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Wir müssen wissen, Wir werden wissen.

D. Hilbert

We are all in the gutter but some of us
are looking at the stars.

O. Wilde



Dedicated to all those who do not like
Mathematics with the hope that they will
change their mind.



Preface I

This book is an approach to Special and General Relativity from a full mathematical
point of view. When Physics is studied, there is the need for understanding its
language, that is, Mathematics. Dirac’s words describe very well what we want to
do: God used beautiful Mathematics in creating the world; therefore, we present a
part of this divine plan, the beautiful Mathematics of Special and General
Relativity. We wrote a textbook which, we believe, can be easily used by students
in Mathematics, Physics and Engineering studies; by teachers or by some other
people who are interested in this subject. If someone already knows Mathematics,
that is, both basic Geometry and Differential Geometry, this person can neglect the
first six chapters. She/he can start from Gravity in Newtonian Mechanics. People
who study Physics should start from the very beginning in order to understand the
development of Geometry. The improvement of mathematical language, in more
than two thousand and five hundred years, allowed to produce a common language
for both Calculus and Linear Algebra; this approach ends up to a dialect, the
Differential Geometry, which constitutes the basic tool of Relativity. Without the
effort to understand the nature of the Non-Euclidean Geometry, the Differential
Geometry could not occur. Without Differential Geometry, General Relativity could
not exist. The first six chapters represent the adventure of Geometry from axioms
until the Non-Euclidean Geometries through Differential Geometry. A lot of
examples and solved exercises help the reader to understand the theory. Actually,
the entire book, which is written in a unitary way, offers clear statements and
proofs. About the proofs: it offers complete proofs; all computations are presented.
In our opinion, this is the only way to understand the complicated computations
which depend on the Differential Geometry language. Reading line by line, the
reader can understand every single proof. The references which inspired us are
mentioned not only at the beginning of each chapter but also in the text. Some
proofs and some approaches of the theory are completely original. If somebody is
reading from the beginning to the end of this book, it becomes understandable why
each subject presented is important for the topic. We hope that our humble efforts
are useful, first of all, for learning people to whom this book is mainly dedicated.
We thank our colleagues; our teachers; our friends and, first of all, our students
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whose questions, discussions and remarks allowed us to enter the perfect world of
Geometry towards its amazing realization which is General Relativity. We also
want to thank Dr. Marina Forlizzi and the Springer staff for invaluable support in
publishing this book.

As a final remark, we want to say that this book was conceived about two years
ago during pleasant discussions on Mathematics and General Relativity in scientific
congresses and meetings between the authors and was concluded during the severe
period of the global Coronavirus disease. We hope that Science and its high values
can be comforting even in difficult situations like the present one, as happened so
many times in history.

Constanţa, Romania Wladimir-Georges Boskoff
Naples, Italy
March 2020

Salvatore Capozziello
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Preface II

What does a mathematical journey towards the general theory of Relativity look
like? The authors propose an original itinerary moving from Euclidean and
non-Euclidean Geometry created from axioms to models of geometric Euclidean
and non-Euclidean worlds. Differential Geometry of surfaces and then abstract
Differential Geometry are special stops for two reasons:

1. To understand non-Euclidean Geometry models from this point of view and
2. To create the language by which we can describe the General Relativity and its

consequences.

The physical world allows both Euclidean and non-Euclidean descriptions. To
have an image of this physical world, we need to continue the itinerary with
supplementary stops: Newtonian and Lagrangian Mechanics, Special Relativity to
reach, finally, General Relativity.

The content of the book is written to be self-contained. All the proofs are done
with all the details presented for the reader. The problems are solved, or they have
hints. Almost all the contents were presented to students at different university
courses and, in our experience, they were well received.

In Chap. 1, we present, using a slightly modified Hilbert’s axioms system,
Euclidean and non-Euclidean geometries and what they mean. Here, the mathe-
matical theory is built from a set of primary objects, which do not require defini-
tions, together with a set of axioms. The collection of primary objects is chosen
from the set theory. The axioms are stated in a formal form and the axiomatic theory
is built as a collection of mathematically rigorous statements deduced from the
axioms.

It exists a common part for Euclidean and Non-Euclidean Geometry, the
so-called Absolute Geometry. Absolute Geometry consists in all the results that can
be thought and proved using the axiomatic system before introducing a Parallelism
Axiom. The main theorem in Absolute Geometry is the Legendre one, which states
that the sum of measures of angles of a given triangle is less than or equal to two
right angles.
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The two consequences are the following:

1. The sum of angles in each triangle is equal to two right angles.
2. The sum of angles in each triangle is strictly less than two right angles.

A further axiom, the Parallelism Axiom, makes us to discover the Euclidean world,
corresponding to the first case, i.e. the sum of angles is equal to two right angles.

The denial of the previous Parallelism Axiom leads us to the Non-Euclidean
Geometry; here the sum of angles is strictly less than two right angles.

Euclidean Geometry and Non-Euclidean geometries are the frameworks which
formulate Newtonian Mechanics and Relativity, respectively, as we will see later.

Chapter 2 highlights how the Euclidean Geometry, previously introduced, can be
constructed and viewed using algebra and trigonometry. All happens in a
two-dimensional vector space endowed with an inner product invariant with respect
to the group of Euclidean rotations. Basic facts on Euclidean Geometry are presented,
the most important being Pythagoras Theorem and the generalized Pythagoras
theorems.

Even if it seems there is no connection between Minkowski Plane Geometry
and the geometries created from the axiomatic point of view, we present in detail
the Minkowski Plane Geometry. The construction is related to the same
two-dimensional vector space used to describe Euclidean Geometry, but instead
of the Euclidean inner product, we have a Minkowski product. There exists a group
of hyperbolic rotations which leaves invariant the Minkowski product. Minkowski
Geometry is not as simple as Euclidean Geometry. There are space-like vectors,
null vectors and time-like vectors. Minkowski-Pythagoras Theorem has different
statements with respect to the type of the involved side-vectors of the triangle. Even
though in this chapter we construct an algebraic image of the Euclidean Geometry,
we have not yet constructed images of the Non-Euclidean Geometry. The next
chapters deal with this issue.

Chapter 3 is dedicated to the tools we need to construct the first model of
Non-Euclidean Geometry. This model is constructed in the interior disk of a given
circle.

To construct, we need to understand the geometric inversion and basic facts
about Projective Geometry. A projective invariant of a special projective map,
attached to the previously given circle, allows us to construct a distance inside the
disk of the circle. The Poincaré disk model is highlighted.

The “lines”, that is, the geodesic lines of this distance, are orthogonal arcs of
circles to the given circle. It is easy to see that there are more than two
non-intersecting “lines” through a given point with respect to a given “line”. The
sum of angles of a triangle in this Poincaré model is of course less than ….

Chapter 4 is related to the Differential Geometry of surfaces. In the first part, the
surfaces are seen as subsets of a three-dimensional Euclidean space. In this context,
we understand how the Euclidean inner product of the Euclidean space induces a
way to measure lengths and angles for vectors belonging to the tangent planes
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of the surface. We can also measure length of curves that belong to surfaces, areas
of regions, and all these using the metric attached to the surface.

The Differential Geometry of a surface continues by introducing a fundamental
notion: the Gaussian Curvature of a surface at a point. If, at the beginning, the
Gaussian Curvature seems to be dependent on the fact that the surface is seen in the
Euclidean ambient space, after we prove Gauss’ formulas, we step into the intrinsic
theory of surfaces. There, Gauss’ equations and Theorema Egregium offer another
perspective: each surface can be seen as a piece of a plane endowed with a metric,
and this metric only determines the curvature.

The study continues in Minkowski 3-spaces where we have to take care of the
Minkowski-type nature of the normal vector to the surface. However, we have
almost the same picture; the Minkowski product determines a non-Euclidean metric
of a surface which allows us to conclude about the intrinsic Geometry of it.
Therefore, in both cases the surface becomes irrelevant for our study. In fact, we
study the Geometry of a metric and obtain relevant geometric aspects about the
piece of plane endowed with that metric.

The covariant derivative introduced in the last part of the chapter allows us to
define the parallel transport and the geodesics of surfaces. At the end of the chapter,
we introduce a short story about a person embedded in a surface with the aim to
reveal how the person can develop a theory about his universe, which is the surface
where he lives. The study is continued in the next chapter, where we better
understand the nature of geometric objects which appear in Differential Geometry.

Chapter 5 is fundamental for the book: the final image about the Non-Euclidean
Geometries cannot be given without what we learn here. Basic Differential
Geometry is about Differential Geometry when an extra-dimension does not exist.
In the previous chapter, we claimed that we did not know yet the mathematical
nature of the multi-index quantities which appear in the Differential Geometry of
surfaces. In this chapter, we prove the tensor character of the metric coefficients,
of the Riemann symbols, of the Ricci symbols and also for the geodesics equations.
All these multi-index quantities remain invariant when we deal with a change of
coordinates. Why this is important? The substance of General Relativity is related
to these changes of coordinates. A change of coordinates may reflect an acceleration
field which is equivalent to a gravitational field and, in the context described, a nice
example developed later is about the constant gravitational field.

The covariant derivative for contravariant vectors, which appears as a geometric
property, allows us to think of a general definition for the covariant derivative of
tensors. How we parallel transport vectors along curves, how geodesic lines appear,
and some other important properties of parallel transport of vectors along geodesic
lines are also studied. At the end of the chapter, the covariant derivation of
Einstein’s tensor allows the reader to have the first image on Einstein’s field
equations.

Chapter 6 is devoted to Non-Euclidean Geometry models and their physical
interpretation. It is worth stressing that we are dealing with models and not only
with a model. In fact, we imagine some other models of Non-Euclidean Geometry.
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There are some steps before to provide these models. Differential Geometry gives
us the possibility to see:

• how distances of the models produce the metrics;
• how the geodesics of the distances are also the geodesics of the metrics; and
• how the models are related among themselves through their metrics according to

convenient changes of coordinates.

It is important to stress that all these models are equivalent and contribute to the big
picture. Specifically, the Poincaré disk model, the Poincaré half-plane model, the
exterior disk model, the hemisphere model and the hyperboloid models are studied
and presented.

The first three models are connected among themselves by geometric inversions.
The remaining models need appropriate changes of coordinates to connect to the
first three. In particular, the hyperboloid model is described by a Minkowski metric.
At this point, we have the first connection between Non-Euclidean Geometry and
Minkowski Geometry. Next, in the Eighth Chapter devoted to Special Relativity, a
Minkowski-type metric appears giving a geometric image of the (so-called) phys-
ical reality [1].

The physical example, developed at the end of the chapter, is due to Poincaré.
The question is: can we develop the Poincaré disk model starting from simple
physical rules? The answer is yes and this is possible combining Physics and
Geometry. Even if Poincaré developed the model stating that reality cannot be fully
understood, after this example, it is easy to accept the fact that the Geometry is
related to the Relativity description. In fact Non-Euclidean Geometry, seen through
Differential Geometry, is needed to understand basic facts of General Relativity, as
we see later.

Euclidean Geometry constitutes the framework of the Newtonian Mechanics.
Chapter 7 is dedicated to understand how forces can explain what is happening in
our surrounding world modeled into a three-dimensional Euclidean Space where
only one clock gives the universal time. In this sense, the Newtonian Mechanics
reveals an absolute space and an absolute time [2].

It is described as the gravitational force together with the gravitational field.
A mathematical artifact, the gravitational potential, is involved in two fundamental
results: the vacuum field equation and the gravitational field equation. Looking at
these equations and how difficult we mathematically obtained them, somebody can
think that this is the maximum we can say about the gravitational field. But the tidal
forces and the tidal acceleration equations offer another perspective. The vacuum
field equation is encapsulated in the trace of the Hessian matrix involved in tidal
acceleration equations.

If we try to obtain the geometric equivalent of these equations in a curved space,
that is, if we cancel out the Euclidean three-dimensional space, the Hessian matrix
is replaced by a curvature-dependent tensor whose trace is the Ricci symbol. In the
future, we prove via Fermi coordinates that this is a possible way to obtain
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Einstein’s vacuum field equations. This is the first geometric change of the
Euclidean frame when one studies forces.

This situation may arouse another important change of perspective.
Suppose we have a force and the trajectories of a point subjected to this force. Is

it possible to locally find a metric whose geodesics are the previous trajectories?
The answer is yes. The Euler-Lagrange equations become the equations of the
previous trajectories and the same Euler-Lagrange equations are the geodesic
equations of a metric induced by another mathematical artifact called Lagrangian.

The study of the Lagrangian, starting from the mechanical one, is made through
a function called action. If the first-order variation of the action vanishes, we obtain
the Euler-Lagrange equations. Later, we prove how another action, the Hilbert
action, allows us to derive the Einstein field equations in General Relativity.

Kepler’s laws are also studied in this chapter with the aim to prepare the reader's
understanding about planet trajectories in a metric, of course, later, in the part
related to General Relativity.

Chapter 8 is devoted to Special Relativity. Reflection and refraction of light were
explained in a satisfactory way by Newton who looks at light rays as trajectories of
particles (after called photons).

In the middle of XIXth century, James Clark Maxwell offered another view: the
light is an electromagnetic wave and it satisfies four equations, known as Maxwell’s
equations of the Electromagnetism. If we try to put them in accordance with
Newton’s theory, it appears the necessity of considering a medium in which the
electromagnetic waves travel through space. It was called by physicists of that time
the ether.

Ernst Mach did not agree with the idea of ether and observed the necessity of the
revision of all fundamental concepts of Physics [2].

Michelson-Morley experiment, which initially was designed to reveal the ether,
had a result completely different with respect to the expectations. Albert Einstein
explained the result of the experiment in a theory where he revised in a fundamental
way the ideas of space and time, and no place for ether remained. The absolute
space and the absolute time of the Newtonian mechanics were replaced by the
specific space and the specific time of each observer. Different observers mean
different inertial frames of coordinates; each one having its time axis and its space
axes [3].

Einstein formulated the Special Relativity starting from two main postulates:

1. The laws of Physics has to be the same in all inertial reference frames.
2. The speed of light in vacuum, denoted by c, is the same for all the observers and

it is the maximum speed reached by a moving object.

Presenting the theory, we preferred to balance it starting from two important works,
the book by Callahan [4] and a paper by Varićak [5], where we found the most
possible geometric approach to Special Relativity.
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Therefore we have adapted, in a new form, the basic ideas discussed there. The
first idea is related to the consideration of two inertial frames of coordinates, one
moving at a constant speed, another considered at rest, in which the two observers
have to agree on the same laws of Physics [4]. In this way, the old Galilean
transformations of coordinates are replaced by the Lorentz transformations. There
are a lot of consequences: another formula for velocity addition, the time dilation,
the length contraction, the covariance of Maxwell’s law under Lorentz transfor-
mation, the rest-energy formula, the Doppler effect and so on. The second one is
related to the geometric understanding of these facts: we have a sort of equivalence
between the so-called “geometric coordinates” and the “physical coordinates” [5].
The entity called “physical spacetime” is understood through the geometric
spacetime where the results are easier to be viewed. This idea can be originally seen
in [3].

Then, when we introduce a constant gravitational field via the accelerated frames
(see also [4] point of view), we can prove the bending of the light-rays; the
interpretation of the Doppler gravitational effect shows that accelerated frames are
not inertial ones. Further, a contradiction between the Minkowski flat spacetime of
Special Relativity and the gravitational Doppler effect occurs. A physical theory
containing the old Mechanics, including gravity, and the modern electromagnetic
waves theory needs to integrate the accelerated frames. In this way, we can add
another argument towards the General Relativity.

Chapter 9 is devoted to General Relativity and Relativistic Cosmology. There is
no other better description of the subject than the sentence by John Archibald
Wheeler: Spacetime tells matter how to move; matter tells spacetime how to curve
[6, 34]. How the space is curved appears from the Einstein field equations

Rij � 1
2
gijR ¼ 8…G

c4
Tij:

In the left-hand side, we have “Geometry,” a metric gij and its derivatives are
involved; in the right-hand side, we have a tensor depending on matter, the
so-called energy-momentum tensor. The energy-momentum tensor establishes the
metric; the metric produces geodesics described by the equations

d2xr

dt2
þCr

pq
dxp

dt
dxq

dt
¼ 0:

They are trajectories of objects moving according to the Geometry of spacetime.
Therefore, the geodesic equations are the equivalent equations of curves which

satisfy F
! ¼ m a

!
from Mechanics.

The equations of geodesics of an initial metric switch accordingly a change of
coordinates into the equations of the geodesics of the newly obtained metric.
Changes of coordinates may provide a new state of a given frame; therefore, the
new state is described by a new metric provided by the old state metric via the
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coordinates change. The reader will understand how it works looking at the case
of the constant gravitational field.

The chapter starts looking at the differences between the classical Newtonian
Mechanics and Einstein’s landscape of gravity described by Geometry. Einstein’s
field equations can be derived from the Hilbert action. A generalization of such an
action, the so-called f ðRÞ gravity is also presented. The straightforward solution, in
the case of vacuum field equations for spherical symmetry, is Schwarzschild’s one.
We present computations related to the orbits of planets and the bending of light
rays.

Fermi’s viewpoint on Einstein’s vacuum field equations allows to obtain the
classical counterparts of the relativistic equations in the case of weak gravitational
field.

After, we analyze the Einstein static universe and the basic considerations on the
cosmological constant, as a part of the classical approach to the General Relativity.

A “metric for the Universe” is obtained for the cosmic expansion. It is the
Friedmann-Lemaître-Robertson-Walker metric. The way we obtain it is related to
the energy-momentum tensor and the Cosmological Principle.

Black holes are an important prediction of General Relativity. We propose an
introduction to their theory starting from the Rindler metric. The singularities which
can be removed using Rindler’s idea are geometric only. Schwarzschild metric is
important in the study of black holes. The anomalies of black holes are explained
via Kruskal-Szekeres coordinates, and light cones inside and outside black holes are
presented.

Another important prediction, the existence of gravitational waves, is discussed
in this chapter to give a more complete picture about the physical landscape of
General Relativity. Furthermore, cosmic strings are presented as a hypothetical
structure considered, until now, only as a possible solution of Einstein’s field
equations. Another important solution of Einstein’s field equations is Gödel, which
succeeded to prove that a homogeneous universe without a global time coordinate
can theoretically exist. We present the above solutions with all the details necessary
to be easily understood at undergraduate student level.

In Chap. 10, as a full geometric realization of Relativity, we present the so-called
Affine Universe and the de Sitter spacetime. From a cosmological point of view,
this solution is fundamental to discuss, at an elementary level, the problems of
primordial inflation and the late accelerated behavior, often dubbed as dark energy.
Starting from two different parameterizations, it is possible to describe the cos-
mological constant, the main ingredient of de Sitter solution. Essentially, it is
possible to show that a curved universe can be achieved without a mass distribution.
A possible explanation can be obtained starting from a Minkowski spacetime where
gravitational field (without masses) is considered. In this sense, this is a full geo-
metric realization of Relativity.

Constanţa, Romania Wladimir-Georges Boskoff
Naples, Italy Salvatore Capozziello
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Chapter 1
Euclidean and Non-Euclidean
Geometries: How They Appear

Omnibus ex nihilo ducendis sufficit unum.

G. W. von Leibniz

We intend to construct these geometries using a slightly modified Hilbert’s axioms
system in the same way as it is done in [7–10]. An interesting thing is related to
the fact that it exists a common part for Euclidean and Non-Euclidean Geometry,
the so called Absolute Geometry. Roughly speaking, the Absolute Geometry consists
in all theorems that can be thought and proved using the axiomatic system before
introducing a parallelism axiom.

In our vision, the most important theorem in Absolute Geometry is the Legendre
one:

“The sum of angles of a triangle is less than or equal two right angles.”
It allows us to prove that only two situations hold:
“The sum of angles in each triangle is equal to two right angles.”
or, the other situation:
“The sum of angles in each triangle is strictly less than two right angles”
Choosing an appropriate parallelism axiom we discover the Euclidean world,

corresponding to the first case, i.e. the sum of angles is equal to two right angles. The
denial of the previous parallelism axiom leads us to the Non-Euclidean Geometry;
here the sum of angles is strictly less than two right angles. We have used few figures
to illustrate these concepts, because, the reader can remain with a false image about
how lines look like. However, in Absolute Geometry the reader can think and draw
images as in the Euclidean Geometry, because all the objects and all the theorems
valid in Absolute Geometry are also valid in Euclidean Geometry. Here the lines
are the ordinary straight lines of the plane. The images can be thought in a more
complicated way if someone try to imagine them in a model for the Non-Euclidean
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Geometry, because lines can look like arcs of circles, segments, etc. All the proofs
are reported in such a way that they can be understood by reading them directly.

1.1 Absolute Geometry

The key idea of the axiomatic method is to build a theory from a set of primary
objects, which do not require definitions, together with a set of axioms. Therefore
the theory is built as a collection of mathematically rigorous statements deduced
from the axioms.

The collection of primary objects of the Geometry are the following, inherited
from set theory. The objects of the first collection are called points, and they are
denoted by capital letters A, B,C, . . . The second collection contains lines, denoted
by l, l ′, . . . The third collection contains planes, denoted byGreek lettersα,β, γ, . . .

Finally, the last collection contains only one element called space, denoted by S.
The first important group of axioms is related to the incidence of the objects

described above. They describe who belongs to who, which set of objects can be
included in which, how many objects are necessary to create another object, etc. Let
us introduce the so called “axioms of incidence”.

The first axiom which helps us to construct a Geometry establishes the existence
and uniqueness of a line and its connection with to two given distinct points.

Axiom I1: For any two distinct points A and B there exists a unique line l which
is incident with both A and B, i.e. A ∈ l and B ∈ l.

The unique line l of the previous axiom is often denoted by AB, indicating that
it is the line that passes through the points A and B.

Axiom I2: There exist at least two distinct points on any line. Moreover, there exist
at least three distinct points which are not on the same line.

In view of the axiom, it seems useful to be able to distinguish between points
which are on a line from points which do not belong to the same line, therefore we
introduce the following notion.

Definition 1.1.1 Any number of points are called collinear if there is a line which
is incident to all of them. Otherwise, they are called non-collinear.

For example, axiom I1 asserts that every two distinct points are collinear, and
axiom I2 guarantees the existence of at least three non-collinear points in the Geom-
etry we are constructing. The next two axioms establish the relationship between
points and planes.

Axiom I3: For any three arbitrary non-collinear distinct points A, B and C , there
exists an unique plane α which contains A, B and C .
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In general, such a plane is denoted by α := (ABC).
The following axiom establishes the relationship among points on a given line

and a plane containing that line. This axiom plays a crucial role once we construct
geometries with more number of points and lines.

Axiom I4: If two points A and B, which determine the line l, lie in the plane α,
then every point of the line l lies in the plane α.

In this case, we write l ⊂ α (regarded as a subset of points). The following axiom
states that the minimum number of points in an intersection of two planes is two.

Axiom I5: If two planes α and β have a common point A, then they have another
common point B distinct from A.

An immediate consequence of axioms I4 and I5 is that if the planes α and β
contain the two distinct points A and B, then they contain the whole line l = AB,
and we write α ∩ β = {l}, again as an equality of sets of points.

The last axiom of incidence states the minimum number of points necessary to
create the space.

Axiom I6: There exist at least four points which do not belong to the same plane.
In the view of this last axiom I6, we give the following.

Definition 1.1.2 Any number of points are called coplanar if there is a plane which
passes through all of them. Otherwise, they are called non-coplanar.

Axioms I1–I6 give rise to a simple model of a space created only with 4 points, 6
lines and 4 planes.

The model described above can be written as follows. The distinct points are
A, B,C, D, and the six lines are given by the following sets of points: lAB = {A, B},
lAC = {A,C}, lBC = {B,C}, lBD = {B, D}, lCD = {C, D}, and lAD = {A, D}. The
four planes are (ABC) = {A, B,C}, (ABD) = {A, B, D}, (ACD) = {A,C, D},
(BCD) = {B,C, D}, and the space built by Axiom I6 is by definition (ABCD).

We study below some immediate consequences of the group of six axioms of
incidence. Notice that the results we prove below make sense even when applied to
the simple model described above.

Theorem 1.1.3 Two distinct lines have at most one common point.

Proof Let l1, l2 two distinct lines.Wedistinguish the following two cases. If l1 ∩ l2 =
∅, then they have no point in common, therefore the conclusion of the theorem is
true.

If l1 ∩ l2 �= ∅, then let A ∈ l1 ∩ l2 a point in their intersection. We assume, by
contradiction, that there is another point B ∈ l1 ∩ l2, B �= A. In particular, A, B ∈
l1, therefore l1 = AB (axiom I1). Similarly, A, B ∈ l2, therefore l2 = AB. Axiom
I1 says then that AB = l1 = l2, in contradiction with the hypothesis that l1 �= l2.
Therefore, our assumption on the existence of a different point B ∈ l1 ∩ l2 is false.
In conclusion, A is the only common point of the two lines l1 and l2. �
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The previous theorem motivates the following

Definition 1.1.4 Two distinct lines that intersect in exactly one point are called
secant lines.

The “Axioms of Order” deal with the undefined yet relation of betweenness, i.e. of
a point lying between two other points. Once the axioms of order appear, the previous
very simple model of Geometry fail to exists. The axioms of order are formulated as
follows.

Axiom O1: If a point B is between A and C , then A, B,C are three distinct
collinear points on a line l, and B is between C and A.

Imagine the line as a circle. The previous axiom tells us that such an image is
not possible. The line l has no predefined “orientation”. The only correct concept of
order among points is defined to be “between”.

Axiom O2: For every pair of distinct points A and B, there is at least another
distinct point C such that B is between A and C .

An immediate consequence of axiom O2, combined with axiom I2, is that a line
contains at least three points. The axiom can be applied again to the pair {A,C}, so
there exists another point D such that C is between A and D, etc.

Axiom O3: Given three arbitrary points on a line, at most one of them is between
the other two.

Notice that the axiom O2 does not guarantee the existence of a point B between
two given ones A and C . This will be proven below. Nevertheless, if we assume that
there exists B between A and C , then the axiom O3 guarantees that A cannot be
between B and C , and C cannot be between A and B. Another theorem will clarify
the situation of three given points on a line.

AxiomO4(Pasch): Let A, B,C be three non-collinear points, and l a line situated
in the plane (ABC) which does not pass through any of the points A, B,C . If the
line l contains a point which is between A and B, then the line l contains either a
point between A and C or a point between B and C .

We denote by ABC when B is on the line AC and B is between A and C , and
we will refer to it as the order ABC . Note that by axiom O1, the order ABC is the
same as the order CBA.

An immediate consequence of the axioms of order is the following

Theorem 1.1.5 Given two points A and B on a line l, there is a point M ∈ l such
that we have the order AMB.

Proof There exists a pointC not on the line AB (axiom I2). Then there exists a point
D such that we have the order ACD (axiom O2).

Similarly, there exists the point E with respect to the order DBE (axiom O2).
Then we apply axiom O4 for the points C, D, E and the line AB, so there exists a
point M on the line AB such that we have order AMB. �
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The previous theorem suggests the following

Definition 1.1.6 The set of points M on the line AB with the property that M is
between A and B is called a segment, and it is denoted by [AB].

Formally we can write

[AB] = {M ∈ AB | AMB} ∪ {A, B}

The interior of the segment [AB] is defined to be the set [AB] − {A, B}.
Note that the segment [AB], seen as a set of points, is equal to the segment [BA].

Moreover, the order AMB is equivalent to M ∈ [AB] − {A, B}, so the previous
theorem can be reformulated as follows: the interior of every segment is non-empty.
We have also [AA] = {A}. Moreover, we can define now one of the most important
object of any Geometry: the triangle.

Definition 1.1.7 A configuration of three distinct non-collinear points A, B,C is
called a triangle, and it is denoted by �ABC . Moreover, the points A, B,C are
called the vertexes of the triangle, and the segments determined by each pair of two
vertexes are called the sides of the triangle.

The next theorem guarantees the existence and uniqueness of ordering for three
collinear points.

Theorem 1.1.8 Let A, B,C three points on a line l. Then one and only one of the
orders ABC, ACB or BAC occurs.

Proof We assume that we have neither the order ACB, nor the order BAC , and we
prove that we must have the order ABC . In our Euclidean intuition, we will prove
that if B is not “to the left” of A and not “to the right” of C , then it must be between
A and C .

There exists a point D /∈ AC (axiom I2). Then there exists a point E ∈ DB with
the order EDB (axiomO2). Looking at the triangle �BEC and the secant line AD,
then there is a point F at the intersection of AD and EC , such that we have the order
EFC (axiom O4). In the same way, there exists the point {G} = CD ∩ AE , such
that we have the order AGE . The line CG is a secant line for the triangle �AEF , as
we have the order ADF . Moreover, considering the triangle �AFC and the secant
line DE , it follows the order ABC . �

The following theorems establish incidence relations between a line and a triangle.
Historically they are attributed to Moritz Pasch, whose influential works have been
one century ago in the center of attention of many authors interested in foundations
of Geometry.

Theorem 1.1.9 If a line l does not intersect two sides of a triangle �ABC, then it
cannot intersect the third one, either.
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Proof Without loss of generality, we can assume l does not intersect neither [AC] nor
[BC]. By contradiction, we assume l intersects [AB], so l contains a point between
A and B. Then the axiom O4 affirms that l must contain either a point between A
and C , or a point between B and C , in contradiction with the hypothesis. �

Theorem 1.1.10 If a line l intersects two sides of a triangle �ABC, then it cannot
intersect the third one.

Proof Let us assume, by contradiction, that the line l intersects all sides [BC], [AC],
and [AB] of the triangle�ABC in respectively D, E , and F .We can assume the order
EFD on the line l. We consider the triangle �CDE and the secant line AB, which
intersects [DE] in F . It follows that AB intersects either [DC] or [EC] (axiomO4).
In both cases, it follows that AB intersects either [AC] or [BC], respectively, in two
points, which means that either AB = BC or AB = AC (axiom I1, in contradiction
with the assumption that �ABC is a triangle. �

In what follows, we introduce the notion of half-line. Let O be a fixed point on
a line l and let A, B ∈ l be two points such that we have the order OAB. Then we
call A and B to be on the same side of the point O . This defines a binary relation on
the set of points of l.

Theorem 1.1.11 The binary relation defined above is an equivalence relation on
the set of points of a line l.

Proof Reflexivity is obviously true, as for A = B, we have clearly the order OAA.
The symmetry follows from the fact that the order OAB is the same as the order
BAO (axiomO1). For the transitivity, we observe: if we have OAB and OBC , then
it follows the order OAC . �

In this context, we can define a half-line as follows.

Definition 1.1.12 The equivalence class of a point on a line l with respect to a fixed
point O ∈ l is called the half-line with vertex (origin) O .

An equivalent formulation would be as follows: given a pair of points A and B,
the half-line starting at A and pointing in the direction of B consists of all points P
so that we have either the order ABP , or the order APB. A half-line AB is often
called a ray emanated from A towards B.

Theorem 1.1.13 Let O and A be two points on a line l. The set of points A′ ∈ l such
that we have the order A′OA forms a half-line with origin O.

Proof Let A′ be an arbitrary point such that A′OA. Let B be a representative of
the equivalence class defined by A with respect to O , i.e. A and B are on the same
side of O . Thus we have the order OAB. Let B ′ ∈ l such that we have the order
B ′OB. From the orders BAO and B ′OB it follows the order AOB ′. But the orders
A′OA and B ′OA exclude the order A′OB ′ (try to prove this assertion). Therefore
the points A′ and B ′ are on the same side of O , which proves the conclusion of the
theorem. �
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The theorem above affirms that a point O on a line l divides the line in two half-
lines. For any point A �= O , we denote one half-line by (OA, and the other half-line
by (OA′, also called the complementary half-line of (OA.

The set of points of a half-line is a total ordered set. Indeed, for two points A and
B on a half-line, we have either A coincides with B, of we have one of the orders
OAB or OBA. If we have the order OAB, we say A precedes B. Therefore, in view
of this total ordering, for any two distinct points A and B on a half-line, either A
precedes B or B precedes A.

In view of this remark, we can arrange any finite set of points on a line l in the
order of their precedence. Moreover, if we denote the ordered points by A1, A2, . . . ,
then for any i < j < k we have the order Ai A j Ak . This proves the following:

Theorem 1.1.14 There is an order preserving, one-to-one correspondence between
any set of n points on a line l and the set of natural numbers {1, 2, . . . , n}.

Similarly as in the case of half-lines, one can introduce the following binary
relation of the set of points in a plane.

Definition 1.1.15 If l is a line in a plane π and A, B are two points in π such that
[AB] ∩ l = ∅, then we say that the points A and B are on the same side of the plane
π with respect to the line l.

This defines a binary relation on the set of points of the plane π.
As before, we prove the following:

Theorem 1.1.16 The binary relation defined above is an equivalence relation.

Proof Reflexivity and symmetry are obviously true.We have to prove the transitivity
of this relation. Let A, B and B,C on the same side of the plane π with respect to the
line l. If follows that the intersections of l with [AB], respectively [BC], are empty.
From a previous theorem it follows that l ∩ [AC] = ∅, so the points A,C are on the
same side of the plane with respect to the line l. �

In view of the theorem above, we give the following:

Definition 1.1.17 Let l be a fixed line in a plane π and a point A ∈ π − l. The
equivalence class of A with respect to the line l is defined to be the half-plane
determined by A and l. The line l is called the border of this half-plane.

Then we have the following.
Let l be a fixed line, and let A /∈ l. Then the set of points A′ with the property that

the segment [AA′] intersects the line l forms a half-plane of border l.

Definition 1.1.18 This half-plane is called the complementary half-plane of the half-
plane determined by l and A.

Note that every line l in a plane, divides the plane in two half-planes, both with
border l.
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Definition 1.1.19 An angle is defined to be a pair of two half-lines h and k with the
same origin O , denoted by ∠(hk). The point O is called the vertex of the angle, and
the half-lines h and k are called the sides of the angle.

If h = (OA and k = (OB are two half-lines defined by three non-collinear points
O, A and B (O is the vertex of the angle), then we will also denote the angle ∠(hk)
by ∠AOB.

Let us consider an angle ∠(hk) in a plane π. Then, there are two distinguished
half-planes: one is determined by the underlying line of the half-line h and the points
of the half-line k, and, similarly, the other one is determined by the underlying line
of the half-line k and the points of the half-line h.

Definition 1.1.20 We call the interior of the angle ∠(hk), the intersection of the
two half-planes above. The exterior of the angle ∠(hk) consists of all the points in
the plane which are neither in the interior, nor on the sides of the angle ∠(hk).

In a similar fashion, one can define the interior of a triangle as follows.

Definition 1.1.21 The interior of the triangle �ABC is the intersection of the inte-
riors of its angles.

Consider n half-lines with common vertex O and assume that there exists a line
l �	 O which intersects all of them.We can order all the intersection points (A1A2A3,
etc.). This gives us the notion of a half-line being between two other half-lines, and
implicitly an order on the set of half-lines.

The following theorem is usually known as the crossbar theorem, or, sometimes,
as the transversal theorem. In the present approach, the proof relies on axiom O4,
Pasch’s axiom.

Theorem 1.1.22 (Crossbar Theorem) Let∠(hk) be an angle of vertex O. Let A ∈ h
and B ∈ k two points different than O, and T a point in the interior of the angle
∠(hk). Then the half-line (OT intersects the segments [AB] (Fig.1.1).

Proof Denote by HA the half-plane determined by OB and the point A. Consider a
point A′ on the complementary half-line of (OA, and HA′ the half-plane determined
by OB and the point A′. We apply Pasch’s axiom O4 for the triangle �AA′B and
the half-line (OT , which intersects [AA′] in O . Then (OT should intersect either
[AB] or [A′B]. If (OT doesn’t intersect [AB], it exists a point L ∈ [A′B] ∩ (OT ,
in collision with the fact that all points of (OT are in HA′ . �

As a final remark, we can observe that the complementary half-line of (OT , say
(OT ′ is included in the interior of the opposite angle of∠AOB, say∠A′OB ′, there-
fore it cannot intersect neither [A′B] nor [AB], because they have empty intersection
with the interior of ∠A′OB ′.

Angles as ∠AOT and ∠T OB are called adjacent angles.
We introduce below the axioms of congruence and we study their immediate

consequences. The congruence notion we introduce below is actually an equality
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Fig. 1.1 Crossbar theorem

notion, but it is called different just to make distinction between equality of real
numbers and equality of geometric objects. The relationship between the set of real
numbers and Geometry is addressed later on.

The formulation of these axioms is after Arthur Rosenthal [10], which has con-
siderably modified the original Hilbert’s formulation of Axiom E4, by omitting the
symmetry and transitivity properties of the congruence of angles. These properties
can be actually proven from the axioms below.

The following axioms introduce the concept of congruence (equality) of segments
and angles. The notion of congruence is written using the special symbol ≡, in order
to eliminate any confusion between this geometric notion with the equality notion
from set or number theories. We will reserve the equality symbol = for when we
define the values of segments and angles.

Axiom E1 : If A and B are two points on a line l, and A′ is a point on a line l ′,
where l ′ is not necessarily distinct from l, then there exists a point B ′ on l ′ such that
[AB] ≡ [A′B ′]. For every segment [AB] ≡ [BA].

As we can see from the previous axiom, the congruence [AB] ≡ [A′B ′] is pro-
vided by the ability to construct the point B ′ on the line l ′ with the requested property.

Axiom E2 : If [A′B ′] ≡ [AB] and [A′′B ′′] ≡ [AB], then [A′B ′] ≡ [A′′B ′′].
Note that this axiom is not the transitivity property of congruence of segments.

Transitivity will be proved in a theorem below. The next axiom establishes the addi-
tivity of the congruence of segments.

Axiom E3 : Let [AB] and [BC] be two segments of a line l, without common
interior points, and let [A′B ′] and [B ′C ′] be two segments without common interior
points on a line l ′, where l ′ is not necessarily distinct from l. If [AB] ≡ [A′B ′] and
[BC] ≡ [B ′C ′], then [AC] ≡ [A′C ′].

The next axiom defines the congruence of angles in a plane.
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Axiom E4 : Let ∠(hk) be an angle in a plane π, and let l ′ be a line in a plane
π′, where π′ is not necessarily distinct from π. Let h′ be a half-line of l ′, where
h′ is not necessarily distinct from h. Then in one of the half-planes determined by
l ′, there uniquely exists a half-line k ′, such that ∠(hk) ≡ ∠(h′k ′). For every angle,
∠(hk) ≡ ∠(hk) (reflexivity), and ∠(hk) ≡ ∠(kh) (symmetry).

As above, the congruence∠(hk) ≡ ∠(h′k ′) is provided by the ability to construct
the angle ∠(h′k ′) in one of the half-planes of π′.

Axiom E5 : For any angles, if ∠(h′k ′) ≡ ∠(hk) and ∠(h"k") ≡ ∠(hk), then
∠(h′k ′) ≡ ∠(h"k").

The next axiom is establishing conditions for congruences of angles of triangles.
For an angle of a triangle �ABC , say ∠ABC , we understand the angle determined
by the half-lines (BA and (BC .

AxiomE6 : Let�ABC and�A′B ′C ′ be two triangles. If [AB] ≡ [A′B ′], [AC] ≡
[A′C ′], and ∠BAC ≡ ∠B ′A′C ′, then:

∠ABC ≡ ∠A′B ′C ′ ∠ACB ≡ ∠A′C ′B ′.

The first two congruence axioms give the following result.

Theorem 1.1.23 The congruence relation for segments is an equivalence relation.

Proof We prove first the following statement: if we have two segments [AB] ≡
[A′B ′], then [AB] ≡ [B ′A′]. Indeed,wehave [B ′A′] ≡ [A′B ′] (axiomE1). Therefore
[AB] ≡ [A′B ′] and [B ′A′] ≡ [A′B ′], so, using axiom E2, it follows [AB] ≡ [B ′A′].

Reflexivity now follows from axiom E1 ([AB] ≡ [BA]) and, from the statement
above it follows [AB] ≡ [AB].

How to prove the symmetry?We have [A′B ′] ≡ [A′B ′], via the reflexivity proved
above. Moreover, if [AB] ≡ [A′B ′] it follows that [A′B ′] ≡ [AB], via Axiom E2. It
is very important to notice that only from this point on, we have the right to assert
that [AB] ≡ [CD] is the same as [CD] ≡ [AB].

For transitivity, we consider [AB] ≡ [A′B ′], and [A′B ′] ≡ [A′′B ′′]. But the
congruence [A′B ′] ≡ [A′′B ′′] implies the congruence [A′′B ′′] ≡ [A′B ′] (symme-
try). Then, from [AB] ≡ [A′B ′] and [A′′B ′′] ≡ [A′B ′], it follows the congruence
[AB] ≡ [A′′B ′′] (axiom E2). �

The congruence relation, being an equivalence relation, gives rise to a partition of
the set of all segments in disjoint equivalence classes. This fact allows us to define
all segments in an equivalence class to have the same value. We denote the value of a
segment [AB] by simply AB. Note that the same notation AB is also used for the line
which passed through the points A and B. In general it is clear from the context if we
refer to the line AB or to the value of the segment [AB]. Moreover, the congruence
[AB] ≡ [CD] can be also written as an equality of values, AB = CD, when there
is no danger of confusion between equivalence classes and their representatives. In
what follows, going back and forth between congruence of segments (or angles)
and equality of their values, technically requires one to prove the independence of
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chosen representatives in a given equivalence class. For the simplicity of geometric
arguments, we will omit these technical details.

Theorem 1.1.24 Let (OA be a half-line with origin O. If C and C ′ are two points
on (OA such that [OC] ≡ [OC ′], then the points C and C ′ coincide.

Proof Without loss of generality, we can assume the order OCC ′. Let I be a point
which does not belong to the half line (OA (Axiom I3). Then, in the triangles�OC I
and �OC ′ I , we have: [OC] ≡ [OC ′], [OI ] ≡ [OI ] and ∠I OC ≡ ∠I OC ′. From
Axiom E6 it follows ∠OIC ≡ ∠OIC ′, therefore the half lines (IC and (IC ′ coin-
cide as sets (Axiom E4). This implies (IC ∩ (OA = (IC ′ ∩ (OA, so C and C ′
coincides. �

Sometimes we write C = C ′ whenever C and C ′ coincide. Notice that the equal
sign which expresses the coincidence is not the same as the usual symbol = of
equality of numbers.

Note that Axiom E3 guarantees the additivity of the values of segments on same
line. Indeed, if A, B,C and A′, B ′,C ′ are points on the lines l and l ′, respectively,with
orders ABC and A′B ′C ′, respectively, such that [AB] ≡ [A′B ′], [BC] ≡ [B ′C ′],
then if followsdirectly fromAxiomE3 that [AC] ≡ [A′C ′].Wecan formallywrite the
following equalities in terms of values of segments: AC = AB + BC , and A′C ′ =
A′B ′ + B ′C ′.

Theorem 1.1.25 The congruence relation for segments preserves the order relation.

Proof Consider the points A, B,C on a line l, with the property that B is an interior
point of the segment [AC], i.e. we have the order ABC . Moreover, let us consider
the points A′, B ′,C ′ on another line l ′, such that [AB] ≡ [A′B ′], [AC] ≡ [A′C ′],
and B ′,C ′ are on the same half-line of vertex A′.

If we show that B ′ is interior to [A′C ′], and [B ′C ′] ≡ [BC], then it will follow the
order A′B ′C ′, which is the conclusion of our theorem. Indeed, assume the existence
of another point C ′′ ∈ l ′ with order A′B ′C ′′, such that [B ′C ′′] ≡ [BC]. [A′B ′] ≡
[AB] and [B ′C ′′] ≡ [BC], so, by additivity, it follows [A′C ′′] ≡ [AC]. But [A′C ′] ≡
[AC], thus [A′C ′′] ≡ [A′C ′], therefore it follows that C ′ = C ′′. Thus we have the
desired order A′B ′C ′. �

In view of the results above, one can define the difference operation among seg-
ments. Indeed, if [AB] and [AC] are two segments on a line l, such that the have
order ABC , then the difference of the values of [AC] and [AB] is the value of the
segment [BC], respecting the additivity property AB + BC = AC . Therefore we
can write AC − AB = BC .

Definition 1.1.26 Two triangles�ABC and�A′B ′C ′ are called congruent, and we
denote by �ABC ≡ �A′B ′C ′, if they have congruent sides and congruent angles,
respectively.
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Concretely, �ABC ≡ �A′B ′C ′ if the following six congruences are respected:

[AB] ≡ [A′B ′], [BC] ≡ [B ′C ′], [CA] ≡ [C ′A′],

∠BAC ≡ ∠B ′A′C ′, ∠ABC ≡ ∠A′B ′C ′, ∠BCA ≡ ∠B ′C ′A′.

When there is no danger of confusion, we denote by ∠A the angle ∠BAC . The first
result about congruence of triangles is the following.

Theorem 1.1.27 If a triangle �ABC has two congruent sides, then it has two con-
gruent angles, too. In this case, we call the triangle �ABC to be isosceles.

Proof Without loss of generality, we can assume [AB] ≡ [AC]. Then the triangles
�BAC and �CAB are in the conditions of Axiom E6, thus ∠ABC ≡ ∠ACB. �

The next theorem is the first important congruence case of triangles.

Theorem 1.1.28 (SAS) Let �ABC and �A′B ′C ′ be two triangles, such that
[AB] ≡ [A′B ′], [AC] ≡ [A′C ′], and∠BAC ≡ ∠B ′A′C ′. Then�ABC ≡ �A′B ′C ′
(Fig.1.2). (This congruence case is called Side-Angle-Side (SAS).)

Proof Using axiom E6, we have ∠ABC ≡ ∠A′B ′C ′ and ∠ACB ≡ ∠A′C ′B ′. The
only congruence left to show is [BC] ≡ [B ′C ′]. Consider a point C ′′ on the half-line
(B ′C ′ such that [BC] ≡ [B ′C ′′] (Axiom E1). Consider now the triangles �ABC
and �A′B ′C ′′. From [AB] ≡ [A′B ′], [BC] ≡ [B ′C ′′], and ∠ABC ≡ ∠AB ′C ′′, if
follows from axiom E6 that ∠BAC ≡ ∠B ′A′C ′′. From the hypothesis, we have
∠BAC ≡ ∠B ′A′C ′. Then we have C ′ and C ′′ such that the angles ∠C ′A′B ′
and ∠C ′′A′B ′ are congruent. Since C ′ and C ′′ are in the same half-plane with
respect to the line A′B ′, it follows from axiom E4 that (A′C ′ and (A′C ′′ coincide,
thus C ′ = C ′′. �

The next theorem establishes the second case of triangle congruence.
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Theorem 1.1.29 (ASA) Let �ABC and �A′B ′C ′ be two triangles, such that
[BC] ≡ [B ′C ′], ∠ABC ≡ ∠A′B ′C ′, and ∠ACB ≡ ∠A′C ′B ′. Then �ABC ≡
�A′B ′C ′ (Fig.1.3). (This congruence case is called Angle-Side-Angle (ASA).)

Proof Let A′′ ∈ (B ′A′ such that [BA] ≡ [B ′A′′]. Consider the triangles�BAC and
�B ′A′′C ′. Axiom E6 guarantees that ∠BCA ≡ ∠B ′C ′A′′. Since A′ and A′′ are in
the same half-plane with respect to B ′C ′, it follows that (C ′A′ and (C ′A′′ coincide.
Therefore, A′ = A′′. We apply Theorem SAS for the triangles�ABC and�A′B ′C ′,
where we now have [AB] ≡ [A′B ′], [BC] ≡ [B ′C ′] and ∠ABC ≡ ∠A′B ′C ′. �

Theorem 1.1.30 (Additivity of Angles) If ∠(hl) ≡ ∠(h′l ′), and ∠(lk) ≡ ∠(l ′k ′),
where l and l ′ are half-lines interior to the angles ∠(hk) and ∠(h′k ′), then ∠(hk) ≡
∠(h′k ′).

Proof Let H and K be two points such that H ∈ h and K ∈ k. Using Crossbar
Theorem, it follows that l ∩ [HK ] �= ∅. Let {L} = l ∩ [HK ]. Now take H ′ ∈ h′
and L ′ ∈ l ′ such that [OH ] ≡ [O ′H ′] and [OL] ≡ [O ′L ′], and take K ′ on the half-
line complement to (L ′H ′ such that [L ′K ′] ≡ [LK ]. Notice that the congruence
�OHL ≡ �O ′H ′L ′ (case SAS) implies [HL] ≡ [H ′L ′] and∠OHL ≡ ∠O ′H ′L ′.
But the segments [HL], [LK ]; [H ′L ′], [L ′K ′] satisfy the conditions of axiom E3,
thus the triangles �OHK and �O ′H ′K ′ are congruent (case SAS). It follows that
∠HOK ≡ ∠H ′O ′K ′, thus using axiom E4, it follows that the half-lines (O ′K ′ and
k ′ coincide. �

Suppose we are in the same hypothesis as in Theorem of Additivity of Angles;

Theorem 1.1.31 If ∠(hk) ≡ ∠(h′k ′), and ∠(hl) ≡ ∠(h′l ′), then ∠(lk) ≡ ∠(l ′k ′).

Proof Consider the triangles�ABC and�A′BC such that A and A′ are in different
half-planes with respect to the line BC . If [AB] ≡ [A′B] and [AC] ≡ [A′C], then
triangles �ABC and �A′BC have congruent angles, respectively. Considering the
segments [AA′] and [BC], we distinguish two cases: [AA′] ∩ [BC] �= ∅ or [AA′] ∩
[BC] = ∅. In each one of these cases, we apply the theorem for isosceles triangles
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in the case of triangles �ABA′ and �ABA′, respectively. The conclusion of the
theorem follows then immediately. �

Now we are in the right context to prove the following side-side-side (SSS) con-
gruence theorem of triangles. Note that in the proof we do not use neither the sym-
metry, nor the transitivity of the equality relation for angles! These properties are an
immediate corollary to the following theorem.

Theorem 1.1.32 (SSS)Let�ABC and�A′B ′C ′ be two triangles, such that [AB] ≡
[A′B ′], [BC] ≡ [B ′C ′], and [CA] ≡ [C ′A′]. Then �ABC ≡ �A′B ′C ′. This con-
gruence case is called Side-Side-Side (SSS) (Fig.1.4).

Proof Consider the half-line (B ′D′ such that [B ′D′] ≡ [AB] and ∠D′B ′C ′ ≡
∠ABC , D′ in the half-plane determined by A′ and B ′C ′.

Since [BC] ≡ [B ′C ′], [BA] ≡ [B ′D′], and ∠ABC ≡ ∠D′B ′C ′, thus �ABC ≡
�D′B ′C ′ (case SAS). It follows that [AC] ≡ [D′C ′]. Let us construct a point E ′ in
the complementary half-plane defined by the line B ′C ′ and the point A′, such that
[B ′E ′] ≡ [B ′D′] and ∠E ′B ′C ′ ≡ ∠C ′B ′D′. It follows that �D′B ′C ′ ≡ �E ′B ′C ′
(case SAS), thus [E ′C ′] ≡ [D′C ′] ≡ [AC] ≡ [A′C ′]. Similarly, [E ′B ′] ≡ [B ′D′] ≡
[AB] ≡ [A′B ′].

Then, using the fact that isosceles triangles have equal angles corresponding to
equal sides, the triangles�A′B ′C ′ and�E ′B ′C ′ are congruent (since we use the pre-
vious theoremswith sum or difference of angles to prove that∠B ′A′C ′ ≡ ∠B ′E ′C ′).
Then∠A′B ′C ′ ≡ ∠E ′B ′C ′, so in the half-plane determined by B ′C ′ and A′ we have
two half-lines (B ′D′ and (B ′A′, such that they determine ∠A′B ′C ′ ≡ ∠D′B ′C ′.
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Fig. 1.5 Right angle
existence

Therefore they are coincident and this means that the points A′ and D′ have to
coincide. �

Corollary 1.1.33 The congruence relation for triangles is an equivalence relation.

Corollary 1.1.34 The congruence relation for angles is an equivalence relation.

The details are left for the reader, and here it is used E5. We have to mention
that this equivalence relation allows us to define a value for all representatives of a
class, which can be denoted by v(∠(hk), with the same remarks we did in the case
of segments.

Definition 1.1.35 Let ∠hk be an angle. The angle formed by a ray of angle ∠hk
and the complement of the other ray is called the supplementary angle to the angle
∠hk.

Definition 1.1.36 Two angles which have the same vertex and complementary sides
are called opposite (or complementary) angles.

We propose two problems to the reader.

Problem 1.1.37 Supplementary angles of congruent angles are congruent.

Problem 1.1.38 Opposite angles are congruent.

Hint for both problems: choose points on rays such that congruent triangles occurs
(Fig. 1.5).

Definition 1.1.39 A right angle is an angle congruent to its supplementary angle.
We denote by R the class of the right angles.
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The following theorem establishes the existence of right angles in any Geometry
respecting all axioms introduced so far.

Theorem 1.1.40 There exist right angles.

Proof Consider the congruent angles∠hl and∠lk such that all rays have the common
point O and l belongs to the interior of∠hk. Choose A ∈ h, B ∈ k such that [OA] ≡
[OB]. Crossbar theorem tells us that it exists {T } = l ∩ [AB]. It is easy to see using
congruent triangles that ∠AT O ≡ ∠BT O , i.e. ∠AT O and ∠BT O are both right
angles. �

The supplementary angle of an right angle is a right angle itself. The angle∠AT B
can be seen as the sum of the right angles ∠AT O and ∠OT B, therefore its class is
R + R, i.e. 2R.

Definition 1.1.41 The points A and B are called symmetric with respect the line l.
The line AT is called perpendicular to l, T is called the foot of the perpendicular
line to l passing through A.

Theorem 1.1.42 All right angles are congruent.

Proof By contradiction, we assume that there exist two right angles ∠BAD and
∠B ′A′D′ which are not congruent. We consider the supplementary angles ∠CAD
and∠C ′A′D′, respectively. Consider the half-line (AE such that∠BAE ≡ ∠B ′A′D′
and observe the equality of angles ∠CAE ≡ C ′A′D′. Therefore we have ∠CAE ≡
∠C ′A′D′ ≡ ∠B ′A′D′ ≡ ∠BAE . Let (AF such that ∠CAE ≡ ∠BAE . It results
∠CAE ≡ ∠CAF , in collision with E4. �

Theorem 1.1.43 The perpendicular line from an exterior point to a given line is
unique.

Proof By contradiction, suppose AC and AC ′ are perpendicular lines to l,C,C ′ ∈ l.
Consider the symmetric points B, B ′ of A with respect to l on each perpendicular
line and choose O ∈ l such that the order is OC ′C . It results �OCA ≡ �OCB
and �OC ′A ≡ �OC ′B ′. We have ∠BOC ≡ ∠AOC ′ ≡ ∠B ′O ′C ′ and [OB] ≡
[OB ′] ≡ [OA], i.e. B and B ′ coincide, therefore C coincides C ′. �

Definition 1.1.44 Let [AB] and [A′B ′] be two segments. If there exists a point C in
the interior of the segment [AB] such that [AC] ≡ [A′B ′], we say that the segment
[A′B ′] is less than the segment [AB], and we denote by [A′B ′] < [AB].

In the same time we may say that the segment [AB] is greater than the seg-
ment [A′B ′] and we denote by [AB] > [A′B ′]. Note that the order ABC on a line
determines the inequalities [AB] < [AC] and [BC] > [AC]. We may also define
[AB] ≤ [A′B ′], etc. The inequality relation ≤ is a partial order relation on the set
of segment and more, if [AB] > [A′B ′] and [CD] > [C ′D′], then [AB] + [CD] >

[A′B ′] + [C ′D′]. The inequality can be transferred to values with the notations estab-
lished there.
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Fig. 1.6 The exterior angle
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Definition 1.1.45 Let ∠(h′k ′) and ∠(hk) be two angles. If there is a line l in the
interior of the angle ∠(hk) such that ∠(h′k ′) ≡ ∠(hl), then we can say that the
∠(h′k ′) is less than the angle ∠(hk), denoted by ∠(h′k ′) ≤ ∠(hk).

Or, we can say that the angle ∠(hk) is greater than the angle ∠(h′k ′), denoted by
∠(hk) > ∠(h′k ′). We can easily define ∠(hk) ≥ ∠(h′k ′) or ∠(h′k ′) ≤ ∠(hk).

We do not insist and we left to the reader to prove that the inequality relations ≥
and ≤ are partial order relations on the set of angles.

Definition 1.1.46 Two lines which do not have any common point are called non-
secant lines.

Definition 1.1.47 Consider the triangle �ABC . The angle formed by the half-line
(BA and the complement half-line of (BC , say (BD, is called the exterior angle of
the triangle �ABC with respect to the vertex B.

Consider the angle formed by the half-line (BC and the complement half-line
of (BA, say (BF . This angle is also the exterior angle of the triangle �ABC with
respect to the vertex B, and of course ∠ABD ≡ ∠CBF as opposite angles. Having
in mind the previous definition we can prove

Theorem 1.1.48 (Exterior Angle Theorem) The exterior angle of a triangle with
respect to a given vertex is greater than both the angles of the triangle which are not
adjacent to it (Fig.1.6).

Proof Let us fix the vertex to be B.Wehave to prove “the exterior angle of the triangle
�ABC with respect the vertex B is greater than both the angles∠BAC and∠ACB”.
Let D be a point on BC with the order DBC such that [BD] ≡ [AC]. We show that
∠DBA > ∠BAC . The other inequality results from ∠ABD ≡ ∠CBF > ∠ACB.
We focus on the first inequality. By contradiction, let us suppose that ∠ABD ≡
∠BAC . Ifwe succeed to obtain a contradiction, the case∠ABD < ∠BAC is reduced
to the previous case by considering C1 ∈ (BC) such that∠ABD ≡ ∠BAC1. There-
fore, it remains to prove that ∠ABD ≡ ∠BAC is impossible. In the given condi-
tions it results �ABD ≡ �CAB, (SAS), i.e. ∠DAB ≡ ∠ABC . Since ∠CAD ≡
∠CAB + ∠BAD ≡ ∠ABD + ∠ABC ≡ ∠CBD = 2R, equivalent to A ∈ BC , in
collision to the fact that ABC is a triangle. �
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Corollary 1.1.49 The sum of two among the three angles of triangle is less than the
sum of two right angles.

Proof To simplify the writing denote by Be the exterior angle with respect to the
vertex B. The exterior angle theorem asserts that Be > A, Be > C . It results Be +
B > A + B, therefore A + B < 2R. �

Definition 1.1.50 An angle of a triangle which is greater than a right angle is called
an obtuse angle. An angle of a triangle which is less than a right angle is called an
acute angle.

Corollary 1.1.51 A triangle can not have more than one obtuse angle.

Proof Suppose there exists a triangle �ABC such that A > R and B > R. Then
A + B > 2R, in collision with the previous corollary. �

We left for the reader the following very nice problems:

Problem 1.1.52 Given a segment [AB], there exists an unique point M, (called the
midpoint of the segment [AB]), such that [AM] ≡ [MB].
Problem 1.1.53 Given an angle ∠hk, there is an unique half-line l in its interior
such that ∠hl ≡ ∠lk (the half-line l is called the bisector of the ∠hk).

The previous problems create an infinity of points in the interior of a given segment
and an infinity of half-lines in the interior of an angle.

Definition 1.1.54 The perpendicular line from a vertex of a triangle on the line
which contains the opposite side is called an altitude (or height) of the triangle.

Theorem 1.1.55 At least one altitude among the three altitudes of a triangle lies in
the interior of the triangle.

Proof (Hint) Consider the altitude corresponding to the greatest angle of a triangle,
say AD, D ∈ BC . B and C are mandatory acute angles. The order on BC has to be
BDC . �

Theorem 1.1.56 In the triangle �ABC, [AC] > [AB] if and only if ∠B > ∠C.

Proof Consider D ∈ [AC] such that [AB] ≡ [AD]. It results ∠B > ∠ABD ≡
∠ADB > ∠C . Conversely, assume ∠B > ∠C and by contradiction, [AC] ≤ [AB].
If [AC] ≡ [AB], then ∠B ≡ ∠C , contradiction. If [AC] < [AB], then ∠B < ∠C ,
contradiction. �

Theorem 1.1.57 (triangle inequality) In every triangle �ABC the sum of two sides
is bigger than the third side. For example [BC] < [BA] + [AC].
Proof Consider D ∈ (BA such that the order is BAD and [AD] ≡ [AC]. It follows
that [BD] ≡ [BA] + [AD] ≡ [BA] + [AC]. Since ∠BDC ≡ ∠DCA < ∠DCB it
follows that [BD] > [BC], that is [BA] + [AC] > [BC]. �
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Theorem 1.1.58 [A1An] ≤ [A1A2] + [A2A3] + · · · + [An−1An]
Proof (Hint) [A1An] ≤ [A1A2] + [A2An] ≤ [A1A2] + [A2A3] + [A3An] ≤ · · ·

�

Theorem 1.1.59 Consider the triangles �ABC and �A′B ′C ′ such that [AB] ≡
[A′B ′], [AC] ≡ [A′C ′]. If ∠A > ∠A′, then [BC] > [B ′C ′].
Proof (Hint) Consider the half-line (AD such that∠BAD ≡ ∠B ′A′C ′ and [AD] ≡
[AC] ≡ [A′C ′]. Observe that (AD is included in the interior of the angle∠BAC . We
have�ABD ≡ �A′B ′C ′. The triangle�ACD is isosceles, [AC] ≡ [AD], therefore
∠DCB < ∠ADC < ∠BDC , i.e. [BC] > [BD] ≡ [B ′C ′] (Fig. 1.7). �

Theorem 1.1.60 From a point A exterior to a line d, one can construct at least one
non-secant line to d.

Proof Consider the points B,C on d and a half-line (AE in the half-plane deter-
mined by A and d such that B and E are in opposite half-planes with respect to the
line AC and ∠E AC ≡ ∠BCA. According to the exterior angle theorem we have
(AE ∩ (BC = ∅. The complementary half-line (AF has the property ∠BAF ≡
∠ABC . The same exterior angle theorem implies (AF ∩ (CB = ∅. Therefore
FE ∩ d = ∅. �

Definition 1.1.61 The angles∠E AC and∠ACB are called interior alternate angles.

The angles ∠FAB and ∠ABC are interior alternate angles, too.
The reader observes that until now there is no a parallelism axiom involved in the

construction we made. We are still in the absolute Geometry area mentioned at the
beginning of this chapter. The previous result is an important one. In the axiomatic
frame created before it exists at least one non-secant line through a point with respect
to a given line. There is only one or there are more? We left the answer for later.

The axioms before allow us to have infinitely many points on a line, but we
don’t know if a line can be “filled” with points or if it is “unbounded.” Until
now we can see that if we establish an origin O on a line and if we take a seg-
ment [AB] we can construct on one half line the points E1, E2, . . . , En,…such
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that [AB] ≡ [OE1] ≡ [E1E2] ≡ [E2E3] ≡ · · · ≡ [EnEn+1] ≡ · · · and on the com-
plementary half-line the points E−1, E−2, . . . , E−n,…such that [AB] ≡ [OE−1] ≡
[E−1E−2] ≡ [E−2E−3] ≡ · · · ≡ [E−n E−(n+1)] ≡ · · · , thereforewe can associate for
any integer number a point on the line l. Combining with a result before related about
the existence of the midpoint of every segment, we can see on the line l all rational

points having the form
n

2m
.

So, not all the real numbers can be “seen” on l. And still the problem of unbound-
edness persists.Why? Since even if [OEn] = [OE1] + [E1E2] + · · · + [En−1En] <

[OEn+1] the following example of segments bigger and bigger is bounded in the seg-

ment [0, 1]. It is about the sequence of intervals (0, 1 − 1

n
), n ∈ N. Can we make

any connection between the set of real numbers and the points of a line? We need to
introduce the axioms of continuity at this point.

Axiom C1 (Axiom of Archimedes): Let [AB] and [CD] be two arbitrary seg-
ments such that [CD] < [AB]. Then, there exists a finite number of points A1, A2,

. . . An, . . . on the ray (AB, such that [CD] ≡ [AA1] ≡ [A1A2] ≡ [A2A3] ≡ · · · ≡
[An−1An], the interiors of those segments have every two an empty intersection and
finally, either B = An or B ∈ (An−1An).

In view of the additivity property of segments we can write that it exists n ∈ N

such that

[AA1] + [A1A2] + [A2A3] + · · · + [An−1An] ≡ n[CD] ≥ [AB]

and the inequality may refer to values. The Axiom of Archimedes multiplies values
by natural numbers and we expect to understand the value of a segment as a real
positive number describing the length of the segment. Considering n = 1 in the
previous inequality, we have the old inequality between segments, thereforeC1 offer
us the chance to understand the appropriate nature of values attached to the segments
and the unboundedness of the set of natural numbers.

The next axiom is attributed to Cantor and it will be involved in “completing” the
line with points we don’t know until now that they have to belong to a line.

Axiom C2 (Axiom of Cantor): Let [A1B1], [A2B2], . . . be a sequence of segments
on a given line l, such that every segment is included in the interior of the precedent
one, i.e. [AnBn] ⊂ [An−1Bn−1] for all n ≥ 2. If we assume that no segment is included
in the interior of all segments [AnBn], n ∈ N, then there is an unique point M on
the line l such that {M} = [A1B1] ∩ [A2B2] · · · ∩ [AnBn] ∩ · · ·

These two axioms of continuity allow us to use real positive numbers as the
“values” of segments and angles. The results are a little bit more complicate and we
try to suggest them without complete proofs.

Using the continuity axiomC1 we can assign the natural number 1 to the segment
[CD] and the number n to the value nCD. To every segment [AB] we attach a
system of coordinates on the line d = AB such that A is the origin O and 1 =
OA1 = A1A2 = · · · = Am−1Am = · · · .
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According toC1 it exists one integerm ∈ N such that B ∈ [An−1An]. If B = An−1

then AB = n − 1. If B = An then AB = n. If B = M1 is themidpoint of the segment
[An−1An] wee assign to the value AB is the 2-adic number n − 1, 10000 . . . 0 . . ..
In fact at each step from now when B is the midpoint of a segment, we associate 1
and the other decimals after are 0. Suppose B ∈ [An−1M1]. We consider the value
of AB as n − 1, 0 and we are looking after the next decimal observing where B is
with respect to the midpoint M2 of the segment [An−1M1]. If B ∈ [M2M1] the next
decimal is 1, therefore the attached number is until now n − 1, 01 and we continue
looking at the position of B with respect to the midpoint M3 of the segment [M2M1].
Imagine a little bit the position of B if the next three digits are 001 such that the
value of AB is until now n − 1, 01001. We can continue to discover digits until B is
a midpoint of a segment when we stop with a 1 followed by 0 only, or we never stop
because the point stays in the intersection of all segments which are like in axiom
C2. The real number

n − 1, a1a2a3 . . . an . . .

with ai = 1 if B is in the “at the right” segment, or with ai = 0 if B is in the “at the
left” segment, is the 2-adic number attached to the value of the segment AB.

Then we can show that to every real number we can assign an unique point on l.
The theory can be extended to angles with the following two theorems.

Theorem 1.1.62 Let (a1, b1), (a2, b2), . . . be a sequence of angles with common
vertex O, with the property that the angle (an+1, bn+1) is contained in the angle
(an, bn), for all n ≥ 1. In the assumption that there is no angle contained in the inte-
rior of all angles in the sequence, then there is a unique half-line l in the intersection
of the interior of all angles.

Proof (Hint) Intersect all angles with a line l and denote the points of intersection
with ak by Ak and the points of intersection with bk with Bk , etc. �

Theorem 1.1.63 Let ∠(hk) and ∠(h′k ′) two angles. There exists a natural number
n such that n∠(hk) > ∠(h′k ′).

Proof (Hint) Observe that the measure of the angle ∠(h′k ′) is less then 2R. If

∠(hk) > R we take n = 2. If R > ∠(hk) >
R

2
we take n = 4, etc. �

We have two statements for angles analogue with the axioms C1 and C2. We can
develop a similar theory for definingmeasure of angles, restricting all the proofs in the
case of segments to the interval (0, 2R). Then, there is a one-to-one correspondence
between the set of angles and the interval (0, 2R) of the real numbers.

Weprove now in theAbsoluteGeometry frame themost important result regarding
the sum of the angles of a triangle.
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Fig. 1.8 Legendre’s theorem

Theorem 1.1.64 (Legendre) For any triangle, the sum of its angles is at most 2R
(Fig.1.8).

Proof Consider the triangle �ABC . We have to show ∠A + ∠B + ∠C ≤ 2R. By
contradiction, let us assume that ∠A + ∠B + ∠C > 2R. On the line BC we con-
sider the points B = B1,C = B2, B3, . . . , Bn, Bn+1 in this order such that B1B2 =
B2B3 = · · · = BnBn+1 and in the same half-plane the points A = A1, A2, A3,

. . . , An, such that �A1B1B2 ≡ �A2B2B3 ≡ · · · �AnBnBn+1. It is easy to see that
the following triangles are congruent, �A1B2A2 ≡ �A2B3A3 ≡ · · · �An−1Bn An ,
therefore A1A2 = A2A3 = · · · = An−1An . It is easy to deduce that∠A > ∠A1B2A2

and then BC = B1B2 > A1A2. Thepolygonal line B1A1A2 . . . AnBn+1 is bigger than
the segment B1Bn+1 = nBC , that is

nBC < BA + (n − 1)A1A2 + AC.

This one can be written in the form

(n − 1)(BC − A1A2) < BA − BC + AC.

We know that BC − A1A2 > 0, BA − BC + AC > 0, i.e. it exists the segments
[ST ], [MK ] such that BC − A1A2 = ST, BA − BC + AC = MK and
(n − 1)ST < MK . But in the last inequality the natural number n is arbitrary, in
collision with C1. Therefore ∠A + ∠B + ∠C can not be greater than 2R. It follows
∠A + ∠B + ∠C ≤ 2R. �

The next definition takes care that the values of angles are real numbers.

Definition 1.1.65 For any triangle �ABC we define the defect of it, denoted
D(ABC), to be D(ABC) = 2R − ∠A − ∠B − ∠C .

Legendre’s theorem states that D(ABC) ≥ 0 for any triangle. Let us investigate
what other properties the defect of triangles may have.

Theorem 1.1.66 If P ∈ (BC), where [BC] is a side of the triangle �ABC, then
D(APB) + D(APC) = D(ABC).
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Proof (Hint) Denote by ∠A1 = ∠BAP, ∠A2 = ∠CAP, ∠P1 = ∠APB, ∠P2 =
∠APC and observe that ∠A1 + ∠A2 = ∠A, ∠P1 + ∠P2 = 2R. Then

D(APB) + D(APC) = 2R − ∠A1 − ∠P1 − ∠B + 2R − ∠A2 − ∠P2 − ∠C =

= 2R − ∠A − ∠B − ∠C = D(ABC)

. �

Theorem 1.1.67 Consider a triangle �ABC and two points, B1 ∈ (AB), C1 ∈
(AC). Then D(AB1C1) ≤ D(ABC).

Proof (Hint) Consider the triangles �AB1C1, �BB1C1, �BCC1 and apply the
previous theorem as follows D(ABC) = D(ABC1) + D(BCC1) = D(AB1C1) +
D(B1C1B) + D(BCC1) ≥ D(AB1C1). �

If “the big triangle” �ABC hasD(ABC) = 0, then, mandatory “the small trian-
gle” �AB1C1 has to fulfill D(AB1C1) = 0.

Pay attention to the following construction.
Consider a right-angle triangle�BAC, ∠A = R withD(BAC) = 0. In this case

observe that ∠B + ∠C = R and construct D in the opposite half-plane with respect
to BC and A such that�ABC ≡ �DBC . It results a quadrilateral ABDC such that
all angles are equal to R, and the opposite sides are equal, i.e. [AB] ≡ [CD], [AC] ≡
[BD].Wemay call this figure rectangle and it is easy to discover twomore properties.
The diagonals AD and BC are congruent and they cut in the middle of each one.
Let us rename the rectangle ABDC by A00A10A11A01.

We intend to pave the plane with tiles congruent to our created rectangle
A00A10A11A01 for obtaining a so called grid.

On the half-lines A00A10 we consider the points A20, A30, . . . , An0, . . . such that
the segment [AB] is seen repeatedly as [A00A10] ≡ [A10A20] ≡ [A20A30] ≡ · · · ≡
[A(n−1)0An0] ≡ · · · and on the half-line A00A01 we consider the points A02, A03, . . . ,

A0n, . . . such that the segment [AC] is seen repeatedly as [A00A01] ≡ [A01A02] ≡
[A02A03] ≡ · · · ≡ [A0(n−1)A0n] ≡ · · · .

The tiles we create and put on the first row are consecutively

A00A10A11A01, A10A20A21A11, A20A30A31A21,

A30A40A41A31, . . . , An0A(n+1)0A(n+1)1An1, . . . ,

on the second row
A01A11A12A02, A11A21A22A12,

A21A31A32A22, A31A41A42A32, . . . , An1A(n+1)1A(n+1)2An2, . . . , etc.

A “general” tile in this pavement is Akp A(k+1)p A(k+1)(p+1)Ak(p+1).
It is easy to see that the points A20, A11, A02 are collinear.
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The same, the points A30, A21, A12, A03 and in general

An0, A(n−1)1, A(n−2)2, . . . , A2(n−2), A1(n−1), A0n

are collinear points.
And it is also easy to observe that all triangles A0n A00An0 have the sum of angles

equal to 2R, i.e. D(A0n A00An0) = 0. We are prepared to prove a very important
theorem.

Theorem 1.1.68 If there exists a right-angle triangle with defect 0, then all right-
angles triangles have defect 0, i.e. the sum of their angles is 2R.

Proof Consider the right-angle triangle to be �BAC, ∠A = R and D(BAC) = 0
and let a general right-angle triangle �EFG, ∠F = R. According to Archimedes’
axiom it exist m ∈ N, n ∈ N such that m · AB > FE, n · CA > FG. Without
of loosing the generality we suppose n > m. Then the triangle �EFG can be
“arranged” such as F = A00, E ∈ (A00A0n), G ∈ (A00An0). According to the pre-
vious theory 0 ≤ D(EFG) ≤ D(A0n A00An0) = 0, i.e. D(EFG) = 0. �

Theorem 1.1.69 If there exists a triangle with defect 0, then all triangles have defect
0, i.e. the sum of their angles is 2R.

Proof Consider a triangle with defect 0, say �ABC . It exists an altitude which
intersects the opposite side in its interior, say AT, T ∈ (BC). The altitude and
the sides of the triangle determine two right-angle triangles, �ABT and �ATC ,
both with 0 defect, because the initial triangle is with 0 defect. The previous theorem
asserts that all right-angle triangles have 0 defect. Now, consider an arbitrary triangle
�DEF . Suppose that the altitude which intersects the opposite side is DP, P ∈
(EF) The two right-angle triangles �DFP and �DEP are with 0 defect, therefore
the defect of the triangle �DEF is 0. �

There are only two situations that can happen. All the triangles have the sum of
angles 2R or all the triangles have the sum of angles strictly less than 2R. In the given
context we cannot decide about the sum. The next axioms will clarify this aspect.

Definition 1.1.70 The collection of all properties and results deduced from all
axioms of incidence, order, congruence and continuity above is called an absolute
Geometry.

1.2 From Absolute Geometry to Euclidean Geometry
Through Euclidean Parallelism Axiom

The question we asked before is how many non-secant lines can be constructed
through an exterior point to a given line.We know that at least one can be constructed.
Could there be two or more? The standard Euclidean Parallelism Axiom is stated as
follows.
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Fig. 1.9 Axiom of Euclidean parallelism

Axiom P: Given any line in a plane and given any point not incident to the given
line, there exists at most one line that passes through the given and it is non-secant
to the given line.

Definition 1.2.1 The collection of all properties and results deduced from all axioms
of incidence, order, congruence, continuity and Euclidean Parallelism above is called
a Euclidean Geometry.

A direct consequence: In Euclidean Geometry, i.e. in the axiomatic frame created
by the axioms of incidence, order, congruence, continuity and the Euclidean Paral-
lelism Axiom there exists an unique line that passes through a given point A and it
is non-secant to the given line d. This unique non-secant line is called the parallel
line to the given line d through the given point A.

Theorem 1.2.2 In Euclidean Geometry, the sum of angles of any triangle is 2R
(Fig.1.9).

Proof Consider a triangle �ABC and the unique parallel through A to BC . We
have in mind the figure of the Theorem 23 where the parallel was FE with A ∈ FE .
The interior alternate angles ∠E AC and ∠ACB are equal. The same for the interior
alternate angles ∠FAB and ∠ABC . Therefore, if we look at the angle ∠FAE we
observe that it is equal to the sum of the angles of the triangle �ABC and, in the
same time it has the value 2R. Since this particular triangle has the sum of angles
equal to 2R, all other triangles have the sum of angles equal to 2R. �

In the case of the figure, ∠A + ∠B + ∠C = ∠A + α + β = 2R.

Since∠A + ∠B + ∠C = 2R, we deduce 2R − ∠A = ∠B + ∠C.But 2R − ∠A
is the value of the exterior angle A.

Corollary 1.2.3 (Exterior Angle Theorem in the Euclidean Geometry) For every
triangle, each exterior angle is the sum of the interior non-adjacent angles.
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Theorem 1.2.4 If it exists a triangle with the sum of its angles equal to 2R the
parallelism axiom is satisfied.

Proof Assume that it exists a triangle �ABC with ∠A + ∠B + ∠C = 2R.
Therefore every triangle has the same property.
Let d be a line and M a point not on d. Let MN be the perpendicular line from

M to d, N ∈ d. Let l be a perpendicular to MN in M . We know that l and d are
non-secant lines. We have to prove that l is the only non-secant line through M to d.

Consider another line l ′ passing through M and denote by α the acute angle
between MN and l ′.

It makes sense to consider a triangle M ′N ′P ′ such that

[MN ] ≡ [M ′N ′], ∠M ′N ′P ′ = R, ∠N ′M ′P ′ = α

and ∠M ′P ′N ′ = R − α (without to know that R,α, R − α are the angles of a tri-
angle, we do not know that only the angles R and α together with the side M ′N ′
determine a triangle).

Considering P ∈ d with [N P] ≡ [N ′P ′], the triangles �MNP and �M ′N ′P ′
are congruent and one of the half-line of l ′ is coincident to MP . Therefore l ′ ∩ d =
{P} i.e. l is the unique non-secant line through M to d. �

The story of Euclidean Geometry may continue with many theorems which can
be proven only in this axiomatic frame. But we are interested in introducing Non-
Euclidean Parallelism andmodels of Non-EuclideanGeometry. Thereforewe remain
in the axiomatic frame corresponding to the axioms of incidence, order, congruence
and continuity and, at this moment we add another axiom, more specific the denial
of the Axiom of Euclidean Parallelism.

1.3 From Absolute Geometry to Non-Euclidean Geometry
Through Non-Euclidean Parallelism Axiom

The Euclidean Parallelism Axiom, in the set theoretical language, can be written as:

∀d, ∀A /∈ d, #{a | A ∈ a, a ∩ d = ∅} ≤ 1,

where # denotes the number of elements of a set. Inwhat followswe assume the nega-
tion of the previous axiom, and we call this the axiom of Non-Euclidean Parallelism.
In set theory language, this translates to:

∃d0, ∃A0 /∈ d0, #{a | A0 ∈ a, a ∩ d0 = ∅} ≥ 1.

Therefore the axiom of non-Euclidean parallelism is the following.
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Axiom PN0: There exist both a line d0 and a point A0 exterior to d0 with the
property: at least two non-secant lines to d0 passing through A0 exist.

Definition 1.3.1 The collection of all properties and results deduced from all axioms
of incidence, order, congruence, continuity and Non-Euclidean Parallelism above is
called a Non-Euclidean Geometry.

We study below some important results in the context of this Geometry.

Theorem 1.3.2 Axiom PN0 acts as a global property, i.e. it holds for any line and
any exterior point.

Proof By contradiction, we assume that there is a point A and a line d which do not
satisfy the property “there are at least two non-secant lines to d, passing through A”.
Then, through A passes exactly one non-secant line to d. So, the Axiom P is satisfied
for the pair (A, d). If we choose B and C on d, it is easy to see that the sum of angles
of the triangle �ABC is 2R, and this is equivalent as we saw before with Axiom P
for all pairs (M, l), M /∈ l, in collision with our assumption. �

We can restate the axiom of Non-Euclidean Geometry as follows.
Axiom PN: Given a line and a point exterior to the line, there exists at least two

non-secant lines to the given line.
It is easy to prove

Theorem 1.3.3 Let l be a given line in a plane and A be an exterior point to l. Let
a1 and a2 be two lines in the same plane which pass through A and are non-secant
to l. Then every line a passing through A and included in the interior of the angle
∠a1a2 is non-secant to l.

Proof (Hint) If a intersects l, then it does intersect a1 or a2, in collision with the fact
that a is included in the interior of the angle ∠a1a2. �

Corollary 1.3.4 In Non-Euclidean Geometry there are an infinite number of non-
secant lines to a given line through an exterior point.

Theorem 1.3.5 In a Geometry which satisfies the groups of axioms of incidence,
order, congruence, continuity and the Axiom NP, the sum of angles of a triangle is
less than 2R.

Proof (Hint) If it exists a triangle with the sum of angles equal to 2R, then Axiom
P is valid, contradiction. �

We conclude that the Non-Euclidean Geometry established by the Absolute
Geometry together with the Axiom NP is completely different than the Euclidean
Geometry established by the Absolute Geometry together with Axiom P. More other
interesting results may be found in both geometries, but in the following, we are
interested in offering examples of models of Euclidean and Non-Euclidean geome-
tries.



Chapter 2
Basic Facts in Euclidean and Minkowski
Plane Geometry

Entia non sunt multiplicanda praeter necessitatem.

W. Ockham

In Chap.1, we found out that there exist different geometries in a plane. It depends
on the axioms one chooses if Euclidean Geometry or Non-Euclidean Geometry
are described. But how these geometries look like? In this chapter we present an
algebraic model for Euclidean Geometry discussing some important theorems. We
obtain a visual representation for the EuclideanGeometry of the plane.Making small
changes in the algebraic construction of the Euclidean Geometry, it is possible to
construct aMinkowskiGeometry. ThisGeometry is deeply involved bothwith Physics
and with Non-Euclidean Geometry. Later, we see how the models of Non-Euclidean
Geometry are connected between them and how a Minkowski one is among them.
The geometric objects in Minkowski Geometry seem to have a non-intuitive look, but
the main theorems have a similar look with their Euclidean counterparts. Generally,
Non-Euclidean models are more sophisticated and we need more mathematical tools
in order to built them. This happens in the following chapters. One more comment:
this chapter is not as formal as the previous one where we used the language style of
an axiomatic theory. We can relax a little bit the mathematical language structure.
The definitions appear often written as part of a mathematical algebraic descrip-
tion of geometric objects and italic letters are used to indicate them. The following
notation is used: A := B. It means that the object A from the left side of the equality
is described by definition through the object-expression B from the right part of the
equality. The word iff has the meaning of “if and only if.”
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2.1 Pythagoras Theorems in Euclidean Plane

The idea to consider a system of coordinates on a line was discussed in the previous
chapter.

The coordinates are real numbers and their set, geometrically represented as a
line, is denoted by R. In the following we suppose known

• the set of natural numbers denoted by N,
• the set of integers denoted by Z,

• the set of rational numbers denoted by Q and
• the set of irrational numbers denoted by R − Q.

In the same time we have proved that the values of angles are real numbers.
Basic facts about matrix theory, groups, vector spaces, trigonometric, exponential

and logarithms functions are suppose known by the reader interested in the topic of
this book.

When we are talking about a model of Euclidean Geometry in a plane, we have to
start from the vector space R

2 over the field R. x := (x1, x2), y := (y1, y2) are
called vectors. The vector space operations are x + y := (x1 + y1, x2 + y2) and
λx := (λx1, λx2).

The Euclidean inner product of the vectors x and y is defined by

〈x, y〉 := x1y1 + x2y2

and the norm of x , by |x | := √〈x, x〉 =
√
x21 + x22 .

Two vectors are calledEuclidean orthogonal (or Euclidean perpendicular) if their
inner product is null.

According to the operations, the vector (x1, x2) can be thought as x1(1, 0) +
x2(0, 1), that is (x1, x2) = x1(1, 0) + x2(0, 1) = x1e1 + x2e2 so, the pair (x1, x2)
can be seen also as a pair of coordinates of a point A of the plane.

The line determined by xe1, x ∈ R is called the x-axis, and the line determined
by ye2, y ∈ R is called the y-axis.

Therefore, in the system of coordinates generated by the orthogonal vectors
e1 = (1, 0); e2 = (0, 1), the geometric meaning of the vector x = (x1, x2) is the

oriented segment
→
OA, lying from the origin O with the coordinates (0, 0) and the

endpoint A with the coordinates (x1, x2).

Let us consider the 2 × 2 rotation matrix Aα =
(
cosα − sin α

sin α cosα

)
in which the

basic trigonometric function sine and cosine are involved as components.
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We define Aαx :=
(
cosα − sin α

sin α cosα

) (
x1
x2

)

Aαx, Aα y are two matrices with two lines and one column, and it makes sense to
consider the inner product 〈Aαx, Aα y〉 by adding, after multiplying, the correspond-
ing first and second components, i.e.

〈Aαx, Aα y〉 =

= (x1 cosα − x2 sin α)(y1 cosα − y2 sin α) + (x1 sin α + x2 cosα)(y1 sin α + y2 cosα).

Exercise 2.1.1 〈Aαx, Aα y〉 = 〈x, y〉.
Hint. Use sin2 α + cos2 α = 1.

Exercise 2.1.2 |Aαx | = |x |.
Exercise 2.1.3 If |x | = 1, then 〈Aαx, x〉 = cosα.

If |x | = 1, then |Aαx | = |x | = 1. Denote by u the unitary vector Aαx . The pre-
vious relation for the unitary vectors u, x can be written in the form 〈u, x〉 = cosα.

We can see the vector u as the rotation of the vector x , so the angle between these

two vectors is α. For two arbitrary vectors a, b, the vectors
a

|a| ,
b

|b| are unitary and

the previous relation becomes

〈
a

|a| ,
b

|b|
〉

= cosα,

i.e. 〈a, b〉
|a||b| = cosα.

This last formula is known as the Generalized Pythagoras Theorem. Let us discuss
why (Fig. 2.1).

Since we have the vectors a = (a1, a2), b = (b1, b2), we can think about the tri-
angle OAB as the triangle determined by the points O(0, 0), A(a1, a2), B(b1, b2).

Before continuing, we point out the meaning of the Euclidean Parallelism in this
coordinate frame;

Let us consider M(m1,m2) and N (n1, n2).

Definition 2.1.4 The lines AB and MN are Euclidean parallel and we denote this
by MN ||AB, if the vectors
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(a1, a2)

(b1, b2)

(m1,m2)

(n1, n2)

−−→
OD = (m1 − n1,m2 − n2)

−−→
OC = (a1 − b1, a2 − b2)

O

D

N

M

B

A

C

Fig. 2.1 Parallel lines seen through vector properties

→
OD= (m1 − n1,m2 − n2)

and →
OC= (a1 − b1, a2 − b2)

are collinear, i.e. ∃β �= 0 such that (m1 − n1,m2 − n2) = β(a1 − b1, a2 − b2).

The Generalized Pythagoras Theorem in AOB asserts

|AB|2 = |OA|2 + |OB|2 − 2|OA||OB| cosα,

where |OA| = | →
OA | = |a|,

|AB| = | →
AB | = |OC | = |a − b| = √〈a − b, a − b〉=

√
(a1 − b1)2 + (a2 − b2)2,
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and ∠AOB = α.
The formula explained and written above,

|AB| :=
√

(a1 − b1)2 + (a2 − b2)2

is called the Euclidean distance between the two points A(a1, a2), B(b1, b2) of the
plane.

Theorem 2.1.5 In the previous notations, it is

|AB|2 = |OA|2 + |OB|2 − 2|OA||OB| cosα,

iff
〈a, b〉
|a||b| = cosα.

Proof We observe that we need to prove only that

2|OA||OB| cosα = |OA|2 + |OB|2 − |AB|2

is the same as
2|a||b| = 2 〈a, b〉 .

Or, this means

|OA|2 + |OB|2 − |AB|2 = 2

〈 →
OA,

→
OB

〉
,

and, in coordinates, this becomes a quick computation for the reader, that is

(a21 + a22) + (b21 + b22) − (
(a1 − b1)

2 + (a2 − b2)
2
) = 2(a1b1 + a2b2)

2.

Corollary 2.1.6 If

〈 →
OA,

→
OB

〉
= 0, i.e. the vectorsa andb are orthogonal (Euclidean

perpendicular), then we obtain the standard Pythagoras’ Theorem.

The side AB is called a hypotenuse, and OA, OB are called legs of the triangle
OAB.

Theorem 2.1.7 (Pythagoras’ Theorem) In the previous notations, it is

|AB|2 = |OA|2 + |OB|2.

The angle corresponding to orthogonal vectors is described by the condition

cosα = 0, that is its measure is α = π

2
.
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Therefore
π

2
is the value of the right angle R. The sum of angles of a triangle in

Euclidean Geometry becomes ∠A + ∠B + ∠C = π .

Theorem 2.1.8 (Thales Theorem) Let us consider O(0, 0), A(x1, x2), B(y1, y2),
A1(μx1, μx2), B1(λy1, λy2). Then, AB||A1B1 iff λ = μ.

Proof In coordinates
→
AB= (y1 − x1, y2 − x2) and

→
A1B1= (λy1 − μx1, λy2 − μx2).

The parallelism between AB and A1B1 is equivalent to: ∃β such that (λy1 −
μx1, λy2 − μx2) = β(y1 − x1, y2 − x2). Therefore

(λ − β)y1 − (μ − β)x1 = 0,

(λ − β)y2 − (μ − β)x2 = 0

for arbitrary x1, x2, y1, y2, that is AB||A1B1 iff λ = μ.

