eigenvectors. For λ = 0 the augmented matrix for finding the solutions is



2 2 −2 0
1 3 −1 0
−1 1 1 0




and the row reduced echelon form is



1 0 −1 0
0 1 0 0
0 0 0 0




Therefore, the eigenvectors are of the form

z




1
0
1




where z 6= 0.
Next find the eigenvectors for λ = 2. The augmented matrix for the system of equations

needed to find these eigenvectors is



0 −2 2 0
−1 −1 1 0
1 −1 1 0




and the row reduced echelon form is



1 0 0 0
0 1 −1 0
0 0 0 0




and so the eigenvectors are of the form

z




0
1
1




where z 6= 0.
Finally find the eigenvectors for λ = 4. The augmented matrix for the system of equations

needed to find these eigenvectors is



2 −2 2 0
−1 1 1 0
1 −1 3 0




and the row reduced echelon form is



1 −1 0 0
0 0 1 0
0 0 0 0


 .

Therefore, the eigenvectors are of the form

y




1
1
0




where y 6= 0.



156 SPECTRAL THEORY

Example 9.1.5 Let

A =




2 −2 −1
−2 −1 −2
14 25 14


 .

Find the eigenvectors and eigenvalues.

In this case the eigenvalues are 3, 6, 6 where I have listed 6 twice because it is a zero of
algebraic multiplicity two, the characteristic equation being

(λ− 3) (λ− 6)2 = 0.

It remains to find the eigenvectors for these eigenvalues. First consider the eigenvectors for
λ = 3. You must solve


3




1 0 0
0 1 0
0 0 1


−




2 −2 −1
−2 −1 −2
14 25 14










x
y
z


 =




0
0
0


 .

The augmented matrix is 


1 2 1 0
2 4 2 0
−14 −25 −11 0




and the row reduced echelon form is



1 0 −1 0
0 1 1 0
0 0 0 0




so the eigenvectors are nonzero vectors of the form



z
−z
z


 = z




1
−1
1




Next consider the eigenvectors for λ = 6. This requires you to solve

6




1 0 0
0 1 0
0 0 1


−




2 −2 −1
−2 −1 −2
14 25 14










x
y
z


 =




0
0
0




and the augmented matrix for this system of equations is



4 2 1 0
2 7 2 0
−14 −25 −8 0




The row reduced echelon form is



1 0 1
8 0

0 1 1
4 0

0 0 0 0




and so the eigenvectors for λ = 6 are of the form

z



− 1

8
− 1

4
1
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or written more simply,

z



−1
−2
8




where z ∈ F.
Note that in this example the eigenspace for the eigenvalue, λ = 6 is of dimension 1

because there is only one parameter which can be chosen. However, this eigenvalue is of
multiplicity two as a root to the characteristic equation.

Definition 9.1.6 If A is an n× n matrix with the property that some eigenvalue has alge-
braic multiplicity as a root of the characteristic equation which is greater than the dimension
of the eigenspace associated with this eigenvalue, then the matrix is called defective.

There may be repeated roots to the characteristic equation, 9.2 and it is not known
whether the dimension of the eigenspace equals the multiplicity of the eigenvalue. However,
the following theorem is available.

Theorem 9.1.7 Suppose Mvi = λivi, i = 1, · · ·, r , vi 6= 0, and that if i 6= j, then λi 6= λj.
Then the set of eigenvectors, {vi}r

i=1 is linearly independent.

Proof: If the conclusion of this theorem is not true, then there exist non zero scalars,
ckj such that

m∑

j=1

ckjvkj = 0. (9.5)

Since any nonempty set of non negative integers has a smallest integer in the set, take m is
as small as possible for this to take place. Then solving for vk1

vk1 =
∑

kj 6=k1

dkjvkj (9.6)

where dkj = ckj /ck1 6= 0. Multiplying both sides by M,

λk1vk1 =
∑

kj 6=k1

dkj λkjvkj ,

which from 9.6 yields ∑

kj 6=k1

dkj λk1vkj =
∑

kj 6=k1

dkj λkjvkj

and therefore,
0 =

∑

kj 6=k1

dkj

(
λk1 − λkj

)
vkj ,

a sum having fewer than m terms. However, from the assumption that m is as small as
possible for 9.5 to hold with all the scalars, ckj non zero, it follows that for some j 6= 1,

dkj

(
λk1 − λkj

)
= 0

which implies λk1 = λkj , a contradiction.
In words, this theorem says that eigenvectors associated with distinct eigenvalues are

linearly independent.
Sometimes you have to consider eigenvalues which are complex numbers. This occurs in

differential equations for example. You do these problems exactly the same way as you do
the ones in which the eigenvalues are real. Here is an example.



158 SPECTRAL THEORY

Example 9.1.8 Find the eigenvalues and eigenvectors of the matrix

A =




1 0 0
0 2 −1
0 1 2


 .

You need to find the eigenvalues. Solve

det


λ




1 0 0
0 1 0
0 0 1


−




1 0 0
0 2 −1
0 1 2





 = 0.

This reduces to (λ− 1)
(
λ2 − 4λ + 5

)
= 0. The solutions are λ = 1, λ = 2 + i, λ = 2− i.

There is nothing new about finding the eigenvectors for λ = 1 so consider the eigenvalue
λ = 2 + i. You need to solve


(2 + i)




1 0 0
0 1 0
0 0 1


−




1 0 0
0 2 −1
0 1 2










x
y
z


 =




0
0
0




In other words, you must consider the augmented matrix,



1 + i 0 0 0
0 i 1 0
0 −1 i 0




for the solution. Divide the top row by (1 + i) and then take −i times the second row and
add to the bottom. This yields 


1 0 0 0
0 i 1 0
0 0 0 0




Now multiply the second row by −i to obtain



1 0 0 0
0 1 −i 0
0 0 0 0




Therefore, the eigenvectors are of the form

z




0
i
1


 .

You should find the eigenvectors for λ = 2− i. These are

z




0
−i
1


 .

As usual, if you want to get it right you had better check it.



1 0 0
0 2 −1
0 1 2







0
−i
1


 =




0
−1− 2i
2− i


 = (2− i)




0
−i
1




so it worked.
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9.2 Some Applications Of Eigenvalues And Eigenvec-
tors

Recall that n× n matrices can be considered as linear transformations. If F is a 3× 3 real
matrix having positive determinant, it can be shown that F = RU where R is a rotation
matrix and U is a symmetric real matrix having positive eigenvalues. An application of
this wonderful result, known to mathematicians as the right polar decomposition, is to
continuum mechanics where a chunk of material is identified with a set of points in three
dimensional space.

The linear transformation, F in this context is called the deformation gradient and
it describes the local deformation of the material. Thus it is possible to consider this
deformation in terms of two processes, one which distorts the material and the other which
just rotates it. It is the matrix, U which is responsible for stretching and compressing. This
is why in continuum mechanics, the stress is often taken to depend on U which is known in
this context as the right Cauchy Green strain tensor. This process of writing a matrix as a
product of two such matrices, one of which preserves distance and the other which distorts
is also important in applications to geometric measure theory an interesting field of study
in mathematics and to the study of quadratic forms which occur in many applications such
as statistics. Here I am emphasizing the application to mechanics in which the eigenvectors
of U determine the principle directions, those directions in which the material is stretched
or compressed to the maximum extent.

Example 9.2.1 Find the principle directions determined by the matrix,



29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44




The eigenvalues are 3, 1, and 1
2 .

It is nice to be given the eigenvalues. The largest eigenvalue is 3 which means that in
the direction determined by the eigenvector associated with 3 the stretch is three times as
large. The smallest eigenvalue is 1/2 and so in the direction determined by the eigenvector
for 1/2 the material is compressed, becoming locally half as long. It remains to find these
directions. First consider the eigenvector for 3. It is necessary to solve


3




1 0 0
0 1 0
0 0 1


−




29
11

6
11

6
11

6
11

41
44

19
44

6
11

19
44

41
44










x
y
z


 =




0
0
0




Thus the augmented matrix for this system of equations is



4
11 − 6

11 − 6
11 0

− 6
11

91
44 − 19

44 0
− 6

11 − 19
44

91
44 0




The row reduced echelon form is 


1 0 −3 0
0 1 −1 0
0 0 0 0




and so the principle direction for the eigenvalue, 3 in which the material is stretched to the
maximum extent is 


3
1
1


 .
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A direction vector in this direction is



3/
√

11
1/
√

11
1/
√

11


 .

You should show that the direction in which the material is compressed the most is in the
direction 


0

−1/
√

2
1/
√

2




Note this is meaningful information which you would have a hard time finding without
the theory of eigenvectors and eigenvalues.

Another application is to the problem of finding solutions to systems of differential
equations. It turns out that vibrating systems involving masses and springs can be studied
in the form

x′′ = Ax (9.7)

where A is a real symmetric n × n matrix which has nonpositive eigenvalues. This is
analogous to the case of the scalar equation for undamped oscillation, x′ + ω2x = 0. The
main difference is that here the scalar ω2 is replaced with the matrix, −A. Consider the
problem of finding solutions to 9.7. You look for a solution which is in the form

x (t) = veλt (9.8)

and substitute this into 9.7. Thus

x′′ = vλ2eλt = eλtAv

and so
λ2v = Av.

Therefore, λ2 needs to be an eigenvalue of A and v needs to be an eigenvector. Since A
has nonpositive eigenvalues, λ2 = −a2 and so λ = ±ia where −a2 is an eigenvalue of A.
Corresponding to this you obtain solutions of the form

x (t) = v cos (at) ,v sin (at) .

Note these solutions oscillate because of the cos (at) and sin (at) in the solutions. Here is
an example.

Example 9.2.2 Find oscillatory solutions to the system of differential equations, x′′ = Ax
where

A =



− 5

3 − 1
3 − 1

3
− 1

3 − 13
6

5
6

− 1
3

5
6 − 13

6


 .

The eigenvalues are −1,−2, and −3.

According to the above, you can find solutions by looking for the eigenvectors. Consider
the eigenvectors for −3. The augmented matrix for finding the eigenvectors is



− 4

3
1
3

1
3 0

1
3 − 5

6 − 5
6 0

1
3 − 5

6 − 5
6 0
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and its row echelon form is 


1 0 0 0
0 1 1 0
0 0 0 0


 .

Therefore, the eigenvectors are of the form

v = z




0
−1
1


 .

It follows 


0
−1
1


 cos

(√
3t

)
,




0
−1
1


 sin

(√
3t

)

are both solutions to the system of differential equations. You can find other oscillatory
solutions in the same way by considering the other eigenvalues. You might try checking
these answers to verify they work.

This is just a special case of a procedure used in differential equations to obtain closed
form solutions to systems of differential equations using linear algebra. The overall philos-
ophy is to take one of the easiest problems in analysis and change it into the eigenvalue
problem which is the most difficult problem in algebra. However, when it works, it gives
precise solutions in terms of known functions.

9.3 Exercises

1. Find the eigenvalues and eigenvectors of the matrix


−19 −14 −1
8 4 8
15 30 −3


 .

Determine whether the matrix is defective.

2. Find the eigenvalues and eigenvectors of the matrix


−3 −30 15
0 12 0
15 30 −3


 .

Determine whether the matrix is defective.

3. Find the eigenvalues and eigenvectors of the matrix



8 4 5
0 12 9
−2 2 10


 .

Determine whether the matrix is defective.

4. Find the eigenvalues and eigenvectors of the matrix



12 −12 6
0 18 0
6 12 12
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5. Find the eigenvalues and eigenvectors of the matrix



−5 −1 10
−15 9 −6
8 −8 2


 .

Determine whether the matrix is defective.

6. Find the eigenvalues and eigenvectors of the matrix


−10 −8 8
−4 −14 −4
0 0 −18


 .

Determine whether the matrix is defective.

7. Find the eigenvalues and eigenvectors of the matrix



1 26 −17
4 −4 4
−9 −18 9


 .

Determine whether the matrix is defective.

8. Find the eigenvalues and eigenvectors of the matrix



8 4 5
0 12 9
−2 2 10


 .

Determine whether the matrix is defective.

9. Find the eigenvalues and eigenvectors of the matrix



9 6 −3
0 6 0
−3 −6 9


 .

Determine whether the matrix is defective.

10. Find the eigenvalues and eigenvectors of the matrix


−10 −2 11
−18 6 −9
10 −10 −2


 .

Determine whether the matrix is defective.

11. Find the complex eigenvalues and eigenvectors of the matrix




4 −2 −2
0 2 −2
2 0 2


 . De-

termine whether the matrix is defective.

12. Find the complex eigenvalues and eigenvectors of the matrix



−4 2 0
2 −4 0
−2 2 −2


 .

Determine whether the matrix is defective.
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13. Find the complex eigenvalues and eigenvectors of the matrix




1 1 −6
7 −5 −6
−1 7 2


 .

Determine whether the matrix is defective.

14. Find the complex eigenvalues and eigenvectors of the matrix




4 2 0
2 4 0
−2 2 6


 . Deter-

mine whether the matrix is defective.

15. Suppose A is an n×n matrix consisting entirely of real entries but a+ ib is a complex
eigenvalue having the eigenvector, x + iy. Here x and y are real vectors. Show that
then a − ib is also an eigenvalue with the eigenvector, x − iy. Hint: You should
remember that the conjugate of a product of complex numbers equals the product of
the conjugates. Here a + ib is a complex number whose conjugate equals a− ib.

16. Recall an n×n matrix is said to be symmetric if it has all real entries and if A = AT .
Show the eigenvectors and eigenvalues of a real symmetric matrix are real.

17. Recall an n × n matrix is said to be skew symmetric if it has all real entries and if
A = −AT . Show that any nonzero eigenvalues must be of the form ib where i2 = −1. In
words, the eigenvalues are either 0 or pure imaginary. Show also that the eigenvectors
corresponding to the pure imaginary eigenvalues are imaginary in the sense that every
entry is of the form ix for x ∈ R.

18. Is it possible for a nonzero matrix to have only 0 as an eigenvalue?

19. Show that if Ax = λx and Ay = λy, then whenever a, b are scalars,

A (ax + by) = λ (ax + by) .

20. Let M be an n × n matrix. Then define the adjoint of M,denoted by M∗ to be the
transpose of the conjugate of M. For example,

(
2 i

1 + i 3

)∗
=

(
2 1− i
−i 3

)
.

A matrix, M, is self adjoint if M∗ = M. Show the eigenvalues of a self adjoint matrix
are all real.

21. Show that the eigenvalues and eigenvectors of a real matrix occur in conjugate pairs.

22. Find the eigenvalues and eigenvectors of the matrix



7 −2 0
8 −1 0
−2 4 6


 .

Can you find three independent eigenvectors?

23. Find the eigenvalues and eigenvectors of the matrix



3 −2 −1
0 5 1
0 2 4


 .

Can you find three independent eigenvectors in this case?
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24. Let M be an n × n matrix and suppose x1, · · ·,xn are n eigenvectors which form a
linearly independent set. Form the matrix S by making the columns these vectors.
Show that S−1 exists and that S−1MS is a diagonal matrix (one having zeros every-
where except on the main diagonal) having the eigenvalues of M on the main diagonal.
When this can be done the matrix is diagonalizable.

25. Show that a matrix, M is diagonalizable if and only if it has a basis of eigenvectors.
Hint: The first part is done in Problem 3. It only remains to show that if the matrix
can be diagonalized by some matrix, S giving D = S−1MS for D a diagonal matrix,
then it has a basis of eigenvectors. Try using the columns of the matrix S.

26. Find the principle directions determined by the matrix,




7
12 − 1

4
1
6

− 1
4

7
12 − 1

6
1
6 − 1

6
2
3


 . The

eigenvalues are 1
3 , 1, and 1

2 listed according to multiplicity.

27. Find the principle directions determined by the matrix,


5
3 − 1

3 − 1
3

− 1
3

7
6

1
6

− 1
3

1
6

7
6


 The eigenvalues are 1, 2, and 1. What is the physical interpreta-

tion of the repeated eigenvalue?

28. Find the principle directions determined by the matrix,


19
54

1
27

1
27

1
27

11
27

2
27

1
27

2
27

11
27


 The eigenvalues are 1

2 , 1
3 , and 1

3 .

29. Find the principle directions determined by the matrix,


3
2

1
2

1
2

1
2

3
2 − 1

2
1
2 − 1

2
3
2


 The eigenvalues are 2, 1

2 , and 2. What is the physical interpretation

of the repeated eigenvalue?

30. Find oscillatory solutions to the system of differential equations, x′′ = Ax where A =

−3 −1 −1
−1 −2 0
−1 0 −2


 The eigenvalues are −1,−4, and −2.

31. Find oscillatory solutions to the system of differential equations, x′′ = Ax where A =

− 7

3 − 2
3 − 2

3
− 2

3 − 11
6

1
6

− 2
3

1
6 − 11

6


 The eigenvalues are −1,−3, and −2.

9.4 Exercises

1. Let A and B be n× n matrices and let the columns of B be

b1, · · ·,bn

and the rows of A are
aT

1 , · · ·,aT
n .
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Show the columns of AB are
Ab1 · · ·Abn

and the rows of AB are
aT

1 B · · · aT
nB.

2. Let M be an n × n matrix. Then define the adjoint of M,denoted by M∗ to be the
transpose of the conjugate of M. For example,

(
2 i

1 + i 3

)∗
=

(
2 1− i
−i 3

)
.

A matrix, M, is self adjoint if M∗ = M. Show the eigenvalues of a self adjoint matrix
are all real. If the self adjoint matrix has all real entries, it is called symmetric. Show
that the eigenvalues and eigenvectors of a symmetric matrix occur in conjugate pairs.

3. Let M be an n × n matrix and suppose x1, · · ·,xn are n eigenvectors which form a
linearly independent set. Form the matrix S by making the columns these vectors.
Show that S−1 exists and that S−1MS is a diagonal matrix (one having zeros every-
where except on the main diagonal) having the eigenvalues of M on the main diagonal.
When this can be done the matrix is diagonalizable.

4. Show that a matrix, M is diagonalizable if and only if it has a basis of eigenvectors.
Hint: The first part is done in Problem 3. It only remains to show that if the matrix
can be diagonalized by some matrix, S giving D = S−1MS for D a diagonal matrix,
then it has a basis of eigenvectors. Try using the columns of the matrix S.

5. Let

A =




1 2
3 4

2
0

0 1 3




and let

B =




0 1
1 1

2 1




Multiply AB verifying the block multiplication formula. Here A11 =
(

1 2
3 4

)
, A12 =

(
2
0

)
, A21 =

(
0 1

)
and A22 = (3) .

9.5 Shur’s Theorem

Every matrix is related to an upper triangular matrix in a particularly significant way. This
is Shur’s theorem and it is the most important theorem in the spectral theory of matrices.

Lemma 9.5.1 Let {x1, · · ·,xn} be a basis for Fn. Then there exists an orthonormal ba-
sis for Fn, {u1, · · ·,un} which has the property that for each k ≤ n, span(x1, · · ·,xk) =
span (u1, · · ·,uk) .
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Proof: Let {x1, · · ·,xn} be a basis for Fn. Let u1 ≡ x1/ |x1| . Thus for k = 1, span (u1) =
span (x1) and {u1} is an orthonormal set. Now suppose for some k < n, u1, · · ·, uk have
been chosen such that (uj · ul) = δjl and span (x1, · · ·,xk) = span (u1, · · ·,uk). Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1 · uj)uj∣∣∣xk+1 −

∑k
j=1 (xk+1 · uj)uj

∣∣∣
, (9.9)

where the denominator is not equal to zero because the xj form a basis and so

xk+1 /∈ span (x1, · · ·,xk) = span (u1, · · ·,uk)

Thus by induction,

uk+1 ∈ span (u1, · · ·,uk,xk+1) = span (x1, · · ·,xk,xk+1) .

Also, xk+1 ∈ span (u1, · · ·,uk,uk+1) which is seen easily by solving 9.9 for xk+1 and it
follows

span (x1, · · ·,xk,xk+1) = span (u1, · · ·,uk,uk+1) .

If l ≤ k,

(uk+1 · ul) = C


(xk+1 · ul)−

k∑

j=1

(xk+1 · uj) (uj · ul)




= C


(xk+1 · ul)−

k∑

j=1

(xk+1 · uj) δlj




= C ((xk+1 · ul)− (xk+1 · ul)) = 0.

The vectors, {uj}n
j=1 , generated in this way are therefore an orthonormal basis because

each vector has unit length.
The process by which these vectors were generated is called the Gram Schmidt process.

Recall the following definition.

Definition 9.5.2 An n × n matrix, U, is unitary if UU∗ = I = U∗U where U∗ is defined
to be the transpose of the conjugate of U.

Theorem 9.5.3 Let A be an n×n matrix. Then there exists a unitary matrix, U such that

U∗AU = T, (9.10)

where T is an upper triangular matrix having the eigenvalues of A on the main diagonal
listed according to multiplicity as roots of the characteristic equation.

Proof: Let v1 be a unit eigenvector for A . Then there exists λ1 such that

Av1 = λ1v1, |v1| = 1.

Extend {v1} to a basis and then use Lemma 9.5.1 to obtain {v1, · · ·,vn}, an orthonormal
basis in Fn. Let U0 be a matrix whose ith column is vi. Then from the above, it follows U0

is unitary. Then U∗
0 AU0 is of the form




λ1 ∗ · · · ∗
0
... A1

0
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where A1 is an n− 1× n− 1 matrix. Repeat the process for the matrix, A1 above. There
exists a unitary matrix Ũ1 such that Ũ∗

1 A1 Ũ1 is of the form




λ2 ∗ · · · ∗
0
... A2

0


 .

Now let U1 be the n× n matrix of the form
(

1 0
0 Ũ1

)
.

This is also a unitary matrix because by block multiplication,

(
1 0
0 Ũ1

)∗(
1 0
0 Ũ1

)
=

(
1 0
0 Ũ∗

1

)(
1 0
0 Ũ1

)

=
(

1 0
0 Ũ∗

1 Ũ1

)
=

(
1 0
0 I

)

Then using block multiplication, U∗
1 U∗

0 AU0U1 is of the form




λ1 ∗ ∗ · · · ∗
0 λ2 ∗ · · · ∗
0 0
...

... A2

0 0




where A2 is an n− 2× n− 2 matrix. Continuing in this way, there exists a unitary matrix,
U given as the product of the Ui in the above construction such that

U∗AU = T

where T is some upper triangular matrix. Since the matrix is upper triangular, the charac-
teristic equation is

∏n
i=1 (λ− λi) where the λi are the diagonal entries of T. Therefore, the

λi are the eigenvalues.
What if A is a real matrix and you only want to consider real unitary matrices?

Theorem 9.5.4 Let A be a real n × n matrix. Then there exists a real unitary matrix, Q
and a matrix T of the form

T =




P1 · · · ∗
. . .

...
0 Pr


 (9.11)

where Pi equals either a real 1×1 matrix or Pi equals a real 2×2 matrix having two complex
eigenvalues of A such that QT AQ = T. The matrix, T is called the real Schur form of the
matrix A.

Proof: Suppose
Av1 = λ1v1, |v1| = 1



168 SPECTRAL THEORY

where λ1 is real. Then let {v1, · · ·,vn} be an orthonormal basis of vectors in Rn. Let Q0

be a matrix whose ith column is vi. Then Q∗0AQ0 is of the form



λ1 ∗ · · · ∗
0
... A1

0




where A1 is a real n− 1× n− 1 matrix. This is just like the proof of Theorem 9.5.3 up to
this point.

Now in case λ1 = α+iβ, it follows since A is real that v1 = z1+iw1 and that v1 = z1−iw1

is an eigenvector for the eigenvalue, α− iβ. Here z1 and w1 are real vectors. It is clear that
{z1,w1} is an independent set of vectors in Rn. Indeed,{v1,v1} is an independent set and
it follows span (v1,v1) = span (z1,w1) . Now using the Gram Schmidt theorem in Rn, there
exists {u1,u2} , an orthonormal set of real vectors such that span (u1,u2) = span (v1,v1) .
Now let {u1,u2, · · ·,un} be an orthonormal basis in Rn and let Q0 be a unitary matrix
whose ith column is ui. Then Auj are both in span (u1,u2) for j = 1, 2 and so uT

k Auj = 0
whenever k ≥ 3. It follows that Q∗0AQ0 is of the form




∗ ∗ · · · ∗
∗ ∗
0
... A1

0




where A1 is now an n− 2× n− 2 matrix. In this case, find Q̃1 an n− 2× n− 2 matrix to
put A1 in an appropriate form as above and come up with A2 either an n−4×n−4 matrix
or an n− 3× n− 3 matrix. Then the only other difference is to let

Q1 =




1 0 0 · · · 0
0 1 0 · · · 0
0 0
...

... Q̃1

0 0




thus putting a 2×2 identity matrix in the upper left corner rather than a one. Repeating this
process with the above modification for the case of a complex eigenvalue leads eventually
to 9.11 where Q is the product of real unitary matrices Qi above. Finally,

λI − T =




λI1 − P1 · · · ∗
. . .

...
0 λIr − Pr




where Ik is the 2× 2 identity matrix in the case that Pk is 2× 2 and is the number 1 in the
case where Pk is a 1× 1 matrix. Now, it follows that det (λI − T ) =

∏r
k=1 det (λIk − Pk) .

Therefore, λ is an eigenvalue of T if and only if it is an eigenvalue of some Pk. This proves
the theorem since the eigenvalues of T are the same as those of A because they have the
same characteristic polynomial due to the similarity of A and T.

Definition 9.5.5 When a linear transformation, A, mapping a linear space, V to V has
a basis of eigenvectors, the linear transformation is called non defective. Otherwise it is
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called defective. An n × n matrix, A, is called normal if AA∗ = A∗A. An important class
of normal matrices is that of the Hermitian or self adjoint matrices. An n× n matrix, A is
self adjoint or Hermitian if A = A∗.

The next lemma is the basis for concluding that every normal matrix is unitarily similar
to a diagonal matrix.

Lemma 9.5.6 If T is upper triangular and normal, then T is a diagonal matrix.

Proof: Since T is normal, T ∗T = TT ∗. Writing this in terms of components and using
the description of the adjoint as the transpose of the conjugate, yields the following for the
ikth entry of T ∗T = TT ∗.

∑

j

tijt
∗
jk =

∑

j

tijtkj =
∑

j

t∗ijtjk =
∑

j

tjitjk.

Now use the fact that T is upper triangular and let i = k = 1 to obtain the following from
the above. ∑

j

|t1j |2 =
∑

j

|tj1|2 = |t11|2

You see, tj1 = 0 unless j = 1 due to the assumption that T is upper triangular. This shows
T is of the form 



∗ 0 · · · 0
0 ∗ · · · ∗
...

. . . . . .
...

0 · · · 0 ∗


 .

Now do the same thing only this time take i = k = 2 and use the result just established.
Thus, from the above, ∑

j

|t2j |2 =
∑

j

|tj2|2 = |t22|2 ,

showing that t2j = 0 if j > 2 which means T has the form



∗ 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 ∗ · · · ∗
...

...
. . . . . .

...
0 0 0 0 ∗




.

Next let i = k = 3 and obtain that T looks like a diagonal matrix in so far as the first 3
rows and columns are concerned. Continuing in this way it follows T is a diagonal matrix.

Theorem 9.5.7 Let A be a normal matrix. Then there exists a unitary matrix, U such
that U∗AU is a diagonal matrix.

Proof: From Theorem 9.5.3 there exists a unitary matrix, U such that U∗AU equals
an upper triangular matrix. The theorem is now proved if it is shown that the property of
being normal is preserved under unitary similarity transformations. That is, verify that if
A is normal and if B = U∗AU, then B is also normal. But this is easy.

B∗B = U∗A∗UU∗AU = U∗A∗AU

= U∗AA∗U = U∗AUU∗A∗U = BB∗.

Therefore, U∗AU is a normal and upper triangular matrix and by Lemma 9.5.6 it must be
a diagonal matrix. This proves the theorem.
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Corollary 9.5.8 If A is Hermitian, then all the eigenvalues of A are real and there exists
an orthonormal basis of eigenvectors.

Proof: Since A is normal, there exists unitary, U such that U∗AU = D, a diagonal
matrix whose diagonal entries are the eigenvalues of A. Therefore, D∗ = U∗A∗U = U∗AU =
D showing D is real.

Finally, let
U =

(
u1 u2 · · · un

)

where the ui denote the columns of U and

D =




λ1 0
. . .

0 λn




The equation, U∗AU = D implies

AU =
(

Au1 Au2 · · · Aun

)

= UD =
(

λ1u1 λ2u2 · · · λnun

)

where the entries denote the columns of AU and UD respectively. Therefore, Aui = λiui

and since the matrix is unitary, the ijth entry of U∗U equals δij and so

δij = uT
i uj = uT

i uj = ui · uj .

This proves the corollary because it shows the vectors {ui} form an orthonormal basis.

Corollary 9.5.9 If A is a real symmetric matrix, then A is Hermitian and there exists a
real unitary matrix, U such that UT AU = D where D is a diagonal matrix.

Proof: This follows from Theorem 9.5.4 and Corollary 9.5.8.

9.6 Quadratic Forms

Definition 9.6.1 A quadratic form in three dimensions is an expression of the form

(
x y z

)
A




x
y
z


 (9.12)

where A is a 3× 3 symmetric matrix. In higher dimensions the idea is the same except you
use a larger symmetric matrix in place of A. In two dimensions A is a 2× 2 matrix.

For example, consider

(
x y z

)



3 −4 1
−4 0 −4
1 −4 3







x
y
z


 (9.13)

which equals 3x2−8xy +2xz−8yz +3z2. This is very awkward because of the mixed terms
such as −8xy. The idea is to pick different axes such that if x, y, z are taken with respect
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to these axes, the quadratic form is much simpler. In other words, look for new variables,
x′, y′, and z′ and a unitary matrix, U such that

U




x′

y′

z′


 =




x
y
z


 (9.14)

and if you write the quadratic form in terms of the primed variables, there will be no mixed
terms. Any symmetric real matrix is Hermitian and is therefore normal. From Corollary
9.5.9, it follows there exists a real unitary matrix, U, (an orthogonal matrix) such that
UT AU = D a diagonal matrix. Thus in the quadratic form, 9.12

(
x y z

)
A




x
y
z


 =

(
x′ y′ z′

)
UT AU




x′

y′

z′




=
(

x′ y′ z′
)
D




x′

y′

z′




and in terms of these new variables, the quadratic form becomes

λ1 (x′)2 + λ2 (y′)2 + λ3 (z′)2

where D = diag (λ1, λ2, λ3) . Similar considerations apply equally well in any other dimen-
sion. For the given example,



− 1

2

√
2 0 1

2

√
2

1
6

√
6 1

3

√
6 1

6

√
6

1
3

√
3 − 1

3

√
3 1

3

√
3







3 −4 1
−4 0 −4
1 −4 3


 ·



− 1√

2
1√
6

1√
3

0 2√
6

− 1√
3

1√
2

1√
6

1√
3


 =




2 0 0
0 −4 0
0 0 8




and so if the new variables are given by


− 1√

2
1√
6

1√
3

0 2√
6

− 1√
3

1√
2

1√
6

1√
3







x′

y′

z′


 =




x
y
z


 ,

it follows that in terms of the new variables the quadratic form is 2 (x′)2 − 4 (y′)2 + 8 (z′)2 .
You can work other examples the same way.

9.7 Second Derivative Test

Here is a second derivative test for functions of n variables.

Theorem 9.7.1 Let U be an open subset of Cn and suppose f : U → Cm, D2f (x) exists
for all x ∈ U and D2f is continuous at x ∈U. Then

D2f (x) (u) (v) = D2f (x) (v) (u) .
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Proof: Let B (x,r) ⊆ U and let t, s ∈ (0, r/2]. Now let z ∈ Y and define

∆ (s, t) ≡ Re
(

1
st
{f (x+tu+sv)− f (x+tu)− (f (x+sv)− f (x))}, z

)
. (9.15)

Let h (t) = Re (f (x+sv+tu)− f (x+tu) , z) . Then by the mean value theorem,

∆ (s, t) =
1
st

(h (t)− h (0)) =
1
st

h′ (αt) t

=
1
s

Re (Df (x+sv + αtu)u−Df (x + αtu)u, z) .

Applying the mean value theorem again,

∆ (s, t) = Re
(
D2f (x+βsv+αtu) (v) (u) , z

)

where α, β ∈ (0, 1) . If the terms f (x+tu) and f (x+sv) are interchanged in 9.15, ∆ (s, t) is
also unchanged and the above argument shows there exist γ, δ ∈ (0, 1) such that

∆ (s, t) = Re
(
D2f (x+γsv+δtu) (u) (v) , z

)
.

Letting (s, t) → (0, 0) and using the continuity of D2f at x,

lim
(s,t)→(0,0)

∆ (s, t) = Re
(
D2f (x) (u) (v) , z

)
= Re

(
D2f (x) (v) (u) , z

)
.

Since z is arbitrary, this demonstrates the conclusion of the theorem.
Consider the important special case of Rn and R. If ei are the standard basis vectors,

what is
D2f (x) (ei) (ej)?

To see what this is, use the definition to write

D2f (x) (ei) (ej) = t−1s−1D2f (x) (tei) (sej)

= t−1s−1 (Df (x+tei)−Df (x) + o (t)) (sej)

= t−1s−1 (f (x+tei + sej)− f (x+tei)

+o (s)− (f (x+sej)− f (x) + o (s)) + o (t) s) .

First let s → 0 to get

t−1

(
∂f

∂xj
(x+tei)− ∂f

∂xj
(x) + o (t)

)

and then let t → 0 to obtain

D2f (x) (ei) (ej) =
∂2f

∂xi∂xj
(x) (9.16)

Thus the theorem asserts that in this special case the mixed partial derivatives are equal at
x if they are defined near x and continuous at x.

Definition 9.7.2 The matrix,
(

∂2f
∂xi∂xj

(x)
)

is called the Hessian matrix.

Now recall the Taylor formula with the Lagrange form of the remainder. See any good
non reformed calculus book for a proof of this theorem. Ellis and Gulleck has a good proof.
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Theorem 9.7.3 Let h : (−δ, 1 + δ) → R have m+1 derivatives. Then there exists t ∈ [0, 1]
such that

h (1) = h (0) +
m∑

k=1

h(k) (0)
k!

+
h(m+1) (t)
(m + 1)!

.

Now let f : U → R where U ⊆ X a normed linear space and suppose f ∈ Cm (U) . Let
x ∈U and let r > 0 be such that

B (x,r) ⊆ U.

Then for ||v|| < r, consider
f (x+tv)− f (x) ≡ h (t)

for t ∈ [0, 1] . Then

h′ (t) = Df (x+tv) (v) , h′′ (t) = D2f (x+tv) (v) (v)

and continuing in this way,

h(k) (t) = D(k)f (x+tv) (v) (v) · · · (v) ≡ D(k)f (x+tv)vk.

It follows from Taylor’s formula for a function of one variable,

f (x + v) = f (x) +
m∑

k=1

D(k)f (x)vk

k!
+

D(m+1)f (x+tv)vm+1

(m + 1)!
. (9.17)

This proves the following theorem.

Theorem 9.7.4 Let f : U → R and let f ∈ Cm+1 (U) . Then if

B (x,r) ⊆ U,

and ||v|| < r, there exists t ∈ (0, 1) such that 9.17 holds.

Now consider the case where U ⊆ Rn and f : U → R is C2 (U) . Then from Taylor’s
theorem, if v is small enough, there exists t ∈ (0, 1) such that

f (x + v) = f (x) + Df (x)v+
D2f (x+tv)v2

2
.

Letting

v =
n∑

i=1

viei,

where ei are the usual basis vectors, the second derivative term reduces to

1
2

∑

i,j

D2f (x+tv) (ei) (ej) vivj =
1
2

∑

i,j

Hij (x+tv) vivj

where

Hij (x+tv) = D2f (x+tv) (ei) (ej) =
∂2f (x+tv)

∂xj∂xi
,

the Hessian matrix. From Theorem 9.7.1, this is a symmetric matrix. By the continuity of
the second partial derivative and this,

f (x + v) = f (x) + Df (x)v+
1
2
vT H (x)v+
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1
2

(
vT (H (x+tv)−H (x))v

)
. (9.18)

where the last two terms involve ordinary matrix multiplication and

vT = (v1, · · ·, vn)

for vi the components of v relative to the standard basis.

Theorem 9.7.5 In the above situation, suppose Df (x) = 0. Then if H (x) has all positive
eigenvalues, x is a local minimum. If H (x) has all negative eigenvalues, then x is a local
maximum. If H (x) has a positive eigenvalue, then there exists a direction in which f has
a local minimum at x, while if H (x) has a negative eigenvalue, there exists a direction in
which H (x) has a local maximum at x.

Proof: Since Df (x) = 0, formula 9.18 holds and by continuity of the second derivative,
H (x) is a symmetric matrix. Thus, by Corollary 9.5.8 H (x) has all real eigenvalues. Sup-
pose first that H (x) has all positive eigenvalues and that all are larger than δ2 > 0. Then
H (x) has an orthonormal basis of eigenvectors, {vi}n

i=1 and if u is an arbitrary vector,
u =

∑n
j=1 ujvj where uj = u · vj . Thus

uT H (x)u =

(
n∑

k=1

ukvT
k

)
H (x)




n∑

j=1

ujvj




=
n∑

j=1

u2
jλj ≥ δ2

n∑

j=1

u2
j = δ2 |u|2 .

From 9.18 and the continuity of H, if v is small enough,

f (x + v) ≥ f (x) +
1
2
δ2 |v|2 − 1

4
δ2 |v|2 = f (x) +

δ2

4
|v|2 .

This shows the first claim of the theorem. The second claim follows from similar reasoning.
Suppose H (x) has a positive eigenvalue λ2. Then let v be an eigenvector for this eigenvalue.
From 9.18,

f (x+tv) = f (x)+
1
2
t2vT H (x)v+

1
2
t2

(
vT (H (x+tv)−H (x))v

)

which implies

f (x+tv) = f (x)+
1
2
t2λ2 |v|2 +

1
2
t2

(
vT (H (x+tv)−H (x))v

)

≥ f (x)+
1
4
t2λ2 |v|2

whenever t is small enough. Thus in the direction v the function has a local minimum at
x. The assertion about the local maximum in some direction follows similarly. This proves
the theorem.

This theorem is an analogue of the second derivative test for higher dimensions. As in
one dimension, when there is a zero eigenvalue, it may be impossible to determine from the
Hessian matrix what the local qualitative behavior of the function is. For example, consider

f1 (x, y) = x4 + y2, f2 (x, y) = −x4 + y2.
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Then Dfi (0, 0) = 0 and for both functions, the Hessian matrix evaluated at (0, 0) equals
(

0 0
0 2

)

but the behavior of the two functions is very different near the origin. The second has a
saddle point while the first has a minimum there.

9.8 The Estimation Of Eigenvalues

There are ways to estimate the eigenvalues for matrices. The most famous is known as
Gerschgorin’s theorem. This theorem gives a rough idea where the eigenvalues are just from
looking at the matrix.

Theorem 9.8.1 Let A be an n× n matrix. Consider the n Gerschgorin discs defined as

Di ≡


λ ∈ C : |λ− aii| ≤

∑

j 6=i

|aij |


 .

Then every eigenvalue is contained in some Gerschgorin disc.

This theorem says to add up the absolute values of the entries of the ith row which are
off the main diagonal and form the disc centered at aii having this radius. The union of
these discs contains σ (A) .

Proof: Suppose Ax = λx where x 6= 0. Then for A = (aij)

∑

j 6=i

aijxj = (λ− aii)xi.

Therefore, picking k such that |xk| ≥ |xj | for all xj , it follows that |xk| 6= 0 since |x| 6= 0
and

|xk|
∑

j 6=i

|akj | ≥
∑

j 6=i

|akj | |xj | ≥ |λ− aii| |xk| .

Now dividing by |xk|, it follows λ is contained in the kth Gerschgorin disc.

Example 9.8.2 Here is a matrix. Estimate its eigenvalues.



2 1 1
3 5 0
0 1 9




According to Gerschgorin’s theorem the eigenvalues are contained in the disks

D1 = {λ ∈ C : |λ− 2| ≤ 2} ,

D2 = {λ ∈ C : |λ− 5| ≤ 3} ,

D3 = {λ ∈ C : |λ− 9| ≤ 1}

It is important to observe that these disks are in the complex plane. In general this is the
case. If you want to find eigenvalues they will be complex numbers.
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So what are the values of the eigenvalues? In this case they are real. You can compute
them by graphing the characteristic polynomial, λ3 − 16λ2 + 70λ − 66 and then zoom-
ing in on the zeros. If you do this you find the solution is {λ = 1. 295 3} , {λ = 5. 590 5} ,
{λ = 9. 114 2} . Of course these are only approximations and so this information is useless
for finding eigenvectors. However, in many applications, it is the size of the eigenvalues
which is important and so these numerical values would be helpful for such applications. In
this case, you might think there is no real reason for Gerschgorin’s theorem. Why not just
compute the characteristic equation and graph and zoom? This is fine up to a point, but
what if the matrix was huge? Then it might be hard to find the characteristic polynomial.
Remember the difficulties in expanding a big matrix along a row or column. Also, what if
the eigenvalue were complex? You don’t see these by following this procedure. However,
Gerschgorin’s theorem will at least estimate them.

9.9 Advanced Theorems

More can be said but this requires some theory from complex variables1. The following is a
fundamental theorem about counting zeros.

Theorem 9.9.1 Let U be a region and let γ : [a, b] → U be closed, continuous, bounded
variation, and the winding number, n (γ, z) = 0 for all z /∈ U. Suppose also that f is
analytic on U having zeros a1, · · ·, am where the zeros are repeated according to multiplicity,
and suppose that none of these zeros are on γ ([a, b]) . Then

1
2πi

∫

γ

f ′ (z)
f (z)

dz =
m∑

k=1

n (γ, ak) .

Proof: It is given that f (z) =
∏m

j=1 (z − aj) g (z) where g (z) 6= 0 on U. Hence using
the product rule,

f ′ (z)
f (z)

=
m∑

j=1

1
z − aj

+
g′ (z)
g (z)

where g′(z)
g(z) is analytic on U and so

1
2πi

∫

γ

f ′ (z)
f (z)

dz =
m∑

j=1

n (γ, aj) +
1

2πi

∫

γ

g′ (z)
g (z)

dz

=
m∑

j=1

n (γ, aj) .

Therefore, this proves the theorem.
1If you haven’t studied the theory of a complex variable, you should skip this section because you won’t

understand any of it.
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Now let A be an n × n matrix. Recall that the eigenvalues of A are given by the zeros
of the polynomial, pA (z) = det (zI −A) where I is the n × n identity. You can argue
that small changes in A will produce small changes in pA (z) and p′A (z) . Let γk denote a
very small closed circle which winds around zk, one of the eigenvalues of A, in the counter
clockwise direction so that n (γk, zk) = 1. This circle is to enclose only zk and is to have no
other eigenvalue on it. Then apply Theorem 9.9.1. According to this theorem

1
2πi

∫

γ

p′A (z)
pA (z)

dz

is always an integer equal to the multiplicity of zk as a root of pA (t) . Therefore, small
changes in A result in no change to the above contour integral because it must be an integer
and small changes in A result in small changes in the integral. Therefore whenever B is close
enough to A, the two matrices have the same number of zeros inside γk, the zeros being
counted according to multiplicity. By making the radius of the small circle equal to ε where
ε is less than the minimum distance between any two distinct eigenvalues of A, this shows
that if B is close enough to A, every eigenvalue of B is closer than ε to some eigenvalue of
A.

Theorem 9.9.2 If λ is an eigenvalue of A, then if all the entries of B are close enough to
the corresponding entries of A, some eigenvalue of B will be within ε of λ.

Consider the situation that A (t) is an n×n matrix and that t → A (t) is continuous for
t ∈ [0, 1] .

Lemma 9.9.3 Let λ (t) ∈ σ (A (t)) for t < 1 and let Σt = ∪s≥tσ (A (s)) . Also let Kt be the
connected component of λ (t) in Σt. Then there exists η > 0 such that Kt ∩σ (A (s)) 6= ∅ for
all s ∈ [t, t + η] .

Proof: Denote by D (λ (t) , δ) the disc centered at λ (t) having radius δ > 0, with other
occurrences of this notation being defined similarly. Thus

D (λ (t) , δ) ≡ {z ∈ C : |λ (t)− z| ≤ δ} .

Suppose δ > 0 is small enough that λ (t) is the only element of σ (A (t)) contained in
D (λ (t) , δ) and that pA(t) has no zeroes on the boundary of this disc. Then by continuity, and
the above discussion and theorem, there exists η > 0, t + η < 1, such that for s ∈ [t, t + η] ,
pA(s) also has no zeroes on the boundary of this disc and A (s) has the same number
of eigenvalues, counted according to multiplicity, in the disc as A (t) . Thus σ (A (s)) ∩
D (λ (t) , δ) 6= ∅ for all s ∈ [t, t + η] . Now let

H =
⋃

s∈[t,t+η]

σ (A (s)) ∩D (λ (t) , δ) .

It will be shown that H is connected. Suppose not. Then H = P ∪ Q where P, Q are
separated and λ (t) ∈ P. Let s0 ≡ inf {s : λ (s) ∈ Q for some λ (s) ∈ σ (A (s))} . There exists
λ (s0) ∈ σ (A (s0)) ∩ D (λ (t) , δ) . If λ (s0) /∈ Q, then from the above discussion there are
λ (s) ∈ σ (A (s))∩Q for s > s0 arbitrarily close to λ (s0) . Therefore, λ (s0) ∈ Q which shows
that s0 > t because λ (t) is the only element of σ (A (t)) in D (λ (t) , δ) and λ (t) ∈ P. Now
let sn ↑ s0. Then λ (sn) ∈ P for any λ (sn) ∈ σ (A (sn))∩D (λ (t) , δ) and also it follows from
the above discussion that for some choice of sn → s0, λ (sn) → λ (s0) which contradicts P
and Q separated and nonempty. Since P is nonempty, this shows Q = ∅. Therefore, H is
connected as claimed. But Kt ⊇ H and so Kt ∩ σ (A (s)) 6= ∅ for all s ∈ [t, t + η] . This
proves the lemma.
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Theorem 9.9.4 Suppose A (t) is an n × n matrix and that t → A (t) is continuous for
t ∈ [0, 1] . Let λ (0) ∈ σ (A (0)) and define Σ ≡ ∪t∈[0,1]σ (A (t)) . Let Kλ(0) = K0 denote the
connected component of λ (0) in Σ. Then K0 ∩ σ (A (t)) 6= ∅ for all t ∈ [0, 1] .

Proof: Let S ≡ {t ∈ [0, 1] : K0 ∩ σ (A (s)) 6= ∅ for all s ∈ [0, t]} . Then 0 ∈ S. Let t0 =
sup (S) . Say σ (A (t0)) = λ1 (t0) , · · ·, λr (t0) .

Claim: At least one of these is a limit point of K0 and consequently must be in K0

which shows that S has a last point. Why is this claim true? Let sn ↑ t0 so sn ∈ S.
Now let the discs, D (λi (t0) , δ) , i = 1, · · ·, r be disjoint with pA(t0) having no zeroes on γi

the boundary of D (λi (t0) , δ) . Then for n large enough it follows from Theorem 9.9.1 and
the discussion following it that σ (A (sn)) is contained in ∪r

i=1D (λi (t0) , δ). It follows that
K0 ∩ (σ (A (t0)) + D (0, δ)) 6= ∅ for all δ small enough. This requires at least one of the
λi (t0) to be in K0. Therefore, t0 ∈ S and S has a last point.

Now by Lemma 9.9.3, if t0 < 1, then K0 ∪Kt would be a strictly larger connected set
containing λ (0) . (The reason this would be strictly larger is that K0 ∩ σ (A (s)) = ∅ for
some s ∈ (t, t + η) while Kt ∩ σ (A (s)) 6= ∅ for all s ∈ [t, t + η].) Therefore, t0 = 1 and this
proves the theorem.

Corollary 9.9.5 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains an eigenvalue of A. Also, if there are n disjoint Gerschgorin
discs, then each one contains an eigenvalue of A.

Proof: Denote by A (t) the matrix
(
at

ij

)
where if i 6= j, at

ij = taij and at
ii = aii. Thus to

get A (t) multiply all non diagonal terms by t. Let t ∈ [0, 1] . Then A (0) = diag (a11, · · ·, ann)
and A (1) = A. Furthermore, the map, t → A (t) is continuous. Denote by Dt

j the Ger-
schgorin disc obtained from the jth row for the matrix, A (t). Then it is clear that Dt

j ⊆ Dj

the jth Gerschgorin disc for A. It follows aii is the eigenvalue for A (0) which is contained
in the disc, consisting of the single point aii which is contained in Di. Letting K be the
connected component in Σ for Σ defined in Theorem 9.9.4 which is determined by aii, Ger-
schgorin’s theorem implies that K ∩ σ (A (t)) ⊆ ∪n

j=1D
t
j ⊆ ∪n

j=1Dj = Di ∪ (∪j 6=iDj) and
also, since K is connected, there are not points of K in both Di and (∪j 6=iDj) . Since at least
one point of K is in Di,(aii), it follows all of K must be contained in Di. Now by Theorem
9.9.4 this shows there are points of K ∩ σ (A) in Di. The last assertion follows immediately.

This can be improved even more. This involves the following lemma.

Lemma 9.9.6 In the situation of Theorem 9.9.4 suppose λ (0) = K0 ∩ σ (A (0)) and that
λ (0) is a simple root of the characteristic equation of A (0). Then for all t ∈ [0, 1] ,

σ (A (t)) ∩K0 = λ (t)

where λ (t) is a simple root of the characteristic equation of A (t) .

Proof: Let S ≡ {t ∈ [0, 1] : K0 ∩ σ (A (s)) = λ (s) , a simple eigenvalue for all s ∈ [0, t]} .
Then 0 ∈ S so it is nonempty. Let t0 = sup (S) and suppose λ1 6= λ2 are two elements of
σ (A (t0))∩K0. Then choosing η > 0 small enough, and letting Di be disjoint discs containing
λi respectively, similar arguments to those of Lemma 9.9.3 can be used to conclude

Hi ≡ ∪s∈[t0−η,t0]σ (A (s)) ∩Di

is a connected and nonempty set for i = 1, 2 which would require that Hi ⊆ K0. But
then there would be two different eigenvalues of A (s) contained in K0, contrary to the
definition of t0. Therefore, there is at most one eigenvalue, λ (t0) ∈ K0 ∩ σ (A (t0)) . Could
it be a repeated root of the characteristic equation? Suppose λ (t0) is a repeated root of



9.9. ADVANCED THEOREMS 179

the characteristic equation. As before, choose a small disc, D centered at λ (t0) and η small
enough that

H ≡ ∪s∈[t0−η,t0]σ (A (s)) ∩D

is a nonempty connected set containing either multiple eigenvalues of A (s) or else a single
repeated root to the characteristic equation of A (s) . But since H is connected and contains
λ (t0) it must be contained in K0 which contradicts the condition for s ∈ S for all these
s ∈ [t0 − η, t0] . Therefore, t0 ∈ S as hoped. If t0 < 1, there exists a small disc centered
at λ (t0) and η > 0 such that for all s ∈ [t0, t0 + η] , A (s) has only simple eigenvalues in
D and the only eigenvalues of A (s) which could be in K0 are in D. (This last assertion
follows from noting that λ (t0) is the only eigenvalue of A (t0) in K0 and so the others are
at a positive distance from K0. For s close enough to t0, the eigenvalues of A (s) are either
close to these eigenvalues of A (t0) at a positive distance from K0 or they are close to the
eigenvalue, λ (t0) in which case it can be assumed they are in D.) But this shows that t0 is
not really an upper bound to S. Therefore, t0 = 1 and the lemma is proved.

With this lemma, the conclusion of the above corollary can be sharpened.

Corollary 9.9.7 Suppose one of the Gerschgorin discs, Di is disjoint from the union of
the others. Then Di contains exactly one eigenvalue of A and this eigenvalue is a simple
root to the characteristic polynomial of A.

Proof: In the proof of Corollary 9.9.5, note that aii is a simple root of A (0) since
otherwise the ith Gerschgorin disc would not be disjoint from the others. Also, K, the
connected component determined by aii must be contained in Di because it is connected
and by Gerschgorin’s theorem above, K ∩ σ (A (t)) must be contained in the union of the
Gerschgorin discs. Since all the other eigenvalues of A (0) , the ajj , are outside Di, it follows
that K ∩ σ (A (0)) = aii. Therefore, by Lemma 9.9.6, K ∩ σ (A (1)) = K ∩ σ (A) consists of
a single simple eigenvalue. This proves the corollary.

Example 9.9.8 Consider the matrix,



5 1 0
1 1 1
0 1 0




The Gerschgorin discs are D (5, 1) , D (1, 2) , and D (0, 1) . Observe D (5, 1) is disjoint
from the other discs. Therefore, there should be an eigenvalue in D (5, 1) . The actual
eigenvalues are not easy to find. They are the roots of the characteristic equation, t3−6t2 +
3t + 5 = 0. The numerical values of these are −. 669 66, 1. 423 1, and 5. 246 55, verifying the
predictions of Gerschgorin’s theorem.
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Vector Spaces

10.1 Vector Space Axioms

It is time to consider the idea of a Vector space.

Definition 10.1.1 A vector space is an Abelian group of “vectors” satisfying the axioms of
an Abelian group,

v + w = w + v,

the commutative law of addition,

(v + w) + z = v+(w + z) ,

the associative law for addition,
v + 0 = v,

the existence of an additive identity,

v+(−v) = 0,

the existence of an additive inverse, along with a field of “scalars”, F which are allowed to
multiply the vectors according to the following rules. (The Greek letters denote scalars.)

