


VISUAL C#82005
DEMYSTIFIED

JEFF KENT

McGraw-Hill

New York Chicago San Francisco Lisbon London
Madrid Mexico City Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0072261706


Copyright © 2006 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 

0-07-148676-3

The material in this eBook also appears in the print version of this title: 0-07-226170-6.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps. 

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069. 

TERMS OF USE 

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right
to use the work may be terminated if you fail to comply with these terms. 

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTH-
ERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licen-
sors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or
omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise. 

DOI: 10.1036/0072261706

http://dx.doi.org/10.1036/0072261706


We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0072261706


I would like to dedicate this book to the two most
important women in my life, my mom, Beatrice
Baumgarten Kent, who gave up her career as
a chemist for the even more important career of
a mom; and my wife, Devvie Schneider Kent, who,
in addition to being my best friend and lover, also
is the #1 expert in C# at our home.



ABOUT THE AUTHOR

Jeff Kent is an Associate Professor of Computer Science at Los Angeles Valley
College in Valley Glen, California. He teaches a number of programming languages,
including C#, Visual Basic, C++, Java, and—when he's feeling masochistic—
Assembler. He also manages a network for a Los Angeles law firm whose employees
are guinea pigs for his applications, and as an attorney gives advice to young
attorneys whether they want to hear it or not. He also has written several books on
computer programming, recently Visual Basic.NET: A Beginner's Guide and C++
Demystified for McGraw-Hill, and wrote Visual Basic 2005 Demy stifled concurrently
with this book.

Jeff has had a varied career—or careers. He graduated from UCLA with a Bachelor
of Science degree in economics and then went on to obtain a Juris Doctor degree
from Loyola (Los Angeles) School of Law and to practice law. During this time,
when personal computers were still a gleam in Bill Gates's eye, Jeff was also
a professional chess master, earning a third place finish in the United States Under-21
Championship and, later, an international title.

Jeff does find time to spend with his wife, Devvie, which is not difficult since she
is also a computer science professor at Valley College. In addition to his other
career pursuits, he has a part-time job as personal chauffeur for his teenage daughter
Emily (his older daughter Elise now has her own driver's license), and what little
spare time he has, he enjoys watching international chess tournaments on the
Internet. His goal is to resume running marathons, since otherwise, given his losing
battle to lose weight, his next book may be Sumo Wrestling Demystified.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



CONTENTS

Acknowledgments xv
Introduction xvii

CHAPTER 1 Getting Started with Your First
Windows Program 1

Obtaining and Installing Visual C# 2005 2

System Requirements 2

Choosing the Right Version 3

Installing Visual C# 2005 4

Starting Your First Visual C# 2005 Project 4

Starting the Program 5

Specifying the Type of New Project 6

Specifying the Name and Location
of the Project 7

Integrated Development Environment (IDE) 8

Run the Project! 9

What Is a Computer Program? 11

What Is a Programming Language? 13

Translating the Code for the Computer 14

Conclusion 14

Quiz 15

v

For more information about this title, click here

http://dx.doi.org/10.1036/0072261706


Visual C# 2005 Demystified

CHAPTER 2

CHAPTER 3

Writing Your First Code
Starting an Existing Project

Design View and Code View

Object Browser

Classes and Objects

Inherits

Namespaces

.NET Framework

Properties

Properties Window

Changing Properties at Design Time

What Is a Windows Application?

Windows Applications Are Gooey

Windows Applications Are Event-Driven

Classes Have Events

Creating an Event Procedure

Creating an Event Procedure Stub

Writing Code Inside the Event Procedure

Conclusion

Quiz

Controls
Adding Controls to the Form

Toolbox
Copying a Control from the Toolbox

to the Form

Changing the Control's Location

Changing the Control's Size

Important Label Properties

Text Property

Name Property

The Label Control in Action

Mouse Coordinates

Creating the Application

17

18
20
20
25
25
25
26
27
27
28
29
30
33
34
34
35
37
40
41

43

44
44

45
47
49
50
50
51
52
52
53

VI



CONTENTS

CHAPTER 4

CHAPTER 5

How the Code Works

Using Event Procedure Parameters

What If You Type the Wrong Code?

ToString Method

Delegate

Conclusion

Quiz

Storing Information—Data Types
and Variables

Data Types

Numeric Data Types

Text Data Types

Data Types of Visual C# Properties

Variables
Declaring a Variable

Where Do I Declare a Variable?

Constants
Declaring a Constant

Why Use Constants?

Conclusion

Quiz

Letting the Program Do the Math—
Arithmetic Operators

Arithmetic Operators

The Addition Operator

The Subtraction Operator

The Multiplication Operator

The Division Operators

Operator Precedence

Combining Arithmetic
and Assignment Operators

Increment and Decrement Operators

54
56
56
58
59
60
61

63
64
65
65
66
68
68
71
74
75
76
77
78

79
80
80
81
81
81
82

83
84

Vll



Visual C# 2005 Demystified

CHAPTER 6

CHAPTER 7

The Parse Method

Class Methods

Change Machine Project

Creating the Project

The Algorithm

Conclusion

Quiz

Making Comparisons—Comparison
and Logical Operators

Debugging

Comparison Operators

Numeric Comparison Operators

String Comparisons

Precedence

Logical Operators

The && Operator

The & Operator

The || Operator

The | Operator

The A Operator

The ! Operator

Precedence

Why && and || in Addition to & and

Conclusion

Quiz

Making Choices—if and switch
Control Structures

Creating a Test Project

The if Control Structure

The if Statement

The if ... else Statement

The if ... else if Statement

85
86
86
87
89
91
92

93
94
96
96
98
99
99
100
101
101
102
102
103
104
104
105
105

107
108
108
109
113
116

viii



CONTENTS

CHAPTER 8

CHAPTER 9

Input Validation 117

Exceptions 118
Controls Used for the if Control Structure 122

CheckBox Control 122
RadioButton Control 123

Pizza Calculator 124
Creating the Project 125
How the Project Works 125
The Code 125

The switch Control Structure 128
Syntax 128
The switch Control Structure in Action 129
The break Keyword 131
Choosing Between if ... else if and switch 132

Conclusion 132
Quiz 133

Repeating Yourself—Loops and Arrays 135
Loops 136

The for Statement 136
The continue Keyword 144
The foreach Statement 147
The while Statement 147
The do while construct 150

Arrays 150
Declaring Arrays 150
Assigning Values to the Array 151

Conclusion 153
Quiz 154

Organizing Your Code with Methods 155
Defining and Calling a Method 156

Terminology of a Method 156
Naming a Method 158

ix



CHAPTER 10

CHAPTER 11

Visual C# 2005 Demystified

Defining a Method 158

Calling a Method 159

Parameters—Sending Information to a Method 161

Passing Arguments by Value 161

Passing Arguments by Reference 164

Returning a Value from a Method 169

Syntax 169

How the Value Is Returned 170

Saving the Return Value 170

Returning a Boolean Value 171

Conclusion 172

Quiz 173

Helper Forms 175

Message Boxes 176

Creating the Project 177

Message Boxes Are Modal 178

Show Method 178

Using the Show Method's Return Value 182

Dialog Forms 184

Creating the Project 184

Showing the Dialog Form
and Returning Its Result 188

Accessing Values from the Dialog Form 190

Modal vs. Modeless 190

Conclusion 191

Quiz 192

Menus 193

Creating a Main Menu 194

Adding a MenuStrip Control to a Form 195

Adding Menu Items to the MenuStrip 196

Enhancing the Menu Items 201

Adding Functionality to the Menu Items 203

Disabling Menu Items 204

X



CONTENTS

CHAPTER 12

CHAPTER 13

m

Creating a Context Menu 205
Adding a ContextMenuStrip to a Form 205

Adding Menu Items
to the ContextMenuStrip 207

Adding Functionality
to Context Menu Items 210

Text Editor Project 212
Creating the Project 212

Explanation of the Code 214
Conclusion 215
Quiz 215

Toolbars 217
Creating a Toolbar 218

Adding a Toolbar to a Form 218

Adding Buttons to the Toolbar 219
Associating Images with Toolbar Buttons 221

Associating Code with Clicks of Toolbar Buttons 229
Conclusion 230
Quiz 231

Accessing Text Files 233
Open and Save File Dialog Boxes 234

Adding an OpenFileDialog
Control to Your Form 234

Showing the OpenFileDialog Control 235
Determining Whether Open

or Cancel Is Chosen 236
Identifying the File to Open 237

SaveFileDialog Class 238
Reading from a Text File 240

Stream Reader Class 240

Reading the Text File into the TextBox 242
Closing the Text File 243



Visual C# 2005 Demystified

CHAPTER 14

CHAPTER 15

Writing to a Text File

StreamWriter Class

Writing from the TextBox to the Text File

Closing the Text File

Conclusion

Quiz

Databases
Installing the Database

Obtaining the Northwind Traders Database

Installing the Northwind Traders Database

Connecting to the Database

Using Server Explorer

Exploring the Database

Exploring the Customers Table

Database Project

What the Project Does

Creating the Form

Importing Data Namespaces

Creating a Connection

Creating a Command

Filling the DataGridView

Conclusion

Quiz

Web Applications
AS P. NET

Internet Information Services

Determining If IIS Is Already Installed

Installing IIS

Starting the IIS Admin Service

Starting the Default Website

URL
Your Computer as the Web Server

Virtual and Physical Paths

244
244
245
246
247
247

249
250
250
250
251
254
255
256
258
258
259
260
260
263
265
269
270

271
272
272
273
274
274
276
278
278
279

xii



CONTENTS

Creating a Web Application 280

ASP.NET Development Server 281

ASP.NET Application IDE 284

Creating a Database Web Application 286

Adding a GridView Control 286

Locating the Database on the Web Server 288

Adding Code 290

Conclusion 292

Quiz 292

Final Exam 293

Answers 299

Index 315

xnr



This page intentionally left blank 



ACKNOWLEDGMENTS

It seems obligatory in acknowledgments for authors to thank their publishers
(especially if they want to write for them again), but I really mean it. This is my
sixth book for McGraw-Hill, and I hope there will be many more. It truly is
a pleasure to work with professionals who are nice people as well as very good at
what they do (even when what they are very good at is keeping accurate track of the
deadlines I miss).

I first want to thank Wendy Rinaldi, who got me started with McGraw-Hill back
in 1998 (has it been that long?). Wendy was also my first acquisitions editor. She
has since received several well-deserved promotions, but is still my acquisitions
editor. Indeed, this book was launched through a telephone call with Wendy at the
end of a vacation with my wife Devvie, who, being in earshot, and with an are-
you-insane tone in her voice, asked incredulously "You're writing another book?"
I replied, "Of course not, honey ..." She interjected, "That's a relief!" I then
continued, "... I'm writing two books." (I wrote Visual Basic 2005 Demystified
concurrently with this book).

I must also thank my Acquisitions Coordinator, Alexander McDonald, and my
Project Editor, Samik Roy Chowdhury (Sam). Both were unfailingly helpful and
patient, while still keeping me on track in this deadline sensitive business (e.g., I'm
so sorry you broke both your arms and legs; you'll still have the next chapter turned
in by this Friday, right?").

Bart Reed did the copy editing. He was kind about my obvious failure during my
school days to pay attention to my grammar lessons. He improved what I wrote while
still keeping it in my words (that way if something is wrong it is still my fault).

Ron Petrusha was my technical editor. Ron's suggestions were quite helpful and
added a lot of value to this book.

There were many other talented people working behind the scenes who also
helped get this book out to press, and as in an Academy Award speech, I can't list
them all. That doesn't mean I don't appreciate all their hard work, because I do.

XV

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

I truly thank my wife Devvie, who in addition to being my wife, best friend
(maybe my only one), and partner (I'm leaving out lover because computer
programmers aren't supposed to be interested in such things), tolerated my incessant
muttering about unreasonable chapter deadlines and merciless editors (sorry, Alex)
while excusing myself from what she wanted to do (or wanted me to do). Similarly,
I would like to give thanks to my daughters Elise and Emily and my mom, Bea Kent,
for tolerating my absent-mindedness while I was preoccupied with unreasonable
chapter deadlines and merciless editors (starting to notice a pattern here?). I also
should thank my family in advance for not having me committed when I talk about
writing my next book.

xvi



INTRODUCTION

One of my favorite movie lines is in Rocky III when Mr. T (playing a boxer called
Clubber Lang), who had beaten up Rocky badly in their first fight, says before their
rematch, "Fool, you never should have come back."

Visual Studio must be saying this to me. A few years ago I wrote a book, Visual
Basic .NET: A Beginner's Guide, timed to be on the bookshelves for the release of
Visual Basic .NET, a component of Visual Studio .NET. Writing such a "day and
date" book is added pressure, especially given that Microsoft is famous (or infamous)
for last-minute changes from their most recent beta.

I must have a short memory or be a slow learner. With the next major change in
Visual Studio, version 2005, here I go again writing another "day and date" book
(actually two of them, as mentioned later).

Why Did I Write This Book?

Given my griping about writing another "day and date" book, you may legitimately
wonder why I wrote this book. I assure you that the reason was not because I thought
it would get me riches, fame, or beautiful women. I may be misguided, but I'm not
completely delusional or, in the case of my wife's reaction to the beautiful women
part, suicidal.

To be sure, there likely will be many introductory-level books on Visual C# 2005.
Nevertheless, I wrote this book because I believe I bring a different and, I hope,
valuable perspective.

As you may know from my author biography, I teach computer science at Los
Angeles Valley College, a community college in the San Fernando Valley area of
Los Angeles, where I grew up and have lived most of my life. I also write computer
programs, but teaching programming has provided me with insights into how
students learn that I could never obtain from just writing programs. These insights
are gained not just from answering student questions during lectures. I spend hours

xvii

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

each week in our college's computer lab helping students with their programs, and
more hours each week reviewing and grading their assignments. Patterns emerge
regarding which teaching methods work and which don't, the order in which to
introduce programming topics, the level of difficulty at which to introduce a new
topic, and so on. I joke with my students that they are my beta testers in my never-
ending attempt to become a better teacher, but there is much truth in that joke.

Additionally, my beta testers... err, students, seem to complain about the textbook
no matter which book I adopt. Many ask me why I don't write a book they could
use to learn C#. They may be saying this to flatter me (I'm not saying it doesn't
work), or for the more sinister reason that they will be able to blame the teacher for
a poor book as well as poor instruction. Nevertheless, having written other books,
these questions planted in my mind the idea of writing a book that, in addition to
being sold to the general public, also could be used as a supplement to a textbook.

Who Should Read This Book
Anyone who will pay for it! Just kidding, although no buyers will be turned away.

It is hardly news that publishers and authors want the largest possible audience
for their books. Therefore, this section of the introduction usually tells you this
book is for you, whoever you may be and whatever you do. However, no programming
book is for everyone. For example, if you exclusively create game programs using
Java, this book may not be for you (though being a community college teacher
I may be your next customer if you create a space beasts vs. community college
administrators game).

Although this book of course is not for everyone, it very well may be for you.
Many people need or want to learn C#, either as part of a degree program, job
training, or even a hobby. Unfortunately, many books don't make learning C# any
easier, throwing at you a veritable telephone book of complexity and jargon. By
contrast, this book, as its title suggests, is designed to "demystify" C#. Therefore, it
goes straight to the core concepts and explains them in logical order and in plain
English.

What This Book Covers
I strongly believe that the best way to learn programming is to write programs. The
concepts covered by the chapters in this book are illustrated by programs you can
write using tested and thoroughly explained code. You can run this code yourself
and also use it as the basis for writing further programs that expand on the covered
concepts.

xviii



INTRODUCTION

Because, in my opinion, the best way to learn programming is to write programs,
the first part of this book is designed to get you up and running with Visual C# 2005.
Chapter 1 is titled "Getting Started with Your First Windows Program." The first
step in programming in Visual C# 2005 is to obtain and install it. This chapter
advises you how. The chapter then shows you how you can create your first Visual
C# 2005 project. This chapter concludes by explaining core concepts such as what
a computer program is, what a programming language is, and how your code is
translated for the computer.

Chapter 1 shows you how to create a working Windows application without having
to write any code. However, you will need to write code for even the simplest program.
Therefore, Chapter 2, "Writing Your First Code," is about just that. This chapter explains
key programming concepts, such as classes, objects, and properties, as well as gives
you a tour of the Visual C# 2005 Integrated Development Environment (IDE). The
chapter then describes the event-driven nature of a Windows application. The chapter
finally shows you how to put this theory into practice by creating an event procedure.

Chapters 1 and 2 focus on the form, perhaps the most important part of a Windows
application's graphical user interface (GUI). However, a form cannot possibly meet
all the requirements of a Windows application. For example, the form does not have
the functionality to permit the typing of text, listing of data, selecting of choices,
and so forth. You need other, specialized controls for that additional functionality.
Indeed, the form's primary role is to serve as a host, or container, for other controls
that enrich the GUI of Windows applications, such as menus, toolbars, buttons, text
boxes, and list boxes. Chapter 3, titled "Controls," explains how to add controls to
your form and manipulate their properties. This chapter then uses a project to
demonstrate how you can use a control's events in an application.

Now that you are up and running with Visual C# 2005, the next part of this book
covers the building blocks of your programs—variables, data types and operators—
starting with Chapter 4, "Storing Information—Data Types and Variables." Most
computer programs store information, or data. Data comes in different varieties,
such as numeric or text. The type of information, whether numeric, text, or Boolean,
is referred to as the data type, and often is stored in a variable, which not only
reserves the amount of memory necessary to store information, but also provides
you with a name by which that information later may be retrieved. Finally, this
chapter covers constants, which are similar to variables, but differ in that their initial
value never changes while the program is running.

As a former professional chess player, I have marveled at the ability of chess
computers to play world champions on even terms. The reason the chess computers
have this ability is because they can calculate far more quickly and accurately than
we can. Chapter 5, "Letting the Program Do the Math—Arithmetic Operators,"
covers arithmetic operators, which we use in code to harness the computer's
calculating capabilities.

XiX



Visual C# 2005 Demystified

Now that we have covered the programming building blocks, it is time to use
them in the next part of this book, which concerns controlling the flow of your
program. As programs become more sophisticated, they often branch in two or
more directions based on whether a condition is true or false. For example, although
a calculator program would use the arithmetic operators you learn about in Chapter
5, your program first needs to determine whether the user has chosen addition,
subtraction, multiplication, or division before performing the indicated arithmetic
operation. Chapters 6, "Making Comparisons—Comparison andLogical Operators,"
introduces comparison and logical operators, which are useful in determining
a user's choice. Chapter 7, "Making Choices—if and switch Case Control
Structures," introduces the if and switch statements, which are used to direct the
path the code will follow based on the user's choice.

When you were a child, your parents may have told you not to repeat yourself.
However, sometimes your code needs to repeat itself. For example, if an application
user enters invalid data, your code may continue to ask the user whether they want
to retry or quit until the user either enters valid data or quits. Chapter 8, "Repeating
Yourself—Loops and Arrays," introduces loops, which are used to repeat code
execution until a condition is no longer true. This chapter then discusses arrays.
Unlike the variables we had covered thus far in the book, which may hold only one
value at a time, arrays may hold multiple values at one time. Additionally, arrays
work very well with loops.

This book is a few hundred pages long. Imagine how much harder this book would
be to understand if it consisted of only one, very long chapter, rather than being
divided into multiple chapters, with each one divided into sections? Chapter 9,
"Organizing Your Code with Methods," shows you how you similarly can divide up
your code into separate methods. This has advantages in addition to making your
code easier to understand. For example, if a method performs a specific task, such
as sending output to a printer, which is performed several times in a program, you
only need to write once in a method the code necessary to send output to the printer.
Then you can call that method each time you need to perform that task. Otherwise,
the code necessary to send output to the printer would have to be repeated each time
that task was to be performed. Further, if you later have to fix a bug in how you
perform that task, or simply find a better way to perform the task, you only have to
change the code in one place rather than many.

The next part of this book focuses on the graphical user interface (GUI), starting
with Chapter 10, "Helper Forms." Up until now, our applications have had one form
that serves as the main application window. This one form may be sufficient for
a simple application, but as your applications become more sophisticated, the main
application form will become unable to perform all the tasks required by the
application and need help from other forms. This chapter shows you how to create
and use two dialog forms that will be workhorses in your applications—a built-in

XX



INTRODUCTION

dialog form, the message box, and programmer-designed dialog forms. Although
these dialog forms are helpful, they also present programming challenges involving
communication between the main form and the dialog form. For example, the main
form needs to know which button was clicked on the dialog form, and should execute
different code depending on which button was clicked. Additionally, because the
dialog form contains controls, the main form needs to know and take actions based
on what the application user typed, checked, or selected in the controls in the dialog
form. This chapter will show you how to solve these programming challenges.

Application users give commands to an application, such as to open, save, or close
a file, print a document, and so on, through the GUI of the application. Chapter 11,
"Menus," and Chapter 12, "Toolbars," cover the three most common GUI elements
through which application users give commands to an application: the menu, shortcut
or context menus, and toolbars. Additionally, commands such as Cut, Copy, and
Paste often may be duplicated in a menu, a context menu, and a toolbar, providing
the application user with the convenience of three different ways to perform the same
command. However, you don't want to write the same code three times, so these
chapters show you how to connect corresponding items in menus, context menus,
and toolbars so they each execute the same code.

When I was finished writing this book for the evening, I closed Microsoft Word,
and maybe even shut down my computer. Of course, the next evening I did not have
to start over; what I had written the previous evening had been saved. However, up
until now the programs in this book don't save data so that it will be available even
after the applications exit. The next part of this book shows you how to save data.
Chapter 13, "Accessing Text Files," explains how to write code that reads from and
writes to a text file. This chapter also shows you how to add to your program Open
and Save dialog boxes, such as those used in sophisticated programs like Microsoft
Word, so you can open a text file to read from it, and save to a text file to write to it.
Chapter 14, "Databases," explains how to write programs that access information
stored in a database.

Throughout this book we have been writing Windows applications, which to be
sure are heavily used. However, many of us are interacting ever more frequently
with the subject of Chapter 15, "Web Applications." This chapter shows you how to
create a web application that displays information from a database, similar to the
Windows application you created in Chapter 14.

How to Read This Book

I have organized this book to be read from beginning to end. Although this may
seem patently obvious, my students often express legitimate frustration about books
(or teachers) that, in discussing a programming concept, mention other concepts

XXI



Visual C# 2005 Demystified

that are covered several chapters later or, even worse, not at all. Therefore, I have
endeavored to present the material in a linear, logical progression. This not only
avoids the frustration of material that is out of order, but also enables you in each
succeeding chapter to build on the skills you learned in the preceding chapters.

Special Features

Each chapter has detailed code listings so you can put into practice what you have
learned. My overall objective is to get you up to speed quickly, without a lot of dry
theory or unnecessary detail. So let's get started. It's easy and fun to write C#
programs.

Contacting the Author

Hmmm! I guess it depends why. Just kidding. Although I always welcome gushing
praise and shameless flattery, comments, suggestions, and, yes, even criticism
also can be valuable. The best way to contact me is via e-mail; you can use
jkent@genghiskhent.com. The domain name is based on my students' fond (?)
nickname for me, Genghis Khent. Alternatively, you can visit my website:
http://www.genghiskhent.com. Don't be thrown off by the entry page; I use this site
primarily to support the online classes and online components of other classes that
I teach at the college, but there will be a link to the section that supports this book.

xxii

http://www.genghiskhent.com


CHAPTER

Getting Started
with Your First

Windows Program

1

You probably have seen on television an interviewer ask a victorious athletes for the
secret of their success. Can you imagine the athletes replying that they never trained
but instead just read about their sport a lot? I doubt it. The only way to become
a good swimmer, runner, or weightlifter is to swim, run, or lift weights. Of course, good
caching helps, but a good swimmer must swim, a good runner must run, and a good
weightlifter must lift weights.

Athough computer programming is mental rather than physical exercise, sim-
ilaryyou cannot become a good computer programmer only by reading about
Computer programming. Instead, you have to write computer programs—lots of
menL

1

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

Don't get me wrong, I'm not trying to discourage you from buying a book, espe-
cially this one! A good book is like a good coach, making your learning more
efficient and less frustrating. However, even with the best book, if you don't write
computer programs, it will be difficult for you to learn computer programming.
Fortunately, it is easy to start writing computer programs; this chapter will show
you how.

Newcomers to programming sometimes shy away from writing programs because
something may go wrong. They may think of scenes in action movies where some-
one has only seconds to defuse a bomb and they have to guess which one of several
wires to cut. The consequences in those circumstances of making a mistake are life
and death.

However, you are not defusing a bomb. You are writing a computer program. If
you do make a mistake in your program, neither you nor your computer will disap-
pear in a fireball. You just correct the mistake. Indeed, you learn best from your
mistakes.

Since I have given you this speech on the importance of your writing programs,
it is only fair that I help you get started writing programs. The first step is for you
to obtain and install Visual C# 2005. In this chapter, I first will help you choose the
edition of Visual C# 2005 that is best for you, and assist you in ensuring that your
computer meets the hardware requirements of Visual C# 2005. After you install
Visual C# 2005, I will show you how to use it to create a Windows application.
Finally, you will learn just what a computer program is.

Obtaining and Installing Visual C# 2005
Visual C# 2005 comes in several editions. This section will help you choose the one
right for you. However, before you buy any edition of Visual C# 2005, you should
confirm that the computer on which you will install Visual C# 2005 meets the hard-
ware requirements of Visual C# 2005.

Once you have purchased Visual C# 2005 and verified that the installation com-
puter meets the hardware requirements, you are ready to install Visual C# 2005.
This section will give you tips on the installation.

System Requirements

Installing Visual C# 2005 requires not only the right software, but hardware suffi-
cient to run the software. Therefore, you should first confirm that the computer on
which you are going to install Visual C# 2005 meets the system requirements, such
as the operating system, processor, RAM, and available hard disk space.

2



CHAPTER 1 Getting Started with Your First Windows Program

NOTE I will be referring in this chapter to Visual C# 2005, but my comments apply
whether you are buying Visual C# 2005 alone or one of the editions of Visual Studio
2005, as discussed in the next section, "Choosing the Right Version."

Here are my recommendations on the key requirements. Keep in mind these sys-
tem requirements are truly the minimum requirements; therefore, Visual C# 2005 may
run quite slowly if your computer only meets these bare-minimum requirements.

• Operating system You must have Windows 2003, XP, or 2000; Windows
NT, 95, 98, or Me will not work. If you have not yet purchased an operating
system and are considering XP, I would recommend the Professional over
the Home Edition, especially if you are developing web applications, which
are discussed in Chapter 15.

• Available hard drive space The requirement varies with the edition
and type of installation and whether other components such as Internet
Explorer (IE) already are installed on your computer. You should plan on
the total installation taking between 2GB (gigabytes) and 5GB. A large
(at least 80GB) hard drive is relatively inexpensive and easy to install, so
if remaining space on your existing hard drive is scarce, you may wish to
consider upgrading before installing Visual C# 2005.

• Processor According to Microsoft, a processor speed of 600MHz
(megahertz ) is the minimum and IGHz (gigahertz) is recommended. If
you are on the borderline, given that upgrading a processor by replacing the
motherboard is not so inexpensive or easy, another alternative is boosting
your system RAM, next discussed.

• RAM According to Microsoft, 128MB (megabytes) is the minimum, and
256MB is recommended. I would recommend 512MB, especially if you are
running other programs at the same time.

Additionally, Visual C# 2005, in order to work properly, needs other software to
be on your computer, in particular IE. If you are installing Visual C# 2005 at work
and your company restricts browsers to Netscape or other non-IE browsers, you
should check first with your system administrator before attempting to install
Visual C# 2005 there.

Choosing the Right Version

You can buy Visual C# 2005 either by itself or as part of Visual Studio 2005, which
includes, in addition to Visual C#, support for other programming languages such
as C++ and Visual Basic. I recommend Visual Studio 2005 if your budget allows.

3



Visual C# 2005 Demystified

The additional cost usually is not that substantial, and you will have a program that
works with other commonly used languages if your education, employment, or in-
terests prompt you to work with other programming languages. This is more likely
than you may think. Once you learn one programming language, learning addi-
tional ones becomes much easier because the concepts are essentially the same.
Indeed, most programmers don't learn just one language.

If you buy Visual C# 2005 by itself, you have one choice: the Express Edition. If
you instead buy Visual C# 2005 as part of Visual Studio 2005, you have three choices:
Standard, Professional, and Team System Editions.

If you already have a copy of Visual C# 2005 through your school or job, any of
the preceding choices should work fine for this book. If you do not already have
a copy of Visual C# 2005,1 recommend that you obtain the Academic version of the
Professional Edition. The Academic version represents a substantial discount for
students and teachers.

Microsoft's website on Visual Studio 2005, http://lab.msdn.microsoft.com/
vs2005/ at the time this book was written (Microsoft does reorganize its website
from time to time, so this location may change), has a product matrix that lists the
differences between the editions.

Installing Visual C# 2005
Now you are ready to install Visual C# 2005! You will find it easy. The Visual C#
2005 installation may consist of more than one CD, depending on the edition. It is
a large program, so it takes some time to install. However, Visual C# 2005 is not
difficult to install. Installation is simply a matter of following directions and being
patient. Patience is important in programming, and so it is with the installation of
Visual C# 2005.

One unusual feature is that the help for Visual C# 2005 is not built into the pro-
gram but instead is a separate program, MSDN Library. MSDN is an acronym for
Microsoft Developer Network. This help also comes on one or more CDs, depending
on the edition.

Starting Your First Visual C# 2005 Project
Now you're going to create your first Visual C# 2005 project. You not only will use
this project for this chapter, but you also will use it as the starting point for the project
in the next chapter.

4

http://lab.msdn.microsoft.com/vs2005/
http://lab.msdn.microsoft.com/vs2005/


CHAPTER 1 Getting Started with Your First Windows Program

NOTE The following instructions assume you purchased Visual Studio 2005.
However, the same basic information applies if you purchased Visual C# 2005
Express Edition, though some of the screenshots may look slightly different.

Starting the Program

Although you use Visual C# 2005 to create programs, it is itself a program. You
start Visual C# 2005 by choosing All Programs from the Start menu, selecting the
folder called Microsoft Visual Studio 2005, and then clicking the icon of the same
name that appears in the submenu.

When you first start Visual Studio 2005, a form will display, asking you to choose
your default environment settings (see Figure 1-1).

I chose General Development Settings, but you can choose the Development Set-
tings for Visual C# or one of the other programming languages. I don't consider this
choice an important issue because the various settings are not that different. I chose
General Development Settings because that setting is the most generic and would
work equally well if you are also programming in another language supported by
Visual Studio 2005, such as Visual Basic.

The Start Page will display next, as shown in Figure 1-2.
Now you are ready to begin. So let's get started!

Figure 1-1 Choosing your default environment settings.

5



Visual C# 2005 Demystified

Figure 1-2 Start Page.

Specifying the Type of New Project
Because we want to create a new project, choose New from the File menu and then
choose Project from the New submenu. This will display the New Project dialog
box shown in Figure 1-3.

The left pane of the New Project dialog box lists project types. Project types are
included for each of the languages in Visual Studio 2005. In addition to Visual C#,
these are Visual Basic, Visual C++, and Visual J#. Because this book is about
Visual C# 2005, choose Visual C#.

The right pane of the New Project dialog box lists templates for the various types
of Visual C# applications you can create. A project template helps you get started
by creating the initial files, code, and other settings for the selected project.

You certainly have a lot of templates to choose from. The ones starting with
Windows CE or Pocket PC can be run on handheld computers, and the ones starting

6



CHAPTER 1 Getting Started with Your First Windows Program

Figure 1-3 New Project dialog box.

with Smartphone can be run from phones. However, for most of this book, we will
be creating Windows applications, so select Windows Application from the right
pane. I will be discussing in Chapter 2 what a Windows application is. For now, just
know that Microsoft Word and Excel are examples of Windows applications. Each
has a window (or windows) in which you work, with a menu, toolbar, and other
visual components with which you can interact.

As shown in Figure 1-3, when you choose the Windows Application project tem-
plate, the description beneath the Project Types frame becomes, "A project for
creating an application with a Windows user interface."

Specifying the Name and Location of the Project
The lower part of the New Project dialog box lists the name of and location for your
project. The default name for your first project is WindowsApplicationl, for the
second WindowsApplication2, and so on. You should change this default name to
one that will help you identify this project later. Otherwise, after you have created
many projects, you may not recall what WindowsApplication52 did as opposed to
WindowsApplication53.

7



Visual C# 2005 Demystified

The location for your project is up to you; the default location should work fine.
Whatever your decision, I recommend you have a consistent method for where you
store your projects so you can easily find them later.

In Figure 1-4,1 have changed the name of the project to FirstProject and the loca-
tion of the project to another drive, D, on my computer.

Once you are satisfied with the name and location of the project, click OK. Visual
Studio 2005 then generates the files and folders for your first project. A folder with
the same name as the project is also created in the location displayed in the Location
field, which contains the parent folder where your project files will be located. Thus,
in Figure 1-4, because the project will be located in D:\Documents and Settings\
JAKYVisual Studio ProjectsYVisual C# and the name of the project is FirstProject,
a folder named FirstProject will be created at the specified location, and the project
files will be stored at D:\Documents and Settings\JAK\Visual Studio ProjectsYVisual
C#\FirstProject.

Integrated Development Environment (IDE)

Figure 1-5 shows a view of the Windows application FirstProject that is created
after you click the OK button in the New Project dialog box.

Figure 1-4 Changing the default name of and location for the project.

8



CHAPTER 1 Getting Started with Your First Windows Program

Figure 1-5 Newly created project.

Figure 1-5 displays what is called an Integrated Development Environment
(IDE). The term "development environment" refers to Visual Studio 2005's role as
an application to assist you in developing applications. The term "integrated" means
that the tools to design your application, and the environment for writing, testing,
and running your code, are all together under one (software) roof.

The IDE is complex, with many windows that perform many different functions.
Don't worry; you don't need to know right away what they all do. Various compo-
nents of the IDE will be introduced, described, and explained in this and succeeding
chapters.

Run the Project!

We now will use the IDE to run the project. To run this project as an application,
you must build additional files. You do so, naturally enough, from the Build menu,

9



Figure 1-6 Build menu.

Visual C# 2005 Demystified

shown in Figure 1-6. From the Build menu, you choose one of the following four
options:

• Build Solution

• Rebuild Solution

• Build FirstProject

• Rebuild FirstProject

NOTE The name following "Build" in the third choice and "Rebuild" in the
fourth choice is FirstProject because we changed the name of the project to
FirstProject. If we had kept the default project name ofWindowsApplicationl,
these menu items instead would be Build Window:sApplication! and Rebuild
Windows Application!.

As will be explained later in this chapter, building means using the compiler to
translate your code into machine language the computer can understand.

The difference between the Build menu items Build Solution and Build FirstPro-
ject is that the first concerns a solution and the second a project. A project contains
all the files and links necessary for your application. A solution may contain multiple
projects. Because the current application is simple and concerns only one project,
there is no practical difference in this instance between the two menu commands.

10



CHAPTER 1 Getting Started with Your First Windows Program

Figure 1-7 Windows application running.

The difference between Build and Rebuild is that if you previously have built your
program, Build just builds the changes you made from the previous build, whereas
Rebuild starts over and rebuilds the whole program. Rebuild consequently takes longer,
so it is used when there have been extensive changes since the last build.

As a practical matter, there is little difference between the two commands. If you
choose Build and the changes since the last build have been too extensive to avoid
a rebuild, Visual C# 2005 will perform a rebuild instead. The additional time a re-
build requires over a build is very minor, especially if you have a fast processor and
ample RAM.

You now have a working Windows program without writing a single line of
code! From the Debug menu, choose either Start or Start Without Debugging. The
result is a window named Form 1, shown below in Figure 1-7.

The state of your project while it is running is referred to as run time. The state
of your project before you run it, and after it stops running (such as when you click
the close button of the form) is referred to as design time.

You now have created a working computer program. However, just what exactly
is a computer program, and how does a programming language such as Visual C#
2005 fit in? The next sections answer those questions.

:©:

What Is a Computer Program?
You probably interact with computer programs many times during an average day.
I certainly do. The other day, I arrived at the community college where I teach and
found that my computer didn't work, so I called tech support. At the other end of



m
 

Visual C# 2005 Demystified

the telephone line, a computer program forced me to navigate a voicemail menu
maze and then tortured me while I was on perpetual hold with repeated insincere
messages about how important my call was and false promises about how soon
I would get through.

Finally my computer got fixed. To calm down, I decided to take a break and
logged onto my now-working computer to launch my favorite game program, in
which community college administrators do battle with hideous alien insects from
the planet Megazoid. While I was cheering on the insects, the network administra-
tor caught me goofing off using yet another computer program that monitors
employee computer usage. Fortunately, I was still employed, so an accounts pay-
able program generated my payroll check.

On my way home I decided I needed some cash and stopped at an ATM, where
a computer program confirmed (hopefully) I have enough money in my bank
account and then instructed the machine to dispense the requested cash and (unfor-
tunately) deduct that same amount from my account.

Computers are so widespread in our society because they have three advantages
over us humans. First, computers can store huge amounts of information. Second,
computers can recall that information quickly and accurately. Third, computers can
perform calculations with lightning speed and perfect accuracy.

The advantages that computers have over us even extend to thinking sports such
as chess. I used to be a professional chess player. Although I have not played seri-
ously for many years and am out of practice, I still was surprised that the chess
program on my little Pocket PC handheld computer defeated me with ease. Even
worse, the program, Pocket Fritz, taunted me in a German accent: "Dumpkopf, you
have blundered again. You will now be liquidated!" My one victory was finding the
mute button to silence this insolent program.

At least I have good company in defeat. In 1997, the computer Deep Blue beat
the world chess champion, Garry Kasparov, in a chess match. In 2003, Kasparov
was out for revenge against another computer, Deep Junior, but only drew the match.
Kasparov, although perhaps the best chess player ever, is only human and therefore
no match for the computer's ability to calculate and to remember prior games.

However, we have one very significant advantage over computers. We think on our
own, whereas computers don't, at least not yet anyway. Indeed, computers fundamen-
tally are far more brawn than brain. A computer cannot do anything without step-by-step
instructions from us telling it what to do. These instructions are called a computer
program, and of course are written by a human, namely a computer programmer.
Computer programs enable us to harness the computer's tremendous power.



CHAPTER 1 Getting Started with Your First Windows Program

What Is a Programming Language?

When you enter a darkened room and want to see what is inside, you turn on a light
switch. When you leave the room, you turn the light switch off.

The first computers were not too different from that light switch. These early
computers consisted of wires and switches in which the electrical current followed
a path dependent on which switches were in the on (one) or off (zero) position.
Indeed, I built such a simple computer when I was a kid (which according to my
kids was when dinosaurs still ruled the earth).

Each switch's position could be expressed as a number, 1 for the on position and
0 for the off position. Thus, the instructions given to these first computers, in the
form of positions on switches, essentially were a series of ones and zeroes.

Today's computers of course are far more powerful and sophisticated than these
early computers. However, the language computers understand, called machine
language, remains the same, essentially ones and zeroes.

Although computers think in ones and zeroes, the humans who write computer
programs usually don't. Additionally, a complex program may consist of thousands
or even millions of step-by-step machine language instructions, which would
require an inordinately long amount of time to write. This is an important consider-
ation because, due to competitive market forces, the amount of time within which
a program has to be written is becoming increasingly less and less.

Fortunately, we do not have to write instructions to computers in machine lan-
guage. Instead, we can write instructions in a "higher-level" programming language
such as Visual C# 2005. The term "higher level" means Visual C# 2005 (and other
languages such as C++, Java, Visual Basic, and so forth) are far closer to the struc-
ture and syntax of human language than to the ones and zeroes understood by
a computer. By contrast, machine language, although a programming language, is
"low level" because it is far closer to the ones and zeroes understood by a computer
than it is to the structure and syntax of human language. Additionally, code can be
written much faster with programming languages than machine language because
of programming languages abstract instructions; one programming language in-
struction can cover many machine language instructions.

Visual C# is but one of many programming languages. Other popular program-
ming languages include Java, Visual Basic, and C++, and there are many more.
Indeed, new languages are being created all the time. However, all programming
languages have essentially the same purpose, which is to enable a human program-
mer to give instructions to a computer.

There really is no one "best" programming language, but Visual C# is an excel-
lent choice. Although Visual C# is a relatively new language, it is increasingly used
in the industry.

:©:



Visual C# 2005 Demystified

You may be wondering how this discussion of programming language applies
given that you didn't have to write any code to achieve a working application.
Although you didn't have to write any code, that doesn't mean code wasn't written.
Remember when you chose the project template? Visual C# 2005 wrote code for
you to create a basic Windows application.

Translating the Code for the Computer

Although you will understand the Visual C# code you will write, the computer
won't. Computers don't understand Visual C# or any other programming language.
They understand only machine language.

Visual C# 2005 includes a compiler. In general, a compiler translates the code
you write into corresponding machine language instructions. There are different
compilers for different programming languages, but the purpose of the compiler is
essentially the same—the translation of a programming language into machine
language—no matter which programming language is involved.

NOTE As discussed in more detail in Chapter 2, the compiler in Visual C# 2005
translates the code into an intermediate language that then is translated into
machine language.

A compiler translates the code you write into corresponding machine language
instructions, or into instructions that an operating system can understand and act
on. However, the compiler can perform this translation only if your code is in the
proper syntax for that programming language. Visual C# 2005, like other program-
ming languages, and indeed most human languages, has rules for the spelling of
words and for the grammar of statements. If there is a syntax error, the compiler
cannot translate your code into machine language instructions and instead will call
your attention to the syntax errors. Thus, in a sense, the compiler acts as a spell
checker and grammar checker.

Conclusion
The way to become a good computer programmer is to write programs. To get started,
you need to obtain and install Visual C# 2005. In this chapter, you learned about
the different editions of Visual C# 2005 that are available, and how to ensure that
your computer meets the hardware requirements of Visual C# 2005. After you in-
stalled Visual C# 2005, you learned how to use Visual C# 2005 to create a Windows
application.

14



CHAPTER 1 Getting Started with Your First Windows Program

This chapter then discussed what a computer program is. Computers can store
huge amounts of information, recall that information quickly and accurately, and
perform calculations with lightning speed and perfect accuracy. However, computers
cannot think on their own; they need step-by-step instructions from us telling them
what to do. These instructions are called a computer program, written be a human
computer programmer in a programming language such as Visual C# 2005. A com-
piler translates the computer program into machine language that a computer
understands.

The computer program in this chapter simply displayed an empty form, or window.
In the next chapter, you will examine that form further, and in the process learn what
a Windows application is and then write your first code!

Quiz
1. What is the difference between Visual C# 2005 and Visual Studio 2005?

2. Which operating system do you need to install and run Visual C# 2005?

3. Which project template should you use to start creating a Windows
application?

4. What is an IDE?

5. What is a computer program?

6. What is a programming language?

7. What is machine language?

8. What does "higher level" mean in the context of a programming language?

9. What does "lower level" mean in the context of a programming language?

10. What is the purpose of a compiler?

:©:



This page intentionally left blank 



CHAPTER

Writing Your
First Code

2

17

When I was an elementary school student (back when dinosaurs roamed the earth,
as far as my daughters are concerned), I learned through countless teacher-imposed
exercises to multiply and divide several-digit numbers in my mind. Fast-forwarding
more decades than I care to count, when I ask my daughters to compute the answers
to less complex math homework problems, they whip out their calculators and tell
, me the answer—quite quickly and accurately, to be sure. When I then ask them
nstead to calculate the answer in their heads, they look at me as a prehistoric relic
and tell me, "Aw, Dad, no one does that anymore."

Calculators do make our lives easier. Imagine the long line at your local fast food
Outlet if orders had to be calculated by pencil and paper rather than with the calcula-
^s built into cash registers. In business, software programs such as Microsof
Excel enable you to perform spreadsheet calculations in minutes that might take
you hurs with pencil and paper.

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

Calculators also have a negative side effect, however. Human nature being what it
is, if we don't need to learn something, we may decide it is not worth the time and
trouble. Research suggests that the availability of calculators has contributed substan-
tially to a decline in students' computational skills. Despite calculators, computational
skills still are necessary, not just in everyday situations in which a calculator may not
be available, but also as a foundation for students to develop skills in creating algo-
rithms and analyzing problems—skills essential in, among other areas, computer
programming.

Just as calculators automate computation, Visual C# 2005 automates the creation
of applications. For example, creating a Windows application strictly through code
is difficult. By contrast, Chapter 1 shows that Visual C# 2005 enables you to create
a Windows application without writing a single line of code! Granted, the resulting
Windows application was basic, being no more than a window with default func-
tionality. Nevertheless, even creating such a basic Windows application strictly
through code would be no small undertaking.

There is a danger of Visual C# 2005 doing too much for beginning programmers.
They may be seduced by how easy Visual C# 2005 makes creating a Windows ap-
plication. Consequently, they may just plunge in and start writing programs without
really understanding the code they are writing or how the different parts of the pro-
gram fit together. I have witnessed this with my programming students. They try to
write more complex programs, are unable to do so because they don't understand
the necessary foundation, become frustrated, and quit.

Therefore, to make a long story short ("too late," as my daughters would say),
this chapter will explain what an event-driven Windows application is all about,
including how and why the code you write executes when the user takes an action
such as a mouse click. But don't worry, this chapter is not all theory. You also will
put in practice what you learned and write your first code!

Starting an Existing Project
Because you learn programming best by writing programs, start Visual C# 2005. In
Chapter 1 you created a new Windows application project. In this chapter, we will
use that existing project instead of creating a new one. Of course, we could create a
new project, but you already learned in Chapter 1 how to do that. By instead using
an existing project, you will learn something new.

To open an existing project, choose Open from the File menu and then Project/
Solution from the Open submenu, as shown in Figure 2-1. This will display the
Open Project dialog box shown in Figure 2-2.

m



CHAPTER 2 Writing Your First Code
m

Figure 2-1 Opening an existing project.

Figure 2-2 Open Project dialog box.



Visual C# 2005 Demystified

Using the Look In drop-down box, navigate to the folder where you saved First-
Proj ect when you created it in Chapter 1. You then will see a file with an. sin extension,
named FirstProject.sln in Figure 2-2. The .sin extension indicates a solution file.
As explained in Chapter 1, a solution contains one or more projects (here, one) used
for your application.

Choose the .sin file and click the OK button in the Open Project dialog box. The
Open Project dialog box will close and your FirstProject then should open, appear-
ing as it did when you first created it in Chapter 1.

One of the windows in the project is called Solution Explorer, shown in Figure 2-3.
If you don't see it, you can display it by choosing Solution Explorer from the View
menu, as shown in Figure 2-4.

We will use Solution Explorer and the View menu to further examine features of
this project.

Design View and Code View
You learned in Chapter 1 that the state of your program when it is running is referred
to as run time, whereas the state of your program when it is not running is referred to
as design time. In this section, we will be working in design time.

You can view your application two different ways during design time: designer
view and code view. You choose designer view when you want to design your form,
such as by resizing it, or adding to it controls such as buttons, labels, and text boxes.
You choose code view when you want to view or write the code of your application.

You implement designer view by first selecting Forml .cs (the name of your form
file) in Solution Explorer and then choosing Design from the View menu. An alter-
native is to right-click the form and choose View Designer from the shortcut menu.
Either way, you will see the form, as shown in Figure 2-5.

You implement code view by first selecting Forml.cs in Solution Explorer and
then by choosing Code from the View menu. Again, the alternative is to right-click
the form and choose View Code from the shortcut menu. Either way, you will see
code, as shown in Figure 2-6.

We will be working in both designer and code views in this chapter.

Object Browser
While in designer view, display the Object Browser by choosing Object Browser
from the View menu. The Object Browser should appear as shown in Figure 2-7.

20



CHAPTER 2 Writing Your First Code

Figure 2-3 Solution Explorer.

Click the expander (plus sign) next to FirstProject and then highlight Forml. The
Object Browser then should appear as shown in Figure 2-8.

The Object Browser, as its name suggests, permits you to browse or examine
objects in your project, including the form. As Figure 2-8 shows, the lower-right
pane of the Object Browser refers to "public class Forml." A similar reference to

21



Visual C# 2005 Demystified

Figure 2-4 View menu.

"public partial class Forml" is in the code shown in Figure 2-6. Additionally, the
lower-right pane of the Object Browser indicates the following: "public class Forml :
System.Windows.Forms.Form." This means that a "class" named Forml "inherits"
from System.Windows.Forms.Form.

What this terminology means is important in understanding how your first proj-
ect and your future Windows application projects work. Therefore, let's now discuss
this terminology.

22



CHAPTER 2 Writing Your First Code

Figure 2-5 Form in designer view.

Figure 2-6 Code view.

23



Visual C# 2005 Demystified

Figure 2-7 Object Browser.

Figure 2-8 Object Browser showing information on Forml.

24



CHAPTER 2 Writing Your First Code

Classes and Objects
Most programs keep track of information that relates to persons, places, or things in
the real world. Such information often is complex, consisting of numerous items.
For example, each of my readers is a person, and as such share certain characteristics
common to all persons, such as a name, height, weight, gender, age, and so forth.

Programming languages, including Visual C#, use classes to represent a person,
place, thing, or concept. Thus, in programming parlance, each of us is an object of
the Person class. A class is a pattern or template for an object, and an object is an
instance of a class.

To illustrate, if my classroom contains 29 students and me as the teacher, there
would be 30 objects of the Person class. Once again, each person's name, height,
weight, gender, and age may differ from another's, but each of us in the room, being an
object of the same class, Person, has certain common characteristics, such as a name,
height, weight, gender, and age. The values of these characteristics are likely to vary—
two persons are likely to have different names and heights, for example, but they share
the characteristics themselves (that is, having a name, a height, and so forth).

As another example, the form in our first project originated from the Form class.
The Form class represents, not surprisingly, a form. A form has a number of char-
acteristics, such as height, width, background color, text on its title bar, and so forth.
Although all forms have these characteristics in common, the values of these char-
acteristics may differ from form to form. Just as persons in a room may look
different, so can forms. Some forms may be short and wide and have a blue back-
ground, and others may be tall and thin and have a yellow background. However,
each of these different-looking Form objects is created from the same Form class.

Inherits

The actual name of the class of the form in our application is not Form, but Forml.
The Forml class inherits, or starts out with, all the characteristics of the Form class.
However, we can customize the Forml class, even adding characteristics. We won't
do that now, but we could.

Namespaces

As the lower-right pane of the Object Browser in Figure 2-8 indicates, the actual
name of the Form class is System. Windows.Forms.Form. This means that the Form
class is part of the System.Windows.Forms namespace.

To explain a namespace, let's make an analogy to the taxonomy of life you may
have learned about in a biology class. All life is organized into separate kingdoms,

25



Visual C# 2005 Demystified

the most commonly known being Animalia for animals and Plantae for plants. The
animal kingdom is organized into several phylums, including Chordata for verte-
brates. The vertebrates in the phylum Chordata are organized into several kingdoms,
including Mammalia for mammals. The mammals in Mammalia belong to different
orders, including Primates for primates. Primates are subdivided into different fam-
ilies, including Hominidae, which in turn are subdivided into different genera,
including Homo, which finally are subdivided into species, including Homo sapiens.
Thus, although in biology humans generally are referred to just by their species
name, Homo sapiens, that species belongs to the Animalia.Chordota.Mammalia.
Hominidae.Homo namespace.

Similarly, the Form class is part of the System.Windows.Forms namespace. The
"Windows" in the namespace name stands for Windows applications. One purpose
of using namespaces is to organize code in a hierarchal manner. Another purpose is
the ability to use the same class name, but in another namespace. For example, there
is another Form class in the System.Web.UI.MobileControls namespace. This
namespace is used for forms in web applications accessed by mobile devices, such
as Pocket PCs. By contrast, the Form class in the System.Windows.Forms namespace
is used for Windows applications that run from desktop or laptop computers. Both
classes have the same name, Form, but may do so because each belongs to a differ-
ent namespace.

.NET Framework
The Form class and the System.Windows.Forms namespace are defined in the .NET
Framework. You will see references to the .NET Framework and .NET throughout
this book, so this would be a good time to briefly explain what these terms mean.

.NET is the name for Microsoft's strategy of software that is independent of a
particular operating system or hardware. With respect to hardware, .NET projects
are not limited to the traditional desktop computer. Instead, as you may recall from
Chapter 1, the available templates for a Visual C# project include ones that can be
run on handheld computers or phones. Visual Studio is a tool for the development
of .NET applications.

The .NET Framework consists of the Common Language Runtime (CLR) and
Class Libraries. As discussed in Chapter 1, a compiler translates the code you write
into machine language instructions that an operating system can understand and act
on. To make a long story short, the CLR acts as a middleman between the compiler
and the ultimate machine language instructions, translating intermediate language
created by the compiler into the instructions. The Class Libraries include the Form
class and the System.Windows.Forms namespace, as well as many other classes
that we will be using in this book.

26



CHAPTER 2 Writing Your First Code

Properties
A class generally has properties. For example, the Form class has properties such as
Height for its height, BackColor for its background color, and Text for text on its
title bar. Thus, objects created from the Form class have these properties. Similarly,
objects created by classes that inherit from the Form class, such as the Forml class,
also have these properties.

Different classes may have some properties in common. For example, the Form
class has a Height property, as would a Person class. However, often one class will
have a property another does not. For example, a Person class may have an Eye-
Color property, which the Form class does not have, whereas the Form class has
a MinimizeBox property (pertaining to the minimize button at the upper right),
which a Person class would not have. At least I have never seen a Person class
with a minimize box!

Properties Window
While in designer view, choose Properties Window from the View menu. This will
display the Properties window, as shown in Figure 2-9.

The Properties window lists various attributes or characteristics of the form, such
as its height and width, background color, the text that appears in its title bar, and
so forth. These attributes or characteristics, also referred to as properties, are listed
in the left column. The values of these properties are listed in the right column. For
example, in Figure 2-9, the value of the Text property is Forml, which is the text
that appears in the title bar of the form in Figure 2-5.

The first button sorts the properties by category. This is the view in Figure 2-9.
The second button sorts the properties in alphabetical order. This is the view in
Figure 2-10. Don't worry about the other three buttons for now. We'll discuss the
fourth icon from the left, which looks like a lightning bolt, later in this chapter in
the section "Creating an Event Procedure Stub."

Many of the properties in Figures 2-9 and 2-10 have values. You did not assign
those values to those properties. Rather, the IDE assigned those values because
the form needs some background color, size, and so forth when you first create
the application. These IDE-assigned values are referred to as default values.
"Default" in this context refers to a property's value if you do nothing to change
that value.

However, as the next section discusses, you may change default values.

27



Visual C# 2005 Demystified

Figure 2-9 Properties window.

Changing Properties at Design Time

You can use the Properties window to view the properties of the form object in your
first project. You also can use the Properties window to change the value of proper-
ties of that form object at design time. For example, in the Properties window,
change the value of the Text property to MyForm or some other name and then
press ENTER. The text in the form's title bar will change to MyForm or whatever
other text you typed.

However, you cannot use the Properties window to change the value of proper-
ties of the form object at run time. Instead, you need to write code to change the
value of properties of the form object at run time. You will learn in this chapter how

By



CHAPTER 2 Writing Your First Code

Figure 2-10 Properties listed in alphabetical order.

to do that. However, before we get there, let's first discuss what a Windows applica-
tion is, because the answer will help you understand the code you will be writing.

What Is a Windows Application?
Nowadays the majority of applications are written for at least one if not more of the
Windows operating systems, which include Windows 9x, NT, 2000, XP, and 2003.
Figure 2-11 shows a familiar Windows application, Notepad, which is included by
default in the installation of all Windows operating systems.

(29)



Visual C# 2005 Demystified

Figure 2-11 Notepad, a Windows application.