Thales theorem can be written in the form:
Consider the triangle O AB, A1 ∈ OA, B1 ∈ OB.

Then AB||A1B1 iff
|OA|
|OA1| = |OB|

|OB1| .

Problem 2.1.9 Consider the triangle O AB, A1 ∈ OA, B1 ∈ OB. Then AB||A1B1

iff
|OA|
|OA1| = |OB|

|OB1| = |AB|
|A1B1| .

Hint. Construct a parallel from B to OA, denote by X the point of intersection

between the parallel and A1B1, apply Thales Theorem in the form
|B1X |
|B1A1| = |B1B|

|B1O|
and use the properties of proportions.�

It is not very difficult to express line equations in the Euclidean plane.
If the line d passes through A(a1, a2); B(b1, b2) the equation of d is

y − a2 = a2 − b2
a1 − b1

(x − a1).

The ratio denoted by m, m := a2 − b2
a1 − b1

is called a slope for the line d. The slope m

has the value m = tan α, where α is the angle between the Ox and d in this order.

Exercise 2.1.10 Show that two lines d1 and d2 are Euclidean perpendicular iff
m1m2 = −1.

Hint. Use Euclidean exterior angle theorem and tan(α + β) formula.
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The equation of a circle centered in (a1, a2)with radius r is expressedwith respect
to the Euclidean distance between the center and a point (x, y) on the circle:

(x − a1)
2 + (y − a2)

2 = r2.

The interior of a circle C is denoted by intC and, between the two regions in which a
circle divides the plane, it is the region containing its center. The Euclidean distance
between the center and a point belonging to this region is less than the radius. The
complementary region is called the exterior of the circle. The Euclidean distance
between the center and a point belonging to this region is greater than the radius.

There are many properties related to circles and lines attached to triangles in the
EuclideanGeometry. Some of themwill be studied in the next chapter. The Euclidean
plane is denoted by E2.

2.2 Space-Like, Time-Like and Null Vectors in Minkowski
Plane

When we are talking about a model of Minkowski Geometry in a plane, we have to
start from the same vector spaceR2 over the fieldR. Here, x = (x1, x2), y = (y1, y2)
are called vectors, as in the Euclidean case.

The vector space operations are the same x + y := (x1 + y1, x2 + y2) and
λx := (λx1, λx2).

The Minkowski product of the vectors x and y is defined by

〈x, y〉M := x1y1 − x2y2

and the Minkowski norm of x by |x |M := √| 〈x, x〉 |M =
√

|x21 − x22 |.

Two vectors are calledMinkowski orthogonal if their Minkowski product is null.
In a system of coordinates generated by the Minkowski orthogonal vectors

e1 = (1, 0); e2 = (0, 1), the geometric meaning of the vector x = (x1, x2) is the

oriented segment
→
OA, lying from the origin O with the coordinates (0, 0) and the

endpoint A with the coordinates (x1, x2). This is exact as in the Euclidean case.
Even the parallelism is like in the Euclidean case; Consider M(m1,m2) and

N (n1, n2).

Definition 2.2.1 The lines AB andMN are parallel andwe denote this byMN ||AB,

if the vectors
→
OD= (m1 − n1,m2 − n2) and

→
OC= (a1 − b1, a2 − b2) are collinear,

i.e. ∃β �= 0 such that (m1 − n1,m2 − n2) = β(a1 − b1, a2 − b2).

However, in a Minkowski space, we have three different kind of vectors
→
OA. Let us

explain. There are space-like vectors, time-like vectors and null vectors.
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A vector x is a space-like vector if 〈x, x〉M < 0.
Examples are b = (−1, 2), e = (2,−3), or in general a = (a1, a2) with

|a1| < |a2|.
A vector x is a time-like vector if 〈x, x〉M > 0.
Examples are b = (3, 2), e = (−4,−3), or in general a = (a1, a2) with

|a1| > |a2|.
A vector x is a null vector if 〈x, x〉M = 0.
Examples are b = (−1, 1), e = (2, 2), or in general a = (a1, a2)with |a1| = |a2|.
The reader can observe that Minkowski orthogonal vectors have to be pairs, one

space-like and one time-like. An example: x = (x1, x2); v = (kx2, kx1).

Consider the 2 × 2 “hyperbolic rotation” matrix Aα =
(
cosh α sinh α

sinh α cosh α

)
in

which the basic hyperbolic trigonometric functions sine and cosine are involved
as components.

sinh α = eα − e−α

2
, cosh α = eα + e−α

2
.

This matrix is called a hyperbolic rotation and this name is legitimate by the next
quick exercises.

As in the Euclidean case, Aαx, Aα y are two matrices with two lines and one
column, and it makes sense to consider the Minkowski product 〈Aαx, Aα y〉M .
Exercise 2.2.2 〈Aαx, Aα y〉M = 〈x, y〉M.
Hint. Use cosh2 α − sinh2 α = 1. Therefore

〈Aαx, Aα y〉M = (x1 cosh α + x2 sinh α)(y1 cosh α + y2 sinh α)−

−(x1 sinh α + x2 cosh α)(y1 sinh α + y2 cosh α) =

= x1y1 − x2y2 = 〈x, y〉M
We leave the reader to prove that it does not exist α such that Aαe1 = e2.

Or, more general, after rotating a time-like (space-like) vector we cannot obtain a
space-like (time-like) vector. Aswewill see below, this property is related to causality
in Relativity.

Exercise 2.2.3 |Aαx |M = |x |M .

So, the matrices Aα preserves the Minkowski type and the Minkowski length of
vectors.

Definition 2.2.4 If u = Aαv we say that α is the oriented hyperbolic angle between
v and u. Obviously, −α is the oriented hyperbolic angle between u and v.

Next, we discuss about time-like vectors properties.
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A future-pointing time-like vector v fulfills the property 〈v, e1〉M > 0.An example
is v = (3, 2).

Otherwise the vector v is a past-pointing space-like vector. v = (−3,−2) is an
example, and the reader can observe that if we consider the lines d1 : x2 = x1 and
d2 : x2 = −x1 which describe the null cone, a future-pointing time like vector is

a vector v = →
OA with A = (a1, a2) included in the interior of the angle ∠d1d2 (i.e.

|a1| > |a2|) such that a1 > 0.

Exercise 2.2.5 If v is a future-pointing time-like vector, then Aαv is a future-pointing
time-like vector.

Hint. Since we have proved that the time-like property is kept after a hyperbolic
rotation, it remains to prove that the future-pointing property is preserved.

Or 〈Aαv, e1〉M = a1 cosh α + a2 sinh α.

We have |a1| > |a2| and | sinh α| < cosh α, i.e. |a1 cosh α| > |a2 sinh α|.

It remains to observe that there are triangles in thisMinkowski Geometry in which
the meaning of angle does not exist. The triangles in which we can discuss about
angles are called pure triangles, i.e. in such triangles all the sides are time vectors, all
pointing towards the future (or, all pointing towards the past). Howwe can create such
a triangle? We start with two, say, future-pointing time-like vectors, x = (x1, x2),
y = (ky1, ky2) and we choose k > 0 such that y − x = (ky1 − x1, ky2 − x2) is
future-pointing time-like vector.

Exercise 2.2.6 If x and y are future-pointing time-like vectors then
1. 〈x, y〉M > 0
2. x + y is a future-pointing time-like vector
3. 〈x, y〉M ≥ |x |M |y|M, where the equality happens iff y = kx
4. |x + y|M ≥ |x |M + |y|M, the equality happens iff y = kx .

2.3 Minkowski-Pythagoras Theorems

Let us start with a simple exercise.

Exercise 2.3.1 If x is a space-like vector such that |x |M = 1 then
〈Aαx, x〉M = − cosh α.

Hint. 〈Aαx, x〉M = (x1 cosh α + x2 sinh α)x1 − (x1 sinh α + x2 cosh α)x2 =
(x21 − x22 ) cosh α = − cosh α.

Denote by u the unitary vector Aαx . The previous relation for the unitary vectors
u, x can be written in the form 〈u, x〉M = − cosh α.

For two arbitrary future-pointing space-like vectors a, b, the vectors
a

|a|M ,
b

|b|M
are unitary and the previous relation becomes
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〈
a

|a|M ,
b

|b|M
〉

M

= − cosh α,

i.e. 〈a, b〉M
|a|M |b|M = − cosh α.

According to the Euclidean case, this last formula can be called the Generalized
Minkowski-Pythagoras theorem.

Consider aMinkowski right triangle O AB, i.e. a triangle such that the vectors
→
OA

and
→
OB areMinkowski orthogonal, that is

〈 →
OA,

→
OB

〉

M

= 0. The side AB is called a

Minkowski hypotenuse, and OA, OB are calledMinkowski legs of the triangle OAB.

An example is given by
→
OA= (0, a), a > 0; →

OB= (b, 0), b > 0.Whenwe con-

sider the vector
→
AB= (b,−a) it depends by the absolute values |a|, b if this vector

is a time-like vector, a space-like vector or a null vector.

So, theMinkowski-Pytagoras Theorem asserts that “in aMinkowski right triangle,
the square of the Minkowski hypotenuse is the difference of the square of Minkowski
legs.”

The endpoints of unitary space-like vectors determine a Minkowski circle. The
equation of this circle is x2 − y2 = −1. From the Euclidean point of view this is a
hyperbola equation.

The endpoints of unitary time-like vectors determine aMinkowski circle, too. The
equation of this circle is x2 − y2 = 1.

Exercise 2.3.2 What kind of triangle is determined by three arbitrary points of the
Minkowski circle x2 − y2 = −1?

The answer is: a pure time-like triangle, i.e. a triangle inwhich each side is a time-like
vector pointing the future (or all three pointing the past).

There are a lot of nice geometric properties for Minkowski circles, some of them
similar to Euclidean properties. For our purpose the facts highlighted above are
enough to continue. The Minkowski plane is denoted by M2.



Chapter 3
Geometric Inversion, Cross Ratio,
Projective Geometry and Poincaré Disk
Model

Virtus unita fortior agit.

Abstract This chapter is devoted to a first model of Non-Euclidean Geometry. To
construct this model, we need to deal with one of the most important transformations
of the Euclidean plane, the geometric inversion. We still need some other acquire-
ments, thereforewemeet theProjectiveGeometry.An invariant described by a special
projective map of a circle allows us to construct a non-Euclidean distance inside the
disk. Elaborating the previous model we highlight the Poincaré disk model.

3.1 Geometric Inversion and Its Properties

The geometric inversion is a classical transformation of elementary Euclidean Plane
Geometry. To describe it, let us consider a circle centered at O and radius R, denoted
C(O, R).

A geometric inversion of center O ∈ E2 and radius R maps each point
M ∈ E2, M �= O to the point N on the radius O M such that |O M | · |O N | = R2,
where |O M | is the Euclidean length between the points O and M .

The circle C(O, R) is called a circle of inversion.
The points M and N are called homologous inverse points with respect to the

previous geometric inversion determined by the circle of inversion C(O, R). R2 is
called power of inversion.

We prefer to use “inversion of center O ∈ E2 and power R2” instead of “inversion
of center O ∈ E2 and radius R”.

Suppose we know the homologous inverse points M and N with respect to a
geometric inversion having O as a center and R2 as a power and the order of points
on the radius O M is O, M, N , or O, N , M i.e. O /∈ (M N ). This is a direct inversion,
when the oriented segments O M and O N have the same direction.
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Now choose N ′ the symmetric of N with respect to O , i.e. |O N ′| = |O N |. We
have N ′ on the radius O M , |O M | · |O N ′| = R2 and O ∈ (M N ′).

Therefore, for the inverse N of a point M , with respect to a given inversion, we
have two possibilities:

(1) O does not belong to the segment (M N ),
(2) O belongs to the segment (M N ).

To conclude, when we are talking about an inversion and the inverse N belongs to
the radius O M , we have to specify if it is the direct geometric inversion i.e. we are
talking about the map

TO;R2 : E2 − {O} → E2 − {O}, TO;R2 (M) = N , O /∈ (M N ), |O M | · |O N | = R2,

or we are talking about the map

T s
O;R2 : E2 − {O} → E2 − {O}, T s

O;R2 (M) = N , O ∈ (M N ), |O M | · |O N | = R2,

which can be called a symmetric geometric inversion.
All next results are done for the direct geometric inversion, that is for the map

TO;R2 . All the properties obtained can be easily transferred by symmetry with respect
O for the symmetric geometric inversion. When in a problem we use an inversion,
the reader finds the information if it is a direct one or symmetric one looking at the
map involved, i.e. TO;R2 or T s

O;R2 .
The main properties of the direct geometric inversion are:
1. If TO;R2(M) = N , then TO;R2(N ) = M .
In simple words, if N is the inverse of M , then M is the inverse of N .
That is,

TO;R2(TO;R2(M)) = M.

This property can be written in a simpler form as

T 2 = idE2−{O}

and it highlights that the geometric inversion is an idempotent transformation.
2. TO;R2(C(O, R)) = C(O, R), that is the circle of inversion is invariant under

the inversion it generates.
3. A line d which passes through the pole of inversion is invariant under inversion,

i.e.
TO;R2(d − {O}) = d − {O}.

Before to continue, some notions are needed. A cyclic quadrilateral ABC D is a
quadrilateral which vertexes A, B, C, D belong to a circle �, called the circumcircle
of the quadrilateral.

4. If TO;R2(A) = B and TO;R2(C) = D, then AB DC is a cyclic quadrilateral.
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Fig. 3.1 Inversion main
figure
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Fig. 3.2 The inverse point
of an interior point M

O
M

S′

S

N

Fig. 3.3 The inverse point
of an exterior point M

O
M

S

N

Hint: From |O A| · |O B| = |OC | · |O D| = R2 it results
|O A|
|O D| = |OC |

|O B| . Then,
triangles �O AC and �O DB are similar, i.e. ∠O AC = ∠C DB, that is the quadri-
lateral AB DC is a cyclic one (Fig. 3.1).

Why the circle of inversion is important? Because it allows us to construct the
inverse of a point.

5. Construction of the inverse of a given point (Fig. 3.2).
Suppose M belongs to intC(O, R).
We consider the radius O M and the perpendicular line to O M in M which inter-

sects the circle at the points S and S′. Next, we refer to S. The tangent at S intersects
the radius O M in N .

If we look at the right triangle �O SN , R2 = |O S|2 = |O M | · |O N |, i.e. N is
the (direct) inverse of M .

Suppose M is outside the circle of inversion (Fig. 3.3).
We construct the radius O M and one of the tangent to the circle,

M S, S ∈ C(O, R). The perpendicular from S to O M intersects O M in N . In the
right triangle �O SM we have R2 = |O S|2 = |O M | · |O N |, i.e. N is the inverse of
M .
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Fig. 3.4 The inverse of a
line d such that O /∈ d

O
B

M

B′

M ′

d
t

Let us observe that in the above two situations the circle pases through SM S′N
is orthogonal to the circle of inversion. If M ∈ C(O, R), N = M , that is the inverse
of M is M itself.

6. Consider a line d ⊂ E2, O /∈ d. Then, TO;R2(d) = C − {O}, i.e. the inverse
of the line d is a circle C − {O}, such that the tangent line in O to the circle C is
parallel to d (Fig. 3.4).

Proof Denote by B ′ the intersection between d and the perpendicular line from
O to d. The inverse of B ′ is B. Consider a point M ′ ∈ d and its inverse M . The
quadrilateral B ′ B M M ′ is cyclic, therefore ∠O M B is a right one, i.e. when M ′
belongs to d, M belongs to the circle having (O B] as a diameter. Since the diameter
B O is perpendicular to the tangent denoted by t in O to the circle, it results d ‖ t . �

7. The inverse of a circle C passing through O is line d, O /∈ d, d ‖ t , where t is
the tangent at O to the circle C .

Proof The inversion TO;R2 is an idempotent transformation. If we are looking back-
wards at the previous property of inversion the result is obvious. �

8. The inverse of a circleC1, O /∈ C1 is a circleC2, O /∈ C2, i.e. TO;R2(C1) = C2

(Fig. 3.5).

Proof Consider the radius O O1 where O1 is the center of the circle C1. Denote
{A, B} := O O1 ∩ C1 and suppose the order of points is O, A, O1, B.

Consider A1, B1 the inverses of A, B respectively. Since |O A| < |O B| and |O A| ·
|O A1| = |O B| · |O B1| = R2 it results |O A1| > |O B1|. Without losing the general-
ity, we can suppose the order of points on the radius O O1 is O, A, O1, B, B1, A1.
Consider M ∈ C1 and its inverse M1.

Using the cyclic quadrilaterals AA1M1M and B B1M1M it results both
∠O AM = ∠M M1A1 and ∠AB M = ∠M M1B1.

Since∠O AM = π

2
+ ∠M B A = ∠M M1A1 = ∠M M1B1 + ∠B1M1A1,wehave

∠B1M1A1 = π

2
,



3.1 Geometric Inversion and Its Properties 43

Fig. 3.5 Inversion of circles
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Fig. 3.6 The inverse of a
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that is M1 belongs to a circle of diameter B1A1. �

9. Consider TO,R2(A) = A1, TO,R2(B) = B1. Then |A1B1| = R2 · |AB|
|O A| · |O B| .

Proof The triangles �O AB and �O B1A1 are similar, therefore
|A1B1|
|AB| = |O A1|

|O B| .
It results |A1B1|

|AB| = |O A1|
|O B| · |O A|

|O A| ,

that is |A1B1| = R2 · |AB|
|O A| · |O B| . �

10. Orthogonal circles to the circle of inversion are preserved by inversion
(Fig. 3.6).

Proof Denote by S, S′ the intersection points between the circle of inversion
C(O, R) and the orthogonal circle γ . Consider M, N ∈ γ such that O, M, N are
collinear points. Since |O M | · |O N | = |O S|2 = R2, it results TO,R2(M) = N , i.e.
TO,R2(γ ) = γ . �

11. The inversion is a conformal map, i.e. it preserves the angles between curves.

Proof The angle between two curves at their point of intersection, S, is the angle
between the tangent lines at S to the curves. Let �1, �2;�1

1, �
2
2 be four curves such

that TO,R2(�1) = �1
1, TO,R2(�2) = �2

2, O /∈ �1 ∪ �2 ∪ �1
1 ∪ �2

2,

S ∈ �1 ∩ �2, TO,R2(S) = S′, TO,R2(M1) = M1
1 , TO,R2(N1) = N 1

1 . The quadrilat-
eral SM1M1

1 S′ and SM2M2
2 S′ are cyclic therefore ∠M1SM2 = ∠M1

1 S′M2
2 . When
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Fig. 3.7 Ptolemy’s Theorem
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radius O M approaches O S the previous angles are still equal. The limit position
highlights the previous angles as angles between tangent lines to the curves. �

Examples of problems solved by inversion.

Problem 3.1.1 (Ptolemy’s Theorem) The products of the lengths of two diagonals
of a quadrilateral is less than or equal to the sum of the products of opposite sides
and the equality holds if and only if the quadrilateral is a cyclic one (Fig. 3.7).

Solution. (Hint) Consider the inversion of center A and arbitrary power k > 0 and
denote by B ′, C ′, D′ the inverses of the points B, C, D. We have

|B ′ D′| = k · |B D|
|AB| · |AD| , |B ′C ′| = k · |BC |

|AB| · |AC | , |C ′ D′| = k · |C D|
|AC | · |AD| .

Replacing in |B ′ D| ≤ |B ′C ′| + |C ′ D′|, and taking into account that the equality
happens when B ′, C ′, D′ are collinear it results the statement. �

Problem 3.1.2 Consider two pairs of circles, γx , �x ; γy, �y which pass through the
same point O having the centers on perpendicular axes Ox, Oy. Then the four points
of mutual intersection are cyclic.

Solution. (Hint) Consider an inversion of center O and power k > 0, TO,k . The
circles γx , �x ; γy, �y which pass through O are mapped into a rectangle A′ B ′C ′ D′
whose vertexes comes from A, B, C, D respectively. Since a rectangle allows a
circumcircle, by inversion, this circumcircle comes from the circle containing the
initial points A, B, C, D. �

Problem 3.1.3 Two circles intersect at A and B. The tangent lines at A to the circles
intersect the circles at M and N . Let B1 be the symmetric of A with respect to B.
Prove that the quadrilateral AM B1N is a cyclic one.

Solution. Consider an inversion of center A and power k > 0, TA,k . The three lines
AM, AN and AB are transformed after the rule: TA,k(AM) = AM, TA,k(AN ) =
AN , TA,k(AB) = AB, TA,k(M) = M1, TA,k(N ) = N1, TA,k(B) = B ′. Since the
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circles passing through A are transformed into lines parallel to the tangents AM and
AN it is easy to deduce that the quadrilateral AM1B ′N1 is a parallelogram. The point

B1 is mapped by inversion into B ′
1 such that |AB1| · |AB ′

1| = k = 2|AB| · 1
2
|AB ′|,

i.e. B ′
1 is the center of the previous parallelogram.Therefore the diagonal M1N1 which

contains B ′
1 comes from the inversion of a circle containing the points A, M, B1, N .

�
For the next problem the reader has to know what is an inscribed circle for a given

triangle, and the fact that “the lines which connect the vertexes to the opposite tangent
points (of the circle with the sides) are concurrent lines”. The point of concurrence
is called Gergonne’s point.

Problem 3.1.4 Denote by C(O, R) the circumcircle of the triangle �ABC , A1,

B1, C1 the midpoints of the sides [BC], [C A], [AB] respectively.
Prove that the circles �AO A1, �BO B1 , �C OC1 have a common point E, E �= O.

Solution. An inversion of center O and power R2 preserves A, B, C andC(O, R).
The circles �AO A1 , �BO B1 , �C OC1 are mapped into lines passing through A, B, C

respectively.
TO,R2(A1) = A2 such that |O A1| · |O A2| = |O B|2 = |OC |2 = R2, i.e. A2 is the

intersection between the tangents at B and C to C(O, R). In the same way we obtain
the points B2 and C2. If we look at the triangle �A1B1C1 which has as inscribed
circleC(O, R), the lines A1A, B1B, C1C intersects at Gergonne’s point. The inverse
of Gergonne’s point is E . �

3.2 Cross Ratio and Projective Geometry

Consider four distinct collinear points A, B, C, D on the line d. Attach them the
coordinates xA, xB, xC , xD , respectively. Choose two possible ordered pairs, say
(A,B); (C,D), that is, consider the ordered pairs of coordinates (xA, xB); (xC , xD).

Definition 3.2.1 The cross ratio of four ordered points is the real number

[AB; C D] := xC − xA

xC − xB
: xD − xA

xD − xB
.

One can see that the definition can be written in the form

[AB; C D] := C A

C B
: D A

DB
,

but in this case we have to point that if the order on d for the points A and C is given
by xA < xC , then themeaning ofC A is |C A|, and if xA > xC we haveC A = −|C A|.
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(xC)(xA) (xB) (xD)
A C B D

Fig. 3.8 Cross ratio

Exercise 3.2.2 If the order of points A, B, C, D ond is givenby xA<xB < xC < xD ,
then [AB; C D] > 0.

Exercise 3.2.3 If the order of points A, B, C, D on d is given by xA<xC<xB < xD ,
then [AB; C D] < 0.

Exercise 3.2.4 If the order of points A, B, C, D on d is given by xA<xB<xC<xD ,
then

[AD; C B] = xC − xA

xC − xD
: xB − xA

xB − xD
> 0.

Observe that in this last case the ordered pairs are (A, D); (C, B) and the cross

ratio can be written in the equivalent form [AD; C B] := C A

C D
: B A

B D
with the mean-

ing explained above (Fig. 3.8).

Exercise 3.2.5 [AD; BC] + [AB; DC] = 1 if and only if the order of points on the
line d is A, B, C, D.

Hint.

[AD; BC] + [AB; DC] = B A · C D

B D · C A
+ D A · C B

DB · C A
= B A · C D + D A · C B

B D · C A
= 1.

If A(xA), B(xB), . . . etc.,

(xB − xA)(xD − xC) + (xD − xA)(xC − xB) = (xC − xA)(xD − xB)

iff the order is as in the statement before.

Exercise 3.2.6 [AD; BC] = [D A; C B].
Exercise 3.2.7 Consider A(−1), B(0), C(1), D(x). Determine x such that

[AC; B D] = −1.

Hint. If we write the given condition, it results x + 1 = x − 1. There is no real x .
To maintain the possibility to have four distinct points with a given cross ratio,

as well as for a given cross ratio and three distinct points to exist a fourth point such
that the cross ratio is a given one, we have to accept that for each line d it exists an

abstract point, denoted∞, such that for A �= B,
∞A

∞B
= 1. This point is called point

at infinity for the line d.
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Fig. 3.9 Pappus’ Theorem
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The cross ratio of collinear points can be extended to pencils of lines. Consider
the lines d1, d2, d3, d4 and {O} = d1 ∩ d2 ∩ d3 ∩ d4. Let d be an arbitrary line and
{A} = d ∩ d1; {B} = d ∩ d2; {C} = d ∩ d3; {D} = d ∩ d4. Choose two ordered
pairs of lines, say (d1, d2); (d3, d4).

By definition [d1d2; d3, d4] := [AB; C D].
If we look at this definition it seems that it depends on the line d we choose.

Therefore, we have to prove that if we choose another line d ′ and {A′} = d ′ ∩
d1; {B ′} = d ′ ∩ d2; {C ′} = d ′ ∩ d3; {D′}=d ′ ∩ d4, then [AB; C D]=[A′ B ′; C ′ D′].
Theorem 3.2.8 (Pappus’ Theorem) The cross ratio of four lines in a pencil depends
only by the angles of the pencil (Fig.3.9).

Proof We are in the case: the pencil of lines d1, d2, d3, d4 with {O} := d1 ∩ d2 ∩
d3 ∩ d4, the arbitrary line d and {A} = d ∩ d1; {B} = d ∩ d2; {C} = d ∩ d3; {D} =
d ∩ d4; suppose the order on d being A, B, C, D and use four times sine theorem:

C A

sin∠C O A
= OC

sin∠O AC
;

C B

sin∠C O B
= OC

sin∠O B D
;

D A

sin∠DO A
= O D

sin∠O AD
;

DB

sin∠DO B
= O D

sin∠O B D
;

therefore [AB; C D] := C A

C B
: D A

DB
= sin∠C O A

sin∠C O B
: sin∠B O A

sin∠B O D
. �
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Fig. 3.10 Existence of poits
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Observe that in fact the cross ratio depends on the sine of angles.
Another approach can be

Theorem 3.2.9 If O is the origin and the lines of the pencil are dk : y = mk · x,

k ∈ {1, 2, 3, 4}, then

[d1d2; d3d4] = m3 − m1

m3 − m2
: m4 − m1

m4 − m2
.

Proof Consider d having the equation x = 1. The points A, B, C, D on d have the
coordinates (1, m1), (1, m2), (1, m3), (1, m4). �

The pencils of lines allow us to better understand the points at infinity of lines. As
above, consider the lines d1, d2, d3, d4 having the property {O} = d1 ∩ d2 ∩ d3 ∩ d4.
Let d be parallel to d4 and {A} = d ∩ d1; {B} = d ∩ d2; {C} = d ∩ d3 (Fig. 3.10).

In this case we have to consider the point at infinity to define [d1d2; d3d4];
[d1d2; d3d4] = [AB; C∞] = |C A|

|C B| . If we consider another line, say d ′, such that

d ′ ‖ d and if we denote by {A′} = d ′ ∩ d1, {B ′} = d ′ ∩ d2, {C ′} = d ∩ d3, then
[d1d2; d3, d4] := [A′ B ′; C∞]. The lines d, d ′, d4 have empty intersection in E2.
This abstract point who doesn’t belong to the Euclidean plane, say ∞, can be taught
as the intersection of parallel lines d, d ′ with d4.

We define for all parallel lines the same abstract point ∞.
If, in a system of coordinates, all the parallel lines have the slope m, we may

think that this point at infinity is attached to this slope. We can even denote this point
by ∞m . An interesting question can be asked: which geometrical structure will be
assigned to {∞m, m ∈ R}? It can be taught as an abstract line? Or it is more intuitive
to be taught as an abstract circle? Or it is something else? We see the answer a little
bit later.

The cross ratio can be extended to four points distinct points A, B, C, D on a
circle�. Choose M ∈ � and the pencil determined by the rays d1 = M A, d2 = M B,

d3 = MC, d4 = M D.
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By definition, [AB; C D]� := [d1d2; d3d4].
Pappus’ theorem shows that this definition is independent of the choice of M .

Here, it is important our observation related to the fact that the cross ratio of pencils
depends on sine of angles. Since sin α = sin(π − α), the point M can be chosen
even between two consecutive points, that is we can have, for a given sense on our
circle, even the order A, B, M, C, D. The cross ratio is the same as for the order, say
M, A, B, C, D.

Next theorem shows that the previous cross ratio [AC; B D]� can be transferred
to the segment lines B A, BC, D A, DC determined by the four distinct points on the
circle. We keep our notation generated by the order of points, now on the circle. To
have a clear statement, for a chosen sense on our circle, let us consider the points
M, A, B, C, D in this order. Denote the angles of the pencil created by ∠AM B =
α,∠B MC = β,∠C M D = γ .

Theorem 3.2.10 [AC; B D]� = B A

BC
: D A

DC

Proof Consider the segment line [AD] and its intersection with M B, MC denoted
by B1, C1 respectively. The order on the segment line [AD] is then A, B1, C1, D.
If we denote by R the radius of � we have |AB| = 2R sin α, |BC | = 2R sin β,

|AD| = 2R sin(α + β + γ ), |C D| = 2R sin γ . Taking the order into consideration,
we can write

[AC; B D]� = [d1d3; d2d4] = sin α

sin β
: sin(α + β + γ )

sin γ
= B A

BC
: D A

DC

�

Exercise 3.2.11 [AD; BC]� + [AB; DC]� = 1 if and only if the order of points
on the circle � is A, B, C, D.

Solution. (Hint) We use the previous theorem, i.e. we express the

[AD; BC]� + [AB; DC]� = B A · C D

B D · C A
+ D A · C B

DB · C A
= B A · C D + D A · C B

B D · C A
= 1

iff B A · C D + D A · C B = B D · C A, that is Ptolomy’s equality must happen. �

Theorem 3.2.12 Let I be an interior point of C(O, r). Consider the chords
AA′, B B ′, CC ′, DD′ such that {I } = AA′ ∩ B B ′ ∩ CC ′ ∩ DD′ and the order is
A, B, C, D, A′,
B ′, C ′, D′.

Then [A′C ′; B ′ D′]� = [AC; B D]� .

Proof Let us observe that the symmetric inversion T s
I,R2−O I 2 maps the circle

C(O, R) in itself, since R2 − O I 2 is the power of I with respect to the circle,
and |I A| · |I A′| = |I B| · |I B ′| = |I C | · |I C ′| = |I D| · |I D′| = R2 − O I 2, that is
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T s
I,R2−O I 2(A) = A′, T s

I,R2−O I 2(B) = B ′, T s
I,R2−O I 2(C) = C ′, T s

I,R2−O I 2(D) = D′. It
results

|B ′ A′| = (R2 − O I 2) · |B A|
|I B| · |I A| , |B ′C ′| = (R2 − O I 2) · |BC |

|I B| · |I C | ,

|D′ A′| = (R2 − O I 2) · |D A|
|I D| · |I A| , |D′C ′| = (R2 − O I 2) · |DC |

|I D| · |I C | .

Taking into consideration the established order and the theorem which transfers the
cross ratio from circle to segment lines, we obtain [A′C ′; B ′ D′]� = [AC; B D]� . �

We obtain a similar result for a point J outside the circle using a direct inversion
TJ,O J 2−R2 and TJ,O J 2−R2(A) = A′, etc. [A′C ′; B ′ D′]� = [AC; B D]�

More general, an inversion TO,k leaves unchanged the cross ratio of four collinear
points or the cross ratio of four cyclic points. It doesn’t matter if the four collinear
points are mapped into cyclic points, or the cyclic points are mapped into cyclic (or
collinear) points. This result is a fundamental one.

Definition 3.2.13 A projective map of a circle C(O, R) is a one to one function
f : C(O, R) → C(O, R) such that for any four points Ai , i ∈ {1, 2, 3, 4} and their
images Bi = f (Ai ), it happens

[A1A2; A3A4]C(O,R) = [B1B2; B3B4]C(O,R).

Definition 3.2.14 The points which correspond in a projective map f , eg. Ai and
f (Ai ), are called homologous points.

According to a previous result, let observe that the symmetric inversion T s
I,R2−O I 2 ,

I ∈ intC(O, R) is a projective map of the circle C(O, R).
More, T s

R2−O I 2 can be identified with the simpler map determined by the point I
denoted

I : C(O, R) → C(O, R), I (A) = A′,

where A′ �= A is the other intersection between AI and the circle C(O, R).
The same for the direct inversion TI,O J 2−R2 , J ∈ extC(O, R). This is a projective

map and can be identified with J : C(O, R) → C(O, R), J (A) = A′,where A′ �=A
is the other intersection between J A and the circle C(O, R).

Ifwe consider I1, I2 ∈ intC(O, R) it canbeobtained thatT s
I1,R2−O I 21

◦ T s
I2,R2−O I 22

:
C(O, R) → C(O, R) is a projective map.

Definition 3.2.15 A projective map between two lines d1 and d2 is a one to one
function f : d1 → d2 such that for any four points Ai ∈ d1, i ∈ {1, 2, 3, 4} and their
images Bi = f (Ai ) ∈ d2, it happens

[A1A2; A3A4] = [B1B2; B3B4].
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Since the previous definition has also sense for f : d → d, we may talk about
projective maps on d .

Theorem 3.2.16 A projective map between two lines is determined by three pairs
of homologous points.

Proof Denote the homologous points in the form A → B instead of B = f (A),
because this notation will help us later.

Then,weknow the three pairs of homologous points A0 → B0, A1→B1, A2→B2.
We have to show that for any four arbitrary points Ai , A j , Ak, Al and their homol-

ogous Bi , B j , Bk, Bl the relation [Ai A j ; Ak Al] = [Bi B j ; Bk Bl] is deduced from
[A0 A1; A2 Ai ] = [B0B1; B2Bi ] using successively the indexes i, j, k and l.

The idea is to find somehow a procedure of replacement of the homologous points
initially given.

Wealsohave [A1 A2; A0 A j ] = [B1B2; B0B j ] and [A1A2; Ai A0] = [B1B2; Bi B0].
It results

[A1A2; A0 A j ] · [A1A2; A j A0] = [B1B2; B0B j ] · [B1B2; Bi B0],

that is
[A1A2; Ai A j ] = [B1B2; Bi B j ].

We succeeded to replace the pair of homologous points A0 → B0.
Then, the from previous relation and [A1Ak; A j Ai ]=[B1Bk; Bi B j ] we have

[A1A2; Ai A j ] · [A1Ak; A j Ai ] = [B1B2; Bi B j ] · [B1Bk; Bi B j ],

i.e.
[A2 Ak; A j Ai ] = [B2Bk; B j Bi ].

Finally, taking into consideration the previous result and [Al A2; A j Ai ] = [Bl B2;
B j Bi ] it results

[A2 Ak; Ai A j ] · [Al A2; A j Ai ] = [B2Bk; B j Bi ] · [Bl B2; B j Bi ],

that is
[Al Ak; A j Ai ] = [Bl Bk; B j Bi ].

�

Consequences: The way the previous theorem was proved makes it to hold for
projective maps: we can imagine between two circles, between a line and a circle,
on the same line or on the same circle.

This theorem can be easily extended to projective pencils: they are determined by
three pairs of homologous rays. Generally speaking, a projective map is determined
by the knowledge of three pairs of homologous points.
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If two projective maps f and f1 has the same three pairs of homologous points,
then f = f1.

Other examples of projective maps:

1. Consider two distinct lines d1, d2 and a point O in E2 who doesn’t belong to
d1 ∪ d2. A moving ray through O intersects d1 in M and d2 in N . Then, using
Pappus’ theorem, M → N is a projective map between d1 and d2 (Fig. 3.11).

2. Two points moving with the same speed on two distinct lines, or on a same line,
determine a projective map (Fig. 3.12).

3. Consider a point O /∈ d and a constant angle given angle with its vertex in O
rotating around O . The first side of the angle intersect d in M and the second side
in N . Again, using Pappus’ theorem, M → N is a projectivemap on d (Fig. 3.13).

4. The example above may be extended. Consider two lines d1 and d2. The given
constant angle intersects the lines such that M is on d1 and N is on d2. Using
Pappus’ theorem, M → N is a projective map between d1 and d2.

For a projective map on d, denote the coordinate of M by x and the coordinate of
N by y, where M → N are homologous points.

Theorem 3.2.17 A projective map on d determines a function h(x) = Ax + B

Cx + d
,

A, B, C, D being real constants such that AD − BC �= 0.
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Fig. 3.14 Interior involution
of a circle
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Proof (Hint) Suppose the three given homologous points are 0 → y0, 1 → y1,
x2 → y2. The condition [xx2; 01] = [yy2; y0y1] becomes

x

x2
: x − 1

x2 − 1
= y − y0

y2 − y0
: y − y1

y2 − y1
.

After computations it results the desired formula. After another computation the
coefficients verify AD − BC �= 0. �

Theorem 3.2.18 The function h(x) = Ax + B

Cx + d
, A, B, C, D being constants such

that AD − BC �= 0 describes a projective map on d.

Proof (Hint) Replace yk = h(xk) by
Axk + B

Cxk + D
in [y1y2; y3y4] and use

AD − BC �= 0 to simplify.A straightforward computation shows that [x1x2; x3x4] =
[y1y2; y3y4].

�

Definition 3.2.19 A projective map on d which interchanges a pair of homologous
points is called geometric involution, or simple, involution.

Theorem 3.2.20 All pairs of homologous points interchange in an involution.

Proof Consider A → B, B → A, M → N and N → X . We wish to prove that
X = M . Since [AB; M N ] = [B A; N X ] it results [AB; M N ] = [AB; X N ] i.e.
X = M . �

The same considerations hold for involutions of a circle. They have a pair of
homologous points which can be interchanged. In fact all pairs of homologous points
can be interchanged. Therefore M → N implies N → M , too (Fig. 3.14).

We saw above two examples of involutions of a circle: T s
I,R2−O I 2 is an interior

involution, i.e. it is described by the point I ∈ intC(O, R). TJ,O J 2−R2 is an exterior
involution, i.e. it is described by the point J ∈ extC(O, R).
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Consider a projective map between two lines, f : d1 → d2. Denote {O} := d1 ∩
d2 and suppose that f (O) = O . Such a point is called a self-homologous point. A
projective map between two lines as above with a self-homologous point is called a
perspective map.

Theorem 3.2.21 For a perspective map between d1 and d2, the lines which connect
homologous points have a common point.

Proof The perspective map is determined by O → O, A1 → A2, B1 → B2.
Denote {I } = A1A2 ∩ B1B2 and consider the pencil of lines I O, I A1, I B1, I M
where A1, B1, M ∈ d1. Suppose that f (M) = N , N ∈ d2 and denote by
{N ′} = I M ∩ d2. The perspective map f implies [O A1; B1M] = [O A2; B2N ], and
Pappus’ theorem implies [O A1; B1M] = [O A2; B2N ′]. Therefore N = N ′ and the
arbitrary line M N which connects homologous points contains I . �

Consider a set of arbitrary indexes denoted by I, O1, O2 ∈ E2. Also consider both
the lines passing through O1, denoted by αi , i ∈ I and the lines passing through O2,
denoted by βi , i ∈ I. Let denote by O1(α), O2(β) the two pencils of lines. The next
definition makes sense even if O1 = O2.

Definition 3.2.22 Twopencils of lines are projective if there exists an one to onemap
f : O1(α) → O2(β) such that for any four rays of the first pencil, say α1, α2, α3, α4

and their images β1, β2, β3, β4, we have [α1α2;α3α4] = [β1β2;β3β4]. α1 and β1 are
called homologous rays.

Example 3.2.23 Consider a line d and a projective map f : d → d. Choose four
arbitrary points A1, A2, A3, A4 on d and their images via f , B1, B2, B3, B4. We have
[A1A2; A3 A4] = [B1B2; B3B4]. Therefore [O A1O A2; O A3O A4] = [O B1O B2;
O B3O B4]. It results that O(O A) and O(O f (A)) are projective pencils of lines.

Example 3.2.24 Consider a line d and a projective map f : d → d. Choose four
arbitrary points A1, A2, A3, A4 on d and their images via f , B1, B2, B3, B4. We
have [A1A2; A3A4] = [B1B2; B3B4]. Therefore [O1A1O1A2; O1A3O1A4]=[O2B1

O2B2; O2B3O2B4]. It results that O1(O1A) and O2(O2 f (A)) are projective pencils
of lines.

Example 3.2.25 Consider the lines d, d ′ and a projective map f : d → d ′. Choose
four arbitrary points A1, A2, A3, A4 on d and their images via f , B1, B2, B3, B4 on d ′.
We have [A1A2; A3A4]d = [B1B2; B3B4]d ′ . Therefore [O1A1O1A2; O1A3O1A4] =
[O2B1O2B2; O2B3O2B4]. It results that O1(O1A) and O2(O2 f (A)) are projective
pencils of lines.

We left to the reader to prove: “A projective map between two pencils of lines in
determined by three pairs of homologous rays.”

Theorem 3.2.26 (Steiner) Consider two projective pencils of lines. Their homolo-
gous rays intersect on a conic.
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Proof To simplify the proof consider a projective map f on the line of equation
y = 1,

O1(0, 0), O2(1, 0). If M(x, 1) and N

(
Ax + B

Cx + D
, 1

)
are the homologous points, the

equations of the lines O1M and O2N are Y = 1

x
X and Y = 1

Ax + B

Cx + D
− 1

(X − 1).

It is not necessary to compute the coordinates of the intersection O1M ∩ O2N . We

can substitute x from the first equation, i.e. x = X

Y
, and replace in the second. It

results

Y = 1

A
X

Y
+ B

C
X

Y
+ D

− 1

(X − 1),

therefore, the coordinates of the intersection point lie on the conic of equation

−C X2 + (A − C − D)XY + (B − D)Y 2 + C X + DY = 0.

The reader has to observe that Steiner’s conic contains O1 and O2. �

Problem 3.2.27 Consider M and N on the hypotenuse BC of an isosceles rectangle

triangle ABC such that M N 2 = B M2 + C N 2. Prove that ∠M AN = π

4
.

Solution. Consider a system of coordinates such that A(0, a), B(−a, 0), C(a, 0),
M(x, 0), N (y, 0). M N 2 = B M2 + C N 2 can be written in the form

(x + a)2 + (a − y)2 = (y − x)2,

that is y = ax + a2

−x + a
. This is a projective map on BC .

Since x = −a implies y = 0, it results B → O . x = 0 implies y = a, therefore
O → C . For x = a it results y = ∞, i.e. C → ∞.

So, this projective map on BC is determined by B → O, O → C, C → ∞.

If we consider a rotating angle∠M AN = π

4
we observe three important positions

M = B, N = O; M = O, N = C; M = C, N = ∞

such that ∠B AO = ∠O AC = ∠C O∞ = π

4
. Therefore the rotating angle leads

to a projective map on BC determined by B → O, O → C, C → ∞. The two

projective map are coincident, therefore always ∠M AN = π

4
. �
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Fig. 3.15 Karya’s Point
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Problem 3.2.28 (Karya’s point) Let I be the incenter of the triangle �ABC and
D′, E ′, F ′ be the symmetric of I with respect the sides BC, C A, AB.

Then, AD′ ∩ B E ′ ∩ C E ′ �= ∅.
Solution. (D. Barbilian) Denote by D, E, F the contacts of the incircle with the

sides BC, C A, AB respectively. Denote also by D1, D2 the intersection points of
I D with AC and AB, respectively. The same, {E1} = I E ∩ BC; {E2} = I E ∩ B A.

Consider first twomoving points M ∈ I D, N ∈ I E who start tomovewith the same
speed from I in the direction of D, respectively E (Fig. 3.15).

We know that M → N is a projective map between the lines I D and I E . It
results a projective map between the pencils A(AM) and B(B N ). The intersection
point between AM and B N lies on a conic. A conic is determined by the knowl-
edge of five distinct points of it. The initial moment M = N = I implies that I
belongs to the conic. When M = D it results N = E , therefore Gergonne’s point
of the triangle ABC, Ge, belongs to the conic. Now consider M, N moving from
I to D1, E1 respectively. Since the triangles I E D1 and I E D1 are congruent, when
M = D1 it results N = E1, therefore AM ∩ B N = {C}. According to Steiner’s the-
orem the conic contains A and B. But it is easy to observe for this projective map
why. When M = D2, AD2 ∩ B N = {B}, and when N = E2, AM ∩ B E2 = {A}.
Therefore Steiner conic for the projective pencils A(AM), B(B N ) is determined by
A, B, C, I, Ge. The same for the Steiner conics determined by the projective pencils
A(AM), C(C P) and B(B N ), C(C P). Therefore the three Steiner conics are coin-
cident, i.e. AM ∩ B N ∩ C P �= ∅ when |I M | = |I N | = |I P|. In the particular case
of the statement, a particular point belongs to Steiner’s conic. We are talking about
Karya’s point. If we choose the points at infinity of AM, B N , C P we can see that the
orthocenter H belongs to the Steiner conic. As you can see, this projective solution
allows us to highlight many other points of intersection among AM, B N and C P
described by the condition |I M | = |I N | = |I P|. �
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There is a special case when Steiner’s conic is a line only.

Definition 3.2.29 Two projective pencils of lines, O1(α) and O2(β), O1 �= O2, are
called perspective pencils if the ray O1O2 is self-homologous, i.e. O1O2 → O1O2.

Theorem 3.2.30 If O1(α) and O2(β), O1 �= O2 are perspective pencils, then the
homologous rays intersection lies on a line.

Proof Denote p = O1O2. The perspective map is determined by p → p, α1 →
β1, α2 → β2.Denote {T1} = α1 ∩ β1, , {T2} = α2 ∩ β2, . If α → β, and {T } = α ∩
T1T2 we observe that α → O2T belongs to the previous projective map. Therefore,
O2T = β, and α ∩ β always belongs to T1T2. This line is called the perspective axis
of the perspective pencils of lines O1(α) and O2(β). �

Let us answer to the question:which is the geometrical structure of {∞m, m ∈ R}?
First, it is easy to see that for a given line d ⊂ E2 it exists twoperspective pencils of

lines, O1(α) and O2(β), such that d is the perspective axis of the previous perspective
pencils. If we have two perspective pencils there is one case in which the perspective
axis doesn’t exist: when the homologous rays of the perspective pencils are parallel.
Exactly as in the case of the abstract infinity point of a line added to preserve a
geometric rule, we do the same thing. In the case of parallel perspective pencils the
perspective axis is an abstract line, called the line at infinity of E2. Therefore we may
denote d∞ := {∞m, m ∈ R}.

Perspective pencils allow us to construct a special line assigned to any projective
map f on a circle: the axis of f . This line plays a crucial role in the construction of
Poincaré disk model.

Consider for a projective map f on a circle � the homologous points
M, M ′, M → M ′ which describe the projective map f . If we choose two particu-
lar pairs of homologous points, say A → A′, B → B ′, the point {P} = AB ′ ∩ A′ B
allows us to create a function g : � → �, g(N ) = N ′, {N ′} := N P ∩ �. It is obvi-
ous to observe that g is an involution of �.

Theorem 3.2.31 (i) The map f ◦ gP : � → � is an involution of �.
(ii) The locus of points I f ∈ E2 such that f ◦ gI f is an involution of � is a line.

Proof (i) f and gP are projective maps on �, then f ◦ gP is a projective map
on �. It remains to prove that f ◦ gP has a pair of homologous points which
interchanges. We show that f ◦ gP(A′) = B ′ and f ◦ gP(B ′) = A′. Let’s com-
pute f ◦ gP(A′) = f (gP(A′)) = f (B) = B ′. In the same way f ◦ gP(B ′) =
f (gP(B ′)) = f (A) = A′, therefore f ◦ gP is an involution of �.

(ii) Consider A → A′ a given pair of homologous point of f and M → M ′ the
general pair of homologous points of f . Therefore A → A′ is a particular pair
obtained from the general pair by replacing M by A. The pencils A(AM ′) and
A′(A′M) are perspective, the self-homologous ray being AA′. The homologous
rays intersection, i.e. {I f } = AM ′ ∩ A′M , lies on the perspective axis, therefore
the locus is a line. �
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This line is called the axis of the projective map f . The previous theorem shows
that this line is {I f |{I f } = AM ′ ∩ M A′, M ∈ �}. A direct consequence appears.

Theorem 3.2.32 (i) If A → A′, B → B ′, C → C ′ are homologous points of f on
�, then the points {U } = AB ′ ∩ B A′, {V } = AC ′ ∩ C A′, {W } = BC ′ ∩ C B ′
are collinear.

(ii) All projective maps of a circle can be written as a product of involutions (in a
non unique way).

(iii) Two interior involutions of �, I, J determine in an unique way the projective
map of �, f = I ◦ J such that the axis of f is I J .

(iv) Denote {s, S} = I J ∩ � such that the order is s, I, J, S. Then f (s) = s,
f (S) = S and [I J ; Ss] > 1.

(v) If M ∈ �, J (M) = M ′, M ′ ∈ �, I (M ′) = N , N ∈ �, for an arbitrary
X ∈ I J there is an unique Y ∈ I J such that X N ∩ MY ∈ �.

(vi) X → Y is a projective map on the line I J . (This map is called the axial decom-
position of f ).

(vii) [Ss I J ] = [Ss XY ].
Proof (i) U, V, W are three particular points of {I f |{I f } = AM ′ ∩ M A′, M ∈ �}.
(ii) If we choose the point, say {U } = AB ′ ∩ B A′, then f ◦ U = L where {L} is

the intersection between the axis of f and A′ B ′. Therefore f = L ◦ I .
(iii) (iv) and (v) are obvious.
(vi) Consider the projective map on I J determined by particular positions of X and

Y , s → s, S → S, I → J . If remains to prove [sSI X ] = [sS JY ]. Consider
the pencils M(Ms, M S, M J, MY ) and N (Ns, N S, N I, N X). Since the angles
involved are equal it results

[Ms M S; M J MY ] = [Ns N S; N I N X ],

i.e. [sSI X ] = [sS JY ].
(vii) From [sSI X ] = [sS JY ] it results [Ss I X ] = [Ss JY ]. If you write the last one

equality it results
I S

I s
: X S

Xs
= J S

js
: Y S

Y s
.

This one can be thought as

I S

I s
: J S

ss
= X S

Xs
: Y S

Y s
,

which means [Ss I J ] = [Ss XY ], or equivalently [sSI J ] = [sSXY ]. �

Before continuing, let us conclude in the following way.
For I and J belonging to the interior of our circle, we construct the projec-

tivity of the circle f := I ◦ J determined by the product of the given interior
involutions. Suppose M → N in this projectivity. For each X ∈ I J ,we construct
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Y ∈ I J as in the previous theorem. The projectivity X → Y on I J is determined
by f . It is called the axial decomposition of the projectivity f (of the circle) on
the line I J . This was the most important step towards the construction of a
non-Euclidean distance in the interior of the circle.

The next steps are the Theorems 3.3.1, 3.3.2 and 3.3.3 in the next section.
Let us observe: Consider S, S′ ∈ � such that the chord SS′ is not a diameter;

Then, the tangents at S, S′ meet at the center of an orthogonal circle to �.
If A ∈ int� and S ∈ �, we know that the orthogonal circle to � passing through

A and S is constructed in the following way: the tangent at S meet the perpendicular
bisector of the segment AS at the center of the orthogonal circle.

If A, B ∈ int� the orthogonal circle to � passing through A and B is constructed
in the following way: we construct A′, the inverse of A in the direct inversion TO,R2 ,
where O, R are the center, respectively the radius of �. The perpendicular bisectors
of the triangle AB A′ meet at the center of the orthogonal circle we are looking for.
Observe that B ′, the inverse of B in the same inversion belongs to this circle.

Another more important observation is:

Proposition 3.2.33 If A, B, C, D ∈ � such that {L} = AB ∩ C D, L ∈ int�, then
the orthogonal circles determined by the chords AB, C D denoted by γAB, γC D

respectively, meet in X, X ′ such that O, X, L , X ′ are collinear.

Proof O and L have equal powers with respect γAB, γC D .
The powers are R2 for O , u := |L A| · |L B| = |LC | · |L D| for L respectively, there-
fore they belong to the radical axis of the two circles. But the radical axis passes
through the points of intersection of the two orthogonal circles, i.e. O, X, L , X ′ are
collinear. Extra, |O X | · |O X ′| = R2, that is X and X ′ are inverse in TO,R2 . �

3.3 Poincaré Disk Model

We underline some results proved above, results which are necessary to introduce
the Poincaré disk model. If I, J ∈ int�, f := I ◦ J is a projective map on � such
that I J is its axis.

If X → Y are the homologous points in the axial decomposition of f on
a := I J , and {s, S} = a ∩ � such that the order is s, I, J, S; s, X, Y, S respectively,
then [I J Ss] = [XY Ss] = k > 1. Therefore [Ss I J ] = k is an invariant of the axial
decomposition of f . In fact k depends on I and J , that is k = kI J is an invariant
attached to the involutions I and J on the axis of the projective map f = I ◦ J .

If we consider the orthogonal circle to � through s and S, denoted g, on the arc
g := gsS from the int� we can consider two special points I ′, J ′, {I ′} := O I ∩
gsS, {J ′} := O J ∩ gsS.

A very important result will be proved:

[I J Ss] = [I ′ J ′Ss]2g.
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Fig. 3.16 [I J Ss] =
[I ′ J ′Ss]2g

d1

iΓ

d2

O

Γ

s

S

I
J g

I′
J ′

c

c1

G1

G′
1

G′
2

G2

J1

J2

Let us describe again the context. Consider the circle � centered in O and int�
the disk enclosed by�. Let I and J be in int� and denote by s and S the intersections
of the line I J with �. Suppose the order is s, I, J, S. Denote by g the orthogonal
arc to � passing through s and S, and let I ′ and J ′ be the intersections of g with O I
and O J , respectively (Fig. 3.16).

We have to consider the direct inversion of pole S and power μ = (sS)2.

The point s is fixed by this transformation. The circle �, which passes through
the pole of inversion, is transformed into the line i(�) which passes through s. The
arc g is transformed into the line i(g), and i(g)⊥i(�). Let d1 := O I and d2 := O J.

The line d1, which doesn’t pass through the pole of inversion, is transformed into
the circle c1 passing through S. Furthermore, c1 contains the images of I ′ and I ,
denoted by G1 and J1, respectively. In fact, since d1 ⊥ �, then c1 and i(�) must
also be orthogonal, which means that c1 has the line i(�) as a diameter. A similar
reasoning can be done for the line d2.

We introduce the following notations: {G1, G ′
1} = c1 ∩ i(g), and {G2, G ′

2} =
c2 ∩ i(g).

Finally, we remark that S is mapped by this inversion into ∞.
Then we have the following:

[I J Ss] = [J1 J2∞s] = |s J2|
|s J1| ,

[I ′ J ′Ss]g = [G1G2∞S] = |sG2|
|sG1| .

The power of the point s with respect to c1 yields:

|Ss| · |s J1| = |sG1| · |sG ′
1| = |sG1|2.

Similarly, the power of s with respect to c2 yields:
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|Ss| · |s J2| = |sG2| · |sG ′
2| = |sG2|2.

Therefore, we have
|s J1|
|s J2| =

( |sG1|
|sG2|

)2

.

This result actually means we proved the following

Theorem 3.3.1 [I J Ss] = [I ′ J ′Ss]2g.
It results that the points I, J ∈ a generate I ′, J ′ ∈ gsS such that the invariant
kI J = [I J Ss] generates the invariant KI ′ J ′ = [I ′ J ′Ss]2g and [I J Ss] = [I ′ J ′Ss]2g.

Therefore we move points and invariants from the axis of a projective map of a
circle � to an orthogonal arc g to �.

On the initial configuration, we apply a symmetric inversion of pole J ′ and power
μ′, where μ′ is the power of J ′ with respect to the circle �.

Consequently, the circle � is mapped into � itself by this transformation.
The arc g becomes the line i(g), which is a diameter in �.

The point I ′ is transformed into F ′
1, which lies on i(g), such that |J ′ I ′| ·

||J ′F ′
1| = μ.

The pole J ′ is mapped into ∞.

The point P ∈ � is transformed into P ′ ∈ �, such that |J ′ P| · |J ′ P ′| = μ′
and P ′ is the second intersection of � with the line J ′ P.

Denote i(s) and i(S) the images of s and S through the previously described
inversion. We have

[I ′ J ′Ss]g = [F ′
1∞i(S)i(s)] = |i(S)F ′

1|
|i(s)F ′

1|
= maxP ′∈� |P ′F ′

1|
minP ′∈� |P ′F ′

1|
.

Furthermore,

|P ′F ′
1| = μ′ · |P I ′|

|J ′ P| · |I ′ J ′| = μ′

|I ′ J ′| · |P I ′|
|P J ′| .

This shows us that |P ′F ′
1| reaches its maximum and minimum in the same time as

the ratio
|P I ′|
|P J ′| (Fig. 3.17).

Therefore, we have proved

Theorem 3.3.2

[I ′ J ′Ss]g = maxP∈�
|P I ′|
|P J ′ |

minP∈�
|P I ′|
|P J ′|

.

Let see how these algebraic invariants generate distances in the interior of �. Denote

da(I, J ) := 1

2
ln[I J Ss],
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Fig. 3.17 Poincaré Modified
Distance
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dg(I ′, J ′) := ln[I ′ J ′Ss]g,

d(I ′, J ′) := ln
maxP∈�

|P I ′|
|P J ′|

minP∈�
|P I ′|
|P J ′ |

.

The previous proved facts allow us to assert

Theorem 3.3.3 da(I, J ) = dg(I ′, J ′) = d(I ′, J ′).

Consider two arbitrary sets K and U.

Definition 3.3.4 The function f : K × U → R
∗+ is called an influence of the set K

over U if for any A, B ∈ U the ratio gAB(P) = f (P, A)

f (P, B)
has a maximum MAB ∈ R

when P ∈ K .

Note that gAB : K → R
∗+. If we assume the existence of max gAB(P),when P ∈ K ,

then there also exists m AB = minP∈K gAB(P) = 1

MB A
.

Consider d : U × U → R+ given by

d(A, B) = ln
maxP∈K gAB(P)

minP∈K gAB(P)
.

It is easy to prove that the previous formula leads to a semi-distance, i.e.:
(1) if A = B then d(A, B) = 0; (2) d is symmetric; (3) d satisfies triangle inequal-

ity.
(1) and (2) are obvious. For (3) let A, B, C distinct points in J and the pair of

points S0, s0 ∈ K , S1, s1 ∈ K , S2, s2 ∈ K such that

max
P∈K

gAB (P) = f (S0, A)

f (S0, B)
, min

P∈K
gAB (P) = f (s0, A)

f (s0, B)

max
P∈K

gAC (P) = f (S1, A)

f (S1, C)
, min

P∈K
gAC (P) = f (s1, A)

f (s1, C)
,
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max
P∈K

gBC (P) = f (S2, B)

f (S2, C)
, min

P∈K
gBC (P) = f (s2, B)

f (s2, C)
.

If S0, S2 are replaced by S1 and s0, s2 are replaced by s1 we obtain

d (A, B) + d (B, C) = ln

[(
f (S0, A)

f (S0, B)
: f (s0, A)

f (s0, B)

)
·
(

f (S2, B)

f (S2, C)
: f (s2, B)

f (s2, C)

)]
≥

≥ ln

(
f (S1, A)

f (S1, C)
: f (s1, A)

f (s1, C)

)
= d (A, C) .

In particular for f (P, A) = |P A|, K = � is a circle and U := int� its interior,
we obtain that our last formula among the previous three is a semi-distance on int�.

But there is no pair (A, B) ∈ U × U, A �= B, such that the ratio gAB(P) = f (P, A)

f (P, B)
is constant for all P ∈ K (in the case when K = � is a circle and U := int�), that is
if d(A, B) = 0 it results A = B, i.e. all three equal formulas da(I, J ) = dg(I ′, J ′) =
d(I ′, J ′) are distances.
Definition 3.3.5

d(I ′, J ′) = ln
maxP∈�

|P I ′|
|P J ′|

minP∈�
|P I ′|
|P J ′|

.

is called a Poincaré distance between the points I ′ and J ′of the disk.

We prefer to consider this general form of the distance d, because if we change K
and U , we can obtain available distances on U which come only from the existence
of the asked maximum. The reader will see this in the cases of the “semi-plane” and
“exterior of the disk” models for non-euclidean Geometry.

All these beautiful geometric facts were possible because of the axial projective
map derived from a projective map of a circle.

Problem 3.3.6 Show that for three points A, B, C in this order on the orthogonal
arc g to the circle �, A, B, C ∈ int�, we have d(A, C) = d(A, B) + d(B, C).

Solution. Suppose the order is s, A, B, C, S where s, S are the “ends” of the arc g

belonging to the center. In fact, the ratios
|P A|
PC | ,

|P A|
P B| ,

|P B|
PC | have their maximum

when P = S and the minimum when P = s. And now just add. �
When the orthogonal arc is a diameter and s(−1), I (0), J (x), S(1), x > 0, then

d(I, J ) = ln
1 + x

1 − x
.

We can observe that when J → S, i.e. x → 1 then d(I, J ) → ∞. The disk becomes
unbounded with respect this distance.
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What kind of Geometry do we have inside the disk? Next, we prove that it is
a non-Euclidean one. A point I ∈ int� is called an n-point in our Geometry. The
points of the circle � are called ∞-points.

An orthogonal arc of circle to � is called an n-line. Such an n-line is uniquely
determined by two n-points, by two∞-points, or by an∞-point and an n-point. Two
n-lines intersect at most at an n-point. Three n-points are called n-collinear if they
belong to an n-line.

It is easy to show that there exist non-intersecting n-lines. If two chords Ss and
S′s ′ do not intersect in the interior of the disk, then the orthogonal to � arcs of
circles having the same endpoints are n-lines with empty intersection, that is non-
intersecting n-lines. Through an n-point which doesn’t belong to a given n-line we
can construct at least two non-intersecting n-lines with respect to the given n-line.

In fact, if the given n-line is the orthogonal arcγsS and I /∈ γsS , among the infinitely
many non-intersecting n-lines there exist two special ones, γs I , γSI which are called
n-parallels to γsS .

The angle between two n-lines is, by definition, the Euclidean angle between the
tangents to the arcs at the common point.

An n-triangle is determined by three non-n-collinear points. The sides of an n-
triangle are n-lines.

What about the sum of the angles in an n-triangle?
According to the theory described in the previous chapter, it is enough to study

what happens in the case of one given triangle. We can choose a triangle with one
vertex at the center O of � and two other n-points, A and B. Consider the Euclidean
triangle AO B. The sum of the angles of the Euclidean triangle is π . The angle at
O , i.e. AO B is common to both triangles, but each other n-angle is less than the
corresponding Euclidean angle. Therefore, the sum of the angles of the n-triangle is
less than π .

More about this model of Non-Euclidean Geometry and some other models con-
nected to this one can be understood only after we study Differential Geometry.



Chapter 4
Surfaces in 3D-Spaces

Ab initio res.

This chapter is devoted to theDifferentialGeometry of a surface in a 3-space.Weneed
to know basic calculus. All functions which appear from now are smooth, i.e. they are
indefinitely differentiable functions in one or several variables at each point of their
domain of definition. First, we see surfaces in an Euclidean 3-dimensional space and
we understand how the Euclidean inner product induces, via the first fundamental
form, a way to measure lengths and angles for vectors belonging to tangent planes
to the surface. We can also measure lengths of curves who belong to surfaces, areas
of regions and the Gaussian curvature of a surface at each point. If at beginning,
the curvature seems to be dependent on the embedding in the ambient Euclidean
space, after we prove Gauss’ formulas, we step into the intrinsic theory of surfaces
where Gauss’ equations and the Theorema Egregium offer another perspective the
surfaces can be seen as pieces of a plane endowed with a metric, and this metric
only determines the curvature. In Minkowski 3-spaces we have the same picture, the
Minkowski product determines a non-Euclidean metric of a surface which allows us
to conclude about the intrinsic Geometry of it. Therefore, in both cases the surface
becomes irrelevant for our study. In fact we study the Geometry of a metric and we
obtain relevant geometric aspects about the piece of plane endowed with that metric.
This point of viewwill be continued in the next chapter whenwe better understand the
nature of geometric objects which appear in Differential Geometry. Both chapters
regarding Differential Geometry were adapted using ideas from [27–30].

4.1 Geometry of Surfaces in a 3D-Euclidean Space

Before developing our considerations, it is worth stressing that a standard notation
in Differential Geometry is the Einstein summation convention, or simply Einstein

notation, aibi :=
n∑

i=1
aibi .

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
W. Boskoff and S. Capozziello, A Mathematical Journey to Relativity,
UNITEXT for Physics, https://doi.org/10.1007/978-3-030-47894-0_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47894-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-47894-0_4


66 4 Surfaces in 3D-Spaces

It can be taught for double or triple sums, that is ai j x i y j =
n∑

i, j=1
ai j x i y j or

ai jk xi y j zk =
n∑

i, j,k=1
ai jk xi y j zk . One can adopt this convention for multiple sums,

the sums being thought before the indexes up and down or down and up denoted by
the same letter.

If below one reads something like �i
s j�

s
kl , this means

n∑

s=1
�i
s j�

s
kl .

The index s from the previous formula is called a dummy index because we can
replace the letter s by r and the meaning of the formula �i

r j�
r
kl is the same, i.e.

n∑

r=1
�i
r j�

r
kl .

The number n is related to the dimension of the set endowed with a coordinate
system, set in which we develop Differential Geometry concepts. In the case of
surfaces, n = 2.

The Euclidean three dimensional space, denoted by E3, can be thought as the
vector space R

3 over the field R endowed with the Euclidean inner product

〈a, b〉 := a0b0 + a1b1 + a2b2,

where a = (a0, a1, a2), b = (b0, b1, b2).

If we consider a frame generated by the vectors
→
i = (1, 0, 0),

→
j = (0, 1, 0) and

→
k= (0, 0, 1), the components of a vector a with respect to this basis become coor-
dinates in the new frame, that is, we can assign them to a point A. We can write
A(a0, a1, a2) and this point can be seen as the endpoint of the vector a whose origin
is in the point (0, 0, 0).

Euclidean perpendicular vectors correspond to null inner product, i.e. a and b
are perpendicular (or orthogonal) if 〈a, b〉 = 0. With respect to the Euclidean inner
product the previous basis is an orthogonal one.

The length of the vector a is, by definition, ||a|| := √〈a, a〉 =
√
a20 + a21 + a22 .

The Cauchy–Schwartz inequality for the triples (a0, a1, a2), (b0, b1, b2) is

(a0b0 + a1b1 + a2b2)
2 ≤ (a20 + a21 + a22)(b

2
0 + b21 + b22),

that is, for vectors the inequality can be written in terms of inner product and norm
in the form 〈a, b〉2 ≤ ||a||2 · ||b||2. The equality happens when the triples are pro-
portional: this fact corresponds to collinear vectors.

If the two vectors a and b are not collinear, they determine a plane.
In this plane it makes sense to define the angle α between the nonzero vec-

tors a and b by the formula

cosα := 〈a, b〉
||a|| · ||b|| .
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The length of a vector a becomes the distance between the origin O(0, 0, 0) at
the point A(a0, a1, a2). The Euclidean distance between two points A(a0, a1, a2),
B(b0, b1, b2) is given by the formula

d(A, B) := ||a − b|| = √〈a − b, a − b〉 =
√

(a0 − b0)2 + (a1 − b1)2 + (a2 − b2)2.

We can denote the Euclidean distance ||OA|| by our previous notation |OA|. We
prefer this last notation and we keep in our mind that ||AB|| = |AB|.

The crossproduct of two vectors is the vector given by the formula

a × b = (a1b2 − a2b1,−a0b2 + a2b0, a0b1 − a1b0).

It is easier to remember it from the formal developing of the following determinant,

∣
∣
∣
∣
∣
∣
∣

→
i

→
j

→
k

a0 a1 a2
b0 b1 b2

∣
∣
∣
∣
∣
∣
∣
.

Since 〈a × b, a〉 = 0 and 〈a × b, b〉 = 0 the vector a × b is orthogonal to the
plane determined by the vectors a and b.

Problem 4.1.1 ||a × b|| = ||a|| · ||b|| · sin α

Solution. (Hint)
||a × b||2 = (a1b2 − a2b1)

2 + (a0b2 − a2b0)
2 + (a0b1 − a1b0)

2 =

(a20 + a21 + a22)(b20 + b21 + b22) − (a0b0 + a1b1 + a2b2)
2 = ||a||2 · ||b||2 · (1 − cos2 α) =

= ||a||2 · ||b||2 · sin2 α

�

From the square of the Generalized Pythagoras Theorem relation

〈a, b〉2 = ||a||2 · ||b||2 cos2 α

and the previous square of the cross product formula, adding it results

〈a, b〉2 + ||a × b||2 = ||a||2 · ||b||2 .

This formula will be used below to obtain Kepler’s first law.

Definition 4.1.2 A surface in the Euclidean three dimensional space E3 is a smooth
mapping of an open set U ⊂ R

2 into E3 with an extra property: at each point f (x)
of the surface, there exists a tangent plane.
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Let us explain this definition.
f : U −→ R

3 is written as f (x) = (
f 1 (x) , f 2 (x) , f 3 (x)

)
, where

x = (x1, x2). We consider the vectors

∂ f

∂x1
(x) =

(
∂ f 1

∂x1
(x) ,

∂ f 2

∂x1
(x) ,

∂ f 3

∂x1
(x)

)

,

∂ f

∂x2
(x) =

(
∂ f 1

∂x2
(x) ,

∂ f 2

∂x2
(x) ,

∂ f 3

∂x2
(x)

)

.

If the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂ f 1

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 2

∂x1
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x1
(x)

∂ f 3

∂x2
(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

x = (
x1, x2

) ∈ U ⊂ R
2, has rank 2, then

∂ f

∂xi
(x) , i ∈ {1, 2} are linear indepen-

dent vectors and the tangent plane at f (x) exists and it has the equation

∣
∣
∣
∣
∣
∣
∣
∣
∣

X − f 1 (x) Y − f 2 (x) Z − f 3 (x)
∂ f 1

∂x1
(x)

∂ f 2

∂x1
(x)

∂ f 3

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x2
(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

The tangent plane is denoted by T f (x) f ; the linear independent vectors{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

}

determine a basis for the tangent plane T f (x) f.

Any vector X (x) which belongs to T f (x) f can be written in the form

X (x) = X1 (x)
∂ f

∂x1
(x) + X2 (x)

∂ f

∂x2
(x)

where the coefficient X1, X2 : U −→ R are smooth maps. The line which is perpen-
dicular to the tangent plane at the point f (x) is called a normal line to the surface
and has the equation

X − f 1 (x)
∣
∣
∣
∣
∣
∣
∣

∂ f 2

∂x1
(x)

∂ f 3

∂x1
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x2
(x)

∣
∣
∣
∣
∣
∣
∣

= Y − f 2 (x)
∣
∣
∣
∣
∣
∣
∣

∂ f 3

∂x1
(x)

∂ f 1

∂x1
(x)

∂ f 3

∂x2
(x)

∂ f 1

∂x2
(x)

∣
∣
∣
∣
∣
∣
∣

= Z − f 3 (x)
∣
∣
∣
∣
∣
∣
∣

∂ f 1

∂x1
(x)

∂ f 2

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 2

∂x2
(x)

∣
∣
∣
∣
∣
∣
∣

.
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The reader understands that the equation of this line is generated by the vector
∂ f

∂x1
× ∂ f

∂x2
. This vector generates the normal unitary vector N (x),

Definition 4.1.3 N (x) :=
∂ f

∂x1
(x)×

∂ f

∂x2
(x)

∥
∥
∥
∥
∥
∥

∂ f

∂x1
(x)×

∂ f

∂x2
(x)

∥
∥
∥
∥
∥
∥

is called the Gauss map of the surface

f at the point f (x).

Definition 4.1.4 The frame

{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x) , N (x)

}

is called a Gauss frame

attached to the surface f at f (x) .

At each point of a surface this frame is a vector basis in E3.
The partial derivatives of the vectors of this frame can be written with respect to

the Gauss frame using some coefficients. In some sense, the Differential Geometry
deals with the geometric meaning of these coefficients.

One more comment about the tangent vectors

{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

}

. Denoted by

TxU , it is the 2-dimensional vector space having the origin at x ∈ U . Since the surface
f is themap f : U −→ R

3, it has sense to consider the linearmapd fx : TxU −→ R
3,

d fx =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂ f 1

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 2

∂x1
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x1
(x)

∂ f 3

∂x2
(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

If e1 := (1, 0), e2 = (0, 1) are the vector of the basis in TxU , then it is easy to see
that

d fx (e1) = ∂ f

∂x1
(x) , d fx (e1) = ∂ f

∂x2
(x). Let us observe that, according to the mean-

ing of the objects involved, we can write d fxei instead of d fx (ei ).
Therefore a vector X (x) = X1(x)e1 + X2(x)e2 ∈ TxU is mapped into the vector

d fx (X) = d fx [X1(x)e1 + X2(x)e2] = X1 (x)
∂ f

∂x1
(x) + X2 (x)

∂ f

∂x2
(x) ∈ T f (x) f.

We can now define the first fundamental form of a surface. Let themap f : U −→
R

3 be our surface and let d fx : TxU ⊆ R
2 −→ R

3 be the map previously described.
Remember that we denote by 〈·, ·〉 : R

3 × R
3 −→ R the Euclidean inner product in

E3 described by the formula

〈a, b〉 = a0b0 + a1b1 + a2b2,

where a = (a0, a1, a2), b = (b0, b1, b2).
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Definition 4.1.5 The map Ix (·, ·) : TxR2 × TxR2 −→ R, defined by Ix (X,Y ) :=
〈d fx X, d fxY 〉, is called the first fundamental form of the surface f at the point f (x).

The matrix of this bilinear map with respect to the basis {e1, e2} in TxU has the
coefficients

(
gi j (x)

)
i, j=1,2 ,

g11 (x) = Ix (e1, e1) = 〈d fx e1, d fx e1〉 =
〈

∂ f

∂x1
(x) ,

∂ f

∂x1
(x)

〉

g12 (x) = Ix (e1, e2) = Ix (e2, e1) = g21 (x) = 〈d fx e1, d fx e2〉 =
〈

∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

〉

g22 (x) = Ix (e2, e2) = 〈d fx e2, d fx e2〉 =
〈

∂ f

∂x2
(x) ,

∂ f

∂x2
(x)

〉

.

The way these coefficients are described by the Euclidean inner product of E3

encapsulates the way in which the ambient space endows with its Geometry each
tangent plane of the surface.

Therefore, if X (x) = X1(x)e1 + X2(x)e2, Y (x) = Y 1(x)e1 + Y 2(x)e2 ∈ TxU
then

Ix (X,Y ) := 〈d fx X, d fxY 〉
leads to Ix (X,Y ) =
= g11(x)X

1(x)Y 1(x) + g12(x)X
1(x)Y 2(x) + g21(x)X

2(x)Y 1(x) + g22(x)X
2(x)Y 2(x).

The Einstein summation convention highlights a simplified formula

Ix (X,Y ) := 〈d fx X, d fxY 〉 = gi j (x)X
i (x)Y j (x).

A direct consequence of the definition is

Ix (X, X) = 〈d fx X, d fx X〉 � 0.

Proposition 4.1.6 The coefficients of the first fundamental form satisfy

det (gi j (x)) = g11(x)g22(x) − g12(x)g21(x) > 0

and ∣
∣
∣
∣

∣
∣
∣
∣
∂ f

∂x1
(x) × ∂ f

∂x2
(x)

∣
∣
∣
∣

∣
∣
∣
∣ = √

det (gi j (x)).

Proof Cauchy–Bunyakowsky–Schwartz inequality implies for the non-collinear

vectors
∂ f

∂x1
(x) and

∂ f

∂x2
(x) that



4.1 Geometry of Surfaces in a 3D-Euclidean Space 71

detgi j (x) =
〈

∂ f

∂x1
(x) ,

∂ f

∂x1
(x)

〉 〈
∂ f

∂x2
(x) ,

∂ f

∂x2
(x)

〉

−
〈

∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

〉 〈
∂ f

∂x2
(x) ,

∂ f

∂x1
(x)

〉

=
∣
∣
∣
∣

∣
∣
∣
∣
∂ f

∂x1
(x)

∣
∣
∣
∣

∣
∣
∣
∣

2 ∣
∣
∣
∣

∣
∣
∣
∣
∂ f

∂x2
(x)

∣
∣
∣
∣

∣
∣
∣
∣

2

−
〈

∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

〉2
> 0.

The second equality is provided by the previous formula written as ||a × b||2 =
||a||2 · ||b||2 · (1 − cos2 α) for a = ∂ f

∂x1
(x) and b = ∂ f

∂x2
(x). �

If we consider a change of coordinates ϕ : U −→ U , then our surface in the new
coordinates is f̄ = f ◦ ϕ : U −→ R

3.

Theorem 4.1.7 The first fundamental form is preserved by a change of coordinates.

Proof If x̄ ∈ U , x = ϕ (x̄) , X ,Y ∈ TxU and X = dϕx̄ X ,Y = dϕx̄ Y ∈ TxU we
have

_
I x̄

(
X ,Y

) = 〈
d f̄x̄ X , d f̄x̄Y

〉 = 〈
d ( f ◦ ϕ)x̄ X , d ( f ◦ ϕ)x̄ Y

〉 =

= 〈
d fx

(
dϕx̄ X

)
, d fx

(
dϕx̄ Y

)〉 = 〈
d fx (X) , d fx (Y )

〉 = Ix (X,Y ) .

�

Definition 4.1.8 An isometry of the Euclidean 3-dimensional space E3 is a map
B : R

3 −→ R
3 which preserves distances.

Our surface f : U −→ R
3 is transformed by an isometry into another surface

f̃ = B ◦ f : U −→ R
3. A vector is transformed by an isometry into another vector

with the same length. Two vectors with the same application point M0 are trans-
formed into two vectors having as application point B(M0). The transformed vectors
have their lengths preserved. It is easy to observe that their initial angle between
them is also preserved. Taking into consideration these observations, the initial first
fundamental form is preserved by isometries of the Euclidean space.

Definition 4.1.9 A smooth function a : I ⊂ R −→ R
3, a(t) = (a1(t), a2(t),

a3(t)) is called a curve of the Euclidean 3-dimensional space E3.
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If x = x(t) = (x1(t), x2(t)) in U , we obtain f (x(t)) = (
f 1 (x(t)) , f 2 (x(t)) ,

f 3 (x(t))
)
, that is an one parameter function with the image contained in the image

of our surface. It makes sense to define for x : I ⊂ R −→ U ⊂ R
2, the map c :=

f ◦ x : I ⊂ R −→ R
3.

The map c is called a curve on the surface f : U −→ R
3.

Two properties of a curve on a surface are stated by the following theorem. The
tangent vector ċ(t) belongs to the tangent plane to the surface Tc(t) f and, the length
of this tangent vector depends on the coefficients gi j of the first fundamental form.

Theorem 4.1.10 If c is a curve in the surface f : U −→ R
3 then

(i) ċ (t) = ẋ1 (t)
∂ f

∂x1
(x (t)) + ẋ2 (t)

∂ f

∂x2
(x (t)) ∈ T f (x(t)) f, ∀t ∈ I.

(i i) ‖ċ (t)‖2 = g11 (x (t)) · (
ẋ1 (t)

)2 + 2g12 (x (t)) · ẋ1 (t) · ẋ2 (t) + g22 (x (t)) ·
(
ẋ2 (t)

)2
.

Proof Chain rule implies

(i) ċ (t) = d

dt
( f ◦ x) (t) = ∂ f

∂x1
(x(t)) · ẋ1 (t) + ∂ f

∂x2
(x(t)) · ẋ2 (t) ∈ T f (x(t)) f.

(i i) Since
‖ċ (t)‖2 = 〈ċ (t) , ċ (t)〉 =

=
〈

∂ f

∂x1
(x(t)) · ẋ1 (t) + ∂ f

∂x2
(x(t)) · ẋ2 (t) ,

∂ f

∂x1
(x(t)) · ẋ1 (t) + ∂ f

∂x2
(x(t)) · ẋ2 (t)

〉

it results the statement. �

Formula (ii) highlights a quadratic form denoted by ds2 which acts after the rule

ds2(v, v) = g11 · (v1)2 + 2g12 · v1v2 + g22 · (
v2)2 ,

if the vector v is v = (v1, v2).

Taking into account that dxi (v) = vi , the previous formula of the quadratic form
can be written as

ds2 = g11 · (
dx1

)2 + g12 · dx1dx2 + g21 · dx2dx1 + g22 · (
dx2

)2

or, using the Einstein notation,

ds2 = gi j (x)dx
idx j .

This quadratic form induced by the first fundamental form is called a metric for the
surface f .
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Exercise 4.1.11 If x = (x1, x2), prove the following equality:

⎛

⎜
⎝

∂ f 1

∂x1
(x)

∂ f 2

∂x1
(x)

∂ f 3

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x2
(x)

⎞

⎟
⎠

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂ f 1

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 2

∂x1
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x1
(x)

∂ f 3

∂x2
(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

=
(
g11(x) g12(x)
g21(x) g22(x)

)

.

The above formula is another way to explain how the inner product coefficients of
the Euclidean space, restricted to a point of the tangent plane of the surface, produces
the coefficients of the first fundamental form.

In fact this formula,

d f Tx ·
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ · d fx =
(
g11(x) g12(x)
g21(x) g22(x)

)

,

is a metric change at the level of each tangent plane; the Euclidean metric

ds2 = dX2
1 + dY 2

1 + dZ2
1

endows the surface with a metric induced by the new coordinates

X1 = f 1(x1, x2); Y1 = f 2(x1, x2); Z1 = f 3(x1, x2),

that is with the metric
ds2 = gi j (x)dx

idx j .

The length of a curve c = f ◦ x : I −→ R
3 on the surface f : U −→ R

3 between
the points c(a) and c(b) where a, b ∈ I, a < b is given by

Lc =
b∫

a

‖ċ (t)‖ dt.

It follows that it can be expressed in terms of the first fundamental form by

Lc =
b∫

a

√

g11 (x (t)) · (
ẋ1 (t)

)2 + 2g12 (x (t)) · ẋ1 (t) ẋ2 (t) + g22 (x (t)) · (
ẋ2 (t)

)2dt,
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or, using the Einstein notation

Lc =
b∫

a

√
gi j (x (t)) · ẋ i (t) · ẋ j (t)dt.

Definition 4.1.12 For two curves c = f ◦ x : I −→ R
3 and c̄ : f ◦ x̄ : Ī −→ R

3

on the surface f : U −→ R
3, the angle between them at the common point x̄

(
t̄0

) =
x (t0), is the acute angle between the two tangents to the curves at the common point.

The angle α of the curves c and c̄ at their common point c (t0) = c̄
(
t̄0

)
can be

computed by the formula

cosα =
〈
ċ (t0) ,

.

c̄
(
t̄0

)〉

‖ċ (t0)‖ ·
∥
∥
∥

.

c̄
(
t̄0

)∥∥
∥

that is, it can be expressed in terms of the first fundamental form by the formula

cosα = gi j (x (t0)) · ẋ i (t0) ·
.

x̄ j
(
t̄0

)

√
grs (x (t0)) · ẋr (t0) · ẋ s (t0) ·

√

gpq
(
x̄

(
t̄0

)) · .

x̄ p
(
t̄0

) · .

x̄q
(
t̄0

) .

We observe that the lengths of tangent vectors to curves in surfaces depend on the
coefficients of the first fundamental form; the length of curves in surfaces depends on
the coefficients of the first fundamental form; the angle between two tangent vectors
and, as a consequence, the angle between two curves depend on the coefficients of
the first fundamental form.

Even if we do not prove here, the area of a region on the surface depends on
the coefficients of the first fundamental form. The formula for the area of a region
f (D), D ⊂ U is

σ f (D) =
∫∫

D

√
det

(
gi j (x)

)
dx1dx2.

The words “depends on the coefficients of the first fundamental form” can be
replaced by “depends on the metric of the surface”. Let us conclude:

Definition 4.1.13 All the geometric properties depending on the coefficients of the
first fundamental form, that is, depending on the metric of the surface, are called
intrinsic geometric properties of a surface.
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Therefore, we may say that

– the length of a curve,
– the angle between two curves,
– the area of a region,

all these are quantities belonging to the intrinsic Geometry of the surface. The change
of coordinates and the isometries preserve the intrinsic nature of geometric properties.

Wemay ask if, for a given surface, geometric properties exist which do not belong
to the intrinsic Geometry of the surface. For this purpose, we need to study geometric
properties depending on the vector N .

Consider the Gauss frame

{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x) , N (x)

}

at each point f (x) on

the surface f : U ⊂ R
2 −→ R

3. Since the length of Gauss map is 1, if one consid-

ers the derivative of 〈N (x) , N (x)〉 = 1, it results both

〈
∂N

∂x1
(x) , N (x)

〉

= 0 and
〈
∂N

∂x2
(x) , N (x)

〉

= 0.

Therefore the vectors
∂N

∂x1
(x) and

∂N

∂x2
(x) are orthogonal to the Gauss vector

N (x) at each point on the surface, i.e.

{
∂N

∂x1
(x) ,

∂N

∂x2
(x)

}

⊂ T f (x) f .

Definition 4.1.14 The map I Ix (·, ·) : TxR2 × TxR2 −→ R, defined by

I Ix (X,Y ) := − 〈dNx X, d fxY 〉 ,

is called the second fundamental form of the surface f at the point f (x).

Thematrix of this bilinearmapwith respect to the basis {e1, e2} in TxU is described
by its coefficients

(
hi j (x)

)
i, j=1,2 ,

h11 (x) = I Ix (e1, e1) = −〈dNxe1, d fxe1〉 = −
〈
∂N

∂x1
(x) ,

∂ f

∂x1
(x)

〉

h12 (x) = I Ix (e1, e2) = −〈dNxe1, d fxe2〉 = −
〈
∂N

∂x1
(x) ,

∂ f

∂x2
(x)

〉

h21 (x) = I Ix (e2, e1) = −〈dNxe2, d fxe1〉 = −
〈
∂N

∂x2
(x) ,

∂ f

∂x1
(x)

〉

h22 (x) = I Ix (e2, e2) = −〈dNxe2, d fxe2〉 = −
〈
∂N

∂x2
(x) ,

∂ f

∂x2
(x)

〉

.

Exactly as in the case of the first fundamental form, the way these coefficients are
described by the Euclidean inner product of R

3 encapsulates the way in which the
Euclidean ambient space allows its Geometry to produce these coefficients.
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Therefore, if X (x) = X1(x)e1 + X2(x)e2, Y (x) = Y 1(x)e1 + Y 2(x)e2 ∈ TxU
then

I Ix (X,Y ) := − 〈dNx X, d fxY 〉 ,

that is
I Ix (X, Y ) =

= h11(x)X
1(x)Y 1(x) + h12(x)X

1(x)Y 2(x) + h21(x)X
2(x)Y 1(x) + h22(x)X

2(x)Y 2(x).

The Einstein summation convention leads to a simplified formula

I Ix (X,Y ) := − 〈dNx X, d fxY 〉 = hi j (x)X
i (x)Y j (x).

Theorem 4.1.15 h12(x) = h21(x).

Proof Starting from the relations
〈

N (x) ,
∂ f

∂x1
(x)

〉

= 0 and

〈

N (x) ,
∂ f

∂x2
(x)

〉

= 0,

it results
〈
∂N

∂x2
(x) ,

∂ f

∂x1
(x)

〉

+
〈

N (x) ,
∂2 f

∂x2∂x1
(x)

〉

= 0

and
〈
∂N

∂x1
(x) ,

∂ f

∂x2
(x)

〉

+
〈

N (x) ,
∂2 f

∂x1∂x2
(x)

〉

= 0,

that is, using the definitions of the coefficients h12 and h21, we finally obtain

h12(x) =
〈

N (x) ,
∂2 f

∂x1∂x2
(x)

〉

=
〈

N (x) ,
∂2 f

∂x2∂x1
(x)

〉

= h21(x).

�

Using the same arguments as in the case of the first fundamental form, we deduce
that the second fundamental form is preserved by changes of coordinates and isome-
tries of the Euclidean 3-dimensional space.

From the previous theorem (regarding the symmetry of the first fundamental

form), we know that

〈

N ,
∂N

∂xi

〉

= 0, i.e.
∂N

∂xi
(x) ∈ T f (x) f.

It implies the existence of the coefficients hij (x) i, j ∈ 1, 2, such that

−∂N

∂xi
(x) = hsi (x)

∂ f

∂xs
(x) .
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Fig. 4.1 Sphere

R

In the previous formula we used the Einstein notation, the dummy index being s.
These formulas are called Weingarten’s formulas and they can be written in their
matrix form (Fig. 4.1).

Theorem 4.1.16 (Weingarten’s formulas)

hi j (x) = hsi (x)gs j (x) .

Proof The inner product of both members of the equality

−∂N

∂xi
(x) = hsi (x)

∂ f

∂xs
(x)

by
∂ f

∂x j
(x) leads to

hi j (x) =
〈

−∂N

∂xi
(x) ,

∂ f

∂x j
(x)

〉

= hsi (x)gs j (x) .

�

Corollary 4.1.17 det (h j
i (x)) = det (hi j (x))

det (gi j (x))

Hint. Use det (AB) = det A · det B. �

Definition 4.1.18 TheGaussian curvature of the surface f at a point f (x) is denoted
by K (x) and is given by the formula K (x) := det (hij (x)).

A direct consequence is the formula K (x) = det (hi j (x))

det (gi j (x))

Problem 4.1.19 Compute the Gaussian curvature at a point of a plane.
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Hint. You may use f (x1, x2) = (x1, x2, 0); K (x) = 0;
Problem 4.1.20 Compute the Gaussian curvature at a point of a circular cylinder.