α (v + w) = αv+αw, (10.1)

(α + β)v =αv+βv, (10.2)

α (βv) = αβ (v) , (10.3)

1v = v. (10.4)

The field of scalars is usually R or C and the vector space will be called real or complex
depending on whether the field is R or C. However, other fields are also possible. For
example, one could use the field of rational numbers or even the field of the integers mod p
for p a prime. A vector space is also called a linear space.

For example, Rn with the usual conventions is an example of a real vector space and Cn

is an example of a complex vector space. Up to now, the discussion has been for Rn or Cn

and all that is taking place is an increase in generality and abstraction.

181
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10.2 Subspaces And Bases

10.2.1 Basic Definitions

Definition 10.2.1 If {v1, · · ·,vn} ⊆ V, a vector space, then

span (v1, · · ·,vn) ≡
{

n∑

i=1

αivi : αi ∈ F
}

.

A subset, W ⊆ V is said to be a subspace if it is also a vector space with the same field of
scalars. Thus W ⊆ V is a subspace if ax + by ∈ W whenever a, b ∈ F and x, y ∈ W. The
span of a set of vectors as just described is an example of a subspace.

Definition 10.2.2 If {v1, · · ·,vn} ⊆ V, the set of vectors is linearly independent if

n∑

i=1

αivi = 0

implies
α1 = · · · = αn = 0

and {v1, · · ·,vn} is called a basis for V if

span (v1, · · ·,vn) = V

and {v1, · · ·,vn} is linearly independent. The set of vectors is linearly dependent if it is not
linearly independent.

10.2.2 A Fundamental Theorem

The next theorem is called the exchange theorem. It is very important that you understand
this theorem. It is so important that I have given three proofs of it. The first two proofs
amount to the same thing but are worded slightly differently.

Theorem 10.2.3 Let {x1, · · ·,xr} be a linearly independent set of vectors such that each
xi is in the span{y1, · · ·,ys} . Then r ≤ s.

Proof: Define span{y1, · · ·,ys} ≡ V, it follows there exist scalars, c1, · · ·, cs such that

x1 =
s∑

i=1

ciyi. (10.5)

Not all of these scalars can equal zero because if this were the case, it would follow that
x1 = 0 and so {x1, · · ·,xr} would not be linearly independent. Indeed, if x1 = 0, 1x1 +∑r

i=2 0xi = x1 = 0 and so there would exist a nontrivial linear combination of the vectors
{x1, · · ·,xr} which equals zero.

Say ck 6= 0. Then solve (10.5) for yk and obtain

yk ∈ span


x1,

s-1 vectors here︷ ︸︸ ︷
y1, · · ·,yk−1,yk+1, · · ·,ys


 .

Define {z1, · · ·, zs−1} by

{z1, · · ·, zs−1} ≡ {y1, · · ·,yk−1,yk+1, · · ·,ys}
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Therefore, span {x1, z1, · · ·, zs−1} = V because if v ∈ V, there exist constants c1, · · ·, cs such
that

v =
s−1∑

i=1

cizi + csyk.

Now replace the yk in the above with a linear combination of the vectors, {x1, z1, · · ·, zs−1}
to obtain v ∈ span {x1, z1, · · ·, zs−1} . The vector yk, in the list {y1, · · ·,ys} , has now been
replaced with the vector x1 and the resulting modified list of vectors has the same span as
the original list of vectors, {y1, · · ·,ys} .

Now suppose that r > s and that span {x1, · · ·,xl, z1, · · ·, zp} = V where the vectors,
z1, · · ·, zp are each taken from the set, {y1, · · ·,ys} and l + p = s. This has now been done
for l = 1 above. Then since r > s, it follows that l ≤ s < r and so l + 1 ≤ r. Therefore,
xl+1 is a vector not in the list, {x1, · · ·,xl} and since span {x1, · · ·,xl, z1, · · ·, zp} = V there
exist scalars, ci and dj such that

xl+1 =
l∑

i=1

cixi +
p∑

j=1

djzj . (10.6)

Now not all the dj can equal zero because if this were so, it would follow that {x1, · · ·,xr}
would be a linearly dependent set because one of the vectors would equal a linear combination
of the others. Therefore, (10.6) can be solved for one of the zi, say zk, in terms of xl+1 and
the other zi and just as in the above argument, replace that zi with xl+1 to obtain

span


x1, · · ·xl,xl+1,

p-1 vectors here︷ ︸︸ ︷
z1, · · ·zk−1, zk+1, · · ·, zp


 = V.

Continue this way, eventually obtaining

span (x1, · · ·,xs) = V.

But then xr ∈ span {x1, · · ·,xs} contrary to the assumption that {x1, · · ·,xr} is linearly
independent. Therefore, r ≤ s as claimed.

Theorem 10.2.4 If
span (u1, · · ·,ur) ⊆ span (v1, · · ·,vs)

and {u1, · · ·,ur} are linearly independent, then r ≤ s.

Proof: Let V ≡ span (v1, · · ·,vs) and suppose r > s. Let Al ≡ {u1, · · ·,ul} , A0 = ∅,
and let Bs−l denote a subset of the vectors, {v1, · · ·,vs} which contains s − l vectors and
has the property that span (Al, Bs−l) = V. Note that the assumption of the theorem says
span (A0, Bs) = V.

Now an exchange operation is given for span (Al, Bs−l) = V . Since r > s, it follows
l < r. Letting

Bs−l ≡ {z1, · · ·, zs−l} ⊆ {v1, · · ·,vs} ,

it follows there exist constants, ci and di such that

ul+1 =
l∑

i=1

ciui +
s−l∑

i=1

dizi,

and not all the di can equal zero. (If they were all equal to zero, it would follow that the set,
{u1, · · ·,ur} would be dependent since one of the vectors in it would be a linear combination
of the others.)
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Let dk 6= 0. Then zk can be solved for as follows.

zk =
1
dk

ul+1 −
l∑

i=1

ci

dk
ui −

∑

i 6=k

di

dk
zi.

This implies V = span (Al+1, Bs−l−1), where Bs−l−1 ≡ Bs−l \{zk} , a set obtained by delet-
ing zk from Bk−l. You see, the process exchanged a vector in Bs−l with one from {u1, · · ·,ur}
and kept the span the same. Starting with V = span (A0, Bs) , do the exchange operation
until V = span (As−1, z) where z ∈ {v1, · · ·,vs} . Then one more application of the exchange
operation yields V = span (As) . But this implies ur ∈ span (As) = span (u1, · · ·,us) , con-
tradicting the linear independence of {u1, · · ·,ur} . It follows that r ≤ s as claimed.

Here is yet another proof in case you didn’t like either of the last two.

Theorem 10.2.5 If
span (u1, · · ·,ur) ⊆ span (v1, · · ·,vs)

and {u1, · · ·,ur} are linearly independent, then r ≤ s.

Proof: Suppose r > s. Since each uk ∈ span (v1, · · ·,vs) , it follows

span (u1, · · ·,us,v1, · · ·,vs) = span (v1, · · ·,vs) .

Let
{
vk1 , · · ·,vkj

}
denote a subset of the set {v1 · ··,vs} which has j elements in it. If j = 0,

this means no vectors from {v1 · ··,vs} are included. Let j be the smallest nonnegative
integer such that

span
(
u1, · · ·,us,vk1 , · · ·,vkj

)
= span (v1, · · ·,vs) (10.7)

Claim: j = 0.
Proof of claim: Suppose j ≥ 1. Then since s < r, there exist scalars, ak and bi such

that

us+1 =
s∑

k=1

akuk +
j∑

i=1

bivki .

By linear independence of the uk, not all the bi can equal zero. Therefore, one of the vki
is

in the span of the other vectors in the above sum. Thus there exist l1, · · ·, lj−1 such that

vki ∈ span
(
u1, · · ·,us,us+1,vl1 , · · ·,vlj−1

)

and so from 10.7,

span
(
u1, · · ·,us,us+1,vl1 , · · ·,vlj−1

)
= span (v1, · · ·,vs)

contrary to the definition of j. Therefore, j = 0 and this proves the claim.
It follows from the claim that span (u1, · · ·,us) = span (v1, · · ·,vs) which implies

us+1 ∈ span (u1, · · ·,us)

contrary to the assumption the uk are linearly independent. Therefore, r ≤ s as claimed.

Corollary 10.2.6 If {u1, · · ·,um} and {v1, · · ·,vn} are two bases for V, then m = n.

Proof: By Theorem 10.2.4 or Theorem 10.2.5, m ≤ n and n ≤ m.
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Definition 10.2.7 A vector space V is of dimension n if it has a basis consisting of n
vectors. This is well defined thanks to Corollary 10.2.6. It is always assumed here that
n < ∞ in this case, such a vector space is said to be finite dimensional.

Theorem 10.2.8 If V = span (u1, · · ·,un) then some subset of {u1, ···,un} is a basis for V.
Also, if {u1, · · ·,uk} ⊆ V is linearly independent and the vector space is finite dimensional,
then the set, {u1, · · ·,uk}, can be enlarged to obtain a basis of V.

Proof: Let
S = {E ⊆ {u1, · · ·,un} such that span (E) = V }.

For E ∈ S, let |E| denote the number of elements of E. Let

m ≡ min{|E| such that E ∈ S}.

Thus there exist vectors
{v1, · · ·,vm} ⊆ {u1, · · ·,un}

such that
span (v1, · · ·,vm) = V

and m is as small as possible for this to happen. If this set is linearly independent, it follows
it is a basis for V and the theorem is proved. On the other hand, if the set is not linearly
independent, then there exist scalars,

c1, · · ·, cm

such that

0 =
m∑

i=1

civi

and not all the ci are equal to zero. Suppose ck 6= 0. Then the vector, vk may be solved for
in terms of the other vectors. Consequently,

V = span (v1, · · ·,vk−1,vk+1, · · ·,vm)

contradicting the definition of m. This proves the first part of the theorem.
To obtain the second part, begin with {u1, · · ·,uk} and suppose a basis for V is

{v1, · · ·,vn}. If
span (u1, · · ·,uk) = V,

then k = n. If not, there exists a vector,

uk+1 /∈ span (u1, · · ·,uk) .

Then {u1, · · ·,uk,uk+1} is also linearly independent. Continue adding vectors in this way
until n linearly independent vectors have been obtained. Then span (u1, · · ·,un) = V be-
cause if it did not do so, there would exist un+1 as just described and {u1, · · ·,un+1} would
be a linearly independent set of vectors having n+1 elements even though {v1, · · ·, vn} is a
basis. This would contradict Theorems 10.2.4 and 10.2.3. Therefore, this list is a basis and
this proves the theorem.

It is useful to emphasize some of the ideas used in the above proof.

Lemma 10.2.9 Suppose v /∈ span (u1, · · ·,uk) and {u1, · · ·,uk} is linearly independent.
Then {u1, · · ·,uk,v} is also linearly independent.
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Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0 and that
d = 0. But if d 6= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · ·,uk},

v = −
k∑

i=1

(ci

d

)
ui

contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear indepen-
dence of {u1, · · ·,uk} implies each ci = 0 also. This proves the lemma.

10.2.3 The Basis Of A Subspace

Theorem 10.2.10 Let V be a nonzero subspace of a finite dimentional vector space, W of
dimension, n. Then V has a basis with no more than n vectors.

Proof: Let v1 ∈ V where v1 6= 0. If span {v1} = V, stop. {v1} is a basis for V .
Otherwise, there exists v2 ∈ V which is not in span {v1} . By Lemma 10.2.9 {v1,v2} is a
linearly independent set of vectors. If span {v1,v2} = V stop, {v1,v2} is a basis for V. If
span {v1,v2} 6= V, then there exists v3 /∈ span {v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n + 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem, Theorems 10.2.3 and 10.2.4. This proves the theorem.

10.3 Exercises

1. Determine which matrices are in row reduced echelon form.

(a)
(

1 2 0
0 1 7

)

(b)




1 0 0 0
0 0 1 2
0 0 0 0




(c)




1 1 0 0 0 5
0 0 1 2 0 4
0 0 0 0 1 3




2. Row reduce the following matrices to obtain the row reduced echelon form. List the
pivot columns in the original matrix.

(a)




1 2 0 3
2 1 2 2
1 1 0 3




(b)




1 2 3
2 1 −2
3 0 0
3 2 1




(c)




1 2 1 3
−3 2 1 0
3 2 1 1
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3. Find the rank of the following matrices. If the rank is r, identify r columns in the
original matrix which have the property that every other column may be written
as a linear combination of these. Also find a basis for the row and column spaces of
the matrices.

(a)




1 2 0
3 2 1
2 1 0
0 2 1




(b)




1 0 0
4 1 1
2 1 0
0 2 0




(c)




0 1 0 2 1 2 2
0 3 2 12 1 6 8
0 1 1 5 0 2 3
0 2 1 7 0 3 4




(d)




0 1 0 2 0 1 0
0 3 2 6 0 5 4
0 1 1 2 0 2 2
0 2 1 4 0 3 2




(e)




0 1 0 2 1 1 2
0 3 2 6 1 5 1
0 1 1 2 0 2 1
0 2 1 4 0 3 1




4. Suppose A is an m × n matrix. Explain why the rank of A is always no larger than
min (m,n) .

5. Let H denote span
((

1
2

)
,

(
2
4

)
,

(
1
3

))
. Find the dimension of H and determine

a basis.

6. Let H denote span







1
2
0


 ,




2
4
0


 ,




1
3
1


 ,




0
1
1





 . Find the dimension of H

and determine a basis.

7. Let H denote span







1
2
0


 ,




1
4
0


 ,




1
3
1


 ,




0
1
1





 . Find the dimension of H

and determine a basis.

8. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 = u1 = 0

}
. Is M a subspace? Explain.

9. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : u3 ≥ u1

}
. Is M a subspace? Explain.

10. Let w ∈ R4 and let M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0

}
. Is M a subspace?

Explain.

11. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : ui ≥ 0 for each i = 1, 2, 3, 4

}
. Is M a subspace?

Explain.
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12. Let w,w1 be given vectors in R4 and define

M =
{
u = (u1, u2, u3, u4) ∈ R4 : w · u = 0 and w1 · u = 0

}
.

Is M a subspace? Explain.

13. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : |u1| ≤ 4

}
. Is M a subspace? Explain.

14. Let M =
{
u = (u1, u2, u3, u4) ∈ R4 : sin (u1) = 1

}
. Is M a subspace? Explain.

15. Study the definition of span. Explain what is meant by the span of a set of vectors.
Include pictures.

16. Suppose {x1, · · ·,xk} is a set of vectors from Fn. Show that 0 is in span (x1, · · ·,xk) .

17. Study the definition of linear independence. Explain in your own words what is meant
by linear independence and linear dependence. Illustrate with pictures.

18. Here are three vectors. Determine whether they are linearly independent or linearly
dependent. 


1
2
0


 ,




2
0
1


 ,




3
0
0




19. Here are three vectors. Determine whether they are linearly independent or linearly
dependent. 


4
2
0


 ,




2
2
1


 ,




3
0
1




20. Here are three vectors. Determine whether they are linearly independent or linearly
dependent. 


1
2
3


 ,




4
5
1


 ,




3
1
0




21. Here are four vectors. Determine whether they span R3. Are these vectors linearly
independent? 


1
2
3


 ,




4
3
3


 ,




3
1
0


 ,




2
4
6




22. Here are four vectors. Determine whether they span R3. Are these vectors linearly
independent? 


1
2
3


 ,




4
3
3


 ,




3
2
0


 ,




2
4
6




23. Determine whether the following vectors are a basis for R3. If they are, explain why
they are and if they are not, give a reason and tell whether they span R3.




1
0
3


 ,




4
3
3


 ,




1
2
0


 ,




2
4
0
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24. Determine whether the following vectors are a basis for R3. If they are, explain why
they are and if they are not, give a reason and tell whether they span R3.




1
0
3


 ,




0
1
0


 ,




1
2
0




25. Determine whether the following vectors are a basis for R3. If they are, explain why
they are and if they are not, give a reason and tell whether they span R3.




1
0
3


 ,




0
1
0


 ,




1
2
0


 ,




0
0
0




26. Determine whether the following vectors are a basis for R3. If they are, explain why
they are and if they are not, give a reason and tell whether they span R3.




1
0
3


 ,




0
1
0


 ,




1
1
3


 ,




0
0
0




27. Consider the vectors of the form







2t + 3s
s− t
t + s


 : s, t ∈ R



 .

Is this set of vectors a subspace of R3? If so, explain why, give a basis for the subspace
and find its dimension.

28. Consider the vectors of the form







2t + 3s + u
s− t
t + s

u


 : s, t, u ∈ R





.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace
and find its dimension.

29. Consider the vectors of the form







2t + u
t + 3u

t + s + v
u


 : s, t, u, v ∈ R





.

Is this set of vectors a subspace of R4? If so, explain why, give a basis for the subspace
and find its dimension.

30. If you have 5 vectors in F5 and the vectors are linearly independent, can it always be
concluded they span F5? Explain.

31. If you have 6 vectors in F5, is it possible they are linearly independent? Explain.
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32. Suppose A is an m×n matrix and {w1, · · ·,wk} is a linearly independent set of vectors
in A (Fn) ⊆ Fm. Now suppose A (zi) = wi. Show {z1, · · ·, zk} is also independent.

33. Suppose V, W are subspaces of Fn. Show V ∩W defined to be all vectors which are in
both V and W is a subspace also.

34. Suppose V and W both have dimension equal to 7 and they are subspaces of F10.
What are the possibilities for the dimension of V ∩W? Hint: Remember that a linear
independent set can be extended to form a basis.

35. Suppose V has dimension p and W has dimension q and they are each contained in
a subspace, U which has dimension equal to n where n > max (p, q) . What are the
possibilities for the dimension of V ∩W? Hint: Remember that a linear independent
set can be extended to form a basis.

36. If b 6= 0, can the solution set of Ax = b be a plane through the origin? Explain.

37. Suppose a system of equations has fewer equations than variables and you have found
a solution to this system of equations. Is it possible that your solution is the only one?
Explain.

38. Suppose a system of linear equations has a 2×4 augmented matrix and the last column
is a pivot column. Could the system of linear equations be consistent? Explain.

39. Suppose the coefficient matrix of a system of n equations with n variables has the
property that every column is a pivot column. Does it follow that the system of
equations must have a solution? If so, must the solution be unique? Explain.

40. Suppose there is a unique solution to a system of linear equations. What must be true
of the pivot columns in the augmented matrix.

41. State whether each of the following sets of data are possible for the matrix equation
Ax = b. If possible, describe the solution set. That is, tell whether there exists a
unique solution no solution or infinitely many solutions.

(a) A is a 5 × 6 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in
the span of four of the columns. Thus the columns are not independent.

(b) A is a 3× 4 matrix, rank (A) = 3 and rank (A|b) = 2.

(c) A is a 4 × 2 matrix, rank (A) = 4 and rank (A|b) = 4. Hint: This says b is in
the span of the columns and the columns must be independent.

(d) A is a 5 × 5 matrix, rank (A) = 4 and rank (A|b) = 5. Hint: This says b is not
in the span of the columns.

(e) A is a 4× 2 matrix, rank (A) = 2 and rank (A|b) = 2.

42. Suppose A is an m×n matrix in which m ≤ n. Suppose also that the rank of A equals
m. Show that A maps Fn onto Fm. Hint: The vectors e1, · · ·, em occur as columns
in the row reduced echelon form for A.

43. Suppose A is an m×n matrix in which m ≥ n. Suppose also that the rank of A equals
n. Show that A is one to one. Hint: If not, there exists a vector, x such that Ax = 0,
and this implies at least one column of A is a linear combination of the others. Show
this would require the column rank to be less than n.

44. Explain why an n× n matrix, A is both one to one and onto if and only if its rank is
n.
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45. Suppose A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace
is {w1, · · ·,wk} . Now suppose {u1, · · ·,ur} is a basis for ker (B) . Let {z1, · · ·, zk} be
such that Bzi = wi and argue that

ker (AB) ⊆ span (u1, · · ·,ur, z1, · · ·, zk) .

Here is how you do this. Suppose ABx = 0. Then Bx ∈ ker (A) ∩ B (Fp) and so
Bx =

∑k
i=1 Bzi showing that

x−
k∑

i=1

zi ∈ ker (B) .

46. Explain why Ax = 0 always has a solution even when A−1 does not exist.

(a) What can you conclude about A if the solution is unique?
(b) What can you conclude about A if the solution is not unique?

47. Suppose det (A− λI) = 0. Show using Theorem 6.1.17 there exists x 6= 0 such that
(A− λI)x = 0.

48. Let A be an n× n matrix and let x be a nonzero vector such that Ax = λx for some
scalar, λ. When this occurs, the vector, x is called an eigenvector and the scalar, λ
is called an eigenvalue. It turns out that not every number is an eigenvalue. Only
certain ones are. Why? Hint: Show that if Ax = λx, then (A− λI)x = 0. Explain
why this shows that (A− λI) is not one to one and not onto. Now use Theorem 6.1.17
to argue det (A− λI) = 0. What sort of equation is this? How many solutions does it
have?

49. Let m < n and let A be an m × n matrix. Show that A is not one to one. Hint:
Consider the n× n matrix, A1 which is of the form

A1 ≡
(

A
0

)

where the 0 denotes an (n−m) × n matrix of zeros. Thus detA1 = 0 and so A1 is
not one to one. Now observe that A1x is the vector,

A1x =
(

Ax
0

)

which equals zero if and only if Ax = 0. Do this using the Fredholm alternative.

50. Let A be an m× n real matrix and let b ∈ Rm. Show there exists a solution, x to the
system

AT Ax = AT b

Next show that if x,x1 are two solutions, then Ax = Ax1. Hint: First show that(
AT A

)T = AT A. Next show if x ∈ ker
(
AT A

)
, then Ax = 0. Finally apply the Fred-

holm alternative. This will give existence of a solution.

51. Show that in the context of Problem 50 that if x is the solution there, then |b−Ax| ≤
|b−Ay| for every y. Thus Ax is the point of A (Rn) which is closest to b of every
point in A (Rn).
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Linear Transformations

11.1 Matrix Multiplication As A Linear Transforma-
tion

Definition 11.1.1 Let V and W be two finite dimensional vector spaces. A function, L
which maps V to W is called a linear transformation and L ∈ L (V, W ) if for all scalars α
and β, and vectors v,w,

L (αv+βw) = αL (v) + βL (w) .

An example of a linear transformation is familiar matrix multiplication. Let A = (aij)
be an m× n matrix. Then an example of a linear transformation L : Fn → Fm is given by

(Lv)i ≡
n∑

j=1

aijvj .

Here

v ≡




v1

...
vn


 ∈ Fn.

11.2 L (V, W ) As A Vector Space

Definition 11.2.1 Given L, M ∈ L (V, W ) define a new element of L (V,W ) , denoted by
L + M according to the rule

(L + M)v ≡ Lv + Mv.

For α a scalar and L ∈ L (V, W ) , define αL ∈ L (V, W ) by

αL (v) ≡ α (Lv) .

You should verify that all the axioms of a vector space hold for L (V,W ) with the
above definitions of vector addition and scalar multiplication. What about the dimension
of L (V,W )?

Theorem 11.2.2 Let V and W be finite dimensional normed linear spaces of dimension n
and m respectively Then dim (L (V, W )) = mn.

Proof: Let the two sets of bases be

{v1, · · ·,vn} and {w1, · · ·,wm}

193
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for X and Y respectively. Let Eik ∈ L (V, W ) be the linear transformation defined on the
basis, {v1, · · ·,vn}, by

Eikvj ≡ wiδjk

where δik = 1 if i = k and 0 if i 6= k. Then let L ∈ L (V, W ). Since {w1, · · ·,wm} is a basis,
there exist constants, djk such that

Lvr =
m∑

j=1

djrwj

Also
m∑

j=1

n∑

k=1

djkEjk (vr) =
m∑

j=1

djrwj .

It follows that

L =
m∑

j=1

n∑

k=1

djkEjk

because the two linear transformations agree on a basis. Since L is arbitrary this shows

{Eik : i = 1, · · ·,m, k = 1, · · ·, n}

spans L (V,W ).
If ∑

i,k

dikEik = 0,

then

0 =
∑

i,k

dikEik (vl) =
m∑

i=1

dilwi

and so, since {w1, · · ·,wm} is a basis, dil = 0 for each i = 1, · · ·,m. Since l is arbitrary, this
shows dil = 0 for all i and l. Thus these linear transformations form a basis and this shows
the dimension of L (V,W ) is mn as claimed.

11.3 Eigenvalues And Eigenvectors Of Linear Transfor-
mations

Let V be a finite dimensional vector space. For example, it could be a subspace of Cn. Also
suppose A ∈ L (V, V ) . Does A have eigenvalues and eigenvectors just like the case where A
is a n× n matrix?

Theorem 11.3.1 Let V be a nonzero finite dimensional complex vector space of dimension
n. Suppose also the field of scalars equals C.1 Suppose A ∈ L (V, V ) . Then there exists
v 6= 0 and λ ∈ C such that

Av = λv.

1All that is really needed is that the minimal polynomial can be completely factored in the given field.
The complex numbers have this property from the fundamental theorem of algebra.
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Proof: Consider the linear transformations, I,A, A2, · · ·, An2
. There are n2 + 1 of these

transformations and so by Theorem 11.2.2 the set is linearly dependent. Thus there exist
constants, ci ∈ C such that

c0I +
n2∑

k=1

ckAk = 0.

This implies there exists a polynomial, q (λ) which has the property that q (A) = 0. In fact,
q (λ) ≡ c0 +

∑n2

k=1 ckλk. Dividing by the leading term, it can be assumed this polynomial is
of the form λm + cm−1λ

m−1 + · · · + c1λ + c0, a monic polynomial. Now consider all such
monic polynomials, q such that q (A) = 0 and pick one which has the smallest degree. This
is called the minimial polynomial and will be denoted here by p (λ) . By the fundamental
theorem of algebra, p (λ) is of the form

p (λ) =
p∏

k=1

(λ− λk) .

Thus, since p has minimial degree,

p∏

k=1

(A− λkI) = 0, but
p−1∏

k=1

(A− λkI) 6= 0.

Therefore, there exists u 6= 0 such that

v ≡
(

p−1∏

k=1

(A− λkI)

)
(u) 6= 0.

But then

(A− λpI) v = (A− λpI)

(
p−1∏

k=1

(A− λkI)

)
(u) = 0.

This proves the theorem.

Corollary 11.3.2 In the above theorem, each of the scalars, λk has the property that there
exists a nonzero v such that (A− λiI) v = 0. Furthermore the λi are the only scalars with
this property.

Proof: For the first claim, just factor out (A− λiI) instead of (A− λpI) . Next suppose
(A− µI) v = 0 for some µ and v 6= 0. Then

0 =
p∏

k=1

(A− λkI) v =
p−1∏

k=1

(A− λkI) (Av − λpv)

= (µ− λp)

(
p−1∏

k=1

(A− λkI)

)
v

= (µ− λp)

(
p−2∏

k=1

(A− λkI)

)
(Av − λp−1v)

= (µ− λp) (µ− λp−1)

(
p−2∏

k=1

(A− λkI)

)
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continuing this way yields

=
p∏

k=1

(µ− λk) v,

a contradiction unless µ = λk for some k.
Therefore, these are eigenvectors and eigenvalues with the usual meaning and the λk are

all of the eigenvalues.

Definition 11.3.3 For A ∈ L (V, V ) where dim (V ) = n, the scalars, λk in the minimal
polynomial,

p (λ) =
p∏

k=1

(λ− λk)

are called the eigenvalues of A. The collection of eigenvalues of A is denoted by σ (A). For
λ an eigenvalue of A ∈ L (V, V ) , the generalized eigenspace is defined as

Vλ ≡ {x ∈ V : (A− λI)m
x = 0 for some m ∈ N}

and the eigenspace is defined as

{x ∈ V : (A− λI) x = 0} ≡ ker (A− λI) .

Also, for subspaces of V, V1, V2, · · ·, Vr, the symbol, V1 + V2 + · · · + Vr or the shortened
version,

∑r
i=1 Vi will denote the set of all vectors of the form

∑r
i=1 vi where vi ∈ Vi.

Lemma 11.3.4 The generalized eigenspace for λ ∈ σ (A) where A ∈ L (V, V ) for V an n
dimensional vector space is a subspace, Vλ of V satisfying

A : Vλ → Vλ,

and there exists a smallest integer, m with the property that

ker (A− λI)m =
{

x ∈ V : (A− λI)k
x = 0 for some k ∈ N

}
. (11.1)

Proof: The claim that the generalized eigenspace is a subspace is obvious. To establish
the second part, note that {

ker (A− λI)k
}

yields an increasing sequence of subspaces. Eventually

dim (ker (A− λI)m) = dim
(
ker (A− λI)m+1

)

and so ker (A− λI)m = ker (A− λI)m+1. Now if x ∈ ker (A− λI)m+2
, then

(A− λI)x ∈ ker (A− λI)m+1 = ker (A− λI)m

and so there exists y ∈ ker (A− λI)m such that (A− λI)x = y and consequently

(A− λI)m+1 x = (A− λI)m y = 0

showing that x ∈ ker (A− λI)m+1
. Therefore, continuing this way, it follows that for all

k ∈ N,
ker (A− λI)m = ker (A− λI)m+k

.

Therefore, this shows 11.1.
The following theorem is of major importance and will be the basis for the very important

theorems concerning block diagonal matrices.
The following theorem is of major importance and will be the basis for the very important

theorems concerning block diagonal matrices.
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Theorem 11.3.5 Let V be a complex vector space of dimension n and suppose σ (A) =
{λ1, · · ·, λk} where the λi are the distinct eigenvalues of A. Denote by Vi the generalized
eigenspace for λi and let ri be the multiplicity of λi. By this is meant that

Vi = ker (A− λiI)ri (11.2)

and ri is the smallest integer with this property. Then

V =
k∑

i=1

Vi. (11.3)

Proof: This is proved by induction on k. First suppose there is only one eigenvalue, λ1

of multiplicity m. Then by the definition of eigenvalues given in Definition 11.3.3, A satisfies
an equation of the form

(A− λ1I)r = 0

where r is as small as possible for this to take place. Thus ker (A− λ1I)r = V and the
theorem is proved in the case of one eigenvalue.

Now suppose the theorem is true for any i ≤ k − 1 where k ≥ 2 and suppose σ (A) =
{λ1, · · ·, λk} .

Claim 1: Let µ 6= λi, Then (A− µI)m : Vi → Vi and is one to one and onto for every
m ∈ N.

Proof: It is clear that (A− µI)m maps Vi to Vi because if v ∈ Vi then (A− λiI)k
v = 0

for some k ∈ N. Consequently,

(A− λiI)k (A− µI)m
v = (A− µI)m (A− λiI)k

v = (A− µI)m 0 = 0

which shows that (A− µI)m
v ∈ Vi.

It remains to verify that (A− µI)m is one to one. This will be done by showing that
(A− µI) is one to one. Let w ∈ Vi and suppose (A− µI)w = 0 so that Aw = µw. Then for
some m ∈ N, (A− λiI)m

w = 0 and so by the binomial theorem,

(µ− λi)
m

w =
m∑

l=0

(
m

l

)
(−λi)

m−l
µlw

m∑

l=0

(
m

l

)
(−λi)

m−l
Alw = (A− λiI)m

w = 0.

Therefore, since µ 6= λi, it follows w = 0 and this verifies (A− µI) is one to one. Thus
(A− µI)m is also one to one on Vi Letting

{
ui

1, · · ·, ui
rk

}
be a basis for Vi, it follows{

(A− µI)m
ui

1, · · ·, (A− µI)m
ui

rk

}
is also a basis and so (A− µI)m is also onto.

Let p be the smallest integer such that ker (A− λkI)p = Vk and define

W ≡ (A− λkI)p (V ) .

Claim 2: A : W → W and λk is not an eigenvalue for A restricted to W.
Proof: Suppose to the contrary that A (A− λkI)p

u = λk (A− λkI)p
u where (A− λkI)p

u 6=
0. Then subtracting λk (A− λkI)p

u from both sides yields

(A− λkI)p+1
u = 0

and so u ∈ ker ((A− λkI)p) from the definition of p. But this requires (A− λkI)p
u = 0

contrary to (A− λkI)p
u 6= 0. This has verified the claim.
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It follows from this claim that the eigenvalues of A restricted to W are a subset of
{λ1, · · ·, λk−1} . Letting

V ′
i ≡

{
w ∈ W : (A− λi)

l
w = 0 for some l ∈ N

}
,

it follows from the induction hypothesis that

W =
k−1∑

i=1

V ′
i ⊆

k−1∑

i=1

Vi.

From Claim 1, (A− λkI)p maps Vi one to one and onto Vi. Therefore, if x ∈ V, then
(A− λkI)p

x ∈ W. It follows there exist xi ∈ Vi such that

(A− λkI)p
x =

k−1∑

i=1

∈Vi︷ ︸︸ ︷
(A− λkI)p

xi.

Consequently

(A− λkI)p




∈Vk︷ ︸︸ ︷

x−
k−1∑

i=1

xi




= 0

and so there exists xk ∈ Vk such that

x−
k−1∑

i=1

xi = xk

and this proves the theorem.

Definition 11.3.6 Let {Vi}r
i=1 be subspaces of V which have the property that if vi ∈ Vi

and
r∑

i=1

vi = 0, (11.4)

then vi = 0 for each i. Under this condition, a special notation is used to denote
∑r

i=1 Vi.
This notation is

V1 ⊕ · · · ⊕ Vr

and it is called a direct sum of subspaces.

Theorem 11.3.7 Let {Vi}m
i=1 be subspaces of V which have the property 11.4 and let Bi ={

ui
1, · · ·, ui

ri

}
be a basis for Vi. Then {B1, · · ·, Bm} is a basis for V1 ⊕ · · · ⊕ Vm =

∑m
i=1 Vi.

Proof: It is clear that span (B1, · · ·, Bm) = V1⊕ · · · ⊕Vm. It only remains to verify that
{B1, · · ·, Bm} is linearly independent. Arbitrary elements of span (B1, · · ·, Bm) are of the
form

m∑

k=1

ri∑

i=1

ck
i uk

i .

Suppose then that
m∑

k=1

ri∑

i=1

ck
i uk

i = 0.
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Since
∑ri

i=1 ck
i uk

i ∈ Vk it follows
∑ri

i=1 ck
i uk

i = 0 for each k. But then ck
i = 0 for each

i = 1, · · ·, ri. This proves the theorem.
The following corollary is the main result.

Corollary 11.3.8 Let V be a complex vector space of dimension, n and let A ∈ L (V, V ) .
Also suppose σ (A) = {λ1, · · ·, λs} where the λi are distinct. Then letting Vλi

denote the
generalized eigenspace for λi,

V = Vλ1 ⊕ · · · ⊕ Vλs

and if Bi is a basis for Vλi , then {B1, B2, · · ·, Bs} is a basis for V.

Proof: It is necessary to verify that the Vλi
satisfy condition 11.4. Let Vλi

= ker (A− λiI)ri

and suppose vi ∈ Vλi
and

∑k
i=1 vi = 0 where k ≤ s. It is desired to show this implies each

vi = 0. It is clearly true if k = 1. Suppose then that the condition holds for k − 1 and

k∑

i=1

vi = 0

and not all the vi = 0. By Claim 1 in the proof of Theorem 11.3.5, multiplying by (A− λkI)rk

yields
k−1∑

i=1

(A− λkI)rk vi =
k−1∑

i=1

v′i = 0

where v′i ∈ Vλi . Now by induction, each v′i = 0 and so each vi = 0 for i ≤ k − 1. Therefore,
the sum,

∑k
i=1 vi reduces to vk and so vk = 0 also.

By Theorem 11.3.5,
∑s

i=1 Vλi = Vλ1⊕···⊕Vλs = V and by Theorem 11.3.7 {B1, B2, · · ·, Bs}
is a basis for V. This proves the corollary.

11.4 Block Diagonal Matrices

In this section the vector space will be Cn and the linear transformations will be n × n
matrices.

Definition 11.4.1 Let A and B be two n×n matrices. Then A is similar to B, written as
A ∼ B when there exists an invertible matrix, S such that A = S−1BS.

Theorem 11.4.2 Let A be an n×n matrix. Letting λ1, λ2, ···, λr be the distinct eigenvalues
of A,arranged in any order, there exist square matrices, P1, · · ·, Pr such that A is similar to
the block diagonal matrix,

P =




P1 · · · 0
...

. . .
...

0 · · · Pr




in which Pk has the single eigenvalue λk. Denoting by rk the size of Pk it follows that rk

equals the dimension of the generalized eigenspace for λk,

rk = dim {x : (A− λkI)m x = 0 for some m} ≡ dim (Vλk
)

Furthermore, if S is the matrix satisfying S−1AS = P, then S is of the form
(

B1 · · · Br

)

where Bk =
(

uk
1 · · · uk

rk

)
in which the columns,

{
uk

1 , · · ·,uk
rk

}
= Dk constitute a basis

for Vλk
.
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Proof: By Corollary 11.3.8 Cn = Vλ1 ⊕ · · · ⊕ Vλk
and a basis for Cn is {D1, · · ·, Dr}

where Dk is a basis for Vλk
.

Let
S =

(
B1 · · · Br

)

where the Bi are the matrices described in the statement of the theorem. Then S−1 must
be of the form

S−1 =




C1

...
Cr




where CiBi = Iri×ri
. Also, if i 6= j, then CiABj = 0 the last claim holding because

A : Vj → Vj so the columns of ABj are linear combinations of the columns of Bj and each
of these columns is orthogonal to the rows of Ci. Therefore,

S−1AS =




C1

...
Cr


A

(
B1 · · · Br

)

=




C1

...
Cr




(
AB1 · · · ABr

)

=




C1AB1 0 · · · 0
0 C2AB2 · · · 0
... 0

. . . 0
0 · · · 0 CrABr




and Crk
ABrk

is an rk × rk matrix.
What about the eigenvalues of Crk

ABrk
? The only eigenvalue of A restricted to Vλk

is
λk because if Ax = µx for some x ∈ Vλk

and µ 6= λk, then as in Claim 1 of Theorem 11.3.5,

(A− λkI)rk x 6= 0

contrary to the assumption that x ∈ Vλk
. Suppose then that Crk

ABrk
x = λx where x 6= 0.

Why is λ = λk? Let y = Brk
x so y ∈ Vλk

. Then

S−1Ay = S−1AS




0
...
x
...
0




=




0
...

Crk
ABrk

x
...
0




= λ




0
...
x
...
0




and so

Ay = λS




0
...
x
...
0




= λy.

Therefore, λ = λk because, as noted above, λk is the only eigenvalue of A restricted to Vλk
.

Now letting Pk = Crk
ABrk

, this proves the theorem.
The above theorem contains a result which is of sufficient importance to state as a

corollary.
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Corollary 11.4.3 Let A be an n× n matrix and let Dk denote a basis for the generalized
eigenspace for λk. Then {D1, · · ·, Dr} is a basis for Cn.

More can be said. Recall Theorem 9.5.3 on Page 166. From this theorem, there exist
unitary matrices, Uk such that U∗

k PkUk = Tk where Tk is an upper triangular matrix of the
form 


λk · · · ∗
...

. . .
...

0 · · · λk


 ≡ Tk

Now let U be the block diagonal matrix defined by

U ≡




U1 · · · 0
...

. . .
...

0 · · · Ur


 .

By Theorem 11.4.2 there exists S such that

S−1AS =




P1 · · · 0
...

. . .
...

0 · · · Pr


 .

Therefore,

U∗SASU =




U∗
1 · · · 0
...

. . .
...

0 · · · U∗
r







P1 · · · 0
...

. . .
...

0 · · · Pr







U1 · · · 0
...

. . .
...

0 · · · Ur




=




U∗
1 P1U1 · · · 0

...
. . .

...
0 · · · U∗

r PrUr


 =




T1 · · · 0
...

. . .
...

0 · · · Tr


 .

This proves most of the following corollary of Theorem 11.4.2.

Corollary 11.4.4 Let A be an n × n matrix. Then A is similar to an upper triangular,
block diagonal matrix of the form

T ≡




T1 · · · 0
...

. . .
...

0 · · · Tr




where Tk is an upper triangular matrix having only λk on the main diagonal. The diagonal
blocks can be arranged in any order desired. If Tk is an mk ×mk matrix, then

mk = dim {x : (A− λkI)m x = 0 for some m ∈ N} .

Furthermore, mk is the multiplicity of λk as a zero of the characteristic polynomial of A.

Proof: The only thing which remains is the assertion that mk equals the multiplicity of
λk as a zero of the characteristic polynomial. However, this is clear from the obserivation
that since T is similar to A they have the same characteristic polynomial because

det (A− λI) = det
(
S (T − λI)S−1

)

= det (S) det
(
S−1

)
det (T − λI)

= det
(
SS−1

)
det (T − λI)

= det (T − λI)
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and the observation that since T is upper triangular, the characteristic polynomial of T is
of the form

r∏

k=1

(λk − λ)mk .

The above corollary has tremendous significance especially if it is pushed even further
resulting in the Jordan Canonical form. This form involves still more similarity transforma-
tions resulting in an especially revealing and simple form for each of the Tk, but the result
of the above corollary is sufficient for most applications.

It is significant because it enables one to obtain great understanding of powers of A by
using the matrix T. From Corollary 11.4.4 there exists an n× n matrix, S2 such that

A = S−1TS.

Therefore, A2 = S−1TSS−1TS = S−1T 2S and continuing this way, it follows

Ak = S−1T kS.

where T is given in the above corollary. Consider T k. By block multiplication,

T k =




T k
1 0

. . .
0 T k

r


 .

The matrix, Ts is an ms ×ms matrix which is of the form

Ts =




α · · · ∗
...

. . .
...

0 · · · α


 (11.5)

which can be written in the form
Ts = D + N

for D a multiple of the identity and N an upper triangular matrix with zeros down the main
diagonal. Therefore, by the Cayley Hamilton theorem, Nms = 0 because the characteristic
equation for N is just λms = 0. Such a transformation is called nilpotent. You can see
Nms = 0 directly also, without having to use the Cayley Hamilton theorem. Now since D
is just a multiple of the identity, it follows that DN = ND. Therefore, the usual binomial
theorem may be applied and this yields the following equations for k ≥ ms.

T k
s = (D + N)k =

k∑

j=0

(
k

j

)
Dk−jN j

=
ms∑

j=0

(
k

j

)
Dk−jN j , (11.6)

the third equation holding because Nms = 0. Thus T k
s is of the form

T k
s =




αk · · · ∗
...

. . .
...

0 · · · αk


 .

2The S here is written as S−1 in the corollary.
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Lemma 11.4.5 Suppose T is of the form Ts described above in 11.5 where the constant, α,
on the main diagonal is less than one in absolute value. Then

lim
k→∞

(
T k

)
ij

= 0.

Proof: From 11.6, it follows that for large k, and j ≤ ms,
(

k

j

)
≤ k (k − 1) · · · (k −ms + 1)

ms!
.

Therefore, letting C be the largest value of
∣∣∣
(
N j

)
pq

∣∣∣ for 0 ≤ j ≤ ms,

∣∣∣
(
T k

)
pq

∣∣∣ ≤ msC

(
k (k − 1) · · · (k −ms + 1)

ms!

)
|α|k−ms

which converges to zero as k → ∞. This is most easily seen by applying the ratio test to
the series ∞∑

k=ms

(
k (k − 1) · · · (k −ms + 1)

ms!

)
|α|k−ms

and then noting that if a series converges, then the kth term converges to zero.

11.5 The Matrix Of A Linear Transformation

If V is an n dimensional vector space and {v1, · · ·,vn} is a basis for V, there exists a linear
map

q : Fn → V

defined as

q (a) ≡
n∑

i=1

aivi

where

a =
n∑

i=1

aiei,

for ei the standard basis vectors for Fn consisting of

ei ≡




0
...
1
...
0




where the one is in the ith slot. It is clear that q defined in this way, is one to one, onto,
and linear. For v ∈ V, q−1 (v) is a list of scalars called the components of v with respect to
the basis {v1, · · ·,vn}.
Definition 11.5.1 Given a linear transformation L, mapping V to W, where {v1, · · ·,vn}
is a basis of V and {w1, · · ·,wm} is a basis for W, an m× n matrix A = (aij)is called the
matrix of the transformation L with respect to the given choice of bases for V and W , if
whenever v ∈ V, then multiplication of the components of v by (aij) yields the components
of Lv.
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The following diagram is descriptive of the definition. Here qV and qW are the maps
defined above with reference to the bases, {v1, · · ·,vn} and {w1, · · ·,wm} respectively.

L
{v1, · · ·,vn} V → W {w1, · · ·,wm}

qV ↑ ◦ ↑ qW

Fn → Fm

A

(11.7)

Letting b ∈ Fn, this requires
∑

i,j

aijbjwi = L
∑

j

bjvj =
∑

j

bjLvj .

Now
Lvj =

∑

i

cijwi (11.8)

for some choice of scalars cij because {w1, · · ·,wm} is a basis for W. Hence
∑

i,j

aijbjwi =
∑

j

bj

∑

i

cijwi =
∑

i,j

cijbjwi.

It follows from the linear independence of {w1, · · ·,wm} that
∑

j

aijbj =
∑

j

cijbj

for any choice of b ∈ Fn and consequently

aij = cij

where cij is defined by 11.8. It may help to write 11.8 in the form
(

Lv1 · · · Lvn

)
=

(
w1 · · · wm

)
C =

(
w1 · · · wm

)
A (11.9)

where C = (cij) , A = (aij) .

Example 11.5.2 Let

V ≡ { polynomials of degree 3 or less},
W ≡ { polynomials of degree 2 or less},

and L ≡ D where D is the differentiation operator. A basis for V is {1,x, x2, x3} and a
basis for W is {1, x, x2}.

What is the matrix of this linear transformation with respect to this basis? Using 11.9,
(

0 1 2x 3x2
)

=
(

1 x x2
)
C.

It follows from this that

C =




0 1 0 0
0 0 2 0
0 0 0 3


 .

Now consider the important case where V = Fn, W = Fm, and the basis chosen is the
standard basis of vectors ei described above. Let L be a linear transformation from Fn to
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Fm and let A be the matrix of the transformation with respect to these bases. In this case
the coordinate maps qV and qW are simply the identity map and the requirement that A is
the matrix of the transformation amounts to

πi (Lb) = πi (Ab)

where πi denotes the map which takes a vector in Fm and returns the ith entry in the vector,
the ith component of the vector with respect to the standard basis vectors. Thus, if the
components of the vector in Fn with respect to the standard basis are (b1, · · ·, bn) ,

b =
(

b1 · · · bn

)T =
∑

i

biei,

then
πi (Lb) ≡ (Lb)i =

∑

j

aijbj .

What about the situation where different pairs of bases are chosen for V and W? How
are the two matrices with respect to these choices related? Consider the following diagram
which illustrates the situation.

Fn A2−→ Fm

q2 ↓ ◦ p2 ↓
V L−→ W

q1 ↑ ◦ p1 ↑
Fn A1−→ Fm

In this diagram qi and pi are coordinate maps as described above. From the diagram,

p−1
1 p2A2q

−1
2 q1 = A1,

where q−1
2 q1 and p−1

1 p2 are one to one, onto, and linear maps.

Definition 11.5.3 In the special case where V = W and only one basis is used for V = W,
this becomes

q−1
1 q2A2q

−1
2 q1 = A1.

Letting S be the matrix of the linear transformation q−1
2 q1 with respect to the standard basis

vectors in Fn,
S−1A2S = A1. (11.10)

When this occurs, A1 is said to be similar to A2 and A → S−1AS is called a similarity
transformation.

Here is some terminology.

Definition 11.5.4 Let S be a set. The symbol, ∼ is called an equivalence relation on S if
it satisfies the following axioms.

1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)

Definition 11.5.5 [x] denotes the set of all elements of S which are equivalent to x and
[x] is called the equivalence class determined by x or just the equivalence class of x.
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With the above definition one can prove the following simple theorem which you should
do if you have not seen it.

Theorem 11.5.6 Let ∼ be an equivalence class defined on a set, S and let H denote the
set of equivalence classes. Then if [x] and [y] are two of these equivalence classes, either
x ∼ y and [x] = [y] or it is not true that x ∼ y and [x] ∩ [y] = ∅.
Theorem 11.5.7 In the vector space of n× n matrices, define

A ∼ B

if there exists an invertible matrix S such that

A = S−1BS.

Then ∼ is an equivalence relation and A ∼ B if and only if whenever V is an n dimensional
vector space, there exists L ∈ L (V, V ) and bases {v1, · · ·,vn} and {w1, · · ·,wn} such that
A is the matrix of L with respect to {v1, · · ·,vn} and B is the matrix of L with respect to
{w1, · · ·,wn}.

Proof: A ∼ A because S = I works in the definition. If A ∼ B , then B ∼ A, because

A = S−1BS

implies
B = SAS−1.

If A ∼ B and B ∼ C, then
A = S−1BS, B = T−1CT

and so
A = S−1T−1CTS = (TS)−1

CTS

which implies A ∼ C. This verifies the first part of the conclusion.
Now let V be an n dimensional vector space, A ∼ B and pick a basis for V,

{v1, · · ·,vn}.
Define L ∈ L (V, V ) by

Lvi ≡
∑

j

ajivj

where A = (aij) . Then if B = (bij) , and S = (sij) is the matrix which provides the similarity
transformation,

A = S−1BS,

between A and B, it follows that

Lvi =
∑

r,s,j

sirbrs

(
s−1

)
sj

vj . (11.11)

Now define
wi ≡

∑

j

(
s−1

)
ij

vj .

Then from 11.11, ∑

i

(
s−1

)
ki

Lvi =
∑

i,j,r,s

(
s−1

)
ki

sirbrs

(
s−1

)
sj

vj
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and so
Lwk =

∑
s

bksws.

This proves the theorem because the if part of the conclusion was established earlier.

Definition 11.5.8 An n× n matrix, A, is diagonalizable if there exists an invertible n× n
matrix, S such that S−1AS = D, where D is a diagonal matrix. Thus D has zero entries ev-
erywhere except on the main diagonal. Write diag (λ1 · ··, λn) to denote the diagonal matrix
having the λi down the main diagonal.

The following theorem is of great significance.

Theorem 11.5.9 Let A be an n×n matrix. Then A is diagonalizable if and only if Fn has
a basis of eigenvectors of A. In this case, S of Definition 11.5.8 consists of the n×n matrix
whose columns are the eigenvectors of A and D = diag (λ1, · · ·, λn) .

Proof: Suppose first that Fn has a basis of eigenvectors, {v1, · · ·,vn} where Avi = λivi.

Then let S denote the matrix (v1 · · · vn) and let S−1 ≡




uT
1
...

uT
n


 where uT

i vj = δij ≡
{

1 if i = j
0 if i 6= j

. S−1 exists because S has rank n. Then from block multiplication,

S−1AS =




uT
1
...

uT
n


 (Av1 · · ·Avn)

=




uT
1
...

uT
n


 (λ1v1 · · · λnvn)

=




λ1 0 · · · 0
0 λ2 0 · · ·
...

. . . . . . . . .
0 · · · 0 λn


 = D.

Next suppose A is diagonalizable so S−1AS = D ≡ diag (λ1, · · ·, λn) . Then the columns
of S form a basis because S−1 is given to exist. It only remains to verify that these columns
of A are eigenvectors. But letting S = (v1 · · · vn) , AS = SD and so (Av1 · · ·Avn) =
(λ1v1 · · · λnvn) which shows that Avi = λivi. This proves the theorem.

It makes sense to speak of the determinant of a linear transformation as described in the
following corollary.

Corollary 11.5.10 Let L ∈ L (V, V ) where V is an n dimensional vector space and let A
be the matrix of this linear transformation with respect to a basis on V. Then it is possible
to define

det (L) ≡ det (A) .
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Proof: Each choice of basis for V determines a matrix for L with respect to the basis.
If A and B are two such matrices, it follows from Theorem 11.5.7 that

A = S−1BS

and so
det (A) = det

(
S−1

)
det (B) det (S) .

But
1 = det (I) = det

(
S−1S

)
= det (S) det

(
S−1

)

and so
det (A) = det (B)

which proves the corollary.

Definition 11.5.11 Let A ∈ L (X, Y ) where X and Y are finite dimensional vector spaces.
Define rank (A) to equal the dimension of A (X) .

The following theorem explains how the rank of A is related to the rank of the matrix
of A.

Theorem 11.5.12 Let A ∈ L (X,Y ). Then rank (A) = rank (M) where M is the matrix
of A taken with respect to a pair of bases for the vector spaces X, and Y.

Proof: Recall the diagram which describes what is meant by the matrix of A. Here the
two bases are as indicated.

{v1, · · ·, vn} X A−→ Y {w1, · · ·, wm}
qX ↑ ◦ ↑ qY

Fn M−→ Fm

Let {z1, · · ·, zr} be a basis for A (X) . Then since the linear transformation, qY is one to one
and onto,

{
q−1
Y z1, · · ·, q−1

Y zr

}
is a linearly independent set of vectors in Fm. Let Aui = zi.

Then
Mq−1

X ui = q−1
Y zi

and so the dimension of M (Fn) ≥ r. Now if M (Fn) < r then there exists

y ∈ M (Fn) \ span
{
q−1
Y z1, · · ·, q−1

Y zr

}
.

But then there exists x ∈ Fn with Mx = y. Hence

y =Mx = q−1
Y AqXx ∈ span

{
q−1
Y z1, · · ·, q−1

Y zr

}

a contradiction. This proves the theorem.
The following result is a summary of many concepts.

Theorem 11.5.13 Let L ∈ L (V, V ) where V is a finite dimensional vector space. Then
the following are equivalent.