Although the Windows operating system has virtually taken over the computer
world, it has not been with us that long. Windows was not introduced until 1985,
and did not catch on until the introduction of Windows 3.0 in the early 1990s. Prior
to the 1990s, applications often ran in the DOS operating system. Figure 2-12 shows
a DOS text editor, the DOS equivalent of Notepad in the Windows operating sys-
tem. A comparison of the DOS text editor in Figure 2-12 and Notepad in Figure 2-11
show that DOS applications have a decidedly different and less rich appearance
than Windows applications.

The difference between DOS and Windows applications is more than skin deep.
They also behave very differently. Let's now look at both differences.

Windows Applications Are "Gooey"
The hallmark of a Windows application is that the application is displayed in ... you
guessed it, a window. However, there is more to a Windows application than a window.

>:



CHAPTER 2 Writing Your First Code

A Windows application has a graphical user interface, which is often referred to by the
acronym GUI, pronounced "gooey."

A GUI usually includes a menu, such as the File, Edit, Format, View, and
Help menus in Notepad, as shown in Figure 2-11. The DOS text editor in Figure
2-12 also includes a menu. However, a GUI is not limited to a menu, and nor-
mally includes other visual components, such as buttons to click, edit boxes in
which to type text, and so on. DOS applications have few of these other visual
components.

The GUI makes Windows applications prettier than console applications, but it
serves a more important purpose, which is to make Windows applications easier to
use. For example, the menu in Notepad makes it easy for you to open a file. Click-
ing the File menu and then the Open submenu displays another visual component,
the Open dialog box (shown in Figure 2-13), from which you simply pick the file
you want to open.

Figure 2-14 shows the Open dialog box in the DOS text editor. This Open dialog
box is far clumsier to use than the Windows counterpart in Figure 2-13.

Of course, nothing is free in this world. The pretty GUI of a Windows application
comes at a programming price. Code, lots of it, some of it rather complex, is re-
quired to create a window, not to mention to create the menu and other controls in
the window.

31

figure



Visual C# 2005 Demystified

Figure 2-13 Open dialog box in Notepad.

This is where Visual C# once again eases your task. You do not need to write

copious, complex code to create a window. Instead, Visual C# creates the window
for you when you start a new Windows application project, and it also writes the
code necessary to make that window work. This spares you substantial grunt work.

Figure 2-14 Open dialog box in DOS text editor.

32



CHAPTER 2 Writing Your First Code

Windows Applications Are Event-Driven

Windows applications behave differently, as well as look different, from their pre-
decessors. Before Windows, applications often told the user what to do. For example,
an application may tell the operating system to print to the screen the text message
"Enter your name." The user would then input their name and press the ENTER key.
The user could not have entered their name before this point, and they had to enter
data at this point or the program would not continue. The program then may tell the
operating system to print to the screen "Enter your age." The user would then input
their age and press the ENTER key. Once again, the user could not have entered their
age before this point, and had to enter data at this point or the program would not
continue. Finally, the program may tell the operating system to output to the screen
a sentence that includes the name and age entered, followed by whether the user is
a minor, adult, or senior citizen, based on the age that was entered. The program
input and output may look like this:

Enter your name: Jeff
Enter your age: 53
Jeff, age 53, you are an adult.

In this type of program, often called procedural programming, the application,
not the user, determines the order in which things happen. However, Windows ap-
plications are just the opposite; the user tells the application what to do. What
happens next after you open Notepad? The answer is, it depends. Specifically, it
depends on what you, as the user, do next. If you click the File | Open menu item,
the Open dialog box will display as shown previously in Figure 2-13. If instead you
click the Help | Help Topics menu item, Notepad Help will display. Of course, you
may decide you're tired of Notepad and close it by using the File | Exit menu item
or the close button. Thus, in a Windows application, the user's actions, not the ap-
plication, determine the order in which things happen.

A procedural program can be analogized to a recipe. The program follows the
instructions step by step. By contrast, a Windows application can be analogized to
a paramedic. The paramedic waits for a call. When a call comes, the paramedic
takes the equipment warranted by the call and goes to the location. When finished,
the paramedic returns to their station and waits for the next call, and when it comes,
takes the equipment warranted by that call and goes to the next location.

In the parlance of Windows programming, the user's actions create events that
cause the operating system to send messages to the application. For example, the
user's act of clicking Notepad's File | Open menu item is an event that causes the
operating system to send a message to the Notepad window that the File | Open
menu command has been clicked. When Notepad receives that message, code in
Notepad displays the Open dialog box. Because the events resulting from the user's

33



Visual C# 2005 Demystified

actions drive the application, Windows programming often is referred to as being
event-driven.

Classes Have Events
An event does not exist by itself. Rather, an event is something that happens to an
object, usually as the result of user interaction with the object, such as its being
clicked. For example, when the user clicks Notepad's File | Open menu item, the
event is a click, and the object of the event is the File | Open menu item.

The File | Open menu item is an object that is created from a class. That Menu-
Item class, and classes generally, have events in addition to having properties. For
example, a Form object has a Click event that occurs when the user clicks the
mouse on the form.

As with properties, different classes may have some events in common, but usu-
ally would not share the exact same set of events.

Creating an Event Procedure
As discussed in the section "Windows Applications Are Event-Driven," you write
code so the user's action in clicking the File | Open menu item in Notepad will dis-
play an Open dialog box that permits the user to choose and open a file. You want
this code to execute when, and only when, your application's user clicks the File |
Open menu item. You use an event procedure to solve this problem, by associating
the code that displays the Open dialog box with the Click event of the File | Open
menu item object. The event procedure connects the mouse click of the File | Open
menu item to the code you want to run when the menu item is clicked.

When the .NET Framework that underlies Visual C# 2005 detects an event such
as a mouse click that happens to an object such as the menu item, it searches for an
event procedure that matches the object and event. If the .NET Framework finds
such an event procedure, it calls that event procedure, and the code inside the event
procedure executes.

In this section, we will write code that will change the text displayed in the
form's title bar when you click the form. To accomplish this, we need to write code
for the Click event procedure of the form.

Writing code for an event procedure involves two steps. The first step is to create
the event procedure stub. As will be illustrated in the next section, an event procedure

34



CHAPTER 2 Writing Your First Code

stub is how the event procedure appears before you write any code. Your writing
code inside that event procedure code is the second step.

Creating an Event Procedure Stub

To start creating an event procedure stub, go to designer view, as shown in Figure 2-5,
and display the Properties window, as shown in Figure 2-9 or 2-10. Click on the
fourth icon from the left, which looks like a lightning bolt. As shown in Figure 2-15,
the Properties window then will display categories such as Action, Appearance,
Behavior, and so forth.

Expand the plus sign next to Action. As shown in Figure 2-16, this will display
various events, including Click and DoubleClick.

Figure 2-15 Categories of the Forml class's events.

35



Visual C# 2005 Demystified

Figure 2-16 Listing of the Forml class's Action events.

Double-click on Click. As shown in Figure 2-17, this creates an event procedure
stub for the Click event of the Forml class.

The event procedure stub is shown here:
private void Forml_Click(Object sender, EventArgs e)

The first line of code begins the event procedure and is the title of the event pro-
cedure. It includes the name of the class object (Forml) and the name of the event
(Click) separated by an underscore (Forml_Click). Don't worry about the rest of
the first line of code for now; we'll cover more later in this book.

The title of the event procedure is immediately followed by a left curly brace ({).
The code you will write goes between this left curly brace and the right curly brace (}),

36



CHAPTER 2 Writing Your First Code

Figure 2-17 Event procedure stub.

which marks the end of the event procedure. The next section discusses writing
that code.

Writing Code Inside the Event Procedure
The second step is to write code inside the event procedure that will change the text
displayed in the form's title bar when you click the form. Type the following code
inside the event procedure, between the two curly braces:

this.Text = "Eat at Joe's";

This code will be explained in the following sections on the semicolon and the as-
signment operator.

37



Visual C# 2005 Demystified

Now your event procedure should read like so:

private void Forml_Click(Object sender, EventArgs e]

this.Text = "Eat at Joe's";

NOTE I indented the code. This is not necessary, but it's a good habit, for reasons
that will become more apparent as your code becomes more complex. Often the
IDE will indent the code for you.

Run the project by choosing Start Without Debugging from the Debug menu, as
shown in Figure 2-18.

When the form first appears, the text in its title bar is the same as the value of the
Text property shown in its Properties window. Now click on the form. The text in
the form's title bar now should change to "Eat at Joe's."

The Semicolon

Notice that the code ends in a semicolon:

this.Text = "Eat at Joe's";

As discussed in Chapter 1, a computer program consists of step-by-step instruc-
tions from the programmer telling the computer what to do. Each instruction
statement in C# ends in a semicolon. It does not matter if the instruction is on one

Figure 2-18 Running the Project from the Debug menu.

38



CHAPTER 2 Writing Your First Code

or more than one line, because in C# the end of a statement is not the end of a line,
but the semicolon. For example, the code we just wrote could be placed on more
than one line, with no change:

this.Text =
"Eat at Joe's";

Not all the code in C# ends in a semicolon. For example, the title of an event proce-
dure does not, and should not. Rather, instructions or statements end in a semicolon.

Assignment Operator

The code also contains what looks like an equals sign (=):

this.Text = "Eat at Joe's";

However, this is not an equals sign at all. Instead, it is called an assignment operator.
To the right of the assignment operator are words inside double quotation marks.

This is called a string. A string usually consists of two or more characters, which may
include a letter, a digit, a punctuation mark, or a space. The double quotation marks
indicate a string; numeric values are not placed inside double quotation marks.

To the left of the assignment operator is the "this" keyword (a reference to the
current Forml object) and Text (a property of that object) separated by a dot, or
period. The code this.Text thus refers to the Text property of the current Forml object.

The purpose of the assignment operator is to assign the value to its right to the
property to its left. Thus, the string "Eat at Joe's" is assigned to the Text property of
the current Forml object.

This code, being inside the Click event procedure of the form object, executes
(or runs) when, and only when, the form is clicked. When the form is clicked, the
string "Eat at Joe's" is assigned to the Text property of the current Forml object,
and therefore appears in the title bar of the form.

Comments

Change the line of code

this.Text = "Eat at Joe's";

to instead read as follows:

this.Text = "Eat at Joe's"; //Changes text in title bar

The program will run exactly the same. In fact, the code has not changed at all. The
portion of the line beginning with the two forward slashes (//) followed by "Changes

39



Visual C# 2005 Demystified

text in title bar" is a comment. The two forward slashes indicate that they, and what
follows them on the line, are not part of the code, but rather are a comment.

A comment is for the benefit of a programmer reading the code. The purpose
usually is an explanation of the code. An explanation may not be necessary for
a line of code changing the value of the text shown in a form's title bar. However,
as your applications become more complex, explanations may be helpful to fellow
programmers who need to review your code. Indeed, you may find your own
explanation of your own code helpful to refresh your memory if you have to return
to your code months after you wrote it, either to enhance the code or to fix a problem.

If your comment spans more than one line, you have two alternatives. One is to
precede each commented line with two forward slashes:

// first line of comments
// second line of comments
// third line of comments

The other option, which is preferable if you have many consecutive lines of com-
ments, is to precede the first line with a forward slash and an asterisk (/*) and then
end the last line with an asterisk and a forward slash (*/), as shown here:

/* first line of comments
second line of comments
third line of comments */

Conclusion
Visual C#, like other programming languages, represents each of the persons,
things, and concepts that are the subject of an application as a class. Objects are
created, or instantiated, from classes.

A class, and therefore the objects created from the class, usually have properties
and events. A property is an attribute of an object, such as its height. An event is
something that happens to an object, such as its being clicked.

A Windows application is displayed in a window that has a graphical user inter-
face, referred to by the acronym GUI. Additionally, Windows applications are
event-driven in that the user's actions, such as clicking a mouse, create events that
cause the operating system to send messages to the application. You can write code
that will run when those messages are received. That code is written inside an event
procedure, which executes, or runs, when a specified event happens to an object.

40



CHAPTER 2 Writing Your First Code

Quiz
1. What is designer view?

2. What is code view?

3. What is a class in a programming language?

4. What is an object of a class?

5. What are namespaces used for?

6. What is a property of a class?

7. What are characteristics of a Windows application?

8. What is an event of a class?

9. What is an event procedure?

10. What is the purpose of the assignment operator?

41



This page intentionally left blank 



CHAPTER

Controls

33

43

thus far we have focused kon the form class. the form is an im
application;agui,perhapsthe most important one. however, a 

used

sijbly meedt all the requirements kkof awindows aplication. for examplke, the form 
dokes not havethe functionality to permit the typing of text, listingt of data, selecting 
of choices, and so forth.  YKou need other, specializeidf controls for that additiona
h

functionallity.  Indeed, the formIs primary role isto serve as ahost, or fcontainer, for 
other controls that enrich the gui ofwindows applicfations ,such as mienusl too
bars, buttons, text boxes, and list boxes.

Yoku will learn in this chapter how to add cokntrkols to your fokrm using the too
bokz. yuou then will leaarn how to use the fokrms diseghjer to fchang e the size 
of the controls on the form.

These cocntrols, like the form itself have their own propertiwhhich can 
bookthatdesign time and at run tijme. tis fcfahapter willprovideykou with guidelineo
whefther tok assign valkues at defsign tijme or run time ina given situation.

this chapter culminates with a priject that uses apratiular cokntrokj, the labne
Control, for two purposes: first to display data that does not change during the run-
ning of the application and j, secondl using event prkocedures tok 

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



4) 

Visual C# 2005 Demystifi

does change during the running of the application. This project also shows you how
to use information called parameters that's available to an event procedure.

Adding Controls to the Form
I, and perhaps you, too, have been requested when first visiting a website to fill out
a registration form. Such forms may use many specialized controls. I may type my
name in a TextBox control. I also may choose my state or country from a list sup-
plied by a ListBox control. The purposes of the TextBox and ListBox controls are
identified by Label controls displaying "Name" and "Country," respectively. When
I am finished filling in the required information, I click a Button control often
labeled "Submit."

Visual C# 2005 supports many specialized controls. However, the TextBox,
Label, ListBox, and Button controls are perhaps the most commonly used.

The TextBox, Label, ListBox, Button, and other specialized controls cannot exist
on their own. They must be contained, or hosted, in another specialized type of con-
trol—a container control. The form is the usual choice for a container control. Indeed,
the form's primary purpose is to serve as a container or host for other controls.

Adding controls to a form through code is no easy task. Fortunately, Visual C#
2005 enables you to easily add available controls to a form through the Toolbox.

Toolbox
Visual C# uses a Toolbox to display controls that you can add to your form. Figure 3-1
shows the Toolbox, which you can display by choosing Toolbox from the View menu.

NOTE In folio-wing along, you can either start a new project as you did in
Chapter 1 or open an existing project as you did in Chapter 2.

As Figure 3-1 shows, the Toolbox has a number of categories, each preceded by
an expander (the + sign), to organize related items. If you see only the General cat-
egory, the reason probably is that you are in code view rather than designer view. If
so, simply switch to designer view.

The All Windows Forms category includes the controls used, naturally enough,
in Windows forms. The Common Controls category includes, as its name suggests,
commonly used controls. Figure 3-2 shows the Toolbox with both categories ex-
panded. The Label control, which we will use in the next section, appears in both
categories.



TTtTT

Figure 3-1 Toolbox.

NOTE The Toolbox may seem to disappear if you shift focus to Solution Explorer
or another part of the Integrated Development Environment (IDE). This is
a behavior known as auto-hide. To make the Toolbox reappear, click on the
Toolbox icon on the left border of the IDE. The idea of auto-hide behavior is to
maximize screen space by hiding visual elements not currently in use. If you don't
want the auto-hide behavior, click the pushpin button at the top of the Toolbox.
Clicking the pushpin button toggles between auto-hide and no auto-hide.

Copying a Control from the Toolbox to the Form

You have several methods of adding a control from the Toolbox to your form. One
way is to double-click the control in the Toolbox. The control will appear some-
where in the form, such as the top-left corner. Another alternative is to click on the
control in the Toolbox, drag the control over the form, and then drop the control
onto the form, where the control will appear where you dropped it. Thus, with the

m



Visual C# 2005 Demystified

Figure 3-2 Expanding of Toolbox categories.

double-click method, the IDE positions the control, whereas with the drag-and-
drop method, you position the control.

Expand either the All Windows Forms or the Common Controls category to show
the Label control; then use either the double-click or drag-and-drop method to add the

4



CHAPTER 3 Controls

Label control to the form. Figure 3-3 shows the Label control after it is added to
the form.

Changing the Control's Location

As mentioned earlier, the double-click method situates the Label control some-
where in the form, whereas the drag-and-drop method situates the Label control
wherever you dragged and dropped it onto the form. Either way, you can reposition
the Label control.

Put your mouse over the Label control. The mouse pointer should change to four
arrows, as shown in Figure 3-4.

Next, click down on the left mouse button (but don't release it) and drag the
Label control to another location. Release the mouse button when the control is at
the desired location.

You can also change the position of the Label control relative to the form by select-
ing it and then choosing either the Format | Center in Form | Horizontally menu

Figure 3-3 Label control inserted on the form.

47



Visual C# 2005 Demystified

Figure 3-4 Mouse pointer before relocating control.

Figure 3-5 AutoSize property in the Label control's Properties window.

48



CHAPTER 3 Controls
©

command or the Format | Center in Form | Vertically menu command, depending on
whether you want to center the control on the form horizontally or vertically (or both).

If you have multiple labels, you can align the top, bottom, or sides of the controls
by selecting all labels involved (click each label while holding down the SHIFT or
CTRL key) and then choosing the Format | Align | Tops (or Middles, Bottoms, Lefts,
Centers, or Rights) menu command. The label selected first (and shown with
a darker highlight) will be the guide for the new alignment of all labels selected.

Changing the Control's Size

Resizing the Label control involves an extra step. The Label control has an Auto-
Size property. This property, when set to True (the default), automatically resizes
the label so it can display its text. Figure 3-5 shows the Label control's Properties
window and the AutoSize property.

If you want to manually change the Label control's size, you first need to set the
AutoSize property to False, using the drop-down box for the value of the AutoSize
property. Next, select the Label control you want to resize. As Figure 3-6 depicts,

Figure 3-6 Resizing the Label control.



Visual C# 2005 Demystified

when you select the Label control, eight small squares appear on a box surrounding
the Label control—four at the corners and four halfway between the corners.

You can resize the label by holding the mouse over one of these small boxes. The
cursor should change to a two-headed arrow. Hold the mouse down and drag it to
resize the label.

If you have multiple labels, and their AutoSize properties are all set to False, you can
make them the same width, height, or size by selecting all the labels involved (click
each label while holding down the SHIFT or CTRL key) and then choosing Width, Height,
or Both from the Format | Make Same Size submenu. The size of the label selected first
will become the new width, height, or size of all the labels selected.

Important Label Properties
The Label class has many properties, but the Text and the Name properties likely
are the most important.

Text Property

The primary role of a label is to display text, and the value of the Text property
determines the text that will be displayed.

The text is read-only to the application user, who cannot type on the label to
change the label's text. Other controls, in particular the TextBox control, enable the
user to type on the control to change the text.

The Print dialog box shown in Figure 3-7, and displayed in most Windows ap-
plications with the File | Print menu command, illustrates two common purposes of
the text in a Label control.

One common purpose of the text displayed by a label is to identify another con-
trol. In Figure 3-7, the "Number of Copies" label identifies the purpose of an
adjacent control that enables you to set (with the up and down arrows) the number
of copies you want to print.

Another common purpose is to display data, such as the Label control showing
"Ready" next to Status. As with the Form object, you can change the value of the
Label control's Text property either at design time or through code. You generally
will use the Properties window if the purpose of the label is to identify the purpose
of another control because that information usually will not change during the run-
ning of the application. The "Number of Copies" label is an example.

By contrast, you generally will use code if the purpose of the label is to display
data that may change during the running of the application. For example, the Text
property of the label next to Status should be set through code because, during the

50



CHAPTER 3 Controls

Figure 3-7 Print dialog box.

running of the application, the printer's status may change between being ready and
going offline.

Name Property
The Name property is important because its value is how the label is referred to in
code. By default, the first label you add to your form is named label 1, the second
Iabel2, the third labels, and so forth. The default name is fine if you will not be re-
ferring to the label in your code. This would be the case if the purpose of the label
simply is to identify the purpose of another control.

However, using a default name can cause you difficulty if you are referring to the
label in code, such as if the purpose of the label is to display information that may
change when the application is running. The difficulties you may encounter in-
crease as the number of the labels in your application increase. For example, you
may have difficulty remembering if Iabel53 is the one that displays weather infor-
mation or the one that displays your bank account balance.

I recommend you use a naming convention when naming your controls. A nam-
ing convention simply is a consistent method of naming controls. There are a
number of naming conventions. It is not particularly important which one you use.
What is important is that you use one and stick to it.

51



Visual C# 2005 Demystified

One often-used naming convention is to name a control with a prefix, usually all
lowercase and consisting of three letters, that indicates the type of control it is, fol-
lowed by a word, first letter capitalized, that suggests its purpose. For example,
IblWeather would indicate a label that displays weather information. If you need
more than one word to describe the control's purpose, you should combine the
words into one (because a name cannot have embedded spaces) and capitalize the
first letter of each word. For example, IblBankAccountBalance would indicate a
label that displays your bank account balance.

TIP Be careful when you use prefixes such as Ibl that you use a lowercase letter 1
and not the number 1. Interchanging the two can cause typos that are hard for you
to see and also will result in a compiler error because control names cannot start
with a number.

The Label Control in Action
In this section you will create a project (or reuse an existing project) to display the
X and Y coordinates of the mouse pointer while the mouse is moving over the form.
Figure 3-8 shows what the application looks like when it is running. Of course, the
X and Y coordinates displayed will vary depending on where the mouse is located
over the form.

Mouse Coordinates
A brief explanation of how mouse coordinates work may be helpful before explain-
ing how the code works. Similar to the concept of coordinates in graphing, mouse
coordinates are expressed in two numbers. The first is usually referred to as X and
measures a horizontal distance from a reference point. The second is usually
referred to as Y and measures a vertical distance from a reference point. In the con-
text of a mouse moving over a form, the reference point is the top-left corner of the
form. Therefore, the X coordinate measures the horizontal distance from the left
side of the form, and the Y coordinate measures the vertical distance from the top
of the form.

Coordinates by convention are expressed with the following syntax: X,Y. There-
fore, the top-left corner of the form would be the coordinates 0,0. If a coordinate is
60,77, the mouse is 60 units to the right of the left edge of the form and 77 units
below the top edge of the form.

52^



CHAPTER 3 Controls

Figure 3-8 Application displaying mouse coordinates.

The unit of measure is a pixel, a shortened term for "picture element," a dot rep-
resenting the smallest graphic unit of measure on a screen. Screen resolutions such
as 1024 x 768 are expressed in pixels.

Creating the Application
Implement the following steps to create the application:

1. Either open an existing project or create a new one.

2. Using the Toolbox, add four labels to the form, one label at a time.

3. Using the Properties window, change the AutoSize property of all four
labels from the default (True) to False. This step will make easier the
customization of the labels in the following steps.

4. Size and align the four labels as shown in Figure 3-8. The preceding
sections "Changing the Control's Location" and "Changing the Control's
Size" explain how to align and size multiple labels.

5. Using the Properties window, change the Text properties of the two labels on
the left to X coordinate and Y coordinate, respectively, because the purpose
of these labels is to identify the two labels on the right. You are changing the
value of the Text property of these labels at design time because the text on
these labels will not change while the project is running.

6. Using the Properties window, change the Name properties of the two labels on
the right to IblX and IblY, respectively. As discussed in the preceding section
on the Name property, the prefix Ibl (lowercase letter /, not the number 1)
identifies these controls as labels to programmers reading the code, and the
suffixes X and Y note the purpose of the controls (to display the X and Y

m



Visual C# 2005 Demystified

coordinates, respectively). It is not so important to rename the two labels on the
left because it is unlikely you will need to refer to them in code.

7. Again using the Properties window, change the BackColor property of MX and
MY to White (so they will be more visible after we delete their text in the next
step). When you click the value of the BackColor property, a tabbed dialog box
appears. Choose the Custom tab and then click on a box that is white.

8. Also using the Properties window, delete any value in the Text properties
of IblX and IblY so both are blank. We don't want these labels' names to
display as their text when the project first starts up.

9. Create an event procedure stub for the MouseMove event of the form. The
process is similar to the one in Chapter 2, when you created a Click event
procedure for the form. In designer view, display the Properties window for
the form and then click on the fourth icon from the left, which looks like a
lightning bolt. Next, expand (by clicking the plus sign) the Action category
and then double-click on MouseMove to create an event procedure stub for
the MouseMove event. The event procedure stub is shown in Figure 3-9.

10. Write the following code inside the event procedure stub:

IblX.Text = e.X.ToStringO;
IblY.Text = e.Y.ToStringO;

The completed event procedure now is shown in Figure 3-10 and reads as
follows:

private void Forml_MouseMove
(object sender, MouseEventArgs e)

IblX.Text = e.X.ToStringO;
IblY.Text = e.Y.ToStringO;

11. Compile the project from the Build menu and then run the project from the
Debug menu. Move your mouse over the form. The two labels on the right
should display numeric values, as shown in Figure 3-8, that change as you
move the mouse.

How the Code Works
Although you know that the code works, you also need to know how the code
works.

54,



CHAPTER 3 Controls

Figure 3-9 Event procedure stub for the MouseMove event of the form.

Figure 3-10 Completed MouseMove event procedure.

55



Visual C# 2005 Demystified

Using Event Procedure Parameters
The following two lines of code display the X coordinate of the mouse in the Text
property of the Label control IblX and the Y coordinate of the mouse in the
Text property of the Label control IblY:

IblX.Text = e .X.ToStr ingO ;
IblY.Text = e . Y . T o S t r i n g ( ) ;

The "e" on the right side of the assignment operator also appears in the parenthe-
ses of the event procedure:

(object sender, MouseEventArgs e)

The parentheses of the event procedures contain its parameters. A parameter
represents information that is available to a procedure.

An event procedure may have no parameters, one parameter, or two or more
parameters. An event procedure's parameters are defined by Visual C# and the un-
derlying .NET Framework; you cannot change them.

When a procedure has two or more parameters, the parameters are separated by
a comma. The MouseMove event procedure of the Form class has two parameters.

The second parameter, represented by e, is an object of the MouseEventArgs
class, which belongs to the System.Windows.Forms namespace.

The MouseEventArgs class has two properties, X and Y, whose values, in the
case of the MouseMove event, are the current X and Y coordinates of the mouse
cursor. Because e represents the instance of the MouseEventArgs class involved in
the current mouse movement, e.X represents the X coordinate of the mouse when
the mouse is moved, and e.Y represents the Y coordinate of the mouse when the
mouse is moved. With the assignment operator, these X and Y coordinates are as-
signed to the Text properties of IblX and IblY, respectively, which then display these
coordinates. Each time the mouse moves, the MouseMove event occurs, and there-
fore the code inside the event procedure executes, updating the text displayed in the
two labels.

What If You Type the Wrong Code?

The code on the right side of the assignment operator is not just e.X and e.Y. It also
calls the ToString method. Before I explain that method, let's examine what hap-
pens if you typed the wrong code, leaving out the ToString method, so your code
read as follows:

56



CHAPTER 3 Controls

private void Forml_MouseMove
(object sender, MouseEventArgs e)

IblX.Text = e.X;
IblY.Text = e.Y;

Visual C# 2005 tries to warn you even before you attempt to compile your code.
As Figure 3-11 shows, e.X and e.Y both will be underlined with a squiggly line
similar to how Microsoft Word highlights misspellings.

If you hold your mouse over the underline code, a ToolTip shows with the fol-
lowing warning: "Cannot implicitly convert type 'int' to 'string.'" This warning
appears because e.X and e.Y are both integers, whereas the Text properties of the
two Label controls are strings. Visual C# does not permit you to assign an integer
to a string.

Figure 3-11 Incorrect code highlighted.

m



Visual C# 2005 Demystified

Undeterred by this warning, you nevertheless attempt to build the project. As
Figure 3-12 shows, an Error List should display, reporting the following, similarly
to the ToolTip: "Cannot implicitly convert type 'int' to 'string.'" Additionally, the
lines containing this error are identified.

NOTE If the Error List does not automatically display, you can display it with the
menu command View \ Other Windows \ Error List.

ToString Method

Of course, you still need to correct the code. To do so, you need to convert the inte-
ger value on the right side of the assignment operator to its string representation. In
other words, if the integer is 123, its string representation is "123".

All classes have a ToString method. What that method does depends on the class.
In the case of the Int32 class, which represents an integer, the ToString method

Figure 3-12 Error List reporting an error.

58



CHAPTER 3 Controls

converts an integer to the string representation of the integer, so it can be assigned
to the Text property of the Label controls.

The ToString method is preceded by the integer value to be converted and a dot or
period. It is followed by empty parentheses because this method has no parameters.

NOTE Though the parentheses are empty, do not omit them because a compiler
error will result.

Delegate
Figure 3-12 shows Solution Explorer with the expander next to Forml.cs to show
two files under it, one of which is Forml.Designer.es. (You may need to click the
Show All Files button to obtain this view.) Right-click that file name and choose
View Code from the shortcut menu. This will display the code in Form 1.Designer.
cs, as shown in Figure 3-13.

One of the lines of code reads (here on three lines because of its length):

this.MouseMove +=
new System.Windows.Forms.MouseEventHandler

(this.Forml_MouseMove);

As explained in Chapter 2, when the .NET Framework that underlies Visual C#
2005 detects an event, such as the mouse button being held down, that happens to
an object such as a form, its searches for an event procedure that handles that event
for that object. If the .NET Framework finds such an event procedure, it calls that
event procedure, and the code inside the event procedure executes.

MouseEventHandler, part of the System.Windows.Forms namespace, is a dele-
gate. A delegate is used to specify which procedure handles an event that happens
to a particular object. MouseEventHandler in particular specifies the procedure that
will handle the MouseDown, MouseUp, or MouseMove event of a form, control, or
other component.

The += operator is explained in Chapter 5 on arithmetic operators. For now, treat
it as an assignment operator.

On the left side of the += operator is this.MouseMove. The "this" keyword refers
to the current object of the Forml class—that is, the form over which the mouse
button is being held down. MouseDown is the event. Accordingly, this.MouseMove
specifies the event to be handled, which is the mouse moving over the form.

On the right side of the += operator, the MouseEventHandler delegate is fol-
lowed in parentheses by the name of the procedure that will handle the event,
Forml MouseMove.

59



Visual C# 2005 Demystified

Figure 3-13 Code view of Forml.Designer.es.

NOTE If you delete an event procedure, you will get a compiler error if you don't
delete the line concerning the corresponding delegate in Forml.Designer.es.

Conclusion
The form is perhaps the most important control. However, a single form without con-
trols could only satisfy the requirements of the simplest Windows application. The
form does not permit the typing of text, listing data, selecting of choices, and many
other tasks that an application may need to perform. You need other, specialized
controls for that additional functionality. Indeed, the form's primary role is to serve as
a host, or container, for controls such as menus, toolbars, and buttons, which enrich
the GUI of Windows applications.

This chapter showed you how to add controls to your form using the Toolbox.
You then learned how to use the Forms Designer to change the size and location of
the controls. The project also showed you how to control the size and location of
multiple controls relative to each other.

60



CHAPTER 3 Controls

The Label class, like the Form class, has properties. Perhaps the most important
properties of the Label class are its Name and Text properties.

The Name property determines how you refer to a label in code. You should use
a naming convention when naming a label that you will refer to in code. This chap-
ter suggested a naming convention using a prefix, usually all lowercase and
consisting of three letters, that indicates the type of control it is, followed by a word,
first letter capitalized, that suggests its purpose.

The Text property determines the value of the text displayed by the label. Like
the Text property of the Form class, you can change the value of the Label control's
Text property either at design time or through code. You generally will use the
Properties window if the purpose of the label is to identify the purpose of another
control because that information usually will not change during the running of the
application. By contrast, you generally will use code if the purpose of the label is to
display data that may change during the running of the application. This code often
will be located inside of an event procedure.

This chapter included a project that uses the Label control for both purposes—to
display data that does not change during the running of the application and to dis-
play data that does change during the running of the application. Finally, you learned
how to use information called parameters that's available to an event procedure.

Although it is impressive that you can create a working Visual C# 2005 program
that displays information using controls by writing only two lines of code, most
programs need to save information, or data. The next chapter will teach you about
the different data types as well as how to create and use information storage loca-
tions called variables.

Quiz
1. What are examples of controls?

2. What is the purpose of the Toolbox?

3. How do you add a control from the Toolbox onto your form?

4. What is the purpose of the Name property of a control?

5. What is a naming convention?

6. What characteristic of the Label control does its Text property determine?

7. What are purposes of the text displayed by a Label control?

8. Can a single statement in C# take up two or more lines in the code editor?

9. What is a parameter of an event procedure?

10. What is a delegate?

61



This page intentionally left blank 



I often am asked for my autograph. Unfortunately, my autograph usually is re-
quested by those who want my money, such as on credit card receipts when I
pu•chase groceries or gas, or on checks to pay my mortgage or auto insurance.

Ttiese companies that love sending me bills could not possibly keep track of their
thousands of customers using pencil and paper. Instead, they use computer pro-
gram,  which harness the computer's unparalleled ability to store information and
make ipmputations using that data.

4

63

chapter

stokring g
infformation

data tykpesans
variables

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



© Visual C# 2005 Demystified

These companies are not the only ones that need to store and retrieve data. Visual
C# 2005 also needs to store and retrieve data, such as the height, width, and back-
ground color of your startup form, necessary in order for your projects to run.

Data comes in different varieties. Some data is numeric, such as the amount of my
gas bill or the height of a form. Some data is text, such as my name on my gas bill
or the text on the title bar of a form. Some data is Boolean (either true or false), such
as whether I qualify for the senior citizen discount or whether a form is visible.

The type of information, whether numeric, text, or Boolean, is referred to as the
data type. I will explain in this chapter the different data types and how to select the
one that best fits your purpose.

You also will need to store data. Visual C# forms and controls have many built-in
properties to store data, such as the Text property of a Label or TextBox control.
However, these properties are limited to storing the information they were designed
for. The Height property of a form only can store a form's height, not some other
information you need to store.

Visual C# 2005 enables you to create your own information storage locations,
called variables. I will show you in this chapter how to create and use variables.

Finally, certain values never change while a program is running. For example, if
you are writing a program to calculate the cost of a transaction, the percentage of
sales tax will not change while your program is running. Values that do not change
while your program is running are called constants. I will also show you in this
chapter how to create and use constants.

Data Types
Think of all the different types of information that you need to keep in your mind.
For example, if you as a student were driving to school for the first day of class, you
would not want to be late. Therefore, you would consider the number of miles to
school in deciding what time to leave. You may wonder if you will be able to get
into the class and try to remember the name of the teacher you need to ask. Also,
the class will be tough, so you think about the effect the class might have on your
grade point average.

Some of these items of information are numeric, such as the number of miles to
school and your grade point average. However, the name of the teacher is not nu-
meric, but text, and the answer to whether you will be able to get into the class will
be yes or no. The type of information, whether text, numeric, or yes/no, is referred
to as the data type.



CHAPTER 4 Storing Information—Data Types and Variables

Numeric Data Types

Visual C# has a number of data types—int (for integer) being the most common—
that may be used for whole numbers. A whole number may be positive (say, 55) or
negative (-55) or zero. However, the int data type should not be used for floating-
point numbers—that is, those that have numbers to the right of the decimal point,
such as -.5, .5, and 5.5.

The int keyword, for an integer data type, is an alias for the System.Int32 data
type in the .NET Framework. Indeed, each of the Visual C# data type keywords we
will be discussing is an alias for a corresponding .NET Framework data type.

An int would be a good choice for the number of miles to school. Normally, you
would think it is 8 miles to school, for example, not 8.3 miles, because there is no
need to be so precise as to figure out tenths of miles.

Visual C# has three floating-point data types—float, double, and decimal—that
may be used for floating-point numbers, such as -.5, .5, and 5.5. One of these data
types would be a good choice for your grade point average (for example, 3.91), be-
cause for a grade point average you want to take into account the digits to the right
of the decimal point. After all, if you worked hard to earn a 3.91 grade point average,
you would not want the .91 ignored, thus making your grade point average 3.0.

NOTE The int and double data types can handle almost all numbers you may use
in a program. However, some numbers are too large for either data type to handle,
such as distances between galaxies in the universe. Also, some numbers may be
too small for the double data type to handle, such as the size of an atom. However,
these circumstances are relatively rare.

The bool (for Boolean) data type has only two possible values: True and False.
The bool data type would be a good choice to report whether or not you got into the
class, because there are only two alternatives, yes (True) and no (False).

Text Data Types

The string and char data types are used for text. A string is simply one or more
characters, usually enclosed in double quotes to indicate that a string is intended.
The characters may be alpha (A-Z or a-z), numeric (0-9), or virtually any other
character you can type from your keyboard. For example, the name "R2D2" is
a string even though it includes the numeric character 2. The string data type would
be a good choice for the teacher's name, such as "Genghis Khent," my students'
fond (?) nickname for me.

6s:



Visual C# 2005 Demystified

The char data type represents a single character, enclosed in single rather than
double quotes ('A', not "A") to indicate that it is a character rather than a string. As
with a string, a char may be alpha (A-Z or a-z), numeric (0-9), or virtually any
other character you can type from your keyboard. The char data type would be
a good choice for the grade you hope to earn in the class, such as an 'A.

There are other data types, some of which will be mentioned in later chapters.
However, these five data types—int, double, string, char, and bool—are the ones
principally used.

Data Types of Visual C# Properties
Visual C# 2005 needs to keep track of a lot of information. Take a look at the Prop-
erties window of the form in your project. The form has many different properties.
These properties determine the form's height and width, background color, caption,
visibility, and so on. Visual C# 2005 uses these properties when you start a project
to determine the form's size, background color, and so forth.

Each of these properties stores a particular value. The Height property stores
a number that represents the height of the form. The Text property stores a string
that represents the title displayed by the form. The Visible property stores a Bool-
ean value that represents whether the form is visible (True) or hidden (False).

You can access the value of many properties when designing your application
(design time) simply by viewing their values in the Properties window. You also can
access the values of many properties while your application is running through
code (run time). In Chapter 2, we changed the Text property of the form at run time,
and in Chapter 3, we changed the Text property of labels at run time.

However, whether you are at design time or run time, the new value of the prop-
erty must be of the correct data type. To confirm this, in the Properties window of
the form, type Jeff next to the Height property, which you can access by expanding
the Size property, as shown in Figure 4-1. Then press ENTER. A dialog box will dis-
play, as in Figure 4-2, warning you of an "Invalid property value."

Click the Details button of the dialog box in Figure 4-3. The dialog box then will
display the message, "Jeff is not a valid value for Int32." As discussed earlier, Sys-
tem.Int32 is the name used in the .NET Framework for the int data type.

That Visual C# 2005 prevents you from changing the value of the Height prop-
erty to "Jeff" makes sense. The height must be a number. Visual C# does not know
how to make the form of the height "Jeff."

66



CHAPTER 4 Storing Information—Data Types and Variables

Figure 4-1 Setting the Form's Height property to an invalid value.

Try exploring the properties of the form in the Properties window. You will see
there are many different data types for the different properties.

Figure 4-2 Invalid property value warning.

67



Visual C# 2005 Demystified

Figure 4-3 Details of "Invalid property value" warning.

Variables
You can store, access, and change the value of a property. However, you cannot
change what the property stands for. For example, the Height property of a Form
object represents the height of a form; you cannot change that property so it instead
represents the width of a form or the name of your favorite ice cream.

Instead, you can create a variable to store data of your choosing, such as the
name of your favorite ice cream, your social security number, and so on.

Declaring a Variable
Visual C# knows that the form's Height property stands for the height of the form
and that its data type is numeric, because the Height property is built into the .NET
Framework class library. However, because you, not Visual C#, create a variable,
you need to tell Visual C# information about the variable. You do so by declaring
the variable.

You declare a variable with the following syntax:

[Access Specifier] [Data Type] [Variable Name] ;

To make this syntax more understandable, here are two examples of declaring
a variable:

public int intScore;
private string strName;

68



CHAPTER 4 Storing Information—Data Types and Variables

In the first example, public is the access specifier, int is the data type, and intScore
is the variable name. In the second example, private is the access specifier, string is
the data type, and strName is the variable name. In either case, the statement declar-
ing the variable is terminated with a semicolon, as are other statements in C#.

The access specifier is used when the variable is declared as a class member, not
when it is declared locally. The section "Where Do I Declare a Variable?" later in
this chapter discusses declaring a variable locally or as a class member, and the ef-
fect of the various access specifiers.

You can choose any of the data types discussed in the preceding section on data
types, though logically, you should choose a data type that is appropriate for the
purpose of the variable. For example, if the variable represents someone's name,
you likely will choose string as the data type, whereas if the variable represents
someone's age, you instead may choose the int data type.

Naming a Variable

Variables, like people, have names. These names are used to identify the variable to
which you want to refer. There are only a few limitations on how you can name
a variable:

• The variable name cannot begin with any character other than a letter of
the alphabet (A-Z or a-z) or an underscore (_). Secret agents may be code-
named 007, but not variables.

• The variable name cannot contain embedded spaces, such as My Variable, or
punctuation marks other than the underscore character (_), such as a question
mark (?), a comma (,), a period (.), a backslash (\), a forward slash (/), or
a parenthesis.

• The variable name cannot be longer than 255 characters (not that you would
want to create a variable name that long).

• The variable name cannot be the same as a keyword, such as int or string,
because that would confuse the compiler.

• The variable name cannot have the same name as another variable of the same
scope, because that also would confuse the compiler. Scope is discussed later
in this chapter.

Besides these limitations, you can name a variable pretty much whatever you
want. However, it is a good idea to give your variables names that are meaningful.
If you name your variables varl, var2, var3, and so on, through var!7, you may find

69



Visual C# 2005 Demystified

it difficult to remember later the difference between var8 and var9. And if you find
it difficult, imagine how difficult it would be for another programmer who has to
make sense of your code.

In Chapter 3,1 recommended you use a naming convention when naming con-
trols. I similarly recommend that you use a naming convention when naming your
variables. Analogous to Chapter 3, the convention I suggest is to name a variable
with a prefix, usually all lowercase and consisting of three letters, that indicates its
data type, followed by a word, first letter capitalized, that suggests its purpose.

Here are some suggested prefixes for data types:

Here are some examples that use these prefixes:

• intScore Integer variable representing a score, such as on a test

• strName String variable representing a name, such as a person's name

• blnResident Boolean variable representing whether or not someone is
a resident

• dblGPA Double variable representing a student's GPA

If you need more than one word to describe the variable's purpose, you should
combine them into one word (because you cannot have embedded spaces) but cap-
italize the first letter of each word, such as blnDidUserQuit.

What Happens If I Don't Declare a Variable?

Visual C# 2005 requires you to declare a variable before you refer to it in code. For
example, in either a new or existing Windows application, insert the code

intVar = 10;

at the beginning of the class. This code, which attempts to assign 10 to intVar with-
out previously declaring intVar as a variable, will not compile:

public partial class Forml : Form

70

data type prefi

in in

string str

bool b

double dbl



CHAPTER 4 Storing Information—Data Types and Variables

intVar = 10;
// remainder of code

Instead, on the line

intVar = 10;

the compiler will complain with the following error message: "Invalid token '=' in
class, struct, or interface member declaration." Although this error message is not
very illuminating, it tells you that your code is wrong.

Where Do I Declare a Variable?
You can declare a variable in one of two places: inside a procedure or at the top of
the code module. Where you declare a variable affects its scope.

Local Variable

If you declare a variable inside a procedure, you can refer to that variable only in
that procedure. Stated in programming parlance, the variable is a local variable,
having scope only inside the procedure in which it was declared. No access speci-
fier is used for local variables.

Assume the code in the Load and Click event procedures of the form read as
follows:

private void Forml_Load(object sender, MouseEventArgs e)

int intVar;

private void Forml_Click(object sender, MouseEventArgs e)

intVar = 10;

When you attempt to compile your project, the result will be a compile error
("the name 'intVar' does not exist in the current context") concerning the line intVar =
10 inside the Click event procedure. The reason is that intVar only has scope inside
the Load event procedure in which it was declared, and therefore is not visible in
the Click event procedure. This is why no access specifier is used for local vari-
ables; access to them already is restricted to the procedure in which they are
declared.

71



Visual C# 2005 Demystified

By contrast, assigning 10 to intVar inside the Load event is okay because intVar
was declared inside that event procedure. Try this by deleting the line of code in the
Click event procedure of your form and changing the code in the Load event proce-
dure of your form so it reads as follows:

private void Forml_Load(object sender, MouseEventArgs e)

int intVar;
intVar = 10;

In this example, the variable intVar was declared in the first statement and assigned
a value in the second statement. You also can combine the two statements as follows:

int intVar = 10;

Combining the declaration and assignment of a variable in one statement is
called initialization.

NOTE When you compile a program that either declares or initializes a variable
(here, intVar) but thereafter does not use that variable, you may get the following
warning: "The variable 'intVar' is declared but never used." A warning is not
a compile error. The program still will run. Instead, a warning means that Visual
C# is bringing to your attention, as the programmer, that the issue may or may not
be a problem, and it is up to you to decide whether it is.

Class Member Variable

You also can declare a variable as a member of the class. In the following code snip-
pet, intMember is a class member variable because it is declared within the class but
not within an event procedure. By contrast, intLocal is a local variable because it is
declared within the Load event procedure for the form.

public partial class Forml : Form

int intMember;
// more code
private void Forml_Load

(object sender, MouseEventArgs e)

int intLocal;
intMember = 10;

// more code

72



CHAPTER 4 Storing Information—Data Types and Variables

Additionally, the statement intMember =10 within the Load event procedure for
the form compiles because intMember, as a class member variable, has scope
throughout the class. By contrast, the scope of intLocal is limited to the event pro-
cedure in which it was declared.

Also unlike local variables, class member variables may be declared with access
specifiers. Table 4-1 lists the access specifiers.

At this point in the book, we are writing code in only one class, so the access
specifier currently is unimportant as a practical matter. However, when you later
create more complex applications, the issue of the appropriate access specifier will
be revisited. As a general rule, you should use the most restrictive access specifier
consistent with the needs of your program, as discussed in the next section, "Why
Not Always Declare Variables as Class Members?"

If an access specifier is omitted, as in the following code, the access specifier
then is the default, private:

public partial class Forml : Form

int intMember; // public access implied
// more code

The following code illustrates the syntax of the various access specifiers:

public partial class Forml : Form

int intHeight; // private access implied
public int intWeight;
protected int intAge;
internal int intShoeSize;
protected internal int intShirtSize;

Table 4-1 Access Specifiers

73

Declared Accessibility Meaning

public Access is unrestricted (that is, this type of access is without
any of the limitations of the other access specifiers).

protected Access is limited to the class in which the variable was declared
or classes inherited from that class.

internal Access is limited to the classes in the current assembly
(or solution).

protected internal Combines access for protected and internal.

private Access is limited to the class in which the variable was declared.



Visual C# 2005 Demystified

private int intPinCode;
// more code

You may declare a class-level variable using initialization:

private int intPinCode = 111;

However, you can assign a value to an already-declared variable only inside a pro-
cedure; you cannot do so at the class level:

private int intPinCode;
intPinCode = 111; // compiler error

Instead, you will get the following compile error: "Invalid token '=' in class, struct,
or interface member declaration."

Why Not Always Declare Variables as Class Members?
Given the potential for compiler errors resulting from variables being referenced
outside their scope, the temptation is to give your variables the widest possible
scope, to make them class members instead of local, and to make their access pub-
lic. Resist temptation! Indeed, as a general rule, you should make the scope of your
variables the least possible.

One reason is, when you're debugging your code, if a variable can be accessed
only from one location in your program, you only need to check the code in that one
place. However, if the variable can be accessed from ten different locations in your
program, you need to check the code in all ten places, as well as determine the
effect of any interrelationships between the ten locations. In other words, the less
scope the variable has, the easier your task as a programmer. Why make your job
harder than it has to be?

Of course, there often will be circumstances in which a variable should be a class
member. There also will be circumstances in which a class member variable should
be public rather than private. The point is that in determining whether to declare
a variable locally in an event procedure or instead as a class member, or in deter-
mining the access specifier for a class member variable, you need to justify to
yourself any added scope you give the variable before you do so.

Constants
A constant is similar to a variable, except that a constant's value cannot change during
the life of the program.

74



CHAPTER 4 Storing Information—Data Types and Variables

Declaring a Constant

The syntax of declaring a constant is similar to declaring a variable (the syntax is
split into two lines because of the width of the printed page):

[Access Specifier] const [Data Type]
[Variable Name] = [value];

For example, the following statement declares a constant, MAX_SCORE, of the
int data type, whose value, 100, is the maximum score that can be obtained on a test:

public const int MAX_SCORE = 100;

Let's analyze the component parts of the constant declaration:

• public This is the access specifier. Access specifiers work the same way
with constants as they do with variables.

• const This is a keyword that indicates you are declaring a constant instead
of a variable.

• int This is the data type, again the same as with variables.

• MAX_SCORE This is the name of the constant. Constants, like variables,
have names. However, the naming convention for constants may be different
from the one for variables. By one convention which I use, constant names,
unlike variable names, do not have a prefix such as int or str to specify the
data type, but instead are entirely descriptive. Additionally, by convention,
the name consists of uppercase characters, so words are separated by an
underscore character (_), such as in BRIBE_PAID.

• = 100 This assigns a value to the constant. The main difference in syntax
between declaring a variable and declaring a constant, other than the const
keyword, is that a constant must be assigned a value when declared. The
reason why a constant must be assigned a value when it is declared is that
the value of a constant cannot be changed after it is declared. Therefore,
a constant must be given a value when it is declared; otherwise, it can never
be given a value at all. Declaring a constant without assigning a value (public
const int MAX_SCORE;) will result in the following compiler error: "A const
field requires a value to be provided."

Where Do I Declare a Constant?
You can declare a constant locally or as a class member. The reasons why I recom-
mend you declare a variable locally, unless you have a specific reason to declare the

75



Visual C# 2005 Demystified

variable as a class member, don't apply to constants because, as the next section
shows, you can't change the value of a constant after you declare it.

Where Do I Assign a Value to a Constant?
The answer is that you only can assign a value to a constant when you declare it
(that is, via initialization).

Because a constant's value cannot be changed during the life of the program,
even attempting to assign a value to a constant will cause an error. Try this code in
the Windows application you have been using in this chapter. The result will be the
following compile error: "Invalid token '=' in class, struct or interface member
declaration."

public partial class Forml : Form

public const int MAX_SCORE = 100;
// more code
private void Forml_Load

(object sender, MouseEventArgs e)

MAX_SCORE = 200; //error

I/ more code

Why Use Constants?
Although it is important to know how a constant differs from a variable and how to
declare constants, you may be wondering, Why use constants at all? The reason is
that constants make your code easier to read and maintain.

Although constants are useful for values that never will change, constants per-
haps are even more useful for values that someday may change. For example, we've
all paid sales tax on purchases. Assuming the tax rate is 8%, the amount of the tax
is price * .08. Thus, throughout your code for a store you may have calculation
such as the following:

[price variable] * .08;

One day the government decides to increase the sales tax to 8.25%. Now you
have to find all the places in your code where you referred to the sales tax rate and
change all those references from .08 to .0825. This not only is a pain, but the poten-
tial for error is obvious.

76



CHAPTER 4 Storing Information—Data Types and Variables

Alternatively, you could have declared the sales tax rate as a constant:

const double SALES_TAX_RATE = .08;

Thus, the tax calculation in your code would be this:

[price variable] * SALES_TAX_RATE;

Then, when the government increases the sales tax to 8.25%, you only have to make
the change in one place in your code, and you're done:

const double SALES_TAX_RATE = .0825;

Conclusion
Most programs need to keep track of information. That information may be
about the subject of the program, such as the names and addresses of customers,
or it may be about the program itself, such as the height, caption, or visibility of
a form.

Data comes in different forms. Data may be numeric (such as the height of a
form), text (such as the caption on a form), or Boolean (such as whether a form is
visible). The type of information, whether number, string, or Boolean, is referred to
as the data type.

Although the .NET Framework class library has many built-in properties to store
data, Visual C# 2005 also enables you to create your own information storage loca-
tions, called variables. Variables must be declared before they are used.

Variables may be declared at the top of the code module, in which case they are
called module level and will be available to all procedures in that module. Variables
also may be declared inside a procedure, in which case they are called local and
their scope is limited to the procedure in which they were declared.

Finally, certain values never change during the life of the program. These
unchanging values are represented by constants, which are declared similarly to
variables. However, unlike variables, constants must be initialized when they
are declared, and their value cannot thereafter change during the lifetime of the
program.

In this chapter, you used the assignment operator to provide values to variables.
In the next chapter, you will learn about arithmetic operators, which enable you to
use the computer's unparalleled ability to quickly and accurately perform mathe-
matical calculations.

77



Visual C# 2005 Demystified

Quiz
1. What does a data type signify?

2. What is a floating-point number?

3. Can you change the data type of a built-in property of a form, such as
Height or Text?

4. What is the purpose of a variable?

5. Does C# require you to declare a variable before you refer to it in code?

6. What is a local variable?

7. What is a class member variable?

8. Do you have to assign a value to a variable when you declare it?

9. What is a difference between a constant and a variable?

10. Do you have to assign a value to a constant when you declare it?

78



CHAPTER

It is pnly fair that since my students have to listen to my recycled jokes, you have
to re^d my recycled introductions. Back in Chapter 2, I complained that nowa-
A"~- "*udents don't need to be able to calculate arithmetic in their heads because
they cb rely on calculators. However, despite my complaining about calculators,

5

79

Letting the
Program Do
the Math-
Arithmetic
Operators

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

they certainly are far faster and more accurate than I could ever hope to be. The
reason is that a calculator is a computer, and computers are superstars when it
comes to calculating.

You harness the computer's calculating ability using arithmetic operators. You
will learn in this chapter how to enable your applications to make fast and accurate
calculations using arithmetic operators. At the end of this chapter, you will put what
you learned into practice with the Change Machine project, a type of calculator that
converts a number of pennies into dollars, quarters, dimes, nickels, and pennies.

Arithmetic Operators
Visual C# 2005 can do your arithmetic, and because a computer is involved, it can do
so much faster and more accurately than any human could! Even better, the code is
relatively easy to write, because the syntax for arithmetic is quite similar to how you
would write the arithmetic calculation on paper or how you would use a calculator.

Table 5-1 lists the arithmetic operators.

The Addition Operator

The addition operator works exactly as you would expect it to with numeric values.
In the following code snippet, the third line of code adds the values of the variables
a and b and assigns the sum, 5, to variable a, changing its value from 2 to 5:

int a = 2;
int b = 3;
a = a + b;

The addition operator also works with string variables by concatenating, or ap-
pending, one string to another. In the following code snippet, the third line of code

Operator

+

-
*

/

%

Name

Addition

Subtraction

Multiplication

Division

Modulus

What It Does

Performs addition.

Performs subtraction.

Performs multiplication.

Performs division; the remainder is preserved
and expressed as a decimal unless both
operands are whole-number data types.

Used to obtain the remainder from division.