Hint: f (x1, x2) = (R cos x1, R sin x1, x2); K (x) = 0;
Problem 4.1.21 Compute the Gaussian curvature at a point of a circular cone.

Hint. f (x1, x2) = (x2 cos x1, x2 sin x1, x2); K (x) = 0;
Problem 4.1.22 Compute the Gaussian curvature at a point of a sphere.

Hint. The parameterization is

f (x1, x2) = (R sin x2 cos x1, R sin x2 sin x1, R cos x2), x1 ∈ (0, π), x2 ∈ (0, 2π).

If x1 = x, x2 = y, the metric of the sphere is

ds2 = R2dx2 + R2 sin2 xdy2.

It’s curvature is a positive constant at each point, that is K (x) = 1

R2
.

Problem 4.1.23 Compute the Gaussian curvature of the surface

f (x1, x2) = (
√
2x2 cos x1,

√
2x2 sin x1, (x2)2 sin 2x1)

and observe that it is strictly negative.

Theorem 4.1.24 (The Geometric Interpretation of the Gaussian Curvature) The
absolute value of the Gaussian curvature of a surface f at the point f (x) is given by

the ratio of the areas determined by the vectors

{

− ∂N

∂x1
(x) , − ∂N

∂x2
(x)

}

respectively
{

∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

}

,

|K (x)| =

∣
∣
∣
∣

∣
∣
∣
∣
∂N

∂x1
(x) × ∂N

∂x2
(x)

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣
∂ f

∂x1
(x) × ∂ f

∂x2
(x)

∣
∣
∣
∣

∣
∣
∣
∣

.

Proof The vectors

{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x) , − ∂N

∂x1
(x) , − ∂N

∂x2
(x)

}

, belonging to the

tangent plane T f (x) f , are related by the Weingarten’s formulas

−∂N

∂xi
(x) = hsi (x)

∂ f

∂xs
(x) , i ∈ {1, 2}.
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Denote by ei j (x) =
〈
∂N

∂xi
(x) ,

∂N

∂x j
(x)

〉

. We have both

ei j (x) =
〈
∂N

∂x1
(x) ,

∂N

∂x2
(x)

〉

=
〈

hsi (x)
∂ f

∂xs
(x) , hrj (x)

∂ f

∂xr
(x)

〉

= hsi (x)h
r
j (x)grs (x)

and ∣
∣
∣
∣

∣
∣
∣
∣
∂N

∂x1
(x) × ∂N

∂x2
(x)

∣
∣
∣
∣

∣
∣
∣
∣ = √

det(ei j (x)).

It results

∣
∣
∣
∣

∣
∣
∣
∣
∂N

∂x1
(x) × ∂N

∂x2
(x)

∣
∣
∣
∣

∣
∣
∣
∣

2

= det(ei j (x)) = det hsi (x) · det hrj (x) · det(grs (x)),

therefore

∣
∣
∣
∣

∣
∣
∣
∣
∂N

∂x1
(x) × ∂N

∂x2
(x)

∣
∣
∣
∣

∣
∣
∣
∣

2

= det(h j
i (x))

2 ·
∣
∣
∣
∣

∣
∣
∣
∣
∂ f

∂x1
(x) × ∂ f

∂x2
(x)

∣
∣
∣
∣

∣
∣
∣
∣

2

.

�

There are some comments related to the Gaussian curvature:

• The Gaussian curvature of a surface at a point remains invariant under a change
of coordinates. This happens because the first fundamental form and the second
fundamental form are preserved (at the corresponding points) by a change of
coordinates as we showed above.

• The same happens for the Gaussian curvature if we consider an isometry of the
Euclidean space E3.

• The Gaussian curvature is related to the fact that the surface “lives” in the ambient
3-dimensional Euclidean space E3. So, the curvature is an “extrinsic” property of
a surface.

• Isometries are maps which preserve distances in the Euclidean 3-space E3. If we
wrap around a flat plane into a cylinder or a cone the distances are preserved. The
Gaussian curvature at corresponding points is the same, i.e. K (x) = K (x̄) = 0.

Gauss showed that regions of two surfaces can be wrapped around one to another
if, at corresponding points, we have the sameGaussian curvature. To obtain this result
Gauss proved a special theorem, called Theorema Egregium, which shows that the
Gaussian curvature belongs to the intrinsic Geometry of the surface. The Latin word
Egregium means “remarkable”. The theory of surfaces was developed by Gauss in
1827 in a paper entitled “General Investigations of Curved Surfaces”, the original
title being in Latin Disquisitiones Generales circa Superficies Curvas [31].

Next, we intend to obtain this result related to the Gaussian curvature. It shows us
that theDifferentialGeometry of surfaces depends only on thefirst fundamental form,
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i.e. on the metric of the surface. A new language can be developed and Differential
Geometry makes sense in a more abstract and general “environment” as we can see
in the next chapter.

To continue, we define the Christoffel symbols of first kind, as1

�i j,k(x) := 1

2

(
∂gik

∂x j
(x) + ∂g jk

∂xi
(x) − ∂gi j

∂xk
(x)

)

and the Christoffel symbols of second kind, as

�i
jk(x) := gis(x)� jk,s(x) = 1

2
gis(x)

(
∂g js

∂xk
(x) + ∂gks

∂x j
(x) − ∂g jk

∂xs
(x)

)

,

where gi j (x) is the inverse of the matrix of the first fundamental form, gi j (x).
An important observation is the fact that these matrices are inverse each other and

they can be written using the Einstein notation in the form

gs j (x)gis(x) = gis(x)g
s j (x) = δ

j
i .

Of course, one can calculate each gi j exactly as one did it when studying the

inverse of a matrix, that is g11 = g22

det (gi j )
, etc.

4.2 Intrinsic Geometry of Surfaces

The Weingarten formulas

−∂N

∂xi
(x) = hsi (x)

∂ f

∂xs
(x) , i ∈ {1, 2}

involve the partial derivative of N , a vector of Gauss frame, written with respect to
the Gauss frame. The previous formulas lead to the Gaussian curvature at a point of a
surface. Aswe said, theDifferential Geometry of surfaces is related to the coefficients
appearing when one considers the partial derivatives of vectors in the Gauss frame.

It remains to see what happens considering the partial derivatives of
∂ f

∂x1
and

∂ f

∂x2
.

1Sometimes, such symbols are defined also as {i j, k}.
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Theorem 4.2.1 (Gauss’ Formulas) Consider a given surface f : U −→ R
3 and let{

∂ f

∂x1
(x) ,

∂ f

∂x2
(x) , N (x)

}

be the Gauss frame at an arbitrary point f (x) of the

surface. If hi j (x) are the coefficients of the second fundamental form, then:

∂2 f

∂xi∂xk
(x) = �s

ik(x) · ∂ f

∂xs
(x) + N (x) · hik(x)

Proof The vector
∂2 f

∂xi∂xk
(x) can be expressed as a linear combination of the Gauss

frame vectors, that is

∂2 f

∂xi∂xk
(x) = As

ik(x) · ∂ f

∂xs
(x) + aik · N (x).

The inner product of both members of N leads to aik = hik, therefore we have

∂2 f

∂xi∂xk
(x) = As

ik(x) · ∂ f

∂xs
+ hik(x) · N (x).

Now, the inner product of both members of
∂ f

∂x j
(x) leads to

〈
∂2 f

∂xi∂xk
(x) ,

∂ f

∂x j
(x)

〉

= As
ik(x) · gs j (x),

which implies As
ik(x) = As

ki (x). On the other hand, if we apply the partial derivative

with respect to xk to the equality gi j (x) =
〈

∂ f

∂xi
(x) ,

∂ f

∂x j
(x)

〉

we have

∂gi j

∂xk
(x) =

〈
∂2 f

∂xk∂xi
(x) ,

∂ f

∂x j
(x)

〉

+
〈

∂ f

∂xi
(x) ,

∂2 f

∂xk∂x j
(x)

〉

,

and this can be written as

∂gi j

∂xk
(x) = As

ik(x) · gs j (x) + As
jk(x) · gsi (x) .

If i → j → k → i we obtain two more relations

∂g jk

∂xi
(x) = As

ji (x) · gsk (x) + As
ki (x) · gs j (x) ,

∂gki

∂x j
(x) = As

k j (x) · gsi (x) + As
i j (x) · gsk (x) .
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If we add the first two and we extract the last one, we finally obtain

∂g jk

∂xi
(x) + ∂gik

∂x j
(x) − ∂gi j

∂xk
(x) = 2As

i j (x) · gsk(x),

and then

Ar
i j (x) = �r

i j (x).

�

The formulas

∂gi j

∂xk
(x) = As

ik(x) · gs j (x) + As
jk(x) · gsi (x)

are called Ricci’s equations and, according to the above notations considering the
Christoffel symbols, they are

∂gi j

∂xk
(x) = �s

ik(x) · gs j (x) + �s
jk(x) · gsi (x) .

In order to simplify the notation we cancel x in all the formulas below.
We define the Riemann symbols of second type by

Rh
i jk = ∂�h

ik

∂x j
− ∂�h

i j

∂xk
+ �h

mj�
m
ik − �h

mk�
m
i j ,

the Riemann symbols of first type by Ri jkl = gis Rs
jkl , and the Ricci symbols by:

Ri j = Rs
is j . All these symbols depend only on gi j , i.e. they belong to the intrinsic

Geometry of surfaces.
Let us first observe that the metric coefficients gi j allow us to lower indexes as in

the formula
Ri jkl = gis R

s
jkl .

The components of the inverse matrix of the metric coefficients allow us to rise
indexes, that is

Ri
jkl = gis Rs jkl .

The last formula can be derived if wemultiply the last formula by gmi andwe consider
the sum after the dummy index i . It results gmi Ri

jkl = gmig
is Rs jkl , that is the true

equality Rmjkl = Rmjkl .

For now, if we have a multi-index quantity, say T i j
lmn , we can derive T j

αlmn by the
rule

T j
αlmn := gαi T

i j
lmn
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and
T i j
lmn := giαT j

αlmn,

etc.

Theorem 4.2.2 (Gauss’ (1) and Codazzi–Mainardi’s (2) equations)
The following assertions are equivalent :

(i)
∂3 f

∂xi∂x j∂xk
= ∂3 f

∂x j∂xk∂xi
;

(i i) Ri jkl = hik · h jl − hil · h jk; (1)
∂hi j
∂xk

+ �s
i j · hsk = ∂hik

∂x j
+ �s

ik · hsj . (2)

Proof (i) ⇒ (i i)
We consider the partial derivative with respect to xi of the Gauss formulas

∂2 f

∂x j∂xk
= �s

jk · ∂ f

∂xs
+ N · h jk .

We obtain

∂3 f

∂xi∂x j∂xk
= ∂�s

jk

∂xi
· ∂ f

∂xs
+ �s

jk · ∂2 f

∂xi∂xs
+ ∂N

∂xi
· h jk + N · ∂h jk

∂xi
.

Let us take into consideration Gauss’ and Weingarten’s formulas, the last as
∂N

∂xi
= −hri

∂ f

∂xr
; It results

∂3 f

∂xi∂x j∂xk
=

(
∂�r

jk

∂xi
+ �r

is · �s
jk − h jk · hri

)

· ∂ f

∂xr
+

(
∂h jk

∂xi
+ �s

jk · hsi
)

· N ,

and using i → j → k → i we obtain the formula

∂3 f

∂x j∂xk∂xi
=

(
∂�r

ki

∂x j
+ �r

js · �s
ki − hki · hrj

)

· ∂ f

∂xr
+

(
∂hki
∂x j

+ �s
ki · hsj

)

· N .

Comparing the coefficients of
∂ f

∂xr
and N the following equality holds :

∂h jk

∂xi
+ �s

jk · hsi = ∂hki
∂x j

+ �s
ki · hsj

for the coefficients of N , and

∂�r
jk

∂xi
+ �r

is · �s
jk − h jk · hri = ∂�r

ki

∂x j
+ �r

js · �s
ki − hki · hrj
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for the coefficients of
∂ f

∂xr
. The first equalitymeans theCodazzi–Mainardi equations.

The second one can be rearranged in the form

∂�r
k j

∂xi
− ∂�r

ki

∂x j
+ �r

is · �s
k j − �r

js · �s
ki = h jk · hri − hki · hrj ,

i.e.
Rr
ki j = h jk · hri − hki · hrj .

Multiplying by glr we obtain the Gauss equations

Rlki j = glr · Rr
ki j = glr · hri · h jk − glr · hrj · hki = hli · h jk − hl j · hki .

Gauss’ equations can be written in the form

Ri jkl = hik · h jl − hil · h jk .

(i i) ⇒ (i)
Starting from Gauss’ and Codazzi–Mainardi’s equations, if we separate and mul-

tiply in a convenient way by
∂ f

∂xs
and N , we obtain

∂3 f

∂xi∂x j∂xk
= ∂3 f

∂x j∂xk∂xi
.

�

Problem 4.2.3 The following assertions are equivalent

(i)
∂2N

∂xi∂x j
= ∂2N

∂x j∂xi

(i i)
∂h jk

∂xi
+ �s

jk · hsi = ∂hki
∂x j

+ �s
ki · hsj

Solution.
hsi = gsk · hki and Weingarten’s formulas

−∂N

∂xi
= hsi · ∂ f

∂xs
,

imply

−∂N

∂xi
= hik · gks · ∂ f

∂xs
.

Deriving with respect to x j , it results
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− ∂2N

∂xi∂x j
=

(
∂hik
∂x j

· gks + hik · ∂gks

∂x j

)

· ∂ f

∂xs
+ hik · gks · ∂2 f

∂xs∂x j
=

=
(

∂hik
∂x j

· gks + hik · ∂gks

∂x j

)

· ∂ f

∂xs
+ hik · gkr ·

(

�s
r j

∂ f

∂xs
+ hr j · N

)

=

=
(

∂hik
∂x j

· gks + hik · ∂gks

∂x j
+ hik · gkr · �s

r j

)

· ∂ f

∂xs
+ hik · gkr · hr j · N .

From the equality

∂2N

∂xi∂x j
= ∂2N

∂x j∂xi

using

hik · gkr · hr j = h jk · gkr · hri ,

we obtain the following equality

∂hik
∂x j

· gks + hik · ∂gks

∂x j
+ hik · gkr · �s

r j = ∂h jk

∂xi
· gks + h jk · ∂gks

∂xi
+ h jk · gkr · �s

ri .

Summing after multiplying by gsp implies

∂hip
∂x j

+ hik · gsp · ∂gks

∂x j
+ 1

2
hik · gkr ·

(
∂grp

∂x j
+ ∂gi p

∂xr
− ∂g jr

∂x p

)

=

= ∂h jp

∂xi
+ h jk · gsp · ∂gks

∂xi
+ 1

2
h jk · gkr ·

(
∂grp

∂xi
+ ∂gi p

∂xr
− ∂gir

∂x p

)

.

Then

∂hip
∂x j

+ hik ·
(

gsp · ∂gks

∂x j
+ gks · ∂gsp

∂x j

)

− 1

2
hik · gkr ·

(
∂g jr

∂x p
+ ∂grp

∂x j
− ∂g j p

∂xr

)

=

= ∂h jp

∂xi
+ h jk ·

(

gsp · ∂gks

∂xi
+ gks · ∂gps

∂x j

)

− 1

2
h jk · gkr ·

(
∂gir

∂x p
+ ∂grp

∂xi
− ∂g j p

∂xr

)

.
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Using the derivative of the relation gsp · gsk = δpk , that is gsp · ∂gsk

∂xi
+ ∂gsp

∂xi
·

gsk = 0, it results

∂hip
∂x j

− hik · gkr · � j p,r = ∂h jp

∂xi
− h jk · gkr · �i p,r .

Therefore the Codazzi–Mainardi equations

∂hi j
∂xk

+ �s
i j · hsk = ∂hik

∂x j
+ �s

ik · hsj

are obtained.
(i i) ⇒ (i)
Almost obvious using the way back in the previous computations. �

Theorem 4.2.4 Riemann symbols Ri jkl have the properties

Ri jkl = −Ri jlk;
Ri jkl = −R jikl;
Ri jkl = R jilk;
Ri jkl = Rkli j ;
Ri jkl + Rikl j + Ril jk = 0 (Bianchi ′s f irst identi t y).

Proof Using previous Gauss’ equations

Ri jkl = hik · h jl − hil · h jk

and some replacements of indexes. �

A consequence of the first relation is R2111 = −R2111, that is R2111 = 0. Same
way R1222 = 0, or generally, if three indexes coincide then R jiii = 0. We may also
observe the relations

R1212 = −R2112 = −R1221 = R2121.

In the same way Riikl = −Riikl , i.e. Riikl = 0.

Theorem 4.2.5 (TheoremaEgregium)TheGaussian curvature of a surface depends
on the coefficients of the metric only.

Proof

K (x) = det
(
hi j (x)

)

det
(
gi j (x)

) = h11 (x) · h22 (x) − h212 (x)

det
(
gi j (x)

) = R1212 (x)

det
(
gi j (x)

) .

�
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The previous theorem shows that the Gauss curvature belongs to the intrinsic
Geometry of the surface.

As we discussed earlier, this particular result allows us to think about Differential
Geometry in a more general frame, for example, considering sets which are not
necessary embedded in a space with an extra-dimension. The Differential Geometry
of such a set will be described only by a “metric tensor”, i.e. a matrix gi j , which plays
the role of the “first fundamental form” we used in the case of surfaces. Therefore,
the quadratic form we defined earlier,

ds2 = gi j (x)dx
idx j ,

is the only thing we need to develop Differential Geometry on sets without extra
dimensions.

Example 4.2.6 THE PSEUDOSPHERE

In some examples we noticed the existence of surfaces with null Gaussian curva-
ture as the plane, the circular cylinder, the circular cone. We also highlighted spheres
as surfaces of constant positive Gaussian curvature.

Now, we intend to describe a surface with constant negative curvature.
This surface is called a pseudosphere and was described by Eugenio Beltrami in

his 1868 paper on models of hyperbolic geometries [32].
In order to discuss a pseudosphere, let us suppose firstly to know the equation of a

curve called tractrix. The tractrix is imagined as “a curve whose tangent are all equal
length”; let us explain this definition. At a given point A of the tractrix we consider
the tangent. The tangent intersects the tractrix asymptote at a second point, B. AB
is the segment of constant length. If the initial point is (1, 0) and the asymptote is
the y−axis, the length becomes 1.

Identifying the tractrix equation y = y(x) means to select the point where the
tangent line

Y − y(x) = y′(x) · (X − x)

intersects the line X = 0. It results Y = y(x) − x · y′(x). The constant length from
the definition (Y − y(x))2 + x2 = 1, x ∈ (0, 1) leads to the tractrix equation

x2 · (y′(x))2 + x2 = 1, x ∈ (0, 1), y′(x) < 0.

From the tractrix equation −y′(x) =
√
1 − x2

x
, it results −dy

dx
=

√
1 − x2

x
, which

is equivalent to

∫

dy = −
∫ √

1 − x2

x
dx .
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For t := √
1 − x2 we have

∫
t2

1 − t2
dt = −t − 1

2
ln

1 − t

1 + t
,

therefore

y(x) = −
∫ √

1 − x2

x
dx = −

√
1 − x2 − ln

1 − √
1 − x2

x
+ C

with C determined by the condition y(1) = 0, that is C = 0.
Finally we can consider the equation of the symmetric tractrix with respect to

x−axis

y(x) =
√
1 − x2 + ln

1 − √
1 − x2

x
.

The pseudosphere is obtained when the tractrix is rotated around y−axis and its
equation is

f (x, y) =
(

x, y,
√
1 − (x2 + y2) + ln

1 − √
1 − (x2 + y2)

√
x2 + y2

)

x, y ∈ (−1, 1).

We prefer the parameterization: if x1 ∈ (0, 2π) , x2 ∈
(
0,

π

2

)
,

f (x1, x2) =
(

cos x1 · sin x2, sin x1 · sin x2, cos x2 + ln

(

tan

(
x2

2

)))

,

which produces the metric

ds2 = (
sin x2

)2 (
dx1

)2 + (
cot x2

)2 (
dx2

)2
.

We compute the curvature using the Theorema Egregium:

�11,1 = �12,2 = �21,2 = �22,1 = 0

�12,1 = �21,1 = �11,2 = sin x2 · cos x2; �22,2 = − cot x2 · 1

(sin x2)2
.

Then
�1
11 = �2

12 = �2
21 = �1

22 = 0

�1
12 = �1

21 = cot x2;�2
11 = (sin x2)3

cos x2
; �2

22 = − 1

sin x2 · cos x2 .
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It results

R1
212 = ∂�1

22

∂x1
− ∂�1

21

∂x2
+ �1

22�
1
11 + �2

22�
1
21 − �1

21�
1
12 − �2

21�
1
22 = −(cot x2)2

and
R1212 = g1s R

s
212 = g11R

1
212 = −(cos x2)2; det (gi j ) = (cos x2)2,

that is K = −1. �

Consider theRicci symbols Ri j : U −→ Rdefined by Ri j := Rs
is j = R1

i1 j + R2
i2 j .

Theorem 4.2.7 (Einstein) For every surface f : U −→ R
3, the Ricci tensor is pro-

portional to the metric tensor via the Gauss curvature, i.e.

Ri j (x) = K (x) · gi j (x).

Proof As before, we cancel x , therefore we start to compute the Ricci symbol R11.

R11 = Rs
1s1 = R1

111 + R2
121 = 0 + R2

121 = R2
121.

But
R2
121 = g2s · Rs121,

that is
R11 = g21 · R1121 + g22 · R2121 = 0 + g22 · R2121 =

= g22 · R2121 = g11

det
(
gi j

) · R1212 = R1212

det
(
gi j

) · g11 = K · g11.

In a similar way, starting from the Ricci symbol R22, we have

R22 = Rs
2s2 = R1

212 + R2
222 = R1

212 + 0 = R1
212.

Since
R1
212 = g1s · Rs212,

it results

R22 = g11 · R1212 + g12 · R2212 = g11 · R1212 + 0 = g22

det
(
gi j

) · R1212 = K · g22.



90 4 Surfaces in 3D-Spaces

For R12, we have:
R12 = Rs

1s2 = R1
112 + R2

122 = g1s · Rs112 + g2s · Rs122 =

= g11 · R1112 + g12 · R2112 + g21 · R1122 + g22 · R2122 =

= 0 + g12 · R2112 + 0 + 0 = −g12R1212 = − −g21

det
(
gi j

) · R1212 = R1212

det
(
gi j

) · g21 = K · g12.

In the same way, we can prove that R21 = K · g21. �

A first consequence of the Einstein theorem is related to the symmetry of Ricci’s
symbol for surfaces. For a given surface, it is Ri j = R ji . A general result about the
symmetry of the Ricci symbols and their geometric nature is presented in the next
chapter.

Let c = f ◦ x : I −→ R
3 be a curve on the surface f , f : U −→ R

3 and let
X : I −→ R

3 be a differentiable map such that X (t) ∈ Tc(t) f , i.e.

X (t) = Xk (t) · ∂ f

∂xk
(x (t)) ∈ T( f ◦x)(x) f.

dX

dt
(t) is a vector field along c (t) = ( f ◦ x) (t), which, in general, does not belong

to Tc(t). We consider the normal projection prt : Tc(t)R3 −→ Tc(t) f and we denote
by

�X (t)

dt
:= prt

dX

dt
(t)

the covariant derivative of the field X .

Theorem 4.2.8 The covariant derivative of the vector field X is

�X (t)

dt
:= [

Ẋ k (t) + �k
i j (x (t)) · Xi (t) · ẋ j (t)

] ∂ f

∂xk
(x (t)) .

Proof From X (t) = Xk (t) · ∂ f

∂xk
(x (t)) , we have

dX (t)

dt
= Ẋ k (t) · ∂ f

∂xk
(x (t)) + Xk (t) · ∂2 f

∂x j∂xk
(x (t)) · ẋ j (t) .

Using Gauss’ formulas

∂2 f

∂x j∂xk
= �i

jk · ∂ f

∂xi
+ h jk · N

after arranging the dummy indexes, we obtain
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dX (t)

dt
= [

Ẋ k (t) + �k
i j (x (t)) · Xi (t) · ẋ j (t)

] ∂ f

∂xk
(x (t))+

+Xk (t) · x j (t) · hkj (x (t)) · N (x (t)) .

The projection onto the tangent plane makes the normal component to vanish,
therefore

�X (t)

dt
= prt

dX (t)

dt
= [

Ẋ k (t) + �k
i j (x (t)) · Xi (t) · ẋ j (t)

] ∂ f

∂xk
(x (t)) .

�

Definition 4.2.9 The parallel transport along a curve c = f ◦ x : I −→ R
3 of the

vector field X : I −→ R
3 is described by the condition

�X (t)

dt
=→
0 .

Therefore, the equations of the parallel transport are

Ẋ k (t) + �k
i j (x (t)) · Xi (t) · ẋ j (t) = 0, k ∈ {1, 2}.

The parallel transport equations can be completely determined if we consider an
initial condition. It is enough to have a point p of the curve and the initial vector Vp

at p. Then, the system of equations has, as unique solution, the vector field X such
that, at p = c(t0), it is X (t0) = Vp.

Let us underline the following point. The system of differential equations

Ẋ k (t) + �k
i j (x (t)) · Xi (t) · ẋ j (t) = 0, k ∈ {1, 2}

which describes the parallel transport, shows that the vector field

X (t) = Xi (t) · ∂ f

∂xi
(x (t))

is completely determined if we know X at a given point of the curve
c (t) = ( f ◦ x) (t) .

Example 4.2.10 The case of parallel transport along any curve of the plane.

We may consider, without loose of generality, that the algebraic equation of
the plane is z = 0. Then the surface f is f (x1, x2) = (x1, x2, 0), the metric is
ds2 = (dx1)2 + (dx2)2, all �i j,k = 0, all �k

i j = 0, and the equations of the paral-

lel transport are Ẋ k (t) = 0, k ∈ {1, 2}. It results, by integration, that the vector field
X is a constant one, i.e. X (t) = (a, b).
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If we are looking at the support lines of this vector field along a given line, we
see Euclidean parallel lines, therefore we understand the meaning of the parallel
transport above. �

In the particular case when the tangent field to the curve c, ċ (t) , is parallel trans-
ported along the curve, then the curve c, by definition, is called a geodesic of the
surface f .

The equations of a geodesic are
�ċ (t)

dt
=→
0 . In fact, as above, there are two

equations. Since ċ (t) =
.

(̂ f ◦ x) (t) = ẋ i (t)
∂ f

∂xi
(x (t)), the equations are

ẍ k (t) + �k
i j (x (t)) · ẋ i (t) · ẋ j (t) = 0, k ∈ {1, 2}.

The system of equations for geodesics is completely determined if we consider
an initial condition. It is enough to have both:

• a point p of the geodesic;
• the initial vector vp = (ẋ1(t0), ẋ2(t0)) at p = c(t0).

Example 4.2.11 Let us show that the geodesics of the plane z = x3 = 0 are lines.

Since f (x1, x2) = (x1, x2, 0), all �i j,k = 0, all �k
i j = 0, and the equations of the

geodesics are ẍ k (t) = 0, k ∈ {1, 2}.
It results, by integration, the curve c(t) = (v1t + x10 , v2t + x20 , 0). The curve has
constant speed

√
(v1)2 + (v2)2 (Fig. 4.2).

Example 4.2.12 Find the geodesics of the cylinder f (x1, x2) = (R cos x1, R sin x1,
x2).

Hint. The geodesics are helices of the cylinder

c(t) = (R cos(v1t + α0), R sin(v1t + α0), v2t + b),

and the speed along geodesic is constant, ||ċ(t)|| = R (Fig. 4.3).

Fig. 4.2 Line geodesic

x2

x3

x1
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Fig. 4.3 Geodesic on a
cylinder

A

B

Example 4.2.13 Study the geodesics of the metric

ds2 = R2dx2 + R2 sin2 xdy2

of a sphere.

Hint. We may think at a sphere centered in O , with the length of the radius, R.

We have g11 = R2, g22 = R2 sin2 x1, g12 = g21 = 0, g11 = 1

R2
, g22 = 1

R2 sin2 x1
,

g12 = g21 = 0. Then, considering x = x1, y = x2, the Christoffel symbols are

�11,1 = �11,2 = �12,1 = �21,1 = �22,2 = 0, �12,2 = �21,2 = R2 sin x cos x = −�22,1

�1
11 = �2

11 = �1
12 = �1

21 = �2
22 = 0, �2

12 = �2
21 = cot x, �1

22 = sin x cos x .

The geodesic equation, written for the first variable, is

ẍ + sin x cos x · ẏ = 0.

For the second variable y, the geodesic equation is

ÿ + 2 cot x · ẋ ẏ = 0.

Wemay observe that x = π

2
, y = s is a solution, therefore c(s) = (R cos s, R sin s,

0) is a geodesic of the sphere, in fact, it is the great circle obtained by the intersection
of the plane z = 0 with the sphere. If we rotate the sphere around its center, another
great circle becomes a geodesic. So the geodesics are the great circles of the sphere.

A comment is important at this point: under a change of coordinates, a rotation
of the sphere around the origin means that “a geodesic is mapped into a geodesic”.
This result is proved in next chapter but we can use it now to better understand
what is happened before. It results that all great circles are geodesics of the sphere.
Now, since a geodesic is determined by a point and by a direction, it results that the
geodesics of the sphere are only the great circles. The terminology is related to the
fact that among all circles obtained from the intersection of a sphere with planes, the
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maximum radius is for the circles obtained at the intersection with a plane through
the center of the sphere. �

In all examples, the tangent vector to geodesic has constant length. This is a general
property for geodesics and the proof of this fact is also provided in the next chapter.�

The intrinsic Geometry of the surface depends on the coefficients of the first
fundamental form. We need to know how Cristoffel, Riemann, Ricci symbols and
geodesics are transformed under a change of coordinates. In the next chapter, we
will discuss these important topics.

4.3 Geometry of Surfaces in a 3D-Minkowski Space

TheMinkowski three dimensional space, denoted byM3, can be thought as the vector
space R

3 over the field R endowed with the Minkowski product

〈a, b〉M := a0b0 − a1b1 − a2b2,

where a = (a0, a1, a2), b = (b0, b1, b2).
The theory below, (see [30]), can also be developed for the Minkowski product

〈a, b〉M := a0b0 + a1b1 − a2b2.

It is a good exercise for the reader to follow the below steps regarding the first
Minkowski product for developing the theory corresponding to this second possible
Minkowski product.

The components of a vector a = (a0, a1, a2) appear because of the vectorial struc-

ture. With respect to the basis
→
i = (1, 0, 0),

→
j = (0, 1, 0),

→
k= (0, 0, 1) we have the

coordinates, so that we can assign them to a point A. We can write A(a0, a1, a2)
and this point can be seen as the endpoint of the vector a whose origin is at the
point (0, 0, 0). We observe that, in a Minkowski space M3, there are vectors like
u = (x, x, 0) such that

〈u, u〉M = 0.

All vectors a having this property,

〈a, a〉M = 0,

are called lightlike vectors or null vectors.
Also, it exists vectors as v = (x, x, 1) such that

〈u, u〉M < 0;
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All these vectors are called space-like vectors.
And there are vectors as w = (x + 1,

√
x,

√
x) such that

〈u, u〉M > 0

which are called time-like vectors. The null vectors determine a cone ifwe are looking
at the equation t2 − x2 − y2 = 0, (only from the Euclidean point of view. Why?).
Wemay refer to this equation as the equation of null vectors in aMinkowski 3-space.
The origin (0, 0, 0) and the points from the exterior of this cone determine space-like
vectors.

The origin and the points from the interior of the cone determine time-like vectors.
According to the situations seen before, the length of the vector a is, by definition,

its norm, that is

||a||M := √|〈a, a〉M | =
√

|a20 − a21 − a22 |.

Minkowski perpendicular vectors correspond to null Minkowski product, i.e. a
and b are Minkowski perpendicular (or Minkowski orthogonal) if 〈a, b〉M = 0.

As in the Euclidean plane, we observe that a frame generated by the vectors
(1, 0, 0), (0, 1, 0) and (0, 0, 1) is a Minkowski orthogonal frame. The length of a
vector a becomes the “Minkowski distance” between the origin O(0, 0, 0) and the
point A(a0, a1, a2). In fact this is not a distance in the mathematical sense. The
triangle rule is not working in general, as we saw when we discussed about pure
time-like triangles in Minkowski two dimensional spaces. We continue to use the
term “Minkowski distance” keeping in mind our remark before. The Minkowski
distance between two points A(a0, a1, a2), B(b0, b1, b2) is given by the formula

dM(A, B) := ||a − b||M = √| 〈a − b, a − b〉M |,

therefore
dM(A, B) =

√
|(a0 − b0)2 − (a1 − b1)2 − (a2 − b2)2| .

The Minkowski crossproduct of two vectors is given by the formula

a ×M b := (a1b2 − a2b1, a0b2 − a2b0, a1b0 − a0b1).

Exactly as in the case of the cross product in an Euclidean space, it is easier to
remember it from the formal developing of the determinant

∣
∣
∣
∣
∣
∣
∣

→
i − →

j − →
k

a0 a1 a2
b0 b1 b2

∣
∣
∣
∣
∣
∣
∣
.

Since 〈a ×M b, a〉M = 0 and 〈a ×M b, b〉M = 0, the vector a ×M b is Minkowski
orthogonal to the plane determined by the vectors a and b.
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These assertions are obvious to prove, since they can be reduced by algebraic
computations. The first orthogonality means

(a1b2 − a2b1)a0 − (a0b2 − a2b0)a1 − (a1b0 − a0b1)a2 = 0,

etc.
We can observe that the vectors (1, 0, 0) and (0, 1, 0) lead to the orthogonal vector

(0, 0,−1), that is the frame determined by the three vectors is negative oriented.

In general,
∣
∣
∣
∣
∣
∣

a0 a1 a2
b0 b1 b2

a1b2 − a2b1 a0b2 − a2b0 a1b0 − a0b1

∣
∣
∣
∣
∣
∣
=

= (a1b2 − a2b1)
2 − (a0b2 − a2b0)

2 − (a1b0 − a0b1)
2,

that is we obtain 〈a ×M b, a ×M b〉M . The frame orientation depends on the nature
of the vector a ×M b.

Surfaces in the Minkowski three dimensional space M3 are defined exactly as
the surfaces in the Euclidean space E3: they are smooth mappings of an open set
U ⊂ R

2 intoR
3 with an extra property: at each point f (x) of the surface, there exists

a tangent plane.

Of course, the tangent plane is generated by the vectors

{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

}

.

The only difference with respect to the Euclidean surfaces is the equation of the

tangent plane generated by
∂ f

∂x1
(x) ×M

∂ f

∂x2
(x) , i.e. it is

∣
∣
∣
∣
∣
∣
∣
∣
∣

X − f 1 (x) −Y + f 2 (x) −Z + f 3 (x)
∂ f 1

∂x1
(x)

∂ f 2

∂x1
(x)

∂ f 3

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x2
(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

The tangent plane is denoted by T f (x) f and any vector X (x) which belongs to
T f (x) f can be written in the form

X (x) = X1 (x)
∂ f

∂x1
(x) + X2 (x)

∂ f

∂x2
(x)

where the coefficient X1, X2 : U −→ R are smooth maps. The line which is
Minkowski perpendicular to the tangent plane at the point f (x) is called aMinkowski
normal line to the surface and has the equation
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X − f 1 (x)
∣
∣
∣
∣
∣
∣
∣

∂ f 2

∂x1
(x)

∂ f 3

∂x1
(x)

∂ f 2

∂x2
(x)

∂ f 3

∂x2
(x)

∣
∣
∣
∣
∣
∣
∣

= −Y + f 2 (x)
∣
∣
∣
∣
∣
∣
∣

∂ f 1

∂x1
(x)

∂ f 3

∂x1
(x)

∂ f 1

∂x2
(x)

∂ f 3

∂x2
(x)

∣
∣
∣
∣
∣
∣
∣

= −Z + f 3 (x)
∣
∣
∣
∣
∣
∣
∣

∂ f 2

∂x1
(x)

∂ f 1

∂x1
(x)

∂ f 2

∂x2
(x)

∂ f 1

∂x2
(x)

∣
∣
∣
∣
∣
∣
∣

.

The vector
∂ f

∂x1
(x) ×M

∂ f

∂x2
(x) generates the Minkowski–Gauss normal unitary

vector

n (x) :=
∂ f

∂x1
(x) ×M

∂ f

∂x2
(x)

∥
∥
∥
∥

∂ f

∂x1
(x) ×M

∂ f

∂x2
(x)

∥
∥
∥
∥
M

.

The nature of the normal vector rises supplementary problems when we are consid-
ering Minkowski surfaces.

We choose N = εn, ε ∈ {−1, 1} such that he frame { ∂ f

∂x1
(x) ,

∂ f

∂x2
(x) , N (x)}

is positive oriented. This one is called a Minkowski–Gauss frame, or simply, a
Minkowski frame attached to the surface f in f (x) . At each point of a surface,
this frame is a vector basis in TxU × R.

The Differential Geometry of such a surface is described by the properties of the
coefficients of equations determined by the partial derivatives of the vectors of this
frame, exactly as it happens in Euclidean spaces. All the other properties are like in
the Euclidean frame.

Definition 4.3.1 The map I Mx (·, ·) : TxR2 × TxR2 −→ R, defined by

I Mx (X,Y ) := 〈d fx X, d fxY 〉M
is called the Minkowski first fundamental form of the surface f at the point f (x) in
the Minkowski frame.

Thematrix of this bilinearmapwith respect to the basis {e1, e2} in TxU is described
by the coefficients

(
gi j (x)

)
i, j=1,2 ,

gM11 (x) = I Mx (e1, e1) = 〈d fxe1, d fxe1〉M =
〈

∂ f

∂x1
(x) ,

∂ f

∂x1
(x)

〉

M

gM12 (x) = I Mx (e1, e2) = gM21 (x) = 〈d fxe1, d fxe2〉M =
〈

∂ f

∂x1
(x) ,

∂ f

∂x2
(x)

〉

M

gM22 (x) = I Mx (e2, e2) = 〈d fxe2, d fxe2〉M =
〈

∂ f

∂x2
(x) ,

∂ f

∂x2
(x)

〉

M

.

The way these coefficients are described by the Minkowski product of M3 points out
the way in which the ambient Minkowski 3-space endows with its Geometry each
tangent plane to the surface.

Therefore, if X (x) = X1(x)e1 + X2(x)e2, Y (x) = Y 1(x)e1 + Y 2(x)e2 ∈ TxU ,
then



98 4 Surfaces in 3D-Spaces

I Mx (X,Y ) := 〈d fx X, d fxY 〉M
and I Mx (X,Y ) is

gM11(x)X
1(x)Y 1(x) + gM12(x)X

1(x)Y 2(x) + gM21(x)X
2(x)Y 1(x) + gM22(x)X

2(x)Y 2(x).

The Einstein summation convention leads to a simplified formula

I Mx (X,Y ) := 〈d fx X, d fxY 〉M = gMi j (x)X
i (x)Y j (x).

The changes of coordinates and the isometries of a Minkowski 3-space preserves
the Minkowski first fundamental form.

Then, the curves on a surface in a Minkowski 3-space has the same two important
properties: the tangent vector ċ(t) belongs to the tangent plane to the surface, Tc(t) f ,
and, the Minkowski length of this tangent vector, depends on the coefficients gMi j of
the Minkowski first fundamental form but also on the type of the vector, i.e. we can
prove

Theorem 4.3.2 If c is a curve on the surface f : U −→ R
3 from the Minkowski

3-space M3, then

(i) ċ (t) = ẋ1 (t)
∂ f

∂x1
(x (t)) + ẋ2 (t)

∂ f

∂x2
(x (t)) ∈ T f (x(t)) f, ∀t ∈ I.

(i i) ‖ċ (t)‖2M = gM11 · (
ẋ1 (t)

)2 + 2gM12 · ẋ1 (t) · ẋ2 (t) + gM22 · (
ẋ2 (t)

)2

if the right member is positive; otherwise we have to consider a − sign in front
of the entire right member.

Formula (ii) highlights a quadratic form denoted by ds2 which acts on a vector
v = (v1, v2) after the rule

ds2(v, v) = gM11 (x (t)) ·
(
v1 (t)

)2 + 2gM12 (x (t)) · v1 (t) · v2 (t) + gM22 (x (t)) ·
(
v2 (t)

)2
.

Taking into account that dxi (v) = vi , the previous formula of the quadratic form can
be written as

ds2 = gM11 (x (t)) · (
dx1

)2 + 2gM12 (x (t)) · dx1 · dx2 + gM22 (x (t)) · (
dx2

)2

or, using Einstein notation,
ds2 = gMi j (x)dx

idx j .

This quadratic form induced by the first fundamental form is called a metric for the
surface f in the Minkowski 3-space M3.

The only difference with respect to the Euclidean case is the “Minkowski” way to
determine the coefficients gi j and gMi j . This can be understood through two examples.
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Example 4.3.3 Consider the plane z = 0 described by f : U = ◦
U ⊂ R

2 −→ R
3,

having the form
f (x, y) = (x, y, 0).

We determine the metric in the case the plane “ f is a surface in the Euclidean
3-space E3”.

In both cases the generators of the tangent plane are:

∂ f

∂x
= (1, 0, 0) ; ∂ f

∂y
= (0, 1, 0) ;

In the first case, the coefficients will be determined using the Euclidean inner product

〈a, b〉 = a0b0 + a1b1 + a2b2,

therefore
g11 = 1; g22 = 1; g12 = g21 = 0.

The metric of the plane f , seen as a surface in the Euclidean 3-space, is

ds2 = (dx)2 + (dy)2.

Let us now determine the metric of the plane in the case “it is a surface in the
Minkowski 3-space M3”. In the Minkowski 3-space, the coefficients of the metric
are determined using the Minkowski product

〈a, b〉M = a0b0 − a1b1 − a2b2.

It results
gM11 = 1; gM22 = −1; gM12 = gM21 = 0;

and the metric of the same plane f , but now seen as a surface in the Minkowski
3-space, is

ds2 = (dx)2 − (dy)2.�

Example 4.3.4 Consider a surface f : U = ◦
U ⊂ R

2 −→ R
3, having the form

f (x, y) = (x, y, u(x, y)).
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Let us determine the metric in the case “ f is a surface in the Euclidean 3-space E3”,
and in the case “ f is a surface in the Minkowski 3-space M3”. In both cases, the
generators of the tangent plane are:

∂ f

∂x
=

(

1, 0,
∂u

∂x

)

; ∂ f

∂y
=

(

0, 1,
∂u

∂y

)

.

In the first case, the coefficients will be determined using the Euclidean inner product

〈a, b〉 = a0b0 + a1b1 + a2b2,

therefore

g11 = 1 +
(

∂u

∂x

)2

; g22 = 1 +
(

∂u

∂y

)2

; g12 = g21 =
(

∂u

∂x

) (
∂u

∂y

)

.

The metric of the surface f , seen as a surface in the Euclidean 3-space, is

ds2 =
(

1 +
(

∂u

∂x

)2
)

(dx)2 + 2

(
∂u

∂x

)(
∂u

∂y

)

dxdy +
(

1 +
(

∂u

∂y

)2
)

(dy)2.

In the Minkowski 3-space, the coefficients of the metric are determined using the
Minkowski product

〈a, b〉M = a0b0 − a1b1 − a2b2.

Therefore

gM11 = 1 −
(

∂u

∂x

)2

; gM22 = −
(

1 +
(

∂u

∂y

)2
)

; gM12 = gM21 = −
(

∂u

∂x

) (
∂u

∂y

)

;

and the metric of the same surface f , but now seen as a surface in the Minkowski
3-space, is

ds2 =
(

1 −
(

∂u

∂x

)2
)

(dx)2 − 2

(
∂u

∂x

)(
∂u

∂y

)

dxdy −
(

1 +
(

∂u

∂y

)2
)

(dy)2.

�

Let us consider the Gauss frame

{
∂ f

∂x1
(x) ,

∂ f

∂x2
(x) , N (x)

}

at each point f (x)

on the surface f : U ⊂ R
2 −→ R

3, seen as a surface in the Minkowski 3-space.

Since the length of the Minkowski–Gauss normal vector can be −1 or 1, it results

both

〈
∂N

∂x1
(x) , N (x)

〉

M

= 0 and

〈
∂N

∂x2
(x) , N (x)

〉

M

= 0, i.e. the vectors
∂N

∂x1
(x)
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and
∂N

∂x2
(x) are Minkowski orthogonal to the Minkowski–Gauss vector N (x) at

each point of the surface. Therefore

{
∂N

∂x1
(x) ,

∂N

∂x2
(x)

}

⊂ T f (x) f .

Here it appears a main difference with respect to the Euclidean case.
We consider only the case when 〈N , N 〉M = −1 and we leave to the reader the

other case.
So, we analyze the case when the normal to the surface is a space-like vector.

Let us explain how we have to think in this case. We intend to have the same Gauss
formulas,

∂2 f

∂xi∂xk
(x) = �s

ik(x) · ∂ f

∂xs
(x) + N (x) · hik(x).

But now 〈N , N 〉M = −1, therefore the formula for the coefficients of the second
fundamental form has to change. It becomes

hM
i j (x) = −

〈

N (x) ,
∂2 f

∂xi∂x j
(x)

〉

M

=
〈
∂N

∂xi
(x) ,

∂ f

∂x j
(x)

〉

M

.

This means that, in order to preserve the formula which connects the second funda-
mental formcoefficients by thefirst fundamental formcoefficients via theMinkowski-
Weingarten matrix of coefficients, hM

i j = hsi gMsj , we need to consider a modified
formula for Minkowski-Weingarten coefficients, that is

∂N

∂xi
= hsi

∂ f

∂xs
.

Using Gauss’ formulas andWeingarten’s formulas, we obtainMinkowski–Gauss’
equations in the modified form

Ri jkl = − (
hM
ik h

M
jl − hM

il h
M
jk

)
.

And finally, considering

KM = R1212

det gMi j
,

we can define theMinkowski–Gauss curvature by the formula

KM := −det hM
i j

det gMi j
= − det h j

i .

The rest is the same. To see an example where this theory works, let us take
into account the computations of Minkowski–Gauss curvature of the affine sphere
x2 − y2 − z2 = −a2 in the last chapter of the book. Without considering the for-
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mulas with the change imposed by the space-like nature of the Minkowski–Gauss
normal vectors, the Minkowski–Gauss curvature would be obtained with two differ-

ent signs, instead to obtain only the value − 1

a2
.

Therefore, for a given Minkowski metric

ds2 = gMi j (x)dx
idx j

we can construct:

• the Christoffel symbols of first kind

�i j,k = 1

2

(
∂gMik
∂x j

+ ∂gMjk

∂xi
− ∂gMi j

∂xk

)

;

• the Christoffel symbols of second kind

�i
jk = Mgis� jk,s = 1

2
Mgis

(
∂gMjs

∂xk
+ ∂gMks

∂x j
− ∂gMjk

∂xs

)

where Mgi j are the components of the inverse matrix of the metric, i.e.

MgisgMsj = δij

as in the Euclidean case.
• The Riemann symbols of second kind are

Rh
i jk = ∂�h

ik

∂x j
− ∂�h

i j

∂xk
+ �h

mj�
m
ik − �h

mk�
m
i j .

• The Riemann symbols, first kind Ri jkl = gMis R
s
jkl .• The Ricci symbols Ri j = Rs

is j are obtained from the Riemann symbols of second
kind Rs

imj by contracting the indexes s = m.
• The Minkowski parallel transport equations are induced in the same way by the
covariant derivative and they are

Ẋ k (t) + �k
i j (x (t)) · Xi (t) · ẋ j (t) = 0, k ∈ {1, 2}.

• Geodesics, i.e. curves f (x(t)) such that x(t) = (x1(t), x2(t)), satisfies the equa-
tions

d2xr

dt2
+ �r

pq

dx p

dt

dxq

dt
= 0.
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All theorems proved in the Euclidean space are available in the Minkowski case.
They have the same statement and the same proof.

• Gauss’ formulas are :

∂2 f

∂x j∂xk
= �s

jk · ∂ f

∂xs
+ N · h jk

• Gauss’ equations are (in the case when the normal is a space-like vector):

Ri jkl = −(hM
ik h

M
jl − hM

il h
M
jk)

• The properties of the Riemann symbols of first kind are

Ri jkl = −Ri jlk;
Ri jkl = −R jikl;
Ri jkl = R jilk;
Ri jkl = Rkli j ;
Ri jkl + Rikl j + Ril jk = 0 (Bianchi ′s f irst identi t y).

• Codazzi–Mainardi’s equations are:

∂hi j
∂xk

+ �s
i j · hsk = ∂hM

ik

∂x j
+ �s

ik · hM
sj .

• The Theorema Egregium is:

K (x) = R1212(x))

det (gMi j (x))
.

• Einstein’s theorem is: For a Minkowski surface, Ri j = K · gi j .
We may conclude:

For a surface in aMinkowski 3D-dimensional space, theMinkowski product induces
its Minkowski first fundamental form with coefficients (gMi j ). Therefore it induces
its metric

ds2 = gMi j (x)dx
idx j .

We can measure lengths and angles for vectors belonging to tangent planes to the
surface, length of curves who belong to surfaces and areas of regions included in
surfaces exactly as we have done in the 3D-Euclidean space.

Now, if the normal N is a space-like vector, the partial derivatives of N from
the Minkowski–Gauss frame allow us to discuss about the Minkowski–Gaussian
curvature of a surface at a point,

KM(x) = −det (hij (x)) = −det (hM
i j (x))

det (gMi j (x))
.
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This “new” Gaussian curvature seems to be dependent on the embedding in the
ambient 3-Minkowski space, but after we prove Minkowski–Gauss’ formulas and
Minkowski-Ricci’s equations,we step into the intrinsic theory ofMinkowski surfaces
where Theorema Egregium

K (x) = R1212(x))

det (gMi j (x))

offers another perspective: the Minkowski surface can be seen as a piece of a plane
(x1, x2) endowed with a metric, and this metric only determines the Minkowski–
Gauss curvature. The lines of this Geometry are the geodesic which satisfy the
equations

d2xr

dt2
+ �r

pq

dx p

dt

dxq

dt
= 0, r ∈ {1, 2}.

The surface is no longer needed. The Geometry becomes the Geometry of the metric.

4.4 A Short Story of a Person Embedded in a Surface

For a person embedded in a surface, the surface is her/his Universe. The person
cannot see the surface in which is embedded as the image of a function f : U → R

3,
in the same way we cannot see from “outside” the four dimensional Universe in
which we live.

Suppose the person is interested in developing a theory to see how much one can
understand about the Universe she/he lives.

The way has to be as it is in this book.

I. At the beginning the person will try to develop geometric concepts, because the
personwould like to create imageswhich correspond to the surrounding environment.

To do this, the person has to think about geometries in an axiomaticway, providing
abstract definitions for points, lines, plane and even the space, the relations between
them being established through axioms. We have to accept that the intuition of the
person is an Euclidean one, exactly as our intuition is. Therefore the axiomatic system
seems to be as Hilbert’s one. Once this context is established, the person can start
to prove theorems, to introduce new concepts until the basic part of the Absolute
Geometry we have presented before can be highlighted.

At a moment, the person will succeed to prove Legendre’s Theorem related to the
sum of angles of a triangle, “∠A + ∠B + ∠C ≤ 2R, where R is the value of a right
angle.”

Using the defect of a triangle, a concept introduced as a result of Legendre’s
Theorem, an important consequence appears: “if there exists one triangle with the
sum of angles 2R, all the triangles have the same property.”
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And more, “if there exists one triangle with the sum of angles strictly less than
2R, all the triangles have the same property.”

You can understand the person surprise when statements as the previous ones can
be proved. It means that two geometries exist, even if, at the beginning, the person
thought in the existence of one only! In one of these two geometries, for all triangles,
we have

∠A + ∠B + ∠C = 2R

in the other,
∠A + ∠B + ∠C < 2R.

An axiom will make the first situation possible, the denial of it (seen as an axiom)
will provide the second situation. All the geometric results obtained using the initial
axiomatic system and the first axiom are similar to our Euclidean Geometry, while
the Geometry provided by the initial axiomatic system together the second axiom is
similar to our Non-Euclidean Geometry.

Now, the person knows two theoretical geometries developed in an axiomatic
frame. The person will be interested in seeing models for each Geometry.

Algebra will be used to construct the Euclidean plane and the Euclidean space.
Even spaces with more than three dimensions can be constructed in this way. In fact,
vector spaces, trigonometric functions, inner products and groups which preserve
the inner product, norms and the Euclidean distance dE are the ingredients for the
Euclidean models in a plane or in a space. An algebraic language is created and used
to explain the Euclidean geometric results. The person will understand later that this
is the frame for the basic Physics of its space. The lines of the Euclidean Geometry
are provided by sets of points of the plane, or of the space, denoted by l, such that
for every three points of l in the order A, B,C the equality

dE (A, B) + dE (B,C) = dE (A,C)

happens.
A mimetic algebraic construction, in which the role of inner product is taken

by the Minkowski product, provides the Minkowski Geometry. Three types of
vectors appear and the hyperbolic trigonometric functions sinh and cosh replace
the Euclidean trigonometric functions in the “rotation” matrix of this Geometry.
Minkowski-Pythagoras’ Theorem has different forms related to the hypotenuse vec-
tor type. There are triangles where we cannot discus about the sum of angles. Since
here it does not exist a distance in themathematical sense of thisword, theMinkowski
Geometry is different from theEuclidean and theNon-EuclideanGeometries studied.
This special Geometry is the frame for Special Relativity, our person will understand
this later.

Next, developing both the geometric inversion and the projective transformations,
the person will construct the Poincaré Disk as a model for the Non-Euclidean Geom-
etry.
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A special distance d is highlighted and the disk appears unbounded with respect
to this distance. The lines of this Geometry are orthogonal arcs to the circle which
bound the disk. For three points on a line in this Geometry in the order A, B,C we
have d(A, B) + d(B,C) = d(A,C) i.e. the orthogonal arc is a geodesic with respect
to the distance d. We can see that through a given point from the interior of the disk
which does not belong to a given orthogonal arc a, at least two non-intersecting
orthogonal arcs a1 and a2 can be constructed such that a ∩ a1 = ∅, a ∩ a2 = ∅. The
sum of angles of a triangle in this Poincaré disk model is strictly less than two right
angles. But all these things are theoretical, how to acts in its reality?

The person can think at another way to study the geometric objects. May be
replacing algebra with calculus can help. And more, the person could think at the
convenient Geometry of its Universe.

II. This is the moment when the person defines its environment as a surface and
all the Geometry is created by calculus. The person needs three dimensions in which
it can be supposed the existence of the image of the surface. The three dimensional
space leave its Geometry in the tangent planes at each point of the surface f .

Themetric coefficients appear from the product between the vectors
∂ f

∂xi
and

∂ f

∂x j
,

therefore the metric ds2 = gi j (x)dxidx j appears. The coefficients are produced by
the type of space in which exists the image of the surface.

The product can be the inner product if the three dimensional space is an Euclidean
one;
Or, the product can be the Minkowski product if the three dimensional space is a
Minkowski one.

How the person can choose? If some physical facts can impose, say, a maximum
speed for all objects are moving, the person will choose the Minkowski type product
as we will see later in the text. If not, the person will think at the Euclidean product.
Once the product is established, the theory is known: the metric is established, length
of curves, the angle between curves, the area of a domain included in the surface can
be computed only with respect the coefficients of the metric. Formulas as Gauss’
ones

∂2 f

∂x j∂xk
= �s

jk · ∂ f

∂xs
+ N · h jk

involve Christoffel symbols, first kind

�i j,k = 1

2

(
∂gik

∂x j
+ ∂g jk

∂xi
− ∂gi j

∂xk

)

,

Christoffel symbols, second kind

�i
jk = gis� jk,s = 1

2
gis

(
∂g js

∂xk
+ ∂gks

∂x j
− ∂g jk

∂xs

)
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where gi j are the components of the inverse matrix of the metric, i.e.

gisgs j = δij .

The Geometry depends on the Riemannian symbols second kind

Rh
i jk = ∂�h

ik

∂x j
− ∂�h

i j

∂xk
+ �h

mj�
m
ik − �h

mk�
m
i j ,

by the Riemannian symbols first kind Ri jkl = gis Rs
jkl,

and by the Ricci symbols Ri j = Rs
is j , which are obtained from the Riemannian sym-

bols second kind Rs
imj by contracting the indexes s = m.

The lines of the Universe of the person are described by the equations

d2xi

dt2
+ �i

jk

dx j

dt

dxk

dt
= 0, i ∈ {1, 2}.

The Gaussian curvature can be written in the form

K (x) = R1212(x))

det (gi j (x))
,

showing its intrinsic geometric nature. The extra dimension necessary to create and
to understand this Geometry can be forgotten.

But still a problem remains:who is f , that is how to determine precisely the correct
coefficients? This is not mathematics again, it depends by the “physical reality” of
its space. Suppose that somehow the person realizes that the curvature can help him
to understand more about the Geometry of its Universe. The complete revelation for
our person is the moment when he understands that Einstein’s theorem offers the
equations of its Universe. Let us write them again,

Ri j = K · gi j .

It is the geometric way to go further.
In this two dimensional case, the Universe is shaped by its Gaussian curvature.

But in fact, you will see that is not about the shape, its about the metric.
The next example clarifies this aspect.
A very normal question for our person is to try to find something about its Universe

if the Universe equations are
Ri j = 0.

We analyze a simple case in the Euclidean space. The person chooses the metric as

ds2 = a(x1)(dx1)2 + (dx2)2.
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From Einstein equations it results that K (x) = 0. If we compute the Christoffel
symbols we have:

�11,1 = 1

2
ȧ(x1); �i j,k = 0, i, j, k �= 1,

�1
11 = 1

2

ȧ(x1)

a(x1)
; �i

jk = 0, i, j, k �= 1,

R1212 = g1s R
s
212 = g11R

1
212 = 0,

because R1
212 = 0. Therefore, for any function a(x1) the chosen metric fulfills the

property Ri j = 0. If a(x1) = b, where b is a constant, the person can not decide if the
Universe is a plane or a cylinder or some other surface having the metric above. The
shape of the Universe can not be determined. Even the geodesic equations are the
same, because �i

jk = 0. But, if the person can somehow prove that there are closed
geodesic, then a cylinder-Universe is a good possibility and the plane Universe is out
of the possibilities.

It is a progress, the Geometry of a person embedded is more consistent now, but
the person has to work to cancel the supplementary dimension. Think at the fact that
the properties of first kind Riemann symbols

Ri jkl = −Ri jlk;
Ri jkl = −R jikl;
Ri jkl = R jilk;
Ri jkl = Rkli j ;
Ri jkl + Rikl j + Ril jk = 0 (the f irst Bianchi ′s identi t y).

were deduced using Gauss’ equations.
Therefore the person has to find some other proofs for the above formulas, proofs

in which the “extra dimension” is not involved. The same for the geodesics which
were defined taking into account the projection along the normal to the surface. These
things will be seen in the next chapter.



Chapter 5
Basic Differential Geometry

Geometria substantia rerum.

Abstract As we saw in the previous chapter, multi-index quantities exist in Dif-
ferential Geometry. We highlighted that we did not see yet the mathematical nature
of the first fundamental form; or the nature of Riemann symbols, Ricci symbols, or
some important properties for geodesics. In this chapter, we take into account this
nature and how general are the concepts introduced when we studied surfaces and
curves on surfaces. We are interested in proving that the coefficients of the metric,
the Riemann symbols, the Ricci symbols or the geodesics remain invariant when we
deal with a change of coordinates. The substance of the General Relativity is related
to the invariance under changes of coordinates and to the tensor structure of objects
that have to present the same form in any reference frame. These twomain properties
can be related to the deep meaning of General Relativity which has the Equivalence
Principle as the physical starting point.

5.1 Covariant and Contravariant Vectors and Tensors. The
Christoffel Symbols

Differential Geometry deals with a set M endowed with a coordinate system
(x0, x1, . . . , xn), xi ∈ R. In our notation, the system of coordinates starts from
x0 instead x1 to make a distinction between the first coordinate which, in Physics,
represents time and the other three coordinates represent the spatial coordinates,
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often denoted by Greek letters, α, β and γ .1 We may keep this notation even if the
number of coordinates is greater than 4.

The dimension of our set M is n + 1 without insisting on the structure of M .
The reader has to imagine M as an open set of Rn+1 whose Geometry depends on a
metric defined on it. Let us observe that there is no extra dimensions to study M . In
geometric examples below, we choose to use the coordinate system starting with x1,
or we use directly the letters x , y, etc. because the physical meaning will be discussed
in the later chapters.

A fundamental object in Differential Geometry is the tensor.
In simple words, a tensor is a multi-index quantity which, under a change of coor-

dinates, is transforming linearly with respect to the indexes. In Differential Geometry
(and Physics), the components of a tensor depend smoothly on the points of the space,
in our case M . So, tensors are functions having derivatives of all order everywhere
in M . Let us suppose we have a quantity T i1i2...ik

l1l2...l p
(x) in a given system of coordinates

(x0, x1, . . . , xn) and let us consider a change of coordinates

xi = xi (x̄) = xi (x̄0, x̄1, . . . , x̄ n), i ∈ {0, 1, . . . , n}.

In a simpler form, it is

xi = xi (x̄ j ), i, j ∈ {0, 1, . . . , n}.

The inverse transformation of coordinates is x̄ i = x̄ i (x j ), i, j ∈ {0, 1, . . . , n}. It is
worth noticing that the Einstein notation aibi = ∑n

i=1 aib
i can be used in this form or

in its multi-index form. With these positions in mind, we can denote by T̄ j1 j2... jk
q1q2...qp (x̄),

the quantity T i1i2...ik
l1l2...l p

(x) written with respect the new coordinates.

Definition 5.1.1 T i1i2...ik
l1l2...l p

is a tensor contravariant of rank k and covariant of rank p,

or simply a (k, p) tensor, if, under the previous change of coordinates xi = xi (x̄ j ),
the formula of T̄ j1 j2... jk

q1q2...qp is

T̄ j1 j2... jk
q1q2...qp

(x̄) = T i1i2...ik
l1l2...l p

(x)
∂xl1

∂xq1
∂xl2

∂xq2
...

∂xlp

∂xqp

∂x j1

∂xi1
∂x j2

∂xi2
...

∂x jk

∂xik
.

Example 5.1.2 ak(x) is a covariant tensor of rank 1, or a covariant vector, if, under
a change of coordinates xi = xi (x̄ j ), āi (x̄) is defined as

āi (x̄) = ak(x)
∂xk

∂xi
;

1It is worth noticing that spacetime coordinates can be indicated with Latin indexes i, j, . . . =
0, 1, 2, 3, . . . while space coordinates can be indicated with Greek indexes α, β, . . . = 1, 2, 3 . . ..
However, in literature, there is also the opposite choice, that isα, β, . . . = 0, 1, 2, 3 . . . for spacetime
coordinates and i, j, . . . = 1, 2, 3, . . . for purely spatial coordinates. Here, we will adopt the first
notation.
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Example 5.1.3 akl(x) is a covariant tensor of rank 2, if after a change of coordinates
xi = xi (x̄ j ), āi j (x̄) is defined as

āi j (x̄) = akl(x)
∂xk

∂xi
∂xl

∂x j ;

Example 5.1.4 apqr (x) is a covariant tensor of rank3, if after a changeof coordinates
xi = xi (x̄ j ), āi jk(x̄) is defined as

āi jk(x̄) = apqr (x)
∂x p

∂xi
∂xq

∂x j

∂xr

∂xk
;

Example 5.1.5 Ti1i2...i p (x) is a covariant tensor of rank p, if after a change of coor-
dinates xi = xi (x̄ j ), T̄ j1 j2... jp (x̄) is defined as

T̄ j1 j2... jp (x̄) = Ti1i2...i p (x)
∂xi1

∂x j1

∂xi2

∂x j2
...

∂xip

∂x jp
.

Let us observe that in the definition of (k, p) tensor above the contravariant indexes
change using the inverse transformation of coordinates. Thematrix of change of coor-
dinates is called Jacobian matrix. The transformation is regular if the determinant of
Jacobian matrix is always finite and different from zero. Otherwise, the transforma-
tion is singular. In general, if an object transforms under any change of coordinates
with a non-singular Jacobian determinant, the object is a tensor. In this case the trans-
formation is called linear. The rank of the tensor determines the number of Jacobian
matrixes concurring into the transformation. For example, a rank 2 tensor transforms,
under a coordinate changes, by the multiplication of two Jacobian matrices, one for
each index.2

Example 5.1.6 ak(x) is a contravariant tensor of rank 1, or simply a contravariant
vector, if at a change of coordinates xi = xi (x̄ j ), āi (x̄) is defined as

āi (x̄) = ak(x)
∂xi

∂xk
.

Observe that we have used the inverse change of coordinates formula.

Example 5.1.7 T i1i2...ik (x) is a contravariant tensor of rank k, if under a change of
coordinates xi = xi (x̄ j ), T̄ j1 j2... jk (x̄) is defined as

T̄ j1 j2... jk (x̄) = T i1i2...ik (x)
∂x j1

∂xi1
∂x j2

∂xi2
...

∂x jk

∂xik
.

2It is worth noticing that General Relativity, from a mathematical point of view, is the physical
theory whose objects are invariant under the group of linear transformations in four dimension, i.e.
GL(4).
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The Geometry on M is assigned by the following objects:
· ds2 = gi j (x0, x1, ..., xn)dxidx j is a metric determined by the matrix

G = (gi j ), gi j = gi j (x
0, x1, . . . , xn), i, j ∈ {0, 1, . . . , n},

which is a rank-2 tensor which can be recovered by the extension of a metric tensor.
It has the following properties:

1. gi j (x) is a smooth function of x on M .
2. at each point x , the metric is symmetric, i.e. gi j (x) = g j i (x)
3. at each point x , it exists the inverse G−1 = (gi j ); using the Einstein notation, the

inverse is described by the relations: gi jg jk = δik , g jsg
sk = δkj .

Imagine the attached bilinear form with coefficients gi j , denoted S(u, v) =
gi j uiv j .

This one can have the property S(u, u) > 0, ∀u, u = (u0, . . . , un). In this case
the metric is called a Riemannian metric.

Otherwise is called a non-Riemannian metric; some textbooks use the equivalent
terminology: semi-Riemannian or pseudo-Riemannian.

The signature of ametric is defined as the signature of the corresponding quadratic
form. For Minkowski metric, the signature we use is (+ − −−).3

As an example, the Euclidean metric ds2 = (dx0) + (dx1)2 is a Riemannian met-
ric, its signature is (++) while the Minkowski metric ds2 = (dx0) − (dx1)2 is a
non-Riemannian metric with (+−) signature.

• At each point x , it exists a tangent space ofM , denoted by TxM , whose coordinates
are (ẋ0, ẋ1, . . . , ẋ n). Consider a curve x(t) in M , and the vector

ẋ(t) = dx

dt
= (ẋ0(t), ẋ1(t), . . . , ẋ n(t)).

This vector belongs to the tangent space and, under a change of coordinates xi =
xi (x̄ j ), we have

ẋ i (t) = dxi

dt
= dxi

dx j

dx j

dt
= ˙̄x j (t)

dxi

dx j ,

that is

˙̄x j (t) = ẋ i (t)
dx j

dxi
.

Therefore, a tangent vector to a curve is a contravariant vector. Considering vectors,
we prefer to write V = (V 0, V 1, . . . , V n) in the simpler form V = V k , or only
V k as we did it before. That is, a vector can be seen through its components.

3In several textbook, the signature (− + ++) is adopted. In this case, time-like and space-like
vectors have opposite sign.
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• Christoffel symbols of first kind:

�i j,k := 1

2

(
∂gik

∂x j
+ ∂g jk

∂xi
− ∂gi j

∂xk

)

• Christoffel symbols of second kind:

�i
jk := gis� jk,s = 1

2
gis

(
∂g js

∂xk
+ ∂gks

∂x j
− ∂g jk

∂xs

)

• Riemannian curvature tensor, mixed:

Rh
i jk := ∂�h

ik

∂x j
− ∂�h

i j

∂xk
+ �h

mj�
m
ik − �h

mk�
m
i j

The fact that the previous multi-index quantity is a tensor is proved later in this
chapter. The same for all lower multi-index quantities.

• Riemannian curvature tensor, covariant: Ri jkl := gis Rs
jkl• Ricci tensor: Ri j = Rs

is j which is obtained from the curvature tensor Rs
imj by

contracting the indexes s = m.
• Geodesics, i.e. curves c(t) = (x1(t), x2(t), . . . , xn(t))which satisfy the equations

d2xr

dt2
+ �r

pq

dx p

dt

dxq

dt
= 0.

Wewill see that the Christoffel symbols are not tensor, while gi j , Ri
jkl , Ri jkl, Ri j

and geodesics are tensors and their form is preserved under any change of coordi-
nates.

Proposition 5.1.8 Achange of coordinates xr = xr (xh), r, h ∈ {0, 1, . . . , n} trans-
forms the metric under the rule Ḡ x̄ = (dMx̄)

t · Gx · (dMx̄).

Proof Suppose that M : Ū → U is the previous change of coordinates which trans-
forms (x̄0, . . . , x̄ n) into the coordinates (x0, . . . , xn). The first metric is described
by the matrix Ḡ = (ḡi j (x̄) and the second metric is described by the matrix
G = (grs(x)).

We first suggest why the formula should be as it is in the statement before.
Consider a quadratic form

∑n
i, j=1 αi j yi y j written in its matrix form

yt · α · y,

where y is a column vector such that its transposed is yt = (y1, . . . , yn) and the
matrix α is α = (αi j ), i ∈ {1, . . . , n}, j ∈ {1, . . . , n}.
The change of coordinates y = A · x leads to

yt · α · y = (A · x)t · α · (A · x),
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that is (xt · At ) · α · (A · x), i.e.

xt · (At · α · A) · x.

So, the transformed quadratic form has its matrix B given by the formula B = At ·
α · A.

In our case, using Einstein’s rule, the second metric is

grs(x)dxrdxs =
n∑

r,s=0

grs(x)dxrdxs .

Since the change of coordinates in terms of differentials is dx =
(

∂xi

∂ x̄ j

)

dx̄, i.e.

dMx̄ =
(

∂xi

∂ x̄ j

)

, the previous formula B = At · α · A for B = Ḡ x̄ , α = Gx,A =
dMx̄ leads to

Ḡ x̄ = (dMx̄)
t · Gx · (dMx̄).

�

Of course, we have a similar formula for the inverse of our initial coordinates
transform.

Corollary 5.1.9 A change of coordinates xr = xr (xh), r ∈ {0, 1, . . . , n},
h ∈ {0, 1, . . . , n} transforms the metric according to the rule Gx = (dMx̄(x))

t ·
Ḡx(x) · (dMx̄(x)).

We will see this formula acting later to transform the Poincaré metric of the disk
into the Poincaré metric of the half-plane.

Corollary 5.1.10 The formula Ḡx̄ = (dMx̄)
t · Gx · (dMx̄) is described in coordi-

nates by ḡi j = gkl
∂xk

∂xi
∂xl

∂x j , that is the metric tensor gi j is a covariant tensor of rank

2.

Proof To prove the result, we are looking at the geometric meaning of the previous
obtained formula. Between two vectors ū, v̄ of the tangent space at x̄ and their images
u, v in the tangent space at x , we have the connection u = dMx̄ ū, v = dMx̄ v̄ and

ūt · Ḡ · v̄ = ut · G · v = (dMx̄ ū)t · G · dMx̄ v̄ = ūt · dMt
x̄ · G · dMx̄ · v̄,

i.e.

ūt · [Ḡ − dMt
x̄ · G · dMx̄ ] · v̄ = 0.
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Let us now write this in coordinates:

ū = dx̄ i

dt
, v̄ = dx̄ j

dt
, u = dxk

dt
= ∂xk

∂ x̄ i
d x̄ i

dt
, v = dxl

dt
= ∂xl

∂ x̄ j

d x̄ j

dt
.

Taking into account the equality of metrics before and after transformation, we have

ḡi j ūv̄ = ḡi j
d x̄ i

dt

d x̄ j

dt
= gkl

∂xk

∂ x̄ i
d x̄ i

dt

∂xl

∂ x̄ j

d x̄ j

dt
= gkluv.

Therefore [

ḡi j − gkl
∂xk

∂ x̄ i
∂xl

∂ x̄ j

]
dx̄ i

dt

d x̄ j

dt
= 0

and since
dx̄ i

dt
,
dx̄ j

dt
are arbitrary, we obtain

ḡi j = gkl
∂xk

∂ x̄ i
∂xl

∂ x̄ j

�

It is obvious that the inverse transformation leads to

Corollary 5.1.11 The formula Gx = (dMx̄(x))
t · Ḡx(x) · (dMx̄(x)) is described in

coordinates by gi j = ḡkl
∂ x̄ k

∂xi
∂ x̄ l

∂x j
.

Corollary 5.1.12 The inversematrix of themetric tensor G−1 is also a contravariant

tensor of rank 2, i.e. ḡi j = gkl
∂ x̄ i

∂xk
∂ x̄ j

∂xl
.

In the above examples, we used both this kind of change of coordinates and a
direct way suggested from calculus.

Theorem 5.1.13 A change of coordinates xr = xr (xh), r ∈ {0, 1, . . . , n},
h ∈ {0, 1, . . . , n} transforms the Christoffel symbols of first kind under the rule

�i j,k = �rs,p
∂xr

∂xi
∂xs

∂x j

∂x p

∂xk
+ grs

∂2xr

∂xi∂x j

∂xs

∂xk

Proof Let start from

�i j,k = 1

2

(
∂gik

∂x j
+ ∂g jk

∂xi
− ∂gi j

∂xk

)
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and

g jk = grs
∂xr

∂x j

∂xs

∂xk
.

We have

g jk

∂xi
= grs

∂x p

∂x p

∂xi
∂xr

∂x j

∂xs

∂xk
+ grs

∂2xr

∂xi∂x j

∂xs

∂xk
+ grs

∂xr

∂x j

∂2xs

∂xi∂xk
,

gki

∂x j = grs

∂x p

∂x p

∂x j

∂xr

∂xk
∂xs

∂xi
+ grs

∂2xr

∂x j∂xk
∂xs

∂xi
+ grs

∂xr

∂xk
∂2xs

∂x j∂xi
,

gi j

∂xk
= grs

∂x p

∂x p

∂xk
∂xr

∂xi
∂xs

∂x j + grs
∂2xr

∂xk∂xi
∂xs

∂x j + grs
∂xr

∂xi
∂2xs

∂xk∂x j .

Since

r → s → p → r =⇒ grs

∂x p

∂x p

∂xi
∂xr

∂x j

∂xs

∂xk
= gsp

∂xr
∂xr

∂xi
∂x p

∂xk
∂xs

∂x j ,

r → p → s → r =⇒ grs

∂x p

∂x p

∂x j

∂xr

∂xk
∂xs

∂xi
= gpr

∂xs
∂xr

∂xi
∂x p

∂xk
∂xs

∂x j ,

after we add, considering the first two equalities with plus and the last one with
minus, we obtain

�i j,k = �rs,p
∂xr

∂xi
∂xs

∂x j

∂x p

∂xk
+ grs

∂2xr

∂xi∂x j

∂xs

∂xk

�
Theorem 5.1.14 A change of coordinates xr = xr (xh), r ∈ {0, 1, , . . . , n},
h ∈ {0, 1, . . . , n} transforms the Christoffel symbols of second kind under the rule

∂2xk

∂xi∂x j = −�k
rs

∂xr

∂xi
∂xs

∂x j + �
r
i j

∂xk

∂xr

Proof We start from the equalities

⎧
⎨

⎩

gi jg jk = δik

g jk = grs
∂xr

∂x j

∂xs

∂xk
=⇒ gi jgrs

∂xr

∂x j

∂xs

∂xk
= δik

which are multiplied by g pq ∂xk

∂x p
. It results

gi jgrs
∂xr

∂x j

∂xs

∂xk
g pq ∂xk

∂x p
= δikg

pq ∂xk

∂x p
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i.e.

gi jgrs
∂xr

∂x j g
pq ∂xs

∂x p
= g pq ∂xi

∂x p
.

The left side makes sense only if s = p, therefore we have

gi jg pqgpr
∂xr

∂x j = g pq ∂xi

∂x p

that is

gi j
∂xq

∂x j = g pq ∂xi

∂x p
.

Multiplying

�i j,k = �rs,p
∂xr

∂xi
∂xs

∂x j

∂x p

∂xk
+ grs

∂2xr

∂xi∂x j

∂xs

∂xk

by gmk , we obtain

�
m
i j = gmk�i j,k = �rs,p

∂xr

∂xi
∂xs

∂x j · gmk ∂x p

∂xk
+ grs

∂2xr

∂xi∂x j · gmk ∂xs

∂xk
,

that is

�
m
i j = �rs,pg

pq ∂xm

∂xq
· ∂xr

∂xi
∂xs

∂x j + grs · gsq ∂xm

∂xq
· ∂2xr

∂xi∂x j ,

and finally

�
m
i j = �q

rs

∂xm

∂xq
· ∂xr

∂xi
∂xs

∂x j + ∂xm

∂xr
· ∂2xr

∂xi∂x j .

After multiplying by
∂xk

∂xm
, it results

�
m
i j

∂xk

∂xm
= �q

rs

∂xk

∂xm
∂xm

∂xq
· ∂xr

∂xi
∂xs

∂x j + ∂xm

∂xr
∂xk

∂xm
· ∂2xr

∂xi∂x j ,

which can be arranged in the form

∂2xk

∂xi∂x j = −�k
rs

∂xr

∂xi
∂xs

∂x j + �
r
i j

∂xk

∂xr
.

�
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5.2 Covariant Derivative for Vectors and Tensors.
Geodesics

Theorem 5.2.1 Consider a curve x(t) and a contravariant vector V k(t) along the
curve. Then, the vector with the components

dV k

dt
+ �k

i j V
j dx

i

dt

is a contravariant vector attached to this curve.

Proof Consider the contravariant vector V having the components V r (x). Being a
contravariant vector, under a change of coordinates x̄ i = x̄ i (x j ), i, j ∈ {0, 1, . . . , n},
its components become V

r
(x̄),

V
r
(x̄) = V j (x)

∂xr

∂x j
.

If we consider the partial derivative with respect to xi , we obtain

∂V
r

∂x p

∂x p

∂xi
= ∂V j

∂xi
∂xr

∂x j
+ V j ∂2xr

∂xi∂x j
.

We multiply the last relation by
∂xk

∂xr
and it results

∂V
r

∂x p

∂x p

∂xi
∂xk

∂xr
= ∂V j

∂xi
∂xr

∂x j

∂xk

∂xr
+ V j ∂2xr

∂xi∂x j

∂xk

∂xr
= ∂V k

∂xi
+ V j ∂2xr

∂xi∂x j

∂xk

∂xr
,

which can be written in the form

∂V k

∂xi
= ∂V

r

∂x p

∂x p

∂xi
∂xk

∂xr
− V j ∂2xr

∂xi∂x j

∂xk

∂xr
.

From Christoffel symbols of second kind

�k
i j = �

r
pq

∂x p

∂xi
∂xq

∂x j

∂xk

∂xr
+ ∂2x p

∂xi∂x j

∂xk

∂x p ,

we deduce

V j�k
i j = V j�

r
pq

∂x p

∂xi
∂xq

∂x j

∂xk

∂xr
+ V j ∂2x p

∂xi ∂x j

∂xk

∂x p
= V

q
�
r
pq

∂x p

∂xi
∂xk

∂xr
+ V j ∂2x p

∂xi ∂x j

∂xk

∂x p
.
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If we add the two relations obtained above we have

∂V k

∂xi
+ V j�k

i j =
(

∂V
r

∂x p + V
q
�
r
pq

)
∂x p

∂xi
∂xk

∂xr
.

Considering the coordinates x and x̄ as functions of t we can write the last equality
in the form

∂V k

∂xi
dxi

dt
+ V j�k

i j

dxi

dt
=

(
∂V

r

∂x p + V
q
�
r
pq

)
∂x p

∂xi
∂xk

∂xr
dxi

dt
,

or equivalently

dV k

dt
+ �k

i j V
j dx

i

dt
=

(
dV

r

dt
+ �

r
pqV

q dx p

dt

)
∂xk

∂xr
,

which ends the proof. �

The above formula

∂V k

∂xi
+ V j�k

i j =
(

∂V
r

∂x p + V
q
�
r
pq

)
∂x p

∂xi
∂xk

∂xr

shows that the expression
∂V k

∂xi
+ V j�k

i j remains invariant at a change of coordinates,

therefore we have

Definition 5.2.2 For the contravariant vector V k(x), the covariant derivative is the
(1, 1) tensor with the components

∂V k

∂xi
+ V j�k

i j .

We denote the covariant derivative of the contravariant vector V (x) = V k(x) by

V k
;i := ∂V k

∂xi
+ V j�k

i j

Other possible notations for V k
;i are

�V k

∂xi
or

�V

∂xi
.

Definition 5.2.3 For the contravariant vector V k(t) the covariant derivative is the
contravariant vector

dV k

dt
+ �k

i j V
j dx

i

dt
.
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We denote this in the form

V k
; := dV k

dt
+ �k

i j V
j dx

i

dt

Other possible notations for V k
; are

�V k

dt
or

�V

dt
.

Definition 5.2.4 The contravariant vector V k(t) is parallel transported along the
curve x(t) if

dV k

dt
+ �k

i j V
j dx

i

dt
= 0, k ∈ {0, 1, 2, . . . , n}.

Definition 5.2.5 The curve x = x(t) = (x0(t), x1(t), . . . , xn(t)) is a geodesic if its
contravariant tangent vector ẋ(t) is parallel transported along the curve.

Proposition 5.2.6 A curve x(t) = (x0(t), x1(t), . . . , xn(t)) whose components sat-
isfy the equations

d2xk

dt2
+ �k

i j

dxi

dt

dx j

dt
= 0, k ∈ {0, 1, . . . , n}

is a geodesic of M.

Proof We replace V k by
dxk

dt
in the formula

dV k

dt
+ �k

i j V
j dx

i

dt
= 0,

and we obtain
d2xk

dt2
+ �k

i j

dxi

dt

dx j

dt
= 0.

�

In the following statement we prove that a change of coordinates transforms a
geodesic into a geodesic.

Theorem 5.2.7 The change of coordinates xr = xr (xh), r ∈ {0, 1, . . . , n}, h ∈
{0, 1, . . . , n} transforms the equations

d2xh

dt2
+ �

h
i j

dxi

dt

dx j

dt
= 0
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for the curve c(t) = (x0(t), x1(t), . . . , xn(t)) into the equations

d2xr

dt2
+ �r

pq

dx p

dt

dxq

dt
= 0

for the curve c(t) = (x0(t), x1(t), . . . , xn(t)).

Proof From

d2xh

dt2
+ �

h
i j

dxi

dt

dx j

dt
=

(
d2xr

dt2
+ �r

pq

dx p

dt

dxq

dt

)
∂xh

∂xr

if
d2xh

dt2
+ �

h
i j

dxi

dt

dx j

dt
= 0

then
d2xr

dt2
+ �r

pq

dx p

dt

dxq

dt
= 0.

�
Problem 5.2.8 Prove directly,without considering the theory above, that, for a curve
x(t) = xr (t), the vector

d2xh

dt2
+ �h

i j

dxi

dt

dx j

dt

is a contravariant vector attached to this curve.

Solution. We wish to prove that a change of coordinates

xr = xr (xh), r ∈ {0, 1, . . . , n}, h ∈ {0, 1, . . . , n},

transforms the previous vector under the rule

d2xh

dt2
+ �

h
i j

dxi

dt

dx j

dt
=

(
d2xr

dt2
+ �r

pq

dx p

dt

dxq

dt

)
∂xh

∂xr
.

Let us start from
dxr

dt
= ∂xr

∂xh
dxh

dt
. Then

d2xr

dt2
= ∂2xr

∂xh∂x j

dxh

dt

dx j

dt
+ ∂xr

∂xh
d2xh

dt2
.

We arrange in the form

∂xr

∂xh
d2xh

dt2
= d2xr

dt2
− ∂2xr

∂xh∂x j

dxh

dt

dx j

dt
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and we multiply by
∂xh

∂xr
. It results

d2xh

dt2
= d2xr

dt2
∂xh

∂xr
− ∂2xr

∂xh∂x j

dxh

dt

dx j

dt

∂xh

∂xr

and we add �
h
i j

dxi

dt

dx j

dt
in both members.

d2xh

dt2
+ �

h
i j

dxi

dt

dx j

dt
= d2xr

dt2
∂xh

∂xr
− ∂2xr

∂xh∂x j

dxh

dt

dx j

dt

∂xh

∂xr
+ �

h
i j

dxi

dt

dx j

dt

Let us use the formula which transforms the Christoffel second type symbols written
in the form

∂2x p

∂xi∂x j

∂xh

∂x p
+ �r

pq

∂x p

∂xi
∂xq

∂x j

∂xh

∂xr
= �

h
i j

in the right member of our last equality.

d2xh

dt2
+ �

h
i j

dxi

dt

dx j

dt
=

= d2xr

dt2
∂xh

∂xr
−

���������
∂2xr

∂xh∂x j

dxh

dt

dx j

dt

∂xh

∂xr
+

(

�����
∂2x p

∂xi ∂x j

∂xh

∂x p
+ �r

pq
∂x p

∂xi
∂xq

∂x j

∂xh

∂xr

)
dxi

dt

dx j

dt
.

Finally we obtain

d2xh

dt2
+ �

h
i j

dxi

dt

dx j

dt
=

(
d2xr

dt2
+ �r

pq

dx p

dt

dxq

dt

)
∂xh

∂xr
.

�

Another important fact about geodesics is

Theorem 5.2.9 If c(t) is a geodesic, then ||ċ(t)|| is a constant.
Proof Recall first that the length of a vector in a given metric ds2 = gi jdxidx j

obviously depends on the type of the vector. Therefore, in our case, the formula is

||ċ(t)||2 :=−+ gi j (x
0(t), x1(t), . . . , xn(t))

dxi (t)

dt

dx j (t)

dt
.

We continue using the + sign, in the other case the computations are the same.
Having in mind that

d2xi

dt2
= −�i

lm

dxl

dt

dxm

dt
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we start to compute
d

dt

(||ċ(t)||2). We obtain

d

dt

(
||ċ(t)||2

)
= ∂gi j

∂xk
dxk

dt

dxi

dt

dx j

dt
+ gi j

d2xi

dt2
dx j

dt
+ gi j

dxi

dt

d2x j

dt2
=

= ∂gi j

∂xk
dxk

dt

dxi

dt

dx j

dt
+ 2gi j

d2xi

dt2
dx j

dt
=

= ∂gi j

∂xk
dxk

dt

dxi

dt

dx j

dt
− 2gi j�

i
lm

dxl

dt

dxm

dt

dx j

dt
= ∂gi j

∂xk
dxk

dt

dxi

dt

dx j

dt
− 2�lm, j

dxl

dt

dxm

dt

dx j

dt
=

= ∂gi j

∂xk
dxk

dt

dxi

dt

dx j

dt
−

(
∂gl j

∂xm
+ ∂gmj

∂xl
− ∂glm

∂xl

)
dxl

dt

dxm

dt

dx j

dt
= 0.

This happens because after we relabel the summation indexes in the last three terms,

in the expression, we have in fact the term
∂gi j

∂xk
dxk

dt

dxi

dt

dx j

dt
written four times, two

with the sign plus and two with minus. It results
d

dt

(||ċ(t)||2) = 0, i.e. ||ċ(t)||2 = b,

where b is a constant. �

The concept of covariant derivative allows us to obtain the same result later. The
fact that, along a geodesic, the length of the tangent vector at geodesic is a constant

one, allows us to replace the parameter t with s = t√|b| . The geodesic g = g(s) has

the property ||ċ(s)|| = 1.

Definition 5.2.10 A curve which fulfills such a property, i.e. ||ċ(s)|| = 1, is called
a canonically parameterized curve.

These last two theorems are used later to understand how geodesics of the disk
are transformed by inversion in geodesics of the Poincaré half-plane. And more, how
geodesics of the disk are transformed by inversion in geodesics outside the disk. All
these facts will allow us to better understand the connections among Non-Euclidean
Geometry basic models.

5.3 Riemann Mixed, Riemann Curvature Covariant, Ricci
and Einstein Tensors

The Riemann symbols in the case of surfaces were obtained by considering the
partial derivative of Gauss formulas. The way we introduced the parallel transport of
contravariant vectors, without using an extra-dimension, allows us to think at a way
to introduce the Riemann mixed curvature tensor without an extra-dimension.
The key is the parallel transport of contravariant vectors along infinitesimal vectors.

Suppose the infinitesimal vector is A = (δx0, δx1, . . . , δxn) and let V be the
vector we parallel transport along the infinitesimal vector A. If we act in an Euclidean



124 5 Basic Differential Geometry

space where �k
i j = 0, at the end we have only the vector A + V of components

Ak + V k . But, in general, �k
i j �= 0 and the parallel transport highlights the vector of

components Ak + V k + δV k where

δV k = −�k
i j V

jδxi .

If the components of V are dxk , i.e. V = (dx0, dx1, .., dxn), the previous formula
becomes

δ(dxk) = −�k
i j dx

jδxi

and each component of the parallel transported vector V along A becomes δxk +
dxk + δ(dxk), that is

δxk + dxk − �k
i j dx

jδxi .

If we consider the parallel transport of the infinitesimal vector A along the infinites-
imal vector V , at the end we have the components V k + Ak + d Ak , where

d Ak = −�k
i j A

jdxi .

Therefore, at the end of the parallel transport of the vector A along the vector V we
obtain

dxk + δxk − �k
i jδx

jdxi .