1. L is one to one.

2. L maps a basis to a basis.

3. L is onto.
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4. det (L) 6= 0

5. If Lv = 0 then v = 0.

Proof: Suppose first L is one to one and let {vi}n
i=1 be a basis. Then if

∑n
i=1 ciLvi = 0

it follows L (
∑n

i=1 civi) = 0 which means that since L (0) = 0, and L is one to one, it must
be the case that

∑n
i=1 civi = 0. Since {vi} is a basis, each ci = 0 which shows {Lvi} is a

linearly independent set. Since there are n of these, it must be that this is a basis.
Now suppose 2.). Then letting {vi} be a basis, and y ∈ V, it follows from part 2.) that

there are constants, {ci} such that y =
∑n

i=1 ciLvi = L (
∑n

i=1 civi) . Thus L is onto. It has
been shown that 2.) implies 3.).

Now suppose 3.). Then the operation consisting of multiplication by the matrix of L, ML,
must be onto. However, the vectors in Fn so obtained, consist of linear combinations of the
columns of ML. Therefore, the column rank of ML is n. By Theorem 6.3.20 this equals the
determinant rank and so det (ML) ≡ det (L) 6= 0.

Now assume 4.) If Lv = 0 for some v 6= 0, it follows that MLx = 0 for some x 6= 0.
Therefore, the columns of ML are linearly dependent and so by Theorem 6.3.20, det (ML) =
det (L) = 0 contrary to 4.). Therefore, 4.) implies 5.).

Now suppose 5.) and suppose Lv = Lw. Then L (v − w) = 0 and so by 5.), v − w = 0
showing that L is one to one. This proves the theorem.

Also it is important to note that composition of linear transformation corresponds to
multiplication of the matrices. Consider the following diagram.

X A−→ Y B−→ Z

qX ↑ ◦ ↑ qY ◦ ↑ qZ

Fn MA−−→ Fm MB−−→ Fp

where A and B are two linear transformations, A ∈ L (X, Y ) and B ∈ L (Y, Z) . Then
B ◦ A ∈ L (X, Z) and so it has a matrix with respect to bases given on X and Z, the
coordinate maps for these bases being qX and qZ respectively. Then

B ◦A = qZMBqY q−1
Y MAq−1

X = qZMBMAq−1
X .

But this shows that MBMA plays the role of MB◦A, the matrix of B ◦A. Hence the matrix
of B ◦ A equals the product of the two matrices MA and MB . Of course it is interesting
to note that although MB◦A must be unique, the matrices, MB and MA are not unique,
depending on the basis chosen for Y .

Theorem 11.5.14 The matrix of the composition of linear transformations equals the prod-
uct of the the matrices of these linear transformations.

11.5.1 Some Geometrically Defined Linear Transformations

If T is any linear transformation which maps Fn to Fm, there is always an m× n matrix, A
with the property that

Ax = Tx (11.12)

for all x ∈ Fn. You simply take the matrix of the linear transformation with respect to the
standard basis. What is the form of A? Suppose T : Fn → Fm is a linear transformation
and you want to find the matrix defined by this linear transformation as described in 11.12.
Then if x ∈ Fn it follows

x =
n∑

i=1

xiei



210 LINEAR TRANSFORMATIONS

where ei is the vector which has zeros in every slot but the ith and a 1 in this slot. Then
since T is linear,

Tx =
n∑

i=1

xiT (ei)

=




| |
T (e1) · · · T (en)
| |







x1

...
xn




≡ A




x1

...
xn




and so you see that the matrix desired is obtained from letting the ith column equal T (ei) .
This proves the following theorem.

Theorem 11.5.15 Let T be a linear transformation from Fn to Fm. Then the matrix, A
satisfying 11.12 is given by 


| |

T (e1) · · · T (en)
| |




where Tei is the ith column of A.

Example 11.5.16 Determine the matrix for the transformation mapping R2 to R2 which
consists of rotating every vector counter clockwise through an angle of θ.

Let e1 ≡
(

1
0

)
and e2 ≡

(
0
1

)
. These identify the geometric vectors which point

along the positive x axis and positive y axis as shown.

-

6

e1

e2

From Theorem 11.5.15, you only need to find Te1 and Te2, the first being the first
column of the desired matrix, A and the second being the second column. From drawing a
picture and doing a little geometry, you see that

Te1 =
(

cos θ
sin θ

)
, Te2 =

( − sin θ
cos θ

)
.

Therefore, from Theorem 11.5.15,

A =
(

cos θ − sin θ
sin θ cos θ

)
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Example 11.5.17 Find the matrix of the linear transformation which is obtained by first
rotating all vectors through an angle of φ and then through an angle θ. Thus you want the
linear transformation which rotates all angles through an angle of θ + φ.

Let Tθ+φ denote the linear transformation which rotates every vector through an angle
of θ + φ. Then to get Tθ+φ, you could first do Tφ and then do Tθ where Tφ is the linear
transformation which rotates through an angle of φ and Tθ is the linear transformation
which rotates through an angle of θ. Denoting the corresponding matrices by Aθ+φ, Aφ,
and Aθ, you must have for every x

Aθ+φx = Tθ+φx = TθTφx = AθAφx.

Consequently, you must have

Aθ+φ =
(

cos (θ + φ) − sin (θ + φ)
sin (θ + φ) cos (θ + φ)

)
= AθAφ

=
(

cos θ − sin θ
sin θ cos θ

)(
cos φ − sin φ
sin φ cos φ

)
.

Therefore,
(

cos (θ + φ) − sin (θ + φ)
sin (θ + φ) cos (θ + φ)

)
=

(
cos θ cosφ− sin θ sin φ − cos θ sinφ− sin θ cos φ
sin θ cosφ + cos θ sin φ cos θ cos φ− sin θ sinφ

)
.

Don’t these look familiar? They are the usual trig. identities for the sum of two angles
derived here using linear algebra concepts.

Example 11.5.18 Find the matrix of the linear transformation which rotates vectors in
R3counterclockwise about the positive z axis.

Let T be the name of this linear transformation. In this case, Te3 = e3, Te1 =
(cos θ, sin θ, 0)T

, and Te2 = (− sin θ, cos θ, 0)T
. Therefore, the matrix of this transformation

is just 


cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 (11.13)

In Physics it is important to consider the work done by a force field on an object. This
involves the concept of projection onto a vector. Suppose you want to find the projection
of a vector, v onto the given vector, u, denoted by proju (v) This is done using the dot
product as follows.

proju (v) =
(v · u
u · u

)
u

Because of properties of the dot product, the map v →proju (v) is linear,

proju (αv+βw) =
(

αv+βw · u
u · u

)
u = α

(v · u
u · u

)
u + β

(w · u
u · u

)
u

= α proju (v) + β proju (w) .

Example 11.5.19 Let the projection map be defined above and let u =(1, 2, 3)T
. Find the

matrix of this linear transformation with respect to the usual basis.
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You can find this matrix in the same way as in earlier examples. proju (ei) gives the ith

column of the desired matrix. Therefore, it is only necessary to find

proju (ei) ≡
( ei·u
u · u

)
u

For the given vector in the example, this implies the columns of the desired matrix are

1
14




1
2
3


 ,

2
14




1
2
3


 ,

3
14




1
2
3


 .

Hence the matrix is
1
14




1 2 3
2 4 6
3 6 9


 .

Example 11.5.20 Find the matrix of the linear transformation which reflects all vectors
in R3 through the xz plane.

As illustrated above, you just need to find Tei where T is the name of the transformation.
But Te1 = e1, Te3 = e3, and Te2 = −e2 so the matrix is




1 0 0
0 −1 0
0 0 1


 .

Example 11.5.21 Find the matrix of the linear transformation which first rotates counter
clockwise about the positive z axis and then reflects through the xz plane.

This linear transformation is just the composition of two linear transformations having
matrices 


cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 ,




1 0 0
0 −1 0
0 0 1




respectively. Thus the matrix desired is



1 0 0
0 −1 0
0 0 1







cos θ − sin θ 0
sin θ cos θ 0

0 0 1




=




cos θ − sin θ 0
− sin θ − cos θ 0

0 0 1


 .

11.5.2 Rotations About A Given Vector

As an application, I will consider the problem of rotating counter clockwise about a given
unit vector which is possibly not one of the unit vectors in coordinate directions. First
consider a pair of perpendicular coordinate vectors, u1 and u2 and the problem of rotating
the in the counterclockwise direction about u3 where u3 = u1 ×u2 so that u1,u2,u3 forms
a right handed orthogonal coordinate system. Let T denote the desired rotation. Then

T (au1 + bu2 + cu3) = aTu1 + bTu2 + cTu3



11.5. THE MATRIX OF A LINEAR TRANSFORMATION 213

= (a cos θ − b sin θ)u1 + (a sin θ + b cos θ)u2 + cu3.

Thus in terms of the basis {u1,u2,u3} , the matrix of this transformation is



cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 .

I want to write this transformation in terms of the usual basis vectors, {e1, e2, e3}.

R3
Mθ1→ R3

θ1 ↓ ◦ ↓ θ1

R3 T→ R3

θ2 ↑ ◦ ↑ θ2

R3
Mθ2→ R3

In the above, θ2 can be considered as the matrix which has the indicated columns below
because θ2x ≡

∑
i xiui so that θ2 (ei) = ui. The matrix Mθ1 denotes the matrix of the

transformation T taken with respect to the basis {e1, e2, e3} while the matrix, Mθ2 denotes
the matrix of the transormation T taken with respect to the basis {u1,u2,u3} .

θ2 =




| | |
u1 u2 u3

| | |




Since this is an orthogonal matrix, it follows that

θ−1
2 = θT

2 =




uT
1

uT
2

uT
3


 .

Also, θ1 is just the identity matrix. Therefore, from the above diagram,

Mθ1 = θ2Mθ2θ
−1
2

=
(

u1 u2 u3

)



cos θ − sin θ 0
sin θ cos θ 0

0 0 1







uT
1

uT
2

uT
3


 .

Now suppose the unit vector about which the counterclockwise rotation takes place is
〈a, b, c〉. Then I obtain vectors, u1 and u2 such that {u1,u2,u3} is a right handed orthogonal
system with u3 = 〈a, b, c〉 and then use the above result. It is of course somewhat arbitrary
how this is accomplished. I will assume, however that |c| 6= 1 since if this condition holds,
then you are looking at either clockwise or counter clockwise rotation about the positive
z axis and this is a problem which has been dealt with earlier. (If c = −1, it amounts to
clockwise rotation about the positive z axis while if c = 1, it is counterclockwise roation
about the positive z axis.) Then let u3 = 〈a, b, c〉 and u2 ≡ 1√

a2+b2
〈b,−a, 0〉 . If {u1,u2,u3}

is to be a right hand system it is necessary to have

u1 = u2 × u3 =
1√

(a2 + b2) (a2 + b2 + c2)

〈−ac,−bc, a2 + b2
〉

=
1√

(a2 + b2)

〈−ac,−bc, a2 + b2
〉
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Then from the above, the matrix of the transformation in terms of the standard basis is
given by




− ac√
(a2+b2)

b√
(a2+b2)

a

− bc√
(a2+b2)

− a√
(a2+b2)

b
√

(a2 + b2) 0 c







cos θ − sin θ 0
sin θ cos θ 0

0 0 1







−ac√
(a2+b2)

−bc√
(a2+b2)

√
(a2 + b2)

b√
(a2+b2)

−a√
(a2+b2)

0

a b c




which after simplification equals

=




a2 +
(
1− a2

)
cos θ ab (1− cos θ)− c sin θ ac (1− cos θ) + b sin θ

ab (1− cos θ) + c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ)− a sin θ

ac (1− cos θ)− b sin θ bc (1− cos θ) + a sin θ c2 +
(
1− c2

)
cos θ


 . (11.14)

With this, it is clear how to rotate clockwise about the the unit vector, 〈a, b, c〉 . Just
rotate counter clockwise through an angle of −θ. Thus the matrix for this clockwise roation
is just

=




a2 +
(
1− a2

)
cos θ ab (1− cos θ) + c sin θ ac (1− cos θ)− b sin θ

ab (1− cos θ)− c sin θ b2 +
(
1− b2

)
cos θ bc (1− cos θ) + a sin θ

ac (1− cos θ) + b sin θ bc (1− cos θ)− a sin θ c2 +
(
1− c2

)
cos θ


 .

In deriving 11.14 it was assumed that c 6= ±1 but even in this case, it gives the correct
answer. Suppose for example that c = 1 so you are rotating in the counter clockwise
direction about the positive z axis. Then a, b are both equal to zero and 11.14 reduces to
11.13.

11.5.3 The Euler Angles

An important application of the above theory is to the Euler angles, important in the
mechanics of rotating bodies. Lagrange studied these things back in the 1700’s. To describe
the Euler angles consider the following picture in which x1, x2 and x3 are the usual coordinate
axes fixed in space and the axes labeled with a superscript denote other coordinate axes.
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Here is the picture.
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We obtain φ by rotating counter clockwise about the fixed x3 axis. Thus this rotation
has the matrix




cos φ − sinφ 0
sin φ cosφ 0

0 0 1


 ≡ M1 (φ)

Next rotate counter clockwise about the x1
1 axis which results from the first rotation through

an angle of θ. Thus it is desired to rotate counter clockwise through an angle θ about the
unit vector




cosφ − sin φ 0
sin φ cosφ 0

0 0 1







1
0
0


 =




cosφ
sin φ

0


 .

Therefore, in 11.14, a = cos φ, b = sin φ, and c = 0. It follows the matrix of this transforma-
tion with respect to the usual basis is




cos2 φ + sin2 φ cos θ cos φ sin φ (1− cos θ) sin φ sin θ
cos φ sin φ (1− cos θ) sin2 φ + cos2 φ cos θ − cosφ sin θ

− sin φ sin θ cosφ sin θ cos θ


 ≡ M2 (φ, θ)

Finally, we rotate counter clockwise about the positive x2
3 axis by ψ. The vector in the

positive x1
3 axis is the same as the vector in the fixed x3 axis. Thus the unit vector in the
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positive direction of the x2
3 axis is




cos2 φ + sin2 φ cos θ cosφ sin φ (1− cos θ) sin φ sin θ
cosφ sinφ (1− cos θ) sin2 φ + cos2 φ cos θ − cos φ sin θ

− sin φ sin θ cosφ sin θ cos θ







1
0
0




=




cos2 φ + sin2 φ cos θ
cosφ sinφ (1− cos θ)

− sin φ sin θ


 =




cos2 φ + sin2 φ cos θ
cos φ sin φ (1− cos θ)

− sinφ sin θ




and it is desired to rotate counter clockwise through an angle of ψ about this vector. Thus,
in this case,

a = cos2 φ + sin2 φ cos θ, b = cos φ sinφ (1− cos θ) , c = − sin φ sin θ.

and you could substitute in to the formula of Theorem 11.14 and obtain a matrix which
represents the linear transformation obtained by rotating counter clockwise about the pos-
itive x2

3 axis, M3 (φ, θ, ψ) . Then what would be the matrix with respect to the usual basis
for the linear transformation which is obtained as a composition of the three just described?
By Theorem 11.5.14, this matrix equals the product of these three,

M3 (φ, θ, ψ)M2 (φ, θ)M1 (φ) .

I leave the details to you. There are procedures due to Lagrange which will allow you to
write differential equations for the Euler angles in a rotating body. To give an idea how
these angles apply, consider the following picture.
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This is as far as I will go on this topic. The point is, it is possible to give a systematic
description in terms of matrix multiplication of a very elaborate geometrical description of
a composition of linear transformations. You see from the picture it is possible to describe
the motion of the spinning top shown in terms of these Euler angles. I think you can also
see that the end result would be pretty horrendous but this is because it involves using the
basis corresponding to a fixed in space coordinate system. You wouldn’t do this for the
application to a spinning top.

Not surprisingly, this also has applications to computer graphics.

11.6 Exercises

1. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/3.

2. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4.

3. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of −π/3.

4. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3.

5. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/12. Hint: Note that π/12 = π/3− π/4.

6. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3 and then reflects across the x axis.

7. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/3 and then reflects across the x axis.

8. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4 and then reflects across the x axis.

9. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/6 and then reflects across the x axis followed by a reflection across the
y axis.

10. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/4.

11. Find the matrix for the linear transformation which reflects every vector in R2 across
the y axis and then rotates every vector through an angle of π/4.

12. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/6.

13. Find the matrix for the linear transformation which reflects every vector in R2 across
the y axis and then rotates every vector through an angle of π/6.

14. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 5π/12. Hint: Note that 5π/12 = 2π/3− π/4.

15. Find the matrix for proju (v) where u = (1,−2, 3)T
.
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16. Find the matrix for proju (v) where u = (1, 5, 3)T
.

17. Find the matrix for proju (v) where u = (1, 0, 3)T
.

18. Show that the function Tu defined by Tu (v) ≡ v − proju (v) is also a linear transfor-
mation.

19. If u = (1, 2, 3)T , as in Example 11.5.19 and Tu is given in the above problem, find the
matrix, Au which satisfies Aux = T (x).

20. If A,B, and C are each n× n matrices and ABC is invertible, why are each of A,B,
and C invertible.

21. Show that (ABC)−1 = C−1B−1A−1 by doing the computation ABC
(
C−1B−1A−1

)
.

22. If A is invertible, show
(
AT

)−1 =
(
A−1

)T
.

23. If A is invertible, show
(
A2

)−1 =
(
A−1

)2
.

24. If A is invertible, show
(
A−1

)−1 = A.

25. Give an example of a 3 × 2 matrix with the property that the linear transformation
determined by this matrix is one to one but not onto.

26. Explain why Ax = 0 always has a solution.

27. Review problem: Suppose det (A− λI) = 0. Show using Theorem 6.1.17 there exists
x 6= 0 such that (A− λI)x = 0.

28. Let m < n and let A be an m × n matrix. Show that A is not one to one. Hint:
Consider the n× n matrix, A1 which is of the form

A1 ≡
(

A
0

)

where the 0 denotes an (n−m) × n matrix of zeros. Thus detA1 = 0 and so A1 is
not one to one. Now observe that A1x is the vector,

A1x =
(

Ax
0

)

which equals zero if and only if Ax = 0.

29. Find ker (A) for

A =




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2


 .

Recall ker (A) is just the set of solutions to Ax = 0.

30. Suppose Ax = b has a solution. Explain why the solution is unique precisely when
Ax = 0 has only the trivial (zero) solution.
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31. Using Problem 29, find the general solution to the following linear system.




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2







x1

x2

x3

x4

x5




=




11
7
18
7




32. Using Problem 29, find the general solution to the following linear system.




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2







x1

x2

x3

x4

x5




=




6
7
13
7




33. Show that if A is an m× n matrix, then ker (A) is a subspace.

34. Verify the linear transformation determined by the matrix of 5.27 maps R3 onto R2

but the linear transformation determined by this matrix is not one to one.

11.7 The Jordan Canonical Form

Recall Corollary 11.4.4. For convenience, this corollary is stated below.

Corollary 11.7.1 Let A be an n × n matrix. Then A is similar to an upper triangular,
block diagonal matrix of the form

T ≡




T1 · · · 0
...

. . .
...

0 · · · Tr




where Tk is an upper triangular matrix having only λk on the main diagonal. The diagonal
blocks can be arranged in any order desired. If Tk is an mk ×mk matrix, then

mk = dim {x : (A− λkI)m x = 0 for some m ∈ N} .

The Jordan Canonical form involves a further reduction in which the upper triangular
matrices, Tk assume a particularly revealing and simple form.

Definition 11.7.2 Jk (α) is a Jordan block if it is a k × k matrix of the form

Jk (α) =




α 1 0

0
. . . . . .

...
. . . . . . 1

0 · · · 0 α




In words, there is an unbroken string of ones down the super diagonal and the number, α
filling every space on the main diagonal with zeros everywhere else. A matrix is strictly
upper triangular if it is of the form




0 ∗ ∗
...

. . . ∗
0 · · · 0


 ,
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where there are zeroes on the main diagonal and below the main diagonal.

The Jordan canonical form involves each of the upper triangular matrices in the conclu-
sion of Corollary 11.4.4 being a block diagonal matrix with the blocks being Jordan blocks
in which the size of the blocks decreases from the upper left to the lower right. The idea
is to show that every square matrix is similar to a unique such matrix which is in Jordan
canonical form.

Note that in the conclusion of Corollary 11.4.4 each of the triangular matrices is of the
form αI + N where N is a strictly upper triangular matrix. The existence of the Jordan
canonical form follows quickly from the following lemma.

Lemma 11.7.3 Let N be an n × n matrix which is strictly upper triangular. Then there
exists an invertible matrix, S such that

S−1NS =




Jr1 (0) 0
Jr2 (0)

. . .
0 Jrs (0)




where r1 ≥ r2 ≥ · · · ≥ rs ≥ 1 and
∑s

i=1 ri = n.

Proof: First note the only eigenvalue of N is 0. Let v1 be an eigenvector. Then
{v1,v2, · · ·,vr} is called a chain based on v1 if Nvk+1 = vk for all k = 1, 2, · · ·, r. It
will be called a maximal chain if there is no solution, v, to the equation, Nv = vr.

Claim 1: The vectors in any chain are linearly independent and for {v1,v2, · · ·,vr} a
chain based on v1,

N : span (v1,v2, · · ·,vr) → span (v1,v2, · · ·,vr) . (11.15)

Also if {v1,v2, · · ·,vr} is a chain, then r ≤ n.
Proof: First note that 11.15 is obvious because

N

r∑

i=1

civi =
r∑

i=2

civi−1.

It only remains to verify the vectors of a chain are independent. If this is not true, you could
consider the set of all dependent chains and pick one, {v1,v2, · · ·,vr} , which is shortest.
Thus {v1,v2, · · ·,vr} is a chain which is dependent and r is as small as possible. Suppose
then that

∑r
i=1 civi = 0 and not all the ci = 0. It follows from r being the smallest length

of any dependent chain that all the ci 6= 0. Now 0 = Nr−1 (
∑r

i=1 civi) = c1v1 showing that
c1 = 0, a contradiction. Therefore, the last claim is obvious. This proves the claim.

Consider the set of all chains based on eigenvectors. Since all have total length no
larger than n it follows there exists one which has maximal length,

{
v1

1, · · ·,v1
r1

} ≡ B1. If
span (B1) contains all eigenvectors of N, then stop. Otherwise, consider all chains based on
eigenvectors not in span (B1) and pick one, B2 ≡

{
v2

1, · · ·,v2
r2

}
which is as long as possible.

Thus r2 ≤ r1. If span (B1, B2) contains all eigenvectors of N, stop. Otherwise, consider all
chains based on eigenvectors not in span (B1, B2) and pick one, B3 ≡

{
v3

1, · · ·,v3
r3

}
such

that r3 is as large as possible. Continue this way. Thus rk ≥ rk+1.
Claim 2: The above process terminates with a finite list of chains, {B1, · · ·, Bs} because

for any k, {B1, · · ·, Bk} is linearly independent.
Proof of Claim 2: It suffices to verify that {B1, · · ·, Bk} is linearly independent. This

will be accomplished if it can be shown that no vector may be written as a linear combination
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of the other vectors. Suppose then that j is such that vj
i is a linear combination of the other

vectors in {B1, · · ·, Bk} and that j ≤ k is as large as possible for this to happen. Also
suppose that of the vectors, vj

i ∈ Bj such that this occurs, i is as large as possible. Then

vj
i =

p∑
q=1

cqwq

where the wq are vectors of {B1, · · ·, Bk} not equal to vj
i . Since j is as large as possible, it

follows all the wq come from {B1, · · ·, Bj} and that those vectors, vj
l , which are from Bj

have the property that l < i. Therefore,

vj
1 = N i−1vj

i =
p∑

q=1

cqN
i−1wq

and this last sum consists of vectors in span (B1, · · ·, Bj−1) contrary to the above construc-
tion. Therefore, this proves the claim.

Claim 3: Suppose Nw = 0. Then there exists scalars, ci such that

w =
s∑

i=1

civi
1.

Recall that vi
1 is the eigenvector in the ith chain on which this chain is based.

Proof of Claim 3: From the construction, w ∈ span (B1, · · ·, Bs) . Therefore,

w =
s∑

i=1

ri∑

k=1

ck
i v

i
k.

Now apply N to both sides to find

0 =
s∑

i=1

ri∑

k=2

ck
i v

i
k−1

and so ck
i = 0 if k ≥ 2. Therefore,

w =
s∑

i=1

c1
i v

i
1

and this proves the claim.
It remains to verify that span (B1, · · ·, Bs) = Fn. Suppose w /∈ span (B1, · · ·, Bs) . Since

Nn = 0, there exists a smallest integer, k such that Nkw = 0 but Nk−1w 6= 0. Then
k ≤ min (r1, · · ·, rs) because there exists a chain of length k based on the eigenvector,
Nk−1w, namely

Nk−1w,Nk−2w,Nk−3w, · · ·,w
and this chain must be no longer than the preceding chains. Since Nk−1w is an eigenvector,
it follows from Claim 3 that

Nk−1w =
s∑

i=1

civi
1 =

s∑

i=1

ciN
k−1vi

k.

Therefore,

Nk−1

(
w−

s∑

i=1

civi
k

)
= 0
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and so,

NNk−2

(
w−

s∑

i=1

civi
k

)
= 0

which implies by Claim 3 that

Nk−2

(
w−

s∑

i=1

civi
k

)
=

s∑

i=1

divi
1 =

s∑

i=1

diN
k−2vi

k−1

and so

Nk−2

(
w−

s∑

i=1

civi
k −

s∑

i=1

divi
k−1

)
= 0.

Continuing this way it follows that for each j < k, there exists a vector, zj ∈ span (B1, · · ·, Bs)
such that

Nk−j (w − zj) = 0.

In particular, taking j = (k − 1) yields

N (w − zk−1) = 0

and now using Claim 3 again yields w ∈ span (B1, · · ·, Bs), a contradiction. Therefore,
span (B1, · · ·, Bs) = Fn after all and so {B1, · · ·, Bs} is a basis for Fn.

Now consider the block matrix,

S =
(

B1 · · · Bs

)

where
Bk =

(
vk

1 · · · vk
rk

)
.

Thus

S−1 =




C1

...
Cs




where CiBi = Iri×ri and CiNBj = 0 if i 6= j. Let

Ck =




uT
1
...

uT
rk


 .

Then

CkNBk =




uT
1
...

uT
rk




(
Nvk

1 · · · Nvk
rk

)

=




uT
1
...

uT
rk




(
0 vk

1 · · · vk
rk−1

)

which equals an rk × rk matrix of the form

Jrk
(0) =




0 1 · · · 0
...

. . . . . .
...

...
. . . 1

0 · · · · · · 0
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That is, it has ones down the super diagonal and zeros everywhere else. It follows

S−1NS =




C1

...
Cs


 N

(
B1 · · · Bs

)

=




Jr1 (0) 0
Jr2 (0)

. . .
0 Jrs

(0)




as claimed. This proves the lemma.
Now let the upper triangular matrices, Tk be given in the conclusion of Corollary 11.4.4.

Thus, as noted earlier,
Tk = λkIrk×rk

+ Nk

where Nk is a strictly upper triangular matrix of the sort just discussed in Lemma 11.7.3.
Therefore, there exists Sk such that S−1

k NkSk is of the form given in Lemma 11.7.3. Now
S−1

k λkIrk×rk
Sk = λkIrk×rk

and so S−1
k TkSk is of the form




Ji1 (λk) 0
Ji2 (λk)

. . .
0 Jis (λk)




where i1 ≥ i2 ≥ · · · ≥ is and
∑s

j=1 ij = rk. This proves the following corollary.

Corollary 11.7.4 Suppose A is an upper triangular n×n matrix having α in every position
on the main diagonal. Then there exists an invertible matrix, S such that

S−1AS =




Jk1 (α) 0
Jk2 (α)

. . .
0 Jkr (α)




where k1 ≥ k2 ≥ · · · ≥ kr ≥ 1 and
∑r

i=1 ki = n.

The next theorem is the one about the existence of the Jordan canonical form.

Theorem 11.7.5 Let A be an n × n matrix having eigenvalues λ1, · · ·, λr where the mul-
tiplicity of λi as a zero of the characteristic polynomial equals mi. Then there exists an
invertible matrix, S such that

S−1AS =




J (λ1) 0
. . .

0 J (λr)


 (11.16)

where J (λk) is an mk ×mk matrix of the form



Jk1 (λk) 0
Jk2 (λk)

. . .
0 Jkr (λk)


 (11.17)

where k1 ≥ k2 ≥ · · · ≥ kr ≥ 1 and
∑r

i=1 ki = mk.
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Proof: From Corollary 11.4.4, there exists S such that S−1AS is of the form

T ≡




T1 · · · 0
...

. . .
...

0 · · · Tr




where Tk is an upper triangular mk × mk matrix having only λk on the main diagonal.
By Corollary 11.7.4 There exist matrices, Sk such that S−1

k TkSk = J (λk) where J (λk) is
described in 11.17. Now let M be the block diagonal matrix given by

M =




S1 0
. . .

0 Sr


 .

It follows that M−1S−1ASM = M−1TM and this is of the desired form. This proves the
theorem.

What about the uniqueness of the Jordan canonical form? Obviously if you change the
order of the eigenvalues, you get a different Jordan canonical form but it turns out that if
the order of the eigenvalues is the same, then the Jordan canonical form is unique. In fact,
it is the same for any two similar matrices.

Theorem 11.7.6 Let A and B be two similar matrices. Let JA and JB be Jordan forms of
A and B respectively, made up of the blocks JA (λi) and JB (λi) respectively. Then JA and
JB are identical except possibly for the order of the J (λi) where the λi are defined above.

Proof: First note that for λi an eigenvalue, the matrices JA (λi) and JB (λi) are both
of size mi × mi because the two matrices A and B, being similar, have exactly the same
characteristic equation and the size of a block equals the algebraic multiplicity of the eigen-
value as a zero of the characteristic equation. It is only necessary to worry about the
number and size of the Jordan blocks making up JA (λi) and JB (λi) . Let the eigenvalues
of A and B be {λ1, · · ·, λr} . Consider the two sequences of numbers {rank (A− λI)m} and
{rank (B − λI)m}. Since A and B are similar, these two sequences coincide. (Why?) Also,
for the same reason, {rank (JA − λI)m} coincides with {rank (JB − λI)m} . Now pick λk an
eigenvalue and consider {rank (JA − λkI)m} and {rank (JB − λkI)m} . Then

JA − λkI =




JA (λ1 − λk) 0
. . .

JA (0)
. . .

0 JA (λr − λk)




and a similar formula holds for JB − λkI. Here

JA (0) =




Jk1 (0) 0
Jk2 (0)

. . .
0 Jkr (0)




and

JB (0) =




Jl1 (0) 0
Jl2 (0)

. . .
0 Jlp (0)
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and it suffices to verify that li = ki for all i. As noted above,
∑

ki =
∑

li. Now from the
above formulas,

rank (JA − λkI)m =
∑

i 6=k

mi + rank (JA (0)m)

=
∑

i 6=k

mi + rank (JB (0)m)

= rank (JB − λkI)m
,

which shows rank (JA (0)m) = rank (JB (0)m) for all m. However,

JB (0)m =




Jl1 (0)m 0
Jl2 (0)m

. . .
0 Jlp (0)m




with a similar formula holding for JA (0)mand rank (JB (0)m) =
∑p

i=1 rank (Jli (0)m) , sim-
ilar for rank (JA (0)m) . In going from m to m + 1,

rank (Jli (0)m)− 1 = rank
(
Jli (0)m+1

)

untill m = li at which time there is no further change. Therefore, p = r since otherwise,
there would exist a discrepancy right away in going from m = 1 to m = 2. Now suppose the
sequence {li} is not equal to the sequence, {ki}. Then lr−b 6= kr−b for some b a nonnegative
integer taken to be a small as possible. Say lr−b > kr−b. Then, letting m = kr−b,

r∑

i=1

rank (Jli (0)m) =
r∑

i=1

rank (Jki (0)m)

and in going to m+1 a discrepancy must occur because the sum on the right will contribute
less to the decrease in rank than the sum on the left. This proves the theorem.
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Markov Chains And Migration
Processes

12.1 Regular Markov Matrices

The theorem that any matrix is similar to an appropriate block diagonal matrix is the basis
for the proof of limit theorems for certain kinds of matrices called Markov matrices.

Definition 12.1.1 An n × n matrix, A = (aij) , is a Markov matrix if aij ≥ 0 for all i, j
and ∑

i

aij = 1.

A Markov matrix is called regular if some power of A has all entries strictly positive. A
vector, v ∈ Rn, is a steady state if Av = v.

Lemma 12.1.2 Suppose A = (aij) is a Markov matrix in which aij > 0 for all i, j. Then if
µ is an eigenvalue of A, either |µ| < 1 or µ = 1. In addition to this, if Av = v for a nonzero
vector, v ∈ Rn, then vjvi ≥ 0 for all i, j so the components of v have the same sign.

Proof: Let
∑

j aijvj = µvi where v ≡ (v1, · · ·, vn)T 6= 0. Then

∑

j

aijvjµvi = |µ|2 |vi|2

and so
|µ|2 |vi|2 =

∑

j

aij Re (vjµvi) ≤
∑

j

aij |vj | |µ| |vi| (12.1)

so
|µ| |vi| ≤

∑

j

aij |vj | . (12.2)

Summing on i,

|µ|
∑

i

|vi| ≤
∑

i

∑

j

aij |vj | =
∑

j

∑

i

aij |vj | =
∑

j

|vj | . (12.3)

Therefore, |µ| ≤ 1.
If |µ| = 1, then from 12.1,

|vi| ≤
∑

j

aij |vj |

227
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and if inequality holds for any i, then you could sum on i and obtain
∑

i

|vi| <
∑

i

∑

j

aij |vj | =
∑

j

∑

i

aij |vj | =
∑

j

|vj | ,

a contradiction. Therefore,

|vi|2 =
∑

j

aij Re (vjµvi) =
∑

j

aij |vj | |vi|

equality must hold in 12.1 for each i and so since aij > 0, vjµvi must be real and nonnegative
for all j. In particular, for j = i, it follows |vi|2 µ ≥ 0 for each i. Hence µ must be real and
non negative. Thus µ = 1.

If Av = v for nonzero v ∈ Rn,
vi =

∑

j

aijvj

and so

|vi|2 =
∑

j

aijvjvi =
∑

j

aijvjvi

≤
∑

j

aij |vj | |vi| .

Dividing by |vi| and summing on i, yields
∑

i

|vi| ≤
∑

i

∑

j

aij |vj | =
∑

j

|vj |

which shows since aij > 0 that for all j,

vjvi = |vj | |vi|
and so vjvi must be real and nonnegative showing the sign of vi is constant. This proves
the lemma.

Lemma 12.1.3 If A is any Markov matrix, there exists v ∈ Rn \ {0} with Av = v. Also,
if A is a Markov matrix in which aij > 0 for all i, j, and

X1 ≡ {x : (A− I)m x = 0 for some m} ,

then the dimension of X1 = 1.

Proof: Let u =(1, · · ·, 1)T be the vector in which there is a one for every entry. Then
since A is a Markov matrix,

uT A = uT .

Therefore, AT u = u showing that 1 is an eigenvalue for AT . It follows 1 must also be an
eigenvalue for A since A and AT have the same characteristic equation due to the fact the
determinant of a matrix equals the determinant of its transpose. Since A is a real matrix,
it follows there exists v ∈ Rn \ {0} such that (A− I)v = 0. By Lemma 12.1.2, vi has the
same sign for all i. Without loss of generality assume

∑
i vi = 1 and so vi ≥ 0 for all i.

Now suppose A is a Markov matrix in which aij > 0 for all i, j and suppose w ∈ Cn \{0}
satisfies Aw = w. Then some wp 6= 0 and equality holds in 12.1. Therefore,

wjwp ≡ rj ≥ 0.
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Then letting r ≡ (r1, · · ·, rn)T
,

Ar = Awwp = wwp = r.

Now defining ||r||1 ≡
∑

i |ri| ,
∑

i

(
ri

||r||1

)
= 1. Also,

A

(
r

||r||1
− v

)
=

r
||r||1

− v

and so, since all eigenvectors for λ = 1 have all entries the same sign, and

∑

i

(
ri

||r||1
− vi

)
= 1− 1 = 0,

it follows that for all i,
ri

||r||1
= vi

and so r
||r||1 = wwp

||r||1 = v showing that

w =
||r||1
wp

v.

This shows that all eigenvectors for the eigenvalue 1 are multiples of the single eigenvector,
v, described above.

Now suppose that
(A− I)w = z

where z is an eigenvector. Then from what was just shown, z = αv where vj ≥ 0 for all j,
and

∑
j vj = 1. It follows that

∑

j

aijwj − wi = zi = αvi.

Then summing on i, ∑

j

wj −
∑

i

wi = 0 = α
∑

i

vi.

But
∑

i vi = 1. Therefore, α = 0 and so z is not an eigenvector. Therefore, if (A− I)2 w = 0,
it follows (A− I)w = 0 and so in fact,

X1 = {w : (A− I)w = 0}

and this was just shown to be one dimensional. This proves the lemma.
The following lemma is fundamental to what follows.

Lemma 12.1.4 Let A be a Markov matrix in which aij > 0 for all i, j. Then there exists
a basis for Cn such that with respect to this basis, the matrix for A is the upper triangular,
block diagonal matrix,

T =




1 0 · · · 0

0 T1

...
...

. . . 0
0 · · · 0 Tr
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where Ts is an upper triangular matrix of the form

Ts =




µs · · · ∗
...

. . .
...

0 · · · µs




where |µs| < 1.

Proof: This follows from Lemma 12.1.3 and Corollary 11.4.4. The assertion about |µs|
follows from Lemma 12.1.2.

Lemma 12.1.5 Let A be any Markov matrix and let v be a vector having all its components
non negative and having

∑
i vi = 1. Then if w = Av, it follows wi ≥ 0 for all i and∑

i wi = 1.

Proof: From the definition of w,

wi ≡
∑

j

aijvj ≥ 0.

Also ∑

i

wi =
∑

i

∑

j

aijvj =
∑

j

∑

i

aijvj =
∑

j

vj = 1.

The following theorem, a special case of the Perron Frobenius theorem can now be
proved.

Theorem 12.1.6 Suppose A is a Markov matrix in which aij > 0 for all i, j and suppose
w is a vector. Then for each i,

lim
k→∞

(
Akw

)
i
= vi

where Av = v. In words, Akw always converges to a steady state. In addition to this, if
the vector, w satisfies wi ≥ 0 for all i and

∑
i wi = 1, Then the vector, v will also satisfy

the conditions, vi ≥ 0,
∑

i vi = 1.

Proof: There exists a matrix, S such that

A = S−1TS

where T is defined above. Therefore,

Ak = S−1T kS

By Lemma 11.4.5, the components of the matrix, Ak converge to the components of the
matrix

S−1US

where U is an n× n matrix of the form

U =




1 0 · · · 0

0 0
...

...
. . . 0

0 · · · 0 0




,
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a matrix with a one in the upper left corner and zeros elsewhere. It follows that there exists
a vector v ∈ Rn such that

lim
k→∞

(
Akw

)
i
= vi.

and
vi = lim

k→∞
(
AAkw

)
i
= lim

k→∞

∑

j

aij

(
Akw

)
j

=
∑

j

aijvj = (Av)i

Since i is arbitrary, this implies Av = v as claimed.
Now if wi ≥ 0 and

∑
i wi = 1, then by Lemma 12.1.5,

(
Akw

)
i
≥ 0 and

∑

i

(
Akw

)
i
= 1.

Therefore, v also satisfies these conditions. This proves the theorem.
The following corollary is the fundamental result of this section. This corollary is a

simple consequence of the following interesting lemma.

Definition 12.1.7 Let µ be an eigenvalue of an n×n matrix, A. The generalized eigenspace
equals

X ≡ {x : (A− µI)m x = 0 for some m ∈ N}
Lemma 12.1.8 Let A be an n × n matrix having distinct eigenvalues {µ1, · · ·, µr} . Then
letting Xi denote the generalized eigenspace corresponding to µi,

Xi ⊆ Xk
i

where
Xk

i ≡
{
x :

(
Ak − µk

i I
)m

x = 0 for some m ∈ N
}

Proof: Let x ∈ Xi so that (A− µiI)m x = 0 for some positive integer, m. Then multi-
plying both sides by (

Ak−1 + µiA · · ·+µk−2
i A + µk−1

i I
)m

,

it follows
(
Ak − µk

i I
)m

x = 0 showing that x ∈ Xk
i as claimed.

Corollary 12.1.9 Suppose A is a regular Markov matrix. Then the conclusions of Theorem
12.1.6 holds.

Proof: In the proof of Theorem 12.1.6 the only thing needed was that A was similar
to an upper triangular, block diagonal matrix of the form described in Lemma 12.1.4. This
corollary is proved by showing that A is similar to such a matrix. From the assumption
that A is regular, some power of A, say Ak is similar to a matrix of this form, having a one
in the upper left position and having the diagonal blocks of the form described in Lemma
12.1.4 where the diagonal entries on these blocks have absolute value less than one. Now
observe that if A and B are two Markov matrices such that the entries of A are all positive,
then AB is also a Markov matrix having all positive entries. Thus Ak+r is a Markov matrix
having all positive entries for every r ∈ N. Therefore, each of these Markov matrices has
1 as an eigenvalue and the generalized eigenspace associated with 1 is of dimension 1. By
Lemma 12.1.3, 1 is an eigenvalue for A. By Lemma 12.1.8 and Lemma 12.1.3, the generalized
eigenspace for 1 is of dimension 1. If µ is an eigenvalue of A, then it is clear that µk+r is
an eigenvalue for Ak+r and since these are all Markov matrices having all positive entries,
Lemma 12.1.2 implies that for all r ∈ N, either µk+r = 1 or

∣∣µk+r
∣∣ < 1. Therefore, since r

is arbitrary, it follows that either µ = 1 or in the case that
∣∣µk+r

∣∣ < 1, |µ| < 1. Therefore,
A is similar to an upper triangular matrix described in Lemma 12.1.4 and this proves the
corollary.
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12.2 Migration Matrices

Definition 12.2.1 Let n locations be denoted by the numbers 1, 2, · · ·, n. Also suppose it is
the case that each year aij denotes the proportion of residents in location j which move to
location i. Also suppose no one escapes or emigrates from without these n locations. This last
assumption requires

∑
i aij = 1. Thus (aij) is a Markov matrix referred to as a migration

matrix.

If v =(x1, · · ·, xn)T where xi is the population of location i at a given instant, you obtain
the population of location i one year later by computing

∑
j aijxj = (Av)i . Therefore, the

population of location i after k years is
(
Akv

)
i
. Furthermore, Corollary 12.1.9 can be used

to predict in the case where A is regular what the long time population will be for the given
locations.

As an example of the above, consider the case where n = 3 and the migration matrix is
of the form 


.6 0 .1
.2 .8 0
.2 .2 .9


 .

Now 


.6 0 .1

.2 .8 0

.2 .2 .9




2

=




. 38 .0 2 . 15

. 28 . 64 .0 2

. 34 . 34 . 83




and so the Markov matrix is regular. Therefore,
(
Akv

)
i
will converge to the ith component

of a steady state. It follows the steady state can be obtained from solving the system

. 6x + . 1z = x

. 2x + . 8y = y
. 2x + . 2y + . 9z = z

along with the stipulation that the sum of x, y, and z must equal the constant value present
at the beginning of the process. The solution to this system is

{y = x, z = 4x, x = x} .

If the total population at the beginning is 100,000, then you solve the following system

y = x
z = 4x

x + y + z = 150000

whose solution is easily seen to be {x = 25 000, z = 100 000, y = 25 000} . Thus, after a long
time there would be about four times as many people in the third location as in either of
the other two.

12.3 Markov Chains

A random variable is just a function which can have certain values which have probabilities
associated with them. Thus it makes sense to consider the probability the random variable
has a certain value or is in some set. The idea of a Markov chain is a sequence of random
variables, {Xn} which can be in any of a collection of states which can be labeled with
nonnegative integers. Thus you can speak of the probability the random variable, Xn is in
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state i. The probability that Xn+1 is in state j given that Xn is in state i is called a one step
transition probability. When this probability does not depend on n it is called stationary
and this is the case of interest here. Since this probability does not depend on n it can be
denoted by pij . Here is a simple example called a random walk.

Example 12.3.1 Let there be n points, xi, and consider a process of something moving
randomly from one point to another. Suppose Xn is a sequence of random variables which
has values {1, 2, · · ·, n} where Xn = i indicates the process has arrived at the ith point. Let
pij be the probability that Xn+1 has the value j given that Xn has the value i. Since Xn+1

must have some value, it must be the case that
∑

j aij = 1. Note this says the sum over a
row equals 1 and so the situation is a little different than the above in which the sum was
over a column.

As an example, let x1, x2, x3, x4 be four points taken in order on R and suppose x1

and x4 are absorbing. This means that p4k = 0 for all k 6= 4 and p1k = 0 for all k 6= 1.
Otherwise, you can move either to the left or to the right with probability 1

2 . The Markov
matrix associated with this situation is



1 0 0 0
.5 0 .5 0
0 .5 0 .5
0 0 0 1


 .

Definition 12.3.2 Let the stationary transition probabilities, pij be defined above. The
resulting matrix having pij as its ijth entry is called the matrix of transition probabilities.
The sequence of random variables for which these pij are the transition probabilities is called
a Markov chain. The matrix of transition probabilities is called a Stochastic matrix.

The next proposition is fundamental and shows the significance of the powers of the
matrix of transition probabilities.

Proposition 12.3.3 Let pn
ij denote the probability that Xn is in state j given that X1 was

in state i. Then pn
ij is the ijth entry of the matrix, Pn where P = (pij) .

Proof: This is clearly true if n = 1 and follows from the definition of the pij . Suppose
true for n. Then the probability that Xn+1 is at j given that X1 was at i equals

∑
k pn

ikpkj

because Xn must have some value, k, and so this represents all possible ways to go from i
to j. You can go from i to 1 in n steps with probability pi1 and then from 1 to j in one step
with probability p1j and so the probability of this is pn

i1p1j but you can also go from i to 2
and then from 2 to j and from i to 3 and then from 3 to j etc. Thus the sum of these is
just what is given and represents the probability of Xn+1 having the value j given X1 has
the value i.

In the above random walk example, lets take a power of the transition probability matrix
to determine what happens. Rounding off to two decimal places,




1 0 0 0
.5 0 .5 0
0 .5 0 .5
0 0 0 1




20

=




1 0 0 0
. 67 9. 5× 10−7 0 . 33
. 33 0 9. 5× 10−7 . 67
0 0 0 1


 .

Thus p21 is about 2/3 while p32 is about 1/3 and terms like p22 are very small. You see this
seems to be converging to the matrix,




1 0 0 0
2
3 0 0 1

3
1
3 0 0 2

3
0 0 0 1


 .
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After many iterations of the process, if you start at 2 you will end up at 1 with probability
2/3 and at 4 with probability 1/3. This makes good intuitive sense because it is twice as far
from 2 to 4 as it is from 2 to 1.

What theorems can be proved about limits of powers of such matrices? Recall the
following definition of terms.

Definition 12.3.4 Let A be an n× n matrix. Then

ker (A) ≡ {x : Ax = 0} .

If λ is an eigenvalue, the eigenspace associated with λ is defined as ker (A− λI) and the
generalized eigenspace is given by

{x : (A− λI)m x = 0 for some m ∈ N} .

It is clear that ker (A) is a subspace of Fn so has a well defined dimension and also it is
a subspace of the generalized eigenspace for λ.

Lemma 12.3.5 Suppose A is an n × n matrix and there exists an invertible matrix, S
such that S−1AS = T. Then if there exist m linearly independent eigenvectors for A asso-
ciated with the eigenvalue, λ, it follows there exist m linearly independent eigenvectors for
T associated with the eigenvalue, λ.

Proof: Suppose the independent set of eigenvectors for A are {v1, · · ·,vm} . Then con-
sider

{
S−1v1, · · ·, S−1vm

}
.

Avk = STS−1vk = λvk

and so
TS−1vk = λS−1vk.

Therefore,
{
S−1v1, · · ·, S−1vm

}
are a set of eigenvectors. Suppose

m∑

k=1

ckS−1vk = 0.

Then

S−1

(
m∑

k=1

ckvk

)
= 0

and since S−1 is one to one, it follows
∑m

k=1 ckvk = 0 which requires each ck = 0 due to
the linear independence of the vk.

Lemma 12.3.6 Suppose λ is an eigenvalue for an n×n matrix. Then the dimension of the
generalized eigenspace for λ equals the algebraic multiplicity of λ1 as a root of the character-
istic equation. If the algebraic multiplicity of the eigenvalue as a root of the characteristic
equation equals the dimension of the eigenspace, then the eigenspace equals the generalized
eigenspace.

Proof: By Corollary 11.4.4 on Page 201 there exists an invertible matrix, S such that

S−1AS = T =




T1 0 · · · 0

0
. . .

...
... Tr−1 0
0 · · · 0 Tr
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where the only eigenvalue of Tk is λk and the dimension of the generalized eigenspace for
λk equals mk where Tk is an mk × mk matrix. However, the algebraic multiplicity of λk

is also equal to mk because both T and A have the same characteristic equation and the
characteristic equation for T is of the form

∏r
i=1 (λ− λk)mk . This proves the first part of

the lemma. The second follows immediately because the eigenspace is a subspace of the
generalized eigenspace and so if they have the same dimension, they must be equal.1

Theorem 12.3.7 Suppose for all λ an eigenvalue of A either |λ| < 1 or λ = 1 and that the
dimension of the eigenspace for λ = 1 equals the algebraic multiplicity of 1 as an eigenvalue
of A. Then limp→∞Ap exists2. If for all eigenvalues, λ, it is the case that |λ| < 1, then
limp→∞Ap = 0.

Proof: From Corollary 11.4.4 on Page 201 there exists an invertible matrix, S such that

S−1AS = T =




T1 0 · · · 0

0
. . .

...
... Tr−1 0
0 · · · 0 Tr




(12.4)

where T1 has only 1 on the main diagonal and the matrices, Tk, have only λk on the main
diagonal where |λk| < 1. Letting m1 denote the size of T1, it follows the multiplicity of 1 as
an eigenvalue equals m1 and it is assumed the dimension of ker (A− I) equals m1. From the
assumption, there exist m1 linearly independent eigenvectors of A corresponding to λ = 1.
Therefore, there exist m1 linearly independent eigenvectors for T corresponding to λ = 1.
If v is one of these eigenvectors, then

v =




a1

a2

...
ar




where the ak are conformable with the matrices Tk. Therefore,

Tv =




a1

λ2a2

...
λrar


 = 1




a1

a2

...
ar




and so v must actually be of the form

v =




a1

0
...
0


 .

It follows there exists a basis of eigenvectors for the matrix T1 in Cm1 , {u1, · · ·,um1} .
Define the m1 ×m1 matrix, M by

M =
(

u1 · · · um1

)

1Any basis for the eigenspace must be a basis for the generalized eigenspace because if not, you could
include a vector from the generalized eigenspace which is not in the eigenspace and the resulting list would
be linearly independent, showing the dimension of the generalized eigenspace is larger than the dimension
of the eigenspace contrary to the assertion that the two have the same dimension.

2The converse of this theorem also is true. You should try to prove the converse.
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where the uk are the columns of this matrix. Then

M−1T1M = M−1
(

T1u1 · · · T1um1

)

= M−1
(

u1 · · · um1

)
= M−1M = I.

Now let P denote the block matrix given as

P =




M 0 · · · 0

0
. . . . . .

...
...

. . . I 0
0 · · · 0 I




so that

P−1 =




M−1 0 · · · 0

0
. . . . . .

...
...

. . . I 0
0 · · · 0 I




and let S denote the n × n matrix such that S−1AS = T. Then P−1S−1ASP must be of
the form

P−1S−1ASP = (SP )−1
ASP =

G =




I 0 · · · 0

0
. . . . . .

...
...

. . . Tr−1 0
0 · · · 0 Tr




.

Therefore,
Am =

(
SPG (SP )−1

)m

= SPGm (SP )−1

and by Lemma 11.4.5 on Page 203 the entries of the matrix,

Gm =




I 0 · · · 0

0
. . .

...
... Tm

r−1 0
0 · · · 0 Tm

r




converge to the entries of the matrix,

L ≡




I 0 · · · 0

0
. . . . . .

...
...

. . . 0 0
0 · · · 0 0




and so the entries of the matrix, Am converge to the entries of the matrix

SPL (SP )−1
.

The last claim also follows since in this case, the matrices, Tk in 12.4 all have diagonal
entries whose absolute values are less than 1. This proves the theorem.
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Corollary 12.3.8 Let A be an n×n matrix with the property that whenever λ is an eigen-
value of A, either |λ| < 1 or λ = 1 and the dimension of the eigenspace for λ = 1 equals
the algebraic multiplicity of 1 as an eigenvalue of A. Suppose also that a basis for the
eigenspace of λ = 1 is D1 = {u1, · · ·,um} and a basis for the generalized eigenspace for λk

with |λk| < 1 is Dk where k = 1, · · ·, r. Then letting x be any given vector, there exists a
vector, v ∈ span (D2, · · ·, Dr) and scalars, ci such that

x =
m∑

i=1

ciui + v (12.5)

and
lim

k→∞
Akx = y (12.6)

where

y =
m∑

i=1

ciui. (12.7)

Proof: The first claim follows from Corollary 11.4.3 on Page 201. By Theorem 12.3.7,
the limit in 12.6 exists and letting y be this limit, it follows

y = lim
k→∞

Ak+1x = A lim
k→∞

Akx = Ay.

Therefore, there exist constants, c′i such that

y =
m∑

i=1

c′iui.

Are these constants the same as the ci? This will be true if Akv → 0. But A has only
eigenvalues which have absolute value less than 1 on span (D2, · · ·, Dr) and so the same
is true of a matrix for A relative to the basis {D2, · · ·, Dr} . Therefore, the desired result
follows from Theorem 12.3.7.