Table 5-1 Arithmetic Operators

80



CHAPTER 5 Letting the Program Do the Math

adds the values of the variables a and b and assigns the concatenated string,
"JeffKent", to variable a, changing its value from "Jeff to "JeffKent":

string a = "Jeff";
string b = "Kent";
a = a + b;

The Subtraction Operator

The subtraction operator also works exactly as you would expect it to with numeric
values. In the following code snippet, the third line of code subtracts the value of
variable b from variable a and assigns the difference, -1, to variable a, changing its
value from 2 to -1:

int a = 2;
int b = 3;
a = a - b;

The Multiplication Operator

The multiplication operator also works exactly as you would expect it to with nu-
meric values. In the following code snippet, the third line of code multiplies the
value of variable a by the value of variable b and assigns the product to variable a,
changing its value from 2 to 6:

int a = 2;
int b = 3;
a = a * b;

The Division Operators

Whereas there is only one addition, subtraction, and multiplication operator, there
are two division operators. The operators / and % both involve division. However, the
two division operators differ on how they report the results of the division. The %
operator, also referred to as the modulus operator, reports only the remainder. The /
operator reports the decimal equivalent of the quotient and remainder unless integer
division (explained next) is involved, in which case it reports only the quotient.

NOTE For those of us whose arithmetic classes are far in the past, assuming the
operation 11 divided by 4, the result of the division is 2, remainder 3, with 2 being
the quotient and 3 the remainder.

81



Visual C# 2005 Demystified

Let's start first with the / operator by looking at the following code snippet:

double a = 11;
double b = 4;
a = a / b;

The value of a after division is 2.75, the result you would expect.
Let's now change this example so both a and b are int instead of double variables:

int a = 11;
int b = 4;
a = a / b;

The value of a after division is 2, not 2.75. The reason is that if both operands of the
division (here, 11 and 4) are int (or another whole-number data type), the division
operator reports only the quotient, 2, and drops the remainder, 3.

This effect of division dropping the remainder when both operands are a whole
number data type is called integer division. Note that integer division does not
round off. If it did, 11/4 would be 3, not 2. Because integer division reports only
the quotient, the result necessarily is a whole number.

Let's move on now to the % operator by looking at the following code snippet:

int a = 11;
int b = 4;
a = a % b;

The value of a after division is 3, which is the remainder.

Operator Precedence
So far the arithmetic expressions have been simple, involving just one arithmetic
operator. However, sometimes arithmetic expressions are more complex, involving
two or more arithmetic operators. For example, does the arithmetic expression 2 +
3*4 equal 20 (by performing addition before multiplication) or 14 (by performing
multiplication before addition)?

One and only one of these two answers can be correct. Rules of operator prece-
dence are necessary to determine which of the two answers is correct.

Table 5-2 lists the order of precedence, or priority, among arithmetic operators.

Priority

1

2

3

Operator(s)

-

*, /, %

+, -

Description

Unary negation operator (not subtraction)

Multiplication, division, and modulus

Addition and subtraction

Table 5-2 Operator Precedence

82



CHAPTER 5 Letting the Program Do the Math

Thus, 2 + 3*4 equals 14, because multiplication has a higher priority than addi-
tion and therefore is performed first.

Because multiplication and division have equal priority, when both operators
occur together in an expression, priority goes from left to right, so whichever of the
two operators is on the left is performed before the one on the right. The same left-
to-right priority rule applies between addition and subtraction. Priority, either left to
right or right to left, between operators of equal precedence is called associativity.

Parentheses can be used to override the order of precedence and force some parts
of an expression to be evaluated before others. Operations within parentheses are
always performed before those outside the parentheses. Thus, (2 + 3) * 4 equals 20,
not 14, because the parentheses force addition to be performed first.

Combining Arithmetic and Assignment Operators

As discussed earlier in this chapter, in the following code snippet, the third line of
code adds the values of the variables a and b and assigns the sum, 5, to variable
a, changing its value from 2 to 5:

int a = 2;
int b = 3;
a = a + b;

A precedence issue arises in the third line of code. Even though there is only one
arithmetic operator, there are two operators—one arithmetic and the other assign-
ment. However, the precedence issue is easily resolved. Addition is performed before
assignment because all arithmetic operators have precedence over the assignment
operator.

The third statement can be shortened and still accomplish the same result:

a += b;

The combined arithmetic/assignment operators are shown in Table 5-3.

Operator

+=

-=
*—

/=

%=

Use

a += b;

a-=b;

a*=b;

a /=b;

a %= b;

Alternative

a = a + b;

a = a- b;

a = a * b;

a = a / b ;

a = a % b;

Table 5-3 Combined Arithmetic/Assignment Operators

83



Visual C# 2005 Demystified

These shorthand arithmetic/assignment operators make your code more read-
able. The purpose of the following statement is to increment (increase by 1) the
value of variable a:

a += 1 ;

The purpose of the preceding statement is more readable (as well as shorter to type)
than the following statement:

a = a + 1;

Increment and Decrement Operators

The last code snippet in the preceding section uses the combined arithmetic and
assignment operator to increase the value of a by 1 :

a += 1;

The same result could be achieved by the increment operator ++ :

a + +;

The increment operator can follow the value it is increasing, as in the last example,
or precede it, as follows:

Prefix increment refers to the increment operator preceding the value it is incre-
menting. Postfix increment refers to the increment operator following the value it is
incrementing. Here are two examples:

++a; //prefix increment
a++; //postfix increment

The only difference between prefix and postfix increment is precedence. If the
increment operator is used in the same statement as other operators, incrementing
occurs first if prefix, last if postfix.

The counterpart to the increment operator is the decrement operator, -. The sec-
ond and third statements, using prefix and postfix decrement, are equivalent to the
first, which uses the combined subtraction and assignment operator:

a -= 1;
--a;
a + +;

Prefix and postfix work the same way with the decrement operator as they do the
increment operator, affecting precedence with other operators.

84

++a:



CHAPTER 5 Letting the Program Do the Math

The increment and decrement operators often are used with loops, which are
covered in Chapter 8.

The Parse Method
As discussed earlier in this chapter, the addition operator works with string values
as well as with numeric values. With string values, the addition operator concate-
nates, or appends, one string to another.

The ability of the addition operator to perform double-duty with string as well as
numeric values can backfire on you. To illustrate, assume your application has two
TextBox controls, txtOpl and txtOp2, in which the user types two numbers to be
added, with the sum displayed in a Label control named IblResult. The application
may use the following code:

IblResult.Text = txtOpl.Text + txtOp2.Text;

The user wants to add 2 + 2 and therefore types 2 in each text box. However, the
answer is not the expected 4, but instead 22! This is not new math. Instead, Visual
C# assumed you intended to concatenate two strings ("2" + "2" = "22") instead of
adding two numbers (2 + 2 = 4) because the data type of the Text property of the
two text boxes is a string, not a number.

The solution is to explicitly direct, through code, that Visual C# convert the string
representation of these integers (the Text properties of txtOpl and txtOp2) into ac-
tual integer values before performing addition and then assign that sum to be displayed
in IblResult. This is the converse of the ToString method discussed in Chapter 3,
which converted an integer into the string representation of an integer.

You can accomplish this conversion through the Parse method of the Int32
structure. As discussed in Chapter 4, the int keyword, for an integer data type, is
an alias for the System.Int32 data type in the .NET Framework. A structure is quite
similar to a class. Although there are differences between a structure and a class,
for present purposes they are essentially the same, so the two terms will be used
interchangeably.

The Parse method of the Int32 structure converts its argument, the string repre-
sentation of an integer, into an actual integer value before that value is assigned to
an integer variable. The first statement in the following code snippet converts the
string representations of both of the two integers (the Text properties of txtOpl and
txtOp2) to actual integer values before adding those values and assigning the resulting
sum to another integer variable, intSum. The second statement uses the ToString

85



Visual C# 2005 Demystified

method to convert the integer value into its string representation before assigning it
to the Text property of a Label control:

int intSum = Int32.Parse(txtOpl.Text) +
Int32.Parse(txtOp2.Text);

IblResult.Text = intSum.ToString();

Now2 + 2 = 4, not22!

NOTE The Double class also has a Parse method. It converts the string
representation of a floating-point number into an actual number (for example,
"123.45" into 123.45).

Class Methods
In previous chapters we have discussed how classes have properties and events.
A property is a characteristic of an object of a class, such as the Text property of the
Button class being the text displayed on the button, such as "Calculate" or "Clear."
An event is something that happens to an object of a class, such as the Click event
of the Button class being the event that occurs when a button is clicked.

Parse and ToString are not properties or events, but methods of a class or structure,
such as Int32. A method is something an object of a class does. For example, as ob-
jects of the Person class, our methods could include breathe, walk, talk, and so on.
The Form class (among others) also has methods, as you will learn in later chapters.

Change Machine Project
My mother was not above using a change machine to distract cranky or mischie-
vous young grandchildren. The youngsters poured hundreds of pennies into the top
of the machine, and they watched with fascination (fortunately youngsters are eas-
ily fascinated) as the machine sorted the pennies into amounts of change that could
be taken to the bank and exchanged for dollars, quarters, and so on. The youngsters
were motivated as well as fascinated, because guess who got to keep the quarters?

Your project will ask the user to input the number of pennies. You can assume the
user will input a positive whole number and then click the Calculate button. The
code then will output in controls the number of dollars, quarters, dimes, nickels,
and pennies. Figure 5-1 shows the result of running the program and inputting 392
for the number of pennies:

86



CHAPTER 5 Letting the Program Do the Math

Figure 5-1 Change Machine project in action.

Creating the Project
Implement the following steps to create the application:

1. Start a new Windows application. I called my project name Change
Machine.

2. Using the Toolbox, add controls to the form so it appears as shown in
Figure 5-1. All the controls are labels except for the two buttons on the
bottom of the form and the text box across from the label caption "Enter
pennies."

3. Using the Properties window, change the Name property of the TextBox
control to txtPennies and then delete any value in its Text property.

4. Using the Properties window, change the AutoSize property of all labels
from the default (True) to False. This can be done by selecting all the labels
first, which changes the AutoSize property of each. This step will make
easier the customization of the labels in the following steps.

5. Using the Properties window, change the Text properties of the labels on
the left so they are captioned as they appear in Figure 5-1.

6. Using the Properties window, change the Name properties of the labels on
the right to IblDollars, IblQuarters, IblDimes, IblNickels, and IblPennies,
respectively.

7. Again using the Properties window, change the BackColor property of the
labels on the right to White (so they will be more visible after we delete their

87



Visual C# 2005 Demystified

text in the next step). When you click the value of the BackColor property,
a tabbed dialog box appears. Choose the Custom tab and then click on a box
that is white.

8. Also using the Properties window, delete any value in the Text properties
of the labels on the right so they are blank, to avoid these labels' names
displaying as the labels' text when the project first starts up.

9. Using the Properties window, change the Name property of the button
on the left to btnCalculate and its Text property to Calculate. Similarly,
change the Name property of the button on the right to btnClear and its Text
property to Clear.

10. Create an event procedure stub for the Click event of btnCalculate and
write the following code (to be explained in the following section, "The
Algorithm") inside the event procedure:

private void btnCalculate_Click
(object sender, EventArgs e)

int intLeftover;
intLeftover = Int32.Parse(txtPennies.Text);
IblDollars.Text = (intLeftover / 100).ToString();
intLeftover = intLeftover % 100;
IblQuarters.Text = (intLeftover / 25).ToString();
intLeftover = intLeftover % 25;
IblDimes.Text = (intLeftover / 10).ToString();
intLeftover = intLeftover % 10;
IblNickels.Text = (intLeftover / 5).ToString();
intLeftover = intLeftover % 5;
IblPennies.Text = intLeftover.ToString();

11. Create an event procedure stub for the Click event of btnClear and write the
following code inside the event procedure:

private void btnClear_Click(object sender, EventArgs e)

txtPennies.Text = "";
IblDollars.Text = "";
IblQuarters.Text = "";
IblDimes.Text = "";
IblNickels.Text = "";
IblPennies.Text = "";

88



CHAPTER 5 Letting the Program Do the Math

Figure 5-2 Form at run time after the Clear button is clicked.

This code simply resets the Text properties of the TextBox and the Label controls
on the right to blank, as they were when the application first started. The result is
shown by Figure 5-2.

The Algorithm

As you learned in Chapter 1, the purpose of Visual C# 2005, and indeed program-
ming languages generally, is to enable you, as the programmer, to give instructions
to the computer to carry out. Before you can formulate those instructions in code,
you first need to be able to articulate those instructions in English or whatever
other language you think in.

To write the Change Machine project, you need to come up with a step-by-step
logical procedure to convert the pile of pennies into neater stacks of dollars, quar-
ters, dimes, nickels, and pennies. A step-by-step logical procedure for solving a
problem is called an algorithm, pronounced "Al Gore rhythm."

One algorithm for converting the pile of pennies into dollars, quarters, dimes,
nickels, and pennies is to first determine how many stacks of 100 pennies you can
make from the pile. Each stack of 100 pennies would then represent one dollar. You
then would work with the number of pennies left over to determine the number of
quarters, dimes, nickels, and pennies.

For example, assume there are 392 pennies in the pile. You might use the following
steps to determine the number of quarters, dimes, nickels, and pennies in 392 pennies:

• There are 100 pennies in a dollar. You can make three stacks of 100 pennies
from 392 pennies. That means there are three dollars, with 92 pennies left

89



Visual C# 2005 Demystified

over, from which you will determine the number of quarters, dimes, nickels,
and pennies.

• There are 25 pennies in a quarter. You can make three stacks of 25 pennies
from 92 pennies. That means there are three quarters, with 17 pennies left
over, from which you will determine the number of dimes, nickels, and
pennies.

• There are ten pennies in a dime. You can make one stack of ten pennies
from 17 pennies. That means there is one dime, with seven pennies left
over, from which you will determine the number of nickels and pennies.

• There are five pennies in a nickel. You can make one stack of five pennies
from seven pennies. That means there is one nickel, with two pennies left
over, which is the number of pennies.

Let's now convert this algorithm from English to code.
The first step is to store the number of pennies entered by the user in the text box

txtPennies into the int variable intLeftover. The following code does this, first using
the Parse method of the Int32 structure (discussed in the earlier section "The Parse
Method") to convert the string representation of an integer (the Text property of
txtPennies) to the actual integer value before that value is assigned to the int vari-
able (intLeftover):

intLeftover = Int32.Parse(txtPennies.Text);

When you divide the number of pennies (stored in intLeftover) by 100 (the num-
ber of pennies in a dollar), the quotient is the number of dollars in the pennies, and
the remainder is the number of pennies left over. This division is integer division,
because both intLeftover and 100 are integers, so it provides you with the quotient
but no remainder. The % operator provides you with the remainder:

IblDollars.Text = (intLeftover / 100).ToString();
intLeftover = intLeftover % 100;

NOTE As explained in Chapter 3, the ToString method converts a number
(intLeftover /100) into the string representation of that number so it can be
displayed as text in the Label control.

The quotient, representing the number of dollars in the pile of pennies, is dis-
played in IblDollars. The remainder is stored in intLeftover, which will be used in
the code to determine the number of quarters, dimes, nickels, and pennies.

Next, you follow the same procedure, with two differences. First, you are not divid-
ing the total number of pennies, but instead the number of pennies left over,

90



CHAPTER 5 Letting the Program Do the Math

represented by the current value of the variable intLeftover. Second, you are not divid-
ing by 100, but instead 25, the number of pennies in a quarter. We already have
determined the number of dollars in the pile of pennies. Now we want to determine the
number of quarters in the remaining pennies. Accordingly, the code reads as follows:

IblQuarters.Text = (intLeftover / 25).ToString();
intLeftover = intLeftover % 25

The remainder of the code follows the same process, except that next the divisor
is 10, the number of pennies in a dime, then 5, the number of pennies in a nickel:

IblDimes.Text = (intLeftover / 10).ToString();
intLeftover = intLeftover % 10;
IblNickels.Text = (intLeftover / 5).ToString();
intLeftover = intLeftover % 5;

The number of pennies left over after division by 5 cannot be converted into any
higher change, so there is no need for further division:

IblPennies.Text = intLeftover.ToString();

You frequently will need to create and implement algorithms in writing a com-
puter program. Creating algorithms is a skill that can be developed from any field
that requires analytical thinking, including but not limited to mathematics as well
as computer programming.

Conclusion
Computers, in addition to being able to store vast amounts of data, can calculate far
faster and more accurately than we can. You harness the computer's calculating
ability using arithmetic operators. Most of the arithmetic operators, such as those
for addition and multiplication, work the same as the arithmetic operators you use
with pencil and paper. However, there are two division operators: one the familiar /
operator, the other the modulus operator, %. The / operator reports the decimal
equivalent of the quotient and remainder (as does the / operator you use with pencil
and paper or a calculator) unless both operands (dividend and divisor) are a whole
number data type such as an int, in which case it's called integer division and
reports only the quotient. The % operator reports only the remainder.

In the next chapter, you will learn about relational and logical operators, which
enable your program to take different actions depending on choices the user makes
while the program is running.

91



Visual C# 2005 Demystified

Quiz
1. Which arithmetic operator works with string as well as numeric variables?

2. What is the significance of operator precedence?

3. How can you override default operator precedence?

4. Which operator increases the value of a numeric variable by one?

5. What is integer division?

6. Which operator provides only the remainder resulting from division?

7. Which operator has precedence, an arithmetic operator or the assignment
operator?

8. What is the purpose of the Parse method of the Int32 class?

9. What is the purpose of the ToString method of the Int32 class?

10. What is a method of a class?

92



Can you imagine going to a restaurant that had only one item on its menu? Al-
tho'Ugh this would make it easy for you to decide what you want to order, this
one-item restaurant likely would not be in business long, because people like choic-
es.  ndeed, life is full of choices—some pleasant (a good menu) and some not so
pleaLant (do you want to pay by cash, check, or credit card),

UP to now the programs we have discussed have been like the one-item restaurant,
offering no choices. However, as programs become more sophisticated, they often

6
CHAPTER

Making
Comparisons—

Comparison and
Logical Operators

93
Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

branch in two or more directions. For example, a calculator program would first give
the user a choice of whether they want to add, subtract, multiply, or divide. The code
then would need to determine which choice the user made before performing the in-
dicated arithmetic operation, which would be different, and lead to a different result,
depending on the user's choice. The code would determine the user's choice by com-
paring it with the alternatives—addition, subtraction, multiplication, or division. You
will learn in this chapter how to make that comparison using comparison operators.

A comparison operator can make only one comparison at a time. Sometimes you
need to combine several comparisons. For example, some years ago car washes had
Ladies Free Wednesdays, which meant that on Wednesdays (evidently a slow day
for car washes) women could have their cars washed for free. The car wash would
need to make two comparisons to determine eligibility for a free car wash. The
customer's gender must be equal to female, and the day of the week must be equal
to Wednesday. Either comparison just by itself would not be enough to determine
eligibility for a free car wash; the two comparisons must be done together. You will
learn in this lesson how to combine several comparisons using logical operators.

The comparison and logical operators lay the groundwork for the following
chapters on control structures and loops, which use these operators to determine
whether a condition, or a combination of conditions, evaluates as true or false.

Debugging
Before discussing the comparison and logical operators, let's take a brief detour
into debugging. The immediate benefit of debugging is that it will enable you to test
code in this chapter without going to the trouble of adding controls to your form.
The longer-term benefit of debugging, which you will use in later chapters, is that
it enables you to identify and solve "bugs," a term that usually means a logic error
in your code (such as 2 + 2 = 22 instead of 4).

NOTE The origin of the term "bug" is in dispute. One story is that during thepre-
PC era, when mainframe computers ruled the earth, a mainframe was producing
illogical results. The programmers checked and rechecked their punch cards but
could find no errors. In desperation, they opened up the mainframe. Inside they
saw a moth fried on one of the circuits.

One useful class for debugging is named, not surprisingly, the Debug class. The
Debug class is part of the System.Diagnostics namespace. Accordingly, you should
import this namespace at the beginning of your code as follows:

using System.Diagnostics;

94



CHAPTER 6 Making Comparisons

Now you can refer in your code just to Debug rather than the much longer System.
Diagnostics.Debug.

The Debug class has a WriteLine method. The syntax of the WriteLine method is

Debug.WriteLine(parameter)

The WriteLine method outputs the value of its parameter to the Output window,
which you may display with the menu command View | Other Windows | Output.
For example, the following code outputs 10 to the Output window:

private void Forml_Load(object sender, EventArgs e)

int A = 10;
Debug.WriteLine(A); // Outputs 10

The WriteLine method only outputs to the Output window if you start your ap-
plication with the Debug | Start Debugging menu command. There will be no output
to the Output window if you instead start your application with the Debug | Start
Without Debugging menu command. This is logical because you need to be debug-
ging to use the Debug class.

Finally, the output to the Output window from the WriteLine output usually is not
the only output in the Output window. The Output window normally also contains
information generated by Visual C# 2005. As Figure 6-1 shows, the output to the
Output window from WriteLine usually is the last output in the Output window.

Figure 6-1 Output window.

95



Visual C# 2005 Demystified

When you're finished debugging, choose Stop Debugging from the Debug menu
to stop the running of the application.

Comparison Operators
Often your programs will need to compare two values. The comparison may be
whether the two values are equal, or whether one value is greater than (or less than)
another. Regardless of which comparison is being made, the comparison may have
only one of two possible results, either true or false.

The earlier example of a calculator program was used to show one use of com-
parisons—to determine which of several choices the user has made. Comparisons
also are used for error prevention. For example, in the calculator program, before
performing division, the program should compare the divisor to zero, because divi-
sion by zero is illegal and, if performed, will result in a run-time error. If the divisor
is equal to zero, the user should be warned and the division not performed. Other-
wise, the division may be performed.

Comparison operators usually are used to compare numerical values, but some
of them also may be used to compare strings, as discussed later in this chapter.

The syntax of a comparison is shown here:

[Expressionl] [comparison operator] [Expression2];

In the following discussion, the term "left expression" refers to the expression on
the left side of the comparison operator (Expressionl in the sample syntax). Simi-
larly, the term "right expression" refers to the expression on the right side of the
comparison operator (Expression2 in the sample syntax).

The left and right expressions both may be anything that has a value that can be
compared: literals, constants, variables, or properties. However, the data type of the
two expressions should be the same.

Numeric Comparison Operators

The following list describes the comparison operators used to compare numbers
and the circumstances under which they evaluate to true or false:

• The < (less than) operator results in the expression being true if the left
expression is less than the right expression, such as 4 < 5, but false if the
left expression is greater than or equal to the right expression, such as 5 < 4
or 5 < 5.

96



CHAPTER 6 Making Comparisons

• The <= (less than or equal to) operator results in the expression being true
if the left expression is less than or equal to the right expression, such as
4 <= 5 or 5 <= 5, but false if the left expression is greater than the right
expression, such as 5 <= 4.

• The > (greater than) operator results in the expression being true if the left
expression is greater than the right expression, such as 5 > 4, but false if the
left expression is less than or equal to the right expression, such as 4 > 5 or
5>5.

• The >= (greater than or equal to) operator results in the expression being
true if the left expression is greater than or equal to the right expression,
such as 5 >= 4 or 5 >= 5, but false if the left expression is less than the right
expression, such as 4 >= 5.

• The == (equality) operator results in the expression being true if the left
expression is equal to the right expression, such as 5 == 5, but false if the
left expression is less than or greater than the right expression, such as
4 == 5 or 5 == 4.

NOTE A common rookie mistake is to use =for equality comparison. The = operator
is the assignment operator; it does not compare for equality.

The != (inequality) operator works the opposite of the equality operator. The
inequality operator results in the expression being true if the left expression is less
than or greater than the right expression, such as 4 != 5 or 5 != 4, but false if the left
expression is equal to the right expression, such as 5 != 5.

Try running the following code in a new or existing project. The output for each
Debug.WriteLine statement, true or false, is in the comment accompanying that
line:

private void Forml_Load(object sender, EventArgs e)

int A = 10;
int B = 8;
int C = 10;
Debug.WriteLine(A > B); // Outputs True
Debug.WriteLine(A >= B); // Outputs True
Debug.WriteLine(A == B); // Outputs False
Debug.WriteLine(A != B); // Outputs True
Debug.WriteLine(A < B); // Outputs False
Debug.WriteLine(A <= B); // Outputs False
Debug.WriteLine(A > C); // Outputs False
Debug.WriteLine(A >= C); // Outputs True

97



Visual C# 2005 Demystified

Debug.WriteLine(A == C); // Outputs True
Debug.WriteLine(A != C); // Outputs False
Debug.WriteLine(A < C); // Outputs False
Debug.WriteLine(A <= C); // ' Outputs True

String Comparisons

Programs often need to make string comparisons. For example, code that authenti-
cates users who are logging in needs to compare the user name entered with a list
of user names, and the password entered with the password for that user name.
Another example is the Find feature in Microsoft Word, Internet Explorer, and oth-
er applications, which enables you to search text for specific words.

You can use two of the comparison operators, equality and inequality, with
strings. For example, "Jeff" == "Jeff" evaluates to true, "Jeff" != "Jeff" evaluates
to false, and "Jeff" == "Kent" evaluates to false.

NOTE Conversely, the other comparison operators (>, >=, <, and <=) cannot be
used with strings.

The following code shows the use of the equality and inequality comparison
operators with strings:

private void Forml_Load(object sender, EventArgs e)

string namel = "Jeffrey";
string name2 = "Jeffery";
string name3 = "Jeff";
string name4 = "Jeffrey";
Debug.WriteLine(namel == name2); //outputs False
Debug.WriteLine(namel != name3); //outputs True
Debug.WriteLine(namel == name4); //outputs True

Let's discuss how the equality and inequality operators work behind the scenes.
String comparisons are based on positive integer values of the characters in the

string. For the English language, the character set adopted by ANSI (American
National Standards Institute) and ASCII (American Standards Committee for Infor-
mation Interchange) use the numbers 0-255 to cover all alphabetical characters
(upper- and lowercase), digits and punctuation marks, and even characters used in
graphics and line drawings. Table 6-1 lists the ASCII values of commonly used
characters:

98



CHAPTER 6 Making Comparisons

Characters

0 through 9

A through Z

a through z

Values

48-57

65-90

97-122

Comments

0 is 48; 9 is 57.

A is 65; Z is 90.

A is 97; Z is 122.

Table 6-1 ASCII Values of Commonly Used Characters

NOTE The result of the comparison of string representations of numbers may not
always be what you expect. As you might expect, "5" is greater than "4" because
the ASCII value of 5 (53) is greater than the ASCII value of 4 (52). However, "5"
also is greater than "4444" for the same reason.

Precedence
The comparison operators (<, >, <=, and >=) are of equal precedence and are eval-
uated from left to right.

The equality and inequality operators (== and !=) are below the comparison
operators in precedence, but are of equal precedence between themselves. They
also are evaluated from left to right.

The comparison, equality, and inequality operators all rank lower than the arith-
metic operators discussed in the previous chapter and higher than the logical
operators discussed in the next section.

Logical Operators
Sometimes a first comparison and a second comparison both must evaluate as true
for an action to take place. For example, a person may vote only if their age is at
least 18 and they are a citizen:

• First comparison: age >= 18

• Second comparison: USA citizenship == true

• Only if both comparisons are true: Allowed to vote

• If either comparison is false: Not allowed to vote

By contrast, at other times it is sufficient if either a first comparison or a second
comparison evaluates as true for an action to take place. For example, to be admitted

99



Visual C# 2005 Demystified

to a community college, the prospective student must be either at least 18 years old
or have a high school diploma:

• First comparison: age >= 18

• Second comparison: High school diploma == true

• If either comparison is true: Eligible for admission

• Only if both comparisons are false: Not eligible for admission

The combining of comparisons in either the conjunctive (and) or disjunctive (or)
involves logical operators.

The && Operator

As Table 6-2 shows, the && operator performs an "And" comparison and returns
false unless both comparisons are true.

The following code shows the && operator in action:

private void Forml_Load(object sender, EventArgs e)

int A = 10;
int B = 8;
int C = 6;
Debug. WriteLine (A > B && B > C) ;
Debug. WriteLine (A > B && C > B) ;
Debug. WriteLine (B > A && B > C) ;

// Outputs True
// Outputs False
// Outputs False

In the first use of the && operator (A > B && B > C), 10 > 8 is true, and 8 > 6
is true. Because both expressions are true, the output is true.

By contrast, in the second use of the && operator (A > B && C > B), whereas
10 > 8 is true, 6 > 8 is false. Because only one expression is true, and the other is
false, the output is false.

Similarly, in the third use of the && operator (B > A && B > C), 8 > 10 is false,
so even though 8 > 6 is true, because one of the two expressions is false, the output

If First Expression Is

true

true

false

false

And Second Expression Is

true

false

true

false

Result Is

true

false

false

false

Table 6-2 The && Operator

100



CHAPTER 6 Making Comparisons

is false. Actually, because the first expression is false, the second expression is not
evaluated. The overall expression will be false whether the second expression is
true or false.

Of course, if both expressions are false, the output is false.
The voting eligibility example discussed earlier is a good case of when you

would use the && operator, because both conditions (adult age and citizenship)
must be true or the result (eligibility to vote) is false.

The & Operator

The & operator is almost identical to the && operator in comparing two Boolean
expressions. The only difference is that if the first expression is false, the second
expression still is evaluated. By contrast, with the && operator, if the first expres-
sion is false, the second expression is not evaluated, because the overall expression
will be false whether the second expression is true or false.

Because with the && operator the evaluation of the second expression is condi-
tional on the evaluation of the first expression being true, the && operator is referred
to as the conditional And operator, whereas the & operator is referred to as the
logical And operator.

The 1 1 Operator

As Table 6-3 shows, the || operator performs an "Or" comparison and returns true
unless both comparisons are false.

The following code, which is the same as used for the && operator (except || is
substituted for &&), shows the || operator in action:

private void Forml_Load(object sender, EventArgs e)

int A = 10;
int B = 8;
int C = 6;
Debug.WriteLine(A > B | B > C); // Outputs True

If First Expression Is

true

true

false

false

And Second Expression Is

true

false

true

false

Result Is

true

true

true

false

Table 6-3 The || Operator

101



Debug.WriteLine(A >
Debug.WriteLine(B >

B

A

Visual C# 2005 Demystified

C > B); // Outputs True
B > C); // Outputs True

In the first use of the || operator (A > B || B > C), 10 > 8 is true, and 8 > 6 is true.
Because both expressions are true, the output is true.

In the second use of the || operator (A > B || C > B), 10 > 8 is true, so even though
6 > 8 is false, because at least one expression is true, the output is true. Actually,
because the first expression is true, the second expression is not evaluated. The
overall expression will be true whether the second expression is true or false.

Similarly, in the third use of the || operator (B > A || B > C), whereas 8 > 10 is false,
8 > 6 is true, so again because at least one expression is true, the output is true.

Of course, if both expressions are false, the output is false.
The community college admission example discussed earlier is a good case of

when you would use the || operator, because only one of the two conditions (adult
age or a high school diploma) need be true for the result (eligibility for admission)
to be true.

The || operator is implied in the comparison operators (>= and <=). For example,
the expression

A >= B;

is the same as

A > B A == B;

The | Operator

The | operator is almost identical to the || operator in comparing two Boolean ex-
pressions. The only difference is that if the first expression is true, the second
expression still is evaluated. By contrast, with the || operator, if the first expression
is true, the second expression is not evaluated, because the overall expression will
be true whether the second expression is true or false.

Because with the || operator the evaluation of the second expression is condi-
tional on the evaluation of the first expression being false, the || operator is referred
to as the conditional Or operator, whereas the | operator is referred to as the logical
Or operator.

The A Operator

The A operator performs a logical exclusion operation on two Boolean expressions
and returns a Boolean value, which as Table 6-4 shows, is true if one and only one
of the expressions evaluates to true; otherwise, it is false.

102



CHAPTER 6 Making Comparisons

If First Expression Is

true

true

false

false

And Second Expression Is

true

false

true

false

Result Is

false

true

true

false

Table 6-4 The A Operator

The following code shows how the A operator works with Boolean expressions:

private void Forml_Load(object sender, EventArgs e)

int A = 10;
int B = 8;
int C = 6;
Debug.WriteLine(A > B * B > C); // Outputs false
Debug.WriteLine(A > B * C > B); // Outputs true
Debug.WriteLine(B > A * B > C); // Outputs true

In the first use of the A operator (A > B A B > C), 10 > 8 is true, and 8 > 6 is true.
Because both expressions are true, the output is false.

In the second use of the A operator ( A > B A C > B ) , 10>8is true, and 6 > 8 is
false. Because only one of the expressions is true, the output is true.

Similarly, in the third use of the A operator (B > A A B > C), whereas 8 > 10 is
false, 8 > 6 is true. Because only one of the expressions is true, the output is
true.

Of course, if both expressions are false, the output is false.
The A operator also is known as the Xor operator, which is an acronym for the

exclusive Or operator.

The ! Operator

The ! (logical Not) operator changes true to false and false to true. An example is
when my youngest daughter tells me, "Dad, you look like Tom Cruise.. .NOT!"

The ! operator is useful in situations whether Not true appears more intuitive
than false. For example, in the calculator program discussed earlier in this chapter,
in verifying whether the divisor is equal to zero (division by zero being illegal), it
may be more intuitive to say that division may be performed if the divisor is not
equal to zero than to say that division may be performed if the divisor is greater
than zero.

103



Visual C# 2005 Demystified

The ! operator is a unary operator, which means it operates on one operand.
This is different from the preceding operators, which are binary, operating on two
operands.

Precedence
Logical operators rank lower than the comparison operators discussed earlier in this
chapter. Table 6-5 lists the order of precedence among comparison operators, from
highest to lowest.

If logical operators of equal priority appear in the same statement, precedence
between them is from left to right.

Why && and 1 1 in Addition to & and
As previously discussed, the only difference between the & and && operators is
that the && operator does not evaluate the second expression if the first expression
is false. Similarly, the only difference between the | and || operators is that the ||
operator does not evaluate the second expression if the first expression is true.

Not yet discussed is what difference it really makes whether you use & or &&,
or | or ||.

The answer is, there is no real difference if the second expression is simply
a comparison, other than a slight savings in processor time for sometimes skip-
ping the evaluation of the second expression. However, the second expression
may be more complex, such as a function call that changes values. In that event,
variables may have different values depending on whether the second expression
was evaluated.

Priority

1

2

3

4

5

6

Operator(s)

!

&
A

&&

I I

Description

Not

Logical And

Logical Xor

Logical Or

Conditional And

Conditional Or

Table 6-5 Precedence among Logical Operators

104



CHAPTER 6 Making Comparisons

Conclusion
As programs become more sophisticated, they often branch in two or more direc-
tions based on whether a condition is true or false. For example, as discussed at the
beginning of this chapter, a calculator program, before performing division, should
check to see if the divisor is equal to zero (division by zero being illegal) and, if
performed, result in a run-time error. The program branches by performing the
division if the divisor is not equal to zero, but warning the user if the divisor is
equal to zero.

You use comparison operators to determine if the divisor is equal to (or is not
equal to) zero. There are comparison operators to test for equality and inequality, as
well as whether one value is greater than or less than another.

A comparison operator can make only one comparison at a time, and sometimes
you need to combine several comparisons. For example, to determine if someone is
eligible to vote, you have to compare both their age to the minimum voting age and
their country of citizenship to the United States. In this case, both comparisons
must evaluate as true or the person is not allowed to vote. However, in other com-
parisons, only one of two conditions need be true. For example, you may be
permitted to attend a movie without having to pay for a ticket if you are either a
child or a senior citizen.

You use logical operators to combine several comparisons. The logical operators
include And, when both comparisons must evaluate as true for an action to be taken,
and Or, when only one of two comparisons must evaluate as true for an action to be
taken. There are other logical operators as well.

The comparison and logical operators lay the groundwork for the following
chapters, which use these operators to determine if a condition, or a combination of
conditions, evaluates as true or false.

Quiz
1. What does the WriteLine method of the Debug class do?

2. What is the data type of the result of a comparison performed by a comparison
operator?

3. May the = operator be used for equality comparison?

4. Which comparison operators can you use with strings as well as with numeric
data types?

105



Visual C# 2005 Demystified

5. What is the ANSI or ASCII value of a character?

6. What is the difference between the && and & operators?

7. Which operators have precedence, comparison or arithmetic?

8. What is the purpose of a logical operator?

9. Which logical operator operates on only one operand rather than two?

10. Which operators have precedence, comparison or logical?

106



CHAPTER

I ^showed you in Chapter 6 how to use comparison and logical operators to evaluate
an expression as true or false. I will show you in this chapter how to use that infor-
ma,tion by employing a control structure—specifically an if control structure or
a swiitch control structure—so that different blocks of code execute depending on
wheter an expression evaluates as true or false.

thapplication user interacts with your code, including if and switch controll
structu•es, through the GUI of your application. You will learn in this chapter howw

7

107

Making
Choices—if and

switch Control
Structures

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

to use two controls that often are utilized with if and switch control structures: the
CheckBox and RadioButton controls.

Creating a Test Project
Create a new Windows application so you can run the code in this chapter.

The default form will have two controls: a TextBox control and a Button control.
Name the text box txtlnput and delete its Text property (if any). Name the button
btnTest and change its Text property to Test.

When you run the project, in Debug mode, you will enter a value in the text box,
click the button, and then view the output in the Output window. Figure 7-1 shows
the form at run time with the value "George" entered.

The if Control Structure
The if control structure comes in three varieties, depending on the number of alter-
native blocks of code:

• You use the if statement if you want a block of code to execute if a condition
is true but no block of code to execute if the condition is false. For example,
if a purchaser is eligible for a senior citizen discount, you adjust the price,
but if not, there is no price change to make.

Figure 7-1 Test form.

108



CHAPTER 7 Making Choices—if and switch Control Structures

• You use the if... else statement if you want one block of code to execute
if a condition is true, and a second, different block of code to execute if
the condition is false. This code structure often is used when there are two
alternatives, such as yes or no, or male or female.

• The if... else if statement is similar to the if... else statement except that
the if.. .else if statement is used when there are more than two choices.
For example, if your test score is 90 or better, your grade is an A. If your
test score is between 80 and 89, your grade is a B. If your test score is
between 70 and 79, your grade is a C, and so on.

The if Statement
You use an if statement to execute code if, and only if, a condition is true. If the
condition is false, the code dependent on the if statement does not execute. After the
if statement finishes executing, execution continues with the code, if any, following
the statement.

The syntax of an if statement is shown here:

if (condition)
[Code];

Both lines together are called an if statement. The first line consists of the if key-
word followed by an expression, such as a relational expression, that evaluates to a
Boolean value (true or false). The relational (or other Boolean) expression must be
in parentheses, and it should not be terminated with a semicolon.

The next line is called a conditional statement. The statement is conditional be-
cause the statement executes only if the value of the relational expression following
the if keyword is true. If the value of the relational expression is false, the condi-
tional statement is not executed (in effect, it's skipped).

NOTE There may be more than one conditional statement. If so, the multiple
conditional statements must be encased in curly braces. This is illustrated in the
following section "Multiple Conditional Statements."

Try the following code. It displays "You entered a positive number" to the Out-
put window only if the input is a positive number (greater than zero). However, it
displays "This line will always print" whether or not the input is a positive number,
because after the if statement finishes executing, execution continues with the code
following the if statement.

NOTE Because the Debug class is part of the System.Diagnostics namespace, you
should import that namespace with a using statement as you did in Chapter 6.

109



Visual C# 2005 Demystified

private void btnTest_Click(object sender, EventArgs e)

string strScore;
int intScore;
strScore = txtInput.Text;
intScore = Int32.Parse(strScore);
if (intScore > 0)

Debug.WriteLine("You entered a positive number");
Debug.WriteLine("This line will always print");

NOTE This code assumes that the user entered a number in the text box before
clicking the Test button. Otherwise, an error would result. The "Input Validation "
section later in this chapter will discuss how to guard against this error.

The comparison may also use logical operators, as in the following code, which
validates a test score as being between 0 and 100:

private void btnTest_Click (obj ect sender, EventArgs e)

string strScore;
int intScore;
strScore = txt Input .Text ;
intScore = Int32 . Parse (strScore) ;
if (intScore >= 0 && intScore <= 100)

Debug. WriteLine
("You entered a valid test score (0 - 100)");

Debug. WriteLine ( "This line will always print");

This code displays "You entered a valid test score (0-100)" in the Output win-
dow only if the input is between 0 and 100. However, it displays "This line will
always print" whether or not the input is between 0 and 100.

Multiple Conditional Statements

The first Debug.WriteLine statement in each of the preceding two examples ("You
entered a positive number" and "You entered a valid test score (0-100)," respec-
tively) is indented to show that it is conditional (that is, it will execute only if the if
condition is true). This indenting is not required by the compiler. Rather, it is help-
ful to the programmer to see the flow of the code, and will be used in this and later
chapters. Often the Visual C# 2005 IDE will add the indentation for you.

110



CHAPTER 7 Making Choices—if and switch Control Structures

The second Debug.WriteLine statement ("This line will always print") is not
indented because it is not conditional (that is, it will execute whether the condition
is true or false).

As mentioned in the opening discussion on the if statement, unless you use curly
braces, only the first statement following the if keyword and relational expression
is conditional. That is fine in the preceding two examples, because logically the
second Debug.WriteLine statement should not be conditional. However, sometimes
you want more than one statement to be conditional.

For example, in the following code, only the first Debug.WriteLine statement is
conditional. The second Debug.WriteLine statement is not, so it will execute whether
the relational expression is true or false:

private void btnTest_Click(object sender, EventArgs e)

string strScore;
int intScore;
strScore = txtInput.Text;
intScore = Int32.Parse(strScore);
if (intScore % 2 == 0)

Debug.WriteLine("The number is even");
Debug.WriteLine("And the number is not odd");

Thus, if the user enters an odd number such as 17 in the text box, the statement
"The number is even" will not display because the statement is conditional and the
relational expression is false. So far, so good. However, the following statement
"And the number is not odd" will display even on input of an odd number because
that statement is not conditional. This is not the logical result; we want this second
statement also to be conditional.

If you want more than one statement to be conditional, you must encase these
statements in curly braces:

private void btnTest_Click(object sender, EventArgs e)

string strScore;
int intScore;
strScore = txtInput.Text;
intScore = Int32.Parse(strScore);
if (intScore % 2 == 0)

Debug.WriteLine("The number is even");
Debug.WriteLine("And the number is not odd")

.111



Visual C# 2005 Demystified

Now the second statement, "And the number is not odd," will execute only if the if
expression is true.

Common Mistakes

During years of teaching introductory programming classes, I have noticed several
common mistakes in the writing of if statements. Some of these mistakes may re-
sult in compiler errors and therefore are easy to spot. However, other mistakes are
harder to spot because they do not cause an error, either at compile time or run time,
but rather give rise to illogical results.

Don't Put a Semicolon after the Relational Expression!
The first common mistake is to place a semicolon after the relational expression:

private void btnTest_Click(object sender, EventArgs e)

int num = Int32.Parse(txtlnput.Text);
if ( num % 2 == 0 ); // don't put a semicolon here!

Debug.WriteLine("The number is even");

Because the compiler generally ignores blank spaces, the following if statement
would be the same, and better illustrates visually the problem:

if ( num % 2 == 0 )
; // don't put a semicolon here!

Debug.WriteLine("The number is even");

No compiler error will result, though there will be a warning about a possible
mistaken empty statement. The compiler will assume from the semicolon that it is
an empty statement. An empty statement does nothing. An empty statement is per-
fectly legal in C#, and indeed sometimes has a purpose. Here, however, it is not
intended.

One consequence is that the empty statement will execute if the relational ex-
pression is true. Of course, nothing will happen. So far, there is no harm done.

However, there is an additional consequence: an illogical result. The Debug.
WriteLine statement "The number is even" will execute whether or not the rela-
tional expression is true. In other words, even if an odd number is entered in the text
box, the program will output "The number is even."

The reason the Debug.WriteLine statement "The number is even" will execute
whether or not the relational expression is true is that this statement is not condi-
tional. As explained in the preceding section, "Multiple Conditional Statements,"
unless you use curly braces, only the first statement following the if keyword and

112.



CHAPTER 7 Making Choices—if and switch Control Structures

relational expression is conditional. That first, conditional statement is the empty
statement by virtue of the semicolon following the if expression. And this leads us
to the next common mistake.

Don't Forget Curly Braces for Multiple Conditional Statements
This issue already has been discussed in the preceding section "Multiple Condi-
tional Statements," but it bears repeating here because it is a very common mistake.
If you intend multiple statements to be conditional, you must encase them in curly
braces.

Don't Mistakenly Use the Assignment Operator!
The third common syntax error is to use the assignment operator instead of the rela-
tional equality operator because the assignment operator looks like an equals sign:

private void btnTest_Click (obj ect sender, EventArgs e)

int num = Int32 . Parse (txtlnput .Text) ;
if ( num % 2 = 0 ) // wrong operator!

Debug. WriteLine ( "The number is even")

The result is a compiler error, because you are attempting to use an integer value
(01) in a Boolean expression.

The if...else Statement
You use the if. . .else statement if you want one block of code to execute if the con-
dition is true, and a second, different block of code to execute if the condition is
false. This differs from the if statement in that some code in the if. . .else statement
will execute; the only question is which. By contrast, with the if statement, if the
condition is false, no code dependent on the if statement executes.

After the if. . .else statement completes executing, execution continues with the
code following the statement.

The syntax of an if. . .else statement is shown here:

if (condition)
[Code] ;

else
[Code] ;

No express condition follows the else statement because the condition is implied
as being the negation of the condition following the if statement. In other words, the

113.



Visual C# 2005 Demystified

code following the else statement executes if the condition following the if state-
ment is not true.

Try the following code. It displays in the Output window "You entered a valid
test score (0 - 100)" if the input is between 0 and 100, and it displays "You did not
enter a valid test score" if the input is less than 0 or greater than 100.

private void btnTest_Click(object sender, EventArgs e)

string strScore;
int intScore;
strScore = txtInput.Text;
intScore = Int32.Parse(strScore);
if (intScore >= 0 && intScore <= 100)

Debug.WriteLine
("You entered a valid test score (0 - 100)");

else
Debug.WriteLine
("You did not enter a valid test score");

Debug.WriteLine("This line will always print");

Although you can have an if without an else, as with the if statement, you cannot
have an else without an if. This is logical because else means "none of the above,"
and without an if there is no "above."

Common Mistakes

Just as with the if statement, I have noticed while teaching introductory program-
ming classes several common syntax mistakes with the if.. .else statement.

No else Without an if Expression
You can have an if expression without an else part. However, you cannot have an
else part without an if part. The else must be part of an overall if statement. This
requirement is logical. The else part works as "none of the above." Without an if
part, there is no "above."

As a consequence, in the following code example, placing a semicolon after the
Boolean expression following the if keyword will result in a compiler error. Be-
cause curly braces are not used, the if statement ends after the empty statement
created by the incorrectly placed semicolon. The Debug.WriteLine statement "The
number is even" is not part of the if statement. Consequently, the else part is not
part of an if.. .else statement and therefore will be regarded as an else part without
an if part.

114



CHAPTER 7 Making Choices—if and switch Control Structures

private void btnTest_Click (obj ect sender, EventArgs e)

int num = Int32 . Parse (txtlnput .Text) ;
if ( num % 2 == 0 ) ; // don't put a semicolon here

Debug. WriteLine ( "The number is even");
else

Debug. WriteLine ( "The number is odd");

Don't Put a Relational Expression after the else Keyword!
Another common mistake is to place a relational expression in parentheses after the
else keyword:

private void btnTest_Click (obj ect sender, EventArgs e)

int num = Int 32 . Parse (txtlnput .Text) ;
if ( num % 2 == 0 )

Debug. WriteLine ( "The number is even")
else ( num % 2 == 1 ) // don't do this!

Debug. WriteLine ( "The number is odd")

The program will not compile, and the end of the else expression will be high-
lighted with an error description such as "; expected."

Actually, the error description is misleading. The problem is not that a semicolon
is missing. Instead, no relational expression should follow the else keyword. The
reason is that the else acts like "none of the above" in a multiple-choice test. If the if
expression is not true, the conditional statements connected to the else part execute.

Don't Put a Semicolon after the else Expression!
Another common mistake is to place a semicolon after the else expression. This will
not cause a compiler or run-time error, but it often will cause an illogical result.

For example, in the following code, the Debug.WriteLine statement "The num-
ber is odd" will output even if the number input is even:

private void btnTest_Click (obj ect sender, EventArgs e)

int num = Int 32 . Parse (txtlnput .Text) 
if ( num % 2 == 0 )

Debug. WriteLine ( "The number is even")
else; // don't put a semicolon here!

Debug. WriteLine ( "The number is odd")

115



Visual C# 2005 Demystified

The Debug.WriteLine statement "The number is odd" will execute whether or
not the relational expression is true because that Debug.WriteLine statement no
longer is part of the if...else statement. Unless you use curly braces, as explained
already in connection with the if statement, only the first statement following the
else keyword is conditional. That first, conditional statement is the empty statement
by virtue of the semicolon following the if expression. Therefore, the Debug.Write-
Line statement "The number is odd" is not part of the if.. .else statement at all.

Curly Braces Needed for Multiple Conditional Statements
As with the if expression, if you want more than one conditional statement to be-
long to the else part, you must encase the statements in curly braces.

The if...else if Statement
You use the if.. .else if statement if you have more than two alternative blocks of
code, the maximum possible with an if.. .else statement.

With an if.. .else if statement, the first block of code whose condition is true ex-
ecutes, and all following blocks of code are skipped. The first block of code follows
the if clause, and each succeeding block of code coupled with a condition is an else
if clause. You can have as many else if clauses as you want. Finally, you may op-
tionally have an else clause that, as with an if.. .else statement, acts as "none of the
above." After the if.. .else if statement finishes executing, execution continues with
any code following the statement.

The syntax of an if.. .else if statement is shown here:

if (condition)
[Code];

else if (condition)
[Code];

else // optional
[Code];

Try the following code. It displays in the Output window "The test score is valid"
if the input is between 0 and 100, "Test score cannot be less than zero" if the input
is less than 0, or "Test score cannot be greater than 100" if the input is greater
than 100.

private void btnTest_Click(object sender, EventArgs e)

string strScore;
int intScore;
strScore = txtInput.Text;

116



CHAPTER 7 Making Choices—if and switch Control Structures

intScore = Int32.Parse(strScore);
if (intScore >= 0 && intScore <= 100)

Debug.WriteLine("The test score is valid");
else if (intScore < 0)

Debug.WriteLine
("Test score cannot be less than zero");

else
Debug.WriteLine
("Test score cannot be greater than 100");

Debug.WriteLine("This line will always print");

Although you can have as many else if clauses as you want, none can appear
after an else clause. The else clause is optional; it serves the function of "none of
the above."

Common Syntax Errors

The common syntax errors for the if part discussed earlier in this chapter apply to
the else if part also. Don't put a semicolon after the relational expression, and you
must enclose multiple conditional statements in curly braces.

Additionally, just as you cannot have an else part without a preceding if part, you
cannot have an else if part without a preceding if part.

You are not required to have an else part. The downside in omitting the else part
is you will not have code to cover the "none of the above" scenario in which none
of the relational expressions belonging to the if part and else if parts is true.

Input Validation
The code used in the preceding section "The if...else if Statement" involves the
entry of a student's test score. No matter how badly a student performs on a test,
that student will do no worse than 0. Similarly, no matter how well a student per-
forms on a test, that student will do no better than 100.

However, it is not prudent to assume that the application user will enter a number
between 0 and 100 in the input box and click the OK button. Human error is inevi-
table. An application user may not even read directions, much less follow them.
Further, even a conscientious application user will make data-entry errors.

For example, if the application user enters in the input box a number less than
0 or larger than 100, that input necessarily is incorrect. If that incorrect input is
stored as the student's test score, the student's records will be wrong. Even worse,

117



Visual C# 2005 Demystified

under the saying "garbage in, garbage out," any calculation based on that test score
also will be wrong.

Accordingly, your code should guard against the possibility that the application
user's input is incorrect. This is called validating the user's input, or input validation.

The code used in the preceding section "The if.. .else if Statement" does perform
input validation. The following portion of that code checks that the user's input is
between 0 and 100, and it warns the user that the input is incorrect if the input isn't
between 0 and 100:

if (intScore >= 0 && intScore <= 100)
Debug.WriteLine("The test score is valid")

else if (intScore < 0)
Debug.WriteLine("Test score cannot be less than zero");

else
Debug.WriteLine
("Test score cannot be greater than 100");

Exceptions
The code used in the preceding section "The if.. .else if Statement" performs some
input validation, but not enough. For example, that code does not guard against the
possibility that the application user could enter a nonnumeric string and click the OK
button. To demonstrate this, run the project with the Debug | Start Without Debug-
ging menu command, or simply press CTRL-FS. Enter Jeff in the text box and click the
Test button. Your application will halt, and the message box shown in Figure 7-2 will
display with the message "Input string was not in a correct format."

Figure 7-2 The exception "Input string was not in a correct format".

.118



CHAPTER 7 Making Choices—if and switch Control Structures

Stop the project by clicking the Quit button. Run the project again with Debug |
Start Without Debugging menu command. Click the Test button without entering
anything in the text box. Your application will halt, and the message box shown in
Figure 7-2 again will display.

What Is an Unhandled Exception?

Figure 7-2 refers to an "unhandled exception." An exception is a problem that occurs
while the program is executing that must be dealt with before the program can pro-
ceed. Examples of exceptions include the inability to open a file because it cannot be
found, the application not putting in the floppy drive the floppy disk that contains the
file, the file being corrupt, the operating system not having enough available memo-
ry remaining to open the file, and so on. The exception may be due to faulty code,
application user error, or circumstances beyond the control of either the programmer
or the application user, such as a crash of the operating system. Regardless of the
cause, the program cannot proceed until the exception is resolved.

It is possible through code to "handle" an exception. For example, if the applica-
tion user forgot to put in the floppy drive the floppy disk that contains the file, code
warns the user and gives the user an opportunity to either put the floppy disk in the
floppy drive or quit the application.

Exception handling is an advanced subject and therefore is not covered here. For
present purposes, exceptions generally do not crash programs; instead, unhandled ex-
ceptions crash programs. That is why Figure 7-2 refers to an "unhandled exception."

Determining Where the Exception Occurred

Although this explains what an unhandled exception is generally, what remains to
be explained is what caused the unhandled exception in this code. You can deter-
mine the details of the exception by clicking the Details button. Figure 7-3 shows
the result of clicking the Details button of the message box depicted in Figure 7-2.

The line of our code highlighted (in yellow) when the exception occurred is

intScore = Int32.Parse(strScore)

The reason for the error is that the Parse method of the Int32 class requires for its
parameter a string representation of an integer. Neither "Jeff" nor an empty string
is a string representation of an integer. Therefore, the Parse method is unable to
properly execute, and an exception occurs.

119



Visual C# 2005 Demystified

Figure 7-3 Exception details.

TryParse Method

The Int32 class has a TryParse method in addition to a Parse method. Both methods
convert the string representation of an integer into an integer. However, the TryParse
method also returns a Boolean value (true or false) indicating whether the conversion
was successful. If the conversion is not successful—for example, because the argu-
ment is "Jeff" or an empty string—no exception occurs. Rather, the return value
is false.

NOTE Other numeric classes, such as Double, also have a TryParse method. In the
case of the Double class, the method attempts to convert the string representation
of a double into a double.

The syntax of the TryParse method of the Int32 class is shown here:

[Boolean] = In t32 .TryParse( [ s t r ing] , out [ in teger ] ) ;

The first parameter, the string, is the string representation of an integer. When
the TryParse method is called, the first argument usually is a variable, though it
also could be a property of the String data type, such as the Text property of a
Label control.

The second parameter, an integer, is where the integer equivalent of the string rep-
resentation will be stored. When the TryParse method is called, the second argument
usually is a variable, though it also could be a property of the Int32 data type.

120



CHAPTER 7 Making Choices—if and switch Control Structures

The second parameter is preceded by the out keyword. The out keyword indi-
cates that the method may change the value of the argument. This is the case here,
because when the TryParse method is called, the value of the second argument will
be changed to the integer value of the first argument's string representation of that
integer. By contrast, the first argument need not be preceded by the out keyword
because the string representation only is being evaluated, not being changed.