In the Euclidean space, the condition Ak + V k = V k + Ak, k ∈ {0, 1, . . . , n}
describes a parallelogram. Here, the parallelogram is described by the condition

Ak + (V k + δV k) = V k + (Ak + d Ak), k ∈ {0, 1, . . . , n},

that is
��δxk +��dxk − �k

i j dx
jδxi = ��dxk +��δxk − �k

i jδx
jdxi .

This condition may be written in the form

�k
i j dx

jδxi = �k
jiδx

idx j .

The last equality is true because theChristoffel symbols are symmetric, i.e.�k
i j = �k

ji .

Let us take into account the parallelogram considered above and a vector W =
(W 0,W 1, . . . ,Wn). We consider the parallel transport of W along the first two
sides. Along Awe first obtain the vector X of coordinates Xk := Ak + (Wk + δWk).
Then, this vector is parallel transported along V . We obtain the vector of coordinates
V k + (Xk + dXk). Therefore the parallel transport of W along the first two sides
leads to the vector of coordinates

T k
1 := V k + [Ak + (Wk + δWk) + d(Ak + (Wk + δWk))] (1)
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The parallel transport of W along V leads to the vector Y of coordinates

Y k := V k + (Wk + dWk)

and the parallel transport of Y along A leads to the vector of coordinates

Ak + (Y k + δY k).

Therefore the parallel transport of W along the other two sides leads to the vector of
coordinates

T k
2 := Ak + [V k + (Wk + dWk) + δ(V k + (Wk + dWk))] (2)

We continue to work in coordinates. The relation which allows us to consider the
initial parallelogram is d Ak = δV k . If we denote by

R := T k
2 − T k

1 ,

it results
R = δ(dWk) − d(δWk).

If we compute

−δ(dWk) = δ(�k
i jW

idx j ) = δ�k
i jW

idx j + �k
i j (δW

i )dx j + �k
i jW

iδ(dx j ),

we obtain

−δ(dWk) = ∂�k
i j

∂xl
δxlW idx j − �k

i j�
i
abW

aδxbdx j − �k
i j�

j
abW

idxaδxb.

Arranging the indexes

δ(dWk) =
(

−∂�k
i j

∂xl
+ �k

s j�
s
il + �k

si�
s
jl

)

Widx jδxl ,

and in the same way

−d(δWk) =
(

∂�k
il

∂x j
− �k

sl�
s
i j − �k

si�
s
l j

)

Widx jδxl .

Therefore, after canceling �k
si�

s
l j , one obtains

δ(dWk) − d(δWk) =
(

∂�k
il

∂x j
−

∂�k
i j

∂xl
+ �k

s j�
s
il − �k

sl�
s
i j

)

Widx j δxl = Rk
i jlW

i dx j δxl .
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The second type Riemann symbol is highlighted. If the vector R = δ(dWk) −
d(δWk) is 0, the two vectors are coincident, it happens as in the Euclidean Geometry.
If not, a curvature of M appears.

It remains to prove the tensorial nature of Ri
jkl .

Theorem 5.3.1 A change of coordinates transforms the Riemann mixed curvature
tensor and the Riemann curvature covariant tensor after the formulas

(1) R̄a
bgd

∂xi

∂xa
= Ri

jkl

∂x j

∂xb
∂xk

∂xg
∂xl

∂xd
,

(2) R̄ebgd = Rr jkl
∂xr

∂xe
∂x j

∂xb
∂xk

∂xg
∂xl

∂xd
.

For the Ricci tensor, we have

(3) R̄bg = R jl
∂x j

∂xb
∂xl

∂xg
.

Proof For (1), we consider the partial derivative
∂

∂ x̄ l
of the expression

∂2xk

∂xi∂x j = −�k
rs

∂xr

∂xi
∂xs

∂x j + �
r
i j

∂xk

∂xr
.

It results
∂3xk

∂xl∂xi ∂x j
=

= −∂�k
rs

∂x p
∂x p

∂xl
∂xr

∂xi
∂xs

∂x j
− �k

rs

(
∂2xr

∂xl∂xi
∂xs

∂x j
+ ∂xr

∂xi
∂2xs

∂xl∂x j

)

+ ∂�
r
i j

∂xl
∂xk

∂xr
+ �

r
i j

∂2xk

∂xl∂xr
.

We switch l and j indexes in the previous formula

∂3xk

∂x j ∂xi ∂xl
=

= −∂�k
rs

∂x p
∂x p

∂x j

∂xr

∂xi
∂xs

∂xl
− �k

rs

(
∂2xr

∂x j ∂xi
∂xs

∂xl
+ ∂xr

∂xi
∂2xs

∂x j ∂xl

)

+ ∂�
r
il

∂x j

∂xk

∂xr
+ �

r
il

∂2xk

∂x j ∂xr
.

Since
∂3xk

∂xl∂xi∂x j = ∂3xk

∂x j∂xi∂xl
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we put the two equalities together andwe separate the quantities having bar on second
kind Christoffel symbols by the ones without bar. We also cancel the equal quantities
and the left member, here denoted as LM , becomes

LM = ∂�k
rs

∂x p
∂x p

∂x j

∂xr

∂xi
∂xs

∂xl
− ∂�k

rs
∂x p

∂x p

∂xl
∂xr

∂xi
∂xs

∂x j
+ �k

rs
∂2xr

∂x j ∂xi
∂xs

∂xl
− �k

rs
∂2xr

∂xl∂xi
∂xs

∂x j
.

We divide the left member LM in two parts. In the first part, we interchange p and
s. Then

∂�k
rs

∂x p
∂x p

∂x j

∂xr

∂xi
∂xs

∂xl
− ∂�k

rs
∂x p

∂x p

∂xl
∂xr

∂xi
∂xs

∂x j
= ∂�k

rp

∂xs
∂xs

∂x j

∂xr

∂xi
∂x p

∂xl
− ∂�k

rs
∂x p

∂x p

∂xl
∂xr

∂xi
∂xs

∂x j
=

=
(

∂�k
rp

∂xs
− ∂�k

rs
∂x p

)
∂xs

∂x j

∂xr

∂xi
∂x p

∂xl

In the second part of the left member, we use the formulas which explain how the
second type Christoffel symbols are transformed under a change of coordinates:

�k
rs

∂2xr

∂x j ∂xi
∂xs

∂xl
− �k

rs
∂2xr

∂xl∂xi
∂xs

∂x j
=

= �k
rs

(

−�r
ab

∂xa

∂x j

∂xb

∂xi
+ �

a
ji

∂xr

∂xa

)
∂xs

∂xl
− �k

rs

(

−�r
ab

∂xa

∂xl
∂xb

∂xi
+ �

a
li

∂xr

∂xa

)
∂xs

∂x j
=

= −�k
rs�

r
ab

∂xa

∂x j

∂xb

∂xi
∂xs

∂xl
+ �k

rs�
r
ab

∂xa

∂xl
∂xb

∂xi
∂xs

∂x j
+ �k

rs�
a
ji

∂xr

∂xa
∂xs

∂xl
− �k

rs�
a
li

∂xr

∂xa
∂xs

∂x j

We rearrange the dummy indexes such that the product of the three ratios becomes

∂xs

∂x j

∂xr

∂xi
∂x p

∂xl
.

The left member LM becomes:
(

∂�k
rp

∂xs
− ∂�k

rs

∂x p
+ �k

as�
a
pr − �k

ap�
a
rs

)
∂xs

∂x j

∂xr

∂xi
∂x p

∂xl
+ �k

rs�
a
ji

∂xr

∂xa
∂xs

∂xl
− �k

rs�
a
li

∂xr

∂xa
∂xs

∂x j
.

The final form of the left member is

LM = Rk
rsp

∂xs

∂x j

∂xr

∂xi
∂x p

∂xl
+ �k

rs�
a
ji

∂xr

∂xa
∂xs

∂xl
− �k

rs�
a
li

∂xr

∂xa
∂xs

∂x j .
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In same way, the right member becomes

RM = ∂�
r
il

∂x j

∂xk

∂xr
− ∂�

r
i j

∂xl
∂xk

∂xr
+ �

r
il

∂2xk

∂x j ∂xr
− �

r
i j

∂2xk

∂xl∂xr
=

(
∂�

r
il

∂x j
− ∂�

r
i j

∂xl

)
∂xk

∂xr
+ �

r
il

(

−�k
ab

∂xa

∂x j

∂xb

∂xr
+ �

s
jr

∂xk

∂xs

)

+ �
r
i j

(

−�k
ab

∂xa

∂xl
∂xb

∂xr
+ �

s
lr

∂xk

∂xs

)

=
(

∂�
s
il

∂x j
− ∂�

s
i j

∂xl
+ �

r
il�

s
jr − �

r
i j�

s
lr

)
∂xk

∂xs
− �

r
il�

k
ab

∂xa

∂x j

∂xb

∂xr
+ �

r
i j�

k
ab

∂xa

∂xl
∂xb

∂xr
=

= R
s
i jl

∂xk

∂xs
− �

r
il�

k
ab

∂xa

∂x j

∂xb

∂xr
+ �

r
i j�

k
ab

∂xa

∂xl
∂xb

∂xr
.

Comparing the final forms of the left and right members after reducing the equal
terms, we obtain the formula

Rk
rsp

∂xr

∂xi
∂xs

∂x j

∂x p

∂xl
= R

m
i jl

∂xk

∂xm
.

(2) In (1), we multiply the right member by gri
∂xr

∂ x̄ e
and the left member by the

same quantity written in the form ḡse
∂ x̄ s

∂xi
.

This is possible because the formula gri
∂xr

∂ x̄ e
= ḡse

∂ x̄ s

∂xi
comes from

ḡes = ḡse = gri
∂xr

∂ x̄ e
∂xi

∂ x̄ s
,

formula which was proved before. Then

ḡse R̄
a
bgd

∂xi

∂xa
∂ x̄ s

∂xi
= gri R

i
jkl

∂xr

∂ x̄ e
∂x j

∂xb
∂xk

∂xg
∂xl

∂xd

In the left member, s := a leads to

R̄ebgd = Rr jkl
∂xr

∂xe
∂x j

∂xb
∂xk

∂xg
∂xl

∂xd

(3)We start from R̄bg = R̄a
bad . Then R̄bg

∂xi

∂xa
= R̄a

bad

∂xi

∂xa
= Ri

jil

∂x j

∂xb
∂xi

∂xa
∂xl

∂xg
, there-

fore

R̄bg = R jl
∂x j

∂xb
∂xl

∂xg
.
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We may say that Riemann mixed curvature tensor is a (1, 3) tensor, the Riemann
curvature covariant tensor is (0, 4) tensor and the Ricci tensor is a covariant (0, 2)
tensor. �

When we worked with surfaces embedded in 3-space (Euclidean or Minkowski)
using the Gauss equations, we proved that the Riemann symbols Ri jkl have the
properties

Ri jkl = −Ri jlk;
Ri jkl = −R jikl;
Ri jkl = Rkli j ;
Ri jkl + Rikl j + Ril jk = 0.

The keys of demonstration are the Gauss equations which depend on the second
fundamental form. Can we prove such formulas in this abstract framework? The
answer is yes, but we need to discuss first the covariant derivative. Let us remember
the definition of the covariant derivative of a contravariant vector as the (1, 1) tensor

defined by V k
;i = ∂V k

∂xi
+ V j�k

i j .

Definition 5.3.2 The covariant derivative of a (k, p) tensor T i1i2..ik
l1l2..l p

(x) is the (k, p +
1) tensor defined by

T i1i2..ik
l1l2..l p; j (x) =

= T i1i2..ik
l1l2..l p

∂x j
+ Tmi2..ik

l1l2..l p
�
i1
mj + .. + T i1i2..ik−1m

l1l2...l p
�
ik
m j − T i1i2...ik

ml2..l p
�m
l1 j − .. − T i1i2..ik

l1l2..l p−1m
�m
lp j .

Some particular cases: the covariant derivative of a covariant vector is the (0, 2)
covariant tensor

Vi; j = ∂Vi

∂x j
− Vk�

k
i j .

The covariant derivative of a covariant (0, 2) tensor is the (0, 3) covariant tensor

ai j;k = ∂ai j
∂xk

− asj�
s
ik − asi�

s
jk .

The covariant derivative of a contravariant (2, 0) tensor is the (2, 1) tensor

bi j;k = ∂bi j

∂xk
+ bl j�i

lk + bil� j
kl .

The covariant derivative of a (1, 1) tensor is the (1, 2) tensor a j
i;k = ∂a j

i

∂xk
+ ami �

j
mk −

a j
m�m

ik .
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For two tensors T I
L and SJ

P , where I, L , J, P are multi-index quantities, it makes
sense the tensor T I

L S
J
P and the product rule of covariant derivative, that is

(T I
L S

J
P);m = (T I

L );mSJ
P + T I

L (SJ
P);m .

For the metric tensor gi j we can prove

Theorem 5.3.3 gi j;k = 0

Proof We have

gi j;k = ∂gi j

∂xk
− gs j�

s
ik − gsi�

s
jk = ∂gi j

∂xk
− gs j g

sl�ik,l − gsi g
sl� jk,l = ∂gi j

∂xk
− �ik, j − � jk,i = 0.

�

A very important consequence appears.
Consider two contravariant vectors V k andW j and their “dot product” via the metric
tensor,

〈
V k,W j

〉 = gk j V kW j .
Suppose that V k and W j are parallel transported along a curve x(t), that is

dV k

dt
+ �k

i j V
j dx

i

dt
= 0,

and
dW j

dt
+ �

j
ilW

l dx
i

dt
= 0,

or simply, V k
; (t) = 0 and W j

; (t) = 0. The covariant derivative of the metric tensor
gi j vanishes,

gi j;k = ∂gi j

∂xk
− gs j�

s
ik − gsi�

s
jk = 0

and this can be written as

gi j;(t) =
(

∂gi j

∂xk
− gs j�

s
ik − gsi�

s
jk

)
dxk

dt
= 0.

The derivativewith respect to t of the “dot product” is, in fact, the covariant derivative
of gk j V kW j . Applying the product rule for the covariant derivative, we obtain

(
gk j V

kW j
)
;i = gk j;i V kW j + gk j V

k
;i W

j + gk j V
kW j

;i = 0.
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It results:

Theorem 5.3.4 (i) The length of a vector is conserved if the vector is parallel trans-
ported along a curve. (ii) The length of the tangent vector to a geodesic is a constant.

In each geometric space where the meaning of

〈
V k,W j

〉

|V k | |W j | = gk j V kW j

√|gk j V kV j | √|gk jWkW j |
is related to an angle via a trigonometric function f (α), as we saw on surfaces both
in Euclidean spaces or in Minkowski spaces, the following theorem holds:

Theorem 5.3.5 (i) The angle between two vectors parallel transported along a curve
is conserved.
(ii) The angle between a vector parallel transported along a geodesic and the tangent
vector to a geodesic is the same at each point of the geodesic.

For the inverse gi j of the metric tensor gi j we have

Theorem 5.3.6 g
i j
;k = 0.

Proof Consider the covariant derivative of the expression gisg
s j = δ

j
i . It results

δ
j
i;k = ∂δ

j
i

∂xk
+ δmi �

j
mk − δ j

m�m
ik = 0

and
0 = (gisg

s j );k = gis;kgs j + gisg
s j
;k = gisg

s j
;k ,

i.e.
gmigisg

s j
;k = g

mj
;k = 0.

�

Theorem 5.3.7

Ri jkl = 1

2

(
∂2gil

∂x j∂xk
+ ∂2g jk

∂xi∂xl
− ∂2g jl

∂xi∂xk
− ∂2gik

∂x j∂xl

)

+ gmp(�
m
il �

p
jk − �m

ik�
p
jl).

Proof

Ri jkl = gis R
s
jkl = gis

(
∂�s

jl

∂xk
−

∂�s
jk

∂xl
+ �s

mk�
m
jl − �s

ml�
m
jk

)

=

= gis

(
∂�s

jl

∂xk
−

∂�s
jk

∂xl

)

+ gis

(
�s
mk�

m
jl − �s

ml�
m
jk

)
=
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= gis

(
∂gsa

∂xk
� jl,a − ∂gsa

∂xl
� jk,a

)

+
(

∂� jl,i

∂xk
− ∂� jk,i

∂xl

)

+ gis (�
s
mk�

m
jl − �s

ml�
m
jk ) =

= gis

(
∂gsa

∂xk
� jl,a − ∂gsa

∂xl
� jk,a

)

+ 1

2

(
∂2gli

∂xk∂x j
+ ∂2g jk

∂xl∂xi
− ∂2g jl

∂xk∂xi
− ∂2gki

∂xl∂x j

)

+

+gis (�
s
mk�

m
jl − �s

ml�
m
jk)

In the first part, we can replace
∂gsa

∂xk
by −�s

krg
ra − �a

krg
sr and

∂gsa

∂xl
by −�s

lrg
ra −

�a
lrg

sr .

It results

gis

(
∂gsa

∂xk
� jl,a − ∂gsa

∂xl
� jk,a

)

= gis [� jl,a(−�s
krg

ra − �a
krg

sr ) + � jk,a(�
s
lrg

ra + �a
lrg

sr )].

Continuing,

gis� jl,a(−�s
krg

ra − �a
krg

sr ) = −gis�
r
jl�

s
kr − �a

ki� jl,a =

= −�kr,i�
r
jl − �a

ki� jl,a = −�m
ki� jl,m − �m

jl�km,i .

Analogously
gis� jk,a(�

s
lrg

ra + �a
lrg

sr ) = �m
li � jk,m + �m

jk�lm,i ,

i.e.

gis

(
∂gsa

∂xk
� jl,a − ∂gsa

∂xl
� jk,a

)

= −�m
ki� jl,m − �m

jl�km,i + �m
li � jk,m + �m

jk�lm,i .

Next step is to compute

gis(�
s
mk�

m
jl − �s

ml�
m
jk) − �m

ki� jl,m − �m
jl�km,i + �m

li � jk,m + �m
jk�lm,i

which means

�������gisg
sa�mk,a�

m
jl −�������gisg

sa�ml,a�
m
jk − �m

ki� jl,m −�����m
jl�km,i + �m

li � jk,m +�����m
jk�lm,i ,

that is

gmp(�
m
li �

p
jk − �m

ki�
p
jl).
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The formula we obtained, after arranging the indexes, is

Ri jkl = 1

2
(

∂2gil

∂x j∂xk
+ ∂2g jk

∂xi∂xl
− ∂2g jl

∂xi∂xk
− ∂2gik

∂x j∂xl
) + gmp(�

m
il �

p
jk − �m

ik�
p
jl)

and allows to prove quickly the following formulas

Ri jkl = −Ri jlk;
Ri jkl = −R jikl;
Ri jkl = Rkli j ;
Ri jkl + Rikl j + Ril jk = 0.

in their intrinsic form.
The last identity, Ri jkl + Rikl j + Ril jk = 0 is known as Bianchi’s first formula. �

Theorem 5.3.8 The Ricci tensor is symmetric, that is Ri j = R ji .

Proof After multiplying the Bianchi first identity Ri jkl + Rikl j + Ril jk = 0 by g jl ,
using the previous formulas, we obtain

gl j R jilk + g jl Rikl j − gl j R jkli = 0,

that is
Rl
ilk + g jl Rikl j − Rl

kli = 0,

or simply
Rik + g jl Rikl j − Rki = 0.

If we show that g jl Rikl j = 0, we complete the proof. We have

g jl Rikl j = gl j Rikl j = −gl j Rik jl .

If we take into account that j and l are dummy indexes, we have

g jl Rikl j = −g jl Rikl j ,

therefore g jl Rikl j = 0, i.e.
Rik = Rki .

�

Theorem 5.3.9 (Bianchi’s second formula):

Rs
i jk;l + Rs

ikl; j + Rs
il j;k = 0.
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Proof We start from the covariant derivative formula Rs
i jk;l , i.e.

Rs
i jk;l = ∂Rs

i jk

∂xl
+ Ra

i jk�
s
al − Rs

mjk�
m
il − Rs

imk�
m
jl − Rs

i jm�m
kl ,

Rs
ikl; j = ∂Rs

ikl

∂x j
+ Ra

ikl�
s
a j − Rs

mkl�
m
i j − Rs

iml�
m
jk − Rs

ikm�m
l j

and

Rs
il j;k = ∂Rs

il j

∂xk
+ Ra

il j�
s
ak − Rs

ml j�
m
ik − Rs

imj�
m
lk − Rs

ilm�m
kj .

We add the three equalities and we use the obvious equality Rs
i jk = −Rs

ik j .
It remains to prove that

∂Rs
i jk

∂xl
+ ∂Rs

ikl

∂x j
+ ∂Rs

il j

∂xk
+ Ra

i jk�
s
al + Ra

ikl�
s
a j + Ra

il j�
s
ak = Rs

mjk�
m
il + Rs

mkl�
m
i j + Rs

ml j�
m
ik .

Let us focus on
∂Rs

i jk

∂xl
+ ∂Rs

ikl

∂x j
+ ∂Rs

il j

∂xk
which means

∂

∂xl

(
∂�s

ik

∂x j
−

∂�s
i j

∂xk
+ �s

a j�
a
ik − �s

ak�
a
i j

)

+ ∂

∂x j

(
∂�s

il

∂xk
− ∂�s

ik

∂xl
+ �s

ak�
a
il − �s

al�
a
ik

)

+

+ ∂

∂xk

(
∂�s

i j

∂xl
− ∂�s

il

∂x j
+ �s

al�
a
i j − �s

a j�
a
il

)

,

that is

∂

∂xl
(
�s
a j�

a
ik − �s

ak�
a
i j

) + ∂

∂x j

(
�s
ak�

a
il − �s

al�
a
ik

) + ∂

∂xk
(
�s
al�

a
i j − �s

a j�
a
il

)
.

If we continue computing and if we add the missing part

Ra
i jk�

s
al + Ra

ikl�
s
a j + Ra

il j�
s
ak

we obtain

∂�s
a j

∂xl
�a
ik + ∂�a

ik

∂xl
�s
a j − ∂�s

ak

∂xl
�a
i j − ∂�a

i j

∂xl
�s
ak + ∂�s

ak

∂x j
�a
ik + ∂�a

il

∂x j
�s
ak − ∂�s

al

∂x j
�a
i j − ∂�a

ik

∂x j
�s
al+

+ ∂�s
al

∂xk
�a
i j + ∂�a

i j

∂xk
�s
al − ∂�s

a j

∂xk
�a
il − ∂�a

il

∂xk
�s
a j + Ra

i jk�
s
al + Ra

ikl�
s
a j + Ra

il j�
s
ak
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which can be successively arranged as

�s
al

(

Ra
i jk − ∂�a

ik

∂x j
+

∂�a
i j

∂xk

)

+ �s
a j

(

Ra
ikl − ∂�a

il

∂xk
+ ∂�a

ik

∂xl

)

+ �s
ak

(

Ra
il j −

∂�a
i j

∂xl
+ ∂�a

il

∂x j

)

+

+�a
ik

(
∂�s

a j

∂xl
− ∂�s

al

∂x j

)

+ �a
i j

(
∂�s

al

∂xk
− ∂�s

ak

∂xl

)

+ �a
il

(
∂�s

ak

∂x j
−

∂�s
a j

∂xk

)

=

= �s
al

(
�a
mj�

m
ik − �a

mk�
m
i j

)
+ �s

a j
(
�a
mk�

m
il − �a

ml�
m
ik

) + �s
ak

(
�a
ml�

m
i j − �a

mj�
m
il

)
+

+�m
ik

(
∂�s

mj

∂xl
− ∂�s

ml

∂x j

)

+ �m
i j

(
∂�s

ml

∂xk
− ∂�s

mk

∂xl

)

+ �m
il

(
∂�s

mk

∂x j
−

∂�s
mj

∂xk

)

=

�m
ik

(
∂�s

mj

∂xl
− ∂�s

ml

∂x j
+ �s

al�
a
mj − �s

a j�
a
ml

)

+ �m
i j

(
∂�s

ml

∂xk
− ∂�s

mk

∂xl
+ �s

ak�
a
ml − �s

al�
a
mk

)

+�m
il

(
∂�s

mk

∂x j
−

∂�s
mj

∂xk
+ �s

a j�
a
mk − �s

ak�
a
mj

)

= Rs
ml j�

m
ik + Rs

mkl�
m
i j + Rs

mjk�
m
il .

�

Theorem 5.3.10 (The covariant derivative of Einstein’s tensor formula) If gi j is the
(0, 2)metric tensor, gi j its inverse contravariant (2, 0) tensor, Ri j is the Ricci tensor,
R := Rs

s is the curvature scalar derived from the (1, 1) mixed tensor Ri
j = gis Rs j ,

it is possible to define the Einstein tensor

Ei j := Ri j − 1

2
R · gi j ,

then, we have
Ei j;a = 0.

Proof First of all, let us observe that R can be written as gi j Ri j . Indeed,

gi j Ri j = gi j R ji = Ri
i = R.

We have to prove that the covariant derivative of the Einstein tensor is null, i.e.

(

Ri j − 1

2
R · gi j

)

;a
= 0.

We start from Bianchi’s formula

Rs
i jk;l + Rs

ikl; j + Rs
il j;k = 0.
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We contract the indexes j = s. It results

Rs
isk;l + Rs

ikl;s + Rs
ils;k = 0

and we use Rik;l = Rs
isk;l , Rs

ils;k = −Rs
isl;k = −Ril;k . We obtain

Rik;l + Rs
ikl;s − Ril;k = 0.

Using the fact that the covariant derivative of gi j is null, we can write

(gia Rik);l + (gia Rs
ikl);s − (gia Ril);k = 0,

i.e.
Ra
k;l + (gia Rs

ikl);s − Ra
l;k = 0.

We contract a = l and we have

Ra
k;a + (gia Rs

ika);s − Ra
a;k = 0.

Now, gia Rs
ika = giagsb Rbika = giagsb Ribak = gsbgia Ribak = gsb Ra

bak = Rs
k and we

replace in the previous equality.
It results Ra

k;a + Rs
k;s − R;k = 0, that is 2Ra

k;a − R;k = 0, which can be written in
the form (

Ra
k − 1

2
δak R

)

;a
= 0.

We use that the covariant derivative of the metric tensor is null, then we have

(

gma R
a
k − 1

2
δak gma R

)

;a
= 0,

that is (

Rmk − 1

2
Rgmk

)

;a
= 0.

�

One comment. The Einstein tensor Ei j := Ri j − 1

2
R · gi j has the property

Ei j;a = 0.

The Einstein field equations in General Relativity are

Ri j − 1

2
R · gi j = kTi j ,
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where k = 8πG

c4
is a constant and Ti j is the so called stress-energy tensor, a tensor

satisfying the same null covariant derivative equality,

Ti j;a = 0.

If we are looking at the left member we see somehow the Geometry of the space
expressed in terms of tensors; in the right member there is a tensor which depends
on mass and energy. The equality shows that the mass and the energy are creating
the geometric structure of the spacetime. All these things will be better understood
later when we construct all the “ingredients” of the theory.



Chapter 6
Non-Euclidean Geometries and Their
Physical Interpretation

Gutta cavat lapidem.

Ovidius

At the end of this chapter, the big picture towards Relativity will emerge. Before
discussing all the details and the proofs, we intend to sketch it now. The most known
models for Non-Euclidean Geometry are the Poincaré disk model and the Poincaré
half-plane model. Another related model, the exterior disk model, can be figured
and presented. Two other models will be highlighted: the hemisphere model and
the hyperboloid model. The first three models are connected among them by inver-
sion. Two models have distances which can be described by a general principle of
metrization; the distance between two points is

d(A, B) = ln
maxP∈K gAB(P)

minP∈K gAB(P)
= ln

maxP∈K |PA|
|PB|

minP∈K |PA|
|PB|

,

where the set K and the set J have to be specified. In the case of the exterior of the
disk, it is a good exercise for the reader to check that a similar construction works.
Therefore all three models are endowed with a distance constructed by this special
procedure.

The Poincaré Disk Model

Let us consider the circle C(O, 1) having O(0, 0) as a center and r = 1 as a radius.
The interior of C(O, 1),

Dn = intC(O, 1) = {(x, y) ∈ E2|x2 + y2 < 1}

is the Poincaré disk and in the same time the “plane” of theNon-EuclideanGeometry.
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The points of the disk are the points of the Non-Euclidean Geometry. The lines
of the Non-Euclidean Geometry are the orthogonal arcs to C(O, 1). Why? Because
it is easy to check that, for three points A, B,C in this order on an orthogonal arc,
the following equality

d(A,C) = d(A, B) + d(B,C) ,

holds. It means that the orthogonal arcs are geodesics with respect to the distance d.
An important particular case is related to diameters which are also geodesics in this
Non-Euclidean Geometry inside the disk. C(O, 1) = ∂Dn is the infinity domain of
this Non-Euclidean Geometry. Why? According to the theory we presented, in the
case when A = O(0, 0) and B = B(x, 0), the distance before becomes

d(O, B) = 1

2
· ln 1 − x

1 − 0
: −1 − x

−1 − 0
,

and when x approaches 1, d(O, B) approaches to ∞.
In this Non-Euclidean Geometry, we see that, from a “point E” which does not

belong to a “line l”, there are, at least, “two lines d1, d2” i.e. two orthogonal arcs to
C(O, 1), such that

di ∩ l = ∅, i = 1, 2.

What can we say more? The previous distance d induces a metric, which, in the case
of the interior of the disk, is

ds2 = 4

[1 − (x2 + y2)]2 (dx2 + dy2) .

The geodesics with respect this metric are the same orthogonal arcs to C(O, 1).
Therefore the geodesics of the metric coincide with the geodesic of the Poincaré
distance. The Gaussian curvature of this metric is −1.

At this point, it is possible to offer a simple explanation regarding to the fact
that this Poincaré Non-Euclidean Geometry inside the disk is also called Ponicaré
Hyperbolic Geometry. In fact, the Poincaré distance can be expressed by a hyperbolic
function, and this will happen for all the other non-Euclidean models. Let us look at
the above formula

d(O, B) = 1

2
· ln 1 − x

1 − 0
: −1 − x

−1 − 0
.

It results
1 + x

1 − x
= e2d(O,B), that is

d(O, B) = tanh−1 x .
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The Poincaré Half-Plane Model

The Poincaré half-plane model can be seen as simple as the disk model. The “plane”
of the half-plane model is the set H 2 := {(x, y) ∈ E2|y > 0}. The infinity domain,
in this case, is the line y = 0. The distance has the same form as in the case of disk
model,

d(A, B) = ln
maxP∈K gAB(P)

minP∈K gAB(P)
= ln

maxP∈K |PA|
|PB|

minP∈K |PA|
|PB|

,

where K := {(x, y), y = 0} and A, B ∈ J := H 2. The previous distance induces
the metric of the superior half-plane H 2, i.e. the Poincaré metric

ds2 = 1

y2
(dx2 + dy2).

The “lines” of the model are the semicircles centered on the y = 0 axis or they are
half-lines Euclidean perpendicular to y = 0. It is easy to check that, for three points
A, B,C in this order on a semicircle (or on an orthogonal line to the infinity domain),
we have

d(A,C) = d(A, B) + d(B,C).

It means that the semicircles and the orthogonal half-lines to y = 0 are geodesics
with respect to the distance d. As we saw already, they come by inversion from
lines of the disk model. The same objects are geodesics with respect to the Poincaré
half-plane metric.

Even if the twometrics can be deduced from the corresponding Poincaré distances
using formula

ds2 = 1

4

(
1

R1
+ 1

r1

)2

(dx21 + dx22 ),

they can be found starting from one of them and applying the inversion coordinate
change formula for the coefficients gi j .

Two “lines” of this model are non-secant lines if there is no point of intersection
between them. Exactly as in the disk model, from a “point E” which does not belong
to a “line l”, there are at least “two lines d1, d2”, such that di ∩ l = ∅, i = 1, 2. Since
the inversion preserves the angles between curves and, using the property of the sum
of angles in the disk-model, we deduce that the sum of angles of a triangle, in this
model, is strictly less than π.

For two points A, B on a line, d(A, B) approaches ∞ when B approaches the
endpoint S of the “line” which belongs to y = 0.

There exists another model of Non-Euclidean Geometry developed outside the
disk. All the results and considerations available for this two models are available in
the model on the set extC(O, 1) = {(x, y) ∈ E2|x2 + y2 > 1}.
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A stereographic projection is necessary to migrate from the half-plane model to
the hemisphere model, another stereographic projection is used to migrate from the
hemisphere model to the hyperboloid model. Shortly, the hemisphere model will be
described by the set

H+ = {(y1, y2, y3) ∈ S2 |y21 + y22 + y23 = 1, y3 > 0}

endowed with the metric

ds2H+ := 1

y23

(
dy21 + dy22 + dy23

)

and the hyperboloid model will be described by the set

H := {(x1, x2, x3) ∈ E3 |x21 + x22 − x23 = −1, x3 > 0}

endowed with the metric
ds2

H
= dx21 + dx22 − dx23 .

As you can see, and this is remarkable, this last model describes, through a
Minkowski metric, the Non-Euclidean Geometry. Some results of this chapter come
from [11, 12].

6.1 Poincaré Distance and Poincaré Metric of the Disk

We proceed to prove all the facts asserted in “the big picture” before. Next theorem
allows us to provide a metric starting from the special distance naturally attached to
the Poincaré disk model.

Theorem 6.1.1 (Barbilian’s Theorem) Let K and J be two subsets of the Euclidean
plane R2, and K = ∂ J. Consider the influence f (M, A) = |MA|, where, by |MA|,
we denote the Euclidean distance. Consider

gAB(M) = f (M, A)

f (M, B)
= |MA|

|MB| ,

and consider the semi-distance induced on J by the metrization procedure

d(A, B) = ln
maxP∈K gAB(P)

minP∈K gAB(P)
.

Suppose furthermore that, for M ∈ K, the extrema max gAB(M) and min gAB(M)

for any A and B in J are reached each for a single point in K . Then:
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(i) For any A ∈ J and any line d passing through A there exist exactly two circles
tangent to K and also to d at A.

(ii) The metric induced by the previous distance has the form

ds2 = 1

4

(
1

R1
+ 1

r1

)2

(dx21 + dx22 ),

where R and r are the radii of the circles described in (i).

Proof Consider A (x1, x2) and B (y1, y2) in J and M
(
x1, x2

)
in J ∪ K .

The circle determined by the relation
|MA|
|MB| = √

λ has the equation

(
x1 − x1

)2 + (
x2 − x2

)2 − λ(
(
x1 − y1

)2 + (
x2 − y2

)2
) = 0.

Its radius R is

R2 = λ|AB|2
(1 − λ)2

.

The maximum M1 and the minimum m1 values for the expression
|MA|2
|MB|2 lead to

the equalities

R2
1 = M1

(1 − M1)
2 |AB|2, r21 = m1

(1 − m1)
2 |AB|2.

The first equality becomes

(
1 + M1

1 − M1

)2

= |AB|2 + 4R2
1

|AB|2 ,

and taking into account that M1 ≥ 1, it results

M1 = 1 + 2|AB|
−|AB| +

√
|AB|2 + 4R2

1

.

In the same way, using m1 ≤ 1, we have

m1 = 1 − 2|AB|
|AB| +

√
|AB|2 + 4r21

.

If A and B are close enough, i.e. B = A + d A, theEuclidean distance |AB|2 becomes
the arc element

dσ2 = dx21 + dx22 .
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The distance between the points A and A + d A leads to the new arc element
d (A, A + d A) denoted by ds.

So,

ds = d (A, A + d A) = 1

2

M1 − m1

m1
.

We have the approximations

2dσ

−dσ +
√
dσ2 + 4R2

1

= dσ

R1
,

and
2dσ

dσ +
√
dσ2 + 4r21

= dσ

r1
.

Final computation leads to

ds = 1

2

(
1

R1
+ 1

r1

)
dσ,

i.e. the metric corresponding to the previous distance is

ds2 = 1

4

(
1

R1
+ 1

r1

)2 (
dx21 + dx22

)
.

�

Theorem 6.1.2 Consider the circle � centered at origin and of radius R. Consider
in the interior of the circle the Poincaré distance. Then, the associated metric, given
by Barbilian’s Theorem

ds2 = 1

4

(
1

R1
+ 1

r1

)2 (
dx21 + dx22

)

has the form

ds2 = 4R2

[R2 − (x2 + y2)]2 · (dx2 + dy2).

Furthermore, the metric obtained by this procedure has the Gaussian curvature −1.

Proof In the case when � is a circle and J is its interior, we deal with a distance,

d(A, B) = ln
maxP∈� gAB(P)

minP∈� gAB(P)
= ln

maxP∈�
|PA|
|PB|

minP∈�
|PA|
|PB|

,
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called Poincaré distance of the disk. We would like to compute the metric of the disk
induced by this distance and the previous theorem. Let A of coordinates (x0, y0), in
the interior of �. Denote by O1(x1, y1) and O2(x2, y2) the centers of the two circles,
each one tangent to the circle� and also tangent between them at A. Denote bym the
slope of the tangent line � at A to both previous circles. Line O1O2 has the equation

y − y0 = − 1

m
(x − x0).

Therefore, the points O1 and O2 have the coordinates

(
xi , y0 − 1

m
(xi − x0)

)
, for

i = 1, 2. Furthermore,

R2
i = |Oi A|2 = m2 + 1

m2
(xi − x0)

2, i = 1, 2.

Without losing of generality, we assume that x1 − x0 ≤ 0 and x2 − x0 ≥ 0, with the
equality case reached when�‖Ox . it is worth remarking that x1 − x0 < 0, ifm > 0.
Thus

|O1A| =
√
m2 + 1

m
(x0 − x1),

and

|O2A| =
√
m2 + 1

m
(x2 − x0).

Therefore, the circles have the centers (x1, y0 − 1
m (x1 − x0)) and (x2, y0 − 1

m (x2 −
x0)), and the radii R1 =

√
m2 + 1

m
(x0 − x1) and R2 =

√
m2 + 1

m
(x2 − x0).

To obtain the coordinates of the point T ′
1, we recall that it lies at the intersection

between the circle x2 + y2 = R2 and the line

y = 1

x1

[
y0 − 1

m
(x1 − x0)

]
x,

which passes through the collinear points O, O1 and T ′
1. Solving the system, we get

the coordinates of T ′
1 as follows

⎛
⎝ Rx1√

x21 + (
y0 − 1

m (x1 − x0)
)2 ,

R(y0 − 1
m (x1 − x0))√

x21 + (
y0 − 1

m (x1 − x0)
)2

⎞
⎠ .

By direct computation, we get
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|O1T
′
1| = R −

√
x21 +

(
y0 − 1

m
(x1 − x0)

)2

.

Since the segments O1T ′
1 and O1A are radii of the circle of center O1 and radius R1,

we set up the equalities

√
m2 + 1

m
(x0 − x1) = R1 = R −

√
x21 + (y0 − 1

m
(x1 − x0))2.

It follows that

x0 − x1 = R1m√
m2 + 1

,

therefore

(R − R1)
2 = x21 +

(
y0 + R1√

m2 + 1

)2

.

Since

x1 = x0 − R1m√
m2 + 1

,

we have

(m2 + 1)(R − R1)
2 − (y0

√
m2 + 1 + R1)

2 = (x0
√
m2 + 1 − R1m)2

i.e.

R1 =
√
m2 + 1

2
· R2 − x20 − y20
R
√
m2 + 1 − x0m + y0

.

In a similar way we obtain

R2 =
√
m2 + 1

2
· R2 − x20 − y20
R
√
m2 + 1 + x0m − y0

.

It results the relation

1

4

(
1

R1
+ 1

R2

)2

= 4R2

(R2 − x20 − y20 )
2
,

i.e. the Poincaré metric of the disk is

ds2 = 4R2

[R2 − (x2 + y2)]2 · (dx2 + dy2).
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By straightforward computation, we can easily see that the Gaussian curvature of
this metric is K (x, y) = −1.

Therefore this metric generates the hyperbolic Geometry on the disk
D(O, R) = int�. �

6.2 Poincaré Distance and Poincaré Metric of the
Half-Plane

Consider the case when K = {(x, y) ∈ R
2; y = 0} and J = {(x, y) ∈ R

2; y > 0}.
Let M ∈ K and A(x0, y0) ∈ J and B(x1, y1) ∈ J. Consider the associated ratio

gAB(M) = |MA|
|MB| .

We describe geometrically the points where the maximum and the minimum are
reached. Let B1 be the foot of the perpendicular drawn from B to x-axis. Consider
the direct inversion with pole B and power |BB1|2.

Then, by this inversion,wehave B1 → B1 and K → C(BB1),wherewedenote by
C(BB1) the circle of diameter BB1; we also have A → A′ such that |BA| · |BA′| =
|BB1|2, where A′ is a fixed point lying on the line AB.

Since any point M ∈ K is mapped into M ′ ∈ C(BB1), we have that

|A′M ′| = |BB1|2 · |AM |
|BA| · |BM | ;

Denote the constant ratio k = |BB1|2
|BA| , therefore |A′M ′| = k · |AM |

|BM | .

Let us remark that the ratio
|AM |
|BM | reaches its maximum or its minimumwhenever

|A′M ′| is maximumorminimum, respectively. Therefore, the antipodal points S0 and
S′
0, bounding the diameter through A′, lie diametrically opposite on C(AA1). Their

inverse images, the points {M ′
0} = AS′

0 ∩ (y = 0), and {M0} = AS0 ∩ (y = 0), are

the points where the minimum and the maximum of the ratio
|AM |
|BM | are reached,

respectively.
Since S0S′

0 is orthogonal to the circle C(AA1) and since B ′ ∈ S0S′
0, we get that

M0 and M ′
0 are the endpoints of the arc twice orthogonal onto K passing through A

and B. Thus, it makes sense to consider the distance

d(A, B) = ln
maxP∈K gAB(P)

minP∈K gAB(P)
= ln

maxP∈K |PA|
|PB|

minP∈K |PA|
|PB|

,
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for the half-plane J, since the two extrema needed in the logarithmic oscillation
formula exist. So, in the half plane, it exists a Poincaré distance obtained exactly as
in the case of the disk, that is

d(A, B) = ln
maxP∈K |PA|

|PB|
minP∈K |PA|

|PB|
.

Theorem 6.2.1 Consider the previous Poincaré distance of the half plane. Then, the
associated metric given by Barbilian’s theorem

ds2 = 1

4

(
1

R1
+ 1

r1

)2 (
dx21 + dx22

)

has the form

ds2 = 1

y2
(dx2 + dy2).

(this important Riemannian metric is called Poincaré metric of the half-plane.)

Proof Let A(x0, y0) and the arbitrary line through A given by y − y0 = m(x − x0).
Consider the circles of centers O1(x1, y1) and O2(x2, y2) tangents at A to the line
and also tangents to K . Then we have:

y1 − y0 = − 1

m
(x1 − x0),

y2 − y0 = − 1

m
(x2 − x0),

y21 = (x1 − x0)
2 + (y1 − y0)

2,

y22 = (x2 − x0)
2 + (y2 − y0)

2, y1 < y0, y2 > y0.

From the previous equations, we have

r1 = y1 = y0
√
m2 + 1

1 + √
m2 + 1

.

Similarly we obtain

r2 = y2 = y0
√
m2 + 1

−1 + √
m2 + 1

,
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therefore it results

ds2 = 1

y2
(dx2 + dy2).

�

The Poincaré metric of the half-plane is a Riemann metric with constant Gaussian
curvature −1. We left this as an exercise to the reader.

6.3 Connections Between the Models of Non-Euclidean
Geometries

Suppose we are in the two dimensional Euclidean plane E2 and let us consider the
circle C(T, 1) where the center T has the coordinates (0,−1) and the length of the
radius is 1. The point A(0,−2) belongs to the circle, B(x, y) belongs to the superior
half-plane H 2, i.e. y > 0, and its inverse B∗(x∗, y∗), with respect to the inversion I
having A as pole and μ = 4 as power, has the coordinates

x∗(x, y) = 4x

x2 + (y + 2)2
,

y∗(x, y) = −2(x2 + y2 + 2y)

x2 + (y + 2)2
.

We obtain this result using the fact that the algebraic equation of the line AB is

Y + 2 = y + 2

x
X

and the collinear points A, B, B∗ fulfill the condition AB · AB∗ = 4.
Another easy computation shows that

(x∗)2 + (y∗ + 1)2 < 1,

that is B∗ belongs to the interior of the circle C(T, 1). The mapping
M : H 2 → intC(T, 1),whichdescribes the changeof coordinates (x, y) → (x∗, y∗),
has the differential dM given by the formula

dM =
⎛
⎜⎝

∂x∗

∂x

∂x∗

∂y
∂y∗

∂x

∂y∗

∂y

⎞
⎟⎠

where
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∂x∗

∂x
= 4[−x2 + (y + 2)2]

(x2 + (y + 2)2)2
; ∂x∗

∂y
= −8x(y + 2)

[x2 + (y + 2)2]2 ;

∂y∗

∂x
= −8x(y + 2)

[x2 + (y + 2)2]2 ; ∂y∗

∂y
= 4[x2 − (y + 2)2]

[x2 + (y + 2)2]2 .

We observe that dM = dMt .
The metric of the unit disk in coordinates (x∗, y∗) is

ds2 = 4

[1 − (x∗)2 − (y∗)2]2 · ((dx∗)2) + (dy∗)2).

In our case, the disk is translated such that O(0, 0) → T (0,−1), i.e. x∗ → x∗,
y∗ → y∗ + 1. The metric becomes

ds2 = 4

[1 − (x∗)2 − (y∗ + 1)2]2 · ((dx∗)2 + (dy∗)2)

We transform the matrix

Ḡ(x∗, y∗) =
⎛
⎜⎝

4

[1 − (x∗)2 − (y∗ + 1)2]2 0

0
4

[1 − (x∗)2 − (y∗ + 1)2]2

⎞
⎟⎠

with respect (x, y) coordinates into

Ḡ(x, y) =

⎛
⎜⎜⎝

[x2 + (y + 2)2]2
16y2

0

0
[x2 + (y + 2)2]2

16y2

⎞
⎟⎟⎠

According to the general theory, the matrix of the metric in H 2, induced by changing
of coordinates and by the metric of the interior of C(T, 1), is computed using the
formula

G(x, y) = dMt · Ḡ(x, y) · dM.

After computations, we obtain

G(x, y) =
⎛
⎜⎝

1

y2
0

0
1

y2

⎞
⎟⎠ .

We have proved the following



6.3 Connections Between the Models of Non-Euclidean Geometries 151

Theorem 6.3.1 The Poincaré metric of the disk induces, via a change of coordinates
expressed by an appropriate inversion, the metric of the superior half-plane

ds2 = 1

y2
(dx2 + dy2).

Definition 6.3.2 The previous metric is called the Poincaré metric of the superior
half plane H 2.

Let us make a short review of what we are expecting. Previously we proved
that if A, B,C are three points in this order on an orthogonal arc sS, such that the
order on the arc in the interior of the circle C(T, 1) is s, A, B,C, S, then d(A, B) +
d(B,C) = d(A,C) where d is the Poincaré distance. Therefore the orthogonal arc
sS is a geodesic of the Poincaré distance on the disk. The metric induced in the
interior of C(T, 1) is

ds2 = 4[
1 − (x∗)2 − (y∗ + 1)2

]2 · ((dx∗)2) + (dy∗)2).

Is the orthogonal arc sS a geodesic of this metric?
To underline what we are trying to find out, let ask ourselves again: is the orthog-

onal arc sS in the same time geodesic with respect the distance and geodesic with
respect to the metric induced by the distance?

We know that this metric induces, in the superior half-plane H 2, the coordinates
x = x(x∗, y∗), y = y(x∗, y∗) and the Poincaré metric

ds2 = 1

y2
(dx2 + dy2).

The inversion I (A, 4) maps the orthogonal arc sS into an ordinary semicircle
having the center on the Ox axis or into a line orthogonal to the Ox axis.

Are these geometric objects geodesics with respect to the Poincaré metric of the
half-plane?

If yes, the orthogonal arc sS becomes a geodesic with respect the hyperbolic
metric of the translated disk because, under a change of coordinates, geodesics are
mapped into geodesics as we have proved.

Theorem 6.3.3 The semicircles (x − c)2 + y2 = R2 and the lines x = a are
geodesics with respect the Poincaré metric of the half-plane.

Proof We have g11 = g22 = 1

y2
, g12 = g21 = 0, g11 = g22 = y2, g12 = g21 = 0.

Then considering x = x1, y = x2 the Christoffel symbols are

�11,1 = �22,1 = �12,2 = �21,2 = 0, �12,1 = �21,1 = �22,2 = − 1

y3
, �11,2 = 1

y3
,
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�1
11 = �1

22 = �2
12 = �2

21 = 0, �1
12 = �1

21 = �2
22 = −1

y
, �2

11 = 1

y
.

The geodesic equation written for the first variable is

ẍ − 2

y
ẋ ẏ = 0.

For the second variable y the geodesic equation is

ÿ + 1

y
ẋ2 − 1

y
ẏ2 = 0.

The appropriate parameterization for the semicircle is

x = x(s) = c + R tanh s; y = y(s) = R

cosh s

instead of
x = x(s) = c + R cos s; y = y(s) = R sin s.

Why? Because the first formulas lead to a constant speed on the semicircle, the
second formulas lead to a variable speed. Indeed,

ẋ(s) = R

cosh2 s
, ẍ(s) = −2R tanh s

cosh2 s
, ẏ(s) = −R sinh s

cosh2 s
, ÿ(s) = R

cosh s
− 2R

cosh3 s
.

It results that the length of the speed vector ċ(s) = (ẋ(s), ẏ(s)) is

||ċ(s)||2 = 1

y2(s)

(
ẋ2(s) + ẏ2(s)

)
, i.e.

||ċ(s)||2 = cosh2 s

R2

(
R2

cosh4 s
+ R2 sinh2 s

cosh4 s

)
= 1.

Continuing, if we replace in the formulas of the geodesic equations, we see that the
answer is yes in the case of the first parameterization.

In the case of the second parameterization the same kind of computation leads to

||ċ(s)||2 = 1

R2 sin2 s

(
R2 sin2 s + R2 cos2 s

) = 1

sin2 s
,

that is a non constant speed. This parameterization is not appropriate for a geodesic.
According to the first parameterization it results that the semicircles are geodesics

in the half-plane with respect to the Poincaré metric of the half-plane.
In the sameway, the lines orthogonal to theOx axis, parameterized in the form x =

x(s) = a; y = y(s) = es satisfy the equations of geodesics. The parameterization
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x = x(s) = a; y = y(s) = s is not appropriate for the same reason: the speed is not
constant along the geodesic. �
Corollary 6.3.4 The orthogonal arcs sS of the disk are geodesics with respect to
the Poincaré metric of the disk.

To finish, let us recall that the Poincaré metric in H 2 can be deduced from the
distance involved in themetric structure of the half-plane. If the ends of the semicircle
are denoted by v, V and we have three points on the semicircle such that the order
is v, A, B,C, V then, in terms of distance in the H 2 half-plane, we have d(A, B) +
d(B,C) = d(A,C), i.e. the semicircle is a geodesic with respect to the distance
d. So, in both cases, the geodesics with respect to the corresponding distance are
geodesic with respect to the metric, and the two metrics can be derived using the
same theorem. In the same time we can deduce one metric from another by a change
of coordinates induced by a suitable inversion.

Example 6.3.5 We may observe something interesting not directly related to the
models of Non-Euclidean Geometry, our present topic. We know the Minkowski
metric

ds2 = dx2 − dy2

having the constant Minkowski-Gauss curvature K = 0 at all points.
In the chapter dedicated to affine universes, we will show that the de Sitter metric

ds2 = dx2 − cosh2 xdy2

has constant Minkowski-Gauss curvature K = −1 at all points.
What about positive constant curvature for this kind of metrics? The Poincaré

half-plane model can help us to construct one.
If we consider the Minkowski-Poincaré metric

ds2 = 1

y2
(dx2 − dy2)

we have:

g11 = 1

y2
, g22 = − 1

y2
g12 = g21 = 0, g11 = y2, g22 = −y2, g12 =

g21 = 0, det(gi j ) = − 1

y4
.

Then, considering x = x1, y = x2, the first kind Christoffel symbols are a little
bit different, i.e.

�11,1 = �22,1 = �12,2 = �21,2 = 0, �12,1 = �21,1 = �11,2 = − 1

y3
, �22,2 = 1

y3
.

But the second kind Christoffel symbols are the same as in the Poincaré half-plane
model, i.e.
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�1
11 = �1

22 = �2
12 = �2

21 = 0, �1
12 = �1

21 = �2
22 = −1

y
, �2

11 = 1

y
.

The Minkowski-Gauss curvature of this metric is K = 1 at all points of the half

plane because R1
212 = − 1

y2
and R1212 = − 1

y4
.

The geodesic equations are exactly as in the half-plane case

ẍ − 2

y
ẋ ẏ = 0

ÿ + 1

y
ẋ2 − 1

y
ẏ2 = 0.

It is easy to see that the previous parameterization is not appropriate for this case.
But if we write the second equation as

ÿ

y
+ 1

y2
(
ẋ2 − ẏ2

) = 0

the formula
1

y2
(
ẋ2 − ẏ2

)

expresses the speed along geodesic which has to be a constant. Therefore the second
equation becomes

ÿ

y
= k, k > 0.

Quick exercise: Show that if y(s) = cosh(s
√
k) > 0, x(s) does not exist.

Consider y = es
√
k , s ∈ R. Therefore x(s) = a, a = constant. The geodesics of

the Minkowski-Poincaré metric

ds2 = 1

y2
(dx2 − dy2)

are, from the Euclidean point of view, lines orthogonal to y = 0 axis.
Let us observe a difference between the Geometry of constant positive Gaussian

curvature K = 1 in the case of the metric

ds2 = dx2 + sin2 xdy2

and the Geometry of constant positive Minkowski-Gauss curvature K = 1 of this
completely different metric, the Minkowski-Poincaré metric
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ds2 = 1

y2
(dx2 − dy2).

The geodesics of the first metric (seen related to the sphere) are great circle of the
sphere. Therefore, in the Geometry of the first metric, every two lines (geodesics)
intersect in exactly two points. In the Geometry of the second metric, every two lines
(geodesics) do not intersect. There are no triangles. The geometries are different.

According to the theory we developed, we can directly deduce the following
things.

The metric of the Minkowski-Poincaré half-plane is transformed into the
Minkowski-Poincaré metric of the disk

ds2 = 4

[1 − (x∗)2 − (y∗)2]2 · ((dx∗)2 − (dy∗)2).

The Gaussian curvature of this metric is K = 1 at each point, because the Gaussian
curvature remains invariant under a change of coordinates, here the change being
related to the inversion previously described. The geodesics of the half-plane with
respect to the metric

ds2 = 1

y2
(dx2 − dy2),

i.e. the lines orthogonal to y = 0 axis, are mapped into orthogonal arcs of circles
which pass through the pole of inversion having the tangent in pole exactly the x = 0
axis. Therefore, the property of non-intersecting lines is preserved in the disk model
of constant positive Minkowski-Gauss curvature.

A question remains after this discussion: Can a Minkowski type metric, that is a
non-Riemannian metric, produce the same Geometry as a Riemannian type metric?
Even at this moment the answer seems to be no, we will show that all Non-Euclidean
Geometry models presented in this book can be represented by a Minkowski type
metric of a one-sheet hyperboloid. The construction is related to the hemisphere
model we will study below.

6.4 The Exterior Disk Model

Now suppose we are in the two dimensional Euclidean plane E2; consider the circle
C(O, 1)where the center O has the coordinates (0, 0) and the length of the radius is 1.
The point B(x, y) belongs to the exterior of our given circle, denoted by extC(O, 1),
i.e. x2 + y2 > 1. Its inverse B∗(x∗, y∗) with respect to the inversion I , having O as
a pole and μ = 1 as a power, has the coordinates

x∗(x, y) = x

x2 + y2
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y∗(x, y) = y

x2 + y2
.

We obtain these using the condition OB · OB∗ = 1.
It is easy to see that

(x∗)2 + (y∗)2 < 1,

that is B∗ belongs to the interior of the circle C(O, 1).
The mapping M : extC(O, 1) → intC(O, 1) which describes the change of

coordinates (x, y) → (x∗, y∗) has the differential dM given by the formula

dM =
⎛
⎜⎝

∂x∗

∂x

∂x∗

∂y
∂y∗

∂x

∂y∗

∂y

⎞
⎟⎠

where
∂x∗

∂x
= −x2 + y2

(x2 + y2)2
; ∂x∗

∂y
= −2xy

(x2 + y2)2
;

∂y∗

∂x
= −2xy

(x2 + y2)2
; ∂y∗

∂y
= x2 − y2

(x2 + y2)2
.

We observe that dM = dMt .
The metric of the unit disk in coordinates (x∗, y∗) is

ds2 = 4

[1 − (x∗)2 − (y∗)2]2 · ((dx∗)2 + (dy∗)2).

We transform the matrix

Ḡ(x∗, y∗) =
⎛
⎜⎝

4

[1 − (x∗)2 − (y∗)2]2 0

0
4

[1 − (x∗)2 − (y∗)2]2

⎞
⎟⎠

with respect to (x, y) coordinates, that is

Ḡ(x, y) =

⎛
⎜⎜⎝

4(x2 + y2)2

[1 − (x2 + y2)]2 0

0
4(x2 + y2)2

[1 − (x2 + y2)]2

⎞
⎟⎟⎠

According to the general theory, the matrix of the metric in the exterior of the disk
induced

• by changing of coordinates and
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• by the metric of the interior of C(O, 1)
is computed using the formula

G(x, y) = dMt · Ḡ(x, y) · dM.

After computations we obtain

G(x, y) =
⎛
⎜⎝

4

[1 − (x2 + y2)]2 0

0
4

[1 − (x2 + y2)]2

⎞
⎟⎠

that is, we have proved

Theorem 6.4.1 The Poincaré metric of the disk induces, via a change of coordinates
expressed by an appropriate inversion, the metric of the exterior of the disk

ds2 = 4

[1 − (x2 + y2)]2 (dx2 + dy2).

We observe that the metric of the exterior of the disk coincides to the metric of
the interior of the disk.

Example 6.4.2 The second possible computation is related to the other formula
which describes the change of coefficients of the metric,

gi j = ḡkl
∂ x̄ k

∂xi
∂ x̄ l

∂x j
.

Since ḡ12 = ḡ21 = 0 we have

g11 = ḡkl
∂ x̄ k

∂x1
∂ x̄ l

∂x1
= ḡ11

∂ x̄1

∂x1
∂ x̄1

∂x1
+ ḡ22

∂ x̄2

∂x1
∂ x̄2

∂x1
.

According to our previous notations x∗ = x̄1, y∗ = x̄2, x = x1, y = x2, i.e. in (x, y)
coordinates we have

ḡ11 = ḡ22 = 4(x2 + y2)2

(1 − (x2 + y2))2
.

Then

g11 = ḡkl
∂ x̄ k

∂x1
∂ x̄ l

∂x1
= ḡ11

∂ x̄1

∂x1
∂ x̄1

∂x1
+ ḡ22

∂ x̄2

∂x1
∂ x̄2

∂x1
=

= 4(x2 + y2)2

(1 − (x2 + y2))2
·
( −x2 + y2

(x2 + y2)2
· −x2 + y2

(x2 + y2)2
+ −2xy

(x2 + y2)2
· −2xy

(x2 + y2)2

)
=
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= 4

(1 − (x2 + y2))2

In the same way g12 = g21 = 0 and g22 = 4

[1 − (x2 + y2)]2 , therefore the metric of

the exterior of the disk is the same

ds2 = 4

[1 − (x2 + y2)]2 (dx2 + dy2).

Example 6.4.3 Another computation of the metric of the exterior of the disk is
suggested from calculus. This is a direct one and it is easier to be applied by the
students. The metric of the unit disk in coordinates (x∗, y∗) is

ds2 = 4

[1 − (x∗)2 − (y∗)2]2 · ((dx∗)2 + (dy∗)2)

and the formulas which switch from the exterior of the disk to its interior are

x∗(x, y) = x

x2 + y2
; y∗(x, y) = y

x2 + y2
.

Therefore

dx∗ = ∂x∗

∂x
dx + ∂x∗

∂y
dy = −x2 + y2

(x2 + y2)2
dx + −2xy

(x2 + y2)2
dy,

dy∗ = ∂y∗

∂x
dx + ∂y∗

∂y
dy = −2xy

(x2 + y2)2
dx + x2 − y2

(x2 + y2)2
dy.

We square both formulas, we add and we observe that the terms containing dxdy
cancel:

(dx∗)2) + (dy∗)2 = 1

(x2 + y2)2
(dx2 + dy2)

Then, we replace x∗ and y∗ in
4

[1 − (x∗)2 − (y∗)2]2 . We obtain

4

[1 − (x∗)2 − (y∗)2]2 = 4(x2 + y2)2

[1 − (x2 + y2)]2

Combining both formulas obtained before, the metric of the exterior of the disk is
obtained.

The most important consequence is related to the geodesics of the exterior of the
disk. As we saw in the previous example, the geodesic of the interior of the disk are
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arcs of orthogonal circles to C(O, 1) contained in intC(O, 1). However geodesics
are mapped into geodesics under a change of coordinates. If we look at our inversion,
an interior arc is mapped into the exterior arc belonging to the same orthogonal circle
to C(O, 1). Taking into account that this model is derived from the disk model as
we described before we conclude:

Proposition 6.4.4 The geodesics of the exterior of the disk model are the arcs of
circles orthogonal to the circle which determines the disk, the arcs contained outside
of the disk.

6.5 A Hemisphere Model for the Non-Euclidean Geometry

Let us give a concise description of the three models before.

• Disk model

– set D2 := intC(0, 1) = {(x, y) ∈ R
2| x2 + y2 < 1}

– metric

ds2 = 4

[1 − (x2 + y2)]2 (dx2 + dy2)

which comes from the Poincaré hyperbolic distance through Barbilian’s Theo-
rem.

• Poincaré half-plane model

– set H 2 := {(x, y) ∈ R
2| y > 0}

– it comes from D2 model using the change of coordinates suggested by an appro-
priate geometric inversion (x, y) ∈ H 2 −→ (x∗, y∗) ∈ intC(T, 1), T (0,−1),

x∗(x, y) = 4x

x2 + (y + 2)2
; y∗(x, y) = −2(x2 + y2 + 2y)

x2 + (y + 2)2
,

which transfer the D2 metric seen in C(T, 1),

ds2 = 4

[1 − (x∗)2 − (y∗ + 1)2]2 · ((dx∗)2 + (dy∗)2),

into H 2 metric

ds2 = 1

y2
(dx2 + dy2).

• Exterior disk model

– set extC(0, 1) = {(x, y) ∈ R
2| x2 + y2 > 1}
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– it comes from D2 model using the change of coordinates suggested by an appro-
priate geometric inversion which switches the coordinates (x∗, y∗) ∈ D2 into
(x, y) ∈ extC(O, 1) such that the inverse coordinate transformations is

x∗(x, y) = x

x2 + y2
; y∗(x, y) = y

x2 + y2
.

These ones transfer the D2 metric

ds2 = 4

[1 − (x∗)2 − (y∗)2]2 · ((dx∗)2 + (dy∗)2)

onto extC(O, 1) metric ds2 = 4

[1 − (x2 + y2)]2 (dx2 + dy2).

The Non-Euclidean Geometry in the hemisphere model is fixed by an appropriate
change of coordinates.

The hemisphere is the set H+ = {(x1, x2, x3) ∈ S2 |x21 + x22 + x23 = 1, x3 > 0}.
Consider the Poincaré half-plane model seen in the form H 2

1 := {(1, y2, y3)|
y3 > 0} endowed with the metric

ds2H 2
1

= 1

y23

(
dy22 + dy23

)
.

The stereographic projection π, corresponding to the point (−1, 0, 0),
π : H+ → H 2

1 is defined by

y2 = 2x2
1 + x1

, y3 = 2x3
1 + x1

.

In fact, if we consider the line passing through the points (−1, 0, 0) and (x1, x2, x3)
∈ H+ having the equation

X + 1

x1 + 1
= Y

x2
= Z

x3

and the plane X = 1, the formulas above defining the stereographic projections obvi-
ously appear.

Now, let us use the last technique seenwhenwe found out themetric of the exterior
of the disk.

We have

dy2 = 2

x1 + 1
dx2 − 2x2

(x1 + 1)2
dx1,

dy3 = 2

x1 + 1
dx3 − 2x3

(x1 + 1)2
dx1

and x21 + x22 + x23 = 1 implies both
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x22 + x23 = 1 − x21

and
x1dx1 = −x2dx2 − x3dx3.

Now, replacing in

ds2H 2
1

= 1

y23

(
dy22 + dy23

)
,

we obtain

ds2H+ = (x1 + 1)2

4x23

[(
2

x1 + 1
dx2 − 2x2

(x1 + 1)2
dx1

)2

+
(

2

x1 + 1
dx3 − 2x3

(x1 + 1)2
dx1

)2
]

.

After a straightforward computation we obtain the following

Theorem 6.5.1 The Poincaré half-planemetric induces, via a change of coordinates
expressed by an appropriate stereographic projection, the metric

ds2H+ = 1

x23

(
dx21 + dx22 + dx23

)

for the hemisphere

H+ = {(x1, x2, x3) ∈ S2 |x21 + x22 + x23 = 1, x3 > 0}.

If you imagine the geodesics drawn on H 2
1 , their images through the previous

stereographic projection are geodesics on H+.
The hemisphere model of the Non-Euclidean Geometry allows us to discover the

hyperboloid model of the Non-Euclidean Geometry. This one is endowed with a
Minkowski metric.

6.6 A Minkowski Model for the Non-Euclidean Geometry:
The Hyperboloid Model

We start from the hemisphere model expressed by the set

H+ = {(y1, y2, y3) ∈ S2 |y21 + y22 + y23 = 1, y3 > 0}

and the metric
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ds2H+ = 1

y23

(
dy21 + dy22 + dy23

)
.

If we consider only one sheet of the two sheets hyperboloid x21 + x22 − x23 = −1, we
create the set

H := {(x1, x2, x3) ∈ E3 |x21 + x22 − x23 = −1, x3 > 0}.

The map

y1 = x1
x3

, y2 = x2
x3

, y3 = 1

x3

is the stereographic projection α between H and H+, the formlas being obtained
intersecting the line equation determined by (0, 0,−1) and (x1, x2, x3) ∈ H,

X

x1
= Y

x2
= Z + 1

x3 + 1
,

now with H+.

Quick exercise: consider Y = x2
x3

and show that Z = 1

x3
and X = x1

x3
.

Quick exercise: if x21 + x22 − x23 = −1, x3 > 0 then X2 + Y 2 + Z2 = 1, Z > 0.
As previously, we consider

dy1 = 1

x3
dx1 − x1

x23
dx3,

dy2 = 1

x3
dx1 − x2

x23
dx3,

dy1 = − 1

x23
dx3,

together with both
x21 + x22 = −1 + x21

and
x1dx1 + x2dx2 = x3dx3.

Replacing in

ds2H+ = 1

y23

(
dy21 + dy22 + dy23

)
,

it results
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ds2
H

= x23

[(
1

x3
dx1 − x1

x23
dx3

)2

+
(
1

x3
dx1 − x1

x23
dx3

)2

+
(

− 1

x23
dx3

)2
]

.

Continuing the computations, after convenient replacements, we obtain the induced
metric of H,

ds2
H

= dx21 + dx22 − dx23 .

Therefore, we proved the following result.

Theorem 6.6.1 The hemisphere metric induces, via a change of coordinates
expressed by an appropriate stereographic projection, the metric of the hyperboloid
H model,

ds2
H

= dx21 + dx22 − dx23 .

Together with the fact that distances in Non-Euclidean Geometry are described
by hyperbolic functions, this last model offers another reason to consider the Non-
Euclidean Geometries as hyperbolic geometries. In the next chapters, we use both
Euclidean Geometry and the Non-Euclidean geometries to approximate what we can
call the physical reality. What reality is? An example we present in Sect. 6.8, due to
H. Poincaré, shows how far we can be in our understanding of what we call reality.
However, we have to accept themathematical description, that is themodel created, if
there are physical evidences. The role of experiment is crucial for validating models.

6.7 The Theoretical Minimum About Non-Euclidean
Geometry Models. A Possible Shortcut

Consider the following sets, the following metrics and the following functions which
connect the sets. The sets and the metrics are:

1. The Poincaré disk model

D2 := intC(0, 1) = {(x∗, y∗) ∈ R
2| (x∗)2 + (y∗)2 < 1}

ds2D2 = 4

[1 − ((x∗)2 + (y∗)2)]2 ((dx∗)2 + (y∗)2).

1′. The translated disk model

D2
T =: {(x∗, y∗) ∈ R

2| (x∗)2 + (y∗ + 1)2 < 1}

ds2D2
T

= 4

[1 − (x∗)2 − (y∗ + 1)2]2 · ((dx∗)2 + (dy∗)2).

Obviously, 1 and 1′ are representing the same model.
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2. The Poincaré half-plane model

H 2 := {(x, y) ∈ R
2| y > 0}

ds2H 2 = 1

y2
(dx2 + dy2).

2′. The spatial Poincaré half-plane model

H 2
1 := {(1, y2, y3)|y3 > 0}

ds2H 2
1

= 1

y23

(
dy22 + dy23

)
.

Also in this case, 2 and 2′ are obviously representing the same model.
3. The exterior disk model

E := extC(0, 1) = {(x, y) ∈ R
2| x2 + y2 > 1}

ds2
E

= 4

[1 − (x2 + y2)]2 (dx2 + dy2)

4. The hemisphere model

H+ = {(y1, y2, y3) ∈ S2 |y21 + y22 + y23 = 1, y3 > 0}

ds2H+ := 1

y23

(
dy21 + dy22 + dy23

)
.

5. The hyperboloid model

H := {(x1, x2, x3) ∈ E3 |x21 + x22 − x23 = −1, x3 > 0}

ds2
H

= dx21 + dx22 − dx23 .

The connection between the models are described by the functions:

β : H 2 −→ D2
T , x∗(x, y) = 4x

x2 + (y + 2)2
; y∗(x, y) = −2(x2 + y2 + 2y)

x2 + (y + 2)2
.

γ : E −→ D2, x∗(x, y) = x

x2 + y2
; y∗(x, y) = y

x2 + y2
.
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π : H+ → H 2
1 , y2 = 2x2

1 + x1
, y3 = 2x3

1 + x1
.

h : H → H+, y1 = x1
x3

, y2 = x2
x3

, y3 = 1

x3
.

An important remark is in order at this point:
Our way to describe the models starts from obtaining all the geometric properties

of the construction of the Poincaré disk model.
It was a continuous “struggle” passing through geometric transformations, pro-

jective Geometry, algebraic invariants, hyperbolic distances until the Differential
Geometry helped us to obtain the Poincaré metric of the disk. And not only for the
interior of the disk, we also did it for the Poincaré half-plane. Then, a transfer process
of metrics was described: supposing to know the Poincaré disk model D2 and the
function γ, we find the metric of the exterior disk model E.

Supposing to know the Poincaré disk model D2, we obtain the metric of the
translated disk D2

T and now, using the function β, we find the metric of the of the
Poincaré half-plane model H 2.

Knowing the Poincaré half-plane model H 2, we obtain the metric of spatial half-
plane H 2

1 and now, using the function π, we find the metric of the hemisphere model
H+.

Knowing the hemisphere model H+ and the function h, we find the Minkowski
metric of the hyperboloid model H.

A Possible Shortcut

For somebody who is not interested in the historic-geometrical description of the
Poincaré disk model, as we tried to present until now, there is a shortcut.

Consider the superior half-plane H 2 and a half circle having its center at the point
O1(x, 0). Denote by A and B the points (x, y), (x + dx, y + dy) respectively, which
belong to the half-circle.

If ds is ∠AO1B, then the length of the arc AB is yds and can be approximated
by the length of the segment AB, that is

√
dx2 + dy2. Therefore the Poincaré metric

ds2 = 1

y2
(dx2 + dy2)

is obtained.
Now, the person has to look only at the previous Poincaré half-plane metric

denoted now by

ds2H 2 = 1

y2
(dx2 + dy2)

and to establish the geodesics equations

ẍ − 2

y
ẋ ẏ = 0, ÿ + 1

y
ẋ2 − 1

y
ẏ2 = 0.
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Then, to find their solutions

x(s) = c + R tanh s, y(s) = R

cosh s

who represent a parameterization for a semicircle having the center on the Ox axis.
Other solutions are the lines orthogonal to the Ox axis parameterized in the form

x(s) = a, y(s) = es . The geodesic becomes the “lines” of H 2.
Then, the person has to observe that from a given point of H 2 with respect to

a given line, we can construct at least two non-secant lines, etc. A model for the
Non-Euclidean Geometry occurs in H 2. Transferring the metrics using the functions
above, the person can obtain the other models. However such a person does not really
understand the substance of these models.

6.8 A Physical Interpretation

On Internet at the address https://archive.org/details/lascienceetlhypo00poin, it can
be found Henri Poincaré’ famous book Science et Hypothèse [13]. Pages 83–
87 offer us a beautiful physical example of Universe related to the non-Euclidean
Geometry in the diskmodel. The example is given in the interior of a sphere. Consider
the interior of a sphere S(O, R)where O is the center and R is the radius. This interior
is the Universe for some intelligent inhabitants.

For Poincaré, who thought to this special Universe, in the interior of the sphere,
both the Euclidean Geometry and a special temperature law are acting.

The temperature is maximum at the center, decreases to 0 on the surface of the
sphere in which this Universe is included. The law of temperature variation is: if M
is a point such that OM = r then, the temperature at M is proportional to R2 − r2.
Poincaré allows temperature to contract or to dilate the length of the creatures accord-
ing to their position after a rule we describe as: the length of a ruler is proportional to
its absolute temperature. So, a ruler having a side in O and the other side in M , such
that the Euclidean length is |OM | = r , has in fact a length proportional to R2 − r2.

The last Poincaré axiom is about how light travels in this Universe: the index of
refraction of this Universe is inversely proportional to R2 − r2. We can suppose it

as
4

R2 − r2
.

Having all these facts in mind, let us understand how the inhabitants will perceive
theirUniverse. First at all, it is enough tounderstand theGeometry of a disk containing
the center of the sphere. For Poincaré, this disk is Euclidean and it has the form of
an open R-disk. For the inhabitants, their length is smaller and smaller when they
try to reach the border of this slice of Universe. They become shorter and shorter,
their legs become shorter, their steps become shorter. These things happen because
the temperature acts by contracting the dimensions when they step to the border. The
finite Euclidean Universe for Poincaré seems to be infinite for the small creatures.

https://archive.org/details/lascienceetlhypo00poin
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The rule establishes by Poicaré for distance will be understood by the inhabitants as

dn(O, M) = 1

2
· ln R − x

R − 0
: −R − x

−R − 0
,

that is, when x approaches R, dn approaches infinity. Of course, here OM is the
x-axis. One inhabitant, mister “H”, will observe that it is possible to describe this
distance for two arbitrary points A, B in the form

dn(A, B) := ln
maxP∈K gAB(P)

minP∈K gAB(P)
, gAB = |PA|

|PB|
where K is the boundary, that is the circle of radius R, and |PA| is the Euclidean
distance between P in K and A in the interior of the disk.

The intelligent inhabitants will understand that light is moving on the “straight
lines” of the Geometry of their Universe. Since the law of propagation of light
depends on the index of refraction, they will deduce the metric of their Universe as

ds2 = 4

(R2 − (x2 + y2))2
(dx2 + dy2).

The straight lines (the geodesics), induced by the trajectories of ray lights, are diam-
eters or arcs of circles bi-orthogonal to the border as we explained above.

There are two “parallel lines” to a given “line” through a given point. The sum of
angles of a “triangle” is less than two right angles. Now they conclude they live in a
non-Euclidean Universe.

Finally, the inhabitants have two ideas about their slice of Universe, ideas which
can be extended to the entire interior of the sphere:

(i) the Universe is infinite
(ii) the Universe is governed by the laws of hyperbolic Geometry and is curved. In

each slice the Gaussian curvature is a negative constant, K (x, y) = − 1

R2
.

But this is not true, their Universe is a finite interior of a R-sphere and the under-
lying Geometry is Euclidean, not hyperbolic!

Poincaré established that the inhabitants of his physicalmodel are perfectly right to
use hyperbolic Geometry as the foundation of their Physics because it is convenient,
but there is a nonsense to speak about the philosophical abstract truth or about an
approximation of any truth, because intelligent inhabitants point of view is in collision
with the way and laws their Universe were established.

Poincaré opinion is that the reality is not described by the most “realistic” Geom-
etry “la géométrie la plus vrai”, but by the most comfortable for description of the
physical laws (la géométrie la plus commode). Therefore, Poincaré believed that the
Geometry of physical space is a conventional one.

NOTE:A possible sequel which can be written after Einstein field’s equation were
established.
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A very intelligent inhabitant, “A.E.” succeeded to determine the equations related
to the physical structure of any Universe,

Ri j − 1

2
· R · gi j = 8πG

c4
· Ti j ,

where Ri j is the Ricci tensor, Ri
j = gis Rs j , R = Ri

i is called the curvature scalar, Ti j

is a tensor related to the matter and energy contained in the Universe, k = 8πG

c4
�= 0

is a constant. Let us remember that in the 2-dimensional case Ri j = K · gi j where
K is the Gaussian curvature, and R is computed with the formula R = R1

1 + R2
2 .

“A.E.” computed Ri j − 1
2 · R · gi j in the case of the metric

ds2 = 4

[R2 − (x2 + y2)]2 (dx2 + dy2),

which is determined from the Lagrangian attached to the trajectory of a light ray.

Let us remember the Gaussian curvature of this metric: K = − 1

R2
. The result is

Ri j − 1

2
· R · gi j = K · gi j − 1

2
· (R1

1 + R2
2) · gi j = − 1

R2 · gi j − 1

2
· (− 1

R2 − 1

R2 ) · gi j = 0.

Therefore Ti j = 0. “A.E.” was shocked: the Universe in which he is living has no
matter. So, “A.E.” modifies the equation related to the physical structure by adding a
term in the left hand side, � · gi j , where � was called “the cosmological constant”;
the new “A.E.” equation for a physical Universe is

Ri j − 1

2
· R · gi j + � · gi j = 8πG

c4
· Ti j .

These new equations highlight a Poincaré disk as an infinite non-Euclidean Universe
with matter inside it. By adding a term at the equations of structure with the aim to
offer a chance to have matter inside the Universe, “A.E.” seems to strength Poincaré
conclusion about the fact that the Geometry of a physical space is a conventional
one.

In fact, Einstein did not add the term with this aim, Einstein added the term to
preserve a static structure for a Universe in which the gravity attracts together all
masses. Here, the role of � is only to follow the Poincaré style of thinking.

We do not comment here other ideas relative to the Geometry of a physical space
but, in conclusion, the arguments presented above can constitute a sort of big picture
for Non-Euclidean Geometry models.



Chapter 7
Gravity in Newtonian Mechanics

Per Aspera ad Astra.

Newtonian mechanics is a branch of Physics which studies the way in which the
bodies are changing in time their position in space. The space in which the objects
are at rest (or they change their position) is the Euclidean 3-dimensional space E3.
All objects, regardless of size, can be identified as points with a given mass in the
previous space. So, the Euclidean frame of coordinates Oxyz becomes the absolute
place where all is happening. Newtonian Mechanics accepts an universal time in
which all changes in position take place. Forces are seen as vectors. For a given

point M in space, the vector
→
X= −→

OM is called a position vector. If the point evolves
in time, we write this as →

X (t) = (x(t), y(t), z(t)).

The velocity vector is
→̇
X = (ẋ(t), ẏ(t), ż(t))

and the acceleration vector is

→̈
X = (ẍ(t), ÿ(t), z̈(t)).

Of course, we make the assumption that the coordinates functions are indefinitely
differentiable on their domain of definition which differs from a model to another.
The foundations of NewtonianMechanics are based on three fundamental principles,
the so called Newton’s Laws of motion. They were introduced by Isaac Newton
in “Philosophiae Naturalis Principia Mathematica”, book published in 1687. The
Principle of Inertia, or the first law, asserts: “A physical body preserves its state of
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rest or will continue moving at its current velocity conserving its direction, until a
force causes a change in its state of moving or rest. The physical body will change the
velocity and the direction according to this force.” A particular case is related to the
rectilinear uniform motion, when the body is moving on a straight line at constant
speed. The frames where this principle is available are called inertial frames. These
frames are at rest or they move rectilinear at constant speed. This fundamental
principle was first enunciated by Galilei. We can say that this principle tells us
where, according to Newton, the two others fundamental principles make sense: in
inertial frames. In the same time, it tells us that it is impossible to make a distinction
between the state “at rest” and the state “rectilinear motion at constant speed.”
Imagine you are in the bowl of a ship and you have no possibility to observe outside.
You slept and you waked up. You can not distinguish between the two states without
an observation, a possible comparison. You will play table tennis alike in both states,
the object fall down in same way in both states, etc. The two states are equivalent
for you in the given conditions. Newton introduces a concept, the quantity of motion

of a body as the product between the mass m and its velocity
→
v . This quantity of

motion is known today as momentum and it is denoted by
→
p , therefore

→
p := m

→
v .

The second law asserts:“The force who acts on a body is the variation in time of the

quantity of motion.” Its differential form is
→
F= d

→
p

dt
. If m does not depend on time,

then
→
F= d

→
p

dt
= m

d
→
v

dt
= m

→
a ,

that is the force who acts on a body is proportional to the body acceleration through

its mass. Newton’s third law: “When a body acts on a second body by the force
→
F,

the second body simultaneously reacts on the first body by the force − →
F .”

This chapter is devoted to gravity. We try to outline the basic facts about gravity,
we prove the vacuum field equation and the general gravitational field equation. The
artifactweuse to express these laws is the gravitational potential. Later, in the chapter
devoted to General Relativity, the same gravitational potential is involved, in gen-
eral, in metric components, and, specifically, in the coefficients of the Schwarzschild
metric. The step towards General Relativity is made when the tidal acceleration
equations are written in a geometric form corresponding to a space endowed with a
metric. However, our journey to Relativity has to wait because we need some other
tools until the moment we derive Einstein’s field equations via the Einstein–Hilbert
action. We study Lagrangians and metrics induced by Lagrangians, where Euler–
Lagrange equations become the geodesic equations of these metrics. Finally, we will
connect these results to Non-Euclidean Geometry models. Kepler’s laws are derived.
Later, in the same General Relativity chapter, we understand how the conic curve,
found as the trajectory of a planet, is still the geodesic trajectory approximation of
the same planet in a given metric. An excellent discussion on Newtonian Mechanics,
in gravitational perspective, can be found in the book [14].
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7.1 Gravity. The Vacuum Field Equation

Let us start to study of the gravity. Later on, in the book, gravitywill be studied follow-
ing Einstein’s ideas. Now, we concentrate on gravity as a force trying to understand
it from the Classical Mechanics point of view.

In the Euclidean 3-dimensional space E3, let us consider two bodies of masses
M and m, M > m, located at the points X1(x1, y1, z1) and X (x, y, z). The position

vectors
→

OX1 and
→
OX , where O(0, 0, 0) is the origin, are simply denoted by

→
X1=

(x1, y1, z1) and
→
X= (x, y, z). Let us define

→
r :=→

X − →
X1= (x − x1, y − y1, z − z1) .

The length of
→
r is

r :=
√

(x − x1)2 + (y − y1)2 + (z − z1)2

and the unit vector pointing the point X1 from the point X is

→
u= −

→
X − →

X1

r
= −

→
r

r
= −

(
x − x1

r
,
y − y1

r
,
z − z1
r

)
.

Newton stated that the gravitational force induced by the body of mass M

which acts on the body of mass m has the intensity F = G
mM

r2
, where G =

6.67 · 10−11 (m)3

(kg) · (s)2
is the gravitational constant. It can be described by the grav-

itational force vector

→
F= GmM

r2
→
u= −GmM

r2

→
r

r
= −GmM

r2

(
x − x1

r
,
y − y1

r
,
z − z1
r

)
.

Before continuing, let us write the previous formula in the form

→
F= m

GM

r2
→
u ,

where
→
u is a unitary vector. Themassm of the body gravitationally attracted seems to

be like a “gravitational charge”, if we compare F = G
mM

r2
with the similar formula

which describes the intensity of an electric force, F = k
q1q2
r2

. Therefore we can

think at m to be a gravitational mass denoted by mg.
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In the special case, when we consider a body gravitational attracted by the Earth,
M is the mass of the Earth, r is the radius of the Earth and G the gravitational
constant, it results

F = mg · A,

where A = GM

r2
is a constant acceleration denoted by g, where g = 9.81

(m)

(s)2
.

InNewton’s second lawofmotion, themassm seems to be a constantwhichmakes
possible to compare the intensity of the force and the magnitude of acceleration,
F = ma. This is an inertial mass, denoted by mi , because the first Newton’s law
establishes the frames were the all three laws are true: the inertial frames. Therefore
F = mia. In the case when F is the gravitational force exerted by the Earth on the
body of mass mi , F = mig. It results

mg

mi
= gr2

GM
= k.

The constant k is not equal to 1 by definition, but, if we measure the weight, the

space and the time with some other scaled units, the ratio
mg

mi
results 1.

Sowe can accept that the gravitationalmass is the same as the inertialmass, andwe
can denote by m the value mg = mi . This is the Equivalence Principle as formulated
by Galileo.1 We will see that it assumes a fundamental role in the formulation of
General Relativity.

Let us return to the formula
→
F= m

GM

r2
→
u

seen as
→
F= m

→
A . We can define the gravitational acceleration as the vector

→
A= GM

r2
→
u .

This gravitational acceleration is also called a gravitational field induced by the body
of mass M . This definition suggests how the gravity acts. In coordinates we have

→
A= −GM

r2

(
x − x1

r
,
y − y1

r
,
z − z1
r

)
.

We define the gravitational potential of the field
→
A to be the function

1It is worth noticing that this is a peculiarity of gravitational force. For example, for the Coulomb
force involving electric charges q, it is mi �= q. This means that Equivalence Principle is proper of
gravity.
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Φ(x, y, z) = −GM

r
.

This definition makes sense at all points of the Euclidean 3-dimensional space except
(x1, y1, z1) where the gravitational source is located. It is easy to observe that

∂Φ

∂x
= GM

r2
∂r

∂x
= GM

r2

(
x − x1

r

)
.

Ifwedefine thegradientof thegravitational potentialΦ by�Φ :=
(

∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z

)
,

using the previous computation, we can prove

�Φ = GM

r2

(
x − x1

r
,
y − y1

r
,
z − z1
r

)
= − →

A .

The Laplace operator, or simply, the Laplacian, denoted by �2, is defined as

�2 := ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

The Laplacian of the gravitational potential is

�2Φ = ∂2Φ

∂x2
+ ∂2Φ

∂y2
+ ∂2Φ

∂z2

and can be computed. As we know

∂Φ

∂x
= GM

r2
x − x0

r
,

therefore

∂2Φ

∂x2
= GM ·

r3 − 3r2
∂r

∂x
r6

= GM

(
1

r3
− 3

(x − x1)2

r5

)
,

i.e.

�2Φ = GM

(
3

r3
− 3

r2

r5

)
= 0.

Therefore we showed that for all the points (x, y, z) �= (x1, y1, z1) the gravitational
potential

Φ(x, y, z) = −GM

r
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satisfies �2Φ = 0. Having in mind that the gravitational source is located at
(x1, y1, z1), we have proved that in the remaining “empty space”, i.e. in vacuum,
the Newtonian equation of the gravitational field, expressed with respect to its grav-
itational potential, is

�2Φ = 0.

The previous formula is known as Newton’s vacuum field equation.
What is happening at a source point? We remember our previous construction

with the gravitational potential

Φ(x, y, z) = −1

r

where
r :=

√
x2 + y2 + z2

and
�2Φ(x, y, z) = 0

for all (x, y, z) �= (0, 0, 0).
Let us introduce the gravitational potential

Φb(x, y, z) = − 1

r̄b

where
r̄b :=

√
(x − b)2 + y2 + z2,

that is the source is now (b, 0, 0). The corresponding gravitational field is

→
Ab (x, y, z) = −�Φb(x, y, z) = − 1

r̄2b

(
x − b

r̄b
,
y

r̄b
,
z

r̄b

)
.

After easy computations

∂
→
Ab

∂x
(0, 0, 0) =

(
2

b3
, 0, 0

)

∂
→
Ab

∂y
(0, 0, 0) =

(
0,− 1

b3
, 0

)

∂
→
Ab

∂z
(0, 0, 0) =

(
0, 0,− 1

b3

)
.
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Now, we observe that the Hessian of the gravitational potential d2Φb is the matrix

with components
∂

→
Ab

∂x j
, where xi ∈ {x, y, z}, satisfying the relation

d2Φb(0, 0, 0) =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

∂
→
Ab

∂x
(0, 0, 0)

∂
→
Ab

∂y
(0, 0, 0)

∂
→
Ab

∂z
(0, 0, 0)

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

2

b3
0 0

0 − 1

b3
0

0 0 − 1

b3

⎞

⎟⎟⎟⎟
⎠

.

On the other hand, it can be seen as the matrix with the components
∂2Φb

∂xi∂x j
, that is

d2Φb(0, 0, 0) =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

∂2Φb

∂x2
∂2Φb

∂x∂y

∂2Φb

∂x∂z
∂2Φb

∂y∂x

∂2Φb

∂y2
∂2Φb

∂y∂z
∂2Φb

∂z∂x

∂2Φb

∂z∂y

∂2Φb

∂z2

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

In fact the first line of the previous matrix is
∂

→
Ab

∂x
=
(

∂2Φb

∂x2
,

∂2Φb

∂x∂y
,
∂2Φb

∂x∂z

)
,

etc. Combining the previous results, the trace of Hessian matrix is the Laplacian of
the gravitational potential, i.e.