Example 12.3.9 In the gambler’s ruin problem a gambler plays a game with someone, say
a casino, until he either wins all the other’s money or loses all of his own. A simple version
of this is as follows. Let Xk denote the amount of money the gambler has. Each time the
game is played he wins with probability p ∈ (0, 1) or loses with probability (1− p) ≡ q. In
case he wins, his money increases to Xk + 1 and if he loses, his money decreases to Xk − 1.

The transition probability matrix, P, describing this situation is as follows.



1 0 0 0 · · · 0 0
q 0 p 0 · · · 0 0

0 q 0 p · · · 0
...

0 0 q 0
. . .

... 0
...

... 0
. . . . . . p 0

0 0
... 0 q 0 p

0 0 0 0 0 0 1




(12.8)

Here the matrix is b + 1× b + 1 because the possible values of Xk are all integers from 0 up
to b. The 1 in the upper left corner corresponds to the gampler’s ruin. It involves Xk = 0
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so he has no money left. Once this state has been reached, it is not possible to ever leave
it, even if you do have a great positive attitude. This is indicated by the row of zeros to the
right of this entry the kth of which gives the probability of going from state 1 corresponding
to no money to state k3.

In this case 1 is a repeated root of the characteristic equation of multiplicity 2 and all
the other eigenvalues have absolute value less than 1. To see that this is the case, note the
characteristic polynomial is of the form

(1− λ)2 det




−λ p 0 · · · 0
q −λ p · · · 0

0 q −λ
. . .

...
... 0

. . . . . . p

0
... 0 q −λ




and the factor after (1− λ)2 has only zeros which are in absolute value less than 1. (See
Problem 4 on Page 240.) It is also obvious that both

e1 =




1
...
0


 , and en =




0
...
1




are eigenvectors which correspond to λ = 1 and so the dimension of the eigenspace equals
the multiplicity of the eigenvalue. Therefore, from Theorem 12.3.7 limn→∞ pn

ij exists for
every i, j. The case of limn→∞ pn

j1 is particularly interesting because it gives the probability
that, starting with an amount j, the gambler is eventually ruined. From Proposition 12.3.3
and 12.8,

pn
j1 = qpn−1

(j−1)1 + ppn−1
(j+1)1 for j ∈ [2, b] ,

pn
11 = 1, and pn

(b+1)1 = 0.

To simplify the notation, define Pj ≡ limn→∞ pn
j1 as the probability of ruin given the initial

fortune of the gambler equals j. Then the above simplifies to

Pj = qPj−1 + pPj+1 for j ∈ [2, b] , (12.9)
P1 = 1, and Pb+1 = 0.

Now, knowing that Pj exists, it is not too hard to find it from 12.9. This equation is
called a difference equation and there is a standard procedure for finding solutions of these.
You try a solution of the form Pj = xj and then try to find x such that things work out.
Therefore, substitute this in to the first equation of 12.9 and obtain

xj = qxj−1 + pxj+1.

Therefore,

px2 − x + q = 0

3No one will give the gambler money. This is why the only reasonable number for entries in this row to
the right of 1is 0.
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and so in case p 6= q, you can use the fact that p + q = 1 to obtain

x =
1
2p

(
1 +

√
(1− 4pq)

)
or

1
2p

(
1−

√
(1− 4pq)

)

=
1
2p

(
1 +

√
(1− 4p (1− p))

)
or

1
2p

(
1−

√
(1− 4p (1− p))

)

= 1 or
q

p
.

Now it follows that both Pj = 1 and Pj =
(

q
p

)j

satisfy the first equation of 12.9. Therefore,
anything of the form

α + β

(
q

p

)j

(12.10)

will satisfy this equation. Now find a, b such that this also satisfies the second equation of
12.9. Thus it is required that

α + β

(
q

p

)
= 1, α + β

(
q

p

)b+1

= 0

and so

β =
p

−
(

q
p

)b+1

p + q

, α = − p

−
(

q
p

)b+1

p + q

(
q

p

)b+1

.

Substituting this in to 12.10 and simplifying yields the following in the case that p 6= q.

Pj =
q−1+jpb+1−j − qb

pb − qb
. (12.11)

Next consider the case where p = q = 1/2. In this case, you can see that a solution to
12.9 is

Pj =
b + 1− j

b
. (12.12)

This last case is pretty interesting because it shows, for example that if the gambler
starts with a fortune of 1 so that he starts at state j = 2, then his probability of losing all
is b−1

b which might be quite large especially if the other player has a lot of money to begin
with. As the gambler starts with more and more money, his probability of losing everything
does decrease.

See the book by Karlin and Taylor for more on this sort of thing [9].

12.4 Exercises

1. Suppose B ∈ L (X, X) where X is a finite dimensional vector space and Bm = 0 for
some m a positive integer. Letting v ∈ X, consider the string of vectors, v, Bv,B2v, · ·
·, Bkv. Show this string of vectors is a linearly independent set if and only if Bkv 6= 0.

2. Suppose the migration matrix for three locations is



.5 0 .3

.3 .8 0

.2 .2 .7


 .

Find a comparison for the populations in the three locations after a long time.
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3. For any n×n matrix, why is the dimension of the eigenspace always less than or equal
to the algebraic multiplicity of the eigenvalue as a root of the characteristic equation?
Hint: See the proof of Theorem 12.3.7. Note the algebraic multiplicity is the size of
the appropriate block in the matrix, T and that the eigenvectors of T must have a
certain simple form as in the proof of that theorem.

4. Consider the following m×m matrix in which p+ q = 1 and both p and q are positive
numbers. 



0 p 0 · · · 0
q 0 p · · · 0

0 q 0
. . .

...
... 0

. . . . . . p

0
... 0 q 0




Show if x =(x1, · · ·, xm) is an eigenvector, then the |xi| cannot be constant. Using this
show that if µ is an eigenvalue, it must be the case that |µ| < 1. Hint: To verify the
first part of this, use Gerschgorin’s theorem to observe that if λ is an eigenvalue, |λ| ≤
1. To verify this last part, there must exist i such that |xi| = max {|xj | : j = 1, · · ·,m}
and either |xi−1| < |xi| or |xi+1| < |xi| . Then consider what it means to say that
Ax = µx.



Inner Product Spaces

The usual example of an inner product space is Cn or Rn with the dot product. However,
there are many other inner product spaces and the topic is of such importance that it seems
appropriate to discuss the general theory of these spaces.

Definition 13.0.1 A vector space X is said to be a normed linear space if there exists a
function, denoted by |·| : X → [0,∞) which satisfies the following axioms.

1. |x| ≥ 0 for all x ∈ X, and |x| = 0 if and only if x = 0.

2. |ax| = |a| |x| for all a ∈ F.
3. |x + y| ≤ |x|+ |y| .

The notation ||x|| is also often used. Not all norms are created equal. There are many
geometric properties which they may or may not possess. There is also a concept called an
inner product which is discussed next. It turns out that the best norms come from an inner
product.

Definition 13.0.2 A mapping (·, ·) : V × V → F is called an inner product if it satisfies
the following axioms.

1. (x, y) = (y, x).

2. (x, x) ≥ 0 for all x ∈ V and equals zero if and only if x = 0.

3. (ax + by, z) = a (x, z) + b (y, z) whenever a, b ∈ F.

Note that 2 and 3 imply (x, ay + bz) = a(x, y) + b(x, z).
Then a norm is given by

(x, x)1/2 ≡ |x| .
It remains to verify this really is a norm.

Definition 13.0.3 A normed linear space in which the norm comes from an inner product
as just described is called an inner product space.

Example 13.0.4 Let V = Cn with the inner product given by

(x,y) ≡
n∑

k=1

xkyk.

This is an example of a complex inner product space already discussed.

241
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Example 13.0.5 Let V = Rn,

(x,y) = x · y ≡
n∑

j=1

xjyj .

This is an example of a real inner product space.

Example 13.0.6 Let V be any finite dimensional vector space and let {v1, · · ·, vn} be a
basis. Decree that

(vi, vj) ≡ δij ≡
{

1 if i = j
0 if i 6= j

and define the inner product by

(x, y) ≡
n∑

i=1

xiyi

where

x =
n∑

i=1

xivi, y =
n∑

i=1

yivi.

The above is well defined because {v1, · · ·, vn} is a basis. Thus the components, xi

associated with any given x ∈ V are uniquely determined.
This example shows there is no loss of generality when studying finite dimensional vector

spaces in assuming the vector space is actually an inner product space. The following
theorem was presented earlier with slightly different notation.

Theorem 13.0.7 (Cauchy Schwarz) In any inner product space

|(x, y)| ≤ |x||y|.

where |x| ≡ (x, x)1/2.

Proof: Let ω ∈ C, |ω| = 1, and ω(x, y) = |(x, y)| = Re(x, yω). Let

F (t) = (x + tyω, x + tωy).

If y = 0 there is nothing to prove because

(x, 0) = (x, 0 + 0) = (x, 0) + (x, 0)

and so (x, 0) = 0. Thus, there is no loss of generality in assuming y 6= 0. Then from the
axioms of the inner product,

F (t) = |x|2 + 2t Re(x, ωy) + t2|y|2 ≥ 0.

This yields
|x|2 + 2t|(x, y)|+ t2|y|2 ≥ 0.

Since this inequality holds for all t ∈ R, it follows from the quadratic formula that

4|(x, y)|2 − 4|x|2|y|2 ≤ 0.

This yields the conclusion and proves the theorem.
Earlier it was claimed that the inner product defines a norm. In this next proposition

this claim is proved.



243

Proposition 13.0.8 For an inner product space, |x| ≡ (x, x)1/2 does specify a norm.

Proof: All the axioms are obvious except the triangle inequality. To verify this,

|x + y|2 ≡ (x + y, x + y) ≡ |x|2 + |y|2 + 2 Re (x, y)

≤ |x|2 + |y|2 + 2 |(x, y)|
≤ |x|2 + |y|2 + 2 |x| |y| = (|x|+ |y|)2.

The best norms of all are those which come from an inner product because of the following
identity which is known as the parallelogram identity.

Proposition 13.0.9 If (V, (·, ·)) is an inner product space then for |x| ≡ (x, x)1/2
, the

following identity holds.

|x + y|2 + |x− y|2 = 2 |x|2 + 2 |y|2 .

It turns out that the validity of this identity is equivalent to the existence of an inner
product which determines the norm as described above. These sorts of considerations are
topics for more advanced courses on functional analysis.

Definition 13.0.10 A basis for an inner product space, {u1, · · ·, un} is an orthonormal
basis if

(uk, uj) = δkj ≡
{

1 if k = j
0 if k 6= j

.

Note that if a list of vectors satisfies the above condition for being an orthonormal set,
then the list of vectors is automatically linearly independent. To see this, suppose

n∑

j=1

cjuj = 0

Then taking the inner product of both sides with uk,

0 =
n∑

j=1

cj (uj , uk) =
n∑

j=1

cjδjk = ck.

Lemma 13.0.11 Let X be a finite dimensional inner product space of dimension n whose
basis is {x1, · · ·, xn} . Then there exists an orthonormal basis for X, {u1, · · ·, un} which has
the property that for each k ≤ n, span(x1, · · ·, xk) = span (u1, · · ·, uk) .

Proof: Let {x1, · · ·, xn} be a basis for X. Let u1 ≡ x1/ |x1| . Thus for k = 1, span (u1) =
span (x1) and {u1} is an orthonormal set. Now suppose for some k < n, u1, · · ·, uk have
been chosen such that (uj , ul) = δjl and span (x1, · · ·, xk) = span (u1, · · ·, uk). Then define

uk+1 ≡
xk+1 −

∑k
j=1 (xk+1, uj)uj∣∣∣xk+1 −

∑k
j=1 (xk+1, uj)uj

∣∣∣
, (13.1)

where the denominator is not equal to zero because the xj form a basis and so

xk+1 /∈ span (x1, · · ·, xk) = span (u1, · · ·, uk)

Thus by induction,

uk+1 ∈ span (u1, · · ·, uk, xk+1) = span (x1, · · ·, xk, xk+1) .
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Also, xk+1 ∈ span (u1, · · ·, uk, uk+1) which is seen easily by solving 13.1 for xk+1 and it
follows

span (x1, · · ·, xk, xk+1) = span (u1, · · ·, uk, uk+1) .

If l ≤ k,

(uk+1, ul) = C


(xk+1, ul)−

k∑

j=1

(xk+1, uj) (uj , ul)




= C


(xk+1, ul)−

k∑

j=1

(xk+1, uj) δlj




= C ((xk+1, ul)− (xk+1, ul)) = 0.

The vectors, {uj}n
j=1 , generated in this way are therefore an orthonormal basis because

each vector has unit length.
The process by which these vectors were generated is called the Gram Schmidt process.

Lemma 13.0.12 Suppose {uj}n
j=1 is an orthonormal basis for an inner product space X.

Then for all x ∈ X,

x =
n∑

j=1

(x, uj)uj .

Proof: By assumption that this is an orthonormal basis,

n∑

j=1

(x, uj)

δjl︷ ︸︸ ︷
(uj , ul) = (x, ul) .

Letting y =
∑n

k=1 (x, uk)uk, it follows

(x− y, uj) = (x, uj)−
n∑

k=1

(x, uk) (uk, uj)

= (x, uj)− (x, uj) = 0

for all j. Hence, for any choice of scalars, c1, · · ·, cn,


x− y,

n∑

j=1

cjuj


 = 0

and so (x− y, z) = 0 for all z ∈ X. Thus this holds in particular for z = x− y. Therefore, x
= y and this proves the theorem.

The following theorem is of fundamental importance. First note that a subspace of an
inner product space is also an inner product space because you can use the same inner
product.

Theorem 13.0.13 Let M be a subspace of X, a finite dimensional inner product space and
let {xi}m

i=1 be an orthonormal basis for M . Then if y ∈ X and w ∈ M,

|y − w|2 = inf
{
|y − z|2 : z ∈ M

}
(13.2)
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if and only if
(y − w, z) = 0 (13.3)

for all z ∈ M. Furthermore,

w =
m∑

i=1

(y, xi)xi (13.4)

is the unique element of M which has this property.

Proof: Let t ∈ R. Then from the properties of the inner product,

|y − (w + t (z − w))|2 = |y − w|2 + 2tRe (y − w, w − z) + t2 |z − w|2 . (13.5)

If (y − w, z) = 0 for all z ∈ M, then letting t = 1, the middle term in the above expression
vanishes and so |y − z|2 is minimized when z = w.

Conversely, if 13.2 holds, then the middle term of 13.5 must also vanish since otherwise,
you could choose small real t such that

|y − w|2 > |y − (w + t (z − w))|2 .

Here is why. If Re (y − w, w − z) < 0, then let t be very small and positive. The middle
term in 13.5 will then be more negative than the last term is positive and the right side of
this formula will then be less than |y − w|2. If Re (y − w,w − z) > 0 then choose t small
and negative to achieve the same result.

It follows, letting z1 = w − z that

Re (y − w, z1) = 0

for all z1 ∈ M. Now letting ω ∈ C be such that ω (y − w, z1) = |(y − w, z1)| ,

|(y − w, z1)| = (y − w, ωz1) = Re (y − w, ωz1) = 0,

which proves the first part of the theorem since z1 is arbitrary.
It only remains to verify that w given in 13.4 satisfies 13.3 and is the only point of M

which does so. To do this, note that if ci, di are scalars, then the properties of the inner
product and the fact the {xi} are orthonormal implies




m∑

i=1

cixi,

m∑

j=1

djxj


 =

∑

i

cidi.

By Lemma 13.0.12,
z =

∑

i

(z, xi)xi

and so (
y −

m∑

i=1

(y, xi) xi, z

)
=

(
y −

m∑

i=1

(y, xi)xi,

m∑

i=1

(z, xi) xi

)

=
m∑

i=1

(z, xi) (y, xi)−



m∑

i=1

(y, xi)xi,

m∑

j=1

(z, xj)xj




=
m∑

i=1

(z, xi) (y, xi)−
m∑

i=1

(y, xi) (z, xi) = 0.
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This shows w given in 13.4 does minimize the function, z → |y − z|2 for z ∈ M. It only
remains to verify uniqueness. Suppose than that wi, i = 1, 2 minimizes this function of z
for z ∈ M. Then from what was shown above,

|y − w1|2 = |y − w2 + w2 − w1|2
= |y − w2|2 + 2Re (y − w2, w2 − w1) + |w2 − w1|2
= |y − w2|2 + |w2 − w1|2 ≤ |y − w2|2 ,

the last equal sign holding because w2 is a minimizer and the last inequality holding because
w1 minimizes.

The next theorem is one of the most important results in the theory of inner product
spaces. It is called the Riesz representation theorem.

Theorem 13.0.14 Let f ∈ L (X,F) where X is an inner product space of dimension n.
Then there exists a unique z ∈ X such that for all x ∈ X,

f (x) = (x, z) .

Proof: First I will verify uniqueness. Suppose zj works for j = 1, 2. Then for all x ∈ X,

0 = f (x)− f (x) = (x, z1 − z2)

and so z1 = z2.
It remains to verify existence. By Lemma 13.0.11, there exists an orthonormal basis,

{uj}n
j=1 . Define

z ≡
n∑

j=1

f (uj)uj .

Then using Lemma 13.0.12,

(x, z) =


x,

n∑

j=1

f (uj)uj


 =

n∑

j=1

f (uj) (x, uj)

= f




n∑

j=1

(x, uj)uj


 = f (x) .

This proves the theorem.

Corollary 13.0.15 Let A ∈ L (X,Y ) where X and Y are two inner product spaces of finite
dimension. Then there exists a unique A∗ ∈ L (Y,X) such that

(Ax, y)Y = (x,A∗y)X (13.6)

for all x ∈ X and y ∈ Y. The following formula holds

(αA + βB)∗ = αA∗ + βB∗

Proof: Let fy ∈ L (X,F) be defined as

fy (x) ≡ (Ax, y)Y .

Then by the Riesz representation theorem, there exists a unique element of X, A∗ (y) such
that

(Ax, y)Y = (x, A∗ (y))X .
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It only remains to verify that A∗ is linear. Let a and b be scalars. Then for all x ∈ X,

(x,A∗ (ay1 + by2))X ≡ a (Ax, y1) + b (Ax, y2)

a (x,A∗ (y1)) + b (x,A∗ (y2)) = (x, aA∗ (y1) + bA∗ (y2)) .

By uniqueness, A∗ (ay1 + by2) = aA∗ (y1) + bA∗ (y2) which shows A∗ is linear as claimed.
The last assertion about the map which sends a linear transformation, A to A∗follows from

(x, A∗y + A∗y) = (Ax, y) + (Bx, y) = ((A + B)x, y) ≡ (
x, (A + B)∗ y

)

and for α a scalar,
(
x, (αA)∗ y

)
= (αAx, y) = α (x,A∗y) = (x, αA∗y) .

This proves the corollary.
The linear map, A∗ is called the adjoint of A. In the case when A : X → X and A = A∗,

A is called a self adjoint map.

Theorem 13.0.16 Let M be an m× n matrix. Then M∗ =
(
M

)T
in words, the transpose

of the conjugate of M is equal to the adjoint.

Proof: Using the definition of the inner product in Cn,

(Mx,y) = (x,M∗y) ≡
∑

i

xi

∑

j

(M∗)ij yj =
∑

i,j

xi(M∗)ijyj .

Also
(Mx,y) =

∑

j

∑

i

Mjixiyj .

Since x,y are arbitrary vectors, it follows that Mji = (M∗)ij and so, taking conjugates of
both sides,

M∗
ij = Mji

which gives the conclusion of the theorem.
The next theorem is interesting.

Theorem 13.0.17 Suppose V is a subspace of Fn having dimension p ≤ n. Then there
exists a Q ∈ L (Fn,Fn) such that QV ⊆ Fp and |Qx| = |x| for all x. Also

Q∗Q = QQ∗ = I.

Proof: By Lemma 13.0.11 there exists an orthonormal basis for V, {vi}p
i=1 . By using the

Gram Schmidt process this may be extended to an orthonormal basis of the whole space,
Fn,

{v1, · · ·,vp,vp+1, · · ·,vn} .

Now define Q ∈ L (Fn,Fn) by Q (vi) ≡ ei and extend linearly. If
∑n

i=1 xivi is an arbitrary
element of Fn,

∣∣∣∣∣Q
(

n∑

i=1

xivi

)∣∣∣∣∣

2

=

∣∣∣∣∣
n∑

i=1

xiei

∣∣∣∣∣

2

=
n∑

i=1

|xi|2 =

∣∣∣∣∣
n∑

i=1

xivi

∣∣∣∣∣

2

.

It remains to verify that Q∗Q = QQ∗ = I. To do so, let x,y ∈ Fp. Then

(Q (x + y) , Q (x + y)) = (x + y,x + y) .
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Thus
|Qx|2 + |Qy|2 + 2 Re (Qx,Qy) = |x|2 + |y|2 + 2Re (x,y)

and since Q preserves norms, it follows that for all x,y ∈ Fn,

Re (Qx,Qy) = Re (x,Q∗Qy) = Re (x,y) .

Therefore, since this holds for all x, it follows that Q∗Qy = y showing Q∗Q = I. Now

Q = Q (Q∗Q) = (QQ∗)Q.

Since Q is one to one, this implies
I = QQ∗

and proves the theorem.

Definition 13.0.18 Let X and Y be inner product spaces and let x ∈ X and y ∈ Y. Define
the tensor product of these two vectors, y ⊗ x, an element of L (X, Y ) by

y ⊗ x (u) ≡ y (u, x)X .

This is also called a rank one transformation because the image of this transformation is
contained in the span of the vector, y.

The verification that this is a linear map is left to you. Be sure to verify this! The
following lemma has some of the most important properties of this linear transformation.

Lemma 13.0.19 Let X,Y, Z be inner product spaces. Then for α a scalar,

(α (y ⊗ x))∗ = αx⊗ y (13.7)

(z ⊗ y1) (y2 ⊗ x) = (y2, y1) z ⊗ x (13.8)

Proof: Let u ∈ X and v ∈ Y. Then

(α (y ⊗ x) u, v) = (α (u, x) y, v) = α (u, x) (y, v)

and
(u, αx⊗ y (v)) = (u, α (v, y) x) = α (y, v) (u, x) .

Therefore, this verifies 13.7.
To verify 13.8, let u ∈ X.

(z ⊗ y1) (y2 ⊗ x) (u) = (u, x) (z ⊗ y1) (y2) = (u, x) (y2, y1) z

and
(y2, y1) z ⊗ x (u) = (y2, y1) (u, x) z.

Since the two linear transformations on both sides of 13.8 give the same answer for every
u ∈ X, it follows the two transformations are the same. This proves the lemma.

Definition 13.0.20 Let X, Y be two vector spaces. Then define for A,B ∈ L (X, Y ) and
α ∈ F, new elements of L (X, Y ) denoted by A + B and αA as follows.

(A + B) (x) ≡ Ax + Bx, (αA)x ≡ α (Ax) .
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Theorem 13.0.21 Let X and Y be finite dimensional inner product spaces. Then L (X, Y )
is a vector space with the above definition of what it means to multiply by a scalar and add.
Let {v1, · · ·, vn} be an orthonormal basis for X and {w1, · · ·, wm} be an orthonormal basis
for Y. Then a basis for L (X, Y ) is {vi ⊗ wj : i = 1, · · ·, n, j = 1, · · ·,m} .

Proof: It is obvious that L (X, Y ) is a vector space. It remains to verify the given set
is a basis. Consider the following:





A−

∑

k,l

(Avk, wl)wl ⊗ vk


 vp, wr


 = (Avp, wr)−

∑

k,l

(Avk, wl) (vp, vk) (wl, wr)

= (Avp, wr)−
∑

k,l

(Avk, wl) δpkδrl

= (Avp, wr)− (Avp, wr) = 0.

Letting A −∑
k,l (Avk, wl)wl ⊗ vk = B, this shows that Bvp = 0 since wr is an arbitrary

element of the basis for Y. Since vp is an arbitrary element of the basis for X, it follows
B = 0 as hoped. This has shown {vi ⊗ wj : i = 1, · · ·, n, j = 1, · · ·,m} spans L (X, Y ) .

It only remains to verify the vi ⊗ wj are linearly independent. Suppose then that
∑

i,j

cijvi ⊗ wj = 0

Then,

0 =


vs,

∑

i,j

cijvi ⊗ wj (wr)


 =


vs,

∑

i,j

cijvi (wr, wj)




=
∑

i,j

(vs, cijvi) (wr, wj) =
∑

i,j

cijδsiδrj = csr

showing all the coefficients equal zero. This proves independence.
Note this shows the dimension of L (X,Y ) = nm. The theorem is also of enormous

importance because it shows you can always consider an arbitrary linear transformation as
a sum of rank one transformations whose properties are easily understood. The following
theorem is also of great interest.

Theorem 13.0.22 Let A =
∑

i,j cijwi ⊗ vj ∈ L (X, Y ) where as before, the vectors, {wi}
are an orthonormal basis for Y and the vectors, {vj} are an orthonormal basis for X. Then
if the matrix of A has components, Mij , it follows that Mij = cij .

Proof: Recall the diagram which describes what the matrix of a linear transformation
is.

{v1, · · ·, vn} X A−→ Y {w1, · · ·, wm}
qV ↑ ◦ ↑ qW

Fn M−→ Fm

Thus, multiplication by the matrix, M followed by the map, qW is the same as qV followed
by the linear transformation, A. Denoting by Mij the components of the matrix, M, and
letting x = (x1, · · ·, xn) ∈ Fn,

∑

i

wi

∑

j

Mijxj = A

(∑

k

xkvk

)
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=
∑

i,j

∑

k

cijxkδkjwi =
∑

i

wi

∑

j

cijxj .

It follows from the linear independence of the wi that for any x ∈ Fn,
∑

j

Mijxj =
∑

j

cijxj

which establishes the theorem.

13.1 Least squares

A common problem in experimental work is to find a straight line which approximates as
well as possible a collection of points in the plane {(xi, yi)}p

i=1. The usual way of dealing
with these problems is by the method of least squares and it turns out that all these sorts
of approximation problems can be reduced to Ax = b where the problem is to find the best
x for solving this equation even when there is no solution.

Lemma 13.1.1 Let V and W be finite dimensional inner product spaces and let A : V → W
be linear. For each y ∈ W there exists x ∈ V such that

|Ax− y| ≤ |Ax1 − y|
for all x1 ∈ V. Also, x ∈ V is a solution to this minimization problem if and only if x is a
solution to the equation, A∗Ax = A∗y.

Proof: By Theorem 13.0.13 on Page 244 there exists a point, Ax0, in the finite dimen-
sional subspace, A (V ) , of W such that for all x ∈ V, |Ax− y|2 ≥ |Ax0 − y|2 . Also, from
this theorem, this happens if and only if Ax0 − y is perpendicular to every Ax ∈ A (V ) .
Therefore, the solution is characterized by (Ax0 − y, Ax) = 0 for all x ∈ V which is the
same as saying (A∗Ax0 −A∗y, x) = 0 for all x ∈ V. In other words the solution is obtained
by solving A∗Ax0 = A∗y for x0.

Consider the problem of finding the least squares regression line in statistics. Suppose
you have given points in the plane, {(xi, yi)}n

i=1 and you would like to find constants m
and b such that the line y = mx + b goes through all these points. Of course this will be
impossible in general. Therefore, try to find m, b such that you do the best you can to solve
the system 


y1

...
yn


 =




x1 1
...

...
xn 1




(
m
b

)

which is of the form y = Ax. In other words try to make

∣∣∣∣∣∣∣
A

(
m
b

)
−




y1

...
yn




∣∣∣∣∣∣∣

2

as small

as possible. According to what was just shown, it is desired to solve the following for m and
b.

A∗A
(

m
b

)
= A∗




y1

...
yn


 .

Since A∗ = AT in this case,
( ∑n

i=1 x2
i

∑n
i=1 xi∑n

i=1 xi n

)(
m
b

)
=

( ∑n
i=1 xiyi∑n
i=1 yi

)
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Solving this system of equations for m and b,

m =
− (

∑n
i=1 xi) (

∑n
i=1 yi) + (

∑n
i=1 xiyi) n

(
∑n

i=1 x2
i )n− (

∑n
i=1 xi)

2

and

b =
− (

∑n
i=1 xi)

∑n
i=1 xiyi + (

∑n
i=1 yi)

∑n
i=1 x2

i

(
∑n

i=1 x2
i ) n− (

∑n
i=1 xi)

2 .

One could clearly do a least squares fit for curves of the form y = ax2 + bx + c in the
same way. In this case you solve as well as possible for a, b, and c the system




x2
1 x1 1
...

...
...

x2
n xn 1







a
b
c


 =




y1

...
yn




using the same techniques.

Definition 13.1.2 Let S be a subset of an inner product space, X. Define

S⊥ ≡ {x ∈ X : (x, s) = 0 for all s ∈ S} .

The following theorem also follows from the above lemma. It is sometimes called the
Fredholm alternative.

Theorem 13.1.3 Let A : V → W where A is linear and V and W are inner product spaces.
Then A (V ) = ker (A∗)⊥ .

Proof: Let y = Ax so y ∈ A (V ) . Then if A∗z = 0,

(y, z) = (Ax, z) = (x,A∗z) = 0

showing that y ∈ ker (A∗)⊥ . Thus A (V ) ⊆ ker (A∗)⊥ .

Now suppose y ∈ ker (A∗)⊥ . Does there exists x such that Ax = y? Since this might not
be imediately clear, take the least squares solution to the problem. Thus let x be a solution
to A∗Ax = A∗y. It follows A∗ (y −Ax) = 0 and so y−Ax ∈ ker (A∗) which implies from the
assumption about y that (y −Ax, y) = 0. Also, since Ax is the closest point to y in A (V ) ,
Theorem 13.0.13 on Page 244 implies that (y −Ax,Ax1) = 0 for all x1 ∈ V. In particular
this is true for x1 = x and so 0 = (y −Ax, y) − (y −Ax, Ax) = |y −Ax|2 , showing that
y = Ax. Thus A (V ) ⊇ ker (A∗)⊥ and this proves the Theorem.

Corollary 13.1.4 Let A, V, and W be as described above. If the only solution to A∗y = 0
is y = 0, then A is onto W.

Proof: If the only solution to A∗y = 0 is y = 0, then ker (A∗) = {0} and so every vector
from W is contained in ker (A∗)⊥ and by the above theorem, this shows A (V ) = W.

13.2 Exercises

1. Find the best solution to the system

x + 2y = 6
2x− y = 5
3x + 2y = 0
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2. Suppose you are given the data, (1, 2) , (2, 4) , (3, 8) , (0, 0) . Find the linear regression
line using your formulas derived above. Then graph your data along with your regres-
sion line.

3. Generalize the least squares procedure to the situation in which data is given and you
desire to fit it with an expression of the form y = af (x)+bg (x)+c where the problem
would be to find a, b and c in order to minimize the error. Could this be generalized
to higher dimensions? How about more functions?

4. Let A ∈ L (X, Y ) where X and Y are finite dimensional vector spaces with the dimen-
sion of X equal to n. Define rank (A) ≡ dim (A (X)) and nullity(A) ≡ dim (ker (A)) .
Show that nullity(A) + rank (A) = dim (X) . Hint: Let {xi}r

i=1 be a basis for ker (A)
and let {xi}r

i=1 ∪ {yi}n−r
i=1 be a basis for X. Then show that {Ayi}n−r

i=1 is linearly
independent and spans AX.

5. Let A be an m×n matrix. Show the column rank of A equals the column rank of A∗A.
Next verify column rank of A∗A is no larger than column rank of A∗. Next justify the
following inequality to conclude the column rank of A equals the column rank of A∗.

rank (A) = rank (A∗A) ≤ rank (A∗) ≤
= rank (AA∗) ≤ rank (A) .

Hint: Start with an orthonormal basis, {Axj}r
j=1 of A (Fn) and verify {A∗Axj}r

j=1

is a basis for A∗A (Fn) .

13.3 The Determinant And Volume

The determinant is the essential algebraic tool which provides a way to give a unified treat-
ment of the concept of volume. With the above preparation the concept of volume is
considered in this section. The following lemma is not hard to obtain from earlier topics.

Lemma 13.3.1 Suppose A is an m × n matrix where m > n. Then A does not map Rn

onto Rm.

Proof: First note that A (Rn) has dimension no more than n because a spanning set is
{Ae1, · · ·, Aen} and so it can’t possibly include all of Rm if m > n because the dimension
of Rm = m. This proves the lemma. Here is another proof which uses determinants.

Suppose A did map Rn onto Rm. Then consider the m×m matrix,

A1 ≡
(

A 0
)

where 0 refers to an n × (m− n) matrix. Thus A1 cannot be onto Rm because it has at
least one column of zeros and so its determinant equals zero. However, if y ∈ Rm and A is
onto, then there exists x ∈ Rn such that Ax = y. Then

A1

(
x
0

)
= Ax + 0 = Ax = y.

Since y was arbitrary, it follows A1 would have to be onto.
The following proposition is a special case of the exchange theorem but I will give a

different proof based on the above lemma.

Proposition 13.3.2 Suppose {v1, · · ·,vp} are vectors in Rn and span {v1, · · ·,vp} = Rn.
Then p ≥ n.
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Proof: Define a linear transformation from Rp to Rn as follows.

Ax ≡
p∑

i=1

xivi.

(Why is this a linear transformation?) Thus A (Rp) = span {v1, · · ·,vp} = Rn. Then from
the above lemma, p ≥ n since if this is not so, A could not be onto.

Proposition 13.3.3 Suppose {v1, · · ·,vp} are vectors in Rn such that p < n. Then there
exist at least n−p vectors, {wp+1, · · ·,wn} such that wi ·wj = δij and wk ·vj = 0 for every
j = 1, · · ·,vp.

Proof: Let A : Rp → span {v1, · · ·,vp} be defined as in the above proposition so that
A (Rp) = span (v1, · · ·,vp) . Since p < n there exists zp+1 /∈ A (Rp) . Then by Theorem
13.0.13 on Page 244 applied to the subspace A (Rn) there exists xp+1 such that

(zp+1 − xp+1, Ay) = 0

for all y ∈ Rp. Let wp+1 ≡ (zp+1 − xp+1) / |zp+1 − xp+1| . Now if p + 1 = n, stop. {wp+1}
is the desired list of vectors. Otherwise, do for span {v1, · · ·,vp,wp+1} what was done
for span {v1, · · ·,vp} using Rp+1 instead of Rp and obtain wp+2 in this way such that
wp+2 ·wp+1 = 0 and wp+2 · vk = 0 for all k. Continue till a list of n− p vectors have been
found.

Recall the geometric definition of the cross product of two vectors found on Page 41.
As explained there, the magnitude of the cross product of two vectors was the area of the
parallelogram determined by the two vectors. There was also a coordinate description of the
cross product. In terms of the notation of Proposition 4.5.4 on Page 50 the ith coordinate
of the cross product is given by

εijkujvk

where the two vectors are (u1, u2, u3) and (v1, v2, v3) . Therefore, using the reduction identity
of Lemma 4.5.3 on Page 50

|u× v|2 = εijkujvkεirsurvs

= (δjrδks − δkrδjs)ujvkurvs

= ujvkujvk − ujvkukvj

= (u · u) (v · v)− (u · v)2

which equals

det
(

u · u u · v
u · v v · v

)
.

Now recall the box product and how the box product was ± the volume of the parallelepiped
spanned by the three vectors. From the definition of the box product

u× v ·w =

∣∣∣∣∣∣

i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
· (w1i + w2j + w3k)

= det




w1 w2 w3

u1 u2 u3

v1 v2 v3


 .
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Therefore,

|u× v ·w|2 = det




w1 w2 w3

u1 u2 u3

v1 v2 v3




2

which from the theory of determinants equals

det




u1 u2 u3

v1 v2 v3

w1 w2 w3


det




u1 v1 w1

u2 v2 w2

u3 v3 w3


 =

det







u1 u2 u3

v1 v2 v3

w1 w2 w3







u1 v1 w1

u2 v2 w2

u3 v3 w3





 =

det




u2
1 + u2

2 + u2
3 u1v1 + u2v2 + u3v3 u1w1 + u2w2 + u3w3

u1v1 + u2v2 + u3v3 v2
1 + v2

2 + v2
3 v1w1 + v2w2 + v3w3

u1w1 + u2w2 + u3w3 v1w1 + v2w2 + v3w3 w2
1 + w2

2 + w2
3




= det




u · u u · v u ·w
u · v v · v v ·w
u ·w v ·w w ·w




You see there is a definite pattern emerging here. These earlier cases were for a parallelepiped
determined by either two or three vectors in R3. It makes sense to speak of a parallelepiped
in any number of dimensions.

Definition 13.3.4 Let u1, · · ·,up be vectors in Rk. The parallelepiped determined by these
vectors will be denoted by P (u1, · · ·,up) and it is defined as

P (u1, · · ·,up) ≡




p∑

j=1

sjuj : sj ∈ [0, 1]



 .

The volume of this parallelepiped is defined as

volume of P (u1, · · ·,up) ≡ (det (ui · uj))
1/2

.

In this definition, ui ·uj is the ijth entry of a p×p matrix. Note this definition agrees with
all earlier notions of area and volume for parallelepipeds and it makes sense in any number
of dimensions. However, it is important to verify the above determinant is nonnegative.
After all, the above definition requires a square root of this determinant.

Lemma 13.3.5 Let u1, · · ·,up be vectors in Rk for some k. Then det (ui · uj) ≥ 0.

Proof: Recall v ·w = vT w. Therefore, in terms of matrix multiplication, the matrix
(ui · uj) is just the following

p×k︷ ︸︸ ︷


uT
1
...

uT
p




k×p︷ ︸︸ ︷(
u1 · · · up

)

which is of the form
UT U.
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First it is necessary to show det
(
UT U

) ≥ 0. If U were a square matrix, this would be
imediate but it isn’t. However, by Proposition 13.3.3 there are vectors, wp+1, · · ·,wk such
that wi ·wj = δij and for all i = 1, · · ·, p, and l = p + 1, · · ·, n, wl · ui = 0. Then consider

U1 = (u1, · · ·,up,wp+1, · · ·,wk) ≡ (
U W

)

where WT W = I. Then

UT
1 U1 =

(
UT

WT

) (
U W

)
=

(
UT U 0

0 I

)
. (Why?)

Now using the cofactor expansion method, this last k × k matrix has determinant equal
to det

(
UT U

)
(Why?) On the other hand this equals det

(
UT

1 U1

)
= det (U1) det

(
UT

1

)
=

det (U1)
2 ≥ 0.

In the case where k < p, UT U has the form WWT where W = UT has more rows than
columns. Thus you can define the p× p matrix,

W1 ≡
(

W 0
)
,

and in this case,

0 = det W1W
T
1 = det

(
W 0

)(
WT

0

)
= det WWT = det UT U.

This proves the lemma and shows the definition of volume is well defined.
Note it gives the right answer in the case where all the vectors are perpendicular. Here

is why. Suppose {u1, · · ·,up} are vectors which have the property that ui · uj = 0 if i 6= j.
Thus P (u1, · · ·,up) is a box which has all p sides perpendicular. What should its volume
be? Shouldn’t it equal the product of the lengths of the sides? What does det (ui · uj) give?
The matrix (ui · uj) is a diagonal matrix having the squares of the magnitudes of the sides
down the diagonal. Therefore, det (ui · uj)

1/2 equals the product of the lengths of the sides
as it should. The matrix, (ui · uj) whose determinant gives the square of the volume of
the parallelepiped spanned by the vectors, {u1, · · ·,up} is called the Gramian matrix and
sometimes the metric tensor.

These considerations are of great significance because they allow the computation in a
systematic manner of k dimensional volumes of parallelepipeds which happen to be in Rn for
n 6= k. Think for example of a plane in R3 and the problem of finding the area of something
on this plane.

Example 13.3.6 Find the equation of the plane containing the three points, (1, 2, 3) , (0, 2, 1) ,
and (3, 1, 0) .

These three points determine two vectors, the one from (0, 2, 1) to (1, 2, 3) , i + 0j + 2k,
and the one from (0, 2, 1) to (3, 1, 0) , 3i + (−1) j+(−1)k. If (x, y, z) denotes a point in the
plane, then the volume of the parallelepiped spanned by the vector from (0, 2, 1) to (x, y, z)
and these other two vectors must be zero. Thus

det




x y − 2 z − 1
3 −1 −1
1 0 2


 = 0

Therefore, −2x− 7y + 13 + z = 0 is the equation of the plane. You should check it contains
all three points.
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13.4 Exercises

1. Here are three vectors in R4 : (1, 2, 0, 3)T
, (2, 1,−3, 2)T

, (0, 0, 1, 2)T . Find the volume
of the parallelepiped determined by these three vectors.

2. Here are two vectors in R4 : (1, 2, 0, 3)T
, (2, 1,−3, 2)T . Find the volume of the paral-

lelepiped determined by these two vectors.

3. Here are three vectors in R2 : (1, 2)T
, (2, 1)T

, (0, 1)T . Find the volume of the paral-
lelepiped determined by these three vectors. Recall that from the above theorem, this
should equal 0.

4. If there are n + 1 or more vectors in Rn, Lemma 13.3.5 implies the parallelepiped
determined by these n + 1 vectors must have zero volume. What is the geometric
significance of this assertion?

5. Find the equation of the plane through the three points (1, 2, 3) , (2,−3, 1) , (1, 1, 7) .



Self Adjoint Operators

14.1 Simultaneous Diagonalization

It is sometimes interesting to consider the problem of finding a single similarity transforma-
tion which will diagonalize all the matrices in some set.

Lemma 14.1.1 Let A be an n×n matrix and let B be an m×m matrix. Denote by C the
matrix,

C ≡
(

A 0
0 B

)
.

Then C is diagonalizable if and only if both A and B are diagonalizable.

Proof: Suppose S−1
A ASA = DA and S−1

B BSB = DB where DA and DB are diagonal

matrices. You should use block multiplication to verify that S ≡
(

SA 0
0 SB

)
is such that

S−1CS = DC , a diagonal matrix.
Conversely, suppose C is diagonalized by S = (s1, · · ·, sn+m) . Thus S has columns si.

For each of these columns, write in the form

si =
(

xi

yi

)

where xi ∈ Fn and where yi ∈ Fm. It follows each of the xi is an eigenvector of A and that
each of the yi is an eigenvector of B. If there are n linearly independent xi, then A is diag-
onalizable by Theorem 11.5.9 on Page 11.5.9. The row rank of the matrix, (x1, · · ·,xn+m)
must be n because if this is not so, the rank of S would be less than n + m which would
mean S−1 does not exist. Therefore, since the column rank equals the row rank, this matrix
has column rank equal to n and this means there are n linearly independent eigenvectors of
A implying that A is diagonalizable. Similar reasoning applies to B. This proves the lemma.

The following corollary follows from the same type of argument as the above.

Corollary 14.1.2 Let Ak be an nk×nk matrix and let C denote the block diagonal (
∑r

k=1 nk)×
(
∑r

k=1 nk) matrix given below.

C ≡




A1 0
. . .

0 Ar


 .

Then C is diagonalizable if and only if each Ak is diagonalizable.

257
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Definition 14.1.3 A set, F of n× n matrices is simultaneously diagonalizable if and only
if there exists a single invertible matrix, S such that S−1AS = D, a diagonal matrix for all
A ∈ F .

Lemma 14.1.4 If F is a set of n×n matrices which is simultaneously diagonalizable, then
F is a commuting family of matrices.

Proof: Let A,B ∈ F and let S be a matrix which has the property that S−1AS is a
diagonal matrix for all A ∈ F . Then S−1AS = DA and S−1BS = DB where DA and DB

are diagonal matrices. Since diagonal matrices commute,

AB = SDAS−1SDBS−1 = SDADBS−1

= SDBDAS−1 = SDBS−1SDAS−1 = BA.

Lemma 14.1.5 Let D be a diagonal matrix of the form

D ≡




λ1In1 0 · · · 0

0 λ2In1

. . .
...

...
. . . . . . 0

0 · · · 0 λrInr




, (14.1)

where Ini denotes the ni × ni identity matrix and suppose B is a matrix which commutes
with D. Then B is a block diagonal matrix of the form

B =




B1 0 · · · 0

0 B2
. . .

...
...

. . . . . . 0
0 · · · 0 Br




(14.2)

where Bi is an ni × ni matrix.

Proof: Suppose B = (bij) . Then since it is given to commute with D, λibij = bijλj .
But this shows that if λi 6= λj , then this could not occur unless bij = 0. Therefore, B must
be of the claimed form.

Lemma 14.1.6 Let F denote a commuting family of n× n matrices such that each A ∈ F
is diagonalizable. Then F is simultaneously diagonalizable.

Proof: This is proved by induction on n. If n = 1, there is nothing to prove because all
the 1× 1 matrices are already diagonal matrices. Suppose then that the theorem is true for
all k ≤ n−1 where n ≥ 2 and let F be a commuting family of diagonalizable n×n matrices.
Pick A ∈ F and let S be an invertible matrix such that S−1AS = D where D is of the form
given in 14.1. Now denote by F̃ the collection of matrices,

{
S−1BS : B ∈ F}

. It follows
easily that F̃ is also a commuting family of diagonalizable matrices. By Lemma 14.1.5 every
B ∈ F̃ is of the form given in 14.2 and by block multiplication, the Bi corresponding to
different B ∈ F̃ commute. Therefore, by the induction hypothesis, the knowledge that each
B ∈ F̃ is diagonalizable, and Corollary 14.1.2, there exist invertible ni × ni matrices, Ti

such that T−1
i BiTi is a diagonal matrix whenever Bi is one of the matrices making up the

block diagonal of any B ∈ F . It follows that for T defined by

T ≡




T1 0 · · · 0

0 T2
. . .

...
...

. . . . . . 0
0 · · · 0 Tr




,
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then T−1BT = a diagonal matrix for every B ∈ F̃ including D. Consider ST. It follows
that for all B ∈ F ,

T−1S−1BST = (ST )−1
B (ST ) = a diagonal matrix.

This proves the lemma.

Theorem 14.1.7 Let F denote a family of matrices which are diagonalizable. Then F is
simultaneously diagonalizable if and only if F is a commuting family.

Proof: If F is a commuting family, it follows from Lemma 14.1.6 that it is simultaneously
diagonalizable. If it is simultaneously diagonalizable, then it follows from Lemma 14.1.4 that
it is a commuting family. This proves the theorem.

14.2 Spectral Theory Of Self Adjoint Operators

The following theorem is about the eigenvectors and eigenvalues of a self adjoint operator.
The proof given generalizes to the situation of a compact self adjoint operator on a Hilbert
space and leads to many very useful results. It is also a very elementary proof because it
does not use the fundamental theorem of algebra and it contains a way, very important in
applications, of finding the eigenvalues. This proof depends more directly on the methods
of analysis than the preceding material. The following is useful notation.

Definition 14.2.1 Let X be an inner product space and let S ⊆ X. Then

S⊥ ≡ {x ∈ X : (x, s) = 0 for all s ∈ S} .

Note that even if S is not a subspace, S⊥ is.

Definition 14.2.2 A Hilbert space is a complete inner product space. Recall this means
that every Cauchy sequence,{xn} , one which satisfies

lim
n,m→∞

|xn − xm| = 0,

converges. It can be shown, although I will not do so here, that for the field of scalars either
R or C, any finite dimensional inner product space is automatically complete.

Theorem 14.2.3 Let A ∈ L (X, X) be self adjoint where X is a finite dimensional Hilbert
space. Thus A = A∗. Then there exists an orthonormal basis of eigenvectors, {uj}n

j=1 .

Proof: Consider (Ax, x) . This quantity is always a real number because

(Ax, x) = (x,Ax) = (x,A∗x) = (Ax, x)

thanks to the assumption that A is self adjoint. Now define

λ1 ≡ inf {(Ax, x) : |x| = 1, x ∈ X1 ≡ X} .

Claim: λ1 is finite and there exists v1 ∈ X with |v1| = 1 such that (Av1, v1) = λ1.
Proof of claim: Let {uj}n

j=1 be an orthonormal basis for X and for x ∈ X, let (x1, · · ·,
xn) be defined as the components of the vector x. Thus,

x =
n∑

j=1

xjuj .
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Since this is an orthonormal basis, it follows from the axioms of the inner product that

|x|2 =
n∑

j=1

|xj |2 .

Thus

(Ax, x) =




n∑

k=1

xkAuk,
∑

j=1

xjuj


 =

∑

k,j

xkxj (Auk, uj) ,

a continuous function of (x1, · · ·, xn). Thus this function achieves its minimum on the closed
and bounded subset of Fn given by

{(x1, · · ·, xn) ∈ Fn :
n∑

j=1

|xj |2 = 1}.

Then v1 ≡
∑n

j=1 xjuj where (x1, · · ·, xn) is the point of Fn at which the above function
achieves its minimum. This proves the claim.

Continuing with the proof of the theorem, let X2 ≡ {v1}⊥ and let

λ2 ≡ inf {(Ax, x) : |x| = 1, x ∈ X2}

As before, there exists v2 ∈ X2 such that (Av2, v2) = λ2. Now let X3 ≡ {v1, v2}⊥ and
continue in this way. This leads to an increasing sequence of real numbers, {λk}n

k=1 and an
orthonormal set of vectors, {v1, · · ·, vn}. It only remains to show these are eigenvectors and
that the λj are eigenvalues.

Consider the first of these vectors. Letting w ∈ X1 ≡ X, the function of the real variable,
t, given by

f (t) ≡ (A (v1 + tw) , v1 + tw)
|v1 + tw|2

=
(Av1, v1) + 2t Re (Av1, w) + t2 (Aw,w)

|v1|2 + 2tRe (v1, w) + t2 |w|2

achieves its minimum when t = 0. Therefore, the derivative of this function evaluated at
t = 0 must equal zero. Using the quotient rule, this implies

2Re (Av1, w)− 2Re (v1, w) (Av1, v1)

= 2 (Re (Av1, w)− Re (v1, w) λ1) = 0.

Thus Re (Av1 − λ1v1, w) = 0 for all w ∈ X. This implies Av1 = λ1v1. To see this, let w ∈ X
be arbitrary and let θ be a complex number with |θ| = 1 and

|(Av1 − λ1v1, w)| = θ (Av1 − λ1v1, w) .

Then
|(Av1 − λ1v1, w)| = Re

(
Av1 − λ1v1, θw

)
= 0.

Since this holds for all w, Av1 = λ1v1. Now suppose Avk = λkvk for all k < m. Observe
that A : Xm → Xm because if y ∈ Xm and k < m,

(Ay, vk) = (y, Avk) = (y, λkvk) = 0,
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showing that Ay ∈ {v1, · · ·, vm−1}⊥ ≡ Xm. Thus the same argument just given shows that
for all w ∈ Xm,

(Avm − λmvm, w) = 0. (14.3)

For arbitrary w ∈ X.

w =

(
w −

m−1∑

k=1

(w, vk) vk

)
+

m−1∑

k=1

(w, vk) vk ≡ w⊥ + wm

and the term in parenthesis is in {v1, · · ·, vm−1}⊥ ≡ Xm while the other term is contained
in the span of the vectors, {v1, · · ·, vm−1}. Thus by 14.3,

(Avm − λmvm, w) = (Avm − λmvm, w⊥ + wm)

= (Avm − λmvm, wm) = 0

because
A : Xm → Xm ≡ {v1, · · ·, vm−1}⊥

and wm ∈ span (v1, · · ·, vm−1) . Therefore, Avm = λmvm for all m. This proves the theorem.
Contained in the proof of this theorem is the following important corollary.

Corollary 14.2.4 Let A ∈ L (X, X) be self adjoint where X is a finite dimensional Hilbert
space. Then all the eigenvalues are real and for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A,
there exist orthonormal vectors {u1, · · ·, un} for which

Auk = λkuk.

Furthermore,
λk ≡ inf {(Ax, x) : |x| = 1, x ∈ Xk}

where
Xk ≡ {u1, · · ·, uk−1}⊥ , X1 ≡ X.

Corollary 14.2.5 Let A ∈ L (X, X) be self adjoint where X is a finite dimensional Hilbert
space. Then the largest eigenvalue of A is given by

max {(Ax,x) : |x| = 1} (14.4)

and the minimum eigenvalue of A is given by

min {(Ax,x) : |x| = 1} . (14.5)

Proof: The proof of this is just like the proof of Theorem 14.2.3. Simply replace inf
with sup and obtain a decreasing list of eigenvalues. This establishes 14.4. The claim 14.5
follows from Theorem 14.2.3.

Another important observation is found in the following corollary.

Corollary 14.2.6 Let A ∈ L (X, X) where A is self adjoint. Then A =
∑

i λivi⊗vi where
Avi = λivi and {vi}n

i=1 is an orthonormal basis.

Proof : If vk is one of the orthonormal basis vectors, Avk = λkvk. Also,
∑

i

λivi ⊗ vi (vk) =
∑

i

λivi (vk, vi)

=
∑

i

λiδikvi = λkvk.
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Since the two linear transformations agree on a basis, it follows they must coincide. This
proves the corollary.

The result of Courant and Fischer which follows resembles Corollary 14.2.4 but is more
useful because it does not depend on a knowledge of the eigenvectors.

Theorem 14.2.7 Let A ∈ L (X, X) be self adjoint where X is a finite dimensional Hilbert
space. Then for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A, there exist orthonormal vectors
{u1, · · ·, un} for which

Auk = λkuk.

Furthermore,

λk ≡ max
w1,···,wk−1

{
min

{
(Ax, x) : |x| = 1, x ∈ {w1, · · ·, wk−1}⊥

}}
(14.6)

where if k = 1, {w1, · · ·, wk−1}⊥ ≡ X.

Proof: From Theorem 14.2.3, there exist eigenvalues and eigenvectors with {u1, · · ·, un}
orthonormal and λi ≤ λi+1. Therefore, by Corollary 14.2.6

A =
n∑

j=1

λjuj ⊗ uj

Fix {w1, · · ·, wk−1}.