The return value is Boolean and usually stored in a variable of that data type.
The following code snippet illustrates the TryParse method in action:

string strScore;
int intScore;
strScore = txtInput.Text;
bool blnlnput;
blnlnput = Int32.TryParse(strScore, out intScore);
if (blnlnput == false)

// Conversion unsuccessful.
// Don't use intScore in further code

else
// Conversion successful. Use intScore in further code

The following code implements this logic and modifies the code used in the pre-
ceding section on the if.. .else if statement:

private void btnTest_Click(object sender, EventArgs e)

string strScore;
int intScore;
strScore = txtInput.Text;
bool blnlnput;
blnlnput = Int32.TryParse(strScore, out intScore);
if (blnlnput == false)

Debug.WriteLine
("Input does not evaluate to an integer");

else if (intScore >= 0 && intScore <= 100)
Debug.WriteLine("The test score is valid");

else if (intScore < 0)
Debug.WriteLine
("Test score cannot be less than zero");

else
Debug.WriteLine
("Test score cannot be greater than 100");

Debug.WriteLine("This line will always print");

121



Visual C# 2005 Demystified

Controls Used for the if Control Structure
The application user interacts with your code, including the if control structure,
through the graphical user interface (GUI) of your application. Two controls in
particular are used in conjunction with the if control structure. The CheckBox con-
trol is used when a particular decision has only two choices, as in true or false, yes
or no, and so on. The RadioButton control is used when there are multiple, mutu-
ally exclusive choices, such as whether a student's grade is an A, B, C, D, or F.

CheckBox Control

CheckBox controls are commonly used in Windows applications. For example, in
the Print dialog box shown in Figure 7-4, there are check boxes for Print to File and
Collate.

The reason that CheckBox controls are often used is that they are ideal for situ-
ations in which there are only two choices, such as yes or no, male or female, and
so on. The CheckBox control being checked is considered true, yes, or on, with
unchecked being false, no, or off.

Figure 7-4 Print dialog box.

122



CHAPTER 7 Making Choices—if and switch Control Structures

Each CheckBox control is independent of the others. They may all be checked,
or all unchecked, or any combination of checked and unchecked.

The CheckBox control has two properties you will use often: Text and Checked.
The Text property essentially is a label, built into the CheckBox control, that

identifies to the application user the purpose of the check box. When you add the
CheckBox control to the form, you have to draw it large enough (after first setting
AutoSize to False in the Properties window) to show the text portion as well as the
check box portion. The Text properties of the two CheckBox controls in Figure 7-4
are Print to File and Collate, respectively. The Text property usually is set at design
time.

The Checked property is of a Boolean data type. If the check box is checked, the
value of the Checked property is True. If the check box is not checked, the value
of the Checked property is False.

Because the Checked property has only two possible values, True and False, of-
ten you use an if.. .else statement based on the Checked property, as the following
code snippet illustrates:

if (chkPizza.Checked == true)
Debug.WriteLine ("I want pizza!");

else
Debug.WriteLine("I don't want pizza.");

Radio Button Control

RadioButton controls also are commonly used in Windows applications. Taking
again the example of the Print dialog box in Figure 7-4, there are radio buttons for
printing all pages, printing the current page, printing a range of pages, and printing
just the selected text.

The primary difference between CheckBox and RadioButton controls is that where-
as each check box is independent of another, all radio buttons in a group are related in
that only one of them can be chosen at any one time. Therefore, the RadioButton
control is ideal for situations in which there are choices, and one choice, but only once
choice, must be chosen.

NOTE If radio buttons are contained within a GroupBox or Panel control, those
radio buttons are in a group independent of any other radio buttons on the form.
This is useful when one set of radio buttons that, say, concerns age is logically
independent of another set of radio buttons that, say, concerns income level.

123



Visual C# 2005 Demystified

As with the CheckBox control, the two properties you will use often with the
RadioButton control are Text and Checked. As with the CheckBox control, the
Checked property for a RadioButton control has only two possible values: True and
False.

In the event you have more than two RadioButton controls, often you use an
if.. .else if statement based on the Checked property, as shown here:

if (radLarge.Checked == true)
Debug.WriteLine ("I want a large pizza.");

else if (radMedium.Checked == true)
Debug.WriteLine("I want a medium pizza.")

else
Debug.WriteLine("I want a small pizza.");

Pizza Calculator
This project calculates the cost of the programmer's food of choice, pizza, using
radio buttons and check boxes. The cost of the pizza is based initially on whether
the pizza is a small ($5.00), medium ($7.50), or large ($10.00). There is an addi-
tional cost of 50 cents for each topping.

Figure 7-5 shows the project in action. Because the application user has selected
a large pizza ($10.00) with pepperoni and anchovies ($1.00 for two toppings), the
total cost is $11.00.

Figure 7-5 Pizza Calculator project.

124



CHAPTER 7 Making Choices—if and switch Control Structures

Creating the Project
Radio buttons are used to represent the three alternative pizza sizes: small, medium,
and large. The radio buttons are named radSmall, radMedium, and radLarge, respec-
tively. Similarly, their Text properties are, respectively, Small, Medium, and Large.

Check boxes are used to represent each topping choice—mushrooms, pepperoni,
and my favorite, anchovies (because no one else wants anchovies, I get the whole
pizza for myself). The check boxes are named chkMushroom, chkPepperoni, and
chkAnchovy, respectively. Similarly, their Text properties are, respectively, Mush-
room, Pepperoni, and Anchovy.

There are two Button controls. One is named btnCalculate, and its Text property
is Calculate. The other is named btnClear, and its Text property is Clear.

There also are two Label controls. The one that displays the total in Figure 7-5 is
named IblTotal. Its Text property initially is blank. I also have set its AutoSize prop-
erty to False and its BackColor property to white using the Properties window to give
it its white background. The other label has a Text property of Total. It is not involved
in the code, so you can retain its default name (mostly likely, Label 1 or Label2).

How the Project Works
The cost of the pizza is based initially on whether the pizza is a small ($5.00), me-
dium ($7.50), or large ($10.00). There is an additional cost of 50 cents for each
topping.

Clicking the Calculate button calculates and displays the cost in the Label con-
trol named IblTotal. Clicking the Clear button returns the application to its default
settings (large size, all toppings unchecked, cost blank).

The Code
The code will consist of three sections:

• Declaring constants to represent the cost of the pizza sizes and toppings.
This will be done in the Click event procedure of the Calculate button.

• Calculating the cost of the pizza. This also will be done in the Click event
procedure of the Calculate button.

• Restoring the application to its default settings. This will be done in the
Click event procedure of the Clear button.

125



Visual C# 2005 Demystified

Declaring the Constants

Declare the following constants in the Click event procedure of the Calculate
button:

private void btnCalculate_Click
(object sender, EventArgs e)

const double LARGE = 10;
const double MEDIUM = 7.5;
const double SMALL = 5;
const double TOPPING = 0.5;

These constants represent the costs of the different sizes of pizza and the extra
cost of each topping. The actual values instead could have been used in the code.
However, using constants makes the code easier to change if the costs of the differ-
ent sizes or the toppings ever change, because only one change would need to be
made (the value of the constant) rather than changing the value in all places it is
used in the code. Similarly, the constants LARGE and SMALL are declared as a
double instead of an integer because someday the price may involve cents, such as
the price of a large pizza changing from $10.00 to $10.50.

NOTE These constants do not need to have broader scope than the Click event
procedure of the Calculate button because they only are referred to in that event
procedure.

Calculating the Price

Add the following code in the Click event procedure of the Calculate button after
the declaration of the constants:

private void btnCalculate_Click
(object sender, EventArgs e)

const double LARGE = 10;
const double MEDIUM = 7.5;
const double SMALL = 5;
const double TOPPING = 0.5;
double dblTotal;
if (radLarge .Checked == true)

dblTotal = LARGE;
else if (radMedium. Checked == true)

126.



CHAPTER 7 Making Choices—if and switch Control Structures

dblTotal = MEDIUM;
else

dblTotal = SMALL;
if (chkMushroom.Checked == true)

dblTotal += TOPPING;
if (chkPepperoni. Checked == true)

dblTotal += TOPPING;
if (chkAnchovy. Checked == true)

dblTotal += TOPPING;
IblTotal.Text = dblTotal.ToString("c");

The variable dblTotal is used to store the total price. The data type of this vari-
able is a double instead of an integer because the number may be a floating-point
number (that is, it may have cents as well as dollars).

An if ... else if statement is used to assign to dblTotal the cost of the size of
pizza selected, based on which radio button's value is true. An if. . . else if statement
is appropriate because one, and only one, of the radio buttons can be selected.

By contrast, independent if statements are used to determine whether to add 50
cents for each topping, based on whether each check box's value is true. Indepen-
dent if statements are appropriate because the value of each check box is
independent from that of the others. The user may choose all toppings, no top-
pings, or any combination.

Finally, the value of dblTotal is displayed in the Total label. This involves two
steps. First, the value is converted from a double to a string data type using the
ToString method because that value is being assigned to a property (Text) that is a
string data type. Second, the argument "c" is passed to the ToString method so the
total is formatted as currency, starting with the dollar sign ($) and having two num-
bers, no more and no less, to the right of the decimal point.

NOTE The argument "c" to the ToString method is a format specifier. There are
other format specifiers, such as "e" for exponential or scientific notation, and "p"
for a percentage.

Restoring the Application to its Initial Settings

Finally, the following code in the Click event procedure of the Clear button returns
the application to its default settings (large size, all toppings unchecked, cost blank):

private void btndear_Click (obj ect sender, EventArgs e)

radLarge.Checked = true;
radMedium.Checked = false;

127



Visual C# 2005 Demystified

radSmall.Checked = false;
chkMushroom.Checked = false;
chkPepperoni.Checked = false;
chkAnchovy.Checked = false;
IblTotal.Text = "";

The switch Control Structure
The switch control structure is quite similar to the if ... else if statement, but they
are not the same. The primary difference is that, in the if ... else if statement, the if
and else if clauses each may evaluate completely different expressions, whereas
a switch control structure may evaluate only one expression, which then must be
used for every comparison.

For example, the condition of an if clause could be whether Night > Day, the
condition of the following else if clause whether Citizenship == U.S., the condition
of the next else if clause whether NumberOfClasses >= 4, and so on. Usually the
conditions evaluated by the if and else if clauses are related, but they can be com-
pletely independent of each other.

By contrast, the switch control structure evaluates one test expression, and that
test expression is used for all the following comparisons.

Syntax
The syntax of a switch control structure is shown here:

switch [test expression]

case [integer literal constant] :
[code];
break;

// More case statements optional
default: //also optional

[code];
break;

The test expression must be capable of being evaluated as an integer. A character
also may be evaluated as an integer because of its ANSI or ASCII value, discussed

128



CHAPTER 7 Making Choices—if and switch Control Structures

in the last chapter. The grade program in the next section demonstrates the use of
a character as a test expression.

Each case keyword must be followed by an integer expression that is either
a literal (such as 5) or a constant. Consequently, a variable cannot follow a case
keyword. In the grade program in the next section, the constant is a character literal,
such as 'A', 'B', and so on. A character literal works following the case keyword
because, as mentioned in the previous paragraph, the character's ANSI or ASCII
value is an integer value.

The default keyword serves the same purpose as an else part in an if ... else or
if . . . else if statement, and therefore is not followed by an integer constant or literal.

Each case block, and the default block, usually must be terminated by a break
statement. The exception to this rule is discussed in the later section on the break
keyword.

The switch Control Structure in Action

Although the switch control structure differs from the if ... else if statement in
that it may evaluate only one expression that then must be used for every comparison,
it otherwise behaves quite similarly to the if ... else if statement:

If the condition following an if (or else if) clause in an if ... else if statement
evaluates as true, the code following that clause executes, and none of the following
else if (or else) clauses are evaluated. Similarly, if the literal or constant following
a case clause matches the test expression, the code following the case clause exe-
cutes, and any remaining case clauses are not evaluated because of the break
keyword at the end of the case clause. (An exception to this is discussed in the later
section on the break keyword).

If the condition following an if (or else if) clause in an if ... else if statement
instead evaluates as false, the code following that clause does not execute, and each
of the following else if (or else) clauses is evaluated in order. Similarly, if the ex-
pression or expression list following a case clause does not match the test expression,
the code following that clause does not execute, and each of the following case
clauses is evaluated in order.

If none of the conditions following the if and else if clauses in an if ... else if
statement evaluates as true, the code following the else clause executes if there is an
else clause. Similarly, if none of the literals or constants following the case clauses
in a switch control structure match the test expression, the code following the
default clause executes if there is a default clause. The default clause is analogous
to the else clause, covering the "none of the above" circumstance.

Once execution of the if. . . else if statement is completed, the program continues
to the code following the if control structure. Similarly, once execution of the switch

<129>



Visual C# 2005 Demystified

control structure is completed, the program continues to the code following the
switch control structure.

Open the Windows application you created at the beginning of this chapter.
Comment out the existing code in the Click event of the button btnTest and then
insert the following code in that event procedure:

private void btnTest_Click(object sender, EventArgs e)

char grade;
grade = Convert.ToChar(txtInput.Text);
switch (grade)

case 'A':
Debug.WriteLine("Test score between 90-100");
break;

case 'B' :
Debug.WriteLine("Test score between 80-89");
break;

case 'CT :
Debug.WriteLine("Test score between 70-79");
break;

case 'DT :
Debug.WriteLine("Test score between 60-69");
break;

case 'FT :
Debug.WriteLine("Test score between 0-59");
break;

default:
Debug.WriteLine("Invalid grade");
break;

The one line of code that requires further explanation is

grade = Convert.ToChar(txtInput.Text);

The Text property returns a string, but the grade variable's data type is a charac-
ter. The ToChar method of the Convert class returns the first character in the string
as a character, which then is assigned to the grade variable.

Run the project and input a letter for a grade. The switch control structure evalu-
ates the value of that variable and then either outputs the test score based on that
value or outputs "Invalid grade" if the grade is not an A, B, C, D, or F.

-<130)-



CHAPTER 7 Making Choices—if and switch Control Structures

The break Keyword
In an if ... else if statement, each if, else if, or else part is separate from all the
others. By contrast, in a switch control structure, once a matching case statement is
reached, unless a break statement is reached, execution tries to "fall through" to the
following case statements.

If a case or default statement contains at least one executable statement, such as
Debug.WriteLine, the lack of a following break statement would result in the follow-
ing compiler error: "Control cannot fall through from one case label to another."

This "falling through" behavior is not necessarily bad. In the following modifi-
cation of the grade program, the falling through behavior permits the user to enter
a lowercase grade in addition to an uppercase grade. There is no compiler error
because each case that lacks a break statement (such as case 'a') has no executable
statement.

private void btnTest_Click(object sender, EventArgs e)

char grade;
grade = Convert.ToChar(txtInput.Text);
switch (grade)

case 'a':
case 'A':

Debug.WriteLine("Test score between 90-100");
break;

case 'b':
case 'B':

Debug.WriteLine("Test score between 80-89");
break;

case 'c' :
case 'C':

Debug.WriteLine("Test score between 70-79");
break;

case 'd':
case 'D':

Debug.WriteLine("Test score between 60-69");
break;

case ' f'
case 'F':

Debug.WriteLine("Test score between 0-59");
break;

®



Visual C# 2005 Demystified

default :
Debug. WriteLine (" Invalid grade") ;
break;

You could not achieve the same result with a case statement such as the following:

case : ' a ' | ' A '

The reason is that the case keyword must be followed by an integral or character
literal (such as 4 or 'a') or constant.

Choosing Between if.. .else if and switch
The if ... else if statement and the switch control structure are similar. However, in
deciding whether to use if ... else if or switch, you may not have a choice.

Although any code you write using a switch control structure also can be writ-
ten using an if control structure, the reverse is not also true. If you need to
evaluate several different expressions in a block of code, you cannot use a switch
control structure, which may evaluate only one expression that then must be used
for every comparison.

Additionally, the switch control structure does not work well with ranges of val-
ues. A statement such as

if (var >= 90 && var <= 100)

tests if the value of the variable var is between 90 and 100. You can't write the same
statement so easily in a switch statement because the case keyword must be fol-
lowed by an integer or constant. There would need to be a separate case for 90, 91,
92, 93, and so forth to 100.

If you do have a choice, the decision is one of personal preference, concerning
which way is easier to write and easier to understand. Your choice may be the
switch statement in processing a menu choice such as 1, 2, or 3, or A, B, or C.

Conclusion
In Chapter 6, you learned how to use comparison and logical operators to evaluate an
expression as true or false. You learned in this chapter how to use that information by
employing control structures—specifically an if or switch control structure—so that
different blocks of code execute depending on whether an expression evaluates as
true or false.

<13



CHAPTER 7 Making Choices—if and switch Control Structures

The application user interacts with your code, including if and switch control
structures, through the GUI of your application. You learned in this chapter how to
use two controls that often are utilized with if and switch control structures—the
CheckBox and RadioButton controls.

In the next chapter, I will show you how to apply this information with loops,
which enable you to repeat the execution of code statements.

Quiz
1. What does modal mean?

2. What is the converse of modal?

3. What is a conditional statement?

4. Which namespace should you import to use the Debug class?

5. What are the three varieties of an if control structure?

6. What is an exception?

7. What does the TryParse method of the Int32 class do?

8. Which two controls are commonly used with the if control structure?

9. What is the primary difference between the i f . . . else if statement and the
switch control structure?

10. What part of a switch control structure performs the same purpose as an else
clause in an if control structure?

(133)



This page intentionally left blank 



CHAPTER
8

Repeating
Yourself—Loops

and Arrays

Parents customarily remind their children not to repeat themselves. Indeed, parents
often illustrate another saying ("Do as I say, not as I do") by continually repeating
hat reminder.

Sometimes you want your code to repeat itself. For example, if the user enters
ivalid data, you may want to ask the user whether they want to retry or quit. If
theyy retry and still enter invalid data, you again would ask the user whether they
t to retry or quit. This process keeps repeating until the user either enters valid
date or quits.

Yoa use a loop to repeat the execution of code statements. A loop is a structure that
^tts the execution of code until a condition becomes false. In the preceding ex-
ample ie condition is that the data is invalid and the user should retry. The repeating

0^>

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

code is the prompt asking the user whether they want to retry or quit and then permit-
ting them to retry if they want to.

I will show you in this chapter the different types of loops available and how to
implement them.

An array permits you to use a single variable to store many values. The values
are stored at consecutive indexes, starting with zero and then incrementing by one
for each additional element of the array. For example, to store sales for each day of
the week, you can create one array with seven elements, rather than declaring seven
separate variables. Using an array has several advantages. It is easier to keep track
of one variable than seven. Additionally, you can use a loop to access each con-
secutive element in an array, whether to assign a value of that element or to display
that value.

I will show you in this chapter how to create and use arrays.

Loops
This section will introduce four loop statements: for, foreach, while, and do while.
These loop statements differ in syntax and other details, but they all have in com-
mon that they repeat the execution of code until a condition becomes false, each
repetition being called an iteration.

The for Statement

If you wanted to output the numbers between 1 and 10, you could write a program
such as the following, which will output 1 through 10, followed by "This line will
always print."

private void Forml_Load(object sender, EventArgs e)

int num = 1;
Debug.WriteLine(num++);
Debug.WriteLine(num++);
Debug.WriteLine(num++);
Debug.WriteLine(num++);
Debug.WriteLine(num++);
Debug.WriteLine(num++);
Debug.WriteLine(num++);
Debug.WriteLine(num++);
Debug.WriteLine(num++);

<136>



CHAPTER 8 Repeating Yourself—Loops and Arrays

Debug.WriteLine(num+ + ) ;
Debug.WriteLine("This line will always print"!

NOTE Because the Debug class is part of the System.Diagnostics namespace, you
should import that namespace with a using statement as you did in Chapter 6.

However, you could write the same program with far less code by using a for
statement:

private void Forml_Load (obj ect sender, EventArgs e)

for (int num = 1; num <= 10; num++)
Debug. WriteLine (num) ;

Debug. WriteLine ( "This line will always print");

NOTE As with the if control structure, only the first statement folio-wing the for
statement is conditional on the for statement unless curly braces are used to
enclose multiple conditional statements.

The difference between using and not using a loop structure becomes more pro-
nounced if you change the specification from outputting the numbers between
1 and 10 to outputting the numbers between 1 and 100. I won't rewrite the first
program because it would take up too many pages; suffice it to say you would have
to add 90 more Debug.WriteLine(num++) statements. However, here's the same
program using a for statement:

private void Forml_Load (obj ect sender, EventArgs e)

for (int num = 1; num <= 100; num++)
Debug. WriteLine (num) ;

Debug. WriteLine ( "This line will always print");

Indeed, by using the for statement, the same code could output the numbers
between 1 and 1000 or even 1 and 10000; you just would need to change the 100
in the code to 1000 or 10000.

Syntax
Let's discuss the syntax of the for statement. The for keyword is followed by paren-
theses that contain three expressions that will be discussed in a moment. This line
of code is followed by one or more statements.

(137>



Visual C# 2005 Demystified

for ([DataType counter] = [start value];
[comparison]; [update counter])

statement;

If the execution of more than one statement is conditional on the for statement,
the statements must be enclosed with curly braces, as is the case with the if control
structure:

for ([DataType counter] = [start value];
[comparison]; [update counter])

statement;
statement;

The three expressions contained in the parentheses following the for keyword are
separated by semicolons; there is no semicolon after the third expression because
no expression follows it.

Let's use as an example the following portion of the code in the preceding
section, which displays the numbers 1 through 10:

for (int num = 1; num <= 10; num++)
Debug.WriteLine(num);

Debug.WriteLine("This line will always print");

The first expression is

int num = 1;

This expression may be referred to as the initialization part because its purpose usu-
ally is to initialize the value of a variable (as explained shortly, there are alternatives),
typically referred to as a counter, to provide that variable with a starting value. In
this example, the integer variable num is the counter, and it is initialized to the start-
ing value of 0. This initialization is the first action performed by the loop, and it's
only performed once.

The second expression is

num <= 10;

This expression may be referred to as the comparison part because its purpose usu-
ally is to make a comparison involving the counter. The result of this comparison
will evaluate to a Boolean value (true or false). The result must be true for the con-
ditional statements to execute. In this example, the condition is whether the current
value of num is less than or equal to 10.

The third expression is

num+ +

(l38>



CHAPTER 8 Repeating Yourself—Loops and Arrays

This expression is referred to as the update part because its purpose usually is to
update the value of the counter. In this example, the integer variable num is incre-
mented. This expression executes at the end of each iteration, and only executes if
the condition was true at the beginning of the iteration.

NOTE Postfix incrementing was used in this example and generally is employed
by convention. However, the result would be the same if prefix incrementing were
used, because only one operator is involved in this expression.

The conditional statement is

Debug. WriteLine (num) ;

This statement will execute only if the result of the comparison is true.
The following statement is not conditional, so it will execute once — no more,

no less:

Debug. WriteLine ( "This line will always print");

As mentioned earlier, similar to the if control structure, only the first statement
following the for statement is conditional on the for statement unless curly braces
are used to enclose multiple conditional statements. Here, no curly braces were
used, so this statement is not conditional.

Initialization and updating need not occur in the parentheses following the for state-
ment. In the following variation of the program that outputs from 1 through 10, num
is initialized before the for statement and is incremented inside the body of the loop:

private void Forml_Load (obj ect sender, EventArgs e)

int num = 1 ;
for ( ; num <= 10; )

Debug. WriteLine (num) ;
num++ ;

Debug. WriteLine ( "This line will always print");

Even though initialization and incrementing are not done within the parentheses,
two semicolons nevertheless must be within the parentheses to indicate where the
three expressions would be. Although an expression may be empty, the following
semicolon nevertheless is necessary.

Although there are syntax variations, following the parentheses with a semicolon
is not one of them. Instead, this is simply is a mistake. The semicolon is interpreted

<13



Visual C# 2005 Demystified

as an empty statement. Accordingly, in the following code fragment, the only number
that would output is 1 1 :

private void Forml_Load (obj ect sender, EventArgs e)

int num;
for (num = 1; num <= 10; num++) ; // no semi -colon

Debug. WriteLine (num) ;
Debug. WriteLine ( "This line will always print");

The reason the only number that would output is 1 1 is that the loop continues,
and the empty statement executes, until the condition fails when num is 11. The
Debug. WriteLine(num) statement is not part of the for loop, so it executes when the
for loop completes, outputting 1 1 , the value of num after the loop finishes.

How the for Statement Works

Let's now analyze how the following for statement works, step by step:

for (int num = 1; num <= 10; num++)
Debug. WriteLine (num) ;

Debug. WriteLine ( "This line will always print");

Here is the order of execution in the first iteration of the loop:

1. The integer variable num is initialized to 1.

2. The current value of num, 1, is compared to 10.

3. Because the comparison is true, num is less than or equal to 10. The current
value of num, 1, is output.

4. The value of num is incremented, becoming 2.

And here is the order of execution in the second iteration of the loop:

1. The current value of num, 2, is compared to 10.

2. Because the comparison is true, the current value of num, 2, is outputted.

3. The value of num is incremented, becoming 3.

Note that the initialization that occurred during the first iteration of the loop did
not occur during the second iteration of the loop. As discussed previously, initial-
ization occurs only once, in the first iteration of the loop. Were it otherwise, an
endless loop would result.

140



CHAPTER 8 Repeating Yourself—Loops and Arrays

This order of execution in the second iteration of the loop repeats during the third
and following executions of the loop, each time incrementing the value of num
through the tenth iteration of the loop, which executes in the following order:

1. The current value of num, 10, is compared to 10.

2. Because the comparison is true (10 is less than or equal to 10), the current
value of num, 10, is outputted.

3. The value of num is incremented, becoming 11.

In the next iteration of the loop, the current value of num, 11, is compared to 10.
Because the comparison is false (11 is not less than or equal to 10), the for loop
ends. The code inside the for loop does not execute, the value of num is not incre-
mented, and the code following the for loop executes:

Debug.WriteLine("This line will always print");

If you wanted the execution of this statement to be conditional on the for state-
ment, then it and the preceding conditional statement would be enclosed in curly
braces:

for (int num = 1; num <= 10; num++)

Debug.WriteLine(num);

Debug.WriteLine("This line will always print");

Table 8-1 summarizes the execution of the loop.

Value of x

1

2

3

4

5

6

7

8

9

10

11

x<=10

True

True

True

True

True

True

True

True

True

True

False

Value of x Prints?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

New Value of x

2

3

4

5

6

7

8

9

10

11

11

Table 8-1 Summary of Execution of for Statement

(141>



(142) Visual C# 2005 Demystified

The numbers need not be outputted in ascending order. Changing the for state-
ment to read as follows would result in the numbers between 1 and 10 being
outputted in reverse:

for (int num = 10; num >= 1; num—)
Debug.WriteLine(num);

Debug.WriteLine("This line will always print");

Beware the Infinite Loop

Let's return to the program that outputs the numbers 1 through 10:

private void Forml_Load(object sender, EventArgs e)

for (int num = 1; num <= 10; num++)
Debug.WriteLine(num);

Debug.WriteLine("This line will always print");

If the statement num++ is omitted, the loop would never stop:

private void Forml_Load(object sender, EventArgs e)

for (int num = 1; num <= 10;)
Debug.WriteLine(num);

Debug.WriteLine("This line will always print");

The reason is that the condition num <= 10 would never become false because
num would start at 1 and its value would never change because the statement num++
is omitted.

This loop that never stops executing is called an infinite loop. Usually, it mani-
fests itself by nothing happening for a protracted period, with the application never
ending.

You would not intend to have an infinite loop in your code, but mistakes do
happen; I have made this mistake a lot more than once. If it happens to you, don't
panic. You can use the Stop Debugging button to end the program. Knowing you
have encountered an infinite loop, you then can correct the code error that caused it.

A Factorial Example

So far, use of the for loop has been relatively trivial, counting numbers in ascending or
descending order. However, the for loop can be used for more sophisticated programs.



CHAPTER 8 Repeating Yourself—Loops and Arrays

The following program calculates the factorial of 5. A factorial is the product
of all the positive integers from 1 to that number. For example, the factorial of
3 is 3 * 2 * 1, which is 6. Similarly, the factorial of 5 is 5 * 4 * 3 * 2 * 1 , which
is 120:

private void Forml_Load(object sender, EventArgs e)

int total = 1;
for (int num = 2; num <= 5; num++)

total *= num;
Debug.WriteLine("The factorial of 5 is " + total);

Breaking Out of the Loop

We previously used the break keyword in a switch statement. You also can use the
break keyword in a for statement. The break keyword is used within the code of
a for statement, commonly within an if statement nested inside the for statement.

The break statement transfers control immediately to the statement following the
for statement. Stated another way, the break statement prematurely ends the execu-
tion of the for statement before its condition becomes false.

For example, the following code will output only 5 through 7, not 5 through 10,
because the loop ends prematurely when x equals a number evenly divisible by 4
(here, 8):

private void Forml_Load(object sender, EventArgs e)

for (int num = 5; num <= 10; num++)

if (num % 4 == 0)
break;

Debug.WriteLine(num);

Debug.WriteLine("This line will always print");

Although the break keyword is part of the C# language, I recommend you use it
sparingly. Normally, the for statement has one exit point—the condition when it
becomes false. However, when you use one or more break statements, the for state-
ment has multiple exit points. This makes your code more difficult to understand
and can result in logic errors.

(143)



Visual C# 2005 Demystified

In the following program, the logical && (And) operator is an alternative to
using the break keyword:

private void Forml_Load(object sender, EventArgs e)

for (int num = 5; num <= 10 && num % 4 > 0; num++)
Debug.WriteLine(num);

Debug.WriteLine("This line will always print");

Before leaving the discussion of the break keyword, one additional use of it (in
conjunction with the parentheses following the for keyword being empty of all
three expressions) deserves mention simply because you may encounter it. The fol-
lowing program is a variant of the one that outputs numbers between 1 and 10, with
the first and third expressions inside the parentheses being empty because num is
initialized before the for loop and incremented inside the body of the loop. In this
program, the second expression—the condition—is missing as well. Instead, the
break keyword inside the if/else structure substitutes for that condition.

private void Forml_Load(object sender, EventArgs e)

int num = 1;
for (;;)

if (num > 10)
break;

else

Debug.WriteLine(num + " ");
num++;

Without the break keyword, the for loop would be infinite due to the lack of a
second expression. Again, however, I do recommend against this use of the break
keyword, and point it out simply because other programmers believe differently,
and therefore you're likely to encounter it at some point in time.

The continue Keyword
You also can use the continue keyword in a for statement. The continue keyword,
like the break keyword, is used within the code of a for statement, commonly within

<S>"



CHAPTER 8 Repeating Yourself—Loops and Arrays

an if/else structure. If the continue statement is reached, the current iteration of the
loop ends, and the next iteration of the loop begins.

For example, in the following program, the user is charged $3 an item, but not
charged for a "baker's dozen." In other words, every 13th item is free (the user is
charged for only a dozen items, instead of 13). The program assumes a project like
the one we used in Chapter 7, in which the form contains two controls, a TextBox
control named txtlnput (where the user will enter the number of items) and a Button
control named btnCalculate:

private void btnTest_Click(object sender, EventArgs e)

string strltems;
int intltems, total = 0;
strltems = txtlnput.Text;
intltems = Int32.Parse(strltems);
for (int counter = 1; counter <= intltems; counter++)

if (counter % 13 == 0)
continue;

total += 3;

Debug.WriteLine
("Total for " + intltems + " items is $" + total);

The price for 12 or 13 items is the same, $36. However, on the 14th item the user
again is charged an additional $3, for a total of $39. The reason why the code
charges the user no additional price for the 13th item is that the continue statement
is reached, preventing $3 from being added to the total.

Although the continue keyword is part of the C# language, I recommend, as I do
with the break keyword, that you use it sparingly. Normally, each iteration of a for
statement has one end point. However, when you use a continue statement, each
iteration has multiple end points. This makes your code more difficult to under-
stand, and can result in logic errors.

In the following program, the logical ! (Not) operator is an alternative to using
the continue keyword:

private void btnTest_Click(object sender, EventArgs e)

string strltems;
int intltems, total = 0;
strltems = txtlnput.Text;
intltems = Int32.Parse(strltems);

(145)



@)
Visual C# 2005 Demystified

for (int counter = 1; counter <= intltems; counter++)

if (! (counter % 13 == 0 ))
total += 3;

Debug.WriteLine
("Total for " + intltems + " items is $" + total);

NOTE You also could use the relational != (not equal) operator, changing the if
statement to if (counter % 13 != 0).

Nesting

You can nest a for statement just as you can nest if statements. For example, the
following program prints five rows often X characters:

private void Forml_Load (obj ect sender, EventArgs e)

for (int x = 1; x <= 5; x++)

for (int y = 1; y <= 10; y++)
Debug.Write("X");

Debug.WriteLine("");

The for loop

for (int x = 1; x <= 5; x++)

is the outer for loop, and the for loop

for (int y = 1; y <= 10; y++)

is the inner for loop.
With nested for loops, for each iteration of the outer for loop, the inner for loop

goes through all its iterations. By analogy, in a clock, minutes are the outer loop,
seconds the inner loop. For each iteration of a minute, there are 60 iterations of
seconds.

In the rows and columns example, for the first iteration of the outer for loop, the
inner for loop goes through all ten of its iterations, printing ten X characters. Then,
for the next iteration of the outer for loop, the inner for loop again goes through all
ten of its iterations, again printing ten X characters. The same thing happens on the



CHAPTER 8 Repeating Yourself—Loops and Arrays

third, fourth, and fifth iterations of the outer for loop, resulting in five rows often X
characters. The outer for statement represents the rows, and the inner for statement
represents the columns.

The foreach Statement
The foreach statement is similar to the for statement, but it executes the statement
block for each element in a collection, instead of a specified number of times. A
collection is a group of usually like objects. The syntax is shown here:

foreach ( [Data Type] [variable] in [Collection])
//code

For example, a form has a Controls collection, which is a collection of all the
controls on a form. The following code displays in the Output window the name of
each control in the form, which is represented by the this keyword:

private void Forml_Load(object sender, EventArgs e)

foreach (Control ctl in this.Controls)
Debug.WriteLine(ctl.Name);

The while Statement
The while loop is similar to a for loop in that both have the typical characteristic of
a loop: The code inside each continues to iterate until a condition becomes false.
The primary syntax difference between them is in the parentheses following the for
and while keywords.

The parentheses following the for keyword consists of three expressions: initial-
ization, condition, and update. By contrast, the parentheses following the while
keyword consists only of the condition; you have to take care of initialization and
update elsewhere in the code.

The following program first introduced earlier in this chapter outputs the num-
bers between 1 and 10 using the for loop:

private void Forml_Load(object sender, EventArgs e)

for (int num = 1; num <= 10; num++)
Debug.WriteLine(num);

Debug.WriteLine("This line will always print");

<147>



Visual C# 2005 Demystified

The same program using the while loop could be written like this:

private void Forml_Load(object sender, EventArgs e)

int num = 1;
while (num <= 10)

Debug.WriteLine(num);
num++;

With the while loop, the integer variable num had to be declared and initialized
before the loop because this cannot be done inside the parentheses following the
while keyword. Further, num was updated inside the code of the loop using the in-
crement operator. This update also can be done inside the parentheses following the
while keyword, as shown by an example later in this section.

The update of the variable is particularly important with the while loop. Without
that update, the loop would be infinite. For example, in the following excerpt from
this program, if num is not incremented, the loop would be infinite. The value of
num would not change from 1, so the condition num <= 10 always would remain
true.

int num = 1;
while (num <= 10)

Debug.WriteLine(num);

Forgetting to update the value of the variable you are using in the condition is a
common mistake with a while statement. Forgetting the update is less common with
a for statement because that update is the usual purpose of the third expression in
the parentheses following the for keyword.

Otherwise, the syntax rules discussed earlier in this chapter concerning the for
statement apply equally to the while statement. For example, if more than one con-
ditional statement belongs to the while statement, the statements must be contained
within curly braces. That is why in the program that outputs the numbers between
1 and 10 using the while loop, the two statements in the body of the while loop are
contained within curly braces:

while (num <= 10)

Debug.WriteLine(num);
num++;

@)



CHAPTER 8 Repeating Yourself—Loops and Arrays

In the program we just analyzed, the update of the value of num was done within
the body of the loop. The update could also be done within the condition itself:

private void Forml_Load(object sender, EventArgs e)

int num = 0;
while (num++ < 10)

Debug.WriteLine(num);

Updating the counter within the condition requires two changes from the previ-
ous code. First, the value of num has to be initialized to 0 instead of to 1 because the
increment inside the parentheses during the first iteration of the loop would change
that variable's value to 1. Second, the relational operator in the condition is < rather
than <= because the value of num is being incremented before it is outputted.

Updating the counter within the condition raises the question, Given the condi-
tion num+-i- < 10, which comes first, the comparison or the increment? Because the
increment is postfix, the answer is the comparison.

The counter also could be updated within the condition using a prefix incre-
ment. However, then the condition should be ++num <= 10 to obtain the desired
output.

As with the for statement, the statement or statements following the while key-
word and parentheses will not execute if the parentheses are followed by a semicolon,
because that would be interpreted as an empty statement. Test yourself on this; what
would be the output if we placed a semicolon after the while condition, as in the
following code fragment?

int num = 0;
while (num++ < 10);

Debug.WriteLine(num);

The only number that would output is 11. The reason is that the loop continues,
and the empty statement executes, until the condition fails when num is 10. The
value of num still is incremented to 11 (the increment is postfix so it occurs after
the comparison), at which time the statement following the loop executes and the
value of num (11) is outputted.

Given the similarities between the for and while statements, a program that uses
one usually could have used the other as well. As a general rule, the for statement
often is preferred when the number of iterations is known in advance, such as count-
ing from 1 through 10. The while statement instead is preferred if the number of
iterations cannot be known in advance, such as if the loop structure must continue
until the user enters a valid input.

(U9;



Visual C# 2005 Demystified

The Do While Construct

The do while loop is similar to the while loop. The primary difference is that with
a do while loop, the condition is tested at the bottom of the loop, unlike a while loop
where the condition is tested at the top. This means that a do while loop will always
execute at least once, whereas a while loop may never execute at all if its condition
is false at the outset.

The syntax of a do while loop is

do {
statement(s);

} while (condition);

The do keyword starts the loop. The statement or statements belonging to the
loop are enclosed in curly braces. After the closing curly brace, the while keyword
appears, followed by the condition in parentheses, terminated by a semicolon.

A do while loop often is preferred over a while loop in situations where the loop
structure must iterate at least once before the comparison may be made.

Arrays
In previous chapters, I showed you how to declare variables of different data types,
such as int and double. Those variables are scalar variables. They can store only
one value at a time.

An array permits you to use a single variable to store many values. The values
are stored at consecutive indexes. The index is a positive integer, starting with zero
and then incrementing by one for each additional element of the array.

Declaring Arrays

Array variables are declared the same as other variables, with one difference. The
data type is followed by empty square brackets, indicating that the variable name
that follows is an array rather than a scalar variable.

The following example will declare an array that represents sales for each day of a
week. I have chosen the name arrSalesPerDay for the array, and an integer data type,
though a floating-point data type also would be appropriate. The following statement
declares the array, starting with the data type (here, int), followed by empty squar
brackets to indicate that an array rather than a scalar variable is being declared, fol-
lowed by the name of the variable that represents the array, arrSalesPerDay:

in t [ ] arrSalesPerDay;

50)



CHAPTER 8 Repeating Yourself—Loops and Arrays

The next step is to specify the size of the array—that is, the number of
elements it will contain. Because this array is supposed to represent sales for each
day of the week, it should have seven elements (we'll assume our store is open
every day).

The following statement creates seven elements for the array. The array name
(here, arrSalesPerDay) is followed by the assignment operator, which in turn is fol-
lowed by the new keyword, followed by the data type (here, int), followed by the
number of elements in the array within square brackets (here, seven):

arrSalesPerDay = new int[7] ;

You also can declare the array and its size in one statement rather than in two:

int []arrSalesPerDay = new in t [7 ] ;

NOTE You also can assign values to the array at the same time as you declare the
array. This is discussed in the later section on initialization.

Assigning Values to the Array

Our array has seven elements, but we have not yet assigned values to any of them.
That does not mean that the array elements do not have a value. When you first
declare an array, each element of the array has a default value. The specific default
value depends on the data type of the array. If, as here, the data type is integer, each
element of the array has a default value of 0.

However, you rarely want to use the default value. Instead, you want to assign
your own values to the array elements. You can do so at two times—via initializa-
tion when the array is declared and via assignment after the array is declared.

Initialization
Initialization is when you assign values to a variable when you declare it. The fol-
lowing example initializes the arrSalesPerDay array:

int[]arrSalesPerDay = new int [7] {8, 5, 7, 3, 2, 9, 11};

The values being assigned are enclosed in curly braces and separated by commas.
You also may omit the size of the array during initialization:

int[]arrSalesPerDay = new int [] {8, 5, 7, 3, 2, 9, 11};

This works because the number of values assigned (here, seven) tells the compiler
to allocate memory to hold seven integer elements.

<0j!



Visual C# 2005 Demystified

Another syntax variation is that you can also omit the new operator if you are
using initialization:

int[]arrSalesPerDay = {8, 5, 7, 3, 2, 9, 11};

Assignment

You assign a value to an element of an array by using the index of the element. The
index of the first array element is always 0. Accordingly, the index of the last array
element is always one less than the total number of elements. Thus, if the array has
seven elements, the index of the last array element is six.

The following code fragment assigns 73 to the second element of the array:

arrSalesPerDay [1] = 73;

Again, the index 1 indicates the second element of the array, not the first, because
the starting index of the array is 0.

You can use a loop to efficiently assign values to each element of the entire array.
Try the following code, which uses two loops. The first loop assigns an arbitrary
value (double the amount of the index) to that array element. The second loop out-
puts these elements:

private void Forml_Load(object sender, EventArgs e)

int[]arrSalesPerDay = new int [7] ;
for (int x = 0; x < 7; x++)
arrSalesPerDay[x] = x * 2;
for (int x = 0; x < 7; x++)

Debug.WriteLine(arrSalesPerDay[x]);

The counter variable x starts at 0 because 0 is always the starting element of the
array. The comparison is true so long as x is less than 7. Although 7 is the number
of elements in the array, the highest index of the array is 6, not 7, because the start-
ing index is 0, not 1.

Setting the comparison to the counter being <= the number of elements in the
array rather than the counter being < the number of elements is a common rookie
mistake. The consequences of attempting to access arrSalesPerDay[7], which is a
nonexistent element of the array, are unpredictable, though never good, because
you are attempting to access an area of memory not reserved for the array. One pos-
sibility is a run-time error if the area of memory you are attempting to access is
reserved, such as for the operating system.

<152>



CHAPTER 8 Repeating Yourself—Loops and Arrays

You also can use arrays with loops to obtain a running total. Try the following
code, which outputs the total of the seven daily sales amounts entered by the user:

private void Forml_Load(object sender, EventArgs e)

int total = 0;
int[]arrSalesPerDay = new int [7] ;
for (int x = 0; x < 7; x++)

arrSalesPerDay[x] = x * 2;
total += arrSalesPerDay[x];

Debug.WriteLine("Total Sales: " + total);

NOTE In the examples in this section, the lower and upper bounds of the array
(0 and 6, respectively) were known. You also can obtain these values through code
with the GetLowerBound and GetUpperBound methods of the Array class (which
represents arrays), and you can get the number of elements in the array with the
Length property of that class:

As you can see, loops are very useful with arrays.
The arrays in this chapter have one dimension. You can have arrays with two or

more dimensions, two often representing rows and columns in a table or spread-
sheet, three representing a cubic space, and so forth. You also can use loops with a
multidimensional array. For example, a two-dimensional array would be accessed
by a loop nested within another loop!

Conclusion
Loops are used to repeat the execution of code statements. The for statement is used
to repeat code execution a fixed number of times. The foreach statement is similar
to the for statement, but it executes the statement block for each element in a col-
lection (a group of usually like objects), instead of a specified number of times.

The while statement is more flexible than the for statement because the number
of times a while statement executes does not have to be determined when you write
the code, but may depend on user input. The do while statement has the additional

(15



Visual C# 2005 Demystified

flexibility that it tests the condition at the bottom rather than at the top of the loop,
important when the loop must execute at least once to obtain a value to compare.

An array permits you to use a single variable to store many values. The values
are stored at consecutive indexes, which start with zero and end at an index that is
one less than the number of elements in the array.

In the next chapter, you will learn how to use subroutines and functions to orga-
nize your code more efficiently.

Quiz
1. What is a loop?

2. What is a difference between a while statement and a for statement?

3. What is a difference between the do ... while statement and the for and
while statements?

4. What is a difference between the for and foreach statements?

5. What are examples of nesting?

6. What is an array?

7. What is the difference between declaring an array variable and declaring
a scalar variable?

8. What is the lowest index of an array?

9. What is the relationship between the number of elements in an array and the
highest index in that array?

10. If you declare an array without assigning a value to its elements, do its elements
have a default value?

@>



CHAPTER

Organizing
Your Code with

Methods

A method is a group of statements that together perform a task. So far, the meth-
 ods we have written have been event procedures, often the Load event procedure
)f the form.

As you write more complex and sophisticated programs, you may find that the
cde in your event procedures becomes extremely long.

either the compiler nor the Runtime cares if the code in an event procedure is
^rt or long. However, you should care. An event procedure that continues forr
pags is difficult to understand or fix if errors arise.

BY analogy, this book is a few hundred pages long. It would be harder to under-
Bnf each chapter was not divided into sections. This book would be still harder too

155)

99

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

understand if it consisted of only one, very long chapter. By dividing this book's con-
tent into chapters, and each chapter into sections, this book is easier to understand.

Similarly, you can divide up your code into separate methods. How you divide
up your code among different methods is up to you, but logically the division usu-
ally is so each method performs a specific task.

For example, in a program that performs arithmetic calculations, one method
obtains user input, another method performs the calculation, and a third method
performs the output of the result. This is analogous to how a book is divided up into
chapters and sections. Each chapter explores a different subject. One chapter fo-
cuses on variables, another (this one) on methods.

There are advantages to dividing your code into separate methods in addition to
making your code easier to understand. For example, if a method performs a spe-
cific task, such as sending output to a printer, which is performed several times in a
program, you only need to write once in a method the code necessary to send output
to the printer, and then you can call that method each time you need to perform that
task. Otherwise, the code necessary to send output to the printer would have to be
repeated each time that task was to be performed. Further, if you later have to fix a
bug in how you perform that task, or simply find a better way to perform the task,
you only have to change the code in one place rather than many.

Hopefully I have persuaded you that organizing your code into separate methods
can be useful. I will now show you how to do it.

Defining and Calling a Method
Implementing any method involves two steps:

1. Defining the method.

2. Calling the method.

The explanation of these steps uses terminology we have not discussed before,
so that terminology is reviewed first.

Terminology of a Method
Let's look at a simple program with one method, the event procedure or handler for
the Load event of the form:

(l56>



CHAPTER 9 Organizing Your Code with Methods

private void Forml_Load(object sender, EventArgs e)

Debug.WriteLine("Hello world");

NOTE Up until now I have used the term "event procedure." A method that
handles an event, such as this one, which handles the Load event of the form, also
may be referred to as an "event handler." Now that we are discussing methods,
I prefer and will be using in this chapter the term "event handler" because I believe
it better distinguishes this type of method from others. However, the term "event
procedure " also is acceptable; the issue really is one of personal preference.

The first line is the header. The header is the "signature" of the method, describ-
ing its attributes or characteristics , and it consists of the following four parts:

• Access specifier Here, the access specifier is private. Access specifiers
were discussed in Chapter 4 with respect to variables. They serve the same
purpose with methods.

• Return type Here, the return type is void, which indicates the lack of
a return value. Return values are discussed later in this chapter.

• Name Here, the name is Forml_Load. The name of an event handler
follows the Object_Event syntax. In this case, the object is Forml and the
event is Load.

• Parameter list Here, the parameter list is (object sender, EventArgs e).
Parameters are information provided to a method so that it may perform its
task. Chapter 3 involved a project that used parameters of an event handler
to report mouse coordinates. Parameters also are discussed in a later section
of this chapter.

When you're declaring and implementing a method, a header always is followed
by an open curly brace, which begins the body of the method, which correspond-
ingly ends with a closing curly brace.

The method body consists of one or more statements. In this example, the meth-
od body consists of one statement, which writes "Hello World" to the Output
window. The method body may contain additional curly braces, such as to enclose
multiple statements that belong to an if statement or a loop.

The method body must contain a return statement unless the return type is void,
as it is here, in which case the return statement is optional. Further examples in this
chapter will show you how to implement a return statement.

(157)



Visual C# 2005 Demystified

The method header and body together are referred to as the method definition. A
method cannot execute until it is first defined. Once defined, a method executes
when it is called.

A method may be called by the occurrence of an event, code, or the .NET Run-
time. The Forml_Load event handler is called by the occurrence of an event,
namely the loading of the startup form.

The header of an event handler is predefined by the .NET Framework. You can-
not change it. In order to invoke the event procedure, the .NET Runtime needs to
find the event handler signature it expects for that event.

By contrast, you have relative freedom in writing the header of methods you create.
This includes naming the methods, which we'll discuss next.

Naming a Method

The rules for naming a method are similar to those for naming a variable. There are
only a few limitations, such as no embedded spaces within the method name. For
example, Print Message is not a valid method name.

Although Visual C# imposes few limitations on how you name a method, as with
naming variables, you should name your methods so that what they do is reason-
ably clear to you and other programmers who may have to review your code.
Method names such as Method 1, Method2, Methods, and so on, are not very help-
ful. You, and even more so your fellow programmers, will have trouble
remembering which of them does what. By contrast, descriptive method names
such as PrintName, PrintAddress, PrintCity, and so on, are quite helpful in describ-
ing what each method does.

I agree with Microsoft's recommendation that you use the Noun Verb or Verb-
Noun style to create a name that clearly identifies what the method does. For
example, the method name PrintName is a concatenation of the verb "Print," which
indicates the action the method takes, and the noun "Name," which indicates the
information printed. You might have more than one noun, such as PrintCustomer-
Name. In any event, the first letter of each noun and verb is capitalized when
naming public methods. For private methods, the first word by convention often is
lowercase, such as the printMessage method in the following examples.

The next sections will explain how to define your own method and then call it.

Defining a Method

Let's take our "Hello world" example and divide the code into two methods: the
Load event handler and a printMessage method that outputs "Hello world."

@>



CHAPTER 9 Organizing Your Code with Methods

The comments (beginning with //) indicate the beginning and end of the definition
of the printMessage method and where that method is called.

private void Forml_Load(object sender, EventArgs e)

printMessage(); // calls printMessage method

// begins definition of printMessage method
private void printMessage ()

Debug.WriteLine("Hello world");

// ends definition of printMessage method

NOTE As mentioned in previous chapters, because the Debug class methods are
being used, you should import, with a using statement, the System.Diagnostics
namespace.

Let's first examine the definition of the printMessage method. The void key-
word preceding the method printMessage means that this method does not return
a value. The empty parentheses following the method name means this method has
no arguments.

The body of the printMessage method has one statement, which outputs "Hello
world." The method body does not need to contain an explicit return statement be-
cause, since the return type is void, the return statement is implied. However, you
may include an explicit return statement. If you did, then the printMessage method
would read as follows:

void printMessage ()

Debug.WriteLine("Hello world");
return;

Calling a Method
Firefighters put out fires. However, they generally do not drive around looking for
fires. Instead, they go out to a fire when called upon to do so.

In the same way, a method does not just execute by itself. The statements within
a method do not execute until and unless the method is called, usually by code,
though also it could be by the occurrence of an event or by the .NET Runtime.
Indeed, unless the printMessage method is called, it is the programming analogy of

-(159)



Visual C# 2005 Demystified

the tree that falls in the forest without anyone seeing or hearing it; it is there in the
program, but it doesn't do anything.

The printMessage method may be called in the Load event handler of the form
with the following line:

printMessage();

In this example, printMessage is the called method, because it is the method being
called from the Load event handler of the form. The empty parentheses indicate that
no arguments are being passed to this method. I will show you later in this chapter
how to pass arguments, as well as how to use return values.

The order of execution is as follows:

1. Execution starts with the Load event handler of the form.

2. The first statement in the Load event handler, printMessage(), is executed.
This calls the printMessage method.

3. Execution next shifts to the printMessage method and then begins with the
first statement in that method, which outputs "Hello world."

4. After the printMessage method completes executing, execution returns to
the Load event handler, which then ends execution because there are no
further statements in that event handler.

Continuing the firefighter analogy, when firefighters arrive at the scene of the
fire, they take control and maintain that control until they put out the fire. Similarly,
once the method is called, whether by user action or code, it takes control of the
application, and no other code executes without being called by the method, until
the method is finished. Thus, control does not return to the Load event handler
while the printMessage method is executing.

NOTE An exception is that two methods may execute independently in
a multithreaded application. Such an application is an advanced topic far
beyond the introductory scope of this book.

Completing the analogy, when the firefighters successfully put out the fire, they
pack up their equipment and go back to the fire station, relinquishing control of the
fire scene. Similarly, when the method finishes executing, it relinquishes control of
the application, and whatever code (or user action) follows the call of the method
determines the further flow of the application. Thus, control returns to the Load
event handler when the printMessage method finishes executing.

@)



CHAPTER 9 Organizing Your Code with Methods

Parameters—Sending Information
to a Method

As discussed earlier in this chapter, the parentheses following the method name in
the header contain the method's parameters. Parameters are information that is pro-
vided to a method so that it may perform its task.

Returning to our firefighter analogy, when firefighters are called to a fire, they
need to know the location of the fire, the type of fire (house fire, chemical fire, and
so on) so they know what equipment to bring, and other pertinent information. The
particular location and type of fire may well vary from call to call, but in each case
this information is necessary in order for the firefighters to do their job.

Similarly, a method often needs information in order to perform its task. For
example, a method that outputs the square of a number to the Output window needs
to know the number to be squared. The value of that number may vary from call to
call, but in each case the method will need to know the particular number to be
squared. This information is called an argument.

Some methods don't need further information to do their job. One example has
been the printMessage method, which simply outputs "Hello world." It does not
need any further information to do its job.

However, when we want to modify the printMessage method so that it does not
always output "Hello world" but instead outputs whatever message we ask it to, we
need to tell it the message we want it to output. We can do so by passing the method
an argument that specifies the message.

This chapter will discuss two ways of passing arguments—by value and by
reference.

Passing Arguments by Value

The following is a modification of the program that uses the printMessage method
to output a message. This time, the content of the message to be output (here, the
Text property of the form) is passed to the printMessage method as an argument:

private void Forml_Load(object sender, EventArgs e)

printMessage(this.Text);

private void printMessage (string msg)

Debug.WriteLine("The form's Text property is " + msg);

•@)



Visual C# 2005 Demystified

Using the Argument

The following code calls the printMessage method:

printMessage(this.Text);

The Text property of the form (represented by the "this" keyword) is passed as
an argument to the printMessage method. The value of this Text property then is
passed to the string variable msg, which is the parameter name in the header of the
printMessage method:

void printMessage (string msg)

The string variable msg then is used in the body of the printMessage method to
output the message:

Debug.WriteLine("The form's Text property is " + msg);

The header must include a parameter name as well as a data type so the value
being passed by the method call (this.Text in the Load event handler) may be stored
in a variable that can be used in the printMessage method. Otherwise, the value
passed would have no place to be stored for use in the printMessage method.

NOTE As with variables and methods, you should name the parameter
descriptively.

Using Multiple Arguments

The program we just discussed uses one argument. However, a method may have
two or even more method arguments.