Tr
(
d2Φb

)
(0, 0, 0) = �2Φb(0, 0, 0) = 2

b3
− 1

b3
− 1

b3
= 0

for all points (x, y, z) �= (b, 0, 0). When b → 0, the gravitational potential �Φb

approaches the gravitational potential �Φ, therefore �Φ2
b (0, 0, 0) =

0 → �Φ2(0, 0, 0). It means �Φ2(0, 0, 0) = 0. We may conclude that the vacuum
equation becomes

�Φ2 = 0

everywhere, not only for all points without the source.
Let us now suppose that there are many gravitational sources, and we label the

gravitational potentials. For each point (x j , y j , z j ), one can define

r j :=
√

(x − x j )2 + (y − y j )2 + (z − z j )2

and the gravitational potentials
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Φ j (x, y, z) = −GMj

r j
.

The total gravitational potential determined by the N sources is

Φ(x, y, z) =
N∑

1

Φ j (x, y, z) = −
N∑

1

GMj

r j
.

Theorem 7.1.1 For (x, y, z) �= (x j , y j , z j ), j ∈ {1, 2, . . . , N }, the total gravita-
tional potential satisfies the gravitational field equation in vacuum

�2Φ = 0.

Proof The linearity of Φ allows to work as previously, for all j ∈ {1, 2, . . . , N }
having

∂Φ j

∂x
= GMj

r2j

x − x j

r j
.

Therefore

∂2Φ j

∂x2
= GMj ·

r3j − 3r2j
∂r j
∂x

r6j
= GMj

(
1

r3j
− 3

(x − x j )
2

r5j

)

,

i.e.

�2Φ = G
N∑

1

Mj

(
3

r3j
− 3

r2j
r5j

)

= 0.

The equation �2Φ = 0 is also known as the Laplace equation for gravity. �

In a similar way it can be proved.

Corollary 7.1.2 For multiple sources, the equation �Φ2 = 0 holds everywhere.

7.2 Divergence of a Vector Field in an Euclidean 3D-Space

Let us consider an incompressible fluid flow described by the vector
→
F := ρ

→
V , where

ρ := ρ(x, y, z) is the density of the incompressible fluid at (x, y, z) and
→
V=→

V
(x, y, z) is the speed vector at each point of a given region D of the Euclidean
space.



7.2 Divergence of a Vector Field in an Euclidean 3D-Space 177

If we are looking at the fact that F is measured in
(kg)

(m)2 · (s)
, we see in fact how

much matter flows through a unit surface area in a unit time.
Consider a small parallelepiped centered at (x, y, z) ∈ D andwith sides of lengths

�x,�y,�z parallel to the axis of coordinates. The vector flow
→
F has three com-

ponents,
→
F= (Fx , Fy, Fz). We can suppose the parallelepiped small enough to have

the flow
→
F constant over each face, that is at each point of a face,

→
F has the same

three given components. We are interested in expressing the net outflow through this
parallelepiped, i.e. the algebraic sum of all outward flow vectors through the six
faces.

The flow through the face of area �y�z at the point

(
x − �x

2
, y, z

)
is

Fx

(
x − �x

2
, y, z

)
�y�z.

Suppose this is an inflow. In the same way, the flow through the face of area �y�z

at the point

(
x + �x

2
, y, z

)
is

Fx

(
x + �x

2
, y, z

)
�y�z

and this one is an outflow. Therefore the total outflow through these two parallel
faces is

Fx

(
x + �x

2
, y, z

)
�y�z − Fx

(
x − �x

2
, y, z

)
�y�z ≈ ∂Fx

∂x
(x, y, z)�x�y�z,

where the last approximation was made taking into consideration the small dimen-
sions of the parallelepiped.

Considering the contribution of the other two pairs of parallel faces, the total
outflow through the parallelepiped faces becomes

(
∂Fx

∂x
(x, y, z) + ∂Fy

∂y
(x, y, z) + ∂Fz

∂z
(x, y, z)

)
�x�y�z.

The divergence of
→
F is defined by

div
→
F := ∂Fx

∂x
(x, y, z) + ∂Fy

∂y
(x, y, z) + ∂Fz

∂z
(x, y, z)

and a physical interpretation of it as total outflow over the parallelepiped is that
presented above.
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We can conclude: On the entire region D, the total outflow over D is

F(D) :=
∫

D
div

→
F d3x = div

→
F (

→
uη) · volD

where d3x is the volume element dxdydz and the last equality is a consequence of a
mean value theorem for the given triple integral. A consequence of the last formula
is

lim
D→→

u

F(D)

volD
= div

→
F (

→
u ).

7.3 Covariant Divergence

We have discussed about a flow of an incompressible fluid in an Euclidean space.
How this discussion changes if we are talking about an incompressible fluid in a
region where the parallelism is not the Euclidean one? The problem appears when
we consider the difference

Fx

(
x + �x

2
, y, z

)
�y�z − Fx

(
x − �x

2
, y, z

)
�y�z

because it means that we have moved by parallel transport the vector(
−Fx

(
x − �x

2

)
, 0, 0

)
to the other face at the point

(
x + �x

2
, y, z

)
.

Therefore we parallel transport the contravariant vector

(
−Fx

(
x − �x

2

)
, 0, 0

)

along the infinitesimal vector A1 = (�x, 0, 0).
Since, in general, �k

i j �= 0, the parallel transport along A1 = (�x, 0, 0) for a
contravariant vector V = (V 1, 0, 0) leads to a vector whose first component is

V 1

(
x − �x

2
, y, z

)
+ �V 1,

where
�V 1 = −�1

i j V
j�xi = −�1

1 j V
j�x = −�1

11V
1�x .

The difference
[
V 1

(
x + �x

2
, y, z

)
− V 1

(
x − �x

2
, y, z

)
+ �1

11V
1�x

]
�y�z

is (
∂V 1

∂x
+ �1

11V
1

)
�x�y�z,
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i.e. the covariant derivative with respect to the first variable denoted by

V 1
;1�x�y�z.

We have three pairs of opposite faces corresponding to the three directions, therefore
the net outflow is

(V 1
;1 + V 2

;2 + V 3
;3)�x�y�z

for a parallelepiped in a region where the Euclidean parallel transport is replaced by
the general parallel transport.

The quantity V s
s := V 1

;1 + V 2
;2 + V 3

;3 is the covariant divergence of a contravariant
vector (V 1, V 2, V 3).

In our case, we obtain
(
Fx

(
x + �x

2
, y, z

)
− Fx

(
x − �x

2
, y, z

)
+ Fx�

1
11�x

)
�y�z ≈

≈
(

∂Fx

∂x
+ Fx�

1
11

)
�x�y�z = Fx ;1�x�y�z.

For the entire parallelepiped we have the total net outflow

(Fx ;1 + Fy ;2 + Fz ;3)�x�y�z

expressed with respect the covariant derivative.

Definition 7.3.1 The quantity (Fx ;1 + Fy ;2 + Fz ;3) expressed with respect to the
covariant derivatives of components is called a covariant divergence of the field F .

7.4 The General Newtonian Gravitational Field Equations

If a gravitational source of mass M is placed at (x1, y1, z1) and no other gravitational
source exists, we have deduced the vacuum fields equation

�2Φ(x, y, z) = 0.

If there are many gravity sources (x j , y j , z j ), j ∈ {1, 2, . . . , N }, we have defined

r j :=
√

(x − x j )2 + (y − y j )2 + (z − z j )2

and the corresponding gravitational potentials
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Φ j (x, y, z) = −GMj

r j
.

The total gravitational potential, determined by the N sources, was

Φ(x, y, z) =
N∑

1

Φ j (x, y, z) = −
N∑

1

GMj

r j
.

We have proved that the vacuum field equation, in this case, is

�2Φ(x, y, z) = 0 ,

and it makes sense for all (x, y, z) of the space.
Now suppose that in a bounded region D of the Euclidean space E3 there is a

continuous distribution of matter and point sources. This continuous distribution of

matter is defined by a density function ρ = ρ(x, y, z) measured in
(kg)

(m)3
. Outside D

we have ρ ≡ 0.
How it looks like the gravitational field equation in this case? Let us prove the

following

Theorem 7.4.1 (General Gravitational Field Equation) If D is a region of the space
where it exists a continuous distribution of matter defined by the density function ρ,
then

�2Φ(x, y, z) = 4πGρ(x, y, z)

everywhere in D.

Proof Outside D, where ρ = 0, the theorem reduces to the vacuum field equation.
It remains to prove the statement for all the points of D. We cover D with paral-
lelepipeds. To do this, we consider points on Ox axis and parallel planes to yOz
through these points. In the same way, we take into account parallel planes to xOz
through points on Oy and parallel planes to xOy through points on Oz. We obtain
parallelepipeds with the faces parallel to the planes determined by the axes of coordi-
nates. Some of parallelepipeds are completely inside D, some are completely outside
D and some of them contain parts inside and outside.

Now we can index the points and we can denote the centers of parallelepipeds
which cover D as being (xi , y j , zk) and the corresponding dimensions of sides as
�xi ,�y j ,�zk .

We can suppose the mass of such parallelepiped is ρ(xi , y j , zk)�xi�y j�zk .
The corresponding gravitational potential at a point (x, y, z) ∈ E3 is

Φ(x, y, z) ≈
∑

Φ j (x, y, z),
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that is

Φ(x, y, z) = −
N∑

i=1

M∑

j=1

P∑

k=1

Gρ(xi , y j , zk)√
(x − xi )2 + (y − y j )2 + (z − zk)2

�xi�y j�zk .

We can improve the approximation of the gravitational potential formula considering
more points on the axes and, at limit, we obtain

Φ(x, y, z) = −G
∫

D
ρ(u, v, w)

1
√

(x − u)2 + (y − v)2 + (z − w)2
d3u,

where d3u is the volume element dudvdw. If (x, y, z) /∈ D, the integral has sense.
We are able to show that the integral has sense even for points (x, y, z) ∈ D. Consider
a change of coordinates in E3 defined by

u = x + r sin x2 cos x1

v = y + r sin x2 sin x1

w = z + r cos x2.

We observe
r(x, y, z) =

√
(x − u)2 + (y − v)2 + (z − w)2.

Then, according to our knowledge in calculus, the volume element for spherical
coordinates is changing after the formula

dudvdw = r2 sin x2drdx2dx1

and the integral becomes

Φ(r, x1, x2) = −G
∫

D∗
ρ
1

r
r2 sin x2drdx2dx1 = −G

∫

D∗
ρr sin x2drdx2dx1,

where D∗ is the transformed of D with respect to the previous change of coordinates.
The last integral is not singular, therefore the definition of the gravitational potential
makes sense in D, too.

If we apply the Laplace operator

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

to

Φ(x, y, z) = −G
∫

D
ρ(u, v, w)

1

r(x, y, z)
d3u,
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we obtain

�2Φ(x, y, z) =
∫

D
�2

(
−Gρ(u, v, w)

r(x, y, z)

)
d3u.

The gradient operator � :=
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
leads to the Laplace operator via a for-

mal dot product:

�2 := � · � =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
·
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

It implies

�2Φ = � · �Φ = −�· →
A= −

(
∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

)
= −div

→
A,

that is
�2Φ(x, y, z) = −div

→
A (x, y, z).

Now, if (x, y, z) /∈ D,we have proved�2

(
−Gρ

r

)
= 0, therefore�2Φ(x, y, z) = 0.

In the same time we have proved that div
→
A (x, y, z) = 0 when (x, y, z) /∈ D.

If (x, y, z) ∈ D, let us make some considerations.

We define the gravitational field
→
A= (Ax , Ay, Az) attached to the potential Φ,

→
A:= −�Φ. It remains to evaluate −div

→
A (x, y, z) when (x, y, z) ∈ D. To do this,

we consider a sphere S(r) centered at (x, y, z) with a small radius r such that the
mass density ρ can be considered constant in all its interior, interior here denoted by
B(r). Therefore we suppose ρ(u, v, w) = ρ(x, y, z) for all (u, v, w) ∈ B(r). Let us
decompose D in B(r) ∪ (D − B(r)). We have

→
A=→

AB(r) + →
AD−B(r)

and, since (x, y, z) /∈ D − B(r), using the previous case result, it follows

div
→
AD−B(r) (x, y, z) = 0,

i.e.

div
→
A (x, y, z) = div

→
A B(r) (x, y, z) + div

→
AD−B(r) (x, y, z) = div

→
A B(r) (x, y, z).

Now, the problem reduces to the evaluation of div
→
AB(r) (x, y, z).

Let us observe that the gravitational field
→
AB(r) at every (x̄, ȳ, z̄) ∈ B(r) is
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→
AB(r) (x̄, ȳ, z̄) = −G · MB(r)

r̄2
→
n= −G · ρ · volB(r)

r̄2
→
n ,

where r̄ is the length of the vector who points from (x, y, z) to (x̄, ȳ, z̄) and
→
n is its

unit vector. On the entire surface of S(r), the gravitational field becomes the constant
magnitude vector field

→
AB(r) (x, y, z) = −G · ρ · volB(r)

r2
→
n .

The total outflow over B(r) is

F(B(r)) = −G · ρ · volB(r)

r2
· 4πr2 = −4πG · ρ · volB(r).

Therefore

lim
r→0

F(B(r))

volB(r)
= div

→
AB(r) (x, y, z) = −4πG · ρ,

that is
�2Φ = 4πG · ρ.

Since the ρ chosen is ρ = ρ(x, y, z) and all computations are done at the point
(x, y, z), the proof is complete. The previous equation is also known as the Poisson
equation for gravity. �

7.5 Tidal Acceleration Equations

We met before the gravitational potential

Φb(x, y, z) = − 1

r̄b

determined by a source at (b, 0, 0), b > 0. The denominator is

r̄b :=
√

(x − b)2 + y2 + z2

and the corresponding gravitational field is

→
Ab (x, y, z) = −�Φb(x, y, z) = − 1

r̄2b

(
x − b

r̄b
,
y

r̄b
,
z

r̄b

)
.

We have observed
→
Ab (0, 0, 0) =

(
1

b2
, 0, 0

)
.
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Definition 7.5.1 The tidal acceleration
→
T (x, y, z), generated by the gravitational

field
→
Ab (x, y, z) at (0, 0, 0), is defined by the formula

→
T (x, y, z) :=→

Ab (x, y, z)− →
Ab (0, 0, 0).

We may use a Taylor approximation to compute the tidal acceleration at some
points of the axes as follows

→
T (a, 0, 0) :=→

Ab (a, 0, 0)− →
Ab (0, 0, 0) ≈ a

∂
→
Ab

∂x
(0, 0, 0) =

(
2a

b3
, 0, 0

)
.

In the same way

→
T (0, a, 0) :=→

Ab (0, a, 0)− →
Ab (0, 0, 0) ≈ a

∂
→
Ab

∂y
(0, 0, 0) =

(
0,− a

b3
, 0
)

and

→
T (0, 0, a) :=→

Ab (0, 0, a)− →
Ab (0, 0, 0) ≈ a

∂
→
Ab

∂z
(0, 0, 0) =

(
0, 0,− a

b3

)
.

The effect of translation due to a tidal acceleration is called a tidal effect.
We can better see the tidal effect, if we consider slices in Oxy and Oxz planes.
We focus on Oxy plane and let us consider the unit vector (cos u, sin u).

If we compute
→
T (a cos u, a sin u), we describe the tidal effect at all points of the

circle centered in O having a as radius. Therefore

→
T (a cos u, a sin u) :=→

Ab (a cos u, a sin u)− →
Ab (0, 0) ≈

≈ a cos u
∂

→
Ab

∂x
(0, 0) + a sin u

∂
→
Ab

∂y
(0, 0),

the approximation being given by the directional derivative of
→
Ab in the direction

(cos u, sin u). It results

→
T (a cos u, a sin u) :=

(
2a cos u

b3
,−a sin u

b3

)
.

This is the image of the tidal effect around (0, 0, 0) in Oxy plane. There is a similar
image in Oxz plane. In fact, if you rotate the Oxy plane around Ox axis, you have
the big picture of the tidal effect at all the points of a sphere surface.
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Now, you can imagine the Moon at (b, 0, 0) and the Earth as a sphere centered
at (0, 0, 0) having radius a and the oceans tides appears when you rotate the sphere.
This is the animated picture of the tidal effect.

The tidal effect appears and it can be studied as previously.
If we wish to highlight the equations of the tidal effect, we need to consider free

falling particles in the gravitational field created by the source which start from the
points of a given curve c(q) = (x(q), y(q), z(q)).

Here q is not a time parameter, it is only a geometric parameter which allows us
to describe the image of the curve c.

Denote by x̄(t, q) = (x1(t, q), x2(t, q), x3(t, q)) the system of free falling parti-
cles q ∈ [a, b]. The particle x̄(t, q0) starts from c(q0) and has a time evolution. We
can prove the following.

Theorem 7.5.2 The tidal acceleration equations are

d2

dt2
∂ x̄

∂q
= −d2Φx̄

∂ x̄

∂q
,

where d2Φx̄ =
(

∂2Φ(x̄)

∂xi∂xk

)

i,k

is the Hessian matrix attached to the gravitational

potential Φ.

Proof For each particle x̄(t, q), Newton’s second law leads to the formulas

d2xk

dt2
(t, q) = − ∂Φ

∂xk
(x̄(t, q)) , k ∈ {1, 2, 3},

because the particle experiences the gravitational acceleration due to the source. If we
consider a nearby point c(q + �q), the same considerations leads to the equations

d2xk

dt2
(t, q + �q) = − ∂Φ

∂xk
(x̄(t, q + �q)).

If we subtract the first equation from the second, we divide by �q and consider the
limit as �q approaches 0, we obtain

lim
�q→0

d2xk

dt2
(t, q + �q) − d2xk

dt2
(t, q)

�q
= − lim

�q→0

∂Φ

∂xk
(x̄(t, q + �q)) − ∂Φ

∂xk
(x̄(t, q))

�q
,

that is

d2

dt2
∂xk

∂q
(t, q) = − ∂2Φ

∂q∂xk
(x̄(t, q)) = −

3∑

i=1

∂2Φ

∂xi∂xk
∂xi

∂q
(x̄(t, q))
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for each k ∈ {1, 2, 3}. The last equality is obtained from the chain rule.Wehighlighted

the vector
∂ x̄

∂q
=
(

∂ x̄1

∂q
,
∂ x̄2

∂q
,
∂ x̄3

∂q

)
which satisfies the tidal acceleration equations

d2

dt2
∂ x̄

∂q
= −d2Φx̄

∂ x̄

∂q
,

where theHessianmatrix d2Φx̄ =
(

∂2Φ(x̄)

∂xi∂xk

)

i,k

encapsulates in its trace the vacuum

field equation �2Φ = 0. �

Definition 7.5.3
∂ x̄

∂q
=
(

∂ x̄1

∂q
,
∂ x̄2

∂q
,
∂ x̄3

∂q

)
is called a tidal vector.

The tidal vector measures, as we saw, the variation of nearby trajectories due to
the tidal acceleration. Therefore, the tidal vector and the tidal acceleration equations
naturally appear when objects experience a gravitational field.

7.6 Geometric Separation of Geodesics

Suppose we work in a space of coordinates denoted by (x0, x1, . . . , xn) endowed
with a metric ds2 = gi j dxidx j . For each coordinate xk , we imagine two parameters,
now denoted (τ , q), such that xk = xk(τ , q) and we define a difference between the

two parameters denoting by
dxk

dτ
the derivative of the coordinate function xk with

respect to the first parameter and by
∂xk

∂q
with respect to the second parameter.

The geodesic equations are written with respect to the first variable τ which may
be thought as a time parameter; the covariant derivative of vectors will be denoted
by � as we did when we studied surfaces.

A remark: We refer here to the covariant derivative, denoted by
�
dτ

, which is

obviously different from the gradient denoted by �. In the same way below, there is

no connection between the second iteration of the covariant derivative
�2

dτ 2
and the

Laplacian �2.
According to our previous notations, we have the covariant derivative formula

�
dτ

dxk

dτ
= d2xk

dτ 2
+ �k

i j

dxi

dτ

dx j

dτ
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which implies, for a given geodesic c(τ , q) = (x0(τ , q), x1(τ , q), . . . , xn(τ , q)),

q = q0, that
�
dτ

dxk

dτ
= 0, k ∈ {0, 1, . . . , n},

i.e.
d2xk

dτ 2
+ �k

i j

dxi

dτ

dx j

dτ
= 0, k ∈ {0, 1, . . . , n}.

Now, for each q from an interval which contains q0, it is possible to consider the
corresponding geodesic c(τ , q). A family of geodesics, starting from the points of
the curve c(0, q) = (x0(0, q), x1(0, q), . . . , xn(0, q)), having each one the initial

vector

(
dx0

dτ
(0, q),

dx1

dτ
(0, q), . . . ,

dxn

dτ
(0, q)

)
, is immediately defined. As in the

previous case, the vector

∂x

∂q
:=

(
∂x0

∂q
,
∂x1

∂q
, . . . ,

∂xn

∂q

)

is called the tidal vector and measures, according to its orientation, the rate of sepa-
ration of geodesics.

Let us see which are the equivalent of tidal acceleration equations. They are

d2

dt2
∂ x̄

∂q
= −d2Φx̄

∂ x̄

∂q
,

where d2Φx̄ is the Hessian matrix

(
∂2Φ(x̄)

∂xi∂xk

)

i,k

.

We can prove:

Theorem 7.6.1 The tidal vector above satisfies the equations

�2

dτ 2

∂xh

∂q
= −Rh

i jk

dxi

dτ

∂x j

∂q

dxk

dτ
,

where Ri
jkl is the Riemann mixed tensor defined by the metric gi j .

Proof We start from the covariant derivative
�
dτ

of
∂xh

∂q
:

�
dτ

∂xh

∂q
= d

dτ

(
∂xh

∂q

)
+ �h

i j

dxi

dτ

∂x j

∂q
.
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Then

�2

dτ 2

∂xh

∂q
= �

dτ

( �
dτ

∂xh

∂q

)
= d

dτ

( �
dτ

∂xh

∂q

)
+ �h

mk

( �
dτ

∂xm

∂q

)
dxk

dτ
=

= d

dτ

[
d

dτ

(
∂xh

∂q

)
+ �h

i j

dxi

dτ

∂x j

∂q

]
+ �h

mk

[
d

dτ

(
∂xm

∂q

)
+ �m

i j

dxi

dτ

∂x j

∂q

]
dxk

dτ
=

= ∂

∂q

d2xh

dτ 2
+ ∂�h

i j

∂xk
dxk

dτ

dxi

dτ

∂x j

∂q
+

+�h
i j

d2xi

dτ 2

∂x j

∂q
+ �h

i j

dxi

dτ

∂2x j

∂τ∂q
+ �h

mk

∂2xm

∂τ∂q

dxk

dτ
+ �h

mk�
m
i j

dxi

dτ

∂x j

∂q

dxk

dτ
.

Now, we replace
d2xk

dτ 2
by −�k

i j

dxi

dτ

dx j

dτ
and in some terms we replace the dummy

indexes in a convenient way. It results

�2

dτ2
∂xh

∂q
= ∂

∂q

(

−�h
ik
dxi

dτ

dxk

dτ

)

+
∂�h

mj

∂xk
dxi

dτ

∂x j

∂q

dxk

dτ
+ �h

mj

(

−�m
ik
dxi

dτ

dxk

dτ

)
∂x j

∂q
+

+�h
i j
dxi

dτ

∂2x j

∂τ∂q
+ �h

mk
∂2xm

∂τ∂q

dxk

dτ
+ �h

mk�
m
i j
dxi

dτ

∂x j

∂q

dxk

dτ
=

= −∂�h
ik

∂x j

∂x j

∂q

dxi

dτ

dxk

dτ
−������

2�h
ik

∂2xi

∂τ∂q

dxk

dτ
+

∂�h
i j

∂xk
dxi

dτ

∂x j

∂q

dxk

dτ
− �h

mj�
m
ik
dxi

dτ

dxk

dτ

∂x j

∂q
+

+
������
2�h

i j
dxi

dτ

∂2x j

∂τ∂q
+ �h

mk�
m
i j
dxi

dτ

∂x j

∂q

dxk

dτ
,

that is

�2

dτ 2

∂xh

∂q
=
(

∂�h
i j

∂xk
− ∂�h

ik

∂x j
+ �h

mk�
m
i j − �h

mj�
m
ik

)
dxi

dτ

∂x j

∂q

dxk

dτ
.

Therefore, we have obtained the tidal acceleration equations

�2

dτ 2

∂xh

∂q
= Rh

ik j

dxi

dτ

∂x j

∂q

dxk

dτ
= −Rh

i jk

dxi

dτ

∂x j

∂q

dxk

dτ
.

�
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If we denote by

Kh
j := Rh

i jk

dxi

dτ

dxk

dτ

the previous equality becomes

�2

dτ 2

∂xh

∂q
= −Kh

j

∂x j

∂q
.

These last formulas are the geometric equivalent of the classical tidal acceleration
equation. A further comment is necessary. The trace of the matrix Kh

j is Kh
h , that

is Rh
ihk . The tidal acceleration equations can hide an equality as Rik = 0 which can

become the geometric equivalent of the classical vacuum field equation �2Φ = 0.
Later, in the book, we will see how this becomes possible.

7.7 Kepler’s Laws

According to the previous considerations, we intend now to obtain the three Kepler
laws regarding the motion of planets around the Sun. It is necessary to understand
how Newtonian Mechanics together with Euclidean Geometry describe these laws
and, for this reason, let us prepare the geometric framework we need.

An ellipse of foci F1( f, 0) and F2(− f, 0), f > 0 is the locus of points P in
the Euclidean plane such that |PF1| + |PF2| = 2a, where a is a positive constant,
a > f . The equation of the ellipse can be found after we transform the condition
|PF1| + |PF2| = 2a into the equation

√
(x − f )2 + y2 +

√
(x + f )2 + y2 = 2a.

The result is
x2

a2
+ y2

b2
= 1

where b2 = a2 − f 2.
The line F1F2 is called the major axis and the points where the ellipse cuts the

major axis have the coordinates (a, 0) and (−a, 0).
The middle of the interval F1F2 is called the center of the ellipse. In this case, the

center of ellipse is the origin O(0, 0).
The minor axis is perpendicular to the major axis at O(0, 0). The minor axis

intersects the ellipse at the points (0, b) and (0,−b).

The eccentricity of the ellipse is, by definition, e := f

a
=

√
a2 − b2

a
=
√

1 − b2

a2
.
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The area enclosed by the previous ellipse can be computed using the function

y(x) = b

√

1 − x2

a2
which describes the arc of the ellipse {(x, y), x ∈ (−a, a), y >

0}. If we use the change of variable x = a sin t the enclosed area is

A = 2
∫ a

−a
y(x)dx = 2

b

a

∫ a

−a

√
a2 − x2dx = πab.

If the ellipse has its center at (x0, y0) and the axes parallel to the axes of the system,
i.e. the foci are (x0 + f, y0) and (x0 − f, y0), the equation is

(x − x0)2

a2
+ (y − y0)2

b2
= 1.

In fact, the previous ellipse is parallel shifted with respect to the axis such that the
old center O(0, 0) becomes O1(x0, y0).

Consider an ellipse of eccentricity 0 < e < 1with a focus atO(0, 0). Itsmajor axis

intersects the ellipse at the points V

(
k

1 + e
, 0

)
, k > 0, and V ′

(
− k

1 − e
, 0

)
. The

length of themajor semi-axis is a = k

1 − e2
, the center of the ellipse is

(
− ke

1 − e2
, 0

)

and the length of the minor semi-axis is b = k√
1 − e2

. The equation of this ellipse

is (
x + ke

1 − e2

)2

k2

(1 − e2)2

+ y2

k2

1 − e2

= 1.

Problem 7.7.1 Find the locus of points M(x, y) such that

r = r(θ) = k

1 + e cos θ
,

where r = |OM | = √
x2 + y2 and θ is the counterclockwise angle ∠V OM, V ∈

Ox .

Hint. The geometric meaning of r + er cos θ = k, k > 0, leads to the equation√
x2 + y2 + ex = k, i.e.

√
x2 + y2 = k − ex . If e = 1, we obtain a parabola. If e �=

1, after squaring, the previous equation can be written in the form

(
x + ke

1 − e2

)2

k2

(1 − e2)2

+ y2

k2

1 − e2

= 1.
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Let us observe that, for 0 < e < 1, we have an ellipse equation. For e > 1, the
equation is

(x − x0)2

a2
− (y − y0)2

b2
= 1,

i.e. we deal with a hyperbola. �
We are ready to study themotion of planets under the action of gravitational force.
Consider the position of the Sun as O(0, 0, 0). The motion of the Earth around

the Sun depends on time, i.e. the position of the Earth is given by the vector
→

X (t)=
(x(t), y(t), z(t)). Denote the length of this vector by

r(t) =
√
x2(t) + y2(t) + z2(t).

The Earth is attracted by the Sun via the gravitational force

→
F (t) = −GmM

r3(t)

→
X (t),

where M is the mass of the Sun,m is the mass of the Earth and G is the gravitational
constant. The equation of motion of the Earth around the Sun, established by the
Newton’s second law, is

m
→̈
X(t) = −GmM

r3(t)

→
X (t),

which can be written as
→̈
X(t) = − GM

r3(t)

→
X (t) ,

due to the validity of Galileo’s Equivalence Principle. Let us denote μ = GM and
→
V= →̇

X .

Theorem 7.7.2 The motion of the Earth is planar, that is the entire trajectory is
included in a plane which contains the Sun.

Proof If we consider the derivative of the cross product between
→
X(t) and

→
V (t),

successively we have

d

dt

(→
X × →

V
)

= →̇
X × →

V + →
X × →̇

V = →
V × →

V + →
X × →̈

X = →
0 ,

that is
→
X(t) × →

V (t) = →
J , where

→
J does not depend on t . Therefore, the vector

→
J of

length J is a constant vector, more precisely, it is the normal vector to the plane in
which the motion of the Earth around the Sun happens. �
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Let us consider z = 0 the equation of the plane ofmotion, that is the position of the

Earth is given by the vector
→

X (t)= (x(t), y(t), 0). In the plane ofmotion,we consider
polar coordinates x = r cos θ, y = r sin θ, with r = r(t) = √

ẋ2(t) + ẏ2(t); θ =
θ(t). We can prove:

Theorem 7.7.3 If
→

X (t)= (r(t) cos θ(t), r(t) sin θ(t), 0) and
→
V (t) = →̇

X(t) it results

(i)
→
J= (0, 0, r2θ̇)

(ii) r2θ̇ = J .

Proof We cancel t to write easier the next computations. Then

→
V= →̇

X = (ṙ cos θ − r θ̇ sin θ, ṙ sin θ + r θ̇ cos θ, 0)

and →
J=→

X × →
V= (

0, 0, r2θ̇
)
.

Since
→
J is a constant vector, the last component does not depend on time, therefore

it is a positive constant equal to its length J . So, both assertions are proved. �

Theorem 7.7.4 The equation of motion for
→

X (t) is transformed into the equation

r(t)r̈(t) = J 2

r2(t)
− μ

r(t)
.

Proof We started from the equation of motion

→̈
X(t) = − μ

r3(t)

→
X (t)

and, using it, we obtained that the motion is planar. In the plane of motion, the

polar coordinates allow us to describe the normal vector
→
J and to obtain the relation

r2θ̇ = J.
The derivative with respect to t of the relation r2 =

〈→
X ,

→
X
〉
leads to rṙ =

〈→
X ,

→
V
〉
.

Then, we have

(ṙ)2 + rr̈ =
〈→
V ,

→
V
〉
+
〈→
X ,

→̇
V

〉
,

i.e.
(ṙ)2 + rr̈ =

〈→
V ,

→
V
〉
+
〈→
X ,− μ

r3
→
X
〉
,

that is
(ṙ)2 + rr̈ = | →

V |2 − μ

r
.
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To compute | →
V |2, we start from the identity

〈→
X ,

→
V
〉2

+ | →
X × →

V |2 = | →
X |2| →

V |2.

If we replace, in the previous identity,
〈→
X ,

→
V
〉
with rṙ , | →

X × →
V |2 with J 2, i.e. (r2θ̇)2,

and | →
X |2 with r2, it results

(rṙ)2 + (r2θ̇)2 = r2| →
V |2,

thus
(ṙ)2 + r2(θ̇)2 = | →

V |2.

Using θ̇ = J

r2
, we obtain

| →
V |2 = (ṙ)2 + J 2

r2
.

It results

�
�(ṙ)2 + rr̈ = �

�(ṙ)2 + J 2

r2
− μ

r
,

which complete the proof. �

Theorem 7.7.5 If r = 1

u
and u = u(θ), the equation

rr̈ = J 2

r2
− μ

r

becomes
d2u

dθ2
+ u = μ

J 2
.

Proof Wefirst show that ṙ = −J
du

dθ
.To obtain this, let us observe that, successively,

we have

ṙ = − u̇

u2
= − 1

u2
du

dt
= − 1

u2
du

dθ

dθ

dt
= −r2

du

dθ
θ̇ = −J

du

dθ
.

Then, r̈ = −J
d2u

dθ2
θ̇, i.e.

r̈ = −J 2 1

r2
d2u

dθ2
.
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Taking into account r = 1

u
and replacing into

rr̈ = J 2

r2
− μ

r
,

we obtain the desired equation

d2u

dθ2
+ u = μ

J 2
.

�

The general solution is u(θ) = A cos(θ − θ0) + μ

J 2
, where A is an arbitrary con-

stant and θ0 is the initial value, called phase, who leads to the starting point of the
trajectory.

If we are interested only in the shape of the solution, we may consider

u(θ) = A cos θ + μ

J 2
.

The solution in r is

r(θ) =
J 2

μ

1 + J 2A

μ
cos θ

.

If A is in such a way that

0 < e := J 2A

μ
< 1

the trajectory is an ellipse. Therefore we have proved.

Theorem 7.7.6 (Kepler’s first law) In the case of the pair {Sun, Earth}, the gravity
makes Earth to move around the Sun after an elliptical orbit having the Sun as one
of the foci.

This is the Kepler first law. It generally describes how a planet moves around a
star.

Let see again the big picture of the motion of the Earth around Sun. We have the
Sun at the origin of the coordinate system and the Earth position given by the vector

→
X (t)= (x(t), y(t), z(t)).The gravitational force acting between the two bodies leads
to the equation of motion

→̈
X(t) = − GM

r3(t)

→
X (t).
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The motion is planar. Using polar coordinates, we can transform the equation into
the new equation

rr̈ = J 2

r2
− μ

r
,

and finally into the equation
d2u

dθ2
+ u = μ

J 2

which can be solved. The solution, in polar coordinates, is the ellipse

r(θ) =
J 2

μ

1 + J 2A

μ
cos θ

.

Defining k := J 2

μ
and e := J 2A

μ
, in Cartesian coordinates, the equation is

(
x + ke

1 − e2

)2

k2

(1 − e2)2

+ y2

k2

1 − e2

= 1,

where the semi-axes are a := k

(1 − e2)
and b := k

√
(1 − e2)

. The perihelion of the

trajectory, that is the closest position to the Sun, is at the point V

(
k

1 + e
, 0

)
.

The aphelion, that is the furthest position from the Sun, is located at the point

V ′
(

− k

1 − e
, 0

)
.

If we look at comets, the trajectories can be elliptic, hyperbolic and parabolic. The
case e = 1 is a possible case, but it is difficult for an astronomer to say that a comet
has a parabolic orbit. It is more probable to have a hyperbolic orbit with e > 1 but
very close to 1. We prefer to remain at the case {planet, Sun} where the trajectories
are always ellipses. Now we are able to prove the Kepler second law.

Theorem 7.7.7 (Kepler’s second law)Areas swept out by
→
OX in equal time intervals

are equal.

Proof Consider two close positions of
→
OX , that is

→
OX ′ and

→
OX ′′. The angle between

this twopositions isdθ. The infinitesimal area swept by
→
OX isd A = 1

2
r2dθ. It results

d A

dt
= 1

2
r2θ̇, i.e.
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d A

dt
= 1

2
J,

which ends the proof. �

Let us continue with the Kepler third law. The time necessary to have a complete
revolution around the Sun is called the orbital period of a planet. It is denoted by T .

Theorem 7.7.8 (Kepler’s third law) The ratio between the square of the orbital

period and the cube of the major semi-axis is a constant, that is
T 2

a3
= 4π2

GM
.

Proof Let us observe that
→
OX sweeps the area of the ellipse during a revolution.

Thus

πab = T
1

2
r2θ̇.

It results
T

a
= 2π

b

J
, that is

T 2

a2
= 4π2 b

2

J 2
.

According to previous formulas for semi-axeswehaveb2 = k2

1 − e2
= k

k

1 − e2
=

ka, therefore
T 2

a2
= 4π2 ka

J 2
.

Taking into account that k := J 2

μ
we finally obtain

T 2

a3
= 4π2 1

μ
.

�

The third law is called the Harmony law because, if we consider two different

planets moving around the Sun, the same constant is the ratio between
T 2
1

a31
and

T 2
2

a32
.

7.8 Circular Motion, Centripetal Force and Dark Matter
Problem

Before continuing, let us discuss a little bit about circular motion and observe the
differences with respect to the elliptical motion presented above. Circular motion
means a movement of an object along the circumference of a circle. A boy rotating a
tide up ball with a chord, a car moving at constant speed on a circular track, or even
a satellite on its orbit around the Earth can be mathematically modeled as circular
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motions. So, the trajectory is a circle of radius R, the object in circular motion can
be imagined as a point (with a mass, say m) moving at constant speed v. The speed
vector

→
v is tangent at each point of the circle. To maintain the point on this trajectory,

the force vector (that is the acceleration vector, too) has to be imagined as an arrow
oriented from the point to the center. Of course, the magnitude of the force has to
be the same for all the possible positions, because there are not differences between
these vectors except the possible directions. This force is called a centripetal force.
The corresponding acceleration is called centripetal acceleration.

Let us consider two tangent vectors corresponding to two close points on the
circumference separated by a dθ angle. Denote by dx the length of the arc determined
by the two points and observe that between the two tangent vectors there is the same

angle dθ. We have dx = Rdθ and v = dx

dt
. If dv is the vector which connects their

ends, we may approximate dθ = dv

v
. It results

dx = Rdθ = R
dv

v
= vdt,

that is

a := dv

dt
= v2

R
.

This is the formula of the centripetal acceleration which allows to write the formula
of the centripetal force:

Fc := m
v2

R
.

How it can be imagined the rotation of the Earth around the Sun using this force?
The mathematical answer is

Fc = mv2

R
= GMm

R2
= F,

i.e.

v2 = GM

R
,

thanks to the Equivalence Principle by which m can be simplified in both sides of
the equation. This is important because if the radius R is increasing the orbital speed
has to decrease.

Now, since the period of revolution around the circular trajectory is T = 2πR

v
,

we obtain

T 2 = 4π2R2 1

v2
= 4π2R3

GM
,



198 7 Gravity in Newtonian Mechanics

that is T 2 is proportional to R3, or

T 2

R3
= 4π2

GM
.

It is a sort of approximation of the third Kepler law. The centripetal force is often
used in approximations of trajectories in Astronomy. An interesting application of
the centripetal force is the possible existence of dark matter or, according to Fritz
Zwicky the missing matter [15]. The formula

v2 = GM

R
,

which asserts that if R is increasing, the speed v decreases (if M remains constant),
is crucial.

In a galaxy, there are billions of stars. We may think that these stars are in an
imaginary sphere having as a center, the center of the galaxy. Some stars are closer to
the center of the galaxy, some of them are far. Some other stars are out of the edge of
the galaxy, or more precisely, they are in the area where, if we increase the radius of
the galaxy, we add few stars. For stars in the zone with a lot of stars, if we increase the
radius we have more stars, i.e. more mass. Here, the fact that the observed speed of
stars rotating around the center is the same it is not a problem. The speed v can be kept
constant, if the mass M increases when R increases. But for distant stars, when we
increase the radius, we do not add more mass inside. However the measured speed v

is the same and it is more or less constant also very far from the galactic center (more
than 10kpc). According to this situation, we have to suppose the existence of a sort
of (sub-luminous) matter that cannot be detected by the standard electromagnetic
emission. However, the amount of such a matter increases with the increasing of the
distance from the center. The problem is known as the dark matter problem and can
be solved in two alternative ways: Either one suppose the existence of exotic matter
interacting only gravitationally, or one assumes deviation from the Kepler laws at
large distances. More details can be found in [18, 34, 35].

Later in the book, we will study the trajectory of planets in a given metric. Specif-
ically, we will study the trajectory of planets both in the Schwarzschild metric

ds2 = c2
(
1 − 2GM

c2r

)
dt2 − 1

1 − 2GM
c2r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2

and in the Einstein metric

ds2 = c2
(
1 − 2GM

c2r

)
dt2 −

(
1 + 2GM

c2r

)
dr2 − r2dϕ2 − r2 sin2 ϕdθ2.
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The planet equation of motion in both metric is

d2u

dθ2
+ u = μ

J 2
+ 3μ

c2
u2

where c is the constant speed of light in vacuum and μ = GM as previously defined.
Why we study the equation of motion in a metric and how close is the solution of

this new equation to the above classical solution? These topics will be discussed in
the General Relativity chapter of this book.

7.9 The Mechanical Lagrangian

In a system of coordinates (t, x), let (t, x(t)) be the trajectory of a particle of mass
m moving under the influence of a force derived from a time independent potential
V . Since V depends only on the position, we denote this by V := V (x).

Newton’s equation of motion is

mẍ(t) = F(x),

where the force acting on the particle is F(x) = −dV

dx
.

Given some initial conditions, the trajectory (t, x(t)) is comprised between the
initial point (t1, x(t1)) and the final point (t2, x(t2)).

Let us underline that this trajectory is the expression of the force acting on the
particle under some initial conditions. Therefore, there is an unique trajectory deter-
mined by the force and the initial conditions.

Now let us consider all the paths connecting (t1, x(t1)) and (t2, x(t2)). They can
be thought as y(t) + η(t), with y(t1) = x(t1), y(t2) = x(t2), η(t1) = η(t2) = 0.

Having all these paths, what new theory dowe need to imagine in order to discover
the original path described by the Newton’s equation of motion?

To answer this question, we need some technical details (see also [24]).
Let us insist on this first part when we have described what we want to do. We

have used V such that F = −dV

dx
. We defined V as an independent potential and we

suggested its connection with the force F , dV = −Fdx .
Is this definition connected to the facts seen in our previous sections when we

have studied the gravitational force and the gravitational potential? The answer is
yes, but we need to point out a major difference between this V and the gravitational
potential Φ.

Consider a body of mass M at the origin O of a line whose current coordinate is
denoted by x . Suppose that at point N (x), a body of massm exists. The gravitational

force in this case has the intensity F = GMm

x2
. Thework done by the body ofmassM

tomove the body ofmassm from x to x − dx is−Fdx . There is an energy transferred
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to do this work. Its variation �E is −Fdx . By definition, the gravitational potential
energy PE (r) is related to thework done tomove the body ofmassm from the infinity
to the point having coordinate r , that is

PE (r) =
∫ r

∞
Fdx =

∫ r

∞
GMm

x2
dx = −GMm

r
.

The potential energy can be denoted by PE . If one looks at the formula obtained

and takes into account the formula of the gravitational potential −GM

r
, we can

understand both the explanations above and the relation

PE = mΦ.

Therefore, another definition for the gravitational potential appears: thework (energy
transferred) per unit mass necessary to move a body from infinity to the point having
the coordinate r . Indeed,

Φ(r) = 1

m

∫ r

∞
Fdx = 1

m

∫ r

∞
GMm

x2
dx = −GM

r
.

In the case when we consider the constant gravitational field determined by the
constant acceleration g between the origin O and a point H at the coordinate h, the
potential energy is expressed by the formula PE = mgh. The explanation is related
to the difference of formal integrals

PE := PE (h) − PE (0) =
∫ h

∞
gmdx −

∫ 0

∞
gmdx =

∫ h

0
gmdx = gmh

which describes the amount of energy necessary to move the body at h to 0.
In the same way, we can define the kinetic energy. Let us start from F = ma =

m
dv

dt
written in its discrete form, F = m

�v

�t
. If we multiply by �r , we obtain

F�r = m
�v

�t
�r = m

�r

�t
�v = mv�v,which can bewritten in the differential way

as
Fdr = mvdv.

Now, the amount of energy necessary to bring a body initially at rest to the speed v

is

T (v) =
∫ v

0
Fdx =

∫ v

o
mxdx = m

v2

2
.

Since v can be seen as ẋ(t), we may consider the kinetic energy of the mechanical

system defined by the formula T = T (ẋ) := 1

2
m(ẋ(t))2. Another possible notation

is KE . Here, with mechanical system we intend a system of elements that interact
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on mechanical principles. A material point and a force which acts on it is a possible
example. Two materials points which interact through the gravitational force offer
another example. In this perspective, the next exercise has important consequences
in Newtonian mechanics.

Exercise 7.9.1 Consider a mechanical system whose kinetic energy is T (ẋ) :=
1

2
m(ẋ(t))2 and its potential energy is V (such that the force which acts is F(x) =

−dV

dx
). Show that the total energy of the system, T + V , is a constant.

Hint. If we derive with respect t the total energy, we obtain

d

dt
(T + V ) =

(
mẋ(t)ẍ(t) + dV

dx

dx

dt

)
= (mẍ(t) − F) ẋ(t) = 0,

that is T + V is a constant.
We define the mechanical Lagrangian of the system by

L = L(x, ẋ) := T − V = 1

2
m(ẋ(t))2 − V (x).

In this section, where there is no possibility of confusion, we simply use the definition
“Lagrangian” instead of mechanical Lagrangian. Later in the book, we will see that
exist general Lagrangians which come from Geometry, therefore we have to well
understand the nature of the Lagrangian we are considering.

Let us observe that, even if x and ẋ depends on t , this Lagrangian is only implicitly
a function of time.

In this formalism, it makes sense to consider a functional called action,

S[y] =
∫ t2

t1

[
1

2
m(ẏ(t))2 − V (y)

]
dt

which exists for any path y(t), not only for the “physical right on” which is x(t).
Now consider the action corresponding to y(t) + η(t),

S[y + η] =
∫ t2

t1

[
1

2
m(ẏ(t) + η̇(t))2 − V (y(t) + η(t))

]
dt .

We have, after expanding V in Taylor series with respect to y(t),

S[y + η] = S[y] +
∫ t2

t1

[
mẏ(t)η̇(t) − dV

dy
(y(t))η(t)

]
dt + O(η2),
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where O(η2) are terms of order η2 := η2(t) or higher. We can write

S[y + η] = S[y] + δS + O(η2),

where

δS =
∫ t2

t1

[
mẏ(t)η̇(t) − dV

dy
(y(t))η(t)

]
dt ,

is called the first order variation of the action S. Since η(t1) = η(t2) = 0, we obtain

δS =
∫ t2

t1

[
mẏ(t)η̇(t) − dV

dy
(y(t)η(t))

]
dt =

=
∫ t2

t1

[
m
d(ẏ(t)η(t))

dt
− mÿ(t)η(t) − dV

dy
(y(t)η(t))

]
dt =

= mẏ(t2)η(t2) − mẏ(t1)η(t1) −
∫ t2

t1

[
mÿ(t) + dV

dy
(y(t))

]
η(t)dt =

= −
∫ t2

t1

[
mÿ(t) + dV

dy
(y(t))

]
η(t)dt.

Therefore, δS ≡ 0 means

∫ t2

t1

[
mÿ(t) + dV

dy
(y(t))

]
η(t)dt = 0

for every η, and it happens if and only ifmÿ(t) + dV

dy
(y(t)) = 0, i.e. for y(t) = x(t).

We have proved:

Theorem 7.9.2 The first order variation of the action S vanishes, i.e.

δS =
∫ t2

t1

[
mẏ(t)η̇(t) − dV

dy
(y(t))η(t)

]
dt = 0,

if and only if y(t) satisfies Newton’s equation of motion

mẍ(t) − F(x) = 0.

So, the answer is:The “physical right path” happenswhen the first order variation
δS vanishes. Therefore the right path is described by the condition δS ≡ 0. This is
known as the Hamilton’s stationary action principle.
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7.10 Geometry Induced by a Lagrangian

Now, let us consider another problem.
Can we find an equation, satisfied by a general function L(x, ẋ), not only by

the mechanical Lagrangian L = T − V as before, such that the function x = x(t),
which connects the given points (t1, x(t1)); (t2, x(t2)) where the functional

S[x] =
∫ t2

t1

L(x(t), ẋ(t))dt .

is extremized?
Let us explain first what is the mathematical meaning of the words “extremizes

the functional S.” Consider all the perturbation of x(t), say

yλ(t) = x(t) + λη(t), λ ∈ R

which preserves the endpoints (t1, x(t1)); (t2, x(t2)), that is η(t1) = η(t2) = 0 and
construct the action

Sλ[yλ] =
∫ t2

t1

Lλ(yλ(t), ẏλ(t))dt =
∫ t2

t1

Lλ(x(t) + λη(t), ẋ(t) + λη̇(t))dt.

Extremizing the functional S[x] means or Sλ[yλ] ≥ S[x] for any λ ∈ R or Sλ[yλ] ≤
S[x] for any λ ∈ R, where the equality works if and only if λ = 0.

Therefore, extremizing the functional S[x] implies the condition dSλ

dλ

∣∣∣∣
λ=0

≡ 0.

Since
dLλ

dλ
= ∂Lλ

∂yλ

∂yλ

∂λ
+ ∂Lλ

∂ ẏλ

∂ ẏλ

∂λ
= ∂Lλ

∂yλ
η(t) + ∂Lλ

∂ ẏλ
η̇(t) ,

it results
dLλ

dλ

∣∣∣∣
λ=0

= ∂L

∂x
η(t) + ∂L

∂ ẋ
η̇(t),

therefore the condition
dSλ

dλ

∣∣∣∣
λ=0

≡ 0 is written as

dSλ

dλ

∣∣∣∣
λ=0

=
∫ t2

t1

[
∂L

∂x
η(t) + ∂L

∂ ẋ
η̇(t)

]
dt ≡ 0.

Definition 7.10.1 The curve x = x(t) which extremizes the functional

S[x] =
∫ t2

t1

L(x(t), ẋ(t))dt

is called a stationary point of the functional S[x].
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Theorem 7.10.2 (Euler–Lagrange equation)The curve x = x(t)which connects the
given points (t1, x(t1)), (t2, x(t2)) satisfies the Euler–Lagrange equation

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0

if and only if it is a stationary point of the functional

S[x] =
∫ t2

t1

L(x(t), ẋ(t))dt.

Proof Using the integration by parts

∫ t2

t1

∂L

∂x
η(t)dt +

∫ t2

t1

∂L

∂ ẋ
η̇(t)dt =

=
∫ t2

t1

∂L

∂x
η(t)dt + ∂L

∂ ẋ
η(t2) − ∂L

∂ ẋ
η(t1) −

∫ t2

t1

d

dt

(
∂L

∂ ẋ

)
η(t)dt =

=
∫ t2

t1

[
∂L

∂x
− d

dt

(
∂L

∂ ẋ

)]
η(t)dt.

The condition
dSλ

dλ

∣∣∣∣
λ=0

≡ 0 means

∫ t2

t1

[
∂L

∂x
− d

dt

(
∂L

∂ ẋ

)]
η(t)dt = 0 ,

for every function η. We obtain

∂L

∂x
− d

dt

(
∂L

∂ ẋ

)
= 0.

�

Another proof can be considered for the Euler–Lagrange equation. As previously,
let us consider the action

S[y] =
∫ t2

t1

L(y(t), ẏ(t))dt .

Now consider the action corresponding to y(t) + η(t),

S[y + η] =
∫ t2

t1

L(y(t) + η(t), ẏ(t) + η̇(t))dt,
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where η(t1) = η(t2) = 0. After expanding L in Taylor series with respect the vari-
ables y and ẏ we obtain

L(y(t) + η(t), ẏ(t) + η̇(t)) = L(y(t), ẏ(t)) + ∂L

∂y
η + ∂L

∂ ẏ
η̇ + O(η2) + O(η̇2).

The first order variation of the action S is

δS =
∫ t2

t1

[
∂L

∂y
η(t) + ∂L

∂ ẏ
η̇(t)

]
dt.

Using the integration by parts and the conditions η(t1) = η(t2) = 0, it results suc-
cessively

δS =
∫ t2

t1

∂L

∂y
η(t)dt +

∫ t2

t1

∂L

∂ ẏ
η̇(t)dt =

=
∫ t2

t1

∂L

∂y
η(t)dt + ∂L

∂ ẏ
η(t2) − ∂L

∂ ẏ
η(t1) −

∫ t2

t1

d

dt

(
∂L

∂ ẏ

)
η(t)dt =

=
∫ t2

t1

[
∂L

∂y
− d

dt

(
∂L

∂ ẏ

)]
η(t)dt

The first order variation of action vanishes if the last integral vanishes, i.e. δS ≡ 0
iff ∫ t2

t1

[
∂L

∂y
− d

dt

(
∂L

∂ ẏ

)]
η(t)dt = 0

for any function η. This means

∂L

∂y
− d

dt

(
∂L

∂ ẏ

)
= 0. �

Both proofs reported before hold even if the Lagrangian is L(t, y(t), ẏ(t)) instead
of L(y(t), ẏ(t)). In the particular case, when the Lagrangian does not depend explic-
itly on t , the Euler–Lagrange equation reduces to the Beltrami identity. The following
theorem holds.

Theorem 7.10.3 (Beltrami’s identity) If the Lagrangian does not depend explicitly
on t, then a constant C exists such that

L(y, ẏ) − ẏ
∂L(y, ẏ)

∂ ẏ
= C.
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Proof The total derivative of L(t, y(t), ẏ(t)) is

dL

dt
= ∂L

∂t
+ ∂L

∂y
ẏ + ∂L

∂ ẏ
ÿ,

i.e.
∂L

∂y
ẏ = dL

dt
− ∂L

∂t
− ∂L

∂ ẏ
ÿ.

If
∂L

∂t
= 0, the previous equality becomes

∂L

∂y
ẏ = dL

dt
− ∂L

∂ ẏ
ÿ.

Multiplying the Euler–Lagrange equation by ẏ, we obtain

ẏ
∂L

∂y
= ẏ

d

dt

(
∂L

∂ ẏ

)
,

therefore, after combining the last two equalities we have

dL

dt
− ẏ

d

dt

(
∂L

∂ ẏ

)
− ∂L

∂ ẏ
ÿ = 0,

that is
d

dt

(
L − ẏ

∂L

∂ ẏ

)
= 0,

which is equivalent to the statement. �

Let us consider now a important problem solved first using the equilibrium of the
forces involved, afterwards using the Euler–Lagrange equation. We are talking about
the problem of hanging rope.

Problem 7.10.4 The catenary problem: Suppose that a rope is hanged with its ends
at the same height above the floor and its mass on the unit length is ρ. Find the
function which describes the shape of the rope.

Solution I: Consider a frame of coordinates such that the two given points are
A(−a, b), B(a, b) and the shape is described by the points of the curve (x, y(x)). The
statement conditions allow us to consider a minimum point at O(0, 0), a symmetry
with respect to Oy-axis and Ox-axis as a tangent to the curve at O . Consider a point
M(x, y(x)) on the arc OB and the tangent at M . Let us denote by s the length of the
arc OM , that is

s(x) =
∫ x

0

√
1 + (ẏ(t))2dt.
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From Leibniz integral rule,

s(x) =
∫ x

0

√
1 + (ẏ(t))2dt = F(x) − F(0)

where
dF

dt
= √

1 + (ẏ(t))2. Therefore

ds

dx
=
√
1 + (ẏ(x))2.

There are three forces at equilibriumwhich act on the given arc. The tension (−T0, 0)
at O , the weight of the arc (0,−ρgs), where g is the acceleration due to gravity, and
the tension of magnitude T at M , (T cos θ, T sin θ), this one acting along the tangent
to (x, y(x)) at M . Therefore

(−T0, 0) + (0,−ρgs) + (T cos θ, T sin θ) = (0, 0).

The equilibrium conditions are
{
T cos θ = T0
T sin θ = ρgs.

It results

ẏ(x) = dy

dx
= tan θ = ρg

T0
s,

i.e.

ÿ(x) = ρg

T0

ds

dx
= ρg

T0

√
1 + (ẏ(x))2.

If we denote k := ρg

T0
and u = ẏ(x), it remains to solve the equation

u̇(x)
√
1 + (u(x))2

= k

which leads to ∫
du√
1 + u2

= k
∫

dx .

Since u(0) = ẏ(0) = 0, the equality

u +
√
1 + u2 = ebx+l

implies l = 0 and
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u(x) = sinh 2kx,

i.e.

y(x) = T0
2ρg

cosh

(
2ρg

T0
x

)
− T0

2ρg
. �

Solution II: The rope has a given length

la,b =
∫ a

−a

√
1 + (ẏ(x))2dx ,

andwecan think at aLagrangian inducedby the potential energyof the rope combined
with the constraint of finite length for the rope,

L = ρgy(x)
√
1 + (ẏ(x))2 + α

(√
1 + (ẏ(x))2 − la,b

)
,

where α is a constant. Without the length constraint, the potential energy is smaller
and smaller while the rope is longer and longer. Finally, we can try to derive the
curve starting from the Lagrangian

L = (ρgy + α)
√
1 + ẏ2 + β,

where β is a constant. Since
∂L

∂t
= 0, we can use Beltrami’s identity. Therefore it

exists a constant C such that

L − ẏ
∂L

∂ ẏ
= C

which means

(ρgy + α)
√
1 + ẏ2 − ẏ(ρgy + α)

ẏ
√
1 + ẏ2

= C,

i.e.

(ρgy + α)
1

√
1 + ẏ2

= C.

It remains to solve

ẏ2 = (ρgy + α)2

C2
− 1.

The substitution Cu = ρgy + α leads to

C

ρg
u̇ =

√
u2 − 1
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i.e.
du√
u2 − 1

= ρg

C
dx

with the solution u(x) = cosh
(ρg

C
x + γ

)
, where γ is a constant. Therefore

y(x) = C

ρg
cosh

(ρg

C
x + γ

)
− α.

The constants are determined from the symmetry condition with respect to Oy-axis,

that is γ = 0, y(0) = 0 that is α = C

ρg
and C from

la,b =
∫ a

−a

√
1 + (ẏ(x))2dx . �

Let us return at the first proof we offered for the Euler–Lagrange equation. That
proof can be used to obtain the general Euler–Lagrange equations.

For the Lagrangian L = L(x0, x1, . . . , xn, ẋ0, ẋ1, . . . , ẋ n), we obtain

∂L

∂xk
− d

dt

(
∂L

∂ ẋ k

)
= 0, k = 0, 1, . . . , n.

It is easy to see that we have to act as before on each pair of variables xk, ẋ k, k =
0, 1, . . . , n. We are looking for a system of equations satisfied by the previous
Lagrangian, such that a curve x = x(t) = (x0(t), x1(t), . . . , xn(t)), which con-
nects the given points (t1, x0(t1), x1(t1), . . . , xn(t1)), (t2, x0(t2), x1(t2), . . . , xn(t2)),
extremizes the functional

S[x] =
∫ t2

t1

L(x0(t), ẋ0(t), x1(t), ẋ1(t), . . . , xn(t), ẋ n(t))dt.

As previously, a perturbation of x(t) which preserves the endpoints is

yλ(t) = (y0λ(t), y1λ(t), . . . , ynλ(t)) = (x0(t) + λη0(t), x
1(t) + λη1(t), . . . , x

n(t) + ληn(t)),

λ ∈ R with ηk(t1) = ηk(t2) = 0, k = 0, 1, . . . , n. Consider

Sλ[yλ] =
∫ t2

t1

Lλ(y
0
λ(t), ẏ

0
λ(t), . . . , y

n
λ(t), ẏnλ(t))dt =

=
∫ t2

t1

Lλ(x
0(t) + λη0(t), ẋ

0(t) + λη̇0(t), . . . , x
n(t) + ληn(t), ẋ

n(t) + λη̇n(t))dt.
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Extremizing the functional S implies the condition
dSλ

dλ

∣∣∣∣
λ=0

≡ 0.

Or,

dLλ

dλ
=

n∑

k=0

[
∂Lλ

∂ykλ

∂ykλ
∂λ

+ ∂Lλ

∂ ẏkλ

∂ ẏkλ
∂λ

]
=

n∑

k=0

[
∂Lλ

∂ykλ
ηk(t) + ∂Lλ

∂ ẏkλ
η̇k(t)

]
,

therefore
dLλ

dλ

∣∣∣∣
λ=0

=
n∑

k=0

[
∂L

∂xk
ηk(t) + ∂L

∂ ẋ k
η̇k(t)

]
.

The condition
dSλ

dλ

∣∣∣∣
λ=0

≡ 0 becomes

dSλ

dλ

∣∣∣∣
λ=0

=
n∑

k=0

∫ t2

t1

[
∂L

∂xk
ηk(t) + ∂L

∂ ẋ k
η̇k(t)

]
dt ≡ 0.

Definition 7.10.5 The curve x = x(t) = (x0(t), x1(t), . . . , xn(t)) which extrem-
izes the functional

S[x] =
∫ t2

t1

L(x0(t), ẋ0(t), x1(t), ẋ1(t), . . . , xn(t), ẋ n(t))dt

is called a stationary point of the functional.

Theorem 7.10.6 (Euler–Lagrange equations) The curve x = x(t) = (x0(t),
x1(t), . . . , xn(t)) which connects the given points (t1, x0(t1), x1(t1), . . . , xn(t1)),
(t2, x0(t2), x1(t2), . . . , xn(t2)) satisfies the Euler–Lagrange equations

d

dt

(
∂L

∂ ẋ k

)
− ∂L

∂xk
= 0, k = 0, 1, . . . , n

if and only if x = x(t) = (x0(t), x1(t), . . . , xn(t)) is a stationary point of the func-
tional

S[x] =
∫ t2

t1

L(x0(t), ẋ0(t), x1(t), ẋ1(t), . . . , xn(t), ẋ n(t))dt.

Proof Using the integration by parts, it is

n∑

k=0

∫ t2

t1

∂L

∂xk
ηk(t)dt +

n∑

k=0

[
∂L

∂ ẋk
ηk(t2) − ∂L

∂ ẋk
ηk(t1)

]
−

n∑

k=0

∫ t2

t1

d

dt

(
∂L

∂ ẋk

)
ηk(t)dt =

=
n∑

k=0

∫ t2

t1

[
∂L

∂xk
− d

dt

(
∂L

∂ ẋk

)]
ηk(t)dt.



7.10 Geometry Induced by a Lagrangian 211

Therefore the condition
dSλ

dλ

∣∣∣∣
λ=0

≡ 0 reduces to

n∑

k=0

∫ t2

t1

[
∂L

∂xk
− d

dt

(
∂L

∂ ẋ k

)]
ηk(t)dt = 0

for every function ηk . We obtain

∂L

∂xk
− d

dt

(
∂L

∂ ẋ k

)
= 0, k = 0, 1, . . . , n.

�

These equations are called the Euler–Lagrange equations.
They represent an equivalent way to express Newton’s equations of motion in

several variables for the Lagrangian L = T − V . However, they are more general
than the Newton equations because accelerations are not required in an explicit form.
See [36] for a general discussion.

Example 7.10.7 Consider a curve in the Euclidean plane, c(t) = (t, x(t)),
t ∈ [a, b] ⊂ R. We know, from standard calculus textbooks, that its length between
the points c(a) and c(b) is given by the formula

lba =
∫ b

a
||ċ(t)||dt =

∫ b

a

√
1 + ẋ2(t)dt.

For the Lagrangian L(x, ẋ) = √
1 + ẋ2, extremizing the functional

S[x] =
∫ b

a

√
1 + ẋ2dt ,

means to find out a curve connecting the points A(a, x(a)), B(b, x(b)) such that it
has minimum length. Any other curve has a longer length. Such a curve is a line and
its minimum length is the length of the segment [AB].

Let us see what happens if we use the Euler–Lagrange equation.We have
∂L

∂x
= 0

and
∂L

∂ ẋ
= ẋ√

1 + ẋ2
. Therefore the Euler–Lagrange equation is

d

dt

(
ẋ√

1 + ẋ2

)
=

0.

It results
ẋ√

1 + ẋ2
= k=constant, i.e. ẋ = k√

1 − k2
:= m, and finally x = mt +

n, that is a line equation in the Euclidean plane. The reader has to try to understand
why

√
1 − k2 exists.
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Let us observe that the Euclideanmetric is obtained from the previous Lagrangian,
that is

ds2 = L2dt2 =
(√

(ṫ)2 + ẋ2
)2

dt2 = dt2 + dx2.

We may conclude that this is another proof for the fact that Euclidean lines are the
geodesics of the Euclidean metric.

Example 7.10.8 Using the rule ds2 = L2dt2, the Poincaré metric of the half-plane
written as

ds2 = 1

(x2)2
[
(dx1)2 + (dx2)2

]

allows us to highlight a Lagrangian. This is

L(x1, x2, ẋ1, ẋ2) :=
√

1

(x2)2
[
(ẋ1)2 + (ẋ2)2

]
.

Let us write some modified equations in which L2 is involved, in the form

d

dt

(
∂L2

∂ ẋ i

)
− ∂L2

∂xi
= 0, i ∈ {1, 2}.

Denote x := x1, y := x2. The first one becomes

d

dt

(
∂L2

∂ ẋ

)
− ∂L2

∂x
= 0,

that is

ẍ − 2

y
ẋ ẏ = 0.

The second one becomes
d

dt

(
∂L2

∂ ẏ

)
− ∂L2

∂y
= 0,

that is

ÿ + 1

y
ẋ2 − 1

y
ẏ2 = 0.

Therefore, we observe that we have obtained the equations of the geodesics of the
Poincaré half-plane. The solutions are

x = x(t) = c + R tanh t, y = y(t) = R

cosh t
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and
x(t) = a, y(t) = et ,

therefore the curves c1(t) =
(
c + R tanh t,

R

cosh t

)
and c2(t) = (a, et ) are the

stationary points of the functional

S[c] =
∫ t2

t1

1

y2
[
ẋ2 + ẏ2

]
dt.

If we look back at the first example and we work with L2 instead L , we obtain the
same segment line as a geodesic.

These facts involving the extremization of a functional and the examples, rise
some fundamental questions.

• Is there Geometry involved?
• Are the Euler–Lagrange equations, the geodesic equations for a given metric in
which the Lagrangian is involved?

• Why L2 appeared?

The next theorem answers at all these questions.

Theorem 7.10.9 Consider the Lagrangian L = √
gi j ẋ i ẋ j where gi j = g j i and gi j

depends only on the variables (x0, x1, . . . , xn). Then the Euler–Lagrange equations

∂L

∂xk
− d

dt

(
∂L

∂ ẋ k

)
= 0, k = 0, 1, . . . , n,

are the geodesic equations of the metric ds2 = L2dt2.

Proof First, we prove that Euler–Lagrange equations have an equivalent formwritten
with respect to L2,

∂L2

∂xk
− d

dt

(
∂L2

∂ ẋ k

)
= −2

dL

dt

∂L

∂ ẋ k
.

Let us start from the Euler–Lagrange equations and multiply by 2L . We have

2L
∂L

∂xk
− 2L

d

dt

(
∂L

∂ ẋ k

)
= 0,

that is
∂L2

∂xk
− 2L

d

dt

(
∂L

∂ ẋ k

)
= 0.
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Next, we compute
d

dt

(
∂L2

∂ ẋ k

)
. We obtain

d

dt

(
∂L2

∂ ẋ k

)
= d

dt

(
2L

∂L

∂ ẋ k

)
= 2

dL

dt
· ∂L

∂ ẋ k
+ 2L

d

dt

(
∂L

∂ ẋ k

)
,

therefore

2L
d

dt

(
∂L

∂ ẋ k

)
= d

dt

(
∂L2

∂ ẋ k

)
− 2

dL

dt
· ∂L

∂ ẋ k
.

So, the transformed equations

∂L2

∂xk
− d

dt

(
∂L2

∂ ẋ k

)
= −2

dL

dt
· ∂L

∂ ẋ k

are obtained.
Second, using L2 = gi j ẋ i ẋ j , where gi j = gi j (x0, x1, . . . , xn), we have

(
∂L2

∂xk

)
= ∂gi j

∂xk
ẋ i ẋ j .

Third: we prove the relation

d

dt

(
∂L2

∂ ẋ k

)
= 2gks ẍ

s + 2
∂gks

∂xm
ẋm ẋs .

This is not difficult. Successively

d

dt

(
∂L2

∂ ẋ k

)
= d

dt

(
∂

∂ ẋ k
[
gi j ẋ

i ẋ j
]) = d

dt

(
gi j

∂ ẋ i

∂ ẋ k
ẋ j + gi j ẋ

i ∂ ẋ
j

∂ ẋ k

)
=

= d

dt

(
gk j ẋ

j + gik ẋ
i
) = d

dt

(
2gks ẋ

s
)
,

then
d

dt

(
∂L2

∂ ẋ k

)
= 2gks ẍ

s + 2
∂gks

∂xm
dxm

dt
ẋ s = 2gks ẍ

s + 2
∂gks

∂xm
ẋm ẋs .

The forth relation to be proved is

dL

dt
· ∂L

∂ ẋ k
= S̈

Ṡ
gks ẋ

s

where

S =
∫ t

t0

Ldτ =
∫ t

t0

√
gi j ẋ i ẋ j dτ , Ṡ = L , S̈ = dL

dt
.
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Step by step, we have

dL

dt
· ∂L

∂ ẋ k
= dL

dt
· ∂

∂ ẋ k

[√
gi j ẋ i ẋ j

]
= dL

dt
·
[

1

2
√

gi j ẋ i ẋ j

∂

∂ ẋ k
[
gi j ẋ

i ẋ j
]
]

=

= dL

dt
·
[

1

2L
(2gks ẋ

s)

]
= S̈

Ṡ
gks ẋ

s .

Now, replacing in the modified Euler–Lagrange equations

−∂L2

∂xk
+ d

dt

(
∂L2

∂ ẋ k

)
= 2

dL

dt
· ∂L

∂ ẋ k

we obtain

−∂gi j

∂xk
ẋ i ẋ j + 2gks ẍ

s + 2
∂gks

∂xm
ẋm ẋs = 2

S̈

Ṡ
gks ẋ

s .

Manipulating the dummy indexes, the previous relation can be written in the form

2gks ẍ
s +

(
∂gks

∂xm
+ ∂gkm

∂xs

)
ẋm ẋ s − ∂gms

∂xk
ẋm ẋ s = 2

S̈

Ṡ
gks ẋ

s .

The Christoffel symbols appear if we put together the last two terms of the left
member,

gks ẍ
s + 1

2

(
∂gks

∂xm
+ ∂gkm

∂xs
− ∂gms

∂xk

)
ẋm ẋ s = S̈

Ṡ
gks ẋ

s,

therefore, after multiplying by gik , we have

ẍ i + �i
ms ẋ

m ẋ s = S̈

Ṡ
ẋ i , i ∈ {0, 1, . . . , n}.

Still we have not the desired geodesic equations, but we are close. It remains to
consider the parameter t in such a way to have a curve which is canonically param-
eterized.

So, we choose t such that L = dS

dt
= Ṡ = 1. It results

dL

dt
= S̈ = 0, i.e.

ẍ i + �i
ms ẋ

m ẋ s = 0, i ∈ {0, 1, . . . , n}.

�

We can see a new feature of Lagrangians: they are important because they induce
metrics whose geodesics are described by the Euler–Lagrange equations.
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Finally, we can see a possible switch between the traditional mechanical point
of view for several models in Physics to the geometric point of view. Somehow the
forces, the energies, some other functions involved in describing “the reality” can be
replaced by geometric objects from Differential Geometry. The trajectories created
by forces are now geodesics of spaces with metrics induced by Lagrangians. As we
will see below, this point of view is fundamental in General Relativity.



Chapter 8
Special Relativity

Numerus omnium aptantur.

Pythagoras

In XV I I th century, Newton considered light as a collection of particles, now called
photons according to Quantum Mechanics, traveling through space. Reflection and
refraction of light were explained in a satisfactory way interpreting light rays as
trajectory of photons.

James Clark Maxwell results on Electrodynamics, in the middle of the X I X th
century, offered another view: the light is an electromagnetic wave.

Maxwell’s equations of Electromagnetism are not simple at all, and, putting them
in accordancewithNewton’s theory, points out the necessity of considering amedium
in which the electromagnetic waves travel through space. This hypothetical medium
was called “ether”.

Ernst Mach did not agree with the idea of ether and observed the necessity of the
revision of all fundamental concepts of Physics. Michelson–Morley experiment, who
initially was designed to reveal such an ether, had a result completely different with
respect the expectations and hard to interpret in view of Classical Mechanics. Albert
Einstein explained the result of the experiment in a theory, the Special Relativity,
where he revised, in a fundamental way, the ideas of space and time. After this
achievement, no place remained for ether. For a comprehensive exposition of Special
Relativity, see [37].
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218 8 Special Relativity

8.1 Principles of Special Relativity

Let us first discuss about Michelson–Morley experiment.
Suppose we have a platform of a railway train wagon, an open one, on an exist-

ing straight railway line. During the Michelson–Morley experiment, the platform is
considered at rest or it moves at constant speed v.

On this platform, let us imagine two perpendicular lines which intersect at I , one,
say d1, coincident to the sense of motion, the other one, say d2, perpendicular to the
sense of motion. On d1, called the longitudinal direction, in this order, there exist: a
source of light denoted by SL , an interferometer placed in I and a mirror denoted by
M1, such that the distance between I and M1 is l.

The interferometer is a device able to split a light-ray in the two perpendicular
directions d1 and d2, but also to receive two light-rays from perpendicular directions
and to send them separately to another given direction.

On the line d2, which corresponds to the transversal direction, there is another
mirror denoted by M2, such that the distance between I and M2 is the same l and a
receiver-device RL such that the interferometer I is between M2 and RL .

The receiver-device is able to capture the light rays coming from the interferometer
and to decide which one reached first the device.

The experiment is like this: when the platform is at rest or it is moving at constant
speed v in the SL I longitudinal direction, a light-ray is sent by the source SL to the
interferometer I . The interferometer splits the light-ray in two light-rays. The first
one is sent to the mirror M1, it is reflected by the mirror and it is returned to the
interferometer which sends it to RL . The second one is directed to M2, it is reflected
and sent to the interferometer which sends it to RL . Which one reaches first RL?

This is something as: we are interested in identifying the influence of the speed
v on the splitted light-rays. There is, or there is not, a difference between what is
happening when the platform is at rest comparing with the case when the platform
is moving at constant speed v?

Let us observe something obvious: if the platform is at rest, both light-rays reach
at same time RL .

Now, let us try to use Classical Mechanics to describe what is happening when the
platform is moving at constant speed v. First at all, let us observe that it is enough to
establish only the time necessary to cover the routes I M1 I and I M2 I and to compare
them.

Denote by c the speed of light. The time to cover the longitudinal route I M1 I is

t1 = l

c − v
+ l

c + v
= 2lc

c2 − v2
,

because c − v and c + v are in Newtonian mechanics the speeds for the directions
I M1, M1 I respectively. To be sure that the reader understands why the speeds are
like this, let us focus on the first direction case. Moving at constant speed v in the
sense I M1, the photon is slowed down by the air, that is by the medium in which it
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is traveling, with the speed −v. Therefore, according to mechanics rules, the speed
of the photon traveling in I M1 direction is c − v.

For the transversal direction, denote by t ′ the time necessary for the light-ray to
reach the mirror M2. During this time, the platform, therefore the mirror, travels
in the longitudinal direction a t ′v space. The Pythagoras theorem in the rectangle
triangle formed is (t ′c)2 = l2 + (t ′v)2, that is

t ′ = l√
c2 − v2

.

It is obvious that the time necessary to the transversal ray to reach again the interfer-
ometer I is t2 := 2t ′, so we have

t2 = 2l√
c2 − v2

.

Therefore

t2
t1

=
√
1 − v2

c2
,

which implies
t2 < t1,

i.e. the transversal light-ray reaches earlier RL compared to the longitudinal light-ray.
The mathematical model made with respect to the rules of Classical Mechanics

has a prediction, let us repeat it: the first light-ray arriving in RL is the transversal
one.

If we make the experiment the result is: the transversal and the longitudinal light-
rays reach RL at the same time. If we repeat it, the same results holds. There is not
a difference between what happens when the platform is at rest, comparing with the
case when the platform is moving at constant speed v.

As we explained in the introduction, the error is in the model: it is related to the
fact we thought that v could affect the speed of light. It seems that c − v and c + v

are not correctly thought, therefore we have not to consider Classical Mechanics
when we try to understand this experiment. Another rule has to be applied when we
“add” velocities.

This experiment can be also seen making a parallel between the platform moving
in Earth atmosphere at constant speed v and the Earth moving through the ether at
constant speed v. After we establish a new theory to explain the experimental result,
the main consequence is the fact that there is no ether.1

1In modern physics, it has been realized that “ether” is the “physical vacuum” that is a maximally
symmetric configuration of spacetime where no physical field is present. This means that matter-
energy density is extremely low. In this “vacuum”, electromagnetic waves propagate at the speed
of light.
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The consequences of Einstein’s postulates give the chance to understand how the
light propagates in the context of a new physical theory, the Special Relativity, which
changes the rules of Classical Mechanics when we are dealing with bodies moving
at very large speeds.

Part of these results were also obtained by Henry Poincaré in his effort to explain
the Michelson–Morley experiment.

Essentially, Einstein formulated the Special Relativity starting from two main
postulates:

1. The laws of Physics are the same in all inertial reference frames.
2. The speed of light in vacuum, denoted by c ≈ 2, 99 · 108m/s, is the same

for all the observers and it is the maximal speed reached by a moving object.

Einstein used the word observerwith the meaning of reference frame from which
a set of objects or events are measured. Since the measurement are generally made
with respect to the center O of the frame, this special point is often called the “O
observer” or we may refer to a frame with “the observer placed at O”. We know that
the laws of mechanics are the same in all inertial frames. The first postulate asks
for the same form of electromagnetic laws in any inertial reference frames, as the
mechanics laws have. And in general, all laws of Physics must have the same form
in all reference frames (this result will be fully achieved in General Relativity).

The second postulates plays a key role in Special Relativity being involved in the
way in which we derive the Lorentz transformations.

The framework of Newton’s laws of mechanics is the 3-dimensional Euclidean
space. Each object is described by a point or by a collection of points of it. Time is
given by a universal clock and allows us to see the evolution of objects.

In Special Relativity, we have to work in a 4-dimensional space, but not in an
usual one. Three of the dimensions are the standard dimensions used in mechanics.
We can denote them with the letters as x1, x2, x3. The fourth dimension is related to
time.

Definition 8.1.1 A frame of coordinates (t, x1, x2, x3) is called a spacetime.

The Geometry of a spacetime is in fact what we are trying to develop, and this is
made according to some given physical postulates we have to accept.

Definition 8.1.2 Each point of such a spacetime is called an event.

Definition 8.1.3 A curve of the spacetime is called a world line and represents a
successions of events.

Example 8.1.4 Suppose we work in a two dimensional slice of the previous frame,
with the coordinates (t, x3). Consider a world line starting from the origin O(0, 0).
Suppose the next point is A(1, x30). Then the object remain t0 seconds at rest with
respect our perspective. This means that the world line has to be continued with
the segment AB, where B has the coordinates B(1 + t0, x30). Next, suppose the
object advances in the direction −v1. The line followed has the equation x3 − x30 =
−v1(t − (1 + t0)), etc.
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Example 8.1.5 From the origin O(0, 0) an object is moving t1 seconds in the direc-
tion −v. It reaches the point M(t1,−vt1). Negative speed means only the direction
of evolution in time.

Example 8.1.6 A photon is released from the origin O . There are two possible
directions, c and −c. If it is released in the direction c, its trajectory will be the
line x3 = ct . Or, it can be released in the direction −c. Its trajectory in this case is
x3 = −ct . In this case, after t0 > 0 seconds, the photon reaches the point L(t0,−ct0).

In order to advance into the theory, we have to consider two local frames of coor-
dinates, one moving at constant speed v, denoted by S, and another one considered
at rest, denoted by R. The letters are chosen from the words “speed” and “rest.” Two
observers are placed at the origins of each system denoted by Ō , respectively O . The
first local frame S is considered described by the coordinates (τ = x̄0, x̄1, x̄2, x̄3),
while the frame R is described by the coordinates (t = x0, x1, x2, x3).

Now, the reference frames of the two observers have to adapt to the second pos-
tulate of the Special Relativity. To be easier in our reasonings, let us suppose the
bidimensional case when the frame S consists of the coordinates (τ = x̄0, x̄3) and it
is moving, at constant speed v, in the same plane as the one determined by R, here
denoted as (t = x0, x3).

First at all, how can we express the fact that S is moving at constant speed v with
respect to R? The simple mathematical answer is: the axis Ōτ in R has the equation
x3 = vt .

Even if the light can be seen as an electromagnetic wave and we check the conser-
vation of the form ofMaxwell’s equations by the Lorentz transformations, in order to
develop Special Relativity, we can consider the light-rays as trajectories of photons.

What can we say about the world line of a photon in these inertial reference
frames?With respect to the observers in each frame, two world lines are highlighted:
a photon moving at constant speed c with a trajectory x3 = ct in R and x̄3 = cτ in
S, while, for a photon moving at speed −c, we have the lines x3 = −ct in R and
x̄3 = −cτ in S.

The two world lines of photons at O form the light cone of the frame R. A similar
definition holds in S.

Therefore, if we use a same diagram for both frames, the second postulate has the
following mathematical expression:

1. The lines x3 = ct in R and x̄3 = cτ in S have the same image;
2. The lines x3 = −ct in R and x̄3 = −cτ in S have the same image.

In other words, the two light cones are coincident.
Since we deal with inertial frames, as a rule, objects moving at constant speed

in S move at constant speed in R, and vice versa. So, a straight line representing a
world line of an object moving at constant speed in S, it is seen as a straight line
representing the world line of the same object moving at (another) constant speed in
R and vice versa. Transforming lines into lines, the change of coordinates between
the two frames is described by a linear map; we denote it by Lv and we call it a
Lorentz transformation corresponding to the speed v.
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Theorem 8.1.7 In the context described before, the matrix of the Lorentz transfor-
mation corresponding to the speed v has the form

Lv = 1√
1 − v2/c2

(
1 v/c2

v 1

)
.

Proof A linear map Lv : S → R has the form

Lv =
(
a b
d e

)
.

Since Ōτ axis in R has the equation x3 = vt we have(
a b
d e

) (
1
0

)
=

(
t
vt

)
,

that is d = va. In mathematical language, the second postulate is:

The eigenvectors of Lv are

(
1
c

)
and

(
1

−c

)
, that is

Lv ·
(
1
c

)
= λ1

(
1
c

)

and

Lv ·
(

1
−c

)
= λ2

(
1

−c

)
.

To preserve the sense of movement of photons, it is necessary to impose two inequal-
ities for the eigenvalues λ1 > 0, λ2 > 0.

Replacing Lv , it results the equations⎧⎨
⎩

a c + b c2 = a v + e c

−a c + b c2 = a v − e c

that is

Lv = a

(
1 v/c2

v 1

)
.

To determine a, we need to observe who is the inverse of the considered Lorentz
transformation.

L−1
v has to act from R to S, such that Lv L−1

v = L−1
v Lv = I2. It is standard to

think at L−1
v := L−v, that is to see S at rest and R moving at constant speed−v. This

leads to
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I2 = a2
(
1 − v2/c2 0

0 1 − v2/c2

)
,

i.e. a2 = 1

1 − v2/c2
.

To determine the right sign of a, we use the Cayley Theorem. It is a simple matrix
exercise: For a 2 × 2 real matrix B, it is

B2 − 2 Tr B · B + det B · I2 = O2.

In our case, Tr Lv = 2a = λ1 + λ2 > 0.
The Lorentz transformation, in final form, is

Lv = 1√
1 − v2/c2

(
1 v/c2

v 1

)
.

�

We can write how the transformation looks like in four dimensions:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t = τ + x̄3 v/c2√
1 − v2/c2

x1 = x̄1

x2 = x̄2

x3 = τ v + x̄3√
1 − v2/c2

.

Exercise 8.1.8 Express in four dimensions the corresponding inverse of the Lorentz
transformation Lv .

Solution. According to the proof, the inverse transformation is L−v : R → S. In
four dimensions, we have ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τ = t − x3 v/c2√
1 − v2/c2

x̄1 = x1

x̄2 = x2

x̄3 = −t v + x3√
1 − v2/c2

.

Let us observe that, for a small velocity v with respect to c, the ratios v/c2 and
v2/c2 are small enough. We can consider the influence of these terms almost zero,
that is the Lorentz transformations become the usual way, in Classical Mechanics to
pass from the inertial reference frame S to the inertial reference frameR, that is
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⎪⎪⎩
t = τ
x1 = x̄1

x2 = x̄2

x3 = τ v + x̄3.

These formulas are called Galilean transformations for Classical Mechanics.
Consider three inertial reference frames, S′, S and R, such that S′ is moving at

constant speed w with respect to S and S is moving at constant speed v with respect
to R.

The two corresponding Lorentz transformations are Lw = 1√
1 − w2/c2(

1 w/c2

w 1

)
and Lv = 1√

1 − v2/c2

(
1 v/c2

v 1

)
.

The natural question is: which is the speed of S′ with respect to R?
The answer is: We have to describe the linear map between S′ and R via S, that

is Lv · Lw.

Theorem 8.1.9 Lv · Lw = Lv⊕w, where v ⊕ w = v + w

1 + vw/c2
.

Proof After multiplying, we have

Lv · Lw = 1√
1 − v2/c2

1√
1 − w2/c2

(
1 v/c2

v 1

)
·
(
1 w/c2

w 1

)
=

= 1 + vw/c2√
(1 − v2/c2)(1 − w2/c2)

⎛
⎜⎝ 1

v + w

1 + vw/c2
· 1

c2
v + w

1 + vw/c2
1

⎞
⎟⎠ =

= 1√
1 −

(
v + w

1 + vw/c2

)2

· 1

c2

⎛
⎜⎝ 1

v + w

1 + vw/c2
· 1

c2
v + w

1 + vw/c2
1

⎞
⎟⎠ = Lv⊕w,

where
v ⊕ w = v + w

1 + vw/c2
.

�

Definition 8.1.10 The last formula is called the relativistic velocities addition.

The relativistic velocities-addition formula, in the case of small velocities, reduces
to the standard sum of velocities of Classical Mechanics.
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Exercise 8.1.11 Show that the set K = (−c, c) endowed with the operation

v ⊕ w = v + w

1 + vw/c2

is an abelian group.

Exercise 8.1.12 Show that the set of Lorentz transformations

L := {Lv ∈ M2×2(R)| v ∈ (−c, c)}

endowed with the usual product of matrices is an Abelian group.

8.2 Lorentz Transformations in Geometric Coordinates
and Consequences

In Physics, systems of coordinates are thought with axes whose coordinates are
related to the physical units as second, meter, etc. The systems of coordinates cor-
responding to the physical units can be called systems of physical coordinates. In
the previous sections, we worked in physical coordinates. The units of measure in
Physics were thought before to understand how deeply is the Geometry involved
in the description of the physical phenomena. If we choose an appropriate “length”
(e.g. the meter) and an appropriate “time duration” (e.g. the second), the speed of
light can be c = 1. We call these new units geometric units. All formulas become
simpler and the geometric images are more intuitive.

Definition 8.2.1 The coordinates corresponding to geometric units are called geo-
metric coordinates.

If we adapt the second postulate conditions, seen on the same diagram, we have:
1. The lines x3 = t in R and x̄3 = τ in S have the same image
2. The lines x3 = −t in R and x̄3 = −τ in S have the same image,
in geometric coordinates, it is easier to understand how it looks like the frame S seen
in R: since O = Ō , the axis Ox̄3 and Oτ are symmetric with respect the line x3 = t .

Before obtaining the Lorentz transformations in geometric coordinates, let us
consider the concept of simultaneity.

8.2.1 The Relativity of Simultaneity

Two events, E1 and E2, are called simultaneous in S, if they happen at the same
moment of time τ0 in S, that is they are E1(τ0, τ0) and E2(τ0,−τ0). The same, two
events, U1 and U2, are called simultaneous in R if they happen at the same moment
of time t0 in R, i.e. they are U1(t0, t0) and U2(t0,−t0).
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On the same diagram, it is easy to see that U1 and U2 are simultaneous in R, but

U1(t0, t0) and V2

(
t0
1 − v

1 + v
,−t0

1 − v

1 + v

)
are simultaneous in S.

Let us explain the result from the mathematical point of view.
It is not very difficult to show that, in geometric coordinates, if Oτ has the equation

x3 = vt , then Ox̄3 has the equation x3 = 1

v
t . Therefore the line y − t0 = 1

v
(t − t0)

intersects x3 = −t , if t = t0
1 − v

1 + v
.

For the observer in R, the eventsU1(t0, t0) andU2(t0,−t0) happen simultaneously.

The observer in S cannot agree: for him U1(t0, t0) and V2

(
t0
1 − v

1 + v
,−t0

1 − v

1 + v

)
happen simultaneously. Therefore it exists the Relativity of the simultaneity.

8.2.2 The Lorentz Transformations in Geometric Coordinates

In geometric coordinates, we choose the Lorentz transformation as the linear map
Lv : S → R,

Lv =
(
a b
d e

)
.

Since Ōτ axis in R has the equation x3 = vt , we have(
a b
d e

) (
1
0

)
=

(
t
vt

)
,

that is d = va. In mathematical language, the second postulate is:

The eigenvectors of Lv are

(
1
1

)
and

(
1

−1

)
, that is

Lv ·
(
1
1

)
= λ1

(
1
1

)

and

Lv ·
(

1
−1

)
= λ2

(
1

−1

)
.

To preserve the direction of movement of photons, it is necessary to impose
λ1 > 0, λ2 > 0.

Replacing Lv , the following equations result

⎧⎨
⎩

a + b = a v + e

−a + b = a v − e
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that is

Lv = a

(
1 v

v 1

)
.