(Ax, x) =
n∑

j=1

λj (x, uj) (uj , x)

=
n∑

j=1

λj |(x, uj)|2

Then let Y = {w1, · · ·, wk−1}⊥

inf {(Ax, x) : |x| = 1, x ∈ Y }

= inf





n∑

j=1

λj |(x, uj)|2 : |x| = 1, x ∈ Y





≤ inf





k∑

j=1

λj |(x, uj)|2 : |x| = 1, (x, uj) = 0 for j > k, and x ∈ Y



 . (14.7)

The reason this is so is that the infimum is taken over a smaller set. Therefore, the infimum
gets larger. Now 14.7 is no larger than

inf



λk

k∑

j=1

|(x, uj)|2 : |x| = 1, (x, uj) = 0 for j > k, and x ∈ Y



 = λk

because since {u1, · · ·, un} is an orthonormal basis, |x|2 =
∑n

j=1 |(x, uj)|2 . It follows since
{w1, · · ·, wk−1} is arbitrary,

sup
w1,···,wk−1

{
inf

{
(Ax, x) : |x| = 1, x ∈ {w1, · · ·, wk−1}⊥

}}
≤ λk. (14.8)
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However, for each w1, · · ·, wk−1, the infimum is achieved so you can replace the inf in the
above with min. In addition to this, it follows from Corollary 14.2.4 that there exists a set,
{w1, · · ·, wk−1} for which

inf
{

(Ax, x) : |x| = 1, x ∈ {w1, · · ·, wk−1}⊥
}

= λk.

Pick {w1, · · ·, wk−1} = {u1, · · ·, uk−1} . Therefore, the sup in 14.8 is achieved and equals λk

and 14.6 follows. This proves the theorem.
The following corollary is immediate.

Corollary 14.2.8 Let A ∈ L (X, X) be self adjoint where X is a finite dimensional Hilbert
space. Then for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A, there exist orthonormal vectors
{u1, · · ·, un} for which

Auk = λkuk.

Furthermore,

λk ≡ max
w1,···,wk−1

{
min

{
(Ax, x)
|x|2 : x 6= 0, x ∈ {w1, · · ·, wk−1}⊥

}}
(14.9)

where if k = 1, {w1, · · ·, wk−1}⊥ ≡ X.

Here is a version of this for which the roles of max and min are reversed.

Corollary 14.2.9 Let A ∈ L (X, X) be self adjoint where X is a finite dimensional Hilbert
space. Then for λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of A, there exist orthonormal vectors
{u1, · · ·, un} for which

Auk = λkuk.

Furthermore,

λk ≡ min
w1,···,wn−k

{
max

{
(Ax, x)
|x|2 : x 6= 0, x ∈ {w1, · · ·, wn−k}⊥

}}
(14.10)

where if k = n, {w1, · · ·, wn−k}⊥ ≡ X.

14.3 Positive And Negative Linear Transformations

The notion of a positive definite or negative definite linear transformation is very important
in many applications. In particular it is used in versions of the second derivative test for
functions of many variables. Here the main interest is the case of a linear transformation
which is an n×n matrix but the theorem is stated and proved using a more general notation
because all these issues discussed here have interesting generalizations to functional analysis.

Lemma 14.3.1 Let X be a finite dimensional Hilbert space and let A ∈ L (X,X) . Then
if {v1, · · ·, vn} is an orthonormal basis for X and M (A) denotes the matrix of the linear
transformation, A then M (A∗) = M (A)∗ . In particular, A is self adjoint, if and only if
M (A) is.
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Proof: Consider the following picture

A
X → X

q ↑ ◦ ↑ q
Fn → Fn

M (A)

where q is the coordinate map which satisfies q (x) ≡ ∑
i xivi. Therefore, since {v1, · · ·, vn}

is orthonormal, it is clear that |x| = |q (x)| . Therefore,

|x|2 + |y|2 + 2 Re (x,y) = |x + y|2 = |q (x + y)|2
= |q (x)|2 + |q (y)|2 + 2 Re (q (x) , q (y)) (14.11)

Now in any inner product space,

(x, iy) = Re (x, iy) + i Im (x, iy) .

Also
(x, iy) = (−i) (x, y) = (−i) Re (x, y) + Im (x, y) .

Therefore, equating the real parts, Im (x, y) = Re (x, iy) and so

(x, y) = Re (x, y) + i Re (x, iy) (14.12)

Now from 14.11, since q preserves distances, . Re (q (x) , q (y)) = Re (x,y) which implies
from 14.12 that

(x,y) = (q (x) , q (y)) . (14.13)

Now consulting the diagram which gives the meaning for the matrix of a linear transforma-
tion, observe that q ◦M (A) = A ◦ q and q ◦M (A∗) = A∗ ◦ q. Therefore, from 14.13

(A (q (x)) , q (y)) = (q (x) , A∗q (y)) = (q (x) , q (M (A∗) (y))) = (x,M (A∗) (y))

but also

(A (q (x)) , q (y)) = (q (M (A) (x)) , q (y)) = (M (A) (x) ,y) =
(
x,M (A)∗ (y)

)
.

Since x,y are arbitrary, this shows that M (A∗) = M (A)∗ as claimed. Therefore, if A is self
adjoint, M (A) = M (A∗) = M (A)∗ and so M (A) is also self adjoint. If M (A) = M (A)∗

then M (A) = M (A∗) and so A = A∗. This proves the lemma.
The following corollary is one of the items in the above proof.

Corollary 14.3.2 Let X be a finite dimensional Hilbert space and let {v1, · · ·, vn} be an
orthonormal basis for X. Also, let q be the coordinate map associated with this basis satis-
fying q (x) ≡ ∑

i xivi. Then (x,y)Fn = (q (x) , q (y))X . Also, if A ∈ L (X, X) , and M (A)
is the matrix of A with respect to this basis,

(Aq (x) , q (y))X = (M (A)x,y)Fn .

Definition 14.3.3 A self adjoint A ∈ L (X, X) , is positive definite if whenever x 6= 0,
(Ax,x) > 0 and A is negative definite if for all x 6= 0, (Ax,x) < 0. A is positive semidef-
inite or just nonnegative for short if for all x, (Ax,x) ≥ 0. A is negative semidefinite or
nonpositive for short if for all x, (Ax,x) ≤ 0.
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The following lemma is of fundamental importance in determining which linear trans-
formations are positive or negative definite.

Lemma 14.3.4 Let X be a finite dimensional Hilbert space. A self adjoint A ∈ L (X, X)
is positive definite if and only if all its eigenvalues are positive and negative definite if and
only if all its eigenvalues are negative. It is positive semidefinite if all the eigenvalues are
nonnegative and it is negative semidefinite if all the eigenvalues are nonpositive.

Proof: Suppose first that A is positive definite and let λ be an eigenvalue. Then for x
an eigenvector corresponding to λ, λ (x,x) = (λx,x) = (Ax,x) > 0. Therefore, λ > 0 as
claimed.

Now suppose all the eigenvalues of A are positive. From Theorem 14.2.3 and Corollary
14.2.6, A =

∑n
i=1 λiui ⊗ ui where the λi are the positive eigenvalues and {ui} are an or-

thonormal set of eigenvectors. Therefore, letting x 6= 0, (Ax,x) = ((
∑n

i=1 λiui ⊗ ui)x,x) =

(
∑n

i=1 λi (x,ui) (ui,x)) =
∑n

i=1 λi

∣∣∣(ui,x)2
∣∣∣ > 0 because, since {ui} is an orthonormal ba-

sis, |x|2 =
∑n

i=1

∣∣∣(ui,x)2
∣∣∣ .

To establish the claim about negative definite, it suffices to note that A is negative
definite if and only if −A is positive definite and the eigenvalues of A are (−1) times the
eigenvalues of −A. The claims about positive semidefinite and negative semidefinite are
obtained similarly. This proves the lemma.

The next theorem is about a way to recognize whether a self adjoint A ∈ L (X, X) is
positive or negative definite without having to find the eigenvalues. In order to state this
theorem, here is some notation.

Definition 14.3.5 Let A be an n× n matrix. Denote by Ak the k × k matrix obtained by
deleting the k + 1, · · ·, n columns and the k + 1, · · ·, n rows from A. Thus An = A and Ak is
the k × k submatrix of A which occupies the upper left corner of A.

The following theorem is proved in [5]

Theorem 14.3.6 Let X be a finite dimensional Hilbert space and let A ∈ L (X, X) be self
adjoint. Then A is positive definite if and only if det (M (A)k) > 0 for every k = 1, · · ·, n.
Here M (A) denotes the matrix of A with respect to some fixed orthonormal basis of X.

Proof: This theorem is proved by induction on n. It is clearly true if n = 1. Suppose then
that it is true for n−1 where n ≥ 2. Since det (M (A)) > 0, it follows that all the eigenvalues
are nonzero. Are they all positive? Suppose not. Then there is some even number of them
which are negative, even because the product of all the eigenvalues is known to be positive,
equaling det (M (A)). Pick two, λ1 and λ2 and let M (A)ui = λiui where ui 6= 0 for i = 1, 2
and (u1,u2) = 0. Now if y ≡ α1u1 + α2u2 is an element of span (u1,u2) , then since these
are eigenvalues and (u1,u2) = 0, a short computation shows

(M (A) (α1u1 + α2u2) , α1u1 + α2u2)

= |α1|2 λ1 |u1|2 + |α2|2 λ2 |u2|2 < 0.

Now letting x ∈ Cn−1, the induction hypothesis implies

(x∗, 0) M (A)
(

x
0

)
= x∗M (A)n−1 x = (M (A)x,x) > 0.

Now the dimension of {z ∈ Cn : zn = 0} is n−1 and the dimension of span (u1,u2) = 2 and
so there must be some nonzero x ∈ Cn which is in both of these subspaces of Cn. However,
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the first computation would require that (M (A)x,x) < 0 while the second would require
that (M (A)x,x) > 0. This contradiction shows that all the eigenvalues must be positive.
This proves the if part of the theorem. The only if part is left to the reader.

Corollary 14.3.7 Let X be a finite dimensional Hilbert space and let A ∈ L (X, X) be
self adjoint. Then A is negative definite if and only if det (M (A)k) (−1)k

> 0 for every
k = 1, · · ·, n. Here M (A) denotes the matrix of A with respect to some fixed orthonormal
basis of X.

Proof: This is immediate from the above theorem by noting that, as in the proof of
Lemma 14.3.4, A is negative definite if and only if −A is positive definite. Therefore, if
det (−M (A)k) > 0 for all k = 1, · · ·, n, it follows that A is negative definite. However,
det (−M (A)k) = (−1)k det (M (A)k) . This proves the corollary.

14.4 Fractional Powers

With the above theory, it is possible to take fractional powers of certain elements of L (X, X)
where X is a finite dimensional Hilbert space. The main result is the following theorem.

Theorem 14.4.1 Let A ∈ L (X,X) be self adjoint and nonnegative and let k be a positive
integer. Then there exists a unique self adjoint nonnegative B ∈ L (X, X) such that Bk = A.

Proof: By Theorem 14.2.3, there exists an orthonormal basis of eigenvectors of A, say
{vi}n

i=1 such that Avi = λivi. Therefore, by Corollary 14.2.6, A =
∑

i λivi ⊗ vi.
Now by Lemma 14.3.4, each λi ≥ 0. Therefore, it makes sense to define

B ≡
∑

i

λ
1/k
i vi ⊗ vi.

It is easy to verify that

(vi ⊗ vi) (vj ⊗ vj) =
{

0 if i 6= j
vi ⊗ vi if i = j

.

Therefore, a short computation verifies that Bk =
∑

i λivi ⊗ vi = A. This proves existence.
In order to prove uniqueness, let p (t) be a polynomial which has the property that

p (λi) = λ
1/k
i . Then a similar short computation shows

p (A) =
∑

i

p (λi) vi ⊗ vi =
∑

i

λ
1/k
i vi ⊗ vi = B.

Now suppose Ck = A where C ∈ L (X, X) is self adjoint and nonnegative. Then

CB = Cp (A) = Cp
(
Ck

)
= p

(
Ck

)
C = BC.

Therefore, {B, C} is a commuting family of linear transformations which are both self
adjoint. Letting M (B) and M (C) denote matrices of these linear transformations taken
with respect to some fixed orthonormal basis, {v1, · · ·,vn}, it follows that M (B) and M (C)
commute and that both can be diagonalized (Lemma 14.3.1). See the diagram for a short
verification of the claim the two matrices commute..

B C
X → X → X

q ↑ ◦ ↑ q ◦ ↑ q
Fn → Fn → Fn

M (B) M (C)
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Therefore, by Theorem 14.1.7, these two matrices can be simultaneously diagonalized. Thus

U−1M (B)U = D1, U−1M (C)U = D2

where the Di is a diagonal matrix consisting of the eigenvalues of B. Then raising these to
powers,

U−1M (A) U = U−1M (B)k
U = Dk

1

and
U−1M (A)U = U−1M (C)k

U = Dk
2 .

Therefore, Dk
1 = Dk

2 and since the diagonal entries of Di are nonnegative, this requires that
D1 = D2. Therefore, M (B) = M (C) and so B = C. This proves the theorem.

14.5 Polar Decompositions

An application of Theorem 14.2.3, is the following fundamental result, important in geo-
metric measure theory and continuum mechanics. It is sometimes called the right polar
decomposition. The notation used is that which is seen in continuum mechanics, see for
example Gurtin [6]. Don’t confuse the U in this theorem with a unitary transformation. It
is not so. When the following theorem is applied in continuum mechanics, F is normally the
deformation gradient, the derivative of a nonlinear map from some subset of three dimen-
sional space to three dimensional space. In this context, U is called the right Cauchy Green
strain tensor. It is a measure of how a body is stretched independent of rigid motions.

Theorem 14.5.1 Let X be a Hilbert space of dimension n and let Y be a Hilbert space of
dimension m ≥ n and let F ∈ L (X,Y ). Then there exists R ∈ L (X,Y ) and U ∈ L (X, X)
such that

F = RU, U = U∗,

all eigenvalues of U are non negative,

U2 = F ∗F, R∗R = I,

and |Rx| = |x| .
Proof: (F ∗F )∗ = F ∗F and so by Theorem 14.2.3, there is an orthonormal basis of

eigenvectors, {v1, · · ·,vn} such that

F ∗Fvi = λivi.

It is also clear that λi ≥ 0 because

λi (vi,vi) = (F ∗Fvi,vi) = (Fvi, Fvi) ≥ 0.

Let

U ≡
n∑

i=1

λ
1/2
i vi ⊗ vi.

Then U2 = F ∗F, U = U∗, and the eigenvalues of U,
{

λ
1/2
i

}n

i=1
are all non negative.

Now R is defined on U (X) by
RUx ≡ Fx.

This is well defined because if Ux1 = Ux2, then U2 (x1 − x2) = 0 and so

0 = (F ∗F (x1 − x2) ,x1 − x2) = |F (x1 − x2)|2 .
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Now |RUx|2 = |Ux|2 because

|RUx|2 = |Fx|2 = (Fx,Fx)

= (F ∗Fx,x) =
(
U2x,x

)
= (Ux,Ux) = |Ux|2 .

Let {x1, · · ·,xr} be an orthonormal basis for

U (X)⊥ ≡ {x ∈ X : (x, z) = 0 for all z ∈ U (X)}

and let {y1, · · ·,yp} be an orthonormal basis for F (X)⊥ . Then p ≥ r because if {F (zi)}s
i=1

is an orthonormal basis for F (X) , it follows that {U (zi)}s
i=1 is orthonormal in U (X)

because
(Uzi, Uzj) =

(
U2zi, zj

)
= (F ∗Fzi, zj) = (Fzi, Fzj) .

Therefore,
p + s = m ≥ n = r + dim U (X) ≥ r + s.

Now define R ∈ L (X, Y ) by Rxi ≡ yi, i = 1, · · ·, r. Note that R is already defined on U (X) .

It has been extended by telling what R does to a basis for U (X)⊥ . Thus
∣∣∣∣∣R

(
r∑

i=1

cixi + Uv

)∣∣∣∣∣

2

=

∣∣∣∣∣
r∑

i=1

ciyi + Fv

∣∣∣∣∣

2

=
r∑

i=1

|ci|2 + |Fv|2

=
r∑

i=1

|ci|2 + |Uv|2 =

∣∣∣∣∣
r∑

i=1

cixi + Uv

∣∣∣∣∣

2

,

and so |Rz| = |z| which implies that for all x,y,

|x|2 + |y|2 + 2 Re (x,y) = |x + y|2

= |R (x + y)|2 = |x|2 + |y|2 + 2 Re (Rx,Ry) .

Therefore, as in Lemma 14.3.1,

(x,y) = (Rx,Ry) = (R∗Rx,y)

for all x,y and so R∗R = I as claimed. This proves the theorem.
The following corollary follows as a simple consequence of this theorem. It is called the

left polar decomposition.

Corollary 14.5.2 Let F ∈ L (X, Y ) and suppose n ≥ m where X is a Hilbert space of
dimension n and Y is a Hilbert space of dimension m. Then there exists a symmetric
nonnegative element of L (X,X) , U, and an element of L (X,Y ) , R, such that

F = UR, RR∗ = I.

Proof: Recall that L∗∗ = L and (ML)∗ = L∗M∗. Now apply Theorem 14.5.1 to
F ∗ ∈ L (X,Y ). Thus,

F ∗ = R∗U

where R∗ and U satisfy the conditions of that theorem. Then

F = UR

and RR∗ = R∗∗R∗ = I. This proves the corollary.
The following existence theorem for the polar decomposition of an element of L (X, X)

is a corollary.
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Corollary 14.5.3 Let F ∈ L (X,X). Then there exists a symmetric nonnegative element
of L (X,X) , W, and a unitary matrix, Q such that F = WQ, and there exists a symmetric
nonnegative element of L (X,X) , U, and a unitary R, such that F = RU.

This corollary has a fascinating relation to the question whether a given linear trans-
formation is normal. Recall that an n × n matrix, A, is normal if AA∗ = A∗A. Retain the
same definition for an element of L (X,X) .

Theorem 14.5.4 Let F ∈ L (X, X) . Then F is normal if and only if in Corollary 14.5.3
RU = UR and QW = WQ.

Proof: I will prove the statement about RU = UR and leave the other part as an
exercise. First suppose that RU = UR and show F is normal. To begin with,

UR∗ = (RU)∗ = (UR)∗ = R∗U.

Therefore,

F ∗F = UR∗RU = U2

FF ∗ = RUUR∗ = URR∗U = U2

which shows F is normal.
Now suppose F is normal. Is RU = UR? Since F is normal,

FF ∗ = RUUR∗ = RU2R∗

and
F ∗F = UR∗RU = U2.

Therefore, RU2R∗ = U2, and both are nonnegative and self adjoint. Therefore, the square
roots of both sides must be equal by the uniqueness part of the theorem on fractional powers.
It follows that the square root of the first, RUR∗ must equal the square root of the second,
U. Therefore, RUR∗ = U and so RU = UR. This proves the theorem in one case. The other
case in which W and Q commute is left as an exercise.

14.6 The Singular Value Decomposition

In this section, A will be an m× n matrix. To begin with, here is a simple lemma.

Lemma 14.6.1 Let A be an m×n matrix. Then A∗A is self adjoint and all its eigenvalues
are nonnegative.

Proof: It is obvious that A∗A is self adjoint. Suppose A∗Ax = λx. Then λ |x|2 =
(λx,x) = (A∗Ax,x) = (Ax,Ax) ≥ 0.

Definition 14.6.2 Let A be an m×n matrix. The singular values of A are the square roots
of the positive eigenvalues of A∗A.

With this definition and lemma here is the main theorem on the singular value decom-
position.
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Theorem 14.6.3 Let A be an m× n matrix. Then there exist unitary matrices, U and V
of the appropriate size such that

U∗AV =
(

σ 0
0 0

)

where σ is of the form

σ =




σ1 0
. . .

0 σk




for the σi the singular values of A.

Proof: By the above lemma and Theorem 14.2.3 there exists an orthonormal basis,
{vi}n

i=1 such that A∗Avi = σ2
i vi where σ2

i > 0 for i = 1, · · ·, k, (σi > 0) , and equals zero if
i > k. Thus for i > k, Avi = 0 because

(Avi, Avi) = (A∗Avi,vi) = (0,vi) = 0.

For i = 1, · · ·, k, define ui ∈ Fm by

ui ≡ σ−1
i Avi.

Thus Avi = σiui. Now

(ui,uj) =
(
σ−1

i Avi, σ
−1
j Avj

)
=

(
σ−1

i vi, σ
−1
j A∗Avj

)

=
(
σ−1

i vi, σ
−1
j σ2

jvj

)
=

σj

σi
(vi,vj) = δij .

Thus {ui}k
i=1 is an orthonormal set of vectors in Fm. Also,

AA∗ui = AA∗σ−1
i Avi = σ−1

i AA∗Avi = σ−1
i Aσ2

i vi = σ2
i ui.

Now extend {ui}k
i=1 to an orthonormal basis for all of Fm, {ui}m

i=1 and let U ≡ (u1 · · · um)
while V ≡ (v1 · · · vn) . Thus U is the matrix which has the ui as columns and V is defined
as the matrix which has the vi as columns. Then

U∗AV =




u∗1
...

u∗k
...

u∗m




A (v1 · · · vn)

=




u∗1
...

u∗k
...

u∗m




(σ1u1 · · · σkuk0 · · · 0)

=
(

σ 0
0 0

)

where σ is given in the statement of the theorem.
The singular value decomposition has as an immediate corollary the following interesting

result.
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Corollary 14.6.4 Let A be an m×n matrix. Then the rank of A and A∗equals the number
of singular values.

Proof: Since V and U are unitary, it follows that

rank (A) = rank (U∗AV )

= rank
(

σ 0
0 0

)

= number of singular values.

Also since U, V are unitary,

rank (A∗) = rank (V ∗A∗U)
= rank

(
(U∗AV )∗

)

= rank
((

σ 0
0 0

)∗)

= number of singular values.

This proves the corollary.
The singular value decomposition also has a very interesting connection to the problem

of least squares solutions. Recall that it was desired to find x such that |Ax− y| is as small
as possible. Lemma 13.1.1 shows that there is a solution to this problem which can be found
by solving the system A∗Ax = A∗y. Each x which solves this system solves the minimization
problem as was shown in the lemma just mentioned. Now consider this equation for the
solutions of the minimization problem in terms of the singular value decomposition.

A∗︷ ︸︸ ︷
V

(
σ 0
0 0

)
U∗

A︷ ︸︸ ︷
U

(
σ 0
0 0

)
V ∗x =

A∗︷ ︸︸ ︷
V

(
σ 0
0 0

)
U∗y.

Therefore, this yields the following upon using block multiplication and multiplying on the
left by V ∗. (

σ2 0
0 0

)
V ∗x =

(
σ 0
0 0

)
U∗y. (14.14)

One solution to this equation which is very easy to spot is

x = V

(
σ−1 0
0 0

)
U∗y. (14.15)

14.7 The Moore Penrose Inverse

This particular solution is important enough that it motivates the following definintion.

Definition 14.7.1 Let A be an m × n matrix. Then the Moore Penrose inverse of A,
denoted by A+ is defined as

A+ ≡ V

(
σ−1 0
0 0

)
U∗.

Thus A+y is a solution to the minimization problem to find x which minimizes |Ax− y| .
In fact, one can say more about this.
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Proposition 14.7.2 A+y is the solution to the problem of minimizing |Ax− y| for all x
which has smallest norm. Thus

∣∣AA+y − y
∣∣ ≤ |Ax− y| for all x

and if x1 satisfies |Ax1 − y| ≤ |Ax− y| for all x, then |A+y| ≤ |x1| .
Proof: Consider x satisfying 14.14 which has smallest norm. This is equivalent to

making |V ∗x| as small as possible because V ∗ is unitary and so it preserves norms. For z a
vector, denote by (z)k the vector in Fk which consists of the first k entries of z. Then if x
is a solution to 14.14 (

σ2 (V ∗x)k

0

)
=

(
σ (U∗y)k

0

)

and so (V ∗x)k = σ−1 (U∗y)k . Thus the first k entries of V ∗x are determined. In order to
make |V ∗x| as small as possible, the remaining n− k entries should equal zero. Therefore,

V ∗x =
(

σ−1 0
0 0

)
U∗y

which shows that A+y = x. This proves the proposition.

Lemma 14.7.3 The matrix, A+ satisfies the following conditions.

AA+A = A, A+AA+ = A+, A+A and AA+ are Hermitian. (14.16)

Proof: The proof is completely routine and is left to the reader.
A much more interesting observation is that A+ is characterized as being the unique

matrix which satisfies 14.16. This is the content of the following Theorem.

Theorem 14.7.4 Let A be an m × n matrix. Then a matrix, A0, is the Moore Penrose
inverse of A if and only if A0 satisfies

AA0A = A, A0AA0 = A0, A0A and AA0 are Hermitian. (14.17)

Proof: From the above lemma, the Moore Penrose inverse satisfies 14.17. Suppose then
that A0 satisfies 14.17. It is necessary to verify A0 = A+. Recall that from the singular
value decomposition, there exist unitary matrices, U and V such that

U∗AV = Σ ≡
(

σ 0
0 0

)
, A = UΣV ∗.

Let

V ∗A0U =
(

P Q
R S

)
(14.18)

where P is k × k.
Next use the first equation of 14.17 to write

A︷ ︸︸ ︷
UΣV ∗

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗

A︷ ︸︸ ︷
UΣV ∗ =

A︷ ︸︸ ︷
UΣV ∗.

Then multiplying both sides on the left by V ∗ and on the right by U,
(

σ 0
0 0

)(
P Q
R S

)(
σ 0
0 0

)
=

(
σ 0
0 0

)
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Now this requires (
σPσ 0

0 0

)
=

(
σ 0
0 0

)
. (14.19)

Therefore, P = σ−1. Now from the requirement that AA0 is Hermitian,

A︷ ︸︸ ︷
UΣV ∗

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗ = U

(
σ 0
0 0

) (
P Q
R S

)
U∗

must be Hermitian. Therefore, it is necessary that
(

σ 0
0 0

)(
P Q
R S

)
=

(
σP σQ
0 0

)

=
(

I σQ
0 0

)

is Hermitian. Then (
I σQ
0 0

)
=

(
I 0(

Q
)T

σ 0

)

which requires that Q = 0. From the requirement that A0A is Hermitian, it is necessary
that

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗

A︷ ︸︸ ︷
UΣV ∗ = V

(
Pσ 0
Rσ 0

)
V ∗

= V

(
I 0

Rσ 0

)
V ∗

is Hermitian. Therefore, also (
I 0

Rσ 0

)

is Hermitian. Thus R = 0 by reasoning similar to that used to show Q = 0.
Use 14.18 and the second equation of 14.17 to write

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗

A︷ ︸︸ ︷
UΣV ∗

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗ =

A0︷ ︸︸ ︷
V

(
P Q
R S

)
U∗.

which implies (
P Q
R S

)(
σ 0
0 0

)(
P Q
R S

)
=

(
P Q
R S

)
.

This yields
(

σ−1 0
0 S

)(
σ 0
0 0

)(
σ−1 0
0 S

)
=

(
σ−1 0
0 0

)
(14.20)

=
(

σ−1 0
0 S

)
. (14.21)

Therefore, S = 0 also and so

V ∗A0U =
(

σ−1 0
0 0

)
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which says

A0 = V

(
σ−1 0
0 0

)
U∗ ≡ A+.

This proves the theorem.
The theorem is significant because there is no mention of eigenvalues or eigenvectors in

the characterization of the Moore Penrose inverse given in 14.17. It also shows immediately
that the Moore Penrose inverse is a generalization of the usual inverse. See Problem 4.

14.8 Exercises

1. Show (A∗)∗ = A and (AB)∗ = B∗A∗.

2. Suppose A : X → X, an inner product space, and A ≥ 0. This means (Ax, x) ≥ 0 for
all x ∈ X and A = A∗. Show that A has a square root, U, such that U2 = A. Hint:
Let {uk}n

k=1 be an orthonormal basis of eigenvectors with Auk = λkuk. Show each
λk ≥ 0 and consider

U ≡
n∑

k=1

λ
1/2
k uk ⊗ uk

3. Prove Corollary 14.2.9.

4. Show that if A is an n× n matrix which has an inverse then A+ = A−1.

5. Using the singular value decomposition, show that for any square matrix, A, it follows
that A∗A is unitarily similar to AA∗.

6. Let A, B be a m× n matrices. Define an inner product on the set of m× n matrices
by

(A,B)F ≡ trace (AB∗) .

Show this is an inner product satisfying all the inner product axioms. Recall for M an
n×n matrix, trace (M) ≡ ∑n

i=1 Mii. The resulting norm, ||·||F is called the Frobenius
norm and it can be used to measure the distance between two matrices.

7. Let A be an m× n matrix. Show

||A||2F ≡ (A,A)F =
∑

j

σ2
j

where the σj are the singular values of A.

8. Prove that Theorem 14.3.6 and Corollary 14.3.7 can be strengthened so that the
condition on the Ak is necessary as well as sufficient. Hint: Consider vectors of the

form
(

x
0

)
where x ∈ Fk.

9. Show directly that if A is an n× n matrix and A = A∗ (A is Hermitian) then all the
eigenvalues and eigenvectors are real and that eigenvectors associated with distinct
eigenvalues are orthogonal, (their inner product is zero).

10. Let v1, · · ·,vn be an orthonormal basis for Fn. Let Q be a matrix whose ith column is
vi. Show

Q∗Q = QQ∗ = I.
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11. Show that a matrix, Q is unitary if and only if it preserves distances. This means
|Qv| = |v| .

12. Suppose {v1, · · ·,vn} and {w1, · · ·,wn} are two orthonormal bases for Fn and suppose
Q is an n × n matrix satisfying Qvi = wi. Then show Q is unitary. If |v| = 1, show
there is a unitary transformation which maps v to e1.

13. Finish the proof of Theorem 14.5.4.

14. Let A be a Hermitian matrix so A = A∗ and suppose all eigenvalues of A are larger
than δ2. Show

(Av,v) ≥ δ2 |v|2

Where here, the inner product is

(v,u) ≡
n∑

j=1

vjuj .

15. Let X be an inner product space. Show |x + y|2 + |x− y|2 = 2 |x|2 + 2 |y|2 . This is
called the parallelogram identity.
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Norms For Finite Dimensional
Vector Spaces

In this chapter, X and Y are finite dimensional vector spaces which have a norm. The
following is a definition.

Definition 15.0.1 A linear space X is a normed linear space if there is a norm defined on
X, ||·|| satisfying

||x|| ≥ 0, ||x|| = 0 if and only if x = 0,

||x + y|| ≤ ||x||+ ||y|| ,
||cx|| = |c| ||x||

whenever c is a scalar. A set, U ⊆ X, a normed linear space is open if for every p ∈ U,
there exists δ > 0 such that

B (p, δ) ≡ {x : ||x− p|| < δ} ⊆ U.

Thus, a set is open if every point of the set is an interior point.

To begin with recall the Cauchy Schwarz inequality which is stated here for convenience
in terms of the inner product space, Cn.

Theorem 15.0.2 The following inequality holds for ai and bi ∈ C.

∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤
(

n∑

i=1

|ai|2
)1/2 (

n∑

i=1

|bi|2
)1/2

. (15.1)

Definition 15.0.3 Let (X, ||·||) be a normed linear space and let {xn}∞n=1 be a sequence of
vectors. Then this is called a Cauchy sequence if for all ε > 0 there exists N such that if
m,n ≥ N, then

||xn − xm|| < ε.

This is written more briefly as

lim
m,n→∞

||xn − xm|| = 0.

Definition 15.0.4 A normed linear space, (X, ||·||) is called a Banach space if it is com-
plete. This means that, whenever, {xn} is a Cauchy sequence there exists a unique x ∈ X
such that limn→∞ ||x− xn|| = 0.
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Let X be a finite dimensional normed linear space with norm ||·|| where the field of
scalars is denoted by F and is understood to be either R or C. Let {v1, · · ·,vn} be a basis
for X. If x ∈ X, denote by xi the ith component of x with respect to this basis. Thus

x =
n∑

i=1

xivi.

Definition 15.0.5 For x ∈ X and {v1, · · ·,vn} a basis, define a new norm by

|x| ≡
(

n∑

i=1

|xi|2
)1/2

.

Similarly, for y ∈ Y with basis {w1, · · ·,wm}, and yi its components with respect to this
basis,

|y| ≡
(

m∑

i=1

|yi|2
)1/2

For A ∈ L (X, Y ) , the space of linear mappings from X to Y,

||A|| ≡ sup{|Ax| : |x| ≤ 1}. (15.2)

The first thing to show is that the two norms, ||·|| and |·| , are equivalent. This means
the conclusion of the following theorem holds.

Theorem 15.0.6 Let (X, ||·||) be a finite dimensional normed linear space and let |·| be
described above relative to a given basis, {v1, · · ·,vn} . Then |·| is a norm and there exist
constants δ, ∆ > 0 independent of x such that

δ ||x|| ≤ |x| ≤∆ ||x|| . (15.3)

Proof: All of the above properties of a norm are obvious except the second, the triangle
inequality. To establish this inequality, use the Cauchy Schwartz inequality to write

|x + y|2 ≡
n∑

i=1

|xi + yi|2 ≤
n∑

i=1

|xi|2 +
n∑

i=1

|yi|2 + 2 Re
n∑

i=1

xiyi

≤ |x|2 + |y|2 + 2

(
n∑

i=1

|xi|2
)1/2 (

n∑

i=1

|yi|2
)1/2

= |x|2 + |y|2 + 2 |x| |y| = (|x|+ |y|)2

and this proves the second property above.
It remains to show the equivalence of the two norms. By the Cauchy Schwartz inequality

again,

||x|| ≡
∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

xivi

∣∣∣∣∣

∣∣∣∣∣ ≤
n∑

i=1

|xi| ||vi|| ≤ |x|
(

n∑

i=1

||vi||2
)1/2

≡ δ−1 |x| .
This proves the first half of the inequality.

Suppose the second half of the inequality is not valid. Then there exists a sequence
xk ∈ X such that ∣∣xk

∣∣ > k
∣∣∣∣xk

∣∣∣∣ , k = 1, 2, · · ·.
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Then define

yk ≡ xk

|xk| .

It follows ∣∣yk
∣∣ = 1,

∣∣yk
∣∣ > k

∣∣∣∣yk
∣∣∣∣ . (15.4)

Letting yk
i be the components of yk with respect to the given basis, it follows the vector

(
yk
1 , · · ·, yk

n

)

is a unit vector in Fn. By the Heine Borel theorem, there exists a subsequence, still denoted
by k such that (

yk
1 , · · ·, yk

n

) → (y1, · · ·, yn) .

It follows from 15.4 and this that for

y =
n∑

i=1

yivi,

0 = lim
k→∞

∣∣∣∣yk
∣∣∣∣ = lim

k→∞

∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

yk
i vi

∣∣∣∣∣

∣∣∣∣∣ =

∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

yivi

∣∣∣∣∣

∣∣∣∣∣

but not all the yi equal zero. This contradicts the assumption that {v1, · · ·,vn} is a basis
and proves the second half of the inequality.

Corollary 15.0.7 If (X, ||·||) is a finite dimensional normed linear space with the field of
scalars F = C or R, then X is complete.

Proof: Let {xk} be a Cauchy sequence. Then letting the components of xk with respect
to the given basis be

xk
1 , · · ·, xk

n,

it follows from Theorem 15.0.6, that
(
xk

1 , · · ·, xk
n

)

is a Cauchy sequence in Fn and so
(
xk

1 , · · ·, xk
n

) → (x1, · · ·, xn) ∈ Fn.

Thus,

xk =
n∑

i=1

xk
i vi →

n∑

i=1

xivi ∈ X.

This proves the corollary.

Corollary 15.0.8 Suppose X is a finite dimensional linear space with the field of scalars
either C or R and ||·|| and |||·||| are two norms on X. Then there exist positive constants, δ
and ∆, independent of x ∈ X such that

δ |||x||| ≤ ||x|| ≤ ∆ |||x||| .

Thus any two norms are equivalent.
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Proof: Let {v1, · · ·,vn} be a basis for X and let |·| be the norm taken with respect to
this basis which was described earlier. Then by Theorem 15.0.6, there are positive constants
δ1, ∆1, δ2, ∆2, all independent of x ∈X such that

δ2 |||x||| ≤ |x| ≤ ∆2 |||x||| ,

δ1 ||x|| ≤ |x| ≤ ∆1 ||x|| .
Then

δ2 |||x||| ≤ |x| ≤ ∆1 ||x|| ≤ ∆1

δ1
|x| ≤ ∆1∆2

δ1
|||x|||

and so
δ2

∆1
|||x||| ≤ ||x|| ≤ ∆2

δ1
|||x|||

which proves the corollary.

Definition 15.0.9 Let X and Y be normed linear spaces with norms ||·||X and ||·||Y re-
spectively. Then L (X, Y ) denotes the space of linear transformations, called bounded linear
transformations, mapping X to Y which have the property that

||A|| ≡ sup {||Ax||Y : ||x||X ≤ 1} < ∞.

Then ||A|| is referred to as the operator norm of the bounded linear transformation, A.

It is an easy exercise to verify that ||·|| is a norm on L (X, Y ) and it is always the case
that

||Ax||Y ≤ ||A|| ||x||X .

Theorem 15.0.10 Let X and Y be finite dimensional normed linear spaces of dimension
n and m respectively and denote by ||·|| the norm on either X or Y . Then if A is any linear
function mapping X to Y, then A ∈ L (X,Y ) and (L (X, Y ) , ||·||) is a complete normed
linear space of dimension nm with

||Ax|| ≤ ||A|| ||x|| .

Proof: It is necessary to show the norm defined on linear transformations really is a
norm. Again the first and third properties listed above for norms are obvious. It remains to
show the second and verify ||A|| < ∞. Letting {v1, · · ·,vn} be a basis and |·| defined with
respect to this basis as above, there exist constants δ, ∆ > 0 such that

δ ||x|| ≤ |x| ≤ ∆ ||x|| .

Then,

||A + B|| ≡ sup{||(A + B) (x)|| : ||x|| ≤ 1}
≤ sup{||Ax|| : ||x|| ≤ 1}+ sup{||Bx|| : ||x|| ≤ 1}
≡ ||A||+ ||B|| .

Next consider the claim that ||A|| < ∞. This follows from

||A (x)|| =
∣∣∣∣∣

∣∣∣∣∣A
(

n∑

i=1

xivi

)∣∣∣∣∣

∣∣∣∣∣ ≤
n∑

i=1

|xi| ||A (vi)||
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≤ |x|
(

n∑

i=1

||A (vi)||2
)1/2

≤ ∆ ||x||
(

n∑

i=1

||A (vi)||2
)1/2

< ∞.

Thus ||A|| ≤ ∆
(∑n

i=1 ||A (vi)||2
)1/2

.

Next consider the assertion about the dimension of L (X,Y ) . Let the two sets of bases
be

{v1, · · ·,vn} and {w1, · · ·,wm}
for X and Y respectively. Let wi ⊗ vk ∈ L (X, Y ) be defined by

wi ⊗ vkvl ≡
{

0 if l 6= k
wi if l = k

and let L ∈ L (X, Y ) . Then

Lvr =
m∑

j=1

djrwj

for some djk. Also
m∑

j=1

n∑

k=1

djkwj ⊗ vk (vr) =
m∑

j=1

djrwj .

It follows that

L =
m∑

j=1

n∑

k=1

djkwj ⊗ vk

because the two linear transformations agree on a basis. Since L is arbitrary this shows

{wi ⊗ vk : i = 1, · · ·,m, k = 1, · · ·, n}

spans L (X, Y ) . If ∑

i,k

dikwi ⊗ vk = 0,

then

0 =
∑

i,k

dikwi ⊗ vk (vl) =
m∑

i=1

dilwi

and so, since {w1, · · ·,wm} is a basis, dil = 0 for each i = 1, · · ·,m. Since l is arbitrary,
this shows dil = 0 for all i and l. Thus these linear transformations form a basis and this
shows the dimension of L (X, Y ) is mn as claimed. By Corollary 15.0.7 (L (X, Y ) , ||·||) is
complete. If x 6= 0,

||Ax|| 1
||x|| =

∣∣∣∣
∣∣∣∣A

x
||x||

∣∣∣∣
∣∣∣∣ ≤ ||A||

This proves the theorem.
Note by Corollary 15.0.8 you can define a norm any way desired on any finite dimensional

linear space which has the field of scalars R or C and any other way of defining a norm on
this space yields an equivalent norm. Thus, it doesn’t much matter as far as notions of
convergence are concerned which norm is used for a finite dimensional space. In particular
in the space of m×n matrices, you can use the operator norm defined above, or some other
way of giving this space a norm. A popular choice for a norm is the Frobenius norm defined
below.
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Definition 15.0.11 Make the space of m× n matrices into a Hilbert space by defining

(A,B) ≡ tr (AB∗) .

Another way of describing a norm for an n× n matrix is as follows.

Definition 15.0.12 Let A be an m× n matrix. Define the spectral norm of A, written as
||A||2 to be

max
{
|λ|1/2 : λ is an eigenvalue of A∗A

}
.

Actually, this is nothing new. It turns out that ||·||2 is nothing more than the operator
norm for A taken with respect to the usual Euclidean norm,

|x| =
(

n∑

k=1

|xk|2
)1/2

.

Proposition 15.0.13 The following holds.

||A||2 = sup {|Ax| : |x| = 1} ≡ ||A|| .

Proof: Note that A∗A is Hermitian and so by Corollary 14.2.5,

||A||2 = max
{

(A∗Ax,x)1/2 : |x| = 1
}

= max
{

(Ax,Ax)1/2 : |x| = 1
}

≤ ||A|| .

Now to go the other direction, let |x| ≤ 1. Then

|Ax| =
∣∣∣(Ax,Ax)1/2

∣∣∣ = (A∗Ax,x)1/2 ≤ ||A||2 ,

and so, taking the sup over all |x| ≤ 1, it follows ||A|| ≤ ||A||2.
An interesting application of the notion of equivalent norms on Rn is the process of

giving a norm on a finite Cartesian product of normed linear spaces.

Definition 15.0.14 Let Xi, i = 1, · · ·, n be normed linear spaces with norms, ||·||i . For

x ≡ (x1, · · ·, xn) ∈
n∏

i=1

Xi

define θ :
∏n

i=1 Xi → Rn by

θ (x) ≡ (||x1||1 , · · ·, ||xn||n)

Then if ||·|| is any norm on Rn, define a norm on
∏n

i=1 Xi, also denoted by ||·|| by

||x|| ≡ ||θx|| .

The following theorem follows immediately from Corollary 15.0.8.

Theorem 15.0.15 Let Xi and ||·||i be given in the above definition and consider the norms
on

∏n
i=1 Xi described there in terms of norms on Rn. Then any two of these norms on∏n

i=1 Xi obtained in this way are equivalent.
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For example, define

||x||1 ≡
n∑

i=1

|xi| ,

||x||∞ ≡ max {|xi| , i = 1, · · ·, n} ,

or

||x||2 =

(
n∑

i=1

|xi|2
)1/2

and all three are equivalent norms on
∏n

i=1 Xi.
In addition to ||·||1 and ||·||∞ mentioned above, it is common to consider the so called p

norms for x ∈ Cn.

Definition 15.0.16 Let x ∈ Cn. Then define for p ≥ 1,

||x||p ≡
(

n∑

i=1

|xi|p
)1/p

The following inequality is called Holder’s inequality.

Proposition 15.0.17 For x,y ∈ Cn,

n∑

i=1

|xi| |yi| ≤
(

n∑

i=1

|xi|p
)1/p (

n∑

i=1

|yi|p
′
)1/p′

The proof will depend on the following lemma.

Lemma 15.0.18 If a, b ≥ 0 and p′ is defined by 1
p + 1

p′ = 1, then

ab ≤ ap

p
+

bp′

p′
.

Proof of the Proposition: If x or y equals the zero vector there is nothing to
prove. Therefore, assume they are both nonzero. Let A = (

∑n
i=1 |xi|p)1/p and B =(∑n

i=1 |yi|p
′)1/p′

. Then using Lemma 15.0.18,

n∑

i=1

|xi|
A

|yi|
B

≤
n∑

i=1

[
1
p

( |xi|
A

)p

+
1
p′

( |yi|
B

)p′
]

= 1

and so
n∑

i=1

|xi| |yi| ≤ AB =

(
n∑

i=1

|xi|p
)1/p (

n∑

i=1

|yi|p
′
)1/p′

.

This proves the proposition.

Theorem 15.0.19 The p norms do indeed satisfy the axioms of a norm.
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Proof: It is obvious that ||·||p does indeed satisfy most of the norm axioms. The only
one that is not clear is the triangle inequality. To save notation write ||·|| in place of ||·||p
in what follows. Note also that p

p′ = p− 1. Then using the Holder inequality,

||x + y||p =
n∑

i=1

|xi + yi|p

≤
n∑

i=1

|xi + yi|p−1 |xi|+
n∑

i=1

|xi + yi|p−1 |yi|

=
n∑

i=1

|xi + yi|
p
p′ |xi|+

n∑

i=1

|xi + yi|
p
p′ |yi|

≤
(

n∑

i=1

|xi + yi|p
)1/p′




(
n∑

i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p




= ||x + y||p/p′
(
||x||p + ||y||p

)

so ||x + y|| ≤ ||x||p + ||y||p . This proves the theorem.
It only remains to prove Lemma 15.0.18.
Proof of the lemma: Let p′ = q to save on notation and consider the following picture:

b

a

x

t

x = tp−1

t = xq−1

ab ≤
∫ a

0

tp−1dt +
∫ b

0

xq−1dx =
ap

p
+

bq

q
.

Note equality occurs when ap = bq.
Now ||A||p may be considered as the operator norm of A taken with respect to ||·||p . In

the case when p = 2, this is just the spectral norm. There is an easy estimate for ||A||p in
terms of the entries of A.

Theorem 15.0.20 The following holds.

||A||p ≤




∑

k


∑

j

|Ajk|p



q/p



1/q

Proof: Let ||x||p ≤ 1 and let A = (a1, · · ·,an) where the ak are the columns of A. Then

Ax =

(∑

k

xkak

)
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and so by Holder’s inequality,

||Ax||p ≡
∣∣∣∣∣

∣∣∣∣∣
∑

k

xkak

∣∣∣∣∣

∣∣∣∣∣
p

≤
∑

k

|xk| ||ak||p

≤
(∑

k

|xk|p
)1/p (∑

k

||ak||qp
)1/q

≤




∑

k


∑

j

|Ajk|p



q/p



1/q

and this shows ||A||p ≤
(∑

k

(∑
j |Ajk|p

)q/p
)1/q

and proves the theorem.

15.1 The Condition Number

Let A ∈ L (X, X) be a linear transformation where X is a finite dimensional vector space
and consider the problem Ax = b where it is assumed there is a unique solution to this
problem. How does the solution change if A is changed a little bit and if b is changed a
little bit? This is clearly an interesting question because you often do not know A and b
exactly. If a small change in these quantities results in a large change in the solution, x,
then it seems clear this would be undesirable. In what follows ||·|| when applied to a linear
transformation will always refer to the operator norm.

Lemma 15.1.1 Let A,B ∈ L (X,X) , A−1 ∈ L (X,X) , and suppose ||B|| < ||A|| . Then
(A + B)−1 exists and

∣∣∣
∣∣∣(A + B)−1

∣∣∣
∣∣∣ ≤

∣∣∣∣A−1
∣∣∣∣

∣∣∣∣
∣∣∣∣

1
1− ||A−1B||

∣∣∣∣
∣∣∣∣ .

The above formula makes sense because
∣∣∣∣A−1B

∣∣∣∣ < 1. Also, if L is any invertible linear
transformation,

||L|| ≤ 1
||L−1|| . (15.5)

Proof: For ||x|| ≤ 1, x 6= 0, and L an invertible linear transformation, x = L−1Lx and
so ||x|| ≤

∣∣∣∣L−1
∣∣∣∣ ||Lx|| which implies

||Lx|| ≤ 1
||L−1|| ||x|| .

Therefore,

||L|| ≤ 1
||L−1|| . (15.6)

Similarly
∣∣∣∣L−1

∣∣∣∣ ≤ 1
||L|| . (15.7)

This establishes 15.5.
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Suppose (A + B)x = 0. Then 0 = A
(
I + A−1B

)
x and so since A is one to one,(

I + A−1B
)
x = 0. Therefore,

0 =
∣∣∣∣(I + A−1B

)
x
∣∣∣∣ ≥ ||x|| −

∣∣∣∣A−1Bx
∣∣∣∣

and so from 15.7

||x|| ≤
∣∣∣∣A−1Bx

∣∣∣∣ ≤
∣∣∣∣A−1

∣∣∣∣ ||B|| ||x|| (15.8)

≤ ||B||
||A|| ||x|| (15.9)

which is a contradiction unless ||x|| = 0. Therefore, (A + B)−1 exists.
Now

(A + B)−1 =
(
A

(
I + A−1B

))−1
.

∣∣∣∣A−1B
∣∣∣∣ ≤ ∣∣∣∣A−1

∣∣∣∣ ||B|| ≤ ||B||
||A|| < 1 = ||I|| .

Letting A−1B play the role of B in the above and I play the role of A, it follows
(
I + A−1B

)−1

exists. Hence
(A + B)−1 =

(
I + A−1B

)−1
A−1

and so by 15.7 applied to I + A−1B,

∣∣∣
∣∣∣(A + B)−1

∣∣∣
∣∣∣ ≤

∣∣∣∣A−1
∣∣∣∣

∣∣∣
∣∣∣
(
I + A−1B

)−1
∣∣∣
∣∣∣

≤ ∣∣∣∣A−1
∣∣∣∣ 1
||I + A−1B||

≤ ∣∣∣∣A−1
∣∣∣∣ 1

(1− ||A−1B||) .

This proves the lemma.

Proposition 15.1.2 Suppose A is invertible, b 6= 0, Ax = b, and A1x1 = b1 where
||A−A1|| < ||A||. Then

||x1 − x||
||x|| ≤ 1

(1− ||A−1 (A1 −A)||) ||A||
∣∣∣∣A−1

∣∣∣∣
( ||A1 −A||

||A|| +
||b− b1||
||b||

)
. (15.10)

Proof: It follows from the assumptions that

Ax−A1x + A1x−A1x1 = b− b1.

Hence
A1 (x− x1) = (A1 −A)x + b− b1.

Now A1 = (A + (A1 −A)) and so by the above lemma, A−1
1 exists and so

(x− x1) = A−1
1 (A1 −A)x + A−1

1 (b− b1) .

By the estimate in the lemma,

||x− x1|| ≤
∣∣∣∣A−1

∣∣∣∣
1− ||A−1 (A1 −A)|| (||A1 −A|| ||x||+ ||b− b1||) .
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Dividing by ||x|| ,

||x− x1||
||x|| ≤

∣∣∣∣A−1
∣∣∣∣

1− ||A−1 (A1 −A)||
(
||A1 −A||+ ||b− b1||

||x||
)

(15.11)

Now b = A
(
A−1b

)
and so ||b|| ≤ ||A|| ∣∣∣∣A−1b

∣∣∣∣ and so

||x|| =
∣∣∣∣A−1b

∣∣∣∣ ≥ ||b|| / ||A|| .
Therefore, from 15.11,

||x− x1||
||x|| ≤

∣∣∣∣A−1
∣∣∣∣

1− ||A−1 (A1 −A)||
( ||A|| ||A1 −A||

||A|| +
||A|| ||b− b1||

||b||
)

≤
∣∣∣∣A−1

∣∣∣∣ ||A||
1− ||A−1 (A1 −A)||

( ||A1 −A||
||A|| +

||b− b1||
||b||

)

which proves the proposition.
This shows that the number,

∣∣∣∣A−1
∣∣∣∣ ||A|| , controls how sensitive the relative change in

the solution of Ax = b is to small changes in A and b. This number is called the condition
number. It is a bad thing when it is large because a small relative change in b, for example
could yield a large relative change in x.

15.2 The Spectral Radius

Even though it is in general impractical to compute the Jordan form, its existence is all that
is needed in order to prove an important theorem about something which is relatively easy
to compute. This is the spectral radius of a matrix.

Definition 15.2.1 Define σ (A) to be the eigenvalues of A. Also,

ρ (A) ≡ max (|λ| : λ ∈ σ (A))

The number, ρ (A) is known as the spectral radius of A.

Before beginning this discussion, it is necessary to define what is meant by convergence
in L (Fn,Fn) .

Definition 15.2.2 Let {Ak}∞k=1 be a sequence in L (X, Y ) where X, Y are finite dimen-
sional normed linear spaces. Then limn→∞Ak = A if for every ε > 0 there exists N such
that if n > N, then

||A−An|| < ε.

Here the norm refers to any of the norms defined on L (X,Y ) . By Corollary 15.0.8 and
Theorem 11.2.2 it doesn’t matter which one is used. Define the symbol for an infinite sum
in the usual way. Thus

∞∑

k=1

Ak ≡ lim
n→∞

n∑

k=1

Ak

Lemma 15.2.3 Suppose {Ak}∞k=1 is a sequence in L (X, Y ) where X, Y are finite dimen-
sional normed linear spaces. Then if

∞∑

k=1

||Ak|| < ∞,
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It follows that
∞∑

k=1

Ak (15.12)

exists. In words, absolute convergence implies convergence.

Proof: For p ≤ m ≤ n,

∣∣∣∣∣

∣∣∣∣∣
n∑

k=1

Ak −
m∑

k=1

Ak

∣∣∣∣∣

∣∣∣∣∣ ≤
∞∑

k=p

||Ak||

and so for p large enough, this term on the right in the above inequality is less than ε. Since
ε is arbitrary, this shows the partial sums of 15.12 are a Cauchy sequence. Therefore by
Corollary 15.0.7 it follows that these partial sums converge.