The following modification of the printMessage method uses two arguments—the
first for the form's Text property, the second for the number of controls on the form:

private void Forml_Load(object sender, EventArgs e)

printMessage(this.Text, this.Controls.Count);

private void printMessage (string txt, int count)

Debug.WriteLine _
("The form's Text property is " + txt);
Debug.WriteLine
("The form contains " + count + " controls");

®-



CHAPTER 9 Organizing Your Code with Methods

Here is some sample output (the form I used has two controls):

The form's Text property is Forml
The form contains 2 controls

As this example illustrates, the only difference between declaring a procedure
with a single parameter and declaring a procedure with more than one parameter is
that a comma separates the parameters:

(string txt, int count)

Similarly, when you call the procedure, a comma separates the arguments:

(this.Text, this.Controls.Count);

The Parameters and Arguments Must Match

The order of arguments in the call to the method must correspond to the order of the
arguments in the header. Here are the call and the header for this example:

printMessage(this.Text, this.Controls.Count);
private void printMessage (string txt, int count)

The first variable in the method call is this.Text. Therefore, the value of the
form's Text property is copied into the first parameter in the printMessage header,
txt. Similarly, because the second argument in the call is this.Controls.Count, the
value of that Count property is copied into the second parameter in the printMes-
sage header, count.

If the arguments in the method call were reversed, as in

printMessage(this .Controls .Count, th is .Text) ;

the result would be the following compiler errors:

cannot convert argument 1 from 'string' to 'int'

and

cannot convert argument 2 from 'int' to 'string'

This is because the compiler was expecting from the method header that the first
argument would be a string, not an int, and that the second argument would be an
int, not a string.

Similarly, when you call a method, you must pass the same number of arguments
as the number of parameters specified in the method's parameter list. For example,
if you tried to call the printMessage method with only one argument, as in

printMessage(this.Text);

(163>



(164)
Visual C# 2005 Demystified

the compiler would complain as follows:

No overload for method 'printMessage' takes 1 argument

This means that the compiler could not find a header for printMessage that takes
only one argument.

Too many arguments are no better than too few arguments. If you tried to call the
printMessage method with three arguments, as in

printMessage(this .Text, this .Controls.Count, "oops") ;

the compiler would similarly complain:

No overload for method 'printMessage' takes 3 arguments

Passing Arguments by Reference

Passing arguments by value is fine when you don't want to change their value in the
called method. The printMessage method did not change the value of its arguments;
it simply outputs them.

However, sometimes the intent of a method is to change the value of the argu-
ment passed to it. Consider the following example, in which the doublelt method is
supposed to double the value of the argument passed to it:

private void Forml_Load(object sender, EventArgs e)

int num =5;
Debug.WriteLine
("Num in Forml_Load before call = " + num);
doublelt(num);
Debug.WriteLine
("Num in Forml_Load after call = " + num);

void doublelt (int x)

Debug.WriteLine
("x in doublelt before doubling = " + x);
x *= 2;

Debug.WriteLine("x in doublelt after doubling = " + x);

Here is some sample output:

num in Forml_Load before call = 5
x in doublelt before doubling = 5
x in doublelt after doubling = 10
num in Forml Load after call = 5



CHAPTER 9 Organizing Your Code with Methods

As the sample input and output reflects, the value of num in the Load event handler
was not changed by the doubling of its counterpart argument in the doublelt method.

The reason the value of num was not changed in the Load event handler is that
a copy of it was passed to doublelt. The change was made to the copy, but the
original, the variable num in the Load event handler, was not affected by the dou-
bling of the copy. The logic is the same as if I gave you a copy of this page, which
you then proceeded to rip up. The original I kept would be unaffected.

In order for the called method to change the value in the Load event handler of
a variable passed to it, the variable must be passed by reference. The variable in the
called method is called a reference variable. The reference variable is not a copy of
the variable in the Load event handler. Instead, the reference variable is an alias for
the variable in the Load event handler. You may recall from television that an alias is
another name a person may use, such as James Bond's alias of 007. However, wheth-
er you refer to him as James Bond or 007, you are still referring to the same person.

In order to pass a variable by reference, the data type in the argument, both in the
method header and in the call, is preceded either by ref or out.

The ref Keyword
The following program passes the variable to be doubled by reference:

private void Forml_Load(object sender, EventArgs e)

int num =5;
Debug.WriteLine
("Num in Forml_Load before call = " + num);
doublelt(ref num);
Debug.WriteLine
("Num in Forml_Load after call = " + num);

void doublelt (ref int x)

Debug.WriteLine
("x in doublelt before doubling = " + x);
x *= 2,-
Debug. WriteLine ("x in doublelt after doubling = " + x);

Here is some sample output:

num in Forml_Load before call = 5
x in doublelt before doubling = 5
x in doublelt after doubling = 10
num in Forml Load before call = 10

(165>



Visual C# 2005 Demystified

There are two changes from the program that passed a parameter by value. First,
the header was changed to insert the ref keyword:

void doublelt (ref int x)

Second, the call also was changed to insert the ref keyword:

doublelt(ref n u m ) ;

You can pass multiple values by reference as well as by value. Indeed, you can
pass some values by reference and others by value. You pass by reference those val-
ues you need to change, and you pass by value those values you are not changing.

NOTE There is another difference between passing by value and passing by
reference. You can pass by value expressions and constants as well as variables.
However, you can only pass variables by reference.

The out Keyword
The preceding program would not work with the out keyword instead of the ref
keyword. If the method header and call were changed respectively to

void doublelt (out int x)
doublelt(out num);

the result would be a compiler error. In the method

void doublelt (out int x)

Debug.WriteLine
("x in doublelt before doubling = " + x);
x *= 2;

Debug.WriteLine _
("x in doublelt after doubling = " + x);

the compiler would complain about the use of the unassigned out parameter x. This
means that x was not assigned an explicit value before its value was to be outputted in
the first Debug.WriteLine statement. This is a requirement for using the out keyword.

Although out would not be a good choice in the doublelt program, it does have
an advantage over the ref keyword in that a variable passed with the ref keyword
must already have an assigned value, whereas one passed with the out keyword
need not.

166



CHAPTER 9 Organizing Your Code with Methods

For example, in Chapter 7, the following code, which assumes a Button control
named btnTest, uses the TryParse method of the Int32 class to check if a value en-
tered by the user in a TextBox named txtlnput may evaluate as an integer:

private void btnTest_Click(object sender, EventArgs e)

string strScore;
int intScore;
strScore = txtlnput.Text;
bool blnlnput;
blnlnput = Int32.TryParse(strScore, out intScore);
if (blnlnput == false)

Debug.WriteLine
("Input does not evaluate to an integer");

else if (intScore >= 0 && intScore <= 100)
Debug.WriteLine("The test score is valid");

else if (intScore < 0)
Debug.WriteLine
("Test score cannot be less than zero");

else
Debug.WriteLine
("Test score cannot be greater than 100");

Debug.WriteLine("This line will always print");

When the TryParse method is called, its second argument, intScore, has no exist-
ing value. Rather, the TryParse method assigns intScore an integer value,
corresponding to the string representation of that integer in strScore, if strScore is
the string representation of an integer. Thus, the actual header of the TryParse meth-
od uses the out keyword rather the ref keyword:

public static bool TryParse(string s, out int result)

Passing an Array as an Argument

You can also pass an array as an argument. To illustrate, let's start with this program
from Chapter 8, which uses two loops in the Load event handler. The first loop as-
signs an arbitrary value (double the amount of the index) to that array element. The
second loop outputs these elements.

private void Forml_Load(object sender, EventArgs e)

int []arrSalesPerDay = new int[7] ;

167



Visual C# 2005 Demystified

for (int x = 0; x < 7; x++)

arrSalesPerDay[x] = x * 2;

for (int x = 0; x < 7; x++)

Debug.WriteLine(arrSalesPerDay[x]);

Let's now revise this program by creating two additional methods, one, assign-
Values, to assign values to the array elements, the other, outputValues, to output
those values:

private void Forml_Load(object sender, EventArgs e)

int[]arrSalesPerDay = new int [7] ;
assignValues(arrSalesPerDay);
outputValues(arrSalesPerDay);

private void assignValues(int[] arr)

for (int x = 0; x < 7; x++)
arr[x] = x * 2;

private void outputValues(int[] arr)

for (int i = 0; i < 7; i++)
Debug.WriteLine(arr [i]) ;

The output of this program is the same as the version where all the code was in
the Load event handler. Several aspects of this revised program are significant.

First, the parameter of the two new methods have empty square brackets after the
data type, int[], rather than just int. This signifies that the parameter is an integer
array rather than a single integer.

Second, when the two new methods are called, the argument is the name of the
array in the Load event handler, arr. Thus, the entire array, or in reality its address
in memory, is passed to the methods.

Third, the assignValues method did change the value of the corresponding argu-
ment in the Load event handler. However, the parameter seemingly was not passed
by reference; no ref or out keyword is in the parameter list. The reason is that an
array is a reference type; when an array name is an argument, the value of that argu-
ment is the array's address in memory. This is in contrast to when, for example, a

<16



CHAPTER 9 Organizing Your Code with Methods

single integer variable is an argument, when the value of that argument, absent the
ref or out keyword, is the value of that variable, not its address.

Thus, with a reference type like an array, you can pass it by value and change,
via the called function, the values of its elements. However, you cannot, via the
called function, replace the array with a different array if you pass the array by
value. To do that, you must pass the array by reference.

Returning a Value from a Method
Arguments are used to pass values to a called method. A return value may be used
to pass a value from a called method back to the method that called it.

Syntax
In the previous section, the method doublelt changed the value of its argument both
in that method and in the Load event handler that called it. There, the header of the
doublelt method was

void doublelt (ref int x)

Let's modify the doublelt method by passing its one parameter by value rather
than by reference (because we are not going to change its value in this example) but
also by adding a return value to the method. The return value is added by indicating
its data type (here, an int) in front of the method name in the header:

int doublelt (int x)

Thus, the return value is changed from void, indicating no return value, to int, indi-
cating that a value is returned, and its data type is an integer.

We will now implement this revised doublelt method in the following program:

private void Forml_Load(object sender, EventArgs e)

int num =5;
int newNum = doublelt(num);
Debug.WriteLine
("newNum in Forml_Load after call = " + newNum);

int doublelt (int x)

return x *= 2;

169



Visual C# 2005 Demystified

The output should be the following:

newNum in Forml_Load after call = 10

How the Value Is Returned
Although the output of the preceding code shows that the variable newNum was
successfully assigned 10, double the value of num, how exactly did that happen?

Let's start with the call of the doublelt method by the following line:

int newNum = doub le l t (num) ;

The declaration of the doublelt method is

int doublelt (int x)

return x *= 2;

Because the value of the argument passed (num) is 5, the value of the parameter in
doublelt, x, is 5. Thus, the statement

return x *= 2;

in effect is

return 10;

With the return statement, the doublelt method finishes executing, and the value
10 is returned to the right side of the assignment statement. After the doublelt meth-
od finishes executing, the statement

int newNum = doublelt(num);

in effect is

int newNum = 10;

Thus, the following code outputs that the value of newNum is 10:

Debug.WriteLine
("newNum in Forml Load after call = " + newNum);)

Saving the Return Value
It is common that a method returning a value is called on the right side of an assign-
ment operator with a variable on the left side of the assignment operator to capture
the return value. However, this is not required. In the program, the variable new-
Num was not necessary. Instead of the two statememts

QZ2)



CHAPTER 9 Organizing Your Code with Methods

int newNum = doublelt(num);
Debug.WriteLine
("newNum in Forml_Load after call = " + newNum);

the return value could have been displayed in one statement:

Debug.WriteLine
("newNum in Forml_Load after call = " + doublelt(num));

The only difference is that once this statement completes, the return value of the
method cannot be used in later statements because it was not stored in a variable. In
this program, that is not a problem because the return value is not used again. How-
ever, if you are going to use a return value more than once, it's generally a good idea
to store that return value in a variable, as in the example in the preceding section.

Returning a Boolean Value

Methods that return a Boolean value often are called in an if control structure. For
example, the following method, isEmptyString, returns true if the string that is its
parameter is an empty string, and otherwise returns false:

private bool isEmptyString (string str)

return (str == "") ;

The method may then be called following an if clause, and passed a string value
(here, the Text property of the form). If the Text property is empty, the method will
return true, and the output will be "Text property has no value." If the Text prop-
erty has some value, the method will return false, and the output will be "Text
property has value."

private void Forml_Load(object sender, EventArgs e)

if (isEmptyString(this.Text))
Debug.WriteLine("Text property has no value");

else
Debug.WriteLine("Text property has value");

The statement

00000000000000000000000000

also could have been written as follows:

if (isEmptyString(this.Text)== true)

<m)



Visual C# 2005 Demystified

These two statements have the same effect. Because isEmptyString returns a Boolean
value, it is unnecessary to compare that Boolean value to another Boolean value to
obtain a Boolean result. Thus, the == true is unnecessary, though harmless.

Conclusion
A method is a group of statements that together perform a task. You implement
a method by first defining it and then calling it. A method definition consists of
a header and a body. The header consists of an access specifier, a return type, a method
name, and an argument list. The header always is followed by an opening curly brace,
which begins the method's body. The body ends with a closing curly brace and
contains one or more statements. Unless the return value is void, the body must end
with a return statement.

You can pass information to a method by using arguments. You may pass argu-
ments by value or by reference. You pass an argument by value when you don't
intend any change to that variable in the called method to affect that variable's
value in the calling method. Conversely, you pass a variable argument by reference
when you intend a change to that variable in the called method to affect that vari-
able's value in the calling method.

The order and data type of the arguments in the method's header must corre-
spond to the order and data type of the arguments in the call to that method.

Although arguments are used to pass values to a called method, a return value
can be used to pass a value from a called method back to the method that called it.
However, although multiple values can be passed to a method as arguments, mul-
tiple values cannot be returned from methods.

There are several reasons why you might want to create your own methods. As
you write more complex and sophisticated programs, your code will be easier to
write, understand, and fix if you divide the code up among different methods, each
method performing a specific task, than if one method contains pages of code.
Additionally, if you are performing essentially the same task from several places in
the program, you can avoid duplication of code by putting the code that performs
that task in one place, as opposed to repeating that code in each place in the pro-
gram that may call for the performance of that task. Further, if you later have to fix
a bug in how you perform that task, or simply find a better way to perform the task,
you only have to change the code in one place rather than many.

In the next chapter we will start focusing on the "Visual" in Visual C#, the user
interface.

2>



CHAPTER 9 Organizing Your Code with Methods

Quiz
1. What is a method?

2. What is the significance of the void return type?

3. What is the usual return type of an event procedure?

4. What does the private access specifier do when applied to a method?

5. May there be a return statement in a function whose return type is void?

6. What does calling a method do?

7. What is the difference between passing by value and passing by reference?

8. What parameter attribute performs a similar but not exactly the same purpose
as the out keyword?

9. What is the significance of an array being a reference type?

10. What are some reasons for writing your own methods?

73)



This page intentionally left blank 



CHAPTER

Helper Forms

Forms are the most common user interface element in Visual C# applications. In-
deed, it is difficult to conceptualize a Windows application without at least one
form. Forms are the windows, literally, through which application users view infor-
mation and interact with the application.

Visual C#'s automated creation of a new Windows application project includes
a form that serves as the main application window. However, although the main
application window may be the star of the show, that form needs a supporting cast
of helper forms, because Windows applications generally are far too complex for
the main application window to perform all the tasks required by the application.

The message box is a helper form built into the .NET Framework. The message
ox includes text that is either informative or a question as well as buttons, such as
>K. Yes, No, Cancel, and so on, for the application user's response and to close the
mssage box.

Iessage boxes are very common in Windows applications. One typical example,
discsscd latethis chapter, is if you make changes to a document in Microsoft
Word and then try to close the document without saving the changes, you may be
presented with a message box asking if you want to save the file before closing,
with buttons for Yes, No, and Cancel. This chapter will show you how to create and
use a message box in your application.

-Q75>

10

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

Although the message box is very useful, sometimes you want the helper form to
have functionality that is beyond the capability of a message box to provide. For
example, the text displayed by a message box is limited to a prompt. However, most
Windows applications have an About dialog box, summoned by the main form's
Help | About menu command, that displays more detailed information about the
application than can be provided in a message box.

The About dialog box is an example of a dialog form. However, although the
About dialog box simply is informational, dialog forms are not limited to the role of
passive purveyors of information, and instead typically are interactive. For example,
the Print dialog box displayed with the File | Print menu command enables the user
to choose from among printers, decide which pages to print, the number of copies to
make, and so forth, and then to start the print job by clicking the OK button. This
chapter will show you how to create and display a dialog form.

The ability of the user to interact with the Print dialog box is possible because it
may contain controls that a message box cannot contain, such as a drop-down list
from which the user may select a printer, radio buttons and a text box from which
the user may designate which pages to print, a check box through which the user
can designate whether the pages should be collated, and so forth.

The ability of the user to interact with a dialog form presents programming chal-
lenges involving communication between the main and helper form. For example,
the main form needs to know which button was clicked on the helper form, and it
should execute different code depending on which button was clicked. Additionally,
because the dialog form contains controls, the main form needs to know and take
actions based on what the application user typed, checked, or selected in the con-
trols in the helper form. This chapter will show you how to solve these programming
challenges.

Message Boxes
Because the actions of the application user cause a Windows application to receive
messages from the operating system, it seems only fair that a Windows application
can send a message to the application user. Windows applications often use mes-
sage boxes to inform and obtain a response from the application user.

Message boxes are valuable tools to use in applications. For example, one late
evening, working bleary-eyed to finish a chapter under unceasing pressure from my
heartless editor, I forgetfully close the document without first saving about an hour's
worth of changes. Mercifully, up pops the message box shown in Figure 10-1, asking
if I want to save my unsaved changes before the document is closed.

76)



CHAPTER 10 Helper Forms

Figure 10-1 Message box in Microsoft Word.

This message box, in addition to conveying valuable information, also is able to
obtain and process my response. If I choose the Yes button, the unsaved changes are
saved before the document is closed. If I choose the No button (bad choice), the
unsaved changes are discarded and the document is closed. If I choose the Cancel
button, the state just before I attempted to close the document is restored; the docu-
ment is kept open, but the unsaved changes remain unsaved.

Creating the Project
In this project, you will create the message box shown in Figure 10-2, which asks
the user if they want to quit the application. If the user chooses Yes, the application
closes. If the user chooses No, the application will not close.

Create the project through the following steps:

1. Create a new Windows application.

2. Using the Toolbox, add a button to the form.

3. Use the Properties window to change the Name property of the button to
btnClose and the Text property of the button to Close.

4. Add this code to the Click event of btnClose:

private void btnClose_Click(object sender, EventArgs e)

DialogResult drQuit;
drQuit = MessageBox.Show("Do you really want to quit?",

"Exit Confirmation",
MessageBoxButtons.YesNo,
MessageBoxIcon.Warning,
MessageBoxDefaultButton.Button2);

if (drQuit == DialogResult.Yes)
this.Close();

Run the project and click the Close button to display the message box shown pre-
viously in Figure 10-2. This type of message box is commonin Windows applications,

<17



Visual C# 2005 Demystified

Figure 10-2
Project in action.

providing the application user a last chance to decide whether they really want to
quit the application. If the application user chooses the Yes button, the application
will end. If instead the application user chooses the No button, just the message box
will close and the application user will be returned to the main form. Thus, the click-
ing of the No button will restore the application to its state just before the application
user chose the Close button.

Message Boxes Are Modal
The code involves three logical steps:

1. Display the message box using the Show method.

2. Obtain the application user's choice (Yes or No) by the return value of the
Show method.

3. If the choice is Yes, close the application.

However, before we analyze the code, let's examine a feature that message boxes
share with the dialog forms discussed later in this chapter—both are modal.

The term "modal" refers to the fact that the user cannot return to the application
until the message box is closed by the user clicking one of the buttons of the
message box.

Message boxes are always modal. However, not all forms are modal. This issue
will be discussed further in connection with dialog forms later in this chapter in the
section "Modal vs. Modeless."

Show Method
You do not need to create or design the message box. The message box is a form
built into the .NET Framework. All you need to do to create and display a message
box, together with its buttons, icon, text, and title, is to call the aptly named Show
method of the MessageBox class, which is part of the class library of the .NET
Framework, and provide the appropriate arguments. The .NET Framework also

78)



CHAPTER 10 Helper Forms

takes care of closing the message box. When you click a button, the message box
closes, automatically. You have to write the code that executes when the user clicks
a given button.

Parameters of Show Method

The Show method is overloaded. This means that you can call it several different
ways, depending on the number of parameters you include. The parameters of the
Show method are listed in Table 10-1.

The only parameter that is required is Text. In that case, the message box only will
have one button, OK, which closes the message box when clicked. This may be suf-
ficient if the message box simply provides information to the application user. For
example, when filling out a form in an application, you may have seen a message
box popping up telling you that you forgot to fill out a required field, or that the field
only takes numbers or that the password must be at least six characters, and so on.

Parameter

Text

Title

MessageBoxButtons

MessageBoxIcon

MessageBoxDefaultButton

Description

The prompt inside the message
box that conveys a question or
information to the application user
(in this case, "Do you really want
to quit?").

The title of the message box (in
this case, "Exit application"),
which provides a visual cue to the
application user of the purpose of
the message box.

The buttons inside the message
box (in this case, Yes and No). The
choices are listed in Table 10-2.

The graphic inside the message
box, such as the exclamation icon
in Figure 10-2. The choices are
listed in Table 10-3.

The button outlined as a cue that
pressing ENTER is the same as
clicking the button (in this case, the
second button, labeled No). The
choices are listed in Table 10-4.

Required?

Yes.

No. If omitted, no title.

No. If omitted, only
one button (OK).

No. If omitted, no
graphic.

No. If omitted, first
button is the default.

Table 10-1 Parameters of the Show Method

1791



Visual C# 2005 Demystified

NOTE The parameters are positional. This means you can't skip or omit an
argument. Therefore, if you want to specify a default button, which is the last
parameter, all of the previous arguments must also be supplied.

MessageBoxButtons Enumeration

Although a message box with only an OK button is sufficient if the message box's
purpose is purely information, the objective of this project is to give the application
user a choice of Yes or No concerning whether they really want to quit. You use
buttons—here, Yes and No buttons—to give the application user this choice. The
MessageBoxButtons enumeration contains the available button combinations,
which are listed in Table 10-2.

The term "enumeration" means a list of related choices, which in this case rep-
resents the various available button combinations. The syntax of an enumeration is

[Enumeration Name] . [Cho ice Name]

For example, if the selected button combination is Yes and No, the syntax is

MessageBoxButtons.YesNo

Here, MessageBoxButtons is the name of the enumeration, and YesNo is the choice
from the enumerated list.

MessageBoxIcon Enumeration

The saying that a picture is worth a thousand words, while perhaps trite, has much
truth. The visual cue of an icon in a message box tells the application user the nature
and importance of the message, ranging from informational to warning or error.

Similar to the button choices, the available icon choices are contained in an enu-
meration, this time named the MessageBoxIcon enumeration. Table 10-3 lists the
available icon choices.

Name

AbortRetry Ignore

OK

OKCancel

Retry Cancel

YesNo

YesNoCancel

Buttons Contained in Message Box

Abort, Retry, and Ignore.

OK. This is the default.

OK and Cancel.

Retry and Cancel.

Yes and No.

Yes, No, and Cancel.

Table 10-2 MessageBoxButtons Enumeration

18<J



CHAPTER 10 Helper Forms

Name

Asterisk

Error

Exclamation

Hand

Information

None

Question

Stop

Warning

Icon in Message Box

White lowercase letter i in a circle with a blue background.

White X in a circle with a red background.

Black exclamation point in a triangle with a yellow
background.

White X in a circle with a red background.

White lowercase letter i in a circle with a blue background.

None.

Blue question mark in a circle with a white background.

White X in a circle with a red background.

Black exclamation point in a triangle with a yellow
background.

Table 10-3 MessageBoxIcon Enumeration

MessageBoxDefaultButton Enumeration

The users of your application may be using the keyboard in lieu of the mouse to
choose a button. This may not simply be a matter of preference. Users with certain
disabilities may not be able to use a mouse and have to use the keyboard to choose
a button. Accordingly, you should designate a default button, which means that the
user pressing the ENTER key is the same as the user clicking that button.

The choices of the default button are contained in yet another enumeration, this
time called the MessageBoxDefaultButton enumeration. Table 10-4 lists the avail-
able button choices.

There are only three buttons in the enumeration because, as Table 10-2 indicates,
the maximum number of buttons is three—Abort, Retry, and Ignore, or Yes, No,
and Cancel.

Usually you choose as the default button the one whose choice would have the
least drastic effect, if for no other reason than if the application user absentmindedly
presses the ENTER key, nothing horrible will happen. Here, the button with the least
drastic effect is the No button, which will simply restore the status quo.

Member Name

Buttonl

Button2

ButtonS

Description

The first button on the message box is the default button.

The second button on the message box is the default button.

The third button on the message box is the default button.

Table 10-4 MessageBoxDefaultButton Enumeration

181)



1182)
Visual C# 2005 Demystified

Using the Show Method's Return Value

The next step is to write code so the form knows if the application user clicked the Yes
or No button in the message box. The programming task is that one form needs to
know an action taken in another form, the other form here being the message box.

You solve this problem by using the return value of the Show method. The concept
of a method returning a value is discussed in Chapter 9 in the coverage of methods.

DialogResult Enumerations

The Show method returns a value that represents the button that the application user
clicked in the message box. Each button is represented by a member of the Dialog-
Result enumeration listed in Table 10-5.

The DialogResult enumeration corresponds to the buttons in the MessageBox-
Buttons enumeration listed previously in Table 10-2, and will be returned if the
corresponding button is chosen. Thus, if the application user clicks the Yes button,
the Show method returns the value DialogResult. Yes.

The return value usually is stored in a variable for later use in the application.
The data type of that return value should be the same as the data type returned by
the method.

Member Name

Abort

Cancel

Ignore

No

None

OK

Retry

Yes

Description

The dialog box's return value
from a button labeled Abort.

The dialog box's return value
from a button labeled Cancel.

The dialog box's return value
from a button labeled Ignore.

The dialog box's return value
a button labeled No.

is Abort, usually sent

is Cancel, usually sent

is Ignore, usually sent

is No, usually sent from

Nothing is returned from the dialog box. This means
that the modal dialog box continues running.

The dialog box's return value
from a button labeled OK.

The dialog box's return value
from a button labeled Retry.

The dialog box's return value
a button labeled Yes.

is OK, usually sent

is Retry, usually sent

is Yes, usually sent from

Table 10-5 DialogResult Enumerations



CHAPTER 10 Helper Forms D

Accordingly, you often use the DialogResult data type for the variable in which
you will save the return value of the Show method. You may declare that variable as
follows:

DialogResult drQuit;

Once you have declared the variable, the next step is to use it to store the return
value of the Show method. The variable drQuit should be on the left side of the as-
signment operator, so it will receive the return value of the Show method that is
called on the right side of the assignment operator:

drQuit = MessageBox.Show("Do you really want to quit?",
"Exit Confirmation",
MessageBoxButtons.YesNo,
MessageBoxIcon.Warning,
MessageBoxDefaultButton.Button2);

When this code statement executes, and the application user clicks a button in the
message box, closing the message box, the value of the variable drQuit will be either
DialogResult.Yes or DialogResultNo, depending on whether the application user
clicked the Yes or No button.

Processing the Returned DialogResult Value
The form object has a Close method that, as its name indicates, closes the form.
Because this is the only form in the project (other than the message box, which will
close when the user clicks the Yes or No button), closing the form ends the applica-
tion as well. However, we only want to close the form if the application user chose
Yes, not if the application user chose No.

The following code closes the form if, and only if, the application user's choice
was Yes:

if (drQuit == DialogResult.Yes)
this.Close();

This code statement first compares the value of drQuit and DialogResult. Yes us-
ing the if keyword. If the user chose Yes, the value of drQuit is DialogResult. Yes,
so the comparison drQuit == DialogResult.Yes will be true and the this.Close()
statement is executed. However, if the user chose No, the value of drQuit is Dialo-
gResult.No, so the comparison drQuit == DialogResult.Yes will be false and the
this.CloseO statement will not be executed.



584)
Visual C# 2005 Demystified

Dialog Forms
Although the message box is a valuable tool, it is limited in that it only can contain
a text prompt, buttons, an icon, and a title. Further, the only information a message
box can obtain from the application user is which button the user clicked. The mes-
sage box does not permit the application user to enter text in a text box, choose an
item from a drop-down list, select a check box or radio button, and so on.

If you need a user interface richer than the message box, you may create a cus-
tom and more complex version of a message box—the dialog form.

Creating the Project
A good way to illustrate how to create and use a dialog form is with a project. In
this project, you will create the dialog form shown in Figure 10-3. This dialog form
enables the user to change the text of the title bar of the main form, that title bar text
currently being "Forml" in Figure 10-3.

Clicking either the OK or Cancel button will close the dialog form. However, if
the user chooses the OK button in the dialog form, the text of the title bar of the
main form will be changed to the text the user typed into the text box of the dialog
form. By contrast, if the user instead chooses the Cancel button in the dialog form,
the dialog form simply will close, with no change made to the text of the title bar of
the main form.

Figure 10-3 Dialog form project in action.



CHAPTER 10 Helper Forms
l»l

Try the following steps to create this project:

1. Create a new Windows application.

2. Using the Properties window, change the StartPosition property of the form
from the default (WindowsDefaultLocation) to CenterScreen to center the
form on the screen. This change is not required for the program to function,
but it will permit both forms to be centered on the screen.

3. Using the Toolbox, add a button to the form.

4. Use the Properties window to change the values of the Name property of
the button to btnNewCaption and the Text property from the default (for
example, Buttonl) to New Caption.

5. You need to add a second form to the project to serve as the dialog form.
Use the Project | Add Windows Form menu command to display the Add
New Item dialog box shown in Figure 10-4, highlight Windows Form, and
then click the Open button. You can keep the default name Form2.cs for the
new form. Figure 10-5 shows the Solution Explorer, in which the second
form now appears.

Figure 10-4 Add New Item dialog box.



186
Visual C# 2005 Demystified

Figure 10-5 Solution Explorer after the second form is added.

6. Using the Properties window, change the values of the following properties
of the second form:
• Text Change from Form2 to Dialog so you have a visual cue that you

are looking at the dialog form.

• ControlBox Change from the default (True) to False. This eliminates
the close, minimize, and maximize buttons in the top-right corner of
the window and the system menu, which also has close, minimize, and
maximize commands, in the top-left corner of the window. The purpose
is so the dialog form cannot be resized and can be closed only by
clicking one of the buttons that you will be adding next to the form.

• StartPosition Change from the default (WindowsDefaultLocation) to
CenterParent so the dialog box is centered on the main form.

• FormBorderStyle Change from the default (Sizable) to FixedDialog.
This change is not required for the program to function, but does give
the form a more dialog box-like appearance.



CHAPTER 10 Helper Forms
(187)

7. Using the Toolbox, add a button to the second form.

8. Use the Properties window to change the values of the following properties
of the button you just added to the dialog form:
• Name Change from Buttonl to btnOK.

• Text Change to OK.

• DialogResult Choose OK from the drop-down list. Because the
dialog box displayed by the MessageBox.Show method is a built-in Visual
C# .NET form, clicking the OK button automatically returns OK as the
DialogResult value. By contrast, the dialog form is not a built-in Visual C#
.NET form, but instead one that you create, so you need to correlate the
clicking of the OK button with OK as the DialogResult value, both in order
to return a DialogResult value and to close the dialog form when the button
is clicked. You do so by setting the button's DialogResult property to OK.

9. Using the Toolbox, add a second button to the dialog form.

10. Use the Properties window to change the values of the following properties
of the second button you just added to the dialog form:
• Name Change from the default name (likely Buttonl or Button2) to

btnCancel.

• Text Change to Cancel.

• DialogResult Choose Cancel from the drop-down list. This is done
for the same reason as we set the DialogResult property of the OK
button to OK.

11. Use the Properties window to change the values of the AcceptButton property
of the second dialog form to btnOK and the CancelButton property of that
form to btnCancel, using the drop-down list. Pressing the ENTER key is the
equivalent of clicking the button designated in the AcceptButton property.
Similarly, pressing the ESC key is the equivalent of clicking the button
designated in the CancelButton property.

12. Using the Toolbox, add a TextBox control to the second form.

13. Use the Properties window to change the values of the following properties
of the TextBox control you just added to the dialog form:
• Name Change to txtNewCaption.

• Text Delete the default so it is blank so no text shows in the text box
when you run the application.



188
Visual C# 2005 Demystified

• Tablndex Change to 0 so when the second form appears the cursor
will start at the text box.

• Modifiers Change from Private to Internal to permit the first form to
access this TextBox control in the second form.

14. Add the following code to the Click event of btnNewCaption in the main
form:

private void btnNewCaption_Click
(object sender, EventArgs e)

Form2 frmCaption = new Form2();
frmCaption.ShowDialog(this);
if (frmCaption.DialogResult == DialogResult.OK)

this.Text = frmCaption.txtNewCaption.Text;

Try out this code by running the project. Click the New Caption button in the
first form and then type some text in the second form. If you then click OK, the
second form will close, and the first form will have a new title, the text you typed
in the second form. If you instead click Cancel, the second form will still close, but
the title of the first form will not change.

Showing the Dialog Form and Returning Its Result

The dialog form is similar to the MessageBox class. For example, both are dis-
played by another form and are modal; that is, the application user cannot return to
the main form until they have dismissed the dialog form by clicking one of its but-
tons. Another similarity is that both the dialog form and the MessageBox class
return a result based on which button was clicked. However, there are important
differences between the dialog form and a message box, both in how they are shown
and in how they return a result.

ShowDialog Method

You use the ShowDialog method of the Form object to display a dialog form. This
method is similar to the Show method of the MessageBox class in that it will show,
modally, the form that is invoking the method.

NOTE You also could display the second form using the Show method instead of
the ShowDialog method, but then the second form would not be modal. This is
discussed further in the later section "Modal vs. Modeless."



CHAPTER 10 Helper Forms
(189)

Because Form2 is a class (that is, a blueprint or template for an object), the code
first declares and creates an instance of Form2 before you show it using the Show-
Dialog method. You do so via the following code, which goes in the Click event
procedure of the btnNewCaption button in the main form:

Form2 frmCaption = new Form2();
frmCaption.ShowDialog(this);

Let's go through this code one line at a time.
The first line creates an object named frmCaption of the Form2 class. You use a

class to instantiate (create) an object of that class. The class in this example is
Form2. The new keyword is used to create the object. The object is represented by
a variable (here, frmCaption).

The second line of code displays the dialog form object created in the first line.
The Form2 object, represented by the variable frmCaption, calls the ShowDialog
method to display itself as a dialog form. The this keyword is passed as the argu-
ment. The this keyword refers to the current form, which is the main form because
we are writing this code in the main form. This makes the current, main form in-
stance the owner of the dialog form.

Returning a DialogResult

Another difference between the MessageBox class and the dialog form is that
whereas the Show method of the MessageBox class indicates the button the user
clicked by returning a DialogResult value, the ShowDialog method of the Form
object indicates the button the user clicked by assigning that value to the dialog
form's DialogResult property. Therefore, the comparison is

if (frmCaption.DialogResult == DialogResult.OK)

You can make multiple comparisons. For example, if the dialog form had three
buttons, Yes, No, and Cancel, the comparison could be this:

if (frmCaption.DialogResult == DialogResult.Yes)
// do action based on user clicking yes button

else if (frmCaption.DialogResult == DialogResult.No)
// do action based on user clicking no button

else
// do action based on user clicking cancel button

If the DialogResult is anything besides None, the dialog form is closed and re-
turns a DialogResult value. However, under certain circumstances you may wish to
prevent the dialog form from being closed, such as if the user has made an input
error that first needs to be corrected.



m
Visual C# 2005 Demystified

To prevent the dialog form from closing, the DialogResult property of the dialog
form needs to be set to None. The following code fragment sets the value of the
DialogResult property of the current form (represented by the this keyword) to
a DialogResult of None:

this.DialogResult = DialogResult.None

This code logically would be placed in the Click event of the OK button to handle
the situation where you want the user to fix an error on that dialog form rather than
closing the dialog form.

Accessing Values from the Dialog Form

If the value of the second form's DialogResult property is OK, all that is left to do is
to change the title of the first form to the text you typed in the second form. The fol-
lowing code in the Click event procedure of btnNewCaption therefore is indicated:

this.Text = frmCaption.txtNewCaption.Text;

The this keyword refers to the main form because this code is in its code module.
The Text property is the text in its title bar. It is possible to refer in the code of the
main form to the TextBox control txtNewCaption in the dialog form because we
changed that control's Modifiers property from Private to Internal, which permits
access from anywhere in the current project.

The reference to txtNewCaption, the text box in the dialog form, is preceded by
the name of the dialog form object, frmCaption. The reason why the name of the
control is preceding by the name of the form that contains it is that a reference to
a control, not preceded by a form object, is assumed to be to a control in the form
whose code is executing. However, the current code module is for the main form,
and txtNewCaption is not in that form, but instead in the dialog form. Therefore,
a reference to txtNewCaption.Text instead of frmCaption.txtNewCaption.Text
would result in the following compiler error message: "The name 'txtNewCaption'
is not declared."

Modal vs. Modeless

Whereas all message boxes are modal, not all forms are. The second form in the
application we just created is a dialog form because it was displayed with the Show-
Dialog method rather than the Show method. Had we instead displayed the second



©CHAPTER 10 Helper Forms

form using the Show method, the second form would have been modeless. This
means that the application user could return to the main form without closing the
second form.

Some forms in Windows applications are modeless. Examples include the Find
and Replace forms in Microsoft Word. Because the Find form is modeless, you can
return to the main application window and edit a found word without having to
close the Find form.

It usually is easier to write code for modal forms because you don't have to be
concerned about the user returning to the main application without first closing the
modal form. However, there are situations, such as the Find form in Microsoft
Word, in which a modeless form may be the better choice.

Conclusion
Visual C# 2005's automated creation of a new Windows application project in-
cludes a form that serves as the main application window. The main application
window often needs a supporting cast of other forms, because Windows applica-
tions generally are far too complex for the main application window to perform all
the tasks required by the application.

This chapter first showed you how to display a message box and determine which
button the user clicked. You also learned that a message box is modal, which means
that the user cannot return to the rest of the application until the message box is
closed, by clicking one of its buttons.

You next learned how to create and use a dialog form. The dialog form is similar
to the MessageBox class in that it is modal and returns a value based on the button
clicked to dismiss it. However, a dialog form, unlike a MessageBox, also may con-
tain text boxes, check boxes, drop-down lists, and other controls.

There also are code differences between the dialog form and the MessageBox.
You use the ShowDialog instead of the Show method to display a dialog form. Fur-
ther, you first create an instance of the dialog form to use the ShowDialog method.
Additionally, the return value of the MessageBox class is a DialogResult value,
whereas the return value of the dialog form is in its DialogResult property. You also
learned how through code in the main form to determine values in controls in the
dialog form.

In the next chapter we will enhance the user interface of the form with a menu.



Visual C# 2005 Demystified

Quiz
1. Is a message box modal or modeless?

2. What value is returned by the Show method of the MessageBox class?

3. Do you always have to call the Show method of the MessageBox class with
the same number of arguments?

4. Do buttons in a message box automatically have a DialogResult value?

5. What is the data type of a variable you use to store the return value of the
Show method of the MessageBox class?

6. What is an enumeration?

7. What method do you use to display a modal form?

8. What is the return value from showing a dialog form?

9. Do buttons in a dialog form you create automatically have a DialogResult
value?

10. What method do you use to display a form as modeless rather than modal?

192



11
CHAPTER

Menus

You often may encounter menus, perhaps at an elegant restaurant, or in my case, in
the drive through lane of a local fast food restaurant. Regardless of the quality of
the food, the menus at the two places serve the same purpose: to inform you of your
choices and the corresponding prices.

A Windows application also has a menu, but that menu serves a different purpose
than a restaurant menu. The application user generally knows what they want to do.
The menu provides a graphical user interface (GUI) to make it easier for the ap-
plication user to issue commands to the application, such as to open a file, print
a document, and so on.

The menu is not the only way through which the GUI may make it easier for the
pplication user to issue commands to the application. For example, toolbars, which
re covered in the next chapter, are another alternative. However, the menu has the
aantage of enabling the programmer to organize commands in a logical hierar-
ch. For example, commands related to file operations, such as New, Open, and
Sav, are under the File menu, whereas commands related to editing, such as Cut,
Cop, and Paste, are under the Edit menu. Additionally, menus save valuable screen
space,in that submenu items collapse unless the menu item above them is chosen.
This blcs your application to remain uncluttered, by hiding commands that are
not immediately needed.

193)
Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



194) 

Visual C# 2005 Demystified

There are two common types of menus. One is the main menu that usually ap-
pears at the top of applications, with headings such as File, Edit, View, and Help.
The main menu is represented by the MenuStrip class. The other menu that appears
when you right-click, sometimes called a shortcut or context menu, is represented
by the ContextMenuStrip class.

This chapter will show you how to create a main menu and a context menu and
how to link them to each other.

Creating a Main Menu
The MenuStrip class represents the main menu that usually appears at the top of
a Windows form. The MenuStrip object contains a collection of ToolStripMenu-
Item objects, each of which is an item on the menu.

Each ToolStripMenuItem can be a command for your application. Figure 11-1
shows menu items under the File menu in Microsoft Word. Many of the menu items
are commands for the application, such as to open or save a file.

However, as Figure 11-2 shows, a menu item may also be a parent menu for
other menu items, each another ToolStripMenuItem. For example, Send To is the

Figure 11-1
Menu items under the
File menu.



CHAPTER 11 Menus
j95;

Figure 11-2 Send To menu item as a parent to other menu items.

parent menu item for other menu items, including Mail Recipient and Microsoft
Office PowerPoint.

Creating a main menu is a two-step process. You first add a MenuStrip control to
your form, and then you append ToolStripMenuItem objects to it.

Adding a MenuStrip Control to a Form

You add a MenuStrip control to a form using the following steps, which are
similar to how you would add a control such as a Button to the form. Try the fol-
lowing, which you could do with an existing project, though I would recommend
a new project to avoid any confusion with existing code:

1. View the form in designer view.

2. Double-click the MenuStrip component in the Toolbox. As shown in
Figure 11-3, the MenuStrip component is added to the component tray
below the form. When this component is selected in the component tray,
a rectangular area appears underneath the top-left corner of the form
displaying the text "Type Here."



196
Visual C# 2005 Demystified

Figure 11-3 MenuStrip added to form.

3. Using the Properties window, if not already set by default, set the
MainMenuStrip property of the form to the name of your MenuStrip
component (by default, menuStripl). This links the MenuStrip to your form.

Adding Menu Items to the MenuStrip

Once you have added a MenuStrip component to your Windows form, the next step
is to add menu items to it. Each menu item is an object of the ToolStripMenuItem
class. You can add ToolStripMenuItems to the MenuStrip by typing in the menu
items or by using the Items Collection Editor.

Typing in the Menu Items

You may add a menu item to the MenuStrip component by clicking the text "Type
Here" (after selecting the MenuStrip component in the component tray, as mentioned



597)
CHAPTER 11 Menus

in step 2 in the preceding section) and typing the display name of the desired menu
item to add it. For example, you may add a File menu item by typing File because
the File menu usually is the first top-level item in Windows applications.

Typing the name of the menu item sets its Text property. You also should change
the menu item's Name property from the default. You set the Name property of the
menu item by right-clicking it, choosing Properties from the shortcut menu to dis-
play the Properties window, and then changing the Name property in the Properties
window. One logical name for the File menu would be mnuFile, with the "mnu"
prefix indicating a menu item and "File" indicating the purpose of the menu item.

Figure 11-4 shows the menu after the File menu item is added.
As Figure 11-4 shows, you now have "Type Here" options both below and to the

right of the File menu item. You may add items below the File menu item, such as
New and Open. You then should change the Name property of these menu items.

Figure 11-4 File menu item added.



ual C# 2005 Demystified

For example, I would name a menu item Open under the File menu mnuFileOpen,
with "mnuFile" being the name of the parent File menu and "Open" being descrip-
tive of the subsidiary menu item's purpose.

You may add menu items to the right of the File menu as well as below it. For
example, you might add an Edit menu item to the right of the File menu item to be
consistent with other Windows applications. Following the same naming conven-
tion, I would name the Edit menu item mnuEdit.

TIP If you forget a menu item, right-click the menu item before which the new one
will be inserted and then choose Insert \ New from the context menu. If you decide
you no longer want a menu item you previously added, right-click that item and
choose Delete from the context menu.

Items Collection Editor
One of the properties of the MenuStrip component is an Items collection, which is
a collection of the ToolStripMenuItems belonging to the MenuStrip. For example,
after you add the File and Edit menu items, those menu items would belong to the
Items collection of the MenuStrip.

Figure 11-5 shows the Items collection listed in the Properties window of the
MenuStrip component.

Click the ellipsis (. . .) next to Items. This will open the Items Collection Editor,
which is shown in Figure 11-6 after two ToolStripMenuItems (for the File and Edit
menus) have been added.

You may add ToolStripMenuItems to the MenuStrip by choosing Menultem (the
default selection) from the drop-down box and then clicking the Add button. Once
the ToolStripMenuItem is added, you then may select it and in the right pane change
its Name, Text, and other properties. Figure 11-6 shows properties for the Edit
menu item.

You also can add menu items to the File or Edit menu item. As Figure 11-7
shows, the File menu item (as well as the Edit menu item) has a DropDownltems
collection property. This is a collection of the ToolStripMenuItems belonging to
that menu item. For example, after you add New and Open menu items to the
File menu, those menu items would belong to the DropDownltems collection of the
File menu.

Clicking the ellipsis (...) next to DropDownltems will open the Items Collection
Editor for that menu item. Figure 11-8 shows the Items Collection Editor for the
Edit menu after menu items have been added to that menu item.

19s



199,
CHAPTER 11 Menus

Figure 11-5
Properties window showing
the Items collection of
MenuStrip.

Figure 11-6 Items Collection Editor for MenuStrip.



Visual C# 2005 Demystified
200J

Figure 11-7
Properties window showing
DropDownltems collection
of the File menu item.

Figure 11-8 Items Collection Editor for the Edit menu item.



H
CHAPTER 11 Menus

The procedure for adding subsidiary menu items to a menu item is essentially the
same as adding ToolStripMenuItems to the MenuStrip; you choose Menultem from
the drop-down box and then click the Add button. You then may select the added
subitem and in the right pane change its Name, Text, and other properties.

Enhancing the Menu Items

You can enhance menu items in several ways. You can add access or shortcut keys
to facilitate keyboard access to menu items. You also can add separator bars to
group together related menu items.

Access Keys
Although menu items usually are accessed by a mouse click, you also should en-
able the user to access menu items via the keyboard. Being able to access menu
items via the keyboard instead of a mouse is an important convenience, as I have
discovered on an airplane flight trying to use my laptop while wedged between two
sumo-sized passengers. Indeed, for users with certain disabilities, the ability to ac-
cess menu items via the keyboard instead of a mouse can be a necessity.

An access key is one way of enabling the user to access menu items via the key-
board. An access key is the keyboard combination of the ALT key plus a letter in the
menu item that is underlined. For example, the keyboard combination for the File
menu item is ALT-F, with the letter F in File being underlined.

To add an access key, in the menu item's Text property, simply type an amper-
sand (&) before the letter to be underlined. Figure 11-4 earlier in this chapter shows
the result of typing &File as the Text property for the File menu item (the letter
F in File is underlined).

The access shortcut may not appear when you run the application until you
press the ALT key. This is standard behavior in Windows applications. As shown i
Figure 11-9, in the Effects dialog box (shown by choosing the Display applet from
the Control Panel | Appearance tab | Effects button), the option "Hide keyboard
navigation indicators until I use the ALT key" is checked by default. If you want t
change that behavior, simply uncheck that box.

Shortcut Keys

Shortcut keys are another method of enabling the user to access menu items via the
keyboard. In Microsoft Word, the New menu item under the File menu can be
accessed with the shortcut key CTRL-N.



jSjjl Visual C# 2005 Demystified

Figure 11-9
Setting whether the
access shortcut is
hidden until the ALT
key is pressed.

You can add a shortcut key at design time by selecting the menu item within the
Menu Designer, selecting the ShortcutKeys property from the Properties window,
and clicking the drop-down arrow. As Figure 11-10 shows, you can choose one or
more of CTRL, SHIFT, or ALT by checking a box and then choosing one of the value
offered in the drop-down list:

Figure 11-10
Shortcut key options
displayed in the Properties
window.



203,
CHAPTER 11 Menus

NOTE You normally would not assign a shortcut key to a top-level menu item such
as File or Edit because an access key already can be used to open that menu.

Separator Bars
Separator bars are used to group related commands within a menu and make menus
easier to read. In Microsoft Word, under the File menu, a separator bar separates the
New, Open, and Close menu items from the menu items that follow them.

You may add a separator bar by setting the Text property of a menu item to
a dash. Alternatively, in the Menu Designer, right-click the location where you want
a separator bar and choose Insert | Separator.

Adding Functionality to the Menu Items
The purpose of a menu item is to do something when it is clicked. Therefore, you
use the Click event procedure of the menu item to provide functionality for a menu
item.

The Click event, of course, occurs when the user clicks the menu item. However,
the Click event also occurs if the user selects the menu item using the keyboard and
presses the ENTER key, or if the user presses an access key or shortcut key that is
associated with the menu item.

The Click event is not raised for all menu items. It only is raised for menu items
that do not have subsidiary menu items. The reason is when a menu item with sub-
sidiary items is clicked, the behavior is to display the subsidiary menu items.
Therefore, the Click event is not raised for parent menu items such as File and Edit.
Instead, the behavior when a parent menu item is clicked is to display its subitems,
such as, in the case of the File menu, New, Open, and Close.

You write code for the Click event procedure for a menu item by, in code view,
choosing the menu item by name from the left drop-down list and Click from
the right drop-down list. You then write within the created event procedure stub
the code you wish to run when the menu item is clicked. For example, the following
code outputs "New" to the Output window when a menu item named mnuFileNew
is clicked:

private void mnuFileNew_Click
(object sender, EventArgs e)

Debug.WriteLine("New");



(204)
Visual C# 2005 Demystified

Disabling Menu Items
Although menu items should be functional, there are times when you may not want
them to be functional. For example, in Microsoft Word, the menu items Cut and
Copy under the Edit menu initially are grayed out, or disabled. They are grayed out
because no text is selected; therefore, there is nothing to cut or copy. However, once
you select text, Cut and Copy are no longer grayed out—in other words, they are
enabled.

A menu item should not be enabled when the command it represents is not avail-
able. It would be frustrating for the application user to click Cut or Copy and see
nothing happen. The application user might be misled into thinking there is some-
thing wrong with your application. When you gray out, or disable, a menu item, the
application user is given a visual cue that the menu item is not available.

Disabling a menu item that should not be available has an additional advan-
tage—error prevention. The code for cutting text may understandably assume there
is selected text. If there is no selected text, executing the code for cutting text may
cause an error. By disabling the menu item when no text is selected, the code for
cutting text cannot be executed when no text is selected, thus avoiding the error.

Menu items are enabled by default when they are created. However, you can dis-
able a menu item by setting its Enabled property to False. You can do this at design
time, when the menu item is selected in the Menu Designer, through the Properties
window. You also can disable a menu item via code:

mnuFileNew.Enabled = false;

If you want a menu item to be disabled when the application starts up, you could
put this code in the Load event of the form.

Disabling the first or top-level menu item in a menu, such as the File menu item
in a traditional File menu, disables all the menu items contained within the menu.
Similarly, disabling a menu item that has submenu items disables the submenu
items.

TIP If all the commands on a given menu are unavailable to the user, you should
hide as well as disable the entire menu. You hide the menu by setting the Visible
property of the top-most menu item to False. This presents a cleaner user interface
by not cluttering up your menu structure with disabled items. However, one caution:
hiding the menu alone is not sufficient to disable it. You must also disable the menu,
because hiding alone does not prevent access to a menu command via a shortcut key.



2053
CHAPTER 11 Menus

Creating a Context Menu
Many Windows applications have context menus, which are displayed when the
user clicks the right mouse button over an area of the form or over a control on the
form. Figure 11-11 shows a context menu in Microsoft Word.

The word "context" in context menu derives from the fact that the particular menu
items displayed often depend on the context, such as the application state, or where
on the form or control the right mouse button was clicked. Indeed, in the .NET
Framework, the ContextMenuStrip class represents shortcut or context menus.

Context menus typically are used to make available different menu items from
a MenuStrip of a form that are useful for the user given the context of the applica-
tion. For example, you can use a context menu assigned to a TextBox control to
provide immediate access to menu items also found in the MenuStrip to cut, copy,
and paste text, find text, change the text font, and so on.

The ability of a context menu to immediately access menu items of the main
menu that might take several mouse clicks to access may be why a context menu
also is called a shortcut menu, because the menu items on the context menu are
a shortcut to menu items on the main menu. However, a context menu also may
contain menu items not found in the form's MenuStrip.

Adding a ContextMenuStrip to a Form

The process of adding a context menu to a Windows form at design time and then
adding menu items to it is similar to the corresponding process discussed already in
this chapter in connection with the MenuStrip. You first add a ContextMenuStrip
object to your form, and then you append to it ToolStripMenuItems objects.

Figure 11-11
Context menu.



206
Visual C# 2005 Demystified

You add a context menu to a form by following these steps, which are similar to
how you add a MenuStrip to the form:

1. View the form in designer view.

2. Double-click the ContextMenuStrip component in the Toolbox. As
shown in Figure 11-12, this adds a ContextMenuStrip component to the
component tray.

3. In the Properties window for that form or control, choose the
ContextMenuStrip object (the default name may be ContextMenuStrip 1)
from the drop-down list for the form or control's ContextMenuStrip
property. This associates the context menu with the form or a control on the
form. You also can change this value dynamically through code when the
program is running if the form has more than one context menu.

Figure 11-12 Adding a ContextMenuStrip component to a form.



207J
CHAPTER 11 Menus

Unlike with the main menu, you often will be adding a context menu to a control
on the form, rather than the form itself. For example, in the Text Editor project
later in this chapter, the context menu will belong to a TextBox control rather than
the form.

Adding Menu Items to the ContextMenuStrip

Once you have added a ContextMenuStrip component to your Windows form, the
next step is to add menu items to it. You can do so by typing in the menu items, by
using the Items Collection Editor, or by copying menu items from existing items on
the main menu and pasting them onto the context menu.

Typing in the Menu Items

You can add menu items to a context menu using the same method you used to add
menu items to a main menu. You click the text "Type Here" and type the name of
the desired menu item to add it. If the text "Type Here" is not displayed, you may
display it by clicking the ContextMenuStrip component on the Windows form. To
add another menu item, click another "Type Here" area within the Menu Designer.
You click the area below the current menu item to add another menu item, or you
can click the area to the right of the current menu item to add submenu items.

You then should name these menu items. If the context menu item parallels one
on the main menu, one naming convention is to give the context menu item the
same name, other than the prefix, for which you may use "cmnu" (instead of mnu),
the letter c standing for "context." For example, if a context menu item parallels the
main menu item Open under the File menu (named mnuFileOpen), you could name
the corresponding context menu item cmnuFileOpen.

NOTE One difference between a context menu and a main menu is that a context
menu usually does not have a top-level item, such as File in the main menu.

Items Collection Editor
You also can use the Items Collection Editor to add items to a context menu as well
as to the main menu.

Figure 11-13 shows the Properties window for the ContextMenuStrip.
You also can add items to the ContextMenuStrip. As Figure 11-13 shows, the

ContextMenuStrip has an Items collection property.



Visual C# 2005 Demystified
508)

Figure 11-13
Properties window for the
ContextMenuStrip.

Clicking the ellipsis (. ..) next to Items will open the Items Collection Editor for
the ContextMenuStrip, which is shown in Figure 11-14 after menu items have been
added to the ContextMenuStrip.