In the same way, as in the physical coordinates case, the inverse of the Lorentz
transformation Lv in geometric coordinates is L−1

v := L−v . It results

I2 = a2
(
1 − v2 0

0 1 − v2

)
,

that is a2 = 1

1 − v2
.

To determine the right sign of a, we use the same Cayley theorem: For a 2 × 2
real matrix B, it is

B2 − 2 Tr B · B + det B · I2 = O2.

In our case Tr Lv = 2a = λ1 + λ2 > 0.
For those who do not understand this result, we invite to look at the characteristic

equation
det(B − λI2) = 0.

The final form of Lorentz transformation (corresponding to the velocity v), in
geometric coordinates, is

Lv = 1√
1 − v2

(
1 v

v 1

)
.

We can write how the transformation looks like in geometric coordinates in four
dimensions: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t = τ + x̄3 v√
1 − v2

x1 = x̄1

x2 = x̄2

x3 = τ v + x̄3√
1 − v2

.

In the same case as in physical coordinates, let us consider three inertial reference
frames, S′, S and R, such that S′ is moving at constant speed w with respect to S
and S is moving at constant speed v with respect to R. Here v, w are in (−1, 1).

The two corresponding Lorentz transformations are Lw = 1√
1 − w2

(
1 w

w 1

)
and

Lv = 1√
1 − v2

(
1 v

v 1

)
.

Exercise 8.2.2 What is the speed of S′ with respect to R?

Hint. We must find the linear map between S′ and R, that is Lv · Lw.
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A similar computation as the one made in physical coordinates leads to

Lv · Lw = 1√
1 − v2

1√
1 − w2

(
1 v

v 1

)
·
(
1 w

w 1

)
=

= 1 + vw√
(1 − v2)(1 − w2)

⎛
⎜⎝ 1

v + w

1 + vw
v + w

1 + vw
1

⎞
⎟⎠ =

= 1√
1 −

(
v + w

1 + vw

)2

⎛
⎜⎝ 1

v + w

1 + vw
v + w

1 + vw
1

⎞
⎟⎠ = Lv⊕w,

where
v ⊕ w = v + w

1 + vw
.

The last formula can be called the addition of relativistic velocities in geometric
coordinates.

Exercise 8.2.3 Show that the set K = (−1, 1) endowed with the operation

v ⊕ w = v + w

1 + vw

is an Abelian group.

Exercise 8.2.4 Show that the set of Lorentz transformations {Lv ∈ M2×2(R)|v ∈
(−1, 1)} endowed with the standard product of matrices is an Abelian group.

8.2.3 The Minkowski Geometry of Inertial Frames in
Geometric Coordinates and Consequences: Time
Dilation and Length Contraction

Let us observe that the addition of velocities was deduced using Einstein’s postulates
and more, it is related to theMinkowski Geometry attached to S and R frames.Why?
Because if we choose

v = tanhα ; w = tanh β,
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we obtain the known geometric formula

tanh(α + β) = tanhα + tanh β

1 + tanhα tanh β

for the addition of velocities in geometric coordinates.
The Lorentz transformation corresponding to the constant speed v is now

L tanhα =
(
coshα sinhα
sinhα coshα

)
.

It is well known that the matrices L tanhα are hyperbolic rotations in the two-
dimensional Minkowski space denoted by M

2, where the Minkowski product of
the vectors x = (t1, x31) and y = (t2, x32) is defined by

〈x, y〉M := t1t2 − x31 x
3
2 .

It is also known that each matrix L tanhα preserves the Minkowski product.
The last property suggests another way to think at the Lorentz transformations in

the case of geometric coordinates: they preserve the quantity t2 − (x3)2.

Exercise 8.2.5 Show that Lorentz transformation implies the equality

τ 2 − (x̄3)2 = t2 − (x3)2.

Hint.

t2 − (x3)2 =
(

τ + x̄3 v√
1 − v2

)2

−
(

τ v + x̄3√
1 − v2

)2

= τ 2 − (x̄3)2.

It results

Corollary 8.2.6 The Lorentz transformations preserves the square of theMinkowski
norm of vectors.

Theorem 8.2.7 (Time dilation) A clock slows down when it is moving at constant
speed.

Proof Denote by�τ the unit interval of a clockmoving at constant speed v. It means
to consider the unit of τ axis in S to be�τ . Denote by�t the corresponding element
of �τ after a Lorentz transformation Lv in geometric coordinates. We have

Lv ·
(

�τ
0

)
= 1√

1 − v2

(
1 v

v 1

)
·
(

�τ
0

)
=

(
�t
∗

)
,

where ∗ meaning is related to the fact we are not interested in. Therefore

�t = �τ√
1 − v2

,
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that is
�τ < �t.

�

Example 8.2.8 Let us consider two twins separated. The first one is sent in space
with a cosmic vehicle having the constant speed v = 4/5. The other one remains on
Earth. When they separated they are 20 years old. After 15 years in space, according
with his time, the brother from space returned. He is now, according to his time, 35
years old. How old is the brother remained on Earth, according to his perspective?

The factor
√
1 − v2 is 3/5. From the formula �t = �τ√

1 − v2
, after we replace, we

obtain 3�t = 5�τ . Now, for the observer in S fifteen years have passed, that is
�τ = 15. It results �t = 25. Therefore his brother is 45 years old.

Theorem 8.2.9 (Length contraction) The lengths are contracting when the frame is
moving at constant speed.

Proof Denote by�l̄ the unit length of S. Let�l be the corresponding element of�l̄
after a Lorentz transformation Lv . In order to compare the two lengths, we compute

Lv ·
(

0
�l̄

)
= 1√

1 − v2

(
1 v

v 1

)
·
(

0
�l̄

)
=

( ∗
�l

)
,

where ∗ meaning is related to the fact we are not interested in. It results

�l = �l̄√
1 − v2

,

that is
�l̄ < �l.

�

Example 8.2.10 A cosmic vehicle is 125m long at rest. Suppose it is sent in space
and it is moving at constant speed v = 3/5. How long is this moving cosmic vehicle

for an observer at rest?We apply�l = �l̄√
1 − v2

formula for v = 3/5 and�l = 125.

It results �l̄ = 100m.

8.2.4 Relativistic Mass, Rest Mass and Energy

Newton’s second law involves the concept of inertial mass. As we have seen at that
time, the mass was considered as a constant. We have discussed about the inertial
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mass and the gravitational mass and how the mass is part of the so called quantity
of motion, also known as momentum. In Classical Mechanics momentum means
inertial mass in motion and redefined in a relativistic way, will lead to important
consequences.

Let us think at an object at rest, having a rest mass denoted by m0 �= 0. Is the
mass of the object “moving at constant speed” the same as its rest mass? The answer
is related to how the relativistic momentum is changing with respect to the Lorentz
transformations.

Let us denote byP =
(

m
mv

)
the relativisticmomentumof a classical bodymoving

at constant speed v. The second component of the relativistic momentum is the
classical momentum.

The relativistic momentum of a classical body at rest in S has to be P0 =
(
m0

0

)
.

According to the theory we are developing, the formula of the relativistic momen-
tum at constant speed v is obtained from the relativistic momentum at rest, changed
with respect to the Lorentz transformation Lv . This was the key point where Einstein
applied, in a brilliant way, the idea that all physical formulas have to be invariant
under Lorentz transformations. The consequences can be seen in the following two
theorems.

Theorem 8.2.11 If m0 �= 0 is the rest mass of a body moving at constant speed v,
then

m = m(v) = m0√
1 − v2

.

Proof Using the Lorentz transformation Lv we have P = Lv · P0. It results(
m
mv

)
= 1√

1 − v2

(
1 v

v 1

)
·
(
m0

0

)
,

which leads to the so called relativistic mass formula

m = m(v) = m0√
1 − v2

.

�

We may observe that the mass of an object is increasing when the object travel at
constant speed v. Another consequence is related to the fact that an object having its
rest mass m0 �= 0 can not reach the speed of light.

Definition 8.2.12 m(v) is called relativistic mass corresponding to the constant
speed v of an object having the rest mass m0.

The previous obtained formula has sense whenm0 �= 0. The physicists know that
there is no rest mass for the photon. Therefore this formula does not work for photon
or for any other physical particle with no rest mass.
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The following theorem explains why it is a good choice to consider the relativistic
momentum if we intend to show how the mass is changing when it is moving at
constant speed. Even if the proof is done using the geometric coordinates, the reader
can change it to adapt the result to physical coordinates.

Theorem 8.2.13 The relativistic mass formula is preserved by the Lorentz transfor-
mations.

Proof If we consider the inertial frame S, moving at constant speed v with respect
to R, we have

Lv ·
(
m0

0

)
=

⎛
⎜⎝

m0√
1 − v2
m0v√
1 − v2

⎞
⎟⎠ .

In the same way, for the inertial frame S, moving at constant speed V with respect
to R1, we have

LV ·
(
m0

0

)
=

⎛
⎜⎝

m0√
1 − V 2

m0V√
1 − V 2

⎞
⎟⎠ .

If the frame R is moving at constant speed w with respect to R1, we have to compute

Lw · Lv

(
m0

0

)
and we wish the result to be coincident with LV ·

(
m0

0

)
. We have

Lw · Lv ·
(
m0

0

)
= Lw ·

⎛
⎜⎝

m0√
1 − v2
m0v√
1 − v2

⎞
⎟⎠ = 1√

1 − w2

m0√
1 − v2

(
1 w

w 1

) (
1
v

)
=

= 1√
1 − w2

m0√
1 − v2

(
1 + wv

w + v

)
= 1 + wv√

1 − w2

m0√
1 − v2

(
1

w + v

1 + wv

)
=

= m0√
1 −

(
w + v

1 + wv

)2

(
1

w + v

1 + wv

)
= Lw⊕v

(
m0

0

)
= LV

(
m0

0

)
,

that is V = w ⊕ v = w + v

1 + wv
. �

We are close to prove a very important consequence of the previous relativistic
mass formula:

Theorem 8.2.14 In geometric coordinates, mass means energy.



8.2 Lorentz Transformations in Geometric Coordinates and Consequences 233

Proof Denote by f ′, f ′′ the first and the second derivative of a real function f . It
is easy to prove that

f (x) = f (0) + x

1! f
′(0) + x2

2! f
′′(0) + B[x3],

where B[x3] contains only terms in x with powers greater than 3.
If we neglect the B terms, when we consider the real function

f (v) = 1√
1 − v2

and the formula of the relativistic mass, we can write

m(v) = m0√
1 − v2

= m0 + 1

2
m0v

2.

Looking at both members we can observe how, in geometric coordinates, the rela-
tivistic mass is related to the rest mass and the kinetic energy, that is the statement:
“mass is energy” is confirmed. �

8.3 Consequences of Lorentz Physical Transformations:
Time Dilation, Length Contraction, Relativistic Mass
and Rest Energy

In the previous section, we used Lorentz transformations in geometric coordinates
which can be called Lorentz geometric transformations. When we obtained, for the
first time, the Lorentz transformations, we worked in physical coordinates. therefore
the Lorentz transformations found there can be called Lorentz physical transforma-
tions. How can we adapt the previous results in the case of physical coordinates?

8.3.1 The Minkowski Geometry of Inertial Frames in
Physical Coordinates and Consequences: Time Dilation
and Length Contraction

If we choose
v = c tanhα ; w = c tanh β,

we obtain the known geometric formula

c · tanh(α + β) = c · tanhα + tanh β

1 + tanhα tanh β
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for the velocities addition, the Lorentz transformation corresponding to the constant
speed v being

Lc tanhα =
(

coshα
1

c
sinhα

c sinhα coshα

)
.

In the two-dimensional Minkowski space, denoted by M
2, where the Minkowski

product of the vectors x = (t1, x31) and y = (t2, x32) is defined by

〈x, y〉M := c2t1t2 − x31 x
3
2 ,

each matrix Lc tanhα preserves the Minkowski product.
Indeed, for j ∈ {1, 2} we have

Lc tanhα ·
(

τ j

x̄3j

)
=

(
coshα

1

c
sinhα

c sinhα coshα

)
·
(

τ j

x̄3j

)
=

⎛
⎝ τ j coshα + 1

c
x̄3j sinhα

cτ j sinhα + x̄3j coshα

⎞
⎠ ,

and

c2
(

τ1 coshα + 1

c
x̄31 sinhα

) (
τ2 coshα + 1

c
x̄32 sinhα

)
−

− (
cτ1 sinhα + x̄31 coshα

) (
cτ1 sinhα + x̄31 coshα

) = c2τ1τ2 − x̄31 x̄
3
2 .

The last property suggests another way to think at the Lorentz transformations in the
case of physical coordinates: they preserve the quantity c2t2 − (x3)2.

Exercise 8.3.1 Show that

c2τ 2 − (x̄3)2 = c2t2 − (x3)2.

Hint.

c2t2 − (x3)2 = c2
(

τ + x̄3 v/c2√
1 − v2/c2

)2

−
(

τ v + x̄3√
1 − v2/c2

)2

= c2τ 2 − (x̄3)2.

Now it becomes clear how the physical coordinates can be transformed into “geo-
metric physical coordinates”: The Ox0 axis has the units done with respect to ct in
R. In S, the corresponding axis becomes cτ .

In this way, the unit of measure for the first axis is a length, the same as the unit
for the spatial axes.

Theorem 8.3.2 Lorentz physical transformations preserves the square of the
Minkowski norm of vectors.
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However, in the case in which we are not interested in highlighting theMinkowski
Geometry, we prefer to work in our initial R and S systems of coordinates.

Consider an infinitesimal time-like interval between the points (t, x) and (t +
dt, x + dx) and its arclength expressed in the form suggested by the previous invari-
ant, that is

ds2 = c2(dt)2 − (dx)2.

We denoted by x the x3 coordinate to make the notations easier. The same interval
can be seen in a frame such that, at each time τ , the moving point which describes
the interval is at rest. Denote by (τ , xτ ) the world line whose coordinates express the
moving point at rest. Taking into account the conservation law seen before, we have

ds2 = c2(dt)2 − (dx)2 = c2(dτ )2 − (dxτ )
2 = c2(dτ )2.

Therefore
ds = cdτ ,

that is we can define

�τ =
∫
l
dτ =

∫
l

ds

c
,

where l is the notation for the chosen time-like infinitesimal interval. We observe

�τ =
∫
l

√
c2dt2 − dx2

c
=

∫
l

√
1 − 1

c2
dx2

dt2
dt =

∫
l

√
1 − v2(t)

c2
dt,

where v(t) is the usual speed.

Definition 8.3.3 �τ is called a proper time interval.

Therefore, we can say that proper time measured along the time-like world line
above is the time measured by a clock following point by point the considered
world line. Let us give now an important property of the proper time �τ in Special
Relativity:

Theorem 8.3.4 (Time dilation in physical coordinates) A clock slows down when it
is moving at constant speed.

Proof Denote by �τ the unit interval of a clock moving at constant speed v. This
clockmeasures the proper time defined above. It is like you consider the unit of τ axis
in S to be �τ . We are interested in knowing the connection between the proper time
and the time coordinate t of the frame at rest, R. Denote by �t the corresponding
element of �τ after a Lorentz transformation Lv in geometric coordinates. We have

Lv ·
(

�τ
0

)
= 1√

1 − v2/c2

(
1 v/c2

v 1

)
·
(

�τ
0

)
=

(
�t
∗

)
,
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where ∗ meaning is related to the fact we are not interested in. Therefore

�t = �τ√
1 − v2/c2

,

that is

�τ < �t.

�

Theorem 8.3.5 (Length contraction in physical coordinates) The length are con-
tracting when the frame is moving at constant speed.

Proof Denote by�l̄ the unit length of S. Let�l be the corresponding element of�l̄
after a Lorentz transformation Lv . In order to compare the two lengths, we compute

Lv ·
(

0
�l̄

)
= 1√

1 − v2/c2

(
1 v/c2

v 1

)
·
(

0
�l̄

)
=

( ∗
�l

)
,

where ∗ meaning is related to the fact we are not interested in. It results

�l = �l̄√
1 − v2/c2

,

that is

�l̄ < �l.

�

8.3.2 Relativistic Mass, Rest Mass and Rest Energy in
Physical Coordinates

Let us see how it looks like the relativisticmass in the case of physical coordinates.We
start from an object at rest, having a rest mass denoted bym0 �= 0 with its relativistic

momentum as in the case of geometrical coordinates in S, P0 =
(
m0

0

)
.

Let us denote by P =
(

m
mv

)
the relativistic momentum of a classical body mov-

ing at constant speed v.

Theorem 8.3.6 If m0 �= 0 is the rest mass of a body moving at constant speed v,
then

m = m(v) = m0√
1 − v2/c2

.
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Proof Using the Lorentz transformation Lv , we have P = Lv · P0, i.e.(
m
mv

)
= 1√

1 − v2/c2

(
1 v/c2

v 1

)
·
(
m0

0

)
,

which leads to the so called relativistic mass, now in physical coordinates,

m = m(v) = m0√
1 − v2/c2

.

�

As in the case of geometrical coordinates, the previous formula holds when
m0 �= 0.

We are talking about the rest energy, of course, in the same case m0 �= 0. The
discussion is almost the same as when we proved that, in geometric coordinates,
mass means energy.

If we consider the real function

f (v) = 1√
1 − v2/c2

and the formula of the relativistic mass, we can neglect the B terms because 1/c4

modify a given quantity in an irrelevant mode. We may write

m0√
1 − v2/c2

= m0 + 1

2
m0v

2/c2.

Let us define the kinetic relativistic energy by

E(v) := m0c2√
1 − v2/c2

.

The previous formula becomes

E(v) = m0c
2 + 1

2
m0v

2.

We may call rest energy the formula E := m0c2; it makes sense when m0 �= 0.
A comment. It is useful, at this point, after the discussion about the relativistic

mass, saying some words about the light energy which is not 0, even if the rest mass
of photons is 0. To understand why, we have to accept the alternative way to consider
the light as explained byMaxwell equations, that is light is an electromagnetic wave.
We have also to accept the dual behavior of light and to define the photon as the
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particle attached to the wave.2 The equation of photon energy is E = h f = hc/λ,
where h is the Planck constant, f is the photon frequency, λ is the photon wavelength
and, of course, c is the speed of light in vacuum. Therefore, in the case of a photon,
we have a relativistic equivalent of mass given by the formula E/c2.

8.4 Maxwell’s Equations

Maxwell’s equations are the “core” of Special Relativity. Essentially, this theory has
been developed in view of explaining their invariance under Lorentz transformations.
In order to discuss Maxwell’s equations, which describes the electromagnetic field,
we need some preliminary algebraic result.

Theorem 8.4.1 If

A = (A1, A2, A3), B = (B1, B2, B3), C = (C1,C2,C3),

B × C :=

∣∣∣∣∣∣∣
→
i

→
j

→
k

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣ ,

A · B := A1B1 + A2B2 + A3B3, A · C := A1C1 + A2C2 + A3C3,

then
A × (B × C) = (A · C)B − (A · B)C.

Proof We have
(A · C)B − (A · B)C =

= (A1C1 + A2C2 + A3C3)(B1, B2, B3) − (A1B1 + A2B2 + A3B3)(C1,C2,C3) =

=

∣∣∣∣∣∣∣
→
i

→
j

→
k

A1 A2 A3

B2C3 − B3C2 −B1C3 + B3C1 B1C2 − B2C1

∣∣∣∣∣∣∣ = A × (B × C).

�

Now, consider both the gradient operator and the Laplace operator in spatial
coordinates denoted by (x1, x2, x3), that is

2The dual nature of light, and of any particle, is better framed in the context of QuantumMechanics
in relation to the concept of wave-particle. For a discussion, see [38].
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� :=
(

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
,

�2 := ∂2

(∂x1)2
+ ∂2

(∂x3)2
+ ∂2

(∂x3)2
.

The last formula can be also seen written in the formal way

�2 := � · �

We formally define

� · A := ∂A1

∂x1
+ ∂A2

∂x2
+ ∂A3

∂x3

and

� × A :=

∣∣∣∣∣∣∣∣

→
i

→
j

→
k

∂

∂x1
∂

∂x2
∂

∂x3
A1 A2 A3

∣∣∣∣∣∣∣∣
=

(
∂A3

∂x2
− ∂A2

∂x3
,
∂A1

∂x3
− ∂A3

∂x1
,
∂A2

∂x1
− ∂A1

∂x2

)
.

Using these operators, a consequence of the above theorem is

Corollary 8.4.2
� × (� × A) = (� · A)� − (� · �)A.

Another comment is in order. We know the meaning of �2φ, where φ is a scalar
function. The meaning of �2A is related to the fact that �2 acts on each component
of A, i.e.

�2A := (�2A1,�2A2,�2A3).

Therefore we can write

� × (� × A) = (� · A)� − �2A.

If � · A = 0, the previous formula becomes

Corollary 8.4.3
� × (� × A) = − �2 A.

We will use this result later.
Denote by

E = E(t, x1, x2, x3) := (E1(t, x
1, x2, x3), E2(t, x

1, x2, x3), E3(t, x
1, x2, x3))
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the electric force vector and by

H = H(t, x1, x2, x3) := (H1(t, x
1, x2, x3), H2(t, x

1, x2, x3), H3(t, x
1, x2, x3))

the magnetic force vector;
In geometric units, theMaxwell equations, in the frame R considered as an empty

space, are ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

� · E = 0

� × E = −∂H

∂t
� · H = 0

� × H = ∂E

∂t

The first equation reveals the existence of an electric field in the absence of electric
charge. If we are not in vacuum, the first equation is� · E = ρ, where ρ is the electric
charge, therefore the first equation describes how an electric charge acts as source
for the electric force, here seen as an electric field.

The second equation � × E = −∂H

∂t
shows how a time varying magnetic field

gives rise to an electric field.
The third equation � · H = 0 shows that there are no magnetic charges.

The forth equation � × H = ∂E

∂t
shows how the time variation of electric field

creates the magnetic field.
Let us consider the derivative with respect t of the second equation.

−∂2H

∂t2
= ∂

∂t
(� × E) = ∂

∂t

∣∣∣∣∣∣∣∣

→
i

→
j

→
k

∂

∂x1
∂

∂x2
∂

∂x3
E1 E2 E3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

→
i

→
j

→
k

∂

∂x1
∂

∂x2
∂

∂x3
∂E1

∂t

∂E2

∂t

∂E3

∂t

∣∣∣∣∣∣∣∣∣
= � × ∂E

∂t
.

Using the last Maxwell equation and the above results, we find

−∂2H

∂t2
= � × ∂E

∂t
= � × (� × H) = −�2H,

that is
∂2H

∂t2
= �2H.

If we denote by

� := ∂2

∂t2
− �2
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the d’Alembert operator, the previous equation is

�H = 0.

This is the wave equation corresponding to the magnetic field. Therefore, for each
component Hi , i ∈ {1, 2, 3} we have

∂2Hi

∂t2
= �2Hi = ∂2Hi

(∂x1)2
+ ∂2Hi

(∂x2)2
+ ∂2Hi

(∂x3)2
.

Now, let us consider the derivative with respect t of the last equation.

∂2E

∂t2
= ∂

∂t
(� × H) = ∂

∂t

∣∣∣∣∣∣∣∣

→
i

→
j

→
k

∂

∂x1
∂

∂x2
∂

∂x3
H1 H2 H3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

→
i

→
j

→
k

∂

∂x1
∂

∂x2
∂

∂x3
∂H1

∂t

∂H2

∂t

∂H3

∂t

∣∣∣∣∣∣∣∣∣
= � × ∂H

∂t
.

Using the second Maxwell’s equation and the consequence, we find that

∂2E

∂t2
= � × ∂H

∂t
= −� × (� × E) = �2E,

i.e.
�E = 0.

This one is the wave equation corresponding to the electric field. We have now a
picture of the electromagnetic field described by the Maxwell equations: The two
waves equations of electric andmagnetic field are interconnected by the fourMaxwell
equations. We understand that one field can not exist without the other. Each one
generates the other.

Are these wave equations invariant under Lorentz transformations? The answer
is yes, but we need to perform more steps in order to achieve these results.

In the same way as before, for each component Ei , i ∈ {1, 2, 3}, we have

∂2Ei

∂t2
= �2Ei = ∂2Ei

(∂x1)2
+ ∂2Ei

(∂x2)2
+ ∂2Ei

(∂x3)2
.

To simplify, let us suppose that the electric field E depends only on the variables t
and x3, as in the case of a plane wave. The previous equations become

∂2Ei

∂t2
− ∂2Ei

(∂x3)2
= 0.
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To continue, let us choose a component only, say i = 1. Since for the other two
components, the following computations are the same, we prefer instead to use E1,
to denote this chosen component by the letter E. The previous equation becomes

∂2
E

∂t2
− ∂2

E

(∂x3)2
= 0.

How this simple equation looks like in S, frame considered with coordinates τ , x̄3,
if S is supposed to move at constant speed v along the x3 axis in R? We have to use
the Lorentz inverse transformation L−v , that is⎧⎪⎪⎨

⎪⎪⎩
τ = t − x3 v√

1 − v2

x̄3 = −t v + x3√
1 − v2

.

Denote by Ē(τ , x̄3) = Ē

(
t − x3 v√
1 − v2

,
−t v + x3√

1 − v2

)
:= E(t, x3) the corresponding

component of the electric field in S, which, obviously have to be the same as in
R. We would like to prove that

∂2
E

∂t2
− ∂2

E

(∂x3)2
= ∂2

Ē

∂τ 2
− ∂2

Ē

(∂ x̄3)2
.

We have

∂E

∂t
= ∂Ē

∂τ

∂τ

∂t
+ ∂Ē

∂ x̄3
∂ x̄3

∂t
= ∂Ē

∂τ

1√
1 − v2

+ ∂Ē

∂ x̄3
−v√
1 − v2

and

∂2E

∂t2
= 1√

1 − v2

(
∂2Ē

∂τ2
∂τ

∂t
+ ∂2Ē

∂τ∂ x̄3
∂ x̄3

∂t

)
− v√

1 − v2

(
∂2Ē

∂ x̄3∂τ

∂τ

∂t
+ ∂2Ē

(∂ x̄3)2
∂ x̄3

∂t

)
,

that is

∂2
E

∂t2
= 1

1 − v2

∂2
Ē

∂τ 2
− 2v

1 − v2

∂2
Ē

∂ x̄3∂τ
+ v2

1 − v2

∂2
Ē

(∂ x̄3)2
.

In the same way

∂2
E

(∂x3)2
= v2

1 − v2

∂2
Ē

∂τ 2
− 2v

1 − v2

∂2
Ē

∂ x̄3∂τ
+ 1

1 − v2

∂2
Ē

(∂ x̄3)2
,
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therefore the desired relation is obtained by subtracting the two expressions. Now,
from

∂2
E

∂t2
− ∂2

E

(∂x3)2
= 0

in R, we obtain
∂2
Ē

∂τ 2
− ∂2

Ē

(∂ x̄3)2
= 0

in S, that is the corresponding equation is the same as it has to be. Therefore, in a
moving inertial frame, the Maxwell equations are the same as in a frame at rest. We
have proved

Theorem 8.4.4 Lorentz transformations preserve Maxwell’s equations.

If the reader try to prove if the equality

∂2
E

∂t2
− ∂2

E

(∂x3)2
= ∂2

Ē

∂τ 2
− ∂2

Ē

(∂ x̄3)2

holds for the inverse of Galilean transformations Ē(τ , x̄3) = Ē
(
t,−vt + x3

) :=
E(t, x3), the answer is no, that is the Galilean transformations fail for the Maxwell
equations. This can be easily shown. If the reader computes

∂E

∂t
= ∂Ē

∂τ

∂τ

∂t
+ ∂Ē

∂ x̄3
∂ x̄3

∂t
= ∂Ē

∂τ
− v

∂Ē

∂ x̄3

and

∂2
E

∂t2
=

(
∂2
Ē

∂τ 2

∂τ

∂t
+ ∂2

Ē

∂τ∂ x̄3
∂ x̄3

∂t

)
− v

(
∂2
Ē

∂ x̄3∂τ

∂τ

∂t
+ ∂2

Ē

(∂ x̄3)2
∂ x̄3

∂t

)
=

= ∂2
Ē

∂τ 2
− 2v

∂2
Ē

∂ x̄3∂τ
+ v2 ∂2

Ē

(∂ x̄3)2
.

Then,
∂E

∂x3
= ∂Ē

∂ x̄3

and
∂2
E

(∂x3)2
= ∂2

Ē

(∂ x̄3)2
,

that is

∂2
E

∂t2
− ∂2

E

(∂x3)2
= ∂2

Ē

∂τ 2
− ∂2

Ē

(∂ x̄3)2
− 2v

∂2
Ē

∂ x̄3∂τ
+ v2 ∂2

Ē

(∂ x̄3)2
�= ∂2

Ē

∂τ 2
− ∂2

Ē

(∂ x̄3)2
.
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Theorem 8.4.5 Galilei’s transformations do not preserve Maxwell’s equations.

The final conclusion is: Classical Mechanics through Galilei’s transformations
does not preserve Maxwell’s equations while the Special Relativity, through Lorentz
transformations, does it.

8.5 Doppler’s Effect in Special Relativity

We have proved that the speed of light does not depend on the speed of the source
of light. Let us now focus on the frequency of light signals. We prove that the
frequency of light signals depends on the speed of the source, that is, we show that
light frequency is increasing when the source is approaching to the observer O at
rest in R, then, when the source is moving away, the light frequency is decreasing.
This is the so called Doppler’s effect or relativistic Doppler’s effect.

Definition 8.5.1 Doppler’s effect is a change in frequency of light-wave when a
source is moving at constant speed with respect to the frequency perceived by an
observer at rest.

Therefore we have two different formulas, one to estimate the frequency of the
source which is approaching, and another one for the frequency in the case when the
source is moving away. Let us translate this in a mathematical way.

Consider, as usual, two local frames of geometric coordinates, one moving at
constant speed v, denoted by S, and another one considered at rest, denoted by R.
The first local frame S is described by the coordinates (τ = x̄0, x̄3), while the frame
R is described by the coordinates (t = x0, x3).

Consider a source of light in S which, for each�τ seconds, releases a light signal.
If the frequency is denoted by ν, the connection between the two physical quantities
is

ν = 1

�τ
.

This formula is related to the behavior of a light wave.
The quantity �τ is the period of a light wave in the frame S. The light wave,

with frequency ν, is imagined as emitted light signals of duration �τ seconds. They
produces light cones with the vertexes on the τ -axis.

So, the source is moving in S along the τ -axis and, in R, this τ axis becomes
the line x3 = vt . The observer, at the origin O of R, perceives the source first as
approaching, then as moving away.

To simplify, let us consider the moment when the two origins are coincident
and, on the τ -axis, we draw �τ intervals to the left and to the right. The light cones,
considered in S, determine two kinds of equal intervals�t on the t-axis in R. Until the
origin, we denote them �tapp, after we denote them by �tma , each one determining
its corresponding frequency in R. The subscript app and ma are obviously from the
words “approaching” and “moving away.”



8.5 Doppler’s Effect in Special Relativity 245

Therefore, two kinds of frequencies appear in R, that is

fapp := 1

�tapp

and

fma := 1

�tma
.

Theorem 8.5.2 According to the above conditions, we have:
(i) If the source is approaching,

fapp = ν

√
1 + v

1 − v
> ν.

(ii) If the source is moving away,

fma = ν

√
1 − v

1 + v
< ν.

Proof Denote by (0, 0) and (b, vb), the coordinates at the ends of the first interval
�τ on the τ -axis, as seen in R. The light-ray emitted at the point (b, vb) reaches the
t-axis at (b + vb, 0). Of course, in this case, we used the photon corresponding to
speed −1. Therefore

�tma = b(1 + v).

Now, consider the points (0, 0) and (−b,−vb) as the coordinates of a �τ interval
when the source is approaching. The light-ray emitted at the point (−b,−vb) reaches
the t-axis at (−b + vb, 0) because we used the photon corresponding to speed 1. In
this case

�tapp = b(1 − v).

If we consider the Minkowski arc length corresponding to a �τ interval, we have

�τ 2 = b2 − b2v2,

that is

b = �τ√
1 − v2

.

Nowusing this last formula and the two formulas for fapp = 1

�tapp
and fma = 1

�tma
,

the statement is proved. �
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Let us observe that we can write the two above formulas in the form

f = ν

√
1 − v

1 + v
,

if we perceive the approaching wave as moving away with speed −v.

8.6 Gravity in Special Relativity: The Case of the Constant
Gravitational Field

The fact that Special Relativity had to be improved towards General Relativity is
essentially due to two main reasons: From one side, Einstein, according to the Mach
criticisms [39], realized that the laws of Physics must be written in the same way for
any (inertial or non-inertial) observer (Invariance Principle). Secondly, considering
the gravitational phenomena, he realized that one needs to introduce accelerating
frames. According to these observations, Special Relativity is inadequate to enclose
gravity.

In order to discuss gravity in the framework of Special Relativity and show their
basic incompatibility, let us begin considering a very simple result.

In a Minkowski space, for every t , let v(t) be a vector of constant norm.
It results 〈v(t), v(t)〉M = k. If we consider the derivative with respect to t , we

obtain
〈v̇(t), v(t)〉M = 0.

We have proved the following

Proposition 8.6.1 (i) The derivative of a constant norm vector is a vector orthogonal
on the given vector, that is v̇(t) ⊥M v(t),
(ii) The vectors v̇(t) and v(t) areMinkowski type different, that is, if v(t) is space-like
vector, the derivative v̇(t) is time-like vector, and vice versa.

A second very important observation is this one:
In a local frame S of coordinates (τ = x̄0, x̄3), let us consider an event E(τ , x̄3),

x̄3 > 0. There are only two events on the τ -axis, say E1(τ1, 0) and E2(τ2, 0) with
τ1 < τ2, such that the event E is connected to the events E1 and E2 by light-rays.
Indeed, considering that the slopes of the lines E1E and E2E have to be 1 and −1
respectively, the connections among the coordinates are

τ = τ1 + τ2

2
; x̄3 = τ2 − τ1

2
,



8.6 Gravity in Special Relativity ... 247

or equivalently
τ1 = τ − x̄3; τ2 = x̄3 + τ .

Therefore we have proved

Proposition 8.6.2 Suppose the event E(τ , x̄3), x̄3 > 0 is connecting the events E1

and E2 by light-rays. If the coordinates are E1(τ1, 0), E2(τ2, 0), τ1 < τ2, then,
between the above coordinates there are the relations

τ1 = τ − x̄3; τ2 = x̄3 + τ .

The physical image is the following: a light-ray from E1 reaches E and is reflected
to E2. The coordinates are like in the previous proposition.

Let us now suppose that τ -axis is seen in the frame R as a curve. Tomove forward,
let us suppose that τ -axis is parameterized by

τ − axis :

⎧⎪⎨
⎪⎩
t (τ ) = 1

α
sinhατ

x3(τ ) = 1

α
coshατ .

Consider the event E , now in coordinates of R, that is E(t, x3).
The events E1 and E2 belong now to the curve which represents the τ -axis in R,

that is E1(t1, x31) with t1 = 1

α
sinhατ1 ; x31 = 1

α
coshατ1

and

E2(t2, x32) with t2 = 1

α
sinhατ2 ; x32 = 1

α
coshατ2,

in such a way that a light-ray from E1 reaches E and is reflected to E2.
Since the slopes E1E and E2E have to be 1 and −1 respectively, we have

x3 − x31
t − t1

= 1; x3 − x32
t − t2

= −1.

It results the system of equations

{−t + x3 = −t1 + x31
t + x3 = t2 + x32

with the solution ⎧⎪⎨
⎪⎩
t = t1 + t2 + x32 − x31

2

x3 = −t1 + t2 + x32 + x31
2

.
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The first formula becomes

t = sinhατ1 + sinhατ2 + coshατ2 − coshατ1

2α
= eατ2 − e−ατ1

2α
,

that is

t = eα(τ+x̄3) − e−α(τ−x̄3)

2α
= eαx̄3

α
sinhατ .

In the same way

x3 = eαx̄3

α
coshατ ,

that is we found out a coordinate transformation G : S → R,

G :

⎧⎪⎪⎨
⎪⎪⎩
t (τ , x̄3) = eαx̄3

α
sinhατ

x3(τ , x̄3) = eαx̄3

α
coshατ .

This is the proof of the following

Theorem 8.6.3 Consider a system R of coordinates (t, x3) in which the τ -axis is
the curve parameterized by

⎧⎪⎨
⎪⎩
t (τ ) = 1

α
sinhατ

x3(τ ) = 1

α
coshατ .

Suppose it exists three events E1, E, E2 such that a light-ray from E1 reaches E and
is reflected to E2. Then, between the coordinates of E1(t1, x31), E2(t2, x32) with

t1 = 1

α
sinhατ1 , x31 = 1

α
coshατ1 ; t2 = 1

α
sinhατ2 , x32 = 1

α
coshατ2 ;

and the coordinates of the event E(t, x3), there are the relations

⎧⎪⎪⎨
⎪⎪⎩
t (τ , x̄3) = eαx̄3

α
sinhατ

x3(τ , x̄3) = eαx̄3

α
coshατ ,

where
τ1 = τ − x̄3; τ2 = x̄3 + τ .
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Now, we consider a local frame S with coordinates (τ = x̄0, x̄1, x̄2, x̄3) in which
a constant gravitational field exists. This constant gravitational field can be imagined
as a vector− →

α acting along the x̄3 axis in its negative direction, therefore as a vector
with the spatial coordinates (0, 0,−α).

Let us consider another frame of coordinates R, whose coordinates are
(t = x0, x1, x2, x3). This frame is in free fall in the previous constant gravitational
field.

We may assume that, at τ = t = 0, the two frames can be seen together with
axes corresponding in notation of indexes. Let us suppose that the second frame R is
moving along the x̄3 axis in its negative direction. So,we can think of a transformation
which describes the constant gravitational field in S, involving only the pairs of axis
(τ , x̄3) of S and (t, x3) of R.

To obtain it, we change the perspective: We consider R at rest and the frame S
accelerating along the x3 axis with the constant acceleration (0,α).

When we determine the Lorentz transformation, our first concern is describing
the τ axis in R when S is moving at constant speed v. The question is: If S is
→
α-accelerating with respect to R, what becomes the τ axis of S in R?

Let us think of a line as a trajectory of a moving point. The speed is constant along
the line, that is the vector speed of a given line has constant norm; in the same time,
the acceleration vector is null. If we consider the current point (τ , 0) on τ -axis, the

speed vector is
→
V= (1, 0) and the acceleration vector is

→
A= (0, 0). Therefore the

τ -axis at rest is characterized by

|| →
V ||M = 1; || →

A ||M = 0.

Looking at the accelerated frame S, the R observer sees a modified τ -axis, denoted
now

c(τ ) := (t (τ ), x3(τ ))

and characterized by

|| →
ċ (τ )||M = 1; || →

c̈ (τ )||M = α.

Now, we observe that, according to the first proposition, the speed vector
→
ċ is a

time-like one, while the acceleration vector
→
c̈ is a space-like one. The two conditions

become the system of differential equations

{
(ṫ(τ ))2 − (ẋ3(τ ))2 = 1
−(ẗ(τ ))2 + (ẍ3(τ ))2 = α2

with the general solution
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⎪⎩
t (τ ) = 1

α
sinhα(τ + τ0) + t0

x3(τ ) =−+ 1

α
coshα(τ + τ0) + x30 .

From the Euclidean point of view, we deal with the hyperbola

(t − t0)
2 − (x3 − x30)

2 = 1

α2

having the center at (t0, x30) and the parallel asymptotes along the light cone. This is
a good exercise for the reader.

Of course, in R, where the Minkowski Geometry is acting, this curve is a
Minkowski space-like circle. From symmetry reason, we may choose the center
of this hyperbola at (0, 0), τ0 = 0 and the sign +. That is, we have an image of the
τ -axis of S in R, ⎧⎪⎨

⎪⎩
t (τ ) = 1

α
sinhατ

x3(τ ) = 1

α
coshατ .

We have proved the following

Theorem 8.6.4 If a coordinates frame S is
→
α-accelerated with respect to a frame

at rest R, then the image of the τ -axis of S in R is a curve c(τ ) := (t (τ ), x3(τ ))

characterized by the equations

⎧⎪⎨
⎪⎩
t (τ ) = 1

α
sinhατ

x3(τ ) = 1

α
coshατ .

Now, we have the complete image: It exists a local change of coordinates between
S and R described by the transformation G, G : S → R

G :

⎧⎪⎪⎨
⎪⎪⎩
t (τ , x̄3) = eαx̄3

α
sinhατ

x3(τ , x̄3) = eαx̄3

α
coshατ .

The transformation G, which was defined by using the idea of accelerating frame,
allows us to understand how the constant gravitational field − →

α in the frame of
coordinates S can be seen via the system of coordinates R. Consequently, in the
future, we will be able to compute the metric of S.
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Exercise 8.6.5 Show that the inverse transformation G−1 : R → S is

G−1 :

⎧⎪⎨
⎪⎩

τ (t, x3) = 1

α
tanh−1

(
t

x3

)
x̄3(t, x3) = 1

2α
ln

[
α2

((
x3

)2 − t2
)]

.

8.6.1 Doppler’s Effect in Constant Gravitational Field and
Consequences

We know, up to this point, that frames at rest and frames moving at constant speed
are inertial frames. The laws of mechanics and the new laws of Special Relativity
have the same form and hold in such frames. There are no evidences that frames
in which acts a constant gravitational field are non-inertial frames. Are they really
inertial frames? The answer is related to the Doppler effect in a constant gravitational
field.

We are interested in finding out how the frequency of light in S is affected by the
constant gravitational field − →

α which acts in S.
To obtain a formula which connects the frequency of the light and − →

α, we need
to change the perspective as we have done before. We use two frames of coordinates
S and R. Instead of looking at the frame of coordinates R in free fall in the previous
constant gravitational field, we look at R at rest and at the frame S accelerated along
the x3 axis with the constant acceleration

→
α.

Our study is done again in the two corresponding slices of S and R, taking into
account the coordinates (τ = x̄0, x̄3), respectively (t = x0, x3).

Let us pose the problem.
From the origin O(0, 0) of S is emitted a light signal with frequency ν. Consider

C(0, h), a point on x̄3 axis at height h. The level h is reached by the light-ray at the
point H(h, h). In order to obtain the frequency at the level h, we need to consider
the frame R. Denote by fh the frequency of the light-ray in R corresponding to the
level h in S. We have

Theorem 8.6.6
fh = νe−αh .

Proof Let us remember the transformation G,

G :

⎧⎪⎪⎨
⎪⎪⎩
t (τ , x̄3) = eαx̄3

α
sinhατ

x3(τ , x̄3) = eαx̄3

α
coshατ .
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The points O and C , from S, are seen through G in R with the coordinates

(t0, x30) =
(
0,

1

α

)
and (tC , x3C ) =

(
0,

eαh

α

)
respectively.

The equivalent of the point H in R has the coordinates(
eαh

α
sinhαh,

eαh

α
coshαh

)
. Since, through

(
0,

1

α

)
, the new τ -axis passes

in R, that is the curve c(τ ) =
(
1

α
sinhατ ,

1

α
coshατ

)
, equivalent to the line

x̄3 = h, is the curve ch(τ ) =
(
eαh

α
sinhατ ,

eαh

α
coshατ

)
.

The speed vector at h has the components
(
eαh coshαh, eαh sinhαh

)
, that is

vh = tanhαh.

We replace this formula in the general formula found before for the relativistic
Doppler’s effect and it results

fh = ν

√
1 − vh

1 + vh
,

that is

fh = ν

√
1 − tanh h

1 + tanh h
= νe−αh .

�

Let us observe that if we denote by

�τ = 1

ν

the corresponding period in S, and by

�t = 1

fh

the corresponding period in R, we obtain a formula connecting the two periods, that
is

�τ = e−αh�t.

If h > 0, that is, if the point C belongs to the upper half-plane of S, comparing the
periods in S with the one in R, we have

�τ < �t.
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If h < 0, that is if the point C is in the complementary half-plane of S, we have

�τ > �t.

If h is very close to 0, we may consider the approximation

e−αh = 1 − αh.

From a physical point of view, −αh corresponds to a potential energy for an object
whose mass is 1. Therefore we can write the formula

�t = 1

1 − αh
�τ

written with respect to the potential energy.
Now, let us take into account two clocks, one in O and one in C . Suppose the first

one ticking at each �τ seconds. The second clock at C is ticking in �t seconds.
The results �τ < �t if h > 0 and �τ > �t , if h < 0 hold.
This situation shows that S cannot be an inertial reference frame. In an inertial

reference frame, the position cannot affect the way in which time is running. In the
entire frame S, we should have a same result.

Therefore we have

Corollary 8.6.7 The frames in which a constant gravitational field is acting are not
inertial frames.

A further remark is the following. Let us suppose we are on the surface of a
planet. Consider 0 < h1 < h2. It results−αh1 > −αh2, that is 1 − αh1 > 1 − αh2.
Suppose that h1, h2 are so small than the quantities 1 − αh1 and 1 − αh2 are positive.
We obtain

�t1 = 1

1 − αh1
�τ <

1

1 − αh2
�τ = �t2.

Therefore, while h is decreasing, the clock, fromC is approaching O and it is ticking
slower and slower, that is the gravity slows down the clocks. This effect is taken into
consideration in the case ofGPS systemswherewe need to have same times at ground
level and at the GPS satellite level.3

3The acronym GPS stays for Global Positioning System. It is a satellite-based radio-navigation
system that provides geolocation and time information to a receiver anywhere on or near the Earth
where there is an unobstructed line of sight to the fleet of GPS satellites. Obstacles, such as moun-
tains, block or weaken the GPS signals.
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8.6.2 Bending of Light-Rays in a Constant Gravitational
Field

Theorem 8.6.8 The light-rays are bending in a constant gravitational field − →
α.

Proof The main idea of the proof that the light is bending in a constant gravitational
field is related to the fact that the projection of a line to a plane is a line or a point. For

the proof, the trajectory of a photon included in a given plane, in our case x3 = 1

α
,

is transferred into the frame of coordinates (τ = x̄0, x̄2, x̄3) and then it is projected
to the plane (x̄2, x̄3). The result is neither a line nor a point. Therefore the light-ray
is bent by the constant gravitational field.

Let us focus on G−1, now defined for a three dimensional slice in R. The result is

G−1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ (t, x2, x3) = 1

α
tanh−1

(
t

x3

)
x̄2(t, x2, x3) = x2

x̄3(t, x2, x3) = 1

2α
ln

[
α2

((
x3

)2 − t2
)]

and we look at the image of the plane x3 = 1

α
. In the next formulas, we suppress the

(t, x2) coordinates, therefore

G−1

(
x3 = 1

α

)
:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ = 1

α
tanh−1 (αt)

x̄2 = x2

x̄3 = 1

2α
ln

(
1 − α2t2

)
.

We observe: G−1

(
x3 = 1

α

)
is a cylinder containing the x̄2 axis.

If we consider the trajectory of a photon in the x3 = 1

α
plane, this has to be the

line c(s) =
(
s, s,

1

α

)
. The system G−1(c(s)) is described by the equations

G−1(c(s)) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ = 1

α
tanh−1 (αs)

x̄2 = s

x̄3 = 1

2α
ln

(
1 − α2s2

)
.

f
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If we project the previous trajectory of a photon, that is trajectory seen in S to the
plane (x̄2, x̄3), the result, denoted by c̄(s), is parameterized as

c̄(s) =
(
s,

1

2α
ln

(
1 − α2s2

))
.

It is obvious that c̄(s) is neither a point nor a line. �

8.6.3 The Basic Incompatibility Between Gravity and Special
Relativity

We can conclude this chapter pointing out the basic incompatibility between gravity
and Special Relativity.

Let us suppose we are in a local frame S, where a constant gravitational field− →
α

is acting and let us consider a photon emitted at the origin O from a source moving

along the τ -axis. Taking into account the frequency ν and the formula �τ = 1

ν
, the

next photon is emitted by the source at the point A(�τ , 0). The frame S is not an
inertial one and we have proved that the trajectories of photons are bending, that is
they are not straight lines but curves. This means that there is a specific curve starting
at the emitting point of the photon, in our case O , which reaches the line x̄3 = h at
a point denoted by M . The second photon, emitted in A has an identical trajectory
to the one emitted at O . This second trajectory reaches the line x̄3 = h in a point
denoted by N .

The quadrilateral OANM has the property �τ = OA = MN . The length MN
is the period �t corresponding to the frequency fh in R.

We have
�τ = �t,

instead of
�τ = e−αh�t.

This contradiction shows that the gravity cannot be integrated into the frame-
work of Special Relativity. Another theory has to be developed in order to fix this
shortcoming. This is General Relativity.



Chapter 9
General Relativity and Relativistic
Cosmology

Quod erat demostrandum.

An imaginary discussion between Newton and Einstein could be the following.
....................................................................*...............................................................

Isaac Newton: Dear Prof. Einstein, my Universe is very simple. I can describe it
using vectors and calculus. Between any two objects, a gravitational force is acting
and, according to the masses of objects and the distance between them, the gravita-

tional force law is F = G
mM

r2
. The gravitational field, in this case, is A = GM

r2
.

However, there exists an artifact, the gravitational potential Φ = GM

r
. After me, the

brilliant experimental physicist, Henry Cavendish, measured the gravitational con-
stant G = 6.67 × 10−11N m2/kg2, considered “universal”. The potential is related

to the gravitational field through the formula �Φ = − →
A, the vacuum field equation

is �2Φ = 0, as established by Pierre Simon Laplace, and the general gravitational
field equation is �2Φ = 4πGρ as pointed out by Siméon Denis Poisson, once the
density of matter is known. The objects are moving in this gravitational field accord-

ing to
→
F= m

→
A and the trajectories are conics because my gravitational universal

law gives a mathematical proof for the Kepler laws. What do you think?
Albert Einstein: Very simple indeed, Sir Isaac! Conversely, my Universe is geo-

metric and has four dimensions, it is called spacetime! I need more mathematics to
describe it. DifferentialGeometry is essential, but, my dear Sir, this was invented after
you passed away! My Universe is expressed by a metric ds2 = gi j dxidx j , where the
coefficients gi j play the role of your gravitational potential Φ. The Christoffel sym-
bols �i

jk are related to your gravitational field A. This means that “my gravitational
field” has more variables and structures than yours. The vacuum field equations are

Ri j = 0
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and my general field equations are

Ri j − 1

2
R gi j = 8πG

c4
Ti j .

Starting from them, I can recover the Laplace and Poisson equations in the weak
field limit so, my dear Sir Isaac,....I am coherent with your picture! The metric I
mentioned before is the one that satisfies the field equations. Objects are always
moving on geodesics of the metric, therefore their equations are

d2xr

dt2
+ �r

pq

dx p

dt

dxq

dt
= 0

These geodesic equations are my way of saying
→
F= m

→
A that I recover, indeed, in the

weak field limit. To conclude, one of my collaborators, John Archibald Wheeler, said
that the better description of my theory can be reduced to the sentence “Spacetime
tells matter how to move; matter tells spacetime how to curve” [34].
..................................................................*................................................................

Let us insist on the the last sentence. How the space is curved appears from the
Einstein field equations

Ri j − 1

2
R gi j = 8πG

c4
Ti j .

In the left-hand side, we have the “Geometry”: Metric gi j and its derivatives are
involved; in the right-hand side, we have a tensor depending on matter, the so called
energy-momentum tensor. Once we have a metric gi j , according to the Equivalence
Principle, we have also the geodesics of the metric as we will discuss below. Which
is the meaning of the geodesics described by the equations

d2xr

dt2
+ �r

pq

dx p

dt

dxq

dt
= 0 ?

The simplest answers is: They are trajectories of objects moving accordingly to the
Geometry of spacetime.

We start this chapter with some general considerations on what a good theory of
gravity should do and enunciating the basic principles on which General Relativity
lies. After, we take into account the differences between the Classical Newtonian
Mechanics and the Einstein picture of gravity based on Geometry. We discuss how it
works looking at the differences between the constant gravitational field, as conceived
in Classical Mechanics, and the General Relativity counterpart. Finally, we provide
Einstein’s field equations from the Einstein–Hilbert variational principle and briefly
discuss possible generalizations like the so called f (R) gravity.
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The Schwarzschild solution of the Einstein vacuum field equations is presented.
The orbits of planets and the bending of light rays are computed in the framework
of Schwarzschild metric.

Even if it does not verify the field equations, the Einstein metric is presented
because Einstein used it to compute the orbits of planets and the bending of light
rays. The full computation for the perihelion drift is presented. The same, in both
metrics, is presented the bending of light rays passing near our Sun.

Fermi’s viewpoint on Einstein’s vacuum field equations is presented with impli-
cations related to the study of the week gravitational field; the classical counterparts
of the relativistic equations are obtained in this way. We analyze Einstein static uni-
verse and the basic considerations on the cosmological constant, as a part related
to the standard approach to the General Relativity.

A “cosmological metric” is discussed when we study the Friedmann–Lemaître–
Robertson–Walker metrics of aUniverse in expansion. The waywe obtain it is related
to the way we considered the energy-momentum tensor. An interesting introductory
sectiondevoted to black holesmathematics is also presented. Tohaveamore complete
view on Relativity, we offer a short introduction on cosmic strings and gravitational
waves.

Particular hypothetical universes without global time coordinate, as Gödel’s one
and without masses, as de Sitter one, are presented to enlarge the possibilities of
solutions of Einstein’s field equations.

This is the most important chapter of the book. The main references for the topics
we are developing can be found in [4, 17–19, 21, 22, 25, 33–35, 40–45].

9.1 What Is a Good Theory of Gravity?

Before entering the details of General Relativity, some considerations are in order.
We need them to discuss the change of perspective introduced by the Einstein theory.

As it is well known, General Relativity is based on the fundamental assumption
that space and time are entangled into a single spacetime structure assigned on a
pseudo-Riemann manifold. Being a dynamical structure, it has to reproduce, in the
absence of gravitational field, the Minkowski spacetime.

General Relativity has to match some minimal requirements to be considered
a self-consistent physical theory. First of all, it has to reproduce the Newtonian
dynamics in the weak-energy limit, hence it must be able to explain the astronomical
dynamics related to the orbits of planets and the self-gravitating structures.Moreover,
it passed some observational tests in the Solar System that constitute its experimental
foundation [46].

However, General Relativity should be able to explain the Galactic dynamics,
taking into account the observed baryonic constituents (e.g. luminous components
as stars, sub-luminous components as planets, dust and gas), radiation and Newto-
nian potential which is, by assumption, extrapolated to Galactic scales. Besides, it
should address the problem of large scale structure as the clustering of galaxies. On
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cosmological scales, it should address the dynamics of the Universe, which means to
reproduce the cosmological parameters as the expansion rate, the density parameter,
and so on, in a self-consistent way. Observations and experiments, essentially, probe
the standard baryonicmatter, the radiation and an attractive overall interaction, acting
at all scales and depending on distance: this interaction is gravity.

In particular, Einstein’s General Relativity is based on four main assumptions.
They are

The “Relativity Principle” - there is no preferred inertial frames, i.e. all frames are good
frames for Physics.

The “Equivalence Principle” - inertial effects are locally indistinguishable from gravitational
effects (which means the equivalence between the inertial and the gravitational masses). In
other words, any gravitational field can be locally cancelled.

The “General Covariance Principle” - field equations must be “covariant” in form, i.e. they
must be invariant in form under the action of spacetime diffeomorphisms.

The “Causality Principle” - each point of space-time has to admit a universally valid notion
of past, present and future.

On these bases, Einstein postulated that, in a four-dimensional spacetime manifold,
the gravitational field is described in terms of themetric tensor field ds2 = gi j dxidx j ,
with the same signature of Minkowski metric. The metric coefficients have the phys-
ical meaning of gravitational potentials. Moreover, he postulated that spacetime is
curved by the distribution of the energy-matter sources.

The above principles require that the spacetime structure has to be determined
by either one or both of the two following fields: a Lorentzian metric g and a linear
connection �, assumed by Einstein to be torsionless. The metric g fixes the causal
structure of spacetime (the light cones) as well as its metric relations (clocks and
rods); the connection � fixes the free-fall, i.e. the locally inertial observers. They
have, of course, to satisfy a number of compatibility relations which amount to
require that photons follow null geodesics of �, so that � and g can be independent,
a priori, but constrained, a posteriori, by some physical restrictions. These, however,
do not impose that � has necessarily to be the Levi–Civita connection of g [47].

It should be mentioned, however, that there are many shortcomings in General
Relativity, both from a theoretical point of view (non-renormalizability, the presence
of singularities, and so on), and from an observational point of view. The latter indeed
clearly shows that General Relativity is no longer capable of addressing Galactic,
extra-galactic and cosmic dynamics, unless the source side of field equations contains
some exotic form of matter-energy. These new elusive ingredients, as mentioned
above, are usually addressed as dark matter” and dark energy and constitute up to
the 95% of the total cosmological amount of matter-energy [48].

On the other hand, instead of changing the source side of the Einstein field equa-
tions, one can ask for a “geometrical view” to fit the missing matter-energy of the
observed Universe. In such a case, the dark side could be addressed by extending
General Relativity including more geometric invariants into the standard Einstein–
Hilbert Action. Such effective Lagrangians can be easily justified at fundamental
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level by any quantization scheme on curved spacetimes [49]. However, at present
stage of the research, this is nothing else but a matter of taste, since no final probe
discriminating between dark matter and extended gravity has been found up to now.
Finally, the bulk of observations that should be considered is so high that an effective
Lagrangian or a single particle will be difficult to account for the whole phenomenol-
ogy at all astrophysical and cosmic scales.

9.1.1 Metric or Connections?

As we will see below, in the General Relativity formulation, Einstein assumed that
the metric g of the space-time is the fundamental object to describe gravity. The
connection � is constituted by coefficients with no dynamics. Only g has dynam-
ics. This means that the single object g determines, at the same time, the causal
structure (light cones), the measurements (rods and clocks) and the free fall of test
particles (geodesics). Spacetime is therefore a couple {M, g} constituted by a pseudo-
Riemannianmanifold and ametric. Even if itwas clear toEinstein that gravity induces
freely falling observers and that the Equivalence Principle selects an object that can-
not be a tensor (the connection �)—since it can be switched off and set to zero at
least in a point)—he was obliged to choose it (the Levi–Civita connection) as being
determined by the metric structure itself.

In the Palatini formalism, a (symmetric) connection� and ametric g are given and
varied independently. Spacetime is a triple {M, g, �} where the metric determines
rods and clocks (i.e., it sets the fundamental measurements of spacetime) while �

determines the free fall. In the Palatini formalism, � are differential equations. The
fact that� is the Levi–Civita connection of g is no longer an assumption but becomes
an outcome of the field equations.

The connection is the gravitational field and, as such, it is the fundamental field
in the Lagrangian. The metric g enters the Lagrangian with an “ancillary” role. It
reflects the fundamental need to define lengths and distances, as well as areas and
volumes. It defines rods and clocks that we use to make experiments. It defines also
the causal structure of spacetime. However, it has no dynamical role. There is no
whatsoever reason to assume g to be the potential for �, nor that it has to be a true
field just because it appears in the action. We will not develop any more the Palatini
formalism in this book. For a detailed discussion see [18].

9.1.2 The Role of Equivalence Principle

The Equivalence Principle is strictly related to the above considerations and could
play a very relevant role in order to discriminate among theories. In particular, it could
specify the role of g and � selecting between the metric and Palatini formulation of
gravity. In particular, precise measurements of Equivalence Principle could say us if
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� is only Levi–Civita or a more general connection disentangled, in principle, from
g. Before, we discussed the Equivalence Principle starting from the early Galileo
consideration stating thatmi ≡ mg. Besides this result, in General Relativity, Equiv-
alence Principle states that accelerations can be set to zero in given reference frame.
According to this result, the free fall along geodesics, given by the connection, is
ruled by the metric, as we will discuss below.

Before entering into details, let us discuss some topics related to the Equivalence
Principle. Summarizing, the relevance of this principle comes from the following
points:

• Competing theories of gravity can be discriminated according to the validity of
Equivalence Principle;

• Equivalence Principle holds at classical level but it could be violated at quantum
level;

• Equivalence Principle allows to investigate independently geodesic and causal
structure of spacetime.

From a theoretical point of view, Equivalence Principle lies at the physical foun-
dation of metric theories of gravity. The first formulation of Equivalence Principle
comes out from the theory of gravitation formulates by Galileo and Newton, i.e.
the Weak Equivalence Principle (the above Galilean Equivalence Principle) which
asserts the inertial mass mi and the gravitational mass mg of any physical object
are equivalent. The Weak Equivalence Principle statement implies that it is impos-
sible to distinguish, locally, between the effects of a gravitational field from those
experienced in uniformly accelerated frames using the simple observation of the free
falling particles behavior.

A generalization of Weak Equivalence Principle claims that Special Relativity is
locally valid. Einstein realized, after the formulation of Special Relativity, that the
mass can be reduced to a manifestation of energy and momentum as discussed in
previous chapter. As a consequence, it is impossible to distinguish between a uniform
acceleration and an external gravitational field, not only for free-falling particles, but
whatever is the experiment. According to this observation, Einstein Equivalence
Principle states:

• The Weak Equivalence Principle is valid.
• The outcome of any local non-gravitational test experiment is independent of the
velocity of free-falling apparatus.

• The outcome of any local non-gravitational test experiment is independent of
where and when it is performed in the Universe.

One defines as “local non-gravitational experiment” an experiment performed in a
small-size of a free-falling laboratory. Immediately, it is possible to realize that the
gravitational interaction depends on the curvature of spacetime, i.e. the postulates
of any metric theory of gravity have to be satisfied. Hence the following statements
hold:
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• Spacetime is endowed with a metric gi j .
• The world lines of test bodies are geodesics of the metric.
• In local freely falling frames, called local Lorentz frames, the non-gravitational
laws of physics are those of Special Relativity.

One of the predictions of this principle is the gravitational red-shift, experimentally
verified by Pound and Rebka in 1960 [46]. Notice that gravitational interactions
are excluded from the Weak Equivalence Principle and the Einstein Equivalence
Principle.

In order to classify alternative theories of gravity, the gravitational Weak Equiv-
alence Principle and the Strong Equivalence Principle has to be introduced. On the
other hands, the Strong Equivalence Principle extends the Einstein Equivalence Prin-
ciple by including all the laws of physics in its terms. That is:

• Weak Equivalence Principle is valid for self-gravitating bodies as well as for test
bodies (Gravitational Weak Equivalence Principle).

• The outcome of any local test experiment is independent of the velocity of the
free-falling apparatus.

• The outcome of any local test experiment is independent of where and when in
the Universe it is performed.

Alternatively, the Einstein Equivalence Principle is recovered from the Strong Equiv-
alence Principle as soon as the gravitational forces are neglected.Many authors claim
that the only theory coherent with Strong Equivalence Principle is General Relativity.

A very important issue is the consistency of Equivalence Principle with respect to
the QuantumMechanics. General Relativity is not the only theory of gravitation and,
several alternative theories of gravity have been investigated from the 60’s of last cen-
tury [49]. Considering the spacetime to be special relativistic at a background level,
gravitation can be treated as a Lorentz-invariant field on the background. Assuming
the possibility of General Relativity extensions, two different classes of experiments
can be conceived:

• Tests for the foundations of gravitational theories considering the various formu-
lations of Equivalence Principle.

• Tests of metric theories where spacetime is a priori endowed with a metric tensor
and where the Einstein Equivalence Principle is assumed always valid.

The subtle difference between the two classes of experiments lies on the fact that
Equivalence Principle can be postulated a priori or, in a certain sense, “recovered”
from the self-consistency of the theory. What is today clear is that, for several funda-
mental reasons, extra fields are necessary to describe gravity with respect to the other
interactions. Such fields can be scalar fields or higher-order corrections of curvature
invariants [49]. For these reasons, two sets of field equations can be considered:
The first set couples the gravitational field to the non-gravitational contents of the
Universe, i.e. the matter distribution, the electromagnetic fields, etc. The second set
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of equations gives the evolution of non-gravitational fields. Within the framework
of metric theories, these laws depend only on the metric and this is a consequence
of the Einstein Equivalence Principle. In the case where Einstein field equations are
modified andmatter field are minimally coupled with gravity, we are dealing with the
so-called Jordan frame. In the case where Einstein field equations are preserved and
matter field are non-minimally coupled, we are dealing with the so-called Einstein
frame. Both frames are conformally related but the very final issue is to understand
if passing from one frame to the other (and vice versa) is physically significant.
See [18] for details. Clearly, Equivalence Principle plays a fundamental role in this
discussion. In particular, the question is if it is always valid or it can be violated at
quantum level. See [50–52].

After these preliminary considerations, let us start with the geometric construction
of General Relativity. However, we recommend the reader to consider again these
introductory sections after he/she finishes to read the book because some current
problems in General Relativity are reported.

9.2 Gravity Seen Through Geometry in General Relativity

Let us go back to our previous discussion on the gravitational potential in Newtonian
Mechanics. We start from the tidal acceleration equations

d2

dt2
∂ x̄

∂q
= −d2Φx̄

∂ x̄

∂q
,

where the Hessian matrix of the gravitational potential Φ

d2Φx̄ =
(

∂2Φ(x̄)

∂xi∂xk

)
i,k

is encapsulated in its trace by the Laplace equation �2Φ = 0 in vacuum. In a space
endowed with a metric ds2 = gi j dxidx j , it is possible to find the equivalent

�2

dτ 2

∂xh

∂q
= −Kh

j

∂x j

∂q
,

where

Kh
j = Rh

i jk

dxi

dτ

dxk

dτ

plays the role of the Hessian of the gravitational potential.
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It seems to be natural to think of the trace of the matrix Kh
j to obtain an equivalent

of classical vacuum fields equations �2Φ = 0. Since

Kh
h = Rh

i jh

dxi

dτ

dx j

dτ ,

the Ricci tensor has to be involved in General Relativity field equations. It is why
Einstein, and then Hilbert, considered a way to express the field equations through
the Ricci tensor.

So, let us repeat their main idea. The gravitational field is not constant. There
are small variations of the gravitational field induced by some other bodies or by
changing the distance r between bodies. If we are on the surface of the Earth, our
legs will experience a higher intensity of the gravitational field of the Earth than our

head. To understand this, it is enough to look at the formula A = GM

r2
, M being the

mass of the Earth, G being the gravitational constant and r being the radius R of the
Earth at the legs level and r = R + h at the level of our head, h being our height.
For the same reason, a person at the first floor of a building experiences a greater
intensity of the gravitational field comparing with another person which is at the 33th
floor of the same building. The Moon makes ocean tides and we see how these are
related to the tidal effects.

Ifwe have tides,mathematically they can be treated under theNewtonian standard,
the field equation �2Φ = 0 being hidden in the trace of the Hessian matrix d2Φ

involved in the tidal equations

d2

dt2
∂ x̄

∂q
= −d2Φx̄

∂ x̄

∂q
.

Tides can be dealt with a geometric approach considering the Ricci tensor of a
given metric from the equations

�2

dτ 2

∂xh

∂q
= −Kh

j

∂x j

∂q
,

where

Kh
j = Rh

i jk

dxi

dτ

dxk

dτ
.

Einstein had the power to break the standard Newtonian approach, describing
gravity with the language of Differential Geometry.

According to Einstein, the components gi j of a metric ds2 = gi j dxidx j play
the role of gravitational potential Φ, which is just one of the potentials in gi j . The

Christoffel symbols �i
jk play the role of the gravitational field

→
A. Let us consider a

table of analogies containing the two ways of conceiving at the gravity
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Newton Einstein

Φ ←→ gi j

→
A ←→ �i

j k

�2Φ = 0 ←→ ?

�2Φ = 4πGρ ←→ ?

The first question mark seems to be replaced by Ri j = 0, but we still have to work
to obtain it. At this moment there is no clue regarding the second question mark.

Einstein was the first who realized that the laws of Nature has to be expressed by
equations which hold for any system of coordinates, that is, they must be covariant
with respect to any change of coordinates.

Taking into account also the discussion of previous sections, Einstein’s Principle
of General Covariance states:

The laws of Nature have to be expressed as equalities of different tensors.
The changes of coordinates become part of the core of General Relativity. Why

are they so important? They allow us to describe the laws of Nature from the point
of view of different observers or/and they allow us to describe a new state of a given
system.

Let us consider a region of space where the gravitational field can be neglected.
Consider a spacecraft there. Suppose that there are no other forces acting there.
Therefore all objects are moving on straight lines with constant velocity. The space-
craft does the same. Locally, the spacetime system of coordinates (x0, x1, x2, x3)
can be thought to describe an inertial frame, that is the local metric tensor is the
Minkowski one

gi j (x
0, x1, x2, x3) =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Since �i
jk = 0, the geodesics equations are

ẍ j (t) = 0, j ∈ {0, 1, 2, 3},

i.e. all objects there experience a free fall. So, the law of motion is described by the

previous equations which express in fact the equality
→
F= m· →

A for
→
F=→

0 .
Let us now suppose the engines of the spacecraft start and the space craft is

accelerated. This is described by a map M which switches from the coordinates
(x̄0, x̄1, x̄2, x̄3) to (x0, x1, x2, x3), i.e. we have to describe the old coordinates with
respect the new ones.
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We know, from Differential Geometry, how the new metric looks like.
The new components ḡi j are found after the rule dMt · (gi j ) · dM . In this new

metric, we can compute the new �̄i
jk and the geodesic equations are

¨̄xi (t) + �̄i
jk

˙̄x j (t) ˙̄x j (t) = 0, j ∈ {0, 1, 2, 3}.

Since under a change of coordinates, geodesics are transformed into geodesics, and
the meaning is kept, the old law of motion becomes the new law of motion, therefore
the equations

¨̄xi (t) = −�̄i
jk

˙̄x j (t) ˙̄x j (t), j ∈ {0, 1, 2, 3}

describes
→
F= m· →

A for
→
F �=→

0 .
Let us try to understand the constant gravitational field under this more general

approach.

9.2.1 Einstein’s Landscape for the Constant Gravitational
Field

We consider a local frame of coordinates S, (τ = x̄0, x̄1, x̄2, x̄3) in which acts a
constant gravitational field and another frame of coordinates R, whose coordinates
are (t = x0, x1, x2, x3), frame which is in free fall with respect to the previous
constant gravitational field. The metric in the second frame is the Minkowski one,

gi j (x
0, x1, x2, x3) =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Let us assume that, for τ = t = 0, the two frames can be seen as an unique framewith
axes corresponding in indexnotation.Weassumealso that the second frame ismoving
along the x̄3 axis in its negative direction. We saw already the transformation which
involves the constant gravitational field−α in S. It is, in fact, a change of coordinates
between S and R. If we consider only the pairs of axis (τ , x̄3) and (t, x3), this is

G :

⎧⎪⎪⎨
⎪⎪⎩
t (τ , x̄3) = eαx̄3

α
sinhατ

x3(τ , x̄3) = eαx̄3

α
coshατ .

with
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G−1 :

⎧⎪⎨
⎪⎩

τ (t, x3) = 1

α
tanh−1

(
t

x3

)

x̄3(t, x3) = 1

2α
ln
[
α2
((
x3
)2 − t2
)]

.

In the considered slice, in R, the metric is

(
g00 g03
g30 g33

)
=
(
1 0
0 −1

)
.

The metric in S is determined by dGt · (gi j ) · dG, where

dG = dGt =
(
eαx̄3 coshατ eαx̄3 sinhατ

eαx̄3 sinhατ eαx̄3 coshατ

)
= eαx̄3

(
coshατ sinhατ
sinhατ coshατ

)
.

It results (
ḡ00 ḡ03
ḡ30 ḡ33

)
=
(
e2αx̄

3
0

0 −e2αx̄
3

)
.

Themetric which describes the constant gravitational field in the corresponding slice
of S is

ds2 = e2αx̄
3 [
dx̄0 − dx̄3

]
.

In S, locally, the metric tensor is

ḡi j (x̄
0, x̄1, x̄2, x̄3) =

⎛
⎜⎜⎝
e2αx̄

3
0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −e2αx̄

3

⎞
⎟⎟⎠ .

The Christoffel first kind symbols are

�30,0 = �03,0 = αe2αx̄
3
, �00,3 = �33,3 = −αe2αx̄

3
, �30,3 = �03,3 = �00,0 = �33,0 = 0.

The Christoffel second kind symbols are

�0
30 = �0

03 = �3
00 = �3

33 = α, �3
30 = �3

03 = �0
00 = �0

33 = 0.

The geodesic equations, in the considered slice, with respect to the geodesic param-
eter λ are ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d2 x̄0

dλ2
= −2α

dx̄0

dλ

dx̄3

dλ

d2 x̄3

dλ2
= −α

(
dx̄0

dλ

)2
− α

(
dx̄3

dλ

)2
.
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In S, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2 x̄0

dλ2
= −2α

dx̄0

dλ

dx̄3

dλ

d2 x̄1

dλ2
= 0

d2 x̄2

dλ2
= 0

d2 x̄3

dλ2
= −α

(
dx̄0

dλ

)2
− α

(
dx̄3

dλ

)2

with the general solutions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̄0 = k3 + 1

2α
ln(k1 + λ) − 1

2α
ln(k2 − λ)

x̄1 = k4λ + k5
x̄2 = k6λ + k7

x̄3 = 1

α
lnα + 1

2α
ln(k1 + λ) + 1

2α
ln(k2 − λ).

A very good exercise for the reader is to prove that the above formulas verify the
equations of the geodesics.

Let us analyze the trajectories of photons. They come from the equations x3 =
t + b or x3 = −t + b. The constant b is arbitrary and the speed of light is assumed
1. We consider only the case x3 = t + b, the other case can be analyzed in a similar
way.

Let us introduce the previous formula in G−1. It results

G−1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ (t) = 1

α
tanh−1

(
t

t + b

)
= 1

2α
ln

1 + t

t + b

1 − t

t + b

= 1

2α
ln(2t + b) − 1

2α
ln b

x̄3(t) = 1

2α
ln
[
α2
(
(t + b)2 − t2

)] = 1

2α
ln(2t + b) + 1

α
lnα,

that is
x̄3(t) = τ (t) + β,

where β is a constant. The trajectories of photons are lines having the slope +1 (or
−1). Of course these lines are geodesics because they come from the geodesics of R.
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In the case x3 = k, let us express x̄3 as a function of τ . From

τ (t) = 1

α
tanh−1

(
t

k

)

it results
t = k tanh(ατ ),

that is

x̄3(τ ) = 1

2α
ln
[
α2k2(1 − tanh2(ατ ))

]
.

Therefore

x̄3(τ ) = 1

α
ln(αk) − 1

α
ln(cosh(ατ )).

Since

x̄3(0) = 1

α
ln(αk); dx̄3

dτ
(0) = 0; d2 x̄3

dτ 2
(0) = −α;

the second order approximation of x̄3 is the parabola

x̄3(τ ) = 1

α
ln(αk) − α

2
τ 2,

which, in the case k = 1

α
and τ = τ1

v
, becomes

x̄3(τ1) = α

2v2
τ 2
1 .

This is the parabola seen in the case of constant gravitational field in Classical
Mechanics, that is the trajectory function of time.

Since the second kind Christoffel symbols are constant, it is easy to compute R0
303.

We find R0
303 = �0

h0�
h
33 − �0

h3�
h
30 = α2 − α2 = 0.

In fact, all sectional curvatures are 0, but, in general, the geodesics are not straight
lines as we saw, they only come from lines of R.

In simple words, we can say that the constant gravitational field bends geodesics
of space.

How the constant gravitational field affects the proper time can be found out by
looking at the metrics involved in this description. For the frame R, free falling in
the constant gravitational field −α of S, the metric is the Minkowski one, i.e.

ds2 = dt2 − dx2.
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The clock ticks in �t seconds. The constant gravitational field induces in S, as we
saw, the metric

ds2 = e2αx̄ (dτ 2 − dx̄2).

Here, the clock ticks in �τ seconds. Between the observers of R and S, if x̄ →
0, x̄ > 0, there is the connection

�t = eαx̄�τ ≥ (1 + αx̄)�τ ≥ �τ ,

that is the clock of R ticks slower and slower as x̄ → 0, x̄ > 0.
The clock of a person A at the ground level of a building ticks less than the clock

of a person B at the 33th floor. Therefore the ground level person A ages slower than
the person B. Or, everyone legs are younger than the brain. Of course even at the
level of lifetime of a person, the effects are imperceptible.

Therefore, according to Newton, the constant gravitational field landscape exists

in n = 3 dimensions. The gravitational field is
→
A and the gravitational potential Φ

is related to it by the formula

→
A= −�Φ = (0, 0,−α).

The constant gravitational field satisfies the vacuum field equation

�2Φ = 0,

The equations of motion are

d2x

dt2
= 0; d2y

dt2
= 0; d2z

dt2
= −α;

The solution, in appropriate initial conditions if we consider a plane (t, z), is

z(t) = − α

2v2
t2.

Einstein’s constant gravitational field landscape exists in four dimensions.
The gravitational potential appears in the coefficients of the metric tensor

ḡi j (x̄
0, x̄1, x̄2, x̄3) =

⎛
⎜⎜⎝
e2αx̄

3
0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −e2αx̄

3

⎞
⎟⎟⎠ .
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The gravitational field is described by the Christoffel second kind symbols:

�0
30 = �0

03 = �3
00 = �3

33 = α, �3
30 = �3

03 = �0
00 = �0

33 = 0

and satisfies
Ri j = 0.

The equations of motions are the geodesic equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2 x̄0

dλ2
= −2α

dx̄0

dλ

dx̄3

dλ

d2 x̄1

dλ2
= 0

d2 x̄2

dλ2
= 0

d2 x̄3

dλ2
= −α

(
dx̄0

dλ

)2
− α

(
dx̄3

dλ

)2

with the general solutions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x̄0 = k3 + 1

2α
ln(k1 + λ) − 1

2α
ln(k2 − λ)

x̄1 = k4λ + k5
x̄2 = k6λ + k7

x̄3 = 1

α
lnα + 1

2α
ln(k1 + λ) + 1

2α
ln(k2 − λ).

Locally, the particular solution presented before,

x̄3(τ ) = 1

α
ln(αk) − α

2
τ 2,

can be approximated by the classical solution

x̄3(τ1) = α

2v2
τ 2
1 .

This intuitive description of Einstein’s pictures can be fully formalized considering
the Hilbert approach by which the gravitational field equations come out from a
variational principle.
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9.3 The Einstein–Hilbert Action and the Einstein Field
Equations

Under a change of coordinates xr = xr (xh), r ∈ {0, 1, . . . , n}, h ∈ {0, 1, . . . , n},
the second kind Christoffel symbols change according to the rule

∂2xk

∂xi∂x j = −�k
rs

∂xr

∂xi
∂xs

∂x j + �
r
i j

∂xk

∂xr
.

Suppose we vary the metric. It means that the coefficients gi j are changed in some
new coefficients ḡi j := gi j + δgi j . This second metric produces first type and second
type Christoffel symbols. Let us denote them by γi j,k and γi

jk . The same change of
coordinates gives for these new Christoffel symbols a similar formula

∂2xk

∂xi∂x j = −γk
rs

∂xr

∂xi
∂xs

∂x j + γr
i j

∂xk

∂xr
.

The difference of the previous formulas leads to

Proposition 9.3.1 The variation difference δ�i
jk := �i

jk − γi
jk satisfies

δ�k
rs

∂xr

∂xi
∂xs

∂x j = δ�
r
i j

∂xk

∂xr
,

i.e. δ�i
jk is a (1, 2) mixed tensor.

Let gi j be the matrix of the metric ds2 = gi j dxidx j and let g be the determinant
of gi j . Suppose this determinant is negative as in the case of the Minkowski metric.

Theorem 9.3.2 The formula which expresses the variation of
√−g is

δ
√−g = −1

2

√−g gi jδg
i j .

Proof The inverse of the matrix gi j is gi j such that gisgs j = δij .
Consider a given element gi j of the matrix and denote by Mi j the determinant

of the matrix obtained from the initial one after we cancel both the line i and the
column j .

The corresponding inverse element is gi j = (−1)i+ j Mi j

g
and, in this respect,

using the column j , the determinant can be thought as g =∑i (−1)i+ jgi j Mi j .
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Then, for the variation of
√−g, we have:

δ
√−g = ∂

∂gi j

(√−g
)
δgi j =

= − 1

2
√−g

∂g

∂gi j
δgi j = − 1

2
√−g

(−1)i+ j Mi jδgi j = − 1

2
√−g

· g · gi jδgi j .

It results

δ
√−g = 1

2

√−ggi jδgi j .

From gksgsl = δkl , it is δgksgsl + gksδgsl = 0, that is gksδgsl = −δgksgsl .
Multiplying by gmk , we obtain

gmkg
ksδgsl = −gmkgslδg

ks

and, after considering s = m = i, l = j , it is

δgi j = −gikgi jδg
ik .

Replacing in the formula of the variation of
√−g we obtain

δ
√−g = −1

2

√−ggi jgikg j iδg
ik,

that is

δ
√−g = −1

2

√−ggikδg
ik .

�
Theorem 9.3.3 (Palatini’s Formula) δRi j = δ�s

i j;s − δ�s
is; j .

Proof We start from

Ri j = Rs
is j = ∂�s

i j

∂xs
− ∂�s

is

∂x j
+ �s

su�
u
i j − �s

ju�
u
is .

Then the variation of the Ricci tensor is

δRi j = ∂(δ�s
i j )

∂xs
− ∂
(
δ�s

is

)
∂x j

+ δ�s
su�

u
i j + �s

suδ�
u
i j − δ�s

ju�
u
is − �s

juδ�
u
is .

The variation δ�s
i j is a (1, 2) tensor type. Its covariant derivative is

δ�s
i j;s = ∂(δ�s

i j )

∂xs
+ �s

suδ�
u
i j − δ�s

ju�
u
is − δ�s

iu�
u
js .
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In the same way the covariant derivative of δ�s
is is

δ�s
is; j = ∂(δ�s

is)

∂x j
+ δ�u

is�
s
ju − δ�s

su�
u
i j − δ�s

iu�
u
js .

Subtracting the second relation from the first we obtain the Palatini formula. �

Theorem 9.3.4 If V is a compact region of the Universe whose volume element is
dV , such that on its boundary ∂V , the variations δ�i

jk vanish, then

∫
V

gi j δRi j dV = 0.

Proof (Palatini’s Formula Consequence) Since the volume element dV is expressed
with respect to the given metric by

dV = √−g dx0dx1dx2dx3,

our integral becomes ∫
V

gi j δRi j
√−g d4x,

where we denoted dx0dx1dx2dx3 by d4x .
It exists a corresponding 3D-surface element dσ on ∂V , dσ = √−g′ d3x .
At each point of ∂V , it exists a normal outward vector n of components ns , i.e.

n = ns .
All these results help us to express the divergence formula which, in the classical

form, looks like ∫
V
divB dV =

∫
∂V

B · n dσ,

here, in its covariant form, being

∫
V
Bs

;s
√−g d4x =

∫
∂V

Bsns
√−g′ d3x .

Now, Palatini’s formula leads to

∫
V

gi j δRi j
√−g d4x =

∫
V

gi j
(
δ�s

i j;s − δ�s
is; j
)√−g d4x .

Taking into account that gi j;s = 0 and changing the dummy indexes, we can write
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∫
V

gi j δRi j
√−g d4x =

∫
V

[(
gi jδ�s

i j

)
;s − (gi jδ�s

is

)
; j
]√−g d4x =

=
∫
V

[(
gi jδ�s

i j

)
;s −
(
gisδ�

j
i j

)
;s

]√−g d4x =
∫
V

[
gi jδ�s

i j − gisδ�
j
i j

]
;s

√−g d4x .

Let us denote the contravariant vector gi jδ�s
i j − gisδ�

j
i j by Bs . Our initial integral

∫
V

gi j δRi j
√−g d4x,

according to the covariant above form, becomes

∫
∂V

Bsns
√−g′ d3x .

Since Bs = gi jδ�s
i j − gisδ�

j
i j vanishes on ∂V , the last integral is 0, that is

∫
V

gi j δRi j
√−g d4x = 0.

�

These considerations lead us to the following

Theorem 9.3.5 (Einstein’s Field Equations in vacuum) If V is a compact region of
the Universe without matter and energy inside it, such that, on its boundary ∂V , the
variations δ�i

jk vanish, then

Ri j − 1

2
R gi j = 0.

Proof (Hilbert) We have proved both

δ
√−g = −1

2

√−g gi jδg
i j

and ∫
V

gi j δRi j
√−g d4x = 0.

To derive Einstein’s field equations, we have to choose an appropriate Lagrangian.
Hilbert’s idea was to consider the Lagrangian expressed through the Ricci curva-

ture scalar R, that is the Einstein–Hilbert action is

SEH =
∫
V
R
√−g d4x .
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Let us compute the first variation of SEH . It is

δSEH = δ

∫
V
R
√−g d4x = δ

∫
V

gi j Ri j
√−g d4x =

∫
V

δ
(
gi j Ri j

√−g
)
d4x =

=
∫
V

(
δgi j
)
Ri j

√−g d4x +
∫
V

gi j
(
δRi j
)√−g d4x +

∫
V
R δ
(√−g
)
d4x =

=
∫
V

δgi j Ri j
√−g d4x +

∫
V

gi jδRi j
√−g d4x − 1

2

∫
V
R
√−g gi jδg

i j d4x

After rearranging the right side we have

δSEH =
∫
V

[
Ri j − 1

2
R gi j

]√−g δgi j d4x +
∫
V

gi j δRi j
√−g d4x .

Since ∫
V

gi j δRi j
√−g d4x = 0,

the condition δSEH = 0 for gi j arbitrary, leads to the Einstein field equations in
vacuum. Therefore in a region of space as the one described by the previous statement,
without matter and energy, the Einstein field equations are

Ri j − 1

2
R gi j = 0.

�
Theorem 9.3.6 (Einstein’s field equations in presence of matter) If V is a region
of the Universe containing matter and energy, such that, on its boundary ∂V , the
variations δ�i

jk vanish, then there exists a (2, 0) covariant tensor Ti j such that

Ri j − 1

2
R gi j = K Ti j ,

where K is a coupling constant.

Proof (Hilbert) In the previous theorem, we have used an action which describes
the Geometry of space without matter and energy. If we want to describe the Geom-
etry of a space with matter and energy inside it, the Einstein–Hilbert action has to
contain a further term, denoted by SM , depending on the matter-energy distribution
in spacetime.

So, the general Einstein–Hilbert action SGEH has the form kSEH + SM , where k
is a constant. This can be written in the form

SGEH =
∫
V
(kR + S)

√−g d4x,



278 9 General Relativity and Relativistic Cosmology

that is

δSGEH = k
∫
V

[
Ri j − 1

2
R gi j

]√−g δgi j d4x +
∫
V

[
δS

δgi j

]√−g δgi j d4x,

because we have already computed the variation

δSEH =
∫
V

[
Ri j − 1

2
R gi j

]√−g δgi j d4x .

If the first variation of SGEH vanishes, it results

Ri j − 1

2
R gi j = K Ti j ,

where Ti j := − δS

δgi j
and K := 1

k
.

The general Einstein field equations are obtained. �

From

Ri j − 1

2
R gi j = K Ti j ,

it results

gmi Ri j − 1

2
R gmigi j = K gmi Ti j ,

i.e.

Rm
m − 1

2
δmm R = K Tm

m

Denoting by T := Tm
m the Laue’s scalar and taking into account that the dimension

is 4, we have δmm = 4, therefore R − 2R = KT, that is R = −KT .

We have obtained the following

Theorem 9.3.7 The equivalent of the Einstein field equations

Ri j − 1

2
R gi j = K Ti j ,

written with respect to the Laue scalar T , are

Ri j = K

(
Ti j − 1

2
T gi j

)
.

Let us understand why this discussion was important even if, at this moment, we
have not the exact value of the constant K .
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If Ti j = 0, it results T i
j = 0, therefore the Laue’s scalar T is 0. Finally

Corollary 9.3.8 Einstein’s vacuum field equations are equivalent to

Ri j = 0.

These results are particularly relevant because point out the symmetric role of
matter-energy and curvature.In some sense they realize the two-way nature of the
above Wheeler sentence that we report here again: “Spacetime tells matter how to
move; matter tells spacetime how to curve”.

9.4 A Short Introduction to f (R) Gravity

It is very interesting toobserve that the previous theoremscanbegeneralized if instead
R we use any smooth function f (R) in the Einstein–Hilbert action. In this way we
obtain the field equations of the so-called f (R) gravity. They are the straightforward
generalization ofEinsteinfield equations andhave recently acquired a lot of interest in
viewof solving several problems in cosmology and astrophysics (for a comprehensive

discussion, see, for example, [18]). For example, the model of f (R) = R + R2

6M2
,

where M has the dimension of mass, gives rise to the so-called Starobinski inflation
[53] which gives rise to the accelerated expansion of the early Universe capable
of addressing several issues of Cosmological Standard Model based on General
Relativity and Standard Model of Particles [54]. This kind of theories can be useful
also to address issues related to the late Universe, like recent accelerated expansion,
often dubbed dark energy epoch [55–57] or astrophysical issues like dark matter
[58].

A detailed discussion of these problems is out of the scope of this book but it is
worth pointing out that they are very active research areas. We refer the interested
reader to the cited bibliography.

In view of the present discussion, it is interesting to develop how the Einstein
field equations can be generalized in the f (R) gravity framework. In particular, it
is interesting to point out that metric and Palatini’s formalisms give different field
equations that, however, can be related each other, see [59].

Taking into account the previous results related to the Einstein field equations,
let us derive here the f (R) gravity field equations We shall use the following facts
proven in the previous section, that is:

δ
√−g = −1

2

√−g gi jδg
i j ,

∫
V

gi j δRi j
√−g d4x = 0.
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The second formula is a consequence of Palatini’s identity

δRi j = δ�s
i j;s − δ�s

is; j .