The next lemma is normally discussed in advanced calculus courses but is proved here
for the convenience of the reader. It is known as the root test.

Lemma 15.2.4 Let {ap} be a sequence of nonnegative terms and let

r = lim sup
p→∞

a1/p
p .

Then if r < 1, it follows the series,
∑∞

k=1 ak converges and if r > 1, then ap fails to converge
to 0 so the series diverges. If A is an n× n matrix and

1 < lim sup
p→∞

||Ap||1/p
, (15.13)

then
∑∞

k=0 Ak fails to converge.

Proof: Suppose r < 1. Then there exists N such that if p > N,

a1/p
p < R

where r < R < 1. Therefore, for all such p, ap < Rp and so by comparison with the
geometric series,

∑
Rp, it follows

∑∞
p=1 ap converges.

Next suppose r > 1. Then letting 1 < R < r, it follows there are infinitely many values
of p at which

R < a1/p
p

which implies Rp < ap, showing that ap cannot converge to 0.
To see the last claim, if 15.13 holds, then from the first part of this lemma, ||Ap|| fails

to converge to 0 and so
{∑m

k=0 Ak
}∞

m=0
is not a Cauchy sequence. Hence

∑∞
k=0 Ak ≡

limm→∞
∑m

k=0 Ak cannot exist.
In this section a significant way to estimate ρ (A) is presented. It is based on the following

lemma.

Lemma 15.2.5 If |λ| > ρ (A) , for A an n× n matrix, then the series,

1
λ

∞∑

k=0

Ak

λk

converges.
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Proof: Let J denote the Jordan canonical form of A. Also, let ||A|| ≡ max {|aij | , i, j = 1, 2, · · ·, n} .
Then for some invertible matrix, S, A = S−1JS. Therefore,

1
λ

p∑

k=0

Ak

λk
= S−1

(
1
λ

p∑

k=0

Jk

λk

)
S.

Now from the structure of the Jordan form, J = D + N where D is the diagonal matrix
consisting of the eigenvalues of A listed according to algebraic multiplicity and N is a
nilpotent matrix which commutes with D. Say Nm = 0. Therefore, for k much larger than
m, say k > 2m,

Jk = (D + N)k =
m∑

l=0

(
k

l

)
Dk−lN l.

It follows that ∣∣∣∣Jk
∣∣∣∣ ≤ C (m,N) k (k − 1) · · · (k −m + 1) ||D||k

and so

lim sup
k→∞

∣∣∣∣
∣∣∣∣
Jk

λk

∣∣∣∣
∣∣∣∣
1/k

≤ lim
k→∞

(
C (m,N) k (k − 1) · · · (k −m + 1) ||D||k

|λ|k
)1/k

=
||D||
|λ| < 1.

Therefore, this shows by the root test that
∑∞

k=0

∣∣∣
∣∣∣Jk

λk

∣∣∣
∣∣∣ converges. Therefore, by Lemma

15.2.3 it follows that

lim
k→∞

1
λ

k∑

l=0

J l

λl

exists. In particular this limit exists in every norm placed on L (Fn,Fn) , and in particular
for every operator norm. Now for any operator norm, ||AB|| ≤ ||A|| ||B|| . Therefore,

∣∣∣∣∣

∣∣∣∣∣S
−1

(
1
λ

p∑

k=0

Jk

λk
− 1

λ

∞∑

k=0

Jk

λk

)
S

∣∣∣∣∣

∣∣∣∣∣ ≤
∣∣∣∣S−1

∣∣∣∣ ||S||
∣∣∣∣∣

∣∣∣∣∣

(
1
λ

p∑

k=0

Jk

λk
− 1

λ

∞∑

k=0

Jk

λk

)∣∣∣∣∣

∣∣∣∣∣

and this converges to 0 as p →∞. Therefore,

1
λ

p∑

k=0

Ak

λk
→ S−1

(
1
λ

∞∑

k=0

Jk

λk

)
S

and this proves the lemma.
Actually this lemma is usually accomplished using the theory of functions of a com-

plex variable but the theory involving the Laurent series is not assumed here. In infinite
dimensional spaces you have to use complex variable techniques however.

Lemma 15.2.6 Let A be an n×n matrix. Then for any ||·|| , ρ (A) ≥ lim supp→∞ ||Ap||1/p.

Proof: By Lemma 15.2.5 and Lemma 15.2.4, if |λ| > ρ (A) ,

lim sup
∣∣∣∣
∣∣∣∣
Ak

λk

∣∣∣∣
∣∣∣∣
1/k

≤ 1,

and it doesn’t matter which norm is used because they are all equivalent. Therefore,
lim supk→∞

∣∣∣∣Ak
∣∣∣∣1/k ≤ |λ| . Therefore, since this holds for all |λ| > ρ (A) , this proves

the lemma.
Now denote by σ (A)p the collection of all numbers of the form λp where λ ∈ σ (A) .
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Lemma 15.2.7 σ (Ap) = σ (A)p

Proof: In dealing with σ (Ap) , is suffices to deal with σ (Jp) where J is the Jordan form
of A because Jp and Ap are similar. Thus if λ ∈ σ (Ap) , then λ ∈ σ (Jp) and so λ = α
where α is one of the entries on the main diagonal of Jp. Thus λ ∈ α (A)p and this shows
σ (Ap) ⊆ σ (A)p

.
Now take α ∈ σ (A) and consider αp.

αpI −Ap =
(
αp−1I + · · ·+ αAp−2 + Ap−1

)
(αI −A)

and so αpI − Ap fails to be one to one which shows that αp ∈ σ (Ap) which shows that
σ (A)p ⊆ σ (Ap) . This proves the lemma.

Lemma 15.2.8 Let A be an n×n matrix and suppose |λ| > ||A||2 . Then (λI −A)−1 exists.

Proof: Suppose (λI −A)x = 0 where x 6= 0. Then

|λ| ||x||2 = ||Ax||2 ≤ ||A|| ||x||2 < |λ| ||x||2 ,

a contradiction. Therefore, (λI −A) is one to one and this proves the lemma.
The main result is the following theorem due to Gelfand in 1941.

Theorem 15.2.9 Let A be an n× n matrix. Then for any ||·|| defined on L (Fn,Fn)

ρ (A) = lim
p→∞

||Ap||1/p
.

Proof: If λ ∈ σ (A) , then by Lemma 15.2.7 λp ∈ σ (Ap) and so by Lemma 15.2.8, it
follows that

|λ|p ≤ ||Ap||
and so |λ| ≤ ||Ap||1/p

. Since this holds for every λ ∈ σ (A) , it follows that for each p,

ρ (A) ≤ ||Ap||1/p
.

Now using Lemma 15.2.6,

ρ (A) ≥ lim sup
p→∞

||Ap||1/p ≥ lim inf
p→∞

||Ap||1/p ≥ ρ (A)

which proves the theorem.

Example 15.2.10 Consider




9 −1 2
−2 8 4
1 1 8


 . Estimate the absolute value of the largest

eigenvalue.

A laborious computation reveals the eigenvalues are 5, and 10. Therefore, the right
answer in this case is 10. Consider

∣∣∣∣A7
∣∣∣∣1/7 where the norm is obtained by taking the

maximum of all the absolute values of the entries. Thus




9 −1 2
−2 8 4
1 1 8




7

=




8015 625 −1984 375 3968 750
−3968 750 6031 250 7937 500
1984 375 1984 375 6031 250




and taking the seventh root of the largest entry gives

ρ (A) ≈ 8015 6251/7 = 9. 688 951 236 71.

Of course the interest lies primarily in matrices for which the exact roots to the characteristic
equation are not known.
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15.3 Iterative Methods For Linear Systems

Consider the problem of solving the equation

Ax = b (15.14)

where A is an n × n matrix. In many applications, the matrix A is huge and composed
mainly of zeros. For such matrices, the method of Gauss elimination (row operations) is
not a good way to solve the system because the row operations can destroy the zeros and
storing all those zeros takes a lot of room in a computer. These systems are called sparse.
To solve them it is common to use an iterative technique. I am following the treatment
given to this subject by Nobel and Daniel [10].

Definition 15.3.1 The Jacobi iterative technique, also called the method of simultaneous
corrections is defined as follows. Let x1 be an initial vector, say the zero vector or some
other vector. The method generates a succession of vectors, x2,x3,x4, · · · and hopefully this
sequence of vectors will converge to the solution to 15.14. The vectors in this list are called
iterates and they are obtained according to the following procedure. Letting A = (aij) ,

aiix
r+1
i = −

∑

j 6=i

aijx
r
j + bi. (15.15)

In terms of matrices, letting

A =



∗ · · · ∗
...

. . .
...

∗ · · · ∗




The iterates are defined as




∗ 0 · · · 0

0 ∗ . . .
...

...
. . . . . . 0

0 · · · 0 ∗







xr+1
1

xr+1
2
...

xr+1
n




= −




0 ∗ · · · ∗
∗ 0

. . .
...

...
. . . . . . ∗

∗ · · · ∗ 0







xr
1

xr
2
...

xr
n


 +




b1

b2

...
bn


 (15.16)

The matrix on the left in 15.16 is obtained by retaining the main diagonal of A and
setting every other entry equal to zero. The matrix on the right in 15.16 is obtained from A
by setting every diagonal entry equal to zero and retaining all the other entries unchanged.

Example 15.3.2 Use the Jacobi method to solve the system



3 1 0 0
1 4 1 0
0 2 5 1
0 0 2 4







x1

x2

x3

x4


 =




1
2
3
4
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Of course this is solved most easily using row reductions. The Jacobi method is useful
when the matrix is 1000×1000 or larger. This example is just to illustrate how the method
works. First lets solve it using row operations. The augmented matrix is




3 1 0 0 1
1 4 1 0 2
0 2 5 1 3
0 0 2 4 4




The row reduced echelon form is 


1 0 0 0 6
29

0 1 0 0 11
29

0 0 1 0 8
29

0 0 0 1 25
29




which in terms of decimals is approximately equal to



1.0 0 0 0 . 206
0 1.0 0 0 . 379
0 0 1.0 0 . 275
0 0 0 1.0 . 862


 .

In terms of the matrices, the Jacobi iteration is of the form



3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 4







xr+1
1

xr+1
2

xr+1
3

xr+1
4


 = −




0 1 0 0
1 0 1 0
0 2 0 1
0 0 2 0







xr
1

xr
2

xr
3

xr
4


 +




1
2
3
4


 .

Multiplying by the invese of the matrix on the left, 1this iteration reduces to



xr+1
1

xr+1
2

xr+1
3

xr+1
4


 = −




0 1
3 0 0

1
4 0 1

4 0
0 2

5 0 1
5

0 0 1
2 0







xr
1

xr
2

xr
3

xr
4


 +




1
3
1
2
3
5
1


 . (15.17)

Now iterate this starting with

x1 ≡




0
0
0
0


 .

Thus

x2 = −




0 1
3 0 0

1
4 0 1

4 0
0 2

5 0 1
5

0 0 1
2 0







0
0
0
0


 +




1
3
1
2
3
5
1


 =




1
3
1
2
3
5
1




Then

x3 = −




0 1
3 0 0

1
4 0 1

4 0
0 2

5 0 1
5

0 0 1
2 0




x2︷ ︸︸ ︷


1
3
1
2
3
5
1


 +




1
3
1
2
3
5
1


 =




. 166
. 26
. 2
. 7




1You certainly would not compute the invese in solving a large system. This is just to show you how the
method works for this simple example. You would use the first description in terms of indices.
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x4 = −




0 1
3 0 0

1
4 0 1

4 0
0 2

5 0 1
5

0 0 1
2 0




x3︷ ︸︸ ︷


. 166
. 26
. 2
. 7


 +




1
3
1
2
3
5
1


 =




. 24
. 408 5
. 356
. 9




x5 = −




0 1
3 0 0

1
4 0 1

4 0
0 2

5 0 1
5

0 0 1
2 0




x4︷ ︸︸ ︷


. 24
. 408 5
. 356
. 9


 +




1
3
1
2
3
5
1


 =




. 197
. 351

. 256 6
. 822




x6 = −




0 1
3 0 0

1
4 0 1

4 0
0 2

5 0 1
5

0 0 1
2 0




x5︷ ︸︸ ︷


. 197
. 351

. 256 6
. 822


 +




1
3
1
2
3
5
1


 =




. 216
. 386
. 295
. 871


 .

You can keep going like this. Recall the solution is approximately equal to



. 206

. 379

. 275

. 862




so you see that with no care at all and only 6 iterations, an approximate solution has been
obtained which is not too far off from the actual solution.

It is important to realize that a computer would use 15.15 directly. Indeed, writing the
problem in terms of matrices as I have done above destroys every benefit of the method.
However, it makes it a little easier to see what is happening and so this is why I have
presented it in this way.

Definition 15.3.3 The Gauss Seidel method, also called the method of successive correc-
tions is given as follows. For A = (aij) , the iterates for the problem Ax = b are obtained
according to the formula

i∑

j=1

aijx
r+1
j = −

n∑

j=i+1

aijx
r
j + bi. (15.18)

In terms of matrices, letting

A =



∗ · · · ∗
...

. . .
...

∗ · · · ∗




The iterates are defined as



∗ 0 · · · 0

∗ ∗ . . .
...

...
. . . . . . 0

∗ · · · ∗ ∗







xr+1
1

xr+1
2
...

xr+1
n




= −




0 ∗ · · · ∗
0 0

. . .
...

...
. . . . . . ∗

0 · · · 0 0







xr
1

xr
2
...

xr
n


 +




b1

b2

...
bn


 (15.19)
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In words, you set every entry in the original matrix which is strictly above the main
diagonal equal to zero to obtain the matrix on the left. To get the matrix on the right,
you set every entry of A which is on or below the main diagonal equal to zero. Using the
iteration procedure of 15.18 directly, the Gauss Seidel method makes use of the very latest
information which is available at that stage of the computation.

The following example is the same as the example used to illustrate the Jacobi method.

Example 15.3.4 Use the Gauss Seidel method to solve the system



3 1 0 0
1 4 1 0
0 2 5 1
0 0 2 4







x1

x2

x3

x4


 =




1
2
3
4




In terms of matrices, this procedure is




3 0 0 0
1 4 0 0
0 2 5 0
0 0 2 4







xr+1
1

xr+1
2

xr+1
3

xr+1
4


 = −




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0







xr
1

xr
2

xr
3

xr
4


 +




1
2
3
4


 .

Multiplying by the inverse of the matrix on the left2 this yields




xr+1
1

xr+1
2

xr+1
3

xr+1
4


 = −




0 1
3 0 0

0 − 1
12

1
4 0

0 1
30 − 1

10
1
5

0 − 1
60

1
20 − 1

10







xr
1

xr
2

xr
3

xr
4


 +




1
3
5
12
13
30
47
60




As before, I will be totally unoriginal in the choice of x1. Let it equal the zero vector.
Therefore,

x2 =




1
3
5
12
13
30
47
60


 .

Now

x3 = −




0 1
3 0 0

0 − 1
12

1
4 0

0 1
30 − 1

10
1
5

0 − 1
60

1
20 − 1

10




x2

︷ ︸︸ ︷


1
3
5
12
13
30
47
60


 +




1
3
5
12
13
30
47
60


 =




. 194
. 343
. 306
. 846


 .

It follows

x4 = −




0 1
3 0 0

0 − 1
12

1
4 0

0 1
30 − 1

10
1
5

0 − 1
60

1
20 − 1

10




x3

︷ ︸︸ ︷


1
3
5
12
13
30
47
60


 +




1
3
5
12
13
30
47
60


 =




. 194
. 343
. 306
. 846




2As in the case of the Jacobi iteration, the computer would not do this. It would use the iteration
procedure in terms of the entries of the matrix directly. Otherwise all benefit to using this method is lost.
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and so

x5 = −




0 1
3 0 0

0 − 1
12

1
4 0

0 1
30 − 1

10
1
5

0 − 1
60

1
20 − 1

10




x4

︷ ︸︸ ︷


. 194
. 343
. 306
. 846


 +




1
3
5
12
13
30
47
60


 =




. 219
. 368 75
. 283 3
. 858 35


 .

Recall the answer is 


. 206

. 379

. 275

. 862




so the iterates are already pretty close to the answer. You could continue doing these iterates
and it appears they converge to the solution. Now consider the following example.

Example 15.3.5 Use the Gauss Seidel method to solve the system



1 4 0 0
1 4 1 0
0 2 5 1
0 0 2 4







x1

x2

x3

x4


 =




1
2
3
4




The exact solution is given by doing row operations on the augmented matrix. When
this is done the row echelon form is




1 0 0 0 6
0 1 0 0 − 5

4
0 0 1 0 1
0 0 0 1 1

2




and so the solution is approximately



6
− 5

4
1
1
2


 =




6.0
−1. 25

1.0
. 5




The Gauss Seidel iterations are of the form



1 0 0 0
1 4 0 0
0 2 5 0
0 0 2 4







xr+1
1

xr+1
2

xr+1
3

xr+1
4


 = −




0 4 0 0
0 0 1 0
0 0 0 1
0 0 0 0







xr
1

xr
2

xr
3

xr
4


 +




1
2
3
4




and so, multiplying by the inverse of the matrix on the left, the iteration reduces to the
following in terms of matrix multiplication.

xr+1 = −




0 4 0 0
0 −1 1

4 0
0 2

5 − 1
10

1
5

0 − 1
5

1
20 − 1

10


xr +




1
1
4
1
2
3
4


 .
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This time, I will pick an initial vector close to the answer. Let

x1 =




6
−1
1
1
2




This is very close to the answer. Now lets see what the Gauss Seidel iteration does to it.

x2 = −




0 4 0 0
0 −1 1

4 0
0 2

5 − 1
10

1
5

0 − 1
5

1
20 − 1

10







6
−1
1
1
2


 +




1
1
4
1
2
3
4


 =




5.0
−1.0
. 9
. 55




You can’t expect to be real close after only one iteration. Lets do another.

x3 = −




0 4 0 0
0 −1 1

4 0
0 2

5 − 1
10

1
5

0 − 1
5

1
20 − 1

10







5.0
−1.0
. 9
. 55


 +




1
1
4
1
2
3
4


 =




5.0
−. 975
. 88
. 56




x4 = −




0 4 0 0
0 −1 1

4 0
0 2

5 − 1
10

1
5

0 − 1
5

1
20 − 1

10







5.0
−. 975
. 88
. 56


 +




1
1
4
1
2
3
4


 =




4. 9
−. 945
. 866
. 567




The iterates seem to be getting farther from the actual solution. Why is the process which
worked so well in the other examples not working here? A better question might be: Why
does either process ever work at all?.

Both iterative procedures for solving

Ax = b (15.20)

are of the form
Bxr+1 = −Cxr + b

where A = B + C. In the Jacobi procedure, the matrix C was obtained by setting the
diagonal of A equal to zero and leaving all other entries the same while the matrix, B
was obtained by making every entry of A equal to zero other than the diagonal entries
which are left unchanged. In the Gauss Seidel procedure, the matrix B was obtained from
A by making every entry strictly above the main diagonal equal to zero and leaving the
others unchanged and C was obtained from A by making every entry on or below the main
diagonal equal to zero and leaving the others unchanged. Thus in the Jacobi procedure,
B is a diagonal matrix while in the Gauss Seidel procedure, B is lower triangular. Using
matrices to explicitly solve for the iterates, yields

xr+1 = −B−1Cxr + B−1b. (15.21)

This is what you would never have the computer do but this is what will allow the statement
of a theorem which gives the condition for convergence of these and all other similar methods.
Recall the definition of the spectral radius of M, ρ (M) , in Definition 15.2.1 on Page 287.

Theorem 15.3.6 Suppose ρ
(
B−1C

)
< 1. Then the iterates in 15.21 converge to the unique

solution of 15.20.

I will prove this theorem in the next section. The proof depends on analysis which should
not be surprising because it involves a statement about convergence of sequences.
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15.4 Theory Of Convergence

Definition 15.4.1 A normed vector space, E with norm ||·|| is called a Banach space if it
is also complete. This means that every Cauchy sequence converges. Recall that a sequence
{xn}∞n=1 is a Cauchy sequence if for every ε > 0 there exists N such that whenever m,n > N,

||xn − xm|| < ε.

Thus whenever {xn} is a Cauchy sequence, there exists x such that

lim
n→∞

||x− xn|| = 0.

Example 15.4.2 Let Ω be a nonempty subset of a normed linear space, F. Denote by
BC (Ω;E) the set of bounded continuous functions having values in E where E is a Banach
space. Then define the norm on BC (Ω; E) by

||f || ≡ sup {||f (x)||E : x ∈ Ω} .

Lemma 15.4.3 The space BC (Ω; E) with the given norm is a Banach space.

Proof: It is obvious ||·|| is a norm. It only remains to verify BC (Ω;E) is complete. Let
{fn} be a Cauchy sequence. Then pick x ∈ Ω.

||fn (x)− fm (x)||E ≤ ||fn − fm|| < ε

whenever m,n are large enough. Thus, for each x, {fn (x)} is a Cauchy sequence in E.
Since E is complete, it follows there exists a function, f defined on Ω such that f (x) =
limn→∞ fn (x).

It remains to verify that f ∈ BC (Ω;E) and that ||f − fn|| → 0. I will first show that

lim
n→∞

(
sup
x∈Ω

{||f (x)− fn (x)||E}
)

= 0. (15.22)

From this it will follow that f is bounded. Then I will show that f is continuous and
||f − fn|| → 0. Let ε > 0 be given and let N be such that for m, n > N

||fn − fm|| < ε/3.

Then it follows that for all x,

||f (x)− fm (x)||E = lim
n→∞

||fn (x)− fm (x)||E ≤ ε/3

Therefore, for m > N,

sup
x∈Ω

{||f (x)− fm (x)||E} ≤
ε

3
< ε.

This proves 15.22. Then by the triangle inequality and letting N be as just described, pick
m > N. Then for any x ∈ Ω

||f (x)||E ≤ ||fm (x)||E + ε ≤ ||fm||+ ε.

Hence f is bounded. Now pick x ∈ Ω and let ε > 0 be given and N be as above. Then

||f (x)− f (y)||E ≤ ||f (x)− fm (x)||E + ||fm (x)− fm (y)||E + ||fm (y)− f (y)||E
≤ ε

3
+ ||fm (x)− fm (y)||E +

ε

3
.
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Now by continuity of fm, the middle term is less than ε/3 whenever ||x− y|| is sufficiently
small. Therefore, f is also continuous. Finally, from the above,

||f − fn|| ≤ ε

3

whenever n > N and so limn→∞ ||f − fn|| = 0 as claimed. This proves the lemma.
The most familiar example of a Banach space is Fn. The following lemma is of great

importance so it is stated in general.

Lemma 15.4.4 Suppose T : E → E where E is a Banach space with norm |·|. Also suppose

|Tx− Ty| ≤ r |x− y| (15.23)

for some r ∈ (0, 1). Then there exists a unique fixed point, x ∈ E such that

Tx = x. (15.24)

Letting x1 ∈ E, this fixed point, x, is the limit of the sequence of iterates,

x1, Tx1, T 2x1, · · ·. (15.25)

In addition to this, there is a nice estimate which tells how close x1 is to x in terms of
things which can be computed.

∣∣x1 − x
∣∣ ≤ 1

1− r

∣∣x1 − Tx1
∣∣ . (15.26)

Proof: This follows easily when it is shown that the above sequence,
{
T kx1

}∞
k=1

is a
Cauchy sequence. Note that

∣∣T 2x1 − Tx1
∣∣ ≤ r

∣∣Tx1 − x1
∣∣ .

Suppose ∣∣T kx1 − T k−1x1
∣∣ ≤ rk−1

∣∣Tx1 − x1
∣∣ . (15.27)

Then
∣∣T k+1x1 − T kx1

∣∣ ≤ r
∣∣T kx1 − T k−1x1

∣∣
≤ rrk−1

∣∣Tx1 − x1
∣∣ = rk

∣∣Tx1 − x1
∣∣ .

By induction, this shows that for all k ≥ 2, 15.27 is valid. Now let k > l ≥ N.

∣∣T kx1 − T lx1
∣∣ =

∣∣∣∣∣∣

k−1∑

j=l

(
T j+1x1 − T jx1

)
∣∣∣∣∣∣

≤
k−1∑

j=l

∣∣T j+1x1 − T jx1
∣∣

≤
k−1∑

j=N

rj
∣∣Tx1 − x1

∣∣ ≤ ∣∣Tx1 − x1
∣∣ rN

1− r

which converges to 0 as N → ∞. Therefore, this is a Cauchy sequence so it must converge
to x ∈ E. Then

x = lim
k→∞

T kx1 = lim
k→∞

T k+1x1 = T lim
k→∞

T kx1 = Tx.
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This shows the existence of the fixed point. To show it is unique, suppose there were
another one, y. Then

|x− y| = |Tx− Ty| ≤ r |x− y|
and so x = y.

It remains to verify the estimate.

∣∣x1 − x
∣∣ ≤

∣∣x1 − Tx1
∣∣ +

∣∣Tx1 − x
∣∣

=
∣∣x1 − Tx1

∣∣ +
∣∣Tx1 − Tx

∣∣
≤

∣∣x1 − Tx1
∣∣ + r

∣∣x1 − x
∣∣

and solving the inequality for
∣∣x1 − x

∣∣ gives the estimate desired. This proves the lemma.
The following corollary is what will be used to prove the convergence condition for the

various iterative procedures.

Corollary 15.4.5 Suppose T : E → E, for some constant C

|Tx− Ty| ≤ C |x− y| ,

for all x,y ∈ E, and for some N ∈ N,

∣∣TNx− TNy
∣∣ ≤ r |x− y| ,

for all x,y ∈ E where r ∈ (0, 1). Then there exists a unique fixed point for T and it is still
the limit of the sequence,

{
T kx1

}
for any choice of x1.

Proof: From Lemma 15.4.4 there exists a unique fixed point for TN denoted here as x.
Therefore, TNx = x. Now doing T to both sides,

TNTx = Tx.

By uniqueness, Tx = x because the above equation shows Tx is a fixed point of TN and
there is only one.

It remains to consider the convergence of the sequence. Without loss of generality, it
can be assumed C ≥ 1. Then if r ≤ N − 1,

|T rx− T rx| ≤ CN |x− y| (15.28)

for all x,y ∈ E. By Lemma 15.4.4 there exists K such that if k, l ≥ K, then

∣∣T kNx1 − T lNx1
∣∣ < η =

ε

2CN
(15.29)

and also K is large enough that

2rKCN

∣∣TNx1 − x1
∣∣

1− r
<

ε

2
(15.30)

Now let p, q > KN and define kp, kq, rp, and rq by

p = kpN + rp, q = kqN + rq, 0 ≤ rq, rp < N.
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Then both kp and kq are larger than K. Therefore, from 15.28 and 15.30,
∣∣T px1 − T qx1

∣∣ =
∣∣T rpT kpNx1 − T rqT kqNx1

∣∣
≤ ∣∣T kpNT rpx1 − T kpNT rqx1

∣∣ +
∣∣T rqT kpNx1 − T rqT kqNx1

∣∣
≤ rkp

∣∣T rpx1 − T rqx1
∣∣ + CN

∣∣T kpNx1 − T kqNx1
∣∣

≤ rK




∣∣∣∣∣∣
T rpx1 −

=x︷ ︸︸ ︷
T rpx

∣∣∣∣∣∣
+

∣∣∣∣∣∣

=x︷ ︸︸ ︷
T rqx−T rqx1

∣∣∣∣∣∣


 + CNη

≤ rK
(
CN

∣∣x1 − x
∣∣ + CN

∣∣x1 − x
∣∣) + CNη

≤ 2rKCN

∣∣TNx1 − x1
∣∣

1− r
+ CNη <

ε

2
+

ε

2
= ε.

This shows
{
T kx1

}
is a Cauchy sequence and since a subsequence converges to x, it follows

this sequence also must converge to x. Here is why. Let ε > 0 be given. There exists M
such that if k, l > M, then ∣∣T kx1 − T lx1

∣∣ <
ε

2
.

Now let k > M . Then let l > M and also be large enough that
∣∣T lNx1 − x

∣∣ <
ε

2
.

Then
∣∣T kx1 − x

∣∣ ≤
∣∣T kx1 − T lNx1

∣∣ +
∣∣T lNx1 − x

∣∣
<

∣∣T kx1 − T lNx1
∣∣ +

ε

2
<

ε

2
+

ε

2
= ε.

This proves the corollary.

Theorem 15.4.6 Suppose ρ
(
B−1C

)
< 1. Then the iterates in 15.21 converge to the unique

solution of 15.20.

Proof: Consider the iterates in 15.21. Let Tx = B−1Cx + b. Then
∣∣T kx− T ky

∣∣ =
∣∣∣
(
B−1C

)k
x− (

B−1C
)k

y
∣∣∣

≤
∣∣∣
∣∣∣
(
B−1C

)k
∣∣∣
∣∣∣ |x− y| .

Here ||·|| refers to any of the operator norms. It doesn’t matter which one you pick because
they are all equivalent. I am writing the proof to indicate the operator norm taken with
respect to the usual norm on E. Since ρ

(
B−1C

)
< 1, it follows from Gelfand’s theorem,

Theorem 15.2.9 on Page 290, there exists N such that if k ≥ N, then for some r1/k < 1,

∣∣∣
∣∣∣
(
B−1C

)k
∣∣∣
∣∣∣
1/k

< r1/k < 1.

Consequently, ∣∣TNx− TNy
∣∣ ≤ r |x− y| .

Also |Tx− Ty| ≤
∣∣∣∣B−1C

∣∣∣∣ |x− y| and so Corollary 15.4.5 applies and gives the conclusion
of this theorem.
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15.5 Exercises

1. Solve the system 


4 1 1
1 5 2
0 2 6







x
y
z


 =




1
2
3




using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

2. Solve the system 


4 1 1
1 7 2
0 2 4







x
y
z


 =




1
2
3




using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

3. Solve the system 


5 1 1
1 7 2
0 2 4







x
y
z


 =




1
2
3




using the Gauss Seidel method and the Jacobi method. Check your answer by also
solving it using row operations.

4. If you are considering a system of the form Ax = b and A−1 does not exist, will either
the Gauss Seidel or Jacobi methods work? Explain. What does this indicate about
finding eigenvectors for a given eigenvalue?

15.6 The Power Method For Eigenvalues

As indicated earlier, the eigenvalue eigenvector problem is extremely difficult. Consider for
example what happens if you cannot find the eigenvalues exactly. Then you can’t find an
eigenvector because there isn’t one due to the fact that A − λI is invertible whenever λ
is not exactly equal to an eigenvalue. Therefore the straightforward way of solving this
problem fails right away, even if you can approximate the eigenvalues. The power method
allows you to approximate the largest eigenvalue and also the eigenvector which goes with
it. By considering the inverse of the matrix, you can also find the smallest eigenvalue.
The method works in the situation of a nondefective matrix, A which has an eigenvalue of
algebraic multiplicity 1, λn which has the property that |λk| < |λn| for all k 6= n. Note that
for a real matrix this excludes the case that λn could be complex. Why? Such an eigenvalue
is called a dominant eigenvalue.

Let {x1, · · ·,xn} be a basis of eigenvectors for Fn such that Axn = λnxn. Now let u1 be
some nonzero vector. Since {x1, · · ·,xn} is a basis, there exists unique scalars, ci such that

u1 =
n∑

k=1

ckxk.

Assume you have not been so unlucky as to pick u1 in such a way that cn = 0. Then let
Auk = uk+1 so that

um = Amu1 =
n−1∑

k=1

ckλm
k xk + λm

n cnxn. (15.31)
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For large m the last term, λm
n cnxn, determines quite well the direction of the vector on the

right. This is because |λn| is larger than |λk| and so for a large, m, the sum,
∑n−1

k=1 ckλm
k xk,

on the right is fairly insignificant. Therefore, for large m, um is essentially a multiple of the
eigenvector, xn, the one which goes with λn. The only problem is that there is no control
of the size of the vectors um. You can fix this by scaling. Let S2 denote the entry of Au1

which is largest in absolute value. We call this a scaling factor. Then u2 will not be just
Au1 but Au1/S2. Next let S3 denote the entry of Au2 which has largest absolute value and
define u3 ≡ Au2/S3. Continue this way. The scaling just described does not destroy the
relative insignificance of the term involving a sum in 15.31. Indeed it amounts to nothing
more than changing the units of length. Also note that from this scaling procedure, the
absolute value of the largest entry of uk is always equal to 1. Therefore, for large m,

um =
λm

n cnxn

S2S3 · · · Sm
+ (relatively insignificant term) .

Therefore, the entry of Aum which has the largest absolute value is essentially equal to the
entry having largest absolute value of

A

(
λm

n cnxn

S2S3 · · · Sm

)
=

λm+1
n cnxn

S2S3 · · · Sm
≈ λnum

and so for large m, it must be the case that λn ≈ Sm+1. This suggests the following
procedure.

Finding the largest eigenvalue with its eigenvector.

1. Start with a vector, u1 which you hope has a component in the direction of xn. The
vector, (1, · · ·, 1)T is usually a pretty good choice.

2. If uk is known,

uk+1 =
Auk

Sk+1

where Sk+1 is the entry of Auk which has largest absolute value.

3. When the scaling factors, Sk are not changing much, Sk+1 will be close to the eigen-
value and uk+1 will be close to an eigenvector.

4. Check your answer to see if it worked well.

Example 15.6.1 Find the largest eigenvalue of A =




5 −14 11
−4 4 −4
3 6 −3


 .

The power method will now be applied to find the largest eigenvalue for the above matrix.
Letting u1=(1, · · ·, 1)T

, we will consider Au1 and scale it.



5 −14 11
−4 4 −4
3 6 −3







1
1
1


 =




2
−4
6


 .

Scaling this vector by dividing by the largest entry gives

1
6




2
−4
6


 =




1
3

− 2
3

1


 = u2
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Now lets do it again.




5 −14 11
−4 4 −4
3 6 −3







1
3

− 2
3

1


 =




22
−8
−6




Then

u3 =
1
22




22
−8
−6


 =




1
− 4

11

− 3
11


 =




1.0
−. 363 636 36
−. 272 727 27


 .

Continue doing this



5 −14 11
−4 4 −4
3 6 −3







1.0
−. 363 636 36
−. 272 727 27


 =




7. 090 909 1
−4. 363 636 4
1. 636 363 7




Then

u4 =




1. 0
−. 615 38
. 230 77




So far the scaling factors are changing fairly noticeably so continue.



5 −14 11
−4 4 −4
3 6 −3







1. 0
−. 615 38
. 230 77


 =




16. 154
−7. 384 6
−1. 384 6




u5 =




1.0
−. 457 14

−8. 571 3× 10−2







5 −14 11
−4 4 −4
3 6 −3







1.0
−. 457 14

−8. 571 3× 10−2


 =




10. 457
−5. 485 7
. 514 3




u6 =




1.0
−. 524 6

4. 918 2× 10−2







5 −14 11
−4 4 −4
3 6 −3







1.0
−. 524 6

4. 918 2× 10−2


 =




12. 885
−6. 295 1
−. 295 15




u7 =




1.0
−. 488 56

−2. 290 6× 10−2







5 −14 11
−4 4 −4
3 6 −3







1.0
−. 488 56

−2. 290 6× 10−2


 =




11. 588
−5. 862 6
. 137 36




u8 =




1.0
−. 505 92

1. 185 4× 10−2
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5 −14 11
−4 4 −4
3 6 −3







1.0
−. 505 92

1. 185 4× 10−2


 =




12. 213
−6. 071 1

−7. 108 2× 10−2




u9 =




1.0
−. 497 1

−5. 820 2× 10−3







5 −14 11
−4 4 −4
3 6 −3







1.0
−. 497 1

−5. 820 2× 10−3


 =




11. 895
−5. 965 1

3. 486 1× 10−2




u10 =




1.0
−. 501 48

2. 930 7× 10−3







5 −14 11
−4 4 −4
3 6 −3







1.0
−. 501 48

2. 930 7× 10−3


 =




12. 053
−6. 017 6

−1. 767 2× 10−2




u11 =




1.0
−. 499 26

−1. 466 2× 10−3




At this point, you could stop because the scaling factors are not changing by much.
They went from 11. 895 to 12. 053. It looks like the eigenvalue is something like 12 which is
in fact the case. The eigenvector is approximately u11. The true eigenvector for λ = 12 is




1
−.5
0




and so you see this is pretty close. If you didn’t know this, observe



5 −14 11
−4 4 −4
3 6 −3







1.0
−. 499 26

−1. 466 2× 10−3


 =




11. 974
−5. 991 2

8. 838 6× 10−3




and

12. 053




1.0
−. 499 26

−1. 466 2× 10−3


 =




12. 053
−6. 017 6

−1. 767 2× 10−2


 .

15.6.1 The Shifted Inverse Power Method

This method can find various eigenvalues and eigenvectors. It is a significant generalization
of the above simple procedure and yields very good results. The situation is this: You have
a number, α which is close to λ, some eigenvalue of an n × n matrix, A. You don’t know
λ but you know that α is closer to λ than to any other eigenvalue. Your problem is to find
both λ and an eigenvector which goes with λ. Another way to look at this is to start with α
and seek the eigenvalue, λ, which is closest to α along with an eigenvector associated with
λ. If α is an eigenvalue of A, then you have what you want. Therefore, I will always assume
α is not an eigenvalue of A and so (A− αI)−1 exists. The method is based on the following
lemma.
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Lemma 15.6.2 Let {λk}n
k=1 be the eigenvalues of A. If xk is an eigenvector of A for the

eigenvalue λk, then xk is an eigenvector for (A− αI)−1 corresponding to the eigenvalue
1

λk−α . Conversely, if

(A− αI)−1 y =
1

λ− α
y (15.32)

and y 6= 0, then Ay = λy. Furthermore, each generalized eigenspace is invariant with
respect to (A− αI)−1. That is, (A− αI)−1 maps each generalized eigenspace to itself.

Proof: Let λk and xk be as described in the statement of the lemma. Then

(A− αI)xk = (λk − α)xk

and so
1

λk − α
xk = (A− αI)−1 xk.

Suppose 15.32. Then y = 1
λ−α [Ay − αy] . Solving for Ay leads to Ay = λy.

It remains to verify the invariance of the generalized eigenspaces. Let Ek correspond to
the eigenvalue λk.

(A− λkI)m (A− αI)−1 (A− αI) = (A− λkI)m = (A− αI)−1 (A− λkI)m (A− αI)

and so it follows

(A− λkI)m (A− αI)−1 = (A− αI)−1 (A− λkI)m
.

Now let x ∈ Ek. Then this means that for some m, (A− λkI)m x = 0.

(A− λkI)m (A− αI)−1 x =(A− αI)−1 (A− λkI)m x =(A− αI)−1 0 = 0.

Hence (A− αI)−1 x ∈ Ek also. This proves the lemma.
Now assume α is closer to λ than to any other eigenvalue. Also suppose

u1 =
k∑

i=1

xi + y (15.33)

where y 6= 0 and y is in the generalized eigenspace associated with λ and in addition is
an eigenvector for A corresponding to λ. Let xk be a vector in the generalized eigenspace
associated with λk where the λk 6= λ. If un has been chosen,

un+1 ≡ (A− αI)−1 un

Sn+1
(15.34)

where Sn+1 is a number with the property that ||un+1|| = 1. I am being vague about the
particular choice of norm because it does not matter. One way to do this is to let Sn+1 be
the entry of (A− αI)−1 un which has largest absolute value. Thus for n > 1, ||un||∞ = 1.
This describes the method. Why does anything interesting happen?

u2 =
∑k

i=1 (A− αI)−1 xi + (A− αI)−1 y
S2

,

u3 =

∑k
i=1

(
(A− αI)−1

)2

xi +
(
(A− αI)−1

)2

y

S2S3
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and continuing this way,

un =

∑k
i=1

(
(A− αI)−1

)n

xi +
(
(A− αI)−1

)n

y

S2S3 · · · Sn

=

∑k
i=1

(
(A− αI)−1

)n

xi

S2S3 · · · Sn
+

(
(A− αI)−1

)n

y

S2S3 · · · Sn
(15.35)

≡ rn + vn (15.36)

Claim: vn is an eigenvector for (A− αI)−1 and limn→∞ rn = 0.
Proof of claim: Consider rn. By invariance of (A− αI)−1 on the generalized eigenspaces,

it follows from Gelfand’s theorem that for n large enough

||rn|| =

∣∣∣∣∣∣

∣∣∣∣∣∣

∑k
i=1

(
(A− αI)−1

)n

xi

S2S3 · · · Sn

∣∣∣∣∣∣

∣∣∣∣∣∣

≤
∑k

i=1

∣∣∣
∣∣∣
(
(A− αI)−1

)n∣∣∣
∣∣∣ ||xi||

S2S3 · · · Sn

≤
∑k

i=1

∣∣∣ 1+η
λk−α

∣∣∣
n

||xi||
S2S3 · · · Sn

=
∣∣∣∣

1 + ε

λk − α

∣∣∣∣
n ∑k

i=1 ||xi||
S2S3 · · · Sn

where η is chosen small enough that for all k,
∣∣∣∣

1 + η

λk − α

∣∣∣∣ <

∣∣∣∣
1

λ− α

∣∣∣∣ (15.37)

The second term on the right in 15.35 yields

vn =
y

(λ− α)n
S2S3 · · · Sn

= Cny,

which is an eigenvector thanks to Lemma 15.6.2.
Now let ε > 0 be given, ε < 1/2. By 15.37, it follows that for large n,

∣∣∣∣
1

λ− α

∣∣∣∣
n

>>

∣∣∣∣
1 + η

λk − α

∣∣∣∣
n

where >> denotes much larger than. Therefore, for large n

||rn||
||vn|| < ε. (15.38)

Then
||vn|| − ||un|| ≤ ||un − vn|| = ||rn|| ≤ ε ||vn||

and so ||vn|| ≤ 1 + ε ||vn|| . Hence ||vn|| ≤ 2. Therefore, from 15.38,

||rn|| < ε ||vn|| < 2ε.

since ε > 0 is arbitrary it follows
lim

n→∞
rn = 0.

This verifies the claim.
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Now from 15.34,

Sn+1un+1 = (A− αI)−1 rn + (A− αI)−1 vn

= (A− αI)−1 rn +
1

λ− α
vn

= (A− αI)−1 rn +
1

λ− α
(un − rn)

=
(

(A− αI)−1 − I

λ− α

)
rn +

1
λ− α

un

= Rn +
1

λ− α
un

where limn→∞Rn = 0. Therefore,

Sn+1 (un+1,un)− (Rn,un)
|un|2

=
1

λ− α
.

It follows from limn→∞Rn = 0 that for large n,

Sn+1 (un+1,un)
|un|2

≈ 1
λ− α

so you can solve this equation to obtain an approximate value for λ. If un ≈ un+1, then this
reduces to solving

Sn+1 =
1

λ− α
.

What about the case where Sn+1 is the entry of (A− αI)−1 un which has the largest
absolute value? Can it be shown that for large n,un ≈ un+1 and Sn ≈ Sn+1? In this case,
the norm is ||·||∞ and the construction requires that for n > 1,

un =




w1

...
wl




where |wi| ≤ 1 and for some p, wp = 1. Then for large n,

(A− αI)−1 un ≈ (A− αI)−1 vn ≈ 1
λ− α

vn ≈ 1
λ− α

un.

Therefore, you can take Sn+1 ≈ 1
λ−α which shows that in this case, the scaling factors can

be chosen to be a convergent sequence and that for large n they may all be considered to
be approximately equal to 1

λ−α . Also,

1
λ− α

un+1 ≈ (A− αI)−1 un ≈ (A− αI)−1 vn =
1

λ− α
vn ≈ 1

λ− α
un

and so for large n, un+1 ≈ un ≈ vn, an eigenvector. Of course this last item could fail if
(A− αI)−1 un had more than one entry having absolute value equal to 1.

15.6.2 The Defective Case

In the case where the multiplicity of λ equals the dimension of the eigenspace for λ, the
above is a good description of how to find both λ and an eigenvector which goes with λ.
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This is because the whole space is the direct sum of the generalized eigenspaces and every
nonzero vector in the generalized eigenspace associated with λ is an eigenvector. This is the
case where λ is non defective. What of the case when the multiplicity of λ is greater than
the dimension of the eigenspace associated with λ? Theoretically, the method will even work
in this case although not very well. For the sake of completeness, I will give an argument
which includes this case as well. As before, ||v|| will denote ||v||∞.

Let A be a q× q matrix and let α be closer to λ than to any other eigenvalue, the other
ones being λ1, λ2, · · ·, λp. Then letting Eλi denote the generalized eigenspace associated with
the eigenvector λi, let E denote the direct sum

Eλ1 ⊕ · · · ⊕ Eλp ,

it follows from Lemma 15.6.2 that E is invariant with respect to (A− αI)−1
. Thus the

eigenvalues of this linear transformation restricted to E are 1
λi−α for i = 1, · · ·, p. Therefore,

letting L1 denote the largest of the quantities, 1
|λi−α| , it follows that for small enough η,

L1 + η ≡ L <
∣∣∣ 1
λ−α

∣∣∣ . Suppose then that

u1 ≡ (A− αI)−1 (v + y)
S1

, un+1 ≡ (A− αI)−1 un

Sn+1

where v ∈ E and y ∈ Eλ and it is assumed that y 6= 0. As before, Sn+1 denotes the entry of
(A− αI)−1 un which has the largest absolute value and S1 the entry of (A− αI)−1 (v + y)
which has largest absolute value. Thus ||un|| = 1 for all n and un has at least one entry
which equals 1. Thus

un+1 =

(
(A− αI)−1

)n

v+
(
(A− αI)−1

)n

y

Sn+1Sn · · · S1
. (15.39)

Since y ∈ Eλ,

y =
Q∑

k=1

mk∑

i=0

ck
i x

k
i

where xk
0 is an eigenvector for 1/ (λ− α) and xk

1 , ···,xk
mk

is a chain of generalized eigenvectors
based on xk

0 satisfying (
(A− αI)−1 − 1

λ− α
I

)
xk

l = xk
l−1

and (
(A− αI)−1 − 1

λ− α
I

)l

xk
l = xk

0 ,

the eigenvectors forming a linearly independent set.
Consider

(
(A− αI)−1

)n

xk
l . This equals

((
(A− αI)−1 − 1

λ− α
I

)
+

1
λ− α

I

)n

xk
l

=
l∑

β=0

(
n

β

)(
1

λ− α

)n−β (
(A− αI)−1 − 1

λ− α
I

)β

xk
l

=
(

n

l

)(
1

λ− α

)n−l

xk
0 +

l−1∑

β=0

(
n

β

)(
1

λ− α

)n−β

xk
l−β

≡ an + bn
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Of course each l ≤ q. Also

lim
n→∞

(
n
β

)
(
n
l

) = 0

for all β < l. Therefore, limn→∞ ||bn|| / ||an|| = 0. Separating all the terms of
(
(A− αI)−1

)n

y
into the sum of eigenvectors, An and those which are not eigenvectors, Bn, it follows that

lim
n→∞

||Bn|| / ||An|| = 0.

Referring again to 15.39 and defining Cn ≡
(
(A− αI)−1

)n

v, it follows that for n large
enough,

||Cn|| ≤
∣∣∣
∣∣∣
(
(A− αI)−1

)n∣∣∣
∣∣∣ ||v|| ≤ Ln ||v||

and so since L <
∣∣∣ 1
λ−α

∣∣∣ , it follows that

lim
n→∞

||Cn||
||An|| = 0

also. Letting Dn = Cn + Bn, it follows

lim
n→∞

||Dn||
||An|| = 0

and

un+1 =
An + Dn

Sn+1Sn · · · S1
, ||un+1|| = 1, An an eigenvector. (15.40)

Simplifying this further,

un+1 = Pn + Qn, ||un+1|| = 1, Pn an eigenvector (15.41)

where

Pn =
An

Sn+1Sn · · · S1
, Qn =

Dn

Sn+1Sn · · · S1
, lim
n→∞

||Qn||
||Pn|| = 0. (15.42)

Claim: limn→∞ ||Qn|| = 0.
It follows from 15.42 that for all n large enough,

||Qn||
||Pn|| < ε < 1 (15.43)

and so from 15.41 and large n,

||Pn|| ≤ 1 + ||Qn|| < 1 + ε ||Pn||

so that
||Pn|| < 1

1− ε
.

Therefore, from 15.43,
||Qn|| < ε ||Pn|| < ε

1− ε
.

Since ε is arbitrary, this proves the claim.
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From the claim, it follows un+1 is approximately equal to an eigenvector, Pn for large
n. It remains to approximate the eigenvalue. This may be done by using this information.

(A− αI)−1 un+1 ≈ (A− αI)−1 Pn =
1

λ− α
Pn ≈ 1

λ− α
un+1 (15.44)

and so you could estimate the eigenvalue as follows. Suppose the largest entry of un+1

occurs in the jth position. (In the above scheme, this entry will equal 1 but it really doesn’t
matter much how the Sm are chosen so long as they normalize the um in some norm.) Then
compute λ by solving the following equation

(
(A− αI)−1 un+1

)
j

=
(

1
λ− α

un+1

)

j

.

Another way would be to take the inner product of both ends of 15.44 with un+1 and solve
(
(A− αI)−1 un+1,un+1

)
=

1
λ− α

|un+1|2

for λ.
As before, unless something unusual happens, Sn+1 ≈ 1

λ−α if you are using the above
rule for selecting the Sm. This is because from the definition of the un,

Sn+1un+1 ≡ (A− αI)−1 un ≈ (A− αI)−1 Pn−1 =
1

λ− α
Pn−1 ≈ 1

λ− α
un.

Therefore, the largest entry of (A− αI)−1 un must be approximately equal to 1
λ−α and so

Sn+1 is likely close to this number. Of course this could fail if (A− αI)−1 un had many
different entries all having the same absolute value.

15.6.3 The Explicit Description Of The Method

Here is how you use this method to find the eigenvalue and eigenvector closest
to α.

1. Find (A− αI)−1
.

2. Pick u1. It is important that u1 =
∑m

j=1 ajxj +y where y is an eigenvector which goes
with the eigenvalue closest to α and the sum is in an invariant subspace corresponding
to the other eigenvalues. Of course you have no way of knowing whether this is so but
it typically is so. If things don’t work out, just start with a different u1. You were
unlucky in your choice.

3. If uk has been obtained,

uk+1 =
(A− αI)−1 uk

Sk+1

where Sk+1 is the entry of uk which has largest absolute value.

4. When the scaling factors, Sk are not changing much and the uk are not changing
much, find the approximation to the eigenvalue by solving

Sk+1 =
1

λ− α

for λ. The eigenvector is approximated by uk+1.
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5. Check your work by multiplying by the original matrix to see how well what you have
found works.

Example 15.6.3 Find the eigenvalue of A =




5 −14 11
−4 4 −4
3 6 −3


 which is closest to −7.

Also find an eigenvector which goes with this eigenvalue.

In this case the eigenvalues are −6, 0, and 12 so the correct answer is −6 for the eigen-
value. Then from the above procedure, I will start with an initial vector,

u1 ≡



1
1
1


 .

Then I must solve the following equation.






5 −14 11
−4 4 −4
3 6 −3


 + 7




1 0 0
0 1 0
0 0 1










x
y
z


 =




1
1
1




Simplifying the matrix on the left, I must solve



12 −14 11
−4 11 −4
3 6 4







x
y
z


 =




1
1
1




and then divide by the entry which has largest absolute value to obtain

u2 =




1.0
. 184
−. 76




Now solve 


12 −14 11
−4 11 −4
3 6 4







x
y
z


 =




1.0
. 184
−. 76




and divide by the largest entry, 1. 051 5 to get

u3 =




1.0
.0 266

−. 970 61




Solve 


12 −14 11
−4 11 −4
3 6 4







x
y
z


 =




1.0
.0 266

−. 970 61




and divide by the largest entry, 1. 01 to get

u4 =




1.0
3. 845 4× 10−3

−. 996 04


 .

These scaling factors are pretty close after these few iterations. Therefore, the predicted
eigenvalue is obtained by solving the following for λ.

1
λ + 7

= 1.01
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which gives λ = −6. 01. You see this is pretty close. In this case the eigenvalue closest to
−7 was −6.

Example 15.6.4 Consider the symmetric matrix, A =




1 2 3
2 1 4
3 4 2


 . Find the middle

eigenvalue and an eigenvector which goes with it.

Since A is symmetric, it follows it has three real eigenvalues which are solutions to

p (λ) = det


λ




1 0 0
0 1 0
0 0 1


−




1 2 3
2 1 4
3 4 2







= λ3 − 4λ2 − 24λ− 17 = 0

If you use your graphing calculator to graph this polynomial, you find there is an eigenvalue
somewhere between −.9 and −.8 and that this is the middle eigenvalue. Of course you could
zoom in and find it very accurately without much trouble but what about the eigenvector
which goes with it? If you try to solve


(−.8)




1 0 0
0 1 0
0 0 1


−




1 2 3
2 1 4
3 4 2










x
y
z


 =




0
0
0




there will be only the zero solution because the matrix on the left will be invertible and the
same will be true if you replace −.8 with a better approximation like −.86 or −.855. This is
because all these are only approximations to the eigenvalue and so the matrix in the above
is nonsingular for all of these. Therefore, you will only get the zero solution and

Eigenvectors are never equal to zero!