You add ToolStripMenuItems to the ContextMenuStrip by choosing Menultem
from the drop-down box and then clicking the Add button. You then may select the
added ToolStripMenuItem and in the right pane change its Name, Text, and other
properties. Figure 11-14 shows the properties for the first menu item on the context
menu.

Copying and Pasting

You may want the context menu to duplicate commands in the main menu. For
example, the Cut, Copy, and Paste menu commands in Microsoft Word's Edit menu
are often duplicated in a menu when you click on the document.

You do not need to re-create the entire menu structure when you want to dupli-
cate a given menu's functionality. You may use the Menu Designer to copy menus
by following these steps:



209
CHAPTER 11 Menus

Figure 11-14 Items Collection Editor for ContextMenuStrip.

1. Within the Menu Designer, choose the MenuStrip component, select the
menu item or items (using the SHIFT key for multiple items) you would like
to duplicate, right-click them, and choose Copy, as shown in Figure 11-15.

2. Choose the ContextMenuStrip component, select the "Type Here" area
where you would like the first menu item to appear, and then right-click
and choose Paste, as shown in Figure 11-16.

3. Figure 11-17 shows the end result.

Figure 11-15
Copying items from
the MenuStrip.



Visual C# 2005 Demystified
210

Figure 11-16
Pasting items into the
ContextMenuStrip.

Adding Functionality to Context Menu Items

You add functionality to menu items in a ContextMenuStrip the same way you add
functionality to menu items in a MenuStrip—by using the Click event procedure of
the menu item.

Often a context menu item corresponds to a menu item on the main menu. For
example, on the main menu, you may have an Edit | Select All menu item named
mnuEditSelectAll, and on a context menu, you may have a Select All context menu
choice named cmnuEditSelectAll. If the user chooses Select All from the context
menu, rather than writing a duplicate event procedure, you want the Click event
procedure of the Edit | Select All menu item to run. You have two alternatives for
having the Click event procedure for the main menu item also handle the Click
event for the corresponding context menu item.

Figure 11-17
Context menu now
populated.



215
CHAPTER 11 Menus

EventHandler Class
When you create a Click event procedure for a menu item named mnuEditSelect-
All, the following code is created in the Forml.Designer.es file (assuming the class
nameisForml):

this.mnuEditSelectAll +=
new EventHandler(this.mnuEditSelectAll_Click);

The object to which we are assigning an event handler is to the left of the com-
bined addition and assignment operator (+=). That operator is followed by the new
keyword, because a new event handler is being created. The new keyword is fol-
lowed by the EventHandler class constructor, whose argument is the name of the
method that will be handling the event (here, mnuEditSelectAll_Click).

You can have this event also handle the Click event of the context menu item via
the following code, which you could put in the Load event procedure of the form:

cmnuEditSelectAll +=
new EventHandler(mnuEditSelectAll_Click);

Other than the omission of the this keyword, which is unnecessary in this code
context, the only difference between this code and the previous code snippet is that
the object to which we are assigning an event handler is cmnuEditSelectAll, not
mnuEditSelectAll. However, the argument for the EventHandler class constructor,
the name of the method that will be handling the Click event of cmnuEditSelectAll,
is the same, mnuEditSelectAll_Click.

Calling Another Event Procedure

The other alternative is to call the Click event procedure of the main menu item
from the Click event procedure of the context menu item:

private void cmnuEditSelectAll_Click
(object sender, EventArgs e)

mnuEditSelectAll_Click(sender, e);

NOTE You must pass the arguments sender and e to the mnuEditSelectAll_Click
call because the Click event procedure of that main menu item expects those
arguments.



Visual C# 2005 Demystified
2i2j

Text Editor Project
This project is a text editor. The application user can type and use the main menu or
the context menu to cut, copy, and paste. Figure 11-18 shows the Text Editor project
at run time with the context menu displayed.

Creating the Project
You can create the Text Editor project with the following steps:

1. Create a new Windows application.

2. Add a TextBox control to the form from the Toolbox. Name it txtEdit, set
its Multiline property to True, and delete any text in its Text property. You
also should resize the control so it is large enough to show multiple lines of
text.

3. Add a MenuStrip component to the form from the Toolbox.

4. Using the Menu Designer, add a menu where the top-level menu is
Edit and its menu items are Cut, Copy, and Paste. Name the Edit menu
item mnuEdit, the Cut menu item mnuEditCut, the Copy menu item
mnuEditCopy, and the Paste menu item mnuEditPaste.

5. Using the Properties window, set the MainMenuStrip property of the form
to the name of your MenuStrip component.

6. Add a ContextMenuStrip component to the form from the Toolbox.

Figure 11-18
Text Editor project at
run time.



213
CHAPTER 11 Menus

7. Using the Properties window, set the ContextMenuStrip property of the
text box to the name of your ContextMenuStrip component. Also set the
ShowImageMargin property of the ContextMenuStrip control to False so
the context menu will not have a left-hand margin.

8. Copy the Cut, Copy, and Paste menu items from the MenuStrip to
the ContextMenuStrip. Name these menu items in the context menu
cmnuEditCut, cmnuEditCopy, and cmnuEditPaste, respectively.

9. In the Code editor, create a Click event procedure for the Edit | Cut menu
item (mnuEditCut) and write the following code in it:

private void mnuEditCut_Click(object sender, EventArgs e)

tx tEd i t .Cu t ( ) ;

10. In the Code editor, create a Load event procedure for the form and write the
following code in it:

cmnuEditCut.Click += new EventHandler(mnuEditCut_Click);

11. In the Code editor, create a Click event procedure for the Edit | Copy menu
item (mnuEditCopy) and write the following code in it:

private void mnuEditCopy_Click(object sender, EventArgs e)

txtEdit.Copy();

12. In the Code editor, create a Click event procedure for the Edit | Copy
context menu item (cmnuEditCopy) and write the following code in it:

private void cmnuEditCopy_Click
(object sender, EventArgs e)

mnuEditCopy_Click(sender, e ) ;

13. In the Code editor, create a Click event procedure for the Edit | Paste menu
item (mnuEditPaste) and write the following code in it:

private void mnuEditPaste_Click
(object sender, EventArgs e)

txtEdit.Paste()



L214
Visual C# 2005 Demystified

14. In the Code editor, create a Click event procedure for the Edit | Paste
context menu item (cmnuEditPaste) and write the following code in it:

private void cmnuEditPaste_Click
(object sender, EventArgs e)

mnuEditPaste_Click(sender, e);

Explanation of the Code
The TextBox class has Cut, Copy, and Paste methods. These methods work the
same as the Cut, Copy, and Paste menu items of the Edit menu item in Microsoft
Word and other Windows applications. The Cut method copies the selected text to
the clipboard, but removes the selected text from the text box. The Copy method
also copies the selected text to the clipboard, but does not remove the selected text
from the text box. The Paste method copies the text in the clipboard to the text box,
beginning with the cursor location in the text box.

The Cut, Copy, and Paste methods of the TextBox class are called in the Click
event procedures of the corresponding Edit menu items: Edit | Cut (mnuEditCut),
Edit | Copy (mnuEditCopy), and Edit | Paste (mnuEditPaste).

The Cut, Copy, and Paste methods of the TextBox class also could be called in
the Click event procedures of the corresponding context menu items: Cut (cmnuEdit-
Cut), Copy (cmnuEditCopy), and Paste (cmnuEditPaste). However, this would be
a duplication of code. Here, the duplication is short, but in other circumstances it
may not be. Therefore, it is useful instead to have each context menu item's func-
tionality handled by the corresponding Edit main menu item.

The preceding section "Adding Functionality to ContextMenuStrip Menu Items"
discussed two different alternatives of having a context menu item's functionality
handled by the corresponding main menu item. To illustrate the use of both alterna-
tives, the EventHandler class alternative is used for the Cut context menu item, and
the calling of another event procedure alternative is used for the Copy and Paste
context menu items.

Run the application. Type some text in the text editor, select some text, and then
cut, copy, and paste, using the main menu and the context menu.

This text editor certainly is not ready for the commercial market. The Cut, Copy,
and Paste items need to be disabled at the appropriate times. Additionally, further
commands are needed, such as Undo, Select All, and so on. Nevertheless, the Text
Editor project is useful in demonstrating how to link corresponding items on a main
menu and a context menu, as well as showing some methods of the TextBox control.



y£
CHAPTER 11 Menus

Conclusion
Application users need to give commands to the application, such as to open, save,
or close a file, to print a document, to cut, copy, or paste text, and so on. Application
users give such commands through the GUI of the application. Two of the most
common GUI elements through which application users give commands to an ap-
plication are the main menu and the context or shortcut menu. In this chapter, you
learned how to create them and to handle and link their events.

There is another common GUI element through which application users also
give commands to an application—toolbars. In the next chapter, you will learn how
to create toolbars and coordinate them with your menus.

Quiz
1. What class represents a main menu?

2. What class represents each item on a main menu?

3. What is an access key?

4. Is the Click event raised for all menu items?

5. How do you gray out a menu item so it is not available when it should not be?

6. What does the Items collection of the MenuStrip component contain?

7. What class represents the shortcut or context menu?

8. What class represents each item on a context menu?

9. What does the Items collection of the ContextMenuStrip component
contain?

10. What are different alternatives of having a context menu item's functionality
handled by the corresponding main menu item?



This page intentionally left blank 



12
CHAPTER

Toolbars

This lesson is all about bars, but not the kind that inspired the song "Looking for
Love in All the Wrong Places." In this chapter, we'll explore a kind of bar that will
enable you to enhance your application both visually and functionally.

The toolbar is a part of every Windows programmer's life. You would be hard-
pressed to find a Windows application that doesn't have a toolbar. Indeed, most
Windows applications have several of them.

The functionality of a toolbar button generally duplicates the functionality of
a menu item. For example, the toolbar button with the printer icon duplicates the
functionality of the File | Print menu item.

There are two good reasons for using a toolbar even though it may duplicate the
functionality of a menu. First, the buttons on the toolbar are immediately accessi-
ble. By contrast, the items on the menus may be nested several levels deep and can
be  accessed only by multiple mouse clicks or keystrokes. Second, a toolbar button
usually has an image, whereas a menu item usually is text. Quite simply, visual
items are more attractive and apparent to the application's user than text items. This
is Visual C#, after all!

This chapter will show you, through enhancing the Text Editor project you cre-
ated in Chapter 11, how to create toolbars for your forms, add buttons to them, and

S1J

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



118)
Visual C# 2005 Demystified

add images to the buttons. You also will learn how to associate the clicking of
a particular toolbar button with the clicking of a corresponding menu item.

Creating a Toolbar
Just as the main menu is represented by the MenuStrip class, the toolbar is repre-
sented by the ToolStrip class. A ToolStrip object contains a collection of buttons or
other types of controls.

Creating a toolbar is a two-step process: First, you add a ToolStrip object to your
form. Second, you add buttons or other controls to the toolbar.

Adding a Toolbar to a Form

You add a ToolStrip object to a form using the following steps, similar to adding a
MenuStrip object to a form. Try the following steps to add a ToolStrip to the Text
Editor project you created in Chapter 11:

1. Open the Text Editor project.

2. Open the form in designer view.

3. Double-click the ToolStrip component in the Toolbox to add it to the form.
Figure 12-1 shows the ToolStrip component after it has been added to the
form.

As Figure 12-1 shows, the ToolStrip control, like the MenuStrip and Context-
MenuStrip components, appears in the component tray. The ToolStrip control also
appears as a large gray area under the menu area. This is where the toolbar will be
located.

Figure 12-2 shows that, when the ToolStrip control has focus, or you click the
four vertical dots on the left side of the ToolStrip control, a drop-down box appears
on the left side of the ToolStrip control, and what is called a smart task arrow ap-
pears on the right side of the ToolStrip control.

The ToolStrip control is automatically associated with the form. This is unlike
the ContextMenuStrip component, which is not associated with the form without
you first setting the ContextMenuStrip property of the form.

NOTE The toolbar we just added has the default name oftoolBarl. You don't
need to change this name because this project uses only one toolbar. However, if
your application uses more than one toolbar, as many applications do, then you
should choose logical names to differentiate among the different toolbars.



CHAPTER 12 Toolbars

Figure 12-1 ToolStrip added to the form.

Adding Buttons to the Toolbar

The button, represented by the ToolStripButton class, is the most common type of
control on a toolbar, and therefore it's the control covered in this section. However,
toolbars may contain other types of controls. For example, in Microsoft Word, the
formatting toolbar contains drop-down boxes for the type and size of fonts.

There are several different alternative methods by which you can add buttons or
other controls to the toolbar. One alternative is the Items Collection Editor, which
we used in Chapter 11 to add items to the main menu. Figure 12-3 shows the Items
Collection Editor for the toolbar.

You can display the Items Collection Editor by displaying the Properties window
for the toolbar and then clicking the ellipsis (...) next to the Items collection prop-
erty shown in Figure 12-4.

219



2?o; 
Visual C# 2005 Demystified

Figure 12-2 ToolStrip with drop-down box and smart task arrow.

You also can display the Items Collection Editor by first clicking the smart task
arrow at the rightmost edge of the toolbar. This displays the ToolStrip Tasks pane
shown in Figure 12-5. Clicking Edit Items... at the bottom of this pane displays the
Items Collection Editor.

Once you display the Items Collection Editor, you first select the type of item to
be added. The item usually is a button, but also may be another control, as shown
in Figure 12-6.

Once you have chosen the control, you then click the Add button to add the con-
trol to the toolbar. Figure 12-7 shows the Items Collection Editor after three buttons
have been added to the toolbar.

As Figure 12-7 also shows, choosing one of the buttons in the left pane shows
the button's properties in the right pane. You should change each button's Name
property. Later in this chapter, we will be using these buttons to parallel the func-
tionality of the Edit | Cut, Edit | Copy, and Edit | Paste menu items. Accordingly,



221
CHAPTER 12 Toolbars

I have named the three buttons tbtnEditCut, tbtnEditCopy, and tbtnEditPaste. The
"tbtn" prefix indicates a toolbar button, and the suffix (EditCut, EditCopy, or Edit-
Paste) indicates the functionality of the toolbar button.

Additionally, delete the value of the Text property of each button, because these
buttons will be displaying images, not text.

Click OK to close the Items Collection Editor and create the buttons you speci-
fied. Figure 12-8 shows the toolbar area after several buttons have been added.

Associating Images with Toolbar Buttons
So far our toolbar is not very impressive. All the buttons look the same, with a ge-
neric image that, as near as I can tell, looks like a sun over a mountain.

The most common visual cue for a toolbar button is an image. Figure 12-9 shows
a toolbar in Microsoft Word. The images show each toolbar button's purpose, such
as New, Open, and Save.

We are now going to add images to the toolbar buttons.

Figure 12-3 Items Collection Editor for the toolbar.



vm Visual C# 2005 Demystified

Figure 12-4
Items Collection property
of the toolbar.

The first step concerns the DisplayStyle property of the ToolStripItem class. This
property, which is an enumeration, determines whether an image or text may be
displayed on a button. Table 12-1 lists the possible values for this property.

Using the Items Collection Editor, set each button's DisplayStyle property to
Image (if necessary, given that it is the default) because we intend each button to

Figure 12-5
ToolStrip Tasks pane.



[223;
CHAPTER 12 Toolbars

Figure 12-6 Drop-down box in Items Collection Editor.

Figure 12-7 Items Collection Editor after three buttons have been added to the toolbar.



224
Visual C# 2005 Demystified

Figure 12-8
Toolbar with added
buttons.

display an image but no text. Text is helpful to identify the purpose of a toolbar but-
ton. However, the small area of the button would be crowded by including text as
well as an image.

NOTE You can set the To olTipText property of the button to a short textual hint
of the button's purpose. For example, you could set the ToolTipText property
of tbnEditCut to "Cut." Then, when the user hovers the mouse cursor over the
button, a ToolTip of "Cut" will appear. A ToolTip has the advantage of a textual
explanation of the button's purpose without taking up space on the small area of
the button.

The next step is to set the Image property of each button. This property, as its
name suggests, sets the image to be displayed in the button.

Using the Items Collection Editor, go to the Image property of a button.
Figure 12-10 shows the Image property of the Cut button, which currently is set to
System.Drawing.Bitmap and shows the default image.

Click the ellipsis (...) next to System.Drawing.Bitmap. This will display the
Select Resource dialog box shown in Figure 12-11. You use this dialog box to assign
an image to a form or control in a Windows application.

Figure 12-9 Images on toolbar buttons in Microsoft Word.



CHAPTER 12 Toolbars

Value

Image

ImageAndText

None

Text

Description

The ToolStripItem may display only an image. This is the default.

The ToolStripItem may display both an image and text.

The ToolStripItem may not display either an image or text.

The ToolStripItem may display only text.

Table 12-1 DisplayStyle Enumeration Values

Choose the Local Resource radio button and then click the Import button associ-
ated with it. This displays the Open dialog box shown in Figure 12-12, which you
use to browse to and select an image file to be displayed on the button.

Visual Studio 2005 includes bitmap files you can use as toolbar images. These
files are located by default within the directory C:\Program Files\Microsoft Visual
Studio 8 \Common7\VS2005ImageLibrary. From there I went to the folder bit-
maps\commands\highcolor, shown in Figure 12-13. As this figure shows, there are
bitmap files (.bmp extension) for Cut, Copy, and (if you scroll further in the dialog
box depicted in the figure) Paste.

Figure 12-10 Image property of ToolStripButton.

225



§26
Visual C# 2005 Demystified

Figure 12-11 Select Resource dialog box.

Figure 12-12 Open dialog box.



CHAPTER 12 Toolbars

Figure 12-13 Bitmap Files for Cut, Copy, and Paste.

NOTE You may not have these bitmap files installed, or they may be installed at
a different location, depending on the particular edition you purchased or your
installation options.

Choose the Cut bitmap file for the Cut toolbar button and then click the Open
button. As Figure 12-14 shows, the Select Resource dialog box now contains the
image for Cut.

Click OK in the Select Resource dialog box. As Figure 12-15 shows, the Items
Collection Editor now shows an image for the Image property of the Cut button.

Repeat the same process for the Copy and Paste buttons, except of course choose
Copy.bmp for the Copy button and Paste.bmp for the Paste button. When done,
click OK to close the Items Collection Editor. Figure 12-16 shows the toolbar, with
images for Cut, Copy, and Paste.

NOTE The size of the bitmap and the size of the toolbar button may be different.
You can set the ImageScaling property to SizeToFit so the image will size to fit on
the toolbar button.

227



Visual C# 2005 Demystified

Figure 12-14 Select Resource dialog box containing the image for Cut.

Figure 12-15 Items Collection Editor showing the image for the Cut button.

228



CHAPTER 12 Toolbars

Figure 1-16
Toolbar buttons with
images for Cut, Copy,
and Paste.

Associating Code with Clicks
of Toolbar Buttons

The toolbar buttons look prettier now that each has an image on it, but they still
don't do anything when they're clicked.

In this section, we'll write code so the Cut toolbar button provides the same cut
action as the Cut menu item and context menu item we worked on in Chapter 11.
Similarly, when you're finished with this section, the Copy toolbar button will pro-
vide the same copy action as the Copy menu item and context menu item, and the
Paste toolbar button will provide the same paste action as the Paste menu item and
context menu item.

The Cut, Copy, and Paste methods of the TextBox class also could be called in
the Click event procedures of the corresponding toolbar buttons. However, as dis-
cussed in Chapter 11 in connection with context menu items, this would be a
duplication of code. Here, the duplication is short, but in other circumstances it may
not be. Therefore, it is useful instead to have each toolbar button's functionality
handled by the corresponding Edit main menu item.

Chapter 11, in the section "Adding Functionality to ContextMenuStrip Menu
Items," discussed two different alternatives of having a context menu item's func-
tionality handled by the corresponding main menu item. The same discussion
applies here to having a toolbar button's functionality handled by the corresponding
main menu item. To illustrate the use of both alternatives, the EventHandler class
alternative is used for the Cut context menu item, and the calling of another event
procedure alternative is used for the Copy and Paste context menu items.

229



Visual C# 2005 Demystified

Add the following line of code to the Load event procedure of the form so the
Click event procedure of the Edit |Cut menu item handles the Click event of the Cut
toolbar button:

tbtnEditCut.Click += new EventHandler(mnuEditCut_Click);

Create a Click event procedure for the Copy toolbar button so it calls the Click
event procedure of the Edit | Copy menu item (mnuEditCopy):

private void tbtnEditCopy_Click
(object sender, EventArgs e)

mnuEditCopy_Click(sender, e);

Finally, create a Click event procedure for the Paste toolbar button so it calls the
Click event procedure of the Edit | Paste menu item (mnuEditPaste):

private void tbtnEditPaste_Click
(object sender, EventArgs e)

mnuEditPaste_Click(sender, e);

Conclusion
Application users use toolbars as well as menu items to give commands to an ap-
plication. The functionality of a toolbar button generally duplicates the functionality
of a menu item. However, the purpose of this duplication is that toolbar buttons
have two advantages over menu items. First, toolbar buttons are immediately ac-
cessible, whereas menu items may be nested several levels deep and can be accessed
only by multiple mouse clicks or keystrokes. Second, a toolbar button uses an im-
age, which gives a more visual interface than the text of a menu item.

This chapter showed you how to create toolbars for your forms, add buttons to
them, and add images to the buttons. Transitioning from the graphical user interface
to code, you also learned how to associate the clicking of a particular toolbar button
with the clicking of a corresponding menu item.

So far our Text Editor is not able to read from or write to any file from the hard
drive. This functionality will be added in the next chapter.

530;



CHAPTER 12 Toolbars

Quiz
1. What class represents a toolbar?

2. What class represents each item on a toolbar?

3. What does the Items collection of the ToolStrip component contain?

4. Is a toolbar item limited to a button?

5. What are advantages of a toolbar over a corresponding menu?

6. What are different alternatives of having a toolbar item's functionality
handled by the corresponding main or context menu item?

7. What does the DisplayStyle property of the ToolStripItem class determine?

8. What does the Image property of the ToolStripItem class determine?

9. What editor is useful in adding controls to a toolbar?

10. What is a good prefix for naming a toolbar button?

231



This page intentionally left blank 



CHAPTER

Accessing
Text Files

Perhaps the most common purpose of Visual C# applications is to access, view, and
modify data. The data is stored on the computer's hard drive as a file or files so it
will be available even after the application exits.

Text files long have been used to store data. Text files preceded databases, but
they often are not thought of as advanced as databases such as Oracle, SQL Server,
. and Access. Indeed, databases do have advantages over text files. However, unlike
databases, with each one having a different format and therefore often can be un-
rstood only by applications that have the software for that particular database
nuu. text files generally are universally understood by applications. For this rea-
, text files are used as a common language between applications that otherwise
^^me incompatible software for data transfer between the
ill show you in this chapter how to read from and write to a text file. First,

 cr. I will show you how to add to your program Open and Save dialog boxes,
^ those used in sophisticated programs like Microsoft Word, so you can openpen
e to read from it, and save to a text file to write to it.

13

233
Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

Open and Save File Dialog Boxes
In Microsoft Word and many other Windows programs, the application user may
open a file located with the Open dialog box, which they display with the File |
Open menu command or the Open toolbar button. Similarly, the application user
may save information to a file with the Save dialog box, which they display with the
File | Save menu command or the Save toolbar button.

The Open dialog box is a control of the OpenFileDialog class, and the Save dialog
box is a control of the SaveFileDialog class. In this section, I will show you how to
add Open and Save dialog boxes to your application.

Adding an OpenFileDialog Control to Your Form

Figure 13-1 shows an Open dialog box in Notepad.
You add an OpenFileDialog control to a form using the following steps, similar

to adding a MenuStrip or ToolStrip object to a form. Try the following steps to add
an OpenFileDialog control to the Text Editor project you created in Chapter 11 and
enhanced in Chapter 12:

1. Open the Text Editor project.

2. Open the form in designer view.

3. Double-click the OpenFileDialog control in the Toolbox (it is in the
Dialogs section) to add it to the form.

Figure 13-1 Open dialog box in Notepad.

(234



CHAPTER 13 Accessing Text Files

Figure 13-2 shows the OpenFileDialog control after it has been added to the
form. The OpenFileDialog won't appear directly on your form, but instead in the
component tray below the form, as shown in Figure 13-2.

The default name of this control likely is OpenFileDialog 1. Give this control
a more logical name, such as dlgOpen. The "dig" prefix indicates the control is
a dialog box and the "Open" suffix indicates that the purpose of the dialog box is to
open a file. You should also change the FileName property so that it doesn't display
the control's name in the dialog box. You don't need to change any of the other
default properties of this control.

Showing the OpenFileDialog Control

The MenuStrip, ContextMenuStrip, and ToolStrip controls also appear in the com-
ponent tray. However, unlike these controls, the OpenFileDialog control won't
appear on your form when you run your program. Instead, you need to write code
to display the OpenFileDialog control.

Figure 13-2 OpenFileDialog in component tray.

235



Visual C# 2005 Demystified

One of the methods of the OpenFileDialog class is ShowDialog. As the name
suggests, its purpose is to show the Open dialog box. You can call the ShowDialog
method via the following code, which starts with the name of the object (dlgOpen),
followed by a period separating the object name from the method name (ShowDia-
log), followed by empty parentheses (because this method has no parameters):

dlgOpen.ShowDialog();

Let's test this code in the Text Editor project. Add a button to the form named
btnRead with the Text property Read. Create the following Click event procedure
for this button:

private void btnRead_Click(object sender, EventArgs e)

dlgOpen.ShowDialog();

When you run the project and click the Read button, the OpenFileDialog control
will appear, similar to Figure 13-1. The OpenFileDialog control is modal, meaning
your application cannot continue until you close the Open dialog box by clicking
one of its two buttons—Open (after selecting a file) or Cancel.

Determining Whether Open or Cancel Is Chosen

Although clicking either the Open or Cancel button will close the Open dialog box,
it is important to know which button was chosen. If the Open button was chosen,
we would want our code to open the selected file. However, if the Cancel button
was chosen, we would not want our code to attempt to open a file because no file
was selected.

From the code we have written so far, you can't tell whether the Open or Cancel
button was chosen. Now we will add to the code so we can determine which button
was chosen.

In addition to displaying the OpenFileDialog control, the ShowDialog method
also returns a DialogResult. The DialogResult was discussed in Chapter 10 in con-
nection with dialog forms. As discussed there, the value of the DialogResult returned
by the ShowDialog method corresponds to the button the user selected to close the
dialog box. For example, if the user chose the OK button, the value returned by the
ShowDialog method is DialogResult. OK. However, if the user chose the Cancel
button, the value returned by the ShowDialog method is DialogResult.Cancel.

The Open dialog box has an Open button instead of an OK button, but the
DialogResult that corresponds to the user's choice of the Open button still is
DialogResult.OK. Not surprisingly, the DialogResult is DialogResult.Cancel if the
user instead chose the Cancel button to close the Open dialog box.

33C



CHAPTER 13 Accessing Text Files

Here is the syntax for using the return value of the ShowDialog method to deter-
mine whether the user chose the Open or Cancel button:

DialogResult dr;
dr = dlgOpen.ShowDialog();
if (dr == DialogResult.OK)

//Open button was clicked
else

//Cancel button was clicked

This first statement creates a DialogResult variable because that is the data type
returned by the ShowDialog method. The second statement calls the ShowDialog
method and assigns its return value to the DialogResult variable we created in the
first statement. The following i f . . . else statement checks to see if the value of the
DialogResult variable is DialogResult.OK. If it is, the Open button was clicked.
Otherwise, the Cancel button was clicked.

Accordingly, modify the code in the Click event procedure of the Read button so
it reads as follows:

private void btnRead_Click(object sender, EventArgs e)

DialogResult dr;
dr = dlgOpen.ShowDialog();
if (dr == DialogResult.OK)

MessageBox.Show("Open button was clicked");

Run the project. Click the Read button to display the Open dialog box. Select a
file and click the Open button. The message box will display that the Open button
was clicked. Close the message box. Click the Read button again to redisplay the
Open dialog box. This time click the Cancel button. No message box will display,
indicating that the Cancel button was clicked.

Identifying the File to Open
We have made progress! We can now determine through code whether the user
chose the Open or Cancel button. The next step is to determine the name of the file
the user chose if they selected the Open button, because we need that name to know
which file to open.

The OpenFileDialog class has a FileName property whose value is a string con-
taining the path to and the name of the file selected in the file dialog box. For
example, if we chose the file data.txt in the C:\temp directory, the FileName property
would be C:\temp\data.txt.

&



Visual C# 2005 Demystified

Usually you are interested in the FileName property only if the user chose the
Open button. If the user chose the Cancel button instead, the FileName property is
an empty string.

Modify the code in the Click event procedure of the Read button so it reads as
follows:

private void btnRead_Click (obj ect sender, EventArgs e)

DialogResult dr;
dr = dlgOpen.ShowDialog 0 ;
if (dr == DialogResult. OK)

MessageBox . Show (dlgOpen . FileName) ;

Run the project. Click the Read button to display the Open dialog box. Select
a file and click the Open button. The message box will display the path to and the
name of the file. You can now close the message box and then close the form.

Save File Dialog Class
You use a SaveFileDialog control to add to your application the ability to save files
using the built-in Save dialog box, which is shown in Figure 13-3.

Figure 13-3 Save dialog box.

[238



CHAPTER 13 Accessing Text Files

NOTE The Save dialog box often is titled "Save As" rather than "Save," as in
Figure 13-3. The title depends on, among other factors, if the contents are being
saved to a different file than the one opened, or whether the file is being saved
for the first time. The discussion in this chapter about the Save dialog box applies
equally to the Save As dialog box.

Add a SaveFileDialog control to your form, as you did the OpenFileDialog con-
trol earlier in this chapter. Name the SaveFileDialog control dlgSave. You don't
need to change any of this control's other default properties.

The SaveFileDialog control, like the OpenFileDialog control, is modal, meaning
your application cannot continue until you close the Save dialog box by clicking
one of its two buttons—Save or Cancel.

Once you have learned how to use an OpenFileDialog control, using the Save-
FileDialog control is easy. The reason is the ShowDialog method, DialogResult
return value, and FileName property work the same way with a SaveFileDialog
control as they do with an OpenFileDialog control. The DialogResult returned by
clicking the Save button is DialogResult.OK, just as is the case with clicking the
Open button in the OpenFileDialog control

Let's test this by adding to the Text Editor project another button to the form,
named btnWrite with the Text property Write. Create the following Click event
procedure for this button:

private void btnWrite_Click(object sender, EventArgs e)

DialogResult dr;
dr = dlgSave.ShowDialog();
if (dr == DialogResult.OK)

MessageBox.Show(dlgSave.FileName);

Run the project. Click the Write button to display the Save dialog box. Select
a file and click the Save button. A message box will display the path to and the name
of the file. Another message box always will advise you that the file already exists
and ask you if you want to replace it. Answer yes to close the warning message box
(don't worry, the file will not be replaced). The Save dialog box will close. Next,
click the Write button to display the Save dialog box again. This time click the
Cancel button. No message box will display, indicating that the Cancel button was
clicked. Finally, close the form to end the application.

L239



aisual c# 2005 Demystified

Reading from a Text File
I am always telling my students that the best way to learn computer programming
is to write programs. Therefore, you will learn in this section how to display in the
text box in the Text Editor project the contents of a text file selected in an Open
dialog box. When we are finished writing code, clicking the Read button will dis-
play in the TextBox control the contents of a text file. Figure 13-4 shows how the
application will appear after the Read button is clicked and the contents of a text file
are displayed in the TextBox control.

Conversely, in the next section you will further enhance the project so that when
you click the Write button, the application will write to the text file the contents of
the TextBox control. Thus, if I make any changes to the text of the TextBox control
and click the Write button, the text file will be updated with those changes.

Stream Reader Class
We will use the StreamReader class to read from the text file. The word "stream"
refers to a stream of data, moving from one place to another, in this case from a text
file to your application. The word "reader" means the file is being read. As you
might now guess, when we want to write to the file, we will use the StreamWriter
class.

To use the StreamReader class, we first will declare a variable of that data type:

10.StreamReader readerVar;

The term "IO" must precede "StreamReader" or else the compiler will complain
that the term StreamReader is not defined. The reason is that the StreamReader
class is part of the System.IO namespace.

Figure 13-4
Application displaying
the contents of a text file.

240)



aHAPTER  13 AAccesing Text Files

Importing the System.IO Namespace

The compiler will not look in the System.IO namespace unless we tell it to. One
way to tell the compiler to look in the System.IO namespace is to precede Stream-
Reader with System.IO.

There is an easier way to tell the compiler to look in the System.IO namespace.
At the top of the code module, type the following:

using System.IO;

Including this one using statement means that you don't have to precede Stream-
Reader (or Stream Writer) with System.IO each time you use that term in your code.
Now you can declare the StreamReader variable readerVar in the Click event pro-
cedure of the Read button without preceding StreamReader with IO:

StreamReader readerVar;

Revise the code in your Read button Click event procedure to appear as
follows:

private void btnRead_Click (obj ect sender, EventArgs e)

StreamReader readerVar;
DialogResult dr;
dr = dlgOpen.ShowDialog () ;
if (dr == DialogResult .OK)

MessageBox.Show(dlgOpen. FileName) ;

Instantiating a StreamReader Variable

Although we have created the StreamReader variable readerVar, right now that
variable does not relate to any text file. Therefore, the next step is to connect the
StreamReader variable readerVar to the text file we want to read. This process is
known as instantiating the variable.

We will instantiate the StreamReader variable with the following statement:

readerVar = new StreamReader (dlgOpen. FileName) ;

This line of code will replace the code that showed the message box, MessageBox.
Show(dlgOpen.FileName), because the message box was for illustration purposes,
and we are now actually about to open the selected file for reading rather than just
display its path and name.

3*0



Visual C# 2005 Demystified

Therefore, so far your Read button Click event procedure should read as follows:

private void btnRead_Click(object sender, EventArgs e)

StreamReader readerVar;
DialogResult dr;
dr = dlgOpen.ShowDialog();
if (dr == DialogResult.OK)

readerVar = new StreamReader(dlgOpen.FileName);

Now let's take a careful look at the statement we've just added, starting from the
right side of the assignment statement.

The New keyword is used to create a new StreamReader instance that points to
the text file to be read. The term "StreamReader" in the statement New
StreamReader(dlgOpen.FileName) indicates the type of instance being created.
When the name of the function (here, StreamReader) is the same as the name of a
class (also StreamReader), as it is here, it is called a constructor. The constructor is
used to "construct" the new instance.

The constructor in this code example takes one argument—the name of the file to be
read. That file name is obtained from the FileName property of the Open dialog box.

The right side of the assignment operator returns the new instance, which then is
assigned to the StreamReader variable readerVar on the left side of the assignment
operator. Now the StreamReader variable readerVar is connected to the text file we
want to read.

Reading the Text File into the TextBox
The StreamReader class has a ReadToEnd method that returns a string representing
the entire text of the text file. We then assign that string to the Text property of txtEdit
so that the text of the TextBox control will display the entire text of the text file.
Accordingly, add the following statement to your Read button's Click event procedure:

txtEdit.Text = readerVar.ReadToEnd();

Your Read button's Click event procedure now should read as follows (note that
because there are now two statements conditional on the if control structure, they
are enclosed in brackets):

private void btnRead_Click(object sender, EventArgs e)

StreamReader readerVar;
DialogResult dr;
dr = dlgOpen.ShowDialog();

242



CHAPTER 13 Accessing Text Files

if (dr == DialogResult .OK)

readerVar = new StreamReader (dlgOpen. FileName) ;
txtEdit.Text = readerVar .ReadToEnd () ;

The StreamReader class has other methods that are alternatives to ReadToEnd.
The Read method reads a specified number of characters, and the ReadLine method
reads a line. For example, if you want to load the data one line at a time into a row
of a control, the ReadLine method might be a logical choice.

Closing the Text File

Once we have read the entire contents of the text file, there is no further need to read
from it. Therefore, we should close the text file for reading. The StreamReader class
has a Close method to accomplish this. Accordingly, add the following line of code
to close the text file for reading:

readerVar . Close ( ) ;

This completes the Read button Click event procedure, which now should read
as follows:

private void btnRead_Click (obj ect sender, EventArgs e)

StreamReader readerVar;
DialogResult dr;
dr = dlgOpen. ShowDi alog ();
if (dr == DialogResult .OK)

readerVar = new StreamReader (dlgOpen. FileName) ;
txtEdit.Text = readerVar. ReadToEnd ();
readerVar . Close ( ) ;

Closing the text file for reading frees system resources, specifically memory.
This is important. Memory is required to keep a file open for reading (or writing).
When you don't need to keep the file open anymore, you should give the memory
back to the operating system.

By analogy, a library would run out of books if patrons checked out books but
never returned them when they were finished reading the books. Similarly, your
computer only has so much available memory for applications (some memory is
needed by the operating system itself). If applications don't return memory after

243J



Visual C# 2005 Demystified

checking it out, the operating system eventually will run out of memory. The con-
sequence of the operating system running out of available memory for applications
often is a general protection fault or illegal exception, bringing the user's work to
a crashing halt.

Additionally, later in this chapter you may be writing to the same text file that
you read. Trying to open a file for writing that already is open for reading may
cause problems, which can be avoided by closing the file first before reopening it
for another purpose.

Run the project. Click the Read button. Use the resulting Open dialog box to
select and open a text file. The contents of that text file should be displayed in the
text box. You can then close the application.

Writing to a Text File
The next step in enhancing the Text Editor project will be to write to the text file by
copying the contents of the text box to the text file. The code to do this will be in
the Click event procedure of the Write button.

StreamWriter Class
We will now change the code used previously in this chapter for the Click event
procedure for the Write button by replacing the code displaying the message box
with the following code:

StreamWriter writerVar;
writerVar = new StreamWriter(dlgSave.FileName, false);

The code for the Click event procedure of the Write button should now look like
this:

private void btnWrite_Click(object sender, EventArgs e)

DialogResult dr;
dr = dlgSave.ShowDialog();
if (dr == DialogResult.OK)

StreamWriter writerVar;
writerVar = new StreamWriter

(dlgSave.FileName, false);

[244



CHAPTER 13 Accessing Text Files

The two lines of code we just added may look familiar from the code we wrote
earlier in this chapter for the StreamReader. There, we declared a StreamReader
variable and then instantiated that variable using the StreamReader constructor to
read a text file. Here, we are declaring a StreamWriter variable and then instantiat-
ing that variable using the StreamWriter constructor to write to a text file. As the
name suggests, the StreamWriter class is used when writing to a text file.

The first argument of the StreamWriter constructor is the name of the text file.
This is the same as the first argument of the StreamReader constructor. However,
the StreamWriter constructor has an additional, second argument.

NOTE The StreamWriter constructor, like the Show method of the MessageBox
class, is overloaded, which means that it may be called with a different number of
arguments.

The data type of the second argument of the StreamWriter constructor is Boolean.
The value of this second argument is true if you want to add to the existing contents
of the text file, and false if instead you want to overwrite the existing contents of the
text file.

In this project, we want to overwrite rather than add to the existing contents of
the text file. Accordingly, the value of the second argument is false.

If you instead wanted to add to the existing contents of the file, you would use true
instead of false as the second argument of the StreamWriter constructor. One example
would be a log file, which logs events or problems. Normally you would want to add
a new event or problem to the prior list, not erase the prior list in the process.

Writing from the TextBox to the Text File

The StreamWriter class has a Write method that writes the contents of its argument
to the text file at which the StreamReader instance is targeted. In this application,
we want to write the contents of the text box to the text file. Therefore, the argument
is the Text property of the TextBox control. Accordingly, add the following code to
the Click event of the Write button:

writerVar.Write(txtEdit.Text);

The code for the Click event procedure of the Write button should now look like
this:

private void btnWrite_Click(object sender, EventArgs e)

DialogResult dr;
dr = dlgSave.ShowDialog();

<|4



Visual C# 2005 Demystified

if (dr == DialogResult.OK)

StreamWriter writerVar;
writerVar = new StreamWriter

(dlgSave.FileName, false);
writerVar.Write(txtEdit.Text);

Closing the Text File

We are now finished writing to the text file. Accordingly, we should close the text
file for writing, as we closed the text file for reading earlier in this chapter. Accord-
ingly, add the following statement to the Click event of the Write button:

writerVar.Close();

The completed code for the Click event procedure of the Write button should
now look like this:

private void btnWrite_Click(object sender, EventArgs e)

DialogResult dr;
dr = dlgSave.ShowDialog();
if (dr == DialogResult.OK)

StreamWriter writerVar;
writerVar = new StreamWriter

(dlgSave.FileName, false);
writerVar.Write(txtEdit.Text);
writerVar.Close();

WARNING Your program may make changes to your text file, and you don't want
those changes to cause any problems on your computer. Accordingly, before you
test this project, create a text file using Notepad or another plain text editor and
then type in whatever contents you would like. However, don't use Microsoft Word
or a comparable word processing program to create the text file because these
programs include formatting characters as well as text.

Run the project. Click the Read button. Use the resulting Open dialog box to
select and open the text file you created. The contents of that text file should be
displayed in the text box. Then, make changes in the text box. When you're done

246;



CHAPTER 13 Accessing Text Files

making changes in the text box, click the Write button. When the Save dialog box
displays, find and choose the text file you created and then click the Save button.
You may see a message box that informs you that the file you are saving to already
exists and asking you if you want to replace it. Click the Yes button.

Run your application again and display the text file. The text should show the
changes you made when you first ran the application.

This application is not yet ready for prime time. For example, we should disable
the Write button until a file is opened with the Read button. We also should create
File | Open and File | Save menu items and link their Click events to the Click
events of the Read and Write buttons. You may wish to try to implement these en-
hancements. Nevertheless, this project is useful in demonstrating how to read from
and write to a text file.

Conclusion
In this chapter, you learned how to add to your program Open and Save dialog
boxes that sophisticated programs like Microsoft Word have. The Open dialog box
is a control of the OpenFileDialog class. Similarly, the Save dialog box is a control
of the SaveFileDialog class. You use the ShowDialog method to display each dia-
log box, and you use the DialogResult property to determine if the user chose the
dialog box's Open or Save button, or instead the Cancel button. If the user chose
the Open (or Save) button, you use the FileName property to retrieve the file name
chosen by the user from the dialog box.

You also learned how to read from a text file using the StreamReader class and
to write to a text file using the Stream Writer class. Although text files may not seem
as advanced as databases, one advantage text files have over databases is that text
files are universally understood by applications, whereas databases require special-
ized software.

However, databases also have their advantages, so the next chapter will be about
them.

Quiz
1. The Open dialog box is a control of which class?

2. What method do you use to show an Open dialog box?

3. What is the return value of showing an Open dialog box?

£47



Visual C# 2005 Demystified

4. What is the property of the OpenFileDialog class whose value is the file
chosen by the user in an Open dialog box?

5. The Save dialog box is a control of which class?

6. What method do you use to show a Save dialog box?

7. What is the return value of showing a Save dialog box?

8. What is the property of the SaveFileDialog class whose value is the name
of the file to be saved?

9. What class may you use to read from a text file?

10. What class may you use to write to a text file?

$4£



CHAPTER

Databases

Up until now, we have saved data in a text file. But text files have their limitations.
One limitation is that it is difficult to quickly retrieve specific data in a text file.
There's usually no alternative to searching the text file from beginning to end,
which can take a long time if the text file contains a lot of data.

Another limitation of a text file is its inability to link different but related data.
For example, a store may have both a list of customers and a list of orders. Because
the orders come from customers, the two different lists are related. But with a text
file, there's no easy way to link an order in one list with a customer in another list.

A database does not have these limitations—you can quickly retrieve specific
data using keys and indexes, and you can easily link different data.

Although there are many types of databases, fundamentally these different data-
Lasetypes share a number of common characteristics. Accordingly, you will be

|le to apply what you learn here to different types of databases.
is chapter will get you started with databases. However, I'm not going to 

a dry theoretical discussion of what a database is because that information ca
ittle abstract if you haven't first spent some time working with one. So let's roll
eeves (figuratively, of course) and get started working with a databa

14

249

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

Installing the Database
Databases come in different formats. Microsoft Access, Microsoft SQL Server, and
Oracle are among the most common, but there are many others, each with their
advantages, disadvantages, followers, and detractors.

I'll be using a Microsoft Access database in this chapter solely because I believe
my readers are more likely to have Microsoft Access than other database products
such as Microsoft SQL Server and Oracle. Additionally, it is easier to get started
using Microsoft Access than with most other database products. However, you will
be able to apply what you learn here to other database formats such as Microsoft
SQL Server and Oracle.

Obtaining the Northwind Traders Database
We will be working with the Northwind Traders database. It is a Microsoft Access
database and is on the installation CD for Microsoft Access.

However, you can use the Northwind Traders database with Visual C# 2005
without having Microsoft Access. Microsoft permits you to download, free of
charge, a version of this sample database for Access 2000. This version also will
work if you have Access XP or 2003.

The download link at the time of this book is http://www.microsoft.com/
downloads/details.aspx?FamilyID=c6661372-8dbe-422b-8676-c632d66c529c&
displaylang=en. This link may change, particularly when Microsoft periodically
reorganizes its website. In case you need to do a search, the title of the article is
"Access 2000 Tutorial: Northwind Traders Sample Database."

Installing the Northwind Traders Database
The name of the installation file is Nwind.exe. Once you download this file onto
your hard drive, double-click on it to start the installation process. The installation
program will ask you to agree to a license to use the database and then ask where
you want to save the database. Save it wherever you wish on the hard drive; just
remember where you saved it.

The saved database may have the name Nwind.mdb or Northwind.mdb. The
".mdb" extension is an abbreviation of "Microsoft database" and is used for Access
databases.

250

http://www.microsoft.com/downloads/details.aspx?FamilyID=c6661372-8dbe-422b-8676-c632d66c529c&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=c6661372-8dbe-422b-8676-c632d66c529c&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=c6661372-8dbe-422b-8676-c632d66c529c&displaylang=en


CHAPTER 14 Databases

Connecting to the Database
If you have Access, you can view the Northwind Traders database from that
application.

You can also view the Northwind Traders database via Visual C# 2005. You
don't need to open or create a Windows application. However, you first need to
connect Visual C# 2005 to the database.

To start the process of connecting Visual C# 2005 to the Northwind Traders da-
tabase, choose the Tools | Connect to Database menu command. This will display
the Choose Data Source dialog box similar to that shown in Figure 14-1 (yours may
have a different number of choices).

As Figure 14-1 shows, the upper pane of the Choose Data Source dialog box lists
different database formats, such as Access, SQL Server, and Oracle. Because
Northwind Traders is an Access database, choose Microsoft Access Database File.
Figure 14-2 shows the Choose Data Source dialog box after you choose Microsoft
Access Database File.

As Figure 14-2 shows, the drop-down box below the upper pane, blank in Figure
14-1, now lists the one available data provider, .NET Framework Data Provider for
OLE DB. A data provider is a code component that is used by your application to
connect to a specific database format. There are many database formats, so there are
many providers, at least one for each database format supported by the .NET Frame-
work. The .NET Framework may have several alternative data providers for some
database formats, but just has one, the .NET Framework Data Provider for OLE
DB, for the Microsoft Access database format.

Figure 14-1 Choose Data Source dialog box.

(251



Visual C# 2005 Demystified

Figure 14-2 Data Source dialog box after the data source is selected.

As Figure 14-2 also shows, the Description area to the right of the upper pane,
blank in Figure 14-1, now contains the following text: "Use this selection to con-
nect to a Microsoft Access database file using the native Jet provider through the
NET Framework Data ftovider for OLE DB." The reason for the term "Jet" is that
Microsoft Access uses the Jet database engine.

Finally, Figure 14-2 shows that once you have selected a data source and a data
provider, the Continue button, disabled in Figure 14-1, now is enabled.

Click the Continue button. This will display the Add Connection dialog box
shown in Figure 14-3.

Figure 14-3 Add Connection dialog box.

252.



CHAPTER 14 Databases

Figure 14-4 Add Connection dialog box after the database is selected.

Use the Browse button to find and choose the nwind.mdb (or Northwind.mdb)
file you saved on your hard drive when you installed the Northwind Traders data-
base. Once you have done this, as shown in Figure 14-4, the path to and the name
of the database should appear in the Database File Name text box.

NOTE You don't need to worry about the user name and password in the Add
Connection dialog box, unless you assigned a name and password to the database
(which you don't need to do). This may be an issue with other database formats,
but it's not an issue with Microsoft Access.

The next step is to test the connection. Click the Test Connection button. A mes-
sage box stating "Test Connection Succeeded" should display, as in Figure 14-5.

Click the OK button. This saves the changes you made and closes the Add Con-
nection dialog box.

Figure 14-5
Test connection succeeded.

?53:



Visual C# 2005 Demystified

Using Server Explorer
If you have Microsoft Access, you can use it to view the Northwind Traders data-
base. If you don't, Visual C# 2005 has a tool called Server Explorer that permits
you to view and make changes to databases on your computer or on any other com-
puter to which you have network access and permissions.

Indeed, you should learn how to use Server Explorer even if you have Microsoft
Access on your computer. First, you may find yourself working at another com-
puter that doesn't have Microsoft Access. Second, and perhaps more important,
when you're working with other database formats such as SQL Server and Oracle,
you won't be able to use Microsoft Access.

You can display Server Explorer using the View | Server Explorer menu command.
You don't need to first open or create a Windows application. Figure 14-6 shows
Server Explorer after the Data Connections node was expanded by clicking the
+ sign to its left.

Figure 14-6 Server Explorer.

254



CHAPTER 14 Databases

NOTE Server Explorer on your machine will likely have different content than
what's shown in Figure 14-6. For example, PCKlub866 is listed under the Servers
node because that happens to be the name of the computer I used.

The node underneath the Data Connections node should list the path and file
name of the Microsoft Access database to which we just created a connection in the
previous section "Connecting to the Database."

Exploring the Database
Click the + sign next to the Microsoft Access database under the Data Connections
node. As Figure 14-7 shows, four nodes appear: Tables, Views, Stored Procedures,
and Functions.

Figure 14-7 Server Explorer listing the Tables, Views, Stored Procedures, and Functions
nodes.

L255J



Visual C# 2005 Demystified

A table is a collection of data on a particular subject. In this chapter, we'll be discuss-
ing a particular table, Customers. The Northwind Traders database has other tables, too,
including those listing employees, products, orders, suppliers, and shippers.

A view is a collection of data, often obtained from more than one table. Exam-
ples of views in the Northwind Traders database include "Product Sales for 1995"
and "Ten Most Expensive Products."

A stored procedure and a function each is generally a code component that generates
a predefined subset of the data. Examples of stored procedures in the Northwind Trad-
ers database include "Alphabetical List of Products" and "Summary of Sales by Year."
An example of a function in the Northwind Traders database is "Sales by Year."

Exploring the Customers Table

Click the + sign next to the Tables node. As Figure 14-8 shows, this displays the
various tables in the Northwind Traders database.

Figure 14-8 Server Explorer listing tables.

256



CHAPTER 14 Databases

Click the + sign next to the Customers table. As Figure 14-9 shows, this displays
the various fields of the Customers table.

Right-click the Customers table node and choose Show Table Data from the
shortcut menu. As Figure 14-10 shows, the data in the Customers table then will be
displayed.

As Figure 14-10 shows, the data in the Customers table is displayed in rows and
columns. Each column, or field, represents a different piece of information, such as
a name, title, or address. Each row, or record, concerns one customer. Together, the
rows and columns provide information, such as the name, title, and address of each
customer.

Different tables have different fields and a different number of records. Addition-
ally, the fields are not always of a String data type, but instead may be of another
data type, such as Integer or Boolean. The one thing tables have in common is that
they're composed of fields (columns) and records (rows).

Figure 14-9 Fields of the Customers table.

57}



Visual C# 2005 Demystified

Figure 14-10 Data in the Customers table.

Database Project
As you have heard me say several times already in this book, the best way to learn
programming is to write programs. So let's put that saying into practice once

What the Project Does
This project, when finished, will, when the application starts up, fill a DataGrid-
View control with data from four fields of the Customers table: CustomerlD,
ContactTitle, CompanyName, and ContactName. Figure 14-11 shows the project in
action.

258:

again



CHAPTER 14 Databases

Figure 14-11 DataGridView control filled with data from the Customers table.

Creating the Form

Create a new Windows application. Add two controls to the default form.
The first control is an OpenFileDialog control. You learned about this control in

Chapter 13. Name this control dlgOpen and delete any value in its FileName prop-
erty. You do not need to change any of its other default properties.

The second control is a DataGridView control. This control displays data in a
row and column format, much like the Customers table shown in Figure 14-10, or
a spreadsheet.

When you add the DataGridView control, a DataGridView tasks pane displays,
as shown in Figure 14-12.

You may accept the default values in this pane. However, center the DataGrid-
View control in your form and rename it dgvData.

Figure 14-12
DataGridView Tasks
pane.

259



Visual C# 2005 Demystified

Importing Data Namespaces

The code components in the .NET class library used for database access are re-
ferred to by the name ADO.NET You've probably already figured out the ".NET"
portion of that name. ADO was an acronym for ActiveX Data Objects, a Microsoft
data-access technology that preceded ADO.NET.

Several ADO.NET classes we will use in this chapter are part of the System.
Data.OleDb namespace. As you may remember from previous chapters, the .NET
library is organized in a hierarchal structure, each branch with its own namespace.
System is a top-level namespace. Data is one of several namespaces belonging to
System, and OleDb is one of several namespaces belonging to System.Data.

NOTE There are other namespaces supporting other database types, such as
OracleClientfor Oracle databases and SqlClientfor SQL Server databases.

Thus, the OleDbConnection class we will be using in the next section techni-
cally is not just the OleDbConnection class but instead the System.Data.OleDb.
OleDbConnection class. However, typing a System.Data.OleDb prefix before
every reference to OleDbConnection or another ADO.NET class can quickly
become a pain.

Fortunately, you can avoid having to prefix every reference to an ADO.NET
class with System.Data.OleDb by inserting a using System.Data.OleDb statement
before your class declaration. While you are at it, also import the System.Data
namespace (if it has not already been imported by the IDE), because that namespace
also will come in handy later:

using System.Data;
using System.Data.OleDb;

If the compiler does not recognize the root System.Data namespace, you may
need to add a reference to the assembly that contains the namespace. Choose Add
Reference from the Project menu to display the Add Reference dialog box shown
in Figure 14-13.

Choose System.Data from the list and then click OK. The compiler will now
recognize the root System.Data namespace.

Creating a Connection

Your application will be giving commands to the database to retrieve certain data.
But before it can do so, your application needs to have a connection with the
database.

260)



CHAPTER 14 Databases

Figure 14-13 Add Reference dialog box.

Persistent Connection vs. Disconnected Application

Although an application needs to have a connection to a database to retrieve or
change data, there is more than one way to design this connection. One alternative
is to create a single connection that remains active until the application ends. This
is called a persistent connection.

The other alternative is to create a connection only to retrieve data, end the con-
nection, make changes to a local copy of the data while disconnected from the
database, and connect back to the database only when necessary to synchronize
these changes with the database. This is called a disconnected application because
most of the time, the application is disconnected from the database.

As with most choices in life, there are tradeoffs between a persistent connection
and a disconnected application. In general, Windows applications are more likely
to use persistent connections, whereas web applications are more likely to be dis-
connected applications, but this is only a generalization, of course.

Because we are writing a Windows application, we will use a persistent connection.

OleDbConnection Class

The OleDbConnection class represents a connection to a data source. The following
line of code not only declares an OleDbConnection variable, but also instantiates it:

OleDbConnection myConn = new OleDbConnection();

26



Visual C# 2005 Demystified

As explained in previous chapters, the term "instantiate" means to create a new
instance—in this case, a new connection. This instantiation is performed by using
the new keyword when declaring the OleDbConnection variable.