To begin, let us consider the basic objects introduced in the Differential Geometry
chapter: gi j , gi j , �i j,k, �k

i j , Ri
jkl , Ri j , Ri jkl, Ri

j , R. They are smooth functions,
that is functions having derivatives of all order everywhere in the domain, here
V . Therefore, if we assume f (R) as a smooth function of R(V ), then f (R) is a
smooth function for x ∈ V . If V is compact and connected region in the Euclidean n
dimensional space, then R(V ) is a compact interval in R. In particular f, f ′, . . . are
at least continuous functions on a real compact interval, here R(V ). The values of
f (R), f ′(R), . . . are in real compact intervals, too. The prime indicates derivative
with respect to the Ricci scalar R.

Theorem 9.4.1 If V is a compact and connected region of the universe without
matter and energy inside it, such that on its boundary ∂V the variations δ�i

jk vanish
and f is a smooth real valued arbitrary function on R(V ), then

f ′(R)Ri j − 1

2
f (R)gi j = 0.

Proof The line of the proof is similar to Theorem 9.3.5. The appropriate Lagrangian
is

S f =
∫
V
f (R)

√−g d4x .

Let us compute the first variation of S f .

δS f = δ

∫
V

f (R)
√−g d4x =

∫
V

δ[ f (R)
√−g] d4x =

=
∫
V

f ′(R)δR
√−g d4x +

∫
V

f (R)δ
(√−g
)
d4x =

=
∫
V

f ′(R)
(
δgi j
)
Ri j

√−g d4x +
∫
V

f ′(R)gi j
(
δRi j
)√−g d4x +

∫
V

f (R) δ
(√−g
)
d4x =

=
∫
V

f ′(R)δgi j Ri j
√−g d4x +

∫
V

f ′(R)gi j δRi j
√−g d4x − 1

2

∫
V

f (R)
√−g gi j δg

i j d4x

After rearranging the right-hand side, we have

δS f =
∫
V

[
f ′(R)Ri j − 1

2
f (R) gi j

]√−g δgi j d4x +
∫
V
f ′(R) gi j δRi j

√−g d4x .

Now, the mean value theorem implies the existence of a point x ∈ V such that
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∫
V
f ′(R)gi j δRi j

√−g d4x = f ′(R(x))
∫
V

gi j δRi j
√−g d4x .

The last integral is 0, therefore the condition δS f = 0 for gi j arbitrary, leads to f (R)

field equations in vacuum. Therefore, in the condition of the above statement, in a
region of space without matter and energy, the f (R) field equations in vacuum are

f ′(R)Ri j − 1

2
f (R) gi j = 0.

Let us observe that, for f (R) = R, we obtain the Einstein field equations in vacuum.
�

Theorem 9.4.2 If V is a compact and connected region of universe containing
matter and energy, such that on its boundary ∂V the variations δ�i

jk vanish and f is
a smooth real valued arbitrary function on R(V ), then there exists a (2, 0) covariant
tensor Ti j such that

f ′(R)Ri j − 1

2
f (R)gi j = KTi j ,

where K is a constant.

Proof If we choose the action

SG f =
∫
V
(k f (R) + S)

√−g d4x,

that is

δSG f = k
∫
V

[
f ′(R)Ri j − 1

2
f (R) gi j

]√−g δgi j d4x +
∫
V

[
δS

δgi j

]√−g δgi j d4x,

in the same way as in Theorem 9.3.6, we obtain the f (R) generalized field equations

f ′(R)Ri j − 1

2
f (R) gi j = KTi j .

�

Exercise 9.4.3 If the reader is interested in the differences between the Palatini and
metric formalisms in f (R) gravity, we propose the following exercisewhose notation
can be found in [18]. Starting from the action of f (R), show that

f ′(R)Ri j − 1

2
f (R)gi j − f ′(R);i j + gi j� f ′(R) = KTi j ,

with the trace
3� f ′(R) + f ′(R)R − 2 f (R) = KT ,
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are the field equations obtained by varying with respect to gi j without using the above
Palatini identity. Demonstrate that they are equivalent to

f ′(R)Ri j − 1

2
f (R) gi j = KTi j ,

unless a divergence free current. Here � is the d’Alembert operator defined as � :=
∇i∇ i with ∇i the covariant derivative.

Hint. Use results in [59].
We will consider again f (R) gravity in view of the discussion of the de Sitter

spacetime which is a solution of this theory.

9.5 The Energy-Momentum Tensor and Another Proof for
Einstein’s Field Equations

In the previous sections, considering an action SM dependent onmatter and energy,we
have obtained a symmetric tensor acting as a source into the Einstein field equation.
In order to discuss the properties of the tensor Ti j , we can start from the covari-
ant divergence related to the flow of an incompressible fluid in a region where the
parallelism is not the Euclidean one. The problem appears when we consider the
difference

Fx

(
x + �x

2
, y, z

)
�y�z − Fx

(
x − �x

2
, y, z

)
�y�z

related to the motion by parallel transport of the vector

(
−Fx

(
x − �x

2

)
, 0, 0

)

to the other face at the point

(
x + �x

2
, y, z

)
.

Therefore we parallel transport the contravariant vector

(
−Fx

(
x − �x

2

)
, 0, 0

)

along the infinitesimal vector Ak = (�x, 0, 0). Since, in general,�k
i j �= 0, the parallel

transport along A1 = (�x, 0, 0) for a contravariant vector V = (V 1, 0, 0) leads to a
vector whose first coordinate is

V 1

(
x − �x

2
, y, z

)
+ �V 1,

where
�V 1 = −�1

i j V
j�xi = −�1

1 j V
j�x = −�1

11V
1�x .
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The difference
[
V 1

(
x + �x

2
, y, z

)
− V 1

(
x − �x

2
, y, z

)
+ �1

11V
1�x

]
�y�z

is (
∂V 1

∂x
+ �1

11V
1

)
�x�y�z,

i.e. the covariant derivative with respect the first variable

V 1
;1�x�y�z.

Taking into account the three pairs of opposite faces corresponding to the three
directions, we can obtain the net outflow

(V 1
;1 + V 2

;2 + V 3
;3)�x�y�z

for a parallelepiped in a region where the Euclidean parallel transport is replaced
by the general parallel transport. The quantity V 1

;1 + V 2
;2 + V 3

;3, which is expressed
with respect of the covariant derivatives, can be thought as a covariant divergence of
a contravariant vector (V 1, V 2, V 3). Now let us use this idea to construct the main
property of Ti j .

9.5.1 The Covariant Derivative of the Energy-Momentum
Tensor

Now, let us assume a symmetric contravariant tensor (T i j ), expressed as a 4 × 4
matrix and a 4D-space of coordinates (x0, x1, x3, x4) endowed with a metric

ds2 = gi j dx
idx j , i, j ∈ {1, 2, 3, 4}

such that the parallel transport depends on �i
jk not all zero. The tensor (T i j ) looks

like

(T i j ) =

⎛
⎜⎜⎝
T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

⎞
⎟⎟⎠

Because of symmetry, the first line T 1i = (T 10, T 11, T 12, T 13) coincides with
the first column T i1 = (T 01, T 11, T 21, T 31), and can be seen as the representation a
contravariant 4-vector denoted by T 1, the same for the other rows and corresponding
columns.
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Before discussing something the physical aspects involved in the components of
the energy-momentum tensor, let us assert that we can analyze the tensor like the
vector F used to represent the flow of an incompressible fluid.

We can suppose the existence of a flowassociated to the tensor above. For each line
of the given tensor, we have the corresponding force T k described above.We can also
consider a 4-parallelepiped centered at a given point (x0, x1, x3, x4)with sides paral-
lel to the axes of coordinates and having the small dimensions �x0,�x1,�x2,�x3.
Small enough to suppose the vector T k having the same components at each point
of each considered face.

The difference of the total outflow, determined by F through the parallel faces
corresponding to x direction, is

Fx

(
x + �x

2
, y, z

)
�y�z − Fx

(
x − �x

2
, y, z

)
�y�z .

In the case of Ti j , it can be replaced by the total outflow determined by each T k

through the parallel faces corresponding to xi direction. Considering i = 1, we have
the differences

T k1
(
x0, x1 + �x1

2
, x2, x3

)
�x0�x2�x3 − T k1

(
x0, x1 − �x1

2
, x2, x3

)
�x0�x2�x3,

where k ∈ {0, 1, 2, 3}.
Furthermore, we have to consider the differences with respect to the parallel trans-

port of the given vectors

(
0, T k1

(
x0, x1 − �x1

2
, x2, x3

)
, 0, 0

)
, k ∈ {0, 1, 2, 3},

and then we have
[
T k1
(
x0, x1 + �x1

2
, x2, x3

)
− T k1
(
x0, x1 − �x1

2
, x2, x3

)
+ �1

k1T
k1�x1

]
�x0�x2�x3

with the approximation

[
∂T k1

∂x1
�x1 + �1

k1T
k1�x1

]
�x0�x2�x3, k ∈ {0, 1, 2, 3},

that is

T k1
;1 �x0�x1�x2�x3, k ∈ {0, 1, 2, 3}.

The total outflow for the 4-parallelepiped results equal to

T kl
;l �x0�x1�x2�x3.

It means that the quantity of matter and energy entering the 4-parallelepiped leaves
completely the interior. Therefore, at each moment of time, the quantity of matter
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inside can be considered a constant. The energy-momentum tensor is conserved, and
since it is conserved as�xk → 0, the limiting net flow approaches 0, that is T kl

;l = 0.
We know how to lowering indexes using the metric tensor: T l

i = gikT kl . Since the
covariant derivative of the metric tensor is 0,

T l
i;l = gik;l T kl + gikT

kl
;l = 0

Lowering again the indexes, we have Tji = g jl T l
i . In the same way

Tji;l = g jl;l T l
i + g jl T

l
i;l = 0.

According to all the previous assumptions, we have proved an important property of
the energy-momentum tensor, i.e.

Ti j;l = 0.

From a mathematical point of view, it is the divergence of Ti j that, as we will see
below, corresponds to the contracted Bianchi identities.

9.5.2 Another Proof for Einstein’s Field Equations

Let us remember, when starting from Bianchi’s formula

Rs
i jk;l + Rs

ikl; j + Rs
il j;k = 0,

we proved that the covariant derivative of the Einstein tensor is null, i.e.

(
Ri j − 1

2
R · gi j

)
;l

= 0.

The two tensors, Ti j and Ri j − 1

2
R · gi j are divergence-free, therefore they are pro-

portional, that is

Ri j − 1

2
R · gi j = K · Ti j ,

where K is a constant. This is another proof for theEinsteinfield equations in presence
of matter. It means that both the Einstein tensor and the energy-momentum tensor
satisfy the same contracted Bianchi identities, i.e. both tensors, being divergence-
free, satisfy the same conservation laws. Below, we will give specific forms for Ti j .
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9.6 Introducing the Cosmological Constant

The equation
∇2Φ + �Φ = 4πGρ0

has the particular solution Φ0 = 4πGρ0

�
.

Denote by Φ1 the solution of the equation

∇2Φ + �Φ = 4πG(ρ + ρ0).

A simple computation leads to the solution

Φ := Φ1 − Φ0

for
∇2Φ + �Φ = 4πGρ.

Observing this feature and knowing that �2Φ can be generalized as Ri j − 1

2
R · gi j

and Φ is a component of gi j , Einstein proposed to modify the left member of his
equations in the form

Ri j − 1

2
R · gi j + � · gi j ,

where the constant � is called cosmological constant.
Since gi j;l = 0, it results

(
Ri j − 1

2
R · gi j + � · gi j

)
;l

= 0,

that is the new tensor proposed by Einstein is again divergence-free. Therefore the
new Einstein field equations become

Ri j − 1

2
R · gi j + � · gi j = K · Ti j .

� was called cosmological constant. Einstein introduced this ingredient to improve
the total amount of matter-energy of the Universe in view of making it static. � can
be supposed related to a uniform spatial density ρ. After the discovery of cosmic
expansion by Edwin Hubble, he said that: It was the biggest blunder of my life.
However, in ’90 of last century, this concept has been revitalized and now represents
one of the main question of modern Physics [60]. We will discuss this issue later in
the book.

Going back to our formal discussion, we proved that Einstein’s field equations,
in the form
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Ri j − 1

2
R · gi j = K · Ti j

can be written with respect to Laue’s scalar T in the equivalent form

Ri j = K ·
(
Ti j − 1

2
T · gi j

)
.

The natural question is: There is an equivalent of the Einstein’s field equations with
cosmological constant

Ri j − 1

2
R · gi j + � · gi j = K · Ti j

written with respect to the Laue scalar?

Theorem 9.6.1 The equivalent of Einstein’s field equations with cosmological con-
stant are

Ri j − � · gi j = K

(
Ti j − 1

2
T · gi j

)
,

where T is the Laue scalar.

Proof We start from

ghi Ri j − 1

2
R · ghigi j + � · ghigi j = Kghi Ti j

which means

Rh
j − 1

2
R · δhj + � · δhj = K · T h

j ,

that is
R − 2R + 4� = K · T .

If we replace R = 4� − K · T in the original Einstein’s field equations it results

Ri j − � · gi j = K

(
Ti j − 1

2
T · gi j

)
.

�

The nature of this cosmological constant can be easily understood in a space without
standard matter-energy, that is in a space having Ti j = 0. Einstein equations reduces
to

Ri j − � · gi j = 0.

Therefore, in this case, the nature of cosmological constant is geometrical one.
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Specifically, let us consider Ri j = Rh
ih j . It contains partial derivatives of �i

jk and
terms as �s

jk�
i
sl . Now, let us observe that the unit of measure for �i

jk is given by the

unit of measure for �i j,k which contains partial derivatives as
∂gik

∂x j
. Since there is no

unit for gi j which is considered only as a geometric object, the unit for
∂gik

∂x j
is

1

l
,

where l is a length. It is clear that Ri j has physical dimensions
1

l2
. The cosmological

constant � is measured in
1

l2
.

9.7 The Schwarzschild Solution of Vacuum Field Equations

We intend to solve the Einstein field equations in vacuum, i.e. Ri j = 0 obtained previ-
ously assuming the spherical symmetry of spacetime. The Schwarzschild solution is
an exact solution for the vacuum field equations. Another way to find Schwarzschild
solution is presented in [23, 35].

Theorem 9.7.1 Consider the vacuum field equations Ri j = 0. Then

ds2 = c2
(
1 + B

r

)
dt2 − 1

1 + B

r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2

is the Schwarzschild solution for an arbitrary constant B.

Proof Karl Schwarzschild had the intuition to look for a spherically symmetric solu-
tionwhich describes the relativistic field outside of a non-rotating,massive body. This
was the first exact solution of the Einstein field equations. Instead of the ordinary
Cartesian coordinates (x0 = ct, x1, x2, x3), Schwarzschild used spherical coordi-
nates for the spatial part The new coordinate system (x0 = ct, r,ϕ, θ) is related to
the old one by the formulas

x1 = r sinϕ cos θ, x2 = r sinϕ sin θ, x3 = r cosϕ,

so then, for the spatial part, it is

(dx1)2 + (dx2)2 + (dx3)2 = dr2 + r2dϕ2 + r2 sin2 ϕdθ2.

Far from the source, the solution has to approximate the Minkowski metric

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2.
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In fact, the solution has to approximate

ds2 = c2dt2 − dr2 − r2dϕ2 − r2 sin2 ϕdθ2,

which is the Minkowski metric in spherically spatial coordinates.1

Therefore, it is natural to think the Schwarzschild metric in the form

ds2 = c2 · eT dt2 − (eQ − 1)dr2 − dr2 − r2dϕ2 − r2 sin2 ϕdθ2

where T := T (r), Q := Q(r) are two real functions that we need to determine from
the vacuum field equations Ri j = 0. As we previously discussed, both eT → 1 and
eQ → 1 have to go as r → ∞. For the metric

ds2 = c2 · eT dt2 − eQdr2 − r2dϕ2 − r2 sin2 ϕdθ2

the coefficients are

g00 = eT , g11 = −eQ, g22 = −r2, g33 = −r2 sin2 ϕ.

The inverse matrix coefficients are

g00 = e−T , g11 = −e−Q, g22 = − 1

r2
, g33 = − 1

r2 sin2 ϕ
.

Let us observe that

∂gi j

∂x0
= 0, i, j = 0, . . . , 3; �i

jk = 0, i �= j �= k.

The non-zero Christoffel symbols are

�0
01 = �0

10 = T ′

2
, �1

00 = −T ′

2
eT−Q , �1

11 = Q′

2
, �1

22 = −re−Q , �1
33 = −re−Q sin2 ϕ,

�2
21 = �2

12 = 1

r
, �2

33 = − sinϕ cosϕ, �3
31 = �3

13 = 1

r
, �3

23 = �3
32 = cot ϕ.

1This request is an important property that any physical solution has to posses. In fact, very far from
the source, a gravitational field has to go to zero. This means that Minkowski spacetime has to be
recovered. This property is called “asymptotic flatness” and characterizes any physical gravitational
field. It is worth noticing that this feature is fundamental for black hole solutions having physical
meaning.
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The only non-zero components of the Ricci tensor are

R00 = eT−Q

(
T ′′
2

+ (T ′)2
4

− T ′Q′
4

+ T ′
r

)
, R11 = −

(
T ′′
2

+ (T ′)2
4

− T ′Q′
4

− Q′
r

)

R22 = 1 − eQ + re−Q

(
Q′

2
− T ′

2

)
, R33 = sin2 ϕ R22.

The conditions R00 = 0 and R11 = 0 determine both T and Q.
Indeed, eQ−T R00 + R11 = 0 implies T ′ + Q′ = 0, that is T + Q=constant=k.

Thus eT = e−Qek , i.e. the metric is

ds2 = c2 · e−Qekdt2 − eQdr2 − r2dϕ2 − r2 sin2 ϕdθ2.

If we let t = ek/2u, then dt2 = ekdu2, and the metric becomes

ds2 = c2 · e−Qdu2 − eQdr2 − r2dϕ2 − r2 sin2 ϕdθ2.

So, we may choose T + Q = 0, i.e. Q = −T . Replacing in the second equation, we
have:

rT ′′ + r(T ′)2 + 2T ′ = (reT )′′ = 0.

It results
(
reT
)′ = A, that is reT = Ar + B, i.e. eT = A + B

r
.We impose that eT →

1 as r → ∞; it results A = 1. Therefore eT = 1 + B

r
and eQ = e−T = 1

1 + B

r

.

Let us observe that for T and Q so far determined, R22 = R33 = 0.
The Schwarzschild metric is exactly the solution in the theorem statement, that is

ds2 = c2
(
1 + B

r

)
dt2 − 1

1 + B

r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2 .

�

It is important to note that the Schwarzschild solution is independent of time.
According to this property, the solution is not only stationary but also static. This is
the statement of the Birkhoff theorem. See [61] for a detailed proof.

9.7.1 Orbit of a Planet in the Schwarzschild Metric

The above result can be immediately applied to celestial mechanics. Let us recall the
classical orbit from first Kepler’s law. The differential equation which describes the
gravitational attraction between a planet and a star is
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..→
X= −GM

r3
· →
X ,

where
→
X is the position vector, G = 6.67 · 10−11(m)3/(kg) · (s)2 is the gravitational

constant, M is the mass of the star and r = ‖ →
X ‖. Let J be the magnitude of the

angularmoment of the planet. If we consider polar coordinates and r = r(θ) = 1

u(θ)
,

then the previous equation becomes

d2u

dθ2
+ u = μ

J 2
, μ = GM.

The classical solution is:

u(θ) = μ

J 2
+ A cos(θ − θ0),

where A is an arbitrary constant which can be obtained from the initial condition and
θ0 is a phase shift. Since the phase shift alters the position of the planet at time t = 0
and we are interested only in the orbit itself, we may consider θ0 = 0. Denoting by

e the eccentricity e := AJ 2

μ
, the orbit described by the solution

u(θ) = μ

J 2
(1 + e cos θ) is the conic r(θ) =

J 2

μ

1 + e cos θ
.

The next result provides the differential equation which predicts the orbit of a planet
in its movement around the Sun in the new context of Schwarzschild metric.

Theorem 9.7.2 The orbit of a planet in the Schwarzschild metric is described by
the equation

d2u

dθ2
+ u = −c2B

2J 2
− 3B

2
u2.

Proof In the same way as before, we denote x0 := ct . The worldcurve of the planet
is the geodesic ζ(τ ) := (t (τ ), r(θ),ϕ(τ ), θ(τ )) of the Schwarzschild metric. We are

looking for a solution in the (x, y) plane, that is ϕ = π

2
. The reduced metric is

ds2 =
(
1 + B

r

)
(dx0)2 − 1

1 + B

r

dr2 − r2dθ.
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Since �3
23 = �3

32 = 1

r
and �3

i j = 0, the equation corresponding to the variable θ is:

..

θ (τ ) + 2

r(τ )
· .
r (τ )· .

θ (τ ) = 1

r2

(
r2(τ )

.

θ (τ )
)′ = 0.

We denote r2
.

θ= J and this J describes the magnitude of the angular momentum of
the planet exactly as in the classical case. We cancel τ in the next computations.

Let us continue with the geodesic equation corresponding to the variable x0. Since

only �0
01 = �0

10 = − 1(
1 + B

r

) · B

2r2
, the equation in x0 is

..
x
0 − B

r2
· 1(

1 + B
r

) · .
x
0 · .

r= 0.

By replacing x0 with ct , it results

..
t − B

r2
· 1(

1 + B
r

) · .
t · .

r= 0 i.e.

((
1 + B

r

)
· .
t

)′
= 0,

that is
.
t= E

1 + B
r

,

where E is a constant.
In the case of the equation corresponding to the variable r , we use directly the

metric condition taking into account that ds2 = c2dτ 2. After canceling dτ 2, it results

c2 = c2
(
1 + B

r

)
.
t
2 − 1

1 + B
r

.
r
2 −r2

.

θ
2

.

Let us replace
.
t and

.

θ in the previous equation. We have:

c2
(
1 − E2

)+ c2 · B · 1
r

= − .
r
2 − J 2

r2
− B · J 2

r3
.

Consider r = r(θ). It results:

.
r= dr

dθ
· .

θ= dr

dθ
· J

r2
.

If r := 1

u
, then

dr

dθ
= − 1

u2
du

dθ
, i.e.
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.
r= −J · du

dθ
.

Since
.
r
2= J 2 ·

(
du

dθ

)2
, the previous equation becomes

c2(1 − E2) + c2Bu = −J 2

(
du

dθ

)2
− J 2u2 − BJ 2u3.

If we differentiate with respect to θ, then we divide by
du

dθ
, we obtain the equation

d2u

dθ2
+ u = −c2B

2J 2
− 3B

2
u2.

�

9.7.2 Relativistic Solution of the Mercury Perihelion Drift
Problem

Nowwe need to clarifywho is B in the Schwarzschildmetric.We have requested that,
as r → ∞, the Schwarzschildmetric approaches the ordinaryMinkowskimetric. Let
us continue by taking into account the following two equations.
1. The classical orbit is described by

d2u

dθ2
+ u = μ

J 2
, μ = GM

2. The relativistic orbit is described, in the Schwarzschild metric, by

d2u

dθ2
+ u = −c2B

2J 2
− 3B

2
u2 .

From g00 = c2
(
1 + B

r

)
, we compute �1

00 = c2B

2r2
which is the only nonzero �i

00.

So, the r component of the geodesic equation is

d2r

dτ 2
= �1

00
dτ

dτ

dτ

dτ
,

that is
d2r

dτ 2
= c2B

2r2
.
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As r approaches the infinity, dτ becomes dt and the previous equation is the original

Newton equation
d2r

dt2
= −GM

r2
if and only if B = −2GM

c2
.

It results

1 + B

r
= 1 − 2GM

c2
· 1
r
.

In this way, the gravitational Newtonian potential φ(x, y, z) = −GM

r
is involved in

the coefficients of the metric. The coefficient
1

c2
highlights the weak gravitational

field which we will discuss later. See also [4].

The quantity rM := 2GM

c2
has the dimension of a length and it is called gravi-

tational radius, or the Schwarzschild radius, corresponding to the mass M . It is an
intrinsic characteristic of any body with mass.

In General Relativity, we can define a proper time interval �τ between two
events along a timelike path l following the definition given in Special Relativity.
Using constant space coordinates, the proper time satisfies the same equality

ds2 = c2(dτ )2

as in Special Relativity. Therefore using the same constant coordinates x1, x2, x3,
it results

�τ =
∫
l
ds =
∫
l

1

c

√
gi j dxidx j =

∫
l

1

c

√
g00dx

0.

A discussion about how gravity influences the proper time is in [40].
Next result allows to make distinction between the proper time and the time

coordinate in the case of Schwarzschild metric.

Theorem 9.7.3 The gravitational field described by the Schwarzschild metric

ds2 = c2
(
1 − 2GM

c2r

)
dt2 − 1

1 − 2GM
c2r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2

causes the slow down of clocks.

Proof Let us consider the Schwarzschild metric in a frame at rest R and apply the
previous results in the following way. The source of the gravitational field is at the
origin O of R. Consider twomotionless observers, one close to the source O , denoted
by O1, and the other one far from the source, O2. Each observer has a clock. For both
observers the variation of the space coordinates is 0. We have dr = dϕ = dθ = 0
for the first observer, therefore, according to him

ds2 = c2
(
1 − 2GM

c2r

)2
dt2.
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For the second motionless observer at rest, far from source, the influence of the
gravitational field is almost not observable. There, for r → ∞, we have ds2 = c2dτ 2.
Therefore the proper time is affected by the gravity according to the rule

c2dτ 2 = ds2 = c2
(
1 − 2GM

c2r

)
dt2.

Considering the clocks, it results

��c2�τ 2 = ��c2
(
1 − 2GM

c2r

)
�t2 ,

that is, the time interval �τ of O2’s clock appears to be less than �t on O1’s clock.
If you are close to a source, your clock will slow down and will continue to slow
down if you come closer and closer to the source. �

Let c be the speed of light in vacuum. If we write formally an expression Q as a

Taylor series in powers of
1

c

Q = a0 + a1 · 1
c

+ a2 · 1

c2
+ a3 · 1

c3
+ · · · + ak · 1

ck
+ · · · ,

we say that the order of Q is O

(
1

cm

)
if a0 = a1 = · · · = am−1 = 0 and am �= 0.

How is working this formal definition in a given physical context? Let us write
each relativistic expression (components of the gravitational field, metric tensor,

equations) as a Taylor series in powers of
1

c
. The computations with these series can

be truncated at the term that is appropriate for the physical contextwe are considering.

Theorem 9.7.4 In the relativistic field described by the Schwarzschild metric

ds2 = c2
(
1 − 2GM

c2r

)
dt2 − 1

1 − 2GM
c2r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2

the planet equation of motion

d2u

dθ2
+ u = μ

J 2
+ 3μ

c2
u2

has the solution

u(θ) = μ

J 2
(1 + e cos(θ − Fθ)) + O

(
1

c2

)
,

where F := 3μ2

c2 J 2
, being μ = GM.
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Proof We start from the classical equation of an orbit of a planet,

d2a

dθ2
+ a = μ

J 2

with the classical solution a(θ) = μ

J 2
(1 + e cos θ).

The new equation of the orbit

d2u

dθ2
+ u = μ

J 2
+ 3μ

c2
· u2

differs from the classical one by
3μ

c2
u2. This “correction” of the classical orbit is

due to the gravity related to the Schwarzschild metric. It is natural to search for the
solution as

u(θ) := a(θ) + w(θ)

c2
.

If we replace it in the new orbit equation

d2u

dθ2
+ u = μ

J 2
+ 3μ

c2
· u2,

we obtain

d2a

dθ2
+ a + 1

c2

(
d2w

dθ2
+ w

)
= μ

J 2
+ 3μ

c2

( μ

J 2
(1 + e cos θ) + w

c2

)2
,

or equivalently

1

c2

(
d2w

dθ2
+ w

)
= 3μ3

c2 J 4
(1 + e cos θ)2 + O

(
1

c4

)
.

The term O

(
1

c4

)
has a small influence on w. It remains to solve

d2w

dθ2
+ w = 3μ3

J 4

(
1 + e2

2
+ 2e cos θ + e2

2
cos 2θ

)
.

The solutions of the following three equations

d2w1

dθ2
+ w1 = 3μ3

J 4

(
1 + e2

2

)
; d2w2

dθ2
+ w2 = 6eμ3

J 4
cos θ; d2w3

dθ2
+ w3 = 3μ3e2

2J 4
cos 2θ
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are

w1 = 3μ3

J 4

(
1 + e2

2

)
, w2 = 3eμ3

J 4
θ cos θ, w3 = −3μ3e2

2J 4
cos 2θ.

Therefore, the solution of the new orbit equation is

u(θ) = μ

J 2
(1 + e cos θ) + 3μ3

J 4c2

(
1 + e2

2
+ eθ sin θ − e2

2
cos 2θ

)
.

Einstein’s idea was to use only the non-periodic term in the classical solution. Then

u(θ) = μ

J 2

[
1 + e

(
cos θ + 3μ2

c2 J 2
θ sin θ

)]
+ O

(
1

c2

)
,

which can be written as

u(θ) = μ

J 2
[1 + e cos(θ − Fθ)] + O

(
1

c2

)
,

where F := 3μ2

c2 J 2
. Neglecting the term O

(
1

c2

)
which adds only a small contribu-

tion, the trajectory is still the old conic. �

The correction to the classical trajectory, described in the Schwarzschild metric,

reaches the perihelion for cos(θ − Fθ) = 1, therefore, it is θ = θn = 2nπ

1 + F
for an

integer n. It results θ ≈ 2nπ
(
1 − F + O

(
F2
))
; that is 2πF is the perihelion drift

for each revolution.

If N is the number of orbits for a given period of time T , then the perihelion drift
Pd is

Pd = 6πG2M2

c2 J 2
· N .

For Mercury, if we replace the constants, we obtain 43 arcseconds per century
which was observed by astronomers, without explanation, in the context of Classical
Mechanics. This was considered one of the first confirmations of General Relativity.
See Sect. 9.8 and [40] for a detailed discussion also in the historical context.

9.7.3 Speed of Light in a Given Metric

Consider a Minkowski spacetime and suppose the worldcurve X(t) = (ct, x1(t),
x2(t), x3(t)) of a spatial object parameterized by the time t .
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Then, its relativistic speed is

∣∣∣∣
∣∣∣∣dXdt
∣∣∣∣
∣∣∣∣
2

= c2 −
(
dx1

dt

)2
−
(
dx2

dt

)2
−
(
dx3

dt

)2
= c2 − v2,

where

v =
√(

dx1

dt

)2
+
(
dx2

dt

)2
+
(
dx3

dt

)2

is the ordinary velocity of the object.
If the object is a photon,

∣∣∣∣
∣∣∣∣dXdt
∣∣∣∣
∣∣∣∣
2

= c2 − c2 = 0

as we expected.
If we consider the same worldcurve X(t) = (ct, x1(t), x2(t), x3(t)) in the metric

ds2 = g00(dx
0)2 + gαβdx

αdxβ,

where α,β are spatial indexes according to the above formalism, we have

ds2 = g00(dx
0)2 + g11(dx

1)2 + g22(dx
2)2 + g33(dx

3)2 +
3∑

α �=β=1

gαβdx
αdxβ .

Then

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 + (g00 − 1)(dx0)2 + (g11 + 1)(dx1)2+

+(g22 + 1)(dx2)2 + (g33 + 1)(dx3)2 +
3∑

α �=β=1

gαβdx
αdxβ,

i.e.

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 + (g00 − 1)(dx0)2 +
3∑

α,β=1

ḡαβdx
αdxβ

where ḡαβ = gαβ , if α �= β and ḡαβ = 1 + gαβ , if α = β.
This means that, for a photon, we obtain

0 =
(
dX

dt

)2
= c2 − γ2 + (g00 − 1)

(
dx0

dt

)2
+

3∑
α,β=1

ḡαβ
dxα

dt

dxβ

dt
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where

γ =
√(

dx1

dt

)2
+
(
dx2

dt

)2
+
(
dx3

dt

)2
.

The quantity γ, given by the formula

γ =
√√√√c2 + (g00 − 1)

(
dx0

dt

)2
+

3∑
α,β=1

ḡαβ
dxα

dt

dxβ

dt
,

is called the speed of light in a gravitational field derived by the above metric.
We say that γ does not violate the speed of light limit if γ ≤ c.

9.7.4 Bending of Light in Schwarzschild Metric

Let us consider now the light traveling in the spacetime described by the
Schwarzschild metric. First of all, we need to compute the speed γ of light in the
gravitational field induced by the metric above.

Theorem 9.7.5 Consider the Schwarzschild metric

ds2 = c2
(
1 − 2μ

c2r

)
dt2 − 1

1 − 2μ
c2r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2.

(i) In Cartesian coordinates this metric has the form

ds2 =
3∑

i=0

(
dxi
)2 − 2μ

c2r

⎛
⎝(dx0)2 + 1

1 − 2μ
c2r

3∑
α,β=1

xαxβ

r2
dxαdxβ

⎞
⎠ .

(ii) A deflected photon in the (x1, x2) plane, which comes from the undeflected photon
X (t) = (ct, h, ct, 0), has the speed

γ = c − μ

cr
− μ

cr
· (x2)2

r2
· 1

1 − 2μ
c2r

.

(iii) The deflected photon does not violate the speed of light limit c and γ can be
written in the equivalent form

γ = c − μ

cr
− μ(x2)2

cr3
+ O

(
1

c3

)
.

Proof (i) Let (x0, x1, x2, x3) = (ct, x, y, z) and r2 = x2 + y2 + z2.
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It results rdr = xdx + ydy + zdz which gives

dr =
3∑

α=1

xα

r
dxα, dr2 =

3∑
α,β=1

xαxβ

r2
dxαdxβ .

Taking into account that

dx2 + dy2 + dz2 = dr2 + r2dϕ2 + r2 sin2 ϕdθ2 =
3∑

α=1

(dxα)
2 ,

it results

ds2 = c2dt2 − 2μ

c2r
c2dt2 − 1 − 2μ

c2r + 2μ
c2r

1 − 2μ
c2r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2

= c2dt2 − dr2 − r2dϕ2 − r2 sin2 ϕdθ2 − 2μ

c2r

(
c2dt2 + 1

1 − 2μ
c2r

dr2
)

= (dx0)2 −
3∑

α=0

(dxα)
2 − 2μ

c2r

⎛
⎝(dx0)2 + 1

1 − 2μ
c2r

3∑
α,β=1

xαxβ

r2
dxαdxβ

⎞
⎠ .

(ii)According to the techniquepreviously described, suppose that X (t) = (ct, x1(t),
x2(t), x3(t)

)
is the worldcurve of an object parameterized by the time t . In the

Minkowski metric, it is

(
ds

dt

)2
= ‖ .

X (t)‖2 = c2 −
(
(

.
x
1

(t))2 + (
.
x
2

(t))2 + (
.
x
3

(t))2
)

= c2 − v2,

where v is the usual spatial speed of the object.

If the object is a photon, then

(
ds

dt

)2
= c2 − c2 = 0 and so

0 =
(
ds

dt

)2
= c2 − γ2 − 2μ

c2r

⎛
⎝c2 + 1

1 − 2μ
c2r

3∑
α,β=1

xαxβ

r2
dxα

dt

dxβ

dt

⎞
⎠ ,

where

γ(t) =
√

(
.
x
1

(t))2 + (
.
x
2

(t))2 + (
.
x
3

(t))2
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is the speed of the photon in the gravitational field described by the above metric. In
fact,

γ =

√√√√√c2 − 2μ

c2r

⎛
⎝c2 + 1

1 − 2μ
c2r

3∑
α,β=1

xαxβ

r2
dxα

dt

dxβ

dt

⎞
⎠.

We determine γ along the worldcurve X of an undeflected photon in the (x1, x2)
plane at the fixed distance h from the x2-axis.

The undeflected worldcurve of the photon is X (t) := (ct, h, ct, 0). The deflection
will add only lower order terms, therefore the deflected photon has, in the same plane,

a worldcurve which components have extra terms of order O

(
1

c

)
. The deflected

photon is parameterized by

Xd(t) :=
(
ct, h + O

(
1

c

)
, ct + O(1), 0

)
.

Since
.

Xd (t) :=
(
c, O

(
1

c

)
, c + O(1), 0

)
, we have

dx1

dt
= O

(
1

c

)
,

dx2

dt
= c + O(1),

dx3

dt
= 0.

It results the approximation

γ2 = c2 − 2μ

c2r

(
c2 + 1

1 − 2μ
c2r

(x2)2

r2
· c2
)

,

equivalent to

γ2 = c2
(
1 − 2μ

c2r
− 2μ(x2)2

c2r3
1

1 − 2μ
c2r

)
,

i.e.

γ = c ·
√
1 − 2μ

c2r
− 2μ(x2)2

c2r3
1

1 − 2μ
c2r

.

Taking into account that
√
1 + 2A ≈ 1 + A, the result is

γ = c − μ

cr
− μ

cr
· (x2)2

r2
· 1

1 − 2μ
c2r

.
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Fig. 9.1 Trajectory of an
undeflected photon

x3 = y

x2 = x
X(t) = (c · t, h, c · t, 0)

h

(iii) Since
1

1 − 2μ
c2r

≈ 1 + 2μ

c2r
+ O

(
1

c3

)
it results both the formula

γ = c − μ

cr
− μ(x2)2

cr3
+ O

(
1

c3

)

and the fact that the deflected photon does not violate the light limit speed
(Fig. 9.1). �

Theorem 9.7.6 The total deflection of the trajectory Xd(t) of a deflected photon in
the gravitational field described by the Schwarzschild metric

ds2 = c2
(
1 − 2μ

c2r

)
dt2 − 1

1 − 2μ
c2r

dr2 − r2dϕ2 − r2 sin2 ϕdθ2

is TD = 4GM

c2h
.

Proof Let us recall that the trajectory of the deflected photon is

Xd(t) =
(
ct, h + O

(
1

c

)
, ct + O(1), 0

)

and it comes from the undeflected photon trajectory X (t) = (ct, h, ct, 0), in which
the deflection added small contribution terms.

The previous theorem proves that the speed of a deflected photon in (x, y) plane
is

γ = c − μ

cr
− μ(x2)2

cr3
+ O

(
1

c3

)
.

Let us imagine a line l and two points on it having coordinates x and x + dx
respectively. Two parallel lines constructed through the given points make the same
�θ angle with the perpendicular to the l direction. This lines can be imagined as
trajectories of photons, the first one traveling with the speed γ(x), the second one
traveling with the speed γ(x + �x).

After �t seconds, the last two parallel lines change the trajectories into other
two parallel lines, etc. The first photon traveled γ(x)�t , the second one traveled
γ(x + �x)�t .
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Let us suppose now that γ(x)�t > γ(x + �x)�t. It is easy to see that there is a
rectangle triangle which leads to the relation

�θ ≈ sin�θ = γ(x)�t − γ(x + �x)�t

dx
,

that is
�θ

dt
≈ γ(x) − γ(x + �x)

dx
.

As �t → 0 and �x → 0, the last relation becomes

�θ

dt
= −∂γ

∂x
.

If s = ct ,
�θ

ds
= −1

c

∂γ

∂x
.

At the same time,
�θ

ds
is the geometric curvature determined for the photons tra-

jectories when the parameter is s. If we denote x by x1, the perpendicular direction
coordinate by x2, the total deflection is related to the integral of the geometric cur-

vature
�θ

ds
, that is

TD := −1

c

∫ ∞

−∞
∂γ

∂x1
dx2.

To perform the computation, we start from canceling the O

(
1

c4

)
term. We have

∂γ

∂x1

∣∣∣∣
Xd

= GMx1

cr3

∣∣∣∣
Xd

+ 3GM(x2)2x1

cr5

∣∣∣∣
Xd

= GMh

c(h2 + (x2)2)
3
2

+ 3GMh(x2)2

c(h2 + (x2)2)
5
2

and elementary computations lead to

1

c

∫ ∞

−∞
∂γ

∂x1
dx2 = GMh

c2

(∫ ∞

−∞
1

(h2 + (x2)2)
3
2

dx2 +
∫ ∞

−∞
3(x2)2

(h2 + (x2)2)
5
2

dx2
)

=

=
(

2

h2
+ 2

h2

)
GMh

c2
.

The total deflection is then TD = 4GM

c2h
. �
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At the surface of the Sun, we have

h = radius of the Sun= 7 × 108(m); G = 6, 67 × 10−11(m3)/(kg) · (s2),
M = mass of the Sun= 2 × 1030(kg); c = 3 × 108(m)/(s2).

It results for TDs ≈ 1.75′′. This was another sensational confirmation of General
Relativity due to Dyson and Eddington in 1919. See [40] for details.

9.8 About Einstein’s Metric: Einstein’s Computations
Related to Perihelion’s Drift and Bending of the Light
Rays

Even if Einstein was the one who discovered the vacuum field equations, he did
not solve them. In order to make computations possible, he choose a spherically
symmetric metric, independent of time, metric who approximates the Minkowski

metric as r → ∞. He took care to involve the gravitational potential Φ = −GM

r
in

the first two coefficients. Therefore, the chosen metric was

ds2 = c2
(
1 − 2μ

c2r

)
dt2 −
(
1 + 2μ

c2r

)
dr2 − r2dϕ2 − r2 sin2 ϕdθ2,

being always μ = GM . Obviously, this metric does not satisfy the field equations
Ri j = 0.

Einstein’s computations on perihelion drift and bending of light were performed
with this metric.

Theorem 9.8.1 (Einstein’s First Theorem) In the relativistic field described by Ein-
stein’s metric

ds2 = c2
(
1 − 2μ

c2r

)
dt2 −
(
1 + 2μ

c2r

)
dr2 − r2dϕ2 − r2 sin2 ϕdθ2

the planet equation of motion

d2u

dθ2
+ u = μ

J 2
+ 3μ

c2
u2

has the solution

u(θ) = μ

J 2
(1 + e cos(θ − Fθ)) + O

(
1

c2

)
,

where F := 3μ2

c2 J 2
.
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Proof In the same way as before, we denote x0 := ct . The worldcurve of the planet
is the geodesic ζ(τ ) := (t (τ ), r(θ),ϕ(τ ), θ(τ )) of Einstein’s metric. We are looking

for a solution in the (x, y) plane, that is ϕ = π

2
. The reduced metric is

ds2 = c2
(
1 − 2μ

c2r

)
dt2 −
(
1 + 2μ

c2r

)
dr2 − r2dθ2 .

We cancel out τ in the next computations. Since �3
23 = �3

32 = 1

r
and �3

i j = 0 in the

other cases, the equation corresponding to the variable θ is

..

θ +2

r
· .
r · .

θ= 1

r2

(
r2

.

θ
)′ = 0.

It results r2θ̇ =constant. We denote J := r2
.

θ.
The constant J describes the magnitude of the angular momentum of the planet

exactly as in the classical case.
Let us continue with the geodesic equation corresponding to the variable x0.

Since only �0
01 = �0

10 = 1

1 − 2μ

c2r

· μ

c2r2
, the equation in x0 is

..
x
0 + 2μ

c2r2
· 1

1 − 2μ
c2r

· .
x
0 · .

r= 0.

Replacing x0 by ct , it results

..
t + 2μ

c2r2
· 1

1 − 2μ
c2r

· .
t · .

r= 0.

that is
.
t= E

1 − 2μ
c2r

,

where E is a constant.
In the case of the equation corresponding to the variable r , we use directly the

metric condition. Taking into account that ds2 = c2dτ 2, afterwe cancel dτ 2, it results

c2 = c2
(
1 − 2μ

c2r

)
.
t
2 −
(
1 + 2μ

c2r

)
.
r
2 −r2

.

θ
2

.

Let us replace
.
t= E

1 − 2μ
c2r

, and
.

θ= J

r2
in the previous equation. We have:
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c2
(
1 − E2

)− 2μ

r
=
(
4μ2

c4r2
− 1

)
.
r
2 −r2θ̇2

(
1 − 2μ

c2r

)

Consider r = r(θ). It results:

.
r= dr

dθ
· .

θ= dr

dθ
· J

r2
.

If r := 1

u
, then

dr

dθ
= − 1

u2
du

dθ
, i.e.

.
r= −J · du

dθ
.

Since
.
r
2= J 2 ·

(
du

dθ

)2
, the previous equation becomes

c2(1 − E2) − 2μ · u = −J 2

(
du

dθ

)2
− J 2u2

(
1 − 2μ

c2r
u

)
+ O

(
1

c4

)
.

We can neglect the O

(
1

c4

)
terms which add only a small contribution to the tra-

jectory. If we differentiate with respect to θ and then we divide by
du

dθ
, we obtain

exactly the equation derived in the Schwarzschild metric case, that is

d2u

dθ2
+ u = μ

J 2
+ 3μ

c2
u2.

Of course, Einstein found the same solution and the same perihelion drift as in
the case of Schwarzschild metric. �

Now, let us compute the Einstein metric

ds2 = c2
(
1 − 2μ

c2r

)
dt2 −
(
1 + 2μ

c2r

)
dr2 − r2dϕ2 − r2 sin2 ϕdθ2

inCartesian coordinates.As in the case ofSchwarzschildmetric, let (x0, x1, x2, x3) =
(ct, x, y, z) and r2 = x2 + y2 + z2. It results rdr = xdx + ydy + zdz which gives

dr =
3∑

α=1

xα

r
dxα, dr2 =

3∑
α,β=1

xαxβ

r2
dxαdxβ .

Taking into account that

dx2 + dy2 + dz2 = dr2 + r2dϕ2 + r2 sin2 ϕdθ2 =
3∑

α=1

(dxα)
2 ,
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it results

ds2 = c2dt2 − dr2 − r2dϕ2 − r2 sin2 ϕdθ2 − 2μ

c2r

(
c2dt2 + dr2

)
.

Therefore, Einstein’s metric in Cartesian coordinates is

ds2 = (dx0)2 −
3∑

α=0

(dxα)
2 − 2μ

c2r

⎛
⎝(dx0)2 +

3∑
α,β=1

xαxβ

r2
dxαdxβ

⎞
⎠ .

We determine the speed of light in the gravitational field described by Einstein’s
metric. We use the same technique as in the case of Schwarzschild metric.

If X (t) = (ct, x1(t), x2(t), x3(t)) is the worldcurve of an object parameterized
by the time t , then, in the Minkowski metric, it is

(
ds

dt

)2
= ‖ .

X (t)‖2 = c2 −
(
(

.
x
1

(t))2 + (
.
x
2

(t))2 + (
.
x
3

(t))2
)

= c2 − v2,

where v is the usual spatial speed of the object.

If the object is a photon, then

(
ds

dt

)2
= c2 − c2 = 0 and so

0 =
(
ds

dt

)2
= c2 − γ2 − 2μ

c2r

⎛
⎝c2 +

3∑
α,β=1

xαxβ

r2
dxα

dt

dxβ

dt

⎞
⎠

where γ(t) =
√

(
.
x
1

(t))2 + (
.
x
2

(t))2 + (
.
x
3

(t))2 is the speed of the photon in the
gravitational field described by the metric above. In fact

γ = c ·

√√√√√1 − 2μ

c2r

⎛
⎝1 + 1

c2

3∑
α,β=1

xαxβ

r2
dxα

dt

dxβ

dt

⎞
⎠.

It remains, as an exercise, to determine the speed of a deflected photon using
the same technique as in the case of Schwarzschild metric. We highlight the quick
answer.

We determine γ along the worldcurve X of an undeflected photon in the (x1, x2)
plane at the fixed distance h from x2-axis.

So, the undeflected worldcurve of the photon is X (t) := (ct, h, ct, 0). The deflec-
tion will add only lower order terms, therefore the deflected photon has in the same

plane extra terms of order O

(
1

c

)
. Then, the deflected photon is parameterized by
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Xd(t) :=
(
ct, h + O

(
1

c

)
, ct + O(1), 0

)
.

Since
.

Xd (t) := (c, O ( 1c ) , c + O(1), 0
)
we have

dx1

dt
= O

(
1

c

)
,

dx2

dt
= c + O(1),

dx3

dt
= 0.

It results the approximation

γ2 = c2 − 2μ

c2r

(
c2 + (x2)2

r2
· c2
)

,

equivalent to

γ = c ·
√
1 − 2μ

c2r
− 2μ(x2)2

c2r3
.

Taking into account √
1 + 2A ≈ 1 + A,

the final result is

γ = c − μ

cr
− μ

cr
· (x2)2

r2
.

The total deflection is computed as in the Schwarzschild case. Therefore, we suc-
ceeded to prove

Theorem 9.8.2 (Einstein’s Second Theorem) Consider the Einstein metric

ds2 = c2
(
1 − 2μ

c2r

)
dt2 −
(
1 + 2μ

c2r

)
dr2 − r2dϕ2 − r2 sin2 ϕdθ2.

(i) In Carthesian coordinates, the above metric has the form

ds2 =
3∑

i=0

(
dxi
)2 − 2μ

c2r

⎛
⎝(dx0)2 +

3∑
α,β=1

xαxβ

r2
dxαdxβ

⎞
⎠ .

(ii) A deflected photon in the (x1, x2) plane, which comes from the undeflected photon
X (t) = (ct, h, ct, 0), has the speed

γ = c − μ

cr
− μ

cr
· (x2)2

r2

and does not violate the speed of light limit.
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(iii) The total deflection of the trajectory Xd(t) of a deflected photon in the grav-

itational field, described by the Einstein metric, is
4GM

c2h
.

All the computations made in Einstein’s metric lead to the same results in
Schwarzschild’s metric. According to these considerations, we can say that the
Schwarzschild metric reduces to the Einstein metric in the weak field limit.

9.9 Solutions of General Einstein’s Field Equations: The
Friedmann–Lemaître–Robertson–Walker Models of
Universe

If we intend to find a metric for the general Einstein field equations describing the
Universe, we have to consider the fact that the observed Universe appears homoge-
neous and isotropic beyond a given scale according to the Cosmological Principle,
therefore we have to consider, at the beginning, a spherical symmetry for the cosmic
spacetime.2

The spatial part has to be as

dr2 + q2(r)
(
dθ2 + sin2 θdφ2

)
,

where q(r) will be determined, so, we can try with the metric

ds2 = dt2 − a2(t)
[
dr2 + q2(r)dθ2 + q2(r) sin2 θdφ2

]

which introduces a new function a(t) necessary to preserve the spherical symmetry
of the spatial part of the metric which can, eventually, expand under a homothetic
transformation In this way, a(t) becomes an expansion factor of the Universe. We
will discuss this fact a little bit later. Observe that we are working in geometric
coordinates, that is c = 1.

Let us search for a(t) and q(r) such that the previous metric satisfies the Ein-
stein field equations. To address the answer, there are three possible forms for q(r)
depending on a constant of integration, while a(t) is determined from Einstein’s field
equations. We prove

2From observational surveys, the Universe can be considered homogeneous and isotropic beyond
scales of the order 100–120 Megaparsecs. See [62] for details. This means that, over these scales,
no large scale structure, like clusters or super-clusters of galaxies are detected. According to these
data, matter density can be considered homogeneously distributed in all directions.
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Theorem 9.9.1 The following three metrics

ds2 = dt2 − a2(t)
[
dr2 + R2 sinh2

r

R
dθ2 + R2 sinh2

r

R
sin2 θdφ2

]
,

ds2 = dt2 − a2(t)
[
dr2 + R2 sin2

r

R
dθ2 + R2 sin2

r

R
sin2 θdφ2

]
,

ds2 = dt2 − a2(t)
[
dr2 + r2dθ2 + r2 sin2 θdφ2] ,

satisfy the Einstein field equations

Ri j − 1

2
Rgi j = KTi j

in the case when the contravariant energy-momentum tensor is describing a perfect
fluid with components

T i j = (ρ0 + p0)u
iu j − p0g

i j ,

where gi j are the inverse components of the metric tensor matrix which satisfies
Einstein’s field equations, ρ0 is the density of the fluid, p0 is the pressure of the
fluid and ui are the components (ut , vxut , vyut , vzut ) of the fluid 4-velocity. For the
moment, ρ0 and p0 are assumed constant.

Proof We start by calculating the Ricci symbols.

g00 = 1, g11 = −a2(t), g22 = −a2(t)q2(r), g33 = −a2(t)q2(r) sin2 θ

g00 = 1, g11 = − 1

a2(t)
, g22 = − 1

a2(t)q2(r)
, g33 = − 1

a2(t)q2(r) sin2 θ
.

We observe
�i

jk = gis� jk,s = gi i� jk,i ; �i
jk = 0, i �= j �= k.

Therefore
�0
11 = a · ȧ, �0

22 = a · ȧ · q2, �0
33 = a · ȧ · q2 · sin2 θ, otherwise �0

i j = 0,

�1
01 = �1

10 = ȧ

a
, �1

22 = −q · q ′, �1
33 = −q · q ′ · sin2 θ, otherwise �1

i j = 0,

�2
02 = �2

20 = ȧ

a
, �2

12 = �2
21 = q ′

q
, �2

33 = − sin θ cos θ, otherwise �2
i j = 0,

�3
03 = �3

30 = ȧ

a
, �3

13 = �3
31 = q ′

q
, �3

32 = �3
23 = − cot θ, otherwise �3

i j = 0.

If we compute

R00 = Rs
0s0 = −∂�1

01

∂t
− ∂�2

02

∂t
− ∂�3

03

∂t
− �1

01�
1
10 − �2

02�
2
20 − �3

03�
3
30,
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it results

Rtt = R00 = −3
ä

a
.

We obtain

Rrr = R11 = 2ȧ2 + ä · a − 2
q ′′

q
,

Rθθ = R22 = 2q2 · ȧ2 + q2 · a · ä − q · q ′′ + 1 − (q ′)2,

Rφφ = R33 = R22 sin
2 θ.

Using Ri
j = gis Rs j , we rise an index, therefore

Rt
t = −3

ä

a
,

Rr
r = −2

ȧ2

a2
− ä

a
+ 2

q ′′

a2 · q ,

Rθ
θ = −2

ȧ2

a2
− ä

a
− 1

a2 · q2

(
1 − q · q ′′ − (q ′)2

)
,

Rφ
φ = −2

ȧ2

a2
− ä

a
− 1

a2 · q2

(
1 − q · q ′′ − (q ′)2

) = Rθ
θ .

The key of finding the metric is related to the way the physicists describe the energy-
momentum tensor. They look at the galaxies in the Universe such that they are
imagined as the molecules of an ideal gas which move arbitrarily. In this case, the
gas is described as in the statement of the theorem, by the contravariant energy-
momentum tensor

T i j = (ρ0 + p0)u
iu j − p0g

i j ,

where

• gi j are the inverse components of themetric tensormatrixwhich satisfies Einstein’s

field equations Ri j − 1

2
Rgi j = KTi j ,

• ρ0 is the density of the gas,
• p0 is the constant pressure of the gas and
• ui are the components (ut , vxut , vyut , vzut ) of the gas 4-velocity.

It is convenient to use the (1, 1) tensor T i
j by lowering the second index, so

T i
j = (ρ0 + p0)u

ig jku
k − p0δ

i
j .

Our chosen metric has gt t = 1.
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This ideal fluid is, by definition, at rest in these comoving coordinates, therefore
the conditions ur = uθ = uφ = 0 for every t and uigi j u j = 1 lead to 1 = gt t (ut )2,
that is ut = 1.

It follows that T t
t = ρ0 and T r

r = T θ
θ = T φ

φ = −p0, that is T = T i
i = ρ0 − 3p0.

If we arrange the Einstein’s field equation in the form

Ri
j = K ·

(
T i
j − 1

2
δij T

)

we obtain Rr
r = Rθ

θ = Rφ
φ = −K

2
(ρ0 − p0) .

The condition Rr
r = Rθ

θ highlights the equality

�
�

�
−2

ȧ2

a2
−

�
��̈a
a

+ 2
q ′′

a2 · q = �
�

�
−2

ȧ2

a2
−

�
��̈a
a

− 1

a2 · q2

(
1 − q · q ′′ − (q ′)2

)

and it remains to solve the differential equation

(q ′)2 − q · q ′′ = 1.

I. Determining q(r).
From the beginning, we observe that q(r) = r is a possible solution.

We continue: for p := q ′ = dq

dr
we obtain q ′′ = dp

dr
= dp

dq

dq

dr
= dp

dq
p.

The differential equation transforms to p2 − qp
dp

dq
= 1, that is

2
dq

q
= 2pdp

p2 − 1
.

The solution written as 2 ln |q| = ln q2 = ln |p2 − 1| − ln |k|, leads first to q2 =
p2 − 1

k
, then, after replacing in (q ′)2 − q · q ′′ = 1, to q ′′ = kq. It results

(
dq

dr

)2
= (q ′)2 = 1 + q · q ′′ = 1 + kq2.

Since in the metric appears q2, we are not interested in the solutions with minus.
Without loosing the generality, we can suppose that q(0) = 0 and q ′(0) = 1. There-
fore, having these initial conditions, we have to solve

dq√
1 + kq2

= dr.
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Case k > 0. We choose k = 1

R2
. We have

r =
∫

1√
1 +
( q
R

)2 dq = R sinh−1 q

R
,

that is q = R sinh
r

R
. In this case the metric is

ds2 = dt2 − a2(t)
[
dr2 + R2 sinh2

r

R
dθ2 + R2 sinh2

r

R
sin2 θdφ2

]
.

Case k < 0. We choose k = − 1

R2
. We have

r =
∫

1√
1 −
( q
R

)2 dq = R arcsin
q

R
,

that is q = R sin
r

R
. In this case the metric is

ds2 = dt2 − a2(t)
[
dr2 + R2 sin2

r

R
dθ2 + R2 sin2

r

R
sin2 θdφ2

]
.

For q(r) = r the metric is

ds2 = dt2 − a2(t)
[
dr2 + r2dθ2 + r2 sin2 θdφ2

]
.

�

Let us now determine a(t). To proceed, we consider again the above field equa-
tions:

Rt
t = −3

ä

a
= K ·
(
T t
t − 1

2
T

)
= K

2
· (ρ0 + 3p0)

Rr
r = −2

ȧ2

a2
− ä

a
+ 2

q ′′

a2 · q = K ·
(
T θ

θ − 1

2
T

)
= −K

2
(ρ0 − p0)

Since q ′′ = kq, in the case when k = ± 1

R2
, the following two equations have to be

considered:

ä

a
= −K

6
· (ρ0 + 3p0) ,
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2
ȧ2

a2
+ ä

a
− 2

k

a2
= K

2
(ρ0 − p0) .

It results the equation
ȧ2

a2
− k

a2
= K

3
ρ0

that is

ȧ2 − K

3
ρ0 · a2 = k,

which can be solved. The equation can be written as

ȧ2 − B · a2 = k

where B = K

3
ρ0 > 0. Since in metric appears a2, as in the case of q(r), we are not

interested in the solutions with minus. Furthermore, we are not interested in using
constants which can be eliminated by a convenient change of coordinates.

In the case k = 1

R2
> 0, if we arrange the equation in the form

1

k
ȧ2 − B

k
· a2 = 1

the solution is a(t) = 1

R
√
B
sinh(t

√
B). Replacing B, it results

a(t) = 1

R ·
√

K

3
ρ0

sinh

(
t

√
K

3
ρ0

)
.

In the case k = − 1

R2
< 0, if we arrange the equation in the form

−R2ȧ2 + R2B · a2 = 1

the solution is a(t) = 1

R
√
B
cosh(t

√
B). After replacing B,

a(t) = 1

R ·
√

K

3
ρ0

cosh

(
t

√
K

3
ρ0

)
.
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If q(r) = r it results q ′′(r) = 0. Let us consider the first two equations:

ä

a
= −K

6
· (ρ0 + 3p0) ,

2
ȧ2

a2
+ ä

a
= K

2
(ρ0 − p0) .

This kind of differential equations in a(t) are called the (FLRW ) equations. We
obtain

ȧ2

a2
= K

3
ρ0.

Taking into account our notation B = K

3
ρ0, two solutions are possible: a1(t) = et

√
B

and a2(t) = e−t
√
B .

We may observe that as t → +∞, a2(t) → 0 which does not correspond to the
known expansion of the Universe, related to the observational evidences. The other
solution can be accepted. As we will see in the following subsection, it is related to
the Hubble constant.

Let us stress again that these metrics have been obtained in the case when Ti j
has the above special form. We may conceive other possible Ti j having the property
T r
r = T θ

θ = T φ
φ and some other metrics can appear. �

Denote d�2 := dθ2 + sin2 θdφ2. In the process of finding the metric, we have
used

dq2

1 + kq2
= dr2.

Replace this position in the metric

ds2 = dt2 − a2(t)
[
dr2 + q2dθ2 + q2 sin2 θdφ2] ,

we can write all possible metrics in the form

ds2 = dt2 − a2(t)

[
dq2

1 + kq2
+ q2d�2

]
.

Thismetric is knownas theFriedman–Lemaître–Robertson–Walkermetric (orFLRW
metric) of the Universe.

Problem 9.9.2 Consider the case of the cosmological fluid such that the contravari-
ant energy-momentum tensor is

T i j = (ρ0 + p0)u
iu j − p0g

i j + �

K
gi j ,
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where� is the cosmological constant. Under the conditions of the previous theorem,
let us find the coefficients if the metric for Universe is

ds2 = c2dt2 − a2(t)
[
dr2 + q2(r)dθ2 + q2(r) sin2 θdφ2

]
.

Hint. We obtain T t
t = ρ0 + �

K
, T r

r = T θ
θ = T φ

φ = −p0 + �

K
and T = ρ0 −

3p0 + 4�

K
, but we have to complete the computations using

Ri
j − �δij = K ·

(
T i
j − 1

2
δij T

)
.

Problem 9.9.3 Consider the metric

ds2 = α(x + y + z)dt2 − 1

2

(
dx2 + dy2 + dz2

)
,

where α is a constant. Compute Ri j − 1

2
R gi j .

Hint.Denote x0 := t, x1 := x, x2 := y, x3 := z. It is easy to obtain�0
10 = �0

01 =
�0
20 = �0

02 = �0
30 = �0

03 = 1

2(x + y + z)
and �1

00 = �2
00 = �3

00 = α. Then

Rii = − 3α

2(x + y + z)
, R00 = α

4(x + y + z)2
, i = 1, 2, 3,

that is
R = Ri

i = −3
α

(x + y + z)2
.

It results

Ri j − 1

2
R gi j = −1

2

⎛
⎜⎜⎝
0 0 0 0
0 (x + y + z)−2 0 0
0 0 (x + y + z)−2 0
0 0 0 (x + y + z)−2

⎞
⎟⎟⎠ .

Can you derive some conclusions about Ti j tensor?

The equations of geodesics are



9.9 Solutions of General Einstein’s Field Equations … 317

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2t

dτ 2
+ 3

x + y + z

dt

dτ

(
dx

dτ
+ dy

dτ
+ dz

dτ

)
= 0

d2x

dτ 2
+ α

(
dt

dτ

)2
= 0

d2y

dτ 2
+ α

(
dt

dτ

)2
= 0

d2z

dτ 2
+ α

(
dt

dτ

)2
= 0

A important question for the reader is:

Exercise 9.9.4 Can these equations be the geodesic equations of the classical con-
stant gravitational field (−α,−α,−α)?

Hint. Start by analyzing the necessary condition
dt

dτ
= 1 and the norm (with

respect the metric) of the tangent vector to the geodesic.

9.9.1 The Cosmological Expansion

This subsection is dedicated to the expansion of the Universe. We saw that Einstein
Static Universe imposed the existence of a new term in the fields equations, because
in a Universe in which the matter is constrained to interact only by gravity, all the
matter sources will be concentrated in the same region, in contrast with the desired
Einstein static structure.

The new term was proposed to establish a repulsive effect to counterweight the
attractive effect of gravity. However, Einstein discarded the cosmological term when
Hubble discovered evidences for cosmological expansion. In any case, Theorem9.9.1
suggests that we can obtain an expanding universe even if the cosmological constant
is not considered. IsHubble’s law related to the cosmologicalmetrics obtained above?
The answer is yes!

Let us describe the Hubble law for recession of galaxies.
First, we have to mention that Hubble used Doppler’s effect to establish his result

related to the redshift of distant galaxies. The light in the Universe is produced by
stars. The hydrogen of stars, in thermonuclear fusion, produces primarily helium
and energy that radiates in space, some of it in form of light. Hubble considered the
four lines of the hydrogen light spectrum. For distant galaxies, the same four lines
of hydrogen spectrum are seen shifted to the right in comparison to normal pattern
of light decomposition detected in laboratory. Hubble realized that this is a Doppler
effect and the observed redshift means that the distant galaxies are moving away
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from us. He stated that the redshifts in spectra of distant galaxies are proportional to
the distance of galaxies from us. The mathematical form is

V = H · D,

where D is the proper distance from us to the galaxy, V := Ḋ is the proper speed
of the galaxy and H is a constant called the Hubble constant. The farther away the
galaxy is, the faster it moves away from us. The entire space, the entire texture of
the Universe is moving away from us carrying the galaxies in it.

Alternatively, let us suppose we have a ruler of coordinates marked 0, 1, 2, 3,
4, . . .. The distance between two consecutive coordinates is denoted by a. The dis-
tance measured with this ruler is denoted by D. D = a · �x , where �x is the differ-
ence between the coordinates of the chosen points we wish to measure.

Now, suppose we have a rubber band marked in the same way as our ruler; we
pin the origin and start to stretch. The coordinate points remain drawn on the rubber
band but the distance between them increases. Therefore a depends on time, it is
a(t). The distance D becomes D(t) = �x · a(t). We have

V := Ḋ = �x · ȧ.

This relation can be written as

V · a = a · �x · ȧ = D · ȧ,

that is

V = ȧ(t)

a(t)
D.

We define H := ȧ(t)

a(t)
and obtain Hubble’s law

V = H · D.

What is new in this approach is the fact that it is suggested the stretch of the texture of
the universe. Such a stretch was seen in Sect. 9.9 when we discussed about a possible
metric for the Cosmos. The metric proposed was

ds2 = c2dt2 − a2(t)
[
dr2 + q2(r)dθ2 + q2(r) sin2 θdφ2

]
,

where q(t) and a(t)were determined from the general Einstein field equations under
some conditions imposed by the energy-momentum tensor Ti j .

The differential equation for a(t) will be found now under some physical condi-
tions and important consequences will come out.

Consider two galaxies in the Universe such that the distance between them is D.
Let us consider one of them and the sphere of radius D centered at the chosen galaxy.



9.9 Solutions of General Einstein’s Field Equations … 319

Denote by M the total mass of galaxies inside the sphere and by m the mass of the
second galaxy. This galaxy moves away from the galaxy at the center of the sphere
with speed V = H · D. The gravitational force which acts on the galaxy of mass m
is

F = GMm

D2
.

The potential energy for that galaxy is

PE = −GMm

D

and the kinetic energy is

KE = mV 2

2
.

The total energy acting on the second galaxy is a constant,

PE + KE = const = k1.

Thanks to the Equivalence Principle, we can divide by m and then it results

−2GM

D
+ V 2 = k

But D(t) = �x · a(t) and V (t) = �x · ȧ(t), that is

(�x · ȧ(t))2 − 2GM

�x · a(t)
= k.

Some remarks are in order now. M = Vol × densi ty. If the volume increases when
the Universe is expanding but the number of galaxies does not change, the density
decreases. Since

M = 4

3
π · D3 · ρ(t) = 4

3
π · (�x · a(t))3 · ρ(t)

we have

(�x)2 · (ȧ(t))2 − 8πG

3
· (�x)2 · (a(t))2 · ρ(t) = k.

We arrange in a dimensional way the previous formula replacing k by −K · �x .
Finally, we obtain the differential equation

(
ȧ(t)

a(t)

)2
− 8πG

3
· ρ(t) = − K

a2(t)
.



320 9 General Relativity and Relativistic Cosmology

This is a sort of Friedman–Lemaître–Robertson–Walker equation as obtained in the

previous Sect. 9.9. The term
8πG

3
· ρ(t) is always positive. If K is negative, the

equation written in the form

(
ȧ(t)

a(t)

)2
= 8πG

3
· ρ(t) − K

a2(t)

can be solved. Such an equation describes a spatially open Universe. If, for some
t , K is such that the right member becomes negative at a point, this Universe will
increase until that point; then it can remain unchanged or even it can contract. This
kind of Universe is called a spatially closed universe. If K = 0, the universe will be
called a spatially flat Universe. This Universe expands too. In such a Universe there
is a perfect balance between the kinetic and the potential energy.

The observational evidences show that our Universe is a flat one. So, it remains
to solve the equation (

ȧ(t)

a(t)

)2
= 8πG

3
· ρ(t).

In a flat, matter dominated Universe (mdu), in a cube of side a(t), having inside
galaxies whose total mass is M , the density is expressed by the formula ρmdu(t) =
M

a3(t)
. The corresponding (FLRW ) equations is

(
ȧ(t)

a(t)

)2
= 8πG

3
· M

a3(t)
.

The solution, expressing the expansion of a matter dominated Universe, is then

a(t) = B · t2/3,

where B is a positive constant.
After the Big-Bang and inflation [62], there was a period when the universe was

radiation dominated (rdu). To describe its expansion, we consider the same cube
of side a(t), now full of photons. Since the energy is expressed by the formula

E = hν = h
c

λ
and, when a(t) is increasing, the wavelength λ is increasing too, we

can suppose that E = C

a(t)
is describing the energy formula. Here C is a constant.

The density of such a Universe is given by

ρrdu = E

a3(t)
= C

a4(t)
.
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The corresponding (FLRW ) equation is

(
ȧ(t)

a(t)

)2
= 8πG

3
· C

a4(t)
.

The solution, which expresses the expansion of a radiation dominated universe, is

a(t) = A · t1/2,

where A is a positive constant.
Now, let us observe something crucial. We know two important physic formulas,

Planck’s one E = hν = h
c

λ
and Boltzmann’s one, E = kBT . Using the same rea-

soning as before we deduce the direct proportionality between the temperature T and
1

a(t)
. As said, after Big Bang and inflation, our Universe was radiation dominated,

and the temperature at which the atoms can form is less than 3 × 103 K degrees. Now,
the today cosmic background radiation has approximatively 3K degrees. Therefore,
if we suppose that in the period in our Universe started to be matter dominated, the

temperature decreases of the ratio ∼ 3 × 103

3
, it is easy to see the ratio

atoday
aionized

,

where aionized is the epoch in which ionized atoms appear. It is

Tionized
Ttoday

= atoday
aionized

� 103 � t2/3today

t2/3ioni zed

.

Since ttoday is about 1010 years, i.e. the age of the observed Universe, tioni zed becomes
about 3 × 105 years after Big Bang. It means that the Universe was radiation dom-
inated for almost 3 × 105 years. More precisely, it takes about 3 × 105 years for
the Universe, expanding and cooling after Big Bang, to allow electrons and protons
to couple and form neutral atoms. At this point, even the photons are free to move
and get to us, providing us with the first “photograph” of the Universe that can be
obtained, that is the Cosmic Microwave Background Radiation.3 Clearly, this is only
a rough calculation to derive the order of magnitudes. For a detailed discussion on
primordial Universe phenomenology, see [62, 64].

We are now ready to understand some basic facts about dark energy and the
pressure exerted to expand our Universe. Specifically, dark energy is the hypothetical
fluid fueling the observed accelerated expansion revealed at the end of XXth century
[65]. Let us begin by analyzing the pressure exerted on the faces of a cube imagined
in our Universe. Obviously, there is no pressure in a matter dominated Universe
because the galaxies inside the cube do not exert any pressure on the faces of the
cube.

3Actually the recombination of hydrogen happened at a redshift z = 1089 corresponding to a period
of 3.79 × 105 years after Big Bang. Here the redshift correspond to the above atoday/aionized . See
[63].
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In a radiation dominated universe, it is possible to study the pressure in the fol-
lowing way. Let us consider a photon which can move between “the extremities” of
a segment line of length L . The small amount of time necessary to move between

the extremities can be denoted as dt and we have the formula dt = 2L

c
. The force

which produces the pressure on the extremities is

F = dp

dt
= 2p

2L

c

= pc

L
= E

L
.

If we denote by L the length of the side of a cube in a radiation dominated Universe
and by d A the infinitesimal area of a square drawn on a face (the sides parallel to the
sides of the the face), now corresponding to the perpendicular direction on the given
face, we have

P = F

dA
= E

Ld A
.

Therefore the pressure P exerted can be though as the ratio between the energy and a
volume corresponding to d A and the above mentioned perpendicular direction, that
is an energy density ρ. In fact we have

P = wρ,

where w = 0 in the case of matter dominated Universe and w = 1

3
in an radiation

dominated Universe; 3 appears because we have three perpendicular direction on
faces.

These numbers represent two possibilities for the equation of state of a standard
perfect fluid where 0 ≤ w ≤ 1 is the so-called Zel’dovich interval [66]. Being w =( cs
c

)2
, with cs the sound speed, the fluids in the Zel’dovich interval agree with the the

causality condition implying that the speed of light has to be c > cs . In other words,
standard matter cannot be constituted by tachyons, that is particles faster than light.

Suppose now that the pressure expands the cosmic cube of a dV volume. Taking
into account the work done by the force F , F · d = P · A · d = P · dV , and the
variation of the energy E , we have

dE = −P · dV .

At the same time,
E = ρ · V .

It results
dE = dρ · V + ρ · dV = −P · dV,
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i.e.
V · dρ = −(P + w)dV = −ρ(w + 1)dV .

We have obtained the differential equation

dρ

ρ
= −(w + 1)

dV

V

with the solution
ρ = NV−(w+1) = Na−3(w+1),

where N is a constant.
Forw = 0, we obtain the formula corresponding to a matter dominated Universe,

while for w = 1

3
we obtain the formula of a radiation dominated Universe.

Let us insert this last formula in the (FLRW ) equation, we get

(
ȧ(t)

a(t)

)2
= 8πG

3
· N

(a(t))3(w+1)
.

Clearly, in the above discussion, the functions P and ρ are functions of time and the
above definition of the energy-momentum tensor can be generalized to describe a
perfect fluid of the form

T i j = (ρ + P)uiu j − pgi j .

What happens if w = −1? The (FLRW ) equation becomes

(
ȧ(t)

a(t)

)2
= 8πG

3
· ρ0,

where ρ0 is a constant. Now we are in the case of a Universe expanding according
to the law

ȧ(t)

a(t)
= H0 =

√
8πGρ0

3
.

The solution of the expansion is exponential,4 that is

a(t) = a0e
H0t ,

where a0 is a constant related to the initial value of the scale factor a(t). The value
w = −1 is clearly out of the above Zel’dovich interval, i.e. it is not a standard perfect
fluid, and corresponds to “something” which determines the exponential accelerated

4H0 is assumed constant because ρ0 is constant.
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expansion. Such an expansion is in agreement with the existence of a possible cos-
mological constant � (that is ρ0). This “something” manifests itself as a pressure
implying an energy density. As said, this energy is neither produced by the ordinary
matter nor by the radiation.5 This is a simple example of dark energy that gives rise
to accelerated expansion. The mechanism can work both in early Universe, giving
rise to inflation, and in late Universe, giving the observed accelerated expansion of
the Hubble flow. Clearly the scales of energy are completely different and between
inflation and recent accelerated epoch there are radiation and matter dominated eras.
It is worth noticing that, according to data, the dark energy constitutes ∼70% of the
total amount of matter-energy content of the Universe [65]. Understanding nature
and dynamics of dark energy is one of the main challenges of modern cosmology.

9.10 The Fermi Coordinates

After the above summary on cosmological expansion, let us define a system of
coordinates very useful to describe the geodesic motion. From a mathematical point
of view, Fermi’s coordinates are local coordinates adapted to a geodesic, that is, at
a given point P on a geodesic c(τ ), there exists a local system of coordinates around
P such that:

• the geodesic locally becomes (x0, 0, 0, . . . , 0);
• the metric tensor along geodesic is theMinkowski metric (or the Euclideanmetric;
it depends on the context);

• all the Christoffel symbols vanish along geodesic.

A nice treatment of this subject6 and its applications can be seen in [4, 33]. In our
context, we intend to describe the topic in a simplified way.

Consider a coordinate frame at rest denoted by R : (y0, y1, y2, y3) together with
a given metric ds2 = ḡi j dyidy j .

We intend to describe the free fall of an observer F in the gravitational field
induced by ḡi j .

1. In the coordinate frame at rest, R, the freely falling observer F is moving on a
geodesic of the metric ds2 = ḡi j dyidy j , say c(τ ).

The geodesic equations of c(τ ) are
d2yi

dτ 2
+ �̄i

jk

dy j

dτ

dyk

dτ
= 0.

This geodesic is the world line of F in R.
2. From F point of view, there is no field. Consider F in a spacecraft, somewhere

in an almost empty region of the space. That is, to describe the free falling, means
to create a coordinate frame F : (x0, x1, x2, x3) such that, along the world line of F

5It is important to note that any form of standard matter, in the interval 0 ≤ w ≤ 1, gives rise to
decelerated expansion.
6It is interesting saying that the paper reporting these results was the first one written by Enrico
Fermi when he was student at Scuola Normale Superiore di Pisa [67].
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in R in these coordinates, we have �i
jk = 0. For F , the geodesic equations become

d2xi

dτ 2
= 0, that is F should move on a straight line.

We make the assumption: Let x0 axis be the world line of F in R.
3. Now, more clearly, we have to construct a map M : F → R which transfers x0

axis into the geodesic c(τ ), in such a way that the x0 axis becomes a geodesic in F
endowed with the metric gi j = dMt

x · ḡi j · dMx .

Therefore, M maps the x0 axis into the the image of the geodesic c(τ ).
If τ is the geodesic parameter for the curve c(τ ), we can consider the same

parameter for the x0 axis, i.e. x0 = τ is the current coordinate of this axis.
At each point τ , we have

c(τ ) = (y0(τ ), y1(τ ), y2(τ ), y3(τ )) ∈ R,

therefore the map M : F → R gives rise to

(x0, 0, 0, 0) → (y0(x0), y1(x0), y2(x0), y3(x0)),

where (y0(x0), y1(x0), y2(x0), y3(x0)) are the coordinates of the points of the
geodesic in R. Therefore our transformation M : F → R can be thought

(τ , 0, 0, 0) → c(τ ),

with some considerations on the functions yk we need to describe.
Let us keep in our mind that we are interested in transferring the property “c is a

geodesic in R” to the x0 axis in F . So, we have

Lemma 9.10.1 Along the geodesic c in R, it can be highlighted an orthonormal

frame with respect the metric ḡi j whose time-like vector is the tangent vector
dc

dτ
.

Proof We know that at each point c(τ ), i.e. along the geodesic c, the tangent vector
dc

dτ
=
(
dy0

dτ
,
dy1

dτ
,
dy2

dτ
,
dy3

dτ

)
is a time-like unit vector. We denote it by e0(τ ). We

know that e0(τ ) is parallel transported along the geodesic c in R preserving all its
properties.

Consider the point corresponding to τ = 0, that is the point c(0) on the geodesic.
We choose the spatial vectors e1(0), e2(0), e3(0) such that the frame {e0(0),
e1(0), e2(0), e3(0)} is orthonormal with respect to the metric ḡi j and we parallel
transport it along the geodesic c.

At each point c(τ ), the vectors {e0(τ ), e1(τ ), e2(τ ), e3(τ )} form an orthonormal
frame with respect to the metric ḡi j . �

Lemma 9.10.2 Every point (x0, x1, x2, x3) in F can be uniquely described in the

form (τ , l
→
v ), where l

→
v is an appropriate Euclidean description of its spatial part.
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Proof Consider a point (x0, x1, x2, x3) in F which does not belong to x0 axis. This
point is (τ , x1, x2, x3) and at least one spatial component is nonzero.

Denote
l :=
√

(x1)2 + (x2)2 + (x3)2

and construct the vector

→
v :=
(
x1

l
,
x2

l
,
x3

l

)
:= (v1, v2, v3).

It appears the possibility to describe the point (x0, x1, x2, x3) by (τ , lv1, lv2, lv3) or
simply, by (τ , l

→
v ). �

9.10.1 Determining the Fermi Coordinates

Consider in Tc(τ )R the vector

→
V (τ ) := v1e1(τ ) + v2e2(τ ) + v3e3(τ ).

Observe

ds2
(→
V (τ ),

→
V (τ )
)

= ḡαβvαvβ = −(v1)2 − (v2)2 − (v3)2.

We may impose ds2
(→
V (τ ),

→
V (τ )
)

= −1, that is
→
V is a spatial unit vector. Let us

observe that this spatial part has the same property (v1)2 + (v2)2 + (v3)2 = 1 as the
vector

→
v from the above lemma.

According to the equations of geodesics, we may conclude that it exists a unique
geodesic of R, denoted by y→

V
(s) passing through the point c(τ ) at s = 0, such that

its tangent vector at origin is
→
V , that is

dy→
V

ds
(0) =→

V .

According to the above notations, the localmapM : F → R, describing the Fermi
coordinates, is

M(x0, x1, x2, x3) = M(τ , s
→
v ) := y→

V
(s).

Observe that the tangent vector along the spatial geodesic y→
V
(s) is a unit vector.

The immediate consequence is: For a given point (τ , s0
→
v ), the spatial distance

to (τ , 0, 0, 0) is s0. The length of the spatial geodesic between its initial point c(τ ) =
y→
V
(0) and y→

V
(s0) is also s0, because the length formula is
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∫ s0

0

∥∥∥∥∥
dy→

V

ds
(s)

∥∥∥∥∥ ds =
∫ s0

0
ds = s0.

The coordinates induced in F by M are called Fermi’s coordinates.
It remains to prove that in F , in Fermi’s coordinates, with respect to the induced

metric gi j , the x0 axis (τ , 0, 0, 0) is a geodesic and �i
jk(τ , 0, 0, 0) = 0.

Let us discuss the consequences on the map M .

Theorem 9.10.3 The map M in invertible in the neighborhood of each point
P(τ , 0, 0, 0) of the x0 axis.

Proof According to the inverse function theorem, it is enough to prove that thematrix
dMP transforms a basis of the tangent space TP F into linear independent vectors of
TM(P)R.

We know
M(P) = M(τ , 0, 0, 0) = c(τ ).

Consider the standard basis of TP F , denoted by εi , i ∈ {0, 1, 2, 3}, εi having 1 on
the i th row, 0 elsewhere. Therefore, by the waywe definedM , dMP(εi ) = ei (τ ), i ∈
{0, 1, 2, 3}, i.e. M is locally invertible. �

The meaning of the word “neighborhood” in this context is “tube around the
geodesic”.

Now, it makes sense the metric gi j = dMt
x · ḡi j · dMx as a metric of F .

Theorem 9.10.4 The x0 axis is a geodesic of F with respect to the metric gi j .

Proof The previous theorem allows us to observe that the tangent vector ε0 is parallel
transported along the x0 axis, therefore x0 axis is a geodesic of F . �

Exercise 9.10.5 All orthogonal lines to x0 axis are geodesics of F with respect to
the gi j metric.

Hint. M maps these orthogonal lines into geodesics y→
V
.

Proposition 9.10.6 At each point (τ , 0, 0, 0) of the x0 axis, it is

gi j (P) =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Proof We have

ds2F (εi , ε j ) = ds2R(dMP(εi ), dMP(ε j )) = ds2R(ei (τ ), e j (τ )) = δi j ,

where δi j is the Kronecker symbol. �
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According to the local definition of M , we can prove the main

Theorem 9.10.7 In Fermi coordinates, at every point P belonging of the x0 axis,
the gravitational field is null, that is �i

jk(P) = 0.

Proof From the above exercise, we know that the line γ(s) := (τ , sv1, sv2, sv3) is
a geodesic. The geodesic equations are

d2xi

ds2
+ �i

jk(τ , s
→
v )

dx j

ds

dxk

ds
= 0, i, j, k ∈ {0, 1, 2, 3}.

Since
dxα

ds
= vα, α ∈ {1, 2, 3}, it results d

2xα

ds2
= 0. Then, being

dx0

ds
= 0 (because

x0 is parameterized by τ ), it is
d2xi

ds2
= 0. From the geodesic equations, it remains

only
�i

αβ(τ , s
→
v )vαvβ = 0, i ∈ {0, 1, 2, 3}, α,β ∈ {1, 2, 3}.

Now, for s = 0, we have

�i
αβ(τ , 0, 0, 0)vαvβ = 0, i ∈ {0, 1, 2, 3}, α,β ∈ {1, 2, 3}

for any given vector
→
v , therefore

�i
αβ(τ , 0, 0, 0) = 0, i ∈ {0, 1, 2, 3}, α,β ∈ {1, 2, 3}.

It remains to prove

�i
j0(τ , 0, 0, 0) = 0, i, j ∈ {0, 1, 2, 3}.

We know that the vectors εi , are parallel transported along x0 axis. Let us write the
parallel transport equations for these vectors with all components constant, εk = δik .
It is

dδik
dτ

+ �i
jl(τ , 0, 0, 0)δ j

k

dxl

dτ
= 0.

The only non null terms are obtained when j = k and l = 0, which ends the
proof. �

Three consequences can immediately be proved:

1. From �i j,k = gkr�
r
i j we have

�i j,k(τ , 0, 0, 0) = 0.



9.10 The Fermi Coordinates 329

2. From
∂gi j

∂xk
= �ik, j + � jk,i it results

∂gi j

∂xk
(τ , 0, 0, 0) = 0.

3. From

lim
h→0

∂gi j

∂xk
(τ + h, 0, 0, 0) − ∂gi j

∂xk
(τ , 0, 0, 0)

h
= 0

we obtain
∂2gi j

∂x0∂xk
(τ , 0, 0, 0) = 0.

Starting from these considerations, the Fermi coordinates offer another view, more
physical than geometrical, about the field equations in vacuum.

9.10.2 The Fermi Viewpoint on Einstein’s Field Equations in
Vacuum

Consider the tidal acceleration equations, written in Fermi’s coordinates, with respect
to a freely falling observer whose world line has the equation ah(τ ) = (τ , 0, 0, 0, 0).
Suppose this world line is part of a family of geodesic xh(τ , q) such that xh(τ , 0) =
ah(τ ).

Therefore
�2

dτ 2

∂xh

∂q
= −Kh

j

∂x j

∂q
,

where

Kh
j = Rh

i jk

dxi

dτ

dxk

dτ
.

For the components of our curve ah(τ ) = (τ , 0, 0, 0), there is only the term Rh
0 j0 for

Kh
j .
So, the relativistic equations of tidal acceleration vector along the curve ah(τ ) =

(τ , 0, 0, 0) are
�2

dτ 2

∂xh

∂q
= −Rh

0 j0
∂x j

∂q
, h, j ∈ {0, 1, 2, 3}.

Theorem 9.10.8 In Fermi’s coordinates, the tidal acceleration equations along the
curve ah(τ ) = (τ , 0, 0, 0) have the form
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�2

dτ 2

∂xh

∂q
= −∂�h

00

∂x j

∂x j

∂q
.

Proof Denote by A a point belonging to the curve ah . Since �i
jk(A) = 0, it results

Rh
0 j0(A) = ∂�h

00

∂x j
(A) − ∂�h

0 j

∂x0
(A).

Now, �h
0 j (τ , 0, 0, 0) = 0 for every τ , that is

∂�h
0 j

∂x0
(A) = 0, therefore

Kh
j (A) = Rh

0 j0(A) = ∂�h
00

∂x j
(A).

The tidal acceleration equations for all points (τ , 0, 0, 0) become

�2

dτ 2

∂xh

∂q
= −∂�h

00

∂x j

∂x j

∂q
.

�

It remains to compute
∂�h

00

∂x j
(A).

Theorem 9.10.9 It is
∂�h

00

∂x j
(A) = ± ∂2g00

∂xh∂x j

Proof �h
00 = ghs�00,s = ghs

2

(
2
∂g0s

∂x0
− ∂g00

∂xs

)

∂�h
00

∂x j
= 1

2

∂ghs

∂x j

(
2
∂g0s

∂x0
− ∂g00

∂xs

)
+ ghs

2

(
2

∂2g0s

∂x j∂x0
− ∂2g00

∂x j∂xs

)

We know 2
∂g0s

∂x0
(A) − ∂g00

∂xs
(A) = 0 and

∂2g0s

∂x j∂x0
(A) = 0, therefore

∂�h
00

∂x j
(A) = −ghs

2

∂2g00

∂x j∂xs
(A)

Since g00(A) = 1, gαα(A) = −1, α ∈ {1, 2, 3}, ghs = 0 when h �= s, we obtain

∂�h
00

∂x j
(A) = ±1

2

∂2g00

∂xh∂x j
.

�
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Let us construct now the matrix Kh
j . It results

∂�α
00

∂xβ
(A) = 1

2

∂2g00

∂xα∂xβ
(A), α,β ∈

{1, 2, 3}, i.e.

K α
β (A) = K β

α (A) = 1

2

∂2g00

∂xα∂xβ
(A), α,β ∈ {1, 2, 3}.

Using
∂2g00

∂xk∂x0
(A) = 0, k ∈ 0, 1, 2, 3, it is

K 0
j = ∂�0

00

∂x j
(A) = 1

2

∂2g00

∂x j∂x0
(A) = 0, j ∈ {0, 1, 2, 3}

and

Kh
0 = ∂�h

00

∂x0
(A) = 1

2

∂2g00

∂x0∂xh
(A) = 0, h ∈ {0, 1, 2, 3}.

Therefore, in Fermi’s coordinates, the tidal acceleration equations

�2

dτ 2

∂xh

∂q
= −Kh

j

∂x j

∂q
,

along the world line ah(τ ) = (τ , 0, 0, 0) highlight the symmetric matrix

Kh
j (A) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0
∂2g00

(∂x1)2
∂2g00

∂x1∂x2
∂2g00

∂x1∂x3

0
∂2g00

∂x2∂x1
∂2g00

(∂x2)2
∂2g00

∂x2∂x3

0
∂2g00

∂x3∂x1
∂2g00

∂x3∂x2
∂2g00

(∂x3)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

having, as components, second order partial derivatives.
The information about the gravitational field depends on the gravitational poten-

tial.
If in these Fermi’s coordinates, we identify the classical gravitational potential Φ

as
1

2
g00, the Hessian matrix of the gravitational potential Φ,

d2Φx̄ =
(

∂2Φ(x̄)

∂xi∂xk

)
i,k

can be identified with the “spatial part”
1

2

(
∂2g00

∂xα∂xβ

)
α,β∈{1,2,3}

of the matrix Kh
j .