However, there exists such an eigenvector and you can find it using the shifted inverse power
method. Pick α = −.855. Then you solve







1 2 3
2 1 4
3 4 2


 + .855




1 0 0
0 1 0
0 0 1










x
y
z


 =




1
1
1




or in other words,



1. 855 2.0 3.0
2.0 1. 855 4.0
3.0 4.0 2. 855







x
y
z


 =




1
1
1




and divide by the largest entry, −67. 944, to obtain

u2 =




1. 0
−. 589 21
−. 230 44




Now solve 


1. 855 2.0 3.0
2.0 1. 855 4.0
3.0 4.0 2. 855







x
y
z


 =




1. 0
−. 589 21
−. 230 44
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, Solution is :



−514. 01
302. 12
116. 75


 and divide by the largest entry, −514. 01, to obtain

u3 =




1. 0
−. 587 77
−. 227 14


 (15.45)

Clearly the uk are not changing much. This suggests an approximate eigenvector for this
eigenvalue which is close to −.855 is the above u3 and an eigenvalue is obtained by solving

1
λ + .855

= −514. 01,

which yields λ = −. 856 9 Lets check this.



1 2 3
2 1 4
3 4 2







1. 0
−. 587 77
−. 227 14


 =



−. 856 96
. 503 67
. 194 64


 .

−. 856 9




1. 0
−. 587 77
−. 227 14


 =



−. 856 9
. 503 7
. 194 6




Thus the vector of 15.45 is very close to the desired eigenvector, just as −. 856 9 is very close
to the desired eigenvalue. For practical purposes, I have found both the eigenvector and the
eigenvalue.

Example 15.6.5 Find the eigenvalues and eigenvectors of the matrix, A =




2 1 3
2 1 1
3 2 1


 .

This is only a 3×3 matrix and so it is not hard to estimate the eigenvalues. Just get
the characteristic equation, graph it using a calculator and zoom in to find the eigenvalues.
If you do this, you find there is an eigenvalue near −1.2, one near −.4, and one near 5.5.
(The characteristic equation is 2 + 8λ + 4λ2 − λ3 = 0.) Of course I have no idea what the
eigenvectors are.

Lets first try to find the eigenvector and a better approximation for the eigenvalue near
−1.2. In this case, let α = −1.2. Then

(A− αI)−1 =



−25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0
23. 214 286 30. 357 143 −45.0


 .

Then for the first iteration, letting u1 = (1, 1, 1)T
,



−25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0
23. 214 286 30. 357 143 −45.0







1
1
1


 =



−9. 285 714

5.0
8. 571 429




To get u2, I must divide by −9. 285 714. Thus

u2 =




1.0
−. 538 461 56
−. 923 077


 .



314 NORMS FOR FINITE DIMENSIONAL VECTOR SPACES

Do another iteration.


−25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0
23. 214 286 30. 357 143 −45.0







1.0
−. 538 461 56
−. 923 077


 =



−53. 241 762
26. 153 848
48. 406 596




Then to get u3 you divide by −53. 241 762. Thus

u3 =




1.0
−. 491 228 07
−. 909 184 71


 .

Now iterate again because the scaling factors are still changing quite a bit.


−25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0
23. 214 286 30. 357 143 −45.0







1.0
−. 491 228 07
−. 909 184 71


 =



−54. 149 712
26. 633 127
49. 215 317


 .

This time the scaling factor didn’t change too much. It is −54. 149 712. Thus

u4 =




1. 0
−. 491 842 45
−. 908 874 95


 .

Lets do one more iteration.


−25. 357 143 −33. 928 571 50.0

12. 5 17. 5 −25.0
23. 214 286 30. 357 143 −45.0







1. 0
−. 491 842 45
−. 908 874 95


 =



−54. 113 379
26. 614 631
49. 182 727


 .

You see at this point the scaling factors have definitely settled down and so it seems our
eigenvalue would be obtained by solving

1
λ− (−1.2)

= −54. 113 379

and this yields λ = −1. 218 479 7 as an approximation to the eigenvalue and the eigenvector
would be obtained by dividing by −54. 113 379 which gives

u5 =




1. 000 000 2
−. 491 830 97
−. 908 883 09


 .

How well does it work?



2 1 3
2 1 1
3 2 1







1. 000 000 2
−. 491 830 97
−. 908 883 09


 =



−1. 218 479 8
. 599 286 34
1. 107 455 6




while

−1. 218 479 7




1. 000 000 2
−. 491 830 97
−. 908 883 09


 =



−1. 218 479 9
. 599 286 05
1. 107 455 6


 .

For practical purposes, this has found the eigenvalue near −1.2 as well as an eigenvector
associated with it.
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Next I shall find the eigenvector and a more precise value for the eigenvalue near −.4.
In this case,

(A− αI)−1 =




8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5


 .

As before, I have no idea what the eigenvector is so I will again try (1, 1, 1)T
. Then to find

u2,




8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5







1
1
1


 =



−2. 741 935 4
3. 709 677 7
1. 290 322 6




The scaling factor is 3. 709 677 7. Thus

u2 =



−. 739 130 36

1. 0
. 347 826 07


 .

Now lets do another iteration.



8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5






−. 739 130 36

1. 0
. 347 826 07


 =



−7. 089 761 6
9. 144 460 4
2. 377 279 2


 .

The scaling factor is 9. 144 460 4. Thus

u3 =



−. 775 306 72

1. 0
. 259 969 33


 .

Lets do another iteration. The scaling factors are still changing quite a bit.



8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5






−. 775 306 72

1. 0
. 259 969 33


 =



−7. 659 496 8
9. 796 717 5
2. 603 589 5


 .

The scaling factor is now 9. 796 717 5. Therefore,

u4 =



−. 781 843 18

1.0
. 265 761 41


 .

Lets do another iteration.



8. 064 516 1× 10−2 −9. 274 193 5 6. 451 612 9
−. 403 225 81 11. 370 968 −7. 258 064 5
. 403 225 81 3. 629 032 3 −2. 741 935 5






−. 781 843 18

1.0
. 265 761 41


 =



−7. 622 655 6
9. 757 313 9
2. 585 072 3


 .

Now the scaling factor is 9. 757 313 9 and so

u5 =



−. 781 224 8

1. 0
. 264 936 88


 .
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I notice the scaling factors are not changing by much so the approximate eigenvalue is

1
λ + .4

= 9. 757 313 9

which shows λ = −. 297 512 78 is an approximation to the eigenvalue near .4. How well does
it work? 


2 1 3
2 1 1
3 2 1






−. 781 224 8

1. 0
. 264 936 88


 =




. 232 361 04
−. 297 512 72
−.0 787 375 2


 .

−. 297 512 78



−. 781 224 8

1. 0
. 264 936 88


 =




. 232 424 36
−. 297 512 78

−7. 882 210 8× 10−2


 .

It works pretty well. For practical purposes, the eigenvalue and eigenvector have now been
found. If you want better accuracy, you could just continue iterating.

Next I will find the eigenvalue and eigenvector for the eigenvalue near 5.5. In this case,

(A− αI)−1 =




29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0


 .

As before, I have no idea what the eigenvector is but I am tired of always using (1, 1, 1)T

and I don’t want to give the impression that you always need to start with this vector.
Therefore, I shall let u1 = (1, 2, 3)T

. What follows is the iteration without all the comments
between steps.




29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0







1
2
3


 =




1. 324× 102

86. 4
1. 26× 102


 .

S2 = 86. 4.

u2 =




1. 532 407 4
1.0

1. 458 333 3


 .




29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0







1. 532 407 4
1.0

1. 458 333 3


 =




95. 379 629
62. 388 888
90. 990 74




S3 = 95. 379 629.

u3 =




1. 0
. 654 111 25
. 953 985 05







29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0







1. 0
. 654 111 25
. 953 985 05


 =




62. 321 522
40. 764 974
59. 453 451




S4 = 62. 321 522.

u4 =




1.0
. 654 107 48
. 953 979 45







29. 2 16. 8 23. 2
19. 2 10. 8 15. 2
28.0 16.0 22.0







1.0
. 654 107 48
. 953 979 45


 =




62. 321 329
40. 764 848
59. 453 268
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S5 = 62. 321 329. Looks like it is time to stop because this scaling factor is not changing
much from S3.

u5 =




1.0
. 654 107 49
. 953 979 46


 .

Then the approximation of the eigenvalue is gotten by solving

62. 321 329 =
1

λ− 5.5

which gives λ = 5. 516 045 9. Lets see how well it works.



2 1 3
2 1 1
3 2 1







1.0
. 654 107 49
. 953 979 46


 =




5. 516 045 9
3. 608 087

5. 262 194 4




5. 516 045 9




1.0
. 654 107 49
. 953 979 46


 =




5. 516 045 9
3. 608 086 9
5. 262 194 5


 .

15.6.4 Complex Eigenvalues

What about complex eigenvalues? If your matrix is real, you won’t see these by graphing
the characteristic equation on your calculator. Will the shifted inverse power method find
these eigenvalues and their associated eigenvectors? The answer is yes. However, for a real
matrix, you must pick α to be complex. This is because the eigenvalues occur in conjugate
pairs so if you don’t pick it complex, it will be the same distance between any conjugate
pair of complex numbers and so nothing in the above argument for convergence implies you
will get convergence to a complex number. Also, the process of iteration will yield only real
vectors and scalars.

Example 15.6.6 Find the complex eigenvalues and corresponding eigenvectors for the ma-
trix, 


5 −8 6
1 0 0
0 1 0


 .

Here the characteristic equation is λ3 − 5λ2 + 8λ − 6 = 0. One solution is λ = 3. The
other two are 1+i and 1−i. We will apply the process to α = i so we will find the eigenvalue
closest to i.

(A− αI)−1 =



−.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i
−. 14 + .0 2i . 68− . 24i . 12 + . 84i
.0 2 + . 14i −. 24− . 68i . 84 + . 88i




Then let u1 = (1, 1, 1)T for lack of any insight into anything better.


−.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i
−. 14 + .0 2i . 68− . 24i . 12 + . 84i
.0 2 + . 14i −. 24− . 68i . 84 + . 88i







1
1
1


 =




. 38 + . 66i

. 66 + . 62i

. 62 + . 34i




S2 = . 66 + . 62i.

u2 =




. 804 878 05 + . 243 902 44i
1.0

. 756 097 56− . 195 121 95i
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−.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i
−. 14 + .0 2i . 68− . 24i . 12 + . 84i
.0 2 + . 14i −. 24− . 68i . 84 + . 88i







. 804 878 05 + . 243 902 44i
1.0

. 756 097 56− . 195 121 95i




=




. 646 341 46 + . 817 073 17i

. 817 073 17 + . 353 658 54i
. 548 780 49− 6. 097 560 9× 10−2i




S3 = . 646 341 46 + . 817 073 17i. After more iterations, of this sort, you find S9 = 1.
002 748 5 + 2. 137 621 7× 10−4i and

u9 =




1.0
. 501 514 17− . 499 807 33i

1. 562 088 1× 10−3 − . 499 778 55i


 .

Then


−.0 2− . 14i 1. 24 + . 68i −. 84 + . 12i
−. 14 + .0 2i . 68− . 24i . 12 + . 84i
.0 2 + . 14i −. 24− . 68i . 84 + . 88i







1.0
. 501 514 17− . 499 807 33i

1. 562 088 1× 10−3 − . 499 778 55i




=




1. 000 407 8 + 1. 269 979× 10−3i
. 501 077 31− . 498 893 66i

8. 848 928× 10−4 − . 499 515 22i




S10 = 1. 000 407 8 + 1. 269 979× 10−3i.

u10 =




1.0
. 500 239 18− . 499 325 33i

2. 506 749 2× 10−4 − . 499 311 92i




The scaling factors are not changing much at this point

1. 000 407 8 + 1. 269 979× 10−3i =
1

λ− i

The approximate eigenvalue is then λ = . 999 590 76 + . 998 731 06i. This is pretty close to
1 + i. How well does the eigenvector work?




5 −8 6
1 0 0
0 1 0







1.0
. 500 239 18− . 499 325 33i

2. 506 749 2× 10−4 − . 499 311 92i




=




. 999 590 61 + . 998 731 12i
1.0

. 500 239 18− . 499 325 33i




(. 999 590 76 + . 998 731 06i)




1.0
. 500 239 18− . 499 325 33i

2. 506 749 2× 10−4 − . 499 311 92i




=




. 999 590 76 + . 998 731 06i
. 998 726 18 + 4. 834 203 9× 10−4i

. 498 928 9− . 498 857 22i




It took more iterations than before because α was not very close to 1 + i.
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This illustrates an interesting topic which leads to many related topics. If you have a
polynomial, x4 + ax3 + bx2 + cx + d, you can consider it as the characteristic polynomial of
a certain matrix, called a companion matrix. In this case,




−a −b −c −d
1 0 0 0
0 1 0 0
0 0 1 0


 .

The above example was just a companion matrix for λ3 − 5λ2 + 8λ − 6. You can see the
pattern which will enable you to obtain a companion matrix for any polynomial of the form
λn + a1λ

n−1 + · · · + an−1λ + an. This illustrates that one way to find the complex zeros
of a polynomial is to use the shifted inverse power method on a companion matrix for the
polynomial. Doubtless there are better ways but this does illustrate how impressive this
procedure is. Do you have a better way?

15.6.5 Rayleigh Quotients And Estimates for Eigenvalues

There are many specialized results concerning the eigenvalues and eigenvectors for Hermitian
matrices. Recall a matrix, A is Hermitian if A = A∗ where A∗ means to take the transpose
of the conjugate of A. In the case of a real matrix, Hermitian reduces to symmetric. Recall
also that for x ∈ Fn,

|x|2 = x∗x =
n∑

j=1

|xj |2 .

Recall the following corollary found on Page 170 which is stated here for convenience.

Corollary 15.6.7 If A is Hermitian, then all the eigenvalues of A are real and there exists
an orthonormal basis of eigenvectors.

Thus for {xk}n
k=1 this orthonormal basis,

x∗i xj = δij ≡
{

1 if i = j
0 if i 6= j

For x ∈ Fn, x 6= 0, the Rayleigh quotient is defined by

x∗Ax

|x|2 .

Now let the eigenvalues of A be λ1 ≤ λ2 ≤ · · · ≤ λn and Axk = λkxk where {xk}n
k=1 is

the above orthonormal basis of eigenvectors mentioned in the corollary. Then if x is an
arbitrary vector, there exist constants, ai such that

x =
n∑

i=1

aixi.

Also,

|x|2 =
n∑

i=1

aix∗i

n∑

j=1

ajxj

=
∑

ij

aiajx∗i xj =
∑

ij

aiajδij =
n∑

i=1

|ai|2 .
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Therefore,

x∗Ax

|x|2 =
(
∑n

i=1 aix∗i )
(∑n

j=1 ajλjxj

)

∑n
i=1 |ai|2

=

∑
ij aiajλjx∗i xj∑n

i=1 |ai|2
=

∑
ij aiajλjδij∑n

i=1 |ai|2

=
∑n

i=1 |ai|2 λi∑n
i=1 |ai|2

∈ [λ1, λn] .

In other words, the Rayleigh quotient is always between the largest and the smallest eigenval-
ues of A. When x = xn, the Rayleigh quotient equals the largest eigenvalue and when x = x1

the Rayleigh quotient equals the smallest eigenvalue. Suppose you calculate a Rayleigh quo-
tient. How close is it to some eigenvalue?

Theorem 15.6.8 Let x 6= 0 and form the Rayleigh quotient,

x∗Ax

|x|2 ≡ q.

Then there exists an eigenvalue of A, denoted here by λq such that

|λq − q| ≤ |Ax− qx|
|x| . (15.46)

Proof: Let x =
∑n

k=1 akxk where {xk}n
k=1 is the orthonormal basis of eigenvectors.

|Ax− qx|2 = (Ax− qx)∗ (Ax− qx)

=

(
n∑

k=1

akλkxk − qakxk

)∗(
n∑

k=1

akλkxk − qakxk

)

=




n∑

j=1

(λj − q) ajx∗j




(
n∑

k=1

(λk − q) akxk

)

=
∑

j,k

(λj − q) aj (λk − q) akx∗jxk

=
n∑

k=1

|ak|2 (λk − q)2

Now pick the eigenvalue, λq which is closest to q. Then

|Ax− qx|2 =
n∑

k=1

|ak|2 (λk − q)2 ≥ (λq − q)2
n∑

k=1

|ak|2 = (λq − q)2 |x|2

which implies 15.46.

Example 15.6.9 Consider the symmetric matrix, A =




1 2 3
2 2 1
3 1 4


 . Let x =(1, 1, 1)T

.

How close is the Rayleigh quotient to some eigenvalue of A? Find the eigenvector and eigen-
value to several decimal places.
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Everything is real and so there is no need to worry about taking conjugates. Therefore,
the Rayleigh quotient is

(
1 1 1

)



1 2 3
2 2 1
3 1 4







1
1
1




3
=

19
3

According to the above theorem, there is some eigenvalue of this matrix, λq such that

∣∣∣∣λq − 19
3

∣∣∣∣ ≤

∣∣∣∣∣∣




1 2 3
2 2 1
3 1 4







1
1
1


− 19

3




1
1
1




∣∣∣∣∣∣
√

3
=

1√
3



− 1

3
− 4

3
5
3




=

√
1
9 +

(
4
3

)2 +
(

5
3

)2

√
3

= 1. 247 2

Could you find this eigenvalue and associated eigenvector? Of course you could. This is
what the shifted inverse power method is all about.

Solve 





1 2 3
2 2 1
3 1 4


− 19

3




1 0 0
0 1 0
0 0 1










x
y
z


 =




1
1
1




In other words solve 

− 16

3 2 3
2 − 13

3 1
3 1 − 7

3







x
y
z


 =




1
1
1




and divide by the entry which is largest, 3. 870 7, to get

u2 =




. 699 25

. 493 89
1.0




Now solve 

− 16

3 2 3
2 − 13

3 1
3 1 − 7

3







x
y
z


 =




. 699 25

. 493 89
1.0




and divide by the largest entry, 2. 997 9 to get

u3 =




. 714 73

. 522 63
1. 0




Now solve 

− 16

3 2 3
2 − 13

3 1
3 1 − 7

3







x
y
z


 =




. 714 73

. 522 63
1. 0




and divide by the largest entry, 3. 045 4, to get

u4 =




. 713 7
. 520 56

1.0
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Solve 

− 16

3 2 3
2 − 13

3 1
3 1 − 7

3







x
y
z


 =




. 713 7
. 520 56

1.0




and divide by the largest entry, 3. 042 1 to get

u5 =




. 713 78

. 520 73
1.0




You can see these scaling factors are not changing much. The predicted eigenvalue is then
about

1
3. 042 1

+
19
3

= 6. 662 1.

How close is this? 


1 2 3
2 2 1
3 1 4







. 713 78

. 520 73
1.0


 =




4. 755 2
3. 469

6. 662 1




while

6. 662 1




. 713 78

. 520 73
1.0


 =




4. 755 3
3. 469 2
6. 662 1


 .

You see that for practical purposes, this has found the eigenvalue.

15.7 Exercises

1. In Example 15.6.9 an eigenvalue was found correct to several decimal places along
with an eigenvector. Find the other eigenvalues along with their eigenvectors.

2. Find the eigenvalues and eigenvectors of the matrix, A =




3 2 1
2 1 3
1 3 2


 numerically.

In this case the exact eigenvalues are ±√3, 6. Compare with the exact answers.

3. Find the eigenvalues and eigenvectors of the matrix, A =




3 2 1
2 5 3
1 3 2


 numerically.

The exact eigenvalues are 2, 4 +
√

15, 4 −√15. Compare your numerical results with
the exact values. Is it much fun to compute the exact eigenvectors?

4. Find the eigenvalues and eigenvectors of the matrix, A =




0 2 1
2 5 3
1 3 2


 numerically.

I don’t know the exact eigenvalues in this case. Check your answers by multiplying
your numerically computed eigenvectors by the matrix.

5. Find the eigenvalues and eigenvectors of the matrix, A =




0 2 1
2 0 3
1 3 2


 numerically.

I don’t know the exact eigenvalues in this case. Check your answers by multiplying
your numerically computed eigenvectors by the matrix.
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6. Consider the matrix, A =




3 2 3
2 1 4
3 4 0


 and the vector (1, 1, 1)T

. Find the shortest

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

7. Consider the matrix, A =




1 2 1
2 1 4
1 4 5


 and the vector (1, 1, 1)T

. Find the shortest

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

8. Consider the matrix, A =




3 2 3
2 6 4
3 4 −3


 and the vector (1, 1, 1)T

. Find the shortest

distance between the Rayleigh quotient determined by this vector and some eigenvalue
of A.

9. Using Gerschgorin’s theorem, find upper and lower bounds for the eigenvalues of A =


3 2 3
2 6 4
3 4 −3


 .

15.8 Positive Matrices

Earlier theorems about Markov matrices were presented. These were matrices in which all
the entries were nonnegative and either the columns or the rows added to 1. It turns out
that many of the theorems presented can be generalized to positive matrices. When this is
done, the resulting theory is mainly due to Perron and Frobenius. I will give an introduction
to this theory here following Karlin and Taylor [9].

Definition 15.8.1 For A a matrix or vector, the notation, A >> 0 will mean every entry
of A is positive. By A > 0 is meant that every entry is nonnegative and at least one is
positive. By A ≥ 0 is meant that every entry is nonnegative. Thus the matrix or vector
consisting only of zeros is ≥ 0. An expression like A >> B will mean A − B >> 0 with
similar modifications for > and ≥.

For the sake of this section only, define the following for x =(x1, · · ·, xn)T
, a vector.

|x| ≡ (|x1| , · · ·, |xn|)T
.

Thus |x| is the vector which results by replacing each entry of x with its absolute value3.
Also define for x ∈ Cn,

||x||1 ≡
∑

k

|xk| .

Lemma 15.8.2 Let A >> 0 and let x > 0. Then Ax >> 0.

Proof: (Ax)i =
∑

j Aijxj > 0 because all the Aij > 0 and at least one xj > 0.

3This notation is just about the most abominable thing imaginable. However, it saves space in the
presentation of this theory of positive matrices and avoids the use of new symbols. Please forget about it
when you leave this section.
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Lemma 15.8.3 Let A >> 0. Define

S ≡ {λ : Ax > λx for some x >> 0} ,

and let
K ≡ {x ≥ 0 such that ||x||1 = 1} .

Now define
S1 ≡ {λ : Ax ≥ λx for some x ∈ K} .

Then
sup (S) = sup (S1) .

Proof: Let λ ∈ S. Then there exists x >> 0 such that Ax > λx. Consider y ≡ x/ ||x||1 .
Then ||y||1 = 1 and Ay > λy. Therefore, λ ∈ S1 and so S ⊆ S1. Therefore, sup (S) ≤
sup (S1) .

Now let λ ∈ S1. Then there exists x ≥ 0 such that ||x||1 = 1 so x > 0 and Ax > λx.
Letting y ≡ Ax, it follows from Lemma 15.8.2 that Ay >> λy and y >> 0. Thus λ ∈ S
and so S1 ⊆ S which shows that sup (S1) ≤ sup (S) . This proves the lemma.

This lemma is significant because the set, {x ≥ 0 such that ||x||1 = 1} ≡ K is a compact
set in Rn. Define

λ0 ≡ sup (S) = sup (S1) . (15.47)

The following theorem is due to Perron.

Theorem 15.8.4 Let A >> 0 be an n× n matrix and let λ0 be given in 15.47. Then

1. λ0 > 0 and there exists x0>> 0 such that Ax0 = λ0x0 so λ0 is an eigenvalue for A.

2. If Ax = µx where x 6= 0, and µ 6= λ0. Then |µ| < λ0.

3. The eigenspace for λ0 has dimension 1.

Proof: To see λ0 > 0, consider the vector, e ≡ (1, · · ·, 1)T . Then

(Ae)i =
∑

j

Aij > 0

and so λ0 is at least as large as
min

i

∑

j

Aij .

Let {λk} be an increasing sequence of numbers from S1 converging to λ0. Letting xk be
the vector from K which occurs in the definition of S1, these vectors are in a compact set.
Therefore, there exists a subsequence, still denoted by xk such that xk → x0 ∈ K and
λk → λ0. Then passing to the limit,

Ax0 ≥ λ0x0, x0 > 0.

If Ax0 > λ0x0, then letting y ≡ Ax0, it follows from Lemma 15.8.2 that Ay >> λ0y
and y >> 0. But this contradicts the definition of λ0 as the supremum of the elements of
S because since Ay >> λ0y, it follows Ay >> (λ0 + ε)y for ε a small positive number.
Therefore, Ax0 = λ0x0. It remains to verify that x0 >> 0. But this follows immediately
from

0 <
∑

j

Aijx0j = (Ax0)i = λ0x0i.
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This proves 1.
Next suppose Ax = µx and x 6= 0 and µ 6= λ0. Then |Ax| = |µ| |x| . But this implies

A |x| ≥ |µ| |x| . (See the above abominable definition of |x|.)
Case 1: |x| 6= x and |x| 6= −x.
In this case, A |x| > |Ax| = |µ| |x| and letting y = A |x| , it follows y >> 0 and

Ay >> |µ|y which shows Ay >> (|µ|+ ε)y for sufficiently small positive ε and verifies
|µ| < λ0.

Case 2: |x| = x or |x| = −x
In this case, the entries of x are all real and have the same sign. Therefore, A |x| =

|Ax| = |µ| |x| . Now let y ≡ |x| / ||x||1 . Then Ay = |µ|y and so |µ| ∈ S1 showing that
|µ| ≤ λ0. But also, the fact the entries of x all have the same sign shows µ = |µ| and so
µ ∈ S1. Since µ 6= λ0, it must be that µ = |µ| < λ0. This proves 2.

It remains to verify 3. Suppose then that Ay = λ0y and for all scalars, α, αx0 6= y.
Then

A Rey = λ0 Rey, A Imy = λ0 Imy.

If Rey = α1x0 and Imy = α2x0 for real numbers, αi,then y = (α1 + iα2)x0 and it is
assumed this does not happen. Therefore, either

t Rey 6= x0 for all t ∈ R

or
t Imy 6= x0 for all t ∈ R.

Assume the first holds. Then varying t ∈ R, there exists a value of t such that x0+tRey > 0
but it is not the case that x0+t Rey >> 0. Then A (x0 + t Rey) >> 0 by Lemma 15.8.2. But
this implies λ0 (x0 + t Rey) >> 0 which is a contradiction. Hence there exist real numbers,
α1 and α2 such that Rey = α1x0 and Imy = α2x0 showing that y =(α1 + iα2)x0. This
proves 3.

It is possible to obtain a simple corollary to the above theorem.

Corollary 15.8.5 If A > 0 and Am >> 0 for some m ∈ N, then all the conclusions of the
above theorem hold.

Proof: There exists µ0 > 0 such that Amy0 = µ0y0 for y0 >> 0 by Theorem 15.8.4
and

µ0 = sup {µ : Amx ≥ µx for some x ∈ K} .

Let λm
0 = µ0. Then

(A− λ0I)
(
Am−1 + λ0A

m−2 + · · ·+ λm−1
0 I

)
y0 = (Am − λm

0 I)y0 = 0

and so letting x0 ≡
(
Am−1 + λ0A

m−2 + · · ·+ λm−1
0 I

)
y0, it follows x0 >> 0 and Ax0 =

λ0x0.
Suppose now that Ax = µx for x 6= 0 and µ 6= λ0. Suppose |µ| ≥ λ0. Multiplying both

sides by A, it follows Amx = µmx and |µm| = |µ|m ≥ λm
0 = µ0 and so from Theorem 15.8.4,

since |µm| ≥ µ0, and µm is an eigenvalue of Am, it follows that µm = µ0. But by Theorem
15.8.4 again, this implies x = cy0 for some scalar, c and hence Ay0 = µy0. Since y0 >> 0,
it follows µ ≥ 0 and so µ = λ0, a contradiction. Therefore, |µ| < λ0.

Finally, if Ax = λ0x, then Amx = λm
0 x and so x = cy0 for some scalar, c. Consequently,

(
Am−1 + λ0A

m−2 + · · ·+ λm−1
0 I

)
x = c

(
Am−1 + λ0A

m−2 + · · ·+ λm−1
0 I

)
y0

= cx0.
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Hence
mλm−1

0 x = cx0

which shows the dimension of the eigenspace for λ0 is one. This proves the corollary.
The following corollary is an extremely interesting convergence result involving the pow-

ers of positive matrices.

Corollary 15.8.6 Let A > 0 and Am >> 0 for some m ∈ N. Then for λ0 given in 15.47,
there exists a rank one matrix, P such that limm→∞

∣∣∣
∣∣∣
(

A
λ0

)m

− P
∣∣∣
∣∣∣ = 0.

Proof: Considering AT , and the fact that A and AT have the same eigenvalues, Corollary
15.8.5 implies the existence of a vector, v >> 0 such that

AT v = λ0v.

Also let x0 denote the vector such that Ax0 = λ0x0 with x0 >> 0. First note that xT
0 v > 0

because both these vectors have all entries positive. Therefore, v may be scaled such that

vT x0 = xT
0 v = 1. (15.48)

Define
P ≡ x0vT .

Thanks to 15.48,

A

λ0
P = x0vT = P, P

(
A

λ0

)
= x0vT

(
A

λ0

)
= x0vT = P, (15.49)

and
P 2 = x0vT x0vT = vT x0 = P. (15.50)

Therefore,

(
A

λ0
− P

)2

=
(

A

λ0

)2

− 2
(

A

λ0

)
P + P 2

=
(

A

λ0

)2

− P.

Continuing this way, using 15.49 repeatedly, it follows
((

A

λ0

)
− P

)m

=
(

A

λ0

)m

− P. (15.51)

The eigenvalues of
(

A
λ0

)
− P are of interest because it is powers of this matrix which

determine the convergence of
(

A
λ0

)m

to P. Therefore, let µ be a nonzero eigenvalue of this
matrix. Thus ((

A

λ0

)
− P

)
x = µx (15.52)

for x 6= 0, and µ 6= 0. Applying P to both sides and using the second formula of 15.49 yields

0 = (P − P )x =
(

P

(
A

λ0

)
− P 2

)
x = µPx.
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But since Px = 0, it follows from 15.52 that

Ax = λ0µx

which implies λ0µ is an eigenvalue of A. Therefore, by Corollary 15.8.5 it follows that either
λ0µ = λ0 in which case µ = 1, or λ0 |µ| < λ0 which implies |µ| < 1. But if µ = 1, then x is
a multiple of x0 and 15.52 would yield

((
A

λ0

)
− P

)
x0 = x0

which says x0 − x0vT x0 = x0 and so by 15.48, x0 = 0 contrary to the property that
x0 >> 0. Therefore, |µ| < 1 and so this has shown that the absolute values of all eigenvalues
of

(
A
λ0

)
− P are less than 1. By Gelfand’s theorem, Theorem 15.2.9, it follows

∣∣∣∣
∣∣∣∣
((

A

λ0

)
− P

)m∣∣∣∣
∣∣∣∣
1/m

< r < 1

whenever m is large enough. Now by 15.51 this yields
∣∣∣∣
∣∣∣∣
(

A

λ0

)m

− P

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣
((

A

λ0

)
− P

)m∣∣∣∣
∣∣∣∣ ≤ rm

whenever m is large enough. It follows

lim
m→∞

∣∣∣∣
∣∣∣∣
(

A

λ0

)m

− P

∣∣∣∣
∣∣∣∣ = 0

as claimed.
What about the case when A > 0 but maybe it is not the case that A >> 0? As before,

K ≡ {x ≥ 0 such that ||x||1 = 1} .

Now define
S1 ≡ {λ : Ax ≥ λx for some x ∈ K}

and
λ0 ≡ sup (S1) (15.53)

Theorem 15.8.7 Let A > 0 and let λ0 be defined in 15.53. Then there exists x0 > 0 such
that Ax0 = λ0x0.

Proof: Let E consist of the matrix which has a one in every entry. Then from Theorem
15.8.4 it follows there exists xδ >> 0 , ||xδ||1 = 1, such that (A + δE)xδ = λ0δxδ where

λ0δ ≡ sup {λ : (A + δE)x ≥ λx for some x ∈ K} .

Now if α < δ
{λ : (A + αE)x ≥ λx for some x ∈ K} ⊆
{λ : (A + δE)x ≥ λx for some x ∈ K}

and so λ0δ ≥ λ0α because λ0δ is the sup of the second set and λ0α is the sup of the first. It
follows the limit, λ1 ≡ limδ→0+ λ0δ exists. Taking a subsequence and using the compactness
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of K, there exists a subsequence, still denoted by δ such that as δ → 0, xδ → x ∈ K.
Therefore,

Ax = λ1x

and so, in particular, Ax ≥ λ1x and so λ1 ≤ λ0. But also, if λ ≤ λ0,

λx ≤ Ax < (A + δE)x

showing that λ0δ ≥ λ for all such λ. But then λ0δ ≥ λ0 also. Hence λ1 ≥ λ0, showing these
two numbers are the same. Hence Ax = λ0x and this proves the theorem.

If Am >> 0 for some m and A > 0, it follows that the dimension of the eigenspace for
λ0 is one and that the absolute value of every other eigenvalue of A is less than λ0. If it is
only assumed that A > 0, not necessarily >> 0, this is no longer true. However, there is
something which is very interesting which can be said. First here is an interesting lemma.

Lemma 15.8.8 Let M be a matrix of the form

M =
(

A 0
B C

)

or

M =
(

A B
0 C

)

where A is an r × r matrix and C is an (n− r) × (n− r) matrix. Then det (M) =
det (A) det (B) and σ (M) = σ (A) ∪ σ (C) .

Proof: To verify the claim about the determinants, note
(

A 0
B C

)
=

(
A 0
0 I

)(
I 0
B C

)

Therefore,

det
(

A 0
B C

)
= det

(
A 0
0 I

)
det

(
I 0
B C

)
.

But it is clear from the method of Laplace expansion that

det
(

A 0
0 I

)
= det A

and from the multilinear properties of the determinant and row operations that

det
(

I 0
B C

)
= det

(
I 0
0 C

)
= det C.

The case where M is upper block triangular is similar.
This immediately implies σ (M) = σ (A) ∪ σ (C) .

Theorem 15.8.9 Let A > 0 and let λ0 be given in 15.53. If λ is an eigenvalue for A such
that |λ| = λ0, then λ/λ0 is a root of unity. Thus (λ/λ0)

m = 1 for some m ∈ N.

Proof: Applying Theorem 15.8.7 to AT , there exists v > 0 such that AT v = λ0v. In
the first part of the argument it is assumed v >> 0. Now suppose Ax = λx,x 6= 0 and that
|λ| = λ0. Then

A |x| ≥ |λ| |x| = λ0 |x|
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and it follows that if A |x| > |λ| |x| , then since v >> 0,

λ0 (v, |x|) < (v,A |x|) =
(
AT v, |x|) = λ0 (v, |x|) ,

a contradiction. Therefore,
A |x| = λ0 |x| . (15.54)

It follows that ∣∣∣∣∣∣
∑

j

Aijxj

∣∣∣∣∣∣
= λ0 |xi| =

∑

j

Aij |xj |

and so the complex numbers,
Aijxj , Aikxk

must have the same argument for every k, j because equality holds in the triangle inequality.
Therefore, there exists a complex number, µi such that

Aijxj = µiAij |xj | (15.55)

and so, letting r ∈ N,
Aijxjµ

r
j = µiAij |xj |µr

j .

Summing on j yields ∑

j

Aijxjµ
r
j = µi

∑

j

Aij |xj |µr
j . (15.56)

Also, summing 15.55 on j and using that λ is an eigenvalue for x, it follows from 15.54 that

λxi =
∑

j

Aijxj = µi

∑

j

Aij |xj | = µiλ0 |xi| . (15.57)

From 15.56 and 15.57,
∑

j

Aijxjµ
r
j = µi

∑

j

Aij |xj |µr
j

= µi

∑

j

Aij

see 15.57︷ ︸︸ ︷
µj |xj | µr−1

j

= µi

∑

j

Aij

(
λ

λ0

)
xjµ

r−1
j

= µi

(
λ

λ0

) ∑

j

Aijxjµ
r−1
j

Now from 15.56 with r replaced by r − 1, this equals

µ2
i

(
λ

λ0

) ∑

j

Aij |xj |µr−1
j = µ2

i

(
λ

λ0

) ∑

j

Aijµj |xj |µr−2
j

= µ2
i

(
λ

λ0

)2 ∑

j

Aijxjµ
r−2
j .

Continuing this way,
∑

j

Aijxjµ
r
j = µk

i

(
λ

λ0

)k ∑

j

Aijxjµ
r−k
j
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and eventually, this shows

∑

j

Aijxjµ
r
j = µr

i

(
λ

λ0

)r ∑

j

Aijxj

=
(

λ

λ0

)r

λ (xiµ
r
i )

and this says
(

λ
λ0

)r+1

is an eigenvalue for
(

A
λ0

)
with the eigenvector being (x1µ

r
1, · · ·, xnµr

n)T
.

Now recall that r ∈ N was arbitrary and so this has shown that
(

λ
λ0

)2

,
(

λ
λ0

)3

,
(

λ
λ0

)4

, · · ·
are each eigenvalues of

(
A
λ0

)
which has only finitely many and hence this sequence must

repeat. Therefore,
(

λ
λ0

)
is a root of unity as claimed. This proves the theorem in the case

that v >> 0.
Now it is necessary to consider the case where v > 0 but it is not the case that v >> 0.

Then in this case, there exists a permutation matrix, P such that

Pv =




v1

...
vr

0
...
0




≡
(

u
0

)
≡ v1

Then
λ0v = AT v = AT Pv1.

Therefore,
λ0v1 = PAT Pv1 = Gv1

Now P 2 = I because it is a permuation matrix. Therefore, the matrix, G ≡ PAT P and A
are similar. Consequently, they have the same eigenvalues and it suffices from now on to
consider the matrix, G rather than A. Then

λ0

(
u
0

)
=

(
M1 M2

M3 M4

) (
u
0

)

where M1 is r× r and M4 is (n− r)× (n− r) . It follows from block multiplication and the
assumption that A and hence G are > 0 that

G =
(

A′ B
0 C

)
.

Now let λ be an eigenvalue of G such that |λ| = λ0. Then from Lemma 15.8.8, either
λ ∈ σ (A′) or λ ∈ σ (C) . Suppose without loss of generality that λ ∈ σ (A′) . Since A′ > 0
it has a largest positive eigenvalue, λ′0 which is obtained from 15.53. Thus λ′0 ≤ λ0 but λ
being an eigenvalue of A′, has its absolute value bounded by λ′0 and so λ0 = |λ| ≤ λ′0 ≤ λ0

showing that λ0 ∈ σ (A′) . Now if there exists v >> 0 such that A′T v = λ0v, then the first
part of this proof applies to the matrix, A and so (λ/λ0) is a root of unity. If such a vector,
v does not exist, then let A′ play the role of A in the above argument and reduce to the
consideration of

G′ ≡
(

A′′ B′

0 C ′

)
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where G′ is similar to A′ and λ, λ0 ∈ σ (A′′) . Stop if A′′T v = λ0v for some v >> 0.
Otherwise, decompose A′′ similar to the above and add another prime. Continuing this way
you must eventually obtain the situation where (A′···′)T v = λ0v for some v >> 0. Indeed,
this happens no later than when A′···′ is a 1× 1 matrix. This proves the theorem.

15.9 Functions Of Matrices

The existence of the Jordan form also makes it possible to define various functions of ma-
trices. Suppose

f (λ) =
∞∑

n=0

anλn (15.58)

for all |λ| < R. There is a formula for f (A) ≡ ∑∞
n=0 anAn which makes sense whenever

ρ (A) < R. Thus you can speak of sin (A) or eA for A an n×n matrix. To begin with, define

fP (λ) ≡
P∑

n=0

anλn

so for k < P

f
(k)
P (λ) =

P∑

n=k

ann · · · (n− k + 1) λn−k

=
P∑

n=k

an

(
n

k

)
k!λn−k. (15.59)

To begin with consider f (Jm (λ)) where Jm (λ) is an m×m Jordan block. Thus Jm (λ) =
D + N where Nm = 0 and N commutes with D. Therefore, letting P > m

P∑
n=0

anJm (λ)n =
P∑

n=0

an

n∑

k=0

(
n

k

)
Dn−kNk

=
P∑

k=0

P∑

n=k

an

(
n

k

)
Dn−kNk

=
m−1∑

k=0

Nk
P∑

n=k

(
n

k

)
Dn−k. (15.60)

Now for k = 0, · · ·,m− 1, define diagk (a1, · · ·, am−k) the m×m matrix which equals zero
everywhere except on the kth super diagonal where this diagonal is filled with the numbers,
{a1, · · ·, am−k} from the upper left to the lower right. Thus in 4 × 4 matrices, diag2 (1, 2)
would be the matrix, 



0 0 1 0
0 0 0 2
0 0 0 0
0 0 0 0


 .

Then from 15.60 and 15.59,

P∑
n=0

anJm (λ)n =
m−1∑

k=0

diag k

(
f

(k)
P (λ)

k!
, · · ·, f

(k)
P (λ)

k!

)
.
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Therefore,
∑P

n=0 anJm (λ)n =



fP (λ) f ′P (λ)
1!

f
(2)
P (λ)

2! · · · f
(m−1)
P (λ)

(m−1)!

fP (λ) f ′P (λ)
1!

. . .
...

fP (λ)
. . . f

(2)
P (λ)

2!
. . . f ′P (λ)

1!
0 fP (λ)




(15.61)

Now let A be an n × n matrix with ρ (A) < R where R is given above. Then the Jordan
form of A is of the form

J =




J1 0
J2

. . .
0 Jr


 (15.62)

where Jk = Jmk
(λk) is an mk ×mk Jordan block and A = S−1JS. Then, letting P > mk

for all k,
P∑

n=0

anAn = S−1
P∑

n=0

anJnS,

and because of block multiplication of matrices,

P∑
n=0

anJn =




∑P
n=0 anJn

1 0
. . .

. . .
0

∑P
n=0 anJn

r




and from 15.61
∑P

n=0 anJn
k converges as P →∞ to the mk ×mk matrix,




f (λk) f ′(λk)
1!

f(2)(λk)
2! · · · f(m−1)(λk)

(mk−1)!

0 f (λk) f ′(λk)
1!

. . .
...

0 0 f (λk)
. . . f(2)(λk)

2!
...

. . . . . . f ′(λk)
1!

0 0 · · · 0 f (λk)




(15.63)

There is no convergence problem because |λ| < R for all λ ∈ σ (A) . This has proved the
following theorem.

Theorem 15.9.1 Let f be given by 15.58 and suppose ρ (A) < R where R is the radius of
convergence of the power series in 15.58. Then the series,

∞∑

k=0

anAn (15.64)

converges in the space L (Fn,Fn) with respect to any of the norms on this space and further-
more,

∞∑

k=0

anAn = S−1




∑∞
n=0 anJn

1 0
. . .

. . .
0

∑∞
n=0 anJn

r




S
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where
∑∞

n=0 anJn
k is an mk ×mk matrix of the form given in 15.63 where A = S−1JS and

the Jordan form of A, J is given by 15.62. Therefore, you can define f (A) by the series in
15.64.

Here is a simple example.

Example 15.9.2 Find sin (A) where A =




4 1 −1 1
1 1 0 −1
0 −1 1 −1
−1 2 1 4


 .

In this case, the Jordan canonical form of the matrix is not too hard to find.



4 1 −1 1
1 1 0 −1
0 −1 1 −1
−1 2 1 4


 =




2 0 −2 −1
1 −4 −2 −1
0 0 −2 1
−1 4 4 2


 ·




4 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2







1
2

1
2 0 1

2
1
8 − 3

8 0 − 1
8

0 1
4 − 1

4
1
4

0 1
2

1
2

1
2


 .

Then from the above theorem sin (J) is given by

sin




4 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2


 =




sin 4 0 0 0
0 sin 2 cos 2 − sin 2

2
0 0 sin 2 cos 2
0 0 0 sin 2


 .

Therefore, sin (A) =



2 0 −2 −1
1 −4 −2 −1
0 0 −2 1
−1 4 4 2







sin 4 0 0 0
0 sin 2 cos 2 − sin 2

2
0 0 sin 2 cos 2
0 0 0 sin 2







1
2

1
2 0 1

2
1
8 − 3

8 0 − 1
8

0 1
4 − 1

4
1
4

0 1
2

1
2

1
2


 =




sin 4 sin 4− sin 2− cos 2 − cos 2 sin 4− sin 2− cos 2
1
2 sin 4− 1

2 sin 2 1
2 sin 4 + 3

2 sin 2− 2 cos 2 sin 2 1
2 sin 4 + 1

2 sin 2− 2 cos 2
0 − cos 2 sin 2− cos 2 − cos 2

− 1
2 sin 4 + 1

2 sin 2 − 1
2 sin 4− 1

2 sin 2 + 3 cos 2 cos 2− sin 2 − 1
2 sin 4 + 1

2 sin 2 + 3 cos 2


 .

Perhaps this isn’t the first thing you would think of. Of course the ability to get this nice
closed form description of sin (A) was dependent on being able to find the Jordan form along
with a similarity transformation which will yield the Jordan form.

The following corollary is known as the spectral mapping theorem.

Corollary 15.9.3 Let A be an n× n matrix and let ρ (A) < R where for |λ| < R,

f (λ) =
∞∑

n=0

anλn.

Then f (A) is also an n×n matrix and furthermore, σ (f (A)) = f (σ (A)) . Thus the eigen-
values of f (A) are exactly the numbers f (λ) where λ is an eigenvalue of A. Furthermore,
the algebraic multiplicity of f (λ) coincides with the algebraic multiplicity of λ.
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All of these things can be generalized to linear transformations defined on infinite di-
mensional spaces and when this is done the main tool is the Dunford integral along with
the methods of complex analysis. It is good to see it done for finite dimensional situations
first because it gives an idea of what is possible. Actually, some of the most interesting
functions in applications do not come in the above form as a power series expanded about
0. One example of this situation has already been encountered in the proof of the right
polar decomposition with the square root of an Hermitian transformation which had all
nonnegative eigenvalues. Another example is that of taking the positive part of an Hermi-
tian matrix. This is important in some physical models where something may depend on
the positive part of the strain which is a symmetric real matrix. Obviously there is no way
to consider this as a power series expanded about 0 because the function f (r) = r+ is not
even differentiable at 0. Therefore, a totally different approach must be considered. First
the notion of a positive part is defined.

Definition 15.9.4 Let A be an Hermitian matrix. Thus it suffices to consider A as an
element of L (Fn,Fn) according to the usual notion of matrix multiplication. Then there
exists an orthonormal basis of eigenvectors, {u1, · · ·,un} such that

A =
n∑

j=1

λjuj ⊗ uj ,

for λj the eigenvalues of A, all real. Define

A+ ≡
n∑

j=1

λ+
j uj ⊗ uj

where λ+ ≡ |λ|+λ
2 .

This gives us a nice definition of what is meant but it turns out to be very important in
the applications to determine how this function depends on the choice of symmetric matrix,
A. The following addresses this question.

Theorem 15.9.5 If A,B be Hermitian matrices, then for |·| the Frobenius norm,
∣∣A+ −B+

∣∣ ≤ |A−B| .
Proof: Let A =

∑
i λivi ⊗ vi and let B =

∑
j µjwj ⊗ wj where {vi} and {wj} are

orthonormal bases of eigenvectors.

∣∣A+ −B+
∣∣2 = trace


∑

i

λ+
i vi ⊗ vi −

∑

j

µ+
j wj ⊗wj




2

=

trace


∑

i

(
λ+

i

)2
vi ⊗ vi +

∑

j

(
µ+

j

)2
wj ⊗wj

−
∑

i,j

λ+
i µ+

j (wj ,vi)vi ⊗wj −
∑

i,j

λ+
i µ+

j (vi,wj)wj ⊗ vi




Since the trace of vi ⊗ wj is (vi,wj) , a fact which follows from (vi,wj) being the only
possibly nonzero eigenvalue,

=
∑

i

(
λ+

i

)2
+

∑

j

(
µ+

j

)2 − 2
∑

i,j

λ+
i µ+

j |(vi,wj)|2 . (15.65)
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Since these are orthonormal bases,
∑

i

|(vi,wj)|2 = 1 =
∑

j

|(vi,wj)|2

and so 15.65 equals

=
∑

i

∑

j

((
λ+

i

)2
+

(
µ+

j

)2 − 2λ+
i µ+

j

)
|(vi,wj)|2 .

Similarly,
|A−B|2 =

∑

i

∑

j

(
(λi)

2 +
(
µj

)2 − 2λiµj

)
|(vi,wj)|2 .

Now it is easy to check that (λi)
2 +

(
µj

)2 − 2λiµj ≥
(
λ+

i

)2
+

(
µ+

j

)2 − 2λ+
i µ+

j and so this
proves the theorem.
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Applications To Differential
Equations

16.1 Theory Of Ordinary Differntial Equations

Here I will present fundamental existence and uniqueness theorems for initial value problems
for the differential equation,

x′ = f (t,x) .

Suppose that f : [a, b]× Rn → Rn satisfies the following two conditions.

|f (t,x)− f (t,x1)| ≤ K |x− x1| , (16.1)

f is continuous. (16.2)

The first of these conditions is known as a Lipschitz condition.

Lemma 16.1.1 Suppose x : [a, b] → Rn is a continuous function and c ∈ [a, b]. Then x is
a solution to the initial value problem,

x′ = f (t,x) , x (c) = x0 (16.3)

if and only if x is a solution to the integral equation,

x (t) = x0 +
∫ t

c

f (s,x (s)) ds. (16.4)

Proof: If x solves 16.4, then since f is continuous, we may apply the fundamental
theorem of calculus to differentiate both sides and obtain x′ (t) = f (t,x (t)) . Also, letting
t = c on both sides, gives x (c) = x0. Conversely, if x is a solution of the initial value
problem, we may integrate both sides from c to t to see that x solves 16.4. This proves the
lemma.

Theorem 16.1.2 Let f satisfy 16.1 and 16.2. Then there exists a unique solution to the
initial value problem, 16.3 on the interval [a, b].

Proof: Let ||x||λ ≡ sup
{
eλt |x (t)| : t ∈ [a, b]

}
. Then this norm is equivalent to the usual

norm on BC ([a, b] ,Fn) described in Example 15.4.2. This means that for ||·|| the norm given
there, there exists constants δ and ∆ such that

||x||λ δ ≤ ||x|| ≤ ∆ ||x||

337
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for all x ∈BC ([a, b] ,Fn) . In fact, you can take δ ≡ eλa and ∆ ≡ eλb in case λ > 0 with the
two reversed in case λ < 0. Thus BC ([a, b] ,Fn) is a Banach space with this norm, ||·||λ.
Then let F : BC ([a, b] ,Fn) → BC ([a, b] ,Fn) be defined by

Fx (t) ≡ x0 +
∫ t

c

f (s,x (s)) ds.

Let λ < 0. It follows

eλt |Fx (t)− Fy (t)| ≤
∣∣∣∣eλt

∫ t

c

|f (s,x (s))− f (s,y (s))| ds

∣∣∣∣

≤
∣∣∣∣
∫ t

c

Keλ(t−s) |x (s)− y (s)| eλsds

∣∣∣∣

≤ ||x− y||λ
∫ t

a

Keλ(t−s)ds

≤ ||x− y||λ
K

|λ|
and therefore,

||Fx− Fy||λ ≤ ||x− y|| K

|λ| .

If |λ| is chosen larger than K, this implies F is a contraction mapping on BC ([a, b] ,Fn) .
Therefore, there exists a unique fixed point. With Lemma 16.1.1 this proves the theorem.

16.2 Linear Systems

As an example of the above theorem, consider for t ∈ [a, b] the system

x′ = A (t)x (t) + g (t) , x (c) = x0 (16.5)

where A (t) is an n × n matrix whose entries are continuous functions of t, (aij (t)) and
g (t) is a vector whose components are continuous functions of t satisfies the conditions
of Theorem 16.1.2 with f (t,x) = A (t)x + g (t) . To see this, let x =(x1, · · ·, xn)T and
x1 = (x11, · · ·x1n)T

. Then letting M = max {|aij (t)| : t ∈ [a, b] , i, j ≤ n} ,

|f (t,x)− f (t,x1)| = |A (t) (x− x1)|

=

∣∣∣∣∣∣∣∣




n∑

i=1

∣∣∣∣∣∣

n∑

j=1

aij (t) (xj − x1j)

∣∣∣∣∣∣

2



1/2
∣∣∣∣∣∣∣∣

≤ M

∣∣∣∣∣∣∣∣




n∑

i=1




n∑

j=1

|xj − x1j |



2



1/2
∣∣∣∣∣∣∣∣

≤ M

∣∣∣∣∣∣∣




n∑

i=1

n

n∑

j=1

|xj − x1j |2



1/2
∣∣∣∣∣∣∣

= Mn




n∑

j=1

|xj − x1j |2



1/2

= Mn |x− x1| .
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Therefore, let K = Mn. This proves

Theorem 16.2.1 Let A (t) be a continuous n×n matrix and let g (t) be a continuous vector
for t ∈ [a, b] and let c ∈ [a, b] and x0 ∈ Fn. Then there exists a unique solution to 16.5 valid
for t ∈ [a, b] .

This includes more examples of linear equations than are typically encountered in an
entire differential equations course.

16.3 Local Solutions

Lemma 16.3.1 Let D (x0, r) ≡ {x ∈ Fn : |x− x0| ≤ r} and suppose U is an open set con-
taining D (x0, r) such that f : U → Fn is C1 (U) . (Recall this means all partial derivatives of
f exist and are continuous.) Then for K = Mn, where M denotes the maximum of

∣∣∣ ∂f
∂xi

(z)
∣∣∣

for z ∈ D (x0, r) , it follows that for all x,y ∈ D (x0, r) ,

|f (x)− f (y)| ≤ K |x− y| .

Proof: Let x,y ∈ D (x0, r) and consider the line segment joining these two points,
x+t (y − x) for t ∈ [0, 1] . Letting h (t) = f (x+t (y − x)) for t ∈ [0, 1] , then

f (y)− f (x) = h (1)− h (0) =
∫ 1

0

h′ (t) dt.

Also, by the chain rule,

h′ (t) =
n∑

i=1

∂f
∂xi

(x+t (y − x)) (yi − xi) .