ConnectionString Property
The OleDbConnection class has a ConnectionString property. This property includes
the provider being used and the path to and the name of the data source file.

The provider is "Microsoft.Jet.OLEDB.4.0." As mentioned in the previous sec-
tion "Connecting to the Database," the reason for the term "Jet" is that Microsoft
Access uses the Jet database engine. Additionally, as the Description area of the
Choose Data Source dialog box shown earlier in Figure 14-2 reflects, the connec-
tion to a Microsoft Access database uses the native Jet provider through the NET
Framework Data Provider for OLE DB. That native Jet provider is Microsoft.Jet.
OLEDB .4.0.

We will obtain the path to and the name of the data source file through the Open-
FileDialog control and its FileName property.

In this project, all the code will be written in the Load event of the form. Write
the following code:

private void Forml_Load (Object sender, EventArgs e)

OleDbConnection myConn = new OleDbConnection();
DialogResult dr;
dr = dlgOpen.ShowDialog();
if (dr == DialogResult.OK)

string strFile = dlgOpen.FileName;
myConn.ConnectionString = "Provider=" +

"Microsoft.Jet.OLEDB.4.0;Data Source="
+ strFile + ";";

Opening the Connection
Once you've instantiated an OleDbConnection object and created its connection
string, you may open the connection to your database using the OleDbConnection
object's Open method:

m y C o n n . O p e n ( ) ;

262)



CHAPTER 14 Databases

Accordingly, our code now reads as follows:

private void Forml_Load (Object sender, EventArgs e)

OleDbConnection myConn = new OleDbConnection ();
DialogResult dr;
dr = dlgOpen.ShowDialog();
if (dr == DialogResult.OK)

string strFile = dlgOpen.FileName;
myConn.ConnectionString = "Provider=" +

"Microsoft.Jet.OLEDB.4.0;Data Source="
+ strFile + ";";

myConn.Open () ;

Creating a Command

Once you establish a connection, you'll next want to execute commands, such as to
retrieve data that you want to view. You use an OleDbCommand object to execute
commands to a database. The OleDbCommand class, like the OleDbConnection
class, is part of the System.Data.OleDb namespace.

You instantiate an OleDbCommand object similar to how you instantiate an
OleDbConnection object:

OleDbCommand myCMD = new OleDbCommand();

SQL Statement

Commands often are expressed in a SQL statement. SQL, alternatively pronounced
as separate letters ("S-Q-L") or as "sequel," is an acronym for Structured Query Lan-
guage. SQL is a standardized language for requesting information from a database.

The following SQL SELECT statement retrieves data from the CustomerlD,
ContactTitle, CompanyName, and ContactName fields in the Customers table:

SELECT CustomerlD, ContactTitle, CompanyName,
ContactName FROM Customers

§6



Visual C# 2005 Demystified

SELECT is a keyword that indicates the SQL statement retrieves records. The
SELECT statement does not change records. Other SQL statements, such as IN-
SERT, UPDATE, and DELETE, do change records, by adding, editing, and deleting,
respectively.

The names following the SELECT keyword are the names of table fields. Be-
cause there is more than one field, the field names are separated by commas.

FROM is also a keyword. The name following it, Customers, is the name of the
table to which the fields belong.

CommandText Property

The OleDbCommand object has a CommandText property whose value may be a
SQL statement. Accordingly, we will assign the SQL SELECT statement we dis-
cussed in the preceding section to the OleDbCommand object's CommandText
property as follows:

myCMD.CommandText = "SELECT CustomerID, " +
"ContactTitle, CompanyName, ContactName " +
FROM Customers";

NOTE The value of the CommandText property may also be a table name or the
name of a stored procedure.

Linking the Command to a Connection

The final step is to link the command to a connection to the database. The OleDb-
Command object has a Connection property whose value is the database connection
to be used by the command. Accordingly, the following code assigns the existing
OleDbConnection variable myConn to the Connection property of the OleDbCom-
mand object:

myCMD.Connection = myConn;

Therefore, our code now reads as follows:

private void Forml_Load (Object sender, EventArgs e)

OleDbConnection myConn = new OleDbConnection ();
DialogResult dr;
dr = dlgOpen.ShowDialog();
if (dr == DialogResult.OK)

string strFile = dlgOpen.FileName;

(264)



CHAPTER 14 Databases

myConn.ConnectionString = "Provider=" +
"Microsoft.Jet.OLEDB.4.0;Data Source="
+ strFile + ";";

myConn.Open () ;
OleDbCommand myCMD = new OleDbCommand();
myCMD.CommandText = "SELECT CustomerID, " +

"ContactTitle, CompanyName, ContactName " +
FROM Customers";

myCMD.Connection = myConn;

Filling the DataGridView
We now have defined a database connection and command. Here are the remaining
tasks:

1. Package the database connection and database command in an
OleDbDataAdapter object.

2. Create a DataSet object.

3. Use the OleDbDataAdapter object to fill the DataSet.

4. Use the DataSet to fill the DataGridView.

Creating an OleDbDataAdapter

The OleDbDataAdapter class packages a database connection with a set of data
commands.

The first step is to instantiate an OleDbDataAdapter variable, similar to how
previously we instantiated the OleDbConnection and OleDbCommand variables:

OleDbDataAdapter myAdapter = new OleDbDataAdapter();

The OleDbDataAdapter class has a SelectCommand property whose value is a
command that contains a SQL SELECT statement. Accordingly, the following code
sets the OleDbDataAdapter variable's SelectCommand property to the OleDbCom-
mand variable we instantiated and configured in the previous section:

myAdapter.SelectCommand = myCMD;

This statement not only connects the OleDbDataAdapter variable to the data
command it will use, it also indirectly connects the OleDbDataAdapter variable to
the database connection, because the OleDbCommand variable is connected through
its Connection property to the OleDbConnection variable.

265



Visual C# 2005 Demystified

Accordingly, the code now reads like this:

private void Forml_Load (Object sender, EventArgs e)

OleDbConnection myConn = new OleDbConnection();
DialogResult dr;
dr = dlgOpen.ShowDialog();
if (dr == DialogResult.OK)

string strFile = dlgOpen.FileName;
myConn.ConnectionString = "Provider=" +

"Microsoft.Jet.OLEDB.4.0;Data Source="
+ strFile + ";";

myConn.Open();
OleDbCommand myCMD = new OleDbCommand();
myCMD.CommandText = "SELECT CustomerID, " +

"ContactTitle, CompanyName, ContactName " +
FROM Customers";

myCMD.Connection = myConn;
OleDbDataAdapter myAdapter = new OleDbDataAdapter()
myAdapter.SelectCommand = myCMD;

Creating a DataSet

The data used to fill the DataGridView cannot come directly from the hard drive
where the database is stored. Instead, an intermediate step is required. The data
from the hard drive first must be loaded into memory, or RAM. Then, the data in
RAM is loaded into the DataGridView.

NOTE This approach has advantages. For example, it frees the application from
having to exactly replicate the physical data and instead work with subsets,
supersets, calculated fields, and so forth.

A DataSet is a representation of the data (in this case, from several fields of the
Customers table) that is stored in RAM.

The DataSet class is part of the System.Data namespace, so you should add a
using System.Data statement if you (or the IDE) did not do so already earlier in this
chapter in the section "Importing Data Namespaces":

using System.Data;
using System.Data.OleDb;

266



CHAPTER 14 Databases

You may also need to add a reference to the assembly that contains the namespace
System.XML. You do so the same way you added a reference to the assembly that con-
tains the namespace System.Data earlier in this chapter in the section "Importing Data
Namespaces," using the Add Reference dialog box shown earlier in Figure 14-13.

You instantiate a DataSet variable via the following code, similar to how previously
we instantiated the OleDbConnection, OleDbCommand, and OleDbDataAdapter
variables:

DataSet ds = new DataSet ();

The next steps are to clear and then fill the DataSet.
The DataSet object has a Clear method. This method, as its name suggests, clears

the DataSet of any leftover contents. There would be no leftover contents here be-
cause the code is running on application startup, but often you will need to use the
Clear method, so it is a good idea to get into the habit of using it.

d s . C l e a r ( ) ;

The OleDbDataAdapter object has a Fill method. This method, as its name sug-
gests, fills the DataSet with its contents, which, once the DataGridView is
connected to the DataSet as discussed in the next section, are then displayed in the
DataGridView that is bound to the DataSet. The first argument is the DataSet to be
filled. The second argument is the name of the source table (here, Customers).

myAdapter .Fi l l (ds , "Customers") ;

Accordingly, the code now reads as follows:

private void Forml_Load (Object sender, EventArgs e)

OleDbConnection myConn = new OleDbConnection ();
DialogResult dr;
dr = dlgOpen.ShowDialog();
if (dr == DialogResult.OK)

string strFile = dlgOpen.FileName;
myConn.ConnectionString = "Provider=" +

"Microsoft.Jet.OLEDB.4.0;Data Source="
+ strFile + ";";

myConn.Open () ;
OleDbCommand myCMD = new OleDbCommand();
myCMD.CommandText = "SELECT CustomerID, " +

"ContactTitle, CompanyName, ContactName " +
FROM Customers";

myCMD.Connection = myConn;

267



aisual C# 2005 Demyystife

OleDbDataAdapter myAdapter = new OleDbDataAdapter();
myAdapter.SelectCommand = myCMD;
DataSet ds = new DataSetO;
ds .Clear();
myAdapter.Fill(ds, "Customers");

Connecting the DataGridView to the DataSet

The final step is to connect the DataGridView to the DataSet. This step involves
two properties of the DataGridView object: DataSource and DataMember.

The DataSource property is the data source of the data that the DataGridView is
displaying. That data source is represented by the DataSet variable ds:

dgvData.DataSource = ds;

The DataMember property is the name of the table (here, Customers) in the data
source of the data that the DataGridView is displaying:

dgvData.DataMember = "Customers";

Accordingly, the completed code now reads like so:

private void Forml_Load (Object sender, EventArgs e)

OleDbConnection myConn = new OleDbConnection();
DialogResult dr;
dr = dlgOpen.ShowDialog();
if (dr == DialogResult.OK)

string strFile = dlgOpen.FileName;
myConn.ConnectionString = "Provider=" +

"Microsoft.Jet.OLEDB.4.0;Data Source="
+ strFile + ";";

myConn.Open();
OleDbCommand myCMD = new OleDbCommand();
myCMD.CommandText = "SELECT CustomerID, " +

"ContactTitle, CompanyName, ContactName " +
FROM Customers";

myCMD.Connection = myConn;
OleDbDataAdapter myAdapter = new OleDbDataAdapter();
myAdapter.SelectCommand = myCMD;
DataSet ds = new DataSetO;
ds .Clear();

,268;



CHAPTER 14 Databases

myAdapter.Fill(ds, "Customers");
dgvData.DataSource = ds;
dgvData.DataMember = "Customers"

Run the project! The DataGridView control should fill with data as shown previ-
ously in Figure 14-11.

Conclusion
Text files, which we've used up until now to save data, have several limitations.
One limitation is a text file's inability to quickly retrieve specific data. There's usu-
ally no alternative to searching the text file from beginning to end, which can take
a long time if the text file contains a lot of data.

Another limitation is the inability to store relations between different data. For
example, a store may have both a list of customers and a list of orders—the orders
come from customers. With a text file, there's no easy way to link an order in one
list with a customer in another list.

A database does not have these limitations. Specific data may be quickly retrieved
through keys and indexes, and different data may be easily linked.

This chapter used the Northwind Traders database. First, you learned how to
obtain and install this database. After creating a new Windows application, you
then created a connection between Visual C# 2005 and the database. In doing so,
you selected the database format, a provider suitable for that format, and the path to
and the name of the database.

Next, you learned how to use Server Explorer, a tool provided by Visual Studio
2005 that enables you to view databases on your computer without having to open
or create an application.

The code components used for database-access code are organized in the .NET
library under the name ADO.NET ADO was an acronym for ActiveX Data Ob-
jects, a Microsoft data-access technology that was the predecessor to ADO.NET.

As you learned in this chapter, accessing the Northwind Traders database in-
volves the following steps:

1. Establish a connection to the database.

2. Define the commands you want to make to the database.

3. Define a data adapter that packages the database connection and
commands.

§69



Visual C# 2005 Demystified

4. Create a DataSet and then fill it using the data adapter.

5. Fill a control (in this chapter, a DataGridView) from the DataSet.

You created an application that implemented these steps and filled a DataGrid-
View control with data from four fields of the Customers table of the Northwind
Traders database.

The project you created in this chapter is a Windows application. In the next
chapter, you will learn to create a similar project that is a web application.

Quiz
1. What is a data provider?

2. What does Server Explorer enable you to do?

3. What is a table?

4. What may each column in a table also be called?

5. What may each row in a table also be called?

6. What is ADO.NET?

7. What class represents a connection to a data source?

8. What class would you use to execute commands to a database?

9. What class would you use to package a database connection with a set of
data commands?

10. What is a DataSet?

.270]



CHAPTER

Web Applications

15

Throughout this book we have been writing Windows applications. Indeed, many
of the applications with which you interact are Windows applications. For me, it is
a rare day that I don't work with Microsoft Word and Outlook, for example.

However, I, and perhaps you as well, am interacting ever more frequently with
web applications. One common type of web application is e-commerce, the e stand-
ing for electronic. For example, if you go to the website of Amazon or another
online bookseller, you select a book (hint: this one) or another product, put the se-
lected product in a virtual shopping cart, when finished go to a virtual check-out

 line, enter your credit card information (which better not be virtual), and make a
 purchase. You then can go to the website of the overnight delivery service and track
he shipment as it wends its way across the country (or world) to you.

 In this chapter, you will learn how to create a web application that displays inform
p from a database, similar to the Windows application you created in Chapter 14.

27 f
Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

AS P. NET
ASPNET is a term you likely will hear of soon after you start creating web applica-
tions. ASPNET refers to the code components used for web applications, similar to
how ADO.NET refers to the code components used for database access.

As with ADO.NET, you already know the ".NET" portion of ASPNET ASP is
an acronym for Active Service Pages, a Microsoft web application technology that
preceded ASPNET For those of you who are familiar with ASP, ASPNET is much
easier to work with. ASP intermixed HTML with script code. By contrast, ASP.
NET enables you to develop web applications in almost the same manner as Win-
dows applications.

ASPNET started with Visual Studio 2005's predecessor, Visual Studio.NET
The version number of ASPNET then was 1.x—first 1.0, then 1.1. With Visual
Studio 2005, the version number is 2.x, starting with 2.0.

There are other, competing technologies for the creation of web applications.
ASPNET is Microsoft's, and consequently the one heavily supported in Visual
Studio 2005.

Internet Information Services
Visual Studio 2005 requires one of the following operating systems: Windows 2000
Professional, Windows XP Home or Professional, Windows 2000 Server, or Windows
2003 Server. On all but Windows XP Home Edition, Internet Information Services
(IIS) is an optional component that may be installed with the operating system. IIS may
not actually be installed on your computer because it may not be part of the default
installation of your operating system. However, if IIS is not installed, you can add it as
described in this section.

NOTE You cannot install IIS on Windows XP Home Edition unless you make some
Registry changes that are not supported by Microsoft and therefore probably are
not a good idea to try.

Unlike ASPNET 1.x and Visual Studio.NET, ASPNET 2.x and Visual Studio
2005 do not require you to install IIS to create web applications that run locally
(that is, on your computer). Nevertheless, unless you have Windows XP Home
Edition, installing IIS does give you more options, such as making your web pages
accessible from more than your local computer, and costs you nothing.

272,



CHAPTER 15 Web Applications

Determining If IIS Is Already Installed
To determine if IIS is already installed on your computer, open Add/Remove pro-
grams from the Control Panel. From the left menu bar, choose Add/Remove
Windows Components. This will display the Windows Components Wizard shown
in Figure 15-1.

In Figure 15-1, Internet Information Services (IIS) is checked, but with a dark
background. This indicates some but not all of the components of IIS are installed.
If IIS is checked but with a white background, as is Internet Explorer in Figure 15-1,
then all of the components of IIS are installed. If IIS is unchecked, as is the Index-
ing Service in Figure 15-1, then IIS is not installed.

If IIS is checked, but with a dark background as in Figure 15-1, then you need to
check which of its components are installed. To do so, in the Windows Components
Wizard, highlight Internet Information Services (IIS) and click the Details button.
This will display, as shown in Figure 15-2, a dialog box showing the individual
components of Internet Information Services (IIS).

In Figure 15-2, almost all of the check boxes are checked because those compo-
nents happen to be installed on my computer. This may not be the case on your
computer, depending on which components of IIS you previously may have installed.

You don't need the FTP (File Transfer Protocol) and SMTP (Simple Mail Trans-
fer Protocol) services, but I recommend you install the other components.

Figure 15-1 Windows Components Wizard.

?7J



Visual C# 2005 Demystified

Figure 15-2 IIS components.

Installing IIS
If you do need to install IIS or components of it, first locate the installation CD of
your operating system, because you may need it. If IIS is unchecked in the Win-
dows Component Wizard (refer to Figure 15-1), first check it and then click the
Next Button. If IIS is checked in the Windows Component Wizard but the check
box has a dark background, just click the Next button.

Clicking the Next button displays the Internet Information Services (IIS) dialog
box shown in Figure 15-2. Choose all the components by checking the boxes that
are not already checked, again with the possible exception of the FTP and SMTP
services. Then click the OK button, which will return you to the Windows Compo-
nents Wizard. In the Windows Components Wizard, after verifying that you have
your operating system installation CD in your CD-ROM drive, click the Next but-
ton and continue to proceed until you are finished adding the IIS components. If
prompted to do so, restart your computer.

Starting the IIS Admin Service

The IIS Admin Service is, as its name suggests, a service used to administer IIS.
Although there are alternative methods of administering IIS, using the IIS Admin
Service may be the easiest.

Open the Administrative Tools folder in Control Panel. This folder is shown in
Figure 15-3.

Next, choose the Services shortcut to open the Services folder. Click the
Extended tab and highlight IIS Admin. As Figure 15-4 shows, to the left is

:274)



CHAPTER 15 Web Applications

Figure 15-3 Administrative Tools folder in Control Panel.

Figure 15-4 Services folder with the IIS Admin Service selected.

275



Visual C# 2005 Demystified

a description of the IIS Admin service as well as options to stop, pause, and restart
the service.

The options are to stop, pause, and restart the service because the service already
is started. In that event, you have confirmed that the IIS Admin service has started,
and you are done with this step.

However, if the IIS Admin service has stopped or never started, the option in-
stead would be to start the service, as shown in Figure 15-5. In that event, you
would choose Start to start the service.

Starting the Default Website
Once you have confirmed that the IIS Admin service has started, close the Services
folder and go back to the Administrative Tools folder shown in Figure 15-3. Next,
choose the Internet Information Services shortcut to open the Internet Information
Services dialog box shown in Figure 15-6.

Click the + sign next to the local computer name (mine is JAKXP; yours is
likely different) and the click the + sign next to the Web Sites folder below it. Figure
15-7 shows a subfolder named Default Web Site.

If Default Web Site is followed by a parenthetical indicating it is stopped, right-
click Default Web Site and choose Start from the shortcut menu.

Figure 15-5 Option to start the IIS Admin Service.

.276



CHAPTER 15 Web Applications

Figure 15-6 Internet Information Services dialog box.

Figure 15-7 Default Web Site in the Internet Information Services dialog box.

£zz>



Visual C# 2005 Demystified

URL
Your home or apartment has an address by which it may be located. A web page
similarly has an address by which you may locate it through your web browser.

The address of your home or apartment usually is in the form of a number fol-
lowed by a street name, such as 1313 Mockingbird Lane. The address of a web
page, referred to as a URL, an acronym for Uniform Resource Locator, similarly
has a certain form.

The following explanation will use as an example the URL for Microsoft's home
page, http://www.microsoft.com/default.aspx.

The first part of the address (here, http) indicates what protocol to use. HTTP is
an acronym for Hypertext Transfer Protocol. HTTP defines how messages are for-
matted and transmitted, and what actions web servers and browsers should take in
response to various commands. For example, when you enter a URL in your brows-
er, this actually sends an HTTP command to the web server directing it to fetch and
transmit the requested web page.

There are protocols other than HTTP. One is similarly named HTTPS, a secure
form of HTTP often used for credit-card transactions on the Internet. Another is
FTP, the File Transfer Protocol, used for transferring files.

The second part of the address (here, www.microsoft.com) is the domain name
where the resource is located. Domain names commonly start with www, short for
World Wide Web, and end with com (for commercial) or another extension, such as
net or org. In between is a name (here, Microsoft) that often corresponds to the or-
ganization or individual who owns the website. For example, my website is http://www.
genghiskhent.com, based on my students' fond (?) nickname for me, Genghis
Khent.

The third part of the address is the specific web page being accessed (here, de-
fault.aspx). Web pages are named in a similar fashion to other files, a descriptive
name followed by a dot and an extension.

In Windows applications, the extension indicates the application used to open the
file, such as .doc for Microsoft Word, .xls for Microsoft Excel, and so forth. Web
pages may have extensions such as .htm or .html. The .aspx extension indicates that
the web page is part of an ASP.NET application.

Your Computer as the Web Server
A web server is a computer that delivers (serves up) web pages. For example, if you
visit Microsoft's home page, http://www.microsoft.com/default.aspx, by entering
that address in your web browser (such as Internet Explorer, Netscape, or Mozilla),
a computer somewhere on the Internet fetches a page on the Microsoft website and

278)

http://www.microsoft.com/default.aspx
www.microsoft.com
http://www.genghiskhent.com
http://www.genghiskhent.com
http://www.microsoft.com/default.aspx


CHAPTER 15 Web Applications

sends its content to your browser, where that content then is displayed in your
computer's web browser.

In this chapter, however, your computer will act as the web server for the web
applications you will be creating.

Type the URL http://localhost/ in your web browser (this won't work if you
have Windows XP Home, as already mentioned). Figure 15-8 shows the web page
that then displays on the Windows XP operating system.

You may legitimately wonder, what is localhost? You have heard of microsoft,
com and other .com and .net URLs, but localhost may be a new one for you. The
answer is, localhost is your computer, which now is acting as a web server.

Virtual and Physical Paths
When you type http://www.microsoft.com in your web browser, you are accessing
a page stored on the hard drive of a computer Microsoft is using as a web server.

Similarly, when you typed http://localhost and the web page shown in Figure
15-8 was displayed, that web page also was stored on your computer's hard drive.

By default, http://localhost maps to the C:\Inetpub\Wwwroot folder on your hard
drive. You can confirm this by right-clicking Default Web Site (refer to Figure 15-7)
and choosing Properties from the shortcut menu to display the Default Web Site

Figure 15-8 Default web page.

279

http://www.microsoft.com


Visual C# 2005 Demystified

Figure 15-9 Default Web Site Properties dialog box.

Properties dialog box, which is shown in Figure 15-9 with the Home Directory tab
chosen. The local path is c:\inetpub\wwwroot.

The address bar in Figure 15-8 shows that the URL of the web page is http://
localhost/localstartasp. Therefore, the URL http://localhost71ocalstart.asp maps to
the file C:\Inetpub\Wwwroot\localstart.asp on your hard drive.

The web URL http://localhost/localstart.asp is known as the virtual path to the
web page. The file path C:\Inetpub\Wwwroot\localstart.asp is known as the physi-
cal path to the web page. However, they both point to the same place.

Creating a Web Application
Creating a web application is different from creating a Windows application. You
use the File | New | Website menu command instead of the File | New | Project men
command.

The File | New | Website menu command displays the New Web Site dialog box
shown in Figure 15-10.

The top pane shows available templates. Choose ASP.NET Web Site. This is the
proper choice for creating a website with ASP.NET support, which is what we want
to do here.

.280.



CHAPTER 15 Web Applications

Figure 15-10 New Web Site dialog box.

In the Location drop-down box, choose File System. The other choices, FTP and
HTTP, both protocols discussed earlier in this chapter, are for creating ASP.NET
websites on other computers. In this chapter, you will be creating the website on
your computer.

In the Language drop-down box, choose Visual C#. The other choices, Visual
Basic and Visual J#, are other languages in Visual Studio 2005 you may use to cre-
ate an ASP.NET application.

Click the Browse button to select where on your hard drive you wish to create the
files for the ASP.NET web application. I chose a Visual C# folder I previously had
created in the Visual Studio Projects folder under My Documents. I typed after the
path to the Visual C# folder (for example, D:\Documents and Settings\JAK\My
Documents\Visual Studio Projects\Visual C#\) WebSite for the name of the proj-
ect. Of course, you could choose a different location or name for your project.

When finished, click the OK button, and Visual Studio 2005 will create a bare-
bones but working ASP.NET application.

ASP.NET Development Server

When Visual Studio 2005 is finished creating the ASP.NET application, run the ap-
plication by choosing Start or Start Without Debugging from the Debug menu. The
result will be a blank web page, as shown in Figure 15-11.

281,



Visual C# 2005 Demystified

Figure 15-11 ASP.NET web page.

The URL shown in the address bar of the web browser in Figure 15-11 is http://
localhost:4096/Website/Default.aspx. The http://localhost part of the URL is ex-
plained in the previous section "Your Computer as the Web Server." Website is the
name of the web application, and default, aspx the name of the web page (or web
form) that Visual Studio 2005 creates by default, much like a Windows form is cre-
ated by default when you create a Windows application.

What is new, and its meaning may not be immediately clear, is the ":4096" fol-
lowing localhost. The colon (:) means that the number following is a port number
(here, 4096).

NOTE The particular port number assigned by Visual Studio 2005 may be different
than 4096.

A port is a logical (as opposed to physical) connection in a computer. For example,
when you access a web page with your web browser, your request, and the web
server's response, goes through port 80.

282



CHAPTER 15 Web Applications

As mentioned in the previous section "Internet Information Services," ASP.NET
2.x and Visual Studio 2005 do not require you to install IIS to create web applica-
tions that run locally (that is, on your computer as opposed to a computer elsewhere
on the Internet). Instead, local web applications are handled through the ASP.NET
Development Server, which uses various port numbers (here, 4096).

You may have an icon for the ASP.NET Development Server in your system tray.
If so, double-click it. The ASP.NET Development Server dialog box will appear, as
shown in Figure 15-12.

The ASP.NET Development Server dialog box shows the following information
(though not in this order from top to down):

• Physical Path The location you chose in the New Web Site dialog box
shown in Figure 15-10

• Port The port chosen by the ASP.NET Development Server for access to
local web applications (here, 4096)

• Root URL The root or base for web applications, http://localhost:4096,
followed by the name of this web application (here, WebSite)

• Virtual Path The path from the root URL of http:/localhost:4096 to your
web application

That is about all we can do for now with this blank web application. Close the
ASP.NET Development Server dialog box shown in Figure 15-12 and the blank
web page shown in Figure 15-11.

Figure 15-12 ASP.NET Development Server dialog box.

283



Visual C# 2005 Demystified

ASP.NET Application IDE

Figure 15-13 shows the Integrated Development Environment (IDE) for the ASP.
NET application we created by clicking OK in the New Web Site dialog box shown
in Figure 15-10.

As with Windows applications, the form in web applications, often called a web
form, also has both a design view (shown in Figure 15-13), complete with a Tool-
box and Solution Explorer, and a code view, shown in Figure 15-14.

This similarity between the IDEs for Windows applications and web applications
makes it easier for you to learn to develop web applications.

Although the respective IDEs of Windows and web applications are similar, they
are not the same. For example, the web form has, in addition to a design and code
view, an HTML view, shown in Figure 15-15 and accessed by clicking the Source tab,
in which you can view the HTML code of the form, which after all is a web page.

Figure 15-13 ASP.NET application IDE.

.284



CHAPTER 15 Web Applications

Figure 15-14 Code view.

Figure 15-15 HTML view of the form.

285



Visual C# 2005 Demystified

Creating a Database Web Application
We will now create a web application that parallels the Windows application we
created in Chapter 14. That Windows application displayed in a DataGridView con-
trol the contents of four fields of the Customers table of the Northwind Traders
database. The web application you will create similarly will display the contents of
the same four fields of the Customers table of the Northwind Traders database, but
in a web browser, as shown in Figure 15-16.

Adding a Grid View Control

The Windows application we created in Chapter 14 has a DataGridView control
through which we viewed the database information. For whatever reason, the web
application equivalent of the Windows DataGridView control does not have the
same name, but a slightly different one, GridView.

Figure 15-16 Web application in action.

286



CHAPTER 15 Web Applications

Start with the web application you created in the previous section. View the web
form in designer view and click the Design tab. Then look in the Toolbox for a
GridView in the Data group, as shown in Figure 15-17.

Figure 15-17 GridView in Toolbox.

(287



Visual C# 2005 Demystified

If you don't see the GridView in the Toolbox, you need to add it. Right-click the
Toolbox and choose "Choose Items..." from the shortcut menu. This will display
the Choose Toolbox Items dialog box shown in Figure 15-18.

Select the check box for the GridView for which the namespace is System.Web.
Ul.Controls. Next, click the OK button to close the Choose Toolbox Items dialog
box. GridView should now be added to the Toolbox, as in Figure 15-17.

Once the GridView is in the Toolbox, you add it to the web form by dragging and
dropping or double-clicking, just as you would add a control to a Windows form.

When you add the GridView control, a GridView Tasks pane displays, as shown
in Figure 15-19. You may accept the default values in this pane. However, using the
Properties window, rename the GridView control (using its ID property) dgvData to
keep its name consistent with the DataGridView control in the Windows applica-
tion, because we are attempting to port the code from the Windows application to
this web application.

Locating the Database on the Web Server
The GridView is the only control we will be adding to the web form. There is no
web application equivalent of the OpenFileDialog, which we used in the Windows
application in Chapter 14.

Figure 15-18 Choose Toolbox Items dialog box.

.288



CHAPTER 15 Web Applications

Figure 15-19 GridView Tasks pane.

Additionally, we would not want the user to select the location of the database.
In a Windows application, the database often may be on the user's computer. There-
fore, it is logical to have the user locate and select the database file using the
OpenFileDialog control. By contrast, in a web application, the database will not be
on the user's computer, but rather a web server elsewhere on the Internet. For secu-
rity reasons, the user should not be permitted to browse the files on the web server
as the user would for the files on their own computer. Instead, the web application
should specify where the database file is.

Often the database is located in a subfolder of the web application to ease the
task of locating it through code, as next will be discussed. By default, the ASP.NET
application created by Visual Studio 2005 has a subfolder named App_Data, likely
short for "application data." Copy the nwind.mdb (or Northwind.mdb) file into the
App_Data folder from wherever you saved nwind.mdb in when creating the Win-
dows database application in Chapter 14.

Now that you have located the database on your hard drive within the web ap-
plication files, the remaining task is how to locate the database in code.

As discussed in Chapter 14, the ConnectionString property of the OleDbCon-
nection object requires the path to and the name of the database file. In the Windows
database application in Chapter 14, you obtained the path to and the name of the
database file (represented by the String variable strFile) by using the FileName
property of the OpenFileDialog control:

OleDbConnection myConn = new OleDbConnection();
DialogResult dr;
dr = dlgOpen.ShowDialog();
if (dr == DialogResult.OK)

string strFile = dlgOpen.FileName;
myConn.ConnectionString = "Provider=" +

289



Visual C# 2005 Demystified

"Microsoft.Jet.OLEDB.4.0;Data Source="
+ strFile + ";";

You cannot obtain the path to and the name of the database file the same way in this
web application because there is no OpenFileDialog control. However, you know
where the database file is located, in the app_data subfolder of the web application.
Therefore, the virtual path to the database is http://localhost:4096/Website/app_data/
nwind.mdb.

However, the ConnectionString property requires the physical path, not the vir-
tual path. In this case, you know the physical path because the database file is on
your computer. However, when you are working with remote web servers, you may
not always know the physical path, or even if you did, the administrator of that web
server may change it. Therefore, you need to be able to translate the virtual path
into a physical path.

The HttpServerUtility class, which also can be referred to as the Server class, has
a MapPath method that returns the physical file path that corresponds to (is mapped
to) the specified virtual path on the web server. The following statement assigns to
the String variable strFile the physical path to the database file:

string strFile = Server.MapPath("app_data\\nwind.mdb");

NOTE The double backslash (\\) is necessary because the backslash is an escape
character in the C# language. You may need to change the reference to nwind.mdb
to Northwind.mdb if the latter is the file name on your computer.

The way this works is that the MapPath method starts by mapping the physical
path that corresponds with the virtual path to the web application, http://local-
host:4096/Website. The argument then is appended to that physical path. The
method then returns the physical path that corresponds the full virtual path to the
database file, http://localhost:4096/Website/app_data/nwind.mdb.

Accordingly, the preceding code from Chapter 14 would be replaced with the
following:

OleDbConnection myConn = new OleDbConnection();
string strFile = Server.MapPath("app_data\\nwind.mdb");
myConn.ConnectionString = "Provider=" +

"Microsoft.Jet.OLEDB.4.0;Data Source="
+ strFile + " ; " ;

Adding Code
The next step is to write code. To do so, go to the code view of the web form.

290



CHAPTER 15 Web Applications

First, we will import the System.Data namespace (if not already imported by the
IDE) and the System.Data.OleDb namespace for the same reason as we did in
Chapter 14:

using System.Data;
using System.Data.OleDb;

Second, as in Chapter 14, all the code will go in the Load event, this time of the
web page. This event procedure belongs to the Page object, which represents the web
form.

To create an event procedure, similar to with Windows forms, you choose (Page
Events) from the left drop-down box and then the event (here, Load) from the right
drop-down box. This creates an event procedure stub. Then write code so your
Page_Load event procedure reads as follows:

private void Page_Load (Object sender, EventArgs e)

OleDbConnection myConn = new OleDbConnection ();
string strFile = Server.MapPath("app_data\\nwind.mdb");
myConn.ConnectionString = "Provider=" +

"Microsoft.Jet.OLEDB.4.0;Data Source="
+ strFile + ";";

myConn.Open () ;
OleDbCommand myCMD = new OleDbCommand();
myCMD.CommandText = "SELECT CustomerID, " +

"ContactTitle, CompanyName, ContactName " +
FROM Customers";

myCMD.Connection = myConn;
OleDbDataAdapter myAdapter = new OleDbDataAdapter();
myAdapter.SelectCommand = myCMD;
DataSet ds = new DataSet ();
ds.Clear();
myAdapter.Fill(ds, "Customers");
dgvData.DataSource = ds;
dgvData.DataMember = "Customers";
dgvData.DataBind();

This code differs in only two substantive respects from the corresponding code
in the Form Load event procedure in Chapter 14. First is the use of the MapPath
method as discussed in the previous section "Locating the Database on the Web
Server." The second is the last statement, the call to the DataBind method of the
GridView. This method is commonly used in web applications to bind data from a
source (here, a DataSet) to a control (here, a GridView).

291



Visual C# 2005 Demystified

WARNING If you don't call the DataBind method, the web application will run
without error, but the GridView will be blank, because it was not bound to the
data source.

Run your web application from the Debug menu, again just as you would a Win-
dows application. The web page should display, with the GridView filled with
information, as shown earlier in Figure 15-16. When you are done, close the web
page using its close button to close the application.

Conclusion
Of course, there is much more than this to web applications. Entire courses and

books are devoted to web applications. However, this chapter should give you an
overview of how to create a working web application that displays information
from a database.

This is the last chapter in this book. However, it should not be the last chapter in
your learning Visual C# 2005. Rather, this book hopefully has given you a good
foundation for learning more.

Quiz
1. What is ASP.NET?

2. What is a URL?

3. What is HTTP?

4. What does the .aspx extension indicate?

5. What is the difference between a virtual path and a physical path to a web page?

6. What project template could you use to create a web application?

7. What is the web control that corresponds to the DataGridView control used
in Windows applications?

8. What is the method of the HttpServerUtility class that returns the physical
file path that corresponds to (is mapped to) the specified virtual path on a web
server?

9. What is the name of the class that is the web application equivalent of the
Form class in a Windows application?

10. What is the method of the GridView that needs to be called in a web
application so the GridView will not be blank?

292



Final Exam

Questions
1. What is an IDE?

2. What is a computer program?

3. What is a programming language?

4. What is machine language?

5. What does "higher level" mean in the context of a programming language?

6. What does "lower level" mean in the context of a programming language?

7. What is the purpose of a compiler?

§. What is a class in a programming language?

9. What is an object of a class?

LU_What are namespaces used for?

293

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

11. What is a property of a class?

12. What are characteristics of a Windows application?

13. What is an event of a class?

14. What is an event procedure?

15. What is the purpose of the assignment operator?

16. What is the purpose of the Toolbox?

17. How do you add a control from the Toolbox onto your form?

18. What is the purpose of the Name property of a control?

19. What is a naming convention?

20. What are purposes of the text displayed by a Label control?

21. What is a parameter of an event procedure?

22. What does a data type signify?

23. What is the purpose of a variable?

24. Does C# require you to declare a variable before you refer to it in code?

25. What is a local variable?

26. Do you have to assign a value to a variable when you declare it?

27. What is a difference between a constant and a variable?

28. Do you have to assign a value to a constant when you declare it?

29. What is the significance of operator precedence?

30. Which operator provides only the remainder resulting from division?

31. Which operator has precedence, an arithmetic operator or the assignment
operator?

32. What is the purpose of the Parse method of the Int32 class?

33. What is the purpose of the ToString method of the Int32 class?

34. What is a method of a class?

35. What does the WriteLine method of the Debug class do?

36. What is the data type of the result of a comparison performed by a comparison
operator?

37. Which operators have precedence, comparison or arithmetic?

38. What is the purpose of a logical operator?

39. Which logical operator operates on only one operand rather than two?

40. Which operators have precedence, comparison or logical?

294



Final Exam

41. What does modal mean?

42. What is a conditional statement?

43. Which namespace should you import to use the Debug class?

44. What is an exception?

45. What does the TryParse method of the Int32 class do?

46. Which two controls are commonly used with the if control structure?

47. What is the primary difference between the i f . . . else if statement and the
switch control structure?

48. What is a loop?

49. What is a difference between the do ... while statement and the for and
while statements?

50. What is a difference between the foreach statement and the for loop?

51. What is an array?

52. What is the difference between declaring an array variable and a scalar
variable?

53. What is the lowest index of an array?

54. What is the relationship between the number of elements in an array and
the highest index in that array?

55. What is a method?

56. What is the significance of the void return type?

57. What does the private access specifier do when applied to a method?

58. What does calling a method do?

59. What is the significance of an array being a reference type?

60. What are some reasons for writing your own methods?

61. Is a message box modal or modeless?

62. What value is returned by the Show method of the MessageBox class?

63. Do buttons in a message box automatically have a DialogResult value?

64. What is the data type of a variable you may use to store the return value of
the Show method of the MessageBox class?

65. What method do you use to display a modal form?

66. What is the return value from showing a dialog form?

67. Do buttons in a dialog form you create automatically have a DialogResult
value?

295.



Visual C# 2005 Demystified

68. What method do you use to display a form as modeless rather than modal?

69. What class represents a main menu?

70. Is the Click event raised for all menu items?

71. How do you gray out a menu item so it is not available when it should not be?

72. What does the Items collection of the MenuStrip component contain?

73. What class represents the shortcut or context menu?

74. What does the Items collection of the ContextMenuStrip component contain?

75. What are different alternatives of having a context menu item's functionality
handled by the corresponding main menu item?

76. What class represents a toolbar?

77. What class represents each item on a toolbar?

78. What does the Items collection of the ToolStrip component contain?

79. What are advantages of a toolbar over a corresponding menu?

80. What are different alternatives of having a toolbar item's functionality
handled by the corresponding main or context menu item?

81. What method do you use to show an Open dialog box?

82. What is the return value of showing an Open dialog box?

83. What is the property of the OpenFileDialog class whose value is the file
chosen by the user in an Open dialog box?

84. What method of the SaveFileDialog class do you use to show a Save dialog
box?

85. What is the return value of showing a Save dialog box?

86. What is the property of the SaveFileDialog class whose value is the name
of the file to be saved?

87. What class may you use to read from a text file?

88. What class may you use to write to a text file?

89. What is a data provider?

90. What is a table?

91. What may each column in a table also be called?

92. What may each row in a table also be called?

93. What is ADO.NET?

94. What is a DataSet?

296



Final Exam

95. What is ASP.NET?

96. What is a URL?

97. What is HTTP?

98. What is the difference between a virtual and a physical path to a web page?

99. What is the method of the HttpServerUtility class that returns the physical
file path that corresponds to (is mapped to) the specified virtual path on a web
server?

100. What is the name of the class that is the web application equivalent of the
Form class in a Windows application?

297



This page intentionally left blank 



Answers

Chapter 1
1. Visual Studio 2005 includes, in addition to Visual C#, support for other

programming languages such as C++ and Visual Basic.

2. You need either the Windows 2003, XP, or 2000 operating system to install
and run Visual C# 2005.

3. You should use the Windows Application project template to start creating
a Windows application.

4. IDE is an acronym for Integrated Development Environment. The term
"development environment" refers to Visual C# 2005's role as an application
to assist you in developing applications. The term "integrated" means the tools
to design your application and write, test, and run your code are all together in
one application.

299

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



Visual C# 2005 Demystified

5. A computer cannot do anything without step-by-step instructions from us
telling it what to do. These instructions, written by a computer programmer,
are called a computer program.

6. A programming language is used by computer programmers to write
instructions for computers.

7. Machine language is a programming language that is understood by computers.

8. The term "higher level" means that a programming language such as Visual
C# 2005 is far closer to the structure and syntax of human language than to
the ones and zeroes understood by a computer.

9. The term "lower level" means that a programming language such as machine
language is far closer to the ones and zeroes understood by a computer than it
is to the structure and syntax of human language.

10. In general, a compiler translates the code you write into corresponding
machine language instructions. The compiler in Visual C# 2005 translates
the code into an intermediate language that then is translated into machine
language.

Chapter 2
1. Designer view is the view of your form you would choose when you want

to design your form, such as resizing the form or adding controls to it.

2. Code view is the view of your form you would choose when you want to
view or write the code of your application.

3. Programming languages, including Visual C#, use classes to represent
a person, place, thing, or concept.

4. An object of a class is a single instance of a class, just like each of us could
be said to be an object or instance of a Person class.

5. Namespaces are used to organize code in a logical manner.

6. A property is a characteristic or attribute of a class.

7. A Windows application has a graphical user interface (GUI) and is event-
driven.

8. An event is something that happens to an object of a class, such as a result
of user interaction.

300



Answers

9. An event procedure contains code that executes when a specific event happens
to a specific object.

10. The purpose of the assignment operator is to assign the expression to its right
to the variable or property to its left.

Chapter 3
1. TextBox, Label, ListBox, and Button are all controls.

2. The purpose of the Toolbox is to display controls that you can add to your
form.

3. You may add a control from the Toolbox onto your form either by double-
clicking the control in the Toolbox or by dragging the control from the
Toolbox and then dropping it onto the form,

4. The Name property of a control is used to identify that control in code.

5. A naming convention is a consistent method of naming, such as when naming
controls.

6. The value of the Text property of a Label control determines the text that
will be displayed by the label.

7. The text displayed by a label may identify another, adjacent control, or it may
display data.

8. A single statement in C# may take up two or more lines in the code editor.

9. A parameter represents information that is available to an event procedure.

10. A delegate is used to specify which procedure handles an event that happens
to a particular object.

Chapter 4
1. A data type signifies whether the data is numeric, text, yes/no, and so

forth.

2. A floating-point number is a number that may have a value to the right of the
decimal point.

301



Visual C# 2005 Demystified

3. No, you cannot change the data type of a built-in property of a form.

4. The purpose of a variable is to store data of your choosing.

5. Yes, C# requires you to declare a variable before you refer to it in code.

6. A local variable is a variable declared inside of a procedure.

7. A class member-level variable is declared as a member of a class.

8. No, you do not have to assign a value to a variable when you declare it.

9. A constant's value cannot change during the life of the program, whereas
a variable's value may change during the life of the program.

10. Yes, you have to assign a value to a constant when you declare it.

Chapter 5
1. The addition operator works with string as well as numeric variables.

2. Operator precedence determines, when there are two or more arithmetic
operators, which arithmetic operation is done first.

3. You can override default operator precedence with parentheses.

4. The increment (++) operator increases the value of a numeric variable by one.

5. Integer division is when both operands of division are a whole number data
type when only the quotient is reported and any remainder is dropped.

6. The % (modulus) operator provides only the remainder resulting from division.

7. All arithmetic operators have precedence over the assignment operator.

8. The Parse method of the Int32 class converts the string representation of an
integer into actual integer values.

9. The ToString method of the Int32 class converts an integer into its string
representation.

10. A method is something an object of a class does.

Chapter 6
1. The WriteLine method of the Debug class outputs a line to the Output window.

2. The data type of the result of a comparison performed by a comparison
operator is Boolean, either true or false.

302



Answers

3. No, the == operator, not the = operator, is used for equality comparison.

4. Yes, you can use the equality and inequality (== and !=) comparison
operators with strings as well as with numeric data types.

5. The ANSI or ASCII value of a character is a corresponding integer value.

6. With the & operator, if the first expression is false, the second expression
still is evaluated. By contrast, with the && operator, if the first expression
is false, the second expression is not evaluated.

7. Arithmetic operators have higher precedence than comparison operators.

8. A logical operator is used to combine multiple comparisons.

9. ! is the logical operator that operates on only one operand rather than two.

10. Comparison operators have higher precedence than logical operators.

Chapter 7
1. Modal means a form must be closed before the application user can return

to any other form in the application.

2. Modeless.

3. The statement is conditional if the statement executes only if the value of
the relational expression following the if or else if keyword is true.

4. You should import the System.Diagnostics namespace to use the Debug class.

5. The three varieties of an if control structure are if, i f . . . else, and i f . . . else if.

6. An exception is a problem that occurs while the program is executing that
must be dealt with before the program can proceed.

7. The TryParse method of the Int32 class converts the string representation
of an integer into an actual integer value, but also returns a Boolean value
(true or false) indicating whether the conversion was successful.

8. The CheckBox and RadioButton controls.

9. The primary difference in the i f . . . else if statement and the switch control
structure is that the if and else if clauses both may evaluate completely
different expressions, whereas a switch control structure may evaluate only
one expression, which then must be used for every comparison.

10. The case default part of a switch control structure performs the same purpose
as an else clause in an if control structure.

303



Visual C# 2005 Demystified

Chapter 8
1. A loop is a structure that repeats the execution of code until a condition

becomes false.

2. A difference between a while statement and a for statement is that a for
statement generally is intended to run a fixed number of times, whereas
a while statement may run an indefinite number of times.

3. A difference between the do ... while statement and the for and while
statements is that a do ... while statement tests a condition at the bottom of
the statement, whereas the for and while statements test a condition at the
top of the statement.

4. The foreach statement executes the statement block for each element in
a collection, instead of a specified number of times, as is the case with
the for statement.

5. Examples of nesting are a loop within a loop, and an if control structure
within a loop.

6. An array permits you to use a single variable to store multiple values.

7. The difference between declaring an array variable and declaring a scalar
variable is that with an array variable, unlike with a scalar variable, the array
name is followed by a pair of square brackets, and within the square brackets
you indicate the highest index of the array.

8. The lowest index of an array is zero.

9. The number of elements in an array is one greater than the highest index in
that array because the index of the first element is zero.

10. Yes, if you declare an array without assigning a value to its elements, its
elements have a default value, the value depending on the data type of the array.

Chapter 9
1. A method is a block of one or more code statements that execute when called

upon to do so.

2. The void return type indicates that a method does not return a value.

3. The usual return type of an event procedure is void.

4. The private access specifier limits access to the class in which the procedure
was declared.

304



Answers

5. There optionally may be a return statement in a function whose return type
is void.

6. Calling a method causes it to execute.

7. When a parameter is passed by value, any change to the value of the parameter
in the called method does not affect the value of the corresponding argument
in the calling method. By contrast, when a parameter is passed by reference,
any change to the value of the parameter in the called procedure does affect
the value of the corresponding argument in the calling procedure.

8. The ref parameter attribute performs a similar but not exactly the same purpose
as the out keyword.

9. The significance of an array being a reference type is when an array name
is an argument, the value of that argument is the array's address in memory.

10. Writing your own methods enables you to organize your code in smaller,
easier-to-read code blocks. Additionally, if you are performing essentially
the same task from several places in the program, you can avoid duplication
of code by putting the code that performs that task in one method, as opposed
to repeating that code in each place in the program that may call for the
performance of that task. Further, if you later have to fix a bug in how you
perform that task, or simply find a better way to perform the task, you only
have to change the code in one place rather than many.

Chapter 10
1. A message box is modal.

2. The Show method of the MessageBox class returns a member of the
DialogResult enumeration corresponding to the button the user clicked.

3. No, you may call the Show method of the MessageBox class with a different
number of arguments because that method is overloaded.

4. Yes, buttons in a message box automatically have a DialogResult value.

5. You would use the DialogResult data type for a variable you use to store the
return value of the Show method of the MessageBox class.

6. An enumeration is a list of related choices.

7. You use the ShowDialog method of the Form object to display a modal form.

8. The return value of showing a dialog form is the DialogResult property of
that form.

305



Visual C# 2005 Demystified

9. No, buttons in a dialog form you create do not automatically have
a DialogResult value; you have to assign a value to the DialogResult
property of each button.

10. You use the Show method of the Form object to display a modal form.

Chapter 11
1. A main menu is represented by the MenuStrip class.

2. Each item on a main menu is represented by the ToolStripMenuItem class.

3. An access key is the keyboard combination of the ALT key plus a letter in the
menu item that is underlined.

4. No, the Click event is raised only for menu items that do not have subsidiary
menu items, because when a menu item with subsidiary items is clicked, the
behavior is to display the subsidiary menu items.

5. You gray out a menu item so it is not available when it should not be by setting
its Enabled property to False.

6. The Items collection of the MenuStrip component contains a collection of the
ToolStripMenuItems belonging to the MenuStrip.

7. The shortcut or context menu is represented by the ContextMenuStrip class.

8. Each item on a context menu is represented by the ToolStripMenuItem class.

9. The Items collection of the ContextMenuStrip component contains the
ToolStripMenuItems belonging to the ContextMenuStrip.

10. Different alternatives of having a context menu item's functionality handled
by the corresponding main menu item include using the EventHandler class
and calling another event procedure.

Chapter 12
1. The toolbar is represented by the ToolStrip class.

2. Each item on the main menu is represented by the ToolStripItem class.

3. The Items collection of the ToolStrip component contains a collection of the
ToolStripItems belonging to the ToolStrip.

4. No, a toolbar item is not limited to a button, but instead may be one of several
other types of controls.

.306.



Answers

5. Toolbar buttons are immediately accessible, whereas menu items may be
nested several levels deep and can be accessed only by multiple mouse
clicks or keystrokes. Additionally, a toolbar button uses a graphic, which
gives a more visual interface than the text of a menu item.

6. Different alternatives of having a toolbar item's functionality handled by the
corresponding main or context menu item include using the EventHandler
class and calling another event procedure.

7. The DisplayStyle property of the ToolStripItem class determines whether
an image or text may be displayed on a button.

8. The Image property of the ToolStripItem class determines the image displayed
on a button.

9. The Items Collection Editor is useful in adding controls to a toolbar.

10. One good prefix for naming a toolbar button is tbtn, with "t" standing for
toolbar and "btn" standing for button.

Chapter 13
1. The Open dialog box is a control of the OpenFileDialog class.

2. You use the ShowDialog method of the OpenFileDialog class to show an
Open dialog box.

3. The return value of showing an Open dialog box is either DialogResult.OK,
if the user chose the Open button, or DialogResult.Cancel, if the user chose
the Cancel button.

4. The OpenFileDialog class has a FileName property whose value is a string
containing the path to and the name of the file selected in the Open dialog box.

5. The Save dialog box is a control of the SaveFileDialog class.

6. You use the ShowDialog method of the SaveFileDialog class to show a Save
dialog box.

7. The return value of showing a Save dialog box is either DialogResultOK,
if the user chose the Save button, or DialogResult.Cancel, if the user chose
the Cancel button.

8. The SaveFileDialog class has a FileName property whose value is a string
containing the path to and the name of the file to be saved.

9. You may use the StreamReader class to read from a text file.

10. You may use the Stream Writer class to write to a text file.

307



Visual C# 2005 Demystified

Chapter 14
1. A data provider is a code component that is used by your application to connect

to a specific database format.

2. Server Explorer enables you to view and make changes to databases on your
computer or on any other computer to which you have network access and
permissions.

3. A table is a collection of data, usually on a particular subject such as customers,
employees, and so on.

4. Each column in a table also may be called a field.

5. Each row in a table also may be called a record.

6. The code components used for database access in the .NET class library are
referred to by the name ADO.NET

7. The OleDbConnection class represents a connection to a data source.

8. You use the OleDbCommand class to execute commands to a database.

9. You use the OleDbDataAdapter class to package a database connection with
a set of data commands.

10. A DataSet is a representation of the data stored in RAM.

Chapter 15
1. The code components used for web applications in the .NET class library are

referred to by the name ASP.NET

2. A URL, an acronym for Uniform Resource Locator, represents an address of
a web page.

3. HTTP is an acronym for Hypertext Transfer Protocol. HTTP defines how
messages are formatted and transmitted, and what actions web servers and
browsers should take in response to various commands.

4. The .aspx extension indicates that the web page is part of an ASP.NET
application.

5. A URL such as http://localhost71ocalstart.asp would be the virtual path to
a web page, whereas a file path such as C:\Inetpub\Wwwroot\localstart.asp
would be the physical path to a web page.

6. You may use the ASP.NET Web Site project template to create a web
application.

.308



Answers

7. GridView is the web control that corresponds to the DataGridView control
used in Windows applications.

8. MapPath is the method of the HttpServerUtility class that returns the
physical file path that corresponds to (is mapped to) the specified virtual
path on a web server.

9. Page is the name of the class that is the web application equivalent of the
Form class in a Windows application.

10. DataBind is the method of the GridView that needs to be called in a web
application so the GridView will not be blank.

Final Exam
1. IDE is an acronym for Integrated Development Environment. The term

"development environment" refers to Visual C# 2005's role as an application
to assist you in developing applications. The term "integrated" means the
tools to design your application and write, test, and run your code are all
together in one application.

2. A computer cannot do anything without step-by-step instructions from us
telling it what to do. These instructions, written by a computer programmer,
are called a computer program.

3. A programming language is used by computer programmers to write
instructions for computers.

4. Machine language is a programming language that is understood by computers.

5. The term "higher level" means that a programming language such as Visual
C# 2005 is far closer to the structure and syntax of human language than to
the ones and zeroes understood by a computer.

6. The term "lower level" means that a programming language such as machine
language is far closer to the ones and zeroes understood by a computer than
it is to the structure and syntax of human language.

7. In general, a compiler translates the code you write into corresponding
machine language instructions. The compiler in Visual C# 2005 translates
the code into an intermediate language that then is translated into machine
language.

8. Programming languages, including Visual C#, use classes to represent
a person, place, thing, or concept.

309



Visual C# 2005 Demystified

9. An object of a class is a single instance of a class, just like each of us could
be said to be an object or instance of a Person class.

10. Namespaces are used to organize code in a logical manner.

11. A property is a characteristic or attribute of a class.

12. A Windows application has a graphical user interface (GUI) and is event-
driven.

13. An event is something that happens to an object of a class, such as a result
of user interaction.

14. An event procedure contains code that executes when a specific event happens
to a specific object.

15. The purpose of the assignment operator is to assign the expression to its
right to the variable or property to its left.

16. The purpose of the Toolbox is to display controls that you can add to your
form.

17. You may add a control from the Toolbox onto your form either by double-
clicking the control in the Toolbox or by dragging the control from the
Toolbox and then dropping it onto the form.