The information encapsulates in the trace of the Hessian of the gravitational field,
that is the vacuum field equation �2Φ = 0, appears when we consider the trace of
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entire matrix Kh
j in the form TrK h

j = Kh
h = 0. This means that Kh

h = Rh
ihk = 0, i.e.

Rik = 0.
Now, we apply the Principle of General Covariance.
The equations

Ri j = 0

represent, in any system of coordinates, the relativistic field equations in vacuum.

9.10.3 The Gravitational Coupling in Einstein’s Field
Equations: K = 8πG

c4

Let us considered the energy-momentum tensor as a perfect fluid. We can choose
such a tensor as a 4 × 4 symmetric matrix (T i j )

(T i j ) =

⎛
⎜⎜⎝
T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

⎞
⎟⎟⎠

whose most important property is its null divergence expressed in terms of covariant
derivative,

T kl
;l = 0.

This property means that “at each moment, the quantity of matter and energy in the
interior of a given infinitesimal parallelepiped is constant.”

A first example of energy-momentum tensor was related to the Friedman–
Lemaître–Robertson–Walker metric of the Universe. In fact, the key point in the
computations of the metric in geometric coordinates was related to the chosen form
of energy-momentum tensor. Physicists proposed to look at galaxies as molecules of
an ideal gas. In this case, the contravariant energy-momentum tensor was

T i j = (ρ + p)uiu j − pgi j ,

where gi j are the inverse components of the metric tensor matrix which satisfies

Einstein’s field equations Ri j − 1

2
Rgi j = KTi j ,

• ρ is the density;
• p is the pressure;
• ui are the components (ut , vxut , vyut , vzut ) of the gas 4-velocity. The previous
null divergence property is obviously recovered.

Energy and matter can be seen in different ways according to physics models.
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The next description, known as the energy-momentum tensor of a swarm of par-
ticles, is useful to determine the constant K in Einstein’s field equations

Ri j − 1

2
Rgi j = KTi j .

How can we describe a swarm of particles?
They have to be identical, they have to be uniformly distributed in space and they

have to be non-interacting. Each particle has the rest mass m0 and we suppose that,
in an unit of volume of a given spacetime, if the swarm is at rest, there are exactly
n0 particles (see [4]).

The mass can be incorporated in a 4-momentum vector

P := (m,m
→
v ),

where m is the mass of each non-interacting particle which moves at speed v. If the
swarm is at rest,

P0 = (m0,
→
0 ).

The proper 4-velocity of a particle moving at speed v is

V :=
(

1√
1 − v2

,

→
v√

1 − v2

)
,

that is P = m0V.

Another 4-vector can related to the number of particles, denoted by n, in the unit
of volume of the previous spacetime which move at speed v,

N := (n, n
→
v ).

At rest, we choose

N0 = (n0,
→
0 ).

It results N = n0V.

If we define the density of mass for the swarm by the product between the mass of a
particle and the number of particles in a unit volume of the spacetime, we have:

ρv := mn

if the swarm is moving at speed v and

ρ0 := m0n0
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if the swarm is at rest. Even if

mn = m0√
1 − v2

n0√
1 − v2

= m0n0
1 − v2

,

that is, the product of first components is not a covariant quantity, the (1, 0) con-
travariant vectors P = (p0, p1, p2, p3) and N = (n0, n1, n2, n3) produce a (2, 0)
contravariant tensor,

T i j := pin j =

⎛
⎜⎜⎝

p0n0 p0n1 p0n2 p0n3

p1n0 p1n1 p1n2 p1n3

p2n0 p2n1 p2n2 p2n3

p3n0 p3n1 p3n2 p3n3

⎞
⎟⎟⎠ ,

such that the mass-density is incorporated in the T 00 component.
Now let us cancel the geometric coordinates which helped us to find a

possible energy-momentum tensor and consider the dimensional coordinates
(x0, x1, x2, x3) = (ct, x, y, z). It results

V = (c, ẋ, ẏ, ż) = (c, v1, v2, v3) = (c,
→
v ),

P =
(
E

c
, p1, p2, p3

)
,

where E = mc2 is the relativistic energy of a particle of the swarm and

N = (nc, nv1, nv2, nv3).

The energy-momentum tensor becomes

T i j :=

⎛
⎜⎜⎝

En Env1/c Env2/c Env3/c
cp1n p1nv1 p1nv2 p1nv3

cp2n p2nv1 p2nv2 p2nv3

cp3n p3nv1 p3nv2 p3nv3

⎞
⎟⎟⎠ .

We have
T 00 = En = mnc2 = ρc2,

therefore we can call T 00 the density of the relativistic energy of the swarm.
One may describes all the components of the energy-momentum tensor according

to the physic units. However only T 00 is used to determine K .
Suppose we are working in Fermi’s coordinates with a swarm of non-interacting

particles which move together such that the world line of a particle is the x0 axis.
Therefore

V = (c, 0, 0, 0)
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and the energy-momentum T i j has only one term,

T 00 = T 0
0 = T00 = T = ρc2.

Along the x0 axis, the Einstein equations, written in the form

Ri j = K

(
Ti j − 1

2
T gi j

)
,

become the only equation

R00 = K

(
T00 − 1

2
T g00

)
= K

(
ρc2 − 1

2
ρc2
)

,

that is

R00 = K
1

2
ρc2.

Since dimensionally we have

R00 = Ks
s = 1

2

3∑
α=1

∂2g00

∂(xα)2
= 1

c2
�2Φ = 1

c2
4πGρ,

it results
1

c2
4πG�ρ = K

1

2�ρc
2,

that is

K = 8πG

c4
.

Therefore Einstein’s field equations are

Ri j − 1

2
Rgi j = 8πG

c4
Ti j ,

where the gravitational coupling is written in physical constants.

9.11 Weak Gravitational Field and the Classical
Counterparts of the Relativistic Equations

We are interested in seeing under which conditions it is possible to recover the
Classical Mechanics basic formulas involving gravity from the relativistic formulas
seen in the present chapter.
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Let us discuss this point in a mathematical language: In this section we show
that, in the case of a “week gravitational field”, for “particles with slow motion”, the
classical field equations emerge from their relativistic counterparts, that is

d2xi

dτ 2
= −�i

jk

dx j

dτ

dxk

dτ
−→ d2xα

dt2
= − ∂Φ

∂xα
,

Ri j − 1

2
gi j R = 8πG

c4
Ti j −→ ∇2Φ = 4πρ,

Ri j = 0 −→ ∇2Φ = 0.

A complete treatment of these results can be found in [4]. Of course, the basic facts
were presented by Einstein himself in [3].

Consider the Minkowski metric which describes a frame with no gravity

J := Ji j = J i j :=

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Adding small variations of order
1

ck
, k ≥ 2we introduce gravitational effects. There-

fore, the following definition is necessary to introduce our working frame:

Definition 9.11.1 A weak gravitational field is described by a metric

gi j = Ji j + 1

c2
g(2)
i j + 1

c3
g(3)
i j + O

(
1

c4

)

with the supplementary properties

g(m)
i j = O(1),

∂g(m)
i j

∂t
= O(1),

∂g(m)
i j

∂xα
= O(1), m ∈ {2, 3}, α ∈ {1, 2, 3}.

Here, g(2)
i j are coefficients of themetric gi j related to the factor

1

c2
, etc. In other words,

1

c2
is our expansion parameter related to the strength of the field.

Let us first observe that, for a weak gravitational field, it is

gi j = Ji j + O

(
1

c2

)

and

gi j = J i j + O

(
1

c2

)
.
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Therefore, for a weak gravitational field, we have the following consequences of the
previous definition:

g0 j = O

(
1

c2

)
, gαα = O(1),

∂gi j

∂xα
= O

(
1

c2

)
and det (gi j ) = −1 + O

(
1

c2

)
.

Then, it is easy to see that

∂g(m)
i j

∂x0
= ∂g(m)

i j

∂t

∂t

∂x0
= O(1)

1

c
= O

(
1

c

)
.

In the same way,

∂gi j

∂x0
= ∂gi j

∂t

∂t

∂x0
= O

(
1

c2

)
1

c
= O

(
1

c3

)
.

Theorem 9.11.2 TheChristoffel symbols of aweak gravitational field have the prop-
erties

�k0,k = O

(
1

c3

)
, �i j,k = O

(
1

c2

)
, �0

00 = �h
h0 = O

(
1

c3

)
,

�α
00 = 1

2c2
∂g(2)

00

∂xα
+ O

(
1

c3

)
, �i

αβ = O

(
1

c2

)
.

Proof We present two computations and we leave to the reader the details.
The first one:

�0
00 = g0i�00,i = g00�00,0 + g0α�00,α =

(
1 + O

(
1

c2

))
O

(
1

c2

)
+ O

(
1

c2

)(
1

c3

)
= O

(
1

c3

)
.

The second one:

�α
00 = gαi�00,i = gαα�00,α + gα0�00,0 + gαβ�00,β =

=
(

−1 + O

(
1

c2

))
�00,α + O

(
1

c2

) (
�00,0 + �00,β

)
.

Replacing �00,α, it results

�α
00 =
(

−1 + O

(
1

c2

))
�00,α + O

(
1

c3

)
=

=
(

−1 + O

(
1

c2

))(
∂g0α

∂x0
− 1

2

∂g00

∂xα

)
+ O

(
1

c3

)
,
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that is

�α
00 = 1

2

∂g00

∂xα
+ O

(
1

c3

)
= 1

2c2
∂g(2)

00

∂xα
+ O

(
1

c3

)
.

�

Denote by X (t) := (x1(t), x2(t), x3(t)) the trajectory of a classical particle; its
classical speed is Ẋ := (ẋ1(t), ẋ2(t), ẋ3(t)).

Definition 9.11.3 The particle is “slow” if ẋα(t) = O(1), α ∈ {1, 2, 3}.

The corresponding worldcurve is
→
X= (ct, X (t)) and its relativistic speed is

→
V=

(c, Ẋ(t)). Observe that

L(t) =
∫ t

t0

|| →
V (s)||gds =

∫ t

t0

√
gi j ẋ i (s)ẋ j (s)ds

has length dimension.

Parameterizing
→
X by proper timemeans to consider τ (t) := 1

c
L(t). Let us observe

that τ (t) has time dimension.

Theorem 9.11.4 In a Minkowski metric, if a particle is moving “slow” uniformly
along a curve parameterized by proper time, then

dτ

dt
= 1 + O

(
1

c2

)
.

Proof From

dτ = || →
V ||M
c

dt =
√√√√1 − 1

c2

3∑
α=1

(ẋα(t))2dt =
√
1 − 1

c2
O(1),

it results
dτ

dt
=
√
1 − O

(
1

c2

)
dt.

Since
√
1 − A ≈ 1 + A

2
, we have

dτ

dt
= 1 + O

(
1

c2

)
.

�
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Now, parameterizing with respect τ in a metric gi j , we have

dτ = || →
V ||g
c

dt =
√

gi j ẋ i ẋ j

c2
dt =
√

gi j
ẋ i

c

ẋ j

c
dt.

Theorem 9.11.5 If a particle is moving “slow” in a weak gravitational field along
a curve parameterized by proper time, then

dτ

dt
= 1 + O

(
1

c2

)
.

Proof We have ẋ0 = d

dt
(ct) = c. The particle is “slow” and, by definition, this

means ẋα = O(1). Therefore

gi j
ẋ i

c

ẋ j

c
= g00 + 2g0α

ẋα

c
+ gαβ

ẋα

c

ẋβ

c
= 1 + O

(
1

c2

)
.

We have used g00 = 1, gαα = O(1), gαβ = O

(
1

c2

)
, α �= β, g0α = O

(
1

c2

)
.

Finally,

dτ

dt
=
√

gi j
ẋ i

c

ẋ j

c
dt =
√
1 + O

(
1

c2

)
dt,

i.e.
dτ

dt
= 1 + O

(
1

c2

)
.

Observe we can also obtain

dt

dτ
= 1 + O

(
1

c2

)
.

�

Theorem 9.11.6 If a particle is moving “slow” along a curve parameterized by

proper time, then it is
d2x0

dτ 2
= O

(
1

c

)
and

d2xα

dτ 2
= ẍα + O

(
1

c2

)
.

Proof From
dx0

dτ
= dx0

dt

dt

dτ
= c

(
1 + O

(
1

c2

))
= c + O

(
1

c

)
, we obtain

d2x0

dτ 2
= d

dt

(
c + O

(
1

c

))
= O

(
1

c

)
,
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and, from

dxα

dτ
= dxα

dt

dt

dτ
= ẋα

(
1 + O

(
1

c2

))
= ẋα + O

(
1

c2

)
,

it results

d2xα

dτ 2
= d

dt

(
ẋα + O

(
1

c2

))
= ẍα + O

(
1

c2

)
.

�

Theorem 9.11.7 In a weak gravitational field, the four geodesic equations for
“slow” particles reduce to the three classical equations of motion, that is

d2xi

dτ 2
= −�i

jk

dx j

dτ

dxk

dτ
, i, j, k ∈ {0, 1, 2, 3} −→ d2xα

dt2
= − ∂Φ

∂xα
, α ∈ {1, 2, 3}.

Proof We already proved that, if a particle is moving “slow,” then
d2x0

dτ 2
= O

(
1

c

)
,

so, the left hand-side part is a O

(
1

c

)
quantity.

We consider

d2x0

dτ 2
= −�0

jk

dx j

dτ

dxk

dτ
= −�0

00

(
dx0

dτ

)2
− 2�0

0α
dx0

dτ

dxα

dτ
− �0

αβ

dxα

dτ

dxβ

dτ

and we observe

�0
00

(
dx0

dτ

)2
= O

(
1

c3

)(
c + O

(
1

c

))2
= O

(
1

c

)
,

�0
0α
dx0

dτ

dxα

dτ
= O

(
1

c2

)(
c + O

(
1

c

))(
ẋα + O

(
1

c2

))
= O

(
1

c

)

�0
αβ

dxα

dτ

dxβ

dτ
= O

(
1

c2

)(
ẋα + O

(
1

c2

))(
ẋβ + O

(
1

c2

))
= O

(
1

c2

)

The right hand-side part of the equation of geodesic is O

(
1

c

)
, therefore, for a “slow”

particle, the first geodesic equation is an equality between “very small” quantities.
As a consequence, we can neglect it.

We already proved that the left hand-side part of the geodesic equations is



9.11 Weak Gravitational Field and the Classical Counterparts … 341

d2xα

dτ 2
= ẍα + O

(
1

c2

)
.

Now, for the right hand-side part, we proceed as above.

d2xα

dτ 2
= −�α

jk

dx j

dτ

dxk

dτ
= −�α

00

(
dx0

dτ

)2
− 2�α

0β
dx0

dτ

dxβ

dτ
− �α

βγ

dxβ

dτ

dxγ

dτ

and we observe

�α
00

(
dx0

dτ

)2
=
(

1

2c2
∂g(2)

00

∂xα
+ O

(
1

c3

)) (
c2 + O (1)

)2 = 1

2

∂g(2)
00

∂xα
+ O

(
1

c

)
,

�α
0β
dx0

dτ

dxβ

dτ
= O

(
1

c3

)(
c + O

(
1

c

))(
ẋα + O

(
1

c2

))
= O

(
1

c2

)
,

�α
βγ

dxβ

dτ

dxγ

dτ
= O

(
1

c2

)(
ẋβ + O

(
1

c2

))(
ẋγ + O

(
1

c2

))
= O

(
1

c2

)
,

that is the right hand-side of the geodesic equations is

−1

2

∂g(2)
00

∂xα
+ O

(
1

c

)
,α ∈ {1, 2, 3}.

Neglecting the “small” quantities, the geodesic equations

d2xi

dτ 2
= −�i

jk

dx j

dτ

dxk

dτ
, i, j, k ∈ {0, 1, 2, 3}

reduce to
d2xα

dt2
= − ∂Φ

∂xα
, α ∈ {1, 2, 3}, Φ = 1

2

∂g(2)
00

∂xα
.

�

Theorem 9.11.8 The relativistic equations of the weak gravitational field reduce to
the classical Poisson field equation:

Ri j − 1

2
gi j R = 8πG

c4
Ti j −→ ∇2Φ = 4πGρ,

Proof We consider the relativistic equation written with respect to the Laue scalar

Ri j = 8πG

c4

(
Ti j − 1

2
gi j T

)
.
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Suppose the matter-energy tensor written in the previous form consisting of a swarm
of identical non-interacting particles having density ρ. The only non-zero component
is T00 = ρc2. The right member is

8πG

c4

(
Ti j − 1

2
gi j T

)
= 8πG

c4

[
ρc2 − 1

2

(
1 + O

(
1

c2

))
ρc2
]

= 8πG

c4

[
ρc2

2
+ O(1)

]
=

= 1

c2
· 4πGρ + O

(
1

c4

)
.

Now, let us look at the left member.

R00 = Rs
0s0 = R0

000 + Rα
0α0 = Rα

0α0 = ∂�α
00

∂xα
− ∂�α

0α

∂x0
+ �m

00�
α
mα − �m

0α�α
m0.

The two products of Christoffel symbols are at least O

(
1

c4

)
.

Then, since�α
0α = O

(
1

c3

)
, it results

∂�α
0α

∂x0
=∂�α

0α

∂t

∂t

∂x0
=O

(
1

c3

)
1

c
= O

(
1

c4

)
.

If we consider the derivative with respect xα of the equality �α
00 = 1

2c2
∂g(2)

00

∂xα
+

O

(
1

c3

)
, it is

∂�α
00

∂xα
= 1

2c2
∂2g(2)

00

(∂xα)2
+ O

(
1

c3

)
, α ∈ {1, 2, 3},

that is

R00 = 1

2c2

3∑
α=1

∂2g(2)
00

(∂xα)2
+ O

(
1

c3

)
.

Since Φ = 1

2
g(2)
00 , we finally obtain the right member as

R00 = 1

c2
�2Φ + O

(
1

c3

)
.

Neglecting the small quantities, the relativistic weak field equations reduce to the
classical Poisson field equation

�2Φ = 4πGρ.

�
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Corollary 9.11.9 The relativistic equations of theweakgravitational field in vacuum
reduce to the classical Laplace field equation in vacuum:

Ri j = 0 −→ ∇2Φ = 0.

9.12 The Einstein Static Universe and its Cosmological
Constant

On February 8, 1917, the Prussian Academy of Science in Berlin published a paper
by Albert Einstein where the first application of his theory, published on November
25, 1915, was presented [68]. The paper discussed a dynamical system describing a
static spacetime representing the Universe. It can be considered the birth of modern
Cosmology. The model proved wrong after the discovery or recession of galaxies by
Hubble, however it is important because several concepts presented in it were used in
the further developments of this science. Let us give now a quick presentation of it.

Consider before some mathematical preliminaries. Let be U := (0, 2π) ×
(−π

2
,
π

2
) × (−π

2
,
π

2
), (α,β, θ) ∈ U and the map f : U → R

4,

f (α,β, θ) :=

⎧⎪⎪⎨
⎪⎪⎩

u1 = r cosα cosβ cos θ
u2 = r sinα cosβ cos θ
u3 = r sin β cos θ
u4 = r sin θ

It is easy to see that u21 + u22 + u23 + u24 = r2.
The image of f inR4, f (U ), is the 3-sphere centered at the origin having radius r .
In classical notation, it is S3(O, r).
The coefficients of the metric are computed with the Euclidean inner product of

the partial derivatives of f . The only nonzero coefficients of the metric are

gαα = r2 cos2 β cos2 θ, gββ = r2 cos2 θ, gθθ = r2,

therefore the metric induced by the Euclidean 4-space in the tangent 3-planes of this
surface is

ds2 = gαα(dxα)2 + gββ(dxβ)2 + gθθ(dx
θ)2.

The volume of S3(O, r) is

Vol[S3(O, r)] =
∫ 2π

0

∫ π/2

−π/2

∫ π/2

−π/2

√
det (gi j )dαdβdθ =

= r3
∫ 2π

0

∫ π/2

−π/2

∫ π/2

−π/2
cosβ cos2 θdαdβdθ = 2π2r3.
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Einstein’s static universe is E := R × S3(O, r) and it does not evolve. If we accept
the Einstein point of view, the Universe is static. Let us study the mathematical
formalism to find its properties.

Let us choose the homogeneous coordinates (x0, x1, x2, x3) := (ct,α,β, θ).
Now, we use the Minkowski product of partial derivatives to determine the met-
ric of E. It results a simple form for the metric of Einstein’s static universe

ds2 = (dx0)2 − r2 cos2 x1 cos2 x3(dx1)2 − r2 cos2 x3(dx2)2 − r2(dx3)2.

The only nonzero Christoffel symbols are

�1
12 = �1

21 = − tan x2; �1
13 = �1

31 = �2
23 = �2

32 = − tan x3;

�2
11 = sin x2 cos x2; �3

11 = cos2 x2 sin x3 cos x3; �3
22 = sin x3 cos x3.

Using

R jl = Rh
jhl = ∂�h

jl

∂xh
− ∂�h

jh

∂xl
+ �s

jl�
h
sh − �s

jh�
h
sl

it results

R00 = ∂�h
00

∂xh
− ∂�h

0h

∂x0
+ �s

00�
h
sh − �s

0h�
h
s0 = 0.

In the same way, we compute Rii = − 2

r2
gi i , i ∈ {1, 2, 3}.

If we consider the Einstein field equations with the cosmological constant
included, it is

Ri j − 1

2
Rgi j + �gi j = 8πG

c4
Ti j,

in the equivalent form

Ri j − �gi j = 8πG

c4

(
Ti j − 1

2
T gi j

)
.

If i = j = 0, the Einstein field equations reduced to:

R00 − �g00 = 8πG

c4

(
T00 − 1

2
T g00

)
.

If i = j �= 0,

Rii − �gi i = 8πG

c4

(
Tii − 1

2
T gi i

)
.
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Einstein assumed that the matter-energy appears only in the form of a swarm of non-
interacting particles of uniform density ρ. Only T 00 = ρc2, all the other components
are 0. The first equation becomes

� = −4πG

c2
ρ.

The other three equations lead to a single equation,

− 2

r2
− � · (−1) = 8πG

c4

(
0 − 1

2
ρc2 · (−1)

)
,

i.e.

− 1

r2
= �

Combining the two equations, it results

r = c

2
√

πGρ
.

The total amount of matter, denoted as ME, in Einstein’s universe is finite. It is
computed as the product between the spatial density ρ and the volume of S3(O, r),
that is

ME = ρ · 2π2r3 = ρ · 2π2 · r · r2 = �ρ2π �2 1√−�

c2

4�πG�ρ
= πc2

2G
√−�

.

Of course, the radius of this universe is the constant computed before, that is

r = c

2
√

πGρ
.

Einstein did not consider any more this model after Hubble discovered the evidence
of cosmological expansion, however the concept of cosmological constant, used here,
was considered later in view of the issues of cosmological inflation and dark energy
discussed above.

9.13 Cosmic Strings

Cosmic strings are 1-dimensional hypothetical structures emerged as topological
defects of spacetime in some phase transition after the Big Bang. They should have
acted like seeds for cosmological large scale structure formation [64]. A nice pre-
sentation of this topic is in [35]. Here, we adapted it for a metric with signature
(+ − −−).
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In a system of geometric coordinates (t, r,φ, z), the metric which describes a
static string around and along the z axis is

ds2 = dt2 − dr2 − f 2(r)dφ2 − dz2,

where f (r) has to be determined. The only non-zero Christoffel symbols are

�1
22 = f (r) f ′(r); �2

12 = �2
21 = f ′(r)

f (r)
.

We have

∂�2
12

∂r
= ∂�2

21

∂r
= f ′′(r) f (r) − ( f ′(r))2

f 2(r)
; ∂�1

22

∂r
= ( f ′(r))2 + f ′′(r) f (r);

Then

R2
121 =

	
		∂�2
11

∂φ
− ∂�1

12
∂r

+


�2
s2�

s
11 − �2

s1�
s
12 = − f ′′(r) f (r) −���( f ′(r))2

f 2(r)
−�

�
��

( f ′(r))2
f 2(r)

= − f ′′(r)
f (r)

,

that is

R11 = Rs
1s1 = − f ′′(r)

f (r)
.

From

R1
212 = ∂�1

22
∂r

−
	

		∂�1
21

∂φ
+


�1

s1�
s
22 − �1

s2�
s
21 =����

( f ′(r))2 + f ′′(r) f (r) −�������
f (r) f ′(r) f ′(r)

f (r)
,

we deduce
R22 = Rs

2s2 = f ′′(r) f (r);

Since

R = Ri
i = g11R11 + g22R22 = �

�
�

f ′′(r)
f (r)

+
���������

( −1

f 2(r)

)
f ′′(r) f (r) = 0,

we obtain ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R11 +







1

2
R g11 = − f ′′(r)

f (r)

R22 +







1

2
R g22 = f ′′(r) f (r).
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Einstein’s field equations in geometric coordinates are

Ri j − 1

2
Rgi j = 8πGTi j ;

Now using the previous result, that is R1
1 = −R2

2 = f ′′(r)
f (r)

, to choose the tensor

T i
j : T

i
j = 0 except T 1

1 = −T 2
2 = σ(r), where σ is a given positive smooth function

expressing the unit energy density of the string. It remains to find f which satisfies
the equation

f ′′(r) = −8πGσ(r) f (r).

In order to avoid singularities, the metric has to reduce to the flat Minkowski
metric at the origin. This means that f (r) approaches r for small r . Therefore, two
conditions for f have to be given: f (0) = 0 and f ′(0) = 1.

Denote by rs the value of r such that σ(r) = 0 if r ≥ rs . The physical area of a
ring of radius r and width dr in the given metric is

∫ 2π

0

∫ dr

0

√− det gi j dφdz = 2π f (r)dr.

It implies that the string energy per unit of length is

E =
∫ rs

0
σ(r)2π f (r)dr,

therefore, integrating the equation R11 = −8πGσ(r), we obtain

f ′(rs) − f ′(0) =
∫ rs

0
f ′′(r)dr = −4G

∫ rs

0
σ(r)2π f (r)dr = −4GE .

If r > rs , it is
f ′(r) = 1 − 4GE .

Integrating again, it results

f (r) = (1 − 4GE)r + K ,

where K is a constant that should be 0 because f (0) = 0.
The metric obtained outside the string is

ds2 = dt2 − dr2 − (1 − 4GE)2r2dφ2 − dz2,
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which a flatmetric. In thisway,we have the simplest expression of ametric describing
an infinite, straight and independent of time string lying along the z axis of our chosen
coordinate system.

9.14 The Case of Planar Gravitational Waves

Also the issue of gravitational waves can be dealt under the standard of our geometric
approach. Here, we shall give just a short summary of this important topic. For a
detailed discussion on the history, the theoretical foundation and the discovery, we
refer the reader to specialized texts and papers [69–71].

In order to deal with gravitational waves, we have to obtain metrics in a geometric
coordinate system as

ds2 = (αi j + εhi j )dx
idx j ,

such that both Einstein’s field equations and �hi j = 0 are satisfied.
Here,

� := (∂0)2 − (∂1)2 − (∂2)2 − (∂3)2,

where

(∂k)2 := ∂2

(∂xk)2
.

If μi j are the coefficients of the classical Minkowski metric, the previous d’Alembert
operator definition can be written in a simpler form as

� := μi j∂
i∂ j .

In any case it is difficult to find such kind of metrics because we have to develop
the whole theory of tensor perturbations in General Relativity [69]. Instead of trying
to find out general gravitational wave solutions, let us focus on planar gravitational
waves which are easier to obtain. See [44] for details. We follow this last reference
to offer a first glance on this subject. Consider the metric

ds2 = (1 + cos(t − x)[2 + cos(t − x)])dt2 − (1 − cos2(t − x))dx2 − dy2 − dz2−

−2 cos(t − x)(1 + cos(t − x))dtdx .

The previous metric can be seen as a slightly perturbation of the Minkowski metric
μi j because

gi j = μi j + hi j .
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A metric which such coefficients is called a linearized metric. If it satisfies both
Einstein’s vacuum field equations and the conditions � hi j = 0, such a linearized
metric describes gravitational planar waves.

Theorem 9.14.1 The previous metric having the following nonzero coefficients

g00 = 1 + cos(t − x)(2 + cos(t − x)); g11 = 1 − cos2(t − x); g22 = g33 = −1;

g01 = g10 = − cos(t − x)(1 + cos(t − x));

describes gravitational planar waves.

Proof We have the nonzero perturbations

h00 = cos(t − x) (2 + cos(t − x)); h11 = − cos2(t − x);

h01 = h10 = − cos(t − x)(1 + cos(t − x)).

It is easy to see that

� cos(t − x) = (∂0)2 cos(t − x) − (∂1)2 cos(t − x) = 0

and
� cos(t − x) = (∂0)2 cos2(t − x) − (∂1)2 cos2(t − x) = 0,

therefore the conditions
� hi j = 0

are fulfilled.
Now it seems we have a lot of difficult computations to do in order to prove

Ri j = 0.
It is easy to provide a coordinate transformation for which the Ricci tensor can

be computed. Let us consider the Minkowski metric

ds2 = dt̄2 − dx̄2 − d ȳ2 − dz̄2

and the transformation

t̄ = t + sin(t − x), x̄ = x, ȳ = y, z̄ = z.

Since

dt̄ = (1 + cos(t − x))dt − cos(t − x)dx, dx̄ = dx, d ȳ = dy, dz̄ = dz,



350 9 General Relativity and Relativistic Cosmology

the Minkowski metric turns into our metric

ds2 = (1 + cos(t − x)[2 + cos(t − x)])dt2 − (1 − cos2(t − x))dx2 − dy2 − dz2−

−2 cos(t − x)(1 + cos(t − x))dtdx .

Therefore R̄i j = 0 transforms into the desired Ri j = 0. �

Gravitational waves were among the early predictions of Einstein’s General Rel-
ativity. Their discovery a century later can be considered one of the greatest achieve-
ments of modern Science.

9.15 The Gödel Universe

Another interesting metric is the one describing the so-called Gödel Universe [72]
published7 in 1949.

First, let us show that the metric

ds2 = (dx0)2 − (dx1)2 + e2x
1

2
(dx2)2 − (dx3)2 + 2ex

1
dx0dx2

written in geometric coordinates, satisfies Einstein’s field equations in the case when

the cosmological constant is � = 1

2
and the stress-energy tensor describes dust with

constant density ρ = 1

8πG
. This is called Gödel’s first metric . The coefficients

involved in computations are

(
gi j
) =

⎛
⎜⎜⎜⎜⎝

1 0 ex
1

0
0 −1 0 0

ex
1

0
e2x

1

2
0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠ ,
(
gi j
) =
⎛
⎜⎜⎝

−1 0 2e−x1 0
0 −1 0 0

2e−x1 0 −2e−2x1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Since only the derivative with respect to x1 of themetric coefficients can be non-zero,
the first type Christoffel symbols are

�12,2 = �21,2 = 1

2
e2x

1
, �01,2 = �10,2 = 1

2
ex

1;

7The story of this solution is very nice. Kurt Gödel gave it to Albert Einstein as a gift for his 70th
birthday when they both lived in Princeton.
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�02,1 = �20,1 = −1

2
ex

1; �22,1 = −1

2
e2x

1;

�12,0 = �21,0 = 1

2
ex

1
.

The non-zero second type Christoffel symbols are

�0
10 = �0

01 = 1, �0
12 = �0

21 = 1

2
ex

1;

�1
02 = �1

20 = 1

2
ex

1; �1
22 = 1

2
e2x

1;

�2
01 = �2

10 = −e−x1 .

Then

R00 = Ri0i0 =
	

		∂�i
00

∂xi
−�

��
∂�i

0i
∂x0

+���
�i
si�

s
00 − �i

s0�
s
0i = −�i

10�
1
0i − �i

20�
2
0i = −�2

10�
1
02 − �1

20�
2
01 = 1

R22 = Ri2i2 = ∂�i
22

∂xi
−�

��
∂�i

2i
∂x2

+ �i
si�

s
22 − �i

s2�
s
2i = ∂�1

22
∂x1

+ �i
1i�

1
22 − �1

02�
0
21 − �0

12�
1
20 = e2x

1

R02 = R20 = Ri2i0 = ∂�i
20

∂xi
−�

��
∂�i

2i

∂x0
+ �i

si�
s
20 − �i

s0�
s
2i = ∂�1

20
∂x1

+ �i
1i�

1
20 = ex

1

The others Ri j are null. Now,

R0
0 = g0s Rs0 = g00R00 + g02R20 = 1,

R2
2 = g2s Rs2 = g20R02 + g22R22 = 0,

i.e. the trace is
R = 1.

Consider the contravariant vector ui := (1, 0, 0, 0) = (u0, u1, u2, u3). The corre-
sponding covariant vector is ui := gisus = (1, 0, ex

1
, 0) = (u0, u1, u2, u3).

Let us observe R00 = 1 = u0u0; R22 = e2x
1 = u2u2; R02 = R20 = ex

1 = u0u2,

that is, in our case, for � = 1

2
and Ti j = ρuiu j = 1

8πG
uiu j we have

Ri j −�
�

��

1

2
R gi j +����gi j = uiu j = 8πGTi j .
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Therefore Gödel’s metric is a solution for Einstein’s field equations when the

cosmological constant is � = 1

2
and Ti j = 1

8πG
uiu j .

Consider Gödel’s change of coordinates (t, r,φ, y) → (x0, x1, x2, x3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 = 2t − φ
√
2 + 2

√
2 arctan

(
tan

(
φ

2

)
e−2r

)
,φ �= π; x0 = 2t i f φ = π

x1 = ln [cosh(2r) + cosφ sinh(2r)]

x2 =
√
2 sin φ sinh(2r)

cosh(2r) + cosφ sinh(2r)
x3 = 2y.

It can be written in the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tan

(
φ

2
+ x0 − 2t

2
√
2

)
= tan

(
φ

2

)
e−2r

ex
1 = cosh(2r) + cosφ sinh(2r)

x2ex
1 = √

2 sin φ sinh(2r)
x3 = 2y.

Let us look at the coordinates x1 and x2 when r ≥ 0; 0 ≤ φ ≤ π. It can be seen a 2π
periodicity of x1 and x2 when r is fixed. These coordinates can be called cylindrical
coordinates for the manifold M . Computing Gödel’s metric in the new coordinates,
we find another form of the previous solution of the Einstein field equations, that is

ds2 = 4
[
dt2 − dr2 − dy2 + (sinh4 r − sinh2 r)dφ2 + 2

√
2 sinh2 rdφdt

]
,

called second Gödel’s second metric.
We do not present the computations because they are heavy to be reported. We

leave the calculations as an exercise for the reader. We can prove:

Theorem 9.15.1 Denote by M := R
4 the set having the coordinates (x0, x1, x2, x3).

Then
1. For any two events A and B there is a transformation on M carrying A into B,
that is there are not privileged points. From the physical point of view, it means that
M is homogeneous.
2. M has rotational symmetry, i.e. there exists a transformation of coordinates
depending on one parameter only such that A is carried into A.

Proof 1. Consider the transformation

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0 + a
x̄1 = x1

x̄2 = x2

x̄3 = x3
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Let us check that this is an isometry of M . We observe dx̄k = dxk and ds̄2 = ds2.
Then, consider two points
A0(x0(λ0), x1(λ0), x2(λ0), x3(λ0)) and A1(x0(λ1), x1(λ1), x2(λ1), x3(λ1)) joined
by the curve c(λ) = (x0(λ), x1(λ), x2(λ), x3(λ)), λ ∈ [λ0,λ1] and their images
Ā0(x̄0(λ0), x̄1(λ0), x̄2(λ0), x̄3(λ0)), Ā1(x̄0(λ1), x̄1(λ1), x̄2(λ1), x̄3(λ1)) joined by
the curve c̄(λ) = (x̄0(λ), x̄1(λ), x̄2(λ), x̄3(λ)), λ ∈ [λ0,λ1]. It results

lc(A0, A1) =
∫ λ1

λ0

||ċ(λ)||dλ,

where the norm is expressed with respect ds2. The same,

lc̄( Ā0, Ā1) =
∫ λ1

λ0

|| ˙̄c(λ)||1dλ,

where this second norm is expressed with respect ds̄2. Since ||ċ(λ)|| = || ˙̄c(λ)||1 it
results lc(A0, A1) = lc̄( Ā0, Ā1), that is we deal with an isometry of M . Three other
isometries can be highlighted:

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0

x̄1 = x1 + b
x̄2 = e−bx2

x̄3 = x3

,

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0

x̄1 = x1

x̄2 = x2 + c
x̄3 = x3

,

⎧⎪⎪⎨
⎪⎪⎩

x̄0 = x0

x̄1 = x1

x̄2 = x2

x̄3 = x3 + d

.

Combining all four previous transformations, any point of M can be mapped into
any point of M without changing metric properties of M , i.e. any point can be seen
as an origin. Therefore M is homogeneous.

2. The previous discussion allows us to consider any point A as the origin of
M . Therefore in the new coordinates (t, r,φ, y), rA = 0. Consider the group of
transformations with respect to the parameter K ∈ R,

(t, r,φ, y) → (t, r,φ + K , y).

The point A is a fixed point of this group, and according to the previous observation, it
exists a 2π periodicity experienced by any other point. Therefore M allows rotations
with respect any given point of it. �

A spacetime is time orientable, if the time-like and null vectors can be classified
into two classes, the future pointing and the past pointing vectors as we did it in the
case of the 2-Minkowski space (that is with respect to a given vector).

Let us remember: in the case of theMinkowski metric ds2 = dt2 − dx2, provided
by theMinkowski product< p, q >M= tptq − xpxq , the vector e1 = (1, 0) is a time-
like vector because < e1, e1 >M> 0 and the time-like vector v = (3, 2) becomes a
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future-pointing time-like vector because < v, e1 >M> 0. The vector −v becomes a
past-pointing time-like vector. The vectorw = (1, 1) is a null future-pointing vector,
etc.

A curve ψ is called time-like if the tangent vectors ψ̇ are time-like future-pointing
vectors.

If we choose two events E0(λ0) and E1(λ1) connected by a time-like curve, we
say that E0 is in the past of E1, (or equivalently, E1 is in the future of E0) if λ0 < λ1.

In the case of Gödel’s second metric, the vector ui = (1, 0, 0, 0) has the property
gi j ui u j = 4 > 0 that is ui is a time-like vector. If v j is a time-like vector, that is
gi jv

iv j > 0, we say that v j is future pointing if gi j uiv j > 0. If gi j uiv j < 0 the
vector v j is called past pointing. The same, if wk is a null vector, we can define past
pointing and future pointing null vectors according to the sign of gi j uiwk . Therefore
M becomes time orientable.

Theorem 9.15.2 The time orientable Gödel’s universe allows:
1. closed time-like curves;
2. time-like loops, i.e. any two events connected by a time-like curve can be connected
by a closed time-like curve.

Proof 1. Consider the curve α(s) := (0, R, bs, 0).
Its velocity vector is α̇(s) = v j = (0, 0, b, 0). The norm of this vector depends

on
gi jv

iv j = (sinh4 R − sinh2 R)b2.

If we choose, from the beginning R > ln(1 + √
2), i.e. sinh R > 1, this vector is a

time-like one. The chosen curve is a time-like curve according to the second statement
of the previous theoremandα(0) = α(2π).Wehaveobtained a closed time-like curve
in M .
2. First, if we look only at the coordinates (r,φ, t), we observe that they determine
completely the coordinates (x1, x2, x3). More precisely, for particular given (r,φ, t),
we have particular corresponding (x1, x2, x3). It remains the coordinate x0 which
depends on t ; therefore the t−lines of matter, in cylindrical coordinates, are x0−lines
of matter.

Consider the point Bt1 with the coordinates (t1, R, 0, 0). The curve

γ(s) =
(
t2 + t1 − t2

2πn
s, R, bs, 0

)

is time-like because the vector

γ̇(s) = vi =
(
t1 − t2
2πn

, 0, b, 0

)
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is time-like. Indeed, for a chosen n, big enough, and R > ln(1 + √
2), we have

gi jv
iv j = 4

[
(t1 − t2)2

4π2n2
+ (sinh4 R − sinh2 R)b2 − sinh2 R ·

(
t1 − t2
2πn

)
b

]
> 0.

We observe that γ(0) = Bt2 and γ(2nπ) = Bt1 .
Using the same idea, we can derive time-like curves between Bt2 and Bt3 and

between Bt3 and Bt1 . The concatenation of the three time-like curves is a time-like
loop starting from Bt1 , passing through Bt2 , then to Bt3 , to finally reach Bt1 . We can
conclude that t is not a proper time coordinate, because if it is so, moving forward
in time we return in our past. Therefore no global time-coordinate exists in Gödel’s
universe. �

More about this very nice and difficult subject can be found in [45, 61, 72]. An
exhaustive discussion on closed time-like curves and their physical implications can
be found in [74]. Here we developed this Universe model because it can be easily
framed in our geometric picture.

9.16 Black Holes: A Mathematical Introduction

Black hole physics is undoubtedly one of the more fascinating topic of General Rel-
ativity. Here we give only a short mathematical introduction and refer the interested
reader to the book by Frolov and Novikov Black Hole Physics [74] for a detailed
discussion.

9.16.1 Escape Velocity and Black Holes

Suppose we stay on the surface of the Earth imagined as a sphere and we vertically
throw a ball. Depending on the speed of throwing, the ball can be higher and higher
throwed, but after it reaches a maximum altitude it falls down attracted by the Earth.
Which is the speed necessary such that the ball never return?

So, the gravitational force acts between the two involved bodies, the Earth and
the ball. If the ball is at distance r from the center of the Earth, we have

F = GMm

r2
; KE = mv2

2
; PE = −GMm

r
.

Consider, on the surface of the Earth, the escape velocity ve. The ball goes higher
and higher loosing in time its speed. At infinity, its kinetic energy is 0, the same for

the potential energy −GMm

r
. This means that, at infinity, the total energy is 0. At

each point of this rectilinear trajectory, the total energy, which is a constant, has to
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be 0, that is the escape velocity can be computed from the condition

mv2

2
− GMm

r
= 0.

It results the escape velocity formula

v2
e = 2GM

RE
,

where RE is the radius of the Earth. If someone replace the values, the escape velocity
from the Earth gravitational field is almost 11(km)/(s).

By definition, a black hole is a “cosmic body” having the escape velocity > c,
where c is the speed of light in vacuum. According to the fact that there are no speeds
greater than the speed of light in vacuum, let us compute how small should be the
Earth such that ve = c. We obtain

r = 2GM

c2
≈ 2 · 6.67 · 10−116 · 1024

9 · 1016 ≈ 8.8(mm).

Therefore, if all the mass of the Earth is concentrated in a sphere with 8.8 (mm)
radius, the Earth should be a black hole and not even photons can leave its surface.

Let us see the difference between the Earth, as we know, and the Earth as a black
hole. We have to compute in both cases the gravitational force exerted to a 1(kg)
body.

For the “usual Earth”:

F = 6.67 · 10−11 · 6 · 1024 · 1
(24 · 106)2 ≈ 9.8(kg · m)/(s2) ≈ g

where g is the constant gravitational acceleration as we expected.
For the “black hole Earth”, we have:

F = 6.67 · 10−11 · 6 · 1024 · 1
(8 · 10−3)2

≈ 1

2
· 1019(kg · m)/(s2),

that is a tremendous huge force exerted by the black hole to all the bodies on its
surface.

Suppose now the Earth transformed instantaneously into a black hole. Is theMoon
trajectory affected? This is only a mathematical discussion, of course. Let us look at
the formula

F = GM
m

r �2
= 
mv2

�r
.
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It is the same in both cases, because r is measured from the center of the Earth. We
deduce that the Moon continues to orbit the black hole Earth such it does now.

Some other considerations about black holes can be seen when we study them
using metrics.

9.16.2 Rindler’s Metric and Pseudo-Singularities

Let us define the Rindler metric as

ds2 = (x̄1)2

b2
(x̄0)2 − (x̄1)2.

What is happening with this metric when x̄1 → 0? If we are looking only at the first
term, the first coefficient approaches 0. We can think that the metric fails to exist. A
singularity seems to be highlighted. However, we will show that a suitable change of
coordinates transforms the Rindler metric into the ordinary Minkowski metric. We
may conclude that x̄1 = 0 is not a physical singularity, but a pseudo-singularity (or
a geometric singularity), that is one which can be removed by a convenient change
of coordinates.

Consider the change of coordinates

C :
⎧⎨
⎩ x̄

0(x0, x1) = b tanh−1 x0

x1
x̄1(x0, x1) = √(x1)2 − (x0)2.

where tanh−1(y) = 1

2
ln

1 + y

1 − y
. If we compute

dC =
⎛
⎜⎝

∂ x̄0

∂x0
∂ x̄0

∂x1
∂ x̄1

∂x0
∂ x̄1

∂x1

⎞
⎟⎠

the four components are

∂ x̄0

∂x0
= bx1

(x1)2 − (x0)2
; ∂ x̄0

∂x1
= −bx0

(x1)2 − (x0)2
;

∂ x̄1

∂x0
= −x0√

(x1)2 − (x0)2
; ∂ x̄1

∂x1
= x1√

(x1)2 − (x0)2
.
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Exercise 9.16.1 Compute dCt · R dC .

Solution. We have to compute

⎛
⎝

bx1

(x1)2−(x0)2
−x0√

(x1)2−(x0)2

−bx0

(x1)2−(x0)2
x1√

(x1)2−(x0)2

⎞
⎠
⎛
⎝ (x̄1)2

b2
0

0 −1

⎞
⎠
( bx1

(x1)2−(x0)2
−bx0

(x1)2−(x0)2
−x0√

(x1)2−(x0)2
x1√

(x1)2−(x0)2

)
,

that is

⎛
⎝

bx1

(x1)2−(x0)2
−x0√

(x1)2−(x0)2

−bx0

(x1)2−(x0)2
x1√

(x1)2−(x0)2

⎞
⎠
⎛
⎝ (x1)2 − (x0)2

b2
0

0 −1

⎞
⎠
( bx1

(x1)2−(x0)2
−bx0

(x1)2−(x0)2
−x0√

(x1)2−(x0)2
x1√

(x1)2−(x0)2

)

=
⎛
⎝

bx1

(x1)2−(x0)2
−x0√

(x1)2−(x0)2

−bx0

(x1)2−(x0)2
x1√

(x1)2−(x0)2

⎞
⎠
⎛
⎜⎝

x1

b
− x0

b
x0√

(x1)2−(x0)2
−x1√

(x1)2−(x0)2

⎞
⎟⎠ =
(
1 0
0 −1

)
.

�
The metric in coordinates (x0, x1) becomes

ds2 = (dx0)2 − (dx1)2.

Therefore we have proved

Theorem 9.16.2 The change of coordinates

C :
⎧⎨
⎩ x̄

0(x0, x1) = b tanh−1 x0

x1
x̄1(x0, x1) = √(x1)2 − (x0)2

transforms the Rindler metric

ds2 = (x̄1)2

b2
(x̄0)2 − (x̄1)2

into the Minkowski metric

ds2 = (dx0)2 − (dx1)2.

As we discussed, x̄1 = 0 is not a physical singularity, but a pseudo-singularity.
The lines x1 = x0 and x1 = −x0 are called thehorizonof the geometric singularity

x̄1 = 0. Removing of geometric singularities is part of the mathematical theory of
black holes we present.
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9.16.3 Black Holes Studied Through the Schwarzschild
Metric

When we studied the vacuum field equations Ri j = 0, we started from the
Schwarzschild intuition to look for a spherical symmetric solution which describes
the relativistic field outside of a non-rotating, massive body.

In the coordinate system (x0 = ct, r,ϕ, θ) Schwarzschild chose the form of the
solution as

ds2 = c2 · eT dt2 − eQdr2 − r2dϕ2 − r2 sin2 ϕdθ2,

with T := T (r), Q := Q(r) two real functions we need to determine. (In [40], a
more general approach is presented considering T := T (r, t) and Q := Q(r, t)).

The non-zero Christoffel symbols are

�0
01 = �0

10 = T ′

2
, �1

00 = −T ′

2
eT−Q , �1

11 = Q′

2
, �1

22 = −re−Q , �1
33 = −re−Q sin2 ϕ,

�2
21 = �2

12 = 1

r
, �2

33 = − sinϕ cosϕ, �3
31 = �3

13 = 1

r
, �3

23 = �3
32 = cot ϕ,

where we denote by ′ the derivative with respect to r . The computations lead to

T = −Q = ln

(
1 + B

r

)
.

The obtained Schwarzschild metric is

ds2 = c2 ·
(
1 + B

r

)
dt2 − 1(

1 + B

r

)dr2 − r2dϕ2 − r2 sin2 ϕdθ2.

Thenwefind B = −2GM

c2
, that is the gravitationalNewtonian potentialφ(x, y, z) =

−GM

r
is involved in the coefficients of Schwarzschild metric. We have remembered

here these results for two reasons. The first one is the following exercise we need to
understand the behavior of the Riemann curvature tensor at the surface of a black
hole.

Exercise 9.16.3 Compute R0
101.

Solution. Replacing in Ri
jkl formula (in the case i = k = 0, j = l = 1) the above

corresponding Christoffel symbols, we find
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R0
101 = −1

2
T ′′ + 1

4
T ′Q′ − 1

4
(Q′)2,

that is

R0
101 = −B

r3

⎛
⎜⎝ 1

1 + B

r

⎞
⎟⎠ .

�
The second reason is related to the quantity rs := 2GM

c2
, called the Schwarzschild

radius, which gives Schwarzschild metric in the form

ds2 = c2 ·
(
1 − rs

r

)
dt2 − 1(

1 − rs
r

)dr2 − r2dϕ2 − r2 sin2 ϕdθ2.

If we remember the nature of the Schwarzschild metric, the first term is positive,
the others three are negative. If we look at the first term in the case of the Sun, if we
replace the gravitational constant G, M = Msun , the speed of light in vacuum c and

r = rsun we have 1 − rs
r

> 0. If r approaches rs = 2GM

c2
the first two terms of the

metric have the properties g00 → 0 and g11 → −∞. So, the Schwarzschild metric
becomes singular. If we compute rs in the case of our Sun, we find rs ≈ 3 km. So,
the anomaly appears when the entire mass of our Sun is concentrated in a sphere
with a radius as rs .

Such a sphere is a black hole. The interior of the sphere is called an interior of the
black hole and it is characterized by the condition r < rs . The surface of the sphere is
called the event horizon and it is characterized by the condition r = rs . The exterior
of the black hole is characterized by the condition r > rs .

A clock at r = rs has its proper time dτ =
√
1 − rs

r
dt → 0. Which means that

the clock is slowed down at maximum; a clock outside the black hole works faster.
What is going on in the interior of the black hole?

We obseve g00 = c2
(
1 − rs

r

)
< 0 and g11 = − 1

1 − 1

rs

> 0. Therefore the signs are

opposite with respect to the standard ones. It results that t becomes a spatial coordi-
nate and r becomes a temporal coordinate inverting their roles!

However we can prove that the singularity r = rs is in fact a pseudo-singularity.
First, let us see what is happening to Riemann curvature tensor at r = rs .
If we denote t := x0; r := x1; ϕ := x2; θ := x3 the old coordinates, we may

construct the new coordinates:

x̄0 = (x0 − t0)

√
1 − rs

r
; x̄1 = x1 − r0

1 − rs
r

; x̄2 = r0
(
x2 − π

2

)
; x̄3 = r0

(
x3 − θ0

)
.
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It results

∂x0

∂ x̄0
= 1√

1 − rs
r

; ∂x1

∂ x̄1
=
√
1 − rs

r
; ∂x2

∂ x̄2
= 1

r0
; ∂x3

∂ x̄3
= 1

r0
;

all the other possible partial derivatives are null.
The new Riemann curvature tensor R̄0

101 is

R̄0
101 = ∂ x̄0

∂ x̄ i
∂x j

∂ x̄1
∂xk

∂ x̄0
∂xl

∂ x̄1
Ri
jkl = ∂ x̄0

∂ x̄0
∂x1

∂ x̄1
∂x0

∂ x̄0
∂x1

∂ x̄1
R0
101 =
(
1 − rs

r

) rs
r30

1

1 − rs
r

= rs

r30
.

Therefore, at the surface of the black hole, that is when r = rs , the Riemann curvature
tensor is well defined. The surface of a black hole is not a physical singularity.

At the surface of a black hole, that is when r = rs , the Kruskal–Szekeres metric
gives more information than Schwarzschild metric.

We act only on the first two coordinates of the Schwarzschild metric, the other two
remain unchanged. The Kruskal–Szeres coordinates look different inside the black
hole comparing to the case of the exterior of the black hole.

In the interior of the black hole the Kruskal–Szekeres coordinates are:

K S(r < rs) :

⎧⎪⎪⎨
⎪⎪⎩
V (t, r) =

√
1 − r

rs
er/2rs cosh

t

2rs

U (t, r) =
√
1 − r

rs
er/2rs sinh

t

2rs

U 2 − V 2 =
(
r

rs
− 1

)
er/rs < 0; U

V
= tanh

t

2rs
, i.e. t = 2rs tanh−1 V

U
.

When r < rs , that is in the interior of the black hole, we have
∂V

∂t
= A · sinh t

2rs
and

∂U

∂t
= A · cosh t

2rs
where A =

√
1 − r

rs
er/rs

t

2rs
.

∂V

∂r
= B · cosh t

2rs
and

∂U

∂r
= B · sinh t

2rs
where B =

−1
1

rs

2
√
1 − r

rs

er/2rs + 1

2rs

√
1 − r

rs
er/2rs .

⎛
⎜⎝

A sinh
t

2rs
A cosh

t

2rs
B cosh

t

2rs
B sinh

t

2rs

⎞
⎟⎠
⎛
⎜⎝

4r3s
r

e−r/rs 0

0 −4r3s
r

e−r/rs

⎞
⎟⎠
⎛
⎜⎝

A sinh
t

2rs
B cosh

t

2rs
A cosh

t

2rs
B sinh

t

2rs

⎞
⎟⎠

= 4r3s
r

e−r/rs ·
(−A2 0

0 B2

)
=

⎛
⎜⎜⎝
1 − rs

r
0

0 − 1

1 − rs
r

⎞
⎟⎟⎠ ,
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the last matrix equality because

−4r3s
r

e−r/rs · A2 = 1 − rs
r

and

B2 · 4r
3
s

r
e−r/rs = − 1

1 − rs
r

.

We have proved the following

Theorem 9.16.4 When the metric is the Schwarzschild one, in the interior of a black
hole described by the condition r < rs , the Kruskal–Szekeres coordinates

K S(r < rs) :

⎧⎪⎪⎨
⎪⎪⎩
V (t, r) =

√
1 − r

rs
er/2rs cosh

t

2rs

U (t, r) =
√
1 − r

rs
er/2rs sinh

t

2rs

transforms the Schwarzschild metric into the Kruskal–Szekeres metric

ds2 = 4r3s
r

e−r/rs
(
dV 2 − dU 2

)− r2dϕ2 − r2 sin2 ϕdθ2.

In the case of the exterior of the black hole, the Kruskal–Szekeres coordinates
are:

K S(r > rs) :

⎧⎪⎪⎨
⎪⎪⎩
V (t, r) =

√
r

rs
− 1er/2rs cosh

t

2rs

U (t, r) =
√

r

rs
− 1er/2rs sinh

t

2rs

U 2 − V 2 =
(
r

rs
− 1

)
er/rs > 0; U

V
= tanh

t

2rs
i.e. t = 2rs tanh−1 V

U
. Similar

computations lead to

Theorem 9.16.5 When the metric is the Schwarzschild one, in the exterior of a black
hole described by the condition r > rs , the Kruskal–Szekeres coordinates

K S(r > rs) :

⎧⎪⎪⎨
⎪⎪⎩
V (t, r) =

√
r

rs
− 1er/2rs cosh

t

2rs

U (t, r) =
√

r

rs
− 1er/2rs sinh

t

2rs
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transforms the Schwarzschild metric into the same Kruskal–Szekeres metric

ds2 = 4r3s
r

e−r/rs
(
dV 2 − dU 2

)− r2dϕ2 − r2 sin2 ϕdθ2.

In both cases at r = rs the singularity has been removed. The only physical sin-
gularity corresponds to r = 0.

Corollary 9.16.6 The event horizon of a black hole is a geometric singularity only.

Let us discuss now the entropy of a black hole. From the Special Relativity chapter
we know the following formulas and their meaning:

E = h f = h
c

λ
; E = mc2.

From this section, we know that the dimension of a black hole is related to its
Schwarzschild radius rs . If a photon is captured by a black hole of mass M and
energy E , the black hole changes its mass and energy. This fact can be represented
by the formula

�M = �E

c2
= h

λc
= h

rsc
,

because λ becomes rs .

But λ = rs = 2MG

c2
suggests a variation of the radius described by the formula

�r = 2�MG

c2
= 2G

c2
�M = 2G

c2
h

rsc
,

that is

rs�r = 2Gh

c3
.

It is worth noticing that the right member is a constant. Furthermore, it is easy to see
that the area of a black hole is the area of a sphere of radius rs ,

A = 4πr2s .

The derivative with respect to r leads to

d A

dr
= 8πrs,

i.e.

d A = 8πrsdr = 16πGh

c3
.
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Therefore, if a photon is captured by a black hole, the black hole area is increasing
by the quantity

d A = 16πGh

c3
.

If dS is a unitary entropy, the variation of the area becomes

d A = 16πGh

c3
dS,

therefore

S = c3

16πGh
A.

This formula is known as Bekenstein–Hawking formula for the black hole entropy.
See [74] for a detailed discussion.

Whit these considerations in mind, it is straightforward to define the black hole
temperature. The formula which connects the variation of energy, the temperature
and the variation in entropy is

dE = TdS.

If we consider only “one unit” of variation for entropy, i.e. a single photon which
changes the black hole energy, we have that

dE = T = hc

λ
= hc

rs
= hc3

2MG
.

That is, a single photon changes the temperature of the black hole such that T is

proportional to
1

M
. We deduce that smaller black holes are warmer than the massive

ones.

9.16.4 The Light Cone in the Schwarzschild Metric

In Minkowski metric, the trajectories of light-rays are determined by the condition
ds2 = 0. Since the Minkowski metric in geometric coordinates is

ds2 = (dx0)2 − (dx1)2,

the previous condition becomes

x0 = x1, x0 = −x1,

therefore the light cone is highlighted.
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In (t, r) coordinates, let us consider the 3-plane ϕ = 0 and the corresponding
Schwarzschild metric in geometric coordinates

ds2 =
(
1 − rs

r

)
dt2 − 1(

1 − rs
r

)dr2.

The condition ds2 = 0 leads to

(
1 − rs

r

)2
dt2 = dr2,

i.e.
dr

dt
= ±
(
1 − rs

r

)
.

It is obvious that this is different with respect to the Minkowski condition

dr

dt
= ±1.

We can write the equivalent formula

±
d

(
r

rs

)
(
1 − rs

r

) = d

(
t

rs

)
.

Let us denote X :=
(
r

rs

)
and Y :=

(
t

rs

)
. It remains to solve

±
∫

XdX

X + 1
=
∫

dY.

The solutions are Y = X + ln |x − 1| and Y = −X − ln |x − 1|.
The graphs of the functions f (X) = X + ln(1 − X) and g(X) = −X + ln(1 −

X), both defined on (0, 1), highlight the light cone in the interior of the black hole.
Suppose x0 ∈ (0, 1) and the tangent lines at (x0, f (x0)) and (x0, f (x0)). The

parallel lines to the tangents in (x0, 0) show how the light cone looks like in the
interior of the black hole.

The same, the graphs of the functions h(X) = X + ln(X − 1) and l(X) = −X +
ln(X − 1), both defined when x ∈ (1,∞) highlight the light cone outside the black
hole.
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In summary, we gave only some main features of black holes but the physics
and the mathematics of these gravitational systems is extremely reach and deserve
to be explored in details. Furthermore, after the direct detection of the black hole
shadow by the Event Horizon Telescope collaboration [75], a new era started in this
fascinating sector of Physics. These gravitational objects, considered only exotic
theoretical objects until recently, have become an amazing arena for observational
astrophysics and cosmology.



Chapter 10
A Geometric Realization of Relativity:
The Affine Universe and de Sitter
Spacetime

Rem tene, verba sequentur.

Cato

Wewant to conclude this book considering a gravity theorywithoutmasses which can
be constructed in Minkowski spaces using a geometric Minkowski potential. From
the point of view of this book, this can be considered a full geometric realization of the
relativistic approach. The affine space-like spheres can be seen as the regions of the
Minkowski space-like vectors characterized by a constant Minkowski gravitational
potential. They highlight, for each dimension n ≥ 3, a model of spacetime, the de
Sitter one, which satisfies Einstein’s field equations in the absence of matter, and it
is now intuitive why. This chapter is based on results that can be found in [16, 20,
26, 76].

10.1 About the Minkowski Geometric Gravitational Force

Denote by M
n the Minkowski n-dimensional space, n ≥ 3, endowed by the

Minkowski product

〈a, b〉M := a0b0 −
n−1∑

α=1

aαbα

With respect to givenb = (b0, b1, . . . , bn−1),we consider all vectors x = (x0, x1, . . . ,
xn−1) such that x − b is a space-like vector, that is 〈x − b, x − b〉M < 0. We denote
by

r :=
√√√√−(x0 − b0)2 +

n−1∑

α=1

(xα − bα)

2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
W. Boskoff and S. Capozziello, A Mathematical Journey to Relativity,
UNITEXT for Physics, https://doi.org/10.1007/978-3-030-47894-0_10

367

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47894-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-47894-0_10


368 10 A Geometric Realization of Relativity: The Affine …

the Minkowski “length” of the space-like vector x − b and by

u = −1

r
(x0 − b0, x1 − b1, . . . , xn−1 − bn−1)

the unit vector of b − x . We can define theMinkowski geometric gravitational force
as

Fn
M := 1

n − 1

1

rn−1
u.

If

An
M := n − 2

rn−1
u

is by definition the Minkowski geometric gravitational field, we have the following
“Minkowski-Newton second principle”:

Fn
M = 1

(n − 1)(n − 2)
An
M .

Let us define theMinkowski gradient and the Minkowski Laplacian:

�M :=
(

− ∂

∂x0
,

∂

∂x1
, . . . ,

∂

∂xn−1

)

�2
M := 〈�M ,�M 〉M = ∂2

∂x20
− ∂2

∂x21
− · · · − ∂2

∂x2n−1

.

For each dimension n, we can define the Minkowski gravitational potential

Φn
M := − 1

rn−2
.

The following computations

∂Φn
M

∂x0
= (2 − n)

x0 − b0
rn

; ∂Φn
M

∂xα
= (n − 2)

xα − bα

rn
, α ∈ {1, 2, . . . , n − 1};

∂2Φn
M

∂x20
= (2 − n)

r2 + n(x0 − b0)2

rn+2 ; ∂2Φn
M

∂x2α
= (n − 2)

r2 − n(xα − bα)2

rn+2 , α ∈ {1, 2, . . . , n − 1}.

Lead us to the following two theorems.

Theorem 10.1.1 The Minkowski gradient of the Minkowski gravitational potential
is the opposite of the Minkowski gravitational field.
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Proof It is easy to check the equality �MΦn
M = −An

M . �
Theorem 10.1.2 TheMinkowski Laplacian of theMinkowski gravitational potential
is null.

Proof The same, it is easy to check �2
MΦn

M = 0. �
The last relation is the equation of the Minkowski geometric gravitational field.

In the case when b is the origin of the Minkowski space, the Minkowski uni-
tary space-like sphere can be thought as the set of points of Mn described by the
constant gravitational Minkowski potential Φn

M = −1. In this theory, at each dimen-
sion n, the Minkowski geometrical gravitational force and the Minkowski geometric

gravitational field have the physical dimension
1

(l)n−1
. The Minkowski gravitational

potential has the physical dimension
1

(l)n−2
where (l) is a length.

We may conclude: For each dimension, in the Minkowski space-like vectors
region, a natural geometric Minkowski gravity appears in the absence of matter.
An equivalent of the Newton gravity theory can be constructed starting from the
Minkowski geometric gravitational potential. The affine space-like spheres can be
seen as the regions of the Minkowski space-like vectors characterized by a con-
stant Minkowski gravitational potential. They highlight, at each dimension n ≥ 3, a
model of spacetime, the de Sitter one, which satisfies Einstein’s field equations in
the absence of matter, and it is now intuitive why.

10.2 The de Sitter Spacetime and Its Cosmological
Constant

In the case n = 3, we choose to represent the 2-surface as

X2
0 − X2

1 − X2
2 = −a2,

in the form f : R × (−π,π) −→ M
3,

f (t, x1) = (a sinh t, a cosh t cos x1, a cosh t sin x1).

Some computations leads to the metric

ds22 = a2dt2 − a2 cosh2 t dx21 .

The non-zero Christoffel symbols are

�1
01 = �1

10 = tanh t, �0
11 = cosh t sinh t
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and

R0
101 = ∂�0

11

∂t
− ∂�0

10

∂x1
+ �0

s0�
s
11 − �0

s1�
s
10 = cosh2 t.

It results R0101 = g00R0
101 = a2 cosh2 t , that is KM

f = − 1

a2
.

For this 2-de Sitter spacetime, according to the Einstein theorem for surfaces
Ri j = KM

f gi j , we have

Ri j + 1

a2
gi j = 0.

This last equation can bewritten also as Ri j − 1

2
R gi j = 0, that is� = 0 and Ti j = 0.

In the case n = 4, the 3-de Sitter spacetime is the Minkowski space-like sphere
of M4 given by the equation

X2
0 − X2

1 − X2
2 − X2

3 = −a2.

The standard parameterization is

f (t, x1, x2) = (a sinh t cos x2, a cosh t cos x1 cos x2, a cosh t sin x1 cos x2, a sin x2).

The metric is

ds23 = a2 cos2 x2 dt
2 − a2 cosh2 t cos2 x2 dx

2
1 − a2dx22 .

We observe
ds23 = cos2 x2( a

2dt2 − a2 cosh2 t dx21 ) − a2dx22 .

therefore
ds23 = cos2 x2 ds

2
2 − a2dx22 .

The non-zero Christoffel symbols are

�0
02 = �0

20 = − tan x2, �0
11 = cosh t sinh t,

�1
01 = �1

10 = tanh t, �1
12 = �1

21 = − tan x2,

�2
00 = − sin x2 cos x2, �2

11 = cosh2 t cos x2 sin x2.

Now, if we compute
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Rii = Rs
isi = ∂�s

ii

∂xs
− ∂�s

is

∂xi
+ �h

ii�
s
hi − �h

is�
s
hi ,

we find
R00 = −2 cos2 x2; R11 = 2 cosh2 t cos2 x2; R22 = 2.

The other Rici symbols are null, Ri j = 0, i �= j. Therefore

Ri j + 2

a2
gi j = 0.

If we compute R := Ri
i , taking into account Ri

j = gis Rs j , it results R = − 6

a2
.

The left hand of Einstein’s field equations become

Ri j − 1

2

(
− 6

a2

)
gi j + �gi j .

If we choose � = − 1

a2
, the left hand becomes

Ri j + 2

a2
gi j ,

that is the left hand becomes 0. The de Sitter spacetime presented above satisfies the
Einstein field equations

Ri j − 1

2
R gi j + � gi j = 8πG

c4
Tik

for R = − 6

a2
, � = − 1

a2
and Ti j = 0. A spacetime without matter appears as we

expected.

In the case n = 5, the parameterization is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X0 = a sinh t cos x2 cos x3
X1 = a cosh t cos x1 cos x2 cos x3
X2 = a cosh t sin x1 cos x2 cos x3
X3 = a sin x2 cos x3
X4 = a sin x3

The metric related to this parameterization is

ds24 = a2 cos2 x2 cos
2 x3dt

2 − a2 cosh2 t cos2 x2 cos
2 x3dx

2
1 − a2 cos2 x3dx

2
2 − a2dx23 .
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In the same way, as above, it is

ds24 = cos2 x3(a
2 cos2 x2dt

2 − a2 cosh2 t cos2 x2dx
2
1 − a2dx22 ) − a2dx23 ,

therefore
ds24 = cos2 x3 ds

2
3 − a2dx23 .

Again, if we compute

Rii = Rs
isi = ∂�s

ii

∂xs
− ∂�s

is

∂xi
+ �h

ii�
s
hi − �h

is�
s
hi ,

we find

R00 = −3 cos2 x2 cos
2 x3, R11=3 cosh2 t cos2 x2 cos

2 x3, R22=3 cos2 x3, R33 = 3,

that is

Ri j + 3

a2
gi j = 0,

which leads to

R = −12

a2
, � = − 3

a2
, Ti j = 0,

for Einstein’s field equations.
In the general case, the (n − 1)-de Sitter spacetime is the Minkowski (n − 1)-

sphere determined by the ends of all the space-like vectors withMinkowski length a.
This is a hipersurface of the Minkowski n-dimensional space M

n having the
algebraic equation

X2
0 − X2

1 − · · · − X2
n−1 = −a2.

The related parameterization is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X0 = a sinh t cos x2 cos x3.... cos xn−2

X1 = a cosh t cos x1 cos x2 cos x3.... cos xn−2

X2 = a cosh t sin x1 cos x2 cos x3.... cos xn−2

X3 = a sin x2 cos x3 cos x4.... cos xn−2

X4 = a sin x3 cos x4.... cos xn−2

............................................

Xn−2 = a sin xn−3 cos xn−2

Xn−1 = a sin xn−2.

This parameterization makes sense for n ≥ 5. For n ≥ 6 we can denote
X0,n := X0; X1,n := X1; Xn−1,n := Xn−1 and we can write
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X0,n = X0,n−1 cos xn−2

X1,n = X1,n−1 cos xn−2

.............................

Xn−2,n = Xn−2,n−1 cos xn−2

Xn−1,n = a sin xn−2

with
X2
0,n−1 − X2

1,n−1 − · · · − X2
n−2,n−1 = −a2.

A direct consequence is

X0,n−1dX0,n−1 − X1,n−1dX1,n−1 − · · · − Xn−2,n−1dXn−2,n−1 = 0.

Using ⎧
⎪⎪⎨

⎪⎪⎩

dX0,n = dX0,n−1 cos xn−2 − X0,n−1 sin xn−2dxn−2

..............................................................................

dXn−2,n = dXn−2,n−1 cos xn−2 − Xn−2,n−1 sin xn−2dxn−2

dXn−1,n = a cos xn−2dxn−2

and denoting by
ds2k = dX2

0,k+1 − dX2
1,k+1 − · · · − dX2

k,k+1

we obtain
ds2n−1 = a2 cos2 xn−2 ds

2
n−2 − a2dx2n−2, n ≥ 6,

a formula which is the generalization of the formulas obtained for the previous cases
n = 4 and n = 5.

Therefore, in all cases, we proved that the metric is a diagonal one and we have
a recursive method to obtain it. Finally it looks like:

ds2n−1 = a2 cos2 xn−2 ds
2
n−2 − a2dx2n−2, n ≥ 4

and
ds22 = a2dt2 − a2 cosh2 t dx21 , n = 3.

Now, other considerations are in order. If

f (t, x1, x2, .., xn−2) = (
X0,n−1 cos xn−2, . . . , Xn−2,n−1 cos xn−2, a sin xn−2

)

the direct consequence of above results is

〈
f,

∂ f

∂t

〉

M

= 0.
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Another computation leads to

〈
f,

∂ f

∂xk

〉

M

= 0, while

〈
∂ f

∂xk
,
∂ f

∂t

〉

M

= 0,
〈
∂ f

∂xk
,

∂ f

∂x j

〉

M

= 0 are the consequences of the diagonal form of the metric and

highlight the orthogonal frame of the tangent space at each point.
Finally, the Minkowski normal to the hypersurface is

N (t, x1, . . . , xn−2) = 1

a
f (t, x1, . . . , xn−2),

that is the Minkowski distance from the origin to the tangent hyperplane at a given
point of the hypersurface is a and all the coefficients of the second fundamental form
are computed with the formula established for the case n = 2,

hi j =
〈
∂N

∂xi
,

∂ f

∂x j

〉

M

,

therefore

hi j = 1

a
gi j .

Since 〈N , N 〉M = −1 < 0, we have

Ri jkl = − (
hikh jl − hilh jk

)
.

It results

Ri jkl = − 1

a2
(
gikg jl − gil g jk

)
, i, j, k, l ∈ {0, 1, . . . , n − 2}.

Therefore each sectional curvature is

K = − 1

a2
.

From

Ri ji j = − 1

a2
(
gii g j j − gi j g ji

)
,

it results

gmi Ri ji j = − 1

a2
(
gmi gii g j j − gmi gi j g ji

)
,

that is

Rm
ji j = − 1

a2
(
δmi g j j − δmj g ji

)
.

For m = i , it remains
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Rm
jmj = − 1

a2
g j j ,

for each m �= j . Finally,

R j j =
n−2∑

m=0, m �= j

Rm
jmj = −n − 2

a2
g j j .

If we start from

Ri jkl = − 1

a2
(
gikg jl − gil g jk

)
,

the same reasoning leads to

Rm
jml = − 1

a2
g jl,

i.e. for j �= l, we have R jl = 0. Therefore

Ri j + n − 2

a2
gi j = 0

for all i and j . From this formula, we obtain

R = −(n − 1)(n − 2)
1

a2
.

Since

Ri j + 1

2
(n − 1)(n − 2)

1

a2
gi j − (n − 2)(n − 3)

2

1

a2
gi j = Ri j + n − 2

a2
gi j = 0

it results that, if we choose

� = − (n − 2)(n − 3)

2

1

a2
,

the previous metric satisfies the Einstein field equations

Ri j − 1

2
R gi j + � gi j = 8πG

c4
Ti j

in the absence of matter, that is with Ti j = 0.
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10.3 Some Physical Considerations

Let us return to the 4th dimensional de Sitter spacetime described by the parameter-
ization

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X0 = sinh t cos x2 cos x3
X1 = cosh t cos x1 cos x2 cos x3
X2 = cosh t sin x1 cos x2 cos x3
X3 = sin x2 cos x3
X4 = sin x3

with the metric

ds24 = cos2 x2 cos
2 x3dt

2 − cosh2 t cos2 x2 cos
2 x3dx

2
1 − cos2 x3dx

2
2 − dx23 .

It is difficult to talk about photons traveling in this Universe but if we consider a slice
in the previous de Sitter space, determined by x2 = x3 = 0, we obviously highlight
the 2-de Sitter spacetime ⎧

⎨

⎩

X0 = sinh t
X1 = cosh t cos x1
X2 = cosh t sin x1

denoted here by

f (t, x1) = (X0, X1, X2) = (sinh t, cosh t cos x1, cosh t sin x1),

f : R × (−π,π) −→ M
3, with the metric

ds22 = dt2 − cosh2 tdx21

and we can hope for a simpler approach of the problem.
It exists two coordinate curves at each given point (t0, x01 ). The first one is

c0(t) = f (t, x01 )

where x01 is a constant. Since

ċ0(t) = ∂ f

∂t
= (

cosh t, sinh t cos x01 , sinh t sin x
0
1

)

is a time-like vector, i.e.

〈
∂ f

∂t
,
∂ f

∂t

〉
= 1, the curve c0 is a world line for an observer,

that is, we are talking about the evolution in time of an event. The relation

||ċ0(t)||M = 1
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shows that the parameter t is the proper time because

τ (t) =
∫ t

0
||ċ0(q)||Mdq = t.

The other possible curve
c1(x1) = f (t0, x1)

where t0 is a constant, is a “circle”which cuts the “Euclidean hyperboloid,” and, at the

same time, a space-like curve because

〈
∂ f

∂x1
,

∂ f

∂x1

〉
= − cosh2 t = − cosh2 τ < 0.

Let us analyze the “circumnavigation problem”, that is the possibility to go around
the “hyperboloid” in a finite amount of time. The length of c1 is

∫ π

−π

||ċ1(τ )||Mdx1 =
∫ π

−π

cosh τdx1 = 2π cosh τ .

The limit, as τ approaches to ∞, is infinite, therefore this spacetime is unbounded
in both given directions.

We are interested in understanding how photons travel in this de Sitter spacetime.
Firstly, the metric

ds22 = dt2 − cosh2 t dx21

is described by the metric tensor

(
1 0
0 − cosh2 t

)

whose light-cone vectors, in the (t, x) plane, are L+ =
(

x

x
1

cosh t

)
and

L− =
(

x

−x
1

cosh t

)
, x ∈ R.

These vectors were deduced in the same way we deduced them in a Minkowski
space, whose metric

ds2 = dt2 − dx2

is described by the metric tensor (
1 0
0 −1

)
.

The light cone vectors are E+ =
(
x
x

)
and E− =

(
x

−x

)
, x ∈ R.
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If we are looking at the vectors L+, L− in their transposed form on M
3, from

(
x,± x

cosh t

)
= x · (1, 0) ± x

cosh t
· (0, 1),

the formulas

d fx
(
L+) = x · ∂ f

∂t
+ x

cosh t

∂ f

∂x1
; d fx

(
L−) = x · ∂ f

∂t
− x

cosh t

∂ f

∂x1
,

results. This means that the velocity of photons is the ratio (with a sign) between the

norms of the spatial vector
x

cosh t

∂ f

∂x1
and the temporal vector x

∂ f

∂t
, i.e.

± 1

cosh t
· ||ċ0(t)||M
||ċ1(x1)||M = ±1

as we expected.
Let us look again at the t x1 plane and suppose we have the trajectory of a photon

described by a function x1(t) which is x1(τ ). In fact, taking into account L+, we
have

x1(q) =
∫

2

eq + e−q
dq =

∫
2eq

e2q + 1
= 2 arctan(eq) + C1,

where C1 is a constant. This function is increasing. The limit as q approaches −∞
is C1 and the limit as q approaches +∞ is π + C1, therefore a photon image curve
in t x1 plane is completely included in a strip with width π. The same happens for
the photon described by

x1(q) = −
∫

2

eq + e−q
dq = −

∫
2eq

e2q + 1
= −2 arctan eq + C2,

where C2 is a constant.
Ifwe ask for photons having, at the origin of the t x1 plane the vectors L+(0), L−(0)

as tangent vectors respectively, we obtain the curves x1(τ ) = 2 arctan eτ − π

2
, and

x1(τ ) = −2 arctan eτ + π

2
, respectively. The images of this two curves are the tra-

jectories of photons in the de Sitter spacetime. Therefore, if we choose the first curve,
its image in the de Sitter spacetime is

⎧
⎪⎪⎨

⎪⎪⎩

X0(τ ) = sinh τ

X1(τ ) = cosh τ cos
(
2 arctan eτ − π

2

)

X2(τ ) = cosh t sin
(
2 arctan eτ − π

2

) .

Being



10.3 Some Physical Considerations 379

cos
(
2 arctan eτ − π

2

)
= 1

cosh τ

and
sin

(
2 arctan eτ − π

2

)
= tanh τ ,

therefore it is ⎧
⎨

⎩

X0(τ ) = sinh τ
X1(τ ) = 1
X2(τ ) = sinh τ .

We leave, as an exercise for the reader, to prove that the second curve is

⎧
⎨

⎩

X0(τ ) = sinh τ
X1(τ ) = 1
X2(τ ) = − sinh τ .

Finally, the trajectories of photons in the de Sitter spacetime are lines with slopes 1
and −1 (as we expected) which belong, in this case, to the plane X1 = 1.

Even if it is just the investigation of a light cone at a single point, the reader has
to imagine that, at each point of the de Sitter spacetime, the situation is the same: the
Euclidean hyperboloid have, at each point, a pair of straight lines embedded into its
surface.

10.4 A FLRWMetric for de Sitter Spacetime Given by the
Flat Slicing Coordinates Attached to the Affine Sphere

In [26] it is presented a very interesting parameterization of the affine sphere

X2
0 − X2

1 − · · · − X2
n−1 = −a2,

using the flat slicing coordinates:

f :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X0 = a sinh
t

a
+ r2

2a
· et/a

X1 = a cosh
t

a
− r2

2a
· et/a

X2 = y1 et/a

X3 = y2 et/a

....................

Xn−1 = yn−2 et/a
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with
y21 + y22 + · · · + y2n−2 = r2.

It results the relation

y1dy1 + y2dy2 + · · · + yn−2dyn−2 = rdr

which helps us to find the corresponding metric.
Now,

dX0 =
[
cosh

t

a
+ r2

2a2
et/a

]
dt + r

a
et/adr

dX1 =
[
sinh

t

a
− r2

2a2
et/a

]
dt − r

a
et/adr

dXk = et/a
[
dyk−1 + 1

a
yk−1dt

]
, k ∈ {2, 3, . . . , n − 1}.

If we compute the metric, firstly we obtain

dX2
0 − dX2

1 =
[
1 + r2

a2
e2t/a

]
dt2 + 2r

a
e2t/adtdr.

Since
n−1∑

k=2

dX2
k = e2t/a

n−1∑

k=2

[
dy2k−1 + 2

a
yk−1dyk−1dt + 1

a2
y2k−1dt

2

]
=

= e2t/a
n−1∑

k=2

dy2k−1 + e2t/a
2r

a
drdt + e2t/a

r2

a2
dt2,

finally we find

ds2 = dt2 − e2t/a
(
dy21 + dy22 + · · · + dy2n−2

)
.

For this metric we have
⎧
⎪⎨

⎪⎩

�α
0α = �α

α0 = 1

a

�0
αα = 1

a
e2t/a, α ∈ {1, 2, . . . , n − 2},

all the other Christoffel symbols are null. Then,
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R00 = �
��R0
000 + Rβ

0β0 =
n−2∑

β=1

Rβ
0β0 =

n−2∑

β=1

⎡

⎣�
�
�

∂�
β
00

∂xβ
−

�
�

�∂�
β
0β

∂x0
+����

�m
00�

β
mβ − �m

0β�
β
m0

⎤

⎦ =

= −n − 2

a2
= −n − 2

a2
g00;

Rαα = Rs
αsα =��Rα

ααα +
n−2∑

s=0,s �=α

Rs
αsα =

n−2∑

s=0,s �=α

[
∂�s

αα

∂xs
−
�

��∂�s
αs

∂xα
+ �m

αα�s
sm − �m

αs�
s
mα

]
=

= 2

a2
e2t/a + (�1

01 + �2
02 + · · · + �n−2

0n−2)�
0
αα − �α

0α�0
αα − �0

αα�α
0α = − n − 2

a2
e2t/a = − n − 2

a2
gαα.

Therefore

R = −(n − 1)(n − 2)
1

a2
,

that is choosing

� = − (n − 2)(n − 3)

2

1

a2
,

the previous metric satisfies the Einstein field equations in absence of matter,

Ri j − 1

2
R gi j + �gi j = 0.

This metric can be written in the form

ds2 = dt2 − e2t/ady2

where
dy2 = dy21 + dy22 + · · · + dy2n−2

is the flat metric in the yk coordinates, which explains the name.
This is an example of a FLRW metric for de Sitter spacetime.

Example 10.4.1 Consider de Sitter spacetime with one of the previous metric gi j .
It is

Ri j = −n − 2

a2
gi j

and

R = −(n − 1)(n − 2)
1

a2
.
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Therefore, in the case of f (R) = R gravity, we obtain Einstein’s field equations

Ri j − 1

2
R gi j + � gi j = 0

with the cosmological constant

� = − (n − 2)(n − 3)

2

1

a2
,

because we have

Ri j + 1

2
(n − 1)(n − 2)

1

a2
gi j − (n − 2)(n − 3)

2

1

a2
gi j = Ri j + n − 2

a2
gi j = 0.

If we consider the case of f (R) = R2 gravity, we have

f ′(R)Ri j − 1

2
f (R)gi j + � f gi j = 0

if

� f = (n − 1)(n − 2)2(n − 5)

2a4
= −R

(n − 2)(n − 5)

2a2
.

Indeed,

2R Ri j − 1

2
R2 gi j − R

(n − 2)(n − 5)

2a2
gi j = 2R

(
Ri j − 1

4
R gi j − (n − 2)(n − 5)

4a2
gi j

)
=

= 2R

(
Ri j + (n − 1)(n − 2)

4a2
gi j − (n − 2)(n − 5)

4a2
gi j

)
= 2R

(
Ri j + n − 2

a2
gi j

)
= 0.

Therefore we have the following statement:
The f (R) = R2 gravity equations in absence of matter

f ′(R)Ri j − 1

2
f (R)gi j + � f gi j = 0

in the case of the cosmological constant

� f = (n − 1)(n − 2)2(n − 5)

2a4

are satisfied by any metric

ds2 = gi j dx
idx j , i, j ∈ {0, 1, . . . , n − 2}
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having the property

Ri j = −n − 2

a2
gi j .

An example is de Sitter spacetime metric

ds2 = dt2 − e2t/a
(
dy21 + dy22 + · · · + dy2n−2

)
.

A particular situation happens when n = 5. The f (R) equations in vacuum are
satisfied in the their original form

f ′(R)Ri j − 1

2
f (R)gi j = 0,

that is no cosmological constant is needed.

Exercise 10.4.2 For the unit space-like affine sphere

X2
0 − X2

1 − · · · − X2
n−1 = −1

consider the parameterization

f :

⎧
⎪⎪⎨

⎪⎪⎩

X0 = a sinh t
X1 = y1 cosh t
................

Xn−1 = yn−1 cosh t

with
y21 + y22 + · · · + y2n−1 = 1,

that is
y1dy1 + y2dy2 + · · · + yn−2dyn−2 = 0.

(i) Show that the corresponding metric is

ds2 = dt2 − cosh2 t
(
dy21 + dy22 + · · · + dy2n−1

)
.

(ii) Try to understand why the metric can be written in the form

ds2 = dt2 − cosh2 t d�2
n−2,

where d�2
n−2 is the metric of the Sn−2 sphere.
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10.5 Deriving Cosmological Singularities in the Context of
de Sitter Spacetime

Let us consider the case n = 3. The Euclidean one-sheet hyperboloid, which is in
fact a Minkowki sphere, has the algebraic equation

X2
0 − X2

1 − X2
2 = −1.

Using the flat slicing coordinates

f :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X0 = sinh t + r2

2
· et

X1 = cosh t − r2

2
· et

X2 = r · et .

we find, as a particular case of our previous discussion, the metric

ds2 = dt2 − e2t dr2.

For this metric, we have {
�1
01 = �1

10 = 1
�0
11 = e2t ,

all the other Christoffel symbols are null.
Let us consider the Minkowski sphere. At t = 0, consider the curve

m(r) =
(
r2

2
, 1 − r2

2
, r

)

obtainedby replacing t = 0 in the parameterization of f . This curve is the intersection
between the plane

X0 + X1 = 1

and the Minkowski sphere
X2
0 − X2

1 − X2
2 = −1.

We can conceive this curve as at the initial singularity at the origin of the de Sit-
ter spacetime. Let us follow the evolution in time of it and choose a point of the
singularity,

m(r0) =
(
r20
2

, 1 − r20
2

, r0

)
.

The evolution in time of this point is the line
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c(t) =
(
sinh t + r20

2
· et , cosh t + r20

2
· et , r0 · et

)
.

Theorem 10.5.1 1. c(t) is the intersection between the plane X0 + X1 − 1

r0
X2 = 0

and the previous “hyperboloid” X2
0 − X2

1 − X2
2 = −1.

2. The Minkowski product < ċ(t), ċ(t) >M is 1, i.e. the tangent vector, is a time-like
vector.
3. c(t) is a time-like geodesic of de Sitter spacetime.

Proof We leave for the reader the proof of the first two points which are simple
exercises.

The equations of the geodesics are

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d2t

dτ 2
+ �0

11

dr

dτ

dr

dτ
= 0

d2r

dτ 2
+ 2�1

01

dt

dτ

dr

dτ
= 0,

i.e. ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d2t

dτ 2
+ e2t

dr

dτ

dr

dτ
= 0

d2r

dτ 2
+ 2

dt

dτ

dr

dτ
= 0.

The solution t = τ , r = r0 corresponds to the curve c. �

Therefore, the line is the evolution in time of the point and it is the first line we
considered in the part of de Sitter spacetime out of the singularity curve.

Now, from each point of

m(r) =
(
r2

2
, 1 − r2

2
, r

)

consider the corresponding curve

cr (t) =
(
sinh t + r2

2
· et , cosh t + r2

2
· et , r · et

)
.

All these time-like geodesics for t = τ > 0 starting from the initial singularity are
part of the texture of the de Sitter spacetime. Observe that not all the Minkowski
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sphere is the texture of the de Sitter spacetime. Furthermore the parameterization
makes sense also for t = τ < 0. We have the image of an evolution of a singularity
corresponding to the de Sitter spacetime.

As we said at the beginning of this chapter, gravitational interaction can be
obtained starting from Minkowski spacetime according to a slicing procedure. This
is only a possible geometric realization of Relativity. Other interesting geometric
realizations of spacetimes can be found in [77].



Chapter 11
Conclusions

This book is an “experiment” to demonstrate that, starting from simple arguments of
Euclidean Geometry, it is possible to arrive at the geometric formulation of physical
theories: in the specific case, Special and General Relativity and, consequently, up to
Relativistic Cosmology.Our attemptwas aimed, above all, at undergraduate students,
in particular those of our university courses, to demonstrate that, by a rigorous and
extended mathematical development, theories deemed “difficult”, such as General
Relativity, can be understood and operationally used. We turned to students, and not
to colleagues, to avoid falling into unnecessary technicalities that would have made
the text unsuitable for a truly “basic” reading of Special and General Relativity.
During the discussion, however, we introduced some advanced topics with the aim
of stimulating the reader to further deepen and personal research. Our hope is not to
have bored the reader and to have contributed something useful to the vast literature
on the subject. Ours was a humble attempt, with no claim to completeness. We hope
that our efforts have proved useful to someone eager to understand the wonderful
book ofNaturewith the beautiful language ofMathematicswhich, as said byLeibniz,
is “the honor of the human spirit”.
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