Therefore,

|f (y)− f (x)| =

∣∣∣∣∣
∫ 1

0

n∑

i=1

∂f
∂xi

(x+t (y − x)) (yi − xi) dt

∣∣∣∣∣

≤
∫ 1

0

n∑

i=1

∣∣∣∣
∂f
∂xi

(x+t (y − x))
∣∣∣∣ |yi − xi| dt

≤ M

n∑

i=1

|yi − xi| ≤ Mn |x− y| .

This proves the lemma.
Now consider the map, P which maps all of Rn to D (x0, r) given as follows. For

x ∈ D (x0, r) , Px = x. For x /∈D (x0, r) , Px will be the closest point in D (x0, r) to x. Such
a closest point exists because D (x0, r) is a closed and bounded set. Taking f (y) ≡ |y − x| ,
it follows f is a continuous function defined on D (x0, r) which must achieve its minimum
value by the extreme value theorem from calculus.
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¡
¡

¡
¡¡µ

x

¾
z

Px»»»»»9•

•x0

D(x0, r)

Lemma 16.3.2 For any pair of points, x,y ∈ Fn, |Px− Py| ≤ |x− y| .
Proof: The above picture suggests the geometry of what is going on. Letting z ∈

D (x0, r) , it follows that for all t ∈ [0, 1] ,

|x− Px|2 ≤ |x− (Px + t (z−Px))|2

= |x−Px|2 + 2t Re ((x− Px) · (Px− z)) + t2 |z−Px|2

Hence
2tRe ((x− Px) · (Px− z)) + t2 |z−Px|2 ≥ 0

and this can only happen if

Re ((x− Px) · (Px− z)) ≥ 0.

Therefore,

Re ((x− Px) · (Px−Py)) ≥ 0
Re ((y − Py) · (Py−Px)) ≥ 0

and so
Re (x− Px− (y − Py)) · (Px−Py) ≥ 0

which implies
Re (x− y) · (Px− Py) ≥ |Px− Py|2

Then using the Cauchy Schwarz inequality it follows

|x− y| ≥ |Px− Py| .
This proves the lemma.

With this here is the local existence and uniqueness theorem.

Theorem 16.3.3 Let [a, b] be a closed interval and let U be an open subset of Fn. Let
f : [a, b]×U → Fn be continuous and suppose that for each t ∈ [a, b] , the map x → ∂f

∂xi
(t,x)

is continuous. Also let x0 ∈ U and c ∈ [a, b] . Then there exists an interval, I ⊆ [a, b] such
that c ∈ I and there exists a unique solution to the initial value problem,

x′ = f (t,x) , x (c) = x0 (16.6)

valid for t ∈ I.
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Proof: Consider the following picture.

U

D(x0, r)

The large dotted circle represents U and the little solid circle represents D (x0, r) as
indicated. Here r is so small that D (x0, r) is contained in U as shown. Now let P denote
the projection map defined above. Consider the initial value problem

x′ = f (t, Px) , x (c) = x0. (16.7)

From Lemma 16.3.1 and the continuity of x → ∂f
∂xi

(t,x) , there exists a constant, K such
that if x,y ∈ D (x0, r) , then |f (t,x)− f (t,y)| ≤ K |x− y| for all t ∈ [a, b] . Therefore, by
Lemma 16.3.2

|f (t, Px)− f (t, Py)| ≤ K |Px−Py| ≤ K |x− y| .
It follows from Theorem 16.1.2 that 16.7 has a unique solution valid for t ∈ [a, b] . Since
x is continuous, it follows that there exists an interval, I containing c such that for t ∈ I,
x (t) ∈ D (x0, r) . Therefore, for these values of t, f (t, Px) = f (t,x) and so there is a unique
solution to 16.6 on I. This proves the theorem.

Now suppose f has the property that for every R > 0 there exists a constant, KR such
that for all x,x1 ∈ B (0, R),

|f (t,x)− f (t,x1)| ≤ KR |x− x1| . (16.8)

Corollary 16.3.4 Let f satisfy 16.8 and suppose also that (t,x) → f (t,x) is continuous.
Suppose now that x0 is given and there exists an estimate of the form |x (t)| < R for all
t ∈ [0, T ) where T ≤ ∞ on the local solution to

x′ = f (t,x) , x (0) = x0. (16.9)

Then there exists a unique solution to the initial value problem, 16.9 valid on [0, T ).

Proof: Replace f (t,x) with f (t, Px) where P is the projection onto B (0, R). Then by
Theorem 16.1.2 there exists a unique solution to the system

x′ = f (t, Px) , x (0) = x0

valid on [0, T1] for every T1 < T. Therefore, the above system has a unique solution on [0, T )
and from the estimate, Px = x. This proves the corollary.
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16.4 First Order Linear Systems

Here is a discussion of linear systems of the form

x′ = Ax + f (t)

where A is a constant n × n matrix and f is a vector valued function having all entries
continuous. Of course the existence theory is a very special case of the general considerations
above but I will give a self contained presentation based on elementary first order scalar
differential equations and linear algebra.

Definition 16.4.1 Suppose t → M (t) is a matrix valued function of t. Thus M (t) =
(mij (t)) . Then define

M ′ (t) ≡ (
m′

ij (t)
)
.

In words, the derivative of M (t) is the matrix whose entries consist of the derivatives of the
entries of M (t) . Integrals of matrices are defined the same way. Thus

∫ b

a

M (t) di ≡
(∫ b

a

mij (t) dt

)
.

In words, the integral of M (t) is the matrix obtained by replacing each entry of M (t) by the
integral of that entry.

With this definition, it is easy to prove the following theorem.

Theorem 16.4.2 Suppose M (t) and N (t) are matrices for which M (t)N (t) makes sense.
Then if M ′ (t) and N ′ (t) both exist, it follows that

(M (t)N (t))′ = M ′ (t) N (t) + M (t)N ′ (t) .

Proof:
(
(M (t)N (t))′

)
ij

≡
(
(M (t)N (t))ij

)′

=

(∑

k

M (t)ik N (t)kj

)′

=
∑

k

(M (t)ik)′N (t)kj + M (t)ik

(
N (t)kj

)′

≡
∑

k

(
M (t)′

)
ik

N (t)kj + M (t)ik

(
N (t)′

)
kj

≡ (M ′ (t) N (t) + M (t)N ′ (t))ij

and this proves the theorem.
In the study of differential equations, one of the most important theorems is Gronwall’s

inequality which is next.

Theorem 16.4.3 Suppose u (t) ≥ 0 and for all t ∈ [0, T ] ,

u (t) ≤ u0 +
∫ t

0

Ku (s) ds. (16.10)

where K is some constant. Then
u (t) ≤ u0e

Kt. (16.11)
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Proof: Let w (t) =
∫ t

0
u (s) ds. Then using the fundamental theorem of calculus, 16.10

w (t) satisfies the following.

u (t)−Kw (t) = w′ (t)−Kw (t) ≤ u0, w (0) = 0. (16.12)

Multiply both sides of this inequality by e−Kt and using the product rule and the chain
rule,

e−Kt (w′ (t)−Kw (t)) =
d

dt

(
e−Ktw (t)

) ≤ u0e
−Kt.

Integrating this from 0 to t,

e−Ktw (t) ≤ u0

∫ t

0

e−Ksds = u0

(
−e−tK − 1

K

)
.

Now multiply through by eKt to obtain

w (t) ≤ u0

(
−e−tK − 1

K

)
eKt = −u0

K
+

u0

K
etK .

Therefore, 16.12 implies

u (t) ≤ u0 + K
(
−u0

K
+

u0

K
etK

)
= u0e

Kt.

This proves the theorem.
With Gronwall’s inequality, here is a theorem on uniqueness of solutions to the initial

value problem,
x′ = Ax + f (t) , x (a) = xa, (16.13)

in which A is an n× n matrix and f is a continuous function having values in Cn.

Theorem 16.4.4 Suppose x and y satisfy 16.13. Then x (t) = y (t) for all t.

Proof: Let z (t) = x (t + a)− y (t + a). Then for t ≥ 0,

z′ = Az, z (0) = 0. (16.14)

Note that for K = max {|aij |} , where A = (aij) ,

|(Az, z)| =
∣∣∣∣∣∣
∑

ij

aijzjzi

∣∣∣∣∣∣
≤ K

∑

ij

|zi| |zj |

≤ K
∑

ij

(
|zi|2
2

+
|zj |2

2

)
= nK |z|2 .

(For x and y real numbers, xy ≤ x2

2 + y2

2 because this is equivalent to saying (x− y)2 ≥ 0.)
Similarly,

|(z,Az)| ≤ nK |z|2

Thus,
|(z,Az)| , |(Az, z)| ≤ nK |z|2 . (16.15)

Now multiplying 16.14 by z and observing that

d

dt

(
|z|2

)
= (z′, z) + (z, z′) = (Az, z) + (z,Az) ,
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it follows from 16.15 and the observation that z (0) = 0,

|z (t)|2 ≤
∫ t

0

2nK |z (s)|2 ds

and so by Gronwall’s inequality, |z (t)|2 = 0 for all t ≥ 0. Thus,

x (t) = y (t)

for all t ≥ a.
Now let w (t) = x (a− t) − y (a− t) for t ≥ 0. Then w′ (t) = (−A)w (t) and you can

repeat the argument which was just given to conclude that x (t) = y (t) for all t ≤ a. This
proves the theorem.

Definition 16.4.5 Let A be an n× n matrix. We say Φ(t) is a fundamental matrix for A
if

Φ′ (t) = AΦ(t) , Φ(0) = I, (16.16)

and Φ (t)−1 exists for all t ∈ R.

Why should anyone care about a fundamental matrix? The reason is that such a matrix
valued function makes possible a convenient description of the solution of the initial value
problem,

x′ = Ax + f (t) , x (0) = x0, (16.17)

on the interval, [0, T ] . First consider the special case where n = 1. This is the first order
linear differential equation,

r′ = λr + g, r (0) = r0, (16.18)

where g is a continuous scalar valued function. First consider the case where g = 0.

Lemma 16.4.6 There exists a unique solution to the initial value problem,

r′ = λr, r (0) = 1, (16.19)

and the solution for λ = a + ib is given by

r (t) = eat (cos bt + i sin bt) . (16.20)

This solution to the initial value problem is denoted as eλt. (If λ is real, eλt as defined here
reduces to the usual exponential function so there is no contradiction between this and earlier
notation seen in Calculus.)

Proof: From the uniqueness theorem presented above, Theorem 16.4.4, applied to the
case where n = 1, there can be no more than one solution to the initial value problem,
16.19. Therefore, it only remains to verify 16.20 is a solution to 16.19. However, this is an
easy calculus exercise. This proves the Lemma.

Note the differential equation in 16.19 says

d

dt

(
eλt

)
= λeλt. (16.21)

With this lemma, it becomes possible to easily solve the case in which g 6= 0.

Theorem 16.4.7 There exists a unique solution to 16.18 and this solution is given by the
formula,

r (t) = eλtr0 + eλt

∫ t

0

e−λsg (s) ds. (16.22)
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Proof: By the uniqueness theorem, Theorem 16.4.4, there is no more than one solution.
It only remains to verify that 16.22 is a solution. But r (0) = eλ0r0+

∫ 0

0
e−λsg (s) ds = r0 and

so the initial condition is satisfied. Next differentiate this expression to verify the differential
equation is also satisfied. Using 16.21, the product rule and the fundamental theorem of
calculus,

r′ (t) = λeλtr0 + λeλt

∫ t

0

e−λsg (s) ds + eλte−λtg (t)

= λr (t) + g (t) .

This proves the Theorem.
Now consider the question of finding a fundamental matrix for A. When this is done, it

will be easy to give a formula for the general solution to 16.17 known as the variation of
constants formula, arguably the most important result in differential equations.

The next theorem gives a formula for the fundamental matrix16.16. It is known as
Putzer’s method [1].

Theorem 16.4.8 Let A be an n× n matrix whose eigenvalues are {λ1, · · ·, λn} . Define

Pk (A) ≡
k∏

m=1

(A− λmI) , P0 (A) ≡ I,

and let the scalar valued functions, rk (t) be defined as the solutions to the following initial
value problem




r′0 (t)
r′1 (t)
r′2 (t)

...
r′n (t)




=




0
λ1r1 (t) + r0 (t)
λ2r2 (t) + r1 (t)

...
λnrn (t) + rn−1 (t)




,




r0 (0)
r1 (0)
r2 (0)

...
rn (0)




=




0
1
0
...
0




Note the system amounts to a list of single first order linear differential equations. Now
define

Φ(t) ≡
n−1∑

k=0

rk+1 (t)Pk (A) .

Then
Φ′ (t) = AΦ(t) , Φ(0) = I. (16.23)

Furthermore, if Φ(t) is a solution to 16.23 for all t, then it follows Φ(t)−1 exists for all t
and Φ (t) is the unique fundamental matrix for A.

Proof: The first part of this follows from a computation. First note that by the Cayley
Hamilton theorem, Pn (A) = 0. Now for the computation:

Φ′ (t) =
n−1∑

k=0

r′k+1 (t) Pk (A) =
n−1∑

k=0

(λk+1rk+1 (t) + rk (t)) Pk (A) =

n−1∑

k=0

λk+1rk+1 (t) Pk (A) +
n−1∑

k=0

rk (t) Pk (A) =
n−1∑

k=0

(λk+1I −A) rk+1 (t)Pk (A)+
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n−1∑

k=0

rk (t)Pk (A) +
n−1∑

k=0

Ark+1 (t)Pk (A)

= −
n−1∑

k=0

rk+1 (t)Pk+1 (A) +
n−1∑

k=0

rk (t) Pk (A) + A

n−1∑

k=0

rk+1 (t)Pk (A) . (16.24)

Now using r0 (t) = 0, the first term equals

−
n∑

k=1

rk (t)Pk (A) = −
n−1∑

k=1

rk (t)Pk (A)

= −
n−1∑

k=0

rk (t)Pk (A)

and so 16.24 reduces to

A

n−1∑

k=0

rk+1 (t) Pk (A) = AΦ(t) .

This shows Φ′ (t) = AΦ(t) . That Φ (0) = 0 follows from

Φ (0) =
n−1∑

k=0

rk+1 (0)Pk (A) = r1 (0)P0 = I.

It remains to verify that if 16.23 holds, then Φ (t)−1 exists for all t. To do so, consider
v 6= 0 and suppose for some t0, Φ(t0)v = 0. Let x (t) ≡ Φ(t0 + t)v. Then

x′ (t) = AΦ(t0 + t)v = Ax (t) , x (0) = Φ (t0)v = 0.

But also z (t) ≡ 0 also satisfies

z′ (t) = Az (t) , z (0) = 0,

and so by the theorem on uniqueness, it must be the case that z (t) = x (t) for all t, showing
that Φ (t + t0)v = 0 for all t, and in particular for t = −t0. Therefore,

Φ (−t0 + t0)v = Iv = 0

and so v = 0, a contradiction. It follows that Φ (t) must be one to one for all t and so,
Φ (t)−1 exists for all t.

It only remains to verify the solution to 16.23 is unique. Suppose Ψ is another funda-
mental matrix solving 16.23. Then letting v be an arbitrary vector,

z (t) ≡ Φ (t)v, y (t) ≡ Ψ(t)v

both solve the initial value problem,

x′ = Ax, x (0) = v,

and so by the uniqueness theorem, z (t) = y (t) for all t showing that Φ (t)v = Ψ (t)v for
all t. Since v is arbitrary, this shows that Φ (t) = Ψ (t) for every t. This proves the theorem.

It is useful to consider the differential equations for the rk for k ≥ 1. As noted above,
r0 (t) = 0 and r1 (t) = eλ1t.

r′k+1 = λk+1rk+1 + rk, rk+1 (0) = 0.
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Thus

rk+1 (t) =
∫ t

0

eλk+1(t−s)rk (s) ds.

Therefore,

r2 (t) =
∫ t

0

eλ2(t−s)eλ1sds =
eλ1t − eλ2t

−λ2 + λ1

assuming λ1 6= λ2.
Sometimes people define a fundamental matrix to be a matrix, Φ (t) such that Φ′ (t) =

AΦ(t) and det (Φ (t)) 6= 0 for all t. Thus this avoids the initial condition, Φ (0) = I. The
next proposition has to do with this situation.

Proposition 16.4.9 Suppose A is an n × n matrix and suppose Φ (t) is an n × n matrix
for each t ∈ R with the property that

Φ′ (t) = AΦ (t) . (16.25)

Then either Φ(t)−1 exists for all t ∈ R or Φ(t)−1 fails to exist for all t ∈ R.

Proof: Suppose Φ (0)−1 exists and 16.25 holds. Let Ψ (t) ≡ Φ(t)Φ (0)−1
. Then Ψ (0) =

I and
Ψ′ (t) = Φ′ (t) Φ (0)−1 = AΦ(t)Φ (0)−1 = AΨ(t)

so by Theorem 16.4.8, Ψ (t)−1 exists for all t. Therefore, Φ (t)−1 also exists for all t.

Next suppose Φ (0)−1 does not exist. I need to show Φ (t)−1 does not exist for any t.

Suppose then that Φ (t0)
−1 does exist. Then letΨ (t) ≡ Φ(t0 + t) Φ (t0)

−1
. Then Ψ (0) =

I and Ψ′ = AΨ so by Theorem 16.4.8 it follows Ψ (t)−1 exists for all t and so for all
t,Φ(t + t0)

−1 must also exist, even for t = −t0 which implies Φ (0)−1 exists after all. This
proves the proposition.

The conclusion of this proposition is usually referred to as the Wronskian alternative and
another way to say it is that if 16.25 holds, then either det (Φ (t)) = 0 for all t or det (Φ (t))
is never equal to 0. The Wronskian is the usual name of the function, t → det (Φ (t)).

The following theorem gives the variation of constants formula,.

Theorem 16.4.10 Let f be continuous on [0, T ] and let A be an n × n matrix and x0 a
vector in Cn. Then there exists a unique solution to 16.17, x, given by the variation of
constants formula,

x (t) = Φ (t)x0 + Φ (t)
∫ t

0

Φ (s)−1 f (s) ds (16.26)

for Φ(t) the fundamental matrix for A. Also, Φ(t)−1 = Φ(−t) and Φ(t + s) = Φ (t)Φ (s)
for all t, s and the above variation of constants formula can also be written as

x (t) = Φ (t)x0 +
∫ t

0

Φ(t− s) f (s) ds (16.27)

= Φ (t)x0 +
∫ t

0

Φ(s) f (t− s) ds (16.28)

Proof: From the uniqueness theorem there is at most one solution to 16.17. Therefore,
if 16.26 solves 16.17, the theorem is proved. The verification that the given formula works
is identical with the verification that the scalar formula given in Theorem 16.4.7 solves the
initial value problem given there. Φ (s)−1 is continuous because of the formula for the inverse
of a matrix in terms of the transpose of the cofactor matrix. Therefore, the integrand in
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16.26 is continuous and the fundamental theorem of calculus applies. To verify the formula
for the inverse, fix s and consider x (t) = Φ (s + t)v, and y (t) = Φ (t) Φ (s)v. Then

x′ (t) = AΦ(t + s)v = Ax (t) , x (0) = Φ (s)v

y′ (t) = AΦ(t)Φ (s)v = Ay (t) , y (0) = Φ (s)v.

By the uniqueness theorem, x (t) = y (t) for all t. Since s and v are arbitrary, this shows
Φ (t + s) = Φ (t)Φ (s) for all t, s. Letting s = −t and using Φ (0) = I verifies Φ (t)−1 =
Φ(−t) .

Next, note that this also implies Φ (t− s)Φ (s) = Φ (t) and so Φ (t− s) = Φ (t)Φ (s)−1
.

Therefore, this yields 16.27 and then 16.28follows from changing the variable. This proves
the theorem.

If Φ′ = AΦ and Φ (t)−1 exists for all t, you should verify that the solution to the initial
value problem

x′ = Ax + f , x (t0) = x0

is given by

x (t) = Φ (t− t0)x0 +
∫ t

t0

Φ (t− s) f (s) ds.

Theorem 16.4.10 is general enough to include all constant coefficient linear differential
equations or any order. Thus it includes as a special case the main topics of an entire
elementary differential equations class. This is illustrated in the following example. One
can reduce an arbitrary linear differential equation to a first order system and then apply the
above theory to solve the problem. The next example is a differential equation of damped
vibration.

Example 16.4.11 The differential equation is y′′ + 2y′ + 2y = cos t and initial conditions,
y (0) = 1 and y′ (0) = 0.

To solve this equation, let x1 = y and x2 = x′1 = y′. Then, writing this in terms of these
new variables, yields the following system.

x′2 + 2x2 + 2x1 = cos t
x′1 = x2

This system can be written in the above form as
(

x1

x2

)′
=

(
x2

−2x2 − 2x1

)
+

(
0

cos t

)

=
(

0 1
−2 −2

) (
x1

x2

)
+

(
0

cos t

)
.

and the initial condition is of the form
(

x1

x2

)
(0) =

(
1
0

)

Now P0 (A) ≡ I. The eigenvalues are −1 + i,−1− i and so

P1 (A) =
((

0 1
−2 −2

)
− (−1 + i)

(
1 0
0 1

))

=
(

1− i 1
−2 −1− i

)
.
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Recall r0 (t) ≡ 0 and r1 (t) = e(−1+i)t. Then

r′2 = (−1− i) r2 + e(−1+i)t, r2 (0) = 0

and so

r2 (t) =
e(−1+i)t − e(−1−i)t

2i
= e−t sin (t)

Putzer’s method yields the fundamental matrix as

Φ (t) = e(−1+i)t

(
1 0
0 1

)
+ e−t sin (t)

(
1− i 1
−2 −1− i

)

=
(

e−t (cos (t) + sin (t)) e−t sin t
−2e−t sin t e−t (cos (t)− sin (t))

)

From variation of constants formula the desired solution is
(

x1

x2

)
(t) =

(
e−t (cos (t) + sin (t)) e−t sin t

−2e−t sin t e−t (cos (t)− sin (t))

)(
1
0

)

+
∫ t

0

(
e−s (cos (s) + sin (s)) e−s sin s

−2e−s sin s e−s (cos (s)− sin (s))

) (
0

cos (t− s)

)

=
(

e−t (cos (t) + sin (t))
−2e−t sin t

)
+

∫ t

0

(
e−s sin (s) cos (t− s)

e−s (cos s− sin s) cos (t− s)

)
ds

=
(

e−t (cos (t) + sin (t))
−2e−t sin t

)
+

( − 1
5 (cos t) e−t − 3

5e−t sin t + 1
5 cos t + 2

5 sin t
− 2

5 (cos t) e−t + 4
5e−t sin t + 2

5 cos t− 1
5 sin t

)

=
(

4
5 (cos t) e−t + 2

5e−t sin t + 1
5 cos t + 2

5 sin t
− 6

5e−t sin t− 2
5 (cos t) e−t + 2

5 cos t− 1
5 sin t

)

Thus y (t) = x1 (t) = 4
5 (cos t) e−t + 2

5e−t sin t + 1
5 cos t + 2

5 sin t.

16.5 Geometric Theory Of Autonomous Systems

Here a sufficient condition is given for stability of a first order system. First of all, here is
a fundamental estimate for the entries of a fundamental matrix.

Lemma 16.5.1 Let the functions, rk be given in the statement of Theorem 16.4.8 and
suppose that A is an n × n matrix whose eigenvalues are {λ1, · · ·, λn} . Suppose that these
eigenvalues are ordered such that

Re (λ1) ≤ Re (λ2) ≤ · · · ≤ Re (λn) < 0.

Then if 0 > −δ > Re (λn) is given, there exists a constant, C such that for each k =
0, 1, · · ·, n,

|rk (t)| ≤ Ce−δt (16.29)

for all t > 0.

Proof: This is obvious for r0 (t) because it is identically equal to 0. From the definition
of the rk,

r′1 = λ1r1, r1 (0) = 1

and so
r1 (t) = eλ1t
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which implies
|r1 (t)| ≤ eRe(λ1)t.

Suppose for some m ≥ 1 there exists a constant, Cm such that

|rk (t)| ≤ CmtmeRe(λm)t

for all k ≤ m for all t > 0. Then

r′m+1 (t) = λm+1rm+1 (t) + rm (t) , rm+1 (0) = 0

and so

rm+1 (t) = eλm+1t

∫ t

0

e−λm+1srm (s) ds.

Then by the induction hypothesis,

|rm+1 (t)| ≤ eRe(λm+1)t

∫ t

0

∣∣e−λm+1s
∣∣ CmsmeRe(λm)sds

≤ eRe(λm+1)t

∫ t

0

smCme−Re(λm+1)seRe(λm)sds

≤ eRe(λm+1)t

∫ t

0

smCmds =
Cm

m + 1
tm+1eRe(λm+1)t

It follows by induction there exists a constant, C such that for all k ≤ n,

|rk (t)| ≤ CtneRe(λn)t

and this obviously implies the conclusion of the lemma.
The proof of the above lemma yields the following corollary.

Corollary 16.5.2 Let the functions, rk be given in the statement of Theorem 16.4.8 and
suppose that A is an n × n matrix whose eigenvalues are {λ1, · · ·, λn} . Suppose that these
eigenvalues are ordered such that

Re (λ1) ≤ Re (λ2) ≤ · · · ≤ Re (λn) .

Then there exists a constant C such that for all k ≤ m

|rk (t)| ≤ CtmeRe(λm)t.

With the lemma, the following sloppy estimate is available for a fundamental matrix.

Theorem 16.5.3 Let A be an n× n matrix and let Φ (t) be the fundamental matrix for A.
That is,

Φ′ (t) = AΦ(t) , Φ(0) = I.

Suppose also the eigenvalues of A are {λ1, · · ·, λn} where these eigenvalues are ordered such
that

Re (λ1) ≤ Re (λ2) ≤ · · · ≤ Re (λn) < 0.

Then if 0 > −δ > Re (λn) , is given, there exists a constant, C such that
∣∣∣Φ(t)ij

∣∣∣ ≤ Ce−δt

for all t > 0. Also
|Φ(t)x| ≤ Cn3/2e−δt |x| . (16.30)
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Proof: Let
M ≡ max

{
Pk (A)ij for all i, j, k

}
.

Then from Putzer’s formula for Φ (t) and Lemma 16.5.1, there exists a constant, C such
that ∣∣∣Φ(t)ij

∣∣∣ ≤
n−1∑

k=0

Ce−δtM.

Let the new C be given by nCM. This proves the theorem.
Next,

|Φ(t)x|2 ≡
n∑

i=1




n∑

j=1

Φij (t)xj




2

≤
n∑

i=1




n∑

j=1

|Φij (t)| |xj |



2

≤
n∑

i=1




n∑

j=1

Ce−δt |x|



2

= C2e−2δt
n∑

i=1

(n |x|)2 = C2e−2δtn3 |x|2

This proves 16.30 and completes the proof.

Definition 16.5.4 Let f : U → Rn where U is an open subset of Rn such that a ∈ U and
f (a) = 0. A point, a where f (a) = 0 is called an equilibrium point. Then a is assymptotically
stable if for any ε > 0 there exists r > 0 such that whenever |x0 − a| < r and x (t) the
solution to the initial value problem,

x′ = f (x) , x (0) = x0,

it follows
lim

t→∞
x (t) = a, |x (t)− a| < ε

A differential equation of the form x′ = f (x) is called autonomous as opposed to a nonau-
tonomous equation of the form x′ = f (t,x) . The equilibrium point a is stable if for every
ε > 0 there exists δ > 0 such that if |x0 − a| < δ, then if x is the solution of

x′ = f (x) , x (0) = x0, (16.31)

then |x (t)− a| < ε for all t > 0.

Obviously assymptotic stability implies stability.
An ordinary differential equation is called almost linear if it is of the form

x′ = Ax + g (x)

where A is an n× n matrix and

lim
x→0

g (x)
|x| = 0.
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Now the stability of an equilibrium point of an autonomous system,

x′ = f (x)

can always be reduced to the consideration of the stability of 0 for an almost linear system.
Here is why. If you are considering the equilibrium point, a for x′ = f (x) , you could define
a new variable, y by

a + y = x.

Then assymptotic stability would involve |y (t)| < ε and limt→∞ y (t) = 0 while stability
would only require |y (t)| < ε. Then since a is an equilibrium point, y solves the following
initial value problem.

y′ = f (a + y)− f (a) , y (0) = y0,

where y0 = x0 − a.
Let A = Df (a) . Then from the definition of the derivative of a function,

y′ = Ay + g (y) , y (0) = y0 (16.32)

where

lim
y→0

g (y)
|y| = 0.

Thus there is never any loss of generality in considering only the equilibrium point 0 for an
almost linear system.1 Therefore, from now on I will only consider the case of almost linear
systems and the equilibrium point 0.

Theorem 16.5.5 Consider the almost linear system of equations,

x′ = Ax + g (x)

where

lim
x→0

g (x)
|x| = 0

and g is a C1 function. Suppose that for all λ an eigenvalue of A, Re λ < 0. Then 0 is
assymptotically stable.

Proof: By Theorem 16.5.3 there exist constants δ > 0 and K such that for Φ (t) the
fundamental matrix for A,

|Φ(t)x| ≤ Ke−δt |x| .
Let ε > 0 be given and let r be small enough that Kr < ε and for |x| < (K + 1) r, |g (x)| <
η |x| where η is so small that Kη < δ, and let |y0| < r. Then by the variation of constants
formula, the solution to ??, at least for small t satisfies

y (t) = Φ (t)y0 +
∫ t

0

Φ(t− s)g (y (s)) ds.

The following estimate holds.

|y (t)| ≤ Ke−δt |y0|+
∫ t

0

Ke−δ(t−s)η |y (s)| ds

< Ke−δtr +
∫ t

0

Ke−δ(t−s)η |y (s)| ds.

1This is no longer true when you study partial differential equatioins as ordinary differential equationis
in infinite dimensional spaces.
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Therefore,

eδt |y (t)| < Kr +
∫ t

0

Kηeδs |y (s)| ds.

By Gronwall’s inequality,
eδt |y (t)| < KreKηt

and so
|y (t)| < Kre(Kη−δ)t < εe(Kη−δ)t

Therefore, |y (t)| < Kr < ε for all t and so from Corollary 16.3.4, the solution to ?? exists
for all t ≥ 0 and since Kη − δ < 0,

lim
t→∞

|y (t)| = 0.

This proves the theorem.

16.6 General Geometric Theory

Here I will consider the case where the matrix, A has both postive and negative eigenvalues.
First here is a useful lemma.

Lemma 16.6.1 Suppose A is an n× n matrix and there exists δ > 0 such that

0 < δ < Re (λ1) ≤ · · · ≤ Re (λn)

where {λ1, · · ·, λn} are the eigenvalues of A, with possibly some repeated. Then there exists
a constant, C such that for all t < 0,

|Φ(t)x| ≤ Ceδt |x|

Proof: I want an estimate on the solutions to the system

Φ′ (t) = AΦ(t) , Φ(0) = I.

for t < 0. Let s = −t and let Ψ (s) = Φ (t) . Then writing this in terms of Ψ,

Ψ′ (s) = −AΨ (s) , Ψ(0) = I.

Now the eigenvalues of −A have real parts less than −δ because these eigenvalues are
obtained from the eigenvalues of A by multiplying by −1. Then by Theorem 16.5.3 there
exists a constant, C such that for any x,

|Ψ(s)x| ≤ Ce−δs |x| .

Therefore, from the definition of Ψ,

|Φ(t)x| ≤ Ceδt |x| .

This proves the lemma.
Here is another essential lemma which is found in Coddington and Levinson [3]
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Lemma 16.6.2 Let pj (t) be polynomials with complex coefficients and let

f (t) =
m∑

j=1

pj (t) eλjt

where m ≥ 1, λj 6= λk for j 6= k, and none of the pj (t) vanish identically. Let

σ = max (Re (λ1) , · · ·, Re (λm)) .

Then there exists a positive number, r and arbitrarily large positive values of t such that

e−σt |f (t)| > r.

In particular, |f (t)| is unbounded.

Proof: Suppose the largest exponent of any of the pj is M and let λj = aj + ibj . First
assume each aj = 0. This is convenient because σ = 0 in this case and the largest of the
Re (λj) occurs in every λj .

Then arranging the above sum as a sum of decreasing powers of t,

f (t) = tMfM (t) + · · ·+ tf1 (t) + f0 (t) .

Then

t−Mf (t) = fM (t) + O

(
1
t

)

where the last term means that tO
(

1
t

)
is bounded. Then

fM (t) =
m∑

j=1

cje
ibjt

It can’t be the case that all the cj are equal to 0 because then M would not be the highest
power exponent. Suppose ck 6= 0. Then

lim
T→∞

1
T

∫ T

0

t−Mf (t) e−ibktdt =
m∑

j=1

cj
1
T

∫ T

0

ei(bj−bk)tdt = ck 6= 0.

Letting r = |ck/2| , it follows
∣∣t−Mf (t) e−ibkt

∣∣ > r for arbitrarily large values of t. Thus it
is also true that |f (t)| > r for arbitrarily large values of t.

Next consider the general case in which σ is given above. Thus

e−σtf (t) =
∑

j:aj=σ

pj (t) ebjt + g (t)

where limt→∞ g (t) = 0, g (t) being of the form
∑

s ps (t) e(as−σ+ibs)t where as−σ < 0. Then
this reduces to the case above in which σ = 0. Therefore, there exists r > 0 such that

∣∣e−σtf (t)
∣∣ > r

for arbitrarily large values of t. This proves the lemma.
Next here is a Banach space which will be useful.
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Lemma 16.6.3 For γ > 0, let

Eγ =
{
x ∈ BC ([0,∞),Fn) : t → eγtx (t) is also in BC ([0,∞),Fn)

}

and let the norm be given by

||x||γ ≡ sup
{∣∣eγtx (t)

∣∣ : t ∈ [0,∞)
}

Then Eγ is a Banach space.

Proof: Let {xk} be a Cauchy sequence in Eγ . Then since BC ([0,∞),Fn) is a Banach
space, there exists y ∈ BC ([0,∞),Fn) such that eγtxk (t) converges uniformly on [0,∞) to
y (t). Therefore e−γteγtxk (t) = xk (t) converges uniformly to e−γty (t) on [0,∞). Define
x (t) ≡ e−γty (t) . Then y (t) = eγtx (t) and by definition,

||xk − x||γ → 0.

This proves the lemma.

16.7 The Stable Manifold

Here assume

A =
(

A− 0
0 A+

)
(16.33)

where A− and A+ are square matrices of size k× k and (n− k)× (n− k) respectively. Also
assume A− has eigenvalues whose real parts are all less than −α while A+ has eigenvalues
whose real parts are all larger than α. Assume also that each of A− and A+ is upper
triangular.

Also, I will use the following convention. For v ∈ Fn,

v =
(

v−
v+

)

where v− consists of the first k entries of v.
Then from Theorem 16.5.3 and Lemma 16.6.1 the following lemma is obtained.

Lemma 16.7.1 Let A be of the form given in 16.33 as explained above and let Φ+ (t) and
Φ− (t) be the fundamental matrices corresponding to A+ and A− respectively. Then there
exist positive constants, α and γ such that

|Φ+ (t)y| ≤ Ceαt for all t < 0 (16.34)

|Φ− (t)y| ≤ Ce−(α+γ)t for all t > 0. (16.35)

Also for any nonzero x ∈ Cn−k,

|Φ+ (t)x| is unbounded. (16.36)

Proof: The first two claims have been established already. It suffices to pick α and γ
such that − (α + γ) is larger than all eigenvalues of A− and α is smaller than all eigenvalues
of A+. It remains to verify 16.36. From the Putzer formula for Φ+ (t) ,

Φ+ (t)x =
n−1∑

k=0

rk+1 (t)Pk (A)x



356 APPLICATIONS TO DIFFERENTIAL EQUATIONS

where P0 (A) ≡ I. Now each rk is a polynomial (possibly a constant) times an exponential.
This follows easily from the definition of the rk as solutions of the differential equations

r′k+1 = λk+1rk+1 + rk.

Now by assumption the eigenvalues have positive real parts so

σ ≡ max (Re (λ1) , · · ·,Re (λn−k)) > 0.

It can also be assumed
Re (λ1) ≥ · · · ≥ Re (λn−k)

By Lemma 16.6.2 it follows |Φ+ (t)x| is unbounded. This follows because

Φ+ (t)x = r1 (t)x +
n−1∑

k=1

rk+1 (t)yk, r1 (t) = eλ1t.

Since x 6= 0, it has a nonzero entry, say xm 6= 0. Consider the mth entry of the vector
Φ+ (t)x. By this Lemma the mth entry is unbounded and this is all it takes for x (t) to be
unbounded. This proves the lemma.

Lemma 16.7.2 Consider the initial value problem for the almost linear system

x′ = Ax + g (x) , x (0) = x0,

where g is C1and A is of the special form

A =
(

A− 0
0 A+

)

in which A− is a k×k matrix which has eigenvalues for which the real parts are all negative
and A+ is a (n− k) × (n− k) matrix for which the real parts of all the eigenvalues are
positive. Then 0 is not stable. More precisely, there exists a set of points (a−,ψ (a−)) for
a− small such that for x0 on this set,

lim
t→∞

x (t,x0) = 0

and for x0 not on this set, there exists a δ > 0 such that |x (t,x0)| cannot remain less than
δ for all positive t.

Proof: Consider the initial value problem for the almost linear equation,

x′ = Ax + g (x) , x (0) = a =
(

a−
a+

)
.

Then by the variation of constants formula, a local solution has the form

x (t,a) =
(

Φ− (t) 0
0 Φ+ (t)

)(
a−
a+

)

+
∫ t

0

(
Φ− (t− s) 0

0 Φ+ (t− s)

)
g (x (s,a)) ds (16.37)
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Write x (t) for x (t,a) for short. Let ε > 0 be given and suppose δ is such that if |x| < δ,
then |g± (x)| < ε |x|. Assume from now on that |a| < δ. Then suppose |x (t)| < δ for all
t > 0. Writing 16.37 differently yields

x (t,a) =
(

Φ− (t) 0
0 Φ+ (t)

)(
a−
a+

)
+

( ∫ t

0
Φ− (t− s)g− (x (s,a)) ds

0

)

+
(

0∫ t

0
Φ+ (t− s)g+ (x (s,a)) ds

)

=
(

Φ− (t) 0
0 Φ+ (t)

) (
a−
a+

)
+

( ∫ t

0
Φ− (t− s)g− (x (s,a)) ds

0

)

+
(

0∫∞
0

Φ+ (t− s)g+ (x (s,a)) ds− ∫∞
t

Φ+ (t− s)g+ (x (s,a)) ds

)
.

These improper integrals converge thanks to the assumption that x is bounded and the
estimates 16.34 and 16.35. Continuing the rewriting,

(
x− (t)
x+ (t)

)
=

( (
Φ− (t)a− +

∫ t

0
Φ− (t− s)g− (x (s,a)) ds

)

Φ+ (t)
(
a+ +

∫∞
0

Φ+ (−s)g+ (x (s,a)) ds
)

)

+
(

0
− ∫∞

t
Φ+ (t− s)g+ (x (s,a)) ds

)
.

It follows from Lemma 16.7.1 that if |x (t,a)| is bounded by δ as asserted, then it must be
the case that a+ +

∫∞
0

Φ+ (−s)g+ (x (s,a)) ds = 0. Consequently, it must be the case that

x (t) = Φ (t)
(

a−
0

)
+

( ∫ t

0
Φ− (t− s)g− (x (s,a)) ds

− ∫∞
t

Φ+ (t− s)g+ (x (s,a)) ds

)
(16.38)

Letting t → 0, this requires that for a solution to the initial value problem to exist and also
satisfy |x (t)| < δ for all t > 0 it must be the case that

x (0) =
(

a−
− ∫∞

0
Φ+ (−s)g+ (x (s,a)) ds

)

where x (t,a) is the solution of

x′ = Ax + g (x) , x (0) =
(

a−
− ∫∞

0
Φ+ (−s)g+ (x (s,a)) ds

)

This is because in 16.38, if x is bounded by δ then the reverse steps show x is a solution of
the above differential equation and initial condition.

It follows if I can show that for all a− sufficiently small and a =(a−,0)T , there exists a
solution to 16.38 x (s,a) on (0,∞) for which |x (s,a)| < δ, then I can define

ψ (a) ≡ −
∫ ∞

0

Φ+ (−s)g+ (x (s,a)) ds

and conclude that |x (t,x0)| < δ for all t > 0 if and only if x0 = (a−,ψ (a−))T for some
sufficiently small a−.

Let C, α, γ be the constants of Lemma 16.7.1. Let η be a small positive number such
that

Cη

α
<

1
6
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Note that ∂g
∂xi

(0) = 0. Therefore, by Lemma 16.3.1, there exists δ > 0 such that if |x| , |y| ≤
δ, then

|g (x)− g (y)| < η |x− y|
and in particular,

|g± (x)− g± (y)| < η |x− y| (16.39)

because each ∂g
∂xi

(x) is very small. In particular, this implies

|g− (x)| < η |x| , |g+ (x)| < η |x| .

For x ∈ Eγ defined in Lemma 16.6.3 and |a−| < δ
2C ,

Fx (t) ≡
(

Φ− (t)a− +
∫ t

0
Φ− (t− s)g− (x (s)) ds

− ∫∞
t

Φ+ (t− s)g+ (x (s)) ds

)
.

I need to find a fixed point of F. Letting ||x||γ < δ, and using the estimates of Lemma 16.7.1,

eγt |Fx (t)| ≤ eγt |Φ− (t)a−|+ eγt

∫ t

0

Ce−(α+γ)(t−s)η |x (s)| ds

+eγt

∫ ∞

t

Ceα(t−s)η |x (s)| ds

≤ eγtC
δ

2C
e−(α+γ)t + eγt ||x||γ Cη

∫ t

0

e−(α+γ)(t−s)e−γsds

+eγtCη

∫ ∞

t

eα(t−s)e−γsds ||x||γ

<
δ

2
+ δCη

∫ t

0

e−α(t−s)ds + Cηδ

∫ ∞

t

e(α+γ)(t−s)ds

<
δ

2
+ δCη

1
α

+
δCη

α + γ
≤ δ

(
1
2

+
Cη

α

)
<

2δ

3
.

Thus F maps every x ∈ Eγ having ||x||γ < δ to Fx where ||Fx||γ ≤ 2δ
3 .

Now let x,y ∈ Eγ where ||x||γ , ||y||γ < δ. Then

eγt |Fx (t)− Fy (t)| ≤ eγt

∫ t

0

|Φ− (t− s)| ηe−γseγs |x (s)− y (s)| ds

+eγt

∫ ∞

t

|Φ+ (t− s)| e−γseγsη |x (s)− y (s)| ds

≤ Cη ||x− y||γ
(∫ t

0

e−α(t−s)ds

)
+

∫ ∞

t

e(α+γ)(t−s)ds

≤ Cη

(
1
α

+
1

α + γ

)
||x− y||γ <

2Cη

α
||x− y||γ <

1
3
||x− y||γ .

It follows from Lemma 15.4.4, for each a− such that |a−| < δ
2C , there exists a unique solution

to 16.38 in Eγ .
As pointed out earlier, if

ψ (a) ≡ −
∫ ∞

0

Φ+ (−s)g+ (x (s,a)) ds
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then for x (t,x0) the solution to the initial value problem

x′ = Ax + g (x) , x (0) = x0

has the property that if x0 is not of the form
(

a−
ψ (a−)

)
, then |x (t,x0)| cannot be less

than δ for all t > 0.

On the other hand, if x0 =
(

a−
ψ (a−)

)
for |a−| < δ

2C , then x (t,x0) ,the solution to

16.38 is the unique solution to the initial value problem

x′ = Ax + g (x) , x (0) = x0.

and it was shown that ||x (·,x0)||γ < δ and so in fact,

|x (t,x0)| ≤ δe−γt

showing that
lim

t→∞
x (t,x0) = 0.

This proves the Lemma.
The following theorem is the main result. It involves a use of linear algebra and the

above lemma.

Theorem 16.7.3 Consider the initial value problem for the almost linear system

x′ = Ax + g (x) , x (0) = x0

in which g is C1 and where at there are k < n eigenvalues of A which have negative real
parts and n− k eigenvalues of A which have positive real parts. Then 0 is not stable. More
precisely, there exists a set of points (a, ψ (a)) for a small and in a k dimensional subspace
such that for x0 on this set,

lim
t→∞

x (t,x0) = 0

and for x0 not on this set, there exists a δ > 0 such that |x (t,x0)| cannot remain less than
δ for all positive t.

Proof: This involves nothing more than a reduction to the situation of Lemma 16.7.2.
From Corollary 11.4.4 on Page 11.4.4 A is similar to a matrix of the form described in

Lemma 16.7.2. Thus A = S−1

(
A− 0
0 A+

)
S. Letting y = Sx, it follows

y′ =
(

A− 0
0 A+

)
y + g

(
S−1y

)

Now |x| = ∣∣S−1Sx
∣∣ ≤ ∣∣∣∣S−1

∣∣∣∣ |y| and |y| = ∣∣SS−1y
∣∣ ≤ ||S|| |x| . Therefore,

1
||S|| |y| ≤ |x| ≤

∣∣∣∣S−1
∣∣∣∣ |y| .

It follows all conclusions of Lemma 16.7.2 are valid for this theorem. This proves the
theorem.

The set of points (a,ψ (a)) for a small is called the stable manifold. Much more can be
said about the stable manifold and you should look at a good differential equations book
for this.



360 APPLICATIONS TO DIFFERENTIAL EQUATIONS



The Fundamental Theorem Of
Algebra

The fundamental theorem of algebra states that every non constant polynomial having
coefficients in C has a zero in C. If C is replaced by R, this is not true because of the
example, x2 +1 = 0. This theorem is a very remarkable result and notwithstanding its title,
all the best proofs of it depend on either analysis or topology. It was first proved by Gauss
in 1797. The proof given here follows Rudin [11]. See also Hardy [7] for another proof, more
discussion and references. Recall De Moivre’s theorem on Page 10 which is listed below for
convenience.

Theorem A.0.4 Let r > 0 be given. Then if n is a positive integer,

[r (cos t + i sin t)]n = rn (cos nt + i sin nt) .

Now from this theorem, the following corollary on Page 1.2.5 is obtained.

Corollary A.0.5 Let z be a non zero complex number and let k be a positive integer. Then
there are always exactly k kth roots of z in C.

Lemma A.0.6 Let ak ∈ C for k = 1, ···, n and let p (z) ≡ ∑n
k=1 akzk. Then p is continuous.

Proof:
|azn − awn| ≤ |a| |z − w|

∣∣zn−1 + zn−2w + · · ·+ wn−1
∣∣ .

Then for |z − w| < 1, the triangle inequality implies |w| < 1 + |z| and so if |z − w| < 1,

|azn − awn| ≤ |a| |z − w|n (1 + |z|)n
.

If ε > 0 is given, let

δ < min
(

1,
ε

|a|n (1 + |z|)n

)
.

It follows from the above inequality that for |z − w| < δ, |azn − awn| < ε. The function of
the lemma is just the sum of functions of this sort and so it follows that it is also continuous.

Theorem A.0.7 (Fundamental theorem of Algebra) Let p (z) be a nonconstant polynomial.
Then there exists z ∈ C such that p (z) = 0.

Proof: Suppose not. Then

p (z) =
n∑

k=0

akzk

361
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where an 6= 0, n > 0. Then

|p (z)| ≥ |an| |z|n −
n−1∑

k=0

|ak| |z|k

and so
lim
|z|→∞

|p (z)| = ∞. (1.1)

Now let
λ ≡ inf {|p (z)| : z ∈ C} .

By 1.1, there exists an R > 0 such that if |z| > R, it follows that |p (z)| > λ + 1. Therefore,

λ ≡ inf {|p (z)| : z ∈ C} = inf {|p (z)| : |z| ≤ R} .

The set {z : |z| ≤ R} is a closed and bounded set and so this infimum is achieved at some
point w with |w| ≤ R. A contradiction is obtained if |p (w)| = 0 so assume |p (w)| > 0. Then
consider

q (z) ≡ p (z + w)
p (w)

.

It follows q (z) is of the form

q (z) = 1 + ckzk + · · ·+ cnzn

where ck 6= 0, because q (0) = 1. It is also true that |q (z)| ≥ 1 by the assumption that
|p (w)| is the smallest value of |p (z)| . Now let θ ∈ C be a complex number with |θ| = 1 and

θckwk = − |w|k |ck| .

If

w 6= 0, θ =
− ∣∣wk

∣∣ |ck|
wkck

and if w = 0, θ = 1 will work. Now let ηk = θ and let t be a small positive number.

q (tηw) ≡ 1− tk |w|k |ck|+ · · ·+ cntn (ηw)n

which is of the form
1− tk |w|k |ck|+ tk (g (t, w))

where limt→0 g (t, w) = 0. Letting t be small enough,

|g (t, w)| < |w|k |ck| /2

and so for such t,
|q (tηw)| < 1− tk |w|k |ck|+ tk |w|k |ck| /2 < 1,

a contradiction to |q (z)| ≥ 1. This proves the theorem.
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Abel’s formula, 111
adjugate, 92, 104
algebraic multiplicity, 234
almost linear, 351
assymptotically stable, 351
augmented matrix, 14
autonomous, 351

basic feasible solution, 130
basic variables, 130
basis, 182
block matrix, 108
bounded linear transformations, 280

Cartesian coordinates, 20
Cauchy Schwarz, 25
Cauchy Schwarz inequality, 242, 277
Cauchy sequence, 277
Cayley Hamilton theorem, 107
centrifugal acceleration, 79
centripetal acceleration, 79
characteristic equation, 151
characteristic polynomial, 107
characteristic value, 151
cofactor, 88, 102
column rank, 115
companion matrix, 319
complete, 297
complex conjugate, 9
complex numbers, 8
component, 30
composition of linear transformations, 209
condition number, 287
conformable, 59
Coordinates, 19
Coriolis acceleration, 79
Coriolis acceleration

earth, 81
Coriolis force, 79
Courant Fischer theorem, 262
Cramer’s rule, 93, 104

damped vibration, 348
defective, 157
determinant, 98

product, 101
transpose, 99

diagonalizable, 164, 165, 207
differentiable matrix, 75
dimension of vector space, 185
direct sum, 198
directrix, 40
distance formula, 22, 24
Dolittle’s method, 123
dominant eigenvalue, 301
dot product, 33

eigenspace, 153, 196, 234
eigenvalue, 151, 196
eigenvalues, 107, 177
eigenvector, 151
Einstein summation convention, 50
elementary matrices, 113
equality of mixed partial derivatives, 172
equilibrium point, 351
equivalence class, 205
equivalence of norms, 280
equivalence relation, 205
exchange theorem, 71

field axioms, 8
Foucalt pendulum, 81
Fredholm alternative, 251
Frobinius norm, 274
fundamental theorem of algebra, 361

gambler’s ruin, 237
Gauss Jordan method for inverses, 64
Gauss Seidel method, 293
generalized eigenspace, 196, 234
Gerschgorin’s theorem, 175
Gramm Schmidt process, 166, 244
Grammian, 255
Gronwall’s inequality, 342
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Hermitian, 169
positive definite, 265

Hermitian matrix
positive part, 334

Hessian matrix, 172
Hilbert space, 259
Holder’s inequality, 283

inconsistent, 16
inner product, 33, 241
inner product space, 241
inverses and determinants, 91, 103
invertible, 62

Jocobi method, 291
Jordan block, 219
joule, 38

ker, 119
kilogram, 46
Kroneker delta, 49

Laplace expansion, 88, 102
least squares, 250
linear combination, 70, 100, 115
linear transformation, 193
linearly dependent, 71
linearly independent, 70, 182
Lipschitz condition, 337

main diagonal, 89
Markov chain, 232, 233
Markov matrix, 227

steady state, 227
matrix, 53

inverse, 62
left inverse, 104
lower triangular, 89, 104
non defective, 169
normal, 169
right inverse, 104
self adjoint, 163, 165
symmetric, 163, 165
upper triangular, 89, 104

matrix of linear transformation, 203
metric tensor, 255
migration matrix, 232
minimal polynomial, 195
minor, 88, 102
monic polynomial, 195
Moore Penrose inverse, 271
moving coordinate system, 76

acceleration , 79

Newton, 31
nilpotent, 202
normal, 269
null and rank, 252
nullity, 119

operator norm, 280

parallelogram identity, 275
permutation matrices, 113
permutation symbol, 49
Perron’s theorem, 324
pivot column, 119
polar decomposition

left, 268
right, 267

polar form complex number, 9
power method, 301
principle directions, 159
product rule

matrices, 75
Putzer’s method, 345

random variables, 232
rank, 116
rank of a matrix, 105, 115
rank one transformation, 248
real numbers, 7
real Schur form, 167
regression line, 250
resultant, 31
Riesz representation theorem, 246
right Cauchy Green strain tensor, 267
row equivalent, 119
row operations, 15, 113
row rank, 115
row reduced echelon form, 117

scalar product, 33
scalars, 11, 20, 53
scaling factor, 302
second derivative test, 174
self adjoint, 169
similar matrices, 205
similarity transformation, 205
simplex tableau, 132
simultaneous corrections, 291
simultaneously diagonalizable, 258
singular value decomposition, 269
singular values, 269
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skew symmetric, 61, 163
slack variables, 130, 132
span, 70, 100
spectral mapping theorem, 333
spectral norm, 282
spectral radius, 287
spectrum, 151
stable, 351
stationary transition probabilities, 233
Stochastic matrix, 233
strictly upper triangular, 219
subspace, 70, 182
symmetric, 61, 163

Taylor’s formula, 173
tensor product, 248
triangle inequality, 25, 34
trivial, 70

variation of constants formula, 347
vector space, 54, 181
vectors, 29

Wronskian, 111, 347