18. The Name property of a control is used to identify that control in code.

19. A naming convention is a consistent method of naming, such as naming
controls.

20. The text displayed by a label may identify another, adjacent control, or it may
display data.

21. A parameter represents information that is available to an event procedure.

22. A data type signifies whether the data is numeric, text, yes/no, and so forth.

23. The purpose of a variable is to store data of your choosing.

24. Yes, C# requires you to declare a variable before you refer to it in code.

25. A local variable is a variable declared inside of a procedure.

26. No, you do not have to assign a value to a variable when you declare it.

27. A constant's value cannot change during the life of the program, whereas
a variable's value may change during the life of the program.

28. Yes, you have to assign a value to a constant when you declare it.

29. Operator precedence determines, when there are two or more arithmetic
operators, which arithmetic operation is done first.

30. The % (modulus) operator provides only the remainder resulting from division.

310



Answers

31. All arithmetic operators have precedence over the assignment operator.

32. The Parse method of the Int32 class converts the string representation of an
integer into an actual integer value.

33. The ToString method of the Int32 class converts an integer into its string
representation.

34. A method is something an object of a class does.

35. The WriteLine method of the Debug class outputs a line to the Output
window.

36. The data type of the result of a comparison performed by a comparison
operator is Boolean (true or false).

37. Arithmetic operators have higher precedence than comparison operators.

38. A logical operator is used to combine multiple comparisons.

39. ! (Not) is the logical operator that operates on only one operand rather
than two.

40. Comparison operators have higher precedence than logical operators.

41. Modal means a form must be closed before the application user can return
to any other form in the application.

42. The statement is conditional if the statement executes only if the value of
the relational expression following the if or else if keyword is true.

43. You should import the System.Diagnostics namespace to use the Debug class.

44. An exception is a problem that occurs while the program is executing that
must be dealt with before the program can proceed.

45. The TryParse method of the Int32 class converts the string representation
of an integer into an actual integer value, but also returns a Boolean value
(true or false) indicating whether the conversion was successful.

46. The CheckBox and RadioButton controls.

47. The primary difference in the i f . . . else if statement and the switch control
structure is that the if and else if clauses both may evaluate completely
different expressions, whereas a switch control structure may evaluate only
one expression, which then must be used for every comparison.

48. A loop is a structure that repeats the execution of code until a condition
becomes false.

49. A difference between the do statement and the for and while statements is that
a do ... while statement tests a condition at the bottom of the statement,
whereas the for and while statements test a condition at the top of the statement.

311



Visual C# 2005 Demystified

50. The foreach executes the statement block for each element in a collection,
instead of a specified number of times.

51. An array permits you to use a single variable to store multiple values.

52. The difference between declaring an array variable and declaring a scalar
variable is that with an array variable, unlike with a scalar variable, the array
name is followed by a pair of square brackets, and within the square brackets
you indicate the highest index of the array.

53. The lowest index of an array is zero.

54. The number of elements in an array is one greater than the highest index in
that array because the index of the first element is zero.

55. A method is a block of one or more code statements that execute when called
upon to do so.

56. The void return type indicates that a method does not return a value.

57. The private access specifier limits access to the class in which the procedure
was declared.

58. Calling a method causes it to execute.

59. The significance of an array being a reference type is when an array name
is an argument, the value of that argument is the array's address in memory.

60. Writing your own methods enables you to organize your code in smaller,
easier-to-read code blocks. Additionally, if you are performing essentially
the same task from several places in the program, you can avoid duplication
of code by putting the code that performs that task in one method, as opposed
to repeating that code in each place in the program that may call for the
performance of that task. Further, if you later have to fix a bug in how you
perform that task, or simply find a better way to perform the task, you only
have to change the code in one place rather than many.

61. A message box is modal.

62. The Show method of the MessageBox class returns a member of the
DialogResult enumeration corresponding to the button the user clicked.

63. Yes, buttons in a message box automatically have a DialogResult value.

64. You would use the DialogResult data type for a variable used to store the
return value of the Show method of the MessageBox class.

65. You use the ShowDialog method of the Form object to display a modal form.

66. The return value of showing a dialog form is the DialogResult property of
that form.

312



Answers

67. No, buttons in a dialog form you create do not automatically have
a DialogResult value; you have to assign a value to the DialogResult
property of each button.

68. You use the Show method of the Form object to display a modal form.

69. A main menu is represented by the MenuStrip class.

70. No, the Click event is raised only for menu items that do not have subsidiary
menu items, because when a menu item with subsidiary items is clicked, the
behavior is to display the subsidiary menu items.

71. You gray out a menu item so it is not available when it should not be by setting
its Enabled property to False.

72. The Items collection of the MenuStrip component contains a collection of
the ToolStripMenuItems belonging to the MenuStrip.

73. The shortcut or context menu is represented by the ContextMenuStrip class.

74. The Items collection of the ContextMenuStrip component contains a collection
of the ToolStripMenuItems belonging to the ContextMenuStrip.

75. Different alternatives of having a context menu item's functionality handled
by the corresponding main menu item are using the EventHandler class and
calling another event procedure.

76. The toolbar is represented by the ToolStrip class.

77. Each item on the main menu is represented by the ToolStripItem class.

78. The Items collection of the ToolStrip component contains a collection of the
ToolStripItems belonging to the ToolStrip.

79. Toolbar buttons are immediately accessible, whereas menu items may be
nested several levels deep and can be accessed only by multiple mouse clicks
or keystrokes. Additionally, a toolbar button uses a graphic, which gives
a more visual interface than the text of a menu item.

80. Different alternatives of having a toolbar item's functionality handled by
the corresponding main or context menu item are using the EventHandler
class and calling another event procedure.

81. You use the ShowDialog method of the OpenFileDialog class to show an
Open dialog box.

82. The return value of showing an Open dialog box is either DialogResult. OK
if the user chose the Open button or DialogResult.Cancel if the user chose
the Cancel button.

313



Visual C# 2005 Demystified

83. The OpenFileDialog class has a FileName property whose value is a string
containing the path to and the name of the file selected in the Open dialog box.

84. You use the ShowDialog method of the SaveFileDialog class to show a Save
dialog box.

85. The return value of showing a Save dialog box is either DialogResultOK if
the user chose the Save button or DialogResult.Cancel if the user chose the
Cancel button.

86. The SaveFileDialog class has a FileName property whose value is a string
containing the path to and the name of the file to be saved.

87. You may use the StreamReader class to read from a text file.

88. You may use the Stream Writer class to write to a text file.

89. A data provider is a code component that is used by your application to
connect to a specific database format.

90. A table is a collection of data, usually on a particular subject such as customers,
employees, and so on.

91. Each column in a table also may be called a field.

92. Each row in a table also may be called a record.

93. The code components used for database access in the .NET class library are
referred to by the name ADO.NET

94. A DataSet is a representation of the data stored in RAM.

95. The code components used for web applications in the .NET class library
are referred to by the name ASP. NET.

96. A URL, an acronym for Uniform Resource Locator, represents an address
of a web page.

97. HTTP is an acronym for Hypertext Transfer Protocol. HTTP defines how
messages are formatted and transmitted, and what actions web servers and
browsers should take in response to various commands.

98. A URL such as http://localhost71ocalstart.asp would be the virtual path to
a web page, whereas a file path such as C:\Inetpub\Wwwroot\localstart.asp
would be the physical path to a web page.

99. MapPath is the method of the HttpServerUtility class that returns the physical
file path that corresponds to (is mapped to) the specified virtual path on the
web server.

100. Page is the name of the class that is the web application equivalent of the
Form class in a Windows application.

>1«



INDEX

Symbols
; (semicolon), 38-39,109,112,114-117,138,139,

149,150
+ (addition) operator, 80-82, 85
= (assignment) operator, 39, 83-84, 113
*/ (asterisk and forward slash), 40
%= (combined) operator, 83
*= (combined) operator, 83
+= (combined) operator, 60, 83, 84
-= (combined) operator, 83
/= (combined) operator, 83
&& (conditional And) operator, 100-101, 104, 144
|| (conditional Or) operator, 101-102, 104
{} (curly braces), 36, 109, 111-113, 116, 117,

137-139, 148, 150,157
-- (decrement) operator, 84-85
/ (division) operator, 80-82
\\ (double backslash), 290
// (double forward slash), 39^0
" (double quotation marks), 39, 65
== (equality) operator, 97-99
/* (forward slash and asterisk), 40
> (greater than) operator, 97, 99
>= (greater than or equal to) operator, 97, 99
++ (increment) operator, 84-85,139, 149
!= (inequality) operator, 97-99, 146
< (less than) operator, 96, 99
<= (less than or equal to) operator, 97, 99
& (logical And) operator, 101, 104

! (logical Not) operator, 103-104, 145-146
| (logical Or) operator, 102, 104
% (modulus) operator, 80-82, 90
* (multiplication) operator, 80, 81
' (single quotation marks), 66
A (Xor) operator, 102-104

About dialog box, 176
Access keys, 201,202
Access specifiers:

for class member variables, 73
for constants, 75
general rules for, 73
in method header, 157
of variables, 68-69

Action events, 35, 36
Active Server Pages (ASP), 272
Add Connection dialog box, 252-253
Add New Item dialog box, 185
Addition (+) operator, 80-82, 85
Address (Internet), 278 (See also Uniform Resource

Locator)
ADO.NET, 260
Algorithms, 89-91
Aligning Label controls, 49
All Windows Forms category, 44, 45
ALT key, 201, 202
American National Standards Institute (ANSI),

98, 128

315

A

Copyright © 2006 by The McGraw-Hill Companies. Click here for terms of use. 



American Standards Committee for Information
Exchange (ASCII), 98-99, 128

Ampersand (&), 201
"And" operators:

conditional (&&), 100-101, 104, 144
logical (&), 101, 104

ANSI (see American National Standards Institute)
Applications (see Web applications; Windows

applications)
Arguments:

definition of, 161
matching parameters, 163-164
for methods, 159
passing arrays as, 167-169
passing by reference, 164-169
passing by value, 161-164,166, 169
using multiple, 162-163
(See also Parameters)

Arithmetic operators, 80-91
addition, 80-82, 85
change machine project using, 86-91
combining assignment and arithmetic, 83-84
and comparison operators, 99
and concatenation, 85
decrement, 84-85
division, 80-82
increment, 84-85, 139, 149
modulus, 80-82, 90
multiplication, 80-82
and parse method, 85-86
precedence of, 82-83, 99
and strings, 85
subtraction, 80-82
table of, 80

Arrays, 136, 150-153
assigning values to, 151-153
common mistakes in, 152
declaring, 150-151
getting number of elements in, 153
initialization of, 151-152
multi-dimension, 153
passing as an argument, 167-169
passing by reference, 168-169

Visual C# 2005 Demystified

passing by value, 169
size of, 151
using loops with, 152, 153
zero-based, 152

ASCII (see American Standards Committee for
Information Exchange)

ASP (Active Server Pages), 272
ASP.NET, 272, 280, 281, 285
ASP.NET Application IDE, 284-285
ASP.NET Development Server, 281-283
Assignment:

of array values, 152-153
of constant values, 75
of integer to a string, 57-58

Assignment (=) operator, 39, 83-84, 113
Associativity, 83
Asterisk and forward slash (*/), 40
Attributes as properties, 27
Auto-hide feature (for Toolbox), 45
Automation of application creation, 18
Autosize property (of Label controls), 48, 49-50

B
BackColor property, 54
Binary operator, 104
Bitmap files, 225, 227
Blank spaces, compiler treatment of, 112
Bool data type, 65, 70
Boolean expression, 109
Boolean values, 171-172
Break keyword, 131-130, 143-144
"Bugs," origin of term, 94
Build menu, 9-11
Button(s):

adding to toolbars, 219-224
associating code with clicks of, 229-230
associating images with, 221-219
as component of GUIs, 31
control for, 44
functionality of toolbar, 229, 230
properties for, 187
selected in dialog box, 236-237
ToolTipText property for, 224

316.



INDEX

c
C#(see Visual C# 2005)
C++ programming language, 6, 13
Calculators, 17, 18, 79-80, 124-128
Calling a method, 158,159-160
Capitalization, 52, 70, 75
Categories (Toolbox), 44
Centering (of Label controls), 49
Change machine project, 86-91
Char data type, 65, 66
Character literal, 129
Characteristics:

of classes, 25
as properties, 27

CheckBox control, 122-123, 125
Chess (computerized), 12
Choose Data Source dialog box, 251-252
Class Libraries, 26
Classes, 22, 25-29

definition of, 25
and events, 34
inheritance, 25
methods for, 86
namespaces, 25-26
variables as members of, 72-74
(See also Objects; specific classes)

Click event procedures:
for forms, 34^10
for menu items, 203, 210-211
for reading text files, 241-242
for toolbar buttons, 229, 230
for writing to text files, 244-246

Closing:
the dialog form, 190
the message box, 183-184
text files, 243-244, 246-247

CLR (Common Language Runtime), 26
Code:

assignment operator in, 39
associating with toolbar button clicks,

229-230
comments in, 39—40
computer, 13

errors in typing, 56-58
indentation of, 38, 110, 111
organizing with methods, 155-156 (See also

Methods)
referring to labels in, 51
semicolons in, 38-39
translating of, 14

Code view:
of form, 60, 61
and Toolbox categories, 44
and web applications, 284-285
and Windows applications, 20, 23

Columns (database), 257
.com domain name, 278
Combined arithmetic/assignment operators, 60,

83-84
Comments, 39^0,159
Common Controls category, 44, 45
Common Language Runtime (CLR), 26
Common mistakes:

in arrays, 152
in if statements, 112-113
in if. .else if statements, 117
in if..else statements, 114-116
using = for equality comparison, 97

Comparison expression (in for statement), 138
Comparison operators, 94, 96-99

and arithmetic operators, 99
and ASCII values, 99
equality, 97, 98-99
greater than, 97, 99
greater than or equal to, 97, 99
inequality, 97-99, 146
less than, 96, 99
less than or equal to, 97, 99
numeric, 96-98
precedence of, 99, 104
for strings, 98-99
(See also Logical operators)

Compiler:
and blank spaces, 112
as code translator, 14
Error List for, 58

317



Compiler: (Cont.)
errors, 14, 61, 71, 74, 76, 117, 131,163-164
instructions, 26
warnings, 57, 72, 112

Computational skills, 18
Computer programs, description of, 11-12
Computers, 6,12, 13
Concatenation of two strings, 85
Condition expression (in while statement), 147
Conditional And (&&) operator, 100-101,

104,144
Conditional Or (||) operator, 101-102, 104
Conditional statements, 109,110-112
Console application, 31
Constants, 64, 74-77

assigning a value to, 76
declaring, 75-76, 126
passing by value, 166
in switch control structure, 129
use of, 76-77

Constructor, 242, 245
Container control, 44
Context menu:

adding functionality to items in,
210-211,214

adding menu items to, 207-210
adding to a form, 205-207
as common type of menu, 194
copy/pasting to, 209-210
creating, 205-211
and Items Collection Editor, 207-209

ContextMenuStrip:
adding menu items to, 207-210
adding to a form, 205-207
class, 194

Continue keyword, 144-146
Control structures, 107-132

if control structure, 108-117, 122-129, 132,
171-172

input validation, 117-121
multiple conditional statements in, 110-113,

116,117
pizza calculator project, 124-128
switch control structure, 128-132

Visual C# 2005 Demystified

Control(s), 43-60
adding, to Form, 44-50
changing, 47-50
CheckBox,122-123, 125
container, 44
copying, from Toolbox to Form, 45^17
event procedure parameters in, 56-60
location of, 47^9
mouse coordinate project for, 53-60
naming conventions for, 51-52
RadioButton, 123-125
referencing in Forms, 190
size of, 49-50
specialized, 43, 44
used for if control structure, 122-124
(See also specific controls)

Conversion (integer/string), 85-86
Coordinates (mouse pointer), 52-53, 56
Copying:

to create a context menu, 208-210
and Textbox class, 214
from Toolbox to Form, 45^7

Counter, 138, 152
CTRL key, 202
CTRL-S key combination, 201
Curly braces ({}):

in do while loops, 150
in event procedure stubs, 36
and if statements, 109, 111, 112-113
for if..else if statements, 117
in if. .else statements, 116
in methods, 157
for multiple conditional statements, 113,

116,117, 137-139
in for statements, 137-139
and while statement, 148

Customers table, 258-269, 286-292
Cut method (of TextBox class), 214

D
Data source, 251-252
Data types, 64-68

numeric, 65
prefix names for, 70

318



INDEX

of properties, 66-68
in tables, 257
text data types, 65-66

Databases, 249-270
advantages of, 233
connecting to, 251-253, 260-265, 289-292
creating, for web applications, 286-292
and disconnected application, 261
executing commands for, 263-265
filling DataGridView, 265-269
filling GridView, 288-292
importing data namespaces, 260, 266-267
installing, 250
locating for web applications, 288-292
and persistent connection, 261
project for, 258-269
and stored procedures, 256
text files vs., 233, 249
user name/password for, 253
using Server Explorer with, 254-258
viewing, 254-258
and views, 256
(See also Tablets])

DataBind method, 292
DataGridView, 259

connecting to DataSet, 268-269
filling the, 265-269
and GridView, 286, 288

DataSet, 266-269
Debug class, 94-95
Debugging:

running the project, 38
and scope of variables, 74
writing to Output window, 94-96

Decimal data type, 65
Decrement (--) operator, 84-85
Deep Blue, 12
Deep Junior, 12
Default:

for access specifiers, 73
in array element values, 151
button for message box, 181
environment settings, 5
label name, 51

location for projects, 8
project name, 7
property values, 27
toolbar name, 218

Default keyword, 129
Default Web Site, 276-277, 279-280
Delegate, 59-60
Design time, 11,20, 28, 29
Design view:

and Toolbox categories, 44
viewing Windows applications with, 20, 23
for web applications, 284

Development Settings, 5
Dialog boxes, 234-239
Dialog form(s), 176, 184-191

assessing values from, 190
modal, 188,190-191
modeless, 190-191
project for, 184-188
properties, 187
returning a result from, 189-190
showing, 188-189

DialogResult:
determining button selected using, 236,

237, 239
enumerations, 182-183
return value, 183,189-190, 236, 237, 239

Dimension of arrays, 153
Disabilities, 181
Disconnected application, 261
Displaying:

data with labels, 50-51
Error List, 58
forms, 188

DisplayStyle property, 222, 224, 225
Division (/) operator, 80-82
Division by zero, 96, 103
Do while loop, 150
Domain names, 278
DOS operating system, 30
DOS text editor, 30-32
Double backslash (\\), 290
Double data type, 65, 70, 120-121
Double forward slash (//), 39^0

319.



Double quotation marks ("), 39, 65
Double-click method (of copying controls),

45^7
Drag-and-drop method (of copying controls),

45^7
DropDownltems collection property, 198, 200

E
e-commerce, 271
Edit boxes, 31
Else expression, 114-116 (See also If control

structure)
Empty statements, 112-114
Enabled property, 204
Enumeration(s):

DialogResult, 182-183
DisplayStyle property, 225
MessageBoxButtons, 180
MessageBoxDefaultButton, 181
MessageBoxIcon, 180, 181

Equality (==) operator, 97-99
Error checking and handling:

and disabling menu items, 204
exceptions, 118-121
input validation, 117-121
TryParse method, 120-121

Error List, 58
Error messages:

for fall through behavior, 131
in input validation, 118
for integer/string conversion, 57, 58
for parameter/argument mismatch, 163-164
in variable/constant declaration, 71, 74, 76
(See also Warnings)

Errors:
and comparison operators, 96
and deleting an event procedure, 61
division by zero, 96, 103
general protection fault, 244
illegal exception, 244
reporting of, 56-58
syntax, 14, 117

Event handler:
for context menu items, 211
event procedure term vs., 157

Visual C# 2005 Demystified

header for, 158
and methods, 158

Event procedure stub, 34-37, 54, 55
Event procedure(s):

and context menu items, 211
creating an, 34^10
deleting, 61
event handler term vs., 157
invoking, 158
parameters in, 56-60
writing code inside, 37^10
(See also Click event procedures)

Event-driven (Windows applications),
33-34

Events:
and classes, 34
created by user's actions, 33-34
delegate, 59-60
and objects, 34

Exception(s), 118-121
details of, 119-120
determining location of, 119-120
illegal, 244
unhandled, 119

Exclusive Or (A), 102-104
Exit point (in for statement), 143
Express Edition of Visual C# 2005, 4, 5
Expressions:

Boolean, 109
comparison, 138
condition, 147
else, 114, 115-116
passing by value, 166
relational, 109, 112, 115
test, 128-129
update, 139

F
Factorial example, 142-143
"Falling through behavior," 131
Fields (database), 257
&File, 201
File extensions:

.bmp, 225

.doc, 278

.320]



INDEX

.htmAhtml, 278

.mdb, 250

.sin, 20

.xls, 278
File menu, 194
File Transfer Protocol (FTP), 273, 274, 278
FileName property, 237-238
Float data type, 65
Floating point numbers, 65
Folder (for projects), 8
For statement, 136-147

breaking out of, 143-144
and continue keyword, 144-145
factorial example using, 142-143
infinite loop, 142
nesting in, 146-147
summary of execution of, 141
syntax of, 137-140
while statement usage vs., 149
workings of, 140-142

Foreach statement, 147
Form(s):

adding a ContextMenuStrip to, 205-207
adding a MenuStrip control to, 195-196
adding an OpenFileDialog control to,

234-235
adding controls to, 44-50
in Class Library, 26
click event procedure for, 34^10
Close method, 183
as container control, 44
copying controls from Toolbox to, 45^17
creating for database project, 259
description of, 25
dialog, 176
helper, 27, 175-191
namespace for, 25-26, 59
properties, 186
referencing controls in, 190
showing information in Object Browser for,

21, 22, 24
web, 285

Forward slash and asterisk (/*), 40
Freeing memory, 243-244
FROM keyword, 264

FTP (see File Transfer Protocol)
Function (database), 256

G
"Garbage in, garbage out," 118
General Development Settings, 5
General protection fault, 244
GetLowerBound method, 153
GetUpperBound method, 153
Graphical user interface (GUI), 30-32, 193
Grayed out menu items, 204
Greater than (>) operator, 97, 99
Greater than or equal to (>=) operator, 97, 99
GridView control:

adding a, 286-289
blank, 292
DataBind method, 292
filling, 288-292

GroupBox control, 123

H
Handheld computers, 6
Hard drive space, 3
Hardware independence, 26
Height property, 27, 66-68
Helper forms, 175-191

dialog forms, 184-191
message boxes, 176-183
projects, 177-178, 184-188
(See also Dialog form[s]; Message boxes)

Hiding:
access keys, 201, 202
menus, 204
Toolbox, 45

"Higher-level" programming language, 13
HTML (see Hyper Text Markup Language)
HTTP (Hypertext Transfer Protocol), 278
HttpServerUtility class, 290
Humans, advantages of computers over, 12
Hyper Text Markup Language (HTML), 272, 285
Hypertext Transfer Protocol (HTTP), 278

I
IDE (see Integrated Development Environment)
IDE-assigned values, 27

321



If control structure, 108-117
and Boolean return values, 171-172
and CheckBox control, 122-123, 125
controls used for, 122-124
if statement, 108-113
if..else if statement, 109,116-117,

129,132
if..else statement, 109, 113-116
pizza calculator project, 124-128
and RadioButton control, 123-125

IIS (see Internet Information Services)
Illegal exception, 244
Image property (of buttons), 224, 225
Images, 221-229
ImageScaling property, 227
Increment (++) operator, 84-85, 139, 149
Indentation, 38, 110, 111
Index (array), 150, 152
Inequality (!=) operator, 97-99, 146
Infinite loop, 142, 148
Information:

keeping track of, 25
sending to methods, 161-169
storing, 63-77

Inheritance, 25
Initial settings (restoring to), 127-128
Initialization:

of arrays, 151-152
in for statement, 138-140
of variables, 72
in while statement, 147, 148

Input validation, 117-121
Installing:

databases, 250
IIS, 273-274
Northwind Traders database, 250
Visual C# 2005, 4

Instantiating:
a DataSet variable, 267
OleDbConnection variable, 261-262
StreamReader variable, 241-242
Stream Writer variable, 245

Instructions, 12, 26, 38-39
Int32, 85-86, 90,120-121

Visual C# 2005 Demystified

Integer:
assigned to string, 57-58
data type for, 65, 70
division, 82, 90
and string conversions, 85-86
in switch control structure, 128-129

Integrated Development Environment (IDE), 8, 9
Internal access specifiers, 73
Internet Information Services (IIS), 272-277
Internet Information Services (IIS) Admin Service,

274-276
IsEmptyString method, 171, 172
Items Collection Editor:

and context menu, 207-209
and images, 224-228
and main menu, 196, 198-201
and toolbar buttons, 219-228

Iteration, 136,140-141

J
Java, 13
Jet database engine, 252, 262

K
Kasparov, Garry, 12
Keywords:

FROM, 264
break, 131-130, 143-144
continue, 144-146
default, 129
out, 166-167
ref, 165-166
SELECT, 264
"this," 39, 59, 190
and variable names, 69
void, 159

L
Label(s):

in action, 52-55
adding, 46^7
changing size of, 49-50
mouse coordinate project for, 53-60
properties of, 50-52

322.



INDEX

purposes of, 44, 50, 51
repositioning of, 47, 48

Length of variable names, 69
Length property (of Array class), 153
Less than (<) operator, 96, 99
Less than or equal to (<=) operator, 97, 99
ListBox control, 44
Local constants, 75-76
Local variables, 71-72
Localhost, 279, 280, 282, 290
Logical exclusion operation, 102
Logical operators, 99-104

conditional And (&&), 100-101, 104,144
conditional Or (||), 101-102,104
in if statements, 110
logical And (&), 101, 104
logical Not (!), 103-104, 145-146
logical Or (|), 102, 104
precedence of, 104
Xor (A), 102-104

Loops, 135-150
and arrays, 152, 153
breaking out of, 143-144
continue keyword, 144-146
do while, 150
foreach statement, 147
infinite, 142,148
nesting of, 146-147
for statement, 136-147
while statement, 147-149

"Low-level" programming language, 13

M
Machine language, 13, 14, 26
Main menu(s):

and access keys, 201, 202
adding a MenuStrip control to, 195-196
adding functionality to items in, 203
adding menu items, 196-201
association buttons with items in, 220, 229
as common type of menu, 194
creating, 194-204
disabling menu items in, 204
and Items Collection Editor, 196,198-201

and separator bars, 203
and shortcut keys, 194, 201-204

MapPath method, 290-291
Math (see Arithmetic operators)
Memory, 3, 243-244, 266
Menu Designer, 208-210
Menu items:

access keys for, 201, 202
adding, 196-201, 203, 207-211
deleting, 198
disabling, 204
enhancing, 201-203
and Items Collection Editor, 198-201
Name property, 197
tip for adding, 198
toolbar button functionality handled by,

220, 229
typing in, 196-197, 207

Menus, 193-215
advantages of, 193
context menu, 205-211 (See also Context

menu)
hiding, 204
main menu, 194-204 (See also Main

menu[s])
separator bars in, 203
text editor project, 212-214
types of, 194

MenuStrip:
adding, to a form, 195-196
adding menu items to, 196-201
class, 194
and Items Collection Editor, 198-201
object, 194

Message boxes, 176-183
as a helper form, 175-176
limitations of, 184
MessageBoxButtons, 179, 180
MessageBoxDefaultButton, 179, 181
MessageBoxIcon, 179-181
modal, 178
quit application project, 177-178
return value for, 182-183
Show method of, 178-180, 182-183

323.



Method(s), 155-172
body, 157, 158
calling a, 158-160
for class/structures, 86
declaring, 157
definition, 155, 158-159
dividing code into separate, 156
execution of, 160
header, 157, 158, 162
naming of, 157,158
out keyword, 166-167
parameters for, 161-169
passing arrays for, 167-169
passing by reference, 164-169
passing by value, 161-164,166, 169
ref keyword, 165-166
return values for, 169-172
sending information to, 161-169
terminology of, 156-158
using multiple arguments in, 162-163

Microsoft Access, 250-252, 254, 255, 262
Microsoft Excel, 7
Microsoft SQL Server, 250, 251, 254
Microsoft Word:

disabled menu items in, 204
File menu, 194
images on toolbar buttons in, 221, 224
message box in, 177
modeless form in, 191
Send to menu item, 194, 195
and text files, 246
as Windows application, 7

Microsoft.Jet.OLEDB.4.0, 262, 265, 266
Mobile devices, 26
Modal:

dialog form, 188
message boxes, 178
modeless vs., 190-191
OpenFileDialog control, 236

Modeless, 190-191
Modulus (%) operator, 80-82, 90
Mouse click events, 34

Visual C# 2005 Demystified

Mouse pointer:
coordinates for, 52-60
events, 60
using to reposition label controls, 47, 48

MouseEventHandler, 60
MouseMove event, 54-56
Multiple conditional statements, 110-113,116,

117,137-139
Multiple labels, 49, 50
Multiplication (*) operator, 80-82
Multithreaded application, 160

N
Name property, 51-52, 197
Names:

for methods, 157,158
for parameters, 162
for projects, 7
for web pages, 278

Namespaces, 25-26
importing data, 260, 266-267
purpose of, 26
SQL Server, 260
System.Data.OleDb, 260
System.Diagnostics, 109
System.IO, 240, 241
System.Windows.Forms, 25-26, 59
System.XML, 267

Naming conventions:
for constants, 75
for context menu items, 207
for controls, 51-52
for methods, 158
for variables, 70

Native Jet provider, 252, 262
Nesting, 146-147
.NET class library, 260
.NET Framework:

alias for data types in, 65
description of, 26
and event handlers, 158
and events, 34, 59
and message boxes, 178-179

.324.



INDEX

.NET Framework Data Provider for OLE DB, 251,
252, 262

.NET Runtime, 158
New project, 6-7
Northwind Traders database:

connecting to, 251-253
installing, 250
locating for web applications, 288-292
obtaining, 250
tables in, 256-269, 286-292
viewing, 254-258

Not (!) operator, 103-104, 145-146
Notepad:

events in, 34
as example of Windows application,

29,30
Open dialog box in, 32-34, 234
and text files, 246

Noun (in method name), 158
Numeric comparison operators, 96-98
Numeric data types, 65

Object Browser, 20-22, 24
Objects, 25-29

definition of, 25
and events, 34
inheritance, 25
(See also Classes; specific objects)

OleDbCommand, 263-265, 291
OleDbConnection:

ConnectionString property of, 262, 289-290
instantiating, 261-262
Open method of, 262-263
using with web applications, 289-291

OleDbDataAdapter:
creating an, 265-266
Fill method of, 267-268, 291
using with web applications, 291

Open dialog box:
determining buttons selected in, 236-237
in DOS text editor, 32
identifying file to open, 237-238

in Notepad, 32-34
for opening files, 234-238
and selecting image files, 225, 226

Open menu, 19, 20
Open Project dialog box, 18-20
OpenFileDialog control, 234-238
Opening:

an existing project, 18-20
text files, 234-238

Operating system:
DOS, 30
independence, 26
required for Visual C#, 3
Windows, 29, 30, 272

Operators:
addition, 80-82, 85
arithmetic, 80-91, 99
and ASCII values, 99
combined arithmetic/assignment, 60, 83-84
comparison, 94, 96-99
and concatenation, 85
conditional And (&&), 100-101, 104,144
conditional Or (||), 101-102, 104
decrement, 84-85
division, 80-82
equality, 97, 98-99
greater than, 97, 99
greater than or equal to, 97, 99
increment, 84-85, 139, 149
inequality, 97-99, 146
less than, 96, 99
less than or equal to, 97, 99
logical, 99-104
logical And (&), 101, 104
logical Not (!), 103-104, 145-146
logical Or (|), 102, 104
modulus, 80-82, 90
multiplication, 80-82
numeric, 96-98
precedence of, 82-84, 99, 104
for strings, 98-99
subtraction, 80-82
Xor (A), 102-104

325



"Or" operators:
conditional (||), 101-102, 104
logical (|), 102, 104
Xor (A), 102-104

Oracle, 250, 251, 254, 260
Out keyword, 166-167
Output window, 95
Overflow of data types, 65
Overloading, 179, 245

p
Panel control, 123
Parameters:

definition of, 161
in event procedures, 56-60
list for, 157
matching arguments, 163-164
for methods, 159, 161-169
names for, 162
positional, 180
of Show method, 179-180
(See also Arguments)

Parent menu, 194, 195
Parentheses, 59, 83, 159
Parse method:

for doubles, 86
string/integer conversion, 85-86
TryParse method vs., 120-121

Passing arguments:
and arrays, 167-169
by reference, 164-169
by value, 161-164, 166, 169

Password, 253
Paste method (of TextBox class), 214
Pasting, to create a context menu, 209-210
Paths (virtual/physical), 279-280, 283, 290
Persistent connection, 261
Physical path, 279-280, 283, 290
Pixel, 53
Pizza calculator project, 124-128
Port number, 282, 283
Postfix, 84, 139, 149

Visual C# 2005 Demystified

Precedence:
of arithmetic operators, 82-83, 99
of arithmetic over assignment operators, 83
of comparison operators, 99,104
of logical operators, 104
and postfix increment/decrement, 84
and prefix increment/decrement, 84

Prefix:
for context menu items, 207
for control names, 52
decrement, 84
increment, 84, 139,149
for variable names, 70

Print dialog box:
CheckBox control used in, 122
as example Label control purpose, 50, 51
as informational form, 176
RadioButton control used in, 122,123

Priority of arithmetic operations (see Precedence)
Private access specifier, 68, 69, 73
Procedural programming, 33
Procedures, 71-72 (See also Click eventprocedures;

Event procedures)
Processor, 3
Programming language(s):

Basic, 5, 6, 13
C++, 6,13
classes in, 25
definition of, 13-14
"higher-level," 13
J#, 6
Java, 13
"low-level," 13
(See also Visual C# 2005)

Program(s):
description of, 11-12
importance of writing, 1-2
starting Visual C#, 5-6

Projects (general):
contents of, 10
location of, 7, 8
name for, 7, 8

326



INDEX

opening an existing, 18-20
running, 9-11
starting an existing, 18-29
types of new, 6-7

Projects (programming):
arithmetic operators, 86-91
control structures, 124-128
creating first project, 4-11
databases, 258-269, 286-292
debugging, 94-96
dialog boxes, 234-239
event procedure, 34^0
helper forms, 177-178,184-188
menus, 212-214
message boxes, 177-178
mouse coordinates for controls, 53-60
pizza calculator, 124-128
reading text files, 240-244
text editor project, 212-214, 218-219,

234-247
toolbars, 218-219
web applications, 280-292
writing to text files, 244-247

Properties, 27-29
for buttons, 187
changing, 28, 29, 186-188
data types of, 66-68
at design time, 28, 29
for dialog forms, 187
for forms, 186
for labels, 50-52
at run time, 28
for text, 50-51
for textboxes, 187-188
values of, 27-29
(See also specific properties)

Properties window, 27-29
accessing property values in, 66
changing properties, 186-188
Form class events, 35, 36

Protected access specifier, 73
Public access specifier, 68-69, 73
Pushpin button (Toolbox), 45

Q
Quit application project, 177-178

R
RadioButton control, 123-125
RAM (see Random access memory)
Random access memory (RAM), 3, 266
Reading text files, 242-243
ReadLine method, 243
ReadMethod, 243
ReadToEnd method, 242, 243
Rebuild option (Build menu), 11
Records (database), 257
Ref keyword, 165-166
Reference, passing by, 164-169 (See also Value,

passing by)
Relational expression, 109, 112, 115
Remainder, 81, 90
Reserved memory, 152
Restoring to initial settings, 127-128
Return type, 157
Return value(s):

Boolean, 171-172
for dialog forms, 189-190
forDialogResult, 183, 189-190, 236,

237, 239
for message boxes, 182-183
for methods, 169-172
saving, 170-171
for Show method, 182-183
syntax for, 169-170
and void keyword, 159
workings of, 170

Root URL, 283
Rows (database), 257
Runtime, 11,20,28
Running the project, 9-11, 38
Run-time error, 96, 152

s
Save dialog box, 234, 238-239
SaveFileDialog, 238-239

327



Saving:
return values, 170-171
text files, 238-239

Scalar variables, 150
Scope, 69, 71-74, 126
Screen resolution, 53
Select Resource dialog box, 224, 226-228
SELECT statement (SQL), 263-266
Semicolon (;):

and do while loops, 150
and if statements, 109, 112
in if. .else if statements, 117
in if..else statements, 114-116
instructions ending in, 38-39
in for statement, 138, 139
and while statement, 149

Separator bars, 203
Server class, 290, 291
Server Explorer, 254-258
SHIFT key, 202
Shortcut keys, 194, 201-204
Shortcut menu, 20 (See also Context menu)
Show method, 178-180

parameters of message box, 179-180
return value for message box, 182-183
used to display forms, 188

ShowDialog method, 188-189, 236, 237, 239
"Signature" of method, 157
Single quotation marks ('), 66
Size of arrays, 151
Smart task arrow, 218, 220
SMTP, 273, 274
Solution, contents of, 10
Solution Explorer, 45, 186
Solution file, 20
Solutions Explorer, 20, 21
Specialized controls, 43, 44
SQL Server, 260
SQL statements (see Structured Query Language

statements)
Start or Start Without Debugging option, 11
Start Page, 5, 6
Starting:

and existing project, 18-29
Visual C#, 5-6

Visual C# 2005 Demystified

Stored procedure, 256
Storing information, 64-77

constants, 74-77
data types, 64-68
variables, 68-74

StreamReader class, 240
Close method, 243
Read method, 243
ReadLine method, 243
ReadToEnd method, 242, 243
variable instantiating for, 241-242

Stream Writer class, 244-246
String(s):

comparison operators for, 98-99
concatenation of, 85
data type for, 65, 70
definition of, 39
and double quotation marks, 39, 65
integer assigned to a, 57-58
Parse method, 85-86
ToString method, 85-86

Structured Query Language (SQL) statements,
263-266

Structures, 85-86, 90
Subtraction (-) operator, 80-82
Switch control structure, 128-132

in action, 129-130
break keyword in, 131-130
default keyword in, 129
if. .else, .if statement vs., 129, 132
syntax of, 128-129

Switches (computer), 13
Syntax:

errors, 14, 117
of programming language, 14
for return values, 169-170
of for statement, 137-140
for switch control structure, 128-129

System requirements for C#, 2-3
System.Data.OleDb namespace, 260
System.Data.OleDb.OleDbConnection

class, 260
System.Diagnostics namespace, 94-95, 109
System.Int32 data type, 65
System.IO namespace, 240, 241

328.



INDEX

System.Windows.Forms namespace, 25-26, 59
System.XML namespace, 267

T
Table(s):

Customers, 256-258, 286-292
definition of, 256
fields/records in, 257
rows/columns in, 257

Telephones, 7
Templates, 6-7, 280-281
Test expression, 128-129
Text data types, 65-66
Text editor, 136, 141 (See also Microsoft Word;

Notepad)
Text editor project:

adding dialog boxes, 234-239
adding menus, 212-214
adding toolbars, 218-219
reading text files, 240-244
writing to text files, 244-247

Text files, 233-247
closing, 243-244, 246-247
databases vs., 233, 249
and identifying file to open, 237-238
limitations of, 249
opening, 234-238
reading, 240-244
writing, 244-247

Text property, 28, 39, 50-51
Textbox(s), 44

Copy method, 214
Copy method of, 214
Cut method, 214
Paste method of, 214
properties, 187-188
reading text files into, 242-243
Text property for, 50
writing to text files from, 245-246

"This" keyword, 39, 59, 190
Toolbars, 217-230

adding buttons to, 219-224
associating code with button clicks, 229-230
associating images with buttons on, 221-229
creating, 218-229

handling functionality of buttons on, 229, 230
reasons for using, 217
and ToolTips, 224

Toolbox, 44-^7
ToolStrip, 218, 218 , 219
ToolStripMenuItem, 194-196, 198, 201
ToolTips, 57, 224
ToString method, 56, 58-59, 85-86
TryParse method, 120-121

U
Unary negative operator, 82
Unary operator, 104
Underflow of data types, 65
Unhandled exceptions, 119
Uniform Resource Locator (URL), 278-280,

282, 283
Update expression, 139, 147-149
URL (see Uniform Resource Locator)
Username, 253
User's actions, events created by, 33-34

V
Value, passing by, 161-164, 166, 169 (See also

Reference, passing by)
Values of properties, 27-29, 186-188
Variables, 64, 68-74

arrays, 136, 150-153 (See also Arrays)
as class members, 72-74
declaring, 68-69
initialization of, 72
instantiating, 241-242, 245, 261-262, 267
local, 71-72
naming, 69-70
naming conventions for, 70
passing by reference, 164-169
passing by value, 161-164, 166, 169
reference, 165
scalar, 150
undeclared, 70-71
where to declare, 71-74

Verb (in method name), 158
Version of Visual C#, 3^
View (database), 256
View menu, 20, 22

329



Virtual path, 279-280, 283, 290
Visible property, 204
Visual Basic, 5, 6, 13
Visual C++, 6
Visual C# 2005:

and automation of applications, 18
connecting to database using, 251-253
editions of, 4, 5
first project in, 4-11
as "higher-level" programming

language, 13
installing, 4
obtaining, 2-A
starting, 5-6
system requirements for, 2-3
version of, 3^
and window creation, 32

Visual J#, 6
Visual Studio 2005:

andASP.NET,272
as development environment, 9
project types in, 6
starting, 5
Visual C# as part of, 4

Void key word, 159

W
Warnings, 57, 66-68, 72, 112
Web applications, 271-292

ASP.NET, 272, 280-285
creating, 280-285
databases for, 286-292
and disconnected applications, 261
and IIS, 272-277
and physical paths, 279-280, 283, 290

Visual C# 2005 Demystified

and URLs, 278-280, 282, 283
and virtual paths, 279-280, 283, 290
and web server, 278-279, 288-290

Web form, 285
Web server, 278-279, 288-290
While statement, 147-149
Whole numbers, 65
Windows applications:

automation of, 18
description of, 29-34
event-driven, 33-34
getting started with, 1-15
GUI of, 30-32
and menus, 193
and persistent connections, 261
project templates for, 7
viewing, 20, 23

Windows Components Wizard, 273
Windows operating system, 29, 30, 272
Windows XP Home Edition, 272
WriteLine method (of Debug class), 95, 97-98
Writing:

to Output window, 94-96
programs, importance of, 1-2
to text files, 244-247

X
X coordinate (mouse pointer), 52-53, 56, 57
Xor (A) operator, 102-104

Y
Y coordinate (mouse pointer), 52-53, 56, 57

z
Zero-based arrays, 152

330


	Contents
	Acknowledgments
	Introduction
	Chapter 1 Getting Started with Your First Windows Program
	Obtaining and Installing Visual C# 2005
	System Requirements
	Choosing the Right Version
	Installing Visual C# 2005

	Starting Your First Visual C# 2005 Project
	Starting the Program
	Specifying the Type of New Project
	Specifying the Name and Location of the Project
	Integrated Development Environment (IDE)
	Run the Project!

	What Is a Computer Program?
	What Is a Programming Language?
	Translating the Code for the Computer

	Conclusion
	Quiz

	Chapter 2 Writing Your First Code
	Starting an Existing Project
	Design View and Code View
	Object Browser

	Classes and Objects
	Inherits
	Namespaces
	.NET Framework

	Properties
	Properties Window
	Changing Properties at Design Time

	What Is a Windows Application?
	Windows Applications Are Gooey
	Windows Applications Are Event-Driven
	Classes Have Events

	Creating an Event Procedure
	Creating an Event Procedure Stub
	Writing Code Inside the Event Procedure

	Conclusion
	Quiz

	Chapter 3 Controls
	Adding Controls to the Form
	Toolbox
	Copying a Control from the Toolbox to the Form
	Changing the Control's Location
	Changing the Control's Size

	Important Label Properties
	Text Property
	Name Property

	The Label Control in Action
	Mouse Coordinates
	Creating the Application

	How the Code Works
	Using Event Procedure Parameters
	What If You Type the Wrong Code?
	ToString Method
	Delegate

	Conclusion
	Quiz

	Chapter 4 Storing Information—Data Types and Variables
	Data Types
	Numeric Data Types
	Text Data Types
	Data Types of Visual C# Properties

	Variables
	Declaring a Variable
	Where Do I Declare a Variable?

	Constants
	Declaring a Constant
	Why Use Constants?

	Conclusion
	Quiz

	Chapter 5 Letting the Program Do the Math—Arithmetic Operators
	Arithmetic Operators
	The Addition Operator
	The Subtraction Operator
	The Multiplication Operator
	The Division Operators
	Operator Precedence
	Combining Arithmetic and Assignment Operators
	Increment and Decrement Operators

	The Parse Method
	Class Methods

	Change Machine Project
	Creating the Project
	The Algorithm

	Conclusion
	Quiz

	Chapter 6 Making Comparisons—Comparison and Logical Operators
	Debugging
	Comparison Operators
	Numeric Comparison Operators
	String Comparisons
	Precedence

	Logical Operators
	The && Operator
	The & Operator
	The || Operator
	The | Operator
	The ^ Operator
	The ! Operator
	Precedence
	Why && and || in Addition to & and |?

	Conclusion
	Quiz

	Chapter 7 Making Choices—if and switch Control Structures
	Creating a Test Project
	The if Control Structure
	The if Statement
	The if ... else Statement
	The if ... else if Statement

	Input Validation
	Exceptions

	Controls Used for the if Control Structure
	CheckBox Control
	RadioButton Control

	Pizza Calculator
	Creating the Project
	How the Project Works
	The Code

	The switch Control Structure
	Syntax
	The switch Control Structure in Action
	The break Keyword
	Choosing Between if ... else if and switch

	Conclusion
	Quiz

	Chapter 8 Repeating Yourself—Loops and Arrays
	Loops
	The for Statement
	The continue Keyword
	The foreach Statement
	The while Statement
	The do while construct

	Arrays
	Declaring Arrays
	Assigning Values to the Array

	Conclusion
	Quiz

	Chapter 9 Organizing Your Code with Methods
	Defining and Calling a Method
	Terminology of a Method
	Naming a Method
	Defining a Method
	Calling a Method

	Parameters—Sending Information to a Method
	Passing Arguments by Value
	Passing Arguments by Reference

	Returning a Value from a Method
	Syntax
	How the Value Is Returned
	Saving the Return Value
	Returning a Boolean Value

	Conclusion
	Quiz

	Chapter 10 Helper Forms
	Message Boxes
	Creating the Project
	Message Boxes Are Modal
	Show Method
	Using the Show Method's Return Value

	Dialog Forms
	Creating the Project
	Showing the Dialog Form and Returning Its Result
	Accessing Values from the Dialog Form
	Modal vs. Modeless

	Conclusion
	Quiz

	Chapter 11 Menus
	Creating a Main Menu
	Adding a MenuStrip Control to a Form
	Adding Menu Items to the MenuStrip
	Enhancing the Menu Items
	Adding Functionality to the Menu Items
	Disabling Menu Items

	Creating a Context Menu
	Adding a ContextMenuStrip to a Form
	Adding Menu Items to the ContextMenuStrip
	Adding Functionality to Context Menu Items

	Text Editor Project
	Creating the Project
	Explanation of the Code

	Conclusion
	Quiz

	Chapter 12 Toolbars
	Creating a Toolbar
	Adding a Toolbar to a Form
	Adding Buttons to the Toolbar
	Associating Images with Toolbar Buttons

	Associating Code with Clicks of Toolbar Buttons
	Conclusion
	Quiz

	Chapter 13 Accessing Text Files
	Open and Save File Dialog Boxes
	Adding an OpenFileDialog Control to Your Form
	Showing the OpenFileDialog Control
	Determining Whether Open or Cancel Is Chosen
	Identifying the File to Open
	SaveFileDialog Class

	Reading from a Text File
	StreamReader Class
	Reading the Text File into the TextBox
	Closing the Text File

	Writing to a Text File
	StreamWriter Class
	Writing from the TextBox to the Text File
	Closing the Text File

	Conclusion
	Quiz

	Chapter 14 Databases
	Installing the Database
	Obtaining the Northwind Traders Database
	Installing the Northwind Traders Database

	Connecting to the Database
	Using Server Explorer
	Exploring the Database
	Exploring the Customers Table

	Database Project
	What the Project Does
	Creating the Form
	Importing Data Namespaces
	Creating a Connection
	Creating a Command
	Filling the DataGridView

	Conclusion
	Quiz

	Chapter 15 Web Applications
	ASP.NET
	Internet Information Services
	Determining If IIS Is Already Installed
	Installing IIS
	Starting the IIS Admin Service
	Starting the Default Website

	URL
	Your Computer as the Web Server
	Virtual and Physical Paths

	Creating a Web Application
	ASP.NET Development Server
	ASP.NET Application IDE

	Creating a Database Web Application
	Adding a GridView Control
	Locating the Database on the Web Server
	Adding Code

	Conclusion
	Quiz

	Final Exam
	Answers
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


	Copyright © 2006 by The McGraw-Hill Companies: 
	 Click here for terms of use: 

	Acknowledgments: 
	Introduction: 
	Chapter 1 Getting Started with Your First Windows Program: 
	Obtaining and Installing Visual C# 2005: 
	System Requirements: 
	Choosing the Right Version: 
	Installing Visual C# 2005: 
	Starting Your First Visual C# 2005 Project: 
	Starting the Program: 
	Specifying the Type of New Project: 
	Specifying the Name and Location of the Project: 
	Integrated Development Environment (IDE): 
	Run the Project!: 
	What Is a Computer Program?: 
	What Is a Programming Language?: 
	Translating the Code for the Computer: 
	Chapter 2 Writing Your First Code: 
	Starting an Existing Project: 
	Design View and Code View: 
	Object Browser: 
	Classes and Objects: 
	Inherits: 
	Namespaces: 
	NET Framework: 
	Properties: 
	Properties Window: 
	Changing Properties at Design Time: 
	What Is a Windows Application?: 
	Windows Applications Are Gooey: 
	Windows Applications Are Event-Driven: 
	Classes Have Events: 
	Creating an Event Procedure: 
	Creating an Event Procedure Stub: 
	Writing Code Inside the Event Procedure: 
	Conclusion: 
	Quiz: 
	Chapter 3 Controls: 
	Adding Controls to the Form: 
	Toolbox: 
	Copying a Control from the Toolbox to the Form: 
	Changing the Control's Location: 
	Changing the Control's Size: 
	Important Label Properties: 
	Text Property: 
	Name Property: 
	The Label Control in Action: 
	Mouse Coordinates: 
	Creating the Application: 
	How the Code Works: 
	Using Event Procedure Parameters: 
	What If You Type the Wrong Code?: 
	ToString Method: 
	Delegate: 
	Chapter 4 Storing Information—Data Types and Variables: 
	Data Types: 
	Numeric Data Types: 
	Text Data Types: 
	Data Types of Visual C# Properties: 
	Variables: 
	Declaring a Variable: 
	Where Do I Declare a Variable?: 
	Constants: 
	Declaring a Constant: 
	Why Use Constants?: 
	Chapter 5 Letting the Program Do the Math— Arithmetic Operators: 
	Arithmetic Operators: 
	The Addition Operator: 
	The Subtraction Operator: 
	The Multiplication Operator: 
	The Division Operators: 
	Operator Precedence: 
	Combining Arithmetic and Assignment Operators: 
	Increment and Decrement Operators: 
	The Parse Method: 
	Class Methods: 
	Change Machine Project: 
	The Algorithm: 
	Chapter 6 Making Comparisons—Comparison and Logical Operators: 
	Debugging: 
	Comparison Operators: 
	Numeric Comparison Operators: 
	String Comparisons: 
	Logical Operators: 
	The && Operator: 
	The & Operator: 
	The || Operator: 
	The | Operator: 
	The ^ Operator: 
	The ! Operator: 
	Precedence: 
	Why && and || in Addition to & and |?: 
	Chapter 7 Making Choices—if and switch Control Structures: 
	Creating a Test Project: 
	The if Control Structure: 
	The if Statement: 
	The if : 
	 else Statement: 
	 else if Statement: 

	Input Validation: 
	Exceptions: 
	Controls Used for the if Control Structure: 
	CheckBox Control: 
	RadioButton Control: 
	Pizza Calculator: 
	Creating the Project: 
	How the Project Works: 
	The Code: 
	The switch Control Structure: 
	The switch Control Structure in Action: 
	The break Keyword: 
	Choosing Between if : 
	 else if and switch: 

	Chapter 8 Repeating Yourself—Loops and Arrays: 
	Loops: 
	The for Statement: 
	The continue Keyword: 
	The foreach Statement: 
	The while Statement: 
	The do while construct: 
	Arrays: 
	Declaring Arrays: 
	Assigning Values to the Array: 
	Chapter 9 Organizing Your Code with Methods: 
	Defining and Calling a Method: 
	Terminology of a Method: 
	Naming a Method: 
	Defining a Method: 
	Calling a Method: 
	Parameters—Sending Information to a Method: 
	Passing Arguments by Value: 
	Passing Arguments by Reference: 
	Returning a Value from a Method: 
	Syntax: 
	How the Value Is Returned: 
	Saving the Return Value: 
	Returning a Boolean Value: 
	Chapter 10 Helper Forms: 
	Message Boxes: 
	Message Boxes Are Modal: 
	Show Method: 
	Using the Show Method's Return Value: 
	Dialog Forms: 
	Showing the Dialog Form and Returning Its Result: 
	Accessing Values from the Dialog Form: 
	Modal vs: 
	 Modeless: 

	Chapter 11 Menus: 
	Creating a Main Menu: 
	Adding a MenuStrip Control to a Form: 
	Adding Menu Items to the MenuStrip: 
	Enhancing the Menu Items: 
	Adding Functionality to the Menu Items: 
	Disabling Menu Items: 
	Creating a Context Menu: 
	Adding a ContextMenuStrip to a Form: 
	Adding Menu Items to the ContextMenuStrip: 
	Adding Functionality to Context Menu Items: 
	Text Editor Project: 
	Explanation of the Code: 
	Chapter 12 Toolbars: 
	Creating a Toolbar: 
	Adding a Toolbar to a Form: 
	Adding Buttons to the Toolbar: 
	Associating Images with Toolbar Buttons: 
	Associating Code with Clicks of Toolbar Buttons: 
	Chapter 13 Accessing Text Files: 
	Open and Save File Dialog Boxes: 
	Adding an OpenFileDialog Control to Your Form: 
	Showing the OpenFileDialog Control: 
	Determining Whether Open or Cancel Is Chosen: 
	Identifying the File to Open: 
	SaveFileDialog Class: 
	Reading from a Text File: 
	StreamReader Class: 
	Reading the Text File into the TextBox: 
	Writing to a Text File: 
	StreamWriter Class: 
	Writing from the TextBox to the Text File: 
	Closing the Text File: 
	Chapter 14 Databases: 
	Installing the Database: 
	Obtaining the Northwind Traders Database: 
	Installing the Northwind Traders Database: 
	Connecting to the Database: 
	Using Server Explorer: 
	Exploring the Database: 
	Exploring the Customers Table: 
	Database Project: 
	What the Project Does: 
	Creating the Form: 
	Importing Data Namespaces: 
	Creating a Connection: 
	Creating a Command: 
	Filling the DataGridView: 
	Chapter 15 Web Applications: 
	ASP: 
	NET: 
	NET Development Server: 
	NET Application IDE: 

	Internet Information Services: 
	Determining If IIS Is Already Installed: 
	Installing IIS: 
	Starting the IIS Admin Service: 
	Starting the Default Website: 
	URL: 
	Your Computer as the Web Server: 
	Virtual and Physical Paths: 
	Creating a Web Application: 
	Creating a Database Web Application: 
	Adding a GridView Control: 
	Locating the Database on the Web Server: 
	Adding Code: 
	Final Exam: 
	Answers: 
	Index: 


